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ABSTRACT

Rui M. R. de Bastos

SUPERPOSITION RENDERING: Increased Realism for Interactive Walkthroughs

(Under the direction of Dr. Frederick P. Brooks, Jr.)

The light transport equation, conventionally known as the rendering equation in a slightly

different form, is an implicit integral equation, which represents the interactions of light with matter

and the distribution of light in a scene. This research describes a signals-and-systems approach to

light transport and casts the light transport equation in terms of convolution. Additionally, the light

transport problem is linearly decomposed into simpler problems with simpler solutions, which are then

recombined to approximate the full solution. The central goal is to provide interactive photorealistic

rendering of virtual environments.

We show how the light transport problem can be cast in terms of signals-and-systems. The light

is the signal and the materials are the systems. The outgoing light from a light transfer at a surface

point is given by convolving the incoming light with the material’s impulse response (the material’s

BRDF/BTDF). Even though the theoretical approach is presented in directional-space, we present an

approximation in screen-space, which enables the exploitation of graphics hardware convolution for

approximating the light transport equation.

The convolution approach to light transport is not enough to fully solve the light transport

problem at interactive rates with current machines. We decompose the light transport problem into

simpler problems. The decomposition of the light transport problem is based on distinct characteristics

of different parts of the problem: the ideally diffuse, the ideally specular, and the glossy transfers. A

technique for interactive rendering of each of these components is presented as well a technique for

superposing the independent components in a multipass manner in real time.

Given the extensive use of the superposition principle in this research, we name our approach

superposition rendering to distinguish it from other standard hardware-aided multipass rendering

approaches.
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CHAPTER 1

INTRODUCTION

Synthesis of realistic images has been a major focus of research in computer graphics. The goal is

to create a visual experience identical to that which an observer would have when looking at a real,

existent or nonexistent, environment. To provide such convincing simulation, the intricate geometry

and the physically complex lighting effects of the environment need to be reproduced—photorealism.

In addition, images need to be generated at interactive frame-rates, so that the viewer can also perceive

smooth motion in the scene—motion realism. The combination of photorealism and motion realism

we call realism (Figure 1.1).

SIMULATIONMODELING VISUALIZATION
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Interactive

Local
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Figure 1.1: Model-driven approach to realistic rendering—besides the model, five additional
elements are fundamental for realistic image synthesis: a simulation of global light transport in
the environment, sampling strategies for creating a view-independent globally-illuminated model,
reconstruction techniques, a local reflection model, and an interactive rendering engine.

Image synthesis research spans a spectrum (Figure 1.2). At one extreme, images are rendered

for real-time viewing, no matter how unrealistic they look. At the other extreme, algorithms compute

accurate images, no matter how long it takes to compute them. We want to combine advantages of

these two and produce, at interactive rates, images that look right. The requirement for image accuracy



implies simulating light transport in the scenes, whereas the real-time requirement demands exploiting

graphics hardware to improve image synthesis performance.

Performance

Accuracy

Software Monte Carlo ray tracing

Hardware lighting

Our approach

Hardware-aided multipass rendering

-----------------------------------------Real time

Figure 1.2: Image synthesis spectrum.

The ability to generate photorealistic images at interactive rates has important applications in

virtual prototyping of building designs, automobile styling, and stage and set lighting design. For all

of these, the demands for greater photorealism and higher frame-rates are always increasing. Pushed

by this need for interactive synthesis of photorealistic images, graphics hardware systems implement

fast rendering capabilities. Current systems can handle up to hundreds of thousands of texture-mapped,

lighted, and anti-aliased triangles at interactive frame-rates.

The illumination models supported in hardware are not enough to provide the level of

photorealism demanded by the visual experience goal. The hardware approximates only simple

local-illumination models, whereas global-illumination models are necessary for simulating lighting

details observed in nature such as shadows, reflections, translucency, refraction, color bleeding,

diffraction, etc.

Local or direct illumination refers to the distribution of reflected light as a function of

incoming energy directly from light sources without considering occlusion by objects along the light

path. Local here defines surface illumination to depend only on the surface material properties

and the characteristics of the light sources. There is no notion of the environment as a whole

(Figure 1.3 (left)—notice that local illumination does not take into account occlusion of the table

between the light source and the point on the floor).
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Figure 1.3: Light transfers to compute local-illumination (left) and global-illumination (right) at a
point on the floor.

Global or indirect illumination takes into account the entire environment when computing

illumination for each surface point. For example, shadows depend on determining occlusion between

light sources and surface regions; reflections and color bleeding depend on the multiple interreflections

of light, each weighted by the corresponding material properties (Figure 1.3 (right)). In reality, surfaces

receive light both directly from light sources and indirectly from interreflections and transmissions

of the environment. Global illumination can clearly produce more accurate approximations of

photorealistic images than can the local-illumination models.

Both local- and global-illumination models approximate, to some extent, a steady-state solution

of the light transport equation—an integral equation that describes the total lightL o leaving a surface

point x in a given direction ~!o:

Lo(x; ~!o) = Le(x; ~!o) +
Z


fbd(x; ~!o; ~!i) Li(x; ~!i) cos �i d~!i (1.1)

whereLe represents the light directly emitted by pointx in direction ~! o and the integral term represents

the light indirectly transferred through pointx into direction ~! o. The indirect term integrates incoming

light Li from all possible directions in the sphere 
 around the point in question x, weighted by the

corresponding directional reflectance/transmittance properties of the surface material fbd. The key

challenges in solving the light transport equation are:

� the integration of incoming light over the entire directional domain—the sphere of directions—

centered at each visible point in a scene and

� the recursiveness of the problem implied by the implicit form of the equation—the incoming

light Li with respect to the point in question is per se the recursive application of the same

equation at the points in the scene where Li originates.
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Note how naively local illumination tries to approximate the light transport equation by considering

that light reaches a point originating only from light sources in the scene—there is no notion of

environment and there is no notion of interreflections (recursion) either. In the simplest, and quite

common, approximation, the global term of the light transport equation is approximated with a constant

additive value that tries to model the ambient light in a scene [Foley90].

There exist approaches for approximating the light transport equation accurately. Glassner

[Glassner95] discusses several methods for solving integral equations such as the light transport

equation. The methods range from symbolic solutions to numerical and Monte Carlo integration.

However, those methods cannot be evaluated by software fast enough to satisfy the real-time

requirement. Moreover, none of them is simple enough to justify implementing in hardware, which

would approach real-time performance.

General global-illumination research in Monte Carlo ray tracing [Veach98, Lafortune96,

Jensen96, Ward94] properly accounts for all the components of illumination. Most such research

focuses on an image-driven approach—the creation of a single accurate image in a reasonable amount

of time (ranging from seconds to hours of processing time on a single 190 MHz MIPS R10000 processor

[Veach98]). Emphasis is placed on high quality, measurable accuracy, and numerical robustness of the

method. The computational time for obtaining reasonably converged global-illumination for a single

image with such techniques prohibits interactivity. Recently, there has been some interest in using

ray-tracing algorithms in multiprocessor machines [Parker99, Parker98]. The approaches exploit,

in a “brute-force” manner, conventional, and expensive, shared-memory multiprocessor machines to

produce interactive ray-traced images for low complexity models by using dozens of processors—a

model of 75; 000 polygons and a spline teapot renders at 4 frames per second for images of 512� 512

pixels on 60 processors of an SGITM Origin 2000 workstation [Parker99]. Ray tracing could benefit

from custom hardware. However, even after more than twenty years of ray-tracing research, custom

graphics hardware compatible with such techniques does not yet seem on the horizon.

Alternatively, standard hardware-aided multipass rendering [Diefenbach96, McReynolds98]

uses features of most current inexpensive graphics hardware to approximate global illumination by

computing at each frame (view pose) the multiple lighting effects observable in nature. This type

of approach requires rendering the entire scene multiple times per frame, i.e., handling the entire

complexity of the scene several times per frame. For realistic model complexities, this cannot now be

done at interactive frame rates—computational time is in the order of seconds for scenes with tens of
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thousands of triangles on SGITM RealityEngine workstations [Diefenbach96]. The scenes have to be

rendered multiple times, which easily overwhelms even the best graphics architecture. For example,

mirror reflections on planar surfaces are computed by mirroring the view pose with respect to each

planar reflector and rendering the scene from each reflected view pose. Glossy reflections are handled

with a jitter-and-average approach; the reflected view pose is jittered several times with respect to each

reflector and the resulting rendered mirror reflections are accumulated and averaged to produce a glossy

looking reflection. View-independent lighting and shadows are also approximated with additional

passes over the entire scene database.

Neither Monte Carlo ray tracing nor standard hardware-aided multipass rendering can yet

provide interactive rendering of photorealistic images for reasonably complex models. Visibility

computation and mathematical integration of incoming light is the bottleneck. Ray tracing

computes visibility by evaluating the intersection of pixel rays with primitives in the scene, whereas

hardware-aided multipass rendering uses a depth buffer to perform the primitive sorting along

pixel directions. In terms of mathematical integration of incoming light, ray tracing integrates by

summing contributions from several reflected/refracted rays in a solid angle (Figure 1.4(left)), whereas

hardware-aided multipass rendering integrates by summing jittered contributions that map to the same

pixel in an image (Figure 1.4(right)).

N N

Figure 1.4: Monte Carlo ray-tracing (left) and jitter-and-average (right) for a glossy light tranfer at a
point on a floor. Notice the distribution of normals at the point in question on the floor that produces the
distributionof reflected rays for Monte Carlo ray tracing and the jittered reflected cameras for multipass
rendering.

Let’s consider the data access patterns of standard hardware-aided multipass rendering and of

standard Monte Carlo ray tracing (see Figure 1.4). Multipass rendering has better data locality than

ray tracing. In multipass rendering, the whole scene is sequentially rendered several times per frame
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depending on the number of rendering passes required by the multipass approach. In Monte Carlo ray

tracing, a spatial search over the scene to determine the first visible primitive has to be done for each

pixel per frame. The number of traversals of the data set (scene) is potentially smaller for the multipass

approach than it is for the ray-tracing approach, since there are more pixels on the screen than passes

in the multipass approach.

Consider also how the two approaches traverse the data set. Multipass rendering is an

object-order method, whereas Monte Carlo ray tracing is an image-order approach. The atomic

primitive in hardware-aided multipass rendering is a polygon, whereas in ray tracing the atomic

primitive is a ray. The multipass rendering approach accesses a single independent polygon for an

atomic operation (very local information), whereas the ray-tracer has, potentially, to access the entire

scene for each atomic operation (very global information). Potentially, a machine performing an atomic

operation in ray tracing has to access more data than in multipass rendering.

In summary, the visibility and the integration techniques of Monte Carlo ray tracing and

multipass rendering imply distinct memory access patterns and distinct computational times. In order

to provide more interactive frame rates, our method, besides exploiting the graphics hardware, also

improves on handling visibility information and on mathematical integration.

We present a mathematical framework for solving the light transport equation by using

hemispherical convolution. To make the solution of the light transport equation practical, we also

present a linear decomposition of the light transport equation, methods for approximating each of

the components, and techniques for their recombination. These methods exploit linear superposition,

spatial coherence, and spatial locality of the data. Computers are good at performing linear operations

and this dissertation exploits the linear superposition principle at two distinct levels. At the highest

level, the full light transport problem is broken down into smaller problems with simpler solutions,

which are then recombined (by superposition) to approximate the full solution. The light transport

equation is linearly decomposed based on the nature of the light transport problem and on the linear

operators available in current graphics hardware. From that division of the problem we precompute as

much as possible of the light transport components and recombine them at rendering time to achieve

interactivity. This approach allows exploiting current graphics hardware in a runtime, multipass

manner for the recombination of the linearly independent components. At a lower level, one of

the components, namely the glossy component, exploits hardware-assisted convolution to provide

image-space integration of pixel neighborhoods. Both the decomposition and the runtime rendering
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exploit coherence in reflected/transmitted space to reduce visibility computations for glossy light

transfers.

This approach is much faster than standard hardware-aided multipass rendering because of

1. the reduction of data to be rendered per frame (fewer number of rendering passes over the whole

model database) due to precomputation of view-independent quantities, which are computed at

runtime for standard multipass rendering—ideally diffuse transfers, shadows, and visibility for

non-diffuse reflections;

2. visibility assumptions, because we assume that visibility for glossy reflections is captured with

a single mirror-like reflection, instead of requiring multiple jittered images; and

3. per pixel hardware-aided mathematical integration through image-space convolution, instead of

independent weighting and accumulating for each jittered image.

Since substantial preprocessing is involved, our full approach for approximating the light transport

equation applies only to static scenes—only the viewer is allowed to move; light sources and

objects remain static—even though, parts of the method are applicable to dynamic scenes. The

proposed methods are also simple enough for hardware implementation and, if so implemented, will

make per-pixel approximations of the light transport equation rapid for arbitrary models in arbitrary

representations.

1.1 Overview of Our Signals-and-Systems Approach to Rendering

This section summarizes the approach developed in this dissertation for achieving interactive rendering

of photorealistic images. We start by discussing light transfers related to a single point in an

environment. Then we move on to the combination of light transfers to form a light path, and

then on to the full global illumination problem. The illumination problem is treated in terms of

signals-and-systems. The concepts of signal, system, impulse response, and convolution are necessary

for understanding this discussion. The reader unfamiliar with these concepts is referred to the brief

overview in Chapter 2 or to [Oppenheim96].

The full light transport or global-illumination problem is described by the light transport

Equation (1.1). The outgoing light from a point in a scene is the sum of a local term and a

global term. The local term represents the light emitted by the point in question. The global
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term describes the integration of all the light reaching the point in question from somewhere else

in the scene, and being transferred back into the environment through reflection or transmission

at the point in question, weighted by the corresponding material properties. The bidirectional

reflectance/transmittance distribution functions (BRDF/BTDF) represent how the behavior of light

transfers depends on material properties. Light transfers such as emission, reflection, and transmission

exhibit a variety of behaviors. Diffuse transfers correspond to an equal scattering of light in all

directions. Specular transfers scatter incoming directional light in a narrow band of reflected directions

(ideal specularity means that there is only one direction in which outgoing light may go). Non-ideal or

glossy transfers describe the continuum between ideally diffuse and ideally specular transfers. Glossy

transfers have a directional bias but are neither restricted to a single outgoing direction nor effect an

equal scattering to the whole outgoing hemisphere.

A light transport path starts at a light source and ends at a sensor. The sensor is usually a

viewer. We abstract away the light creation process and the perceptual process produced by light. We

consider only what happens with light in-between, i.e., from the time light leaves the emitter until it

reaches the viewer’s eye. A light path starts at a point on the surface of a light source and leaves in a

particular direction. Assume that the environment is composed by media of uniform material separated

by surface interfaces. The light leaving a point on a source in a given direction travels rectilinearly and

undiminished until it reaches another point on the surface of a light receiver. At that interface, three

phenomena can occur as a response of the system to incoming light:

� the light can be absorbed without a resulting signal in the same space, i.e, no outgoing light;

� the light can be reflected back into the original medium producing a modified signal—light in a

new direction;

� or the light can be transmitted into the new medium producing a modified signal—light in a new

medium and in a new direction.

In terms of signals-and-systems, the incoming light is the input signal, the receiver point is the system,

and the outgoing light is the output signal. The function describing the behavior of the outgoing light

is the point spread function1—the impulse response—of the system. Note the relative difference of the

1In optical terms, a point spread function is the image produced by a point light source through an optical system. In

our approach, the point spread function describes the spread of light from a single ray of light incident on a point at a given

orientation, i.e., the usual bidirectional reflectance/transmittance distribution function of materials—the ratio of outgoing to

incoming light in the directional space around the point in question.
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incoming and outgoing terms with respect to receiving and emitting surface points; the outgoing light

from an emitter corresponds to the incoming light of a receiver.

From signal processing theory, the output of a system is given by the convolution of the input

signal with the system’s impulse response. From our analogy of the light transfer problem with signals

and systems, this implies that the outgoing light from a light transfer is the result of convolving

the incoming light with the material BRDF/BTDF at the point in question. Formally, compare the

convolution equation

g(x) = f(x) ? k(x) =

Z +1

�1

f(u) k(x� u) du: (1.2)

with the second term of the light transport Equation (1.1). Both integrate the product of two functions.

This suggests that the light transport equation can be expressed in a simpler form using convolution:

Lo(x; ~!o) = Le(x; ~!o) + Li(x; ~!i) ? K(x; ~!io; ~!i) (1.3)

where K(x; ~!io; ~!i) is the convolution kernel derived from material bidirectional distribution

functions, as will be discussed in Chapter 4.

There is a necessary mental shift for understanding this new representation for the light transport

equation in terms of convolution. The reader should note that a convolution kernel is a function

defined in the same space as its corresponding signal. Instead of defining convolution in the traditional

rectilinear space with an infinite range, as in Equation (1.2), the light transfer problem is carried out

in a directional space around the point of interest. Both the signal and the kernel are defined in this

directional space in terms of directions (or angles, in spherical coordinates).

The global-illumination problem also involves the recursive application of the light transport

equation. The illumination at a point on a surface is determined by taking into account all the light

received from the rest of the environment into that point; however, points on the rest of the environment

also depend on the application of the same equation. A recursive algorithm is necessary to solve the

full light transport problem. A single application of the light transport Equation (1.3) represents a light

transfer at a point x, whereas multiple recursive applications correspond to light paths.

Theoretically, casting the light transport equation in terms of convolution does not represent

a considerable advantage over its traditional integral form. However, in practice, convolution is

readily available in some graphics architectures, which represents an opportunity for hardware-aided

evaluation of the light transport equation. In addition, we do not want to apply the convolution-based

approach for all the types of light transfers. Ideally specular transfers do not need convolution
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at all, since the corresponding convolution kernel would be a delta function in directional space.

Also, the ideally diffuse transfers can be precomputed using the well-known radiosity method.

We propose the application of the convolution approach for glossy transfers, which are in general

hard to simulate with other approaches. Moreover, our convolution-based approach assumes that

visibility for glossy reflections is captured with a single mirror-like reflection on the glossy surface,

which dramatically reduces visibility evaluation—reduces the number of rendering passes to one if

compared to the many passes of standard hardware-aided multipass rendering for approximating glossy

reflections. Additionally, mathematical integration of light is performed per pixel by using image-space

convolution, instead of weighting and accumulating several rendering passes of approximately the

same (jittered) scene in standard multipass rendering.

1.2 Thesis

This dissertation presents a multipass rendering method for the interactive approximation of global

illumination in static environments based on the linear decomposition of the light transport equation

and its runtime recombination through the use of current graphics hardware. Some of the underlying

components are precomputed based on view-independent quantities and on their suitability for

hardware processing. Briefly, we propose to synthesize photorealistic images of diffuse and non-diffuse

static environments at interactive frame-rates with current graphics hardware.

The thesis of this research is:

Global illumination techniques can be used for interactive photorealistic walkthroughs of

non-diffuse virtual environments. By linearly decomposing the light transport problem

and by exploiting graphics hardware, multipass rendering and image-space convolution

can provide interactive performance and natural appearance for walkthroughs of static,

globally illuminated, non-diffuse environments.

The synthesis of photorealistic images at interactive frame-rates demands the solution of four

main problems:

1. How can one use the decomposition of the light transport equation to achieve performance

improvements on the rendering of globally-illuminated scenes? Chapter 4 decomposes the light

transport equation into linear components that are suitable for preprocessing and for exploiting

current graphics hardware. Then, the succeeding chapters discuss each of the components.
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2. How should one preprocess and represent the view-independent component of global illumina-

tion? Chapter 5 is devoted to the processing of radiosity data to represent view-independent

illumination efficiently and to render this component using the graphics hardware efficiently.

3. How can one render ideally specular light transfers at interactive frame-rates? Chapter 6 presents

an image-based alternative for computing mirror-like reflections. The approach extends to ideal

transmission.

4. How can one render glossy reflections in real time? Chapter 7 exploits spatial coherence

in reflected images to approximate glossy reflections using hardware-aided image-space

convolution. The approach extends to translucency.

This dissertation focuses on interactive walkthroughs that account for view-independent and

view-dependent illumination. Going beyond previous global-illumination research, we emphasize

structuring the scene database to allow for fast rendering with view-dependent illumination at

interactive rates from arbitrary viewpoints. In addition to capturing purely specular view-dependent

effects, the approach in this dissertation properly captures the imperfect reflection scattering of glossy

surfaces. Due to the light scattering of glossy reflections, higher-order reflections often contribute little

to the final scene’s illumination. The approach in this dissertation is restricted to glossy, first-order,

planar reflections; however, the Future Work section discusses how to extend the techniques to

recursive reflections and to curved surfaces.

Given the extensive use of the superposition principle in this research, we name our approach

superposition rendering, to distinguish it from standard hardware-aided multipass rendering, which

also exploits superposition in a slightly different way. The main distinctions between standard

hardware-aided multipass rendering and superposition rendering are:

Hardware-aided multipass rendering Superposition rendering

Multipass shadows Single pass precomputed radiosity shadows

Multipass jitter-and-average glossy effect Single pass and convolve

Phong local lighting Reflectance mapping on mirror reflections

Table 1.1: Feature comparison of hardware-aided multipass rendering and superposition rendering.

In summary, in terms of performance, the major advantage of superposition rendering is due to a

dramatic reduction in the number of rendering passes required per frame to approximate the light

transport equation. For example, whereas multipass rendering may typically take tens of passes on
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the entire scene to produce a glossy reflection, superposition rendering typically takes a single pass on

the entire scene and a convolution pass in image space.

1.3 Results

We present superposition rendering—a hybrid geometry- and image-based multipass rendering

approach that offers the following:

� a decomposition of the global-illumination equation into linear components that exploits current

graphics hardware for its efficient recombination,

� techniques for reconstruction of view-independent illumination and its resampling for storage as

textures with improved smoothness, exploiting current graphics hardware,

� a sampling-and-reconstruction scheme for preprocessing visibility information for non-diffuse

light transfers,

� the use of convolution for approximating view-dependent solid angle light integration in glossy

reflections to simulate material properties (both object-space and image-space approaches are

presented), and

� a technique for approximating the view-dependent reflectance/transmittance kernel as a

view-independent convolution kernel texture (for integration purposes) and a view-dependent

reflectance texture (for directional modulation) for certain types of BRDFs.

Figure 1.5 sketches the flow of data in superposition rendering. The preprocessing phase

appears on the left and the runtime phase is on the right. A simple scene is used for illustrating the

method; the pyramid is made of glossy copper material, and the other objects are all made of ideally

diffuse materials. As part of the preprocessing, we compute a radiosity solution for the scene and

generate a set of images-with-depth for each non-diffuse reflector in the scene. Also as part of the

preprocessing phase, we compute a kernel texture and a reflectance sphere map for each non-diffuse

material. Then, at runtime, given a view pose, a subset of the images-with-depth is reprojected to

reconstruct the mirror-reflected image on each non-diffuse reflector. After the mirror-reflected image

has been computed, it is convolved with the BRDF-based kernel of the corresponding material. After

the reflected image is blurred, it is also view-dependently modulated. Finally, using the same view

pose, the view-independent component is rendered and added to the specular component already
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Choose
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Figure 1.5: Superposition rendering of a simple scene. The pyramid is made of glossy copper material.
All the other objects are ideally diffuse.
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in the frame-buffer. Both the multiplications and additions in the multipass rendering method are

implemented with blending functions available in current graphics hardware systems.

1.3.1 View-Independent Component

The view-independent component will be discussed in Chapter 5. We use the radiosity method for

precomputing and rendering the view-independent component of the light transport equation. The

radiosity method works in two stages—a sampling stage and a reconstruction stage. The sampling stage

is performed offline as a preprocessing of the scene—the initial polygons representing the geometry

of the scene are adaptively subdivided and radiosity is computed at the vertices of the subdivided

primitives. The reconstruction stage is performed at runtime by shading the polygons of the scene with

the corresponding radiosity information.

Traditionally, radiosity results are rendered using the dense adaptively subdivided meshes of

polygons with per-vertex radiosity. Clearly, this mesh-based rendering approach is transformation

bound—there are potentially more primitives to be geometrically transformed than the graphics

hardware can handle at interactive rates. Our approach, similarly to what other researchers did,

converts the densely tesselated meshes into textures and renders radiosity information by painting

the unsubdivided polygons of the scene with radiosity textures. This texture-based approach trades

performance for texture memory. The radiosity textures are preloaded into texture memory and queried

for shading the unsubdivided polygons of the scene. Since current graphics architectures contain only

up to 64 megabytes of texture memory, in general, only a fraction of the subdivided polygons in a scene

is converted to textures—the polygons with higher subdivision rates.

Since the standard polygon shading technique in hardware is bilinear interpolation for both the

per-vertex scheme and the texture-based scheme, the final images may present artifacts due to slope

discontinuities of the shading across the edges between adjacent polygons. We have experimented

with higher-order filtering schemes both as runtime filtering and as prefiltering techniques. The runtime

filtering technique provides smoother results without requiring any modification of the radiosity data,

but demands using a slower and non-standard bicubic texture-filtering mode. The prefiltering scheme

also provides smoother results by prefiltering the radiosity data and by using the standard (and faster)

bilinear texture-filtering mode.
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In terms of the graphics hardware, the rendering of the view-independent component benefits

from standard polygon rendering, from regular texture mapping and filtering, and from texture memory

size and access time.

1.3.2 The Non-Scattered Transfers

The non-scattered transfers of light will be discussed in Chapter 6. We discuss both a geometry-based

approach and an image-based approach for rendering mirror-reflected images on planar surfaces. The

geometry-based approach re-renders the entire scene for each mirror-reflected view pose. The image-

based approach precomputes images-with-depth for a set of mirror-reflected view poses with respect to

each planar mirror in the scene and selects, at runtime, the image or set of images that best approximate

the current mirror-reflected view pose. Both the geometry-based and the image-based approaches can

be used for computing mirror-reflected images in superposition rendering.

The geometry-based approach does not introduce any artifact on the mirror-reflected images,

whereas the image-based approach introduces disocclusion artifacts and noise due to the presampling

and reconstruction stages. However, the image-based approach is potentially faster than the geometry-

based approach, since the image-based approach does not have to re-render the entire scene for each

mirror-reflected image. Both the geometry-based and image-based approaches use the stencil buffer to

restrict the rendering of mirror-reflected images to the projected areas of the reflective surface on the

screen [McReynolds98].

In terms of the graphics hardware, the rendering of the view-dependent non-scattered component

benefits from standard polygon and point rendering and pushes the geometrical transformation

capabilities of the hardware.

1.3.3 The Directionally-Dependent Non-Scattered Transfers

The directionally-dependent non-scattered transfers will be discussed in Chapter 6. Most polished

materials exhibit higher reflectance values at grazing angles than at normal incidence and may also

filter the color of reflected light in a directionally dependent manner—mirror-like materials. These

directional-dependent reflectance variation and color filtering effects are approximated by processing

a mirror-reflected image computed on the reflective surface.

Initially, a mirror-reflected image is computed as described in the previous section for the

screen region where the reflective surface projects. Then, the reflective surface is rendered using a
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multiplicative blending function for modulating the reflected image. Constant color modulation of

the reflected image is achieved by using a constant color or texture mapping of the reflective surface.

Directionally dependent reflectance is produced by using view-dependent texture mapping such as

sphere mapping. The sphere maps representing the directional-dependent reflectance are precomputed

and attached to the reflective surfaces.

In terms of the graphics hardware, the rendering of directionally-dependent non-scattered

reflections depends on the same parts of the graphics hardware as the rendering of non-scattered

reflections, but also depends on view-dependent texture mapping (e.g. sphere mapping).

1.3.4 The Scattered Transfers

The scattered transfers of light will be discussed in Chapter 7. We present both an object-space

convolution approach and an image-space convolution approach. The image-space approach is also

split into a spatially invariant convolutionapproach and a spatially variant convolutionapproach. From

the three approaches presented, only the image-space spatially invariant convolution approach can

efficiently benefit from graphics hardware to provide glossy reflections at interactive rates.

The image-space spatially invariant convolution approach to glossy reflections starts by

computing a mirror-reflected image on the planar surface, which is then blurred and view-dependently

modulated as described in the previous sections. Both the convolution kernel and the view-dependent

modulation factors are derived from the BRDF of the glossy material.

In terms of the graphics hardware, the rendering of scattered reflections benefits from an

implementation of image-space convolution and from view-dependent texture mapping (sphere

mapping). The image-convolution technique pushes the screen fill capabilities of the hardware.

1.4 Images and Numbers

Figures 1.6 to 1.8 show the results of superposition rendering for a room of a six-room house model

with 140; 000polygons and five planar glossy reflectors. We analyzed the performance of superposition

rendering with that house model. Images were rendered at 720 � 486 pixels and performance

data were collected by playing a pre-recorded path (944 frames) through the house and using two

images-with-depth per hemisphere for each glossy reflector in the scene. Performance was measured

with superposition rendering on an SGI TM Onyx2 workstation using a single 250 MHz R10000

processor and a single InfiniteReality2 graphics pipe with four raster managers. The average frame-rate
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for that model ranged from 30 fps to 8 fps by varying the number of glossy reflectors in the scene from

zero to five (see Chapter 6 for more detailed results).

Figure 1.6: Superposition rendering using geometry-based reflections.

Figure 1.7: Superposition rendering using image-based reflections (two images-with-depth per
hemisphere for each reflector).

We have also analyzed the performance of the individual operations involved in our runtime

rendering. We ran a series of tests on the house model using our superposition rendering and selecting

two images-with-depth for each hemisphere in the image-based reflections. Allowing the number of

reflectors to vary, we found that time spent rendering the view-independent component of the scene was

invariant with respect to the number of reflectors. We also found that the convolution and modulation

operations combined for no more than 3% of the total rendering time. This suggests that the two

operations do not dominate in the evaluation of our shading equation. It is important to note that

the convolution operation is a screen-space operation; consequently, the cost is dependent on the

screen-space projected area of each reflector and not on scene complexity.
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Figure 1.8: Superposition rendering using image-based reflections (two images-with-depth per
hemisphere for each reflector) and illustrating the view-dependent variation of glossy reflections
magnitude with orientation of glossy surfaces with respect to the viewer. Compare the magnitude of
the glossy reflections on the floor in this figure and in the previous figure.

In all these test runs with the house model, the image-based approach outperformed the

geometry-based one, but this performance was not free. The image-based approach incurs additional

memory overhead. The house model required 50 megabytes of storage of which 20% was for

geometry-related data and 80% was for images-with-depth.

Figures 1.6 and 1.7 compare image quality of geometry-based reflections with our image-based

approach. The image-based approach exhibits loss of detail and artifacts in some regions of the image.

This is unfortunate for mirror-like reflections, but reasonable for glossy reflections. The primary causes

for these artifacts are due to disocclusions and to noise introduced by the point-based reconstruction

used by the image-based reflections.

Our BRDF decomposition into a view-independent convolution kernel and a view-dependent

modulation for simulating glossy surfaces convincingly approximates the view dependent reflectance

for glossy surfaces. Figures 1.7 and 1.8 show the results on the music room of the house model. In the

first figure the view-direction is parallel to the floor and the piano top, while in the second one the viewer

is looking down. Notice the increase in specular reflectance at grazing angles and the appropriately

decreasing view-dependent component at higher angles.

Clearly, the blur obtained with convolution approximates the roughness of the surface at small

neighborhoods. Unfortunately, the spatially invariant convolution approach assumes that reflected

points are at a constant distance from the glossy reflector. A more accurate implementation performs

spatially variant convolution based on depth of reflected points—points closer to the reflector get

less blurred than points farther away. Chapter 7 describes a software implementation of spatially
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variant convolution, which produces more photorealistic results than the spatially invariant illustrated

in Figure 1.5 (see Figure 1.9—notice that points on the scene closer to the glossy surface are

sharper than points farther away only for the spatially variant approach). However, such software

implementation is not integrated into our multipass approach because of its low performance. We

hope that next-generation graphics hardware will implement spatially variant convolution and allow

the synthesis of images even more photorealistic using our multipass approach.

Figure 1.9: Spatially invariant convolution (left) and spatially variant convolution (right) to
approximate glossy reflection on planar surface.

The sphere mapping-based technique for approximating directional reflectance is very effective.

Besides providing a good approximation of directional reflectance, sphere mapping is available in

graphics hardware from SGITM , which makes it a fast operation. However, sphere mapping suffers

from both inherent and implementation problems. First, the mapping from viewing directions to texel

coordinates in a sphere map is non-linear, which implies that directional resolution is not constant in

the map. Secondly, as any other texture mapping technique, each vertex of a triangle or quadrilateral

(primitive) is mapped onto a texture by computing texture coordinates. The edges of a primitive are

mapped to straight lines connecting adjacent vertices of the primitive in texture space. This mapping of

edges of the primitive to straight lines in the texture map is valid for rectangular textures, but incorrect

for sphere maps—edges of a primitive should map to arcs in sphere mapping. Thirdly, connected

vertices in a texture map are usually linearly interpolated for filling in the corresponding primitive.

