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ABSTRACT

Rui M. R. de Bastos
SUPERPOSITION RENDERING: Increased Realism for Interactive Walkthroughs
(Under the direction of Dr. Frederick P. Brooks, Jr.)

The light transport eguation, conventionally known as the rendering equation in a dightly
different form, is an implicit integral equation, which represents the interactions of light with matter
and the distribution of light in a scene. This research describes a signals-and-systems approach to
light transport and casts the light transport equation in terms of convolution. Additionally, the light
transport problem islinearly decomposed into simpler problemswith simpler solutions, which are then
recombined to approximate the full solution. The central goal is to provide interactive photorealistic
rendering of virtual environments.

We show how the light transport problem can be cast in terms of signals-and-systems. The light
is the signal and the materials are the systems. The outgoing light from a light transfer at a surface
point is given by convolving the incoming light with the material’s impul se response (the material’s
BRDF/BTDF). Even though the theoretical approach is presented in directional -space, we present an
approximation in screen-space, which enables the exploitation of graphics hardware convolution for
approximating the light transport equation.

The convolution approach to light transport is not enough to fully solve the light transport
problem at interactive rates with current machines. We decompose the light transport problem into
simpler problems. The decomposition of the light transport problemisbased on distinct characteristics
of different parts of the problem: the ideally diffuse, the ideally specular, and the glossy transfers. A
technique for interactive rendering of each of these components is presented as well a technique for
superposing the independent components in a multipass manner in real time.

Given the extensive use of the superposition principle in this research, we name our approach
superposition rendering to distinguish it from other standard hardware-aided multipass rendering

approaches.
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CHAPTER 1

INTRODUCTION

Synthesis of realistic images has been a major focus of research in computer graphics. The goal is
to create a visual experience identical to that which an observer would have when looking at a real,
existent or nonexistent, environment. To provide such convincing simulation, the intricate geometry
and the physically complex lighting effects of the environment need to be reproduced—yphotorealism.
In addition, images need to be generated at interactiveframe-rates, so that the viewer can also perceive
smooth motion in the scene—motion realism. The combination of photorealism and motion realism

we call realism (Figure 1.1).
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Figure 1.1: Mode-driven gpproach to redlistic rendering—besides the model, five additional
elements are fundamental for readlistic image synthesis: a simulation of global light transport in
the environment, sampling strategies for creating a view-independent globally-illuminated mode,
reconstruction techniques, alocal reflection model, and an interactive rendering engine.
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Image synthesis research spans a spectrum (Figure 1.2). At one extreme, images are rendered
for real-time viewing, no matter how unrealistic they look. At the other extreme, algorithms compute
accurate images, no matter how long it takes to compute them. We want to combine advantages of

thesetwo and produce, at interactive rates, images that look right. The requirement for image accuracy



implies simulating light transport in the scenes, whereas the real -time requirement demands expl oiting

graphics hardware to improve image synthesis performance.
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Figure 1.2: Image synthesis spectrum.

The ability to generate photorealistic images at interactive rates has important applicationsin
virtual prototyping of building designs, automobile styling, and stage and set lighting design. For all
of these, the demands for greater photorealism and higher frame-rates are always increasing. Pushed
by this need for interactive synthesis of photorealistic images, graphics hardware systems implement
fast rendering capabilities. Current systemscan handle up to hundredsof thousandsof texture-mapped,
lighted, and anti-aliased triangles at interactive frame-rates.

The illumination models supported in hardware are not enough to provide the level of
photorealism demanded by the visual experience goal. The hardware approximates only simple
local-illumination models, whereas global-illumination models are necessary for simulating lighting
details observed in nature such as shadows, reflections, translucency, refraction, color bleeding,
diffraction, etc.

Local or direct illumination refers to the distribution of reflected light as a function of
incoming energy directly from light sources without considering occlusion by objects aong the light
path. Local here defines surface illumination to depend only on the surface material properties
and the characteristics of the light sources. There is no notion of the environment as a whole
(Figure 1.3 (left)—notice that local illumination does not take into account occlusion of the table

between the light source and the point on the floor).



Figure 1.3: Light transfers to compute local-illumination (left) and global-illumination (right) at a
point on the floor.

Glaobal or indirect illumination takes into account the entire environment when computing
illumination for each surface point. For example, shadows depend on determining occlusion between
light sources and surface regions; reflectionsand color bleeding depend on the multipleinterreflections
of light, each weighted by the corresponding material properties (Figure 1.3 (right)). Inreality, surfaces
receive light both directly from light sources and indirectly from interreflections and transmissions
of the environment. Global illumination can clearly produce more accurate approximations of
photorealistic images than can the local-illumination models.

Both local- and global-illumination model s approximate, to some extent, a steady-state solution
of thelight transport equation—an integral equation that describes the total light L , leaving a surface

point x inagiven directionw’,:
Lo(x,w,) = Le(x,uw)) +/ Joa (%, W05, &) Li(x,w;) cos 0; d; (1.1
Q

where L. representsthelight directly emitted by pointx indirection’, and theintegral term represents
thelightindirectly transferred through point x into direction .. Theindirect term integratesincoming
light L; from all possible directions in the sphere 2 around the point in question x, weighted by the
corresponding directional reflectance/transmittance properties of the surface materia f4. The key

challengesin solving the light transport equation are:

¢ theintegration of incoming light over the entire directional domain—the sphere of directions—

centered at each visible point in a scene and

¢ the recursiveness of the problem implied by the implicit form of the equation—the incoming
light Z; with respect to the point in question is per se the recursive application of the same

equation at the pointsin the scene where I; originates.



Note how naively local illumination tries to approximate the light transport equation by considering
that light reaches a point originating only from light sources in the scene—there is no notion of
environment and there is no notion of interreflections (recursion) either. In the smplest, and quite
common, approximation, the global term of thelight transport equation is approximated with a constant

additive value that tries to model the ambient light in a scene [Foley90].

There exist approaches for approximating the light transport equation accurately. Glassner
[Glassner9s] discusses several methods for solving integral equations such as the light transport
equation. The methods range from symbolic solutions to numerical and Monte Carlo integration.
However, those methods cannot be evaluated by software fast enough to satisfy the rea-time
requirement. Moreover, none of them is simple enough to justify implementing in hardware, which

would approach real-time performance.

Genera global-illumination research in Monte Carlo ray tracing [Veach98, Lafortune96,
Jensen96, Ward94] properly accounts for all the components of illumination. Most such research
focuses on an image-driven approach—the creation of a single accurate image in a reasonable amount
of time(ranging from secondsto hoursof processingtimeonasingle190 MHz MIPS R10000 processor
[Veach98]). Emphasisis placed on high quality, measurable accuracy, and numerical robustnessof the
method. The computational time for obtaining reasonably converged global-illumination for asingle
image with such techniques prohibits interactivity. Recently, there has been some interest in using
ray-tracing algorithms in multiprocessor machines [Parker99, Parker98]. The approaches exploit,
in a“brute-force” manner, conventional, and expensive, shared-memory multiprocessor machines to
produce interactive ray-traced images for low complexity models by using dozens of processors—a
model of 75, 000 polygonsand a splineteapot renders at 4 frames per second for images of 512 x 512
pixels on 60 processors of an SGI7™ Origin 2000 workstation [Parker99]. Ray tracing could benefit
from custom hardware. However, even after more than twenty years of ray-tracing research, custom

graphics hardware compatible with such techniques does not yet seem on the horizon.

Alternatively, standard hardware-aided multipass rendering [Diefenbach96, McReynolds98]
uses features of most current inexpensive graphics hardware to approximate global illumination by
computing at each frame (view pose) the multiple lighting effects observable in nature. This type
of approach requires rendering the entire scene multiple times per frame, i.e., handling the entire
complexity of the scene several times per frame. For realistic model complexities, thiscannot now be

done at interactive frame rates—computational time isin the order of seconds for scenes with tens of



thousands of triangles on SGI M RealityEngine workstations [ Diefenbach96]. The scenes have to be
rendered multiple times, which easily overwhelms even the best graphics architecture. For example,
mirror reflections on planar surfaces are computed by mirroring the view pose with respect to each
planar reflector and rendering the scene from each reflected view pose. Glossy reflections are handled
with ajitter-and-average approach; the reflected view poseisjittered several timeswith respect to each
reflector and theresulting rendered mirror reflections are accumul ated and averaged to produce a gl ossy
looking reflection. View-independent lighting and shadows are also approximated with additional
passes over the entire scene database.

Neither Monte Carlo ray tracing nor standard hardware-aided multipass rendering can yet
provide interactive rendering of photoredlistic images for reasonably complex models. Visibility
computation and mathematical integration of incoming light is the bottleneck. Ray tracing
computes visibility by evaluating the intersection of pixel rays with primitivesin the scene, whereas
hardware-aided multipass rendering uses a depth buffer to perform the primitive sorting aong
pixel directions. In terms of mathematical integration of incoming light, ray tracing integrates by
summing contributionsfrom several reflected/refracted raysin asolid angle (Figure 1.4(left)), whereas
hardware-ai ded multipassrendering integrates by summing jittered contributionsthat map to the same

pixel in an image (Figure 1.4(right)).

Figure 1.4: Monte Carlo ray-tracing (left) and jitter-and-average (right) for a glossy light tranfer at a
point on afloor. Noticethedistributionof normalsat the point in question on the floor that producesthe
distributionof reflected raysfor Monte Carlo ray tracing and thejittered reflected cameras for multipass
rendering.

Let's consider the data access patterns of standard hardware-aided multipass rendering and of
standard Monte Carlo ray tracing (see Figure 1.4). Multipass rendering has better data locality than

ray tracing. In multipass rendering, the whole scene is sequentially rendered several times per frame



depending on the number of rendering passes required by the multipass approach. In Monte Carlo ray
tracing, a spatial search over the scene to determine the first visible primitive has to be done for each
pixel per frame. The number of traversals of the data set (scene) ispotentially smaller for the multipass
approach than it is for the ray-tracing approach, since there are more pixels on the screen than passes

in the multipass approach.

Consider also how the two approaches traverse the data set. Multipass rendering is an
object-order method, whereas Monte Carlo ray tracing is an image-order approach. The atomic
primitive in hardware-aided multipass rendering is a polygon, whereas in ray tracing the atomic
primitive is aray. The multipass rendering approach accesses a single independent polygon for an
atomic operation (very local information), whereas the ray-tracer has, potentially, to access the entire
scenefor each atomic operation (very global information). Potentially, amachine performing an atomic

operation in ray tracing has to access more data than in multipass rendering.

In summary, the visibility and the integration techniques of Monte Carlo ray tracing and
multipass rendering imply distinct memory access patterns and distinct computational times. In order
to provide more interactive frame rates, our method, besides exploiting the graphics hardware, also

improves on handling visibility information and on mathematical integration.

We present a mathematical framework for solving the light transport equation by using
hemispherical convolution. To make the solution of the light transport equation practical, we aso
present a linear decomposition of the light transport equation, methods for approximating each of
the components, and techniques for their recombination. These methods exploit linear superposition,
gpatial coherence, and spatial locality of the data. Computers are good at performing linear operations
and this dissertation exploits the linear superposition principle at two distinct levels. At the highest
level, the full light transport problem is broken down into smaller problems with simpler solutions,
which are then recombined (by superposition) to approximate the full solution. The light transport
equation is linearly decomposed based on the nature of the light transport problem and on the linear
operators availablein current graphics hardware. From that division of the problem we precompute as
much as possible of the light transport components and recombine them at rendering time to achieve
interactivity. This approach alows exploiting current graphics hardware in a runtime, multipass
manner for the recombination of the linearly independent components. At a lower level, one of
the components, namely the glossy component, exploits hardware-assisted convolution to provide

image-space integration of pixel neighborhoods. Both the decomposition and the runtime rendering



exploit coherence in reflected/transmitted space to reduce visibility computations for glossy light
transfers.

This approach is much faster than standard hardware-aided multipass rendering because of

1. thereduction of datato berendered per frame (fewer number of rendering passes over thewhole
model database) due to precomputation of view-independent quantities, which are computed at
runtime for standard multipass rendering—ideally diffuse transfers, shadows, and visibility for

non-diffuse reflections;

2. visibility assumptions, because we assume that visibility for glossy reflections is captured with

asingle mirror-like reflection, instead of requiring multiple jittered images; and

3. per pixel hardware-aided mathematical integration through image-space convol ution, instead of

independent weighting and accumulating for each jittered image.

Since substantial preprocessing is involved, our full approach for approximating the light transport
equation applies only to static scenes—only the viewer is allowed to move; light sources and
objects remain static—even though, parts of the method are applicable to dynamic scenes. The
proposed methods are also simple enough for hardware implementation and, if so implemented, will
make per-pixel approximations of the light transport equation rapid for arbitrary models in arbitrary

representations.

1.1 Overview of Our Signals-and-Systems Approach to Rendering

Thissection summarizesthe approach devel opedin thisdissertation for achievinginteractiverendering
of photorealistic images. We start by discussing light transfers related to a single point in an
environment. Then we move on to the combination of light transfers to form a light path, and
then on to the full global illumination problem. The illumination problem is treated in terms of
sighals-and-systems. The concepts of signal, system, impul se response, and convol ution are necessary
for understanding this discussion. The reader unfamiliar with these concepts is referred to the brief
overview in Chapter 2 or to [Oppenheim96].

The full light transport or global-illumination problem is described by the light transport
Equation (1.1). The outgoing light from a point in a scene is the sum of a local term and a

global term. The local term represents the light emitted by the point in question. The global



term describes the integration of al the light reaching the point in question from somewhere else
in the scene, and being transferred back into the environment through reflection or transmission
a the point in question, weighted by the corresponding material properties. The bidirectional
reflectance/transmittance distribution functions (BRDF/BTDF) represent how the behavior of light
transfers depends on material properties. Light transfers such as emission, reflection, and transmission
exhibit a variety of behaviors. Diffuse transfers correspond to an equal scattering of light in all
directions. Specular transfersscatter incoming directional lightin anarrow band of reflected directions
(ideal specularity means that thereisonly one direction in which outgoing light may go). Non-ideal or
glossy transfers describe the continuum between ideally diffuse and ideally specular transfers. Glossy
transfers have a directional bias but are neither restricted to a single outgoing direction nor effect an
equal scattering to the whole outgoing hemisphere.

A light transport path starts at a light source and ends at a sensor. The sensor is usudly a
viewer. We abstract away the light creation process and the perceptual process produced by light. We
consider only what happens with light in-between, i.e., from the time light leaves the emitter until it
reaches the viewer’s eye. A light path starts at a point on the surface of alight source and leavesin a
particular direction. Assumethat the environment iscomposed by mediaof uniform material separated
by surface interfaces. Thelight leaving a point on asourcein agiven directiontravelsrectilinearly and
undiminished until it reaches another point on the surface of a light receiver. At that interface, three

phenomena can occur as aresponse of the system to incoming light:
o thelight can be absorbed without a resulting signal in the same space, i.e, no outgoing light;

¢ thelight can be reflected back into the original medium producing a modified signal—lightin a

new direction;

¢ or thelight can be transmitted into the new medium producing amodified signal—lightin anew

medium and in anew direction.

In terms of signals-and-systems, theincoming light isthe input signal, thereceiver point isthe system,
and the outgoing light is the output signal. The function describing the behavior of the outgoing light

isthe point spread function!—the impul se response—of the system. Note the relative difference of the

In optical terms, a point spread function is the image produced by a point light source through an optical system. In
our approach, the point spread function describesthe spread of light from asingle ray of light incident on apoint at agiven
orientation, i.e., the usua bidirectional reflectance/transmittance distribution function of materials—the ratio of outgoing to

incoming light in the directional space around the point in question.



incoming and outgoing terms with respect to receiving and emitting surface points; the outgoing light
from an emitter corresponds to the incoming light of areceiver.

From signal processing theory, the output of a system is given by the convolution of the input
signal with the system’simpul se response. From our analogy of thelight transfer problem with signals
and systems, this implies that the outgoing light from a light transfer is the result of convolving
the incoming light with the material BRDF/BTDF at the point in question. Formally, compare the
convolution equation

+oo
gle) = F@) ko) = [ Fw) ke - w) du. (12)
with the second term of the light transport Equation (1.1). Both integrate the product of two functions.
This suggests that the light transport equation can be expressed in a simpler form using convol ution:

Lo(%,65,) = Le(x,5,) + Li(x, &) % K (x, 57, &) (1.3)

where K(x,w;,,w;) is the convolution kernel derived from material bidirectiona distribution
functions, as will be discussed in Chapter 4.

Thereisanecessary mental shift for understanding thisnew representation for thelight transport
equation in terms of convolution. The reader should note that a convolution kernel is a function
defined in the same space asiits corresponding signal. Instead of defining convolutionin thetraditional
rectilinear space with an infinite range, as in Equation (1.2), the light transfer problem is carried out
in a directional space around the point of interest. Both the signal and the kernel are defined in this
directional spacein terms of directions (or angles, in spherical coordinates).

The global-illumination problem also involves the recursive application of the light transport
equation. The illumination at a point on a surface is determined by taking into account al the light
received from therest of the environment into that point; however, pointson therest of the environment
also depend on the application of the same equation. A recursive algorithm is necessary to solve the
full light transport problem. A single application of the light transport Equation (1.3) represents alight
transfer at a point x, whereas multiple recursive applications correspond to light paths.

Theoretically, casting the light transport equation in terms of convolution does not represent
a considerable advantage over its traditional integral form. However, in practice, convolution is
readily available in some graphics architectures, which represents an opportunity for hardware-aided
evaluation of the light transport equation. In addition, we do not want to apply the convol ution-based
approach for al the types of light transfers. Ideally specular transfers do not need convolution



a all, since the corresponding convolution kernel would be a delta function in directional space.
Also, the idedly diffuse transfers can be precomputed using the well-known radiosity method.
We propose the application of the convolution approach for glossy transfers, which are in general
hard to simulate with other approaches. Moreover, our convolution-based approach assumes that
visibility for glossy reflections is captured with a single mirror-like reflection on the glossy surface,
which dramatically reduces visibility evaluation—reduces the number of rendering passes to one if
compared tothe many passesof standard hardware-aided multipassrendering for approximating glossy
reflections. Additionally, mathematical integration of lightisperformed per pixel by usingimage-space
convolution, instead of weighting and accumulating several rendering passes of approximately the

same (jittered) scenein standard multipass rendering.

1.2 Thesis

This dissertation presents a multipass rendering method for the interactive approximation of global
illumination in static environments based on the linear decomposition of the light transport equation
and its runtime recombination through the use of current graphics hardware. Some of the underlying
components are precomputed based on view-independent quantities and on their suitability for
hardware processing. Briefly, we proposeto synthesi ze photorealisticimagesof diffuseand non-diffuse
static environments at interactive frame-rates with current graphics hardware.

The thesis of thisresearch is:

Glaobal illumination technigques can be used for interactive photorealistic wal kthroughs of
non-diffuse virtual environments. By linearly decomposing the light transport problem
and by exploiting graphics hardware, multipass rendering and image-space convolution
can provide interactive performance and natural appearance for walkthroughs of static,

globally illuminated, non-diffuse environments.

The synthesis of photorealistic images at interactive frame-rates demands the solution of four

main problems:

1. How can one use the decomposition of the light transport equation to achieve performance
improvements on the rendering of globally-illuminated scenes? Chapter 4 decomposesthe light
transport equation into linear componentsthat are suitable for preprocessing and for exploiting

current graphics hardware. Then, the succeeding chapters discuss each of the components.

10



2. How should one preprocess and represent the view-independent component of global illumina-
tion? Chapter 5 is devoted to the processing of radiosity data to represent view-independent

illumination efficiently and to render this component using the graphics hardware efficiently.

3. How canonerender ideally specular light transfersat interactiveframe-rates? Chapter 6 presents
an image-based alternative for computing mirror-like reflections. The approach extendsto ideal

transmission.

4. How can one render glossy reflections in real time? Chapter 7 exploits spatial coherence
in reflected images to approximate glossy reflections using hardware-aided image-space

convolution. The approach extends to translucency.

This dissertation focuses on interactive walkthroughs that account for view-independent and
view-dependent illumination. Going beyond previous global-illumination research, we emphasize
structuring the scene database to allow for fast rendering with view-dependent illumination at
interactive rates from arbitrary viewpoints. In addition to capturing purely specular view-dependent
effects, the approach in this dissertation properly captures the imperfect reflection scattering of glossy
surfaces. Dueto thelight scattering of glossy reflections, higher-order reflections often contributelittle
to the final scene's illumination. The approach in this dissertation is restricted to glossy, first-order,
planar reflections; however, the Future Work section discusses how to extend the techniques to
recursive reflections and to curved surfaces.

Given the extensive use of the superposition principle in this research, we name our approach
superposition rendering, to distinguish it from standard hardware-aided multipass rendering, which
also exploits superposition in a dightly different way. The main distinctions between standard

hardware-ai ded multipass rendering and superposition rendering are:

Hardware-aided multipass rendering Superposition rendering

Multipass shadows Single pass precomputed radiosity shadows
Multipass jitter-and-average glossy effect | Single pass and convolve

Phong local lighting Reflectance mapping on mirror reflections

Table 1.1: Feature comparison of haraware-aided multipass rendering and superposition rendering.

In summary, in terms of performance, the major advantage of superposition rendering is due to a
dramatic reduction in the number of rendering passes required per frame to approximate the light

transport equation. For example, whereas multipass rendering may typically take tens of passes on
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the entire scene to produce a glossy reflection, superposition rendering typically takes asingle pass on

the entire scene and a convolution pass in image space.

1.3 Results

We present superposition rendering—a hybrid geometry- and image-based multipass rendering

approach that offers the following:

e adecomposition of the global-illumination equationinto linear componentsthat exploitscurrent

graphics hardware for its efficient recombination,

¢ techniquesfor reconstruction of view-independent illuminationand itsresampling for storage as

textures with improved smoothness, exploiting current graphics hardware,

¢ a sampling-and-reconstruction scheme for preprocessing visibility information for non-diffuse

light transfers,

¢ theuse of convolution for approximating view-dependent solid angle light integration in glossy
reflections to simulate material properties (both object-space and image-space approaches are

presented), and

e a technique for approximating the view-dependent reflectance/transmittance kernel as a
view-independent convolution kernel texture (for integration purposes) and a view-dependent

reflectance texture (for directional modulation) for certain types of BRDFs.

Figure 1.5 sketches the flow of data in superposition rendering. The preprocessing phase
appears on the left and the runtime phase is on the right. A simple scene is used for illustrating the
method; the pyramid is made of glossy copper material, and the other objects are al made of idealy
diffuse materials. As part of the preprocessing, we compute a radiosity solution for the scene and
generate a set of images-with-depth for each non-diffuse reflector in the scene. Also as part of the
preprocessing phase, we compute a kernel texture and a reflectance sphere map for each non-diffuse
material. Then, at runtime, given a view pose, a subset of the images-with-depth is reprojected to
reconstruct the mirror-reflected image on each non-diffuse reflector. After the mirror-reflected image
has been computed, it is convolved with the BRDF-based kernel of the corresponding material. After
the reflected image is blurred, it is also view-dependently modulated. Finally, using the same view

pose, the view-independent component is rendered and added to the specular component already
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Material properties
COPPER
RGB = (0.25, 0.14, 0.09)

Figurel.5: Superpositionrendering of asimplescene. Thepyramidismade of glossy copper material.
All the other objects are ideally diffuse.
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in the frame-buffer. Both the multiplications and additions in the multipass rendering method are

implemented with blending functions available in current graphics hardware systems.

1.3.1 View-Independent Component

The view-independent component will be discussed in Chapter 5. We use the radiosity method for
precomputing and rendering the view-independent component of the light transport equation. The
radiosity method worksin two stages—asampling stage and areconstruction stage. The sampling stage
is performed offline as a preprocessing of the scene—the initial polygons representing the geometry
of the scene are adaptively subdivided and radiosity is computed at the vertices of the subdivided
primitives. Thereconstruction stageis performed at runtime by shading the polygonsof the scenewith

the corresponding radiosity information.

Traditionally, radiosity results are rendered using the dense adaptively subdivided meshes of
polygons with per-vertex radiosity. Clearly, this mesh-based rendering approach is transformation
bound—there are potentially more primitives to be geometrically transformed than the graphics
hardware can handle at interactive rates. Our approach, similarly to what other researchers did,
converts the densely tesselated meshes into textures and renders radiosity information by painting
the unsubdivided polygons of the scene with radiosity textures. This texture-based approach trades
performancefor texture memory. Theradiosity texturesare preloaded into texturememory and queried
for shading the unsubdivided polygons of the scene. Since current graphics architectures contain only
up to 64 megabytes of texture memory, in general, only afraction of the subdivided polygonsin ascene

is converted to textures—the polygonswith higher subdivision rates.

Since the standard polygon shading technique in hardware is bilinear interpolation for both the
per-vertex scheme and the texture-based scheme, the final images may present artifacts due to slope
discontinuities of the shading across the edges between adjacent polygons. We have experimented
with higher-order filtering schemes both asruntimefiltering and as prefiltering techniques. Theruntime
filtering technigue provides smoother results without requiring any modification of the radiosity data,
but demands using a slower and non-standard bicubic texture-filtering mode. The prefiltering scheme
also provides smaoother results by prefiltering the radiosity data and by using the standard (and faster)

bilinear texture-filtering mode.
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In terms of the graphics hardware, the rendering of the view-independent component benefits
from standard polygon rendering, from regular texture mapping and filtering, and from texture memory

size and access time.

1.3.2 The Non-Scattered Transfers

The non-scattered transfers of light will be discussed in Chapter 6. We discuss both a geometry-based
approach and an image-based approach for rendering mirror-reflected images on planar surfaces. The
geometry-based approach re-renders the entire scene for each mirror-reflected view pose. Theimage-
based approach precomputesimages-with-depth for aset of mirror-reflected view poseswith respect to
each planar mirror inthe scene and selects, at runtime, theimage or set of imagesthat best approximate
the current mirror-reflected view pose. Both the geometry-based and the image-based approaches can
be used for computing mirror-reflected images in superposition rendering.

The geometry-based approach does not introduce any artifact on the mirror-reflected images,
whereas the image-based approach introduces disocclusion artifacts and noise due to the presampling
and reconstruction stages. However, theimage-based approach is potentially faster than the geometry-
based approach, since the image-based approach does not have to re-render the entire scene for each
mirror-reflected image. Both the geometry-based and image-based approaches use the stencil buffer to
restrict the rendering of mirror-reflected images to the projected areas of the reflective surface on the
screen [McReynolds9g].

Interms of the graphi cshardware, the rendering of the view-dependent non-scattered component
benefits from standard polygon and point rendering and pushes the geometrical transformation

capabilities of the hardware.

1.3.3 The Directionally-Dependent Non-Scattered Transfers

The directionally-dependent non-scattered transfers will be discussed in Chapter 6. Most polished
materials exhibit higher reflectance values at grazing angles than at normal incidence and may aso
filter the color of reflected light in a directionally dependent manner—mirror-like materials. These
directional-dependent reflectance variation and color filtering effects are approximated by processing
amirror-reflected image computed on the reflective surface.

Initially, a mirror-reflected image is computed as described in the previous section for the

screen region where the reflective surface projects. Then, the reflective surface is rendered using a
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multiplicative blending function for modulating the reflected image. Constant color modulation of
the reflected image is achieved by using a constant color or texture mapping of the reflective surface.
Directionally dependent reflectance is produced by using view-dependent texture mapping such as
sphere mapping. The sphere maps representing the directional -dependent reflectance are precomputed
and attached to the reflective surfaces.

In terms of the graphics hardware, the rendering of directionally-dependent non-scattered
reflections depends on the same parts of the graphics hardware as the rendering of non-scattered

reflections, but al so depends on view-dependent texture mapping (e.g. sphere mapping).

1.3.4 The Scattered Transfers

The scattered transfers of light will be discussed in Chapter 7. We present both an object-space
convolution approach and an image-space convolution approach. The image-space approach is also
splitinto aspatially invariant convol utionapproach and aspatially variant convolutionapproach. From
the three approaches presented, only the image-space spatially invariant convolution approach can
efficiently benefit from graphics hardware to provide glossy reflections at interactive rates.

The image-space spatially invariant convolution approach to glossy reflections starts by
computing amirror-reflected image on the planar surface, which isthen blurred and view-dependently
modulated as described in the previous sections. Both the convolution kernel and the view-dependent
modul ation factors are derived from the BRDF of the glossy material.

In terms of the graphics hardware, the rendering of scattered reflections benefits from an
implementation of image-space convolution and from view-dependent texture mapping (sphere

mapping). The image-convolution technique pushes the screen fill capabilitiesof the hardware.

1.4 Imagesand Numbers

Figures 1.6 to 1.8 show the results of superposition rendering for a room of a six-room house model
with 140, 000 polygonsand five planar glossy reflectors. We analyzed the performance of superposition
rendering with that house model. Images were rendered at 720 x 486 pixels and performance
data were collected by playing a pre-recorded path (944 frames) through the house and using two
images-with-depth per hemisphere for each glossy reflector in the scene. Performance was measured
with superposition rendering on an SGI 7™ Onyx2 workstation using a single 250 MHz R10000

processor and asinglelnfiniteReality2 graphics pipewithfour raster managers. Theaverage frame-rate
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for that model ranged from 30 fpsto 8 fps by varying the number of glossy reflectors in the scene from

zero to five (see Chapter 6 for more detailed results).

Figure 1.6: Superposition rendering using geometry-based reflections.

Figure 1.7: Superposition rendering using image-based reflections (two images-with-depth per
hemisphere for each reflector).

We have also analyzed the performance of the individual operations involved in our runtime
rendering. We ran a series of tests on the house model using our superposition rendering and selecting
two images-with-depth for each hemisphere in the image-based reflections. Allowing the number of
reflectorsto vary, wefound that time spent rendering the view-independent component of the scenewas
invariant with respect to the number of reflectors. We aso found that the convolution and modulation
operations combined for no more than 3% of the total rendering time. This suggests that the two
operations do not dominate in the evaluation of our shading equation. It is important to note that
the convolution operation is a screen-space operation; consequently, the cost is dependent on the

screen-space projected area of each reflector and not on scene compl exity.
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Figure 1.8: Superposition rendering using image-based reflections (two images-with-depth per
hemisphere for each reflector) and illustrating the view-dependent variation of glossy reflections
magnitude with orientation of glossy surfaces with respect to the viewer. Compare the magnitude of
the glossy reflections on the floor in this figure and in the previous figure.

In al these test runs with the house model, the image-based approach outperformed the
geometry-based one, but this performance was not free. The image-based approach incurs additional
memory overhead. The house model required 50 megabytes of storage of which 20% was for
geometry-related data and 80% was for images-with-depth.

Figures 1.6 and 1.7 compare image quality of geometry-based reflections with our image-based
approach. Theimage-based approach exhibitsloss of detail and artifactsin some regionsof theimage.
Thisisunfortunatefor mirror-likereflections, but reasonablefor glossy reflections. The primary causes
for these artifacts are due to disocclusions and to noise introduced by the point-based reconstruction

used by the image-based reflections.

Our BRDF decomposition into a view-independent convolution kernel and a view-dependent
modulation for simulating glossy surfaces convincingly approximates the view dependent reflectance
for glossy surfaces. Figures 1.7 and 1.8 show the results on the music room of the house model. Inthe
first figuretheview-directionisparallel to thefloor and the piano top, whilein thesecond onetheviewer
islooking down. Notice the increase in specular reflectance at grazing angles and the appropriately

decreasing view-dependent component at higher angles.

Clearly, the blur obtained with convolution approximates the roughness of the surface at small
neighborhoods. Unfortunately, the spatially invariant convolution approach assumes that reflected
points are at a constant distance from the glossy reflector. A more accurate implementation performs
gpatially variant convolution based on depth of reflected points—points closer to the reflector get
less blurred than points farther away. Chapter 7 describes a software implementation of spatially
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variant convolution, which produces more photorealistic results than the spatially invariant illustrated
in Figure 1.5 (see Figure 1.9—notice that points on the scene closer to the glossy surface are
sharper than points farther away only for the spatially variant approach). However, such software
implementation is not integrated into our multipass approach because of its low performance. We
hope that next-generation graphics hardware will implement spatially variant convolution and allow

the synthesis of images even more photorealistic using our multipass approach.

Figure 1.9: Spatially invariant convolution (left) and spatially variant convolution (right) to
approximate glossy reflection on planar surface.

