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ABSTRACT

Stephen Ronald Aylward:
CONTINUOUS MIXTURE MODELING VIA GOODNESS-OF-FIT CORES
(Under the direction of Dr. James Coggins)

This dissertation introduces a new technique for the automated specification of
continuous Gaussian mixture models (CGMMs). This approach is ideal for representing
distributions that arise in a variety of problems including the driving problem of this dissertation,
representing the distribution of the intensities associated with tissues in medical images.

Gaussian mixture models are population density representations formed by the weighted
linear combination of multiple, multivariate Gaussian component distributions. Finite Gaussian
mixture models are formed when a finite number of discrete component distributions are used.
CGMMs are formed when multiple continua of component distributions are used.

The approach to CGMM specification developed here is based on an original structure,
the Gaussian goodness-of-fit (GGoF) core. GGoF functions quantify how well a Gaussian having
a particular mean and covariance represents the local distribution of samples. GGoF cores
capture the continua of Gaussians which well represent a sampled population; they define a
CGMM. In this dissertation, Monte Carlo simulations are used to evaluate the robustness of a
variety of GGoF functions and binning methods for the specification of GGoF cores. The log
likelihood ratio GGoF function is shown to produce the most accurate and consistent GGoF cores.

In generalized projective Gaussian distributions, similar feature vectors, when projected
onto a subset of basis feature vectors, have a Gaussian distribution. In this dissertation, Monte

Carlo simulations and ROC analysis are used to demonstrate that for such distributions CGMMs

I



defined using GGoF cores produce accurate and consistent labelings compared to K-means and
finite Gaussian mixture models. Additionally, CGMMs do not suffer from the problems
associated with determining an appropriate number of components, initializing the component
parameters, or iteratively converging to a solution.

Generalized projective Gaussian distributions exist in a variety of real-world data. The
applicability of CGMM via GGOF cores to real-world data is demonstrated through the accurate
modeling of tissues in an inhomogeneous magnetic resonance image. The extension of CGMM
via GGOF cores to high-dimensional data is demonstrated through the accurate modeling of a

sampled trivariate anisotropic generalized projective Gaussian distribution.

v



DEDICATION

To my family for the opportunity and encouragement to pursue my dreams.

Thanks also goes to numerous people at McDonnell Douglas
who provided me with the initiative to start this work
and to the many coffee shops of Chapel Hill

in which most of this work was completed.



TABLE OF CONTENTS

LIST OF SYMBOLS AND NOT ATION XI
LIST OF ABBREVIATION S XIII
L INTRODUCTION 1
1.1. Statistical Pattern Recognition . . 1

1.2. Density Functions 2

1.3. Gaussian Mixture Models . 3

1.4. Why Gaussian Mixture Models_ 4

1.5.  Why not Finite Gaussian Mixture Models.__________.._.___..__ ... ... 5

1.6. Why Continuous Gaussian Mixture Modeles (Thesis) 6

1.7. Object Representation via Medialness Cores_ ... ... 7

1.8. Gaussian Mixture Modeling via Gaussian Goodness-of-FitCores 7

1.9, SYNOPSIS 10

1.10 Bibliography 11

L. CLASSIFIC ATION 13
2.1. Traditional Pattern Recognition . 13
2.1.1. Two Related Two-Feature, Two-Class Problems 14

2.1.1.1. Problem 1 Description and Justification 14

2.1.1.2. Problem 2 Description and Justification 18

2.1.2. Feature Space 18

VI



III.

2.1.3.
2.14.
2.1.5.

2.1.6

2.2. Comparing Pattern Recognition Systems

2.2.1.
2.2.2.
2.2.3.

2.3. A Comparison of Classification Systems

2.3.1.
2.3.2.
2.3.3.
2.34.
2.3.5.
2.3.6.
2.3.7.

2.3.8.
2.3.9.

2.5. Bibliography

Scattergrams

Population Distributions: Density Functions

Decision Bounds and Sample Labeling

Labeling Feature Space

Labeling Accuracy

Labeling Consistency: Monte Carlo One-Sigma of Labeling Accuracy

Ease of Qualitative and Quantitative Analysis

Linear

Gaussian32

K Nearest Neighbor

Parzen Windows

K Means 46

Finite Gaussian Mixture Modeling

2.3.7.1. Maximum Likelihood Estimation

2.3.7.2. Maximum Likelihood Expectation Maximization

2.3.7.3. Operation

2.3.7.4. Labeling Accuracy and Consistency
2.3.7.5. Ease of Analysis

Summary

What's Next?

MEDIALNESS CORES

3.2. Medialness Space
3.3. Medialness Cores: Generalized Maxima and Height Ridges

3.4. Height Ridge Extraction

VII

18
20
21
22

23

23
25
27

27

30

33

37

41

50

51
52
54
55
58

58

63

63

67

67

69

71

73



Iv.

3.4.1. Flowing to a Height Ridge
3.4.2. Traversing the Height Ridge

3.5. Overview of Insensitivities

74
74

75

3.6. Summary

3.7. Bibliography

GOODNESS-OF-FIT FUNCTIONS

75

76

78

4.1. Goodness-of-Fit Measures

78

4.2. )(2 Gaussian Goodness-of-Fit
4.3. Univariate Binning
4.4. Accuracy and Consistency of GGoF Extrema

4.4.1. Maximization of GGoF Functions

80

81

86

4.4.2. Two Univariate Distributions

4.4.3. Variable Starting Points
4.44. Equirange Binning Results
4.4.5. Equiprobable Binning Results
4.4.6. Overlapped-equirange Binning Results

4.47. Overlapped-equiprobable Binning Results

4.5. Summary

4.6. Bibliography

CGMM VIA GGOF CORES

5.1. Two Dimensional GGoF Spaces of Univariate Data

5.2. Generalization of GGoF Functions to N Dimensions

5.2.1. GGoF Core Directions

5.2.2. Projection of Local Samples

5.2.3. Directions of Projections

5.2.3.1. Fixed Multivariate GGoF Kernels

5.2.3.2. Oriented Multivariate GGoF Kernels

VIII

111

113

115

115

119

120
121
122

123
124



VL

5.3.

54.
5.5.

5.6.

5.7.

5.8.

5.9.

5.10. Bibliography

52.3.3. Adaptive Multivariate GGoF Kernels

52.4. Summary

One Dimensional GGoF Cores

5.3.1. Stimulation Point Specification

5.3.2. The Flow Process

5.3.3. The GGOF Core Traversal Process

5.3.4. GGoF Core Termination and Recovery Criterion

5.6.1. Directed GGoF Kernels and Off-Core Points

5.6.2. Interpolation Versus Approximation

GGoF Cores: An Example

GGoF Core to CGMM Conversion

5.8.1. Core Point A Priori Probability
5.8.2. Core Point Conditional Sample Probabilities

Putting it all Together

BEHAVIOR OF GAUSSIAN GOODNESS-OF-FIT CORES

6.1.

6.2.

6.3.

6.4.

CGMM’s Accuracy and Consistency

6.1.1. An Example CGMM Result
6.1.2. Monte CarloResults_ ..
6.1.3. ROC Analysis

6.1.4. Summary

Classification of Tissues in Inhomogeneous Magnetic Resonance Images

Bibliography

IX

128

130

130

131
132
132
133

134

134

135

135
136

139

140

140
140

142

143

144

144

144
154
157
162

163

166

169



VII. CONCLUSION, SUMMARY, AND FUTURE WORK 170

7.0, Conclusion 170
7.2. Summary of Specific Results and Contributions . 171
7.3. Limitations of CGMMs via GGoFCores . 173
74. Future Technical Advancements . 174
75. Going Beyond 175
7.6. Bibliography 175



LIST OF SYMBOLS

General notation convention:

Symbols:

CCa

z = 2 R IE

=z Zz

° % 0O

Function Capital bold followed by parenthesis
Set Capital italics

Vector Single underscore

Vector component i Subscripted vector

Matrix Double underscore

Matrix componentij ~ Double subscripted matrix

ith instance A vector, set, etc. with superscript in parenthesis
Size of Set S

Determinant of Matrix

Length of Vector

Transpose of Vector

Number of bins

Feature 0

Feature 1

Hessian

Number of components in a finite mixture model

The dimension of a ridge

Mean vector

Number of features comprising a sample (i.e., the dim. of feature space)
Number of classes/populations in a pattern recognition problem
Number of tracks comprising the CGMM

Projection matrix used by multivariate binning processes

Numer of directions of projection: Rank of P

Number of Monte Carlo runs in an experiment

Constant of proportionality between scale and radius

XI



r radius

s Size parameter for multidimensional GGOF functions
o standard deviation, scale

s(tn) Set of all training samples

S(tr:A) Set of all training samples from Class A

X A sample or spatial point

. Covariance matrix

*(Ws) Local data’s covariance matrix

X2 A Chi-squared based GoF function

XI% Pearson’s Chi-squared GoF function

X 1% &C Read & Cressie’s power divergent GoF function

XI%LR Log likelihood ratio GoF function

Xé -1 (0() Value from a Chi-squared table, B-1 degree of freedom, o power

XII



LIST OF ABBREVIATIONS

CGMM Continuous Gaussian Mixture Modeling

FGMM Finite Gaussian Mixture Modeling

FPR False-positive rate

GOF Goodness-of-fit

GGOF Gaussian goodness-of-fit

GMM Gaussian mixture modeling

KM K-Means

KMm7 K-Means using 7 components per population

KNN K-Nearest Neighbor

KNN3 K-Nearest Neighbor using 3 nearest neighbors

LoG Laplacian of Gaussian

MLEM Maximum likelihood expectation maximization

MLP Multilayered perceptron

MLP6x3 Multilayered perceptron having two hidden layers with 6 nodes
in the first hidden layer and 3 in the second hidden layer.

PwW Parzen window

PW2 Parzen window with Gaussian kernel with a standard deviation of 2 units

TPR True-positive rate

XIIT



Chapter 1

INTRODUCTION

Normality is a myth
there never was, and never will, be a normal distribution.

- Geary, 1947

If the clusters are compact and isolated,
almost any representation will work.

- Coggins, 1996

1.1. Statistical Pattern Recognition

Most scientists encounter problems which involve statistical analysis. What populations
are present in my data? How do these populations differ? Have I collected enough data? From
which population did this sample originate? In pattern recognition systems, samples are used to
form models of their source populations. This dissertation introduces a novel technique for
consistently and accurately forming those models. Questions such as those above are answered
using measurements derived from such models. [Duda and Hart 1973; Schalkoff 1992]

Two types of pattern recognition systems are clusterers and classifiers. =~ They are
distinguished by whether the training samples used for determining their parameters are
required to have labels.

Clusterers do not use labels during the formation of their models. Clusterers attempt to
partition a set of training samples into groups (i.e., clusters) of similar samples. Each cluster is
then assigned a unique label, or the labeled samples in each cluster vote to determine an

appropriate cluster label.



Classifiers require that each sample in the training set have a label indicating its source
population. These labels limit a sample’s influence to the parameters of its own population’s
model. This dissertation is mainly concerned with the development of population models for use
in classifiers.

A sample is an instance of N measurements obtained from an object. A sample captures
the “features” of an object and maps that object to a point in an N-dimensional “feature space.”

A population is a source or category or class from which objects originate. Presumably,
every object associated with a population will share a set of traits that are characterized by the
measurements used to define the samples.

For statistical pattern recognition, samples are manipulated as vectors of N random
variables. Variations among samples from the same population are indicative of noise and/or a
lack of correspondence between the measurements and the common traits.  This variance and
the correlations in the measurements determine how a population’s samples will be distributed in
feature space.

Pattern recognition systems attempt to model, via an implicitly or explicitly estimated
density function, the distribution of a population’s samples in feature space. =~ While feature
quality limits the potential accuracy of a pattern recognition system, it is the estimated density
function which determines the accuracy and consistency actually achieved. The focus of this
dissertation is the accurate and consistent specification of density functions common to a variety
of distributions including those occurring in medical imaging, speech recognition, and

handwriting recognition.

1.2. Density Functions

Given a sample in feature space, a density function for a class provides the probability
that that sample originated from that class.  Density functions are distinguished by the
assumptions they impose and their parameter specification (“training”) process.

A frequently used density function assumes that a population’s distribution is
multivariate normal, i.e., Gaussian. Gaussian density functions are completely parameterized by
a mean vector and a covariance matrix. While Geary [Geary 1947] and others may claim that
Gaussian assumptions are rarely correct, they have been shown to be applicable to many real-
world populations, e.g., magnetic resonance imaged tissue intensity distributions after removal of
spatially correlated intensity variations [Dawant, Zijdenbos et al. 1993; Aylward and Coggins
1994; Meyer, Bland et al. 1995; Wells III, Grimson et al. 1996]. In general, when a Gaussian
density function is assumed and that assumption is correct, the corresponding pattern recognition

system produces consistent and optimally accurate labelings with respect to the features being



used.  Additionally, as stated by Coggins[Coggins 1996], even when the assumed density
function is not correct, the separation of the populations in feature space may be large enough
that a suboptimal representation can provide sufficient accuracy for the problem at hand. For
many long-standing pattern recognition problems, however, the Gaussian assumption has been
shown to be incorrect and insufficient, and a sufficiently accurate density function assumption is
not known. In some of these situations, improved pattern recognition accuracy has resulted from
the development of Gaussian mixture model (GMM) density functions [Bellegarda and Nahamoo
1990; Aylward and Coggins 1994; Bellegarda, Bellegarda et al. 1994; Gish and Schmidt 1994;
Zhuang, Huang et al. 1996].

1.3. Gaussian Mixture Models

A mixture model is formed by a weighted linear combination of multiple “component”
distributions. Its parameters, ¥ include the a priori probabilities of the components ofD) and the
parameters of the individual components &), Ina GMM, the component distributions, F(x; (Ji)),
are multivariate normal densities; each component is an N-dimensional Gaussian distribution

parameterized by a mean Y and covariance matrix Z.

e cpﬁ)): 1 e_% X‘B)té_l l“B) o0 = {Ll z} [1.1]
’ (21‘[)N/ 2| zI]/ 2 r=
where tdenotes transposition
| o | denotes the determinant of the matrix ®
single underscore denotes a vector

double underscore denotes a matrix

If the number of components, K, is bounded, the mixture model is called a finite mixture

model. A finite mixture model provides a probability for a sample x [ ON via

K . .
P| ¥)=> (o(l)F%, ¢“)) [1.2]
i=1
where
K . .
1= w® and W :{{oo, &}V |i= 1..K} [1.3]
i=1



If the components are defined as spanning one or more tracks through their parameter
space, i.e., the domain of the parameter’s of a component, then the model is formed by the
combination of an infinite number of continuously varying components and thus is called a
continuous mixture model. That is, a continuous mixture model consists of components whose
parameters are spanned by one of N; continua of points, T0), through the model’s parameter

space. A continuous mixture model provides a probability for a sample x [ ON via

P(x| ¥)= {Mé?é(w(wF(x, ®)) [1.4]
where
w:{{w, @} | 0jO0L.Ng s.t. @ OTY andco:P(dJ)] [1.5]

Equation 1.4 states that each sample is in fact generated by just one of the infinite number
of components and the generating component is determined via maximum likelihood and that
component provides the best estimate of the sample’s probability. Thus F(x,¢ can be interpreted
as a providing a point conditional sample probability, and w as providing a point a priori

probability. Equation 1.4 can therefore be rewritten as

P v)= MAX P(®)P(x|® 1.6
&1¥) {w}DT(j)ljzl..Nt(( P )) 6]

The focus of this dissertation is the definition of the continua of points ¢ T0) via core

techniques and the estimation of their associated P(¢) using traditional statistical methods.
1.4. Why Gaussian Mixture Models

This dissertation introduces the concept of a generalized projective Gaussian distribution.
If the projection of a group of similar samples onto a subset of basis directions has a Gaussian
distribution, those samples are said to have a generalized projective Gaussian distribution (Figure
1.1). The term “extruded” is generalized to refer to the stretching and the scaling these
distributions can exhibit. Such “extruded” Gaussian distributions occur when correlations exist
between a population’s parameters and some of the population’s features.

Independently, [Gerig, Martin et al. 1991; Aylward and Coggins 1994; Wells III, Grimson
et al. 1996] demonstrated that the intensities associated with individual tissue types in an MR

image have non-Gaussian distributions. Yet, tissue samples within small regions in an MR image



f2>

f1
An isoprobability surface of an extruded Gaussian distribution
Figure 1.1

have been shown to be well represented using a Gaussian distribution, and the parameters of
these spatially localized Gaussian distributions have been shown to vary smoothly across the
image [Aylward and Coggins 1994; Wells III, Grimson et al. 1996]. Thus a continua of Gaussians
well models those spatial variations and represents each distribution.

In speech recognition, it is commonly accepted that hidden Markov models based on
Gaussian distributions can represent the speech of a single person in a controlled situation, e.g.,
given a fixed level of stress, background noise, etc. Additionally, smooth warps can be applied to
the parameters of those Gaussians to adapt them to new situations and speakers [Bellegarda and
Nahamoo 1990]. Thus, to account for variations in speaker and situation, multiple Gaussians are
needed.

For some applications the feature/model-parameter correlations are well understood and
easily measured. In those situations, the most accurate labelings can be obtained by directly
eliminating their effects and then using a simple Gaussian classifier [Axel, Costantini et al. 1987;
Brey and Narayana 1988; Dawant, Zijdenbos et al. 1993; Aylward and Coggins 1994; Meyer, Bland
et al. 1995; Wells III, Grimson et al. 1996]. However, when the correlations are not well

understood or easily measured, GMMs are appropriate.

1.5. Why not Finite Gaussian Mixture Models?

Most investigations involving GMMs have used FGMMs.  The development of an
algorithm for fast, accurate, and consistent FGMM training has been the focus of most GMM
research. A concise history of this research can be found in Section 2.3.7. A more detailed
history is given in [Titterington, Smith et al. 1985] and [McLachlan and Basford 1988].

While clearly no single training algorithm is best in all situations, maximum likelihood
expectation maximization (MLEM) provides several desirable convergence properties, e.g.,
monotonic convergence rate [Titterington, Smith et al. 1985], and is easy to implement and use.
MLEM, however, is an approximate gradient ascent algorithm, and maximum likelihood is

subject to local maxima and non-optimal global maxima [Zhuang, Huang et al. 1996]. When



gradient ascent is applied to a function having local maxima, the results are dependent on the
algorithm’s initial conditions. =~ While MLEM is less likely to settle into these local maxima
compared to other FGMM training algorithms [Jordan and Xu 1993], it will be shown in Section
2.3.7.3 that for a given pattern recognition problem, FGMM component configurations generated
via MLEM can vary greatly and be far from optimal due to the local maxima. This difficulty is
aggravated by the reliance on the user to specify the number of components. ~While much
research has focused on automatically determining the appropriate number of components
[McLachlan and Basford 1988; West 1993; Zhuang, Huang et al. 1996], McLachlan states that
“testing for the number of components...in a mixture is an important but very difficult problem
which has not been completely resolved.” For generalized projective Gaussian distributions,
there are actually an infinite number of components, so deciding an appropriate finite number of
components to approximate such distributions can be especially difficult. Thus, although GMMs
are well suited for a variety of pattern recognition problems, FGMMs via MLEM can provide
poor labeling consistency due to their reliance on the user to specify an appropriate number of
components, the initialization of its parameters, and the particular collection of samples used in

training.

1.6. Why Continuous Gaussian Mixture Models (Thesis)

Extruding a Gaussian distribution can be visualized as producing a track of means central
to the distribution along which the variance of the data normal to that track changes smoothly.
This dissertation uses a novel mechanism, GGoF cores, to approximate that central track of means
and determine the local variance of the data. Those tracks of means and their variances define a

CGMM. The author of this dissertation asserts that

In Monte Carlo studies against competing techniques, i.e., K-means and finite Gaussian mixture
modeling, the proposed method is more automated, more accurate, and as consistent when

representing generalized projective Gaussian distributions.

That is, a CGMM of an extruded Gaussian distribution is accurately and consistently
defined using a Gaussian-goodness-of-fit (GGoF) function and a process for tracking the
generalized maxima of this function, i.e., core extraction. The user is not required to specify a
hyperparameter such as the number of components, and if multiple cores of a distribution are
extracted, they will serve to refine and not confound the representation.

The accuracy and consistency of these distribution representations are quantified by the

accuracy and consistency of the classifiers they are used to define.  Classifier accuracy is



measured via true positive and false positive classification rates. The consistency of a classifier is

quantified by the variance of its accuracy over a series of Monte Carlo simulations.

1.7. Object Representation via Medialness Cores

This dissertation extends the notion of cores from medial traces in scale space [Morse,
Pizer et al. 1996; Pizer, Eberly et al. 1996] to the representation of a sampled distribution. To
explain this domain shift, this section provides a brief introduction to medialness cores by

defining medialness functions and medialness space.

Medialness functions: A real medialness function M(x,0) responds particularly strongly
when it is applied at a point, x, on the central skeleton of an object using an accurate local object
scale estimate, 0. The scale, g, is proportional to the radius, r, of the maximally inscribed circle
centered at x (i.e., r = po). (Section 3.1)

Medialness Space: A medialness space is formed by computing a medialness function on
an image over a range of x and 0 values. Thus, an N-dimensional image yields an (N+1)-
dimensional medialness space. (Section 3.2)

Medialness Cores: Medialness cores capture the location, size, and shape of objects in an
image. They exist in the medialness space as traces of generalized maxima in medialness. That is,
they define traces in medialness space such that the points on a trace are local maxima as
measured in directions normal to the trace. Medialness cores have been applied to a wide

range of objects in a variety of images. Figures 1.2 and 1.3 depict a binary object and its core.

(Section 3.3)
The binary image of an object The spatial projection of its medialness core
Figure 1.2 and two r values on that core’s track
Figure 1.3

1.8. Gaussian Mixture Modeling via Gaussian-Goodness-of-Fit Cores

This dissertation is based on the realization that just as cores of medialness functions can

represent the shapes of objects in images, cores of GGoF functions can represent the shapes of



distributions in feature spaces. Instead of selecting points in medialness space to fit an object’s
shape, GGOF cores select parameterizations of Gaussians to represent a population’s density
function. Thus, GGoF cores define CGMMs. GGoF cores exist in a GGoF space and capture the
location, size, shape, and density of distributions in feature space. CGMMs via GGOF cores are
ideal for representing generalized projective Gaussian distributions. The basic concepts of the
contributing technologies are presented below.

Feature Space: Feature space is the domain of samples. Each sample, comprised of N
random variables, exists at a single point in an N-dimensional feature space. Feature space is
also the domain of density function estimates and decision bounds which are used in every
pattern recognition system. Thus, feature space is a pattern recognition system’s view of the
problem at hand. (Section 2.1.2.)

Scattergrams: Scattergrams allow us to view the distribution of samples in feature space.
Just as a histogram depicts the frequency of a value (or a range of values) of a single random
variable using height in a bar graph, a scattergram is an image that depicts the frequency of an N-
variate sample’s values as intensity (best if N®3). The scattergram of a collection of “similar”
samples will contain a cluster or cloud of high intensity. Figure 1.4 depicts a scattergram of a
collection of 900 samples from a simulated generalized projective Gaussian population (to be
detailed in Chapter 2). Scattergrams can also be used to visualize the action of a pattern
recognition system. Density functions can be depicted via intensity distributions or
isoprobability curves, decision bounds can be shown as hypersurfaces, and decision regions can
be shown using coloring. (Sections 2.1.3 and 2.1.4.)

Gaussian-Goodness-Of-Fit Functions: A Gaussian-goodness-of-fit (GGoF) function

quantifies how well a Gaussian with a particular mean, U, and covariance, Z, represents the

distribution of samples within a local region of feature space, e.g., within +2% of y [Cressie and

Read 1984; Read and Cressie 1988; Rayner and Best 1989]. That is, they quantify how well a

255
f1
0
0 255
fo
The scattergram of a collection of samples
Figure 1.4



Gaussian represents a population’s local density function. For a population having a Gaussian
distribution, GGoF functions respond maximally when they are evaluated at the population’s
actual mean and covariance. = Commonly used instances of this class of functions include
Pearson’s Chi-squared, the log likelihood ratio, and Kolmogorov-Smirnov functions [Stephens
1974; D’ Agostino and Stephens 1986]. (Section 4.1.)

GGoF space is formed from the application of a GGoF function to a collection of samples
for a range of Gaussian parameter values. By defining the Gaussian’s mean to be of dimension
N and the Gaussian’s covariance matrix Z to be a function of a single parameter s, an N-
dimensional scattergram has a corresponding (N+1)-dimensional GGoF space. (Section 5.1.)

GGoF Cores: The traces of generalized maxima of a GGoF function are GGOF cores.
They define traces in GGoF space such that the points on each trace are local maxima in the
directions normal to that trace.  These traces T() in {L, Z(s)}=@ along with a local sample
frequency estimate wspecify the P(x | ¢ and P(¢) which define a CGMM. (Section 5.3.)

Generalized Projective Gaussian Distributions: When the distribution of the samples is

generalized projective Gaussian the GGoF core produces an accurate representation of the
distribution. That is, when a distribution in an N-dimensional feature space is projected onto an
(N—M)-dimensional hyperplane spanning the subset of basis projective Gaussian directions, an
(N—M)-dimensional Gaussian distribution results. =~ When those directions correspond to the
directions for which the GGoF function is locally maximal, i.e., the core normal directions, the
placement of a Gaussian component at the U and Z(s) of a GGoF core point will form a
representation which is a locally optimal and accurate fit to the distribution.

When the distribution of the samples is not generalized projective Gaussian in the (N—M)
directions normal to the core, the representation may be sufficiently accurate for the problem at
hand, “Coggins’ rule.”

The sampled population in Figure 1.4 has a generalized projective Gaussian distribution.

25

0

Projection of the feature space component of a GGoF core
of a generalized projective Gaussian distribution onto its scattergram
Figure 1.5



Figure 1.5 depicts the feature space component of a GGoF core of that distribution.  This
dissertation is concerned with the extraction of these cores, the use of these cores in the definition
of CGMM representations of a population’s distribution, and assessing the accuracy and

consistency of those CGMM representations.

1.9. Synopsis

This dissertation demonstrates, using both simulated and “real-world” data, that a
CGMM of a generalized projective Gaussian distribution can be defined using GGoF cores.
When such models are used for classification, accurate labelings are produced. Experiments
described herein indicate that for small false positive rates, CGMMs via GGoF cores provide
superior true positive rates compared to K-means and FGMM. These labelings are consistent,
and the extraction of multiple GGoF cores improves the accuracy and consistency of the models.
CGMMs avoid reliance on the user for the specification of a hyperparameter such as K for the
number of components and the problems associated with local maxima in the iterative parameter
refinement process.