However, given the non-linearity of the mapping function, bilinear interpolation is not the appropriate

interpolation for sphere mapping. Fourthly, related to the two previous problems, filtering is usually

performed with a square filter in a rectangular texture. Sphere mapping should use a wedge-shaped

filter defined in terms of the radius and theta coordinates of sphere mapping, instead. Additionally,
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current implementations of sphere mapping in the hardware do not perform the expected wrapping

of the sphere map texture. Consider a triangle seen at a grazing situation. The three vertices map

to the outer region of a sphere map and the filled triangle should get texels only from the outer

(grazing) region of the sphere map. However, the current implementation crosses the sphere map

and may incorrectly provide texels that go through the non-grazing region. Finally, our particular

use of sphere mapping technique for directional reflectance stresses the non-linearity problem of the

technique. Our application requires high resolution on a region (outer ring) of sphere maps where

the sphere-mapping technique offers low resolution. Though we reduced this problem by uniformly

increasing the resolution of the whole map, a better solution would be to flip the sphere-mapping

indexing scheme in the hardware. Grazing angles would index texels in the center of the sphere map,

where there is higher resolution than in the ring.
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CHAPTER 2

SIGNAL PROCESSING

The field of signal processing studies signals and systems, and their interaction. Signals and systems

arise in several contexts and fields. A signal describes a phenomenon, whereas a system responds to

an input signal to produce an output signal. For example, currents and voltages as a function of time

in electrical circuits represent signals, whereas the circuits themselves represent systems. As another

example, light represents a signal; and a photographic camera producing a projected image is a system.

Digital images are also signals; and image-processing programs producing new images are systems.

The field of signal processing defines a powerful mathematical framework for describing and analyzing

signals and systems [Oppenheim96]. In this chapter, parts of this framework are presented. The

intention is not to cover the whole signal-processing field, but to limit our description to the concepts

relevant to understanding the topics developed in this dissertation.

Signal processing theory has been widely applied in computer graphics [Glassner95], [Watt92],

[Wolberg92], [Foley90]. In general, the application has been related to aliasing artifacts and

anti-aliasing techniques in digital images. Aliasing artifacts in discrete signals refer to high-frequency

content being aliased to low-frequency information on the signals. In computer graphics, the digital

images are multidimensional signals; and anti-aliasing techniques are the systems. Besides using this

general application of signal processing theory to computer graphics, this dissertation introduces a

new approach to solving the radiance equation—an integral equation—based on signal processing

principles.



2.1 Signals and Systems

Both signals and systems can be defined in continuous domains and in discrete domains. Most of the

basic signal and system properties and insights apply in both domains. A distinction will be made

between the two whenever necessary.

2.1.1 Signals

Signals are represented mathematically as functions of one or more independent variables. For

example, currents and voltages in electrical circuits are represented as functions of one dimension, time;

pixel intensities in digital images are defined as functions of two dimensions, the spatial coordinates of

the pixels. The independent variables thus depend on the context of the signals; they may represent

time, space, or any other dimension where the signal is defined. However, signals of the same

dimensionality have similar treatment with signal processing tools. For example, signals defined in

a two-dimensional Euclidean space (f(x; y)) obey the same signal processing rules of a signal defined

in two-dimensional polar coordinates (f(r; �)). The key element is the dimensionality of the space and

not its shape. Also, both the independent and the dependent variables of a signal can be continuous or

discrete. In this work, it is assumed that the state of the independent variable implies the same state on

the dependent variable, i.e.; a continuous independent variable implies a continuousdependent variable

and a discrete independent variable implies a discrete dependent variable. Thus, continuous signals

are defined for a continuum of values of each of the independent and the dependent variables, whereas

discrete signals are defined only for discrete sets of values of each of the independent and the dependent

variables.

2.1.1.1 Impulse signal

An especially important signal is the impulse function, known also as the Dirac delta function. The

impulse function is an infinitely narrow spike of infinite height whose area integrates to unity. It is zero

everywhere but at zero on the domain, where it has an infinite value. Mathematically, the Dirac delta

function is given by

�(x) = 0; if x 6= 0

Z +1

�1

�(x) dx = 1: (2.1)
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Note that the nonzero point of the delta function can be moved by a shift operation. For example,

�(x� x0) = 0; if x 6= x0 (2.2)

is zero everywhere but at x0.

The delta function has an interesting inspection or sifting property:

f(c) =

Z +1

�1

f(x) �(x� c) dx (2.3)

which isolates a single point on a curve. It represents the sampling of the continuous function f(x) at

the point c. The only point where the product in the integral above is not zero is at x = c, according to

the shift property in Equation (2.2).

In the discrete domain, for integern, the analogous function is the Kronecker delta function given

by

�(n) =

8><
>:

0 if n 6= 0

1 if n = 0

which has similar properties to the Dirac delta function.

2.1.2 Systems

In signal processing, a system is anything that takes an input signal, f(x), and produces an output signal,

g(x). A system is a “black box”. Signal processing does not look into what is inside the system; it is

concerned only with the relationship between the input and the output signals.

System
input output

f(x) g(x)

Figure 2.1: A system: relationship of the output signal on the input signal

Both continuous and discrete systems observe a number of basic properties. This discussion

is limited to the properties that are relevant in our work. The interested reader is referred to

[Oppenheim96] for a complete presentation of system properties in signal processing.

2.1.2.1 Linearity

Most of the signal processing theory is restricted to linear systems. Linear systems obey the

superposition principle; that is, a weighted sum of several signals applied to a linear system produces
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the weighted sum of the responses of the system to the individual signals. Formally, let input f 1(x)

produce output g1(x) and input f2(x) produce output g2(x) through a given system, i.e.:

f1(x)! g1(x) and f2(x)! g2(x): (2.4)

The linearity or superposition property requires that

a f1(x) + b f2(x) ! a g1(x) + b g2(x): (2.5)

Many real-world systems can be well approximated by model systems that are linear. For example,

electrical circuits made up of only resistances, capacitances, and inductances can be so represented.

Image display systems, such as CRTs, typically have broad response regions that can also be so

approximated.

2.1.2.2 Shift-invariance and shift-variance

Another important property of systems analyzed with signal processing is related to the shift of the

input signal and its implications in the output signal. A shift-invariant system takes a shifted input

signal and produces a shifted version of the output signal: the nature of the output is not changed by a

shifted input; shifting the input merely shifts the output by the same amount. For example, assume that

a signal has time as the independent variable. A shift in this signal means a delay or advance by that

shifting amount. A shift-invariant system, using this input signal delayed by an amount T , produces a

delayed output:

f1(t� T )! g1(t� T ) (2.6)

This shifting property applies to any other space where the signals are specified. For example, if an

input 2D image is shifted (translated) relative to its origin, a shift-invariant system produces the same

output image shifted by the same amount.

Most of the systems considered in signal processing have this shift-invariant property, but some

interesting systems do not exhibit this behavior. A system is said to be shift-variant if a shifted input

signal produces any signal other than just the shifted output signal. In Chapter 4, the interaction

properties of light with matter will be discussed in terms of system properties, and certain materials

will be shown to be shift-variant.
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2.2 The Impulse Response of a System

The impulse response of a system characterizes how the system responds to an impulse signal: given

an impulse signal (Equation (2.1)) as the input to a system, the impulse response is the output of that

system. The impulse response of a system completely specifies a linear system. This impulse response

property becomes evident if one realizes that any signal f(x) can be represented as an infinite sum

of shifted and scaled impulses. Then, if each of these shifted and scaled impulses is applied to the

system, an impulse response is produced for each. The final superposition (or sum) of all these impulse

responses represents the response of the system to the arbitrary signal f(x). Mathematically, this

property is represented with the sifting integral presented in Equation (2.3)—the response of a system

to an impulse signal.

When dealing with optical and imaging systems, the impulse response is called a point-spread

function (PSF) due to the type of impulse signal used with those systems. The impulse signal is the

light isotropically emitted by a point source. For example, a simple lens (a system) taking as input a

point source at the object plane produces a spot in the image plane (see Figure 2.2). This spot is the

point-spread function of the system. An ideal lens produces an infinitely sharp spot when the image

plane is in focus. When the image plane is not in focus, the spot takes the shape of a disk or an ellipse

with radially-varying intensity, depending upon the orientation of the image plane. A non-ideal lens

produces a warped version of the ideal spot, depending upon the aberrations influencing the impulse

response of the lens/system. Arbitrarily shaped light sources emit more complicated wave fronts of

Lens

Point
source

Imaging
planes

Figure 2.2: A lens creating the image of a point source.

light than the ideal point source. However, according to the Huygens-Fresnel principle [Ditchburn91],

the propagation of any wave front can be decomposed into the propagation of waves produced by an

infinity of point sources distributed along the original wave front. The envelope of all these point

sources describes the position of the original wave front at any point in time along its propagation

(Figure 2.3). In terms of signal processing, the response of an optical or imaging system to an

arbitrary signal is the superposition of the corresponding impulse responses or point-spread functions,
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Original wave front

Wave front emitter

Envelope

Figure 2.3: Huygens-Fresnel principle applied to an irregularly-shaped wavefront emitter.

as described by the sifting property Equation (2.3). Figure 2.4 illustrates the result of applying an

arbitrary wave front (signal) discretized in point sources (impulse signals) to a lens (system). The

envelope or superposition of all the resulting impulse responses approximates the response of the

system to the original arbitrary input signal.

Figure 2.4: Application of a decomposed arbitrary input wave front (signal) to a lens (system), and
reconstruction of the same wave front on the image side.

Thus, the response of a system can be represented as the superposition (or sum) of impulse

responses. This property leads us to the concept of convolution.

2.3 The Convolution Operation

The convolution operation, ?, describes the output, g(x), of a system, due to a given input, f(x),

applied to the system which has impulse response k(x). Mathematically, convolution is expressed with

the convolution integral, which in one dimension is

g(x) = f(x) ? k(x) =

Z +1

�1

f(u) k(x� u) du: (2.7)
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For each output point, x, the convolution can be seen as the integration (gathering of contributions)

of the input signal, f(u), on an infinite neighborhood around the point x, weighted by the system’s

impulse response, k(x � u), in that same neighborhood. Although Equation (2.7) integrates over an

infinite space, in practice, the neighborhood is defined by the support or width of the convolutionkernel

k(x)—the region where the kernel has nonzero values. The kernel k can be seen as a sliding window

that is shifted along the domain of the input signal. For evaluating the convolution at a point x, the

kernel is centered at that location in the domain and the sum of the point-wise products of the two

functions (input signal and kernel) is taken.

Notice the similarity between the convolutionEquation (2.7) and the sifting Equation (2.3). Both

equations integrate the product of two functions: the signal f(x) and another function. This other

function is the convolution kernel and represents the impulse response of the system. In the sifting

equation the kernel reduces to a delta function and represents the impulse response of the identity

system (k(x) = �(x))—the system whose output always equals its input. In the convolution equation,

the kernel represents the impulse response of an arbitrary system, as presented in Section 2.2.

In two dimensions, convolution is defined as

g(x; y) = f(x; y) ? k(x; y) =
Z +1

�1

Z +1

�1

f(u; v) k(x� u; y � v) du dv: (2.8)

Several aspects of convolution will be analyzed in the sections that follow. In particular,

Section 2.6.2 will describe graphically the convolution operation applied to the reconstruction of

discrete signals, which will be helpful in understanding the convolution concept.

2.3.1 Circular and Hemispherical Convolution

Signals of the same dimensionality can be specified in a variety of spatial domains, depending on

the units of the signals’ independent variables. For example, in one dimension, Euclidean distance

along a curve, chronological time, and angle around a circle have completely different shapes and

interpretations but share the same dimensionality (Figure 2.5(a)). In two dimensions, rectangular

coordinates, polar coordinates, and spherical coordinates also have different shapes and interpretations

but share the same dimensionality (Figure 2.5(b)). The key element for signal processing is not

the meaning or shapes of the domain, but the dimensionality of the signal. Signals of the same

dimensionality are treated the same in signal processing theory.
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Figure 2.5: Functions of same dimensionality: (a) one-dimensional; (b) two-dimensional.

Of relevance to this dissertation, is convolution in circular, spherical, and hemispherical

domains. Starting with a circular domain, the signal is a one-dimensional function of an angle, f(�),

and the convolution in that domain is given by

g(�) = f(�) ? k(�) =

Z +�

��
f(�) k(� � �) d�: (2.9)

Note the differences between this equation and Equation (2.7). Besides the change in independent vari-

able, the integration is now performed in a circular domain of [��;+�], instead of in an infinite domain.

By increasing the dimensionality of the domain and going to a spherical space, the same differences

apply between the two-dimensional convolution in a rectangular domain—Equation (2.8)—and the

convolution in the spherical domain: the independent variables x and y are replaced by two angles �

and �, and the domain of integration becomes � 2 [��;+�] and � 2 [��=2;+�=2], instead of the

infinite domain. Convolution in the spherical domain is then given by

g(�; �) = f(�; �) ? k(�; �) =
Z +�

��

Z +�=2

��=2
f(�; �) k(� � �; �� �) d� d�: (2.10)

Of special interest in this dissertation is the convolution in hemispherical space. The only change

implied in Equation (2.10), in order to convert it to hemispherical domain, is in the limits of integration
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for the independent variable �: it ranges in [0; �] instead of ranging in [��;+�]. Convolution in

hemispherical domain is given by

g(�; �) = f(�; �) ? k(�; �) =
Z +�

��

Z +�=2

0
f(�; �) k(� � �; �� �) d� d�: (2.11)

The shaded regions in Figure 2.5 illustrate placement of convolution kernels in the specific

domains (recall the window analogy of convolution kernels from Section 2.3).

2.3.2 Spatially Variant Convolution

So far, the presentation of convolution has assumed spatially invariant kernels, i.e., that the base shape

and the weighting function of the kernel does not vary with respect to the independent variable. In a

more general approach, convolution can be presented with a spatially variant kernel. In such a case, the

kernel shape varies across the domain of integration. In one dimension, this dependence of the kernel

is represented with a function w(x). The convolution Equation (2.7) then becomes

g(x) = f(x) ? k(x; w(x)) =

Z +1

�1

f(u) k(x� u; w(x)) du (2.12)

and in two dimensions

g(x; y) = f(x; y) ? k(x; y; w(x; y)) =
Z +1

�1

Z +1

�1

f(u; v) k(x� u; y � v; w(x; y)) du dv:

(2.13)

Spatially variant convolution comes up for several systems. In practice, most physically

realizable systems are spatially variant. For example, most lenses and optical imaging systems have

finite image area due to aberrations—images of on-axis objects are correct, but images of off-axis

objects are deformed. In Chapter 4, surface material properties will be discussed as a system in terms of

interaction with light, and it will be seen that most materials tend to exhibit spatially variant behavior.

Section 2.6.2.3 presents graphically the application of spatially variant convolution to recon-

struction, which may be helpful in understanding this type of convolution.

2.3.3 Discrete Convolution

Equation (2.7) is defined for continuous functions f(x) and k(x). However, in computer science the

input signal and the convolution kernel are, in general, discrete functions. This demands a discrete

convolution expressed with the following summation:

g(x) = f(x) ? k(x) =
+1X

i=�1

f(i) k(x� i) (2.14)
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where x and i take only integer values. In two dimensions, discrete convolution is given by

g(x; y) = f(x; y) ? k(x; y) =
+1X

i=�1

+1X
j=�1

f(i; j) k(x� i; y � j): (2.15)

2.4 The Frequency Domain

All previous discussion has taken place in the spatial domain; the independent variables of our signals

were always time, Euclidean coordinates, polar coordinates, etc. So far, an arbitrary signal in a spatial

domain has been considered to be the sum of an infinity of scaled and shifted impulses. Alternatively,

Fourier proposed that a signal could also be represented as an infinite sum of sinusoidal waves of a

base frequency and all its multiples. Both representations capture the same information but encode

it in different forms. The advantage of using the dual domains to represent signals or systems is that

sometimes it is easier to understand and manipulate a signal or a system in one domain than it is in the

other. In the next section, the Fourier transform—the tool that converts from a spatial domain to the

frequency domain and vice-versa—will be discussed. Then, Section 2.4.2 discusses the convolution

theorem, which relates two operations—convolution and multiplication—in the two dual domains—

spatial and frequency domains.

2.4.1 The Fourier Transform

The Fourier transform is the tool which allows conversion between spatial and frequency domains.

The Fourier transform of a one-dimensional, continuous function f(x) is defined as

Fff(x)g = F (�) =

Z +1

�1

f(x) e�j2��xdx (2.16)

where j2 = �1, the frequency variable � is measured in cycles per unit of x, and e�j2��x =

cos(2��x)� j sin(2��x). The inverse Fourier transform of F (�) is defined as

F�1fF (�)g = f(x) =

Z +1

�1

F (�) ej2��xd�: (2.17)

Note that the only difference between the direct and inverse transformations is the sign of the exponent.

The functions f(x) and F (�) are called a Fourier transform pair; and for any function f(x) the

Fourier transform is unique, and vice-versa. The Fourier transform of a signal is called the spectrum

of that signal, and the inverse Fourier transform of a spectrum generates its corresponding signal. The

Fourier transform of the impulse response of a system is called the transfer function of that system—the

system’s frequency response.
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The Fourier transform (Equation (2.16)) decomposes a signal f(x) into an infinite sum of

complex exponentials (sinusoidal waves) of a base frequency and its multiples. The complex

function F (�) represents the amplitude and phase of each complex exponential, for each frequency

value �. The Fourier transform has several other properties and the interested reader is referred to

[Oppenheim96, Castleman96] for a complete presentation of this topic.

If we discretize both the spatial and the frequency domains, the discrete Fourier transform

becomes

Fn =
1

N

N�1X
i=0

fi e
�j2� n

N
i (2.18)

and the inverse discrete Fourier transform is

fi =
1

N

N�1X
n=0

Fn ej2�
i

N
n: (2.19)

where N is the length of the discrete sequence fi, and 0 � i; n � N � 1 are indices.

2.4.2 The Convolution Theorem

The convolution theorem states that convolution in one domain is equivalent to multiplication in the

other domain, i.e.: convolution in the spatial domain is equivalent to multiplication in the frequency

domain and multiplication in the spatial domain equals convolution in the frequency domain. As will

be shown in the next sections, the convolution theorem has important applications in filtering, and in

sampling and reconstruction. The convolution theorem also influences how signal processing should

be computed for discrete signals. Based on the computational cost of convolution and multiplication,

and depending on the size of the data set, it may be less expensive to perform either convolution or

multiplication in the corresponding dual domains.

2.5 Filtering

Several applications demand changing the frequency content of a signal. Modifying the relative

amplitudes of the frequency components and eliminating some frequency components of a signal are

examples of such processing. This operation is called filtering, and a filter is a system that takes

an input signal f(x) and produces an output signal g(x). This definition resembles the convolution

operation from Section 2.3 with the convolution kernel representing the filter in the spatial domain. In

fact, filtering in the spatial domain is performed through convolution. Alternatively, in the frequency
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domain, filtering is carried out through multiplication, according to the convolution theorem of

Section 2.4.2. Given this duality, filters can be designed either in the spatial domain or in the frequency

domain.

Analysis in the frequency domain is more intuitive; a filter in the frequency domain is a function

that represents the amplitude modulation of each frequency value desired in the filtered output signal.

The identity filter has a constant value of unity along the entire spectrum and multiplication of this filter

with a signal in the frequency domain does not change the signal. A filter that halves the amplitude for a

given frequency value has a value of one-half at that particular frequency, and so on. Then, the filtering

operation in the frequency domain is performed by a point-wise multiplication of the filter value by the

corresponding signal value. Alternatively, the Fourier transform of a frequency domain filter can be

used to perform the filtering through convolution in spatial domain. The convolution of the signal and

the filter in the spatial domain produces the same results as multiplication in the frequency domain.

2.6 Sampling and Reconstruction

Rendering a computer generated image involves the application of multiple resampling processes.

A resampling process starts with discrete data, reconstructs a continuous representation of the same

information, and then samples this continuous representation to generate the resampled version of the

data (Figure 2.6). This resampling process is repeated at different scales and stages of the graphics

pipeline. For example, the polygon rendering process is a resampling process: it starts with a set

of discrete samples (vertices); reconstructs a continuous representation (polygons); and samples the

polygons to create a new, resampled representation (pixels). Similarly, curved-surface rendering and

image-based rendering involve the same resampling paradigm. Shading is also a resampling process:

attributes (color, texture coordinates, etc) are known at vertices of a geometrical model and form the set

of discrete samples; reconstruction takes place by performing interpolation (nearest neighbor, linear,

or higher order) between samples; and the final sampling occurs by outputting the interpolated values

at the pixels. Texture mapping operates in the same interpolated way, but in texture space, instead of

image space.

Sampling and reconstruction are related by a theorem; the sampling theorem states that, if

a continuous signal is sampled finely enough, it can be recovered completely using reconstruction

techniques. In more detail, given the frequency representation of a signal, if the sampling rate is at
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Figure 2.6: Resampling process.

least twice as high as the highest frequency in the signal, the original signal can be reconstructed by

using ideal reconstruction filters.

2.6.1 Sampling

Sampling is the process that converts a continuous signal, f(x), into a set of discrete samples,

fs(x). Figure 2.7 illustrates the sampling of a one-dimensional function in the spatial domain.

Mathematically, sampling in the spatial domain is represented by the multiplication of the continuous

x

f(x)

x

s(x)

x

fs(x)

Figure 2.7: Sampling in the spatial domain.

signal by the comb function, s(x):

fs(x) = f(x)� s(x) (2.20)

where the comb function is a train of evenly spaced delta functions:

s(x) =
+1X

n=�1

�(x� n): (2.21)

Through the convolution theorem, the sampling process can also be specified in the frequency

domain. The continuous input signal and comb function can be each represented in the frequency

domain with F (�) and S(�), respectively. This new representation is given by the Fourier transform
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Figure 2.8: Sampling in the frequency domain.

of the functions: the Fourier transform of the comb function looks like another comb function. The

separation of pulses of both representations is related by Fourier transform properties; if the comb

function has a period of � in spatial domain, its pulse spacing in frequency domain is 1
� . Sampling in

the frequency domain, illustrated in Figure 2.8, is given by the convolution of the frequency response

of the system, F (�), and the Fourier transform of the comb function, S(�):

Fs(�) = F (�) ? S(�) (2.22)

Note that a sampled signal in the spatial domain is a pulse-based representation of the continuous

signal, whereas a sampled signal in the frequency domain represents the replication of its continuous

frequency response. The frequency spectrum of the sampled signal (Fs(�) in Figure 2.8) looks

like the frequency spectrum of the continuous signal (F (�) in Figure 2.8), but it is replicated at

multiples of the sampling frequency (the spacing of the comb function in frequency domain—S(�) in

Figure 2.8). Although it is more intuitive to understand and visualize sampling in the spatial domain,

its representation in the frequency domain is more useful in terms of signal analysis, for example, in

anti-aliasing applications.

2.6.2 Reconstruction

Reconstruction is the process that generates a continuous signal from a set of discrete samples.

Reconstruction can be considered to be a mapping operation: given a set of discrete values in one

domain (input domain), reconstruction finds a continuous function in another domain (output domain).

This mapping can be performed either with a feed-backward approach—gathering information from

the input domain for each point in the output domain—or with a feed-forward approach—spreading
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Figure 2.9: Mapping: feed-backward and feed-forward approaches. Feed-forward mapping takes
information directly from the input domain into the output domain; whereas feed-backward mapping
starts the process in the output domain, queries the input domain, and finally takes the information from
the input domain into the output domain.

the contribution of each point from the input point into the output domain (see Figure 2.9). Both

approaches reach the same results; but, in general, one is easier to understand and involves less

computational cost than the other. Westover [Westover91] compares feed-backward and feed-forward

convolution methods in terms of accesses to the input and output signals, and gives an example

illustrating the fewer number of combined accesses required by feed-forward convolution, compared

to feed-backward methods.

2.6.2.1 Feed-backward reconstruction

In a feed-backward approach, for each desired value in the output domain, information is gathered

from the input domain. Both interpolation and straight convolution are instances of feed-backward

reconstruction. In fact, convolution is the more general approach, and interpolation can be expressed

in terms of convolution with the appropriate choice of kernels [Wolberg92].

Interpolation

Interpolation is a polynomial-based reconstruction scheme. Given a sampled signal, interpola-

tion fits a continuous curve to the data and reconstructs parts of the signal lost in the sampling process.

At each desired new point in the domain, interpolation evaluates the interpolant polynomial. For

example, in one dimension, linear interpolation connects every two adjacent points in the data using a

linear or first-order polynomial. Figure 2.10(a) shows the discrete data and Figure 2.10(b) presents the

linearly interpolated reconstruction.

Higher-order interpolants require using more information in a local neighborhood than just the

two adjacent points. For example, Figure 2.11 presents second-order or quadratic interpolation of the

same data used in Figure 2.10: a point in the interpolated function is the result of the weighted sum of

the three closest data samples.
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Figure 2.10: Linear interpolation of sampled data.
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Figure 2.11: Quadratic interpolation of sampled data.

The higher the interpolation-order, the wider the local neighborhood, and the more control there

is about the derivatives of the interpolated function along its domain. Note that a linearly reconstructed

function, also called piecewise linear, is continuous in value along its domain, but it is discontinuous

in first derivative at the sample points. This type of function is usually called a C 0-continuous

function. Note also that piecewise quadratic functions are not enough to provide C 1-continuous

functions—continuous up to first derivative along their entire domain. Although independent pieces

of a piecewise quadratic function can be C1-continuous, when three or more quadratic pieces are

put together it may not be possible to satisfy the first derivative continuity criteria at all the junction

points1. A piecewise cubic function is necessary to provide fullC 1 continuity along the entire domain.

Higher-order continuity is possible, but usually not necessary in computer graphics applications.

Convolution

Convolution was presented mathematically in Section 2.3. Now, convolution will be examined

graphically through its application to the reconstruction of a discrete signal. Both a feed-backward and

1The following algorithm for finding the two quadratic pieces for three samples of a one-dimensional function cannot

ensure C1 continuity at the middle point:

� select a quadratic that satisfies the value of the samples at the left and at the middle point, and the slope at the left

point

� select a quadratic that satisfies the value of the samples at the middle and at the right point, and the slope at the right

point

This problem generalizes for any number of points greater than two and when the slope selection algorithm does not follow

a sequential order of the data. Note that the algorithm above would always find a C 1-continuous quadratic interpolation if

the slopes at the sampling points were always selected from left to right or vice-versa.
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a feed-forward approach to convolution of a discrete signal with a triangular kernel will be discussed.

They reach exactly the same result as linear interpolation, as presented above.

In feed-backward convolution, for each point in the output domain, information is gathered

(integrated) from the input signal. The final output value at each point is the weighted average of

the input values covered by the kernel neighborhood centered at the input point. In Figure 2.12,

(a)

(b)

(c)

(d)

(e)

x

x

x

x

x

p1

p2

p3

p4

p1 p2 p3 p4

Figure 2.12: Feed-backward convolution.

the same sampled signal from the linear interpolation example (Figure 2.10(a)) is convolved with a

triangular kernel. Figures 2.12(a)-(d) represent the evaluation of the output value for particular points

in the output. Imagine for each point p in the output, the instantiation of the triangle kernel centered

at that same location in the input signal (points p1 to p4 in the figure). Now, for all the points in the

input covered by the kernel, add the product of the corresponding kernel value and input signal value.

For example, the instantiation of the triangular kernel at point p1 in the input domain (Figure 2.12(a))

overlaps the two left-most samples of the sampled signal. The intersection point of the kernel with the

sample spikes corresponds to the contributionof each of those samples to the final result at pointp 1. The

resulting value (convolution) at point p1 in the output domain (Figure 2.12(e)) is the sum of the heights

of the intersected samples from the input domain. This results in the convolved output signal (e). The

pseudo-code for feed-backward convolution is:

for each point p in the output

center kernel in the input at the same location p

set output value at p to 0

for each point q in the input covered by the kernel

output value at p += input value q � kernel value at q

37



2.6.2.2 Feed-forward convolution — slatting

An alternatively to the feed-backward approach as presented above, is the feed-forward approach. Each

value in the input domain spreads its information in the output domain. In Figure 2.13, a sampled

(c)

(a)

(b)

x

x

x

Figure 2.13: Feed-forward convolution(splatting): (a) discrete input signal, f(t); (b) triangular kernel,
k(t); (c) convolved output signal, g(t).

signal (a) is convolved with a triangular kernel (b). The result is the convolved signal in (c). Think

of (c) as the instantiation of the triangle kernel (b) centered at each sample of the discrete signal (a).

The amplitude of each sample in the input signal (a) gives the height of the corresponding instantiated

triangle in the output signal (c). The support or width of the kernel is the same (invariant) for all the

samples. The superposition(or sum) of the contributionsof instantiatedkernels results in the convolved

output signal (c). The pseudo-code for feed-forward convolution is:

zero all output points

for each point q in the input

center kernel in the output at the same location q

for each point p in the output covered by the kernel

output value at p += input value at q * kernel value at p

The reconstruction result obtained with linear interpolation in Figure 2.10 is exactly equal to

the reconstruction result obtained with convolution using a triangular kernel both with feed-backward

and with feed-forward approaches. Interpolation with higher-order polynomialsalso has corresponding

kernels to produce equivalent results using convolution. Note, however, the difference in computa-

tional cost obtainable with the feed-forward pseudo-code in comparison with the feed-backward one.

The feed-forward approach has a reduced number of combined accesses to the input and output in the

inner loop. This indicates that, in some situations, the feed-forward algorithm may be a faster approach

than the feed-backward convolution. When the number of points in the input and output domains is the

same (for example, in a filtering operation), the forward approach is clearly more efficient in terms of
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combined accesses. However, when the number of desired points in the output is much smaller than the

number of points in the input, the backward approach is more efficient. A detailed analytical analysis

of these tradeoffs is possible, but not fundamental to this dissertation.

2.6.2.3 Reconstruction with spatially variant convolution

As Section 2.3.2 mentions, sometimes the convolution kernel is allowed to change in terms of shape

and weighting function along the domain of convolution/integration. The graphical interpretation of

discrete spatially variant convolution is presented in Figure 2.14. A sampled signal (a) is convolved

with a spatially varying triangular kernel (b), as in the previous sections. However, in this section let

the kernel width vary with the discrete function presented in (d), which represents a scaling factor for

the kernel width along the parameter x. In this example, it represents a linearly increasing scaling factor

along the parameter x; the spatial variance of the kernel is only in terms of its width. The result is

the convolved signal in (c), which represents the summation of the instantiations of triangular kernels

with width given by the scaling function (d). Notice that the leftmost instantiation of the kernel is the

narrowest, while the rightmost is the widest, in accordance with (d). The function in (d) controls the

region of influence/spread of each point from the input signal (a).

(a)
x

(b)

x

x
(d)

x

(c)

Figure 2.14: Spatially variant convolution: (a) discrete input signal, f(x); (b) triangular kernel,
k(x; w(x)); (c) convolved output signal, g(x); and (d) the function representing the kernel width along
x.

This varying region of influence of the kernels is key in reconstructing depth- and direction-

dependent functions, such as for integrating the radiance equation, as will be seen in Chapter 4. Note,

however, that the varying regions of influence of the kernels may introduce discontinuities in the

reconstructed signal. Notice, for example, the first derivative discontinuities in the reconstructed signal

introduced at the extreme points of the kernel instantiated at the central sample in Figure 2.14.

39



40



CHAPTER 3

THE LIGHT TRANSPORT PROBLEM

Light is a form of energy that can be transferred from one place to another. It is the form of energy that

enables us to see—or to which our eyes are sensitive—and that all rendering techniques try to simulate

in computer graphics. This chapter reviews important concepts related to light, matter, and their

interactions in the real world. Most of these concepts derive from radiometry—the physical science that

studies the measurements of electromagnetic radiation. The chapter starts with a qualitative description

of light transport and culminates with the light transport equation, which determines the light leaving

a point in a particular direction in a scene due to all possible light transfers in the environment. The

interested reader is referred to [Ditchburn91, Feynman89] for detailed expositions of this field and to

[Watt92, Cohen93, Sillion94, Glassner95] for its application in image synthesis.