The sphere mapping-based technique for approximating directional reflectanceisvery effective.
Besides providing a good approximation of directional reflectance, sphere mapping is available in
graphics hardware from SGI”™ | which makes it a fast operation. However, sphere mapping suffers
from both inherent and implementation problems. First, the mapping from viewing directionsto texel
coordinates in a sphere map is non-linear, which implies that directional resolution is not constant in
the map. Secondly, as any other texture mapping technique, each vertex of atriangle or quadrilateral
(primitive) is mapped onto a texture by computing texture coordinates. The edges of a primitive are
mapped to straight lines connecting adjacent vertices of the primitivein texture space. Thismapping of
edges of the primitiveto straight linesin the texture map isvalid for rectangular textures, but incorrect
for sphere maps—edges of a primitive should map to arcs in sphere mapping. Thirdly, connected
vertices in a texture map are usualy linearly interpolated for filling in the corresponding primitive.
However, given the non-linearity of the mapping function, bilinear interpolation is not the appropriate
interpolation for sphere mapping. Fourthly, related to the two previous problems, filtering is usually
performed with a square filter in a rectangular texture. Sphere mapping should use a wedge-shaped
filter defined in terms of the radius and theta coordinates of sphere mapping, instead. Additionally,
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current implementations of sphere mapping in the hardware do not perform the expected wrapping
of the sphere map texture. Consider a triangle seen at a grazing situation. The three vertices map
to the outer region of a sphere map and the filled triangle should get texels only from the outer
(grazing) region of the sphere map. However, the current implementation crosses the sphere map
and may incorrectly provide texels that go through the non-grazing region. Finaly, our particular
use of sphere mapping technique for directional reflectance stresses the non-linearity problem of the
technique. Our application requires high resolution on a region (outer ring) of sphere maps where
the sphere-mapping technique offers low resolution. Though we reduced this problem by uniformly
increasing the resolution of the whole map, a better solution would be to flip the sphere-mapping
indexing scheme in the hardware. Grazing angles would index texelsin the center of the sphere map,

where there is higher resolution than in the ring.
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CHAPTER 2

SIGNAL PROCESSING

The field of signal processing studies signals and systems, and their interaction. Signals and systems
arise in severa contextsand fields. A signal describes a phenomenon, whereas a system responds to
an input signal to produce an output signal. For example, currents and voltages as a function of time
in electrical circuits represent signals, whereas the circuits themselves represent systems. As another
example, light representsasignal; and a photographic camera producing a projected image isa system.
Digital images are also signals; and image-processing programs producing new images are systems.
Thefield of signal processing defines a powerful mathematical framework for describing and analyzing
signals and systems [Oppenheim96]. In this chapter, parts of this framework are presented. The
intention is not to cover the whole signal-processing field, but to limit our description to the concepts

relevant to understanding the topics devel oped in this dissertation.

Signal processing theory has been widely applied in computer graphics[Glassner95], [Watt92],
[Wolberg92], [Foley90]. In general, the application has been related to aliasing artifacts and
anti-aliasing techniquesin digital images. Aliasing artifactsin discrete signalsrefer to high-frequency
content being aliased to low-frequency information on the signals. In computer graphics, the digital
images are multidimensional signals; and anti-aliasing techniques are the systems. Besides using this
general application of signal processing theory to computer graphics, this dissertation introduces a
new approach to solving the radiance equation—an integral equation—based on signal processing

principles.



2.1 Signalsand Systems

Both signals and systems can be defined in continuous domains and in discrete domains. Most of the
basic signal and system properties and insights apply in both domains. A distinction will be made

between the two whenever necessary.

211 Signals

Signals are represented mathematically as functions of one or more independent variables. For
example, currentsand voltagesin electrical circuitsare represented asfunctionsof onedimension, time;
pixel intensitiesin digital images are defined as functions of two dimensions, the spatial coordinates of
the pixels. The independent variables thus depend on the context of the signals; they may represent
time, space, or any other dimension where the signal is defined. However, signals of the same
dimensionality have similar treatment with signal processing tools. For example, signals defined in
atwo-dimensional Euclidean space (f(«, y)) obey the same signal processing rules of asignal defined
in two-dimensional polar coordinates(f(r, #)). Thekey element isthe dimensionality of the space and
not its shape. Also, both the independent and the dependent variables of asignal can be continuousor
discrete. Inthiswork, it isassumed that the state of the independent variable impliesthe same state on
the dependent variable, i.e.; acontinuousindependent variableimpliesa continuousdependent variable
and a discrete independent variable implies a discrete dependent variable. Thus, continuous signals
are defined for a continuum of values of each of the independent and the dependent variables, whereas
discrete signal sare defined only for discrete sets of values of each of theindependent and the dependent

variables.

2111 Impulsesignal

An especially important signal is the impulse function, known also as the Dirac delta function. The
impulsefunctionisan infinitely narrow spike of infinite height whose areaintegratesto unity. Itiszero
everywhere but at zero on the domain, where it has an infinite value. Mathematically, the Dirac delta

functionis given by

§(z) =0, ifz #0

+o0
/ §(z) de = 1. (2.1



Note that the nonzero point of the delta function can be moved by a shift operation. For example,
§(x —x0) =0, if x #£ a0 (2.2

is zero everywhere but at z¢.

The delta function has an interesting inspection or sifting property:

+00
Fle) = /_OO F2) 6(x — ¢) da 2.3)

which isolates a single point on a curve. It represents the sampling of the continuousfunction f(«) at
the point ¢. The only point where the product in theintegral aboveisnot zeroisat « = ¢, according to
the shift property in Equation (2.2).

Inthediscretedomain, for integer n, the analogousfunctionisthe Kronecker deltafunctiongiven
by

0 ifn+0
5(n) = e
1 ifn=0

which has similar propertiesto the Dirac delta function.

212 Systems

Insignal processing, asystemisanythingthat takesaninputsignal, f (), and producesan output signal,
g(z). A systemisa“black box”. Signal processing does not look into what is inside the system; it is
concerned only with the relationship between the input and the output signals.

input output
fo) —  System i —— g(x)

Figure2.1: A system: relationship of the output signal on the input signal

Both continuous and discrete systems observe a number of basic properties. This discussion
is limited to the properties that are relevant in our work. The interested reader is referred to
[Oppenheim96] for a complete presentation of system propertiesin signal processing.

2121 Linearity
Most of the signal processing theory is restricted to linear systems. Linear systems obey the

superposition principle; that is, a weighted sum of severa signalsapplied to alinear system produces
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the weighted sum of the responses of the system to the individua signals. Formally, let input f; ()

produce output ¢; () and input f5(x) produce output ¢, (=) through a given system, i.e.:

filz) = g1(z) and fa(z) — g2(2). (2.4

The linearity or superposition property requires that

a fi(z) +bfalz) = agi(z)+bga(x). (2.5)

Many real-world systems can be well approximated by model systems that are linear. For example,
electrical circuits made up of only resistances, capacitances, and inductances can be so represented.
Image display systems, such as CRTs, typically have broad response regions that can also be so
approximated.

2.1.2.2 Shift-invariance and shift-variance

Another important property of systems analyzed with signal processing is related to the shift of the
input signal and its implications in the output signal. A shift-invariant system takes a shifted input
signal and produces a shifted version of the output signal: the nature of the output is not changed by a
shifted input; shifting theinput merely shiftsthe output by the same amount. For example, assume that
asignal has time as the independent variable. A shift in this signal means a delay or advance by that
shifting amount. A shift-invariant system, using thisinput signal delayed by an amount 7', produces a
delayed output:

it =T) = gq(t-T) (2.6)

This shifting property appliesto any other space where the signals are specified. For example, if an
input 2D image is shifted (tranglated) relative to its origin, a shift-invariant system produces the same
output image shifted by the same amount.

Most of the systems considered in signal processing have this shift-invariant property, but some
interesting systems do not exhibit this behavior. A system issaid to be shift-variant if a shifted input
signal produces any signal other than just the shifted output signal. In Chapter 4, the interaction
properties of light with matter will be discussed in terms of system properties, and certain materias

will be shown to be shift-variant.
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2.2 Thelmpulse Response of a System

The impulse response of a system characterizes how the system responds to an impulse signal: given
an impulse signal (Equation (2.1)) as the input to a system, the impulse response is the output of that
system. The impulseresponse of asystem completely specifiesalinear system. Thisimpulseresponse
property becomes evident if one realizes that any signal f(x) can be represented as an infinite sum
of shifted and scaled impulses. Then, if each of these shifted and scaled impulsesis applied to the
system, an impulse responseisproduced for each. Thefinal superposition (or sum) of all theseimpulse
responses represents the response of the system to the arbitrary signal f(z). Mathematicaly, this
property is represented with the sifting integral presented in Equation (2.3)—the response of a system
to an impulse signal.

When dealing with optical and imaging systems, the impulse response is called a point-spread
function (PSF) due to the type of impulse signal used with those systems. The impulse signa is the
light isotropically emitted by a point source. For example, asimple lens (a system) taking as input a
point source at the object plane produces a spot in the image plane (see Figure 2.2). This spot isthe
point-spread function of the system. An ideal lens produces an infinitely sharp spot when the image
planeisin focus. When theimage planeis not in focus, the spot takes the shape of a disk or an ellipse
with radially-varying intensity, depending upon the orientation of the image plane. A non-ideal lens
produces a warped version of the ideal spot, depending upon the aberrations influencing the impul se

response of the lens/system. Arbitrarily shaped light sources emit more complicated wave fronts of

m
T
e — | —T
source
Lens Imaging
planes

Figure2.2: A lens creating theimage of a point source.

light than the ideal point source. However, according to the Huygens-Fresnel principle[Ditchburn9l],
the propagation of any wave front can be decomposed into the propagation of waves produced by an
infinity of point sources distributed along the original wave front. The envelope of al these point
sources describes the position of the original wave front at any point in time along its propagation
(Figure 2.3).  In terms of signa processing, the response of an optical or imaging system to an

arbitrary signal isthe superposition of the corresponding impul se responses or point-spread functions,
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Original wave front —

Wave front emitter ————>

<— Envelope

Figure 2.3: Huygens-Fresnel principle gpplied to an irregularly-shaped wavefront emitter.

as described by the sifting property Equation (2.3). Figure 2.4 illustrates the result of applying an
arbitrary wave front (signal) discretized in point sources (impulse signals) to a lens (system). The
envelope or superposition of all the resulting impulse responses approximates the response of the

system to the original arbitrary input signal.

Figure 2.4: Application of a decomposed arbitrary input wave front (signal) to a lens (system), and
reconstruction of the same wave front on the image side.

Thus, the response of a system can be represented as the superposition (or sum) of impulse

responses. This property leads usto the concept of convolution.

2.3 The Convolution Operation

The convolution operation, , describes the output, ¢(z), of a system, due to a given input, f(z),
applied to the system which hasimpul seresponse k(). Mathematically, convolutionisexpressed with

the convolutionintegral, which in one dimensionis

+ oo

9 = Fo) * ko) = [ () ko = 0) du 27)

— 00
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For each output point, «, the convolution can be seen as the integration (gathering of contributions)
of the input signal, f(«), on an infinite neighborhood around the point =, weighted by the system’s
impulse response, k(« — w), in that same neighborhood. Although Equation (2.7) integrates over an
infinite space, in practice, the neighborhood isdefined by the support or width of the convolutionkernel
k(2 )—the region where the kernel has nonzero values. The kernel % can be seen as a liding window
that is shifted along the domain of the input signal. For evaluating the convolution at a point =, the
kernel is centered at that location in the domain and the sum of the point-wise products of the two
functions (input signal and kernel) istaken.

Noticethe similarity between the convolution Equation (2.7) and the sifting Equation (2.3). Both
equations integrate the product of two functions: the signal f(z) and another function. This other
function is the convolution kernel and represents the impulse response of the system. In the sifting
equation the kernel reduces to a delta function and represents the impulse response of the identity
system (k(x) = ¢ («))—the system whose output always equalsitsinput. In the convolution equation,

the kernel represents the impul se response of an arbitrary system, as presented in Section 2.2.

In two dimensions, convolutionis defined as
+oo +oo
g(z,y) = flz,y) *k(m,y):/_ /_ flu,v) k(z —u,y — v) dudv. (2.8)

Several aspects of convolution will be analyzed in the sections that follow. In particular,
Section 2.6.2 will describe graphically the convolution operation applied to the reconstruction of

discrete signals, which will be helpful in understanding the convol ution concept.

2.3.1 Circular and Hemispherical Convolution

Signals of the same dimensionality can be specified in a variety of spatial domains, depending on
the units of the signals’ independent variables. For example, in one dimension, Euclidean distance
along a curve, chronological time, and angle around a circle have completely different shapes and
interpretations but share the same dimensionality (Figure 2.5(a)). In two dimensions, rectangular
coordinates, polar coordinates, and spherical coordinatesal so have different shapes and interpretations
but share the same dimensionality (Figure 2.5(b)). The key element for signal processing is not
the meaning or shapes of the domain, but the dimensionality of the signal. Signals of the same

dimensionality are treated the same in signal processing theory.
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Figure 2.5: Functions of same dimensionality: (a) one-dimensional; (b) two-dimensional.

Of relevance to this dissertation, is convolution in circular, spherical, and hemispherical
domains. Starting with a circular domain, the signal is a one-dimensional function of an angle, f(¢),
and the convolutionin that domainis given by

90)= F0) « K0) = [ Jl) 10 - a) do. (29)
Notethe differences between thisequation and Equation (2.7). Besidesthe changeinindependent vari-
able, theintegrationisnow performed inacircular domainof [—r, += ], instead of inaninfinitedomain.
By increasing the dimensionality of the domain and going to a spherical space, the same differences
apply between the two-dimensional convolution in a rectangular domain—Equation (2.8)—and the
convolution in the spherical domain: the independent variables = and y are replaced by two angles ¢
and ¢, and the domain of integration becomes ¢ € [—x,+~x]and ¢ € [—=/2,+r /2], instead of the

infinite domain. Convolution in the spherical domain isthen given by

+7/2
g(&fb):f(&qﬁ)*k(&qb):/ //2 k(0= a,6— 8) dadf.  (210)

Of specid interest in this dissertation is the convolution in hemispherical space. The only change

impliedin Equation (2.10), in order to convert it to hemispherical domain, isin thelimitsof integration
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for the independent variable ¢: it ranges in [0, r] instead of ranging in [—=, +=x]. Convolution in

hemispherical domain is given by

+7 ptm/2
9(0.9) = £(0.9) * k(0.9) = | /0 FlonB) k(0 — a,é— B) dadp. (211

The shaded regions in Figure 2.5 illustrate placement of convolution kernels in the specific

domains (recall the window analogy of convolution kernelsfrom Section 2.3).

2.3.2 Spatially Variant Convolution

So far, the presentation of convolution has assumed spatially invariant kernels, i.e., that the base shape
and the weighting function of the kernel does not vary with respect to the independent variable. In a
more general approach, convolution can be presented with aspatially variant kernel. In such acase, the
kernel shape varies across the domain of integration. In one dimension, this dependence of the kernel

is represented with afunction w(z). The convolution Equation (2.7) then becomes

+ oo

g(z) = flz) xk(z,w(z)) = / Fu) k(z —u,w(z)) du (2.12)

— 00

and in two dimensions

9(e9) = Feoy)  keywle) = [ [ ) e =y - v wle,y) dude.

o 2.13)

Spatially variant convolution comes up for several systems. In practice, most physicaly
realizable systems are spatially variant. For example, most lenses and optical imaging systems have
finite image area due to aberrations—images of on-axis objects are correct, but images of off-axis
objectsare deformed. In Chapter 4, surface material propertieswill be discussed asasystem in terms of
interaction with light, and it will be seen that most materials tend to exhibit spatially variant behavior.
Section 2.6.2.3 presents graphically the application of spatially variant convolution to recon-

struction, which may be helpful in understanding thistype of convolution.

2.3.3 Discrete Convolution

Equation (2.7) isdefined for continuousfunctions f(x) and k(x). However, in computer science the
input signal and the convolution kernel are, in general, discrete functions. This demands a discrete

convolution expressed with the following summation:

+o0
gle) = fla) « k(@)= 3 () k(z—i) (2.14)

1=—00
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where = and : take only integer values. In two dimensions, discrete convolutionis given by

+o0 +oo
g(w,y) = foy) x k(e,y) = 3o D0 [G5) k(z =iy =), (2.15)

2.4 TheFrequency Domain

All previousdiscussion has taken place in the spatial domain; the independent variables of our signals
were alwaystime, Euclidean coordinates, polar coordinates, etc. So far, an arbitrary signal in a spatial
domain has been considered to be the sum of an infinity of scaled and shifted impulses. Alternatively,
Fourier proposed that a signal could also be represented as an infinite sum of sinusoidal waves of a
base frequency and al its multiples. Both representations capture the same information but encode
it in different forms. The advantage of using the dual domains to represent signals or systemsis that
sometimesit is easier to understand and manipulate asignal or asystemin onedomain thanitisinthe
other. In the next section, the Fourier transform—the tool that converts from a spatial domain to the
frequency domain and vice-versa—will be discussed. Then, Section 2.4.2 discusses the convolution
theorem, which relates two operations—convol ution and multiplication—in the two dual domains—

gpatial and frequency domains.

241 TheFourier Transform

The Fourier transformis the tool which allows conversion between spatial and frequency domains.

The Fourier transform of a one-dimensional, continuousfunction f(x) is defined as

+oo .
FU@y=Fw) = [ ) e (2.16)
where j2 = -1, the frequency variable v is measured in cycles per unit of z, and %7277

cos(2rva) £ jsin(2rva). Theinverse Fourier transformof F(v) is defined as
+oo .

FUFW) = f2) = / F(v) ™y, 2.17)
Notethat the only difference between the direct and inverse transformationsisthe sign of the exponent.
The functions f(«) and F'(v) are called a Fourier transform pair; and for any function f(z) the
Fourier transform is unique, and vice-versa. The Fourier transform of a signal is called the spectrum
of that signal, and the inverse Fourier transform of a spectrum generates its corresponding signal. The
Fourier transform of theimpul seresponse of asystemiscalled thetransfer function of that system—the

system’s frequency response.
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The Fourier transform (Equation (2.16)) decomposes a signal f(z) into an infinite sum of
complex exponentials (sinusoidal waves) of a base frequency and its multiples. The complex
function F'(v) represents the amplitude and phase of each complex exponential, for each frequency
value v. The Fourier transform has several other properties and the interested reader is referred to
[Oppenheim96, Castleman96] for a complete presentation of thistopic.

If we discretize both the spatial and the frequency domains, the discrete Fourier transform

becomes
| N-1 o
Fo= Z; fi e TN (2.18)
and the inverse discrete Fourier transform is
1 N-1 o
fi=+ Z% F, /N7, (2.19)

where N isthe length of the discrete sequence f;, and 0 < i,n < N — 1 areindices.

2.4.2 The Convolution Theorem

The convolution theorem states that convolution in one domain is equivalent to multiplication in the
other domain, i.e.: convolutionin the spatial domain is equivalent to multiplication in the frequency
domain and multiplication in the spatial domain equals convolutionin the frequency domain. Aswill
be shown in the next sections, the convolution theorem has important applicationsin filtering, and in
sampling and reconstruction. The convolution theorem also influences how signal processing should
be computed for discrete signals. Based on the computational cost of convolution and multiplication,
and depending on the size of the data set, it may be less expensive to perform either convolution or

multiplicationin the corresponding dual domains.

2.5 Filtering

Several applications demand changing the frequency content of a signal. Maodifying the relative
amplitudes of the frequency components and eliminating some frequency components of a signal are
examples of such processing. This operation is called filtering, and a filter is a system that takes
an input signal f(«) and produces an output signal g(x). This definition resembles the convolution
operation from Section 2.3 with the convolution kernel representing the filter in the spatial domain. In

fact, filtering in the spatial domain is performed through convolution. Alternatively, in the frequency

31



domain, filtering is carried out through multiplication, according to the convolution theorem of
Section 2.4.2. Given thisduality, filters can be designed either in the spatial domain or inthe frequency

domain.

Anaysisinthefrequency domainismoreintuitive; afilter in the frequency domainisafunction
that represents the amplitude modulation of each frequency value desired in thefiltered output signal .
Theidentity filter hasa constant value of unity along the entire spectrum and multiplication of thisfilter
withasignal in thefrequency domain doesnot changethesignal. A filter that halvesthe amplitudefor a
given frequency value hasavalue of one-half at that particular frequency, and so on. Then, thefiltering
operationin thefrequency domain isperformed by a point-wise multiplication of thefilter value by the
corresponding signal value. Alternatively, the Fourier transform of a frequency domain filter can be
used to perform the filtering through convolutionin spatial domain. The convolution of the signal and

thefilter in the spatial domain produces the same results as multiplication in the frequency domain.

2.6 Sampling and Reconstruction

Rendering a computer generated image involves the application of multiple resampling processes.
A resampling process starts with discrete data, reconstructs a continuous representation of the same
information, and then sampl es this continuous representation to generate the resampled version of the
data (Figure 2.6). This resampling process is repeated at different scales and stages of the graphics
pipeline. For example, the polygon rendering process is a resampling process: it starts with a set
of discrete samples (vertices); reconstructs a continuous representation (polygons); and samples the
polygonsto create a new, resampled representation (pixels). Similarly, curved-surface rendering and
image-based rendering involve the same resampling paradigm. Shading is also a resampling process:
attributes(col or, texture coordinates, etc) are known at vertices of ageometrical model and form the set
of discrete samples; reconstruction takes place by performing interpolation (nearest neighbor, linear,
or higher order) between samples; and the final sampling occurs by outputting the interpolated values
at the pixels. Texture mapping operates in the same interpolated way, but in texture space, instead of
image space.

Sampling and reconstruction are related by a theorem; the sampling theorem states that, if
a continuous signal is sampled finely enough, it can be recovered completely using reconstruction

techniques. In more detail, given the frequency representation of a signal, if the sampling rate is at
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Figure 2.6: Resampling process.

least twice as high as the highest frequency in the signal, the original signal can be reconstructed by

using ideal reconstruction filters.

26.1 Sampling

Sampling is the process that converts a continuous signal, f(x), into a set of discrete samples,
Js(x). Figure 2.7 illustrates the sampling of a one-dimensional function in the spatial domain.

Mathematically, sampling in the spatial domain isrepresented by the multiplication of the continuous

f(x)

f4x)

Figure 2.7: Sampling in the spatial domain.

signal by the comb function, s(z):
fs(@) = flz) x s(x) (2.20)
where the comb function isatrain of evenly spaced deltafunctions:
s(x)= > &z —n). (2.22)

Through the convolution theorem, the sampling process can a so be specified in the frequency
domain. The continuous input signal and comb function can be each represented in the frequency

domain with F'(v) and S (v), respectively. Thisnew representation is given by the Fourier transform
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Figure 2.8: Sampling in the frequency domain.

of the functions: the Fourier transform of the comb function looks like another comb function. The
separation of pulses of both representations is related by Fourier transform properties; if the comb
function has a period of r in spatial domain, its pulse spacing in frequency domainis L. Sampling in
the frequency domain, illustrated in Figure 2.8, is given by the convolution of the frequency response

of the system, F'(v), and the Fourier transform of the comb function, .S (v):
Fy(v)=F(v)xS(v) (2.22)

Notethat a sampled signal in the spatial domain isapul se-based representation of the continuous
signal, whereas a sampled signal in the frequency domain represents the replication of its continuous
frequency response. The frequency spectrum of the sampled signal (F;(v) in Figure 2.8) looks
like the frequency spectrum of the continuous signal (£'(v) in Figure 2.8), but it is replicated at
multiples of the sampling frequency (the spacing of the comb function in frequency domain—S(v) in
Figure 2.8). Althoughit is more intuitiveto understand and visualize sampling in the spatial domain,
its representation in the frequency domain is more useful in terms of signal analysis, for example, in

anti-aliasing applications.

2.6.2 Reconstruction

Reconstruction is the process that generates a continuous signal from a set of discrete samples.
Reconstruction can be considered to be a mapping operation: given a set of discrete values in one
domain (input domain), reconstruction finds a continuousfunction in another domain (output domain).
This mapping can be performed either with a feed-backward approach—gathering information from

the input domain for each point in the output domain—or with a feed-forward approach—spreading
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Figure 2.9: Mapping: feed-backward and feed-forward approaches. Feed-forward mapping takes
information directly from the input domain into the output domain; whereas feed-backward mapping

startsthe processin the output domain, queriestheinput domain, and finally takestheinformation from

the input domain into the output domain.

the contribution of each point from the input point into the output domain (see Figure 2.9). Both
approaches reach the same results; but, in general, one is easier to understand and involves less
computational cost than the other. Westover [Westover91] compares feed-backward and feed-forward
convolution methods in terms of accesses to the input and output signals, and gives an example
illustrating the fewer number of combined accesses required by feed-forward convolution, compared

to feed-backward methods.

2.6.2.1 Feed-backward reconstruction

In a feed-backward approach, for each desired value in the output domain, information is gathered
from the input domain. Both interpolation and straight convolution are instances of feed-backward
reconstruction. In fact, convolution isthe more general approach, and interpolation can be expressed
in terms of convolution with the appropriate choice of kernels[Wolberg92].
Interpolation

Interpolation is a polynomial-based reconstruction scheme. Given a sampled signa, interpola-
tion fits a continuous curve to the data and reconstructs parts of the signal lost in the sampling process.
At each desired new point in the domain, interpolation evaluates the interpolant polynomial. For
example, in one dimension, linear interpolation connects every two adjacent pointsin the datausing a
linear or first-order polynomial. Figure 2.10(a) showsthe discrete dataand Figure 2.10(b) presentsthe
linearly interpolated reconstruction.

Higher-order interpolants require using more information in alocal neighborhood than just the
two adjacent points. For example, Figure 2.11 presents second-order or quadratic interpolation of the
same data used in Figure 2.10: a point in the interpolated function isthe result of the weighted sum of

the three closest data samples.
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@ (b)
Figure 2.10: Linear interpolation of sampled data.

@ (b)
Figure 2.11: Quadratic interpolation of sampled data.

The higher theinterpolation-order, thewider thelocal neighborhood, and the more control there
isabout the derivativesof theinterpolated function alongitsdomain. Notethat alinearly reconstructed
function, also called piecewise linear, is continuousin value along its domain, but it is discontinuous
in first derivative at the sample points. This type of function is usually called a C°-continuous
function. Note also that piecewise quadratic functions are not enough to provide C'!-continuous
functions—continuous up to first derivative along their entire domain. Although independent pieces
of a piecewise quadratic function can be C''-continuous, when three or more quadratic pieces are
put together it may not be possible to satisfy the first derivative continuity criteria at all the junction
points'. A piecewise cubic functionisnecessary to providefull C'' continuity along the entire domain.
Higher-order continuity is possible, but usually not necessary in computer graphics applications.
Convolution

Convolution was presented mathematically in Section 2.3. Now, convolution will be examined

graphically through its application to the reconstruction of adiscrete signal. Both afeed-backward and

' The following algorithm for finding the two quadratic pieces for three samples of a one-dimensional function cannot

ensure C'* continuity at the middle point:

e select aquadratic that satisfies the value of the samples at the left and at the middle point, and the slope at the left

point

¢ select aquadratic that satisfies the value of the samplesat the middle and at the right point, and the slope at the right

point

This problem generalizesfor any number of points greater than two and when the slope selection algorithm does not follow
asequential order of the data. Note that the algorithm above would always find a C' ! -continuous quadratic interpolation if

the slopes at the sampling points were always selected from |eft to right or vice-versa.
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afeed-forward approach to convolution of a discrete signal with atriangular kernel will be discussed.

They reach exactly the same result as linear interpolation, as presented above.

In feed-backward convolution, for each point in the output domain, information is gathered
(integrated) from the input signal. The final output value at each point is the weighted average of
the input values covered by the kernel neighborhood centered at the input point.  In Figure 2.12,
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Figure 2.12: Feed-backward convolution.

the same sampled signal from the linear interpolation example (Figure 2.10(a)) is convolved with a
triangular kernel. Figures 2.12(a)-(d) represent the evaluation of the output value for particular points
in the output. Imagine for each point p in the output, the instantiation of the triangle kernel centered
at that same location in the input signal (points p; to p4 in the figure). Now, for all the pointsin the
input covered by the kernel, add the product of the corresponding kernel value and input signal value.
For example, the instantiation of the triangular kernel at point p; in theinput domain (Figure 2.12(a))
overlapsthe two left-most samples of the sampled signal. The intersection point of the kernel with the
sample spikes correspondsto the contribution of each of those samplestothefinal result at pointp ;. The
resulting value (convolution) at point p inthe output domain (Figure 2.12(€)) isthe sum of the heights
of the intersected samples from the input domain. Thisresultsin the convolved output signal (€). The
pseudo-code for feed-backward convolutionis:

for each point p in the output
center kernel in the input at the same location p
set output value at p to 0O
for each point ¢ in the input covered by the kernel

out put value at p += input value ¢ x kernel value at gq
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2.6.2.2 Feed-forward convolution — slatting

Analternatively to the feed-backward approach as presented above, isthe feed-forward approach. Each
value in the input domain spreads its information in the output domain. In Figure 2.13, a sampled

Figure2.13: Feed-forward convolution(splatting): (a) discreteinput signdl, f (t); (b) triangular kernel,
k(t), (c) convolved output signal, ¢(t).

signal (a) is convolved with atriangular kernel (b). The result is the convolved signal in (c). Think
of (c) asthe instantiation of the triangle kernel (b) centered at each sample of the discrete signal (a).
The amplitude of each sample in theinput signal (a) givesthe height of the corresponding instantiated
triangle in the output signal (c). The support or width of the kernel is the same (invariant) for al the
samples. Thesuperposition(or sum) of the contributionsof instantiatedkernel sresultsin the convolved
output signal (c). The pseudo-code for feed-forward convolutionis:

zero all output points

for each point ¢ in the input
center kernel in the output at the sane |ocation g
for each point p in the output covered by the kerne

out put value at p += input value at ¢ * kernel value at p

The reconstruction result obtained with linear interpolation in Figure 2.10 is exactly equal to
the reconstruction result obtained with convolution using a triangular kernel both with feed-backward
and withfeed-forward approaches. Interpolationwith higher-order polynomial sal so has corresponding
kernels to produce equivalent results using convolution. Note, however, the difference in computa-
tional cost obtainable with the feed-forward pseudo-code in comparison with the feed-backward one.
The feed-forward approach has a reduced number of combined accesses to the input and output in the
inner loop. Thisindicatesthat, in some situations, the feed-forward algorithm may be afaster approach
than the feed-backward convol ution. When the number of pointsintheinput and output domainsisthe

same (for example, in afiltering operation), the forward approach is clearly more efficient in terms of
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combined accesses. However, when the number of desired pointsin the output ismuch smaller than the
number of pointsin the input, the backward approach is more efficient. A detailed analytical analysis

of these tradeoffsis possible, but not fundamental to this dissertation.

2.6.2.3 Reconstruction with spatially variant convolution

As Section 2.3.2 mentions, sometimes the convolution kernel is allowed to change in terms of shape
and weighting function along the domain of convolution/integration. The graphical interpretation of
discrete spatially variant convolution is presented in Figure 2.14. A sampled signal (@) is convolved
with a spatially varying triangular kernel (b), as in the previous sections. However, in this section let
the kernel width vary with the discrete function presented in (d), which represents a scaling factor for
thekernel widthalongthe parameter . Inthisexample, it representsalinearly increasing scaling factor
along the parameter x; the spatia variance of the kernel is only in terms of itswidth. The result is
the convolved signal in (c), which represents the summation of theinstantiationsof triangular kernels
with width given by the scaling function (d). Notice that the leftmost instantiation of the kernel isthe
narrowest, while the rightmost is the widest, in accordance with (d). The function in (d) controlsthe

region of influence/spread of each point from the input signal (a).

oy ||

Figure 2.14: Spatially variant convolution: (a) discrete input signal, f(x); (b) triangular kernel,
k(x,w(x)), (c) convolved output signdl, ¢ (), and (d) the function representing the kernel width along

€.

This varying region of influence of the kernels is key in reconstructing depth- and direction-
dependent functions, such as for integrating the radiance equation, as will be seenin Chapter 4. Note,
however, that the varying regions of influence of the kernels may introduce discontinuities in the
reconstructed signal. Notice, for example, thefirst derivativediscontinuitiesin the reconstructed signal

introduced at the extreme pointsof the kernel instantiated at the central samplein Figure 2.14.

39



40



CHAPTER 3

THE LIGHT TRANSPORT PROBLEM

Lightisaform of energy that can be transferred from one place to another. It isthe form of energy that
enables usto see—or to which our eyes are sensitive—and that all rendering techniquestry to simulate
in computer graphics. This chapter reviews important concepts related to light, matter, and their
interactionsinthereal world. Most of these conceptsderivefrom radiometry—thephysical sciencethat
studiesthe measurements of electromagnetic radiation. The chapter startswith aqualitativedescription
of light transport and culminates with the light transport equation, which determines the light leaving
apoint in a particular direction in a scene due to all possible light transfers in the environment. The
interested reader isreferred to [Ditchburn91, Feynman89] for detailed expositionsof thisfield and to
[Watt92, Cohen93, Sillion94, Glassner95] for its applicationin image synthesis.

3.1 Light

Light isthe visible part of electromagnetic radiation—sinusoidal waves created by coupled magnetic
and electric fields. The electromagnetic spectrum, defined in terms of wavelength, ranges from
meter-sized radio waves down to nanometer! scale x-rays. Thewavelength of visiblelight isperceived
as color by our eyes, and it varies from approximately 400nm for violet to about 700nm for red.
Monochromatic radiation iscomposed of wavesof asinglewavelength, whereas more complex lightis
composed by the superpositionof several wavelengths. Electromagnetic radiation can also be coherent:
the wavefront of light, as it propagates, stays in phase at al pointsin space and time. As with any
other wave, light waves also interact among themselves and form interference patterns. Additionally,
electromagnetic radiation can be polarized—show a preferential orientation of the field vectors with

respect to a fixed vector perpendicular to the direction of light propagation. Unpolarized radiation

Y nanometer = lnm =1 x 10 %m.



involves the superposition of waves with random orientations, whereas polarized light consists of
waves with a preferred orientation, e.g., linear and circular polarization [Fowles89].