Chapter 2 provides an overview of several popular classification methods.  Special
attention is given to explaining finite Gaussian mixture modeling and assessing its accuracy and
consistency when used to define a classification system. Chapter 2 is also used to detail and
motivate two related two-feature, two-class pattern recognition problems which are used in
comparisons and explanations throughout this dissertation.

Chapter 3 provides an overview of medialness core definition, extraction, and
application.

Chapter 4 introduces goodness-of-fit functions and evaluates the accuracy and
consistency with which they can identify the parameters of a univariate Gaussian and a univariate
skewed Gaussian distribution.

Chapter 5 details the process of continuous Gaussian mixture model definition and
operation using Gaussian goodness-of-fit cores.

Chapter 6 reports the results of a controlled study which compares continuous Gaussian
mixture modeling via GGoF cores with K-means and finite Gaussian mixture modeling.
Comparisons are also made between these methods using an inhomogeneous magnetic resonance
image and a trivariate extruded elliptical Gaussian distribution.

Chapter 7 contains summaries of the major contributions and areas for future research.

10
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Chapter 2

CLASSIFICATION

The art of being wise is the art of knowing what to overlook.

- James, 1890

This chapter discusses several popular methods for classification.  Finite Gaussian
mixture modeling is one such method, and it is presented in detail. Two related two-feature
(two-dimensional), two-class pattern recognition problems are used to illustrate the operation of
these methods and quantify their performance in terms of the accuracy and consistency with

which these methods label new samples.

2.1. Traditional Pattern Recognition

This section explains the concepts necessary for understanding the operating
characteristics, strengths, and weaknesses of the density estimation components of several
common classification systems. Direct comparisons between finite Gaussian mixture models and
other techniques are made to motivate the selection of Gaussian mixture modeling as the focus of
this dissertation. Two related, two-class, two-feature classification problems are used for

illustration.
2.1.1. Two Related Two-Feature, Two-Class Problems

For the visualization and analysis of the operation and performance of the pattern

recognition systems discussed in this dissertation, two related two-feature (N=2), two-class

(N¢=2) problems are presented. For both problems, the two features are designated fy and f;.
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These features are discrete; they can attain any integer value from 0 to 255. The distributions in
these problems are motivated by the intensity distributions of tissues in inhomogeneous magnetic
resonance (MR) images.

Consider the proton density MR image shown in Figure 2.1. It contains an
inhomogeneity which is revealed by a dimming in the inferior cerebellum (lower portion of the
brain). A scatterplot of 984 hand-labeled white matter samples and 788 hand-labeled gray matter

samples from this image are shown in Figure 2.2. The effect of the inhomogeneity is clear.

250 1
"train.grey.data” = x
200 |
150 |
[a]
o
100 |
50 A
0 : ‘
0 100 200
Row
Proton Density (PD) MR image Scatterplot of samples from Figure 2.1
Figure 2.1 Figure 2.2

2.1.1.1. Problem 1 Description and Justification

For Problem 1, the two populations are designated Class A and Class B.

Class B is designed to mimic the intensity distribution of one tissue type in an
inhomogeneous MR image. It is thus a generalized projective Gaussian distribution. It is
defined by three cubic B-splines [Press, Flannery et al. 1990] and four isotropic control Gaussians,
ie., G0)..GO). Each spline governs one of the three parameters of the continua of Gaussians, i.e.,
one spline for each component of the mean vector and one for the variance. The parameters of
the control Gaussians are given in Table 2.1. A visualization of the control Gaussians’ density

functions with the track of u(t) fort [0,1] overlaid is shown in Figure 2.3.
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Control 0: fo f1 Control 1: fo f1
G c@®
Mean 80 112 Mean 112 56
Covar 324 0 Covar 1 0
fo fo

f1 0 324 f1 0 1
Control 2: fo f1 Control 3: fo f1
G®@ G0
Mean 144 56 Mean 192 112
Covar 1 0 Covar 324 0
fo fo

f1 0 1 f1 0 324

The parameters of the Gaussians which are used to control the
cubic splines that define Class B
Table 2.1

255

t=0 U t=1

t=0.3 t=0.6

0 255
fo

The four control Gaussians and the track of (V) t [0,1]
Figure 2.3

The steps in generating a sample from Class B are given below. A parametric value, t, is
chosen from a uniform distribution, U[0,1]. The three splines are evaluated at that t value,
thereby defining an isotropic Gaussian distribution, G(u®, ;(t)). A random sample is then

generated from that distribution.

1) t OUo, 1] where U[] denotes a uniform distribution

(0) ) (2) (3)
2) E(Ot)zBSpline t Bf(OG ),Hf(OG )’Hf(j )'Hf(j )

0 (1) (2) (3)
3) u(lt)=BSpline t Bf(f )’Hf(f )’Hf((f )’Hf((f )
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G(G(o>)’G(G(D)IG(GQ))IG(G@))] o (o(t))Z 0
= 0 (o(t))2

4) o) = BSpline{t

5) X ~ G(H(’f),;(’f))

Class A represents the variety of other tissues present in an inhomogeneous MR image.
It has been demonstrated that the inhomogeneities affect different tissues types differently
[Aylward and Coggins 1994], and thus Class A extends throughout feature space and does not
suffer consistently from the inhomogeneity. Class A is therefore represented by a multivariate
Gaussian distribution with a large isotropic variance, i.e., its variance is circularly symmetric. Its

parameters are given in Table 2.2.

Class A fo f1
Mean 128 128
Covar 1296 0
fo
f1 0 1296
The parameters of Class A
Table 2.2

Training and Testing Set Sizes: Medium size tumors, multiple multiple sclerosis lesions,

and other pathologies can cover regions in excess of 18mm3. As a result, 900 samples, given the
Imm interslice and 5mm intraslice resolution commonly available using MR, are generally
available from a single patient for training, i.e., |StB)[=900. A total of 2700 samples are used
for testing since it is also reasonable to expect that at least three other cases containing the tissue
of interest would be available, i.e., 15(tB)|=2700. A variety of tools exist for the rapid extraction
of these samples from the images. To indicate equal class a priori probabilities, the competing
population, Class A, is represented by an equal number of training and testing samples, i.e.,
| 5(tr:A) 1 =900 and 1 5(te:A) | =2700.

Other Inhomogeneous Modalities: Many other imaging modalities exhibit

inhomogeneities. Inhomogeneities have been shown to be present in X-ray CT images as a result
of beam hardening. Improper SPECT attenuation compensation can also demonstrate spatial
correlations.

To demonstrate the correspondence between the Class A and Class B distributions and
those present in inhomogeneous medical images, the distributions can be used to generate
samples and produce a simulated a pseudo-medical image having two tissue types. Figure 2.4 is
one possible pseudo-medical image based on these descriptions. Samples from Class A’s

distribution are uniformly spread across columns 0-64 and 196-256. Class B’s samples are
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assigned to columns using a random pick from a Gaussian having a mean of 128 and a standard

deviation of 32. The fp value generated for each sample specifies its row number, and the
corresponding f1 value specifies its intensity. One million samples were generated from each
distribution to produce the image. Class B’s intensity inhomogeneity is clearly visible as a
correlation between its samples’ intensity and row number. As a result of this inhomogeneity, it
is difficult to distinguish samples by intensity near the top and bottom of this image. The effect
of the inhomogeneity is displayed when an intensity thresholding is attempted to distinguish the

classes. Two manual thresholdings further illustrate this effect (Figures 2.5 and 2.6).

Pseudo-medical image generated by interpreting f as image row and f1 as image intensity.
Class A samples occupy the right and left portions of the image.
Class B samples occupy the central track.
Figure 2.4

“Two manual thresldings of the pseudo—medical imge in Figure 2.1.
The effect of the intensity/row inhomogeneity is clearly visible.
Figure 2.5 Figure 2.6

It can be imagined that such an image could result from SPECT. The central region, i.e.,
Class B, might correspond with damaged tissue having reduced uptake of the isotope. The
inhomogeneity may have resulted from attenuation from intervening structures. To accurately
estimate the extent of the damaged tissue, the inhomogeneity/attenuation must be compensated
for. This dissertation presents a technique which is capable of accurately forming the necessary

tissue models.
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2.1.1.2. Problem 2 Description and Justification

Image processing techniques, i.e., mean field correction, can remove most of the effects of
intensity inhomogeneities in many images [Aylward and Coggins 1994; Johnston, Atkins et al.
1996; Wells III, Grimson et al. 1996]. The second two-feature two-class problem arises from the
elimination of the intensity inhomogeneities. The resulting populations are referred to as Class
A’ and Class B’. Since the inhomogeneity correction has little effect on Class A, Class A and
Class A’ have identical parameterizations. Class B, however, is transformed to an elliptical

Gaussian distribution, Class B’. The parameters of Problem 2’s classes are given in Table 2.3.

Class A’ fo f1 Class B’ )] f1
Mean 128 128 Mean 128 56
Covar 1296 0 Covar 576 0
fo fo
fq 0 1296 f1 0 324
Parameters of Class A’ and Class B’
Table 2.3

2.1.2. Feature Space

Feature space is the multidimensional range of the samples being considered. A sample
consisting of N random variables, “features”, maps an object to a point in an N-dimensional
“feature space.” For this dissertation all features are considered to be of commensurate units,
and thus feature space is Euclidean. For most pattern recognition problems this is an acceptable
assumption. When it does not hold, techniques exist for rescaling the feature values so that their
marginal / individual variances are normalized and thus their units are made commensurate, i.e.,
factor analysis of correlation and covariance [Duda and Hart 1973; Jain and Dudes 1988; Jain 1989;
Mao and Jain 1995]. Neural network researchers have demonstrated numerous applications in
which such transforms have proven to be beneficial to the parameter selection processes [Mao
and Jain 1995]. However, this normalization should be applied with care since it is possible to

eliminate exactly the relationship sought in the data [Jain 1989].
2.1.3. Scattergrams
Consider the 2D histograms shown in Figures 2.7 and 2.8. While perhaps visually

appealing, occlusion is a significant problem when attempting to inspect the distribution of the

data when projected into 2D without user interaction.
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2D histogram of Class A training data

Figure 2.7

Scattergrams are 2D plots in which the intensity at each point corresponds to the relative

255
f1
0
0 255
fo
Scattergram of Class A,
a circularly symmetric Gaussian
Figure 2.9
255
f1
0
0 255
fo

Scattergram of Class A’,
a circularly symmetric Gaussian,
with parameters identical to Class A
Figure 2.11

2D histogram of Class B training data
Figure 2.8

255
f1
0
0 255
fo
Scattergram of Class B,
a generalized projective Gaussian
Figure 2.10
255
f1
0
0 255
fo

Scattergram of Class B,
a elliptical Gaussian,
representing a corrected Class B
Figure 2.12
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frequency of occurrence of a combination of two feature values in a collection of samples. The
shape of the distribution of the samples is better revealed in this manner (Figures 2.9 through
2.12). Groups of samples having similar values produce clouds of high intensity.

If N>2, it is possible to develop scattergrams whose axes correspond to the projection of
the samples onto a combination of features or hyperfeatures, i.e., a linear combination of features,
e.g., eigenplots [Duda and Hart 1973; Jain 1989]. Scattergrams are not limited to coordinate axes;
certain applications benefit from visualizing the data via scattergrams having polar axes.

Given the digital domain in which the algorithms of this dissertation are being
implemented, only discrete feature spaces and scattergrams are being considered. That is,
feature values have a fixed level of precision, or, equivalently, they can only attain a finite set of
values. This constraint is not limiting in most pattern recognition problems. Digital imaging
techniques already exhibit these constraints. Binning is the process by which continuous data is
mapped to a discrete format, i.e., a collection of bins / cells / buckets. A number of binning
techniques exist which minimize the possibility that this transform will have a significant effect on
the representation of the continuous distribution. This dissertation discusses binning in more

detail in Section 4.3.

2.1.4. Population Distributions: Density Functions

Population distributions are represented using density functions. Given a sample, a
density function approximates the probability of that sample having originated from the
associated population. As a result, a density function’s domain is feature space, and it has a unit
integral.  Density functions can be visualized in a scattergram to provide a qualitative
understanding of their shape and overlap, i.e., consider Figures 2.13 and 2.14 in which brighter

intensities correspond to higher probabilities.

255 255

0 0
0 fO 255 0 fO 255
Population Density of Class A Population Density of Class B
Figure 2.13 Figure 2.14
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Density functions can be defined explicitly or implicitly. = Explicit representations
estimate the parameters of the function from the training samples. For example, a Gaussian
density function is completely specified by a mean and covariance. Using the samples of the
population represented by the scattergrams in Figures 2.9 through 2.12, the means and
covariances in Table 2.4 are produced.

The random effects inherent in a finite empirical sampling cause the estimated
parameters to differ from one instance of a sampling to another. As expected, however, the
estimated parameters (Table 2.4) and the underlying population parameters (Tables 2.1, 2.2, and
2.3) closely match for the Gaussian shaped populations, i.e., Class A, A’, and B".

Class A fo f1 Class B fo fq
Mean 128.345 128.288 Mean 131.113 84.201
Covar 1247.353 0.055 Covar 1480.644 0.237
fo fo
f1 0.055 1335.568 f1 0.237 477.967
Estimated Gaussian parameters of Class A Estimated Gaussian parameters of Class B
Class A’ fo f1 Class B’ fo f1
Mean 128.345 128.288 Mean 128.230 56.144
Covar 1247.353 0.055 Covar 554.379 0.018
fo fo
f1 0.055 1335.568 f1 0.018 333.920
Estimated Gaussian parameters of Class A’ Estimated Gaussian parameters of Class B’
Table 2.4

2.1.5. Decision Bounds and Sample Labeling

Decision bound specification is the deciding factor in the labeling accuracy of any
classification system. Decision bounds exist as hypersurfaces in feature space. They delineate
the regions, “decision regions”, in feature space within which all test samples will be assigned the
same label. As with population density functions, decision bounds can be either explicitly or
implicitly represented by a pattern recognition system.

The explicit representation of the decision bounds eliminates the need for the explicit
representation of a density function. It follows that assumptions concerning the shapes of the
decision bounds imply assumptions regarding the shapes of the distributions and vice versa.
Consider the well known linear decision bound classification system. It makes the implicit
assumption that the populations are well represented by linear combinations of the features and
univariate Gaussians (Section 2.3.1).

When decision bounds are implicit, explicit density functions are used by the

corresponding pattern recognition system. Labels are assigned using Bayesian decision theory.
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The probability that a sample came from class C is computed based on the class conditional
probability of that sample, P(x |C), the class” a priori probability, P(C), and that sample value’s
probability, P(x):

p(Cls)= P(C)P(x|C) o1

P(x)

The value of P(x|C) is provided by the density function, and the value of P(C) is usually
equal to the portion of training samples from Class C. A sample is assigned a population’s label
based on which class is the most likely to have generated that sample. When comparing P(C|x)
across classes, the sample’s prior probability, P(x), can be factored out of Equation 2.1. When the

classes have equal priors, P(C), that value can also be eliminated. As a result, a sample, x, can be

assigned a label, i=1..N, via Equation 2.2:

alréc[;1 n;]a]x (P(C(l))P( |c‘1’)) [2.2]

2.1.6. Labeling Feature Space

By evaluating every point in feature space and mapping each class label to a unique
intensity, an image of the decision regions of feature space can be created. Figures 2.15 through
2.18 result from the application of Gaussian and linear classifiers, defined from the samples
shown in the scattergrams in Figures 2.9 to 2.12, to every point in feature space. The optimal

problem are shown as black curves.
255

decision bounds for each
255

0 0
0 fO 255 0 fo 255
Class A / B decision regions produced by Class A’ / B decision regions produced by
Gaussian classification Gaussian classification
with optimal decision bounds overlaid Figure 2.16
Figure 2.15
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255 255

0 0
0 fO 255 0 fO 255
Class A / B decision regions produced by Class A’ / B decision regions produced by
linear classification linear classification
Figure 2.17 Figure 2.18

2.2. Comparing Pattern Recognition Systems

The performance of a classifier can be quantified using several criteria: development
memory requirements, development time, operating memory requirements, labeling speed,
labeling accuracy, labeling consistency, and ease of qualitative and quantitative analysis.

For the problems being addressed by this dissertation, classifier development memory
requirements, development time, operating memory requirements, and labeling speed are not
considered.  For situations in which these factors are important, a different set of pattern

recognition systems would need to be considered.

2.2.1. Labeling Accuracy

The accuracy of a classification technique must be judged by its performance on a specific
problem. Performance is commonly quantified using true-positive and false-positive rates.

Because different classifiers make different distribution shape assumptions, the
specification of a problem is important. If a classifier’s assumptions are correct for the chosen
problem, that classifier will provide optimal accuracy limited only by the quality of the features.
However, if for a different problem its assumptions are incorrect, extremely poor labelings can
result.

The true-positive rate and the false-positive rate can be calculated for each population in
the data. For these measures to be meaningful, it is important not to use the testing samples
during the development of the classification system. That is, do not test on the training data. It

is also important to know the correct labels of the testing samples.
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TP and FP regions of a single feature, two class problem
having Gaussian population distributions.
Figure 2.19

The true-positive rate (TPR) of a population is the portion of test samples from that class
which were assigned the correct label by the classification system. A class’s false-positive rate
(FPR) indicates the portion of test samples which were incorrectly assigned that class’ label by the
classification system (Figure 2.19).

For example, using the Gaussian and the linear classifiers depicted in Figures 2.15

through 2.18, and the 2700 testing samples from each class, the TPRs and FPRs shown in Table 2.5

result.
TPR FPR
Class B Gauss 0.700 0.140
(versus Class A) Linear 0.696 0.138
Class B’ Gauss’ 0.891 0.045
(versus Class A”) Linear’ 0.896 0.056
TPRs and FPRs for linear and Gaussian classifiers
Table 2.5
1=
8| 0.9 Jaggsr
&
08— e Probleml
oz x Problem 2
-}
=
Kiabas
0.7 s
0.6
05 T T T T |
0 01 02 03 04 05
Better FPR
FPR/TPR for Class B and Class B’ resulting from Gaussian and linear classification

Figure 2.20
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These results can be visualized using plots of TPR-versus-FPR (see Figure 2.20). Each
classifier’s performance is summarized by a point on these plots. ~The symbol ‘ is used to
designate results from Problem 2, i.e., Class A’ versus Class B’.

The influence of the assumptions embodied in the classifier type is evident. Assuming
Class B is Gaussian is incorrect, so both classifiers perform poorly in Problem 1. For Problem 2,
however, the Gaussian assumptions are correct, and the Gaussian classifier produces excellent
accuracy.  Even though the density function assumptions of the linear classifier are not
completely upheld (Section 2.3.1), the quality of the measures involved is such that the linear

classifier is still able to produce accurate results.

2.2.2. Labeling Consistency: Monte Carlo One-Sigma of Labeling Accuracy

Classifier consistency will be quantified by the Monte Carlo one-sigmal range of the true
positive and false positive rates[Sobol’ 1994]. A one-sigma range for a measure is related to the
standard error range of that measure, and as with standard error ranges, smaller one-sigma
ranges correspond to reduce measure variability. That is, classifiers with small true positive and
false positive one-sigma ranges are said to be more consistent.

Given a sufficient number of training samples and accurate distribution shape
assumptions, the TPRs and FPRs associated with a pattern recognition system for a particular
problem will be consistent despite the specific collection of training samples used. However, as
the assumptions fail or as the training samples becomes sparse, the performance of a classification
system can begin to vary as the collection of training samples changes.

Classifier performance can also vary because of multiple, non-optimal local extrema in
the measure being optimized during the development of a classification development. This is
usually the case when a classifier’s parameter values are determined using an iterative technique
or require the prior specification of a hyperparameter, e.g., the number of components. The
initial values of the parameters may influence the final accuracy of the classifier as much as the
collection of training samples used. Multilayered perceptrons trained via backpropagation,
FGMMs trained via MLEM, and numerous other pattern recognition systems require such
additional considerations. It will be shown that when MLEM is used to develop a FGMM, local
maxima and non-optimal global maxima exist in the likelihood measure and as a function of their

hyperparameter. These extrema can result in large variations in classifier accuracy dependent on

1 “one-sigma” defines a measure of standard error; it will not be represented by a greek

symbol. The greek symbol g is reserved for measures of variance or scale.
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the collection of training samples used and the starting point in the parameter space (Section
2.3.7). The existence of and difficulties associated with these extrema were a significant
motivating factor for this dissertation.

Labeling consistency is measured via Monte Carlo simulation in which a classifier’s TPRs
and FPRs are recorded for different, yet constant in size, sets of training and testing samples.

Monte Carlo one-sigma values are proportional to standard error estimates. They
specify the 67% confidence intervals for the values of interest, e.g., for the average true positive
and false positive rates. If R Monte Carlo runs record an average TPR value of p(TPR) and a TPR

standard deviation of o{TPR), the Monte Carlo true positive one-sigma value is defined as

(TPR)
one — sigma(TPR) = G—R [2.3]

and the 67% confidence interval for the true positive rate is thus

(TPR)

(TPR) _ One — sigma(TPR) (TPR) , One — sigma
11 - < TPR < [ +
VR VR

[2.4]

To simultaneously capture the consistency of multiple measures, the covariance matrix of
those measures is used. Specifically, their consistency is revealed by the one-sigma range of the
square root of the determinant of that covariance matrix. A Monte Carlo one-sigma value can be

calculated for the combined variance of the TPR and FPR rates. Their covariance matrix is z(TF)

formed from the collection of TPR and FPR values recorded during the R Monte Carlo runs. The

square root of the determinant of that matrix summarizes the covariance of those measures.

5(TF) :lg(TF )|1/ 2 [2.5]

The Monte Carlo one-sigma value of the combined TPR/FPR variance is

o(TF)

VYR

one — sigma(TF) = [2.6]
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2.2.3. Ease of Qualitative and Quantitative Analysis

The insight gained through the analysis of the representations formed by a pattern
recognition system is as important as the labelings they produce. Such analysis allows the
questions listed at the beginning of Chapter 1 to be answered.

For example, if a population is known to have a Gaussian distribution, various methods
exist for

1) identifying outlying samples

2) specifying confidence intervals for the estimated parameters based on the
number of samples used

3) producing receiver-operator characteristic curves which define the progression of
TPR-versus-FPR given different error costs

Additionally, the concepts of mean and covariance are simple enough to facilitate
qualitative interpretation. These values can provide significant insight into the source of the

populations and the nature / difficulty of the pattern recognition problem at hand.

2.3. A Comparison of Classification Systems

This section compares seven different classification techniques: linear, Gaussian, K
nearest neighbor (KNN), Parzen windows (PW), multilayered perceptron (MLP), K means (KM),
and finite Gaussian mixture modeling via maximum likelihood expectation maximization
(FGMM). The presentation of each classifier is organized into three sections: operation, labeling
accuracy and consistency, and ease of analysis.

Operation: These sections provide a high level description of each classification
technique. No effort is made to provide the specific implementation details. A variety of books
contain such information including: [Duda and Hart 1973; Jain 1989; Press, Flannery et al. 1990].

These sections also contain labeled scattergrams resulting from the application of the
classification techniques to the training data shown in the scattergrams in Figures 2.9 to 2.12.
Figure 2.21 is an example of one such labeling generated by a FGMM via MLEM classifier for
Problem 1.
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fo 255

Example labeling of the Class A/B scattergram provided
by a FGMM via MLEM classifier with K=2 per class (FGMMO02)
Figure 2.21

Dark gray regions are associated with Class A/A’ labelings. Regions labeled in light
gray correspond to Class B/B’ samples. = When multiple components are used to model a
distribution, different shades of gray are used to distinguish their subregions. In Figure 2.21,
there are two Gaussian components per class model as indicated. = Overlaid onto these
scattergrams are outlines of each problem’s optimal decision bound.

Labeling Accuracy and Consistency: These sections provide the summary statistics from

a Monte Carlo study involving each classifier’s true-positive and false-positive rates on 1000
different collections of training and testing data from the classification problems presented in
Section 2.2.  When hyperparameters exist for a classification technique, e.g., the parameter K in K
means, the classifier’s performance for a variety of hyperparameter values is explored. The
average and Monte Carlo one-sigma values of the Class B and Class B’ TPRs and FPRs are given
in table form as in Table 2.6. Section 2.3.8 provides plots of Class B/B’ FPR-versus-TPR for all of

the classifiers.

Method. TPR FPR  TPR One-Sigma FPR One-Sigma Combined One-Sigma

Gauss  0.86057  0.29396 0.01756 0.01737 0.01636
Example measures of accuracy and consistency for Gaussian classifier for Class B
Table 2.6

When appropriate these sections also provide graphs of a classifier’s hyperparameter
value versus its average FPR and TPR value. The Monte Carlo one-sigma ranges of these values
are also indicated on the graphs using high and low markers. Figure 2.22 is an example of such a

graph.
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Example plot of FPR/TPR versus parameter o for Parzen Windows for Class B’.
Includes Monte Carlo one-sigma range (standard error) for each rate.
Figure 2.22

Ease of Analysis: These sections discuss the qualitative and quantitative analysis of the

representations formed by each classification system. The goal is to provide a rough assessment
of how easy it is to interpret the representations provided by each method. References will be

provided, and a few of the key strengths, weakness, and methods will be briefly mentioned.
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2.3.1. Linear

Linear classifiers operate using linear, i.e., hyperplane, decision bounds. These classifiers
make the assumption that the populations are well represented by univariate Gaussians applied
to a weighted linear combination of the features.

Operation: The normal direction of the hyperplane is defined by the maximum
eigenvalued eigenvector, i.e., Fisher’s linear discriminate, of the Hotelling matrix of the training
samples. This vector in feature space specifies the weighted linear combination of the features to
which the univariate Gaussian is fit. =~ This combination of features is said to define a
“hyperfeature”/”latent feature” that best distinguishes the populations. The populations” means
and variances along this normal direction define the univariate Gaussians and thereby position
the oriented plane in feature space.

The Hotelling matrix is calculated using the class priors, P(A) and P(B), the class mean
vectors, }._l(A) and }._l(B), and the class covariance matrices, ;(A) and ;(B). It is a multivariate signal-
to-noise measure.

The global mean is calculated as

p= Y P [2.7]
k(A B)

The signal matrix captures the spread of the means of the classes about the global mean:

S;= X P(k)[ﬂfk) -Hi)(u,(k)—uj) 28]

) kg AB)
The noise matrix is the weighted sum of the spread of each class” data about their means:

No= ¥ pled 29]

koA B}

The Hotelling matrix, H, is the ratio of these two matrices.

H=N"s [2.10]

Figures 2.23 and 2.24 show the decision regions developed via linear classification given

the data represented by the scattergrams shown in Figures 2.9 through 2.12.
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Labeling Accuracy and Consistency: When a linear classifier's assumptions are correct,

its results are optimally accurate and consistent given the quality of the features being used. This
is not the case for the two problems at hand. Tables 2.7 and 2.8 summarize the accuracy and

consistency of the linear classifier for these problems.