3.1 Light

Light is the visible part of electromagnetic radiation—sinusoidal waves created by coupled magnetic

and electric fields. The electromagnetic spectrum, defined in terms of wavelength, ranges from

meter-sized radio waves down to nanometer1 scale x-rays. The wavelength of visible light is perceived

as color by our eyes, and it varies from approximately 400nm for violet to about 700nm for red.

Monochromatic radiation is composed of waves of a single wavelength, whereas more complex light is

composed by the superpositionof several wavelengths. Electromagnetic radiation can also be coherent:

the wavefront of light, as it propagates, stays in phase at all points in space and time. As with any

other wave, light waves also interact among themselves and form interference patterns. Additionally,

electromagnetic radiation can be polarized—show a preferential orientation of the field vectors with

respect to a fixed vector perpendicular to the direction of light propagation. Unpolarized radiation

11 nanometer = 1nm = 1� 10�9m.



involves the superposition of waves with random orientations, whereas polarized light consists of

waves with a preferred orientation, e.g., linear and circular polarization [Fowles89].

Although we presented light in terms of waves, it can also be understood in terms of rays and

in terms of particles called photons. Each of these three different representations of light applies

in different situations. There are mechanisms to explain and unify these natures [Feynman89], but

this discussion will focus on ray optics, due to its greatest influence in image synthesis. To justify

emphasizing geometrical optics, the three light propagation mechanisms and their limitations will be

analyzed.

3.2 Optics

Optics is the branch of the physical sciences that studies light. Optics is typically divided into

three subfields—geometrical optics, physical optics, and quantum optics—depending on the relative

wavelength of the light, or its energy, with respect to the dimensions of the light measuring equipment,

or its sensitivity [Feynman89]:

� Geometrical optics, also called ray optics, represents light propagation with rays and applies

whenever the wavelengths and the photon energies are negligibly small compared to the size and

sensitivity of the light measuring equipment. Ray optics is important (when the size of objects

is larger than the wavelength of light) for understanding macroscopic properties of light such as

shadows, reflection, and refraction.

� Physical optics, also called wave optics, represents radiation with waves and applies whenever

the wavelengths are comparable to the dimensions of the measuring equipment but the energy of

the particles is still small compared to the sensitivity of the equipment. Wave optics is necessary

(when the size of the objects is comparable to the wavelength of light) for understanding

properties such as polarization, diffraction, interference, and holography.

� Quantum optics, also called particle optics, represents light with particles—photons—and

applies whenever the wavelengths are negligibly small compared to the dimensions of the

measuring equipment and the particle energies are much greater than the equipment sensitivity.

Particle optics is needed (when the size of the objects is smaller than the wavelength of light)

to understand the microscopic properties of light such as the interaction of light with atoms
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and molecules. The theory of particle optics is necessary for understanding phenomena such

as fluorescence, phosphorescence, dispersion, and light amplification (e.g. LASER).

Visible light can be described with any of the approaches above, but, unless microscopic effects are

needed, geometrical optics is enough to explain most of the effects of light. In terms of image synthesis,

geometrical optics is usually sufficient to simulate macroscopic effects. However, effects such as

interference, fluorescence, and phosphorescence have already been simulated in computer graphics

[Glassner94, Gondek94] without appealing to complete wave and quantum theories. By restricting the

analysis to geometrical optics, i.e., if the wave nature and the particle nature of light are not considered,

the following microscopic phenomena are not accounted for:

� Polarization, and hence some amplitude attenuation due to polarized reflections [Fowles89]

� Interference, and hence thin film color effects/phenomena such as in soap bubbles [Gondek94]

� Diffraction, and hence holography [Collier71]

� Dispersion, and hence rainbows [Greenler80].

Note that all these microscopic phenomena have second-order impact compared to the first-order

impact of the macroscopic effects simulated with geometrical optics.

3.3 Reducing the Dimensionality of the Problem

From the discussion so far, light transport is a multi-dimensional problem. Section 3.2 eliminated some

of the variables of the problem by restricting the domain to geometrical optics. However, the remaining

problem is still dependent on several dimensions such as position, orientation, time, wavelength of

light, and the refractive index of participating media. Although the solution of the full problem would

produce ideally realistic results, simplifying assumptions are necessary to reduce the dimensionality

of the problem and to reduce the computational complexity of the solution methods. This section

eliminates some of the remaining variables, which are not fundamental from the image synthesis

perspective.

On the scale of human perception, light interacts with matter instantaneously and what our eyes

perceive is an energy equilibrium inside a scene. The discussion of the light transport equation in this

dissertation ignores all dependence on time—it approximates a steady state solution.
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As seen in Section 3.1, light is defined in a continuous domain. It is the visible part of the

electromagnetic radiation. This means that wavelength is one of the variables of the light transport

problem. Instead of fully considering wavelength in the light transport equation, image synthesis, in

general, only samples this variable for three particular distributions of wavelengths—red, green, and

blue—which match the color sensitivities of the human eye receptors [Foley90]. We assume that the

wavelength of light is not changed by interaction with matter, as in fluorescence. The distributions of

wavelengths do change, as when light is partially reflected or absorbed by a colored medium.

Although ignored in our discussion, light transport is usually affected by participating media,

for example, air, water, glass, etc. A participating medium may produce absorption, scattering, and

emission along a path of light. Despite its importance for effects like fog, clouds, and smoke we are

going to assume that light transport happens in non-participating media such as clear air or vacuum.

3.4 Emission

Certain materials, under particular conditions, emit light. This section discusses the kinds of emission

patterns to be expected from light sources, as opposed to how the light is created.

In terms of waves, a point source generates a spherical wave of light centered at the source. In

terms of rays or particles, this means that rays or particles are radially emitted from the point source.

More complex light source shapes generate wavefronts that can be described with the Huygens-Fresnel

principle mentioned in Section 2.2: the complex wavefront can be decomposed into point sources, and

the envelope of the point wavefronts reconstructs the original wavefront at any point in time along the

wave propagation.
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Figure 3.1: Incoming and outgoing radiance at point x and direction ~!.
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In summary, light sources can be represented as functions of direction around the source. In

terms of radiometry the emission functions represent the radiance2 leaving light source’s point x in

direction !: Le(x; ~!).

3.5 Light-Matter Interaction

The discussion so far has concentrated on light propagation between two points in a vacuum. However,

light interacts with matter. To analyze light transfers in an environment, it is necessary to understand

how light responds to materials. We need to understand materials’ appearance. Instead of looking at

the physical processes of light-matter interaction, this discussion will take a functional approach and

describe a material or a medium in terms of how light responds to it, without looking at the internal

process that generates that behavior.

When analyzing the interaction of light and matter, two cases arise. Light flowing through a

medium can be absorbed or scattered by the propagation medium. And propagating light can change

its behavior when it encounters the boundary between two media. At the boundary, light can be either

reflected back into the original medium or transmitted into the new medium or both. By conservation of

energy, if a certain amount of energy reaches a material, the sum of absorbed, reflected, and transmitted

light must equal the incoming amount of light.

3.5.1 Ideal Reflection

Reflection is the phenomenon by which incident radiation on the boundary between two media returns

to the initial medium. For an ideal mirror—a surface that, for a single incoming ray, generates a single

reflected outgoing ray—the laws of reflection state that (see Figure 3.2):

� The reflected rayR lies on the plane defined by the incident ray L and the surface normalN.

� The angle of the reflected ray with respect to the surface normal, �o, is equal to the angle of the

incident ray with respect to the same normal vector, �i, at the same point of interest.

2Radiance is the power per unit projected area perpendicular to the direction of propagation per unit solid angle in the

direction of light propagation. For a point x on a differential area dA, the radiance in direction ~!, L(x; ~!), represents the

amount of energy, per unit time, flowing at some point inside the solid angle with apex at x and direction ~!, and passing

through the projected differential area in the direction perpendicular to ~! (Figure 3.1). The flow inside the solid angle

can represent outgoing or incoming energy. Outgoing radiance represents light emanating from point x, or how the point

illuminates the environment. Incoming radiance represents light reaching point x, or what is visible from that point.
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Figure 3.2: Ideal reflection.

For a general reflective material, the concepts of scattering are necessary, as will be seen in

Section 3.5.3. In nature, energy along a single incoming ray can generate outgoing energy in any

direction on the hemisphere above the reflective surface according to some directional distribution

function.

3.5.2 Ideal Transmission

Transmission is the phenomenon by which incident radiation on a media boundary crosses the boundary

into the new propagation medium. Refraction refers to the change in direction of travel as radiation

passes from one medium to another. This change in direction is caused by the difference in the speed

of light propagating through the two media. The index of refraction of a material represents the

ratio of speed of light in the material to the speed of light in vacuum. For an ideally transparent

N
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R
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θ2

n1
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Figure 3.3: Ideal transmission.
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material—a surface that, for a single incoming ray, generates a single transmitted outgoing ray—the

laws of transmission state that (see Figure 3.3):

� The refracted rayR lies on the plane defined by the incident ray L and the surface normalN.

� The relationship between the angle of incidence and the angle of refraction is given by Snell’s

law:

n1 cos �1 = n2 cos �2 (3.1)

where n1 and n2 are the indices of refraction of the two media, and �1 and �2 are the angles

of the incident and refracted vectors with respect to the surface normal and its opposite vector,

respectively.

� When light is passing from a more refractive medium to a less refractive medium, n1 > n2, there

is a phenomenon called total reflection. Past a critical angle given by arcsin( n2
n1
), the incident

light is completely reflected, instead of being refracted. This is the basic principle behind fiber

optics [Fowles89].

Analogously to reflection, for a general transmissive material, the concepts of scattering are necessary,

as will be seen in Section 3.5.3. In nature, energy along a single incoming ray can generate outgoing

energy in any direction on the hemisphere below the refractive surface according to some directional

distribution function.

3.5.3 Surface Roughness

So far, ideal reflective and ideal refractive materials have been discussed—when a single incoming

ray interacting with such a material generates a single reflected or refracted ray. In nature, most

materials are not ideal, and a scattering process happens at the boundary between two media. Light

interacting with non-ideal materials can generate reflected and refracted rays in the entire reflection

and transmission hemispheres, respectively. Also, for ideal materials it was implicitly assumed that

all the energy would be reflected or transmitted and that the magnitude of energy being scattered or

absorbed was not taken into account. In the real world, though, microscopic processes take place when

light is reflected/transmitted by a material and only part of the incoming light is reflected back into the

environment or transmitted into the new medium. This section will analyze the end results of scattering,

as opposed to the physical processes involved.
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Consider light reflection/refraction at a point on a surface. Assume that, microscopically, the

surface is composed of randomly oriented microfacets (Figure 3.4). The average normal of the facets

shadow
(a) (b) (c)

masked
light

N N

Figure 3.4: Microfacets model: (a) displacement of facets’ normals with respect to the average surface
normal; (b) light shadowing; (c) light masking.

represents the surface’s normal vectorN (Figure 3.4(a)). The size of the facets and the displacement

of the facets’ normals with respect to the average normal determine the roughness of the surface. A

mirror has null displacement—is ideally polished—and increasing roughness implies higher amplitude

and/or higher frequency displacements. Each of the microfacets, independently, reflects/transmits light

according to the ideal model discussed above; it is an ideal mirror or an ideal refractor. However,

at a larger scale, light reaching a facet can cast a micro-shadow (Figure 3.4(b)) and light leaving a

facet can be masked (Figure 3.4(c)), due to the facets’ boundaries. The random orientation of the

reflective/transmissive facets can cause a single incident ray to be reflected/transmitted in any direction

on the reflection/transmission hemisphere centered at the point of incidence other than the ideal one.

The distributionof unidirectional light into a hemisphere and the shadowing and masking effects reduce

the magnitude of the reflected/transmitted light with respect to the incident light.

As seen above, a single ray of incoming light can generate a new ray in any reflected/transmitted

direction with the same or reduced energy. This non-ideal behavior creates an entire spectrum of

materials other than the ideal reflectors and ideal refractors studied so far (Figure 3.5). On one end,

there is the ideally specular transfers case that refers to energy concentrated on a single direction.

On the other end, there is the ideally diffuse transfers case that corresponds to an equal distribution

of energy in all directions. In between, there are the non-ideal—or glossy—transfers that refer to

the continuum between perfectly specular and perfectly diffuse transfers. Glossy transfers have a

directional bias but are neither restricted to a single direction nor impose an equal scattering out to a

whole hemisphere. In this dissertation, specular transfers is used as a generalized term for non-diffuse

transfers, including both glossy and ideally specular transfers. Although the terms diffuse and specular
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Figure 3.5: Light-matter interaction for reflection and transmission, ranging from ideally specular
transfers to ideally diffuse transfers.

are implicitly related to reflection, transmission will be classified with similar terminology in this

dissertation. For example, the transmission by an ideal refractor will be called a specular refraction.

The two extremes of this spectrum represent important material properties: the ideally diffuse

end represents light transfers that do not vary their magnitudes with orientation, whereas all the other

transfers in the spectrum represent increasing variance of magnitude for increasing specularity. This

property will prove useful for computing light transport for image synthesis.

3.5.4 Anisotropy

Recall, from the definitions of reflection and refraction for ideal materials in Section 3.5, that the

outgoing rays were both dependent on a single angle—the angle of the incoming ray with respect to

the surface normal. However, there is another degree of freedom that needs to be taken into account:

the rotation around the surface normal (see the angle � in Figure 3.1).

All previous definitions assumed isotropic materials—reflection and refraction were invariant

with respect to rotation of the surface around the surface normal vector. However, some materials in

nature present anisotropic behavior. For those materials, reflection and refraction properties vary with

respect to rotations of the surface around its normal vector. For example, brushed metals, cloth, and

hair exhibit anisotropic reflections.
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3.5.5 Bidirectional Distribution Functions

The discussion so far has concentrated on qualitative analyses. This section discusses a quantitative

approach to reflection and gives hints for extending the approach to transmission. As is usual in physics

and graphics, transmission is left as a straightforward extension of reflection, given the high similarity

of the two phenomena.

Consider light reflection at a pointx on a surface. The amount of outgoing or reflected light in a

direction ~!o is directly proportional to the incident light from a solid angle centered in direction ~! i.

Increasing the solid angle or increasing the density of energy inside the solid angle increases the

incident light energy. Increasing incident light energy results in increasing reflected light energy. The

constant of proportionality relating these two quantities, incident and reflected light, is the bidirectional

reflectance distribution function (BRDF) and is usually represented as

�bd(x; ~!i; ~!o) =
Lo(x; ~!o)

Li(x; ~!i) cos �i d!i
(3.2)

wherex is the point of incidence, ~!i and ~!o are the incoming and outgoing directions, andLi andLo are

the incoming and outgoing radiances. Note, however, that the BRDF is not just the ratio of incoming

and outgoing radiances; it also depends on the incoming projected solid angle cos � i d!i
3. This

dependency in the projected solid angle gives the units of inverse steradians [sr�1] to the BRDF and

makes the BRDF to vary from zero to infinity. Interesting observations about and properties of the

BRDF are:

� The BRDF is bidirecional because it depends on two directions—incoming and outgoing.

� The BRDF is a distribution function because it is always positive.

� The BRDF obeys the reciprocity principle: interchanging the incoming and outgoing directions

does not change the BRDF value.

� The BRDF is, in general, anisotropic as described above.

Figure 3.5 illustrates BRDFs and BTDFs that capture surface roughness as discussed in Section 3.5.3.

3The solid angle subtended by an object is the surface area of its projection onto the unit sphere. The projected solid angle

is the projection of that surface area onto the base of the sphere—the theta = 0 plane in spherical coordinates.
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3.6 Light Transport in a Particular Direction

Section 3.5.3 described the scattering of a single incident ray of light into an entire reflection or

transmission hemisphere. This section reverses that process; it considers the outgoing (reflected or

transmitted) light in a single direction. By the same scattering argument above, the outgoing light in

a single direction is composed of scattered light from all the directions in the incident hemisphere.

Each of the incident rays in the hemisphere is scattered into the entire outgoing hemisphere and has

a component in the particular outgoing direction of interest. All of these scattered components in the

particular direction of interest add up to compose the final outgoing light. Note the linear behavior of

light transfers assumed above.

Quantitatively, limiting the analysis to reflection, the reflected radiance Lo from a point x

in direction ~!o is given by the integral of the incoming radiance Li over the entire hemisphere of

incident directions, 
i, around x, weighted by the corresponding BRDF �bd and by the projected solid

angle cos �i d!i:

Lr(x; ~!o) =
Z

i

�bd(x; ~!i; ~!o)Li(x; ~!i) cos �i d!i (3.3)

The same equation applies for incoming transmitted light contributing for a single outgoing

direction. The BRDF �bd(x; ~!i; ~!o) in Equation (3.3) is replaced by the corresponding bidirectional

transmittance distribution function (BTDF) � bd(x; ~!i; ~!o) and the incoming hemisphere becomes the

transmission hemisphere.

3.7 Light Transport Between Two Surfaces

So far, the interaction of light with matter has been discussed without considering the light’s origin. In

nature, this light could come directly from light sources or indirectly from reflections or transmissions

with other surfaces in the environment. This section considers the possible light transfers between two

surfaces, as introduced by Wallace [Wallace87]. The next section extends the concept to unlimited

transfers along paths of light.

According to our description in Section 3.5.3, light can leave a surface diffusely or specularly.

The main point here is with respect to the directionality of the energy emanation. Diffuse transfers

are non-directional, whereas specular transfers imply directionality. By combining these diffuse and

specular behaviors on the two ends of a two-surface light transfer, four distinct mechanisms are possible
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[Wallace87], as illustrated in Figure 3.6: diffuse-to-diffuse, specular-to-diffuse, diffuse-to-specular,

and specular-to-specular.

(a) (b) (c) (d)

Figure 3.6: Mechanism of light transfer between two surfaces: (a) diffuse-to-diffuse, (b) specular-to-
diffuse, (c) diffuse-to-specular, and (d) specular-to-specular. (after [Wallace87])

Note how the four mechanisms were organized in Figure 3.6. The first two ended on a diffuse

transfer and the last two ended on a specular transfer. This particular organization suggests an

interesting property: mechanisms ending with diffuse transfers are direction-independent, whereas

mechanisms ending with specular transfers are direction-dependent. This property is particularly

important when a viewer is introduced in the scene. Such a viewer can be a light sensor in photometry,

a camera in photography and graphics, and a surface point in the light transport problem. The viewer

perceives the same light intensity irrespective of its position and orientation with respect to diffuse

transfers, whereas specular transfers produce varying light intensity as a function of the position of

the viewer with respect to the surface generating the specular transfers. This concept will be key in the

decomposition of the light transport problem and in preprocessing some of the resulting components

in the next chapters.

3.8 A Complete Light Transport Model

The previous section discussed light transport between two surfaces: a point on a surface transfers

light that originated from another surface in the scene. The full light transport problem involves the

recursive application of this two-surface transport principle. The illumination at a point on a surface is

determined by taking into account all the energy transferred from the rest of the environment into that

point. However, the points on the rest of the environment also depend on the application of the same

principle; they may receive light indirectly from other surfaces in the scene. A recursive approach is

then necessary to solve the full light transport problem.
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3.8.1 A Language for the Light Transport Problem

The recursive nature of the light transfer problem is commonly analyzed with transport paths

represented using regular expressions [Heckbert91]. Energy transfers from the light sources through

the environment to the observer’s eye are represented with a word constructed from the alphabet

fL;D; S; Eg. L indicates emission from the light source, E represents absorption by the observer’s

eye, and D and S indicate diffuse and specular transfers (the specular component includes glossy

behavior, as described in Section 3.5.3). The simplest light transport path isLE—light transport direct

from the source into the observer’s eye. Two other simple transport paths describe light leaving a

source and getting to the observer’s eye through a single diffuse or through a single specular transfer.

The corresponding expressions are LDE and LSE. Additional symbols enable the description of

more interesting paths but still preserve the compactness of the notation. The symbol ‘j’ indicates

the OR operation, and the symbols ‘(’ and ‘)’ have the usual precedence meaning. For example, the

local-illumination model usually implemented in graphics hardware is represented with L(DjS)E,

which means that light reaches the observer’s eye through diffuse or specular transfers but via a single

bounce off the surface in question. The superscripts ‘�’ and ‘+’ on a term indicate its repetition. The

symbol ‘�’ includes the null repetition of the term which is not allowed with ‘+’. The symbol ‘+’ has

the “at least once” meaning.

The full light transport problem is represented withL(DjS)�E, which represents light reaching

the eye through any number (including zero) of diffuse or specular transfers in no particular order. Note

the differences between the light paths captured by the graphics hardware—L(DjS)E—and the light

paths captured by the full light transport—L(DjS)�E. For example, the graphics hardware is limited to

light transfers through a single surface, whereas the full light transport problem may require recursive

light transfers throughout the environment captured by the superscript ‘�’. More specifically, specular

transfers in the graphics hardware are limited to highlights due to the light source on the reflective

surface; the full light transport model can produce highlights on specular surfaces due to light sources

or due to any other surface transferring light in the environment, as in nature.

In this dissertation, this light path notation will prove useful in characterizing and comparing

different algorithms for approximating the full light transport problem.
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3.9 The Light Transport Equation

Section 3.6 discussed the light transport for a single surface. Then, Section 3.7 described the light

transport between two surfaces. Finally, Section 3.8 analyzed the full light transport problem with

an indefinite number of interacting surfaces. Section 3.6 also presented an equation to determine the

outgoing radiance from a single surface. This section extends the interpretation of that approach and

presents the full light transport equation.

In nature, light leaving a point can be the result of emission, reflection, or transmission. The

light transport equation combines these three components in an integral equation. In addition, the light

transport equation captures the recursive nature of the light transport problem with an implicit equation.

The light transport equation is an integral equation that describes the total radiance leaving a surface

point in a given direction by taking into account all possible energy transfers in a scene:

Lo(x; ~!o) = Le(x; ~!o) +Z

r

�bd(x; ~!o; ~!i) Li(x; ~!i) cos �i d~!i +Z

t

�bd(x; ~!o; ~!i) Li(x; ~!i) cos �i d~!i: (3.4)

Figure 3.7 presents the notation for the light transport equation. The total outgoing radiance,

Lo(x; ~!o), leaving point x in outgoing direction ~!o, depends on a direct term and two indirect

terms. The direct term, Le(x; ~!o), represents the radiance emitted from point x in direction ~!o.

The indirect terms denote the reflected and the transmitted radiance from point x in direction ~!o.

These terms depend on the integration of incoming radiance, Li(x; ~!i), over the reflection and

transmission hemispheres, 
r and 
t, covering the surface at point x. The integration is weighted

by the bidirectional reflectance and transmittance distribution functions of the material, �bd(x; ~!o; ~!i)

and �bd(x; ~!o; ~!i), relating the outgoing and incoming directions at the point and at the direction in

question. The term cos �i d~!i represents the projected solid angle, as described in Section 3.5.5.

Note that a single application of the light transport equation captures what a viewer sees from a

single light transfer, as described in Section 3.6. The light transport between two surfaces is determined

with two successive applications of the light transport equation. The complete light paths of the full

light transport problem are captured with the implicit integrals and require recursive applications of the

light transport equation.

Equation (3.4), in a slightly different form, was first introduced to computer graphics by Kajiya

[Kajiya86] in 1986, who named it rendering equation. His approach was based on two-point transport
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Figure 3.7: Notation for the radiance equation.

of energy4, instead of directional or solid angle transport as used in this dissertation. Glassner

[Glassner95] refers to Equation (3.4) as the radiance equation, as it defines the outgoing radiance from

a point on a surface in a given direction. Sillion and Puech [Sillion94] refer to the same equation as

the global illumination equation. Although all the names above are appropriate for Equation (3.4), we

refer to that same equation as light transport equation, as this name correctly describes the particular

problem we are trying to solve. We let the rendering, radiance, and global illumination characters be

defined by the context of the discussions.

4The two-point energy transport depends on the position of two surface points connected by a straight line and does not

involve solid angles.
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CHAPTER 4

LINEAR DECOMPOSITION OF LIGHT TRANSPORT

Chapter 3 discussed the light transport problem and several assumptions that helped reduce the

complexity of the problem. Under those simplifying assumptions, a light transport equation was

presented for computing the radiance leaving a point on a surface in a scene in a particular outgoing

direction. By solving that light transport equation, photorealistic rendering aims at producing synthetic

images of computer modeled environments that approximate what an observer or a photographic

camera would perceive in the corresponding real environment.

Conceptually, for static environments, interactive photorealistic rendering could precompute the

entire light transport for a scene and then just query the final illumination or radiance function for each

new pose for which a synthetic image is desired. Because many light paths in a scene are directionally

dependent, precomputing the entire light transport demands very finely sampling a five-dimensional

spatial domain. Also, although the full light transport is a five-dimensional spatial problem, interactive

photorealistic rendering usually explores a very small subset of such domain, so computing the whole

domain is very wasteful. Moreover, precomputing and storing all the radiance information of a scene

is not computationally practical.

Alternatively, the full light transport problem can be broken down into smaller problems with

simpler solutions which are then recombined to approximate the full solution. This chapter discusses

a linear decomposition of the light transport equation, and then the next chapters describe a set of

techniques for providing, in real time, approximate solutions to parts of that equation for reasonably

complex models.

As seen in Section 3.9, the light transport equation is an implicit integral equation: the unknown

radiance depends on the integration of itself; the unknown radiance appears both on the left-hand side

and on the right-hand side of the equation. For that reason, the light transport equation is hard to solve.

The computation of the outgoing radiance from a single point in a scene requires knowing the incoming



radiance from all directions around that point. The incoming radiance in a particular direction to the

point of interest is the outgoing radiance from another point in the environment, which in turn depends

on the incoming radiance from all directions around that other point. This describes the recursive

process formally represented by the implicit equation.

Section 3.9 discussed the light transport equation explicitly in terms of emission, reflection, and

transmission. This section, for clarity, combines the reflection and transmission terms into a single

term. Formally, this reduces the light transport equation to (same notation as for Equation 3.4)

Lo(x; ~!o) = Le(x; ~!o) +
Z


fbd(x; ~!o; ~!i) Li(x; ~!i) cos �i d~!i (4.1)

where 
 is the complete sphere of directions around point x composed by the union of the

hemispheres 
r and 
t, and fbd(x; ~!o; ~!i) is the respective bidirectional distribution function

(combined BRDF and BTDF). The first additive component of Equation (4.1) represents the direct light

emitted by point x, and the second term represents the indirect light reflected and/or transmitted by

point x.

Given the distinct characteristics of different parts of the light transport problem, it is possible to

decompose the problem into simpler terms. The idea is to rephrase the complex light transport problem

into simpler problems that can benefit from particular strengths of different solution methods. At run

time, those components are recombined to approximate a solution of the light transport equation and

to produce synthetic images. To enable exploitation of current graphics hardware when recombining

the light transport components in real time, the decomposition needs to be compatible with the linear

operations available in hardware.

Let’s start by going back to the original light transport Equation (3.4) from Section 3.9.

Abstractly, that equation states that the perceived radiance (light) is given by

perceived = emitted + reflected + transmitted: (4.2)

We combine the reflected and transmitted terms into a single component and characterize the light

transport problem as

perceived = emitted + transferred: (4.3)

The basic distinction between the two terms is the path of light from the source to the viewer. In the

language for representing light paths discussed in Section 3.8.1, the equation above can be written as

perceived = LE + L(DjS)+E: (4.4)
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The first term is trivial, as it represents a single light transfer—the case where the point in question is

a light source. That is, the transfer of light from a light source (L) to a viewer (E). The second term is

more elaborate and represents all the possible transfers that light may undergo from light sources until

it reaches a viewer, ranging from ideally diffuse to ideally specular in reflection and/or transmission

transfers.

We can now split each of the terms of Equation (4.4) according to the directional distribution of

the outgoing light transfer. We split each of the terms into two categories: the light paths that end 1 with

an ideally diffuse transfer, and the light paths that end with a specular (or non-diffuse) transfer. In our

simplified equation this means:

perceived = LDE + LSE + L(DjS)�DE + L(DjS)�SE: (4.5)

where the subscripts D and S in the first two terms represent light sources with diffuse and specular

distribution properties. (Remember that we defined any non-directionally-uniform distribution as

specular in Section 3.5.3.) Note that the light paths in the indirect terms (last two terms) can have

any combination of diffuse and specular transfers until they reach the last transfer before reaching

the observer; the restriction is only with respect to the last light transfer before it reaches the viewer.

The last light transfers before reaching the viewer define the ultimate behavior light that the viewer

sees from a light path. The major point here is that once light reaches an ideally diffuse surface it

becomes diffusely distributed—it loses any directionality present along the light path from specular

transfers. With respect to an arbitrary viewer in the scene, the intensity of diffusely distributed

light is direction-invariant—it is called view-independent. This means that we can solve the light

transport problem for all the ideally diffuse surfaces (third term in Equation (4.5)) in a scene by

considering how they recursively “see” the entire environment (including how they “see” specular

surfaces). The light intensity of specularly distributed light is not directionally invariant—it is called

view-dependent—which implies that the light transport problem for non-diffuse surfaces (last term

in Equation (4.5)) is less pre-computable. Chapter 5 details the view-independent component and

Chapters 6 and 7 discuss the view-dependent component.

1A light path starts at a light source and ends at a viewer, but, in terms of light transfers, a light path ends with a transfer

from a surface to a viewer.
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4.1 Casting the Light Transport Equation in Terms of Convolution

This section introduces a new and simplified alternative form for representing integral equations in

terms of the convolution operation. Regarding the solution of integral equations, numerical methods

are normally used, as analytical solutions are frequently impractical. Glassner [Glassner95] presents

a good overview of numerical methods for solving integral equations. This section presents a new

alternative approach for solving integral equations, following a “signals and systems” approach in

terms of convolution [Oppenheim96]. The advantage of this approach, in the context of image

synthesis, is the possibility of evaluating the light transport equation in real time by exploiting the

hardware-assisted convolution available in current graphics architectures.

Consider the problem of light interacting with matter, as discussed in Chapter 3. The central

discussion was how light responds to materials, i.e., how light shining on a material gets changed by

the material and scattered to produce the outgoing light. This section shows how that same problem

can be described in terms of signals and systems. In the terminology of Chapter 2, the light is our signal

and the materials are the systems. The analogy is as follows. Incoming light impinging on a material

represents an input signal to a system. The material is the system. Remember, from Chapter 2, that

a system is a black box and that we are only interested in the output signal produced by the system

for a given input, without considering the process that changes the input signal to produce the output

signal. The outgoing light (emitted, reflected, and/or transmitted) represents the output signal. Also

from Chapter 2, a system obeys certain properties and relates an input signal to its corresponding output

signal through the convolution operation. Every system has an impulse response, and the output signal

of a system is the convolution of the input signal with the system’s impulse response. We need to

identify the impulse responses of materials, and we need to analyze the light transport problem in terms

of convolution.

Formally, start by comparing the convolution equation

g(x) = f(x) ? k(x) =
Z +1

�1

f(u) k(x� u) du

(Equation (2.7)) and the light transport equation

Lo(x; ~!o) = Le(x; ~!o) +

Z


fbd(x; ~!o; ~!i) Li(x; ~!i) cos �i d~!i:

(Equation (4.1)). There is a clear formal similarity between the convolution equation and the second

term of the light transport equation; both integrate the product of two functions. This suggests that the

light transport equation can be expressed in terms of convolution.
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Figure 4.1: Convolution kernel and signal in a rectilinear infinite space (left) and in a directional space
(right): the first row shows the convolution kernel defined at its origin; the second row shows a signal
in the same space as the kernel, and the last row shows the kernel shifted to (centered at) a particular
point/direction of interest for the infinite/directional space.

However, there is a necessary mental shift for understanding this new representation for the

light transport equation in terms of convolution. The reader should note that a convolution kernel is

a function defined in the same space as its corresponding signal (see Figure 4.1). The convolution

equation also implies that, for each point where we want to evaluate a convolution, the kernel origin is

shifted to that evaluation point (by the subtraction in the independent variable of the kernel); the kernel

is said to be centered at the evaluation point. Additionally, it is necessary to define a new space for

convolution. Instead of defining convolution in the traditional rectilinear space with an infinite range,

the light transfer problem is carried out in a directional space2 around the point of interest as seen in

Figure 4.1(right), (Section 2.3.1). Both the signal and the kernel are defined in this directional space

in terms of directions (or angles in spherical coordinates). Centering a kernel in this new space means

shifting the kernel from its origin to a particular given direction.

2A directional space is defined by all the possible directions emanating from a point.