Although we presented light in terms of waves, it can also be understood in terms of rays and
in terms of particles called photons. Each of these three different representations of light applies
in different situations. There are mechanisms to explain and unify these natures [Feynman89], but
this discussion will focus on ray optics, due to its greatest influence in image synthesis. To justify
emphasizing geometrical optics, the three light propagation mechanisms and their limitationswill be
analyzed.

3.2 Optics

Optics is the branch of the physical sciences that studies light. Optics is typically divided into
three subfields—geometrical optics, physical optics, and quantum optics—depending on the relative
wavelength of the light, or its energy, with respect to the dimensions of the light measuring equipment,

or its sengitivity [Feynman89]:

e Geometrical optics, aso called ray optics, represents light propagation with rays and applies
whenever thewavel engths and the photon energies are negligibly small compared to thesize and
sensitivity of the light measuring equipment. Ray opticsisimportant (when the size of objects
islarger than the wavelength of light) for understanding macroscopic properties of light such as

shadows, reflection, and refraction.

e Physical optics, also called wave optics, represents radiation with waves and applies whenever
the wavelengths are comparabl e to the dimensions of the measuring equipment but the energy of
the particlesis gtill small compared to the sensitivity of the equipment. Wave opticsis necessary
(when the size of the objects is comparable to the wavelength of light) for understanding

properties such as polarization, diffraction, interference, and holography.

e Quantum optics, also called particle optics, represents light with particles—photons—and
applies whenever the wavelengths are negligibly small compared to the dimensions of the
measuring equipment and the particle energies are much greater than the equipment sensitivity.
Particle opticsis needed (when the size of the objectsis smaller than the wavelength of light)

to understand the microscopic properties of light such as the interaction of light with atoms
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and molecules. The theory of particle optics is necessary for understanding phenomena such

as fluorescence, phosphorescence, dispersion, and light amplification (e.g. LASER).

Visible light can be described with any of the approaches above, but, unless microscopic effects are
needed, geometrical opticsisenough to explain most of the effects of light. Intermsof image synthesis,
geometrical optics is usualy sufficient to simulate macroscopic effects. However, effects such as
interference, fluorescence, and phosphorescence have already been simulated in computer graphics
[Glassner94, Gondek94] without appealing to complete wave and quantum theories. By restricting the
analysisto geometrical optics, i.e., if the wave nature and the particle nature of light are not considered,

the following microscopic phenomenaare not accounted for:
e Polarization, and hence some amplitude attenuation due to polarized reflections [Fowles89]
o Interference, and hence thin film color effects/phenomena such as in soap bubbles [ Gondek94]
¢ Diffraction, and hence holography [Collier71]
e Dispersion, and hence rainbows [Greenler80].

Note that all these microscopic phenomena have second-order impact compared to the first-order

impact of the macroscopic effects simulated with geometrical optics.

3.3 Reducing the Dimensionality of the Problem

From the discussionso far, light transport isamulti-dimensional problem. Section 3.2 eliminated some
of the variablesof the problem by restricting the domain to geometrical optics. However, theremaining
problem is still dependent on several dimensions such as position, orientation, time, wavelength of
light, and the refractive index of participating media. Although the solution of the full problem would
produce ideally realistic results, simplifying assumptions are necessary to reduce the dimensionality
of the problem and to reduce the computational complexity of the solution methods. This section
eliminates some of the remaining variables, which are not fundamental from the image synthesis
perspective.

On the scale of human perception, light interacts with matter instantaneously and what our eyes
perceiveisan energy equilibriuminside a scene. The discussion of the light transport equation in this

dissertationignores al dependence on time—it approximates a steady state solution.
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As seen in Section 3.1, light is defined in a continuous domain. It is the visible part of the
electromagnetic radiation. This means that wavelength is one of the variables of the light transport
problem. Instead of fully considering wavelength in the light transport equation, image synthesis, in
general, only samples this variable for three particular distributions of wavelengths—red, green, and
blue—which match the color sensitivitiesof the human eye receptors [Foley90]. We assume that the
wavelength of light is not changed by interaction with matter, as in fluorescence. The distributions of

wavelengths do change, as when light is partially reflected or absorbed by a colored medium.

Although ignored in our discussion, light transport is usually affected by participating media,
for example, air, water, glass, etc. A participating medium may produce absorption, scattering, and
emission along a path of light. Despite itsimportance for effects like fog, clouds, and smoke we are

going to assume that light transport happensin non-participating media such as clear air or vacuum.

3.4 Emission

Certain materias, under particular conditions, emit light. This section discusses the kinds of emission

patternsto be expected from light sources, as opposed to how the light is created.

In terms of waves, a point source generates a spherical wave of light centered at the source. In
terms of rays or particles, this means that rays or particles are radially emitted from the point source.
More complex light source shapes generate wavefrontsthat can be described with the Huygens-Fresnel
principlementioned in Section 2.2: the complex wavefront can be decomposed into point sources, and
the envelope of the point wavefronts reconstructs the original wavefront at any point in time along the

wave propagation.

Projected
area

x (b
Figure 3.1: Incoming and outgoing radiance at point x and directiona.
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In summary, light sources can be represented as functions of direction around the source. In
terms of radiometry the emission functions represent the radiance? leaving light source’s point x in

directionw: L.(x,).

3.5 Light-Matter Interaction

Thediscussion so far has concentrated on light propagati on between two pointsin avacuum. However,
light interacts with matter. To analyze light transfers in an environment, it is necessary to understand
how light responds to materials. We need to understand materials' appearance. Instead of looking at
the physical processes of light-matter interaction, this discussion will take a functional approach and
describe a material or a medium in terms of how light responds to it, without looking at the internal
process that generates that behavior.

When analyzing the interaction of light and matter, two cases arise. Light flowing through a
medium can be absorbed or scattered by the propagation medium. And propagating light can change
its behavior when it encounters the boundary between two media. At the boundary, light can be either
reflected back into the original medium or transmitted into the new medium or both. By conservation of
energy, if acertain amount of energy reaches amaterial, the sum of absorbed, reflected, and transmitted

light must equal the incoming amount of light.

3.5.1 Ideal Reflection

Reflection is the phenomenon by which incident radiation on the boundary between two mediareturns
totheinitial medium. For anideal mirror—a surface that, for asingleincomingray, generatesasingle

reflected outgoing ray—the laws of reflection state that (see Figure 3.2):
e Thereflected ray R lieson the plane defined by theincident ray L and the surface normal IN.

e Theangle of the reflected ray with respect to the surface normal, 4., is equal to the angle of the

incident ray with respect to the same normal vector, 6;, at the same point of interest.

?Radiance is the power per unit projected area perpendicular to the direction of propagation per unit solid angle in the
direction of light propagation. For apoint x on adifferential aread A, the radiance in direction &, L(x, &), representsthe
amount of energy, per unit time, flowing at some point inside the solid angle with apex at x and direction &, and passing
through the projected differential area in the direction perpendicular to & (Figure 3.1). The flow inside the solid angle
can represent outgoing or incoming energy. Outgoing radiance represents light emanating from point x, or how the point

illuminates the environment. Incoming radiance represents light reaching point x, or what is visible from that point.
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Figure 3.2: Ideal reflection.

For a genera reflective materia, the concepts of scattering are necessary, as will be seen in
Section 3.5.3. In nature, energy along a single incoming ray can generate outgoing energy in any
direction on the hemisphere above the reflective surface according to some directional distribution

function.

3.5.2 Ideal Transmission

Transmissionisthe phenomenon by which incident radiation on amediaboundary crossesthe boundary
into the new propagation medium. Refraction refers to the change in direction of travel as radiation
passes from one medium to another. This change in direction is caused by the difference in the speed
of light propagating through the two media. The index of refraction of a material represents the
ratio of speed of light in the material to the speed of light in vacuum. For an ideally transparent

AN

0

Z

Figure 3.3: Ideal transmission.
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material—a surface that, for a single incoming ray, generates a single transmitted outgoing ray—the

laws of transmission state that (see Figure 3.3):
e Therefracted ray R lieson the plane defined by theincident ray L and the surface normal N.

e The relationship between the angle of incidence and the angle of refraction is given by Shell’s

law:
ny cosfy = nycos by (3.0

where ny and ns are the indices of refraction of the two media, and #; and 6, are the angles
of the incident and refracted vectors with respect to the surface normal and its opposite vector,

respectively.

¢ Whenlightispassingfrom amore refractivemedium to alessrefractive medium, n; > no, there
is a phenomenon called total reflection. Past a critical angle given by arcsin ( Z—f), the incident
light is completely reflected, instead of being refracted. Thisis the basic principle behind fiber
optics[Fowles89].

Anaogously to reflection, for ageneral transmissive material, the concepts of scattering are necessary,
as will be seenin Section 3.5.3. In nature, energy along a singleincoming ray can generate outgoing
energy in any direction on the hemisphere below the refractive surface according to some directional

distribution function.

3.5.3 Surface Roughness

So far, ideal reflective and ideal refractive materials have been discussed—when a single incoming
ray interacting with such a material generates a single reflected or refracted ray. In nature, most
materials are not ideal, and a scattering process happens at the boundary between two media. Light
interacting with non-ideal materials can generate reflected and refracted rays in the entire reflection
and transmission hemispheres, respectively. Also, for ideal materials it was implicitly assumed that
all the energy would be reflected or transmitted and that the magnitude of energy being scattered or
absorbed was not taken into account. In thereal world, though, microscopic processes take place when
light is reflected/transmitted by amaterial and only part of theincoming light is reflected back into the
environment or transmitted into the new medium. Thissectionwill analyzethe end resultsof scattering,

as opposed to the physical processesinvolved.
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Consider light reflection/refraction at a point on a surface. Assume that, microscopically, the

surface is composed of randomly oriented microfacets (Figure 3.4). The average normal of the facets

ray

AR AN, \ ‘ﬁiﬁk
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shadow
@ (b) ©

Figure3.4: Microfacetsmode: (a) displacement of facets’ normalswith respect to the average surface
normal; (b) light shadowing; (c) light masking.

represents the surface’s normal vector N (Figure 3.4(a)). The size of the facets and the displacement
of the facets' normals with respect to the average normal determine the roughness of the surface. A
mirror has null displacement—isideally polished—and increasing roughnessimplies higher amplitude
and/or higher frequency displacements. Each of the microfacets, independently, reflects/transmitslight
according to the ideal model discussed above; it is an ideal mirror or an idea refractor. However,
at a larger scale, light reaching a facet can cast a micro-shadow (Figure 3.4(b)) and light leaving a
facet can be masked (Figure 3.4(c)), due to the facets' boundaries. The random orientation of the
reflective/transmissivefacets can cause a singleincident ray to be refl ected/transmitted in any direction
on the reflection/transmission hemisphere centered at the point of incidence other than the ideal one.
Thedistributionof unidirectional light into a hemisphereand the shadowing and masking effectsreduce
the magnitude of the reflected/transmitted light with respect to the incident light.

Asseen above, asingleray of incoming light can generate anew ray in any reflected/transmitted
direction with the same or reduced energy. This non-ideal behavior creates an entire spectrum of
materials other than the ideal reflectors and ideal refractors studied so far (Figure 3.5). On one end,
there is the ideally specular transfers case that refers to energy concentrated on a single direction.
On the other end, there is the ideally diffuse transfers case that corresponds to an equal distribution
of energy in al directions. In between, there are the non-ideal—or glossy—transfers that refer to
the continuum between perfectly specular and perfectly diffuse transfers. Glossy transfers have a
directional bias but are neither restricted to a single direction nor impose an equal scattering out to a
whole hemisphere. In thisdissertation, specular transfersisused as ageneralized term for non-diffuse

transfers, including both glossy and ideally specular transfers. Although the terms diffuse and specular
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Figure 3.5: Light-matter interaction for reflection and transmission, ranging from ideally specular
transfersto ideally diffuse transfers.

are implicitly related to reflection, transmission will be classified with similar terminology in this

dissertation. For example, the transmission by an ideal refractor will be called a specular refraction.

The two extremes of this spectrum represent important material properties: the ideally diffuse
end represents light transfers that do not vary their magnitudes with orientation, whereas all the other
transfers in the spectrum represent increasing variance of magnitude for increasing specularity. This

property will prove useful for computing light transport for image synthesis.

3.5.4 Anisotropy

Recall, from the definitions of reflection and refraction for ideal materials in Section 3.5, that the
outgoing rays were both dependent on a single angle—the angle of the incoming ray with respect to
the surface normal. However, there is another degree of freedom that needs to be taken into account:

the rotation around the surface normal (seethe angle ¢ in Figure 3.1).

All previous definitions assumed isotropic material s—reflection and refraction were invariant
with respect to rotation of the surface around the surface normal vector. However, some materialsin
nature present anisotropic behavior. For those materials, reflection and refraction properties vary with
respect to rotations of the surface around its normal vector. For example, brushed metals, cloth, and

hair exhibit anisotropic reflections.
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3.5.,5 Bidirectional Distribution Functions

The discussion so far has concentrated on qualitative analyses. This section discusses a quantitative
approach to reflection and gives hintsfor extending the approach to transmission. Asisusual in physics
and graphics, transmission isleft as a straightforward extension of reflection, given the high similarity
of the two phenomena.

Consider light reflection at a point x on asurface. Theamount of outgoing or reflected lightina
direction ., is directly proportional to the incident light from a solid angle centered in direction ;.
Increasing the solid angle or increasing the density of energy inside the solid angle increases the
incident light energy. Increasing incident light energy resultsin increasing reflected light energy. The
constant of proportionality relating these two quantities, incident and reflected light, isthe bidirectional
reflectance distribution function (BRDF) and is usually represented as

Lo(x,4,)
Li(x,;) cos; dw;

(3.2)

Pbd (X7 ‘*‘72'7 Jo) =

wherex isthepoint of incidence, ; and.,, aretheincoming and outgoingdirections,and I.; and I, are
the incoming and outgoing radiances. Note, however, that the BRDF is not just the ratio of incoming
and outgoing radiances; it also depends on the incoming projected solid angle cos#; dw,®. This
dependency in the projected solid angle gives the units of inverse steradians [sr ~!] to the BRDF and
makes the BRDF to vary from zero to infinity. Interesting observations about and properties of the

BRDF are:

e The BRDF ishidirecional because it depends on two directions—incoming and outgoing.

The BRDF isa distribution function because it is aways positive.

e The BRDF obeysthereciprocity principle: interchanging the incoming and outgoing directions

does not change the BRDF value.

The BRDF is, in general, anisotropic as described above.

Figure 3.5illustrates BRDFs and BTDFs that capture surface roughness as discussed in Section 3.5.3.

#The solid angle subtended by an object isthe surfaceareaof its projection onto the unit sphere. The projected solid angle

isthe projection of that surface area onto the base of the sphere—the theta = 0 planein spherical coordinates.
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3.6 Light Transportin aParticular Direction

Section 3.5.3 described the scattering of a single incident ray of light into an entire reflection or
transmission hemisphere. This section reverses that process; it considers the outgoing (reflected or
transmitted) light in a single direction. By the same scattering argument above, the outgoing light in
a single direction is composed of scattered light from all the directions in the incident hemisphere.
Each of the incident rays in the hemisphere is scattered into the entire outgoing hemisphere and has
a component in the particular outgoing direction of interest. All of these scattered componentsin the
particular direction of interest add up to compose the final outgoing light. Note the linear behavior of
light transfers assumed above.

Quantitatively, limiting the analysis to reflection, the reflected radiance 7., from a point x
in direction «,, is given by the integral of the incoming radiance L; over the entire hemisphere of
incident directions, €2;, around x, weighted by the corresponding BRDF p;4 and by the projected solid

angle cos 8; dw;:
L,(x,,) :/ prd (%, T, @,) Li(x, ;) cos b; dw; (3.3)
Q;

The same equation applies for incoming transmitted light contributing for a single outgoing
direction. The BRDF pyq(x,w;,w,) in Equation (3.3) isreplaced by the corresponding bidirectional
transmittance distribution function (BTDF) 744(x, @i, w,) and the incoming hemisphere becomes the

transmission hemisphere.

3.7 Light Transport Between Two Surfaces

So far, the interaction of light with matter has been discussed without considering the light’sorigin. In
nature, thislight could come directly from light sources or indirectly from reflections or transmissions
with other surfacesin the environment. This section considersthe possiblelight transfers between two
surfaces, as introduced by Wallace [Wallace87]. The next section extends the concept to unlimited
transfers along paths of light.

According to our description in Section 3.5.3, light can leave a surface diffusely or specularly.
The main point here is with respect to the directionality of the energy emanation. Diffuse transfers
are non-directional, whereas specular transfers imply directionality. By combining these diffuse and

specular behaviorson thetwo ends of atwo-surfacelight transfer, four distinct mechanismsare possible
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[Wallace87], asillustrated in Figure 3.6: diffuse-to-diffuse, specular-to-diffuse, diffuse-to-specular,

and specular-to-specular.

®)
Figure 3.6: Mechanism of light transfer between two surfaces: (@) diffuse-to-diffuse, (b) specular-to-
diffuse, (c) diffuse-to-specular, and (d) specular-to-specular. (after [Wallace87])

Note how the four mechanisms were organized in Figure 3.6. The first two ended on a diffuse
transfer and the last two ended on a specular transfer. This particular organization suggests an
interesting property: mechanisms ending with diffuse transfers are direction-independent, whereas
mechanisms ending with specular transfers are direction-dependent. This property is particularly
important when aviewer isintroduced in the scene. Such aviewer can be alight sensor in photometry,
a camera in photography and graphics, and a surface point in the light transport problem. The viewer
perceives the same light intensity irrespective of its position and orientation with respect to diffuse
transfers, whereas specular transfers produce varying light intensity as a function of the position of
the viewer with respect to the surface generating the specular transfers. Thisconcept will be key inthe
decomposition of the light transport problem and in preprocessing some of the resulting components

in the next chapters.

3.8 A CompleteLight Transport Model

The previous section discussed light transport between two surfaces: a point on a surface transfers
light that originated from another surface in the scene. The full light transport problem involvesthe
recursive application of thistwo-surface transport principle. Theillumination at a point on asurfaceis
determined by taking into account all the energy transferred from the rest of the environment into that
point. However, the points on the rest of the environment also depend on the application of the same
principle; they may receive light indirectly from other surfaces in the scene. A recursive approach is

then necessary to solve the full light transport problem.
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3.8.1 A Languagefor the Light Transport Problem

The recursive nature of the light transfer problem is commonly analyzed with transport paths
represented using regular expressions [Heckbert91]. Energy transfers from the light sources through
the environment to the observer’s eye are represented with a word constructed from the alphabet
{L,D,S, FE}. Lindicates emission from the light source, £’ represents absorption by the observer’s
eye, and D and S indicate diffuse and specular transfers (the specular component includes glossy
behavior, as described in Section 3.5.3). Thesimplest light transport pathis I, F—light transport direct
from the source into the observer’'s eye. Two other simple transport paths describe light leaving a
source and getting to the observer’s eye through a single diffuse or through a single specular transfer.
The corresponding expressions are LDE and LSE. Additional symbols enable the description of
more interesting paths but still preserve the compactness of the notation. The symbol ‘|’ indicates
the OR operation, and the symbols ‘(" and ‘)’ have the usual precedence meaning. For example, the
local-illumination model usually implemented in graphics hardware is represented with L(D|S) E,
which means that light reaches the observer’seye through diffuse or specular transfers but viaasingle
bounce off the surface in question. The superscripts‘*’ and ‘T’ on aterm indicate its repetition. The
symbol ‘* includes the null repetition of the term whichis not allowed with * *’. The symbol ‘** has

the“at least once” meaning.

Thefull light transport problem isrepresented with L (D|.S) * F, which represents light reaching
the eye through any number (including zero) of diffuse or specular transfersin no particular order. Note
the differences between the light paths captured by the graphics hardware—7 (D|S) E—and the light
pathscaptured by thefull light transport— L ( D|.S) * . For example, thegraphicshardwareislimitedto
light transfers through a single surface, whereas the full light transport problem may require recursive
light transfers throughout the environment captured by the superscript * *'. More specifically, specular
transfers in the graphics hardware are limited to highlights due to the light source on the reflective
surface; the full light transport model can produce highlightson specular surfaces due to light sources

or dueto any other surface transferring light in the environment, asin nature.

In this dissertation, this light path notation will prove useful in characterizing and comparing

different algorithms for approximating the full light transport problem.
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3.9 ThelLight Transport Equation

Section 3.6 discussed the light transport for a single surface. Then, Section 3.7 described the light
transport between two surfaces. Finally, Section 3.8 analyzed the full light transport problem with
an indefinite number of interacting surfaces. Section 3.6 also presented an equation to determine the
outgoing radiance from a single surface. This section extends the interpretation of that approach and
presents the full light transport equation.

In nature, light leaving a point can be the result of emission, reflection, or transmission. The
light transport equation combines these three componentsin an integral equation. In addition, thelight
transport equation capturestherecursive nature of thelight transport problem withanimplicit equation.
The light transport equation is an integral equation that describes the total radiance leaving a surface

point in agiven direction by taking into account all possible energy transfersin a scene:

LO(X7JO) = LS(XH-J'O) +
/ pra (X, Wy, &) Li(x,W;) cos b; d; +
Qp

/ Thd (X, 0o, w;) Li(x,W&;) cos 8; dw;. (3.9
Q¢

Figure 3.7 presents the notation for the light transport equation. The total outgoing radiance,
L,(x,w,), leaving point x in outgoing direction w,, depends on a direct term and two indirect
terms. The direct term, L.(x,w,), represents the radiance emitted from point x in direction .
The indirect terms denote the reflected and the transmitted radiance from point x in direction .
These terms depend on the integration of incoming radiance, L;(x,w;), over the reflection and
transmission hemispheres, €2, and €2;, covering the surface at point x. The integration is weighted
by the bidirectional reflectance and transmittance distribution functions of the material, pyq(x, Wy, i)
and 74 (x, W, w;), relating the outgoing and incoming directions at the point and at the direction in
guestion. Theterm cos ; dw; representsthe projected solid angle, as described in Section 3.5.5.

Notethat a single application of the light transport equation captures what a viewer seesfrom a
singlelight transfer, asdescribedin Section 3.6. Thelight transport between two surfacesisdetermined
with two successive applications of the light transport equation. The complete light paths of the full
light transport problem are captured with theimplicit integralsand require recursive applicationsof the
light transport equation.

Equation (3.4), in adightly different form, wasfirst introduced to computer graphics by Kajiya
[Kajiya86] in 1986, who named it rendering equation. His approach was based on two-point transport
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Figure 3.7: Notation for the radiance equation.

of energy?, instead of directional or solid angle transport as used in this dissertation. Glassner
[Glassner9s] refersto Equation (3.4) asthe radiance equation, asit definesthe outgoing radiance from
apoint on a surface in a given direction. Sillion and Puech [Sillion94] refer to the same equation as
the global illumination equation. Although all the names above are appropriate for Equation (3.4), we
refer to that same equation as light transport equation, as this name correctly describes the particular
problem we are trying to solve. We let the rendering, radiance, and global illumination characters be

defined by the context of the discussions.

*The two-point energy transport depends on the position of two surface points connected by a straight line and does not
involve solid angles.
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CHAPTER 4

LINEAR DECOMPOSITION OF LIGHT TRANSPORT

Chapter 3 discussed the light transport problem and several assumptions that helped reduce the
complexity of the problem. Under those simplifying assumptions, a light transport equation was
presented for computing the radiance leaving a point on a surface in a scene in a particular outgoing
direction. By solvingthat light transport equation, photorealisticrendering aims at producing synthetic
images of computer modeled environments that approximate what an observer or a photographic
camera would perceive in the corresponding real environment.

Conceptually, for static environments, interactive photorealistic rendering could precomputethe
entire light transport for ascene and then just query the final illumination or radiance function for each
new pose for which a syntheticimage isdesired. Because many light pathsin a scene are directionally
dependent, precomputing the entire light transport demands very finely sampling a five-dimensional
gpatial domain. Also, althoughthefull light transport is afive-dimensional spatial problem, interactive
photorealistic rendering usually explores avery small subset of such domain, so computing the whole
domain is very wasteful. Maoreover, precomputing and storing all the radiance information of a scene
is not computationally practical.

Alternatively, the full light transport problem can be broken down into smaller problems with
simpler solutions which are then recombined to approximate the full solution. This chapter discusses
a linear decomposition of the light transport equation, and then the next chapters describe a set of
techniques for providing, in rea time, approximate solutionsto parts of that equation for reasonably
complex models.

Asseen in Section 3.9, thelight transport equationisan implicit integral equation: the unknown
radiance depends on the integration of itself; the unknown radiance appears both on the | eft-hand side
and on theright-hand side of the equation. For that reason, the light transport equation ishard to solve.

The computation of the outgoing radiance from asinglepoint in a scene requiresknowing theincoming



radiance from all directions around that point. The incoming radiance in a particular direction to the
point of interest isthe outgoing radiance from another point in the environment, which in turn depends
on the incoming radiance from all directions around that other point. This describes the recursive
process formally represented by the implicit equation.

Section 3.9 discussed the light transport equation explicitly in terms of emission, reflection, and
transmission. This section, for clarity, combines the reflection and transmission terms into a single

term. Formally, this reduces the light transport equation to (same notation as for Equation 3.4)
Lo(x,w,) = Le(x,uw)) —|—/ Joa (%, W05, &) Li(x,w;) cos 0; d; 4.0
Q

where Q is the complete sphere of directions around point x composed by the union of the
hemispheres Q.. and Q;, and fyq(x,w,,w;) is the respective bidirectional distribution function
(combined BRDF and BTDF). Thefirst additive component of Equation (4.1) representsthedirect light
emitted by point x, and the second term represents the indirect light reflected and/or transmitted by
point x.

Giventhedistinct characteristics of different parts of thelight transport problem, itispossibleto
decomposethe probleminto simpler terms. Theideaisto rephrase the complex light transport problem
into simpler problems that can benefit from particular strengths of different solution methods. At run
time, those components are recombined to approximate a solution of the light transport equation and
to produce synthetic images. To enable exploitation of current graphics hardware when recombining
the light transport componentsin rea time, the decomposition needs to be compatible with the linear
operations availablein hardware.

Let's start by going back to the origina light transport Equation (3.4) from Section 3.9.
Abstractly, that equation statesthat the perceived radiance (light) isgiven by

perceived = emitted + reflected + transmatted. 4.2

We combine the reflected and transmitted terms into a single component and characterize the light

transport problem as
percetved = emitted + transferred. 4.3

The basic distinction between the two terms is the path of light from the source to the viewer. In the

language for representing light paths discussed in Section 3.8.1, the equation above can be written as

perceived = LE + L(D|S)TE. (4.4
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Thefirst term istrivia, asit represents a single light transfer—the case where the point in questionis
alight source. That is, the transfer of light from alight source (1) to aviewer (£). Thesecond termis
more elaborate and represents all the possibletransfers that light may undergo from light sources until

it reaches a viewer, ranging from ideally diffuse to ideally specular in reflection and/or transmission

transfers.

We can now split each of the terms of Equation (4.4) according to the directional distribution of
the outgoing light transfer. We split each of the termsinto two categories: thelight pathsthat end ! with
an ideally diffuse transfer, and the light paths that end with a specular (or non-diffuse) transfer. In our

simplified equation this means:

perceived = LpE + LgE + L(D|S)"DE + L(D|S)"SE. (4.5

where the subscripts p and s in the first two terms represent light sources with diffuse and specular
distribution properties. (Remember that we defined any non-directionally-uniform distribution as
specular in Section 3.5.3.) Note that the light paths in the indirect terms (last two terms) can have
any combination of diffuse and specular transfers until they reach the last transfer before reaching
the observer; the restriction is only with respect to the last light transfer before it reaches the viewer.
The last light transfers before reaching the viewer define the ultimate behavior light that the viewer
sees from a light path. The major point here is that once light reaches an ideally diffuse surface it
becomes diffusely distributed—it loses any directionality present along the light path from specular
transfers.  With respect to an arbitrary viewer in the scene, the intensity of diffusely distributed
light is direction-invariant—it is called view-independent. This means that we can solve the light
transport problem for all the ideally diffuse surfaces (third term in Equation (4.5)) in a scene by
considering how they recursively “see”’ the entire environment (including how they “see” specular
surfaces). The light intensity of specularly distributed light is not directionally invariant—it is called
view-dependent—which implies that the light transport problem for non-diffuse surfaces (last term
in Equation (4.5)) is less pre-computable. Chapter 5 details the view-independent component and

Chapters 6 and 7 discuss the view-dependent component.

A light path starts at alight source and ends at a viewer, but, in terms of light transfers, alight path endswith atransfer

from asurfaceto aviewer.

59



4.1 CastingtheLight Transport Equation in Termsof Convolution

This section introduces a new and simplified alternative form for representing integral equations in
terms of the convolution operation. Regarding the solution of integral equations, numerical methods
are normally used, as analytical solutions are frequently impractical. Glassner [Glassner95] presents
a good overview of numerical methods for solving integral equations. This section presents a new
alternative approach for solving integral equations, following a “signals and systems” approach in
terms of convolution [Oppenheim96]. The advantage of this approach, in the context of image
synthesis, is the possibility of evaluating the light transport equation in rea time by exploiting the
hardware-assisted convolution availablein current graphics architectures.

Consider the problem of light interacting with matter, as discussed in Chapter 3. The central
discussion was how light responds to materials, i.e., how light shining on a material gets changed by
the material and scattered to produce the outgoing light. This section shows how that same problem
can be described interms of signalsand systems. In theterminology of Chapter 2, thelightisour signal
and the materials are the systems. The analogy is asfollows. Incoming light impinging on a material
represents an input signal to a system. The material is the system. Remember, from Chapter 2, that
asystem is a black box and that we are only interested in the output signal produced by the system
for a given input, without considering the process that changes the input signal to produce the output
signal. The outgoing light (emitted, reflected, and/or transmitted) represents the output signal. Also
from Chapter 2, asystem obeyscertain propertiesand relatesan input signal to its corresponding output
signal through the convolution operation. Every system has an impulse response, and the output signal
of a system is the convolution of the input signal with the system’s impulse response. We need to
identify the impul seresponses of materials, and we need to analyze thelight transport problem in terms
of convolution.

Formally, start by comparing the convol ution equation

+ oo

g(2) = f(a) * k(z) :/ F(u) k(e — ) du

— 00

(Equation (2.7)) and the light transport equation
Lo(k,) = Le(x,i) + [ fualx,ii, 1) i, ) cos 6, i,
Q

(Equation (4.1)). Thereisaclear formal similarity between the convolution equation and the second
term of the light transport equation; both integrate the product of two functions. This suggeststhat the

light transport equation can be expressed in terms of convolution.
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Figure4.1l: Convolutionkernel and signal in arectilinear infinite space (left) and in adirectional space
(right): thefirst row shows the convolution kernel defined at its origin; the second row shows a signal
in the same space as the kernel, and the last row shows the kernel shifted to (centered at) a particular
point/direction of interest for the infinite/directional space.
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However, there is a necessary mental shift for understanding this new representation for the
light transport equation in terms of convolution. The reader should note that a convolution kernel is
a function defined in the same space as its corresponding signal (see Figure 4.1). The convolution
equation alsoimpliesthat, for each point where we want to evaluate a convolution, the kernel originis
shifted to that evaluation point (by the subtractionin theindependent variable of the kernel); the kernel
is said to be centered at the evaluation point. Additionaly, it is necessary to define a new space for
convolution. Instead of defining convolutionin the traditional rectilinear space with an infinite range,
the light transfer problem is carried out in a directional space? around the point of interest as seen in
Figure 4.1(right), (Section 2.3.1). Both the signal and the kernel are defined in this directional space
interms of directions (or angles in spherical coordinates). Centering a kernel in this new space means

shifting the kernel from itsorigin to a particular given direction.

2A directional spaceis defined by all the possible directions emanating from a point.
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To get the light transport equation closer in form to the convolution equation, let’s create two

auxiliary functions:

K (X, Wi, ) = foa(x, 05,0 — &) cosb; 4.7)

where F(x,w;) is the incoming radiance at point x and at direction «;, and K (x,wy,,w;) IS
a re-parameterization of the bidirectional distribution function f,4(x,w,,w;) centered around a
direction w7;,. The incoming direction for centering the convolution kernel in directional space, w7,
iseither theideally reflected direction or the ideally transmitted direction (see sections 3.5.1 and 3.5.2)
derived from the desired outgoing directionw,, (Figure 4.2). Thatis, w;, definesan axisin the space of
all directions emanating from point x and the convolution kernel K is centered around the direction
of that axis. Figure 4.2 illustrates the kernel from Figure 4.1(right) centered at point x and about

direction wy,.

Figure4.2: Centering the kernel from Figure 4.1(right) about direction.s;, in directional space.