Method. TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma

Linear  0.86497 0.31235 0.06153 0.06942 0.03564
TPRs, FPRs, and consistency for Class B and from linear classification
Table 2.7

Method. TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma

Linear 095270 0.12630 0.02965 0.03227 0.02061
TPRs, FPRs, and consistency for Class B” and from linear classification
Table 2.8

Ease of Analysis: The eigenvector with the maximum eigenvalue from the Hotelling

matrix is the direction of maximum separation of the classes. That vector defines a hyperfeature
that consists of the weighted linear combination of the original features that best differentiates the
populations. For example, when the features are generated via spatial filters, as is the case with
multiscale offset Gaussians features [Coggins 1990; Coggins 1992; Coggins and Graves 1994], the
weights can be used to combine the original spatial filters to specify a single filter, “hyperfilter” or
“hyperfeature”, which is tuned to differentiate the populations in the problem at hand. By
generating such a filter, only that spatial filter needs to be applied to future images to collect the
hyperfeature and distinguish the populations. By visualizing that filter, significant insight into
the problem can be attained.

The weighting provided by the eigenvalue can also be used to specify an ordering with

which to select the features and thereby reduce the dimensionality of feature space. Often 10-12
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samples per independent feature are needed to generate an accurate multivariate Gaussian
representation of a population [Neter, Wasserman et al. 1978]. If the number of samples available

is limited, the weighting provides a useful ranking of the utility of the features.
2.3.2. Gaussian

Gaussian classifiers operate under the assumption that the populations are well
represented by Gaussian shaped distributions.  Gaussian classifiers form explicit Gaussian
representations of the distributions and are one of the most popular techniques used in
classification.  Linear, elliptical, and hyperbolic decision bounds can be implicitly formed
between two competing Gaussian distributions.

Operation: The mean and covariance matrix of a population specify its Gaussian
representation. By reducing the equation of a Gaussian, the Bayesian classification process can be
reformulated as a minimum distance process. With equal class priors, distance is judged using

the Mahalanobis distance measure
Dy (,2)= (-ufz1k-n) [2.11]
and samples are assigned the label of the class, i, to which they are “closest”:

argmin (DM ;u® ,g‘i’) [2.12]
id1.Nc]

Figures 2.25 and 2.26 show the decision regions formed for the two pattern recognition

problems using Gaussian classification.
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Figure 2.25 Figure 2.26

Labeling Accuracy and Consistency: While the Gaussian assumptions are incorrect for the

first problem, they are correct for the second; note the drastic change in absolute and relative
accuracy and consistency (Table 2.9 and Table 2.10).

As with other techniques, optimal accuracy results when the assumptions are upheld.

Method. TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma

Gauss  0.86057  0.29396 0.01756 0.01737 0.01636
TPRs, FPRs, and consistency for Class B from Gaussian classification
Table 2.9

Method. TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma

Gauss” 095211 0.11352 0.00966 0.01185 0.01013
TPRs, FPRs, and consistency for Class B’ from Gaussian classification
Table 2.10

Ease of Analysis: As a result of being one of the most popular classification techniques

and its relatively few and clearly defined parameters, Gaussian classification is probably one of
the best understood and most intuitively informative representation methods.  Gaussian
classification is the standard against which all other techniques are compared in regard to ease of

qualitative and quantitative analysis.

2.3.3. K Nearest Neighbor

If we allow the assignment of labels to be completely data driven, making no assumptions

as to distribution parameters or shape, K nearest neighbor (KNN) classification results.
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Operation: KNN classification assumes that the most common label among the K closest

samples is the most probable label. Closeness is commonly judged using the Euclidean distance

measure.

DE(x,y):Lg@i_Xi)z]yz

[2.13]

The results are given in Figures 2.27 to 2.34 for both of the pattern recognition problems

for a variety of K values.
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Class A / B decision regions produced
by 1-nearest neighbor classification
Figure 2.27
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Class A / B decision regions produced
by 3-nearest neighbor classification
Figure 2.29
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Figure 2.31
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Figure 2.33

255

0 fO 255
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Figure 2.32
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Class A’/B’ decision regions produced
by 11-nearest neighbor classification
Figure 2.34

Labeling Accuracy and Consistency: The asymptotic total error rate, i.e., (1-TPR) + FPR,

of K=1 nearest neighbor classification is at most twice the optimal Bayesian total error rate [Duda
and Hart 1973; Schalkoff 1992].

The most significant consideration for KNN classification is the value of K. The localized
voting process of KNN makes it an approximate smoothing technique. As K increases, the region
in feature space over which the labels are averaged increases. Too small of a K value results in
undersmoothing the distribution of the labels (Figure 2.22). Too large of a K value produces
oversmoothing (Figure 2.29). The optimal K value varies for each problem. Parzen windows

(defined in Section 2.3.4) research indicates that the optimal neighborhood
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Method. K TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma
KNN 1 0.76094  0.24433 0.02126 0.01861 0.01959
3 0.82346  0.23834 0.02152 0.01895 0.01949
7 0.86584  0.24230 0.02137 0.02049 0.01924
11 0.88107 0.24680 0.02085 0.02146 0.01906
TPRs, FPRs, and consistency for Class B from K nearest neighbor classification
Table 2.11
Method. K TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma
KNN 1 0.87729  0.12305 0.01832 0.01420 0.01583
3 0.92383  0.11823 0.01567 0.01395 0.01404
7 0.94232  0.11722 0.01426 0.01441 0.01310
11 094764 0.11751 0.01397 0.01481 0.01291
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size/scale and thus the optimal K value may even vary throughout feature space for a single
problem. [Parzen 1962; Silverman 1978; Speckman 1988; Jones, Marron et al. 1994; Loader 1995;
Babich and Camps 1996]

Ease of Analysis: KNN classification probably provides the least possible information in

regard to the nature of the underlying population distribution. It provides no summary statistics
and thus provides no means of qualitative or quantitative analysis. Furthermore, unlike Parzen
windowing, it does not even provide a probability estimate on which subsequent processing can

be performed.
2.3.4. Parzen Windows

Parzen windows (PW) is a kernel density estimation technique. Like KNN classification,
it is considered a data driven technique. It is also considered a density interpolation technique
because of its close relationship to convolution.

Its hyperparameters are the shape of the kernel and the size/scale/bandwidth of that
kernel. It has been demonstrated that kernel scale, not kernel shape, is key to the accuracy and
consistency of the representations formed by this technique [Silverman 1986]. As a result, the
major area of research in regard to kernel density estimation concerns optimal scale/bandwidth
estimation.  Specifically, Parzen windowing has been extended to include functions which
specify variations in kernel size based on the local distribution of the samples. Dependent on the
error measure, e.g., mean integrated squared error, used to quantify the difference between the
estimated and ideal density, automated, principled methods for variable kernel scale specification
have been developed [Silverman 1978; Jones, Marron et al. 1994].

Operation: Instead of using a triangle or step function as Parzen did [Parzen 1962], this

dissertation uses a Gaussian-shaped, fixed-scale kernel.

z'z
1 2 . N
G(z,0)=——F——=e 20 given z OO [2.15]
erN 2o

Given a set of samples S, the Parzen window density function is

9 :
P, ) =I1§|]§1G(L< -y0),0) [2.16]
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The results are given in Figures 2.37-2.44 for a variety of kernel scales. Figures 2.37 and

2.38 also contain regions labeled with black to indicate that no label could be assigned to those

samples. The implementation used in this study evaluated only training samples within a fixed

distance, 30, of each testing sample. When no training samples were within that distance, no

density was estimated, and a black class label was assigned. These regions are a failure of the
implementation and not the technique itself.
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fo 255 0
Class A / B decision regions produced
by Parzen window, =2, classification
Figure 2.37

fo 255
Class A’/B’ decision regions produced
by Parzen window, 0=2, classification
Figure 2.38
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Class A / B decision regions produced
by Parzen window, =8, classification
Figure 2.39

fO 255
Class A’/B’ decision regions produced

by Parzen window, 0=8, classification
Figure 2.40
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Figure 2.41
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Class A / B decision regions produced
by Parzen window, 0=32, classification
Figure 2.43

Labeling Accuracy and Consistency: Kernel density estimation techniques generally

provide excellent accuracy and consistency for a range of kernel shapes and sizes.
research has gone into deriving functions for optimal kernel size specification [Silverman 1978;
Speckman 1988; Jones, Marron et al. 1994; Loader 1995; Babich and Camps 1996]. As with KNN

classification, using too small of a neighborhood/scale/bandwidth results in undersmoothing
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Class A’/B’ decision regions produced
by Parzen window, 0=16, classification
Figure 2.42
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Class A’/B’ decision regions produced
by Parzen window, 0=32, classification
Figure 2.44

(Figure 2.37). Too large of a neighborhood produces oversmoothing (Figure 2.44).

Method. o
PW 2 0.84960  0.24390
8 0.90534 0.25473
16 0.91394 0.28018
32 0.89889  0.30073

0.02069
0.01700
0.01458
0.01420

TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma

0.01960 0.01911
0.01962 0.01650
0.01801 0.01515
0.01750 0.01504

TPRs, FPRs, and consistency for Class B from Parzen Window classification

Table 2.13
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Method.
PW

(o}
2
8
16
32

TPR
0.93420
0.95858
0.97261
0.98743

FPR
0.12209
0.12271
0.14125
0.18084

TPR One-Sigma FPR One-Sigma Comb. One-Sigma

0.01428 0.01476 0.01377
0.01032 0.01375 0.01089
0.00728 0.01416 0.00953
0.00448 0.01625 0.00816
TPRs, FPRs, and consistency for Class B’ from Parzen Window classification
Table 2.14
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Ease of Analysis: In isolation, kernel density estimation techniques provide little
qualitative or quantitative insight into the problems at hand. However, the resulting
interpolated /smoothed density surfaces enable the statistical analysis of the data. For example,
mode identification, ridge traversal, valley traversal, and numerous other techniques can be
applied in a straightforward manner [Silverman 1978; Touzani and Postaire 1988; Lecocq and

Postaire 1991; Cheng 1995].

2.3.5. Multilayered Perceptron

Multilayered perceptron neural networks (MLPs) are commonly called backpropagation
networks. Backpropagation refers to the average root mean squared error (ARMSE) gradient
descent parameter estimation technique, which is often applied to this style of feedforward
network. [Lippmann 1987; Bebis and Georgiopoulos 1994]

MLPs develop decision bound representations. The complexity of the representations
they form are dependent on the network architecture, the gradient descent step size, and the
training time. Each of these considerations has been the subject of various gradient, genetic
algorithm, simulated annealing, and heuristic strategies in an effort to automate the application of
MLPs. [Schalkoff 1992; Bebis and Georgiopoulos 1994; Peterson, St. Clair et al. 1995] Of special
interest is the modification to the network algorithm which results in the definition of radial basis
function networks. These networks are closely related to finite Gaussian mixture models [Xu,
Krzyzak et al. 1994].

This dissertation uses MLPs having two hidden layers and full feedforward connectivity
between the layers (Figures 2.47 and 2.48). A network having 6 nodes in the first hidden layer

and 3 nodes in the second hidden layer is references as MLP6x3.

ACTIVATION
FUNCTION
OUTPUT
INPUTS
PROCESSING Y=F{2W; X))
ELEMENT

A single node of a multilayered perceptron
Figure 2.47
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Class A Class B
Perceptron with two hidden layered (MLP6x3)
Figure 2.48

Operation: Each input node corresponds to a different feature.  Each output node
corresponds to a different class. A test sample is assigned the label associated with the output
node which produces the largest output.

For Problems 1 and 2 training consists of 3,600,000 iterations, i.e., 667 passes through the
training data. = The weights are updated after each sample is presented, a strategy called
“iterative” training. Using a root mean squared error measure, the weights are updated by
taking a step in the gradient direction a distance of 1% of the gradient magnitude.

While not a criterion for the comparison of the classifiers in this dissertation, it is
important to note that the training times associated with traditional backpropagation can be
excessive.  The time required was such that only R=100 runs of the Monte Carlo simulation
could be performed in a reasonable amount of time. The Monte Carlo one-sigma values have
been adjusted accordingly. The results for a variety of different sizes of two hidden layered

MLPs are shown in Figures 2.49 to 2.54.
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Class A / B decision regions produced Class A’/B’ decision regions produced
by MLP, 6x3, classification by MLP, 6x3, classification
Figure 2.49 Figure 2.50
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Class A / B decision regions produced
by MLP, 12x6, classification
Figure 2.51
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Class A / B decision regions produced
by MLP, 24x12, classification
Figure 2.53
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Class A’/B’ decision regions produced
by MLP, 12x6, classification
Figure 2.52
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Class A’/B’ decision regions produced
by MLP, 24x12, classification
Figure 2.54

Labeling Accuracy and Consistency: The Stone-Weierstrauss theorem has been used to

prove that MLPs can represent any function to an arbitrary degree of accuracy using one hidden
layer , and by using two hidden layers, any decision bound can be represented [Hornik,
Stinchcombe et al. 1989; Poggio and Girosi 1990; Osman and Fahmy 1994; Chen and Chen 1995].
The Monte Carlo results for Problems 1 and 2 are given in Tables 2.15 and 2.16. These results are
plotted in Figures 2.55 and 2.56.

Method. #Wgts TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma
MLP 36 090327 0.26495 0.05007 0.05858 0.03610
108  0.88089  0.24267 0.06650 0.05939 0.04470
360  0.88044 0.24143 0.06509 0.06155 0.04021
TPRs, FPRs, and consistency for Class B from MLP classification
Table 2.15
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Method. #Wgts
MLP

TPR One-Sigma FPR One-Sigma Comb. One-Sigma

0.03211 0.02013
0.03246 0.02343
0.02764 0.02150

T/F Positive Rate

TPRs, FPRs, and consistency for Class B’ from MLP classification

TPR FPR

36 0.94569 0.11549 0.03472
108  0.93519 0.10756 0.04273
360  0.93376  0.10504 0.03667
Table 2.16

107

187

:

Lo}

B 1

-=n

“m i

£

N

|.

—

—+ TR
—+ i

—+

T ——— )
10 1000 10
ol Weights
TPR/FPR/Consistency versus
network size for Class B
Figure 2.55

44

10 1000
Fof Neights

TPR/FPR/Consistency versus
network size for Class B
Figure 2.56




One of the problems with MLPs is overtraining. Consider the following function:

F(x)= 4. 26@_)( —4e7 2% 4 36_3)()+ G(0,0) where x=[0..3] [2.17]

G(0,0) represents Gaussian additive noise with a zero mean. The 0=0 function is shown as the
dotted line in Figure 2.57. The thin solid line in Figure 2.57 corresponds to the 0=0.1 function.
When the latter is given to a MLP with one hidden layer of 30 nodes and trained for 4x10°
iterations, overtraining occurs. The function approximation developed by the MLP is shown as
the thick line in Figure 2.57. The network has begun to fit to the noise of the samples. Figure
2.58 provides a plot of ARMSE for the training and testing data as the training of the network
progresses. Overtraining is indicated by a rise in testing ARMSE despite the continual decrease
in training ARMSE. Opvertraining can also occur when a FGMM is given too many components
to represent a distribution or when a polynomial of too high of a degree is used to represent a
sampled function. With MLPs, however, controlling such error is not straightforward [Peterson,

St. Clair et al. 1995].

+"" Testing ER

. Training &
1x100  2x10° 4x100
Iteration
Underlying function (dotted), Plot of training data’s ARMSE
noisy sampling (thin line), and testing data’s ARMSE
and MLP generated model (thick line). versus training time.
Overtraining fits noise Overtraining increases testing ARMSE
Figure 2.57 Figure 2.58

Ease of Analysis: One of the most common complaints concerning MLPs is that they are

often viewed as black box solutions to problems. They provide little intuitive insight into the
criterion with which they are making their decisions.  Significant research has gone into
developing algorithms for the quantitative analysis of their performance as well as providing a
more intuitive representation of their decision process. One of the most common techniques
relies on the conversion of the network to a decision tree or table lookup process. Further
qualitative and quantitative analysis can then be performed on that structure. These approaches,
however, do not completely address the validation and verification process required of black box

methods.
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2.3.6. K-Means

K-means (KM) operates under the assumption that the distribution of a collection of
samples can be well represented by multiple circularly symmetric Gaussians having equal
variance. As a result, K-means representations can be considered finite Gaussian mixture models
having constrained Gaussian components.  They implicitly form piecewise linear decision
bounds.

K-means can be applied as part of a classification scheme so as to model the distribution
of a single population, or it can be applied to the training samples of multiple populations as a
clusterer with the goal of automatically and efficiently distributing the means among the
populations.

In this dissertation K-means is being used for classification. That is, it is being applied to
each population independently to model the distribution of its samples and in turn provide a
class conditional probability for Bayesian classification. Therefore, K=1 refers to modeling each
population using one component and K=2 corresponds with two components per population and
so forth.

Operation: The application of K-means involves the following steps

1) Choose the number of components, K
For each population, C [1..N], having a set of training samples, S(tr:C)
2) Choose u(© 1) for all i=1..K
3) Assign each x  S(trC) to a component using minimum Euclidean distance criterion

4) Recompute u(C ) for all i=1..K using component groupings from 3

5) If every sample’s component assignment is unchanged then end else goto step 3

A variety of heuristics exist for choosing the initial means for the classes (the p(C: ) in step
2). For the work presented in this dissertation, the u(€ 1) were chosen using K random selections

from the training set S(tr°C),
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Figure 2.65
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Class A’/B’ decision regions produced
by K=7 means classification
Figure 2.66

Labeling Accuracy and Consistency: The principal problems with K-means are its

dependence on the initial mean values, its dependence on the order in which the training data is
presented, its dependence on the specific set of training data being used, and the reliance on the
user to specify K. That is to say, K-means is subject to local maxima and therefore provides poor
labeling consistency. This is well illustrated in the graphs in Figure 2.67. For Problem 1, the
drastic change in the one-sigma ranges for the TPR and FPR values as K increases indicates a
severe decrease in labeling consistency. For Problem 1, ideally K=1 for Class A, but since Class B
is an extruded Gaussian, it is difficult to determine an appropriate finite K value a priori. For
Problem 2, K is known to be 1 for both classes. For both problems, the additional resources
provided by larger K values appear to confound the solution. The problems with parameter
initialization, user specification of K, and iterative parameter optimization techniques are studied

more closely for FGMMs via MLEM in Section 2.3.7.

Method. K TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma
KM 1 0.82714  0.27073 0.01705 0.01739 0.01615
2 0.86754  0.28483 0.05093 0.03924 0.03897
4 0.83296  0.24890 0.06654 0.07657 0.07088
7 0.79113  0.29009 0.05728 0.12592 0.08039
TPRs, FPRs, and consistency for Class B from K-means classification
Table 2.17
Method. K TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma
KM 1 0.97706  0.15863 0.00650 0.01508 0.00930
2 0.94669  0.14549 0.04098 0.01911 0.02298
4 0.92937  0.11924 0.02515 0.01614 0.01958
7 0.90416  0.13444 0.03270 0.02753 0.02937

TPRs, FPRs, and consistency for Class B from K-means classification

Table 2.18
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Ease of Analysis: The use of K means to represent a population’s distribution can provide
significant qualitative and quantitative insight. The theorems of statistical analysis for Gaussian,
i.e., K=1, and FGMM, i.e., K>1, also apply to K means. However, the existence of local maxima
degrades the possibility of significant qualitative insight unless the quantitative analysis is also

performed.
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Local maximum for K=2 means
Figure 2.69

Consider the hypothetical training data and the (K=2)-means description of its
distribution as shown via the means and isoprobability curves in Figure 2.69. Although a local
maximum has been achieved, the performance is far from that of the ideal representation. Poor
accuracy results, and any qualitative analysis of the means without a quantitative analysis would

be misleading.
2.3.7. Finite Gaussian Mixture Modeling

Finite Gaussian mixture modeling develops representations of complex distributions
through the weighted linear combination of multiple Gaussian component distributions. The
probability of a sample x arising from a population which is represented by the FGMM
parameterized by ¥is given by

Pl | ¥)= f:wﬁ)l:e ¢<i)) w:{m o} |i:1..K} [2.18]
i=1

In 1886, Newcomb wrote the seminal paper on finite mixture modeling [Newcomb 1886].
He used a mixture of two univariate normals to model a distribution and its outliers. Pearson in
1894 presented a method of moments for automatically decomposing a mixture of normals
[Pearson 1894]. His approach, however, required the solution of a ninth degree polynomial
equation. Cohen in 1967 limited the problem to components with equal variances and presented
a solution involving root finding and the first four moments [Cohen 1967]. Little attention was
given to the likelihood maximization approach until 1972, when Tan and Chwang [Tan and

Chang 1972], and independently Fryer and Robertson [Fryer and Robertson 1972] demonstrated
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that the method of moments is inferior to likelihood estimation for Cohen’s limited problem and
the more general cases.

In 1977, Dempster, Laird, and Rubin [Dempster, Laird et al. 1977] presented an iterative
scheme for handling missing data in maximization problems and established its theoretical
convergence properties. This iterative scheme is called expectation maximization (EM). It has
been and continues to be applied to likelihood maximization for the definition of finite mixture
models.

A variety of alternate technologies have also received considerable attention for FGMM
development: graphical methods, minimum distance techniques such as chi-squared and least
squared minimization methods, Bayesian techniques, Newton-Raphson, and the method of
scoring. Although no single method has been shown to be ideal for all situations, EM has several
properties which make it an appealing technique: [Jordan and Xu 1993; Xu and Jordan 1995;
Zhuang, Huang et al. 1996]

1) EM is simple to apply: no matrix inversion is required as with Newton-
Raphson and the method of scoring.

2) EM is stable: Bayesian techniques develop numerical difficulties in high
dimensional parameter spaces.

3) EM converges to singularities less often

4) EM is monotonic: it is the only method for which likelihood is guaranteed
to increase after each iteration

One of the most common complaints in regard to EM is its slow convergence rate.
Recently, however, Xu [Xu and Jordan 1995] has shown that although EM strictly has first order
convergence properties, the matrix which characterizes the direction of its step with respect to the
local gradient serves to reduce the condition number of the Hessian of the maximum likelihood

surface so that nearly second order convergence rates are often achieved.
2.3.7.1 Maximum Likelihood Estimation

The standard likelihood equation for a collection of training samples, S, given a GMM( %)

B
L(s| @)= .ﬂlp(x(i) | v) [2.19]
i=

Equation 2.19 is maximized (or minimized) when
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Finding a maximum likelihood estimate of ¥is equivalent to finding the maximum log likelihood

estimate of ¥-

El
L(s| ¢)= leog[P(xGM I/JD [2.21]

]':
By assuming that each sample, x(), arises from one of the component distributions,

F(x(0);¢), which exist in the mixture model in the portions o)), then a new variable z() can be

introduced that captures the component membership for x{)

[2.22]

Zﬁi)z 1 x0) o component i
0 otherwise

As a result, the log likelihood equation can be rewritten as

LL(S | 4[/) = Ig: IZ<: ZGi)[log (o(i))‘r 10g(F(>_<G), d?(i))D [2.23]

j=1i=1

and this equation is maximal when

: : i o x @
aLLafpl H- gizoi)al—ogagﬁ)+ g iz(")al o0, 2) =0 [2.24]

j=1i=1 j=ti=1 ¢
This formulation of the likelihood equation requires the specification of the z{if), but
during the development of the model, these terms are unknown. Thus the use of this equation as
the function to be solved converts the maximum likelihood task to a “missing data” problem,
which expectation maximization was developed to solve.

2.3.7.2 Maximum Likelihood Expectation Maximization

The EM algorithm was presented by Dempster, Laird, and Rubin [Dempster, Laird et al.

1977] as an iterative maximization algorithm capable of handling missing data. =~ The EM
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algorithm is applied to FGMMs by treating all z(!) as missing data. Each iteration of EM has two
steps: an E-step and an M-step. The E-step, the expectation step, assigns values to the missing
data variables based on the current model parameters. The M-step, the maximization step,
adjusts the parameters of the model using the current estimates of the missing data variables.

The E-Step requires the calculation of expected value of the log likelihood function

conditional on the initially estimated parameters, ‘!(0), e}

Q( w, w(o)] = E{LL (sl wj w(o)} [2.25]

This is achieved by substituting the component conditional posterior probabilities of each sample
for the component membership variables, i.e., the missing data. The component conditional

posterior probabilities, P(1), of each sample, j, for each component, i, are
WO 50, )
K .
5 0030 )
k=1

[2.26]

ZGi) = P(ji) = P()_((J)l ‘,U;i) =

The M-Step adjusts the estimates of the parameters % based on this new log likelihood
estimate. The weights are estimated by
NI
i) = & > p(i) Oi=1.K [2.27]
=

and the remaining parameters of the model in the maximum log likelihood equation are

determined by substituting of P(1) for z(i1) into the second term of Equation 2.23.

|25|] § () alog(F(ji)’ di))) -0 [2.28]
i=1li=1

For a variety of component distribution shapes, solutions exist for this equation. Such is

the case for FGMMs. Specifically, the mean and covariance of each component, i=1..K, are

1 IZS': P(ji))_( ()

(i) = :
B ISI ]':1 (JO(I)

[2.29]
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2.3.7.3 Operation

As with K means, FGMMs can be used as classifiers or clusterers.

with K means, FGMMs are used to model the populations independently and provide class

conditional probabilities to a Bayesian classifier.

K means was used to initialize the model’s parameters.

convergence.

iterations.

Convergence was indicated by less than 0.01% change in the likelihood over two

Analysis of the training indicates that convergence was reached in most cases in less

than 10 iterations, but occasionally 250 were required.

255

0 fO 255

Class A / B decision regions produced by
GMM via MLEM, K=1, classification
Figure 2.70

255

0

0 fO 255

Class A / B decision regions produced by
GMM via MLEM, K=2, classification
Figure 2.72

255

fo 255

Class A’/B’ decision regions produced by
GMM via MLEM, K=1, classification
Figure 2.71

255

0 fo 255

Class A’/B’ decision regions produced by
GMM via MLEM, K=2, classification
Figure 2.73
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Class A / B decision regions produced by
GMM via MLEM, K=4, classification
Figure 2.74
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Class A / B decision regions produced by
GMM via MLEM, K=7, classification

Figure 2.76
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Class A’/B’ decision regions produced by
GMM via MLEM, K=4, classification
Figure 2.75
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0
Class A’/B’ decision regions produced by

GMM via MLEM, K=7, classification
Figure 2.77

2.3.7.4 Labeling Accuracy and Consistency

It has been shown that FGMMs can be used to approximate arbitrary densities [Ferguson
1983]. In practice, however, FGMMs via MLEM are reliant on the user specification of K and are
subject to local maxima and non-optimal global maxima.