61



To get the light transport equation closer in form to the convolution equation, let’s create two

auxiliary functions:

F (x; ~!i) = Li(x; ~!i) (4.6)

K(x; ~!io; ~!i) = fbd(x; ~!o; ~!io � ~!i) cos �i (4.7)

where F (x; ~!i) is the incoming radiance at point x and at direction ~!i, and K(x; ~!io; ~!i) is

a re-parameterization of the bidirectional distribution function fbd(x; ~!o; ~!i) centered around a

direction ~!io. The incoming direction for centering the convolution kernel in directional space, ~! io,

is either the ideally reflected direction or the ideally transmitted direction (see sections 3.5.1 and 3.5.2)

derived from the desired outgoing direction ~!o (Figure 4.2). That is, ~!io defines an axis in the space of

all directions emanating from point x and the convolution kernel K is centered around the direction

of that axis. Figure 4.2 illustrates the kernel from Figure 4.1(right) centered at point x and about

direction ~!io.

x

N

θ ϖoθ

ϖio

Figure 4.2: Centering the kernel from Figure 4.1(right) about direction ~!io in directional space.

Note that the kernel in the traditional convolutionEquation (2.7) is centered at the desired pointx

for which we want to evaluate the convolution in that space. In terms of the light transport equation,

there is an outgoing direction in directional space for which we want to evaluate the convolution.

However, the kernel is not centered at that direction. Instead, the kernel is centered at a direction

that is a function of the desired outgoing direction. There are two reasons for choosing the ideally

transferred direction to be the axis for centering the BDF convolution kernel, instead of any other

direction in the hemisphere. First, the ideally transferred direction is usually the direction or close to

the direction of greatest density of energy in any light transfer, which corresponds to the peak of the

kernel in the convolution-based approach. Secondly, the spread of contributions of incoming light for a

single desired outgoing direction depends, in general, on a neighborhood around the ideally transferred

direction, which defines the kernel support in the convolution-based approach. An exception to the
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first rule is retro-reflection3, because it requires an alignment of the viewer with the light source for the

effect to be observed. To take retro-reflection into account in our convolution-based model, the kernel

needs to be centered at the viewing direction, instead of being centered at the ideally reflected direction

derived from the viewing/outgoing direction.

Note that the integration variable in the convolution Equation (2.7) controls the displacement

around the central desired point and that the integration limits indirectly represent the kernel support

(how far in the domain the convolution should gather information about the signal, Section 2.6.2).

Analogously, in our convolution- based view of the light transport equation, the integration variable

controls the angular displacement around a central incoming direction of interest and the integration

limits represent the size of the solid angle swept out around this central direction, i.e., define the

kernel support. In directional space, the kernel support can be as wide as the complete corresponding

hemisphere (reflection or transmission hemisphere) in question. In practice, the kernel support is

determined by the solid angle subtendingthe incoming nonzero BDF lobe for the corresponding desired

outgoing direction. Figure 4.3 presents radiance integration over a solid angle subtending a BRDF lobe

around direction ~!io. Notice the difference between the kernels (BRDFs) in figures 4.2 and 4.3—the

kernel in Figure 4.3 has a finite support, whereas the kernel in Figure 4.2 does not.

N

x

Lo(x,ϖo)

Li(x,ϖio)

θθ

ϖo
ϖio

ϖ

Figure 4.3: Radiance integration for a small solid angle subtending a BRDF lobe around direction ~!io.

FunctionK represents the impulse response (or the point spread function) of the surface material

to the given incoming light. It describes how incoming light from a single direction ~! io is spread

into the hemispheres of outgoing reflected/transmitted directions. Alternatively, given the reciprocity

property of the distribution functions, the point spread function K can be seen as describing how

incoming hemispherical light is integrated (by reflection or by transmission) into a single outgoing

3Retro-reflection refers to the effect which produces reflected light around the direction anti-parallel to the incoming

direction.
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direction ~!o. That is, given an outgoing direction, the PSF describes how the incoming (or input)

light in the corresponding hemisphere gets weighted and integrated to produce the output light in that

direction. The PSF weights the contributions of incoming light over the neighborhood of directions

(solid angle) covered by the kernel, i.e., in the kernel support.

The radiance Equation (4.1) can then be expressed in a simpler form in terms of a convolution

operation in directional space:

Lo(x; ~!o) = Le(x; ~!o) + F (x; ~!i) ?K(x; ~!io; ~!i) (4.8)

where F and K are as described above. This notation hides the space in which convolution

takes place. Although the convolution Equation (2.7) defines that integration is carried out in an

infinite space, notice that integration in the light transport Equation (4.1) is performed in the two

complementary hemispheres of directions (reflection and transmission hemispheres) covering the

point x in question. To accomplish the same integration as performed by the radiance Equation (4.1),

this implies that convolution in Equation (4.8) is computed in directional/hemispherical space, as

discussed in Section 2.3.1. In practice, integration is usually performed over only a subset of the

hemisphere—the subset that subtends the nonzero values of the BDF (Figure 4.3).

Chapter 3 discussed different types of materials in terms of bidirectional distribution functions.

We can now discuss the different types of convolution kernels required by different surface materials

(Figure 4.4):

� Diffuse transfers require convolution with a constant kernel over the entire hemisphere—

radiance leaving point x in a single direction is given by integrating radiance from all the

directions in the hemisphere weighted by a directionally constant value (the diffuse reflectance

at x);

� Mirror-like transfers require convolution with a delta kernel over a single direction (or no

convolution at all)—radiance leaving point x in a single direction is given by radiance from a

single incoming direction;

� Glossy transfers require convolution with non-constant kernels over a solid angle subtending

the corresponding glossy BRDF lobe—radiance leaving point x in a single direction is given

by radiance integration from all the directions in the hemisphere weighted by directional

reflectance/transmittance values.
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Figure 4.4: Decomposing a BRDF into qualitative components and its corresponding kernels in one-
dimensional directional space.

The most general glossy transfers also require spatially varying kernels, as discussed in

Section 2.3.2. Both the shape and the amplitude of the kernels may vary for such materials. Figure 4.5

illustrates the need for a spatially varying kernel in general glossy transfers. Two orientations of

the viewer with respect to the surface are shown. Besides geometry, the figure also presents the

corresponding kernels—the one-dimensional magnitude plot of the BRDF for the given situations.

Notice the change in shape and magnitude of the kernel for the non-grazing and grazing situations.

This means that the kernel is view-dependent; a different kernel is needed for each outgoing direction.

Kernels:

Non-grazing

θr θr

θr

Grazing

θr θr

θr

θ θ

Figure 4.5: Spatially varying kernel for glossy reflection at non-grazing and grazing situations on a
one- dimensional directional space.

4.2 Decomposing the Light Transport Equation

This section discusses a more formal decomposition of the light transport equation than the one

presented in the beginning of this chapter. We rewrite the qualitatively decomposed Equations (4.3)

and (4.5) formally. We also present the equation which will be approximated by our rendering methods

discussed in the next chapters.
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The emitted term in Equation (4.3) was split into two terms in Equation (4.5)—diffuse emission

and specular emission. Since diffuse emission is independent of the outgoing direction, we write this

term only in terms of the location x where the light transfer takes place—LDe
(x). Specular emission,

however, depends on the outgoing direction of light and we write it as LSe(x; ~!o). The emitted term

is then

emitted = LDe
(x) + LSe(x; ~!o): (4.9)

Also from Equations (4.3) and (4.5), the transferred term was split into two terms—the ideally

diffuse component and the non-diffuse component. This splitting of the transferred term is based on

a common treatment of general BRDFs, which are frequently represented as the sum (superposition)

of three qualitative components [Cohen93] (Figure 4.4(top)): diffuse reflection, mirror reflection, and

glossy reflection. According to our definition in Chapter 3, we can combine mirror reflections and

glossy reflections into specular reflections and write a bidirectional distribution function f bd as the sum

of the diffuse component and the specular component:

fbd(x; ~!o; ~!i) = �D(x) + �S(x; ~!o; ~!i): (4.10)

By substituting this decomposition of the BRDF into the transferred term of the light transport

Equation (4.1) we get:

transferred =

Z


[�D(x) + �S(x; ~!o; ~!i)]Li(x; ~!i) cos �i d~!i; (4.11)

which can be split into two integrals

transferred =

Z


�D(x)Li(x; ~!i) cos �i d~!i +

Z


�S(x; ~!o; ~!i)Li(x; ~!i) cos �i d~!i:

(4.12)

We can now factor �D(x) out of the integral in the diffuse or view-independent term, since �D(x) is

independent of the integration variable:

transferred = �D(x)
Z


Li(x; ~!i) cos �i d~!i +

Z


�S(x; ~!o; ~!i)Li(x; ~!i) cos �i d~!i:

(4.13)

Finally, we rewrite the specular or view-dependent component in terms of our convolution form of the

light transport equation (Section 4.1) and get

transferred = �D(x)
Z


Li(x; ~!i) cos �i d~!i + Li(x; ~!i) ? Ks(x; ~!io; ~!i) (4.14)
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where Ks represents the convolution kernel for the specular components—mirror and glossy—of the

BRDF as described in the previous section.

To conclude, we combine the emitted and the transferred terms into our decomposed light

transport equation:

Lo(x; ~!o) = LDe
(x) + LSe(x; ~!o) + �D(x)

Z


Li(x; ~!i) cos �i d~!i + Li(x; ~!i) ? Ks(x; ~!io; ~!i);

(4.15)

which represents the multipass equation that we want to solve per pixel and per frame in real time. The

next three chapters address the view- independent and view-dependent components separately.
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CHAPTER 5

THE VIEW-INDEPENDENT COMPONENT

Chapter 4 considered a linear decomposition of the light transport equation in which one of the

components was completely independent of the viewer in the environment. Light paths of ideally

diffuse transfers capture effects such as diffuse highlights, shadows, and color bleeding1, all of which

are view-independent. This chapter discusses in more detail this view-independent component, a

method for solving it, and our results for displaying that component smoothly in real time by exploiting

features of current graphics hardware.

5.1 The Radiosity Equation

The light transport Equation (4.1) is greatly simplified under the assumption that all surfaces and light

sources in a scene are ideally diffuse. This is usually called the radiosity assumption [Cohen93] and

represents the view-independent component. The radiosity assumption implies that the BRDF of all

surfaces in a scene is independent of the direction of incoming and outgoing directions (Section 3.5.3).

In terms of the light transport equation, this assumption permits factoring the BRDF �bd(x) out of the

integral, as it does not depend on the integration variable:

Lo(x) = Le(x) +
�bd(x)

�

Z


Li(x; ~!i) cos �i d~!i: (5.1)

Note that, because the right-hand side of the equation is a non-directional quantity, there is no

dependence on the outgoing direction ~!o in Equation (5.1). The outgoing radiance from an ideally

diffuse light transfer is invariant with respect to the relative orientation of the viewer and the ideally

diffuse surface.
1Color bleeding refers to how the appearance of an object can be affected by the outgoing light from another colored

object. For example, the appearance of a white ceiling can be affected by an adjacent red wall. This effect happens due to

diffuse interreflections of light.



Alternatively to the radiance representation of the view-independent component, Equation (5.1)

can be presented in terms of radiosity2. Divide Equation (5.1) by � to convert radiance into radiosity

and remove the directional dependence to formulate the continuous radiosity equation in directional

space:

B(x) = E(x) + �d(x)
Z


Bi(x) cos �i d~!i (5.2)

where �d(x) = �bd(x; ~!o; ~!i)
�

is the constant reflectance at point x, E(x) is the emitted energy per unit

area at point x, and cos �id~!i is the projected solid angle ranging over the reflection hemisphere 
r.

Using the methods developed in Section 4.1, Equation (5.2) can be reformulated in terms of

convolution as

B(x) = E(x) + �d(x) [Bi(x) ? cos �i] : (5.3)

However, there are simpler and more efficient ways for solving the radiosity problem. Because

radiosity is a view-independent quantity, it can be completely precomputed and stored for later reuse at

rendering time. The next section describes important features of the radiosity method relevant to this

dissertation.

5.2 The Radiosity Method

Equation (5.2), in a slightly modified form, has been widely studied in thermal engineering since the

1950s as the problem of radiative transfer [Hottel54], and in computer graphics since the 1980s under

the problem of ideally diffuse light transfer (radiosity) [Goral84, Nishita85]. There are complete books

discussing the topic [Cohen93, Sillion94, Glassner95], and this section reviews only some fundamental

ideas of the radiosity method relevant to this dissertation.

2Radiosity, represented byB, is the total energy leaving a surface per unit area. In the case of ideally diffuse environments,

radiance is independentof incoming and outgoing directions; and radiosity is given by the integration of the outgoing radiance

over the hemisphere of directions:

B(x) =

Z

r

Lo(x) cos � d~!

= Lo(x)

Z

r

cos � d~!

= � Lo(x):

Notice that radiosity is directly proportional to outgoing radiance with a factor of �.
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Figure 5.1: Basic radiosity diagram.

Figure 5.1 shows a high level diagram of the basic steps in the radiosity method which help

connect the radiosity problem to the signals-and-systems problem of Chapter 2. The basic radiosity

approach starts with a geometric model of an environment and information about the light sources.

Then the environment is sampled to compute the radiosity function at discrete points. The approach

concludes with a reconstruction step for image synthesis purposes. The next sections discuss and

detail the sampling and reconstruction steps, and introduce our methods for displaying radiosity results

smoothly in real time. The solution methods for radiosity, based on setting up and numerically solving a

linear system of equations, are not central to this discussion because of the availability of a commercial

product—LightscapeTM from Discreet Logic—for computing radiosity. However, the sampling step

is described in detail, since it affects our reconstruction techniques.

The continuous radiosity Equation (5.2), like the light transport equation, is rarely analytically

solvable; numerical methods are necessary. The basic idea is to partition the surfaces of an environment

into a finite number of small elements and to find a solution for a discrete version of the radiosity

equation for those elements. Formally, the radiosity method can be derived in terms of finite-element

theory. Instead of re-deriving the entire formalism, this chapter provides a more informal and heuristic

approach to radiosity. The interested reader is referred to [Cohen93, Sillion94, Glassner95] for more

formal approaches.

In radiosity, the domain is the union of the surfaces of all the objects in the scene and the radiosity

function operates on that domain. For discretizing and computing the radiosity function of a scene,

the domain (the surfaces of the scene) is subdivided into a mesh of elements. For computation, each

of the resulting small surface elements is assumed to have a uniform (constant) radiosity value. The

composition of all these constant radiosity elements approximates the radiosity function over the entire
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domain. That is, the radiosity method, in general, approximates the radiosity function with a piecewise-

constant function. In practice, the surface elements are usually represented with convex polygons and

the final radiosity solution is represented with a mesh of quadrilaterals and/or triangles, each with its

own color (Figure 5.2).

Figure 5.2: Subdivision of a quadrilateral into 2�2 elements and the corresponding constant radiosity
(coded in gray) for each element.

Since radiosity deals only with ideally diffuse surfaces, the radiosity function of a scene contains

mostly low-spatial-frequency details, as opposed to the sharp highlights possible in specular transfers.

Although features like shadows can introduce higher frequencies at the edges between lit and shadowed

regions, the general lighting of an ideally diffuse environment tends to have smoothly varying

transitions across the surface domain, i.e., low-spatial-frequency contents. This observation about the

spatial frequency content of the radiosity functions can be exploited in sampling and reconstruction.

Samples can be placed far apart in regions of low frequency content and closer in regions with higher

frequency content. This discretization of the radiosity function can then be reconstructed with a low

order polynomial. The next sections discuss the sampling and reconstruction issues involved in the

radiosity method.

5.3 Sampling the Radiosity Function

The scene discretization into surface elements for radiosity computation is a sampling task that can

lead to artifacts in the final result. Large elements in regions with high radiosity gradients can result

in missing features in the reconstructed radiosity function. The simple brute-force approach of just

using finer uniform meshes rapidly increases storage and computational time costs, and may still be

insufficient for capturing small features. The domain needs to be finely subdivided only where it will

significantly improve the accuracy of the reconstructed radiosity.

Obtaining an optimal mesh requires knowledge about the radiosity function. Meshing

techniques that use such information can be characterized as either a priori or a posteriori. A priori

meshing techniques are used to determine features dependent only on the geometry of the environment

and on the light sources, such as direct or primary shadows, before the radiosity solution is computed.
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After the solution has been partially computed, a posteriori meshing techniques are then used to refine

the mesh in regions with high radiosity gradients. A priori methods are beyond the scope of this

dissertation and the reader is referred to [Lischinski92, Heckbert92] for good discussions on the topic.

A posteriori meshing refines the mesh in a recursive adaptive-subdivision manner, after the

radiosity solution has been partially completed. Initially, a radiosity approximation is obtained using a

mesh determined a priori—usually, the mesh of polygons describing the original scene. That mesh

is then refined in regions where the local error is potentially high (e.g., regions with high radiosity

gradient), using the initial approximation of the radiosity function.

Radiosity is usually sampled in a regular form on the surfaces of a scene (see Figure 5.3).

Each original surface in a scene is normally either of quadrilateral or triangular shape. The root

M L

J K

F G

I

C

DE

H

J

A

K L M

F G I

B C D E

C

D

E

F G
I

J K

L

M

Figure 5.3: Adaptive subdivision of a quadrilateral and a triangle and the corresponding quadtree.

of a quadtree3 is associated with each original surface. The corresponding quadtree then spatially

partitions the surface hierarchically into smaller elements. Nodes of the tree store radiosity at the

respective hierarchical level, representing the radiosity associated with the corresponding region of the

original surface. Note that both quadrilaterals and triangles are partitioned into four elements, since this

partitioning preserves the aspect ratio of the original unsubdivided primitive and unifies the quadtree

approach (notice in Figure 5.3 that both the particular quadrilateral partitioningand triangle partitioning

are represented by the same quadtree).

3A quadtree is a two-dimensional binary tree in which each node has zero or four children.
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The standard way of computing, storing, and displaying radiosity derives a mesh of polygons

from each quadtree (surface) in the scene. A traversal of a quadtree, followed by the corresponding

partitioning of the associated original geometry, creates polygons at leaf nodes of the quadtree. Note

how the compositing of all the leaf nodes of the quadtree of Figure 5.3 represents the original

unsubdivided polygons. Remember also that each of those nodes contains a uniform radiosity value

sampled from the radiosity function at that region of the domain.

5.4 Reconstructing the Radiosity Function

The discretized radiosity function obtained in the previous section represents a discrete sampling of the

radiosity function at selected regions of a scene. The process of synthesizing images of such a scene

is to reconstruct a function that approximates the radiosity function in the entire environment, i.e., a

function that preserves the spatial discontinuitiesof the radiosity function but is otherwise smooth. That

reconstructed or interpolated function is usually called a reconstruction radiosity function.

Assume that the radiosity function was evaluated (numerically approximated) at points V

of the domain. The reconstruction problem aims to find a reconstruction function R that, at any

point v 2 V of the domain, provides the exact same values as the corresponding radiosity samples,

and approximates the radiosity functionB everywhere else in the entire domain:

R(v) = B(v); 8v 2 V (5.4)

R(p) �= B(p); 8p 62 V: (5.5)

The same reconstruction function should approximate the first derivative, or gradient, of the radiosity

function on the entire domain and should also preserve the continuityand discontinuitiesof the radiosity

function. This formalism is useful in comparing synthetic images produced from radiositized models.

Each pixel p of such an image approximates the actual radiosity function of the scene such thatR(p) �=
B(p).

By analyzing the illumination of a real scene one can observe the type of continuity and

discontinuities expected from a reconstructed radiosity function. Consider an empty cubic room with

six gray faces and a single light source on the ceiling (Figure 5.4). Simple inspection shows that

the light distribution in such a room is continuous on the walls, on the ceiling, and on the floor.

However, observe the radiosity value discontinuities in illumination distribution at the edges between

the orthogonal faces—any two non-coplanar faces sharing an edge may cause value discontinuities at
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Figure 5.4: A cubic gray room illuminated by a point light source near the ceiling. Notice that the
light reflected off the ceiling acts like an area light source for the scene. Notice also the continuity and
discontinuities of the illumination function across the domain.

the edge. Additionally, consider that the floor is now split in two coplanar materials: half is still of the

same original gray material and the other half is darker. Although the two halves are coplanar, there is

a clear value discontinuity in illumination across the edge separating the two materials. Now, consider

a small opaque cube on the floor of the room and the shadow that it casts on the floor and possibly on

the walls. The direct light from a point light source near the ceiling casts a hard shadow4 of the cube

onto the floor, and the transition from lit to unlit regions represents another illumination discontinuity

in value. However, note that the light reflected off the ceiling acts as an area light source and casts a

soft shadow5 of the cube onto the floor. The transitions from lit to penumbra and from penumbra to

umbra regions are illumination discontinuities in first derivative. Higher-order discontinuities are also

possible [Heckbert92] but are not important for this work, because of their low visual impact on the

final images.

The above description illustrates the need to represent the continuity and discontinuities of the

radiosity function accurately in its domain. In most regions of the domain we may need smooth

radiosity transitions between adjacent patches, whereas in other regions we may need to represent

explicit discontinuities. Because it is hard to find a single reconstruction function for the entire

scene combining all these features, the problem is broken down into small parts. Driven by the

surface subdivision from the previous section, each final mesh element is associated with a continuous

reconstruction or interpolation patch—a patch of an interpolation polynomial. In fact, each element

is associated with three independent color patches; one for each color band (R, G, and B). However,

4A hard shadow contains hard edges—lit to unlit transitions.
5A soft shadow is composed of umbra and penumbra regions. The umbra is the completely unlit region, whereas the

penumbra is the partially lit region.
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as the treatment is analogous for each color component, radiosity is analyzed as a one-dimensional

quantity—a per-wavelength quantity.

The simple association of a continuous reconstruction patch with each mesh element provides

continuity inside independent patches/elements, but it does not ensure proper continuity between

adjacent elements and across the entire domain. The continuity between adjacent patches is controlled

by the order of the reconstruction scheme and by the sharing of information across and along edges

of the adjacent patches. Given the assumption that a reconstruction patch is continuous inside its

corresponding mesh element domain, note that the representation of radiosity discontinuities is only

possible at element edges of the mesh.

The final result of the sampling phase in the previous section is usually a mesh of quadrilaterals

and/or triangles representing the samples of the radiosity function. As previously assumed, each of

these polygons represents the uniform radiosity in the corresponding area of the scene. Consequently,

each polygon in the resulting mesh contains a single RGB triplet, which defines its color for rendering

purposes. Therefore, a single flat reconstruction patch can be associated with each mesh element. This

corresponds to a zero-order reconstruction scheme. Clearly, this zero-order polynomial scheme cannot

guarantee any type of functional continuity along and across edges of adjacent polygons (except when

two adjacent patches share the exact same RGB values), which causes a faceted appearance on the

rendering of such scenes.

To increase functional continuity along and across shared edges of adjacent polygons,

higher-order reconstruction schemes need to be used. After zero-order reconstruction, the next order

up is bilinear interpolation—usually the standard for rendering radiositized scenes. Instead of using

a single color value for each entire polygon, radiosity approximations are computed at the vertices of

the polygons and then bilinearly interpolated inside the polygon. The radiosity at a vertex is given by

the radiosity average of all the uniform elements sharing that vertex. Although bilinear interpolation

can provide smoother results than the faceted shading, the results are still discontinuous in the first

derivative of the reconstructed radiosity function.

The discontinuities in intensity and/or first derivative of the zero-order and of the bilinearly

reconstructed functions in regions where the radiosity function should be smooth may appear

as noticeable Mach banding artifacts6 in the final images. Our visual system is sensitive to

6The perceptual effect known as Mach banding was first reported in 1865 by the Austrian physicist Ernst Mach [Ratliff72,

Foley90]. The effect depends directly on the distribution of illumination and exaggerates the intensity change at any edge

where there is a discontinuity in magnitude or slope of the illumination.
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those discontinuities, and higher-order reconstruction schemes must be used to provide appropriate

continuity on the reconstructed radiosity function between adjacent polygons. Image synthesis aims

at C1 continuous shading functions— continuous first derivatives—for representing smooth regions

while avoiding Mach banding artifacts.

In terms of our radiosity reconstruction analysis, the next order up for functional reconstruction

is biquadratic interpolation (Section 2.6.2.1). Although quadratic interpolation can provide first

derivative continuity between adjacent elements it may produce fast transitions and overshooting in

the interpolated functions (see Figure 5.5). In addition, quadratic interpolation is not able to capture

inflection points between samples.

Figure 5.5: One-dimensional quadratic (left) and cubic (right) interpolations compared to an arbitrary
function (dashed): notice the fast transitions, the overshooting, and the inability to capture inflection
points between samples of the quadratic interpolation compared to the original function. In contrast,
notice the more controllable approximation obtained with cubic interpolation.

The next interpolation order up (bicubic) provides higher control of the reconstructed function

producing smoother transitions. According to Bastos et. al. [Bastos93] bicubic interpolation can

provide the C1 continuity needed for smooth radiosity rendering, i.e., the first derivative continuity

of the reconstructed radiosity function across multiple adjacent patches.

All the reconstruction/interpolation schemes discussed above were based on the mesh of

polygons resulting from the sampling phase of the previous section. Although these mesh-based

rendering schemes are compatible with current graphics hardware, they easily overwhelm the rendering

capabilities of most architectures, due to the huge amount of data produced by the adaptive subdivision

of the scene. In addition, the current graphics hardware supports only zero- and first-order per-vertex

interpolation of the attributes associated with mesh elements/polygons, which does not allow us

to handle the bicubic interpolation of radiosity necessary for smooth renderings. The next section

describes a more effective form of storing and rendering radiosity data without losing any information,

a method which is also amenable to implementation with current graphics hardware and allows

for higher-order interpolation/reconstruction schemes than does the hardware-assisted mesh-based

scheme.
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5.5 Radiosity As Textures—RAT

The elements-based radiosity solution and storage method described in the previous sections induced a

radiosity rendering technique based on dense meshes of polygons with corresponding reconstruction or

interpolation patches. This mesh-based rendering technique is effective because it enables the graphics

hardware to perform the radiosity interpolation when rendering the corresponding polygons. However,

a more careful analysis of the technique shows unnecessary use of geometrical entities to represent

color (radiosity) information.

Suppose, for example, a triangular room floor represented with a single triangle that was

recursively subdivided in a quadtree for radiosity representation. Not unrealistically, assume eight

levels of subdivision and a resulting full quadtree7. A full quadtree with eight levels of subdivision

generates 48 = 65536 triangles. Clearly, in terms of geometry, there are 65535 unnecessary triangles

in the final triangulated representation; note that all the 65536 are coplanar and together define the same

triangular region represented by the original unsubdivided triangle. Of course, the additional triangles

were created to locate radiosity samples inside the original surface, rather than to describe the geometry

of the surface. Think of the unnecessary amount of geometry data that needs to cross the graphics

pipeline for this mesh-based radiosity rendering approach.

Instead of sending a triangle for each radiosity sample in the subdivided mesh, geometry can

be decoupled from illumination information and both sent separately to the graphics pipeline. In our

example, for geometry it is desirable to send only the three original vertices describing the unsubdivided

triangle, and for illumination we want to send the radiosity data resultant from the adaptive radiosity.

Additionally, the radiosity data must be organized in some form that can be appropriately attached

to the triangle. This suggests the use of texture mapping8. Essentially, one wants to calculate the

distribution of light across the triangle and then map that as an image onto the triangle. The next

sections describe techniques for converting radiosity data from a quadtree into a texture map, and

reconstruction techniques for smoothly but still efficiently displaying the radiosity data [Bastos93,

Bastos96, Bastos97].

7A full quadtree has all its leaf nodes at the deepest level of the tree.
8A texture map is an image-based primitive used to add detail to surfaces. The discrete elements of the texture map are

called texels and represent the quantity to be mapped onto the primitive. A texture map is parameterized in texture space and

maps to corresponding parameters on parameterized primitives.
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5.5.1 From Full Quadtrees to Textures

The fairly regular sampling produced by quadtree adaptive subdivision can be effectively represented

as a texture map, instead of a mesh of polygonal elements. For each quadtree representing adaptive

sampling of the radiosity function across a surface, our technique creates a texture map representing

the same information. Both the original quadtree radiosity and the produced texture map are floating

point entities. Remember, also, that each node of a quadtree represents the uniform radiosity across a

polygonal element of the mesh.
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Figure 5.6: Uniform subdivision of a quadrilateral, the corresponding full quadtree, and the mapping
to a corresponding texture.

On a one-to-one mapping, each texel in the texture corresponds to a unique leaf node in

a quadtree (see Figure 5.6). The level of the deepest leaf node of a quadtree (the height of the

quadtree) determines the resolution of the texture map. The number of texels in either side of a texture

corresponding to a quadtree is given by

nu = nv = 2height: (5.6)

Note, then, that a square texture map with appropriate resolution is equivalent to a full quadtree, in

terms of the number of texels and the number of leaf nodes.

A full quadtree is flattened into a texture map by mapping each of the quadtree leaf nodes

into the corresponding texels in the texture map. The algorithm follows a depth-first traversal of

the quadtree where actions are taken only at leaf nodes. The recursive algorithm for converting the
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FullQuadtreeToTextureZeroOrder( quadtreeNode, level, height, u, v )

{

if ( level == height ) { // It’s a leaf node

texel[u][v] = quadtreeNode->radiosity

}

else { // It’s an internal node, recurse.

FullQuadtreeToTextureZeroOrder( quadtreeNode->child[0], level+1, height, u*2, v*2)

FullQuadtreeToTextureZeroOrder( quadtreeNode->child[1], level+1, height, u*2+1, v*2)

FullQuadtreeToTextureZeroOrder( quadtreeNode->child[2], level+1, height, u*2+1, v*2+1)

FullQuadtreeToTextureZeroOrder( quadtreeNode->child[3], level+1, height, u*2, v*2+1)

}

}

5.7: Converting a full quadtree to a texture with a zero-order approach.

radiosity quadtree of a quadrilateral surface into a texture is presented in Program 5.7, which is called

for the root node of each quadtree with the following function call:

FullQuadtreeToTextureZeroOrder( quadtreeRoot, 0, quadtreeHeight, 0, 0 ).

Note that the u,v parameters indexing the texture are recursively shifted during the quadtree traversal

for properly mapping leaf nodes to the appropriate texels. The algorithm for converting a quadtree

associated with a triangular surface into a texture looks similar to the one above, except for the mapping

recursively applied to the u,v parameters during the traversal.

The algorithm presented above applies for converting full quadtrees into textures in the zero-

order scheme of per-polygon radiosity. That is, each leaf node of the full quadtree maps to a single

texel in the texture map. The next sections discuss a technique for first-order approximation of the

reconstructed radiosity function and for handling non-full quadtrees—both are desirable features for

efficient rendering of adaptive subdivision radiosity.

5.5.1.1 A First-Order Approach

Instead of using a single radiosity value per polygon in a zero-order approximation of the radiosity

function, radiosity methods, usually, compute radiosity at the vertices of the mesh to provide a

first-order approximation of the radiosity function. Each per-vertex radiosity is approximated by taking

the average of the radiosity of all the polygons sharing that vertex. The per-vertex radiosities are then

bilinearly interpolated to provide the first-order approximation of the radiosity function. The same

averaging and first-order radiosity approximation is possible using radiosity as textures without losing
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any information and using a simpler approach, as the radiosity texture implies the necessary adjacency

information not directly captured by meshes (follow in Figure 5.8).
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Figure 5.8: Uniform subdivision of a quadrilateral with the corresponding shared vertices, the
corresponding full quadtree, and the mapping to a texture in which each texel represents a vertex
location in the mesh.

In terms of the quadtree, each leaf node in the first-order scheme also now contains a set

of vertices (four vertices for a quadrilateral and three for a triangle) for representing the respective

geometry. Each of these vertices maps to a texel in the radiosity texture, which we refer to as a vertex

location in the texture map. Note that now texels represent per-vertex radiosity, instead of per-element

radiosity. Note also that a mesh ofn�n quadrilaterals contains (n+1)�(n+1) vertices. Consequently,

the number of texels on the side of a radiosity texture for a first-order approximation is given by

Equation (5.6) incremented by one, so that the texture captures the total number of vertices instead

of the number of elements in the mesh. Note also that adjacent leaf nodes of the quadtree have vertices

that share/map to the same texel in the maps.

Starting from a zero-order (constant) representation of radiosity in a quadtree, the conversion

process from a quadtree to a texture for a first-order scheme creates two two-dimensional maps, instead

of a single one as in the zero-order scheme discussed in the previous section (follow in Figure 5.9).
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Figure 5.9: Representation used for the two maps for computing average radiosity at vertex locations
in Figure 5:7. The checkerboard pattern represents the texel regions of the maps organized on top of the
mesh, and shows which elements are combined to compute the average radiosity at the corresponding
vertex locations. The accumulator map contains at each texel the summation of the radiosities of the
mesh elements sharing that texel of the maps. The counter map contains at each texel the number of
mesh elements sharing that texel in the map. For example, the texels at the four corners of the maps
have only one element; texels along the edges have two elements; and texels inside the maps have four
elements.