Notethat thekernel inthetraditional convolution Equation (2.7) iscentered at the desired point x
for which we want to evaluate the convolution in that space. In terms of the light transport equation,
there is an outgoing direction in directional space for which we want to evaluate the convolution.
However, the kernel is not centered at that direction. Instead, the kernel is centered at a direction
that is a function of the desired outgoing direction. There are two reasons for choosing the ideally
transferred direction to be the axis for centering the BDF convolution kernel, instead of any other
direction in the hemisphere. First, the ideally transferred direction is usually the direction or closeto
the direction of greatest density of energy in any light transfer, which corresponds to the peak of the
kernel in the convolution-based approach. Secondly, the spread of contributionsof incoming light for a
single desired outgoing direction depends, in general, on aneighborhood around the ideally transferred

direction, which defines the kernel support in the convolution-based approach. An exception to the
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first ruleisretro-reflection®, becauseit requires an alignment of the viewer with the light source for the
effect to be observed. To take retro-reflection into account in our convolution-based model, the kernel
needsto be centered at the viewing direction, instead of being centered at theideally reflected direction
derived from the viewing/outgoing direction.

Note that the integration variable in the convolution Equation (2.7) controls the displacement
around the central desired point and that the integration limits indirectly represent the kernel support
(how far in the domain the convolution should gather information about the signal, Section 2.6.2).
Anaogously, in our convolution- based view of the light transport equation, the integration variable
controls the angular displacement around a central incoming direction of interest and the integration
limits represent the size of the solid angle swept out around this central direction, i.e., define the
kernel support. In directional space, the kernel support can be as wide as the complete corresponding
hemisphere (reflection or transmission hemisphere) in question. In practice, the kernel support is
determined by the solid angl e subtendingtheincoming nonzero BDF [obefor the corresponding desired
outgoing direction. Figure 4.3 presentsradiance integration over a solid angle subtendingaBRDF lobe
around direction w;,. Notice the difference between the kernels (BRDFs) in figures 4.2 and 4.3—the

kernel in Figure 4.3 has afinite support, whereas the kernel in Figure 4.2 does not.

Figure4.3: Radianceintegrationfor asmall solid angle subtendinga BRDF |obe around direction.;, .

Function K representstheimpul seresponse (or the point spread function) of the surface material
to the given incoming light. It describes how incoming light from a single direction «;, is Spread
into the hemispheres of outgoing reflected/transmitted directions. Alternatively, given the reciprocity
property of the distribution functions, the point spread function K can be seen as describing how

incoming hemispherical light is integrated (by reflection or by transmission) into a single outgoing

?Retro-reflection refers to the effect which produces reflected light around the direction anti-parallel to the incoming

direction.
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direction «,. That is, given an outgoing direction, the PSF describes how the incoming (or input)
light in the corresponding hemisphere gets weighted and integrated to produce the output light in that
direction. The PSF weights the contributions of incoming light over the neighborhood of directions
(solid angle) covered by the kernel, i.e., in the kernel support.

The radiance Equation (4.1) can then be expressed in a simpler form in terms of a convolution

operation in directional space:
Lo(x,w,) = Le(x,0,) + F(x,0;) x K(x,wi,,w;) (4.8

where F' and K are as described above. This notation hides the space in which convolution
takes place. Although the convolution Equation (2.7) defines that integration is carried out in an
infinite space, notice that integration in the light transport Equation (4.1) is performed in the two
complementary hemispheres of directions (reflection and transmission hemispheres) covering the
point x in question. To accomplish the same integration as performed by the radiance Equation (4.1),
this implies that convolution in Equation (4.8) is computed in directional/hemispherical space, as
discussed in Section 2.3.1. In practice, integration is usually performed over only a subset of the
hemi sphere—the subset that subtends the nonzero values of the BDF (Figure 4.3).

Chapter 3 discussed different types of materialsin terms of bidirectional distributionfunctions.
We can now discussthe different types of convolution kernels required by different surface materials

(Figure 4.4):

¢ Diffuse transfers require convolution with a constant kernel over the entire hemisphere—
radiance leaving point x in a single direction is given by integrating radiance from all the
directionsin the hemisphere weighted by a directionally constant value (the diffuse reflectance

a x);

e Mirror-like transfers require convolution with a delta kernel over a single direction (or no
convolution at all)—radiance leaving point x in a single direction is given by radiance from a

singleincoming direction;

e Glossy transfers require convolution with non-constant kernels over a solid angle subtending
the corresponding glossy BRDF |lobe—radiance leaving point x in a single direction is given
by radiance integration from all the directions in the hemisphere weighted by directional

refl ectance/transmittance values.
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Figure 4.4: Decomposing a BRDF into qualitative components and its corresponding kernels in one-
dimensional directional space.

The most general glossy transfers also require spatially varying kernels, as discussed in
Section 2.3.2. Both the shape and the amplitude of the kernelsmay vary for such materials. Figure 4.5
illustrates the need for a spatially varying kernel in general glossy transfers. Two orientations of
the viewer with respect to the surface are shown. Besides geometry, the figure also presents the
corresponding kernels—the one-dimensional magnitude plot of the BRDF for the given situations.
Notice the change in shape and magnitude of the kernel for the non-grazing and grazing situations.

Thismeansthat the kernel is view-dependent; a different kernel is needed for each outgoing direction.

N

. [6 6 |6
W v

Non-grazing Grazing

Kernels: A, 0 A )
8, 6,

Figure 4.5: Spatially varying kernel for glossy reflection at non-grazing and grazing Situations on a
one- dimensional directional space.

4.2 Decomposing the Light Transport Equation

This section discusses a more forma decomposition of the light transport equation than the one
presented in the beginning of this chapter. We rewrite the qualitatively decomposed Equations (4.3)
and (4.5) formally. We also present the equation which will be approximated by our rendering methods
discussed in the next chapters.
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The emitted term in Equation (4.3) was splitinto two termsin Equation (4.5)—diffuse emission
and specular emission. Since diffuse emission isindependent of the outgoing direction, we write this
term only in terms of the location x where the light transfer takes place—L p, (x). Specular emission,
however, depends on the outgoing direction of light and we writeit as L s_(x,w;). The emitted term

isthen
emitted = Lp_(x) + Lg, (x,4,). 4.9

Also from Equations (4.3) and (4.5), the transferred term was split into two terms—the ideally
diffuse component and the non-diffuse component. This splitting of the transferred term is based on
a common treatment of general BRDFs, which are frequently represented as the sum (superposition)
of three qualitative components [ Cohen93] (Figure 4.4(top)): diffuse reflection, mirror reflection, and
glossy reflection. According to our definition in Chapter 3, we can combine mirror reflections and
glossy reflectionsinto specular reflections and write abidirectional distributionfunction f; asthe sum

of the diffuse component and the specular component:
Jod(%,65, @) = pp(x) + ps(x, W, ). (4.10)

By substituting this decomposition of the BRDF into the transferred term of the light transport
Equation (4.1) we get:

trans ferred = [ [pn(x) + ps (x5, 5 Li(x, 1) cos 0; d, (4.11)
Q
which can be split into two integrals

transferred = / pp (X)L (x,w;) cos 0; d; +/ ps(x,w,,w;)Li(x,d;) cos 8; dw;.
Q Q
(4.12)
We can now factor pp(x) out of the integral in the diffuse or view-independent term, since pp(x) is
independent of the integration variable:
transferred = pD(X)/ Li(x,W;) cos 8; dw; +/ ps(x,w,,w;) Li(x,d;) cos 8; dw;.
Q Q
(4.13)
Finally, we rewrite the specular or view-dependent component in terms of our convolutionform of the

light transport equation (Section 4.1) and get

trans ferred = pp(x) / Li(x,W;) cos 0; dw; + Li(x,w;) * Ky (X,Wio, w;) (4.19)
Q
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where K, represents the convolution kernel for the specular components—mirror and glossy—of the
BRDF as described in the previous section.
To conclude, we combine the emitted and the transferred terms into our decomposed light

transport equation:

LO(X,JO) = LDS(X) + LSS(X,JO) + pD(X)/ LZ'(X,LJ;') cos 0; duw; + LZ'(X,JZ')*I(S(X,LU?O,@),
Q
(4.15)

which represents the multi pass equati on that we want to solve per pixel and per frameinreal time. The

next three chapters address the view- independent and view-dependent components separately.
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CHAPTER 5

THE VIEW-INDEPENDENT COMPONENT

Chapter 4 considered a linear decomposition of the light transport equation in which one of the
components was completely independent of the viewer in the environment. Light paths of ideally
diffuse transfers capture effects such as diffuse highlights, shadows, and color bleeding®, all of which
are view-independent. This chapter discusses in more detail this view-independent component, a
method for solvingit, and our resultsfor displaying that component smoothly inreal time by exploiting

features of current graphics hardware.

5.1 TheRadiosity Equation

Thelight transport Equation (4.1) is greatly simplified under the assumption that all surfaces and light
sources in a scene are ideally diffuse. Thisis usually called the radiosity assumption [Cohen93] and
represents the view-independent component. The radiosity assumption implies that the BRDF of all
surfacesin a scene isindependent of the direction of incoming and outgoing directions (Section 3.5.3).
In terms of the light transport equation, this assumption permits factoring the BRDF p4(x) out of the

integral, asit does not depend on the integration variable:
Lo(x) = Lo (x) + M/ Li(x,3) cos 0; dd;. (5.1)
T Ja

Note that, because the right-hand side of the equation is a non-directional quantity, there is no
dependence on the outgoing direction o, in Equation (5.1). The outgoing radiance from an ideally
diffuse light transfer is invariant with respect to the relative orientation of the viewer and the ideally

diffuse surface.

! Color bleeding refers to how the appearance of an object can be affected by the outgoing light from another colored
object. For example, the appearance of a white ceiling can be affected by an adjacent red wall. This effect happensdue to

diffuse interreflections of light.



Alternatively to the radiance representation of the view-independent component, Equation (5.1)
can be presented in terms of radiosity?. Divide Equation (5.1) by = to convert radiance into radiosity
and remove the directional dependence to formulate the continuous radiosity equation in directional

space:
B(x) = E(x) + pa(x) /Q Bi(x) cos 0; dis: (5.2)

where p,(x) = M"f—oﬂ is the constant reflectance at point x, F/(xz) isthe emitted energy per unit
areaat point x, and cos 0;dJ; isthe projected solid angle ranging over the reflection hemisphere(2,..
Using the methods developed in Section 4.1, Equation (5.2) can be reformulated in terms of

convolution as
B(x) = F(x) 4 pa(x) [Bi(x) * cos 6;] . (5.3)

However, there are ssimpler and more efficient ways for solving the radiosity problem. Because
radiosity isaview-independent quantity, it can be completely precomputed and stored for later reuse at
rendering time. The next section describesimportant features of the radiosity method relevant to this

dissertation.

5.2 TheRadiosity Method

Equation (5.2), in a dlightly modified form, has been widely studied in thermal engineering since the
1950s as the problem of radiative transfer [Hottel 54], and in computer graphics since the 1980s under
the problem of ideally diffuselight transfer (radiosity) [ Goral 84, Nishita85]. There are complete books
discussingthetopic [ Cohen93, Sillion94, Glassner95], and thissection reviews only some fundamental

ideas of the radiosity method relevant to this dissertation.

2Radiosity, represented by B, isthetotal energy leaving asurfaceper unit area. Inthe caseof ideally diffuseenvironments,
radianceisindependent of incoming and outgoing directions; and radiosity isgiven by theintegration of the outgoing radiance

over the hemisphere of directions:

B(x) /ﬂ Lo(x) cos 0 d

= LO(X)/ cos 8 dz
Q

r

= w Lo(x).

Notice that radiosity is directly proportional to outgoing radiance with afactor of =.
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Figureb5.1: Basic radiosity diagram.

Figure 5.1 shows a high level diagram of the basic steps in the radiosity method which help
connect the radiosity problem to the signals-and-systems problem of Chapter 2. The basic radiosity
approach starts with a geometric model of an environment and information about the light sources.
Then the environment is sampled to compute the radiosity function at discrete points. The approach
concludes with a reconstruction step for image synthesis purposes. The next sections discuss and
detail the sampling and reconstruction steps, and introduce our methods for displaying radiosity results
smoothlyinreal time. The solutionmethodsfor radiosity, based on setting up and numerically solvinga
linear system of equations, are not central to thisdiscussion because of the availability of acommercial
product—L ightscape’ ™ from Discreet Logic—for computing radiosity. However, the sampling step

is described in detail, sinceit affects our reconstruction techniques.

The continuous radiosity Equation (5.2), like the light transport equation, is rarely analytically
solvable; numerical methodsare necessary. Thebasicideaisto partitionthe surfaces of an environment
into a finite number of small elements and to find a solution for a discrete version of the radiosity
equation for those elements. Formally, the radiosity method can be derived in terms of finite-element
theory. Instead of re-deriving the entire formalism, this chapter providesamore informal and heuristic
approach to radiosity. The interested reader isreferred to [Cohen93, Sillion94, Glassner95] for more

formal approaches.

Inradiosity, the domain isthe union of the surfaces of al the objectsinthe scene and theradiosity
function operates on that domain. For discretizing and computing the radiosity function of a scene,
the domain (the surfaces of the scene) is subdivided into a mesh of elements. For computation, each
of the resulting small surface elements is assumed to have a uniform (constant) radiosity value. The

composition of all these constant radiosity el ements approximatesthe radiosity function over the entire
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domain. Thatis, theradiosity method, ingeneral, approximatesthe radiosity functionwith a piecewise-
constant function. In practice, the surface elements are usually represented with convex polygonsand
the final radiosity solution is represented with a mesh of quadrilaterals and/or triangles, each with its

own color (Figure 5.2).

Figureb5.2: Subdivisionof aquadrilateral into?2 x 2 elements and the corresponding constant radiosity
(coded in gray) for each element.

Sinceradiosity dealsonly withideally diffuse surfaces, theradiosity function of ascene contains
mostly low-spatial-frequency details, as opposed to the sharp highlightspossiblein specular transfers.
Althoughfeatureslike shadowscan introduce higher frequencies at the edges between lit and shadowed
regions, the general lighting of an ideally diffuse environment tends to have smoothly varying
transitions across the surface domain, i.e., low-spatia-frequency contents. This observation about the
gpatial frequency content of the radiosity functions can be exploited in sampling and reconstruction.
Samples can be placed far apart in regions of low frequency content and closer in regions with higher
frequency content. This discretization of the radiosity function can then be reconstructed with a low
order polynomial. The next sections discuss the sampling and reconstruction issues involved in the

radiosity method.

5.3 Sampling the Radiosity Function

The scene discretization into surface elements for radiosity computation is a sampling task that can
lead to artifacts in the final result. Large elements in regions with high radiosity gradients can result
in missing features in the reconstructed radiosity function. The simple brute-force approach of just
using finer uniform meshes rapidly increases storage and computational time costs, and may still be
insufficient for capturing small features. The domain needs to be finely subdivided only where it will
significantly improve the accuracy of the reconstructed radiosity.

Obtaining an optimal mesh requires knowledge about the radiosity function. Meshing
techniques that use such information can be characterized as either a priori or a posteriori. A priori
meshing techniquesare used to determine features dependent only on the geometry of the environment

and on the light sources, such asdirect or primary shadows, before the radiosity solutionis computed.
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After the solution has been partially computed, a posteriori meshing techniques are then used to refine
the mesh in regions with high radiosity gradients. A priori methods are beyond the scope of this
dissertation and the reader isreferred to [Lischinski92, Heckbert92] for good discussionson the topic.

A posteriori meshing refines the mesh in a recursive adaptive-subdivision manner, after the
radiosity solution has been partially completed. Initially, aradiosity approximation isobtained using a
mesh determined a priori—usually, the mesh of polygons describing the original scene. That mesh
is then refined in regions where the local error is potentially high (e.g., regions with high radiosity
gradient), using theinitial approximation of the radiosity function.

Radiosity is usualy sampled in a regular form on the surfaces of a scene (see Figure 5.3).

Each original surface in a scene is normally either of quadrilateral or triangular shape. The root

AT
AN

JKLM

Figure5.3: Adaptive subdivision of a quadrilateral and a triangle and the corresponding quadtree.

of a quadtree’ is associated with each original surface. The corresponding quadtree then spatially
partitions the surface hierarchically into smaller elements. Nodes of the tree store radiosity at the
respective hierarchical level, representing the radiosity associated with the corresponding region of the
original surface. Notethat both quadrilateralsand trianglesare partitioned into four elements, sincethis
partitioning preserves the aspect ratio of the original unsubdivided primitive and unifies the quadtree
approach (noticein Figure 5.3 that both the particul ar quadrilateral partitioningand triangle partitioning
are represented by the same quadtree).

A quadtreeis atwo-dimensional binary tree in which each node has zero or four children.
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The standard way of computing, storing, and displaying radiosity derives a mesh of polygons
from each quadtree (surface) in the scene. A traversal of a quadtree, followed by the corresponding
partitioning of the associated original geometry, creates polygons at leaf hodes of the quadtree. Note
how the compositing of al the leaf nodes of the quadtree of Figure 5.3 represents the original
unsubdivided polygons. Remember also that each of those nodes contains a uniform radiosity value

sampled from the radiosity function at that region of the domain.

5.4 Reconstructing the Radiosity Function

Thediscretized radiosity function obtained in the previous section represents a di screte sampling of the
radiosity function at selected regions of a scene. The process of synthesizing images of such a scene
is to reconstruct a function that approximates the radiosity function in the entire environment, i.e., a
functionthat preservesthe spatial discontinuitiesof theradiosity function but isotherwisesmooth. That
reconstructed or interpolated function isusually called a reconstruction radiosity function.

Assume that the radiosity function was evaluated (numerically approximated) at points V/
of the domain. The reconstruction praoblem aims to find a reconstruction function R that, at any
point v € V of the domain, provides the exact same values as the corresponding radiosity samples,

and approximatesthe radiosity function 5 everywhere else in the entire domain:

R(v) = Bv), VoeV (5.9

R(p) = B(p), Vpg V. (5.5)

The same reconstruction function should approximate the first derivative, or gradient, of the radiosity
function onthe entire domain and shoul d al so preserve the continuity and di scontinuitiesof theradiosity
function. Thisformalism isuseful in comparing synthetic images produced from radiositized models.
Each pixel p of such animage approximatestheactual radiosity function of the scene suchthat R (p) =
B(p).

By analyzing the illumination of a real scene one can observe the type of continuity and
discontinuities expected from a reconstructed radiosity function. Consider an empty cubic room with
six gray faces and a single light source on the ceiling (Figure 5.4). Simple inspection shows that
the light distribution in such a room is continuous on the walls, on the ceiling, and on the floor.
However, observe the radiosity value discontinuitiesin illumination distribution at the edges between

the orthogonal faces—any two non-coplanar faces sharing an edge may cause value discontinuitiesat
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Figure 5.4: A cubic gray room illuminated by a point light source near the ceiling. Notice that the
light reflected off the ceiling acts like an area light source for the scene. Notice also the continuity and
discontinuities of the illumination function across the domain.

the edge. Additionally, consider that the floor isnow splitin two coplanar materials: half isstill of the
same original gray material and the other half isdarker. Although the two halves are coplanar, thereis
aclear value discontinuity in illumination across the edge separating the two materials. Now, consider
a small opague cube on the floor of the room and the shadow that it casts on the floor and possibly on
the walls. The direct light from a point light source near the ceiling casts a hard shadow* of the cube
onto the floor, and the transition from lit to unlit regions represents another illumination discontinuity
in value. However, note that the light reflected off the ceiling acts as an area light source and casts a
soft shadow® of the cube onto the floor. The transitions from lit to penumbra and from penumbra to
umbraregionsare illumination discontinuitiesin first derivative. Higher-order discontinuitiesare also
possible [Heckbert92] but are not important for this work, because of their low visual impact on the
final images.

The above description illustrates the need to represent the continuity and discontinuities of the
radiosity function accurately in its domain. In most regions of the domain we may need smooth
radiosity transitions between adjacent patches, whereas in other regions we may need to represent
explicit discontinuities. Because it is hard to find a single reconstruction function for the entire
scene combining al these features, the problem is broken down into small parts. Driven by the
surface subdivisionfrom the previous section, each final mesh element is associated with a continuous
reconstruction or interpolation patch—a patch of an interpolation polynomial. In fact, each element

is associated with three independent color patches; one for each color band (R, G, and B). However,

*A hard shadow contains hard edges—lit to unlit transitions.
A soft shadow is composed of umbra and penumbra regions. The umbra is the completely unlit region, whereas the

penumbraisthe partialy lit region.
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as the treatment is analogous for each color component, radiosity is analyzed as a one-dimensional
guantity—a per-wavelength quantity.

The simple association of a continuous reconstruction patch with each mesh element provides
continuity inside independent patches/elements, but it does not ensure proper continuity between
adjacent elements and across the entire domain. The continuity between adjacent patchesis controlled
by the order of the reconstruction scheme and by the sharing of information across and along edges
of the adjacent patches. Given the assumption that a reconstruction patch is continuous inside its
corresponding mesh element domain, note that the representation of radiosity discontinuitiesis only
possible at element edges of the mesh.

Thefinal result of the sampling phase in the previous section isusually a mesh of quadrilaterals
and/or triangles representing the samples of the radiosity function. As previously assumed, each of
these polygonsrepresents the uniform radiosity in the corresponding area of the scene. Consequently,
each polygonin the resulting mesh contains a single RGB triplet, which definesits color for rendering
purposes. Therefore, asingleflat reconstruction patch can be associated with each mesh element. This
correspondsto a zero-order reconstruction scheme. Clearly, thiszero-order polynomial scheme cannot
guarantee any type of functional continuity along and across edges of adjacent polygons (except when
two adjacent patches share the exact same RGB values), which causes a faceted appearance on the
rendering of such scenes.

To increase functiona continuity along and across shared edges of adjacent polygons,
higher-order reconstruction schemes need to be used. After zero-order reconstruction, the next order
up is bilinear interpolation—usually the standard for rendering radiositized scenes. Instead of using
asingle color value for each entire polygon, radiosity approximations are computed at the vertices of
the polygons and then bilinearly interpolated inside the polygon. The radiosity at a vertex is given by
the radiosity average of all the uniform elements sharing that vertex. Although bilinear interpolation
can provide smoother results than the faceted shading, the results are still discontinuousin the first
derivative of the reconstructed radiosity function.

The discontinuities in intensity and/or first derivative of the zero-order and of the bilinearly
reconstructed functions in regions where the radiosity function should be smooth may appear

as noticeable Mach banding artifacts® in the final images. Our visual system is sensitive to

5The perceptual effect known asMach bandingwasfirst reported in 1865 by the Austrian physicist Ernst Mach [Ratliff 72,
Foley90]. The effect depends directly on the distribution of illumination and exaggeratesthe intensity change at any edge

where there is a discontinuity in magnitude or slope of theillumination.
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those discontinuities, and higher-order reconstruction schemes must be used to provide appropriate
continuity on the reconstructed radiosity function between adjacent polygons. Image synthesis aims
at C'! continuous shading functions— continuous first derivatives—for representing smooth regions
while avoiding Mach banding artifacts.

In terms of our radiosity reconstruction analysis, the next order up for functional reconstruction
is biquadratic interpolation (Section 2.6.2.1). Although quadratic interpolation can provide first
derivative continuity between adjacent elements it may produce fast transitions and overshooting in
the interpolated functions (see Figure 5.5). In addition, quadratic interpolation is not able to capture

inflection points between samples.

Figure5.5: One-dimensional quadratic (left) and cubic (right) interpolationscompared to an arbitrary
function (dashed): notice the fast transitions, the overshooting, and the inability to capture inflection
points between samples of the quadratic interpolation compared to the origina function. In contrast,
notice the more controllable approximation obtained with cubic interpolation.

The next interpolation order up (bicubic) provides higher control of the reconstructed function
producing smoother transitions. According to Bastos et. a. [Bastos93] bicubic interpolation can
provide the C'' continuity needed for smooth radiosity rendering, i.e., the first derivative continuity
of the reconstructed radiosity function across multiple adjacent patches.

All the reconstruction/interpolation schemes discussed above were based on the mesh of
polygons resulting from the sampling phase of the previous section. Although these mesh-based
rendering schemes are compatiblewith current graphicshardware, they easily overwhelmtherendering
capabilitiesof most architectures, dueto the huge amount of data produced by the adaptive subdivision
of the scene. In addition, the current graphics hardware supports only zero- and first-order per-vertex
interpolation of the attributes associated with mesh elements/polygons, which does not allow us
to handle the bicubic interpolation of radiosity necessary for smooth renderings. The next section
describes a more effective form of storing and rendering radiosity datawithout losing any information,
a method which is also amenable to implementation with current graphics hardware and alows
for higher-order interpolation/reconstruction schemes than does the hardware-assisted mesh-based

scheme.
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5.5 Radiosity As Textures—RAT

The elements-based radiosity solution and storage method described in the previous sectionsinduced a
radiosity rendering technique based on dense meshes of polygonswith corresponding reconstruction or
interpolation patches. Thismesh-based rendering techniqueiseffective becauseit enablesthe graphics
hardwareto perform the radiosity i nterpol ation when rendering the corresponding polygons. However,
a more careful analysis of the technique shows unnecessary use of geometrical entities to represent

color (radiosity) information.

Suppose, for example, a triangular room floor represented with a single triangle that was
recursively subdivided in a quadtree for radiosity representation. Not unrealistically, assume eight
levels of subdivision and a resulting full quadtree”. A full quadtree with eight levels of subdivision
generates 4% = 65536 triangles. Clearly, in terms of geometry, there are 65535 unnecessary triangles
inthefinal triangul ated representation; notethat all the 65536 are coplanar and together definethe same
triangular region represented by the original unsubdivided triangle. Of course, the additional triangles
were created tolocate radiosity samplesinsidethe original surface, rather thanto describethe geometry
of the surface. Think of the unnecessary amount of geometry data that needs to cross the graphics

pipeline for this mesh-based radiosity rendering approach.

Instead of sending a triangle for each radiosity sample in the subdivided mesh, geometry can
be decoupled from illumination information and both sent separately to the graphics pipeline. In our
example, for geometry itisdesirableto send only thethreeoriginal verticesdescribing the unsubdivided
triangle, and for illumination we want to send the radiosity data resultant from the adaptive radiosity.
Additionaly, the radiosity data must be organized in some form that can be appropriately attached
to the triangle. This suggests the use of texture mapping®. Essentially, one wants to calculate the
distribution of light across the triangle and then map that as an image onto the triangle. The next
sections describe techniques for converting radiosity data from a quadtree into a texture map, and
reconstruction techniques for smoothly but still efficiently displaying the radiosity data [Bastos93,
Bastos96, Bastos97].

A full quadtree hasall itsleaf nodesat the deepest level of the tree.
8 A texture map is an image-based primitive used to add detail to surfaces. The discrete elements of the texture map are

called texel s and represent the quantity to be mapped onto the primitive. A texture map is parameterizedin texture spaceand

mapsto corresponding parameters on parameterized primitives.

78



5.5.1 From Full Quadtreesto Textures

Thefairly regular sampling produced by quadtree adaptive subdivision can be effectively represented
as atexture map, instead of a mesh of polygonal elements. For each quadtree representing adaptive
sampling of the radiosity function across a surface, our technique creates a texture map representing
the same information. Both the original quadtree radiosity and the produced texture map are floating

point entities. Remember, also, that each node of a quadtree represents the uniform radiosity across a

polygonal element of the mesh.
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Figure5.6: Uniform subdivision of a quadrilateral, the corresponding full quadtree, and the mapping
to a corresponding texture.

On a one-to-one mapping, each texel in the texture corresponds to a unique leaf node in
a quadtree (see Figure 5.6). The level of the deepest leaf node of a quadtree (the height of the
guadtree) determinesthe resolution of the texture map. The number of texelsin either side of atexture

corresponding to a quadtree isgiven by
nu = nov = 29kt (5.6)

Note, then, that a square texture map with appropriate resolution is equivalent to a full quadtree, in
terms of the number of texels and the number of leaf nodes.

A full quadtree is flattened into a texture map by mapping each of the quadtree leaf nodes
into the corresponding texels in the texture map. The agorithm follows a depth-first traversal of

the quadtree where actions are taken only at leaf nodes. The recursive algorithm for converting the
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Ful | Quadt reeToText ur eZer oOrder ( quadtreeNode, |evel, height, wu, v)

{
if ( level == height ) { Il 1t's a leaf node

texel [u][v] = quadtreeNode->radiosity

}

el se { /1 1t's an internal node, recurse.
Ful | Quadt reeToText ur eZer oOr der ( quadtreeNode->chi |l d[ 0], |evel +1, height, u*2, V*2)
Ful | Quadt reeToText ur eZer oOr der ( quadtreeNode->child[ 1], |evel +1, height, u*2+1, v*2)
Ful | Quadt reeToText ur eZer oOr der ( quadtreeNode->chil d[ 2], |evel +1, height, u*2+1, v*2+1)
Ful | Quadt reeToText ur eZer oOr der ( quadtreeNode->chi |l d[ 3], |evel +1, height, u*2, v*2+1)

5.7:  Converting a full quadtreeto a texture with a zero-order approach.

radiosity quadtree of aquadrilateral surface into atextureis presented in Program 5.7, whichiscalled

for the root node of each quadtree with the following function call:
Ful | Quadt reeToText ur eZer oOr der ( quadtreeRoot, 0, quadtreeHeight, 0, 0 ).

Notethat theu, v parametersindexing the texture are recursively shifted during the quadtree traversal
for properly mapping leaf nodes to the appropriate texels. The algorithm for converting a quadtree
associated with atriangular surface into atexturelookssimilar to the one above, except for the mapping

recursively applied to the u, v parameters during the traversal.

The agorithm presented above applies for converting full quadtrees into textures in the zero-
order scheme of per-polygon radiosity. That is, each leaf node of the full quadtree maps to a single
texel in the texture map. The next sections discuss a technique for first-order approximation of the
reconstructed radiosity function and for handling non-full quadtrees—both are desirable features for

efficient rendering of adaptive subdivisionradiosity.

55.1.1 A First-Order Approach

Instead of using a single radiosity value per polygon in a zero-order approximation of the radiosity
function, radiosity methods, usualy, compute radiosity at the vertices of the mesh to provide a
first-order approximation of the radiosity function. Each per-vertex radiosity isapproximated by taking
the average of the radiosity of all the polygons sharing that vertex. The per-vertex radiositiesare then
bilinearly interpolated to provide the first-order approximation of the radiosity function. The same

averaging and first-order radiosity approximation is possible using radiosity as textures without losing
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any information and using asimpler approach, asthe radiosity textureimpliesthe necessary adjacency

information not directly captured by meshes (follow in Figure 5.8).
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Figure 5.8: Uniform subdivision of a quadrilateral with the corresponding shared vertices, the
corresponding full quadtree, and the mapping to a texture in which each texel represents a vertex
location in the mesh.

In terms of the quadtree, each leaf node in the first-order scheme also now contains a set
of vertices (four vertices for a quadrilateral and three for a triangle) for representing the respective
geometry. Each of these vertices maps to atexel in the radiosity texture, which we refer to as a vertex
locationin the texture map. Note that now texelsrepresent per-vertex radiosity, instead of per-element
radiosity. Noteal so that amesh of » xn quadrilateralscontains(n+1) x (n+1) vertices. Consequently,
the number of texels on the side of a radiosity texture for a first-order approximation is given by
Equation (5.6) incremented by one, so that the texture captures the total number of vertices instead
of the number of elementsin the mesh. Note also that adjacent leaf nodes of the quadtree have vertices
that share/map to the same texel in the maps.

Starting from a zero-order (constant) representation of radiosity in a quadtree, the conversion
processfrom aquadtreeto atexturefor afirst-order scheme creates two two-dimensional maps, instead

of a single one as in the zero-order scheme discussed in the previous section (follow in Figure 5.9).
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MAPS

Figure5.9: Representation used for the two maps for computing average radiosity at vertex locations
inFigure5.7. The checkerboard pattern representsthetexel regions of the maps organized on top of the
mesh, and shows which elements are combined to compute the average radiosity at the corresponding
vertex locations. The accumulator map contains at each texel the summation of the radiosities of the
mesh elements sharing that texel of the maps. The counter map contains at each texel the number of
mesh elements sharing that texel in the map. For example, the texels at the four corners of the maps
have only one element; texels along the edges have two elements; and texelsinside the maps have four
elements.

The need for two maps comes from the average radiosity that needs to be computed. Shared vertices
of adjacent leaf nodes map to the same texels/'vertex locations in the map. Both maps have the same
resolution and serve to compute the average radiosities. One of the maps, the accumulator, is used
for accumulating radiosity at the texels touched by leaf nodes sharing/mapping to that same texel.
The other map, the counter, counts the number of leaf nodes sharing each texel (contributing to the
accumulated radiosity at each texel). During a depth-first traversal of the quadtree, each leaf node
contributes to up to four texelsin the maps corresponding to a quadrangular surface (six texels for a
triangular surface). The exact texelsto be updated by each leaf node are determined by the recursive
mapping functionsas described above. For each leaf node, the corresponding texelsin the accumul ator
map have their radiosity augmented by the node’ sradiosity and the corresponding texelsin the counter
map have their values incremented by one. Using these two maps, it is then possible to average the
constant-basis radiosity from leaf nodes to approximate the radiosity at vertex locations: both maps
are sequentially traversed, and, whenever the counter texel isnot zero, the accumul ator texel isdivided

by the counter.