A variety of methods have been developed to automate the specification of K. None,
however, have been generally accepted, and most make additional assumptions concerning the
distributions being modeled [Zhuang, Huang et al. 1996] or introduce new parameters
[McLachlan and Basford 1988]. For generalized projective Gaussian distributions the automated
specification of K can be a particularly difficult task. There is in actuality an infinite number of
components, and the task becomes one of finding a finite number of components which well

approximate that continuum.
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Non-optimal global maxima generally occur on the fringes of a model’s parameter space.
They occur when a component becomes dedicated to a single sample. The variance of this
component will tend towards zero while its maximum likelihood value will rapidly increase.
Given a likelihood measure, the values at those maxima are actually unbounded. Bayesian
methods have been applied in an effort to limit the effects of such maxima [West 1993].

The existence of local maxima is revealed by starting from a different point in parameter
space. Since K-means is being used to initialize the parameters, simply changing the order in
which the data are supplied causes EM to begin with different initial values and a drastically
different arrangement of components results. Figure 2.78 shows the results from FGMM via
MLEM using K=7 when the same data used to generate Figure 2.76 is presented in a different
order. The effect of the change in the parameters of the components is obvious. A different local
maximum has been reached. The TPRs and FPRs for these two different models resulting from

different maxima are given in Table 2.19.

255

0
0 fo 255
Different initialization produces different model versus Figure 2.76
Figure 2.78
TPR FPR
Fig. 2.76 0.9222 0.2844
Fig. 2.78 0.9281 0.2829
Different initialization produces different TPR and FPR rates
Table 2.19

The poor consistency resulting from local maxima is revealed by the graphs in Figure 2.79
and 2.80. They also illustrate the importance of the specification of the number of components in
determining the accuracy as well as the consistency of the models.

Most researchers recommend developing several models of a set of data from different
initial points in parameter space and using a range of K values and then choosing the “best” so as

to avoid these problems. In practice such an approach can be time consuming, difficult to

56



implement, and require significant data. The approach to CGMM presented in this dissertation

addresses these issues.

Method. K TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma
MM 1 0.86124  0.29245 0.02382 0.03819 0.02854
2 0.92873  0.29276 0.02216 0.04280 0.03077
4 0.93117  0.28892 0.10046 0.07593 0.08408
7 0.91521  0.28005 0.16201 0.09829 0.11829
TPRs, FPRs, and consistency for Class B from FGMM classification
Table 2.20
Method. K TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma
MM 1 0.95209  0.11342 0.00972 0.01200 0.01017
2 0.95060  0.11444 0.01677 0.01742 0.01384
4 0.94488  0.11365 0.05717 0.02690 0.03465
7 0.94154 0.11764 0.09238 0.07252 0.07975
TPRs, FPRs, and consistency for Class B’ from FGMM classification
Table 2.21
107 10
I —
1 ‘ —
1 1 ‘
18 18
06 08
. - m . —— M
: ——m : ——m
K K
B P
04 04
02 02
I ] J
1 | ‘
) ‘ - ——————— ‘ - ———————
1 10 1 10
K Kk
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Figure 2.79 Figure 2.80
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2.3.7.5. Ease of Analysis

Despite the difficulties with FGMMs, they have received considerable attention and
found their way into numerous practical applications [Aylward and Coggins 1994; Bellegarda,
Bellegarda et al. 1994; Gish and Schmidt 1994; Samadani 1995; Waterhouse and Robinson 1995].
The most significant advance in terms of quantitative analysis has come from Louis [Louis 1982].
His method for simultaneously defining Fisher’s information matrix during the development of
the model has enabled the application of a wide range of quantitative analytic techniques.
Qualitative analysis is facilitated by the use of Gaussian components. Both the qualitative and
quantitative analysis can be especially revealing if its is assumed that the population is actually a
mixture of Gaussians. Such mixture models are referred to as direct mixture models. For
extruded Gaussian distributions, since the number of components is actually infinite, only

indirect FGMMs can be formed.

2.3.8. Summary

Figures 2.81 and 2.82 provide summaries of the performance of the various classifiers
analyzed. These figures are plots of TPR versus FPR. Each classifier’s average TPR/FPR value is
indicated by its abbreviated name. About each average is a circle whose area is proportional to
the log of that classifier's combined one-sigma TPR/FPR variance. The larger the circle, the less
consistent was that classification technique’s accuracy throughout the Monte Carlo simulation.

Four important consistency checks are upheld within these graphs:

1) FGMM with K=1 performs nearly the same as Gaussian classification.

2) KNN, Parzen windows, and MLPs are ordered in accuracy and
consistency as their parameters are changed.
2a) The Monte Carlo runs were sufficient in number to capture this
expected relation.
2b) The consistency of Parzen windows and KNN improves with
increasing neighborhood size/o / K.
2c) Parzen windowing asymptotically approaches K=1 nearest neighbor

as 0 approaches 0.

3) Gaussian classifiers provide optimal accuracy and consistency for Problem

2.
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4) All techniques provided better accuracy and consistency for Problem 2

versus Problem 1.

These graphs support the following hypothesis:

1) Kmeans and FGMMs via MLEM have poor consistency.

2) For the given problems, K means and FGMMs via MLEM consistencies
degrade as the number of components is increased.
2a) The parameter selection process makes poor use of additional
resources.
2b) The additional degrees of freedom serve only to confound the
problem.
2c) Performance is tied to the user specification of an appropriate number

of components, K.

3) For Problem 1, the Monte Carlo runs were insufficient in number to
capture the expected order of progression in accuracy as the number of
components is varied for K means and FGMMs via MLEM due to the

inconsistency of these methods.

Therefore, while FGMMs should provide high levels of accuracy, their development
using MLEM results in high levels of inconsistency and reliance on the user specification of K.
The graphs clearly show that FGMMs via MLEM provide the most inconsistent levels of accuracy
among the classifiers analyzed.  An alternate method for GMM development needs to be

identified. This dissertation presents such a method.
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Method. K TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma
Gauss 0.86057  0.29396 0.01756 0.01737 0.01636
Linear 0.86497 0.31235 0.06153 0.06942 0.03564
KNN 1 0.76094  0.24433 0.02126 0.01861 0.01959

3 0.82346  0.23834 0.02152 0.01895 0.01949
7 0.86584  0.24230 0.02137 0.02049 0.01924
11 0.88107 0.24680 0.02085 0.02146 0.01906
PW 2 0.84960  0.24390 0.02069 0.01960 0.01911
8 0.90534 0.25473 0.01700 0.01962 0.01650
16 091394 0.28018 0.01458 0.01801 0.01515
32 0.89889 0.30073 0.01420 0.01750 0.01504
MLP 36 090327 0.26495 0.05007 0.05858 0.03610
108  0.88089  0.24267 0.06650 0.05939 0.04470
360  0.88044 0.24143 0.06509 0.06155 0.04021
KM 1 0.82714  0.27073 0.01705 0.01739 0.01615
2 0.86754  0.28483 0.05093 0.03924 0.03897
4 0.83296  0.24890 0.06654 0.07657 0.07088
7 0.79113  0.29009 0.05728 0.12592 0.08039
FGMM 1 0.86124  0.29245 0.02382 0.03819 0.02854
2 0.92873  0.29276 0.02216 0.04280 0.03077
4 0.93117  0.28892 0.10046 0.07593 0.08408
7 0.91521  0.28005 0.16201 0.09829 0.11829

Summary of the recorded Problem 1 TPR, FPR, and one-sigma ranges

Table 2.22

Method. K TPR FPR  TPR One-Sigma FPR One-Sigma Comb. One-Sigma
Gauss 0.95211  0.11352 0.00966 0.01185 0.01013
Linear 0.95270  0.12630 0.02965 0.03227 0.02061
KNN 1 0.87729  0.12305 0.01832 0.01420 0.01583

3 0.92383  0.11823 0.01567 0.01395 0.01404
7 0.94232  0.11722 0.01426 0.01441 0.01310
11 094764 0.11751 0.01397 0.01481 0.01291
PW 2 0.93420  0.12209 0.01428 0.01476 0.01377
8 0.95858  0.12271 0.01032 0.01375 0.01089
16 097261 0.14125 0.00728 0.01416 0.00953
32 0.98743  0.18084 0.00448 0.01625 0.00816
MLP 36 094569 0.11549 0.03472 0.03211 0.02013
108  0.93519 0.10756 0.04273 0.03246 0.02343
360 093376  0.10504 0.03667 0.02764 0.02150
KM 1 0.97706  0.15863 0.00650 0.01508 0.00930
2 0.94669  0.14549 0.04098 0.01911 0.02298
4 0.92937  0.11924 0.02515 0.01614 0.01958
7 0.90416  0.13444 0.03270 0.02753 0.02937
FGMM 1 0.95209  0.11342 0.00972 0.01200 0.01017
2 0.95060 0.11444 0.01677 0.01742 0.01384
4 0.94488  0.11365 0.05717 0.02690 0.03465
7 0.94154 0.11764 0.09238 0.07252 0.07975

Summary of the recorded Problem 2 TPR, FPR, and one-sigma ranges

Table 2.23
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2.4. What’s Next?

This Chapter has, in fact, presented and analyzed a range of approaches to and
implementations of Gaussian mixture modeling. Linear classifiers imply GMMs having just one
Gaussian component with a fixed covariance matrix. Gaussian classifiers use GMMs having just
one component whose mean and covariance is fit to the training samples of a class. K-means
allows multiple Gaussians to represent a distribution, but the covariance matrices of those
Gaussian components are fixed. Finally, finite Gaussian mixture modeling uses multiple means
to represent a distribution and defines their covariance matrices based on the set of training
samples local to that mean. These approaches, however, are limited to using predetermined,
finite number of Gaussians, and the parameters of each Gaussian component are determined only
in consideration of a global performance measure. The premise of this dissertation is that by
using continua of Gaussians parameterized by mean and covariance and constraining the
parameterization of those Gaussian components to vary smoothly, the data can be better
represented.  Such parameterizations exist for the continua of centers and widths for the
description of objects in images; they are called medialness cores. The next chapter provides an
overview of medialness cores. The subsequent chapter presents the steps necessary to adapt core

techniques to the generation of representations of distributions.
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Chapter 3

MEDIALNESS CORES

Like the core of an apple.
- Pizer, 1995

Medialness cores capture the location, size, and shape of objects in images. They are the
loci of generalized local maxima in a function called medialness defined on the scale space of an
image!. To understand cores requires understanding medialness kernels, medialness space, and
generalized local maxima. This chapter provides a brief overview of these concepts and the
process of medialness core extraction.

The following discussion borrows heavily from two papers on medialness cores. The
first paper [Pizer, Eberly et al. 1996] provides a detailed description of the mathematics and the
invariance properties of medialness cores. The second paper [Morse, Pizer et al. 1996] describes

the insensitivity of medialness cores to image disturbances such as noise and blurring.
3.1. Medialness Kernels

Medialness can be measured at a spatial image location x and scale 0 via application of a
medialness kernel. Medialness kernels operate by integrating boundariness measurements at a
radial distance proportional to scale, so medialness kernels are multilocal. They yield responses
that are particularly strong along the track of an object’s local spatial centers at scales proportional
to the object’s local widths. Medialness kernels can be distinguished by the focus of their

medialness measurements and by their dynamics.

1 Hereafter the term medialness space will be used to refer to the domain, the set of all

image locations x and scales 0, on which a medialness function is defined.
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Laplacian of a Gaussian; Morse medialness;
a central medialness kernel an offset medialness kernel
Figure 3.1 Figure 3.2

A medialness kernel’s focus can be central or offset. Medialness kernels having a central
focus are band pass spatial filters centered about their query point x. Medialness kernels having
an offset focus only consider data a fixed distance from x.

Two fixed and oriented medialness kernels in 2D are depicted in Figures 3.1 and 3.2.

The dynamics of a medialness kernel can be characterized as fixed, oriented, or adaptive.
Medialness kernels with fixed dynamics maintain a radially symmetric shape throughout the core
extraction process. They can be applied to an entire image using convolution.  Oriented
medialness kernels also have a fixed shape, but, they are not radially symmetric and the
orientation at which they are applied at each point in an image is dependent on the local image
data and the local tangent frame of the core. Adaptive medialness kernels” shape and orientation
depend on the local data and the local tangent frame of the core.

Fritsch [Fritsch, Pizer et al. 1994; Fritsch, Eberly et al. 1995] has investigated the fixed-
central, Laplacian-of-Gaussian (LoG) medialness kernel (Equation 3.1). The equation of the LoG

medialness kernel is

2 2
K(x, 0) =N°—ZI§J—G(X,0) [3.1]
(6)

where x DDN, O0xO0 denotes the length of x, and G(x,c ) is a unit normalized Gaussian
(Equation 2.1).
It can be applied at every position in an image using convolution to create the central-

fixed medialness function at scale 0. Varying o allows one to construct the medialness space.
F(x,0)=1(x) OK(x,0) [3.2]

where * denotes convolution.
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An example of an oriented-central medialness kernel for one direction is shown in Figure
3.3 [Fritsch, Pizer et al. 1994; Fritsch, Eberly et al. 1995]. The medialness function obtained from

this kernel is defined as

F(x,0)= -0°Lpp =-0"p'D’Lp =-0”p'Hp = -0”a [3.3]

An oriented-central medialness function for a single direction
Figure 3.3

where t denotes transposition, H is the Hessian of the image measured at spatial location x and
scale 0, a is the largest magnitude negative eigenvalue of D?L, and p is the corresponding
eigenvector of DZL. At a single spatial location and scale, the kernel is oriented in the direction p
which is determined by the image data, i.e., maximum over orientation of the 2nd directional
derivative of image intensity at scale 0.

Adaptive-offset medialness kernels are currently undergoing extensive investigation by
Matt McAuliffe at the University of North Carolina, Chapel Hill [Fritsch, Eberly et al. 1995].
Adaptive-central medialness kernels are most closely related to the chosen implementation of
GGoF kernels. Adaptive-central medialness kernels, however, have not been investigated for the

definition of medialness cores.
3.2 Medialness Space

A medialness space of an image consists of the values of a medialness function for a range
of spatial locations x and scales 0.  This space is not Euclidean, ie., x and ¢ are not of

commensurate units. Derivative measurements made with respect to scale or at different scales

must account for the structure of the space [Eberly 1996; Pizer, Eberly et al. 1996].
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An image of a binary object
Figure 3.4

Select slices with respect to scale of the central-linear, LoG medialness space of the binary
object shown in Figure 3.4 are given in Figures 3.5 through 3.7. Notice at small scale the middles
of the individual sawteeth are well localized as maxima as are the corners of the rectangle. At
medium scale the points more interior to the rectangle’s corners produce the highest response.
The details of the sawteeth are barely visible. At large scale the maxima extending from the

corners have nearly merged.

LoG Medialness of Figure 3.4 at small scale
Figure 3.5.

LoG Medialness of 3.4 at medium scale LoG Medialness of 3.4 at large scale
Figure 3.6 Figure 3.7

70



Select slices with respect to scale of a medialness space generated from a central-oriented
medialness kernel (Equation 3.3) of the binary object shown in Figure 3.4 are given in Figures 3.8

through 3.10.

Central-oriented medialness of Figure 3.4 at small scale

Figure 3.8
Central-oriented medialness Central-oriented medialness
of Figure 3.4 at medium scale of Figure 3.4 at large scale
Figure 3.9 Figure 3.10

3.3 Medialness Cores: Generalized Maxima and Height Ridges

Generalized maxima are points which are local maxima in a not necessarily proper subset
of basis directions. Eberly [Eberly 1996] provides a more detailed discussion of these geometric
constructs which are called height ridges. Interesting research into an alternate method for
extracting of the ridges of functions is being conducted by Jacob Furst at The University of North
Carolina, Chapel Hill.

A point y ~N*l is a generalized local maximum in a set of basis directions V, i.e.,
v(Dev()=0 for all i®j where V={y(i) < N+1L i=1. N+1-M}, of a function F when

viDF(y)=0 and ytDzF(y)y<0 forallvin V. [3.4]
where D is the gradient operator and D2 is the Hessian operator.
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When M=0 then such points are strict local maxima. When M>0 then such points are
generalized local maxima of dimensionality M.

Points on a maximum convexity height ridge are generalized local maxima in the
directions of largest convexity. Second derivative information at a point y is captured by the
Hessian of F at that point, H = D2F(y). For an M-dimensional height ridge, the N+1-M most
negative eigenvalued eigenvectors of the Hessian are the directions of greatest convexity. If all of
those eigenvalues are negative, those eigendirections specify the set of directions V for the
equations of generalized local maxima given above, i.e., | VI = N+1-M.

In Figure 3.11, the point y, and the directions v, and w exist in the plane spanned by x and
0. Fis a height surface above that plane. The eigenvectors of the Hessian of F at y are v and w.
The direction v has the most negative eigenvalue and thus is approximately normal to the ridge,

ie., V={v}

Height Ridge

Vo

Sy vOV

w

An M=1 dimensional height ridge V={v} in ~N+1=2
Figure 3.11

When the function F is a medialness function, y=(x, 0) and the height ridges are
medialness cores of the corresponding image. Visualizations of some of the 1-dimensional (M=1)
medialness cores of Figure 3.4 are shown in Figures 3.12 through 3.15. Figures 3.12 and 3.14
correspond to the spatial projections of the LoG and Lpp medialness cores. Figures 3.13 and 3.15
illustrate the scales associated with the cores via circles of appropriate radius (radius = po where

p=1.0) centered on the corresponding spatial projection locations.
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Spatial projection of LoG Medialness Filled circles defined by scale component
cores of Figure 3.4 of LoG Medialness cores of Figure 3.4
Figure 3.12 Figure 3.13

Spatial projection of a central-oriented Filled circles defined by scale component
Medialness cores of Figure 3.4 of a central-oriented Medialness cores of Figure 3.4
Figure 3.14 Figure 3.15

The LoG medialness function has proven to be useful for defining cores of anatomic
objects with nonparallel sides, approximately uniform interiors, edges of fixed contrast polarity,
and possibly low signal to noise ratio. The Lpp medialness function has proven to be useful for
defining objects with parallel sides, uniform interior intensity, and possibly intensity variations
along the central skeleton. The same process was used to extract all of the cores shown. It is

detailed in the following section.
3.4. Height Ridge Extraction

The extraction of M-dimensional cores of objects in N-dimensional images using a
medialness function F proceeds in two phases: flowing from a starting “stimulation” point to an
(N+1-M)-dimensional height ridge point and then traversing that height ridge. The domain of
medialness cores is non-Euclidean, i.e., < Nx*, and thus requires the adjustment of measures
made at different scales. Here we present the general case in which the domain of the height

ridge is Euclidean, i.e., « N*1. This is the case which is employed by GGoF cores.
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Define

a® the ascending ordered eigenvalues of D2F(¥) i=1.N+1
v(D) the correspondingly ordered eigenvectors of D2F(y) i=1.N+1

and the directional derivatives
. At
p® (Z):y(l) DF(Z) i=1.N+1 [3.5]

Then the following conditions must hold at y for a maximum convexity height ridge to

exist at that point on the surface F
aN+1-M) < and Pi)(y) 00 for all i=1..(N+1-M) [3.6]

The conditions of equality to zero are conveniently tested by formulating the function

N+1-M

i€ 2 (06 571

and testing J(y)<tolerance, e.g., tolerance = 104,
3.4.1. Flowing to a Height Ridge

Given an initial (user-specified) starting point, y(0), its associated ridge can be found
using a conjugate directions search with respect to the D2F(y(9) s0 as to minimize J(y). Thatis, a
line search is performed from y(0) in the direction v(9), and if the minimum in that direction is not
sufficient, from that point the direction y(l) is searched. If after N+1 iterations the resulting
minimum of J(y) is not within tolerance or if aN+1-M) at y is not less than zero, a new stimulation
point is required. For the examples in this dissertation, Brent’s method is used to perform the

line searches [Press, Flannery et al. 1990].
3.4.2. Traversing the Height Ridge

Once a ridge point is found, instead of explicitly calculating the tangents of the ridge, a

step can be taken in the approximate tangent frame directions and then a flow to the ridge is
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performed if that point is too far off the actual ridge, i.e., J(y) is larger than tolerance. [Eberly
1996]

The tangent frame is well approximated by the remaining, i.e., the M largest eigenvalued,
eigenvectors of DZF(y). By stepping in these approximately tangent directions and using the
flow algorithm if J becomes large, the height ridge can be traversed using only the eigenvalues
and eigenvectors of the Hessian. This technique circumvents many of the difficulties associated
with the discontinuities common in the eigenvector fields of functions. In fact, it is sufficient to
test and correct for the swapping of the first L-M eigenvectors between consecutive ridge points
to handle the remaining discontinuities [Eberly 1996].

For the examples presented, the traversal step size was 0.1 pixel units. Termination of
ridge traversal occurs when the ridge criteria are no longer upheld. Ridges are also allowed to
turn less than 1/8 compared to the previous step direction. This rule halts the integration of

subcores and rarely interferes with normal core traversal.
3.5 Overview of Insensitivities

Medialness cores have been proven to be insensitive to a wide variety of object
disturbances and image noise due to its use of multilocal boundariness measures such as
medialness functions applied at a range of scales, i.e., aperture sizes. Figure 3.16 at the end of
this chapter illustrates the consistent extraction of a 1D, central-linear, LoG medialness core of the

brain stem from a 2D magnetic resonance image which has undergone various deformations.
3.6. Summary

Medialness cores capture the location, size, and shape of objects via continuous
representations of their central tracks and local widths. Such representations are formed using
multilocal, medialness kernels. A variety of medialness kernels exist, each with its own strengths
and weaknesses. Medialness cores have been proven to be invariant to a variety of object
disturbances, e.g., rotation, translation, and scale, and insensitive to a variety of image noise, e.g.,
changes in absolute intensity.

This dissertation will exploit medialness core definition and extraction techniques for the
generation of representations of extruded Gaussian distributions in feature space. Specifically,
Gaussian goodness-of-fit cores will represent extruded Gaussian distributions by tracking the
continuum of means of those distributions and estimating the local variance of the distribution

normal to that track.
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Many of the invariances and insensitivities of medialness cores are beneficial in
representing the distribution of samples in feature space. Rotation and translation invariance are
two such qualities. In feature space, however, a medialness function needs to be sensitive to
changes in intensity rather than to boundariness. For example, skewness and other moments of
sample frequency in feature space must be modeled. GGoF functions consider such information
as well as the other information necessary for density estimation. The next Chapter evaluates the

accuracy and consistency of the maxima of GGoF functions.

Medialness core of brainstem is extracted
invariant to rotation, scale, noise, blur, and intensity variations
Core spatial projections shown in dark gray.

Core scale indicated by overlaid filled circle of radius po (p=1.0).

Figure 3.16
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Chapter 4

GOODNESS-OF-FIT FUNCTIONS

Goodness of fit is concerned with assessing the validity of models
involving statistical distributions.

- Rayner, 1989

This chapter is concerned with the consistency and accuracy of three popular univariate
Gaussian goodness-of-fit functions. ~Consistency and accuracy is quantified by evaluating the
correspondence between the | and o values producing a local maximum in Gaussian goodness-
of-fit and the actual p and o of the sampled population. Monte Carlo simulations are used to
reveal the effects of the number of samples, population skewness, and binning technique on such
maxima. That analysis leads to the selection of the loglikelihood function using overlapped-

equiprobable binning for the generation of accurate and consistent Gaussian goodness-of-fit cores.
4.1. Goodness-of-Fit Measures

The validity of a distribution model is assessed using a null hypothesis test. The null
hypothesis for a goodness-of-fit (GoF) function is that there is no difference between two
distributions except chance differences due to finite sampling. = Methods for testing this
hypothesis include 1) omnibus procedures 2) likelihood ratio tests involving specific alternatives,
3) measures of moments: skew, and/or kurtosis, and 4) graphical procedures. With the goal of
automatically developing CGMMs of unknown distributions using these tests, omnibus
procedures using an expected Gaussian distribution are most appropriate. These tuned functions
will be referred to as Gaussian goodness-of-fit (GGoF) functions. Omnibus GoF procedures can
be grouped as those based on X2 measurements and those based on empirical distribution

functions (EDF). [Koziol 1986]
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X2 Measures: Pearson’s idea when developing his (the original) X? measure was to
reduce the problem of GoF to the simpler problem of comparing observed bin frequencies, O,
with expected bin frequencies, E(). Three popular examples of X2 GoF functions are Pearson’s
X2 (Equation 4.1), Read and Cressie’s power divergent statistic (Equation 4.2), and the log
likelihood ratio (Equation 4.3). [Read and Cressie 1988]

B (o(i) _Emi
X3 = [4.1]

P~ g E(i)

0\75
D) _ 9 B (1) O(l) 3
XR&C = 5 i=zlo £ () -1 [4.2]
B (i)
i O
XI%LR =2 z O(l) ln[m} [4.3]
i=

EDF Measures: EDF measures are based on the fact that “if one plots the ordered
univariate sample versus the corresponding percentiles of the standard normal distribution, one
should observe approximately a straight line if the sample indeed is normally distributed.”
[Koziol 1986] Examples of EDF statistics include Cramer-von Mises based statistics such as the
Cramer-von Mises statistic (Equation 4.4) and the Anderson-Darling statistic (Equation 4.5), the
Shapiro-Wilk statistics, and the Kolmogorov-Smirnov statistics, e.g., Equations 4.6-4.8.  These
measures use the ordered values z(i), the cumulative Gaussian distribution’s value at the ordered

sample values. [Stephens 1974]

|| . _1\2
2 (i) _2i-1 1
w2 = _ + 4.4
21[ ) o8 44
2 B (i) (1SI+1-i)
A =—EZ(21—1)(ln(z ! )+1n(1—z )—|5| [4.5]
i=1
D" = max (L - Z(i)] [4.6]
1<i<js|\US|

. [Zm _(i-1) J [47]

= max
1<i<ls] 9]
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D = max @*,D‘) [4.8]
1<i<|s]

Compared to X2 statistics, EDF statistics are generally more computationally expensive,
require a problematic ordering of multivariate samples, and have not been as well evaluated on
discrete data.  Since this dissertation is concerned with discrete data and since the GGoF
functions are applied repeatedly to extract a single GGoF core, further GGoF evaluation is limited
to X2 methods.