The need for two maps comes from the average radiosity that needs to be computed. Shared vertices

of adjacent leaf nodes map to the same texels/vertex locations in the map. Both maps have the same

resolution and serve to compute the average radiosities. One of the maps, the accumulator, is used

for accumulating radiosity at the texels touched by leaf nodes sharing/mapping to that same texel.

The other map, the counter, counts the number of leaf nodes sharing each texel (contributing to the

accumulated radiosity at each texel). During a depth-first traversal of the quadtree, each leaf node

contributes to up to four texels in the maps corresponding to a quadrangular surface (six texels for a

triangular surface). The exact texels to be updated by each leaf node are determined by the recursive

mapping functions as described above. For each leaf node, the corresponding texels in the accumulator

map have their radiosity augmented by the node’s radiosity and the corresponding texels in the counter

map have their values incremented by one. Using these two maps, it is then possible to average the

constant-basis radiosity from leaf nodes to approximate the radiosity at vertex locations: both maps

are sequentially traversed, and, whenever the counter texel is not zero, the accumulator texel is divided

by the counter.

The recursive algorithm for converting the radiosity full quadtree of a quadrilateral surface into

a texture for a first-order approximation is very similar to the zero-order approximation algorithm from
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page 80. The recursive mechanism remains the same, but now each leaf node maps to four texels in

the map (one for each vertex) instead of a single one (Program 5.10). Program 5.10 is invoked for the

FullQuadtreeToTextureFirstOrder( quadtreeNode, level, height, u, v )

{

if ( level == height ) { // It’s a leaf node

accumulator[u][v] += quadtreeNode->radiosity

accumulator[u+1][v] += quadtreeNode->radiosity

accumulator[u+1][v+1] += quadtreeNode->radiosity

accumulator[u][v+1] += quadtreeNode->radiosity

counter[u][v] += 1

counter[u+1][v] += 1

counter[u+1][v+1] += 1

counter[u][v+1] += 1

}

else { // It’s an internal node, recurse.

FullQuadtreeToTextureFirstOrder( quadtreeNode->child[0], level+1, height, u*2, v*2)

FullQuadtreeToTextureFirstOrder( quadtreeNode->child[1], level+1, height, u*2+1, v*2)

FullQuadtreeToTextureFirstOrder( quadtreeNode->child[2], level+1, height, u*2+1, v*2+1)

FullQuadtreeToTextureFirstOrder( quadtreeNode->child[3], level+1, height, u*2, v*2+1)

}

}

Program 5.10: Converting a full quadtree to a texture with a first-order approach.

root node of each quadtree with the following function call:

FullQuadtreeToTextureFirstOrder( quadtreeRoot, 0, quadtreeHeight, 0, 0 ).

In addition, after the two maps (accumulator and counter) were computed, the radiosity average

at vertex locations is trivially computed with the following algorithm:

for (u=0, u<nu, u++)

for (v=0, v<nv, v++)

if (counter[u][v] > 1)

avrg_radiosity[u][v] = accumulator[u][v] / counter[u][v]

else

avrg_radiosity[u][v] = accumulator[u][v]

Program 5.11: Computing radiosity average at vertex locations from the accumulator and
counter maps.

All the previous descriptions have assumed full quadtrees. However, the quadtrees resulting

from adaptive subdivision are in general non-full quadtrees. In that case, a leaf node not at the deepest
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level of the quadtree maps to more than one texel—maps to a region—in the texture map (Figure 5.13).

Non-full quadtrees, as will be discussed in the next section, require an additional step to fill in uncovered

regions of the texture map (or leaf nodes that map to more than one texel).

5.5.2 From Non-Full Quadtrees to Textures

The algorithms in the previous section were designed for full quadtrees. For non-full or general

quadtrees, the recursive mechanism remains the same, but there are two things that need to be changed

in the algorithm. First, the mapping function needs to be adjusted for leaf nodes at different levels of

the tree. The full quadtree approach relied on the fact that all leaf nodes were at the deepest level of the

tree; each leaf node was mapped into its corresponding texel by always starting at the texture origin and

recursively shifting location until reaching the node’s final position. Since for a full quadtree all leaf

nodes are at the same level, the mapping function depended only on the height of the tree (captured by

the number of recursive calls performed by the algorithm for each leaf node). For non-full quadtrees

the mapping function depends both on the height of the tree and on the level of the leaf node on the

tree. Clearly, leaf nodes at the deepest level of the tree should map to the same location as in the full

quadtree approach. Leaf nodes at internal levels should map to a texel corresponding to one of the leaf

nodes’ children in a full quadtree, i.e., should not map to any texel of the leaf nodes’ siblings or of their

children (follow in Figure 5.13).

The recursive algorithm for converting the radiosity quadtree of a quadrilateral surface into a

texture for a zero-order approximation is similar to the zero-order approximation algorithm for full

quadtrees in page 80. The recursive mechanism remains the same, but now the mapping function

needs to take into account the relative level of each leaf node with respect to the height of the quadtree

(Program 5.12).

Secondly, if a full quadtree has as many leaf nodes as texels in a texture of given resolution, a

corresponding non-full quadtree contains fewer leaf nodes than texels in the same texture. Obviously,

mapping each leaf node of the non-full quadtree to a single texel in the texture leaves some texels

untouched. These gaps in the texture map can be filled in by interpolation. A zero-order approximation

finds the coverage of a leaf node in the texture map and replicates the radiosity value of that leaf

node into all those texels. A first-order approximation uses the radiosity at the corners (four or

three, depending on the shape of the original node) of the leaf node, to bilinearly interpolate values

inside the hole. The recursive algorithm for filling in the gaps on the radiosity texture is presented in
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QuadtreeToTextureZeroOrder( quadtreeNode, level, height, u, v )

{

if ( level == height ) { // It’s a leaf node

span = 2ˆ(height - level)

u’ = u * span

v’ = v * span

texel[u’][v’] = quadtreeNode->radiosity

}

else { // It’s an internal node, recurse.

QuadtreeToTextureZeroOrder( quadtreeNode->child[0], level+1, height, u*2, v*2)

QuadtreeToTextureZeroOrder( quadtreeNode->child[1], level+1, height, u*2+1, v*2)

QuadtreeToTextureZeroOrder( quadtreeNode->child[2], level+1, height, u*2+1, v*2+1)

QuadtreeToTextureZeroOrder( quadtreeNode->child[3], level+1, height, u*2, v*2+1)

}

}

Program 5.12: Converting a quadtree to a texture with a zero-order approach.
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Figure 5.13: Adaptive subdivision of a quadrilateral, the corresponding non-full quadtree, and the
mapping to a corresponding texture. Notice the empty texels in the texture not covered by any leaf
node using our algorithm.
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Program 5.14. Note that this algorithm could be consolidated with the algorithm on page 80 into a

FillInGapsZeroOrder( quadtreeNode, level, height, u, v )

{

if ( quadtreeNode->numberChildren == 0 &&

level != height ) { // It’s an internal leaf node

span = 2ˆ(height - level)

v’ = v * span

for (i=0; i<span; i++, v’++ ) {

u’ = u * span

for ( j=0; j<span; j++, u’++ ) {

texel[u’][v’] = quadtreeNode->radiosity

}

}

}

else { // It’s an internal node, recurse.

FillInGapsZeroOrder( quadtreeNode->child[0], level+1, height, u*2, v*2)

FillInGapsZeroOrder( quadtreeNode->child[1], level+1, height, u*2+1, v*2)

FillInGapsZeroOrder( quadtreeNode->child[2], level+1, height, u*2+1, v*2+1)

FillInGapsZeroOrder( quadtreeNode->child[3], level+1, height, u*2, v*2+1)

}

}

Program 5.14: Filling in the gaps with a zero-order approach.

single algorithm to accomplish both tasks. For clarity, we keep them as separate operations.

This section analyzed the zero-order algorithms for mapping leaf nodes of a non-full quadtree

into a texture and for filling in the occasional gaps in the resulting texture map. First-order algorithms

are also possible and follow the same modifications as presented in Section 5.5.1.1 imposed on the

algorithms of this section.

5.5.3 Resampling and Filtering

The rendering of radiosity data is a resampling process (Section 2.6). It starts with sampled radiosity

data on the surfaces of a scene and generates pixels on the screen. As such, radiosity rendering involves

both minification9 and magnification10 processes. Since that radiosity data usually contains mostly low

9Minification happens whenever a sampled signal is mapped into a lower resolution space—information is lost.
10Magnification happens whenever a sampled signal is mapped into a higher resolution space—information needs to be

created/reconstructed.
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spatial frequencies, this dissertation only analyzes the magnification process. [Wolberg92] gives an

analysis of filtering techniques for minification.

Magnification when rendering radiosity data happens both for the mesh-based approach and for

the texture-based approach; the spatial resolution on the screen is usually higher than the sampling

resolution on the radiosity domain. The graphics hardware performs either zero-order (nearest

neighbor) or first-order (bilinear) interpolation when magnifying radiosity data. These low-order

interpolation schemes cause value and slope discontinuities in the reconstructed signal (Section 5.4).

Perceptually, these undesired discontinuities produce faceting and Mach banding in the rendered

images. The naive solution for this problem is to oversample the radiosity domain such that radiosity

discontinuities and perceptual effects are minimized. However, this solution hurts performance by

creating unnecessary data.

Reconstruction

stage 1

Radiosity

quadtrees
Image

Radiosity

textures

Pre-filtered

radiosity textures

Reconstruction

stage 2

Reconstruction

stage 3

Figure 5.15: Three-stage radiosity reconstruction pipeline.

The next three sections present a three-stage reconstruction pipeline for radiosity data that

reduces or completely eliminates the perceptual artifacts by using successive reconstruction and

filtering of the data until they are suitable for display (Figure 5.15). The pipeline starts by resampling

given radiosity data; each radiosity quadtree (balanced or unbalanced) is converted into a single

continuous reconstructed radiosity function which is then resampled to the original sampling rate. This

first reconstruction stage handles T-vertices11 and unrestricted quadtrees12 in a unified way. Then, in

reconstruction stage 2, the resampled radiosity data are low-pass filtered. This second stage prepares

the radiosity data for rendering. The last reconstruction stage is the interpolation/filtering scheme used

for rendering the radiosity data. Since the radiosity data were already low-pass pre-filtered in the

previous stages, the interpolation/filtering order for the third stage can be as low as first-order (standard

bilinear shading) and still produce results with minimal artifacts. These approaches are discussed in

terms of the radiosity-as-textures technique presented in Section 5.5, but also apply to the mesh-based

technique (even though with much more elaborate implementations).

11A T-vertex refers to a vertex not shared by all the polygons sharing its supporting edges.
12In a restricted quadtree, adjacent leaf nodes are never more than one tree level apart.
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5.5.3.1 Reconstruction Stage 1—Resampling Radiosity from Any Quadtree

The first reconstruction stage is a unified solution for the T-vertex and unrestricted quadtree

problems. Radiosity subdivision can generate unbalanced quadtrees with nonconforming13 elements

in regions with different mesh densities [Cohen93, Sillion94]. Figure 5.16 presents an example where

neighboring elements have different levels of subdivision, creating T-vertices in the mesh (e.g., vertices

9 and 10 in the figure). T-vertices are undesirable because the interpolated values at those points
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Figure 5.16: Adaptive subdivision of a quadrilateral, the restricted quadtree, and the corresponding
texture map: notice the T-vertices number 9 and 10.

(interpolation between vertices 6 and 8 for element B at location of vertex 10) will potentially be

different from the radiosity value computed at the same point (at vertex 10 for elements F and H). This

generates a visual discontinuity along the edges supporting that vertex (edges 6–10 and 10–8).

Several solutions to the T-vertex problem have been proposed in the finite-element literature and

the most important are [Cohen93]: replace the computed value with the interpolated value at that point;

or use restricted quadtrees and triangulate the larger element that neighbors the T-vertex. Our solution is

based on a recursive bicubic patch-based reconstruction. The technique does not subdivide the original

elements, keeps all the original radiositysamples, and creates a continuousradiosity representation over

the original polygon (root of the quadtree).

We begin by creating a bicubic patch per color component for every leaf in the quadtree. This

provides C1 continuity between adjacent patches at the same quadtree level, but does not ensure C 1

continuity along edges containing T-vertices. Then, bicubic patches at leaf nodes that are not at the

deepest level of the quadtree are recursively midpoint subdivided until we get a full quadtree. In that

subdivision process, previously computed radiosity values are shared by the new patches, and radiosity

13Two adjacent elements in a quadtree are nonconforming if they are at different levels of the tree; this is the cause of

T-vertices.
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values for new points are approximated by interpolating the bicubic patch at the level directly above

in the quadtree. This process is recursively applied until we have a full quadtree that can be flattened

into a texture (Figure 5.16–right). This technique generalizes directly for unrestricted or unbalanced

quadtrees, handling T-vertices in the same simple and hierarchical way. Note that this algorithm implies

the creation of a full quadtree from any non-full quadtree. Note also that this algorithm is based on the

interpolation-patches reconstruction scheme presented in Section 5.4 and the mechanism of algorithm

5.12 from page 85.

Given the continuous radiosity reconstructed function, it is now possible to resample the original

data at any appropriate spatial resolution and to provide smooth radiosity renderings. Current graphics

hardware, however, implements only zero- and first-order interpolation schemes—not bicubic—which

cannot provide the smoothness required for radiosity rendering. However, it is possible to resample the

continuous data and generate radiosity textures as described in previous sections, which are then taken

into the next reconstruction stage and ultimately to smooth rendering with the first-order interpolation

hardware.

5.5.3.2 Reconstruction Stage 2—Low-Pass Pre-Filtering Sampled Radiosity

The previous stage created radiosity textures sampled from continuous reconstructed functions.

Given the continuity of the reconstructed function, the radiosity texture can be up-sampled and

provide smoother data than the original radiosity data. However, this approach would be similar to

oversampling the radiosity domain, and just as undesirable for performance reasons.

Alternatively, we want to produce processed radiosity data at the same given resolution but still

provide smoother results. This involves recognizing that some of the radiosity rendering artifacts are

due to undesired high spatial frequencies from low-order interpolation schemes. That is, the traditional

zero- and first-order interpolation shading introduces high frequencies in the spectrum of an image due

to the value and slope discontinuities of the low-order interpolation. A solution is to low-pass filter the

radiosity data provided by the previous section such that high spatial frequency content created in the

shading process is minimized. The blur produced by low-pass filtering the radiosity data reduces or

completely eliminates the discontinuity artifacts of the renderings, even when bilinear shading is used

for rendering the image in stage 3 of the next section.

We have experimented with low-pass filters ranging from a 2 � 2 bilinear filter up to 5 � 5,

4th order Gaussian filter. Increasing the resolution of the filter increases the smoothness of the results
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with, consequently, an increased blur of the whole texture. Increasing the resolution of the filter also

increases the computational time to convolve the filter with the textures.

5.5.3.3 Reconstruction Stage 3—Radiosity Shading

The previous stage preprocessed the radiosity data for this final stage of reconstruction in our

pipeline—the final radiosity rendering. We again start with sampled data in the form of a texture map

and reconstruct intermediate texel values on the screen as we render the textured polygon.

The usual reconstruction technique for rendering textures is bilinear interpolation. This type of

interpolation is readily available and fast on current graphics hardware. However, bilinear interpolation

cannot represent first derivative continuity across the entire texture, which inability may cause artifacts

on the final images (Section 5.4). We have explored two alternatives here. First we tried taking the

results from the first stage reconstruction of Section 5.5.3.1 directly into the radiosity shading and using

bicubic texture filtering available on SGITM hardware [Bastos97]. In that case, we replaced the default

bilinear texture filtering by a bicubic filter (1/3, 1/3) [Mitchell88]. Then, we expanded this two-stage

reconstruction pipeline into a three-stage one, as described here. In the three-stage pipeline radiosity

data resulting from stage 1 is pre-filtered before getting to the final radiosity shading stage. This three-

stage approach produced renderings as smooth as the two-stage one, without the performance penalty of

the on-the-fly bicubic filtering. The advantages of using the bilinear filtering over the bicubic filtering

are higher performance, and reduced frame buffer and texture memory requirements; standard bilinear

interpolation operates with 8 bits per color component, whereas the bicubic filtering requires more bits

per component to avoid possible range overshooting of the bicubic interpolation. The graphics API

only offered 12 bits/component as an alternative to 8 bits/component.

5.5.4 Curved Objects

We have heretofore assumed planar (triangular or quadrilateral) primitives. Computing and displaying

smooth radiosity for curved primitives poses a more interesting problem. This section extends the

radiosity-as-textures techniques described in the previous sections to handle radiosity data for curved

surfaces efficiently.

The applicability of our approach to u,v-parameterized curved surfaces, such as Bezier or

NURBS patches, is straightforward, and it works exactly in the same way as for quadrilaterals or

triangles. The curved patch is partitioned for radiosity computation, and the corresponding quadtree
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is used for deriving the corresponding RAT to be applied as a texture to the u,v-parameterized curved

surface. The approach also applies in the same way to implicit surfaces.

Figure 5.17: Sphere subdivided into six patches created by the projections of the faces of a cube
inscribing the sphere.

We have applied our radiosity-as-textures algorithms to a sphere subdivided into six equal-area

spherical patches, as shown in Figure 5.17. Each of the patches is independently handled during

radiosity computation as a quadrilateral patch. This means that each patch has a corresponding quadtree

subdivision after radiosity computation. The challenge here is to reconstruct a smooth radiosity

function over the sphere by sharing information along and across the edges between patches. The RAT

reconstruction scheme for the six-patch sphere works as follows:

Create a radiosity texture for each spherical patch, independently, by traversing their

quadrilateral-shaped quadtrees as described in sections 5.5.1 and 5.5.2. Then, create a final

radiosity texture by combining and resampling each of the independent patch radiosity

textures. The mapping and distributionof radiosity to be stored in the final radiosity texture

depends on the type of texture coordinates to be used by the rendering engine. Our final

radiosity texture for a sphere uses texture coordinates compatible with current graphics

libraries such as OpenGL, which represents spherical coordinates in the latitude-longitude

system. Latitude is represented by the vertical axis in texture coordinates and ranges

from ��=2 to +�=2 from bottom to top in the texture. Then, each latitude value

corresponds to a line in the texture. The horizontal dimension of the texture represents

longitude. Note the varying spatial resolution in longitude for different fixed latitudes. For

example, the poles of the sphere represent single points in the sphere; however, they have
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the same spatial resolution as the equator, which is represented by the middle vertical line

in the texture.

Let’s arrange the independent radiosity textures on a plane as presented in Figure 5.18. This clearly

needs some warping and resampling to create a texture compatible with OpenGL.

Top pole

Bottom pole

Equator

Figure 5.18: Layout for the six radiosity textures from the sphere.

Given the potentially different resolutions of the independent radiosity textures (quadtree)

among the six patches, we start by determining the maximum resolution among them. This maximum

resolution defines the resolution of the final radiosity texture such that it accommodates all the

information captured on the independent radiosity textures without any down-sampling. We make

the horizontal resolution four times the maximum resolution of the independent radiosity textures and

the vertical resolution two times the same maximum resolution. The factor of four in the horizontal

resolution comes from the need for the final radiosity texture to accommodate information from four

independent radiosity textures along the equator, as suggested by figures 5.17 and 5.18. The factor of

two for the vertical resolution is somewhat more complicated. Vertically, we need to accommodate

the two poles and the equatorial region. Figure 5.18 suggests a factor of three in the vertical resolution.

However, we should notice that the pole patches in that figure use only one quarter of the total horizontal

available resolution. They need to be spread so that they use the whole top and bottom regions of

the texture. Simply resampling the top/bottom pole so that it uses the whole top/bottom row wastes

resolution. To compensate, we use only half the vertical resolution at polar regions. Even though this

still represents more resolution than may be necessary at the poles, it facilitates the smoothing process

of the final RAT on the pole regions and achieves compatibility of the radiosity textures with OpenGL

texture requirements (power of two resolutions on the texture sides).

Once the resolution for the final radiosity texture has been determined, we resample the

independent radiosity textures to create the final texture. We backward map all the texels from the

final radiosity texture into the corresponding independent textures and point-sample the corresponding

RAT to get the radiosity value at that location.
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After the independent radiosity textures are resampled to generate the final radiosity texture, the

final texture is low-pass filtered as described in Section 5.5.3.2. As continuity is needed along and

across the texture seams on the sphere, padding of the final radiosity texture is necessary so that texels

from the left side of the texture are taken into account when filtering its right side, and vice-versa. The

padding for the polar regions is done by replicating the first and the last rows of the textures. The size

of the padding region (number of texels) follows the requirements of OpenGL convolution [Woo96].

The techniques developed here apply for other curved surfaces. The partitioning of the surface

into patches is necessary for the radiosity solution process, and the reconstruction steps use that

information to handle continuity across the surface. The mapping of the radiosity information into

a single texture, the padding, and the pre-filtering are necessary to ensure smooth rendering of the

radiosity texture across the entire curved surface.

5.5.5 Performance of RAT Models

We observed that replacing polygonal radiosity meshes with texture maps can dramatically improve

rendering performance, even across a variety of real-world models that contain mixes of meshes and

textures [Bastos96]. Table 5.5.5 presents results for the grotto model (Figure 5.19). The table lists

the number of polygons for the original (no radiosity) model—before radiosity solution, for the

adaptively subdivided (adapt.subdiv.) model—after radiosity solution, and for the RAT model

rendered with bilinear and bicubic shading. The table also compares the size of the models and the use

in texture memory for RAT models and presents the frame rates for each model.

Model Polygons Size Textures Frame

number (bytes) memory number rate

no radiosity 452 72K 0 MB 0 60.0

adapt.subdiv. 93,640 16,282K 0 MB 0 3.2

RAT bilinear 452 93K 4 MB 358 25.3

RAT bicubic 452 93K 4 MB 358 13.3

Table 5.1: Performance with the grotto model.

5.5.6 Appearance of Textures Reconstructed with One- and Two-Stage Pipeline

5.5.6.1 Results for the two-stage reconstruction pipeline

Images (c)-(e) in Figure 5.20 present a set of images demonstrating the reconstruction improvements

obtained with our two-stage pipeline. Notice how a first stage bicubic reconstruction can reduce
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Figure 5.19: The grotto model comparing the geometry before radiosity (on the left), the adaptively
subdivided model after radiosity computation (on the right), and the final rendered result equivalent
for both mesh and texture radiosity (in the middle). Note that the radiosity-as-textures version of the
model renders the same number of polygons as the original unsubdivided model. Note also that the
reduction in polygon count from the adaptively subdivided model to the radiosity-as-textures model
translates into texture memory usage.

the artifacts resulting from undersampled radiosity solutions. Image (a) is the radiosity texture

corresponding to the quadtree (height 2, 5 � 5 samples) output from LightscapeTM. Image (a) is

used to reconstruct textures (c), (d), and (e) using bilinear (d) and bicubic interpolation ((c) and (e)).

Image (d) presents a standard rendering of the radiosity information in image (a) generated by bilinearly

resampling image (a) to 256 � 256 pixels. The image shows a prominent Mach band (star-shaped)

artifact in the center of the bright spot in the upper left corner due to slope discontinuities in that region.

Image (e) presents the resampling of image (a) with bicubic interpolation and how it can eliminate the

artifacts of bilinear interpolation. Notice that the overall shape of the bright spot is rounder and there

is no apparent star-shaped artifact in the center of the spot, as expected from the reference image (b).

Figure 5.20.(g) demonstrates the use of hardware bicubic interpolation of texture maps to

produce a rendered image that is smoother and shows fewer shading artifacts than the corresponding

bilinearly interpolated Figure 5.20.(f). Image (c) shows the resampling of the bicubic representation

to 8 � 8 pixels (OpenGL allocates texture memory assuming powers of 2 pixels on the side of the

textures–we scale up the 5 � 5 information to use all the allocated memory). Image (f) shows that

even a texture map that has been generated from resampling C1-continuous bicubic patches can show

artifacts if the texel values are interpolated using bilinear mode in hardware. Notice that the bicubic

filtering mode (image (g)) produces much smoother results by blurring the information. Notice also

that bicubic filtering is three times slower than bilinear filtering on the machine described above, which
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(c) (d) (e)

(f) (g)

Figure 5.20: Reconstruction results for the two-stage pipeline: (a) initial information available from
two levels of subdivisionin LightscapeTM ; (b) reference image obtained from a height 9 quadtree (up to
513�513 samples) to be used as a goal for the reconstructed images; (c) first stage of (software) bicubic
reconstruction of image (a) with 8� 8 resampling; (d) first stage of (software) bilinear reconstruction
of image (a) with 256� 256 resampling; (e) first stage of (software) bicubic reconstruction of image
(a) with 256� 256 resampling; (f) hardware bilinear filtering of image (c) with 256� 256 resampling;
and (g) bicubic hardware filtering of image (c) with 256� 256 resampling.
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impacts performance. The next section presents results for our three-stage reconstruction pipeline,

which provides smoother results than standard radiosity shading without impacting performance.

5.5.6.2 Results for the three-stage reconstruction pipeline

The major difference between the two-stage and the three-stage pipeline is an additional filtering stage

in-between the two stages of the two-stage pipe. The additional stage prefilters the radiosity texture

from the first stage to prepare it for shading (the last stage in both pipes).

Figure 5.21: Reconstruction results for the three-stage pipeline: the top most image represents the
radiosity texture generated in the first stage by converting quadtree information into a texture; the
second row of images shows the low pass filtering of the top image to produce prefiltered radiosity
textures in the second stage of the pipe (filters range left to right from 2 � 2 to 6 � 6 samplings of
a Gaussian filter); the third row of images shows the final result of the three-stage pipeline produced
with standard bilinear interpolation of the prefiltered radiosity textures in the third stage of the pipe.
The images in the first and the second row are all 8� 8 in resolution and were scaled to 128� 128 for
display in the figure. The images in the third row are all 256� 256 in resolution.

Notice that the left most image in the second row of images corresponds to the standard radiosity

rendering—bilinear interpolation with no prefiltering. Notice also the increasing blur for increasing

filter resolution (from left to right in both the second and the third rows). The low-pass filtering

performed by the sampled Gaussian filters reduces the high spatial frequency content of the radiosity

texture before sending the texture to the standard bilinear shading stage. This low pass filtering implies

smaller slope discontinuities in the bilinearly shaded textures, which translate into less noticeable

artifacts in the final images. Figure 5.21 presents results for our three-stage radiosity reconstruction
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pipeline. The top most image is the 8 � 8 radiosity texture output from the first stage (equivalent to

image (c) in Figure 5.20). The second row of images shows the results of low pass filtering the top

most image with a Gaussian filter with resolution ranging from 2� 2 (bilinear interpolation) to 6 � 6

samples. The third row of images shows the results of rendering the prefiltered textures of the second

row using standard bilinear shading in the graphics hardware. Compare the results in the third row with

the reference image (b) in Figure 5.20.

Observe, however, that the prefiltering approach achieves smoother results by blurring the

radiosity information (similar to what was achieved in image (g) of Figure 5.20). An excessively

wide filter may result in an excessively blurred image, which may eliminate small features in radiosity

textures when trying to smooth features of larger spatial size. Spatially-variant low pass filtering may be

necessary for smoothing the textures but still preserving features of different sizes in a single radiosity

texture. Note also that the three-stage pipe does not impact rendering performance, if compared to

standard radiosity shading, but still produces smooth radiosity renderings.

5.6 Discussion

The radiosity-as-textures approach (as well as any other texturing technique) is a feed-backward

mapping approach, whereas the mesh-based approach is a feed-forward mapping approach. The mesh-

based radiosity approach forward-maps all the triangles onto the screen, whereas the texture-based

approach forward maps a single triangle onto the screen and then looks up (backward maps) the

corresponding radiosity value from the texture for each pixel covered by the unsubdivided triangle. If

the unsubdivided triangle covers the same number or more of pixels on the screen as we have texels in

the radiosity texture, the two approaches have similar costs. However, if the number of pixels covered

by the unsubdivided triangle is smaller than the number of texels, the feed-backwards approach is

more efficient than the feed-forward approach. For example, suppose that the unsubdivided triangle

from our example in Section 5.5 covers 100 pixels on the screen. The feed-forward approach still

needs to forward-map all the 65; 536 triangles onto the screen, whereas the feed-backwards approach

forward-maps a single triangle and then performs only 100 backward maps to get the corresponding

radiosity values. Clearly, the RAT approach can be more efficient than the mesh-based radiosity. As

presented in this chapter, the RAT approach can also provide the same or better reconstruction schemes

than the mesh-based approach.
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Representing radiosity with texture is not a new idea. The next paragraphs briefly distinguish

related approaches from our radiosity-as-textures approach.

Heckbert [Heckbert90] proposed the use of texture mapping as an alternative to the mesh-based

radiosity approach. In his approach the energy arriving at a surface is computed using Monte Carlo

ray tracing and stored at texels of radiosity textures (rexes). Uniform adaptive sampling is supported

that organizes rexes into quadtrees. During rendering, radiosity at any pixel in the final image

is approximated using bilinear interpolation. Due to the Monte Carlo ray tracing and the bilinear

reconstruction step, Heckbert’s approach can generate noisy and discontinuous images.

Myszkowski and Kunii [Myszkowski94] describe a method to replace the most complex

radiosity mesh areas with texture maps based on available texture memory and the number of mesh

elements that would be eliminated. Each selected surface is rendered as a Gouraud-shaded polygonal

mesh, and a texture map is retrieved directly from the surrounding rectangular region in the frame

buffer. In situations where there are mesh-based artifacts in the lighting solution, they recalculate the

solution directly to the texture map itself, by applying radiosity sampling at locations corresponding to

texels. Radiosity texture maps are rendered using bilinear texture interpolation on a Silicon Graphics

RealityEngine.

Möller [Moller96] describes a method for replacing radiosity solutions for NURBS (geometry)

models with a single texture map. This allows for multiple different levels-of-detail of the model

with the same illumination texture map. Textures are generated from a radiosity mesh, and texels that

have no corresponding mesh values are filled in using bilinear interpolation. The textured models are

rendered on a Silicon Graphics RealityEngine using bilinear texture interpolation.
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CHAPTER 6

NON-SCATTERED TRANSFERS OF LIGHT

The scattering of light spans a range of behaviors (Chapter 3). At one end, a single ray of light

impinging on a surface is transferred with equal distribution in all outgoing directions—the ideally

diffuse transfers. On the other extreme, light from a single ray at a given incoming direction is

transferred into a single outgoing direction—the ideally specular transfers. Chapter 5 addressed the

ideally diffuse transfers—the one end of the range. This chapter deals with the ideally specular

transfers—the other end of the range. The in-between transfers—namely, the glossy transfers—are

discussed in Chapter 7.

Chapter 5 considered the view-independent component of the light transport problem. Although

important, that component lacks view-dependent specular effects, which considerably enhance the

photorealism of a scene as it is viewed dynamically. These non-static shading and visual cues produce

more photorealistic and more interesting results for interactive walkthroughs. This and the next chapter

discuss view-dependent components of the light transport problem.

6.1 Ideally Specular Transfers

Ideal or non-scattered light transfers were discussed in Section 3.5. Both ideal reflections and ideal

transmissions were considered. This chapter discusses algorithms to compute ideal reflections and

leaves the ideal transmissions as an extension of the presented techniques.

The light transport Equation (4.1) is greatly simplified under the assumption that the light

transfers are ideally specular. For ideally specular transfers, the BDF is a delta function in the

directional space centered at the point in question—the BDF is non-zero only in the specular direction.

That is, in an ideally specular transfer, incoming light in a single direction produces light in a single

outgoing direction—in the specular direction ~! io. In terms of the methods developed in Section 4.1, the



light transport equation for ideally specular transfers can be expressed as a convolution of the incoming

light Li with a delta function in directional space (in the domain of the light transfer problem):

Lo(x; ~!o) = Le(x; ~!o) + Li(x; ~!i) ? �( ~!io): (6.1)

Convolving any function with a delta represents the sampling of that function in the particular domain

location specified by the delta, according to the sifting property of the delta function (Section 2.2) and

sampling theory (Section 2.6.1). That is, the convolution term in the equation above is just the sampling

of the incoming light function in the specular direction ~! io determined by the BDF delta function.

Instead of using convolution with a delta function, the equation can be simplified and explicitly written

in terms of the sifting domain location, i.e., in terms of the specular direction ~!io:

Lo(x; ~!o) = Le(x; ~!o) + Li(x; ~!io): (6.2)

The integration of the incoming light over direction in Equation (4.1) is unnecessary for ideally specular

transfers; the outgoing light from a point in a given direction depends on a single incoming direction

of light.