Therecursive agorithm for converting the radiosity full quadtree of a quadrilateral surface into

atexturefor afirst-order approximationisvery similar to the zero-order approximation algorithm from
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page 80. The recursive mechanism remains the same, but now each leaf node maps to four texelsin

the map (one for each vertex) instead of asingle one (Program 5.10). Program 5.10 isinvoked for the

Ful | Quadt reeToText ur eFi rst Order ( quadtreeNode, |evel, height, u, v)
{
if ( level == height ) { Il 1t's a leaf node
accunmul ator[u][v] += quadtreeNode->radiosity
accunmul ator[u+1][v] += quadtreeNode->radiosity
accumul at or [ u+1] [ v+1] += quadtreeNode->radi osity
accunmul ator[u] [v+1] += quadtreeNode->radiosity
counter[u][v] +=1
counter[u+l][v] +=1
counter[u+l][v+1] += 1
counter[u][v+l] +=1
}
el se { /1 1t's an internal node, recurse
Ful | Quadt reeToText ur eFi rst Order ( quadtreeNode->child[ 0], |evel +1, height, u*2, V*2)
Ful | Quadt reeToText ur eFi rst Order ( quadtreeNode->child[ 1], |evel +1, height, u*2+1, v*2)
Ful | Quadt reeToText ur eFi rst Order ( quadtreeNode->child[2], |evel +1, height, u*2+1, v*2+1)
Ful | Quadt reeToText ur eFi rst Order ( quadtreeNode->child[3], |evel +1, height, u*2, v*2+1)

Program 5. 10:  Converting a full quadtreeto a texture with a first-order approach.

root node of each quadtree with the following function call:
Ful | Quadt reeToText ur eFi rst Order ( quadtreeRoot, 0, quadtreeHeight, 0, 0)
In addition, after the two maps (accumulator and counter) were computed, the radiosity average

at vertex locationsistrivially computed with the following agorithm:

for (u=0, u<nu, u++)
for (v=0, v<nv, v++)
if (counter[u][v] > 1)
avrg_radiosity[u][v] = accurmulator[u][v] / counter[u][V]
el se

avrg_radiosity[u][v] = accunul ator[u][V]

Program 5.11: Computing radiosity average at vertex locations from the accumulator and
counter maps.

All the previous descriptions have assumed full quadtrees. However, the quadtrees resulting

from adaptive subdivisionare in general non-full quadtrees. In that case, aleaf node not at the deepest
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level of the quadtree mapsto more than onetexel—mapsto aregion—in the texture map (Figure 5.13).
Non-full quadtrees, aswill bediscussedinthenext section, requirean additional steptofill inuncovered

regions of the texture map (or leaf nodes that map to more than one texel).

5.5.2 From Non-Full Quadtreesto Textures

The agorithms in the previous section were designed for full quadtrees. For non-full or genera
guadtrees, the recursive mechanism remains the same, but there are two thingsthat need to be changed
in the algorithm. First, the mapping function needs to be adjusted for leaf nodes at different levels of
thetree. The full quadtree approach relied on thefact that all leaf nodeswere at the deepest level of the
tree; each leaf node was mapped into itscorresponding texel by alwaysstarting at thetexture originand
recursively shifting location until reaching the node’s final position. Since for a full quadtree all leaf
nodes are at the same level, the mapping function depended only on the height of the tree (captured by
the number of recursive calls performed by the algorithm for each leaf node). For non-full quadtrees
the mapping function depends both on the height of the tree and on the level of the leaf node on the
tree. Clearly, leaf nodes at the deepest level of the tree should map to the same location as in the full
quadtree approach. Leaf nodesat internal level s should map to atexel corresponding to one of the leaf
nodes' childreninafull quadtree, i.e., should not map to any texel of the leaf nodes' siblingsor of their
children (follow in Figure 5.13).

The recursive algorithm for converting the radiosity quadtree of a quadrilateral surface into a
texture for a zero-order approximation is similar to the zero-order approximation algorithm for full
quadtrees in page 80. The recursive mechanism remains the same, but now the mapping function
needs to take into account the relative level of each leaf node with respect to the height of the quadtree
(Program 5.12).

Secondly, if afull quadtree has as many leaf nodes astexels in a texture of given resolution, a
corresponding non-full quadtree contains fewer leaf nodes than texelsin the same texture. Obvioudly,
mapping each leaf node of the non-full quadtree to a single texel in the texture leaves some texels
untouched. These gapsin the texture map can befilled in by interpolation. A zero-order approximation
finds the coverage of aleaf node in the texture map and replicates the radiosity value of that leaf
node into all those texels. A first-order approximation uses the radiosity at the corners (four or
three, depending on the shape of the original node) of the leaf node, to bilinearly interpolate values

inside the hole. The recursive algorithm for filling in the gaps on the radiosity texture is presented in
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Quadt reeToText ureZer oOrder ( quadtreeNode, |evel, height,
{
if ( level == height ) { Il 1t's a |l eaf node
span = 2" (height - level)
U’ = u * span
V' = v * span
texel[u'][v'] = quadtreeNode->radiosity

}

el se { /1 1t's an internal node, recurse.

Quadt reeToText ur eZer oOr der ( quadt r eeNode- >chi | d[ 0],
Quadt reeToText ur eZer oOr der ( quadt r eeNode- >chi | d[ 1],
Quadt reeToText ur eZer oOr der ( quadt r eeNode- >chi | d[ 2],
Quadt reeToText ur eZer oOr der ( quadt r eeNode- >chi | d[ 3],

| evel +1,
| evel +1,
| evel +1,

| evel +1,

hei ght, u*2,
hei ght, u*2+1,
hei ght, u*2+1,
hei ght, u*2,

V*2)
V*2)
v*2+1)
v*2+1)

Program 5. 12:  Converting a quadtreeto a texture with a zero-order approach.
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c
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0 F G G c c c c
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JKLM

Figure 5.13: Adaptive subdivision of a quadrilateral, the corresponding non-full quadtree, and the
mapping to a corresponding texture. Notice the empty texels in the texture not covered by any leaf

node using our agorithm.
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Program 5.14. Note that this algorithm could be consolidated with the algorithm on page 80 into a

Fi Il I nGapsZer oOrder ( quadtreeNode, |evel, height, u, v)

{
if ( quadtreeNode->nunberChildren == 0 &&
level != height ) { /1 1t’s an internal |eaf node
span = 2" (height - level)
V' = v * span
for (i=0; i<span; i++, Vv ++ ) {
u’ = u * span
for ( j=0; j<span; j++, u ++) {
texel[u'][v'] = quadtreeNode->radiosity
}
}
}

el se { /1 It's an internal node, recurse
Fi Il I nGapsZer oOr der ( quadtreeNode->chi |l d[ 0], |evel +1, height, u*2, V*2)
Fi Il I nGapsZer oOrder ( quadtreeNode->child[1], |evel +1, height, u*2+1, v*2)
Fi Il I nGapsZer oOrder ( quadtreeNode->child[2], |evel +1, height, u*2+1, v*2+1)
Fi Il I nGapsZer oOr der ( quadtreeNode->chi Il d[ 3], |evel +1, height, u*2, v*2+1)

Program 5. 14:  Fillingin the gapswith a zero-order approach.

single algorithm to accomplish both tasks. For clarity, we keep them as separate operations.

This section analyzed the zero-order algorithms for mapping leaf nodes of a non-full quadtree
into atexture and for filling in the occasional gapsin the resulting texture map. First-order algorithms
are also possible and follow the same modifications as presented in Section 5.5.1.1 imposed on the

algorithms of this section.

5.5.3 Resampling and Filtering

The rendering of radiosity dataisa resampling process (Section 2.6). It starts with sampled radiosity
dataon the surfaces of asceneand generates pixelson the screen. Assuch, radiosity rendering involves

both minification® and magnification'® processes. Sincethat radiosity datausually containsmostly low

° Minification happens whenever asampled signal is mapped into alower resolution space—informationis lost.
19 Magnification happens whenever a sampled signal is mapped into a higher resolution space—information needs to be

created/reconstructed.
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gpatial frequencies, this dissertation only analyzes the magnification process. [Wolberg92] gives an

analysis of filtering techniques for minification.

M agnification when rendering radiosity data happens both for the mesh-based approach and for
the texture-based approach; the spatial resolution on the screen is usually higher than the sampling
resolution on the radiosity domain. The graphics hardware performs either zero-order (nearest
neighbor) or first-order (bilinear) interpolation when magnifying radiosity data. These low-order
interpolation schemes cause value and slope discontinuitiesin the reconstructed signal (Section 5.4).
Perceptually, these undesired discontinuities produce faceting and Mach banding in the rendered
images. The naive solution for this problem isto oversample the radiosity domain such that radiosity
discontinuities and perceptual effects are minimized. However, this solution hurts performance by

creating unnecessary data.

Radiosity

quadtrees

Reconstruction

stage 1

Radiosity

textures

Reconstruction

stage 2

Pre-filtered

radiosity textures

Reconstruction

stage 3

Image

Figure5.15: Three-stage radiosity reconstruction pipeline.

The next three sections present a three-stage reconstruction pipeline for radiosity data that
reduces or completely eliminates the perceptual artifacts by using successive reconstruction and
filtering of the data until they are suitablefor display (Figure 5.15). The pipeline starts by resampling
given radiosity data; each radiosity quadtree (balanced or unbalanced) is converted into a single
continuousreconstructed radiosity function which isthen resampled to the origina samplingrate. This
first reconstruction stage handles T-vertices'! and unrestricted quadtrees'? in a unified way. Then, in
reconstruction stage 2, the resampled radiosity data are low-passfiltered. This second stage prepares
the radiosity datafor rendering. Thelast reconstruction stage isthe interpol ati on/filtering scheme used
for rendering the radiosity data. Since the radiosity data were already low-pass pre-filtered in the
previous stages, theinterpolation/filteringorder for the third stage can be aslow asfirst-order (standard
bilinear shading) and still produce results with minimal artifacts. These approaches are discussed in
terms of the radiosity-as-texturestechnique presented in Section 5.5, but also apply to the mesh-based

technique (even though with much more elaborate implementations).

1A T-vertex refersto avertex not shared by all the polygons sharing its supporting edges.
2|n arestricted quadtree, adjacent leaf nodes are never more than onetree level apart.
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5.,5.3.1 Reconstruction Stage 1—Resampling Radiosity from Any Quadtree

The first reconstruction stage is a unified solution for the T-vertex and unrestricted quadtree
problems. Radiosity subdivision can generate unbalanced quadtrees with nonconforming® elements
in regionswith different mesh densities[Cohen93, Sillion94]. Figure 5.16 presents an example where
neighboring elements have different level sof subdivision, creating T-verticesinthemesh (e.g., vertices

9 and 10 in the figure).  T-vertices are undesirable because the interpolated values at those points

Adaptive subdivision Corresponding Corresponding texture
of aquadrilateral restricted quadtree (flattened full quadtree)
3 6 2 quad 3 |11 | 6 a 2
E FL
12 3Gl B 12 |13 |10 | b | ¢
G ["H
7 5 A B C D 7|19 |8 |d]|5
9T 8
C D /\ e | f | g | h|i
0 7 1 E F G H 0|1 4 | m|1
T = T-vertex number = computed radiosity
#= vertices letter = inter polated radiosity

Figure 5.16: Adaptive subdivision of a quadrilateral, the restricted quadtree, and the corresponding
texture map: notice the T-vertices number 9 and 10.

(interpolation between vertices 6 and 8 for element B at location of vertex 10) will potentially be
different from the radiosity value computed at the same point (at vertex 10 for elements F and H). This
generates a visual discontinuity along the edges supporting that vertex (edges 6-10 and 10-8).

Several solutionsto the T-vertex problem have been proposedin the finite-element literature and
themost important are [Cohen93]: replace the computed value with the interpolated value at that point;
or userestricted quadtreesand triangul atethel arger element that neighborsthe T-vertex. Our solutionis
based on a recursive bicubic patch-based reconstruction. The technique does not subdividethe original
elements, keepsall the original radiosity samples, and creates acontinuousradi osity representation over
the original polygon (root of the quadtree).

We begin by creating a bicubic patch per color component for every leaf in the quadtree. This
provides C'! continuity between adjacent patches at the same quadtree level, but does not ensure C'!
continuity along edges containing T-vertices. Then, bicubic patches at |eaf nodes that are not at the
deepest level of the quadtree are recursively midpoint subdivided until we get afull quadtree. In that

subdivision process, previously computed radiosity valuesare shared by the new patches, and radiosity

13 Two adjacent elements in a quadtree are nonconforming if they are at different levels of the tree; this is the cause of

T-vertices.
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values for new points are approximated by interpolating the bicubic patch at the level directly above
in the quadtree. This processis recursively applied until we have afull quadtree that can be flattened
into a texture (Figure 5.16—ight). This technique generalizes directly for unrestricted or unbalanced
quadtrees, handling T-verticesin the same simpleand hierarchical way. Notethat thisalgorithmimplies
the creation of afull quadtree from any non-full quadtree. Note also that thisalgorithmisbased onthe
interpol ation-patches reconstruction scheme presented in Section 5.4 and the mechanism of algorithm
5.12 from page 85.

Given the continuousradiosity reconstructed function, it isnow possibleto resamplethe origina
data at any appropriate spatial resolution and to provide smooth radiosity renderings. Current graphics
hardware, however, implements only zero- and first-order interpolation schemes—not bicubic—which
cannot provide the smoothnessrequired for radiosity rendering. However, itispossibleto resamplethe
continuous data and generate radiosity textures as described in previous sections, which are then taken
into the next reconstruction stage and ultimately to smooth rendering with the first-order interpolation

hardware.

5.5.3.2 Reconstruction Stage 2—L ow-Pass Pre-Filtering Sampled Radiosity

The previous stage created radiosity textures sampled from continuous reconstructed functions.
Given the continuity of the reconstructed function, the radiosity texture can be up-sampled and
provide smoother data than the original radiosity data. However, this approach would be similar to
oversampling the radiosity domain, and just as undesirablefor performance reasons.

Alternatively, we want to produce processed radiosity data at the same given resolution but still
provide smoother results. This involves recognizing that some of the radiosity rendering artifacts are
dueto undesired high spatial frequenciesfrom low-order interpolation schemes. That is, thetraditional
zero- and first-order interpolation shading introduces high frequenciesin the spectrum of animage due
to the value and slope discontinuitiesof the low-order interpolation. A solutionisto low-passfilter the
radiosity data provided by the previous section such that high spatial frequency content created in the
shading process is minimized. The blur produced by low-pass filtering the radiosity data reduces or
completely eliminates the discontinuity artifacts of the renderings, even when bilinear shading is used
for rendering the image in stage 3 of the next section.

We have experimented with low-pass filters ranging from a2 x 2 bilinear filter upto 5 x 5,

4" order Gaussian filter. Increasing the resolution of the filter increases the smoothness of the results
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with, consequently, an increased blur of the whole texture. Increasing the resolution of the filter also

increases the computational time to convolve the filter with the textures.

55.3.3 Reconstruction Stage 3—Radiosity Shading

The previous stage preprocessed the radiosity data for this final stage of reconstruction in our
pipeline—thefinal radiosity rendering. We again start with sampled datain the form of atexture map
and reconstruct intermediate texel values on the screen as we render the textured polygon.

The usual reconstruction technique for rendering texturesis bilinear interpolation. Thistype of
interpolationisreadily availableand fast on current graphicshardware. However, bilinear interpolation
cannot represent first derivative continuity across the entire texture, which inability may cause artifacts
on the final images (Section 5.4). We have explored two aternatives here. First we tried taking the
resultsfrom thefirst stage reconstruction of Section 5.5.3.1 directly into the radiosity shading and using
bicubic texturefiltering availableon SGI”™ hardware [Bastos97]. In that case, we replaced the default
bilinear texture filtering by a bicubic filter (1/3, 1/3) [Mitchel|88]. Then, we expanded this two-stage
reconstruction pipeline into a three-stage one, as described here. In the three-stage pipeline radiosity
dataresulting from stage 1 is pre-filtered before getting to the final radiosity shading stage. Thisthree-
stage approach produced renderings as smooth asthetwo-stage one, without the performance penalty of
the on-the-fly bicubic filtering. The advantages of using the bilinear filtering over the bicubic filtering
are higher performance, and reduced frame buffer and texture memory requirements; standard bilinear
interpol ation operates with 8 bits per color component, whereas the bicubic filtering requires more bits
per component to avoid possible range overshooting of the bicubic interpolation. The graphics API

only offered 12 bitscomponent as an alternative to 8 bits/component.

5.5.4 Curved Objects

We have heretofore assumed planar (triangular or quadrilateral) primitives. Computing and displaying
smooth radiosity for curved primitives poses a more interesting problem. This section extends the
radi osity-as-textures techniques described in the previous sections to handle radiosity data for curved
surfaces efficiently.

The applicability of our approach to u,v-parameterized curved surfaces, such as Bezier or
NURBS patches, is straightforward, and it works exactly in the same way as for quadrilaterals or
triangles. The curved patch is partitioned for radiosity computation, and the corresponding quadtree
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isused for deriving the corresponding RAT to be applied as a texture to the u,v-parameterized curved

surface. The approach also appliesin the same way to implicit surfaces.

Figure 5.17: Sphere subdivided into six patches created by the projections of the faces of a cube
inscribing the sphere.

We have applied our radiosity-as-texturesagorithms to a sphere subdivided into six equal-area
spherical patches, as shown in Figure 5.17. Each of the patches is independently handled during
radiosity computation asaquadrilateral patch. Thismeansthat each patch hasa corresponding quadtree
subdivision after radiosity computation. The challenge here is to reconstruct a smooth radiosity
function over the sphere by sharing information along and acrossthe edges between patches. The RAT

reconstruction scheme for the six-patch sphere works as follows:

Create a radiosity texture for each spherical patch, independently, by traversing their
quadrilateral-shaped quadtreesas described in sections5.5.1 and 5.5.2. Then, create afinal
radiosity texture by combining and resampling each of the independent patch radiosity
textures. Themapping and distributionof radiosity to be stored inthefinal radiosity texture
depends on the type of texture coordinates to be used by the rendering engine. Our final
radiosity texture for a sphere uses texture coordinates compatible with current graphics
libraries such as OpenGL., which represents spherical coordinatesin the latitude-longitude
system. Latitude is represented by the vertical axis in texture coordinates and ranges
from —x/2 to +=/2 from bottom to top in the texture. Then, each latitude value
corresponds to a line in the texture. The horizontal dimension of the texture represents
longitude. Notethevarying spatial resolutionin longitudefor different fixed latitudes. For

example, the poles of the sphere represent single pointsin the sphere; however, they have
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the same spatial resolution as the equator, which is represented by the middle vertical line

in the texture.

Let’s arrange the independent radiosity textures on a plane as presented in Figure 5.18. This clearly

needs some warping and resampling to create a texture compatible with OpenGL.

<+— Top pole

<+— Equator

<+— Bottom pole

Figure5.18: Layout for the six radiosity textures from the sphere.

Given the potentially different resolutions of the independent radiosity textures (quadtree)
among the six patches, we start by determining the maximum resol ution among them. This maximum
resolution defines the resolution of the final radiosity texture such that it accommodates all the
information captured on the independent radiosity textures without any down-sampling. We make
the horizontal resolution four times the maximum resolution of the independent radiosity textures and
the vertical resolution two times the same maximum resolution. The factor of four in the horizontal
resolution comes from the need for the final radiosity texture to accommodate information from four
independent radiosity textures along the equator, as suggested by figures 5.17 and 5.18. The factor of
two for the vertical resolution is somewhat more complicated. Vertically, we need to accommodate
the two polesand the equatorial region. Figure 5.18 suggestsafactor of threein the vertical resolution.
However, we should noticethat the pole patchesin that figure use only onequarter of thetotal horizontal
available resolution. They need to be spread so that they use the whole top and bottom regions of
the texture. Simply resampling the top/bottom pole so that it uses the whole top/bottom row wastes
resolution. To compensate, we use only half the vertical resolution at polar regions. Even though this
still represents more resolution than may be necessary at the poles, it facilitates the smoothing process
of thefinal RAT on the pole regions and achieves compatibility of the radiosity textureswith OpenGL
texture requirements (power of two resolutions on the texture sides).

Once the resolution for the final radiosity texture has been determined, we resample the
independent radiosity textures to create the final texture. We backward map all the texels from the
final radiosity textureinto the corresponding independent textures and point-sampl e the corresponding

RAT to get the radiosity value at that location.
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After theindependent radiosity textures are resampled to generate the final radiosity texture, the
final texture is low-pass filtered as described in Section 5.5.3.2. As continuity is needed along and
across the texture seams on the sphere, padding of thefinal radiosity textureis necessary so that texels
from the left side of the texture are taken into account when filtering itsright side, and vice-versa. The
padding for the polar regionsis done by replicating the first and the last rows of the textures. Thesize
of the padding region (number of texels) followsthe regquirements of OpenGL convolution [Wo096].

The techniques developed here apply for other curved surfaces. The partitioning of the surface
into patches is necessary for the radiosity solution process, and the reconstruction steps use that
information to handle continuity across the surface. The mapping of the radiosity information into
a single texture, the padding, and the pre-filtering are necessary to ensure smooth rendering of the

radiosity texture across the entire curved surface.

5.5.5 Performance of RAT Models

We observed that replacing polygonal radiosity meshes with texture maps can dramatically improve
rendering performance, even across a variety of real-world models that contain mixes of meshes and
textures [Bastos96]. Table 5.5.5 presents results for the grotto model (Figure 5.19). The table lists
the number of polygonsfor the original (no r adi osi t y) model—before radiosity solution, for the
adaptively subdivided (adapt . subdi v. ) model—after radiosity solution, and for the RAT model
rendered with bilinear and bicubic shading. Thetable also comparesthe size of the modelsand the use

in texture memory for RAT models and presentsthe frame rates for each model.

Model Polygons Size Textures Frame

number (bytes) | memory | number rate
no radiosity 452 72K omMB 0 60.0
adapt . subdi v. 93,640 | 16,282K oMB 0 32
RAT bi li near 452 93K 4MB 358 253
RAT bi cubi c 452 93K 4MB 358 133

Table 5.1: Performance with thegr ot t o model.

5.5.6 Appearance of Textures Reconstructed with One- and Two-Stage Pipeline
55.6.1 Resultsfor thetwo-stagereconstruction pipeine
Images (c)-(e) in Figure 5.20 present a set of images demonstrating the reconstruction improvements

obtained with our two-stage pipeline. Notice how a first stage bicubic reconstruction can reduce
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Figure 5.19: The grotto model comparing the geometry before radiosity (on the left), the adaptively
subdivided model after radiosity computation (on the right), and the final rendered result equivalent
for both mesh and texture radiosity (in the middle). Note that the radiosity-as-textures version of the
model renders the same number of polygons as the original unsubdivided model. Note also that the
reduction in polygon count from the adaptively subdivided model to the radiosity-as-textures model
trandlates into texture memory usage.

the artifacts resulting from undersampled radiosity solutions.  Image (a) is the radiosity texture
corresponding to the quadtree (height 2, 5 x 5 samples) output from Lightscape’™. Image (a) is
used to reconstruct textures (c), (d), and (e) using bilinear (d) and bicubic interpolation ((c) and (€)).

Image (d) presentsastandard rendering of theradiosity informationinimage (a) generated by bilinearly
resampling image (a) to 256 x 256 pixels. The image shows a prominent Mach band (star-shaped)
artifact inthe center of the bright spot in the upper Ieft corner due to slope discontinuitiesin that region.

Image (e) presents the resampling of image (a) with bicubic interpolation and how it can eliminatethe
artifacts of bilinear interpolation. Notice that the overall shape of the bright spot is rounder and there

is no apparent star-shaped artifact in the center of the spot, as expected from the reference image (b).

Figure 5.20.(g) demonstrates the use of hardware bicubic interpolation of texture maps to
produce a rendered image that is smoother and shows fewer shading artifacts than the corresponding
bilinearly interpolated Figure 5.20.(f). Image (c) shows the resampling of the bicubic representation
to 8 x 8 pixels (OpenGL allocates texture memory assuming powers of 2 pixels on the side of the
textures-we scale up the 5 x 5 information to use al the allocated memory). Image (f) shows that
even atexture map that has been generated from resampling €' -continuous bicubic patches can show
artifacts if the texel values are interpolated using bilinear mode in hardware. Notice that the bicubic
filtering mode (image (g)) produces much smoother results by blurring the information. Notice also

that bicubicfiltering isthreetimesslower than bilinear filtering on the machine described above, which
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Figure 5.20: Reconstruction results for the two-stage pipeline: (@) initial information available from
two levelsof subdivisioninLightscape™ ™ ; (b) reference image obtained from aheight 9 quadtree (up to
513 x 513 samples) to be used asagoal for the reconstructed images; (c) first stage of (software) bicubic
reconstruction of image (a) with8 x 8 resampling; (d) first stage of (software) bilinear reconstruction
of image (a) with 256 x 256 resampling; (e) first stage of (software) bicubic reconstruction of image
(a) with256 x 256 resampling; (f) hardware bilinear filtering of image (c) with 256 x 256 resampling;
and (g) bicubic haraware filtering of image (c) with 256 x 256 resampling.
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impacts performance. The next section presents results for our three-stage reconstruction pipeline,

which provides smoother results than standard radiosity shading without impacting performance.

5.5.6.2 Resultsfor thethree-stage reconstruction pipeline

The mgjor difference between the two-stage and the three-stage pipelineis an additional filtering stage
in-between the two stages of the two-stage pipe. The additional stage prefilters the radiosity texture
from thefirst stageto prepare it for shading (the last stage in both pipes).

Figure 5.21: Reconstruction results for the three-stage pipeline: the top most image represents the
radiosity texture generated in the first stage by converting quadtree information into a texture; the
second row of images shows the low pass filtering of the top image to produce prefiltered radiosity
textures in the second stage of the pipe (filters range left to right from 2 x 2 to 6 x 6 samplings of
a Gaussian filter); the third row of images shows the final result of the three-stage pipeline produced
with standard bilinear interpolation of the prefiltered radiosity textures in the third stage of the pipe.
Theimages in thefirst and the second row are all 8 x 8 in resolution and were scaled to 128 x 128 for
display inthe figure. Theimagesin the third row are all 256 x 256 in resolution.

Noticethat the left most imagein the second row of images correspondsto the standard radiosity
rendering—nbilinear interpolation with no prefiltering. Notice also the increasing blur for increasing
filter resolution (from left to right in both the second and the third rows). The low-pass filtering
performed by the sampled Gaussian filters reduces the high spatial frequency content of the radiosity
texture before sending thetexture to the standard bilinear shading stage. Thislow passfilteringimplies
smaller slope discontinuities in the bilinearly shaded textures, which trandate into less noticeable

artifacts in the final images. Figure 5.21 presents results for our three-stage radiosity reconstruction
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pipeline. The top most image isthe 8 x 8 radiosity texture output from the first stage (equivalent to
image (c) in Figure 5.20). The second row of images shows the results of low pass filtering the top
most image with a Gaussian filter with resolution ranging from 2 x 2 (bilinear interpolation) to 6 x 6
samples. Thethird row of images shows the results of rendering the prefiltered textures of the second
row using standard bilinear shading in the graphicshardware. Compare the resultsin thethird row with

the reference image (b) in Figure 5.20.

Observe, however, that the prefiltering approach achieves smoother results by blurring the
radiosity information (similar to what was achieved in image (g) of Figure 5.20). An excessively
widefilter may result in an excessively blurred image, which may eliminate small featuresin radiosity
textureswhentryingto smooth featuresof larger spatia size. Spatially-variantlow passfiltering may be
necessary for smoothing the textures but still preserving features of different sizesin asingleradiosity
texture. Note also that the three-stage pipe does not impact rendering performance, if compared to

standard radiosity shading, but still produces smooth radiosity renderings.

5.6 Discussion

The radiosity-as-textures approach (as well as any other texturing technique) is a feed-backward
mapping approach, whereas the mesh-based approach is afeed-forward mapping approach. The mesh-
based radiosity approach forward-maps all the triangles onto the screen, whereas the texture-based
approach forward maps a single triangle onto the screen and then looks up (backward maps) the
corresponding radiosity value from the texture for each pixel covered by the unsubdivided triangle. If
the unsubdivided triangl e covers the same number or more of pixelson the screen aswe have texelsin
the radiosity texture, the two approaches have similar costs. However, if the number of pixelscovered
by the unsubdivided triangle is smaller than the number of texels, the feed-backwards approach is
more efficient than the feed-forward approach. For example, suppose that the unsubdivided triangle
from our example in Section 5.5 covers 100 pixels on the screen. The feed-forward approach still
needs to forward-map all the 65, 536 triangles onto the screen, whereas the feed-backwards approach
forward-maps a single triangle and then performs only 100 backward maps to get the corresponding
radiosity values. Clearly, the RAT approach can be more efficient than the mesh-based radiosity. As
presented in thischapter, the RAT approach can also providethe same or better reconstruction schemes
than the mesh-based approach.
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Representing radiosity with texture is not a new idea. The next paragraphs briefly distinguish
related approaches from our radiosity-as-textures approach.

Heckbert [Heckbert90] proposed the use of texture mapping as an alternative to the mesh-based
radiosity approach. In his approach the energy arriving at a surface is computed using Monte Carlo
ray tracing and stored at texels of radiosity textures (rexes). Uniform adaptive sampling is supported
that organizes rexes into quadtrees. During rendering, radiosity at any pixel in the final image
is approximated using bilinear interpolation. Due to the Monte Carlo ray tracing and the bilinear
reconstruction step, Heckbert's approach can generate noisy and discontinuousimages.

Myszkowski and Kunii [Myszkowski94] describe a method to replace the most complex
radiosity mesh areas with texture maps based on available texture memory and the number of mesh
elements that would be eliminated. Each selected surface is rendered as a Gouraud-shaded polygonal
mesh, and a texture map is retrieved directly from the surrounding rectangular region in the frame
buffer. In situations where there are mesh-based artifacts in the lighting solution, they recal culate the
solution directly to the texture map itself, by applying radiosity sampling at locations corresponding to
texels. Radiosity texture maps are rendered using bilinear texture interpolation on a Silicon Graphics
RealityEngine.

Moller [Moller96] describes a method for replacing radiosity solutionsfor NURBS (geometry)
models with a single texture map. This allows for multiple different levels-of-detail of the model
with the same illumination texture map. Textures are generated from aradiosity mesh, and texels that
have no corresponding mesh values are filled in using bilinear interpolation. The textured models are

rendered on a Silicon Graphics RealityEngine using bilinear texture interpolation.
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CHAPTER 6

NON-SCATTERED TRANSFERSOF LIGHT

The scattering of light spans a range of behaviors (Chapter 3). At one end, a single ray of light
impinging on a surface is transferred with equal distribution in all outgoing directions—the ideally
diffuse transfers. On the other extreme, light from a single ray at a given incoming direction is
transferred into a single outgoing direction—the ideally specular transfers. Chapter 5 addressed the
ideally diffuse transfers—the one end of the range. This chapter deals with the ideally specular
transfers—the other end of the range. The in-between transfers—namely, the glossy transfers—are
discussed in Chapter 7.

Chapter 5 considered the view-independent component of the light transport problem. Although
important, that component lacks view-dependent specular effects, which considerably enhance the
photorealism of ascene asit isviewed dynamically. These non-static shading and visual cues produce
more photorealistic and moreinteresting resultsfor interactive walkthroughs. Thisand the next chapter

discuss view-dependent components of the light transport problem.

6.1 Ideally Specular Transfers

Ideal or non-scattered light transfers were discussed in Section 3.5. Both ideal reflections and ideal
transmissions were considered. This chapter discusses algorithms to compute ideal reflections and
leaves the ideal transmissionsas an extension of the presented techniques.

The light transport Equation (4.1) is greatly smplified under the assumption that the light
transfers are ideally specular. For ideally specular transfers, the BDF is a delta function in the
directional space centered at the point in question—the BDF isnon-zero only in the specular direction.
That is, in an ideally specular transfer, incoming light in a single direction produces light in a single

outgoing direction—inthe specular directionws;,. Intermsof the methodsdevel opedin Section 4.1, the



light transport equation for ideally specular transfers can be expressed as a convolution of theincoming

light ; with adeltafunctionin directional space (in the domain of the light transfer problem):
Lo(x,w,) = Le(x,,) + Li(x,W;) x 0 (wis). (6.1)

Convolving any function with a delta representsthe sampling of that function in the particular domain
location specified by the delta, according to the sifting property of the deltafunction (Section 2.2) and
samplingtheory (Section 2.6.1). That is, theconvolutionterm in the equationaboveisjust thesampling
of the incoming light function in the specular direction 7;, determined by the BDF delta function.
Instead of using convolutionwith adeltafunction, the equation can be simplified and explicitly written

in terms of the sifting domain location, i.e., in terms of the specular direction «;,:
Lo(x,w,) = Le(x,0,) + Li(x,W,). (6.2)

Theintegration of theincominglight over directionin Equation (4.1) isunnecessary for ideally specular
transfers; the outgoing light from a point in a given direction depends on a single incoming direction
of light.

This dependence of the outgoing direction of light upon only the specular direction of incoming
light can be seen in terms of a mapping between two spaces. Incoming directions are mapped into

outgoing directions and vice-versa.