In this dissertation, GGoF functions are applied to a set of data for a range of parameters
m and s values. The set of parameters producing the maximum GGoF value will ideally
correspond with the parameters of the sampled data’s underlying population.  Chi-squared
functions are explained in the following section. Subsequent sections detail the consistency and
the accuracy of the correspondence between the parameters of their maxima and a sampled

Gaussian’s actual parameters.
4.2. X2 Gaussian Goodness-of-Fit

X2 functions test the null hypothesis that the samples x(), i=1..1S 1, are well represented
by the density function F(x). Partitioning the random samples x() into B cells of ranges R(),

j=1..B, produces observed frequencies O0). The null hypothesis is true when the O0) have a

B
binomial distribution with parameters O = {O(k) }k o and

g = PQ“’ falls in R(j))= [dF(x) [4.9]
R0)

Thus, the GoF problem reduces to one of testing whether a multinomial distribution, O,
has cell probabilities E(). Pearson showed that the quantities O()-E() have an approximately

multivariate normal distribution and that the quadratic of Equation 4.9 is approximately )(2

distributed with B-1 degrees of freedom, Xé -1 That is,

PQ(I% > c)a PQ(ZB_1 > c] forany ce0 [4.10]
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and thus
PQ(I% > x%_l(a))a a [4.11]

This fact is independent of whether F is univariate or multivariate, discrete or continuous.
Fisher noted that the log likelihood ratio statistic, X]%LR , is asymptotically equivalent to Pearson’s

XI% . Read and Cressie have proven the same for their statistic, XIZQ &C- Thus, rejection of model
validity occurs when the observed value of a X2 function is greater than or equal to the X2
distribution value found in the Xé _1(a) tables for a pre-specified percentage point, i.e., aC100%.
One important consideration is the “smoothness” of these functions. = Smooth GoF
functions are “constructed so as to have good power against alternatives whose probability
density functions depart smoothly from the desired ... Smooth changes include shifts in mean,
variance, skew, and kurtosis.” [Rayner and Best 1989] The smoothness criterion is important for
the algorithms of this dissertation so that the resulting GGoF space is differentiable and its
extrema are well localized. Moment-based GoF functions utilizing Hermite polynomials directly
address this smoothness criterion, but the use of such functions is computationally expensive
[Rayner and Best 1989]. The three tests being discussed have also been proven to be smooth
functions [Cressie and Read 1984]. My experiments have shown that the binning technique also

plays a significant role in the smoothness of the GGoF function.
4.3. Univariate Binning
The allocation of the samples to cells is “binning.” A binning technique is defined by the

number of bins and their feature space ranges.

Number of Bins: Numerous researchers have devised formulae for suggesting the

number of bins for which the various X2 tests will provide optimal power. It is generally
accepted that a test’s power will increase as B is increased up to a point, and then for larger B
values the power will begin to decrease. ~Dahiya and Gurland [Dahiya and Gurland 1973]
suggest that frequently 4 or 5 bins are appropriate. Most researchers agree that the optimal
number is usually quite small but may increase as the number of samples increases [Read and
Cressie 1988]. For this dissertation, B=6. However, additional research in this area is warranted
given the use of GGoF measures in this dissertation.

Bins can cover equal ranges in feature space, have equal probability, or deviate from
equiprobable using a specified weighting [Koziol 1986].  This dissertation also considers an
alternate binning strategy based on overlapping bins [Ivchenko and Tsukanov 1984; Hall 1985]

which has been shown to increase the accuracy of GoF estimates.
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For this dissertation, each binning technique only bins samples within a fixed range of
feature space, P+1.6450; effectively, the sampled distributions are being compared to clipped
Gaussians. ~ This range theoretically captures 90% of the relevant samples while limiting
interference from neighboring clusters and speeding computations.  Preliminary research
indicates that this clipped Gaussian extent is sufficient for the purposes of this dissertation, but
additional research should focus on quantifying the effect.

Equirange Bins: Pearson’s original work [Pearson 1894] used bins having equal feature
space ranges. Such binning is independent of the distribution being considered. Consider the
Gaussian distribution shown in Figure 4.1 which is partitioned into 6 equal spatial range bins
spanning . It has been suggested by numerous authors that for bins of unequal probabilities,
enough samples should be considered so that each bin has an expected frequency greater than
two. Given the expected probabilities shown, at least 21 samples are needed. This can be a

limiting factor.
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1 1 1
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| 1 1
1 1 0.0960,
! ! 1

I
I
I
i
1645 1097 -0548 O 0548 1097 1.645 “
Allocation of the +1.6450 extent of a Gaussian to 6 equirange bins.
Expected bin probabilities are listed inside the bins.
Figure 4.1

Equiprobable Bins: It is generally accepted, following the work by Mann and Wald

[Mann and Wald 1942], that equiprobable bins provide the best power for most situations in
which the parameters of the expected distribution are known, ie. not estimated from the
samples. The evaluation of a GGoF space is carried out using known parameters. That is, GGoF
space defines the p and o, not the data. The allocation of a £1.6450 extent of a Gaussian to 6
equiprobable bins is shown in Figure 4.2. This binning is dependent on the expected distribution.
Because of the increase in power it is generally accepted that each bin should have an expected

frequency of greater than one, requiring only 7 samples.
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Freq(z)

1/6 1/6 1/6

1/6

-1.645 0842 -0.385 O 0.38 0842 1645 z
Allocation of the 1.645 g extent of a Gaussian to 6 equiprobable bins.
Expected bin probability is listed inside the bins.
Figure 4.2

Weighted Binning: Weighted binning can be used to tune bin size to the problem at

hand.  Such adaptive behavior is not studied in this chapter, but Chapter 5 introduces a
technique, adaptive-normal GGoF, which can extend any GGoF function / binning technique so

that their multivariate extent is based on the local distribution of samples (Section 5.2.3.3).

Bin A Bin B

Weight
o
(&)

f
Weighting of samples with respect to two bins
using overlapped binning
Figure 4.3

Overlapped-Equirange/Overlapped-Equiprobable Binning: GGoF spaces generated
using equirange or equiprobable binning contain “structures” due to sampling which persist
through 0. These unwanted structures are caused by the abrupt transition of samples from one
bin to the next due to small changes in [l. As a result, a technique for smoothing the transition of
the samples between the bins was considered. It operates by weighting each sample with respect
to each bin [Ivchenko and Tsukanov 1984; Hall 1985]. For this dissertation a novel weighting
function was devised. Figure 4.3 illustrates this weighting scheme for two adjacent bins.

The sample weighting is determined using paired, opposing sigmoidal functions
(Equation 4.12) to delineate each bin. The parameter Q was added so that the amount of overlap

between the bins could be controlled. The variable y is the distance of the sample from the bin’s

edge.

1
W(y, Q)= 4.12
(v.2) 140~ (7/1n(+0.100)) 14121

This function is plotted in Figure 4.4 for a variety of values for Q and y.

83



0.8 - ¥
e
= ;
=, ;
2 i
0.4 - %
i
%
0.2 1 it
D*,”
DD?%?(
th
0 : :
-1 0 1

Dist. from bin’s edge

Sigmoidal weighting function for a variety of 2 values.
Figure 4.4

The distance of a sample from a bin’s edge is normalized with respect to half the width of

the shortest abutting bin. If a sample x is being weighted with respect to bin j and bin j covers the
range R() = f(l\]/)lax' f(l\]/)[in then

R = MINRO), RGD) [4.13]
RY) 1, = MINRO),RG+D) [4.14]

and the weight of x with respect to bin j is

() ()

. x—f. f -X
WO () =w| —Min— o |ow| —Max— o [4.15]

0.5[R JM. 0.5CRY .

-Min +Min

This normalization ensures that
1) Near the center of a bin, the two sigmoids which bound that bin will
produce a weighting of 1 and all other sigmoids will produce a weighting
of 0.
2) Near the edge of two abutting bins, only the two abutting bins will have
two sigmoids with non-zero values. The weightings produces by those

values will integrate to one.
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In this manner, the sum of the weightings will be one for any sample receiving at least
partial weighting from an interior bin. The total weighting will be one or less for any sample
whose only non-zero weighting is from an end bin. Ideally all weightings will sum to one, but
the weighting scheme chosen does not appear to cause any adverse effects by deviating from that
ideal.

Overlapped binning can be applied in an equirange or an equiprobable binning manner.

Overlapped-equiprobable binning is illustrated in Figure 4.5.

ya B RN

/ N\

/ ve (Ml 16 W el velll 16 1/6 \

Freq(z)

-1.645 -0.842 -0.385 O 038 0842 1645
Bars indicate amount of overlap in overlapped binning with equiprobable bins
Figure 4.5

While overlapped binning results in non-integer bin values and invalidates the

assumption of the bin frequencies being multinomial, I theorized that asymptotically as the
number of samples goes to infinity the behavior should be X 2,

Binning & GGoF Space: Binning techniques often place constraints on which y, o values
can be evaluated without bias. For example, with discrete binning algorithms only integer g and
even, integer 0 values can be evaluated without bias. Consider the situation in which p has an
integer value; a change in 0 of an amount less than 2 does not affect the allocation of the samples
to the bins but produces a monotonic change in the GGoF value. On the other hand, a change in
o of more than 2 changes the allocation of the samples to the bins and potentially produces a
drastic non-linear change in the GGoF value. Such effects are reduced when the bins are defined
using continuous weightings, ie., overlapped binning.  For this dissertation, however, the
continuous nature of overlapped binning was not exploited, so every binning algorithm was
applied similarly. Specifically, the GGoF values are explicitly evaluated only at integer p and
even integer 0 values. Quadric B-splines [Press, Flannery et al. 1990] are used to interpolate

GGoF values at intervening p and o values.
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4.4 Accuracy and Consistency of GGoF Extrema

The XI%' XIZQ &C» and XI%LR GGoF equations were evaluated using Monte Carlo

simulations. These studies compared the accuracy and consistency of the strict local maxima of
these functions given four different training set sizes (151=20, 40, 80, 160) from two different
distributions (Gaussian and log-normal Gaussian) and using four different binning techniques
(equirange, equiprobable, overlapped-equirange, overlapped-equiprobable). Accuracy is
quantified by the difference between the parameters of the local maxima in GGoF and the
population’s ideal parameters. Consistency is revealed by the Monte Carlo one-sigma value for
each parameter. Section 2.2.2 describes the method for calculating Monte Carlo one-sigma
values. Chapter 2 used the one-sigma range measure to quantify the consistency of the accuracy
of various classification methods.  Smaller one-sigma values correspond to more consistent
behavior.

Since the generalization of the GGoF functions to multivariate data is tied to the core
extraction process (Section 5.2), only univariate distributions are considered. Section 4.5

summarizes the results and provides tables to simplify the comparison of the binning techniques.
4.4.1. Maximization of GGoF Functions

To more closely match the behavior of medialness functions, the GGoF functions are
modified so that their maxima correspond to the best matching parameters. This is accomplished
by subtracting the GGoF function values from X62_1(O( = O.99)= 15.09 and then rescaling by that
value. As a result, this modified GGoF value is greater than zero for 99% of the training sets

which originate from a Gaussian distribution having the corresponding p and ¢ values, i.e., under

the null hypothesis.
) B go(i) _E(i) E’
Xp =[15.09- X 0 /15.09 [4.16]
i=1
2 9 B @ O(i) %
XRec =] 15:09-7 %o o] 71 /15.09 [4.17]
1=
B @)
2 @ O
XiiR = [15.09 —2210 ln[ o) D /15.09 [4.18]
1=
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For these experiments, the local maxima were found using optimal scale surfaces [Fritsch,

Pizer et al. 1994] and Brent’s derivative-based line search technique [Press, Flannery et al. 1990].
4.4.2. Two Univariate Distributions

The first distribution used in the Monte Carlo studies is depicted in Figure 4.6. It is a
univariate Gaussian with a mean at 128 and a standard deviation of 16. It is represented using
collections of samples of size 151=20, 40, 80, and 160. Examples of such sets are shown in Figures

4.7 through 4.10.
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Figure 4.10

The second distribution is depicted in Figure 4.11. It is a univariate log-normal

distribution using a log base of 1.6, u=123 and 0=6.

90 4
80 1
70 A
60 -
50 4
40 4
30 4
20 +
10 A

Freq.

Univariate log-normal Gaussian represented via 2700 samples
placed to maximize correspondence with expected frequencies
Figure 4.11

There is not a single “best” Gaussian representation of a log-normal Gaussian

distribution. Instead, a log-normal Gaussian is best represented by a continuum of Gaussians, a

CGMM (Fig. 4.12).
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A sampled CGMM representation of a log-normal Gaussian
Figure 4.12

For the Monte Carlo experiments this distribution will also be represented using
collections of samples of size |S| =20, 40, 80, and 160. Examples of such sets are shown in

Figures 4.13 through 4.16.
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Figure 4.15 Figure 4.16
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4.4.3. Variable Starting Points

In addition to varying the size of the collection of samples used to define the GGOF space,

the starting points (U, 0g) were selected from two Gaussian distributions centered at their ideal
values for each sampled population and having a standard deviation of 5% of those values, i.e.,
Ho=G(128,16) and 0g=G(0.05*128=6.4, 0.05*16=0.8) for the Gaussian distribution and pg=G(123,6)
and 0g=G(0.05*123=6.15, 0.05*6=0.3) for the log-normal Gaussian distribution. This additional
variation was motivated by the fact that for the real-world problems the starting points are
estimated from the data and therefore vary. The collection of 5000 starting points used with each

distribution are shown in Figure 4.17 and 4.18.
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0 | | : : | 0 | | ; : :
100 110 120 130 140 150 100 110 120 130 140 150
Mean Mean
The 5000 starting points The 5000 starting points
for the Gaussian distribution for the log-normal Gaussian distribution
Figure 4.17 Figure 4.18

4.4.4. Equirange Binning Results
Using equirange binning and the sampled Gaussian distribution, Figures 4.19 and 4.20

illustrate the average location and the one-sigma ranges of the local maxima in GGoF for the three

GGOoF functions.
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The GGoF values at the maxima are also important. Their average values and one-sigma
ranges are provided in Figure 4.21. Tables 4.1 - 4.3 list the values which are represented in these

graphs.
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Figure 4.21
[V o) GGoF
IS1 Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
20 128.0021 0.0852 18.0921 0.0709 -7.8851 0.5232
40 128.0039 0.0840 15.1517 0.0757 -7.1435 0.5033
80 128.0336 0.0836 14.1866 0.0811 -5.4787 0.4697
160 128.0437 0.0798 13.8625 0.0788 -4.0037 0.3962
XIZ, results from Monte Carlo simulation
Table 4.1
K o GGoF
[S] Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
20 128.0335 0.0855 17.7356 0.0704 -8.4043 0.5447
40 127.9995 0.0846 14.8585 0.0755 -7.0742 0.4992
80 128.0128 0.0845 13.7737 0.0820 -5.2426 0.4618
160 128.0337 0.0814 13.4942 0.0800 -4.1307 0.4021
X%{ &C Tesults from Monte Carlo simulation
Table 4.2
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V] o GGoF
S1 Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
20 128.0361 0.0848 17.1074 0.0678 -8.4316 0.5471
40 127.9981 0.0856 14.2551 0.0744 -7.6645 0.5195
80 127.9775 0.0872 13.1854 0.0827 -5.1788 0.4629
160 128.0166 0.0843 12.9141 0.0813 -3.3135 0.3630
XiLR results from Monte Carlo simulation
Table 4.3

These tables and graphs show an excellent correspondence between the estimated and
ideal p values. They also reveal a convergence of the GGOF values for increasing |S1. However,
Figure 4.20 and 4.21 and Tables 4.1-4.3 reveal an unexpected asymptote for 0 and unexpectedly
low GGoF values at the maxima. The cause of these anomalies is revealed by scatterplots of the

5000 local maxima recorded during the Monte Carlo runs. Shown in Figures 4.22 through 4.25

are the 5000 local maxima of X% & function for varying IS|. The locations of the maxima are
not unimodal for increasing |S1. Non-optimal local maxima are often resolved. For this GGoF
function, these maxima are generally located at small scales, e.g., 0<5, in the tails of the
Such consistent

population. Such maxima correspond to representations of outlying samples.

behavior of the non-optimal local maxima affects the asymptote for 0. Clusters of “optimal”
(0=16) local maxima are still present for the 151=80 and |51=160 cases. Nearly identical clusters

of local maxima exist for the other GGoF functions.
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Figure 4.23
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Figure 4.22
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The non-optimal local maxima are also associated with poor GGoF values and therefore
reduce the Monte Carlo average GGoF value. The localization of the poor GGoF values to the
non-optimal local maxima is illustrated in Figures 4.26 though 4.29. The distribution of Y, 0, and
GGoF values is represented by a surface whose height above a p,0 value is equal to the Lg-norm
of the GGOF values of the local maxima found near it. To aid in the visualization of this surface,
its contour map is projected onto the [4,0 axis. An X has been place on the surface and contour
map at the ideal p,0 values (128,16).

These graphs reveal the correspondence between poor GGoF values and non-optimal
local maxima at small 0. Such non-optimal local maxima decrease in prevalence and become

better removed from the ideal parameter values as | S| increases.
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These graphs also reflect an increase in mean GGoF value at the local maxima as 1S is
increased. The mean GGOF value of the local maxima is greater than zero. Such correspondence
is only revealed by graphs of this type. The |, 0, and GGoF value correlations are non-linear and
therefore are not revealed by a corresponding correlation matrix.

As previously stated, for each of comparison Tables 4.25-4.27 at the end of this chapter

summarize the Monte Carlo statistics for each GGoF function and binning technique.

* * *

As previously stated, an “ideal” Gaussian representation for the log-normal Gaussian
distribution does not exist. Graphs involving the average Y or o values of the local maxima thus
offer limited insight. The continuum of Gaussians which well represent the log-normal Gaussian,
however, have a correlated spread. ldeally, the covariance of the g and o values about and along
that spread is minimized as |S| increases.  Thus, the one-sigma range formed from the
determinant of the covariance matrix of the p, o values recorded during the Monte Carlo
simulation should provide meaningful information. Section 2.2.2 describes the calculation of
multivariate one-sigma measures. Smaller one-sigma ranges correspond to more consistent
behavior.

For the log-normal distribution and the Chi-square GGoF functions using equirange
binning, the combined Monte Carlo one-sigma range for y, 0 is reported in Figure 4.30. The
effect of equirange binning on the GGoF values at the local maxima given the log-normal

Gaussian distributions is revealed in Figure 4.31.
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Figure 4.30 Figure 4.31
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One-Sigma GGoF
of
[S1 ICovar(m,s) | Avg. One-Sigma
20 0.0066 -8.6440 0.5449
40 0.0062 -10.3474 0.6108
80 0.0047 -3.2485 0.3758
160 0.0039 -1.6307 0.2254
Xl% results from Monte Carlo simulation
Table 4.4
One-Sigma GGoF
of
[S1 ICovar(m,s) | Avg. One-Sigma
20 0.0064 -8.2185 0.5282
40 0.0057 -10.5271 0.6216
80 0.0044 -3.1970 0.3755
160 0.0038 -1.7491 0.2390
X%{&C results from Monte Carlo simulation
Table 4.5
One-Sigma GGoF
of
[S1 1Covar(m,s) | Avg. One-Sigma
20 0.0062 -7.5708 0.5050
40 0.0050 -9.7440 0.6009
80 0.0041 -3.7981 0.4056
160 0.0035 -1.8580 0.2442

XiLR results from Monte Carlo simulation

Table 4.6

Scattergrams of the g and o values of the local maxima for the Monte Carlo simulations

are shown in Figures 4.32 and 4.33 for |S1=20 and |S1=40. They reveal the correlated spread of

Gaussians which define the CGMM representation of the log-normal Gaussian.
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4.4.5. Equiprobable Binning Results

First interpretation of the theory of increased power given equiprobable binning suggests
that it should offer better local maxima. This, however, seems not to be the case. Equiprobable

binning appears to induce multiple, neighboring, non-optimal local maxima.
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Almost every one of the one-sigma ranges is larger for equiprobable binning than for
equirange binning. The average GGoF values are also lower using equiprobable binning. Tables
4.25-4.27 at the end of this chapter aid in making these comparisons. Those tables summarize the

Monte Carlo statistics for each GGoF function and binning technique.

K c GGoF
IS1 Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
20 128.1071 0.0865 16.4319 0.0732 -10.0400 0.5825
40 128.0902 0.0865 12.6454 0.0814 -8.8658 0.5580
80 128.0609 0.0864 10.7077 0.0839 -6.8656 0.4974
160 128.0160 0.0873 9.8527 0.0804 -5.1896 0.4486
Xl% results from Monte Carlo simulation
Table 4.7
Tl c GGoF
IS1 Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
20 128.0910 0.0865 16.2709 0.0722 -11.0758 0.6158
40 128.0427 0.0865 12.5145 0.0812 -9.1536 0.5672
80 128.0573 0.0871 10.5138 0.0838 -6.6545 0.4923
160 128.0051 0.0880 9.7378 0.0803 -4.5509 0.4233
X%{&C results from Monte Carlo simulation
Table 4.8
K c GGoF
[S1 Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
20 128.0859 0.0855 16.2554 0.0724 -10.0300 0.5902
40 128.0498 0.0865 12.4588 0.0816 -8.7867 0.5531
80 128.0491 0.0880 10.3299 0.0838 -6.5506 0.4930
160 128.0154 0.0884 9.4957 0.0804 -3.7419 0.3901
XiLR results from Monte Carlo simulation
Table 4.9
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An inspection of the scatterplots of the local maxima reveals an increase in the number of
non-optimal local maxima identified, c.f., Figure 440 and Figure 4.25. Another important
difference is the location of these non-optimal local maxima. For equirange binning, they were
limited to outlying Y values. For equiprobable binning, non-optimal local maxima occur even
when the [ values are at the ideal!

* * *

For the log-normal Gaussian, equiprobable binning fared much better. The one-sigma
ranges are consistently smaller. Also, unlike for equirange binning, the graphs are monotonic

with respect to 1S 1.
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One-Sigma GGoF
of
[S1 ICovar(m,s) ! Avg. One-Sigma
20 0.0070 -7.2880 0.5099
40 0.0047 -4.3236 0.3937
80 0.0027 -1.0493 0.2392
160 0.0023 -0.3864 0.1865
X% results from Monte Carlo simulation
Table 4.10
One-Sigma GGoF
of
[S1 ICovar(m,s) | Avg. One-Sigma
20 0.0068 -7.3381 0.5077
40 0.0046 -4.0255 0.3813
80 0.0026 -0.8097 0.2186
160 0.0023 -0.3501 0.1824
X12{ &C Tesults from Monte Carlo simulation
Table 4.11
One-Sigma GGoF
of
[S1 ICovar(m,s) | Avg. One-Sigma
20 0.0067 -7.0357 0.4999
40 0.0043 -3.9086 0.3786
80 0.0026 -0.9579 0.2325
160 0.0022 -0.3462 0.1860
X%LR results from Monte Carlo simulation

Table 4.12
4.4.6. Overlapped-equirange Binning Results
In Overlapped binning, samples are gradually transitioned from membership in one bin

to membership in another for successive U and 0 values. The result is a smooth GGoF surface

which allows an optimal local maxima to be more accurately and consistently found.
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In all instances, the one-sigma values for these estimates of 0 and GGoF are significantly

less than those previously reported. There is not a significant change in the average or one-sigma

range for the estimates of B. Non-optimal local maxima are still resolved. They produce the
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same undesirable asymptotes for 0 and GGoF. Tables 4.25-4.27 at the end of this chapter aid in
making these comparisons. Those tables summarize the Monte Carlo statistics for each GGoF

function and binning technique.

K c GGoF
[S1 Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
20 128.0503 0.0844 19.4499 0.0586 -2.3474 0.3113
40 128.0968 0.0816 15.8521 0.0566 -3.7465 0.3734
80 128.1074 0.0812 13.7066 0.0723 -6.1812 0.4694
160 128.0294 0.0817 12.2559 0.0831 -5.7917 0.4687
X% results from Monte Carlo simulation
Table 4.13
[V o) GGoF
S1 Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
20 128.0723 0.0837 19.2835 0.0571 -2.0174 0.2946
40 128.1164 0.0810 15.6939 0.0562 -3.8296 0.3780
80 128.0839 0.0820 13.3755 0.0724 -6.0428 0.4628
160 128.0132 0.0828 11.8482 0.0840 -5.7362 0.4739
X12{ &C Tesults from Monte Carlo simulation
Table 4.14
K c GGoF
[S1 Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
20 128.1140 0.0837 19.0601 0.0555 -1.6917 0.2743
40 128.0542 0.0802 15.4285 0.0544 -3.5326 0.3636
80 128.1015 0.0831 12.8055 0.0730 -6.2461 0.4635
160 128.0544 0.0846 11.1900 0.0845 -4.6897 0.4342
X%LR results from Monte Carlo simulation
Table 4.15

When comparing the location of the non-optimal local maxima given |S1=160 (Figure
4.49) with their locations under equirange (Figure 4.40) and equiprobable (Figure 4.25) binning
two things become obvious. The non-optimal local maxima are better limited to outlying p
values compared to equiprobable binning, however, they do not appear to be as well limited as

with equirange binning.
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Sigma

most significant for the one-sigma value formed from the covariance of p and o.
reported below are the lowest, sometimes by as much as 1/2, compared to equirange or

equiprobable binning. Overlapped-equirange binning also affects the different GGoF functions
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The effect of overlapped-equirange binning on the log-normal Gaussian distribution is
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Figure 4.49

differently. The X[ function clearly provides the best performance for all cases tested.
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One-Sigma GGoF
of
IS 1Covar(m,s) | Avg. One-Sigma
20 0.0072 -6.2908 0.6352
40 0.0042 -6.7491 0.4702
80 0.0044 -7.1035 0.4865
160 0.0027 -2.5516 0.3171
X%, results from Monte Carlo simulation
Table 4.16
One-Sigma GGoF
of
IS |Covar(m,s) | Avg. One-Sigma
20 0.0069 -5.7676 0.6225
40 0.0039 -5.9765 0.4442
80 0.0041 -6.1828 0.4620
160 0.0026 -2.2061 0.3029

X%{ &C Tesults from Monte Carlo simulation
Table 4.17
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One-Sigma GGoF
of
IS |Covar(m,s) | Avg. One-Sigma
20 0.0062 -4.6394 0.5873
40 0.0035 -5.0866 0.4068
80 0.0037 -5.2174 0.4271
160 0.0024 -2.3078 0.3129
X%LR results from Monte Carlo simulation
Table 4.18

4.4.7. Overlapped-Equiprobable Binning Results

Overlapped-equiprobable binning produces the most consistent and accurate estimates of

the sampled population’s actual parameters. The results are given in the following figures and

tables.  Section 4.5 provides a summary and detailed comparison of the various binning
techniques.
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The recorded one-sigma values from the ¢ and the GGoF estimates are significantly

improved especially when using relatively few samples, i.e.,, 1S| = 20 or 40.

For those small

sample sizes, the X%LR function consistently provides the best performance compared to any

other combination of binning technique and GGoF function.

comparisons, see Tables 4.25-4.27 at the end of this chapter.

Carlo statistics for each GGoF function and binning technique.

To better understand these

Those tables summarize the Monte

H
IS1 Avg.