This dependence of the outgoing direction of light upon only the specular direction of incoming

light can be seen in terms of a mapping between two spaces. Incoming directions are mapped into

outgoing directions and vice-versa.

6.2 A Mapping Approach to Reflections

Abstractly, a mirror surface can be seen as a window to a reflected scene. Each surface point in a scene

has its corresponding point in the reflected scene, given by the straight reflection through the mirror

surface point. The reflected scene depends on the geometry of the scene, on the curvature of the mirror

surface, and on the relative position and orientation of the mirror with respect to the viewer.

A reflection can be seen as a mapping operation. There are two spaces: the space where the scene

is defined and the space where the reflected scene is represented (Figure 6.1). In fact, for reflections, we

are not directly interested in the reflected space; we are interested in projections of that reflected space

onto the mirror surface. The reflected image space is a subset of the reflected space, where the subseting

function is perspective projection. The reflected image space requires the definition of a viewer, which

is not required for the reflected space. In terms of the mapping, we are interested in the function that

maps points between the scene and the reflected image. As for any other mapping operation, there are

two alternative mappings for reflection: feed-backward mapping and feed-forward mapping.
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Figure 6.1: The spaces involved in a reflection on a planar mirror: the real space, the reflected space,
and the reflected image or projected reflected space (on the surface of the mirror).

In a feed-backward approach—i.e., querying the reflected scene for each visible point in the real

scene (ray tracing)—there is a simple mechanism to find the reflected image on a mirror surface. For

each viewing ray, the visible surface point in the direction of the ray and the normal vector at that point

are known; this allows computing the reflected vector at that point and finding the corresponding visible

surface point as seen from the reflection point in the reflected direction.

In the feed-forward approach—i.e., mapping points from the real scene onto the reflected image

on the mirror surface—a simple mechanism for computing reflections exists only for planar mirrors.

For each point in the real scene, find its corresponding reflected location through the mirror plane

(Section 6.3); the visible portion of the reflected scene through the mirror is the reflected image. For

curved surfaces, though, there is no single reflection plane to map points from the real scene into the

reflected scene. A curved surface contains infinitely many tangent (reflection) planes, and one cannot

know which one to use for reflecting a point from the real scene into the reflected scene.

The difference between the two alternative mappings for curved surfaces is that the feed-

backward approach defines a one-to-one mapping, whereas the feed-forward defines a one-to-many

mapping. Clearly, the feed-forward approach is not theoretically appropriate for handling reflections on

curved surfaces. However, the feed-forward approach defines a one-to-one mapping for planar mirrors.

6.3 Planar Mirrors

Abstractly, a planar mirror defines a window to the reflected scene (Figure 6.2)—a frustum defined by

the viewer and the edges of the mirror to an imaginary representation of the scene reflected with respect

to the mirror, or, alternatively, the frustum defined by the reflected viewer and the edges of the mirror

into the scene. The solid lines in the figure show the frustum defined by the viewer and the mirror
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Figure 6.2: Reflection of the eye-pointEp and the eye-direction Ed with respect to a planar mirror.

edges. The dashed lines show the reflected frustum defined by the reflected viewer and the mirror edges.

For a planar mirror, the reflected image is the planar perspective projection of the reflected scene onto

the planar mirror surface (Figure 6.3).

Figure 6.3: A planar mirror illustrating the planar perspective projection on the reflected image. Notice
the perspective shortening on the reflected brick wall.

Algorithmically, a scene with a single mirror can be drawn in two alternative forms: by double

modeling or with a two-pass approach. The double modeling solution actually models the reflected

scene in its physical location with respect to the scene and draws both the scene and its reflected version

with a single pass. The two-pass approach is split as follows. In the first pass, the reflected image of

the scene is drawn. In the second pass, the rest of the scene (non-mirror surfaces) is drawn. The first

pass reflects the eye-pointEp and the eye-directionEd with respect to the plane supporting the mirror
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(Figure 6.2) and draws the scene from the mirrored view pose. The mirrored eye-point Mp and the

mirrored eye-directionRd are given by

Mp = Ep + 2D(�N) (6.3)

and

Rd = 2(N �Ed)N�Ed: (6.4)

where D is the shortest distance from the eye-point Ep to the plane, N is the normal vector to the

mirror, and Ed is the eye-direction. In the second pass, the scene is drawn from the original view

pose but without drawing the mirror surface. Alternatively, the second pass can use a texture-mapping

technique: the reflected image computed in the first pass is applied as a texture onto the surface of the

mirror which must then be drawn with the texture in the second pass. The texture-mapping approach

has the additional burden in current graphics architectures of requiring the transfer of the reflected

image from the color buffer into texture memory per frame.

The description above assumed either a single planar mirror in the scene or that we are not

handling interreflections when there is more than one mirror in the scene. If there are two or more

mirrors in the scene, the same algorithm has to be applied recursively. In the first pass for each mirror

in the scene, determine if the other mirrors are visible from the respective reflected view poses. If so,

apply the algorithm recursively to each of the visible mirrors. The recursion terminates when one of

the mirrors does not “see” any of the other mirrors from the corresponding reflected view pose or when

the recursion reaches a pre-imposed recursion limit.

Although this technique for rendering reflections on planar mirrors is simple, it is intensive in

terms of computational time. Each planar mirror in the scene requires the rendering of the entire scene

from its mirrored view pose for each frame. This means dealing with the entire complexity of the

scene several times every frame, which is impractical for reasonably complex scenes. The case with

multiple recursive mirror reflections is even harder; the number of re-renderings of the entire scene per

frame grows exponentially with the number of mirrors in the scene and with the number of recursion

levels performed. Consider the limiting case of parallel facing mirrors as in the Hall of Mirrors at

Versailles. The recursion process is unavoidable for rendering mutually visible specular reflectors.

Thus, interactive rendering of planar mirror reflections demands more efficient scene rendering at each

level of the recursion than does rendering unmirrored scenes.
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6.4 Optimized Scene Rendering

Interactive rendering of large models can easily exceed the performance of graphics hardware systems;

the task becomes even harder when the model needs to be rendered several times per frame, as for

reflections. Often there are more primitives to be rendered than pixels on the screen. Moreover, in

general more than one point in the scene maps to the same pixel in an image (just the closest point is

kept). These two observations imply that the rendering engine is handling more data than a final image

can represent. This implies a waste of computational time—and leads us to the UNC Walkthrough

Project motto:

Avoid putting into the rendering pipeline polygons that you cannot finally see.

The fundamental idea is to decouple rendering time from scene complexity. An analysis of what

happens when visualizing a geometrical model indicates a few approaches for controlling the number

of primitives that have to be sent to the graphics pipeline. Primitives should not be sent to the graphics

pipeline if:

� they are outside of the view frustum (view-frustum culling)

� they face away from the viewer (back-face culling)

� their projection on the image is substantially smaller than a pixel (model simplification)

� they are behind another opaque object (occlusion culling)

Software techniques exist for handling the situations above and their names appear in parentheses. The

interested reader is referred to [Aliaga99] for a description of a system that combines all the techniques

above and provides references to earlier work on each of the topics. This chapter draws upon the fourth

approach above for accelerating scene rendering in mirror reflections. An image-based representation

of the scene taken from selected view poses is precomputed and then warped at runtime to compute

new images from novel view poses. An image of a scene captures only the first layer of visible points

for the particular view pose, i.e.; a warping of such an image does not deal with the occluded regions

from the original view pose.
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6.5 Image-Based Rendering

Recently, image-based methods have emerged as possible tools for producing views of an environment

in time that is independent of scene complexity [Chen93, McMillan95, Levoy96, Gortler96]. The

idea is to precompute images from several view poses in the scene and then derive, from the set of

precomputed images, new images for arbitrary view poses at runtime.

We follow the method in [McMillan97]. A set of images-with-depth1 is precomputed for a

scene and then reprojected at runtime to derive new images. The precomputation represents a point

sampling of the environment—each pixel captures the three-dimensional location and color of the first

visible surface along the pixel direction as seen from the COP (Figure 6.4)—and the runtime step is

a reprojection of those 3D point samples to reconstruct images for novel view poses. Note how

z

z Scene

z

z

Occluded
scene

Figure 6.4: An image-with-depth of a simple scene: each arrow labeled with a ’z’ represents a pixel
surrounded by dotted lines representing the corresponding solid angle. Notice that the occluded part
of scene (solid line squares) is not captured.

the precomputation step reduces depth complexity to a value of one on any image-with-depth of an

arbitrary scene (assuming that an image captures a single color and a single depth value per pixel).

Clearly, the depth complexity reduction of this method can be notable. However, this depth complexity

reduction does not always translate directly into efficiency. The point sampling of the scene generates

larger amounts of data than the original scene composed of polygons, and image reprojection suffers

from artifacts.

1An image-with-depth captures color and depth of the first visible surface along each pixel direction as seen from the COP.

Therefore, each pixel represents a point in three-dimensional space with its corresponding color. An image-with-depth is a

point sampling of a scene composed of continuous surfaces from a particular view pose.
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Figure 6.5: Image-with-depth example: (left) original scene, (middle) the reprojection of a
single image-with-depth showing its view-frustum, and (right) the same image-with-depth with
reconstruction.

The large amounts of data produced by the image-based approach may require memory

management and data fetching techniques when the image data does not all fit in memory [Aliaga99].

As for artifacts, the reprojection of images-with-depth is prone to disocclusion artifacts. Disocclusion

or exposure artifacts appear in the final images as holes with no color data due to the invisibilityof those

spots from the original view poses. For example, let’s suppose a single image-with-depth that captures

points only on a face of a cube (Figure 6.6). Now suppose a new view pose that would uncover another

face of the cube (Figure 6.7). A reprojection of the image-with-depth to the new view pose will present

a hole in the region of the uncovered face of the cube, since that part of the model was not sampled by the

image-with-depth. Notice the disocclusion artifacts in the reprojections of a single image-with-depth

in Figure 6.5.

6.6 Image-Based Approach to Planar Mirror Reflections

We compute mirror reflections on planar surfaces by using the image-based rendering approach. Since

the amount of computation required to reproject an image is proportional to the image size, the time

required to render a mirrored view of the scene is constant in the resolution of the images. This is in

contrast to geometry-based rendering of reflections (Section 6.3), whose time depends on the geometric

complexity of the model. We deal with disocclusion artifacts by rendering multiple images-with-depth

taken from view poses near the desired view pose. Since distinct view poses capture different visible

regions of the scene, rendering more than a single image-with-depth decreases disocclusion artifacts.

The algorithm starts by precomputing visibility for each planar reflector in the scene. For

each reflective object, a set of images-with-depth is precomputed for points behind the mirror surface
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Figure 6.6: Image-with-depth of a cube face: notice that the image-with-depth captures information
only about one of the faces of the cube—the first visible surface along the direction of each pixel.

? ? ? ? ? ? ?

Figure 6.7: Image-with-depth reprojected to a new view pose: notice the lack of information to
reconstruct the uncovered face of the cube.
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Figure 6.8: Cross-section of a simple scene containing a pyramid inside a cube. The surface indicated
with a normal vector—the base of the pyramid—is a mirror. The hemisphere behind the mirror serves
for placing images-with-depth for capturing what is visible from the surface of the mirror. Three
distinct view frusta are shown with three different line styles.

(Figure 6.8). The points are uniformly distributed on a hemisphere behind the reflector and define

the centers of projection for the images-with-depth. Each COP and the edges of the mirror define a

view frustum for an image-with-depth. The set of images-with-depth represents what is seen from

the reflector’s surface over a range of angles and positions. In fact, the set of all pixels in the

images-with-depth represents a point-sampled version of the original model. A detail worth noticing

is that the point-sampling captures only the first layer of surfaces visible from the mirror surface; for

example, the images-with-depth of a mirror inside a room with opaque walls do not point-sample

objects outside of the room, which may contain higher complexity than the objects inside the room.

This capturing of just the first visible layer of surfaces (precomputation of visibility/occlusion from the

mirror point of view) translates into rendering speed-ups.

The image reprojection approach assumes that all sampled points in a scene emit light

isotropically, so that light intensity (color) information stored in images-with-depth from a given

view pose is valid for any reprojected view pose. That is, images-with-depth have to store

view-independent light information, in order to produce valid reprojections at arbitrary view poses.

Our images-with-depth sample radiosity-illuminated models (Chapter 5), so that the color information

stored by the images is a view-independent quantity.

Our image-based approach for rendering reflections on planar surfaces has four distinct steps:

sampling, selection, reprojection, and reconstruction. The first step is part of a preprocessing phase,

whereas the last three are performed at runtime. The result of this image-based pass is a perspectively-

correct reconstructed view of the environment as seen from a mirrored viewpoint. The next sections

discuss the four steps above.
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6.6.1 Sampling

The sampling step captures the regions of the scene visible from the surface of the mirror. A set of

images-with-depth is created for each planar mirror (figures 6.8 and 6.9). The sampling process

N

1 2 3

Figure 6.9: Sampling step: the top figure illustrates the three sampling stages on a top view and on a
side view of a planar reflector; the bottom figure shows the distribution of view-frusta for images-with-
depth for a planar reflector.

proceeds in three hierarchical stages to finely sample what is visible from the surface of the reflector.

First, the planar reflector is discretized at a given planar resolution. Each of the resulting elements on

the plane defines a reflector element on the mirror object. Then, a hemisphere is placed centered at the

back side of each element; the base of the hemisphere is contained inside the reflector element. Finally,

points are uniformly distributed on the surface of the hemisphere. Each point on the hemisphere defines

the COP for an image-with-depth. The (possibly off-axis) view-frustum for each image-with-depth is

created using one point on the hemisphere as the center-of-projection and the vertices of the reflector

element as the near plane. Both the density of hemispheres and the density of points on the surface of

each hemisphere depend on the distance from the mirror to the reflected scene. More discrete elements,

and hence more hemispheres, and more points on each hemisphere, and hence more images-with-depth

for each discrete element, are needed as the reflected scene is closer to the mirror surface. Figure 6.8

shows how the locations of the images-with-depth are chosen for a single reflector element, whereas

Figure 6.9 shows the distribution of images-with-depth for a reflector discretized into three reflector

elements.
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In terms of implementation, the Class 6.10 summarizes what is stored for each image-with-depth.

In that class, nCols and nRows define the number of columns and rows of the image, color and

class ImageWithDepth {

int nCols, nRows;

unsigned char * color;

float * depth;

Mat44 inverse;

}

Class 6.10: Data structure for holding image-with-depth information.

depth contain the color and depth information per pixel for the image, and inverse represents the

inverse of the geometrical transformation used to place the virtual camera in the reflected view pose

when computing the image-with-depth. The pseudo-code in Program 6.11 describes how to compute

an image-with-depth.

Setup camera pose (modelviewMatrix, projectionMatrix, viewportMatrix)

Render scene

Save inverse of camera pose:

inverse = inverse_modelviewMatrix*inverse_projectionMatrix*inverse_viewportMatrix

Save color buffer and depth buffer

Program 6.11: Computing an image-with-depth.

Note a crucial difference between a traditional image (2D projection) and an image-with-depth;

a traditional image captures the projected scene onto the screen plane, whereas an image-with-depth

captures the location of intersected points by pixel rays in 3D space. This observation implies that all

the pixels in a traditional image have the same size (the pixel area on the screen plane), whereas, for

perspective projection each pixel in an image-with-depth can potentially have a different size based on

their distance to the viewer. Each pixel represents visibility inside a small pixel frustum and the farther

from the COP the pixel ray intersection with an object occurs, the larger the surface area subtended by

the pixel frustum. To distinguish between traditional and image-with-depth picture elements, we refer

to image-with-depth picture elements as points.
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6.6.2 Selection

The sampling step used a set of images-with-depth to capture the visible regions of the model from a

range of positions and orientations from behind the planar mirror. At runtime, the selection step finds

the image(s) in the set of each mirror that best approximate the corresponding reflected image.

N

Er

E

Figure 6.12: Selection step.

The selection step mirrors the viewpoint and the viewing direction about each reflection plane

(Section 6.3) and selects the image(s) that are closest to the mirrored view pose (Figure 6.12). By

examining the viewing angle formed by the mirrored view direction and the viewing direction of

the images-with-depth, the selection determines which images-with-depth have the highest image

resolution in the reflected view pose. This is a simple selection process implemented as a search for the

minimal angle between the mirrored view direction and the view directions of the images-with-depth.

A distance-based selection technique is also possible: based on the distance from the COP of the

precomputed images-with-depth to the COP of the reflected camera, the algorithm selects the closest

one(s). Both selection methods perform equally well when the reflected view pose is at a distance much

greater than the diameter of the hemisphere. However, when the reflected view pose is close or inside

the hemisphere, the directional method provides better results.

6.6.3 Reprojection

The selection step found the image(s) with COP(s) closest to the reflected view pose in the set of

precomputed images-with-depth of the planar mirror. However, the selected image(s) were potentially

not computed from the same view pose as the reflected runtime view pose, because either the exact
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direction or the exact COP was not sampled. The precomputed images-with-depth need to be warped

to the new reflected view pose to approximate the visible regions of the model from that new view pose.

world

COPsource

COPdestination

inverse

transform

transform * inverse

Figure 6.13: Image-with-depth reprojection.

To warp the precomputed images to the new view pose, the pixels of the images-with-depth can

be projected back to world space by using the inverse of the transformation matrix used to compute the

images-with-depth (Figure 6.13). Then, the points in world space are transformed into the new reflected

view pose using the current transformation. This process represents the reprojection of points between

two three-dimensional spaces. Our implementation exploits the graphics hardware in performing the

reprojection, and depth is resolved by the Z-buffer when two or more points map to the same pixel in the

reflected image. Each pixel in an image-with-depth is dealt with as a point in three-dimensional space

that is sent through the regular transformation pipeline. The transformation matrix is preloaded with the

product of the current runtime transformation and the inverse transformation of the respective image-

with-depth. The resulting transformation matrix takes points from the image-with-depth to the current

view pose. In terms of OpenGL implementation, pixels from an image-with-depth are reprojected using

the pseudo-code in Program 6.14 (along with the class definition of an ImageWithDepth (Class 6.10)).

6.6.4 Reconstruction

A reconstruction process is necessary to produce an image from the possibly scattered points on the

screen resulting from the reprojection step (Figure 6.5). The reprojection simply maps 3D locations

from the original eye-space where the images-with-depth were computed into the new eye-space of

the reflected view pose. Nothing ensures that the reprojected points from the original images-with-
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Setup new camera pose (modelviewMatrix, projectionMatrix, viewportMatrix)

current_transform *= imageWithDepth->inverse

glBegin( GL_POINTS );

For x=0 to imageWithDepth->nCols

For y=0 to imageWithDepth->nRows

glColor(imageWithDepth->color[x,y]);

glVertex(x,y,imageWithDepth->depth[x,y]);

glEnd();

Program 6.14: Reprojecting an image-with-depth.

depth cover all the pixels in the final image; disocclusion artifacts need to be avoided, which we do

by reprojecting multiple images-with-depth taken from view pose around the desired view pose. In

addition, from our definition of image-with-depth, a point is actually an area element, which implies

that a reprojected point has a variable size depending on the original and the new view poses. This

variable point size indicates that each projected point on the new screen may cover multiple pixels.

When reprojecting an image, two situations can arise: the magnification or the minification of

the original picture elements into the new image. Magnification happens when the destination space

has higher spatial resolution than the source space, whereas minification happens when the destination

space has lower spatial resolution than the source space. Magnification needs to create data in between

pixels, whereas minification needs to filter out data. Our reconstruction works in conjunction with

the reprojection step. Magnification is done by controlling the size of reprojected points on the

destination screen space (the pixel area) and minification is performed by skipping pixels in the original

image when reprojecting and reconstructing an image-with-depth. Program 6.15 shows how to extend

Program 6.14 to perform magnification. Note that Program 6.14 from the previous section assumed

Setup new camera pose (modelviewMatrix, projectionMatrix, viewportMatrix)

Multiply( current_transform, imageWithDepth->inverse )

For x=0 to imageWithDepth->nCols

For y=0 to imageWithDepth->nRows

glPointSize( EstimatePointSize(imageWithDepth->depth[x,y]) );

glBegin( GL_POINTS );

glColor(imageWithDepth->color[x,y]);

glVertex(x,y,imageWithDepth->depth[x,y]);

glEnd();

Program 6.15: Reprojecting an image-with-depth with per-point magnification.
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a constant point size (projected area) for all the picture elements in an image-with-depth, whereas the

pseudo-code in this section sets a new point size for each pixel in an image-with-depth.

For the case of magnification, an estimate of the x and y dimensions in pixels of the projected

point size on the screen is given by:

pointSizex;y =
1

stepx;y
=

distanceScale� directionalx;y

windowx;y

(6.5)

where windowx;y is a spatial resolution scaling factor from the source to the destination image in x or

y, distanceScale is a distance scaling factor based on the point-to-COP distance on the two spaces,

and directionalx;y is a directional scaling factor based on the dot product of the desired view-direction

and the X and Y axes in the source image-space. The spatial resolution scaling factor makes sure that

one unit in the source space gets scaled to the same relative dimension in the destination space, which

in terms of image spatial resolutions is

windowx;y =
SRCresolutionx;y

DESresolutionx;y
: (6.6)

The distance-scaling factor compensates for perspective shortening. Surfaces intersected closer to the

COP have smaller areas than surfaces intersected farther away. The distance-scaling factor is based on

the ratio of point-to-COP distances on the two spaces:

distanceScale =
SRCdepth

DESdepth
(6.7)

The directional scaling factor compensates for projected area, assuming that the intersected surface

element at each pixel in the source image is a square parallel with the screen. The projected square in

the destination space is scaled by the dot product of the desired view-direction and the X and Y axes

in the source image-space.

This reconstruction step of just increasing the point size of the projected point on the screen

is similar to splatting (Chapter 2) of a box kernel aligned with the screen. The subtle difference

between this and splatting is that the reprojection step with resized points does not perform the per-pixel

integration of the convolutionprocess characteristic of splatting. Our approach uses Z-buffering, which

implies replacement of pixel information instead of accumulation.

Equation 6.5 can also be used for minification of the images-with-depth—when the projected

area of the image-with-depth is smaller than its original area. In this case, a step size estimation

(stepx;y) is used to skip points when reprojecting the image-with-depth. The pseudo-code 6.16

performs reprojection and minification. Minification assumes a constant point size for an entire

image-with-depth.
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Setup new camera pose (modelviewMatrix, projectionMatrix, viewportMatrix)

Multiply( current_transform, imageWithDepth->inverse )

stepSize = 1.0 / EstimatePointSize(imageWithDepth->depth[x,y]);

glBegin( GL_POINTS );

For x=0 to imageWithDepth->nCols step stepSize

For y=0 to imageWithDepth->nRows step stepSize

glColor(imageWithDepth->color[x,y]);

glVertex(x,y,imageWithDepth->depth[x,y]);

glEnd();

Program 6.16: Reprojecting an image-with-depth with minification.

6.6.4.1 A hierarchical—quadtree—organization for images-with-depth

The estimation of point size on a per-point basis for magnification as discussed above clearly generates

good results; however, it is a bottleneck. The point size needs to be estimated for each pixel, which

is a computational burden. And the estimated point size needs to be sent to the graphics pipeline for

each pixel, which increases the amount of data required to transfer the entire image-with-depth to the

pipe—besides the three-dimensional location and the color of each point, it is also necessary to send

the point size.

To keep the computation reasonable, we organize the points of an image-with-depth in a

quadtree. The quadtree subdivision is performed in the XY plane until nodes of the quadtree contain

only points in a given range of depths or have a minimum number of points (Figure 6.17). For each

Figure 6.17: A quadtree organization of an image-with-depth. Notice the different depth ranges of
nodes in the quadtree.

node, a representative point is computed as the average (center of mass) of all the points inside that

node. The representative point of a quadtree node is used to estimate the point size for all the points
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inside that node (Equation (6.5)). This reduces the amount of computation and bandwidth required by

the per-pixel approach.

Figure 6.18: View-frustum culling the nodes of a quadtree organization of an image-with-depth.
Quadtree nodes that are completely inside the frustum are drawn in green, whereas nodes that are
partially inside are drawn in yellow.

In addition, this hierarchical approach permits view-frustum culling of sub-regions of the

images-with-depth (Figure 6.18). A view-frustum culling traversal of the quadtree can eliminate

quadtree nodes (and all the associated points) that are outside of the frustum.

6.6.5 Results for Planar Mirror Reflections

Figure 6.19 shows the rendering of image-based reflections for the floor and for the piano top of a

room of a house model, which has 140; 000 polygons and five planar mirrors sampled as described

in Table 6.6.5. The image-based reflections used two images-with-depth per hemisphere for each

mirror. Notice the disocclusion artifacts on some regions on the floor and on the piano top nearer to the

viewer. Notice also the noise introduced in the reflected images due to the zero-order quasi-splatting

reconstruction scheme used for producing the image-based reflections. This noise is clearly undesirable

for mirror reflections, but will show useful for glossy reflections produced by blurring mirror-reflected

images (next chapter). The average performance for rendering this scene was 15 frames per second on

an SGI Onyx2 workstation using a single 250MHz R10000 processor and an InfiniteReality2 graphics

pipe with four raster managers.

We analyzed the performance of image-based reflections with the house model. Images were

rendered at 720 � 486 and performance data were collected by playing a pre-recorded path (944
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Figure 6.19: Image-based reflections on the floor and on the piano top using two images-with-depth
per hemisphere for each reflector.

Name # of hemispheres Images-with-depth per hemisphere Image-with-depth resolution Memory (Mbytes)

Piano top 1 23 128� 128 2.54

Living floor 12 6 128� 128 7.98

Door mirrors 11 11 128� 128 20.69

Music floor 8 7 128� 128 8.21

Bench top 1 67 32� 32 0.57

Table 6.1: Data for the five reflectors in the house model.

frames) through the model. Table 6.6.5 describes the data for the images-with-depth for each of the

five reflectors in the scene.

The graph in Figure 6.20 shows the performance for our image-based approach versus the

geometry-based approach. It illustrates the cost of increasing the number of images-with-depth

reprojected per reflector. Notice that the image-based approach with one or two images was twice

as fast as the geometry-based one. Note that increasing the number of selected images-with-depth

improves the quality of reflected images.

6.7 Directionally Dependent Mirror-Like Reflectance

The approach for mirror reflections discussed so far assumed ideal reflectance of the material: the

incoming light from a certain direction is completely transferred to the outgoing direction. However,

most polished materials do not exhibit this direction-independent reflectance behavior. Most materials

exhibit higher reflectance values at grazing angles than at normal incidence. In addition, some

materials filter the color of the reflected light in a directionally dependent manner. Both effects are
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Figure 6.20: Performance comparison of image-based reflections with varying number of images-
with-depth per reflector with respect to geometry-based reflections.

produced by directionally dependent variations of material reflectance. The first effect is produced by

equal reflectance variations for all wavelengths of light, whereas the second effect is due to unequal

reflectance throughout the spectrum of light. We call the materials that exhibit this directionally

dependent reflectance mirror-like materials. This name distinguishes them from ideal mirrors, which

produce ideally specular reflections.

Most materials exhibit higher reflectance values at grazing angles than at normal incidence

[Cook81, Feynman89]. Notice, for example, how the intensity of a specular reflection varies on planar

glass: looking at a grazing angle with the glass you should see a much brighter reflection than at

normal incidence. This same behavior takes place on polished surfaces made of materials usually not

considered specular. As an extreme case, observe the specular reflection of a bright light source on a

sheet of paper at a very grazing reflection angle. Other interesting and not so extreme examples of this

type of reflectance behavior are tiles on bathroom walls and clearcoat on automobiles.

Some materials filter the color of the reflected light in a directionally dependent manner. For

example, notice the reddish reflections at grazing angles with copper surfaces. Gold also presents a

peculiar color shift for reflections: reflections at grazing angles do not get color shifted, but at near

grazing angles reflections are golden colored. This behavior is a characteristic of all metals [Cook81,

Feynman89].
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The directional-dependent or mirror-like reflectance affects a mirror reflection only by

performing a color filtering of the light in each outgoing direction. In terms of the light transport

equation for ideally specular transfers (Equation (6.2)), the directionally dependent reflectance implies

a reflectance function modulating the light transferred term:

Lo(x; ~!o) = Le(x; ~!o) + �bd(x; ~!i; ~!o)Li(x; ~!io) (6.8)

where �bd(x; ~!i; ~!o) is the bidirectional reflectance distribution function of the material at point x and

at incoming and outgoing directions ~! i and ~!o.

6.7.1 Approximating Directionally Dependent Reflectance

The directionally-dependent reflectance is due to the roughness of the surface and the shadowing

and masking of incident and reflected light (Section 3.5.3). Although surface roughness can cause

scattering of light, which would be out of the scope for this chapter, this section considers only the

directional variation of reflectance without taking into account the blurriness produced by scattering.

Inspired by Cook and Torrance [Cook81], we model directionally dependent reflectance with the

following expression:

� =
F

�(N � L)(N �V)
(6.9)

where N is the normal vector at a point in question illuminated from direction L and viewed from

direction V. The scalar F is a reflectance term derived from the Fresnel equation [Ditchburn91,

Fowles89, Feynman89] that expresses the reflectance of a perfectly smooth mirror-like surface in terms

of the wavelength of the incident light, the geometry of the surface and the light, and the angle of

incidence. To make it practical, instead of using the general equation, we follow the compromise

presented by Cook and Torrance [Cook81] and well reviewed in [Glassner95, Watt92]. We fit the

Fresnel equation to the measured normal reflectance for a polished surface (normal reflectance is known

for most materials). The reflectance F is then given by

F =
1

2

(g � c)2

(g + c)2

 
1 +

(c(g + c)� 1)2

(c(g � c) + 1)2

!
(6.10)

where

c = cos(�i) = V �H; H =
L+V

2
(6.11)
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and

g2 = n2 + c2 � 1: (6.12)

The index of refraction n of the material needed for Equation (6.12) is usually unknown—a function

of direction and wavelength of incident light. However, reflectance for normal incidence is usually

known, �i = 0, which let us approximate an effective index of refraction for the material:

F0 =

�
n� 1

n+ 1

�2
(6.13)

which solving for n gives

n =
1+

p
F0

1� pF0
: (6.14)

The values of the refractive index are then substituted into Equation (6.10) to compute the reflectance F

for any angle of incidence. This procedure is wavelength-dependent, since the reflectance at normal

incidence is a wavelength-dependent quantity, which implies that it has to be applied to the three (RGB)

color bands to provide Fr, Fg, and Fb—the color band reflectances of the material.

In summary, the directionally dependent reflectance is represented with functions derived from

the reflectance of materials at normal incidence of light. The color shift is produced when the color

band reflectances have distinct behaviors for a given material.

6.7.2 A Texture-Mapping Approach to Directionally Dependent Reflectance

The directionally dependent reflectance from Equation 6.9 is a function of the viewing vector, the

surface normal, the material refractive index, and the light wavelength. Except for the viewing vector,

the other parameters will usually be constant from frame to frame. This suggests look up into a table

indexed by the viewing vector, i.e., a view-dependent table look up technique. This view-dependent

technique has to modulate the reflected light from a mirror reflection.

In terms of implementation, we can follow a two-pass approach. In the first pass, a mirror

reflection on the mirror-like surface is rendered. In the second pass, we process (modulate) the mirror

image from the first pass to take into account the directionally dependent reflectance. Note that the first

pass involves potentiallydealing with the whole complexity of the scene to compute the mirror reflected

scene, whereas the second pass has to consider only the mirror-like object (a single polygon for a planar

mirror). Note also that mirror-reflected images for the first pass can be computed with any of several

techniques such as ray tracing, environment mapping, and the techniques described in Section 6.3 and
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Section 6.6. The second pass depends only on the mirror-reflected image stored in the frame buffer

and on the geometry and material properties of the mirror-like surface, i.e., it applies for any of the

mirror reflection techniques. After the mirror reflection is in the frame buffer, the second pass then

renders the mirror-like surface (a single polygon for a planar mirror) on top of the mirror reflected image

and modulates the pixel values contained in that region. We implement this color modulation using a

blending operation along with a texture-mapping operation; the blending operation is multiplicative

blending and the texture-mapping technique is sphere mapping.

Sphere mapping is the only view-dependent texture-mapping operation available in the current

graphics hardware [Zimmons99] (Figure 6.21)—it is a view-dependent texture lookup in hardware.