6.2 A Mapping Approach to Reflections

Abstractly, amirror surface can be seen as awindow to areflected scene. Each surface pointin a scene
has its corresponding point in the reflected scene, given by the straight reflection through the mirror
surface point. The reflected scene depends on the geometry of the scene, on the curvature of the mirror
surface, and on the relative position and orientation of the mirror with respect to the viewer.

A reflection can be seen asamapping operation. Thereare two spaces: the space wherethe scene
isdefined and the space wheretherefl ected sceneisrepresented (Figure6.1). Infact, for reflections, we
are not directly interested in the reflected space; we are interested in projections of that reflected space
ontothemirror surface. Thereflected image spaceisasubset of therefl ected space, where the subseting
functionis perspective projection. The reflected image space requiresthe definition of aviewer, which
is not required for the reflected space. In terms of the mapping, we are interested in the function that
maps points between the scene and the reflected image. Asfor any other mapping operation, there are

two alternative mappings for reflection: feed-backward mapping and feed-forward mapping.
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Figure 6.1: The spaces involvedin areflection on a planar mirror: the real space, the reflected space,
and the reflected image or projected reflected space (on the surface of the mirror).

In afeed-backward approach—i.e., querying the reflected scenefor each visible point in thereal
scene (ray tracing)—there is a simple mechanism to find the reflected image on a mirror surface. For
each viewing ray, thevisible surface point in the direction of the ray and the normal vector at that point
are known; thisallows computing the reflected vector at that point and finding the correspondingvisible
surface point as seen from the reflection point in the reflected direction.

In the feed-forward approach—i.e., mapping pointsfrom the real scene onto the reflected image
on the mirror surface—a simple mechanism for computing reflections exists only for planar mirrors.
For each point in the rea scene, find its corresponding reflected location through the mirror plane
(Section 6.3); the visible portion of the reflected scene through the mirror is the reflected image. For
curved surfaces, though, there is no single reflection plane to map points from the real scene into the
reflected scene. A curved surface containsinfinitely many tangent (reflection) planes, and one cannot
know which one to usefor reflecting a point from the real scene into the reflected scene.

The difference between the two alternative mappings for curved surfaces is that the feed-
backward approach defines a one-to-one mapping, whereas the feed-forward defines a one-to-many
mapping. Clearly, thefeed-forward approach isnot theoretically appropriatefor handling reflectionson

curved surfaces. However, the feed-forward approach defines a one-to-onemapping for planar mirrors.

6.3 Planar Mirrors

Abstractly, aplanar mirror defines awindow to the reflected scene (Figure 6.2)—a frustum defined by
theviewer and the edges of the mirror to an imaginary representation of the scene reflected with respect
to the mirror, or, aternatively, the frustum defined by the reflected viewer and the edges of the mirror

into the scene. The solid lines in the figure show the frustum defined by the viewer and the mirror
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Figure 6.2: Reflection of the eye-point E,, and the eye-direction E; with respect to a planar mirror.

edges. Thedashed linesshow thereflected frustum defined by the reflected viewer and themirror edges.
For aplanar mirror, the reflected image is the planar perspective projection of the reflected scene onto

the planar mirror surface (Figure 6.3).

Figure6.3: A planar mirror illustratingthe planar perspective projection onthe reflected image. Notice
the perspective shortening on the reflected brick wall.

Algorithmically, a scene with asingle mirror can be drawn in two alternative forms: by double
modeling or with a two-pass approach. The double modeling solution actually models the reflected
sceneinitsphysical location with respect to the scene and draws both the scene and itsreflected version
with a single pass. The two-pass approach is split as follows. In the first pass, the reflected image of
the sceneis drawn. In the second pass, the rest of the scene (non-mirror surfaces) isdrawn. The first

pass reflects the eye-point E,, and the eye-direction E; with respect to the plane supporting the mirror
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(Figure 6.2) and draws the scene from the mirrored view pose. The mirrored eye-point M, and the

mirrored eye-direction R, are given by

M, = E, + 2D(—N) (6.3)

and

R, = 2(N-E,)N — E,. (6.4)

where D is the shortest distance from the eye-point E, to the plane, N is the normal vector to the
mirror, and E; is the eye-direction. In the second pass, the scene is drawn from the original view
pose but without drawing the mirror surface. Alternatively, the second pass can use a texture-mapping
technique: the reflected image computed in thefirst passis applied as a texture onto the surface of the
mirror which must then be drawn with the texture in the second pass. The texture-mapping approach
has the additional burden in current graphics architectures of requiring the transfer of the reflected
image from the color buffer into texture memory per frame.

The description above assumed either a single planar mirror in the scene or that we are not
handling interreflections when there is more than one mirror in the scene. If there are two or more
mirrors in the scene, the same algorithm hasto be applied recursively. In the first passfor each mirror
in the scene, determineif the other mirrors are visible from the respective reflected view poses. If so,
apply the algorithm recursively to each of the visible mirrors. The recursion terminates when one of
themirrorsdoesnot “see” any of the other mirrorsfrom the corresponding reflected view pose or when
the recursion reaches a pre-imposed recursion limit.

Although this technique for rendering reflections on planar mirrorsis simple, it isintensivein
terms of computational time. Each planar mirror in the scene requires the rendering of the entire scene
from its mirrored view pose for each frame. This means dealing with the entire complexity of the
scene several times every frame, which isimpractical for reasonably complex scenes. The case with
multiplerecursive mirror reflectionsis even harder; the number of re-renderings of the entire scene per
frame grows exponentially with the number of mirrorsin the scene and with the number of recursion
levels performed. Consider the limiting case of parallel facing mirrors as in the Hall of Mirrors at
Versdlles. The recursion process is unavoidable for rendering mutually visible specular reflectors.
Thus, interactive rendering of planar mirror reflections demands more efficient scene rendering at each

level of the recursion than does rendering unmirrored scenes.
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6.4 Optimized Scene Rendering

Interactive rendering of large model s can easily exceed the performance of graphics hardware systems;
the task becomes even harder when the model needs to be rendered several times per frame, as for
reflections. Often there are more primitives to be rendered than pixels on the screen. Moreover, in
general more than one point in the scene maps to the same pixel in an image (just the closest point is
kept). These two observationsimply that the rendering engineis handling more datathan afinal image
can represent. Thisimplies a waste of computational time—and leads us to the UNC Walkthrough

Project motto:
Avoid putting into the rendering pipeline polygonsthat you cannot finally see.

The fundamental idea is to decouple rendering time from scene complexity. An anaysis of what
happens when visualizing a geometrical model indicates afew approaches for controlling the number
of primitivesthat have to be sent to the graphics pipeline. Primitives should not be sent to the graphics
pipelineif:

¢ they are outside of the view frustum (view-frustum culling)

¢ they face away from the viewer (back-face culling)

o their projection on the image is substantially smaller than a pixel (model simplification)
o they are behind another opagque object (occlusion culling)

Software techniques exist for handling the situationsabove and their names appear in parentheses. The
interested reader isreferred to [Aliaga99] for adescription of a system that combinesall the techniques
above and providesreferences to earlier work on each of thetopics. Thischapter drawsupon the fourth
approach above for accelerating scene rendering in mirror reflections. An image-based representation
of the scene taken from selected view poses is precomputed and then warped at runtime to compute
new images from novel view poses. Animage of a scene captures only thefirst layer of visible points
for the particular view pose, i.e.; awarping of such an image does not deal with the occluded regions

from the original view pose.
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6.5 Image-Based Rendering

Recently, image-based methods have emerged as possibletoolsfor producing views of an environment
in time that is independent of scene complexity [Chen93, McMillan95, Levoy96, Gortler96]. The
idea is to precompute images from several view poses in the scene and then derive, from the set of
precomputed images, new images for arbitrary view poses at runtime.

We follow the method in [McMillan97]. A set of images-with-depth! is precomputed for a
scene and then reprojected at runtime to derive new images. The precomputation represents a point
sampling of the environment—each pixel capturesthe three-dimensional location and color of thefirst
visible surface along the pixel direction as seen from the COP (Figure 6.4)—and the runtime step is
a reprojection of those 3D point samples to reconstruct images for novel view poses. Note how

Occluded
4 scene

Figure 6.4: Animage-with-depth of a simple scene: each arrow labeled with a’z’ represents a pixel
surrounded by dotted lines representing the corresponding solid angle. Notice that the occluded part
of scene (solid line squares) is not captured.

the precomputation step reduces depth complexity to a value of one on any image-with-depth of an
arbitrary scene (assuming that an image captures a single color and a single depth value per pixel).
Clearly, thedepth complexity reduction of thismethod can be notable. However, thisdepth complexity
reduction does not always trandate directly into efficiency. The point sampling of the scene generates
larger amounts of data than the original scene composed of polygons, and image reprojection suffers

from artifacts.

! Animage-with-depth capturescolor and depth of thefirst visible surfacealong each pixel direction asseen from the COP.
Therefore, each pixel represents apoint in three-dimensional space with its corresponding color. An image-with-depthisa

point sampling of a scene composed of continuous surfacesfrom a particular view pose.
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Figure 6.5: Image-with-depth example: (left) original scene, (middle) the reprojection of a
single image-with-depth showing its view-frustum, and (right) the same image-with-depth with
reconstruction.

The large amounts of data produced by the image-based approach may require memory
management and data fetching techniques when the image data does not all fit in memory [Aliaga99).
Asfor artifacts, the reprojection of images-with-depth is prone to disocclusion artifacts. Disocclusion
or exposure artifactsappear inthefinal imagesasholeswith no color dataduetotheinvisibility of those
spotsfrom the original view poses. For example, let’s suppose a singleimage-with-depth that captures
pointsonly onaface of acube (Figure 6.6). Now supposeanew view pose that would uncover another
face of the cube (Figure 6.7). A reprojection of the image-with-depth to the new view pose will present
aholeintheregion of the uncovered face of thecube, sincethat part of the model wasnot sampled by the
image-with-depth. Notice the disocclusion artifacts in the reprojections of a single image-with-depth

in Figure 6.5.

6.6 Image-Based Approach to Planar Mirror Reflections

We compute mirror reflections on planar surfaces by using the image-based rendering approach. Since
the amount of computation required to reproject an image is proportional to the image size, thetime
required to render amirrored view of the scene is constant in the resolution of the images. Thisisin
contrast to geometry-based rendering of reflections (Section 6.3), whosetime depends on the geometric
complexity of themodel. We deal with disocclusion artifacts by rendering multipleimages-with-depth
taken from view poses near the desired view pose. Since distinct view poses capture different visible
regions of the scene, rendering more than a single image-with-depth decreases disocclusion artifacts.
The agorithm starts by precomputing visibility for each planar reflector in the scene. For

each reflective object, a set of images-with-depth is precomputed for points behind the mirror surface
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Figure 6.6: Image-with-depth of a cube face: notice that the image-with-depth captures information
only about one of the faces of the cube—thefirst visible surface along the direction of each pixel.

Figure 6.7: Image-with-depth reprojected to a new view pose: notice the lack of information to
reconstruct the uncovered face of the cube.
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Figure6.8: Cross-section of asimple scene containing apyramid insidea cube. The surface indicated
with a normal vector—the base of the pyramid—isamirror. The hemisphere behind the mirror serves
for placing images-with-depth for capturing what is visible from the surface of the mirror. Three
distinct view frusta are shown with three different line styles.

(Figure 6.8). The points are uniformly distributed on a hemisphere behind the reflector and define
the centers of projection for the images-with-depth. Each COP and the edges of the mirror define a
view frustum for an image-with-depth. The set of images-with-depth represents what is seen from
the reflector’s surface over a range of angles and positions. In fact, the set of all pixels in the
images-with-depth represents a point-sampled version of the original model. A detail worth noticing
is that the point-sampling captures only the first layer of surfaces visible from the mirror surface; for
example, the images-with-depth of a mirror inside a room with opague walls do not point-sample
objects outside of the room, which may contain higher complexity than the objects inside the room.
Thiscapturing of just thefirst visiblelayer of surfaces (precomputation of visibility/occlusionfromthe
mirror point of view) translates into rendering speed-ups.

The image reprojection approach assumes that al sampled points in a scene emit light
isotropically, so that light intensity (color) information stored in images-with-depth from a given
view pose is valid for any reprojected view pose. That is, images-with-depth have to store
view-independent light information, in order to produce valid reprojections at arbitrary view poses.
Our images-with-depth sample radiosity-illuminated model s (Chapter 5), so that the color information
stored by the imagesis a view-independent quantity.

Our image-based approach for rendering reflections on planar surfaces has four distinct steps:
sampling, selection, reprojection, and reconstruction. The first step is part of a preprocessing phase,
whereas thelast three are performed at runtime. Theresult of thisimage-based passisa perspectively-
correct reconstructed view of the environment as seen from a mirrored viewpoint. The next sections

discussthe four steps above.
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6.6.1 Sampling

The sampling step captures the regions of the scene visible from the surface of the mirror. A set of

images-with-depth is created for each planar mirror (figures 6.8 and 6.9). The sampling process

-
-
s
an

Figure 6.9: Sampling step: the top figure illustrates the three sampling stages on a top view and on a
side view of aplanar reflector; the bottom figure showsthe distribution of view-frustafor images-with-
depth for aplanar reflector.

proceeds in three hierarchical stagesto finely sample what is visible from the surface of the reflector.
First, the planar reflector is discretized at a given planar resolution. Each of the resulting elements on
the plane defines a reflector element on the mirror object. Then, ahemisphereis placed centered at the
back side of each element; the base of the hemisphereis contained insidethereflector element. Finaly,
pointsare uniformly distributed on the surface of the hemisphere. Each point on the hemisphere defines
the COP for an image-with-depth. The (possibly off-axis) view-frustum for each image-with-depthis
created using one point on the hemisphere as the center-of-projection and the vertices of the reflector
element as the near plane. Both the density of hemispheres and the density of points on the surface of
each hemisphere depend on the distance from the mirror to the reflected scene. More discrete elements,
and hence more hemi spheres, and more pointson each hemisphere, and hence more images-with-depth
for each discrete element, are needed as the reflected scene is closer to the mirror surface. Figure 6.8
shows how the locations of the images-with-depth are chosen for a single reflector element, whereas
Figure 6.9 shows the distribution of images-with-depth for a reflector discretized into three reflector

elements.
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Intermsof implementation, the Class6.10 summarizeswhat isstored for eachimage-with-depth.

In that class, nCol s and nRows define the number of columns and rows of the image, col or and

class | mageWthDepth {
int nCol s, nRows;
unsi gned char * col or
float * dept h;
Mat 44 i nverse

Class 6.10: Datastructurefor holding image-with-depth information.

dept h contain the color and depth information per pixel for theimage, and i nver se representsthe
inverse of the geometrical transformation used to place the virtual camera in the reflected view pose
when computing the image-with-depth. The pseudo-code in Program 6.11 describes how to compute

an image-with-depth.

Setup canera pose (nodel viewMatrix, projectionMatrix, viewportMtrix)
Render scene
Save inverse of canera pose:
inverse = inverse_nodel viewMatri x*i nverse_proj ectionMatrix*i nverse_vi ewportMatri x

Save col or buffer and depth buffer

Program 6.11:  Computing an image-with-depth.

Noteacrucia difference between atraditional image (2D projection) and an image-with-depth;
atraditiona image captures the projected scene onto the screen plane, whereas an image-with-depth
captures the location of intersected points by pixel raysin 3D space. This observationimpliesthat all
the pixelsin atraditional image have the same size (the pixel area on the screen plane), whereas, for
perspective projection each pixel in an image-with-depth can potentially have adifferent size based on
their distanceto the viewer. Each pixel representsvisibility insideasmall pixel frustum and the farther
from the COP the pixel ray intersectionwith an object occurs, the larger the surface area subtended by
the pixel frustum. To distinguish between traditional and image-with-depth picture elements, we refer

to image-with-depth picture elements as points.
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6.6.2 Sdlection

The sampling step used a set of images-with-depth to capture the visible regions of the model from a
range of positionsand orientationsfrom behind the planar mirror. At runtime, the selection step finds

theimage(s) in the set of each mirror that best approximate the corresponding reflected image.

Er

Figure 6.12: Selection step.

The selection step mirrors the viewpoint and the viewing direction about each reflection plane
(Section 6.3) and selects the image(s) that are closest to the mirrored view pose (Figure 6.12). By
examining the viewing angle formed by the mirrored view direction and the viewing direction of
the images-with-depth, the selection determines which images-with-depth have the highest image
resolutionin thereflected view pose. Thisisasimple selection processimplemented asa search for the
minimal angle between the mirrored view direction and the view directions of the images-with-depth.
A distance-based selection technique is also possible: based on the distance from the COP of the
precomputed images-with-depth to the COP of the reflected camera, the algorithm selects the closest
one(s). Both selection methods perform equally well when thereflected view poseisat adistancemuch
greater than the diameter of the hemisphere. However, when the reflected view poseiscloseor inside

the hemisphere, the directional method provides better results.

6.6.3 Reprojection

The selection step found the image(s) with COP(s) closest to the reflected view pose in the set of
precomputed images-with-depth of the planar mirror. However, the selected image(s) were potentially

not computed from the same view pose as the reflected runtime view pose, because either the exact
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direction or the exact COP was not sampled. The precomputed images-with-depth need to be warped

tothe new reflected view poseto approximatethe visibleregionsof the model from that new view pose.

inverse

transform

COPsource

transform * inverse COPgestination

Figure 6.13: Image-with-depth reprojection.

To warp the precomputed images to the new view pose, the pixels of the images-with-depth can
be projected back to world space by using theinverse of the transformation matrix used to compute the
images-with-depth (Figure6.13). Then, the pointsinworld space are transformed into the new reflected
view pose using the current transformation. This process representsthe reprojection of points between
two three-dimensional spaces. Our implementation exploits the graphics hardware in performing the
reprojection, and depthisresolved by the Z-buffer when two or more pointsmap to the same pixel inthe
reflected image. Each pixel in an image-with-depth is dealt with as a point in three-dimensional space
that issent through theregul ar transformation pipeline. Thetransformation matrix ispreloaded withthe
product of the current runtime transformation and the inverse transformation of the respective image-
with-depth. The resulting transformation matrix takes pointsfrom the image-with-depth to the current
view pose. Intermsof OpenGL implementation, pixelsfrom animage-with-depth are reprojected using

the pseudo-codein Program 6.14 (along with the class definition of an ImageWithDepth (Class 6.10)).

6.6.4 Reconstruction

A reconstruction process is necessary to produce an image from the possibly scattered points on the
screen resulting from the reprojection step (Figure 6.5). The reprojection simply maps 3D locations
from the original eye-space where the images-with-depth were computed into the new eye-space of

the reflected view pose. Nothing ensures that the reprojected points from the original images-with-
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Set up new canera pose (nodel viewvatrix, projectionMatrix, viewportMtrix)
current _transform *= i nrageW t hDept h- >i nver se
gl Begi n( GL_PQO NTS );
For x=0 to i mageW t hDept h->nCol s
For y=0 to i mageW t hDept h- >nRows

gl Col or (i nageW t hDept h->col or[ x, y]);

gl Vertex(x,y,imgeWthDepth->depth[Xx,y]);
gl End();

Program 6. 14:  Reprojecting an image-with-depth.

depth cover all the pixelsin the final image; disocclusion artifacts need to be avoided, which we do
by reprojecting multiple images-with-depth taken from view pose around the desired view pose. In
addition, from our definition of image-with-depth, a point is actually an area el ement, which implies
that a reprojected point has a variable size depending on the original and the new view poses. This

variable point size indicates that each projected point on the new screen may cover multiple pixels.

When reprojecting an image, two situations can arise: the magnification or the minification of
the original picture elements into the new image. Magnification happens when the destination space
has higher spatial resol ution than the source space, whereas minification happenswhen the destination
space has lower spatial resolution than the source space. Magnification needsto create datain between
pixels, whereas minification needs to filter out data. Our reconstruction works in conjunction with
the reprojection step. Magnification is done by controlling the size of reprojected points on the
destination screen space (the pixel area) and minification isperformed by skipping pixelsintheoriginal
image when reprojecting and reconstructing an image-with-depth. Program 6.15 shows how to extend
Program 6.14 to perform magnification. Note that Program 6.14 from the previous section assumed

Set up new canera pose (nodel viewvatrix, projectionMatrix, viewportMtrix)
Mul tiply( current_transform imageWthDepth->inverse )
For x=0 to i mageW t hDept h->nCol s
For y=0 to i mageW t hDept h- >nRows
gl Poi nt Si ze( Esti nat ePoi nt Si ze(i mageW t hDept h- >dept h[ x,y]) );
gl Begi n( GL_PQO NTS );
gl Col or (i nageW t hDept h->col or[ x, y]);
gl Vertex(x,y,imgeWthDepth->depth[Xx,y]);
gl End();

Program 6. 15:  Reprojecting an image-with-depth with per-point magnification.
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a constant point size (projected areq) for all the picture elementsin an image-with-depth, whereas the
pseudo-code in this section sets a new point size for each pixel in an image-with-depth.

For the case of magnification, an estimate of the » and y dimensionsin pixels of the projected
point size on the screenis given by:

. . 1 distanceScale X directional
pointSize, , = = , al/ (6.5)
' stepy y window, ,

where window, , isaspatial resolution scaling factor from the source to the destinationimage in x or
y, distanceScale is adistance scaling factor based on the point-to-COP distance on the two spaces,
and directional, , isadirectional scaling factor based on the dot product of the desired view-direction
and the X and Y axesin the source image-space. The spatial resolution scaling factor makes sure that
one unit in the source space gets scaled to the same relative dimension in the destinati on space, which
in terms of image spatial resolutionsis

SRC'resolution, ,
DESresolution, '

(6.6)

window, , =

The distance-scaling factor compensates for perspective shortening. Surfaces intersected closer to the
COP have smaller areas than surfacesintersected farther away. The distance-scaling factor isbased on
theratio of point-to-COP distances on the two spaces:

SROdepth

—_— 6.7
DESdepth ( )

distanceScale =

The directiona scaling factor compensates for projected area, assuming that the intersected surface
element at each pixel in the source imageis a square paralel with the screen. The projected squarein
the destination space is scaled by the dot product of the desired view-direction and the X and Y axes
in the source image-space.

This reconstruction step of just increasing the point size of the projected point on the screen
is similar to splatting (Chapter 2) of a box kernel aligned with the screen. The subtle difference
between thisand splattingisthat the reprojection step with resized pointsdoesnot perform the per-pixel
integration of the convolutionprocesscharacteristic of splatting. Our approach uses Z-buffering, which
implies replacement of pixel information instead of accumulation.

Equation 6.5 can also be used for minification of the images-with-depth—when the projected
area of the image-with-depth is smaller than its original area. In this case, a step size estimation
(steps,y) 1S used to skip points when reprojecting the image-with-depth. The pseudo-code 6.16
performs reprojection and minification. Minification assumes a constant point size for an entire

image-with-depth.
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Set up new canera pose (nodel viewvatrix, projectionMatrix, viewportMtrix)
Mul tiply( current_transform imageWthDepth->inverse )
stepSize = 1.0 / EstimatePointSi ze(i nageW t hDept h->dept h[ X, y]);
gl Begi n( GL_PQO NTS );
For x=0 to i mageW thDept h->nCol s step stepSi ze
For y=0 to i mageW t hDept h->nRows step stepSi ze

gl Col or (i nageW t hDept h->col or[ x, y]);

gl Vertex(x,y,imgeWthDepth->depth[Xx,y]);
gl End();

Program 6. 16:  Reprojecting an image-with-depth with minification.

6.6.4.1 A hierarchical—quadtree—organization for images-with-depth

The estimation of point size on a per-point basisfor magnification as discussed above clearly generates
good results; however, it is a bottleneck. The point size needs to be estimated for each pixel, which
is a computational burden. And the estimated point size needs to be sent to the graphics pipeline for
each pixel, which increases the amount of data required to transfer the entire image-with-depth to the
pipe—besides the three-dimensional location and the color of each point, it is also necessary to send
the point size.

To keep the computation reasonable, we organize the points of an image-with-depth in a
guadtree. The quadtree subdivisionis performed in the XY plane until nodes of the quadtree contain

only pointsin a given range of depths or have a minimum number of points (Figure 6.17). For each

Figure 6.17: A quadtree organization of an image-with-depth. Notice the different depth ranges of
nodes in the quadtree.

node, a representative point is computed as the average (center of mass) of al the pointsinside that

node. The representative point of a quadtree node is used to estimate the point size for all the points

115



inside that node (Equation (6.5)). Thisreduces the amount of computation and bandwidth required by
the per-pixel approach.

Figure 6.18: View-frustum culling the nodes of a quadtree organization of an image-with-depth.
Quadtree nodes that are completely inside the frustum are drawn in green, whereas nodes that are
partially inside are drawn in yellow.

In addition, this hierarchical approach permits view-frustum culling of sub-regions of the
images-with-depth (Figure 6.18). A view-frustum culling traversal of the quadtree can eliminate

guadtree nodes (and all the associated points) that are outside of the frustum.

6.6.5 Resaultsfor Planar Mirror Reflections

Figure 6.19 shows the rendering of image-based reflections for the floor and for the piano top of a
room of a house model, which has 140, 000 polygons and five planar mirrors sampled as described
in Table 6.6.5. The image-based reflections used two images-with-depth per hemisphere for each
mirror. Noticethe disocclusion artifacts on some regionson the floor and on the piano top nearer tothe
viewer. Notice aso the noise introduced in the reflected images due to the zero-order quasi-splatting
reconstruction scheme used for producing theimage-based reflections. Thisnoiseisclearly undesirable
for mirror reflections, but will show useful for glossy reflections produced by blurring mirror-reflected
images (next chapter). The average performance for rendering this scene was 15 frames per second on
an SGI Onyx2 workstation using a single 250MHz R10000 processor and an InfiniteReality2 graphics
pipe with four raster managers.

We analyzed the performance of image-based reflections with the house model. Images were
rendered at 720 x 486 and performance data were collected by playing a pre-recorded path (944
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per hemisphere for each reflector.

Name # of hemispheres | Images-with-depth per hemisphere | Image-with-depthresolution | Memory (Mbytes)
Piano top 1 23 128 x 128 254
Living floor 12 6 128 x 128 7.98
Door mirrors 11 11 128 x 128 20.69
Music floor 8 7 128 x 128 821
Bench top 1 67 32 x 32 0.57

Table 6.1: Datafor the five reflectors in the house mode!.

frames) through the model. Table 6.6.5 describes the data for the images-with-depth for each of the
five reflectorsin the scene.

The graph in Figure 6.20 shows the performance for our image-based approach versus the
geometry-based approach. It illustrates the cost of increasing the number of images-with-depth
reprojected per reflector. Notice that the image-based approach with one or two images was twice
as fast as the geometry-based one. Note that increasing the number of selected images-with-depth
improves the quality of reflected images.

6.7 Directionally Dependent Mirror-Like Reflectance

The approach for mirror reflections discussed so far assumed ideal reflectance of the material: the
incoming light from a certain direction is completely transferred to the outgoing direction. However,
most polished materials do not exhibit this direction-independent reflectance behavior. Most materials
exhibit higher reflectance values at grazing angles than at normal incidence. In addition, some

materials filter the color of the reflected light in a directionally dependent manner. Both effects are

117



Figure 6.20: Performance comparison of image-based reflections with varying number of images-
with-depth per reflector with respect to geometry-based reflections.

produced by directionally dependent variations of material reflectance. The first effect isproduced by
equal reflectance variations for all wavelengths of light, whereas the second effect is due to unequal
reflectance throughout the spectrum of light. We call the materials that exhibit this directionally
dependent reflectance mirror-like materials. This name distinguishesthem from ideal mirrors, which
produce ideally specular reflections.

Most materials exhibit higher reflectance values at grazing angles than at normal incidence
[Cook81, Feynman89]. Notice, for example, how the intensity of a specular reflection varies on planar
glass: looking at a grazing angle with the glass you should see a much brighter reflection than at
normal incidence. This same behavior takes place on polished surfaces made of materials usually not
considered specular. As an extreme case, observe the specular reflection of abright light source on a
sheet of paper at avery grazing reflection angle. Other interesting and not so extreme examples of this
type of reflectance behavior are tiles on bathroom walls and clearcoat on automobiles.

Some materials filter the color of the reflected light in a directionally dependent manner. For
example, notice the reddish reflections at grazing angles with copper surfaces. Gold also presents a
peculiar color shift for reflections. reflections at grazing angles do not get color shifted, but at near
grazing angles reflections are golden colored. Thisbehavior is a characteristic of al metals [Cook81,

Feynman89].
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The directional-dependent or mirror-like reflectance affects a mirror reflection only by
performing a color filtering of the light in each outgoing direction. In terms of the light transport
equationfor ideally specular transfers (Equation (6.2)), the directionally dependent reflectance implies

areflectance function modulating the light transferred term:
L,(x,w,) = Le(x,0,) + ppa(x, @, @,) Li(x, W) (6.8)

where pyq(x, w;, &, ) isthe bidirectional reflectance distribution function of the material at point x and

at incoming and outgoing directions<; and .

6.7.1 Approximating Directionally Dependent Reflectance

The directionally-dependent reflectance is due to the roughness of the surface and the shadowing
and masking of incident and reflected light (Section 3.5.3). Although surface roughness can cause
scattering of light, which would be out of the scope for this chapter, this section considers only the
directional variation of reflectance without taking into account the blurriness produced by scattering.
Inspired by Cook and Torrance [Cook81], we model directionally dependent reflectance with the
following expression:

B F
P (N-L)(N-V)

(6.9)

where N is the normal vector at a point in question illuminated from direction L and viewed from
direction V. The scalar F' is a reflectance term derived from the Fresnel equation [Ditchburn9l,
Fowles89, Feynman89] that expressesthereflectance of aperfectly smooth mirror-like surfaceinterms
of the wavelength of the incident light, the geometry of the surface and the light, and the angle of
incidence. To make it practical, instead of using the general equation, we follow the compromise
presented by Cook and Torrance [Cook81] and well reviewed in [Glassner95, Watt92]. We fit the
Fresnel equationtothe measured normal reflectancefor apolished surface (normal reflectanceisknown

for most materials). The reflectance F' isthen given by

(g - 0)2 (1 + (C(g + C) — 1)2) (610)

where

L+V
2

c=cos(0))=V-H, H= (6.11)
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and
g =nt+c 1. (6.12)

The index of refraction n of the material needed for Equation (6.12) is usually unknown—afunction
of direction and wavelength of incident light. However, reflectance for normal incidence is usually

known, #; = 0, which let us approximate an effective index of refraction for the material:

n—1\?
n= (22) 619
which solving for n gives
1+ VFy
=Y 6.14
Ll B) o (6.14)

Thevauesof therefractiveindex are then substitutedinto Equation (6.10) to compute thereflectance F
for any angle of incidence. This procedure is wavelength-dependent, since the reflectance at normal
incidenceisawavel ength-dependent quantity, which impliesthat it hasto be applied to the three (RGB)
color bandsto provide F., F},, and F;—the color band reflectances of the material.

In summary, the directionally dependent reflectance is represented with functions derived from
the reflectance of materials at normal incidence of light. The color shift is produced when the color

band reflectances have distinct behaviorsfor a given material.

6.7.2 A Texture-Mapping Approach to Directionally Dependent Reflectance

The directionally dependent reflectance from Equation 6.9 is a function of the viewing vector, the
surface normal, the material refractive index, and the light wavelength. Except for the viewing vector,
the other parameters will usually be constant from frame to frame. This suggests ook up into a table
indexed by the viewing vector, i.e., a view-dependent table look up technique. This view-dependent
technique has to modulate the reflected light from amirror reflection.

In terms of implementation, we can follow a two-pass approach. In the first pass, a mirror
reflection on the mirror-like surface isrendered. In the second pass, we process (modulate) the mirror
image from thefirst passto take into account the directionally dependent reflectance. Notethat thefirst
passinvolvespotentially dealing with thewhole compl exity of the sceneto computethe mirror reflected
scene, whereasthe second pass hasto consider only the mirror-like object (asinglepolygonfor aplanar
mirror). Note also that mirror-reflected images for the first pass can be computed with any of several

techniques such as ray tracing, environment mapping, and the techniques described in Section 6.3 and
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Section 6.6. The second pass depends only on the mirror-reflected image stored in the frame buffer
and on the geometry and material properties of the mirror-like surface, i.e., it applies for any of the
mirror reflection techniques. After the mirror reflection isin the frame buffer, the second pass then
rendersthemirror-like surface (asinglepolygonfor aplanar mirror) ontop of themirror reflected image
and modul ates the pixel values contained in that region. We implement this color modulation using a
blending operation along with a texture-mapping operation; the blending operation is multiplicative
blending and the texture-mapping technique is sphere mapping.