20 128.0749
40 128.0880
80 128.0281
160 128.0551

One-Sigma
0.0850
0.0816
0.0818
0.0839

o
Avg. One-Sigma
19.3548 0.0576
15.3573 0.0564
13.1691 0.0709
11.7510 0.0799

GGoF
Avg.
-2.5093
-4.2551
-6.9306
-3.7863

One-Sigma
0.3149
0.3954
0.4954
0.3813

XIZ) results from Monte Carlo simulation

Table 4.19
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V] o GGoF
IS1 Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
20 128.1015 0.0851 19.3506 0.0577 -2.4454 0.3149
40 128.0705 0.0820 15.3268 0.0561 -4.0709 0.3822
80 128.0685 0.0824 13.0106 0.0708 -7.8103 0.5273
160 128.0578 0.0851 11.5473 0.0803 -3.2910 0.3522

X%{&C results from Monte Carlo simulation
Table 4.20

K c GGoF
IS1 Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
20 128.0853 0.0852 19.3985 0.0575 -2.1851 0.2963
40 128.0516 0.0813 15.3571 0.0567 -3.4762 0.3575
80 128.0429 0.0831 12.8740 0.0712 -7.5159 0.5159
160 128.0755 0.0863 11.3170 0.0802 -3.3717 0.3583

XiLR results from Monte Carlo simulation
Table 4.21

Overlapped equiprobable binning provides excellent groupings of the local maxima. As

with the equirange case, the limitation of non-optimal local maxima to M values far from the ideal

is clearly visible (Figure 4.57 and Figure 4.58).
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Scattergram of p,oof local max in GGoF
using X%{ &C given 20 samples
Figure 4.55

Sigma
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Scattergram of 1,0 of local max in GGoF
using X%{&C given 40 samples
Figure 4.56
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* * *

The benefit of the XiLR function and overlapped-equiprobable binning for small

samples is maintained when the log-normal Gaussian distribution is analyzed.
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Figure 4.59 Figure 4.60
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One-Sigma GGoF
of
[S1 ICovar(m,s) | Avg. One-Sigma
20 0.0065 -5.6423 0.6250
40 0.0036 -7.2099 0.4908
80 0.0039 -8.2196 0.5203
160 0.0030 -3.1504 0.3284
XIZ) results from Monte Carlo simulation
Table 4.22
One-Sigma GGoF
of
[S1 ICovar(m,s) | Avg. One-Sigma
20 0.0064 -5.6388 0.6249
40 0.0035 -7.0284 0.4859
80 0.0038 -8.2953 0.5256
160 0.0030 -2.8551 0.3132
X12{ &C Tesults from Monte Carlo simulation
Table 4.23
One-Sigma GGoF
of
S| [Covar(m,s) | Avg. One-Sigma
20 0.0063 -4.8825 0.5998
40 0.0035 -6.1196 0.4555
80 0.0036 -7.9107 0.5127
160 0.0029 -3.1167 0.3339
XiLR results from Monte Carlo simulation

Table 4.24

Figures 4.62 and 4.63 demonstrate the best localization of the maxima to the correlated
continua of Gaussians for representing the log-normal Gaussian compared to any of the other

binning techniques.
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Figure 4.61 Figure 4.62
4.5 Summary

The following four tables compare the various binning techniques applied to each of the

GGoF functions considered. The conclusions drawn include:

1) The technique chosen to bin the data has more influence on the accuracy
and consistency of the GGoF maxima than the X2 function chosen to

measure GGoF.

2) Overlapped-equirange and overlapped-equiprobable binning offer

improvements in the accuracy and consistency of GGoF maxima.

3) Overlapped-equiprobable binning produces the most consistent estimates
of 0. It has excellent performance when only a few, i.e., 20 or 40,

samples are available

4) XiLR and equiprobable binning together provide the most accurate and

consistent estimates of 0.
5) The accuracy and consistency of the 4 component of the maxima do not

vary significantly as a function of the number of samples, the GGoF

function, or the binning technique used.
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6) Convergence to non-optimal local maxima can occur using any GGoF

function or binning technique.

The remainder of this dissertation will focus on XI%LR using overlapped-equiprobable

binning. The following tables summarize all of the Monte Carlo experiments.
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X% T} o GGoF
IS] Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
Equi range
20 128.0021 0.0852 18.0921 0.0709 -7.8851 0.5232
40 128.0039 0.0840 15.1517 0.0757 -7.1435 0.5033
80 128.0336 0.0836 14.1866 0.0811 -5.4787 0.4697
160 128.0437 0.0798 13.8625 0.0788 -4.0037 0.3962
Equi probable
20 128.1071 0.0865 16.4319 0.0732 -10.0400 0.5825
40 128.0902 0.0865 12.6454 0.0814 -8.8658 0.5580
80 128.0609 0.0864 10.7077 0.0839 -6.8656 0.4974
160 128.0160 0.0873 9.8527 0.0804 -5.1896 0.4486
Olapd equirange
20 128.0503 0.0844 19.4499 0.0586 -2.3474 0.3113
40 128.0968 0.0816 15.8521 0.0566 -3.7465 0.3734
80 128.1074 0.0812 13.7066 0.0723 -6.1812 0.4694
160 128.0294 0.0817 12.2559 0.0831 -5.7917 0.4687
Olapd equiprobable
20 128.0749 0.0850 19.3548 0.0576 -2.5093 0.3149
40 128.0880 0.0816 15.3573 0.0564 -4.2551 0.3954
80 128.0281 0.0818 13.1691 0.0709 -6.9306 0.4954
160 128.0551 0.0839 11.7510 0.0799 -3.7863 0.3813
Summary of X%’ results from various binning techniques
Table 4.25
XIZQ&C T} (o] GGoF
IS1 Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
Equi range
20 128.0335 0.0855 17.7356 0.0704 -8.4043 0.5447
40 127.9995 0.0846 14.8585 0.0755 -7.0742 0.4992
80 128.0128 0.0845 13.7737 0.0820 -5.2426 0.4618
160 128.0337 0.0814 13.4942 0.0800 -4.1307 0.4021
Equi probable
20 128.0910 0.0865 16.2709 0.0722 -11.0758 0.6158
40 128.0427 0.0865 12.5145 0.0812 -9.1536 0.5672
80 128.0573 0.0871 10.5138 0.0838 -6.6545 0.4923
160 128.0051 0.0880 9.7378 0.0803 -4.5509 0.4233
Olapd equirange
20 128.0723 0.0837 19.2835 0.0571 -2.0174 0.2946
40 128.1164 0.0810 15.6939 0.0562 -3.8296 0.3780
80 128.0839 0.0820 13.3755 0.0724 -6.0428 0.4628
160 128.0132 0.0828 11.8482 0.0840 -5.7362 0.4739
Olapd equiprobable
20 128.1015 0.0851 19.3506 0.0577 -2.4454 0.3149
40 128.0705 0.0820 15.3268 0.0561 -4.0709 0.3822
80 128.0685 0.0824 13.0106 0.0708 -7.8103 0.5273
160 128.0578 0.0851 11.5473 0.0803 -3.2910 0.3522

2 . . .
Summary of XR&C results from various binning techniques

Table 4.26
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XT1R W o GGoF
IS1 Avg. One-Sigma Avg. One-Sigma Avg. One-Sigma
Equi range
20 128.0361 0.0848 17.1074 0.0678 -8.4316 0.5471
40 127.9981 0.0856 14.2551 0.0744 -7.6645 0.5195
80 127.9775 0.0872 13.1854 0.0827 -5.1788 0.4629
160 128.0166 0.0843 12.9141 0.0813 -3.3135 0.3630
Equi probable
20 128.0859 0.0855 16.2554 0.0724 -10.0300 0.5902
40 128.0498 0.0865 12.4588 0.0816 -8.7867 0.5531
80 128.0491 0.0880 10.3299 0.0838 -6.5506 0.4930
160 128.0154 0.0884 9.4957 0.0804 -3.7419 0.3901

Olapd equirange
20 128.1140 0.0837 19.0601 0.0555 -1.6917 0.2743
40 128.0542 0.0802 15.4285 0.0544 -3.5326 0.3636
80 128.1015 0.0831 12.8055 0.0730 -6.2461 0.4635
160 128.0544 0.0846 11.1900 0.0845 -4.6897 0.4342

Olapd equiprobable
20 128.0853 0.0852 19.3985 0.0575 -2.1851 0.2963
40 128.0516 0.0813 15.3571 0.0567 -3.4762 0.3575
80 128.0429 0.0831 12.8740 0.0712 -7.5159 0.5159
160 128.0755 0.0863 11.3170 0.0802 -3.3717 0.3583

2 . Lo .
Summary of XLLR results from various binning techniques
Table 4.27
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Chapter 5

CONTINUOUS GAUSSIAN
MIXTURE MODELING
VIA
GAUSSIAN
GOODNESS-OF-FIT CORES

This chapter defines the methods of continuous Gaussian mixture modeling via Gaussian
goodness-of-fit cores. =~ The GGoF spaces of a variety of 1D distributions are illustrated.
Techniques for generalizing 1D GGoF functions to ND distributions are presented and tied to the
GGOoF core extraction process. Specific methods for extracting GGoF cores are discussed, and the

conversion of those cores to CGMM representations is detailed.
5.1. Two Dimensional GGoF Spaces of Univariate Data

The maxima of the GGoF functions analyzed in the previous chapter existed in the 2D
GGoF spaces (W,0) of 1D distributions. These 2D GGoF spaces can be visualized to gain an
understanding of the regions about their maxima.

Figures 5.1-5.3 are histograms of training sets from a Gaussian (detailed in Chapter 4), a
skewed Gaussian (detailed in Chapter 4), and a uniform (spanning feature values 116-140)
distribution. The 2700 samples which comprise each of the training sets were allocated to feature
values so that their conglomeration best represents the underlying population distribution. That

is, the observed distribution is made to equal the expected distribution.
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Using overlapped-equiprobable binning and XiLR' the GGoF value at every viable
combination of W, 0 can be evaluated for each data set. These values can be viewed as 2D

surfaces in 3D. They are shown in Figures 5.4-5.6.

150

Gaussian distribution’s GGoF Space depicted as a surface
X's indicate the actual parameters of the population
Figure 5.4
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-140 -

100

Skewed Gaussian distribution’s GGoF Space depicted as a surface
Figure 5.5

Uniform distribution’s GGoF Space depicted as a surface
The GGoF values clipped at -500
Figure 5.6

These visualizations reveal the expected extrema and the expected “smoothness” (Section
4.2) of the spaces. The GGoOF spaces of the Gaussian distribution using random (not optimally
distributed) samples of |51=20, 40, 80 and 160 are shown in Figures 5.7-5.10. A GGoF value of -

10 was assigned at points in space for which the number of local samples is less than 7, the

119



minimum number of samples required to assure sufficient power when using equiprobable
binning (Section 4.3). While the range of these surfaces is greatly reduced, they still exhibit
similar shape to the ideal surface (Figure 5.4). That is, they continue to be smooth, and Chapter 4

demonstrated the correspondence of their maxima.

GGoF space as a surface for Gaussian GGoF space as a surface for Gaussian
distribution with 151=20 distribution with 1 S1=40
Figure 5.7 Figure 5.8

GGoF

N

GGoF space as a surface for Gaussian GGoF space as a surface for Gaussian
distribution with 151=80 distribution with 1S1=160
Figure 5.9 Figure 5.10

Finding the strict local maxima of GGoF for these univariate distributions, as was done in
Chapter 4, is equivalent to finding 0D height ridges on these 2D surfaces. These OD height ridges
are the 0D GGoF cores of the data. Thus, the maxima analysis performed in Chapter 4 can be
viewed as an analysis of the single component CGMM representations of those distributions.

The remainder of this chapter focuses on (N>1)D extruded Gaussian distributions and

their (M>0)D GGoF cores.
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5.2 Generalization of GGoF functions to N Dimensions

A variety of methods have been proposed for the application of 1D GGoF functions to
multivariate data. This dissertation generalizes the method originally suggested by Barnett
[Barnett 1976]. Specifically, the multivariate data about U is converted to multiple univariate
distributions via projection onto each direction of a basis set (Barnett limited those directions to be
the coordinate axis of feature space). The multivariate GGoF value is the average XiLR value
associated with each of those projected distributions. The set of projection directions can be
defined as the eigenvectors of a projection matrix P.  The eigenvalues specify the expected
variance in those directions.

Define

U = mean being evaluated (an N-vector)

P = projection matrix being evaluated (an NxN-matrix)
Q = Rank(P) thus QeN

S = set of samples being evaluated

a®) = descending ordered eigenvalues of P, i=1..Q
v(D) = corresponding eigenvectors of P, i=1..Q

s = square root of a1)

Then the projection of the samples into each of the v(D) directions is accomplished by

ot
S, @ ={x(1)z<(]) Iz(]) DS} [5.1]

and the GGoF values from each of those projections is then averaged.
1 Q 2 :
GGoF (1 )= 5 _Zl[xLLR vt 5,5 ) } [52]
1=

Given a fixed set of data S and a fixed mean |, different GGoF values will result from
changes in P even if P’s rank Q is not changed. The definition of P is critical.

As described by Equations 5.1 and 5.2, a GGoF space involves N+N(N+1)/2 parameters, a
mean vector U and symmetric projection matrix P. It is undesirable to attempt to maximize over
such a large number of parameters. As a result, the projection matrix P is constrained to be a
function of the data S, the mean being evaluated |, and s the standard deviation in the maximum

eigenvalued eigenvector direction of P. GGoF space is then in terms of N+1 parameters, i.e.,
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GGoF(Ws). Whereas Barnett limited P to be diagonal, Pj; = s2 for i=1..N, the generalization of this
technique to the inclusion of any set of basis directions allows the GGoF measurements to be

taken with respect to the directions of the core.
5.2.1. GGoF Core Directions

The matrices generally available at a core point, |, include the covariance of the local data
», the Hessian of the GGoF function H, and the normal and tangent directions of the core. These

vectors and matrices are illustrated in Figure 5.11.
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M .. % ' o el § [ — —» Core Tangent & Normal
L] L = = .
L e e T &P Hessian(GGoF)
w Ll L) .
v N s Covariance of Local Data

£
0
Directions defined at GGoF core points
Figure 5.11

David Eberly [Eberly 1996] demonstrated that the eigenvectors of the Hessian of a
medialness function closely approximate the tangents and normals of a medialness core. Thus, a
medialness core can be traversed using only 2nd derivative information instead of 3rd derivative
information (Section 3.4). Terry Yoo has recently proposed that statistical measures can be
applied to images to approximate a variety geometric measures. This dissertation extends the
ideas of Eberly and Yoo and demonstrates that the eigenvectors of the local data’s covariance
matrix well approximate the tangent and normal directions of a GGoF core. This allo130ithout
any derivative information. Additionally, these directions are defined without having initially to
assume a set of directions. For example, estimating directions via the Hessian H of a medialness

function requires calculating H, which requires the evaluation of the medialness function, which
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for many oriented and adaptive medialness functions requires an estimate of the core directions;
yet these directions are estimated via H which was the original goal of our calculations and
therefore is undefined.

I calculate the local data’s covariance matrix ® using a Gaussian weighting of the
covariance of the samples about U to provide smooth changes given small changes in location, |,

or size, s. Mathematically,

1

z[OS

where G(y|3s) is the value at y of a Gaussian function having a mean at U and a circularly

symmetric standard deviation of 3s.
5.2.2. Projection of Local Samples

The method of projection of the multivariate data onto a single direction significantly
affects the resulting univariate X%LR value. My initial work simply projected all points within a
circular region defined by the extent of the bins, e.g., 1.645s. The problem is that the amount of
feature space being projected into each bin differs. For example, the projection of a multivariate

uniform distribution incorrectly resembles a univariate Gaussian distribution (Figure 5.12).

Freq
f1 | % 12t

fO Bin
Use of circular neighborhood biases binning towards a Gaussian distribution
Figure 5.12

This bias is removed by having each bin consider equal feature space areas. This is
achieved by projecting the samples within a square bounding box centered at U, spanning the
extent of the bins, e.g., 1.645s, and oriented with respect to the direction of projection. As
demonstrated in Figure 5.13, the resulting projection bin frequency more closely reflects that of

the local distribution of samples.
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Freq

fo Bin
Use of oriented rectangular region produces unbiased binning
Figure 5.13

This bounding box can also be made “overlapped” when overlapped binning is chosen
(Section 4.3). In such situations, the samples are weighted based on their distance from the line
of projection using Equation 4.12.  An overlapped bounding box is used in this dissertation. It
maintains the benefits associated with overlapped binning by smoothing the transition of samples

into the bins as consecutive  and s values are tested.

5.2.3. Directions of Projection

As with medialness functions fixed, oriented, and adaptive multivariate GGoF functions
can be defined. They are distinguished by which eigenvectors of the local data’s covariance
matrix, as the projection matrix, are considered and whether their associated eigenvalues are
used.

This section illustrates the concepts it introduces using a two feature extruded Gaussian
distribution. Samples are generated from this distribution using the four control Gaussians given
in Table 5.1 and the steps listed in Section 2.1.1.1. The probability density function of this
distribution is shown in Figure 5.14. A scattergram of the set of 2700 training samples used in the

following discussion are shown in Figure 5.15.
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Control 0: G(0) fo f1 Control 1: G fo f1
Mean 26 64 Mean 56 64
Covar 144 0 Covar 4 0
fo fo
f1 0 144 f1 0 4
Control 2: G(2) fo f1 Control 3: G fo f1
Mean 72 64 Mean 100 64
Covar 4 0 Covar 196 0
fo fo
f1 0 4 f1 0 196
The parameters of the control Gaussians which are used to define Class B
Table 5.1
128 128
fi f
0 0
0 fo 128 0 o 128
Probability surface of skewed Gaussian Scattergram of the 2700 samples
Distribution making the training data
Figure 5.14 Figure 5.15

This distribution is a generalized projective Gaussian distribution.

It was designed to

resemble the Class B distribution used in Chapter 2. Its expected GGoF core, however, is vertical,

and its upper control Gaussian has a larger variance than its lower control Gaussian.

5.2.3.1. Fixed Multivariate GGoF Functions

The application of fixed multivariate GGoF functions is not affected by the local data.

For example, to provide a multivariate GGoF measure equivalent to that proposed by Barnett, the

direction of projection can be aligned with the coordinate axis of feature space.

Eij

{sz i=
0 otherwise
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Preliminary experiments using these functions demonstrated poor GGoF core specificity.
That is, for the training data in Figure 5.15, a 2D height ridge was not prominent in the 3D GGoF
space. Also, given different collections of training data, if a ridge was present, it was often

associated with an incorrect track through feature space and/or s.
5.2.3.2. Oriented Multivariate GGoF Functions

It would seem that the GGoF core’s tangents and normals form a more appropriate
coordinate frame than the coordinate axis. Using the core’s tangents and normal directions for
calculating the GGOF function values is achieved by equating the eigenvectors of the projection
matrix to the eigenvectors of the local data’s covariance matrix and using s? as the eigenvalues of
the projection matrix. Such GGoF functions are called oriented-“full-rank” functions since the
rank, Q, of their projection matrix equals the rank, N, of the local data’s covariance matrix.

Slices through the resulting GGoF space can be viewed. Figures 5.16-5.18 show the
GGoF values for various values of constant s: 4, 8, and 16. Figures 5.19-5.20 show slices through s
for fo=64 and f1=64.

One possibly unexpected structure in GGoF space is the relatively large GGoF values at
feature space locations remote to the distribution. These larger values occur because, as points
farther from the distribution are tested, the number of samples within the projection bounding
box begins to decrease. While the collection of samples at these remote locations are as poorly
distributed as the collections of samples at points nearer the distribution, the reduced number of
samples causes a drop in the expected frequency at each bin. The expected bin frequency is used
to normalize X%LR measure, and thus the GGoF values increase when the expected frequency
decreases, e.g., see Equations 4.16-4.18. The Modified )(2 measure [Read and Cressie 1988] is one
of several GGoF functions which attempts to alleviate this by normalizing using the observed
frequency at each bin. These outlying structures, however, will not affect the GGoF cores which

exist central to the distribution.
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128 128

fi fi
0 0
0 fq 128 0 fo 128
Slice through GGoF space at s=4 Slice through GGoF space at s=8
using a full-rank oriented GGoF Function using a full-rank oriented GGoF Function
Figure 5.16 Figure 5.17
128
fi
0
0 fo 128
Slice through GGoF space at s=16
using a full-rank oriented GGoF function
Figure 5.18
40
s
0
0 £ 128 0 fo 128
Slice through GGoF space at fp=64 Slice through GGoF space at f1=64
using a full-rank oriented GGoF Function using a full-rank oriented GGoF Function
Figure 5.19 Figure 5.20

At every point in feature space, the local maxima in GGoF through s can be extracted to
indicate an “optimal-s” surface. Fritsch has devised a medialness core definition based on such
constructs [Fritsch, Pizer et al. 1994]. In this dissertation, however, these images are only
provided for illustration; they are not being used to extract the GGoF cores. Figure 5.22 shows
the GGoF values on the optimal-s surface when s=6 is used to stimulate the GGoF local maximum
search through s at each feature space location. Figure 5.21 shows the s values of the GGoF local

maxima of the optimal-s surface. The absence of a prominent central track in these images
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indicates that oriented-full-rank multivariate GGoF functions demonstrate poor GGoF core

specificity.

128 128
fy fy

0 0

0 fo 128 0 fo 128
s value of local max thru s in GGoF Value at local max thru s in GGoF
given an initial s of 6 given an initial s of 6
using a full-rank oriented GGoF Function using a full-rank oriented GGoF Function
Figure 5.21 Figure 5.22
* * *

An alternative to the oriented-“full-rank” GGoF function is developed by assuming that
the GGoF core captures the variations in the data along its tangent. Thus, only sample variations
normal to the core need to be measured by the local GGoF function. The core’s normals form the
reduced rank projection matrix, Q < N. This type of GGoF function is referred to as a “oriented-
normal” function. They have demonstrated excellent GGoF core specificity.

Assuming that the GGOF core’s tangents are well approximated by the maximum
eigenvalued eigenvectors of the local data’s covariance matrix, the GGoF core’s normals are well

approximated by the remaining eigenvectors. Slices through the associated GGoF space for s=4,

8, and 16 are shown in Figures 5.23-5.25. Figures 5.26-5.27 show slices through s for fp=64 and
f1=64. The GGOF values on the associated optimal-s surface developed using an initial s of 6 is
shown in Figure 5.29. Figure 5.28 depicts the s values of the maxima which formed that surface.
The desired 1D height ridge which is the 1D core of the data is clearly visible in all of the figures.
A primary concern, however, is the existence of neighboring height ridges (see optimal-s surface,
Figure 5.29). Their presence emphasizes the need for an accurate stimulation point specification

process (Section 5.3.1).
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128 128

fi f
0 0
0 o 128 0 o 128
Slice through GGoF space at s=4 Slice through GGoF space at s=8
using an oriented-normal GGoF function using an oriented-normal GGoF function
Figure 5.23 Figure 5.24
128
fy
0
0 fo 128
Slice through GGoF space at s=16
Figure 5.25
40
s
e 0
0 £ 128 0 fo 128
Slice through GGoF space at fp=64 Slice through GGoF space at f1=64
Figure 5.26 Figure 5.27
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fy fy
0 0
0 fo 128 0 fo 128
s value of local max thru s in GGoF Value at local max thru s in GGoF
Figure 5.28 Figure 5.29

5.2.3.3. Adaptive Multivariate GGoF Functions

Adaptive GGoF functions use the eigenvalues of the local data’s covariance matrix to
specify the expected variance in each of the normal directions. While the oriented-normal GGoF
functions are optimal for extruded Gaussians having circularly symmetric cross-sections, adaptive
functions allow distributions having elliptical cross-sections to be well characterized.

As with directed GGoF functions, these GGoF functions can be of the same (Q=N) or of a

reduced rank (Q<N) compared to the local data’s covariance matrix.
a@d(P) = ascending ordered eigenvalues of P, i=1..Q

)
v()(P) = corresponding eigenvectors of P, i=1..Q
ad(e) = ascending ordered eigenvalues of ¢, i=1.N
)(e

v(i)(e) = corresponding eigenvectors of », i=1.N

The Q smallest eigenvalued eigenvectors become the directions of projection

viO(P) = vi(e) i=1.Q [5.5]
, q®
a?@)= a2 o i=1..Q [5.6]
max ( o (Z))
=1.Q

Figures 5.30-5.36 depict the slices through scale space, the GGoF values on the optimal-s

surface, and the optimal-s surface’s associated s values for the full-rank adaptive GGoF function

(Q=N).
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As with the fixed and oriented full-rank GGoF function, poor GGoF core specificity
results. The consideration of the data in the tangent directions of the core serves only to degrade
core specificity.

For the 2D training data being tested, adaptive normals GGoF functions provide exactly
the same performance as the oriented-normal GGoF functions. Since only one direction is used
for projection, the proposed adaptive normalization is inconsequential. It is expected, however,
that the use of an adaptive-normal GGoF functions will provide improved core specificity in
higher dimensional feature spaces because of the ability of these GGoF functions to have an
elliptical shape normal to the core; fixed and oriented GGoF functions are limited to having

circular shapes normal to the core. This supposition is tested in Chapter 6.

5.2.4. Summary

This section demonstrated that GGoF spaces can be generated for multivariate data. The
exact nature of these spaces varies by the directions of projection used. An inspection of these
spaces and their optimal-s surfaces suggests that oriented-normal GGoF functions offer the best
GGoF core specificity. = However, even when oriented-normal GGoF functions are used,
extraneous height ridges exist on the optimal-s surfaces found, so care must be taken in the

selection of the GGoF core stimulation point (Section 5.3.1).

5.3. One Dimensional GGoF Cores

The extraction of a 1D GGoF core directly follows the procedure for the extraction of a 1D

medialness core. A stimulation point must be specified. A flow process finds a GGoF core point
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local to that stimulation point. A traversal process uses the approximate core tangent to extract

the extent of that core.

5.3.1. Stimulation Point Specification

As was previously noted (Section 5.2.3.2), the existence of undesirable height ridges near
the desired height ridge places importance on the stimulation point specification process. A
stimulation point has two components, g and s. Three methods have been developed for
specifying the feature space component, U, of the stimulation point.

The first method for choosing Ug requires the user to completely specify p. The data is
displayed in N(N-1)/2 images formed from the projection of the data onto planes defined by
every unique combination of coordinate axis. The user must point to a spot in at least N-1 of

those projections in order to completely specify the stimulation point.

The second method is semi-automated. The user specifies a point, xo, and a
neighborhood radius, r. The mean of the data within 3r of x, becomes yg.