Sphere mapping operates in a subset of spherical coordinates—a projection in spherical coordinates,

which disregards the spherical radius parameter. A sphere map is a planar representation of the

two spherical angles into polar coordinates of circular area. The circular map is implemented as a

square texture where texels outside an inscribed circle are never accessed and texels inside the disk

contain useful values. The center of the disk represents the origin of spherical coordinates. The radius

represents the � angle of spherical coordinates and the angle around the origin represents the angle �

of spherical coordinates. The view-dependence in sphere mapping is taken into account by indexing

the texture map based on reflected viewing directions. Sphere mapping evaluates the reflected viewing

vector at the vertices of a surface and uses that vector to derive the texture coordinates and to index

into a sphere map [Zimmons99, McReynolds98, Woo96]. Viewing vectors anti-parallel to the surface

normal at a vertex are mapped to the center of the disk and viewing vectors perpendicular to the surface

normal map to the outer ring in the disk.
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Figure 6.21: Sphere mapping.

We store view-dependent reflectance information in sphere maps, based on the material

properties of reflectors and on the geometry imposed by the sphere mapping technique. For each texel

in a sphere map, there is a viewing direction and a corresponding reflected direction [McReynolds98].
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These two directions are used as the incoming and outgoing directions for sampling the reflectance

function to be stored at a texel. The reflectance function is either the function described in Section 6.7.1

or any other BRDF. The code in Program 6.22 shows how the reflectance maps are precomputed for the

Cook and Torrance reflectance. Note that even though we have chosen to sample the Fresnel equation,

// Compute the reflectance map

Image * map = new Image(texelsOnSide, texelsOnSide);

Image * texel = map;

for ( int ns=0; ns< texelsOnSide; ns++ ) {

for ( int nt=0; nt<texelsOnSide; nt++ ) {

mapping( texelsOnSide, (float)ns, (float)nt, &x, &y );

if ( sqrt(x*x + y*y) > 1.0 ) { // if outside the unit disc

reflectanceMap[ texel++ ] = 255 * maxR;

reflectanceMap[ texel++ ] = 255 * maxG;

reflectanceMap[ texel++ ] = 255 * maxB;

}

else {

Vec3f N( x, y, sqrt(1-x*x-y*y) ); // compute normal vector N

N.Normalize();

Vec3f R = U - 2*(U dot N) * N; // compute reflected vector R

reflectanceMap[ texel++ ] = 255 * CookTorrance(specular.x, R, N);

reflectanceMap[ texel++ ] = 255 * CookTorrance(specular.y, R, N);

reflectanceMap[ texel++ ] = 255 * CookTorrance(specular.z, R, N);

}

}

}

Program 6.22: Sampling Cook and Torrance model to compute a reflectance sphere map.

a reflectance map can represent any arbitrary isotropic modulation function. The isotropic restriction

comes from sphere-mapping.

Figure 6.23 shows a reflectance map for polished gold sampled using our technique for

RGB=(0.63, 0.56, 0.37). Notice the low reflectance at normal incidence/reflection (center of the disk)

and the high reflectance at grazing angles (in the outer ring).

6.7.3 Results for Mirror-like Reflections

Figure 6.24 shows results of using the reflectance sphere mapping technique on a pyramid made of

copper. Notice the overall difference in reflection intensity on the three visible surfaces of the pyramid,
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Figure 6.23: Reflectance sphere map for gold obtained by sampling the Fresnel equation for
RGB=(0.63, 0.56, 0.37). The graph shows RGB components along the horizontal line crossing the
center of the sphere map. Note on both the texture and the graph the color shift predicted by the Fresnel
equation.

due to their distinct orientations with respect to the viewer. Also observe the color shift and reflection

intensity of the specular reflection across the base of the pyramid.

Figure 6.24: Mirror-like reflection on three faces of a copper-like pyramid: (left) mirror reflection
using geometry, (middle) mirror-like reflection obtained by modulating the mirror reflection from left
image with the reflectance sphere mapping for copper, and (right) final image for scene reference.

Figures 1.7 and 1.8 show results of using the directional reflectance sphere mapping for a glossy

floor; the blurriness of the glossy reflection will be discussed in the next chapter, but the view-dependent

reflectance was produced with the sphere mapping technique discussed in this chapter. In Figure 1.7

the viewing direction is parallel to the floor, whereas in Figure 1.8 the model was tilted such that the

viewing direction is at a less grazing situation. Notice the difference in reflectance of the floor between

the two images and the variation of the reflectance along the floor on both images.
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The sphere mapping-based technique for approximating directional reflectance is very effective.

Besides providing a good approximation of directional reflectance, sphere mapping is available in

graphics hardware from SGITM , which makes it a fast operation. However, sphere mapping suffers

from both inherent and implementation problems. The first inherent problem is that the mapping from

viewing directions to texel coordinates in a sphere map is non-linear, which implies that directional

resolution is not constant in the map. Secondly, as with any other texture mapping technique,

each vertex of a triangle or quadrilateral (primitive) is mapped onto a texture by computing texture

coordinates. The edges of a primitive are mapped to straight lines connecting adjacent vertices of

the primitive in texture space. This mapping of edges of the primitive to straight lines in the texture

map is valid for rectangular textures, but incorrect for sphere maps—primitive edges should map to

arcs in sphere mapping. The first problem with current implementations is that connected vertices

in a texture map are linearly interpolated for filling in the corresponding primitive. However, given

the non-linearity of the mapping function, bilinear interpolation is not the appropriate interpolation

for sphere mapping. A second implementation problem, related to the two previous problems, is that

filtering is usually performed with a square filter in a rectangular texture. Sphere mapping should use a

wedge-shaped filter defined in terms of the radius and theta coordinates of sphere mapping, instead.

Finally, current implementations of sphere mapping in the hardware do not perform the expected

wrapping of the sphere map texture. Consider a triangle seen from a grazing angle. Then, the three

vertices map to the outer region of a sphere map, and the filled triangle should get texels only from the

outer (grazing) region of the sphere map. Suppose that the three vertices have the same � value and that

one of the vertices has a � value and the other two vertices have the opposite � value plus and minus

some small angle. The correct mapping when filling in the corresponding triangular region should

wrap the sphere map to provide texels only from grazing regions. However, the current implementation

crosses the sphere map and incorrectly provides texels that go through the non-grazing region.

Our particular use of the sphere mapping technique for directional reflectance stresses the non-

linearity problem of the technique. Our application requires high resolution on a region (outer ring)

of sphere-maps where the sphere-mapping technique offers low resolution. Though we reduced this

problem by uniformly increasing the resolution of the whole map, a better solution would be to flip the

sphere-mapping indexing scheme. Grazing angles would index texels in the center of the sphere-map,

where there is higher resolution than in the ring.
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6.8 Discussion

Traditionally in computer graphics non-diffuse reflections are approximated with lighting models—the

illumination of a point in a scene takes into account only the direct light from primary light

sources. This is a reasonable approximation for surfaces on which highlights are more prominent

than scene reflection (plastics). However, all non-diffuse materials exhibit reflections of surrounding

environments to some extent. Instead of a view-dependent lighting approach for producing highlights

based only on light sources, a reflection approach and an associated view-dependent reflectance scheme

are necessary. This chapter discussed the rendering of mirror reflections and its extension to mirror-like

reflections (when the materials exhibit directionally dependent reflectance).

The first part of this chapter addressed the rendering of non-scattered light transfers. The

complexity of rendering mirror reflections with polygonal scenes was recognized and an image-based

approach presented to provide better performance. We should now realize that in image-based

rendering there are two different quantities to be reconstructed:

1. The geometry of the scene needs to be reconstructed so that we can generate images from novel

view poses. Since images-with-depth preserve the three-dimensional location of each pixel in

the scene, the pixels can be reprojected to generate new images.

2. The illumination of the original scene also needs to be reconstructed; we want to preserve

view-independent details such as shadows and view-independent light distribution in the scene.

Since images-with-depth preserve color information per pixel, by reprojecting the points and

by controlling their reprojected size, we reconstruct both illumination and geometry for novel

viewpoints.

However, note that after the geometry of the original scene has been sampled, there is no

distinction between geometry and illumination information anymore. Illumination information is now

directly coupled to geometrical points. This somehow goes against the observations of Chapter 5,

where illumination information was decoupled from geometry information by transforming radiosity

information into textures. For example, a 512 � 512 image-with-depth of a single quadrilateral now

contains 256K point samples. So, instead of geometrically transforming four points of the quadrilateral

and filling the projected region on the screen, the image-based approach requires transforming 256K

points and filling the same region on the screen. There is a need for converting the point samples back
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to the original continuous planar primitive in order to avoid unnecessary geometrical transformations

and sampling and reconstruction issues.

As an alternative to images-with-depth, we could have used images-with-id.s. Instead of storing

the color and depth at each pixel of an image, we would store an identifier (id.) of the corresponding

primitive visible at that pixel. This would allow assembling a list of all the primitives visible for each

image, i.e., the potentially visible set of primitives (PVS). A reprojection of such an image-based entity

would be done by just sending the PVS to the pipeline for the current view pose. Since this alternative

process would not involve any resampling, it would benefit directly from the primitive rendering and

the reconstruction schemes already available in the hardware. Moreover, the amount of data to be

rendered for each PVS would potentially be much smaller than the amount of data to be rendered using

the corresponding image-with-depth.

The image-based approach also suffers from disocclusion artifacts. A single image-with-depth

captures the first visible point from the COP in the direction of each pixel. When an image-with-depth

is reprojected to a novel COP, unsampled regions are exposed. Our approach minimized disocclusion

artifacts by reprojecting multiple images taken from different COPs around the desired COP, for

producing the final result. The distinct COPs around the desired COP increased the sampling

of occluded regions of a single image-with-depth. However, because the selected COPs were

in a small neighborhood, the corresponding images captured similar information—a same surface

could be captured by all the images-with-depth. Since a surface could be represented in multiple

images-with-depth, reprojecting a set of images-with-depth for reconstructing a new desired view

implies in some redundancy. A pixel in the desired view may be touched several times due to

the multiple images-with-depth sampling the same point in the scene. A more efficient approach

would be based on layered-depth-images (LDIs) [Gortler97]. An LDI works in the same way as an

image-with-depth, but captures not only the first visible point at each pixel, but also further points

along the direction from the COP to each pixel. A standard way of creating an LDI uses a set of

images-with-depth reprojected to the LDI view pose. Each pixel in the LDI contains an array of points

for storing multiple layers of depth from the LDI viewpoint. Pixels from different images-with-depth

that reproject into the same three-dimensional location or into a small 3D neighborhood are stored

as a single entry in the pixel array for the average location. A single LDI captures more information

about the scene and produces less disocclusion artifacts when reprojected to novel COPs than a single

image-with-depth. The points-reduction scheme of LDIs reduces the redundancy factor from the set
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of images-with-depth to the LDI. Consequently, fewer LDIs are necessary to capture similar visibility

information as a given number of images-with-depth.

Although simple to implement, the splatting-like zero-order reconstruction scheme used in

this chapter for images-with-depth leads to noticeable artifacts in the reflected images. A more

convolution-oriented reconstruction scheme is needed. A better reconstruction scheme would be based

on real splatting of Gaussian kernels associated to the point samples.

The second part of the chapter discussed mirror-like reflections or how to extend mirror

reflections to simulate reflections of materials that have directionally dependent reflectance. Although

important for rendering a wide variety of materials, the direction-dependent reflectance is usually not

taken into account when computing reflections. This chapter discussed a two-pass approach where the

directionally dependent reflectance was introduced with a rendering pass over the mirror-like surface in

conjunction with a view-dependent texture-mapping technique—sphere mapping—available in current

graphics hardware APIs such as OpenGL.

Previous approaches for rendering the ideal mirror-reflection on a planar surface were based on

the techniques discussed in Section 6.3, which imposed doubling the complexity of the scene to be

rendered [Diefenbach96, McReynolds98]. To make reflections from real silvered-glass mirrors look

right, the light must be attenuated at least by 8% for the two air-glass surfaces encountered and perhaps

tinted to capture the greenish transmissivity of the glass. For these and other mirror-like reflections,

the most common approach is to modulate the mirror-reflected image with a single view-independent

color [McReynolds98]. That approach is able to approximate only colored mirrors. Diefenbach

[Diefenbach96] discussed the use of hardware fog features to produce view-dependent shading of

the mirror-reflected scene based on the distance of the reflected points to the mirror plane. That

approach provides a linear approximation where points close to the mirror surface get maximum

intensity, whereas points farther from the mirror get smaller intensities. Note, however, that although

this approach is view-dependent, the approximation does not incorporate any physical property of the

surface material (BRDF).
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CHAPTER 7

SCATTERED TRANSFERS OF LIGHT

So far we have discussed the two extremes of the light scattering range. Chapter 5 addressed the ideally

diffuse (fully scattered) transfers, which distribute light from any single incoming direction equally

in all outgoing directions. Chapter 6 considered the ideally specular (non-scattered) transfers of light,

which distribute light in a single outgoing direction for incoming light in any single direction. In nature,

however, most materials are neither perfectly diffuse nor perfectly specular. Real surfaces scatter light

into solid angles due to the microscopic roughness of the surface (Figure 7.1)1. This chapter discusses

the in-between or non-ideal transfers—glossy transfers—which perform a certain level of scattering

in particular directions, instead of the equally distributed scattering of ideally diffuse transfers or the

non-scattered behavior of ideally specular transfers. The unequal directional scattering implies that

glossy transfers are view-dependent.

The radiosity method (Chapter 5) greatly simplified the light transport problem for ideally diffuse

transfers by precomputing a view-independent quantity—radiosity—for real time rendering. The light

transport equation was also greatly simplified for ideally specular transfers in Chapter 6, where the

hemispherical integration was reduced to considering incoming light along a single direction of the

whole incoming hemisphere. Glossy transfers range from almost ideally diffuse to almost ideally

specular and neither simplification applies. Outgoing light in a single direction from a glossy transfer

at a small neighborhood around point x is the result of scattering light from a non-zero incoming solid

angle due to microscopic surface roughness (Figure 7.1). The solid angle can range from almost the

1Note that Figure 7.1 and the text describing light transfers above implicitly evoke the reciprocity principle of light

transfers (Section 3.5.5). The text above follows the conventional description of light transfers and BRDFs as the scattering

of a single incoming ray of light into an outgoing solid angle with distribution given by the BRDF at the transfer point

(Figure 3.5). The reciprocity principle states that if the direction of propagation of light is reversed, the light path remains

unchanged. That is, reversing the direction of propagation of light in the text above implies that the scattering of an incoming

solid angle of light produces light into a single outgoing direction (Figure 7.1).
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Figure 7.1: Microscopic roughness of the surface at a neighborhood around point x produces light in
a single outgoing direction ~!o due to a glossy transfer.

entire hemisphere down to almost a single direction, depending on how close the glossy material is to

an ideally diffuse material or to a mirror, respectively. The BRDF lobe bounds the solid angle ! for

which the material responds to incoming light for transferring light into a single outgoing direction ~! o

(Figure 7.2). The BRDF lobe is centered around the incoming direction ~!io, which derives from the

desired outgoing direction ~!o and represents the incoming direction of maximum contribution to the

given outgoing direction. The principal direction ~! io is usually the mirror-reflected direction of the

desired outgoingdirection ~!o. An exception is due to the increasing reflectance at grazing angles, where

possibly the mirror-reflected direction may not represent the direction of maximum contribution from

a grazing incoming solid angle. However, the shift in the direction of maximum incoming contribution

from the mirror-reflected direction does not represent an approximation, since the BRDF lobe captures

the correct distribution function in the neighborhood of the incoming solid angle.

This chapter presents methods for rendering glossy reflections based on the convolution

approach to light transport (Chapter 4). Translucency, or glossy transmission, is left as an extension

of the techniques presented. Section 7.2 reviews the convolution approach to glossy transfers. Then,

Section 7.3 and Section 7.4 discuss object-space convolution and image-space convolution methods

for approximating glossy reflections.

Each of the object-space and the image-space methods is split into two distinct parts based on the

nature of light transfers. The first part deals with the visibility from the point where the light transfer

takes place—the incoming light or what is visible from the glossy surface. The second part deals with
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Figure 7.2: Incoming radiance integration for a small solid angle subtending a BRDF lobe around
direction ~!io.

material properties at the point in question—how the material responds to incoming light for producing

transferred light at the outgoing (viewing) direction.

The object-space method performs the visibility part with a particle-tracing phase by shooting

light particles from the light sources and by storing the incoming direction of the particles at each hit of a

particle with a surface in the scene. The image-space methods perform the visibility part by computing

the mirror-reflected image on glossy surfaces and by assuming pixel-to-pixel visibility coherence

in the reflected image. The visibility part in the object-space approach is a preprocessing stage,

whereas in the image-space approaches it is a runtime phase of the rendering process. In practice, the

visibility preprocessing in the object-space method constrains its application to low gloss reflections.

Near-mirror reflections would require preprocessing incredible amounts of directional information

(incredible numbers of particle hits in the scene) in the object-space method. The image-space method,

instead, is more applicable for high gloss reflections, since it is based on mirror-reflected images.

Given the visibility information for the glossy surface, both methods use convolution to perform

the material properties part of the task. Since the material properties of a glossy material are

view-dependent, the convolution process involved in the material properties part is expected to be

fully view-dependent. The object-space method performs view-dependent convolution by associating

a convolution kernel (splat) with each particle-hit point in object-space and by view-dependently

modulating the magnitude of each splat based on the view-dependent BRDF at the particle hit. The

superposition of the screen projection of all the object-space splats represents the convolution of the

incoming light with the material properties at each particle-hit point on the glossy surface. Since

particle-hit splats are defined in object-space, projecting all the splats on the screen and summing all the

contributions does not produce a correct result. Only the splats belonging to visible surfaces have to be

considered for the convolution. A depth test is necessary to select the splats to be considered. All the
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splats are projected on the screen, but only those that land on visible surfaces have their contributions

added to the final result. This selection process implies that many splats (belonging to occluded

surfaces) are handled without producing any effect in the final result. The object-space method has

a computational cost that is linear in the scene complexity.

The image-space methods perform convolution in screen-space using two different approaches.

The first approach splits the material properties into two steps: a view-dependent modulation and a

view-independent (spatially invariant) convolution. The modulation step view-dependently modulates

the mirror-reflected image computed in the visibility part, according to the view-dependent magnitude

of the BRDF lobe. Then, for approximating solid angle integration, a convolution step performs

spatially invariant (view-independent) convolution of the image produced by the view-dependent

modulation step. This two-step approach assumes that the shape of the BRDF lobe does not change

view-dependently. A Phong lobe (cosn �), for example, has the shape-invariant property. The

magnitude of the BRDF lobe, however, is allowed to vary view-dependently to produce higher

specular contributions at grazing angle than at normal incidence, for example. The combination of

the view-dependent modulation and the view-independent convolution represents a view-dependent

process that is able to capture only part of the character of glossy transfers. The spatially invariant

convolution implies two limitations of the approach. First, spatially invariant convolution cannot

represent the fact that the shape of BRDF lobes is in fact view-dependent. Secondly, since the

spatially invariant convolution is performed in projected (screen) space, the convolution kernel support

in projected space is related to the neighborhood that approximates visibility in per-pixel reflection

solid angles. The kernel support is approximately proportional to the distance from the reflection

point to the reflected point af each pixel in the mirror-reflected image. However, since spatially

invariant convolution assumes a constant kernel support across the domain (reflected image) the

neighborhood size is constant per-pixel, which implies that all pixels would have the same depth

value—an inconsistency. Our second convolution-based approach to the material properties step

overcomes these two limitations.

The second approach that we present for the material properties step takes into account

the full character of glossy material properties by performing spatially variant convolution of the

mirror-reflected image with per-pixel material properties kernels. Since the convolution kernel is

allowed to vary from pixel-to-pixel, the on-screen spatially variant convolution is view-dependent and

the resulting method is capable of capturing the complete material properties across the glossy surface.
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Additionally, the screen-space spatially variant convolution also allows for the appropriate per-pixel

kernel support selection to approximate reflection solid angle visibility per-pixel.

The next sections discuss how we split the transferred term of the light transport equation

into two parts, and then treat object-space and image-space convolution-based approaches to glossy

reflections.

7.1 Splitting Glossy Light Transfers into Two Parts

The finite solid angle implied by glossy BRDF lobes reduces the integration range in the light transport

Equation (4.1). Integration for glossy transfers can be done over a solid angle ! bound by the BRDF

glossy lobe, instead of over the whole hemisphere 
:

Lo(x; ~!o) = Le(x; ~!o) +

Z
!
fbd(x; ~!o; ~!i) Li(x; ~!i) cos �i d~!i (7.1)

where terminology is equivalent to Equation (4.1).

Chapter 4 split the light transport equation into an emitted term and a transferred term. Here we

tailor the transferred term for glossy transfers:

transferred(x; ~!o) =

Z
!
fbd(x; ~!o; ~!i) Li(x; ~!i) cos �i d~!i (7.2)

where transferred is the outgoing light resulting from the glossy transfer of light at point x, and L i

is the incoming light. The glossy scattering at pointx is due to microscopic roughness at the point and

it is taken into account with the BRDF fbd, which weights the incoming light at each of the incoming

directions in the solid angle !.

We split the transfer of light at any pointx into two distinct parts: the light visible from the point

in the incoming glossy solid angle—the what is visible from the point—and the material properties

governing the scattering of light into the direction of the viewer—the how light is transferred by the

point. The what is visible from the point is represented by the incoming radiance L i in the transferred

light Equation (7.2). The how light is transferred is represented by the BRDF fbd at point x in

Equation (7.2).

This splitting of a light transfer into two distinct parts indicates a general method for computing

light transfers as a two-step approach. Both the object-space and the image-space methods that we

present in the next sections exploit this splitting of glossy transfers into distinct visibility and material

steps.
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7.2 Convolution Approach to Glossy Transfers

Glossy transfers are the ones that most benefit from a convolution-based approach to the light transport

problem. From Section 4.1, we know that we can write the light transport equation in terms of

convolution:

Lo(x; ~!o) = Le(x; ~!o) + F (x; ~!i) ? Ks(x; ~!io; ~!i) (7.3)

where F (x; ~!i) represents the incoming radiance to point x in direction ~!i and Ks(x; ~!io; ~!i) is the

convolution kernel, which represents a re-parameterization of the specular (glossy) BRDF properties

at point x. That is, the transferred term in the light transport equation can be seen as the response of a

system with input signalF and impulse responseKs. Note also howF andKs relate directly to the two

parts of a light transfer defined in the previous section. The input signal F represents what is visible

from point x, and the convolution kernel Ks represents how the system responds to an impulse input

signal.

Expressing the radiance equation in terms of spatially varying convolution in hemispherical

space is an interesting mathematical tool, but it does not yield a performance speed up per se for

computing the radiance leaving the surfaces of a scene. Current hardware implements convolution

in image-space, and we need another step to let us perform radiance convolution in that space and to

benefit from the hardware.

The next sections describe an object-space convolutionapproach [Stuerzlinger97] and an image-

space convolution approach [Bastos99] for approximating Equation (7.3) at interactive rates.

7.3 Object-space Convolution Approach to Light Transport

Our object-space approach for approximating the light transport equation is split into two phases. The

first phase—particle-tracing—computes the distributionof light in a scene by tracing particles through

the environment with a stochastic shooting approach. Each light source in the scene emits a number of

light particles, which are each traced through the scene until being absorbed or leaving the scene. Each

hit of a particle with surfaces of the scene is recorded for use in the next phase. The second phase—

runtime rendering—reconstructs images using the hit records computed in the first phase with a feed-

forward convolution approach. The contribution of each particle hit is scaled view-dependently by the

BRDF of the surface and it is spread over a small neighborhood around the hit point. The superposition
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of all the contributions reconstructs the view-dependent light distribution leaving the surfaces of the

scene.

7.3.1 Particle-Tracing Phase

The particle tracing phase simulates how light interacts with a scene by tracing light particles through

the environment in a stochastic shooting manner [Shirley95, Walter97b]. Each light source i in a scene

emits a number of light particles proportional to the total power � i of the light source. The direction

of each particle depends on the emission distribution function associated with its light source—diffuse

light sources emit according to a uniform distribution, whereas directional light sources emit in a range

of directions.

Each particle is traced through the scene from its origin at the light source until it is absorbed or it

leaves the scene. A random number chooses between absorption and reflection whenever a particle hits

a surface. Absorbed particles are no longer propagated, whereas reflected particles follow an outgoing

direction stochastically selected according to the BRDF of the material. All the particle hits in the

particle path are stored, along with the incoming direction of the particle at each hit, corresponding light

source, the current number of bounces of the particle, and the accumulated attenuation of the particle

until it hits the current surface. Even though the quantity needed for our computations is the particle

power �, by storing the attenuation factor ��, instead of the particle power, we enable the method to

change the number of particles emitted by a light source without affecting previously emitted particles

from the same source. The power of a particle at a hit can then be computed from the power of the light

source �i divided by the number of particles mi emitted by that source and weighted by the current

attenuation factor of the particle hit:

� =
�i

mi
��: (7.4)

This scheme allows for incremental refinement of the solution, as the number of light particles does

not need to be fixed a priori. The information stored for each particle hit includes the corresponding

surface, the position (u; v) on the surface, the incoming direction, the light source where the particle

originated, the number of bounces (transfers) of the particle so far, and the total attenuation factor due

to previous transfers.

Figure 7.3 shows a visualization of particle hits density on the surfaces of a simple scene with

one million particle hits.
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Figure 7.3: Visualization of particle hit density.

7.3.2 Runtime Rendering Phase

The directionally dependent radianceLo(x; ~!o) visible at a viewing direction ~!o from a surface pointx

is reconstructed using the particle hits stored in the first phase. The contribution of each particle � j

with incoming direction ~!ij is scaled by the BRDF of the surface at the point xj to take into account

the characteristics of the surface. To achieve a smooth reconstruction of the outgoing radiance over the

surface, the contribution of each particle is spread over a small neighborhood, weighted by a kernel

function k centered at each particle hit location xj :

Lo(x; ~!o) =
1

h2

nX
j=1

fr(xj ; ~!ij ; ~!oj)�j k(
x � xj

h
) (7.5)

where k is the kernel function (a normalized Gaussian kernel) and h is a spatial scaling factor that

defines the kernel support. The size of the kernel support is adjusted for each surface in the scene and

depends on the density of particle hits on each surface:

h = C

s
A

n
(7.6)

where A is the surface area, n is the total number of particles incident on the surface, andC is a scaling

factor. Equation (7.6) controls reconstruction sharpness based on the number of particles impinging on

a surface and on the surface area. The radiance reconstruction on a surface improves with increasing

number of particles incident upon that surface. Increasing the number of incident particles, n, increases
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the visibility information about the scene as seen by the surface and captures more accurate radiance

information. Accordingly, increasing number of incident particles decreases the kernel support h to

spread the contribution around each hit point.

Photon hit 1 Photon hit 2

N N
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Photon 2

Photon hit 1 Photon hit 2 Photon hit 1 Photon hit 2

N NEye

Photon 1

Photon 2

Photon hit 1 Photon hit 2

Surface
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Figure 7.4: Particle tracing (left) and splatting (right) for two viewing situations (top and bottom) on
a horizontal surface: the particle tracing involves only two light particles (photon 1 and photon 2).
Notice that the incoming directions and the corresponding ideally reflected directions for the particle
hits do not change with the viewer. However, the BRDF for each particle hit varies view-dependently.
In terms of splatting, each hit point is associated with a Gaussian splat (right). The magnitude of the
splat is given by the corresponding BRDF value modulating a normalized kernel. The superposition of
the splats on the right gives the view-dependently-reconstructed outgoing radiance from the surface.

A key observation is that Equation (7.5) amounts to splatting the contribution of each particle

onto its respective surface (Section 2.6.2.2). That is, the equation represents the convolution of the

incoming light with a density-based and BRDF-based convolution kernel. Each hit point on a surface

is associated with a Gaussian kernel, and the superposition of all the kernels on the surface reconstructs

the outgoing radiance for a given view pose (Figure 7.4). All quantities but the BRDF in Equation (7.5)

are constant for each surface. The BRDF is a view-dependent quantity and has to be evaluated for each

particle at each frame. The evaluated BRDF at each hit point controls the magnitude of the kernel at

that point (Figure 7.4).

Reconstruction is performed with splatting. The contribution of each particle hit is taken into

account by rendering a triangle on the plane of the corresponding surface. The triangle is constructed

to enclose the support of the kernel centered at the hit point (Figure 7.5). The color of the triangle is
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determined per frame by multiplying the power of the particle at the hit (Equation (7.4)) by the BRDF

of the material under the current viewing conditions and the corresponding incoming direction of the

particle (a table look up). The kernel texture mapped onto the triangle modulates the triangle color.

Photon hit

Kernel support

Photon hit

g h
Kernel
texture

Figure 7.5: Geometric relationships for the triangle and the kernel support for a particle hit. The
triangle normal vector is aligned with the surface normal at the hit point.

In terms of implementation, splatting is performed by rendering a textured triangle for each

particle hit (Figure 7.5) and adding the corresponding pixel values to the color buffer. The texture

is a sampled Gaussian function. The geometry of the required triangles for representing the particle

hits is precomputed. The kernel texture for splats is also precomputed. A triangle is created for each

particle hit, but a single kernel texture is used for all the splats in the scene. The texture is mapped

onto each particle-hit triangle. The reconstruction algorithm proceeds as presented in Program 7.6, for

a preprocessing step, and in Program 7.7, for a runtime step.

Compute the kernel texture

For each surface

Determine the size of the kernel splat for the surface

For each particle hit recorded for the surface

Create a triangle on the plane of the surface and size it to enclose the kernel support.

Map the kernel texture onto the triangle.

Program 7.6: Preprocessing step.

The splatting is performed using graphics hardware blending functions set up to sum rendered

pixel values to the color buffer. The kernel function is precomputed as a texture with 64 � 64

texels. Mip-mapping is used for texture minification (filtering). Figure 7.5 illustrates the geometric

relationships of the triangle, the kernel support, and the kernel texture. In the figure, h is the scaling

factor defined in Equation (7.6) and g = (1=2 +
p
2)h.
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Render the scene into the depth-buffer

For each surface

Render the surface to the stencil buffer

Set stencil at pixels where surface depth equals depth-buffer value

For each particle hit on this surface

Evaluate the BRDF based on the surface material, for the particle incoming direction,

and for the viewer outgoing direction

Set the color of the triangle to the power of the particle hit multiplied by the BRDF

of that particle hit and viewer location.

Add the splat to the color buffer (by rendering the triangle with additive blending)

Program 7.7: Runtime step.

7.3.2.1 Optimized rendering phase

Direct illumination accounts for the most prominent illumination features: highlights and shadows

[Bastos96]. Factoring out the direct illumination from the global illumination significantly reduces

the number of photons that need to be rendered. The direct illumination of a point light source

onto each surface is rendered using simulated Phong-shading [Diefenbach96] and shadow maps

[McReynolds98]. Current graphics hardware systems support only per-vertex Phong lighting for

point light sources. To overcome this limitation, each surface is subdivided into a fine regular mesh

during setup. This mesh is displayed using per-vertex graphics hardware Phong lighting and bilinear

interpolation. Small-enough area light sources can be simulated with point light sources without

introducing significant error. Direct illumination from larger area light sources can be simulated by

multiple light sources.

Shadow mapping is used to account for occlusion of the light source. The original polygons of

the scene are rendered into a depth texture from the viewpoint of the light source. This depth texture is

used during rendering to identify shadowed parts of the scene. Multiple light sources require multiple

shadow maps.

Indirect lighting is taken into account by summing contributions of particles that have been

reflected more than once. The modified algorithms are shown in Program 7.8 and 7.9.

7.3.3 Results for the Object-Space Approach

The object-space method presented in the previous sections was implemented in C++ using the

OpenGL library. Results were obtained on an SGI Onyx workstation using a single 250MHz
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Compute the kernel texture

For each surface

Determine the size of the kernel splat for the surface

For each particle hit recorded for the surface

Create a triangle on the plane of the surface and size it to enclose the kernel support.

Map the kernel texture onto the triangle.

Create a shadow map for each light source.

Create a fine triangular mesh for each surface by regular subdivision.

Program 7.8: Preprocessing step.

Render the scene into the depth-buffer.

For each light source

Activate the corresponding shadow map.

Add the direct illumination to the color buffer by rendering all surfaces

as triangular meshes with Phong lighting and shadow maps.

For each surface

Render the surface to the stencil buffer

Set stencil at pixels where surface depth equals depth-buffer value

For each particle hitting this surface that has already been reflected by another surface

Evaluate the BRDF based on the surface material, on the particle incoming direction, and

on the viewer outgoing direction

Set the color of the triangle to the power of the particle hit multiplied by the BRDF

of that particle hit and viewer location.