Sphere mapping is the only view-dependent texture-mapping operation availablein the current
graphics hardware [Zimmons99] (Figure 6.21)—it is a view-dependent texture lookup in hardware.
Sphere mapping operates in a subset of spherical coordinates—a projection in spherical coordinates,
which disregards the spherical radius parameter. A sphere map is a planar representation of the
two spherical angles into polar coordinates of circular area. The circular map is implemented as a
square texture where texels outside an inscribed circle are never accessed and texels inside the disk
contain useful values. The center of the disk representsthe origin of spherical coordinates. Theradius
represents the 6 angle of spherical coordinates and the angle around the origin represents the angle ¢
of spherical coordinates. The view-dependence in sphere mapping is taken into account by indexing
the texture map based on reflected viewing directions. Sphere mapping evaluatesthe reflected viewing
vector at the vertices of a surface and uses that vector to derive the texture coordinates and to index
into a sphere map [Zimmons99, M cReynol ds98, Wo096]. Viewing vectors anti-parallel to the surface
normal at avertex are mapped to the center of the disk and viewing vectors perpendicul ar to the surface

normal map to the outer ring in the disk.

Figure 6.21: Sphere mapping.

We store view-dependent reflectance information in sphere maps, based on the material
propertiesof reflectors and on the geometry imposed by the sphere mapping technique. For each texel

in a sphere map, there isaviewing direction and a corresponding reflected direction [M cReynol ds9g].
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These two directions are used as the incoming and outgoing directions for sampling the reflectance
functionto be stored at atexel. Thereflectance functioniseither the functiondescribed in Section 6.7.1
or any other BRDF. The codein Program 6.22 showshow thereflectance maps are precomputed for the

Cook and Torrance reflectance. Note that even though we have chosen to sample the Fresnel equation,

/1 Conpute the reflectance map
Image * map = new | mage(texel sOnSi de, texel sOnSide);
| mage * texel = nap;
for ( int ns=0; ns< texel sOnSide; ns++ ) {
for ( int nt=0; nt<texel sOnSide; nt++ ) {
mappi ng( texel sOnSide, (float)ns, (float)nt, &, & );
if ( sgrt(x*x + y*y) >1.0) { /1 if outside the unit disc
refl ectanceMap[ texel ++ ] = 255 * naxR;
refl ectanceMap[ texel ++ ] = 255 * naxG
refl ectanceMap[ texel ++ ] = 255 * naxB;
}
el se {
Vec3f N( x, y, sqgrt(1l-x*x-y*y) ); // conpute normal vector N
N. Nor nal i ze();
Vec3f R=U- 2*(Udot N) * N; /1 conmpute reflected vector R
255 * CookTorrance(specular.x, R N);

refl ectanceMvap[ texel ++ ]

255 * CookTorrance(specular.y, R N);

refl ectanceMap[ texel ++ ]

refl ectanceMap[ texel ++ ] 255 * CookTorrance(specular.z, R N);

Program 6. 22:  Sampling Cook and Torrance model to compute a reflectance sphere map.

a reflectance map can represent any arbitrary isotropic modulation function. The isotropic restriction

comes from sphere-mapping.

Figure 6.23 shows a reflectance map for polished gold sampled using our technique for
RGB=(0.63, 0.56, 0.37). Noticethe low reflectance at normal incidence/reflection (center of the disk)

and the high reflectance at grazing angles (in the outer ring).

6.7.3 Resultsfor Mirror-like Reflections

Figure 6.24 shows results of using the reflectance sphere mapping technique on a pyramid made of

copper. Noticethe overal differencein reflection intensity on thethree visible surfaces of the pyramid,
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Figure 6.23: Reflectance sphere map for gold obtained by sampling the Fresnel equation for
RGB=(0.63, 0.56, 0.37). The graph shows RGB components along the horizontal line crossing the
center of the sphere map. Note on both the texture and the graph the color shift predicted by the Fresnel
equation.

due to their distinct orientationswith respect to the viewer. Also observe the color shift and reflection

intensity of the specular reflection across the base of the pyramid.

Figure 6.24: Mirror-like reflection on three faces of a copper-like pyramid: (left) mirror reflection
using geometry, (middle) mirror-like reflection obtained by modulating the mirror reflection from left
image with the reflectance sphere mapping for copper, and (right) final image for scene reference.

Figures 1.7 and 1.8 show results of using the directional reflectance sphere mapping for aglossy
floor; the blurrinessof the glossy reflection will bediscussedinthe next chapter, but the view-dependent
reflectance was produced with the sphere mapping technique discussed in this chapter. In Figure 1.7
the viewing direction is parallel to the floor, whereas in Figure 1.8 the model was tilted such that the
viewing directionisat alessgrazing situation. Notice the difference in reflectance of thefloor between

the two images and the variation of the reflectance along the floor on both images.
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The sphere mapping-based technique for approximating directional reflectanceisvery effective.
Besides providing a good approximation of directional reflectance, sphere mapping is available in
graphics hardware from SGI”™ | which makes it a fast operation. However, sphere mapping suffers
from both inherent and implementation problems. Thefirst inherent problem isthat the mapping from
viewing directions to texel coordinates in a sphere map is non-linear, which implies that directional
resolution is not constant in the map. Secondly, as with any other texture mapping technique,
each vertex of atriangle or quadrilateral (primitive) is mapped onto a texture by computing texture
coordinates. The edges of a primitive are mapped to straight lines connecting adjacent vertices of
the primitive in texture space. This mapping of edges of the primitive to straight lines in the texture
map is valid for rectangular textures, but incorrect for sphere maps—primitive edges should map to
arcs in sphere mapping. The first problem with current implementations is that connected vertices
in a texture map are linearly interpolated for filling in the corresponding primitive. However, given
the non-linearity of the mapping function, bilinear interpolation is not the appropriate interpolation
for sphere mapping. A second implementation problem, related to the two previous problems, is that
filtering isusually performed with asquarefilter in arectangul ar texture. Sphere mapping should usea
wedge-shaped filter defined in terms of the radius and theta coordinates of sphere mapping, instead.
Finally, current implementations of sphere mapping in the hardware do not perform the expected
wrapping of the sphere map texture. Consider atriangle seen from a grazing angle. Then, the three
vertices map to the outer region of asphere map, and thefilled triangle should get texelsonly from the
outer (grazing) region of the spheremap. Supposethat the three verticeshave the same ¢ value and that
one of the vertices has a ¢ value and the other two vertices have the opposite ¢ value plus and minus
some small angle. The correct mapping when filling in the corresponding triangular region should
wrap the sphere map to providetexelsonly from grazing regions. However, the current implementation

crosses the sphere map and incorrectly provides texels that go through the non-grazing region.

Our particular use of the sphere mapping technique for directional reflectance stresses the non-
linearity problem of the technique. Our application requires high resolution on a region (outer ring)
of sphere-maps where the sphere-mapping technique offers low resolution. Though we reduced this
problem by uniformly increasing the resolution of thewhole map, a better solutionwould betoflip the
sphere-mapping indexing scheme. Grazing angleswould index texelsin the center of the sphere-map,

where there is higher resolution than in the ring.
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6.8 Discussion

Traditionally in computer graphics non-diffuserefl ections are approximated with lighting model s—the
illumination of a point in a scene takes into account only the direct light from primary light
sources. Thisis a reasonable approximation for surfaces on which highlights are more prominent
than scene reflection (plastics). However, all non-diffuse materials exhibit reflections of surrounding
environments to some extent. Instead of a view-dependent lighting approach for producing highlights
based only on light sources, arefl ection approach and an associ ated view-dependent refl ectance scheme
arenecessary. Thischapter discussed the rendering of mirror reflectionsand itsextensionto mirror-like
reflections (when the materials exhibit directionally dependent reflectance).

The first part of this chapter addressed the rendering of non-scattered light transfers. The
complexity of rendering mirror reflections with polygonal scenes was recognized and an image-based
approach presented to provide better performance. We should now realize that in image-based

rendering there are two different quantitiesto be reconstructed:

1. The geometry of the scene needsto be reconstructed so that we can generate images from novel
view poses. Since images-with-depth preserve the three-dimensional location of each pixel in

the scene, the pixels can be reprojected to generate new images.

2. The illumination of the original scene also needs to be reconstructed;, we want to preserve
view-independent details such as shadows and view-independent light distributionin the scene.
Since images-with-depth preserve color information per pixel, by reprojecting the points and
by controlling their reprojected size, we reconstruct both illumination and geometry for novel

viewpoints.

However, note that after the geometry of the original scene has been sampled, there is no
distinction between geometry and illuminationinformation anymore. Illuminationinformation is now
directly coupled to geometrical points. This somehow goes against the observations of Chapter 5,
where illumination information was decoupled from geometry information by transforming radiosity
information into textures. For example, a’512 x 512 image-with-depth of a single quadrilateral now
contains256K point samples. So, instead of geometrically transforming four pointsof the quadrilateral
and filling the projected region on the screen, the image-based approach requires transforming 256K

pointsand filling the same region on the screen. Thereisaneed for converting the point samples back
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to the original continuous planar primitive in order to avoid unnecessary geometrical transformations

and sampling and reconstruction issues.

Asan dternativeto images-with-depth, we could have used images-with-id.s. Instead of storing
the color and depth at each pixel of an image, we would store an identifier (id.) of the corresponding
primitive visible at that pixel. Thiswould allow assembling alist of all the primitivesvisiblefor each
image, i.e., the potentially visible set of primitives(PV'S). A reprojection of such animage-based entity
would be done by just sending the PV S to the pipelinefor the current view pose. Sincethisalternative
process would not involve any resampling, it would benefit directly from the primitive rendering and
the reconstruction schemes already available in the hardware. Moreover, the amount of data to be
rendered for each PV Swould potentially be much smaller than the amount of datato be rendered using

the corresponding image-with-depth.

The image-based approach also suffers from disocclusion artifacts. A single image-with-depth
capturesthefirst visible point from the COP in the direction of each pixel. When an image-with-depth
isreprojected to anovel COP, unsampled regions are exposed. Our approach minimized disocclusion
artifacts by reprojecting multiple images taken from different COPs around the desired COP, for
producing the final result. The distinct COPs around the desired COP increased the sampling
of occluded regions of a single image-with-depth. However, because the selected COPs were
in a small neighborhood, the corresponding images captured similar information—a same surface
could be captured by al the images-with-depth. Since a surface could be represented in multiple
images-with-depth, reprojecting a set of images-with-depth for reconstructing a new desired view
implies in some redundancy. A pixel in the desired view may be touched severa times due to
the multiple images-with-depth sampling the same point in the scene. A more efficient approach
would be based on layered-depth-images (LDIs) [Gortler97]. An LDI works in the same way as an
image-with-depth, but captures not only the first visible point at each pixel, but aso further points
along the direction from the COP to each pixel. A standard way of creating an LDI uses a set of
images-with-depth reprojected to the LDI view pose. Each pixel inthe LDI containsan array of points
for storing multiple layers of depth from the LDI viewpoint. Pixels from different images-with-depth
that reproject into the same three-dimensional location or into a small 3D neighborhood are stored
asasingle entry in the pixel array for the average location. A single LDI captures more information
about the scene and produces | ess disocclusion artifacts when reprojected to novel COPsthan asingle

image-with-depth. The points-reduction scheme of LDIs reduces the redundancy factor from the set
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of images-with-depth to the LDI. Consequently, fewer LDIs are hecessary to capture similar visibility
information as a given number of images-with-depth.

Although simple to implement, the splatting-like zero-order reconstruction scheme used in
this chapter for images-with-depth leads to noticeable artifacts in the reflected images. A more
convolution-oriented reconstruction scheme isneeded. A better reconstruction scheme would be based
on real splatting of Gaussian kernels associated to the point samples.

The second part of the chapter discussed mirror-like reflections or how to extend mirror
reflections to simulate reflections of materials that have directionally dependent reflectance. Although
important for rendering a wide variety of materials, the direction-dependent reflectance is usually not
taken into account when computing reflections. Thischapter discussed a two-pass approach where the
directionally dependent reflectance wasintroduced with arendering pass over themirror-like surfacein
conjunctionwith aview-dependent texture-mapping techni que—sphere mapping—availablein current
graphics hardware APIs such as OpenGL.

Previous approachesfor rendering the ideal mirror-reflection on a planar surface were based on
the techniques discussed in Section 6.3, which imposed doubling the complexity of the scene to be
rendered [Diefenbach96, McReynolds98]. To make reflections from real silvered-glass mirrors look
right, the light must be attenuated at |east by 8% for the two air-glass surfaces encountered and perhaps
tinted to capture the greenish transmissivity of the glass. For these and other mirror-like reflections,
the most common approach is to modulate the mirror-reflected image with a single view-independent
color [McReynolds98]. That approach is able to approximate only colored mirrors. Diefenbach
[Diefenbach96] discussed the use of hardware fog features to produce view-dependent shading of
the mirror-reflected scene based on the distance of the reflected points to the mirror plane. That
approach provides a linear approximation where points close to the mirror surface get maximum
intensity, whereas points farther from the mirror get smaller intensities. Note, however, that although
this approach is view-dependent, the approximation does not incorporate any physical property of the

surface material (BRDF).
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CHAPTER 7

SCATTERED TRANSFERS OF LIGHT

So far we have discussed the two extremes of the light scattering range. Chapter 5 addressed theideally
diffuse (fully scattered) transfers, which distribute light from any single incoming direction equally
in al outgoing directions. Chapter 6 considered the ideally specular (non-scattered) transfers of light,
whichdistributelight in asingleoutgoingdirectionfor incominglightin any singledirection. Innature,

however, most materials are neither perfectly diffuse nor perfectly specular. Real surfaces scatter light
into solid angles due to the microscopic roughness of the surface (Figure 7.1)'.  Thischapter discusses
the in-between or non-ideal transfers—glossy transfers—which perform a certain level of scattering
in particular directions, instead of the equally distributed scattering of ideally diffuse transfers or the
non-scattered behavior of ideally specular transfers. The unequal directiona scattering implies that
glossy transfers are view-dependent.

Theradiosity method (Chapter 5) greatly simplified thelight transport problem for ideally diffuse
transfersby precomputing a view-independent quantity—radiosity—for real time rendering. Thelight
transport equation was also greatly simplified for ideally specular transfers in Chapter 6, where the
hemispherical integration was reduced to considering incoming light along a single direction of the
whole incoming hemisphere. Glossy transfers range from almost ideally diffuse to almost ideally
specular and neither simplification applies. Outgoing light in a single direction from a glossy transfer
at asmall neighborhood around point x isthe result of scattering light from anon-zero incoming solid

angle due to microscopic surface roughness (Figure 7.1). The solid angle can range from almost the

'Note that Figure 7.1 and the text describing light transfers above implicitly evoke the reciprocity principle of light
transfers (Section 3.5.5). The text abovefollows the conventional description of light transfers and BRDFs as the scattering
of a single incoming ray of light into an outgoing solid angle with distribution given by the BRDF at the transfer point
(Figure 3.5). Thereciprocity principle statesthat if the direction of propagation of light is reversed, the light path remains
unchanged. That is, reversing the direction of propagation of light in thetext aboveimplies that the scattering of anincoming

solid angle of light produceslight into a single outgoing direction (Figure 7.1).



Figure 7.1: Microscopic roughness of the surface at a neighborhood around point x produceslight in
a single outgoing direction ., due to a glossy transfer.

entire hemisphere down to almost a single direction, depending on how close the glossy material isto
an idedly diffuse material or to a mirror, respectively. The BRDF lobe bounds the solid angle w for
which the material responds to incoming light for transferring light into a single outgoing direction .,
(Figure 7.2). The BRDF lobe is centered around the incoming direction «;,, which derives from the
desired outgoing direction <5, and represents the incoming direction of maximum contribution to the
given outgoing direction. The principal direction w7, is usually the mirror-reflected direction of the
desired outgoingdirection.,,. Anexceptionisduetotheincreasingreflectance at grazing angles, where
possibly the mirror-reflected direction may not represent the direction of maximum contribution from
agrazing incoming solid angle. However, the shift in the direction of maximum incoming contribution
from the mirror-reflected direction does not represent an approximation, since the BRDF lobe captures

the correct distribution function in the neighborhood of the incoming solid angle.

This chapter presents methods for rendering glossy reflections based on the convolution
approach to light transport (Chapter 4). Translucency, or glossy transmission, is left as an extension
of the techniques presented. Section 7.2 reviews the convolution approach to glossy transfers. Then,
Section 7.3 and Section 7.4 discuss object-space convolution and image-space convol ution methods
for approximating glossy reflections.

Each of the object-space and theimage-space methodsis splitinto two distinct partsbased onthe
nature of light transfers. The first part deals with the visibility from the point where the light transfer

takes place—the incoming light or what isvisiblefrom the glossy surface. The second part dealswith
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Figure 7.2: Incoming radiance integration for a small solid angle subtending a BRDF |obe around
directionwy;,.
material propertiesat the pointin question—howthe material respondstoincoming light for producing
transferred light at the outgoing (viewing) direction.

The object-space method performs the visibility part with a particle-tracing phase by shooting
light particlesfrom thelight sourcesand by storing theincomingdirection of the particlesat each hit of a
particlewith a surfacein the scene. Theimage-space methods perform thevisibility part by computing
the mirror-reflected image on glossy surfaces and by assuming pixel-to-pixel visibility coherence
in the reflected image. The visibility part in the object-space approach is a preprocessing stage,
whereas in the image-space approachesiit is a runtime phase of the rendering process. In practice, the
visibility preprocessing in the object-space method constrains its application to low gloss reflections.
Near-mirror reflections would require preprocessing incredible amounts of directional information
(incredible numbers of particle hitsin the scene) in the object-space method. The image-space method,
instead, is more applicablefor high glossreflections, sinceit is based on mirror-reflected images.

Giventhevisibility information for the glossy surface, both methods use convolutionto perform
the material properties part of the task. Since the material properties of a glossy material are
view-dependent, the convolution process involved in the material properties part is expected to be
fully view-dependent. The object-space method performs view-dependent convolution by associating
a convolution kernel (splat) with each particle-hit point in object-space and by view-dependently
modulating the magnitude of each splat based on the view-dependent BRDF at the particle hit. The
superposition of the screen projection of al the object-space splats represents the convolution of the
incoming light with the material properties at each particle-hit point on the glossy surface. Since
particle-hit splatsare defined in object-space, projecting all the splatson the screen and summing all the
contributionsdoes not produce a correct result. Only the splats belonging to visiblesurfaces haveto be

considered for the convolution. A depth test is hecessary to select the splatsto be considered. All the
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splats are projected on the screen, but only those that land on visible surfaces have their contributions
added to the final result. This selection process implies that many splats (belonging to occluded
surfaces) are handled without producing any effect in the final result. The object-space method has

a computational cost that is linear in the scene complexity.

The image-space methods perform convolutionin screen-space using two different approaches.
The first approach splits the material properties into two steps: a view-dependent modulation and a
view-independent (spatially invariant) convolution. The modulation step view-dependently modul ates
the mirror-reflected image computed in the visibility part, according to the view-dependent magnitude
of the BRDF lobe. Then, for approximating solid angle integration, a convolution step performs
gpatialy invariant (view-independent) convolution of the image produced by the view-dependent
modulation step. This two-step approach assumes that the shape of the BRDF |obe does not change
view-dependently. A Phong lobe (cos™ 6), for example, has the shape-invariant property. The
magnitude of the BRDF lobe, however, is allowed to vary view-dependently to produce higher
specular contributions at grazing angle than at normal incidence, for example. The combination of
the view-dependent modulation and the view-independent convolution represents a view-dependent
process that is able to capture only part of the character of glossy transfers. The spatially invariant
convolution implies two limitations of the approach. First, spatially invariant convolution cannot
represent the fact that the shape of BRDF lobes is in fact view-dependent. Secondly, since the
gpatialy invariant convolutionis performed in projected (screen) space, the convolutionkernel support
in projected space is related to the neighborhood that approximates visibility in per-pixel reflection
solid angles. The kernel support is approximately proportiona to the distance from the reflection
point to the reflected point af each pixel in the mirror-reflected image. However, since spatially
invariant convolution assumes a constant kernel support across the domain (reflected image) the
neighborhood size is constant per-pixel, which implies that all pixels would have the same depth
value—an inconsistency. Our second convolution-based approach to the material properties step

overcomes these two limitations.

The second approach that we present for the material properties step takes into account
the full character of glossy material properties by performing spatially variant convolution of the
mirror-reflected image with per-pixel material properties kernels. Since the convolution kernel is
allowed to vary from pixel-to-pixel, the on-screen spatially variant convolutionis view-dependent and

the resulting method is capabl e of capturing the complete material propertiesacrossthe glossy surface.
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Additionally, the screen-space spatially variant convolution also allows for the appropriate per-pixel
kernel support selection to approximate reflection solid angle visibility per-pixel.

The next sections discuss how we split the transferred term of the light transport equation
into two parts, and then treat object-space and image-space convol ution-based approaches to glossy

reflections.

7.1 Splitting Glossy Light Transfersinto Two Parts

Thefinite solid angleimplied by glossy BRDF |obesreducestheintegration rangein the light transport
Equation (4.1). Integration for glossy transfers can be done over a solid angle w bound by the BRDF
glossy labe, instead of over the whole hemisphere €2:

Lo(%,5,) = Le(x, &) +/ Fod (X, @50, 55) Li(x, ) cos 0; dis; (7.1)

where terminology is equivalent to Equation (4.1).
Chapter 4 split the light transport equation into an emitted term and atransferred term. Here we

tailor the transferred term for glossy transfers:
trans ferred(x,w;,) = / Jra(x,05,W7) Li(x,w;) cos 0; d; (7.2

where trans ferred isthe outgoing light resulting from the glossy transfer of light at point x, and L ;
istheincoming light. The glossy scattering at point x is due to microscopic roughness at the point and
it istaken into account with the BRDF f;,;, which weights the incoming light at each of the incoming
directionsin the solid angle w.

We split thetransfer of light at any point x intotwo distinct parts: thelight visiblefrom the point
in the incoming glossy solid angle—the what is visible from the point—and the material properties
governing the scattering of light into the direction of the viewer—the how light is transferred by the
point. The what is visiblefrom the point isrepresented by the incoming radiance L ; in the transferred
light Equation (7.2). The how light is transferred is represented by the BRDF f;; at point x in
Equation (7.2).

Thissplitting of alight transfer into two distinct partsindicates a general method for computing
light transfers as a two-step approach. Both the object-space and the image-space methods that we

present in the next sections exploit this splitting of glossy transfersinto distinct visibility and material

steps.
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7.2 Convolution Approach to Glossy Transfers

Glossy transfers are the ones that most benefit from a convol ution-based approach to the light transport
problem. From Section 4.1, we know that we can write the light transport equation in terms of

convolution:
Lo(x7 JO) = Le(x7 JO) + F(x7 JZ) * K (x7 Wio, JZ) (7.3)

where I'(x, w;) represents the incoming radiance to point x in direction «; and K (x, w/,,w;) isthe
convolution kernel, which represents a re-parameterization of the specular (glossy) BRDF properties
a point x. That is, thetransferred term in the light transport equation can be seen as the response of a
systemwithinput signal ' and impulseresponse K ;. Notealsohow £ and K ; relate directly to thetwo
parts of alight transfer defined in the previous section. The input signal F represents what is visible
from point x, and the convolution kernel K ; represents how the system responds to an impul se input
signal.

Expressing the radiance equation in terms of spatially varying convolution in hemispherical
gpace is an interesting mathematical tool, but it does not yield a performance speed up per se for
computing the radiance leaving the surfaces of a scene. Current hardware implements convolution
in image-space, and we need another step to let us perform radiance convolution in that space and to
benefit from the hardware.

The next sectionsdescribe an object-space convol ution approach [ Stuerzlinger97] and animage-

space convolution approach [Bastos99] for approximating Equation (7.3) at interactive rates.

7.3 Object-space Convolution Approach to Light Transport

Our object-space approach for approximating the light transport equation is split into two phases. The
first phase—particle-tracing—computesthe distributionof light in a scene by tracing particlesthrough
the environment with a stochastic shooting approach. Each light source in the scene emitsa number of
light particles, which are each traced through the scene until being absorbed or leaving the scene. Each
hit of a particle with surfaces of the scene is recorded for use in the next phase. The second phase—
runtime rendering—reconstructsimages using the hit records computed in thefirst phase with a feed-
forward convolutionapproach. The contribution of each particle hit is scaled view-dependently by the

BRDF of thesurface andit isspread over asmall neighborhood around the hit point. The superposition
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of all the contributions reconstructs the view-dependent light distribution leaving the surfaces of the

scene.

7.3.1 Particle-Tracing Phase

The particle tracing phase simulates how light interacts with a scene by tracing light particles through
the environment in a stochastic shooting manner [ Shirley95, Walter97b]. Each light source: in ascene
emits a number of light particles proportional to the total power & ; of the light source. The direction
of each particle depends on the emission distribution function associated with itslight source—diffuse
light sources emit according to a uniform distribution, whereas directional light sourcesemit inarange
of directions.

Each particleistraced through the scenefromitsoriginat the light source until it isabsorbed or it
leavesthe scene. A random number chooses between absorptionand refl ection whenever aparticle hits
asurface. Absorbed particlesare no longer propagated, whereas reflected particlesfollow an outgoing
direction stochastically selected according to the BRDF of the material. All the particle hitsin the
particle path are stored, along with theincoming direction of the particle at each hit, corresponding light
source, the current number of bounces of the particle, and the accumulated attenuation of the particle
until it hits the current surface. Even though the quantity needed for our computationsis the particle
power ¢, by storing the attenuation factor p4, instead of the particle power, we enable the method to
change the number of particles emitted by alight source without affecting previously emitted particles
from the same source. The power of aparticle at ahit can then be computed from the power of thelight
source ®; divided by the number of particles m; emitted by that source and weighted by the current

attenuation factor of the particle hit:

D,
b= —pg. (7.4

m;

This scheme alows for incremental refinement of the solution, as the number of light particles does
not need to be fixed a priori. The information stored for each particle hit includes the corresponding
surface, the position (u, v) on the surface, the incoming direction, the light source where the particle
originated, the number of bounces (transfers) of the particle so far, and the total attenuation factor due
to previoustransfers.

Figure 7.3 shows a visualization of particle hits density on the surfaces of a simple scene with

one million particle hits.
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Figure 7.3: Visualization of particle hit density.
7.3.2 Runtime Rendering Phase

Thedirectionally dependent radiance L, (x, w,) visibleat aviewing direction s, from asurface point x
is reconstructed using the particle hits stored in the first phase. The contribution of each particle ¢ ;
with incoming direction «;, isscaled by the BRDF of the surface at the point x; to take into account
the characteristics of the surface. To achieve a smooth reconstruction of the outgoing radiance over the
surface, the contribution of each particle is spread over a small neighborhood, weighted by a kernel

function £ centered at each particle hit location x;:

1 & - x;
Lo(x,60) = 5 2 (57,5, )5 b(=——2) (7.5

i=1

where k& is the kerngl function (a normalized Gaussian kernel) and £ is a spatial scaling factor that
defines the kernel support. The size of the kernel support is adjusted for each surface in the scene and

depends on the density of particle hits on each surface:

h = O@ (7.6)

where A isthe surface area, » isthetotal number of particlesincident on the surface, and C' isascaling
factor. Equation (7.6) controlsreconstruction sharpness based on the number of particlesimpingingon
asurface and on the surface area. The radiance reconstruction on a surface improves with increasing

number of particlesincident uponthat surface. Increasing the number of incident particles, n, increases
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the visibility information about the scene as seen by the surface and captures more accurate radiance
information. Accordingly, increasing number of incident particles decreases the kernel support / to

spread the contribution around each hit point.

Photon hit 1 _ Photon hit 1

Figure 7.4: Particle tracing (left) and splatting (right) for two viewing situations (top and bottom) on
a horizontal surface: the particle tracing involves only two light particles (photon 1 and photon 2).
Notice that the incoming directions and the corresponding ideally reflected directions for the particle
hits do not change with the viewer. However, the BRDF for each particle hit varies view-dependently.
In terms of splatting, each hit point is associated with a Gaussian splat (right). The magnitude of the
splat is given by the corresponding BRDF value modulating anormalized kernel. The superposition of
the splats on the right gives the view-dependently-reconstructed outgoing radiance from the surface.

A key observationis that Equation (7.5) amounts to splatting the contribution of each particle
onto its respective surface (Section 2.6.2.2). That is, the eguation represents the convolution of the
incoming light with a density-based and BRDF-based convolution kernel. Each hit point on a surface
isassociated with a Gaussian kernel, and the superposition of all the kernels on the surface reconstructs
the outgoing radiance for agiven view pose (Figure 7.4). All quantitiesbut the BRDF in Equation (7.5)
are constant for each surface. The BRDF isaview-dependent quantity and hasto be evaluated for each
particle at each frame. The evaluated BRDF at each hit point controls the magnitude of the kernel at
that point (Figure 7.4).

Reconstruction is performed with splatting. The contribution of each particle hit is taken into
account by rendering a triangle on the plane of the corresponding surface. The triangleis constructed

to enclose the support of the kernel centered at the hit point (Figure 7.5). The color of the triangle is
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determined per frame by multiplying the power of the particle at the hit (Equation (7.4)) by the BRDF
of the material under the current viewing conditions and the corresponding incoming direction of the

particle (atable ook up). The kernel texture mapped onto the triangle modulates the triangle color.

Photon hit

Kernel support
Photon hit

Figure 7.5: Geometric relationships for the triangle and the kernel support for a particle hit. The
triangle normal vector is aligned with the surface normal at the hit point.

In terms of implementation, splatting is performed by rendering a textured triangle for each
particle hit (Figure 7.5) and adding the corresponding pixel values to the color buffer. The texture
is a sampled Gaussian function. The geometry of the required triangles for representing the particle
hitsis precomputed. The kernel texture for splatsis also precomputed. A triangleis created for each
particle hit, but a single kernel texture is used for all the splats in the scene. The texture is mapped
onto each particle-hit triangle. The reconstruction algorithm proceeds as presented in Program 7.6, for

apreprocessing step, and in Program 7.7, for aruntime step.

Comput e the kernel texture
For each surface
Determ ne the size of the kernel splat for the surface
For each particle hit recorded for the surface
Create a triangle on the plane of the surface and size it to enclose the kernel support.

Map the kernel texture onto the triangle.

Program 7. 6:  Preprocessing step.

The splatting is performed using graphics hardware blending functions set up to sum rendered
pixel values to the color buffer. The kernel function is precomputed as a texture with 64 x 64
texels. Mip-mapping is used for texture minification (filtering). Figure 7.5 illustrates the geometric
relationships of the triangle, the kernel support, and the kernel texture. In the figure, 4 is the scaling
factor defined in Equation (7.6) and g = (1/2 + v/2)h.
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Render the scene into the depth-buffer
For each surface
Render the surface to the stencil buffer
Set stencil at pixels where surface depth equal s depth-buffer val ue
For each particle hit on this surface
Eval uate the BRDF based on the surface naterial, for the particle inconing direction
and for the viewer outgoing direction
Set the color of the triangle to the power of the particle hit multiplied by the BRDF
of that particle hit and viewer |ocation
Add the splat to the color buffer (by rendering the triangle with additive bl endi ng)

Program 7. 7:  Runtime step.

7.3.2.1 Optimized rendering phase

Direct illumination accounts for the most prominent illumination features: highlights and shadows
[Bastos96]. Factoring out the direct illumination from the global illumination significantly reduces
the number of photons that need to be rendered. The direct illumination of a point light source
onto each surface is rendered using simulated Phong-shading [Diefenbach96] and shadow maps
[McReynolds98]. Current graphics hardware systems support only per-vertex Phong lighting for
point light sources. To overcome this limitation, each surface is subdivided into a fine regular mesh
during setup. Thismesh is displayed using per-vertex graphics hardware Phong lighting and bilinear
interpolation. Small-enough area light sources can be simulated with point light sources without
introducing significant error. Direct illumination from larger area light sources can be simulated by

multiple light sources.

Shadow mapping is used to account for occlusion of the light source. The original polygons of
the scene are rendered into a depth texture from the viewpoint of the light source. Thisdepth textureis
used during rendering to identify shadowed parts of the scene. Multiple light sources require multiple
shadow maps.

Indirect lighting is taken into account by summing contributions of particles that have been

reflected more than once. The modified algorithmsare shown in Program 7.8 and 7.9.

7.3.3 Resultsfor the Object-Space Approach

The object-space method presented in the previous sections was implemented in C++ using the

OpenGL library. Results were obtained on an SGI Onyx workstation using a single 250MHz
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Conmput e the kernel texture
For each surface
Determ ne the size of the kernel splat for the surface
For each particle hit recorded for the surface
Create a triangle on the plane of the surface and size it to enclose the kernel support.
Map the kernel texture onto the triangle
Create a shadow map for each |ight source
Create a fine triangular mesh for each surface by regul ar subdivision

Program 7. 8:  Preprocessing step.

Render the scene into the depth-buffer
For each |ight source
Activate the correspondi ng shadow map
Add the direct illumnation to the color buffer by rendering all surfaces
as triangular nmeshes with Phong |ighting and shadow maps.
For each surface
Render the surface to the stencil buffer
Set stencil at pixels where surface depth equal s depth-buffer val ue
For each particle hitting this surface that has al ready been reflected by another surface
Eval uate the BRDF based on the surface naterial, on the particle incom ng direction, and
on the viewer outgoing direction
Set the color of the triangle to the power of the particle hit nmultiplied by the BRDF
of that particle hit and viewer |ocation
Add the splat to the color buffer (by rendering the triangle with additive bl endi ng)

Program 7. 9:  Runtime step.
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R4400 processor and an InfiniteReality graphics pipe with two raster managers and 12 bits per color

component in the color buffer.