The third approach uses FGMM. It is automated yet introduces a parameter. The user
must specify the number of components for FGMM (Section 2.3.7). The data is clustered using
FGMM, and the component whose two nearest components are the closest (using the Euclidean
distance measure) is chosen. This heuristic ensures that the chosen mean is located near the
center of a densely populated region of feature space. The chosen component’s mean becomes
the feature space location of the stimulation point. If additional stimulation points are required
for multiple core extraction, the remaining components” means can be used. For all CGMM
development in this dissertation this approach is used.  Also, in every example in this
dissertation seven FGMM components are used. Nearly identical performance is achieved when
4 or more components are used; the number of components appears to be a non-critical

parameter.

The method for specifying sg is paired with the method chosen for selecting Upg. In
general, this problem reduces to one of determining an appropriate neighborhood size, rq, for
calculating the local data’s covariance matrix about g (Equation 5.3). Since the GGoF core is
assumed to follow the M directions of the maximum eigenvalued eigenvectors of the local data’s
covariance matrix, sq is set to the (M+1)th largest eigenvalue of the local data’s covariance matrix
at ugp. When methods 1 or 2 are used to specify Ug, the user must supply rgp. When method 3 is
used, rq is set equal to the distance between the chosen FGMM mean and its closest (measured via
Euclidean distance) neighboring FGMM mean.

It will be shown in Chapter 6 that using the means of FGMM to select the feature space

location and scale of the (possibly multiple) stimulation point(s) results in consistent GGoF core
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extractions. That is, if multiple cores are extracted from the same set of samples using the means
of the FGMM components to provide the multiple stimulation points, those multiple cores

generally cover the same track through GGoF space.

5.3.2. The Flow Process

Assuming that the tangent of a core is defined by the maximum eigenvalued eigenvector
of the local data’s covariance matrix, the core normals are defined by 1) the remaining
eigenvectors of the local data’s covariance matrix and 2) a unit vector which points strictly in s.
These directions define a hyperplane in GGoF space through which the local core segment passes.
Dependent on the smoothness of GGoF space, by performing a gradient ascent with respect to the
GGoF values on this plane, a local core point will be reached.

My approach combines the optimal-scale core definition suggested by Fritsch [Fritsch,
Pizer et al. 1994] and the height ridge core definition developed by Eberly [Eberly, Gardner et al.
1994].  Both my approach and Fritsch’s maintains s as a direction of maximization. =My
approach, however, does not independently maximize through s and then attempt to find ridges
as did Fritsch’s optimal-scale medialness extraction process. =My approach’s gradient ascent
process maximizes in all relevant directions simultaneously. My approach is also like Eberly’s in
that it finds the local maximum in a core normal plane. However, in contrast to the practice of
Eberly, using the eigenvectors of the Hessian of medialness space, the eigenvectors of the
covariance matrix have no s (scale) component. A vector of pure s must therefore be added to
form a proper basis in GGoF space.

For this dissertation the gradient ascent search is implemented using Brent’s line search
technique [Press, Flannery et al. 1990]. Given a starting point in GGoF space, the projection of its
gradient onto the plane is calculated, and a line search is performed along the resulting direction.
From that new maxima the process is repeated until the projection of the gradient onto the plane

is near zero, e.g., less than 0.001 of its total magnitude.
5.3.3. The GGoF Core Traversal Process
The GGoOF core traversal process is performed in the positive and negative tangent

directions from the initial core point. The traversal process consists of two simple steps. These

steps are illustrated in Figure 5.37.
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First, the current core point’s local covariance matrix is calculated. It’s eigenvectors are
searched for the one whose dot product with the previous core point’s tangent eigenvector is of
maximum magnitude. The chosen eigenvector is generally the eigenvector with the largest
eigenvalue; at the initial core point the tangent direction is assumed to be best approximated by
the eigenvector with the largest eigenvalue. In regions of feature space having sparse data or a
nearly circularly symmetric local distribution, however, the eigenvalues/eigenvectors may
“swap.”  This heuristic reduces the ill effects of such swapping. To maintain a consistent
direction of traversal, if the sign of the chosen dot product is negative, the corresponding
eigenvector is negated. The resulting vector approximates the core tangent.

Second, a step of 0.1 feature space units is taken along the approximate tangent direction
from the current core point. A flow process is then initiated within the plane defined by the
core’s normals using an initial s value equal to the previous core point’s s value.

These steps are repeated until a core termination criterion is met.

5.3.4. GGOF Core Termination and Recovery Criterion

A variety of heuristics were evaluated for the termination of GGoF cores. As with
medialness cores, GGoF core termination is still an open problem. Aside from the standard
criterion of experiencing “too large” of a change in traversal direction, the GGoF values of the
core provide an excellent termination criterion which is not available to medialness cores.
Empirical evidence suggests that encountering a GGoF value of -10 or less is a suitable stopping
criterion. This single criterion is used for the termination of all of the GGoF cores extracted for
this dissertation.

Reliance on the GGoF value for termination allows the rate of core change to be used for

core recovery. The training sets used in this dissertation generally contained only 900 samples
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spanning a 256x256 region.  Experience indicates that this corresponds to a “high noise”
environment from which to extract GGoF cores. To add insensitivity to the core traversal
process, the rate of change in the tangent of the core is used to identify suspect core points and to
halt their inclusion into the core without causing termination of the traversal process. Such
points are “stepped over” using the tangents of the previous valid core point. Even though
various heuristics and interpolations could be used to back-fill the suspect points, such techniques

have proven to be unnecessary and undesirable considering their generally ad hoc nature.

5.4. (M<N) Dimensional GGoF Core Extraction

To extend the above process to MD GGoF cores, only the traversal process needs to be
modified.

For MD cores, an MD tangent frame needs to be tracked.  These directions are
approximated using the local data’s covariance matrix. Its eigenvectors are ordered using the
eigenvectors of the previously encountered core point. The signs of the associated dot products
determines any negation needed to ensure a consistent direction of traversal. Normal planes
with respect to each of the tangent directions are search for connected core points. The main
problem with this approach is the significant amount of memory required. In its current
implementation, only extremely small cores can be extracted. As a result, the extraction of these

cores will not be demonstrated in this dissertation.

5.5. (M=N) Dimensional GGoF Core Extraction

When the dimensionality of the GGoF core equals the dimensionality of feature space, the
implied assumption is that the distribution is not an extruded Gaussian. Such problems are
outside of the stated aims of this dissertation. Some tests, however, have been performed, and
the results are encouraging.

When M=N, a simple connected components method can be used to extract the GGoF
core.  Specifically, all of points bordering the current feature space extent of the core are
evaluated and added to the core if a core termination criterion is not met. That is, at every
neighboring feature space location the maxima in GGoF through s is calculated; using the GGoF
criterion those points whose GGOF values are sufficient are added to the core; their neighbors are
then tested.

Because of their lack of correspondence with the problem set of this dissertation, the

extraction of (M=N)-D cores will not be evaluated in this dissertation.
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5.6. Variations on GGoF Core Extraction

The analysis of the GGoF spaces and the GGoF core extraction process lead to the
development and investigation of several variants to the core extraction process. Two of the
most promising of such modifications focus on the evaluation of off-core points and alternative

methods for interpolating GGoF space values and derivatives.

5.6.1. Directed GGoF functions and Off-Core Points

It is possible to calculate the local data’s covariance matrix at every point in the GGoF
space and thereby specify a unique projection matrix for every point in GGoF space including
“off-core” points. Improved core specificity, however, is achieved by limiting the projection
directions of off-core points to the projection directions of the neighboring core points. Off-core
points are used by the approximation/interpolation technique to provide values at non-integer
GGoF space locations (see section 4.3). Constraining the directions of projection in this manner
improves core specificity.

For the training data in Figure 5.15, since the expected core direction is strictly vertical,
the direction of projection, the core normal, can be assumed to be horizontal throughout feature
space. The resulting oriented-normal GGoF space is depicted in the slices in Figures 5.38 through
5.42. The corresponding optimal-s surface and its s values are shown in Figures 5.43 and 5.44.

Throughout the remainder of this dissertation the normal directions of the nearest core

point will be used in the evaluation of each off-core.

128 128

fi f
0 0
0 fo 128 0 o 128
Slice through GGoF space at s=4 Slice through GGoF space at s=8
using an oriented normal GGoF function using an oriented normal GGoF function
Figure 5.38 Figure 5.39

137



128

0 £ 128

Slice through GGoF space at s=16
using an oriented normal GGoF function

Figure 5.40
40
s
_ 0
0 £ 128 0 fo 128
Slice through GGoF space at fp=64 Slice through GGoF space at f1=64
using an oriented normal GGoF function using an oriented normal GGoF function
Figure 5.41 Figure 5.42
128 128
fi f1
0 0
0 o 128 0 o 128
s value of local max thru s in GGoF Value at local max thru s in GGoF
given an initial s of 6 given an initial s of 6
using a full-rank oriented GGoF function using a full-rank oriented GGoF function
Figure 5.43 Figure 5.44

5.6.2. Interpolation versus Approximation

The use of approximating B-splines to provide GGoF space values has been questioned
by several sources. Recent work by mathematicians at UNC has indicated that such
approximations can adversely affect the number and location of singularities in GGoF space.

Work performed for this dissertation has revealed the occurrence of such events. As a result,
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several alternative approximating and interpolating methods were investigated including higher
order (5th) approximating B-splines, lower order (cubic) approximating B-splines, interpolating
splines, Gaussian smoothing functions, interpolating quadratic polynomials, and methods based

on Taylor series expansion.
Consider Figure 5.45. The upper plot depicts the measured GGoF values at fp=65 and

£1=93 for s=4, 6, 8, 10, 12, and 14 for the training data in Fig. 5.15. This feature space point is one
feature space unit away from an ideal core point for this data (fp=64, £1=93). In the lower plot, a
quadratic B-spline approximation to the data is depicted for s=2.05, 2.1, 2.15, ... 14.95. Ideally, a
local maximum exists at s=10. Such a maximum is clearly present in the measured values. The
maximum is still present in the spline approximated values, but it is of significantly reduced
relative magnitude. =~ Compare these results with Figure 546. The lower plot depicts an
“averaged Taylor series interpolation” of the data. The expected maxima is clearly visible. The
reduction of the magnitude of local maxima is even more pronounced at other points in feature

space when spline approximation instead of averaged Taylor series interpolation.
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The equations of the “averaged Taylor series interpolation” employed are given below.

150(x+h)=F(x)+hF'(x)+£21F"(x) [5.7]
F1((x+1)~h) =F(x +1) ~hF' (x +1) +% F"(x+1) [5.8]
F(x+h)= (1 -h)Eo(x+h)+hF1(x+1) - h) [5.9]
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where there derivatives are approximated using finite differences

F'(x) _ F(x+1);F(x -1

[5.10]

P"(x) _ F(x+1)- 2F2(x) +F(x -1

[5.11]

Note that the cost in terms of the number of GGoF evaluations which must be performed
per point evaluation is the same for approximating quadratic B-Splines and the averaged Taylor
series interpolation technique. The effect of interpolation versus approximation is partially
illustrated in Figures 5.47-5.48. These figures were generated under the same conditions as were
Figures 5.45-5.46 except that the averaged Taylor series interpolation technique was used instead

of the approximating quadratic B-splines.

128 128

fy fy
0 0
0 fo 128 0 fo 128
s value of local max thru s in GGoF Value at local max thru s in GGoF
given an initial s of 6 given an initial s of 6
using an oriented normal GGoF function using an oriented normal GGoF function
Figure 5.47 Figure 5.48

This dissertation provides the means by which these techniques and others can be
compared, but it is beyond the scope and intent of this dissertation to perform such a comparison.
For the remainder of this dissertation, approximating quadratic B-Splines will continued to be
used. However, every integer scale, not just even-integer scales, will be explicitly evaluated. As
discussed in Section 4.3, this is only possible when overlapped binning is used. Overlapped
binning reduces the rapid change in GGoF possible when arbitrary consecutive scales are
evaluated. This finer sampling of GGoF space should improve the correspondence between the

measured and the approximated values.
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5.7. GGoF Cores: An Example

Two projections of the GGoF core of the training data are shown in Figures 5.49 and 5.50.
This core was extracted using an automatically chosen stimulation point as discussed in Section

53.1.
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The trace of the ideal means appears to be well estimated by this core. The scale at the
upper control Gaussian is slightly underestimated (estimated 10, ideal 14), but the rest of the
correspondence is excellent.

Termination is a problem for GGoF cores as it is for medialness cores. Also, certain
discontinuities are present in the GGoF core (Figure 5.50). Some preliminary work has been
performed in both of these areas. The inclusion of stopping criterion based on the rate of change
experienced between consecutive core points appears frequently to cause early core termination.
Initial attempts at smoothing the core as a postprocessing step does appear to be beneficial and

merits additional research.
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5.8. GGOF Core to CGMM Conversion

Given N continua or “traces” T0) of Gaussians @ a continuous mixture model provides a

probability for a sample x [ ON via

PE|¥)= MAX (P(@)P(]®)) [5.12]
{@}orV|j=1.N¢

That is, this dissertation follows the missing data assumption of Dempster, Laird, and Rueben

[Dempster, Laird et al. 1977] that each sample is in fact generated by just one of the infinite

number of components, that the generating component is determined via maximum likelihood,

and that the generating component provides the best estimate of the sample’s probability. The

focus of this dissertation is the definition of N continua of Gaussians ¢ T0) via core techniques
and the estimation of their associated P(¢) using traditional statistical methods.

This section shows that it is useful for the traces T0) to be GGoF cores. That is, for each

GGoF core point @ the a priori probability P(¢) can be estimated, and the points @ completely

define a Gaussian classifier which can be used to provide a core point conditional sample

probability P(x | ¢).
5.8.1. Core Point A Priori Probability

The training samples from a particular class are used to maximize the parameters of the
model of that class. Thus, a class’s a priori probability is usually defined as the number of
samples used to define that class divided by the total number of samples in the training set.

Each core point, ¢=(4,s), is defined by a local collection of training samples; that is, all
samples within a bounding box about U are binned to measure its GGoF value. Thus, a core
point’s a priori probability, P(¢), is the number of samples in its local collection divided by the

total number of samples in that class’ training set.
5.8.2. Core Point Conditional Sample Probabilities

To provide a core point conditional sample probability at each core point ¢=(us) a

covariance matrix ®(u,s) must be defined. The core point conditional sample probability is then

oy TR )

[5.13]
Nz,
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A GGOF core can be parameterized by the explicit steps taken during the core traversal
process. Any interpolation or approximation scheme can be used to determine intermediate core
points.  For this dissertation, no intermediate points were used since the steps made during the
traversal process were small relative to the changes the probability surface that they represented.

The construction of a covariance matrix at each core point ¢(l,s) is dependent on the
eigenvectors (as core normals and tangents) and eigenvalues of the projection matrix. To tie the
core point covariance matrix definition to the core point extraction process, it was decided that if
an eigenvector or eigenvalue was used to define the GGoF function, it should be used in the
definition of the core point’s covariance matrix.

Since adaptive-normal GGoF functions are being used to extract the GGoF cores of this

dissertation, define

a (i)(g) = ascending ordered eigenvalues of P, i=1..Q
v((P) = corresponding eigenvectors of P, i=1..Q
a (i)(;(g,s)) = ascending ordered eigenvalues of ¢(u,s) i=1.N

y(i)(;(u,s)) = corresponding eigenvectors of ®(l,s), i=1.N

Then
(i) .
i) _Jy(B) i=1.Q
o)1 O 0
aD @) 2
oV Ews)= jr:r}_a,ée ] (B)) 1=1.Q [5.15]
0 otherwise

Using Equation 5.13 and this definition of the core point’s covariance matrix, the
isoprobability curves of the core point conditional probability can be visualized in feature space,
Figure 5.51.  Specifically, these curves are formed by plotting the 0, £0.5, 1, £1.5, and *2

standard deviation points normal to each core point.
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For adaptive normal GGoF functions, Q < N, and thus ¢(u,s) is of reduced rank. When
Equation 5.13 is evaluated, any angled deviation from the core’s normal decreases the core point
conditional probability. This degradation can be controlled by incorporating the core tangent

directions into ®(l,s) and assigning them a standard deviation proportional to s.

5.9. Putting It All Together

Figure 5.52 shows the probability density function of the population from which the
training samples were generated.

By applying Equation 5.12 to every point in feature space using the GGoF core depicted
in Figures 5.49 and 5.50 and allowing a standard deviation of 0.1s in the core tangent direction,
Figure 5.53 is produced. Allowing a standard deviation of 1s in the core tangent direction
increases the smoothness of the estimate (Figure 5.54) and therefore is used in Chapter 6.

There subjectively appears to be excellent correspondence between the estimated and the
actual density functions. Chapter 6 focuses on quantifying the accuracy and consistency of these

estimates in terms of the accuracy and consistency of the classifiers they define.

128

fy
0
0 fo 128
Population’s density function
Figure 5.52

144



128 128

fi fi
0 0
0 fy 128 0 fo 128
Density function of the CGMM Density function of the CGMM
using tangent vector std. dev. of 0.1s using tangent vector std. dev. of 1s
Figure 5.53 Figure 5.54

5.10. Bibliography

Barnett, V. (1976). “The ordering of multivariate data.” Journal of the Royal Statistical Society
Series A 139: 318-354.

Dempster, A., N. Laird, et al. (1977). “Maximum Likelihood for Incomplete Data via the EM
Algorithm.” Royal Statistical Society 1(1)

Eberly, D. (1996). Ridges in Image and Data Analysis. Dordrecht, Kluwer Academic Publishers.

Eberly, D., R. B. Gardner, et al. (1994). “Ridges for Image Analysis.” Journal of Mathematical
Imaging and Vision 4: 351-371.

Fritsch, D. S., S. M. Pizer, et al. (1994). Cores for Image Registration. Medical Imaging ‘94: Image
Processing, SPIE.

Press, W. H., B. P. Flannery, et al. (1990). Numerical Recipes in C. Cambridge, Cambridge
University Press.

Read, T. R. C. and N. A. C. Cressie (1988). Goodness-of-fit statistics for discrete multivariate data.
New York, Springer-Verlag.

145



Chapter 6

BEHAVIOR OF GAUSSIAN
GOODNESS-OF-FIT CORES

There is nothing more irritating than a good example.

- Mark Twain

This chapter evaluates the accuracy and consistency of continuous Gaussian mixture
modeling via Gaussian goodness-of-fit cores. Emphasis is placed on comparing CGMM via
GGoF cores with K-means and FGMM. This chapter also demonstrates the ability of CGMMs to
represent a trivariate extruded Gaussian distribution and classify gray and white matter in an

inhomogeneous magnetic resonance image.
6.1. CGMM'’s Accuracy and Consistency

This section begins by detailing the operation of a CGMM classifier on a set of training
and testing samples from the distributions of Problem 1 (Section 2.1.1.1). This analysis leads to
the redefinition of the Problem 1 Monte Carlo study in consideration of the computational costs
and distribution assumptions of CGMMs. The new study is used to quantify the accuracy and
consistency of CGMMs, FGMMs, and K-means classifiers. Basic receiver operating characteristic

(ROC) analysis is performed.
6.1.1. An Example CGMM Result
The following example is based on one run of the Monte Carlo simulation presented in

Chapter 2. The 900 training samples from Class A used in the following example are shown in

the scattergram in Figure 6.1. The 900 training samples from Class B are shown in Figure 6.2.
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The algorithm presented in Section 5.3.1 automatically chose the feature space points
(160.37,123.30) for Class A and (163.66, 80.08) for Class B for GGoOF core stimulation. The chosen
so values were 26.25 and 17.94 respectively. The feature space projection of the extracted GGoF
cores are shown in Figures 6.3 and 6.4. The effect of automated core recovery is illustrated by the
missing section of the Class B core. These cores respectively span approximately 183 and 206
feature space elements. Their traces through scale are shown in Figures 6.5 and 6.6. Their
collection of GGoF values are in Figures 6.7 and 6.8. The isoprobability curves of the core point
conditional sample probabilities are shown in Figures 6.9 and 6.10. The estimated probability

density functions are shown in Figures 6.11 and 6.12.
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Using the estimated probability density functions from these two classes, every point in
feature space can be assigned a label, and a scattergram can be developed which reflects those

labelings with differing shades of gray. Such a plot is given in Figure 6.15.
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Apparently an accurate representation of the majority of the extent of the extruded
Gaussian distribution can be generated. Both distribution representations, however, demonstrate
poor GGoF core endstopping and occasionally poor estimates of variance.

Core endstopping is also a problem for medialness cores. For GGoF cores, however, the
a priori probabilities of these overextended core points are lower so their negative effects are

somewhat reduced.
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To improve the estimates of the local variance, multiple cores can be extracted. Figures
6.16-6.19 depict the feature space projection and the isoprobability curves of all 7 GGoF cores

which can be extracted from the distribution when FGMM? is used to provide the stimulation

points.
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x Corel =
200 - B 200 - Core2 o
150 | 150 1 Cfes -
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100 100 l\}
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0 : : 0 ‘ ‘
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Trace of 7 cores of Class A’s training data Trace of 7 cores of Class B’s training data
Figure 6.16 Figure 6.17
255 255
fy fy
e,
0 0
0 fo 255 0 o 255
Class A’s isoprobability cures Class B’s isoprobability curves
Figure 6.18 Figure 6.19

While the majority of the extent of these additional cores form duplicate representations,
they are often able to fill in the gaps or provide better estimates of variance for portions of the
extruded Gaussian distribution.  Consider Class B; generally redundant representations are
formed by the additional cores. Class B’s generalized projective Gaussian nature, its match with
the assumptions of CGMM, make the formation of redundant representations likely. The Class A
distribution, however, is a nongeneric instance of a generalized projective Gaussian distribution.
It is ideally represented by just a single Gaussian, i.e., a zero dimensional core. Using a 1D GGoF

core to represent Class A overfits the data. As a results, there is less consistency in the multiple
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cores except at the center of feature space where the zero dimensional core would be likely to
form.

The labelings of feature space resulting from the use of 2, 4, and 7 cores per class are
shown in Figures 6.20 to 6.22. Even when the assumptions of the CGMM do not match the
distribution as with Class A, the use of additional cores seems to refine the representation of the
distribution; they do not appear to confound the representations as did the use of additional

components in FGMMs.

255 255
fi fy
0 0
0 fy 255 0 fo 255
Labelings of feature space using Labelings of feature space using
2 cores per class 4 cores per class
Figure 6.20 Figure 6.21
255

255

f

0

Labelings of feature space using

7 cores per class
Figure 6.22

For comparison, Figures 6.23-6.30 show the labeling of feature space provided by K-
means and FGMM using 1, 2, 4, and 7 components and the training data in Figures 6.1 and 6.2.
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As discussed in Sections 2.3.6 and 2.3.7, the dependence of these classifiers on the user’s

specification of an appropriate K value is clear as is the presence of local maxima. For example,

one of FGMM7’s Class B components represents a sliver through feature space. That component

is being poorly utilized, and its use does not correspond with the shape of the underlying

distribution.
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Labeling of feature space
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Figure 6.26
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K-means with K=4
Figure 6.27
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Labeling of feature space
using K-means with K=7
Figure 6.29

The performance of CGMM via GGoF cores, K-means, and FGMM can be quantified as
was done in Chapter 2. Given 2700 testing samples from each class, the FPRs and TPRs in Table
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0 o 255
FGMM with K=4
Figure 6.28
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255

fo
Labeling of feature space
using FGMM with K=7
Figure 6.30

6.1 result. These values are summarized in Figure 6.31.
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TPR

positive rate with only a small decrease in the TPR!

0.6

K FPR TPR
CGMM 1 0.3233 0.8859
2 0.3215 0.8859
4 0.2604 0.8367
7 0.0385 0.8237
K-Means 1 0.2737 0.8133
2 0.2744 0.8492
4 0.2730 0.8304
7 0.3070 0.7496
FGMM 1 0.2933 0.8415
2 0.3259 0.9196
4 0.3315 0.9259
7 0.3152 0.9130
TPR/FPR rates for the training data in Figures 6.1 and 6.2
Table 6.1
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Plot of FPR/TPR for the training data in Figures 6.1 and 6.2
Figure 6.31

Compared to FGMM?7, CGMM using 7 cores offers an significant decrease in the false-
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To determine whether these results were
anomalous, the experiment was repeated using a different random seed to generate the training
and testing data. The FPRs and TPRs for the second run are summarized in Table 6.2 and Figure
6.31. As with the first set of data, CGMM using 7 cores produces a lower FPR while undergoing



only a slight reduction in TPR. The differences in the performance of the various classifiers,

however, are much less drastic than in the first run.

K FPR TPR
CGMM 1 0.2281 0.6681
2 0.2178 0.7874
4 0.2200 0.8204
7 0.2318 0.8485
K-Means 1 0.2663 0.8318
2 0.3096 0.8822
4 0.2533 0.8496
7 0.2626 0.8196
FGMM 1 0.2878 0.8659
2 0.3185 0.9307
4 0.3218 0.9400
7 0.3067 0.9141
TPR/FPR rates for run 2
Table 6.2
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Plot of FPR/TPR for CGMM and all FGMM classifiers from Table 6.2
Figure 6.32

While no general conclusions can be drawn from these two runs, the results are extremely

encouraging. CGMMY7 provides the lowest FPR values for competitive TPR values.

There is a

ordered progression in the FPR/TPR values of CGMM as the number of cores used is increased.
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As revealed in the Monte Carlo experiments of Chapter 2, for K means and FGMM, the use of
additional components only confounds the representation of these distributions. The ordered
progression of CGMM'’s performance also suggests that it may perform more consistently than
FGMM or K-means.

A Monte Carlo simulation is needed to better understand the behavior of CGMM via
GGoF cores. The work in Chapter 2 already demonstrated FGMM'’s inconsistent performance on
this problem, Section 2.3. Fewer conclusions can be drawn if CGMM also provides inconsistent
performance on this problem. Additionally, the extraction of multiple cores greatly affects the
computational cost of developing and operating the CGMM. If 14 cores of approximately 1500
points each are used, the complete processing of 1800 training and 5400 testing samples requires
approximately 2.5 hours on a dedicated HP 712/100. To repeat the Monte Carlo experiments of
Chapter 2 would require approximately 2500 hours! As a result, the Monte Carlo experiment
was redesigned to take these performance histories and computational requirements into

consideration.

6.1.2 Monte Carlo Results

The goal of all of the experiments in this dissertation is to evaluate the accuracy and
consistency with which various techniques can model an extruded Gaussian distribution. Since
Class A is a nongeneric extruded Gaussian, the Monte Carlo experiment used in Chapter 2 was
redefined so as to limit the application of these technologies to the generation of an accurate
representation of Class B. For every classifier in the new Monte Carlo simulation Class A is
represented by a single Gaussian which exactly matches that population’s parameters (Table 2.1).
Additionally, the new Monte Carlo simulation involves only 100 runs. These changes reduce the
time required to perform the simulation to 10 days.