Add the splat to the color buffer (by rendering the triangle with additive blending)

Program 7.9: Runtime step.
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R4400 processor and an InfiniteReality graphics pipe with two raster managers and 12 bits per color

component in the color buffer.

Figure 7.10: Image sequence showing how the glossy reflection on the large box changes with viewing
angle. The red wall behind the viewer changes the color of the reflection on the glossy box.

Figure 7.10 shows results of the method for a simple scene with a glossy box (the taller box).

Particle tracing in this scene generated approximately one million particle hits (Figure 7.3) which are

rendered at an average of 0.25 frames per second on the machine described above and at 1.2 frames

per second with the optimized rendering of Section 7.3.2.1 on the same machine. The same scene runs

at 5 fps on a more recent workstation (SGI Onyx2 using a single 300MHz R12000 processor and an

InfiniteReality2 graphics pipe with four raster managers).

The main factor determining performance of the method is the time to draw the textured

triangles, i.e., rendering the primitives and computing the feed-forward convolution. Since smooth

reconstruction requires extensive overlap among the splats, the total rendering time is dominated by

the time to fill the projected triangles on the screen. Each pixel on a neighborhood around the projected

hit point on the screen receives contributions (sums to the color buffer) from several splats (textured

triangles) that overlap at that neighborhood.

7.3.4 Discussion of the Object-Space Approach

The object-space approach presented so far approximates the light transport equation in image-space by

accumulating contributions of projected kernels defined in object-space. Each particle hit is associated

with a kernel-textured triangle coplanar to the corresponding surface in object-space. The accumulated

projection of the textured triangles reconstructs the outgoing radiance of scattered transfers on

glossy surfaces. The reconstruction process involves handling (rendering and accumulating) a scene

with a very large number of kernel-textured triangles corresponding to particle hits. The approach
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involves a convolution of the outgoing radiance from each particle hit, which requires rendering many

kernel-textured triangles with extensive overlap, besides rendering the original geometry of the scene.

The significant overlap of triangles in a neighborhood produces a similar effect to increasing depth

complexity of the scene (Section 7.3.2.1). Several triangles are rendered to each pixel to produce a

single pixel value. Even though depth complexity can be reduced with occlusion culling methods

[Zhang97] when rendering opaque geometry, the pixel complexity produced by convolution cannot

be avoided. All the kernel contributions mapping to a pixel need to be taken into account to compute

the final convolution value at that pixel. Even with ideal culling algorithms for opaque geometry,

the convolution approach has to sum all the radiance kernel contributions mapping to each pixel. If

occlusion culling is not available, then even occluded kernel-textured triangles need to be rasterized,

but only the triangles belonging to visible geometry need to have their values summed to the color

buffer.

The object-space convolution approach has a visibility assumption. It assumes that no visibility

events happen on the neighborhood (kernel support) around each particle hit point. That is, it assumes

that the scene point where a light particle originates is visible for any point across the particle hit

neighborhood. This assumption is violated at shadow regions when the kernel support should be

chopped at the shadow boundary to avoid light leaking across the boundary between the lighted region

and the shadow region. A shadow here means occlusion between the point where a particle originates

and the particle hit point, but the particle origin is not necessarily a primary light source. The perceptual

result of not handling shadow discontinuities is blurrier shadow boundaries. Since glossy surfaces

produce blurry reflections anyway, this effect is not noticeable.

The object-space approach uses the convolution kernel partially as a view-independent

reconstruction entity and partially as a view-dependent reconstruction entity. To provide smooth

reconstruction of the outgoing radiance, the approach estimates the kernel support for each particle

hit based on particle hit density on the corresponding surface—in a view-independent manner. To

provide view-dependent outgoing radiance, BRDF information is used to scale the magnitude of each

kernel-textured triangle. Note that convolution kernels in the object-space approach depend on the

BRDF information only for the magnitude of the kernels. The kernel support and the kernel function

do not depend on material properties.

The object-space method has a computational cost that is linear in the number of particle hit

points in the scene.

142



7.4 An Image-Space Convolution Approach to Light Transport

A simpler and more efficient alternative to the object-space approach is to use image-space convolution

to approximate the light transport equation. The image-space approach, like the object-space approach,

decouples visibility information from material properties information in light transfers, but it follows

one of two alternative two-step techniques for producing glossy reflections. First, visibility information

is computed with a mirror reflection of the scene on the glossy surface. Then, the material properties

of the glossy surface are taken into account by processing the mirror-reflected image to approximate

how the material scatters and transfers light in the direction of the viewer.

The image-space approach has a visibility assumption similar to that of the object-space

approach. Visibility events in the pixel neighborhood around each pixel of a glossy surface are

disregarded by assuming that the mirror-reflected image on the glossy surface neighborhood captures

the same visibility information as the reflected solid angle at the pixel in question. Unlike the

object-space approach, the image-space approach allows using the convolution kernel as a complete

material properties entity, instead of a purely smoothing entity. Moreover, the image-space approach

can achieve better computational time by performing convolution for at most the number of pixels on

the image, rather than for the multiple superimposed particle-hit splats of the object-space approach.

The next sections detail the visibility step and the material properties step of our image-space

approaches. The visibility step discusses how visibility inside the reflected solid angle at each pixel

of a glossy surface can be approximated with a pixel neighborhood around the pixel in question on

the mirror-reflected image of the glossy surface. The material properties step uses the above visibility

approximation to weight and integrate incoming light over reflected solid angles at each pixel of

the glossy surface. The view-dependent weighting and integration is performed with image-space

convolution with two different techniques. The first technique splits the desired view-dependent

convolution process into two steps: a view-dependent directional modulation based on the magnitude

variation of the glossy BRDF and a spatially invariant (view-independent) convolution in screen

space. The second technique uses spatially variant (view-dependent) convolution in screen space. The

spatially variant convolution determines the convolution kernel for each pixel of a glossy surface based

on the depth of the mirror-reflected point and the BRDF at that same pixel.
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7.4.1 Visibility Step: Coherence in Mirror-Reflected Images

Light transfers can be split into two independent parts (Section 7.1): a visibility part and a material

properties part. The two parts are defined in the same domain, i.e., in the directional space around the

point where the light transfer takes place. In theory, the domain is the entire hemisphere above the point

in question—a table of hemispherical BRDF data is needed for representing the material properties at

the point and a hemispherical image is needed for capturing the hemispherical visibility at the same

point on a reflective surface. In practice, for a glossy transfer, both parts have to be considered only

over a finite solid angle bound by the glossy BRDF lobe at the point in question. A window of the

hemispherical BRDF data is enough and an image through the corresponding reflected solid angle at

each pixel is enough. The visibility step in this section discusses how we can approximate visibility for

reflected finite solid angles by assuming pixel-to-pixel visibility coherence in mirror-reflected images.

The visibility step of our two-step approach starts by computing the mirror-reflected image of

the scene on each given glossy surface. We restrict our analysis to planar glossy surfaces and we

use the techniques from Chapter 6 for computing mirror-reflected images on planar surfaces. Note

that ray tracing could also be used for computing the mirror-reflected images, since our two-step

approximation depends only on the final rendered mirror image and not on the particular technique

used for computing the reflection. Both color and depth information at each pixel of the mirror-reflected

image are necessary for approximating reflected solid angle visibility for glossy reflections.

Our visibility assumption says that a mirror-reflected image captures most of the visibility

information needed for computing glossy reflections. Figure 7.11 illustrates how visibility for a glossy

reflection solid angle at a point on a horizontal surface can be approximated with mirror reflection on

a neighborhood around that point. The visible region for solid angle ! with apex at point x can be

approximated by the visibility of mirror-reflected rays for neighboring points around x. The scene

point visible for the top ray of the solid angle in the figure is captured by the mirror-reflected ray at

point xl on the surface. Similarly, the visibility of the bottom ray of the solid angle is captured by

the mirror-reflected ray at xr . In general, the visibility for any ray inside the solid angle is captured

by the mirror-reflected ray at a point in the neighborhood between xl and xr . This suggests that a

mirror-reflected image captures enough visibility information for approximating solid angle visibility

at each point of a glossy surface.

In terms of implementation, let’s consider what happens in the depth and color buffers when

approximating visibility for glossy solid angles at pixels of a glossy surface. A glossy planar surface
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Figure 7.11: Exploiting coherence in a mirror-reflected image for approximating solid angle visibility
at a pixel x. The visibility for the solid angle centered at x is approximated by the visibility for the
reflected rays at the neighborhood around point x and between xl and xr . The solid angle top ray
visibility is captured by the reflected ray at xl, while the visibility for the bottom ray of the solid angle
is captured by the reflected ray at xr.

visible for a given view pose covers a region of the color and depth buffers. Using the techniques

discussed in Chapter 6, the corresponding region in the depth and the color buffers contains the depth

(distance from the reflection point on the surface to the reflected point in the scene) and the color of the

mirror-reflected scene point at each pixel.

Note that coherence on the mirror-reflected image on a surface produces only an approximation

of visibility for non-zero reflection solid angles (glossy reflections). Since the visibility from the point

in question and the visibility from another point in the neighborhood capture different viewpoints of the

scene, visibility events (occlusions and disocclusions) can happen from one point to another. That is,

the visibility of the mirror-reflected scene on the neighborhood around a point on a surface can produce

results that differ from the desired non-zero solid angle visibility for the same point. Our techniques for

glossy surfaces calculate as if this does not happen. Precisely when reflections are glossy (somewhat

blurred) rather than ideally specular, the artifacts arising from violations of this assumption are rarely

noticeable.

7.4.2 Material Properties Step: Image-Space Convolution for Integration Over Solid-

Angles

The second step of our two-step approach to light transfers deals with how light over an incoming glossy

solid angle is weighted and integrated (convolved) with the material BRDF to produce light into a single
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outgoing (viewing) direction. Theoretically, this convolution takes place in the hemispherical space

above a point (differential area) on a glossy surface (Chapter 4 and Section 7.2). Our technique works

in image-space by approximating weighted solid angle integration using image-space convolution.

Image-space convolution performs a gathering of contributions around each pixel on the

mirror-reflected image, which approximates the solid angle integration required for evaluating the light

transport equation at each pixel. The gathering neighborhood is defined by the convolution kernel

support, which derives from the same pixel neighborhood used for approximating solid angle visibility.

The convolution kernel is a texture in the same space as the reflected image—a sampled version of the

kernel function, which represents the weighting value for each incoming and outgoing directions pair.

In terms of the convolution operation, the kernel can be seen as a sliding window that is shifted across

the input domain (image). To evaluate the convolutionat a pixelx, the kernel is centered at that location

in the image and the sum of the pixel-wise products of the two images (reflected image and convolution

kernel) is taken. The next two sections discuss our alternative material properties steps that use spatially

invariant and spatially variant convolution

As was the case in the previous section, the convolution of mirror-reflected images to

approximate reflected solid angle integration implies a visibility assumption. Each scene point

ideally-reflected by a glossy surface is assumed to be visible for all the points on the neighborhood

defined by the kernel support around the point in question. This visibility approximation is similar to

the one described for the object-space approach.

7.4.2.1 Material properties step using spatially invariant convolution and directional modula-

tion

The convolution in the light transport equation is spatially variant in hemispherical space. The BRDF

kernel changes not only its magnitude but also it shape in directional space. Moreover, in image space,

convolution is also spatially variant due to perspective shortening on the mirror-reflected images used

to capture visibility information. In this section we disregard the second part of the spatially variant

character of the problem and discuss an approach that performs a view-dependent (spatially variant)

modulation of the mirror-reflected image and then performs a spatially invariant (view-independent)

convolution of the resulting image. The motivation for this approach is the possibility of exploiting

operators available in the current graphics hardware—view-dependent texture mapping and spatially

invariant image-space convolution.
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The view-dependent modulation step is performed according to Section 6.7.1 using sphere

mapping. The directional modulation step then needs to model only the magnitude changes of the

BRDF lobe in directional space, not the shape change. The spatially invariant convolution models the

glossy integration around the small neighborhood at each pixel of the mirror-reflected and modulated

image. The convolution kernel is an image representing the shape of the invariant kernel.

Program 7.12 presents pseudo-code for feed-forward spatially invariant convolution in image-

space—an input image produces an output image with the same resolution convolved with a kernel

image. In Program 7.12, the convolution kernel is spatially invariant over viewing directions (pixels).

zero all pixels in the output image

for each pixel q in the input image

center kernel in the output image at the same location q

for each pixel p in the output image covered by the kernel

output value at p += input value at q * kernel value at p

Program 7.12: Feed-forward image convolution using spatially invariant kernel.

7.4.2.2 Material properties step using spatially variant convolution

Program 7.12 in the previous section assumed a spatially invariant kernel, i.e., that the base shape and

weighting values of the kernel do not change from pixel to pixel. However, the convolution kernel

used for approximating a glossy reflected image may have to change across a glossy surface due to the

view dependence of both the magnitude and the shape of the BRDF. Spatially invariant convolution

of a mirror-reflected image performs neighborhood gathering of pixel information based on a constant

(invariant) kernel support across the reflected image. The kernel support, shape, and weighting function

depend on the material properties of the reflective surface—the kernel represents the material BRDF.

However, in our image-space approximation, the kernel also depends on another variable—the distance

from each reflection point on the glossy surface to the reflected point on the scene.

Let’s consider the evaluation of light transport at two points on the glossy floor of a simple scene

(Figures 7.13 and 7.14). First, consider the mirror-reflected direction for the point x on the floor. The

reflected ray in Figure 7.13 hits the far brick wall, whereas the reflected ray in Figure 7.14 hits a closer

point. Clearly, the distanced from the floor point (reflection point) to the point hit on the scene (reflected

point) is different for the two situations. Now consider the solid angle visibility approximation at
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Figure 7.13: Estimating the neighborhood size (kernel support) for pointx on the glossy surface for a
far reflected point on the brick wall.
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Figure 7.14: Estimating the neighborhood size (kernel support) for pointx on the glossy surface for a
nearer reflected point.
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point x for both situations. Since the point x is exactly at the same for both situations, the BRDF

lobe has the same shape for the two situations and the subtended solid angle is also the same for both

situations. However, the neighborhoods on the reflected image (on the floor) that capture visibility

around the floor point have different sizes. Under our visibility approximation, the neighborhood

size 2d depends on the distance zr from the reflection point on the floor to the reflected point in the scene

(Figure 7.14). We estimate the kernel support for each pixel on a reflected image with the following

formula for the kernel diameter in image space:

kr = 2d = 2(2zr tan�) (7.7)

where d is the diameter of an imaginary disk defined by the intersection of the solid angle and a plane

orthogonal to the principal direction ~! io at the reflected point, zr is the distance from the reflection point

to the reflected point (the depth value in the reflected image), and � is the half angle around the principal

direction ~!io defining the solid angle. Clearly, for the two situations in Figures 7.13 and 7.14, tan� is

constant but zr has different values, which implies distinct kernel supports for the two situations.

Note that the desired behavior is captured by the kernel support of Equation (7.7). The support

increases for increasing solid angles—the bigger the BRDF lobe, the wider the visibility neighborhood

to be considered and the larger the kernel support. The kernel support is also directly proportional to

the distance from the reflection point to the reflected point—the further the reflected scene from the

glossy surface, the blurrier the glossy reflected image. The kernel support also vanishes when the solid

angle is infinitesimal or when the distance from the reflected point to the reflection point vanishes—the

reflection degenerates to a mirror-like reflection.

Getting convolution kernels from BRDFs

The spatially varying image-space convolution requires two parameters for the kernel at each

pixel: the kernel support and the kernel texture. These parameters are determined using depth

information and BRDF information at each pixel. The kernel support defines the size of the pixel

neighborhood to consider for the solid angle visibility approximation. At each pixel, the kernel support

is a function of the solid angle subtending the BRDF lobe, and the distance of the reflected point with

respect to the reflection point (Equation (7.7)). The BRDF lobe at each pixel defines the angle � in

Equation (7.7)—at runtime, this is a look-up into a table of tan� indexed by the cos � at the pixel. The

kernel texture represents the magnitude of the BRDF for each direction in the incoming solid angle

and for the single outgoing viewing direction. Imagine a kernel texture as a curved patch on a sphere
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centered at the glossy transfer point (Figure 7.15). The patch covers the solid angle on the sphere for

N

Kernel texture

x

ϖ

Figure 7.15: A kernel texture (left) seen as a patch on a hemisphere (right) covering the region for
which a BRDF at point x (in the center of the hemisphere) has non-zero values. For a given outgoing
direction, each texel samples the BRDF at a direction in the incoming non-zero solid angle.

which the BRDF at the point and the outgoing direction in question has non-zero values. Each texel

samples the BRDF in the corresponding incoming direction on the sphere. A library of kernel textures

is created for each directionally dependent BRDF function. At runtime, the kernel texture is selected

from the library of kernels based on the outgoing direction with respect to the surface normal (cos �)

at each pixel.

7.4.3 A Feed-Forward Implementation

The image-space convolution described in the previous section requires a spatially variant kernel

in image space, which currently is not available in graphics hardware. For proof of concept, we

have implemented a software version of spatially variant feed-forward convolution (splatting), as

presented in Program 7.17. We hope that in the future graphics hardware will implement spatially

variant convolution, which will make our convolution-basedtechnique approach real time for rendering

globally illuminated scenes with arbitrary BRDFs.

Our technique takes a mirror-reflected image and a material library as inputs and produces an

approximation of the glossy reflected image on the corresponding surface with the given material. The

input image is the region in image-space covered by the projection of the glossy surface. The material

library is a set of kernel textures and a table of directional kernel supports sampled as described in the

previous section. Figure 7.16 illustrates the spatially variant splatting, and Program 7.17 describes the

algorithm for our image operation. In terms of an OpenGL implementation, the technique assumes that

a mirror-reflected image has been computed for the glossy surface and the corresponding pixel color
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Figure 7.16: Spatially variant splatting: three splats are shown. Notice the different support (width)
and magnitude (height) of each splat.

and depth values are in the color and depth buffers. The technique then proceeds by reading into main

memory the color buffer and the depth buffer regions containing the mirror-reflected image to generate

a new image of the same resolution, which approximates the evaluation of the transferred term in light

transport equation at each pixel. The convolution kernel is estimated for each pixel in the input image

based on the depth of the reflected point, the BRDF information, and the surface normal at each pixel.

zero all pixels in the output image

for each pixel q in the input image

look up the BRDF lobe size based on outgoing direction and surface normal at pixel q

estimate kernel support based on BRDF lobe size and depth of reflected point at pixel q

select kernel texture based on outgoing direction and surface normal at pixel q

center kernel in the output image at the same location q

for each pixel p in the output image covered by the kernel

output value at p += input value at q * kernel value at p

Program 7.17: Image-space spatially varying splatting for approximating the light transport
equation at pixels of a glossy surface.

A hardware implementation of our technique could be similar to SGI’s implementation of

image-space spatially invariant convolution [McReynolds98]. The operation would be performed

in a feed-forward manner by transferring an image from a region in memory into another region in

memory (for example, from the frame buffer into main memory or into texture memory). The initial

or source image would be the unconvolved image and the resulting or destination image would be the

convolved image. The convolution would be done by splatting the RGB value of each original pixel

into the neighborhood around that same pixel in the destination image, according to a convolution
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kernel. That is, the RGB value of each original pixel would modulate a kernel texture and the weighted

result would be summed to the destination image. In the spatially invariant implementation, the

convolution kernel is the same across the whole image, whereas for spatially variant convolution

the kernel would be allowed to change for each pixel in the image. For our technique, a library of

mip-mapped kernels would be pre-loaded into texture memory and a different kernel would be selected

for each original pixel. The per-pixel selection would be based on the per-pixel quantities needed by

the desired type of convolution. For example, for directionally invariant but spatially variant kernels,

which represent some types of BRDFs in glossy reflections, the selection process would reduce to

evaluating Equation 7.7 for each pixel. Note that in the directionally invariant case, tan� is a constant,

and evaluating Equation 7.7 requires multiplying the depth value at each pixel (from the depth buffer)

by a constant.

7.4.4 Results for the Image-Space Approach

The results presented in this section were obtained on an SGI Onyx2 workstation using a single

300MHz R12000 processor and an InfiniteReality2 graphics pipe with four raster managers.

Figure 7.18 shows a comparison of spatially invariant (left) and spatially variant (right)

image-space convolution for approximating a glossy reflection on a planar surface. Notice the

distance-based variable blur obtained with spatially variant convolution (right); this is not produced

with the spatially invariant convolution (left). For example, points of the teapot are very close to the

glossy surface and do not get blurred much with spatially varying convolution, whereas points along

an edge of the checkerboard pattern on the wall get progressively blurrier with increasing distance to

the glossy surface. This variable blur provides an important depth cue about the three-dimensionality

of the scene with respect to the glossy surface as it is expected in real glossy reflections. The spatially

invariant image-space convolution (left) benefits from a hardware implementation from SGITM and

renders in times on the order of tens of milliseconds (tens of frames per second). The spatially

variant image-space convolution was implemented in software and renders in times on the order of

minutes. A more careful software implementation of spatially variant convolution could provide

better performance, but certainly the greatest performance improvement will come from a hardware

implementation of spatially variant convolution.
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Figure 7.18: Spatially invariant convolution (left) and spatially variant convolution (right) to
approximate glossy reflection on planar surface.

7.5 Discussion

Traditionally in computer graphics, scattered light transfers are grossly approximated with lighting

models that compute the illumination at a point by taking into account light reaching the point only

directly from light sources. In nature, however, we can easily observe that a glossy reflection involves

not only direct light from the sources, but also indirect light from the entire environment visible to the

reflective surface. Reflection models are necessary, instead of direct lighting models.

Efforts have been made to approximate glossy reflections by the superposition of manipulated

lighting models [Walter97a]. Colored point light sources were created around glossy objects to

approximate the incoming light from the surrounding environment onto the glossy surface. The

summation (superposition) of the lighting resulting from all those point light sources approximates the

glossy reflection of the environment. This technique is effective for low gloss surfaces when a small

number of light sources is enough to roughly approximate the incoming light from the environment onto

the glossy surface. However, how many light sources would be necessary to represent the incoming

light onto a high gloss surface? In a high gloss reflection it is possible to distinguish reflected objects

from the environment. This approach is impractical for high gloss surfaces—it would require too many

point light sources to approximate the environment around high gloss surfaces.

As an alternative, multipass rendering can approximate scattered light transfers with a stochastic

approach [Diefenbach96]. The entire scene is rendered multiple times for jittered reflected viewpoints

with respect to the glossy surface. The weighted average (superposition)of all the images approximates

the glossy reflection of the environment on the glossy surface. This approach is effective when just a

few jittered re-renderings of the scene are enough, i.e., for high gloss surfaces. However, how many

153



jittered re-renderings would be necessary for approximating a low gloss reflection? In a low glossy

reflection reflected objects get very blurred and hard to distinguish. This approach is impractical for low

gloss surfaces—it would require too many scene re-renderings of the entire scene for approximating

such type of glossy reflections.

Note that the two approaches described above are implicitly computing a convolution

(superposition). The incoming light onto the glossy surface is the input signal, the material properties of

the glossy surface define the convolution kernel, and the outgoing glossy reflection is the output signal.

This chapter exploited explicit convolution approaches for approximating glossy reflections. Both

object-space and image-space convolution approaches were presented. The image-space approach

processes smaller amounts of data (number of pixels on the screen) than the object-space approach

(complexity of the scene). In fact, the object-space approach depends not only on the complexity of

the scene, but also on the number of light particles colliding with surfaces of the scene (a much larger

number than scene complexity). Both approaches were discussed in terms of flat surfaces, but they

extend to arbitrary geometrical primitives under the visibility assumption discussed in the chapter. The

visibility assumption disregards visibility events (occlusion and disocclusions) in small neighborhoods

around points where light transfers take place. Violations of the visibility assumption may create

blurred regions where sharper edges would be expected.

The spatially variant image-space convolution presented in this chapter operates in image-space

and seems simple enough for a graphics hardware implementation. In contrast to other approaches for

computing glossy reflections, the presented convolution approach does not require handling excessive

information about the scene at each pixel of the final image. Global information of the scene at each

pixel of a glossy surface is extracted from a small neighborhood around a mirror-reflected image

computed for the surface in question. Data locality in image-space is good for gathering the global

information about the scene necessary for computing scattered light transfers.

The same spatially variant convolution algorithm discussed in this chapter for rendering glossy

reflections can be used for rendering other effects such as translucency, soft-shadows, motion blur,

depth-of-focus, and anti-aliasing. For the algorithm to be applicable, the desired effect must be

expressed as the weighted average of global information in small neighborhoods in image space. The

difference in how the convolution algorithm is used by the different effects is in the convolution kernel

that needs to be used for each of the effects.
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An important point about the object-space approach is that it solves the entire light transport

problem at once, without handling independent components of light transport separately. This does not

fit well with our multipass superpositionrendering where we want to use different approaches to render

the independent components, benefiting from the particular strengths of each approach. A possibility

for using the object-space approach to render only glossy reflections in conjunction with a multipass

technique would require isolating and rendering only the particle hits landing on glossy surfaces, after

completion of the particle-tracing phase.

The object-space approach used the kernel mostly as a smoothing entity—taking into account

the density of samples, whereas the image-space approach interpreted the convolution kernel as the

entity describing the material properties.

Since the weighted contributions in the convolution approach can get very small, precision is

an important issue. We have observed that eight bits per color component is usually not enough for

evaluating convolution. Twelve bits per color component, in general, produced satisfactory results,

but a full floating point word per color component for each pixel would certainly avoid generation and

propagation of error when computing the convolution.
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CHAPTER 8

FUTURE WORK

This dissertation opens interesting research directions for future work, which will be briefly sketched

here in approximately the order the parent topics arise in the dissertation.

8.1 Mirror-Reflected Images

8.1.1 Reflected Images on Curved Surfaces

The mirror reflection approach used in this dissertation is limited to planar surfaces, but the extension

to curved surfaces is possible. The planar surface reflection approach could be applied to each of the

small planar facets of a tesselated curved surface. To produce a non-faceted reflection, an additional

warping of the reflected points would be necessary for approximating the curvature of the faceted

curved patches.

Although the method described above would be able to approximate geometrically correct

reflections for curved surfaces, the use of reflection mapping (environment mapping) is more attractive

due to its simplicity of implementation and low computational cost [Greene86]. Among other

limitations, environment mapping assumes that the reflected environment is infinitely far way from the

reflective surface, and it is not able to capture geometrically correct reflections [Bastos98]. However,

reflections on curved surfaces are so visually complicated that it is hard to judge whether a reflection

is geometrically correct or not.

8.1.2 Recursive Reflections

This dissertation limited its treatment to a single specular reflection along a path of light. This limitation

is reasonable for glossy surfaces, since the brightness of the reflected environment is greatly reduced



and blurred at each glossy reflection and higher-order reflections are hardly noticeable. However, for

more polished surfaces, the higher-order reflections may be necessary.

The rendering of higher-order reflections could be implemented with a recursion of the

reflections technique presented. For a given view pose, the recursive reflections tree should be traversed

and then reflected images rendered for each node of the tree in a bottom-up manner. For example,

consider a scene with two glossy surfaces and a view pose that sees one of the glossy objects reflected

on the other glossy object. The rendering process would first detect that there is a glossy object directly

visible from the viewer. Then, from the corresponding reflected viewpoint on the object visible from

the viewer, the rendering would detect the second glossy object. The recursion process would then stop,

assuming no higher-order glossy reflections are wanted. Then, while popping up from the recursion,

reflected images of the environment would be rendered at each node of the recursion, i.e., for each

glossy object. In the final image, this would result on a second-order reflection composed on the first

visible glossy object and a first-order reflection on the second glossy object.

8.2 Convolution-Based Approach

8.2.1 Convolution-Based Approach to Other Integral Equations

The convolution approach to the integral equation of light transport would certainly be applicable to

other integral equations. Several physics problems are represented with integral equations, and their

simulation usually involves solution techniques similar to the standard ones applied to light transport.

The possibility of rewriting integral equations in terms of convolution and benefiting from convolution

hardware to compute solutions of integral equations would probably accelerate the study of other

interesting physics problems.

Although one normally thinks of the convolution hardware in current systems as image-

processing hardware, we can alternatively understand that particular part of the hardware as a tool

for solving numerical problems involving integration on small neighborhoods in two-dimensional

spaces. The numerical problem has to be cast as the integration of the product of two functions in

two-dimensional space. Then, one of the functions is selected the convolution kernel and the other

function as the input signal, based on the nature of the problem. The kernel should be pre-computable

and pre-loaded in memory, whereas the input signal should depend on each particular instantiation of

the problem.
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In addition to the convolution capabilities of the graphics hardware, the hardware-aided solution

of numerical problems can also benefit from table look up operators (texture mapping) and from the

linear operators addition and multiplication available in current graphics systems.

8.2.2 Full Digital Signal Processing Approach

This dissertation exploited only a few properties of signal processing applied to the light transport

problem. Using the extensive knowledge from digital signal processing in the light transport problem

would certainly present even more powerful alternative solutions. For example, a frequency analysis

of the BRDF kernels in our light transport problem could be used to determine appropriate sampling

rates for glossy materials with different reflectance properties.

8.2.3 Spatially Variant Convolution

8.2.3.1 Other Applications for the Spatially Variant Convolution

The spatially variant convolution approach to glossy reflections described in Chapter 7 can be used for

other photorealistic effects, such as depth-of-field, motion blur, soft shadows, and translucency. For

the spatially variant convolution algorithm to be applicable, the desired effect must be expressed as the

weighted average of global information in small neighborhoods in image space. The difference in how

the convolution approach is used by the different effects is in the convolution kernel required for each

of the effects. For each pixel of an image to be produced with a given effect, a convolution kernel has

to be selected according to the type of effect.

In glossy reflections, the convolution kernel shape in image space depends on the BRDF of

the glossy material, whereas the kernel support at each pixel depends on the distance from the visible

reflection point at a pixel to the corresponding reflected point in the scene. For depth-of-field, the kernel

shape represents the impulse response of the camera lens, whereas the kernel support at each pixel is

proportional to the distance from the visible point in a scene at each pixel to the in-focus plane of the

lens. For motion blur, the kernel shape is related to the velocity vector of the visible point at each

pixel with respect to the viewer, whereas the kernel support is proportional to the distance from the

viewer to the visible point in the scene at each pixel. For soft shadows, the kernel shape represents the

shape of the light source, whereas the kernel support depends on the distance from the light occluder

to the visible point on the receiving surface at each pixel. For translucency, the kernel shape represents

the impulse response function of the translucent material, whereas the kernel support depends on the
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distance from the visible point on the translucent object at each pixel to the corresponding visible point

in the environment seen through the translucent object.

8.2.3.2 Hardware Implementation of Spatially Variant Convolution

The software technique for spatially variant convolution presented in Chapter 7 is too slow for

application in interactive rendering systems. However, the technique seems simple enough to justify

considering a hardware implementation in current graphics architectures.

A possible implementation of the spatially variant convolution could be similar to SGI’s

implementation of image-space spatially invariant convolution [McReynolds98]. The operation would

be performed in a feed-forward manner by transferring an image from a region in memory to another

region in memory (for example, from frame buffer into main memory or texture memory). The initial

or source image would be the unconvolved image and the resulting or destination image would be the

convolved image. The convolution would be done by splatting the RGB values of each source pixel

into the neighborhood around that same pixel in the destination image, according to the convolution

kernel selected for the source pixel. That is, the RGB value of each source pixel would modulate a

kernel texture and the weighted result would be summed to the destination image. In the spatially

invariant implementation, the convolution kernel is the same across the entire image, whereas for

spatially variant convolution the kernel would be allowed to change for each pixel in the image. For

our technique, a library of mip-mapped kernels could be pre-loaded into texture memory and a different

kernel would be selected for each source pixel. The per-pixel selection would be based on the per-pixel

quantities needed by the desired type of convolution, as discussed in the previous section.

The availability of spatially variant convolutionin hardware would certainly increase the realism

of view-dependent effects in synthetic images that must be rendered at interactive rates.

8.3 Dynamic Environments

In Chapter 1, we limited this dissertation to the interactive rendering of static environments.

The multipass approach presented in this dissertation depended upon precomputation of certain

view-independent quantities for speeding up the rendering of static environments. In particular, the

light paths ending in ideally diffuse surfaces were handled with the radiosity method. Given the high

computational cost of solving the entire global radiosity problem of a scene, re-computation of radiosity

per frame does not seem a possible solution for reasonably complex scenes. Efficient approaches for
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updating radiosity information in dynamic environments could be a possible alternative. Approaches

for computing reduced and more local radiosity solutionsfor each view pose could also be an alternative

in dynamic environments.
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