Figure7.10: Image sequence showing how the glossy reflection on the large box changeswith viewing
angle. The red wall behind the viewer changes the color of the reflection on the glossy box.

Figure 7.10 shows results of the method for a simple scene with a glossy box (the taller box).
Particle tracing in this scene generated approximately one million particle hits (Figure 7.3) which are
rendered at an average of 0.25 frames per second on the machine described above and at 1.2 frames
per second with the optimized rendering of Section 7.3.2.1 on the same machine. The same sceneruns
at 5 fps on a more recent workstation (SGI Onyx2 using a single 300MHz R12000 processor and an
InfiniteReality2 graphics pipe with four raster managers).

The main factor determining performance of the method is the time to draw the textured
triangles, i.e., rendering the primitives and computing the feed-forward convolution. Since smooth
reconstruction requires extensive overlap among the splats, the total rendering time is dominated by
thetimetofill the projected triangleson the screen. Each pixel on a neighborhood around the projected
hit point on the screen receives contributions (sums to the color buffer) from several splats (textured

triangles) that overlap at that neighborhood.

7.3.4 Discussion of the Object-Space Approach

The abject-space approach presented so far approximatesthelight transport equationinimage-space by
accumulating contributionsof projected kernels defined in object-space. Each particle hit isassociated
with akernel-textured triangle coplanar to the corresponding surface in abject-space. The accumulated
projection of the textured triangles reconstructs the outgoing radiance of scattered transfers on
glossy surfaces. The reconstruction process involves handling (rendering and accumulating) a scene

with a very large number of kernel-textured triangles corresponding to particle hits. The approach
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involvesa convolution of the outgoing radiance from each particle hit, which requires rendering many
kernel-textured triangles with extensive overlap, besidesrendering the original geometry of the scene.
The significant overlap of triangles in a neighborhood produces a similar effect to increasing depth
complexity of the scene (Section 7.3.2.1). Severa triangles are rendered to each pixel to produce a
single pixel value. Even though depth complexity can be reduced with occlusion culling methods
[Zhang97] when rendering opague geometry, the pixel complexity produced by convolution cannot
be avoided. All the kernel contributions mapping to a pixel need to be taken into account to compute
the final convolution value at that pixel. Even with ideal culling algorithms for opague geometry,
the convolution approach has to sum al the radiance kernel contributions mapping to each pixel. If
occlusion culling is not available, then even occluded kernel-textured triangles need to be rasterized,
but only the triangles belonging to visible geometry need to have their values summed to the color

buffer.

The object-space convol ution approach has avisibility assumption. It assumesthat no visibility
events happen on the neighborhood (kernel support) around each particle hit point. That is, it assumes
that the scene point where a light particle originates is visible for any point across the particle hit
neighborhood. This assumption is violated at shadow regions when the kernel support should be
chopped at the shadow boundary to avoid light leaking across the boundary between the lighted region
and the shadow region. A shadow here means occlusion between the point where a particle originates
and the particle hit point, but the particle originisnot necessarily aprimary light source. The perceptual
result of not handling shadow discontinuitiesis blurrier shadow boundaries. Since glossy surfaces

produce blurry reflections anyway, this effect is not noticeable.

The object-space approach uses the convolution kernel partially as a view-independent
reconstruction entity and partially as a view-dependent reconstruction entity. To provide smooth
reconstruction of the outgoing radiance, the approach estimates the kernel support for each particle
hit based on particle hit density on the corresponding surface—in a view-independent manner. To
provide view-dependent outgoing radiance, BRDF information is used to scale the magnitude of each
kernel-textured triangle. Note that convolution kernels in the object-space approach depend on the
BRDF information only for the magnitude of the kernels. The kernel support and the kernel function

do not depend on material properties.

The object-space method has a computational cost that is linear in the number of particle hit

pointsin the scene.
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7.4 An Image-Space Convolution Approach to Light Transport

A simpler and more efficient alternativeto the object-space approach isto useimage-space convolution
to approximatethelight transport equation. Theimage-space approach, like the object-space approach,
decouples visibility information from material propertiesinformation in light transfers, but it follows
oneof two alternativetwo-step techniquesfor producing glossy reflections. First, visibility information
is computed with a mirror reflection of the scene on the glossy surface. Then, the material properties
of the glossy surface are taken into account by processing the mirror-reflected image to approximate

how the material scatters and transferslight in the direction of the viewer.

The image-space approach has a visibility assumption similar to that of the object-space
approach. Visibility events in the pixel neighborhood around each pixel of a glossy surface are
disregarded by assuming that the mirror-reflected image on the glossy surface neighborhood captures
the same visibility information as the reflected solid angle at the pixel in question. Unlike the
object-space approach, the image-space approach allows using the convolution kernel as a complete
material properties entity, instead of a purely smoothing entity. Moreover, the image-space approach
can achieve better computational time by performing convolution for at most the number of pixelson

the image, rather than for the multiple superimposed particle-hit splats of the object-space approach.

The next sections detail the visibility step and the material properties step of our image-space
approaches. The visibility step discusses how visibility inside the reflected solid angle at each pixel
of a glossy surface can be approximated with a pixel neighborhood around the pixel in question on
the mirror-reflected image of the glossy surface. The materia properties step uses the above visibility
approximation to weight and integrate incoming light over reflected solid angles at each pixel of
the glossy surface. The view-dependent weighting and integration is performed with image-space
convolution with two different techniques. The first technique splits the desired view-dependent
convolution processinto two steps: a view-dependent directional modulation based on the magnitude
variation of the glossy BRDF and a spatialy invariant (view-independent) convolution in screen
gpace. The second technique uses spatially variant (view-dependent) convolutionin screen space. The
gpatialy variant convol ution determines the convolutionkernel for each pixel of aglossy surface based

on the depth of the mirror-reflected point and the BRDF at that same pixel.
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7.4.1 Vishbility Step: Coherencein Mirror-Reflected | mages

Light transfers can be split into two independent parts (Section 7.1): avisibility part and a material

properties part. The two parts are defined in the same domain, i.e., in the directional space around the
point wherethelight transfer takesplace. In theory, the domain isthe entire hemisphere abovethe point
in question—atable of hemispherical BRDF datais heeded for representing the material propertiesat
the point and a hemispherical image is needed for capturing the hemispherical visibility at the same
point on a reflective surface. In practice, for a glossy transfer, both parts have to be considered only
over afinite solid angle bound by the glossy BRDF lobe at the point in question. A window of the
hemispherical BRDF data is enough and an image through the corresponding reflected solid angle at
each pixel isenough. Thevisibility step in thissection discusseshow we can approximate visibility for

reflected finite solid angles by assuming pixel-to-pixel visibility coherence in mirror-reflected images.

The visibility step of our two-step approach starts by computing the mirror-reflected image of
the scene on each given glossy surface. We restrict our analysis to planar glossy surfaces and we
use the techniques from Chapter 6 for computing mirror-reflected images on planar surfaces. Note
that ray tracing could also be used for computing the mirror-reflected images, since our two-step
approximation depends only on the final rendered mirror image and not on the particular technique
used for computing thereflection. Both color and depth information at each pixel of themirror-reflected

image are necessary for approximating reflected solid angle visibility for glossy reflections.

Our visibility assumption says that a mirror-reflected image captures most of the visibility
information needed for computing glossy reflections. Figure 7.11 illustrates how visibility for aglossy
reflection solid angle at a point on a horizontal surface can be approximated with mirror reflection on
a neighborhood around that point. The visible region for solid angle w with apex at point x can be
approximated by the visibility of mirror-reflected rays for neighboring points around x. The scene
point visible for the top ray of the solid angle in the figure is captured by the mirror-reflected ray at
point x; on the surface. Similarly, the visibility of the bottom ray of the solid angle is captured by
the mirror-reflected ray at x,.. In general, the visibility for any ray inside the solid angle is captured
by the mirror-reflected ray at a point in the neighborhood between x; and x,.. This suggests that a
mirror-reflected image captures enough visibility information for approximating solid angle visibility
at each point of aglossy surface.

In terms of implementation, let’s consider what happens in the depth and color buffers when

approximating visibility for glossy solid angles at pixels of aglossy surface. A glossy planar surface
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Figure7.11: Exploiting coherence in amirror-reflected image for approximating solid angle visibility
at apixel x. The visibility for the solid angle centered at x is approximated by the visibility for the
reflected rays at the neighborhood around point x and between x; and x,.. The solid angle top ray
visibility is captured by the reflected ray at x;, whilethe visibility for the bottom ray of the solid angle
is captured by the reflected ray at x,..

visible for a given view pose covers a region of the color and depth buffers. Using the techniques
discussed in Chapter 6, the corresponding region in the depth and the color buffers contains the depth
(distance from the reflection point on the surface to the reflected point in the scene) and the color of the
mirror-reflected scene point at each pixel.

Note that coherence on the mirror-reflected image on a surface produces only an approximation
of visibility for non-zero reflection solid angles (glossy reflections). Since the visibility from the point
in question and the visibility from another point in the neighborhood capture different viewpointsof the
scene, visibility events (occlusions and disocclusions) can happen from one point to another. That is,
thevisibility of the mirror-reflected scene on the neighborhood around a point on a surface can produce
resultsthat differ from the desired non-zero solid angle visibility for the same point. Our techniquesfor
glossy surfaces calculate as if this does not happen. Precisely when reflections are glossy (somewhat
blurred) rather than ideally specular, the artifacts arising from violations of this assumption are rarely

noticeable.

7.4.2 Material Properties Step: Image-Space Convolution for Integration Over Solid-
Angles

Thesecond step of our two-step approach tolight transfersdeal swith how light over anincoming glossy
solidangleisweighted and integrated (convol ved) withthe material BRDF to producelightintoasingle
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outgoing (viewing) direction. Theoretically, this convolution takes place in the hemispherical space
above a point (differential area) on a glossy surface (Chapter 4 and Section 7.2). Our technique works
in image-space by approximating weighted solid angle integration using image-space convolution.

Image-space convolution performs a gathering of contributions around each pixel on the
mirror-reflected image, which approximatesthe solid angle integration required for evaluatingthelight
transport equation at each pixel. The gathering neighborhood is defined by the convolution kernel
support, which derivesfrom the same pixel neighborhood used for approximating solid anglevisibility.
The convolution kernel isatexturein the same space as the reflected image—a sampled version of the
kernel function, which represents the weighting value for each incoming and outgoing directions pair.
In terms of the convolution operation, the kernel can be seen as a diding window that is shifted across
theinput domain (image). To evaluatethe convolutionat apixel x, thekernel iscentered at that location
intheimage and the sum of the pixel-wise productsof thetwo images (reflected image and convolution
kernel) istaken. Thenext two sectionsdiscussour alternativematerial propertiesstepsthat use spatially
invariant and spatially variant convolution

As was the case in the previous section, the convolution of mirror-reflected images to
approximate reflected solid angle integration implies a visibility assumption. Each scene point
ideally-reflected by a glossy surface is assumed to be visible for al the points on the neighborhood
defined by the kernel support around the point in question. Thisvisibility approximation is similar to
the one described for the object-space approach.

7.4.2.1 Material properties step using spatially invariant convolution and directional modula-

tion

The convolutionin the light transport equation is spatially variant in hemispherical space. The BRDF
kernel changes not only its magnitudebut also it shape in directional space. Moreover, inimage space,
convolutionis also spatially variant due to perspective shortening on the mirror-reflected images used
to capture visibility information. In this section we disregard the second part of the spatially variant
character of the problem and discuss an approach that performs a view-dependent (spatially variant)
modulation of the mirror-reflected image and then performs a spatially invariant (view-independent)
convolution of the resulting image. The motivation for this approach is the possibility of exploiting
operators available in the current graphics hardware—view-dependent texture mapping and spatially

invariant image-space convol ution.
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The view-dependent modulation step is performed according to Section 6.7.1 using sphere
mapping. The directional modulation step then needs to model only the magnitude changes of the
BRDF lobein directional space, not the shape change. The spatially invariant convolution modelsthe
glossy integration around the small neighborhood at each pixel of the mirror-reflected and modul ated
image. The convolutionkernel is an image representing the shape of the invariant kernel.

Program 7.12 presents pseudo-code for feed-forward spatially invariant convolution in image-
gpace—an input image produces an output image with the same resolution convolved with a kernel

image. In Program 7.12, the convolution kernel is spatially invariant over viewing directions (pixels).

zero all pixels in the output inmage
for each pixel g in the input image
center kernel in the output inmage at the sanme |location q
for each pixel p in the output inage covered by the kernel
output value at p += input value at q * kernel value at p

Program 7. 12: Feed-forward image convolution using spatially invariant kernel.

7.4.2.2 Material properties step using spatially variant convolution

Program 7.12 in the previous section assumed a spatialy invariant kernel, i.e., that the base shape and
weighting values of the kernel do not change from pixel to pixel. However, the convolution kernel
used for approximating a glossy reflected image may have to change across a glossy surface dueto the
view dependence of bath the magnitude and the shape of the BRDF. Spatially invariant convolution
of amirror-reflected image performs neighborhood gathering of pixel information based on a constant
(invariant) kernel support acrossthereflected image. Thekernel support, shape, and weighting function
depend on the material properties of the reflective surface—the kernel represents the material BRDF.
However, in our image-space approximation, thekernel al so dependson another variable—the distance
from each reflection point on the glossy surface to the reflected point on the scene.

Let’sconsider the evaluation of light transport at two pointson the glossy floor of asimplescene
(Figures7.13and 7.14). First, consider the mirror-reflected direction for the point x on thefloor. The
reflected ray in Figure 7.13 hitsthe far brick wall, whereas the reflected ray in Figure 7.14 hitsa closer
point. Clearly, thedistanced fromthefloor point (reflection point) to the point hit on the scene (reflected

point) is different for the two situations. Now consider the solid angle visibility approximation at
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Figure7.13: Estimating the neighborhood size (kernel support) for point x on the glossy surface for a
far reflected point on the brick wall.
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Figure7.14. Estimating the neighborhood size (kernel support) for point x on the glossy surface for a
nearer reflected point.
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point x for both situations. Since the point x is exactly at the same for both situations, the BRDF
lobe has the same shape for the two situations and the subtended solid angle is aso the same for both
situations. However, the neighborhoods on the reflected image (on the floor) that capture visibility
around the floor point have different sizes. Under our visibility approximation, the neighborhood
size 2d dependson thedistance =, from thereflection point on thefloor to therefl ected pointinthe scene
(Figure 7.14). We estimate the kernel support for each pixel on areflected image with the following

formulafor the kernel diameter in image space:
k. = 2d = 2(2z, tan 3) (7.7)

where d isthe diameter of an imaginary disk defined by the intersection of the solid angle and a plane
orthogonal to the principal directionw;,, at thereflected point, =, isthedistancefrom thereflection point
tothereflected point (the depth valueinthereflected image), and 3 isthe half angle around the principal
directionw;, defining the solid angle. Clearly, for thetwo situationsin Figures 7.13 and 7.14, tan 3 is
constant but =, has different values, which implies distinct kernel supportsfor the two situations.

Note that the desired behavior is captured by the kernel support of Equation (7.7). The support
increasesfor increasing solid angles—the bigger the BRDF |obe, the wider the visibility neighborhood
to be considered and the larger the kernel support. The kernel support is also directly proportional to
the distance from the reflection point to the reflected point—the further the reflected scene from the
glossy surface, the blurrier the glossy reflected image. The kernel support also vanisheswhen the solid
angleisinfinitesimal or when the distance from the refl ected point to the refl ection point vanishes—the

reflection degenerates to a mirror-like reflection.

Getting convolution kernels from BRDFs

The spatially varying image-space convolution requires two parameters for the kernel at each
pixel: the kernel support and the kernel texture. These parameters are determined using depth
information and BRDF information at each pixel. The kernel support defines the size of the pixel
neighborhood to consider for the solid angle visibility approximation. At each pixel, the kernel support
isafunction of the solid angle subtending the BRDF lobe, and the distance of the reflected point with
respect to the reflection point (Equation (7.7)). The BRDF lobe at each pixel defines the angle 5 in
Equation (7.7)—at runtime, thisisalook-upinto atable of tan 3 indexed by the cos ¢ at the pixel. The
kernel texture represents the magnitude of the BRDF for each direction in the incoming solid angle

and for the single outgoing viewing direction. Imagine a kernel texture as a curved patch on a sphere
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centered at the glossy transfer point (Figure 7.15). The patch covers the solid angle on the sphere for
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Figure 7.15: A kernel texture (left) seen as a patch on a hemisphere (right) covering the region for
which a BRDF at point x (in the center of the hemisphere) has non-zero values. For a given outgoing
direction, each texel samplesthe BRDF at adirection in the incoming non-zero solid angle.

which the BRDF at the point and the outgoing direction in question has non-zero values. Each texel
samplesthe BRDF in the corresponding incoming direction on the sphere. A library of kernel textures
is created for each directionally dependent BRDF function. At runtime, the kernel texture is selected
from the library of kernels based on the outgoing direction with respect to the surface normal (cos 6)

at each pixel.

7.4.3 A Feed-Forward I mplementation

The image-space convolution described in the previous section requires a spatially variant kernel
in image space, which currently is not available in graphics hardware. For proof of concept, we
have implemented a software version of spatially variant feed-forward convolution (splatting), as
presented in Program 7.17. We hope that in the future graphics hardware will implement spatialy
variant convolution, whichwill make our convol ution-based techniqueapproach real timefor rendering
globally illuminated scenes with arbitrary BRDFs.

Our technique takes a mirror-reflected image and a material library as inputs and produces an
approximation of the glossy reflected image on the corresponding surface with the given material. The
input image is the region in image-space covered by the projection of the glossy surface. The material
library isaset of kernel textures and atable of directional kernel supports sampled as described in the
previous section. Figure 7.16 illustratesthe spatially variant splatting, and Program 7.17 describesthe
algorithm for our image operation. In termsof an OpenGL implementation, the technique assumes that

amirror-reflected image has been computed for the glossy surface and the corresponding pixel color
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Figure 7.16: Spatialy variant splatting: three splats are shown. Notice the different support (width)
and magnitude (height) of each splat.

and depth values are in the color and depth buffers. The technique then proceeds by reading into main
memory the color buffer and the depth buffer regions containing the mirror-reflected image to generate
anew image of the same resolution, which approximatesthe evaluation of the transferred termin light
transport equation at each pixel. The convolution kernel is estimated for each pixel in the input image
based on the depth of the reflected point, the BRDF information, and the surface normal at each pixel.

zero all pixels in the output inmage
for each pixel g in the input image
| ook up the BRDF | obe size based on outgoing direction and surface normal at pixel g
estimate kernel support based on BRDF | obe size and depth of reflected point at pixel g
sel ect kernel texture based on outgoing direction and surface nornal at pixel g
center kernel in the output inmage at the sanme |location q
for each pixel p in the output inage covered by the kerne
output value at p += input value at q * kernel value at p

Program 7.17: Image-space spatially varying splatting for approximating the light transport
equation at pixels of a glossy surface.

A hardware implementation of our technique could be similar to SGI’s implementation of
image-space spatially invariant convolution [McReynolds98]. The operation would be performed
in a feed-forward manner by transferring an image from a region in memory into another region in
memory (for example, from the frame buffer into main memory or into texture memory). The initial
or source image would be the unconvolved image and the resulting or destinationimage would be the
convolved image. The convolution would be done by splatting the RGB value of each original pixel

into the neighborhood around that same pixel in the destination image, according to a convolution
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kernel. That is, the RGB value of each original pixel would modulate akernel texture and theweighted
result would be summed to the destination image. In the spatially invariant implementation, the
convolution kernel is the same across the whole image, whereas for spatialy variant convolution
the kernel would be alowed to change for each pixel in the image. For our technique, a library of
mip-mapped kernel swould be pre-loaded into texture memory and a different kernel would be selected
for each original pixel. The per-pixel selection would be based on the per-pixel quantities needed by
the desired type of convolution. For example, for directionally invariant but spatialy variant kernels,
which represent some types of BRDFs in glossy reflections, the selection process would reduce to
evaluating Equation 7.7 for each pixel. Notethat in the directionally invariant case, tan 3 isaconstant,
and eva uating Equation 7.7 requires multiplying the depth value at each pixel (from the depth buffer)

by a constant.

7.4.4 Resultsfor the lmage-Space Approach

The results presented in this section were obtained on an SGI Onyx2 workstation using a single

300MHz R12000 processor and an InfiniteReality2 graphics pipe with four raster managers.

Figure 7.18 shows a comparison of spatially invariant (left) and spatially variant (right)
image-space convolution for approximating a glossy reflection on a planar surface. Notice the
distance-based variable blur obtained with spatialy variant convolution (right); thisis not produced
with the spatially invariant convolution (Ieft). For example, pointsof the teapot are very close to the
glossy surface and do not get blurred much with spatially varying convolution, whereas points along
an edge of the checkerboard pattern on the wall get progressively blurrier with increasing distance to
the glossy surface. Thisvariable blur provides an important depth cue about the three-dimensionality
of the scene with respect to the glossy surface asit is expected in real glossy reflections. The spatially
invariant image-space convolution (left) benefits from a hardware implementation from SGI”™ and
renders in times on the order of tens of milliseconds (tens of frames per second). The spatialy
variant image-space convolution was implemented in software and renders in times on the order of
minutes. A more careful software implementation of spatially variant convolution could provide
better performance, but certainly the greatest performance improvement will come from a hardware

implementation of spatially variant convolution.
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Figure 7.18: Spatially invariant convolution (left) and spatially variant convolution (right) to
approximate glossy reflection on planar surface.

7.5 Discussion

Traditionally in computer graphics, scattered light transfers are grossly approximated with lighting
models that compute the illumination at a point by taking into account light reaching the point only
directly from light sources. In nature, however, we can easily observe that a glossy reflection involves
not only direct light from the sources, but also indirect light from the entire environment visible to the
reflective surface. Reflection models are necessary, instead of direct lighting models.

Efforts have been made to approximate glossy reflections by the superposition of manipulated
lighting models [Walter97a]. Colored point light sources were created around glossy objects to
approximate the incoming light from the surrounding environment onto the glossy surface. The
summiation (superposition) of the lighting resulting from all those point light sources approximatesthe
glossy reflection of the environment. Thistechnique is effective for low gloss surfaces when a small
number of light sourcesisenough to roughly approximatetheincominglight from the environment onto
the glossy surface. However, how many light sources would be necessary to represent the incoming
light onto a high gloss surface? In a high glossreflection it is possible to distinguish reflected objects
from the environment. Thisapproachisimpractical for high gloss surfaces—it would require too many
point light sourcesto approximate the environment around high gloss surfaces.

Asan aternative, multipassrendering can approximate scattered light transferswith astochastic
approach [Diefenbach96]. The entire sceneis rendered multipletimesfor jittered reflected viewpoints
with respect tothe glossy surface. Theweighted average (superposition) of all theimages approxi mates
the glossy reflection of the environment on the glossy surface. This approach is effective when just a

few jittered re-renderings of the scene are enough, i.e., for high gloss surfaces. However, how many
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jittered re-renderings would be necessary for approximating a low gloss reflection? In a low glossy
reflection refl ected objectsget very blurred and hard to distinguish. Thisapproachisimpractical for low
gloss surfaces—it would require too many scene re-renderings of the entire scene for approximating

such type of glossy reflections.

Note that the two approaches described above are implicitly computing a convolution
(superposition). Theincoming light onto theglossy surfaceistheinput signal, the material propertiesof
the glossy surface define the convolutionkernel, and the outgoing glossy reflection isthe output signal .
This chapter exploited explicit convolution approaches for approximating glossy reflections. Both
object-space and image-space convolution approaches were presented. The image-space approach
processes smaller amounts of data (number of pixels on the screen) than the object-space approach
(complexity of the scene). In fact, the object-space approach depends not only on the complexity of
the scene, but also on the number of light particles colliding with surfaces of the scene (a much larger
number than scene complexity). Both approaches were discussed in terms of flat surfaces, but they
extend to arbitrary geometrical primitivesunder the visibility assumption discussed in the chapter. The
visibility assumption disregardsvisibility events (occlusion and disocclusions) in small neighborhoods
around points where light transfers take place. Violations of the visibility assumption may create

blurred regions where sharper edges would be expected.

The spatially variant image-space convol ution presented in this chapter operatesin image-space
and seems simple enough for a graphics hardware implementation. In contrast to other approachesfor
computing glossy reflections, the presented convol ution approach does not require handling excessive
information about the scene at each pixel of the final image. Global information of the scene at each
pixel of a glossy surface is extracted from a small neighborhood around a mirror-reflected image
computed for the surface in question. Data locality in image-space is good for gathering the global

information about the scene necessary for computing scattered light transfers.

The same spatially variant convolution algorithm discussed in this chapter for rendering glossy
reflections can be used for rendering other effects such as transucency, soft-shadows, motion blur,
depth-of-focus, and anti-aliasing. For the algorithm to be applicable, the desired effect must be
expressed as the weighted average of global information in small neighborhoodsin image space. The
difference in how the convolutionalgorithm isused by the different effectsisin the convolution kernel

that needsto be used for each of the effects.
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An important point about the object-space approach is that it solves the entire light transport
problem at once, without handlingindependent componentsof light transport separately. Thisdoes not
fit well with our multipass superpositionrendering where wewant to use different approachesto render
the independent components, benefiting from the particular strengths of each approach. A possibility
for using the object-space approach to render only glossy reflections in conjunction with a multipass
technique would require isolating and rendering only the particle hits landing on glossy surfaces, after
completion of the particle-tracing phase.

The object-space approach used the kernel mostly as a smoothing entity—taking into account
the density of samples, whereas the image-space approach interpreted the convolution kernel as the
entity describing the materia properties.

Since the weighted contributions in the convolution approach can get very small, precision is
an important issue. We have observed that eight bits per color component is usually not enough for
evaluating convolution. Twelve bits per color component, in general, produced satisfactory results,
but afull floating point word per color component for each pixel would certainly avoid generation and

propagation of error when computing the convolution.
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CHAPTER 8

FUTURE WORK

This dissertation opens interesting research directions for future work, which will be briefly sketched

here in approximately the order the parent topics arise in the dissertation.

8.1 Mirror-Reflected | mages

8.1.1 Reflected Images on Curved Surfaces

The mirror reflection approach used in this dissertation islimited to planar surfaces, but the extension
to curved surfacesis possible. The planar surface reflection approach could be applied to each of the
small planar facets of atesselated curved surface. To produce a hon-faceted reflection, an additional
warping of the reflected points would be necessary for approximating the curvature of the faceted
curved patches.

Although the method described above would be able to approximate geometrically correct
reflectionsfor curved surfaces, the use of reflection mapping (environment mapping) ismore attractive
due to its simplicity of implementation and low computational cost [Greene86]. Among other
limitations, environment mapping assumes that the reflected environment isinfinitely far way from the
reflective surface, and it is not able to capture geometrically correct reflections [Bastos98]. However,
reflections on curved surfaces are so visually complicated that it is hard to judge whether areflection

is geometrically correct or not.

8.1.2 Recursive Reflections

Thisdissertationlimited itstreatment to asingle specul ar reflection along apath of light. Thislimitation

is reasonable for glossy surfaces, since the brightness of the reflected environment is greatly reduced



and blurred at each glossy reflection and higher-order reflections are hardly noticeable. However, for
more polished surfaces, the higher-order reflections may be necessary.

The rendering of higher-order reflections could be implemented with a recursion of the
reflectionstechnique presented. For agivenview pose, therecursivereflectionstree should betraversed
and then reflected images rendered for each node of the tree in a bottom-up manner. For example,
consider a scene with two glossy surfaces and a view pose that sees one of the glossy objects reflected
on theother glossy object. The rendering processwouldfirst detect that thereisaglossy object directly
visible from the viewer. Then, from the corresponding reflected viewpoint on the object visible from
theviewer, therendering would detect the second glossy abject. The recursion processwouldthen stop,
assuming no higher-order glossy reflections are wanted. Then, while popping up from the recursion,
reflected images of the environment would be rendered at each node of the recursion, i.e., for each
glossy object. In the final image, this would result on a second-order reflection composed on the first

visible glossy object and afirst-order reflection on the second glossy object.

8.2 Convolution-Based Approach

8.21 Convolution-Based Approach to Other Integral Equations

The convolution approach to the integral equation of light transport would certainly be applicable to
other integral equations. Several physics problems are represented with integral equations, and their
simulation usually involves solution techniques similar to the standard ones applied to light transport.
The possibility of rewriting integral equationsin terms of convolution and benefiting from convolution
hardware to compute solutions of integral equations would probably accelerate the study of other
interesting physics problems.

Although one normally thinks of the convolution hardware in current systems as image-
processing hardware, we can aternatively understand that particular part of the hardware as a tool
for solving numerical problems involving integration on small neighborhoods in two-dimensional
gpaces. The numerica problem has to be cast as the integration of the product of two functionsin
two-dimensional space. Then, one of the functions is selected the convolution kernel and the other
function as the input signal, based on the nature of the problem. The kernel should be pre-computable
and pre-loaded in memory, whereas the input signal should depend on each particular instantiation of

the problem.
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In additionto the convol ution capabilities of the graphics hardware, the hardware-aided solution
of numerical problems can also benefit from table ook up operators (texture mapping) and from the

linear operators addition and multiplication available in current graphics systems.

8.2.2 Full Digital Signal Processing Approach

This dissertation exploited only a few properties of signal processing applied to the light transport
problem. Using the extensive knowledge from digital signal processing in the light transport problem
would certainly present even more powerful alternative solutions. For example, a frequency analysis
of the BRDF kernelsin our light transport problem could be used to determine appropriate sampling
rates for glossy materials with different reflectance properties.

8.2.3 Spatially Variant Convolution
8.2.3.1 Other Applicationsfor the Spatially Variant Convolution

The spatially variant convol ution approach to glossy reflections described in Chapter 7 can be used for
other photorealistic effects, such as depth-of-field, motion blur, soft shadows, and translucency. For
the spatially variant convolutionagorithm to be applicable, the desired effect must be expressed asthe
weighted average of global informationin small neighborhoodsin image space. The differencein how
the convolution approach is used by the different effects isin the convolution kernel required for each
of the effects. For each pixel of an image to be produced with a given effect, a convolution kernel has
to be selected according to the type of effect.

In glossy reflections, the convolution kernel shape in image space depends on the BRDF of
the glossy material, whereas the kernel support at each pixel depends on the distance from the visible
reflection point at apixel to the corresponding reflected pointin the scene. For depth-of-field, thekernel
shape represents the impul se response of the camera lens, whereas the kernel support at each pixel is
proportional to the distance from the visible point in a scene at each pixel to the in-focus plane of the
lens. For motion blur, the kernel shape is related to the velocity vector of the visible point at each
pixel with respect to the viewer, whereas the kernel support is proportional to the distance from the
viewer to the visible point in the scene at each pixel. For soft shadows, the kernel shape representsthe
shape of the light source, whereas the kernel support depends on the distance from the light occluder
tothevisible point on the receiving surface at each pixel. For tranducency, the kernel shape represents

the impul se response function of the translucent material, whereas the kernel support depends on the
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distance from the visible point on the translucent object at each pixel to the corresponding visible point

in the environment seen through the translucent object.

8.2.3.2 Hardware Implementation of Spatially Variant Convolution

The software technique for spatially variant convolution presented in Chapter 7 is too slow for
application in interactive rendering systems. However, the technique seems simple enough to justify
considering a hardware implementation in current graphics architectures.

A possible implementation of the spatially variant convolution could be similar to SGI's
implementation of image-space spatially invariant convolution[McReynolds98]. The operationwould
be performed in a feed-forward manner by transferring an image from aregion in memory to another
region in memory (for example, from frame buffer into main memory or texture memory). Theinitial
or source image would be the unconvolved image and the resulting or destinationimage would be the
convolved image. The convolution would be done by splatting the RGB values of each source pixel
into the neighborhood around that same pixel in the destination image, according to the convolution
kernel selected for the source pixel. That is, the RGB value of each source pixel would modulate a
kernel texture and the weighted result would be summed to the destination image. In the spatially
invariant implementation, the convolution kernel is the same across the entire image, whereas for
spatially variant convolution the kernel would be allowed to change for each pixel in theimage. For
our technique, alibrary of mip-mapped kernelscould be pre-loaded into texture memory and adifferent
kernel would be selected for each source pixel. The per-pixel selectionwould be based on the per-pixel
guantities needed by the desired type of convolution, as discussed in the previous section.

Theavailability of spatially variant convolutionin hardwarewould certainly increase therealism

of view-dependent effects in synthetic images that must be rendered at interactive rates.

8.3 Dynamic Environments

In Chapter 1, we limited this dissertation to the interactive rendering of static environments.
The multipass approach presented in this dissertation depended upon precomputation of certain
view-independent quantities for speeding up the rendering of static environments. In particular, the
light paths ending in ideally diffuse surfaces were handled with the radiosity method. Given the high
computational cost of solvingtheentire global radiosity problem of a scene, re-computation of radiosity

per frame does not seem a possible solution for reasonably complex scenes. Efficient approaches for
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updating radiosity information in dynamic environments could be a possible alternative. Approaches
for computing reduced and morelocal radiosity solutionsfor each view pose could also bean alternative

in dynamic environments.
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