Each of the 100 Monte Carlo runs consisted of 900 Class B training samples, 2700 Class A
testing samples, and 2700 Class B testing samples. ~The 100 FPR/TPR values which were
recorded are show in Figure 6.33. The same performance measures that were used in Chapter 2
are used to compare the classifiers (see Section 2.2). The average TPRs, FPRs, and Monte Carlo
one-sigma range shown in Table 6.3 result. The Monte Carlo statistics are depicted graphically in

Figure 6.34.
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Method FPR TPR FPR One Sigma TPR One Sigma Comb. One
Sigma

cgmmO1 0.2002 0.7181 0.0057576 0.0165489 0.0003563
cgmmO2 0.2437 0.8192 0.0033732 0.0070245 0.0001220
cgmmO04 0.2702 0.8658 0.0025880 0.0032410 0.0000544
cgmmO07 0.2873 0.8862 0.0020565 0.0019929 0.0000308
kmeans1 0.2573 0.8112 0.0008511 0.0008505 0.0000072
kmeans2 0.3493 0.9345 0.0009904 0.0005903 0.0000057
kmeans4 0.4800 0.9741 0.0012722 0.0003461 0.0000043
kmeans?7 0.5671 0.9845 0.0047031 0.0003357 0.0000136
fgmm1 0.2779 0.8364 0.0009231 0.0009339 0.0000084
fgmm?2 0.2419 0.8660 0.0010374 0.0009371 0.0000093
fgmm4 0.2216 0.8495 0.0011087 0.0014111 0.0000129
fgmm?7 0.1934 0.7990 0.0027022 0.0084882 0.0001117

Average TPR/FPR values and their Monte Carlo one-sigma ranges

Table 6.3
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Plot of average TPR/FPR values and their Monte Carlo one-sigma ranges
Figure 6.34

As was the case for the Monte Carlo experiments in Chapter 2, the expected relations
between the classifiers are upheld (see Section 2.3.8). Additionally,
1) Compared to their results for Problem 1 in Chapter 2, both K-means and
FGMM demonstrate better accuracy and consistency.
2) Every method demonstrates an ordered progression in accuracy and
consistency based on their hyperparameter. 100 runs are sufficient for
Monte Carlo convergence for this simple problem.
3) CGMM1, CGMM2, and CGMM4 offer slightly poorer accuracy compared
to FGMM2, FGMM4, and FGMM?7. However, they distinctly offer
higher levels of accuracy than any K-means.
4) CGMM4 and CGMM?7 offer reasonable consistency.
5) CGMMY offers very competitive accuracy and consistency.
Thus, it can be concluded that CGMM via GGoF cores is a viable technique for
representing extruded Gaussian distributions, but it is not definitive which classification

technique is better. The next section attempts to determine which is better through ROC analysis.
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6.1.3. ROC Analysis

One run of this Monte Carlo experiment can be analyzed using ROC methods. [Egan
1975; MacMillan and Creelman 1991] By keeping the representations of the distributions fixed
and changing the a priori probabilities, i.e., “observer biases”, associated those representations, a
continuum of FPR/TPR values can be generated. They form the ROC curves shown in Figure
6.35. An enlargement of the elbow of these curves is provided in Figure 6.36. Only CGMM? is
presented because of computational requirements.

There are some significant qualitative differences in these plots. Firstly, while the ROC
curves for FGMM and CGMM are proper (nonincreasing slope), K-means produces an improper
ROC curve. This is best illustrated in the sections of the ROC curves having near zero FPRs.
Thus, changing the prior of Class A is not a proper variable for generating an ROC curve using
K-means. Secondly, the ROC’s associated with K-means are not ordered. That is, for K-means,
given a change in K, the ROC plots may cross. It is difficult to tell, especially given just one
example, if the FGMM ROC curves are ordered. Thirdly, the ROC curves are not symmetric
about the negative diagonal through the graph. This suggests (correctly) that the two classes
being considered do not have the same variance.

Three measures can be made to quantitatively compare these curves: the area under each
of these curves can be calculated, the maximum probability of generating a correct answer can be
calculated max-P(C)=Max(TPR+(1-FPR)), and a Neyman-Pearson observer comparison can be
performed, i.e., compare TPR values given fixed FPR values [Egan 1975; MacMillan and Creelman

1991]. Table 6.4 summarizes these measures.
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Method Area of ROC Max-P(C) TPR | TPR | TPR |
FPR=0.1 FPR=0.15 FPR=0.2
cgmm?7 0.8752 1.5893 0.6160 0.7068 0.7741
kmeans1 0.8507 1.5478 0.5638 0.6707 0.7354
kmeans2 0.8604 1.5981 0.4974 0.6825 0.7644
kmeans4 0.8453 1.5659 0.4193 0.6033 0.7338
kmeans?7 0.8306 1.5474 0.3566 0.5594 0.6898
fgmm1 0.8443 1.5530 0.5688 0.6704 0.7337
fgmm?2 0.8665 1.6048 0.5889 0.6961 0.7844
fgmm4 0.8765 1.6126 0.6019 0.7166 0.7945
fgmm?7 0.8793 1.6159 0.6047 0.7155 0.7935
Measures based on ROC curve from one training run
Table 6.4

This single ROC example indicates that

In regard to the area under the curves
1) The area under the CGMM?Y curve is comparable to that of FGMM4
and only slightly less than FGMM?.
2) Clearly CGMMY7 beats every K-means attempted.

In regard to the max-P(C) measure
1) CGMM? provided performance similar to FGMM?2, but well below
FGMM4 and FGMM?7
2) K-means?2 provided competitive performance. This perhaps indicates
the limited significance this measure has when based on just a single
experiment or perhaps it indicates the appropriateness of K=2.

In regard to the TPR values at various FPR values
1) CGMMY provided the best TPR value for the smallest FPR value tested
(FPR=0.1). This fact together with the extremely low FPRs measured in
Section 6.1.1 suggests that CGMM may be able to provide superior TPR
values given small FPRs.
2) CGMM2, FGMM2, FGMM4 and FGMM?7 outperform every K-means
classifier.
3) There is no ordered progression in performance with hyperparameter
value for FGMM or K-means.

The next section makes use of the Monte Carlo average TPR and FPR (Section 2.2.2) to

determine the expected ROC behavior of these classifiers.
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The Monte Carlo analysis performed in Section 6.1.2 estimates the expected TPR and FPR
values for the given problem for each classifier when maximum likelihood classification is
performed. An ROC curve can be fit based on each classifier's FPR,TPR point if it is assumed
that the distributions involved (Class A and Class B) are Gaussians having unit variance. While
it is known that Class B is actually a generalized projective Gaussian and that the Class A and
Class B distributions do not have equal variance, the unit variance Gaussian assumption does
provide a first order approximation to the distributions.

By assuming unit variance Gaussians, the relative position of the means of the signal and
noise distributions can be calculated from the average TPR and FPR values from each Monte
Carlo run. Specifically, the TPR and FPR values define the portion of each distribution on either
side of the decision bound (see Figure 6.37). These rates therefore define the distance from each

distribution’s mean to the decision bound.

/ \
/\ f
[FPRy|  [FPRp|

TPR and FPR rates define the distance
from the maximum likelihood decision bound to each mean
Figure 6.37

The parameter d’ in probit space analysis is equal to the spread of the estimated means
[MacMillan and Creelman 1991]. Higher d’ values therefore indicate classifiers which are better
able to distinguish between the classes. It can be assumed that classifiers with higher d” values
have better models of the distributions.

Using the d” measures calculated from the Monte Carlo average TPR and FPR values
from Section 6.1.2, the number of FGMM components that optimizes d’ can be determined. The
relevant d’ values are given in Table 6.6. They indicate that FGMM using 2 components can be
expected to provide the best model of the Class B distribution. The non-monotonic ordering of

these values makes choosing an appropriate number of FGMM components difficult.

162



# of FGMM

Components d
1 1.569
2 1.808
3 1.801
4 1.801
7 1.704
11 1.590

Spread of the means (d’) for differing numbers of FGMM components
Table 6.6

The expected spread of the means for CGMM can be studied with respect to the number
of traces used to form the CGMM. Table 6.7 lists the relevant d” values. These values clearly
illustrate the asymptotic ordering of CGMM'’s performance as a function of the number of traces
used. These values indicate that the expected performance of a CGMM using 14 or more

components is better than that of the best FGMM model for the given problem.

# of traces in

the CGMM d’
1 1.418
2 1.607
4 1.719
7 1.768
14 1.810

Spread of the means (d’) for CGMMs with different numbers of traces
Table 6.7

Knowing the spread of the means d” and assuming the distributions involved have unit
variance, the complete ROC curve for each classifier can be calculated. Plots of these curves aid
in the visualization of the differences in performance between FGMM and CGMM. Figure 6.38
provides such plots for select FGMM and CGMM configurations. =~ CGMM14’s ROC curve
indicates that CGMM14 better models the GPG distribution Class B than the best FGMM model.

163



0.4 1/ cgmm0l ——
b cgmmO04 —- s

0.3 _i cgmmO7 *ooos
, cgmmlg e

0.2 { fgmmOl =
0.1 - fgmm02 -~
0 fgmmQ7 -~

0 01 02 03 04 05 06 07 08 09 1
FPR

Estimated ROC curve passing through the Monte Carlo
average performance values for CGMM and FGMM
Figure 6.38

6.1.4. Summary

All three analyses performed using generalized projective Gaussian distributions indicate
that CGMM asymptotically provides better TPRs in low FPR situations compared to FGMM or K-
means. Additionally, the consistency of CGMM is comparable to that of FGMM given problems
for which FGMM actually provides consistent behavior.

Extracting multiple GGOF cores is shown to asymptotically refine the CGMM formed.
This seems to be true even when nongeneric extruded Gaussian distributions are involved or
when the use of additional FGMM components results in inconsistent FGMM behavior and
unordered progressions in FGMM accuracy.

The next section demonstrates the application of CGMM via GGoF cores to a trivariate
distribution. The subsequent section demonstrates the application of CGMM via GGoF cores to

real-world data.
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6.2. CGMM Representation of a Trivariate Distribution

This section presents a trivariate distribution and shows its CGMM representation. This
increase in the dimensionality of feature space allows non-symmetric control Gaussians to be
used to generate extruded Gaussian distributions having elliptical cross sections.  Thus, the
capabilities of the adaptive normal GGoF function are fully exploited.

The control Gaussians of this distribution are given in Table 6.8. Their use in the
specification of a generalized projection Gaussian distribution is explained in Section 2.1.1.1.
Because of the higher dimensionality of feature space, 9000 samples are used to represent the

population.  Figure 6.39 contains scattergrams formed by the projection of those samples onto
=0, fy=0, and £1=0.

Gauss 0 f0 f1 2 Gauss 1 f0 f1 2
Mean 20.00 20.00 20.00 Mean 74.00 74.00 44.00
Covar f0  64.00 Covar f0  36.00

f1 36.00 f1 20.25
2 144.00 2 81.00

Gauss 2 Gauss 3
Mean 54.00 54.00 74.00 Mean 108.00 108.00 108.00
Covar f0  36.00 Covar f0  64.00

f1 20.25 f1 36.00
2 81.00 2 144.00
The control Gaussians of the trivariate distribution
Table 6.8
127

0
0 fo 127
fo
0
0 f 127
Scattergram of 9000 training samples
Figure 6.39
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Using the algorithms defined in Section 5.2, a stimulation point at x=(96.20, 98.94, 66.04)

and sp=12.07 is automatically generated. A GGoF core spanning approximately 192 feature space

volume elements is extracted. Its projections into feature space are shown in Figures 6.40-6.42.
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Scatterplot with core overlaid Scatterplot with core overlaid
Figure 6.40 Figure 6.41
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0

Scatterplot with core overlaid
Figure 6.42

The central skeleton of this distribution is well tracked by the GGoF core. The plot of the
GGOoF core through fy, s is given Figure 6.43. The collection of GGoF values at the core points is

shown in Figure 6.44.
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The local scale is accurately estimated by the GGoF core throughout the majority of its
extent. In the smaller variance regions of the distribution, the scale estimate goes astray, but not
significantly. The rapid drop in the GGoF value at the overextended core points is obvious. A

volume visualization of the CGMM is provided in Figure 6.45.

Estimated density function
Figure 6.45

By slicing through this distribution at fy=64, the fact that the model maintains the

elliptical cross section is demonstrated (Figure 6.46). The values of a GGoF core point in that

region are given in Table 6.9. The expected ratio of the variances in the core normal directions

(i.e., fg and f1 for this core point) are present. The majority (~95%) of the core points evaluated

demonstrated similarly accurate variance ratios.
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Figure 6.46
fo f1 f2
Mean 65.738 64.223 63.673
Covar fo 43.728 2.160 8.095
f1 2.160 30.823 6.643
fa 8.095 6.643 77.639

Covariance matrix of an adaptive-normal GGoF core point
captures the population’s variance ratios
Table 6.9

In summary, the adaptive-normal GGoF function is able to trace an extruded elliptical
Gaussian distribution in a three dimensional feature space. A one dimensional height ridge is
tracked in the corresponding four dimensional GGoF space. A CGMM is defined. A probability
density function is estimated. No user interaction is required. CGMM via GGoF cores operates

successfully given distributions in high dimensional feature spaces.
6.3. Classification of Tissues in Inhomogeneous Magnetic Resonance Images

This section demonstrates the efficacy of CGMM using GGoF cores given “real-world”
data. As previously stated, a variety of medical imaging modalities demonstrate inhomogeneous

distributions. This section will explain that MR is one such modality, and show that CGMM via

GGOoF cores can generate accurate representations of the tissue classes present in its data.
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An inhomogeneous Proton Density MR Image
Figure 6.47

Consider the proton density (PD) MR image in Figure 6.47. A total of 984 white matter
samples and 788 gray matter samples were collected from it to form a training set. A scatterplot
of row, PD-value for the gray and white matter training sets is given in Figure 6.48. It clearly
shows the overlapping of these distributions and the effect of the inhomogeneity. It is the row,

PD-value information which is provided to each classification systems, i.e., fy = row and f; = PD-

value.

250 A
"train.grey.data”  x

200 +

150 +

PD

100 +

50 H

0

0 100 200
Row

Scatterplot of the training data depicts the inhomogeneity
Figure 6.48

A single GGoF core is automatically extracted from each of the training sets. The

estimated probability density functions of the corresponding CGMMs are given in Figures 6.49-
6.50
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Using the gray and white matter CGMMs, all of the pixels in the image, including those
pixels which had previously been hand labeled and used for training, can be labeled
(approximately 9% of the nearly 10,000 tissue pixels had were used for training). Even though
other tissue types are present in the image, few non-white matter pixels should be assigned the
white matter label since white matter generally has the darkest MR intensity. The collection of
pixels assigned a white matter label are shown as an image mask in Figure 6.51. If FGMM is

performed using 4 components per class, the white matter mask in Figure 6.52 results.

Mask of white matter from CGMM Mask of white matter from FGMM4
Figure 6.51 Figure 6.52

These results indicate that CGMM is a viable alternative to FGMM for generalized
projective Gaussian distributions given “real-world” data. The results from CGMM match those
of FGMM however CGMM does not require the user to specify a K value, and CGMM does not
suffer from poorly utilized components as FGMM does. Figure 6.53 contains a labeling of the

image based on FGMM component membership. In the image, the significant detail is the
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allocation of four components (two per class) to the superior portion of the brain and the
allocation of just two components (one per class) to the inferior portion where the effect of the
inhomogeneity and the non-linearity of the distributions is the greatest. The components of the
FGMM are being ineffectively used. As shown previously, the more extreme cases of poor
FGMM component utilization can result in a reduction in the effective number of FGMM
components. Such a “hidden” reduction confounds the user’s task of selecting an appropriate
number of components and increases the variability of the accuracy of the FGMMs formed for a

population.

Labeling of PD image by FGMM component membership
reveals poor component allocation
Figure 6.53

Chapter 7 summarizes and concludes this work.
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Chapter 7

Conclusions, Summaries, and Future Work

As stated at the beginning of Chapter 1, most scientists encounter problems which
involve statistical analysis. = What populations are present in my data? How do these
populations differ? Have I collected enough data? From which population did this sample
originate? In statistical analysis, samples are used to form models of their source populations.
This dissertation introduced a novel method for consistently and accurately forming models of
data distributions. Questions such as those above are answered using measurements derived
from such models.

Specifically, this dissertation presented a novel mechanism, Gaussian goodness-of-fit
cores, for creating continuous Gaussian mixture models of generalized projective Gaussian
distributions. In Monte Carlo studies against competing techniques, i.e., K-means and finite
Gaussian mixture modeling, the proposed method is more automated, more accurate, and as
consistent when representing generalized projective Gaussian distributions.

Generalized projective Gaussian distributions arise in a wide range of application areas.
For example, although the intensity distribution of tissues within small regions of a magnetic
resonance image (MRI) are Gaussian, smooth transforms must be applied to the parameters 4 and
¢ of these Gaussians to represent the same tissues in neighboring regions of that MRI. Therefore,
to represent a tissue’s intensities throughout an MRI, a generalized projective Gaussian must be
modeled. Other researchers have shown that in controlled situations Gaussians can be used to
represent features of a person’s speech or handwriting, but smooth transforms must be applied to
the parameters of those Gaussians to represent the same features when the data was acquired in
different situations. That is, to represent features of speech and handwriting from multiple

people in multiple situations, extruded Gaussians must be defined.

Finite Gaussian mixture models (FGMMs) are often used to model generalized projective
Gaussian distributions. = FGMMs use the weighted linear combination of multiple Gaussian
component distributions to represent complex distributions. FGMMs are usually developed via
maximum likelihood expectation maximization (MLEM). The user must select an appropriate
number of components to be used by each FGMM, and that selection process is aggravated by the
fact that MLEM has multiple, non-optimal local maxima. These maxima produce different
models given different samples from the same distribution, and these maxima can result in the
poor utilization of one or more components in a FGMM. The different models will provide
different levels of accuracy, and this inconsistent accuracy is attenuated by poor component
utilization in which the effective number of components is actually lower than the user specified
number of components. The prevalence of non-optimal MLEM local maxima is expected to

rapidly increase as the number of features or the number of components is increased.
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GGoF cores represent continuous Gaussian distributions by tracking the continuum of
means of those distributions and estimating the local variance of the distribution normal to that
track. CGMMs formed from GGoF cores do not require the specification of a hyperparameter,
e.g., the number of components of a FGMM. Monte Carlo simulations demonstrate that the
accuracy and consistency of a CGMM improve asymptotically as the number of GGoF cores used
to define the CGMM is increased and that CGMM provide better accuracy and consistency than
FGMM for generalized projective Gaussian distributions. The application of CGMM s to real data
is shown via the classification of gray and white matter in an inhomogeneous MRL. CGMMs are

expected to scale well as the number of features increases.

Summary of Specific Results and Contributions

The first set of tests used Monte Carlo analysis to quantify the accuracy and consistency
of competing classification methods for generalized projective Gaussian distributions.  The
Monte Carlo simulations involved two related classification problems having generalized
projective Gaussian distributions. The average true positive and false positive rates were used to
quantify the accuracy of the methods. The Monte Carlo one-sigma ranges of those rates were
used to quantify the consistency of the methods. Linear, Gaussian, K nearest neighbor, Parzen
windowing, multilayered perceptrons, K-means, and finite Gaussian mixture modeling were
tested. Numerous expected relations between the performance of these classifiers were upheld
in the experiments. The consistency of FGMM, however, was shown to degrade as the number
of its components was increased. It is surmised that local maxima of the FGMM'’s parameter
selection process, MLEM, was the source of the degraded performance. Also, the visualization of
the labels of feature space provided by FGMM often illustrated the poor utilization of its
components. A result of the poor utilization is a reduction in the effective number of components
being used by the FGMM. This confounds the user’s task of selecting an appropriate number of
components.

With the goal of developing an accurate and consistent CGMMs, the accuracy and
consistency of each of the key technologies of the CGMM development process, i.e., medialness
cores and goodness-of-fit functions, were analyzed.

The accuracy and consistency of medialness cores have been detailed in other
publications. In general, medialness cores do not vary significantly given a wide variety of image
and object noise. As a result, medialness cores have been successfully used for registration as
well as object recognition. The consistency and accuracy of medialness cores comes from their
use of medialness functions to integrate information transverse to the core. =~ Medialness

functions, however, do not consider absolute image intensities. When applying core techniques
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to the representation of distributions, intensity corresponds to sample density and therefore is
critica.  Goodness-of-fit functions were investigated as an alternative technology for core
generation.

The accuracy and consistency of a variety of goodness-of-fit functions were quantified
using Monte Carlo simulations. In particular, this work sought to identify the accuracy and
consistency with which the parameters producing a local maxima of a Gaussian goodness-of-fit
function corresponded to a sampled Gaussian’s actual parameters. A variety of sample set sizes,
GGoF functions, and binning techniques were considered. The Monte Carlo simulations
determined that the binning technique used to present the data to the GGoF function had the
most influence on the accuracy and consistency of the GGoF’s maxima. The log likelihood ratio
function using overlapped-equiprobable binning provided the most accurate and consistent
GGoF maxima.

Using this GGoF function and combining the core extraction techniques of Fritsch, Yoo,
and Eberly, a core traversal technique, tuned for generating CGMMSs, was defined. In particular,
it was demonstrated that the eigenvectors of the local data’s covariance matrix can be used to
approximate the tangents and normals of the core; derivative information is therefore not needed
to traverse the core. The associated eigenvalues can also be used to specify the expected variance
in each of the core normal directions. Using this information, a one dimensional GGoF core can
accurately model a continuous Gaussian distribution having an elliptical cross-section.
Additionally, GGoF core termination based solely on its GGoF values was demonstrated to be
effective.

The resulting GGoF cores provide core point conditional sample probabilities. ~Core
point a priori probabilities are provided by estimates of the local training sample density.
Together these constructs define a CGMM.

The accuracy and consistency of CGMM was demonstrated using four experiments.

1) The TPR/FPR of CGMM on one run of the Monte Carlo simulation used
to evaluate the accuracy and consistency of the competing classifiers was
measured.

2) A revised Monte Carlo simulation involving a simplified version of the
original Monte Carlo study was performed.

3) A nonparametric ROC analysis of one run of the revised Monte Carlo
experiment was conducted.

4) A parametric ROC analysis using the average TPR/FPR from the revised
Monte Carlo experiment was made.

Every experiment supported the following conclusions
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D

2)

3)

CGMM provides asymptotic better accuracy and consistency given
additional GGoF cores. FGMM may not provide asymptotic accuracy or
consistency given additional components.

CGMM provides equivalent consistency to FGMM for those problems for
which FGMM provided asymptotically better consistency.

CGMM provided better TPRs for low FPRs than FGMM

Some of the experiments demonstrated that CGMMSs can provide significantly better

TPRs for low FPRs. The ROC analysis using the revised Monte Carlo averages indicated that

CGMM may provide better accuracy with respect to the area under the ROC curve and the max

probability of providing a correct answer, and CGMM may provide better TPRs for any FPR

value.

Limitations of CGMMs via GGoF Cores

The use of CGMMs via GGoF cores, however, is not appropriate for ever statistical

analysis problem. Four characteristics of such problems are:

D

2)

3)

4)

If a more specific distribution assumption can be made, the
corresponding distribution model will provide better accuracy and
consistency.

If the parameter transformations which produced the continuum of
Gaussians are well understood and easily measured, then a simple, more
accurate, and more consistent Gaussian model may result from the
application of the inverse of those transformations.

If model development time or the time to label a new sample are
important, CGMM via GGoF cores may not be viable.

If only labeling of the data and neither its summarization nor the analysis
of its model is important, a variety of non-parameteric methods such as

Parzen Windowing are worthy of investigation.

Despite these constraints, however, numerous “hard” statistical pattern recognition

problems such as those involving medical images, speech, and handwriting, remain to be solved

by CGMM via GGOF cores.

Future Technical Advancements
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Four areas stand out as avenues for future technical work: discretizing GGoF cores for
FGMMSs with better accuracy and consistency, investigating of unbiased GGoF functions, and
transitioning lessons learned to medialness cores.

The models formed from the complete GGoF cores appear to be overly complex. This is
apparent in the white matter CGMM which exhibited a looping behavior (Figure 6.x). The
definition of FGMMs via GGOF cores requires the additional step of pruning the GGoF core
points.  This pruning will simplify the representation formed, can incorporate distribution
smoothness constraints, and should result in further improvements in accuracy and consistency.

Improvements in accuracy, computational requirements, and memory requirements may
come from the development of GGoF functions which provide unbiased evaluations at non-
integer points in GGoF space (Section 6.X).  Empirical distribution functions and Hermite
polynomial based GGoF functions may provide solutions [REF]. If successful, the associated
speedup and memory reduction would also facilitate the investigation of higher dimensional
cores and feature spaces.

Most of the novel GGoF core techniques can be transferred to medialness cores. Two
lessons learned are stated here. Firstly, the use of the local data’s covariance matrix to define the
core’s normals and tangents is applicable to many segmentation tasks involving high contrast
objects. For example, adaptive medialness functions using the local data’s covariance matrix may
aid in the extraction of vessels in magnetic resonance angiographic images of the brain or liver, or
in the traversal of airways in x-ray computed topographic images of the lung. Secondly, the use of
the eigenvalues of the local data’s covariance matrix to specify an adaptive medialness function’s
shape warrants investigation. The projection of the local image data onto the core normals prior
to medialness evaluation may also provide additional insensitivity to image and object noise.
The projection technique may also facilitate the application of medialness cores to higher-

dimensional images.

Going Beyond

The notion of CGMM via GGOF cores can also be extended in a variety of “grand” ways.
Seven of the most promising are
1) The techniques of ROC analysis and Hotelling trace can be redefined
with respect to the reduced assumption that the distributions are
generalized projective Gaussian.
2) The intrinsic dimensionality of a distribution can be explored in terms of

the dimensionality and extent of its GGoF core.
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3)

4)

5)

6)

7)

New methods for multidimensional scaling and data visualization can be
defined based on the projection of a set of samples onto their core.
Higher dimensional GGoF cores can be extracted. In this manner, a
broader range of problems can and should be attempted. In fact, the use
of GGoF cores of the same dimensionality as feature space eliminates the
continuous Gaussian distribution assumption; arbitrary distributions can
then be represented.

The GGoF core can be incorporated into a “whole” model classification
system. Whole model systems assign sample membership based on the
simultaneous consideration of every class present.

Without modification the methods presented can be used for clustering
unlabeled data instead of just for classification. Each non-overlapping
GGoF core will correspond to a unique cluster of data in feature space.
GGoF cores can also be used in the creation of a hybrid

supervised /unsupervised CGMM system. Such a system would be
based on recent work using deformable linked loci for warping a
medialness core based object model to an instance of that object. In the
same manner, for example, a GGoF core based CGMM that was
developed for representing one dialect of speech can be warped to

represent an alternate dialect.
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