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ABSTRACT
ERIC P. BENNETT: Computational Video Enhancement

(Under the direction of Leonard McMillan)

During a video, each scene element is often imaged many times by the sensor. I propose

that by combining information from each captured frame throughout the video it is possible

to enhance the entire video. This concept is the basis of computational video enhancement.

In this dissertation, the viability of computational video processing is explored in addition to

presenting applications where this processing method can be leveraged.

Spatio-temporal volumes are employed as a framework for efficient computational video

processing, and I extend them by introducing sheared volumes. Shearing provides spatial

frame warping for alignment between frames, allowing temporally-adjacent samples to be pro-

cessed using traditional editing and filtering approaches. An efficient filter-graph framework

is presented to support this processing along with a prototype video editing and manipulation

tool utilizing that framework.

To demonstrate the integration of samples from multiple frames, I introduce methods

for improving poorly exposed low-light videos to achieve improved results. This integration

is guided by a tone-mapping process to determine spatially-varying optimal exposures and

an adaptive spatio-temporal filter to integrate the samples. Low-light video enhancement is

also addressed in the multispectral domain by combining visible and infrared samples. This

is facilitated by the use of a novel multispectral edge-preserving filter to enhance only the

visible spectrum video.

Finally, the temporal characteristics of videos are altered by a computational video re-

sampling process. By resampling the video-rate footage, novel time-lapse sequences are found

that optimize for user-specified characteristics. Each resulting shorter video is a more faith-

ful summary of the original source than a traditional time-lapse video. Simultaneously, new

synthetic exposures are generated to alter the output video’s aliasing characteristics.
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CHAPTER 1

INTRODUCTION

The popularity of digital video camcorders has ushered in a desktop digital video revolution

for both professional and amateur users. High quality video can be captured, imported, and

processed on commodity computers at minimal cost and with unprecedented ease. Having

such video available on a computer lends itself to traditional video editing applications. Thus,

along with the availability of digital video hardware came software editing tools of varying

complexities for many different skill levels. However, these tools focused primarily on the

temporal rearrangement of short video clips as they were imaged. The problem of making the

underlying footage better, to significantly improve its visual quality and enhance its content,

presents the next challenge and opportunity for digital video.

I first consider traditional video processing approaches for enhancing the quality of video.

Simple tasks such as the global adjustment of brightness, contrast, color balance, and other

characteristics are all well understood and are the limit of functionality in most video editors.

Few local enhancements, such as noise reduction, are available and those that are offered are

typically simple linear filters considering at most näıve frame-by-frame filtering or very small

temporal neighborhoods, being an outgrowth of analog processing. However, with modern

digital hardware and random access to all pixels in all video frames simultaneously, far more

complex, adaptive, and non-linear approaches can now be taken that require the storage and

computational power that has only recently become available.

When considering the possibilities of such processing, it is worthwhile to consider simi-

lar work on still images. Specifically, the field of computational photography addresses the

enhancement of still images by considering information in a small number of similar images

taken at different times or under different camera settings. Thus, by combining these images



together with computational methods, a image superior to anything possible to capture with

a physical camera is created. For instance, visual elements that appear in only one image

may be combined with visual elements from other images taken minutes apart to create a

realistic composite image. Or, images taken at different exposures allow a combined image

with dynamic range beyond that of the sensor to be computed. Lighting may be transferred,

noise reduced, spectra fused, or many other effects not possible in-camera that leverage both

computation and the fact that many images can be taken at no additional cost.

Bringing the benefits of computational photography to traditional video processing, the

emerging field of computational video addresses combining elements between frames to gen-

erate an enhanced video output. Computational video has vast potential because so much

information is available for processing when capturing at video rates. For example, at 30

frames per second, 1,800 individual frames are captured every minute, and 108,000 frames

are captured every hour.

Along with this additional data comes new issues that uniquely arise in computational

video in comparison to computational photography. First, the output is a video sequence

as opposed to a single frame. Thus, frame-to-frame enhancement decisions must be made

consistently so they do not introduce artifacts when played back at full speed (temporal

coherence). Second, the number of input images makes identification of the most useful

information difficult. In addition, the infrastructure and underlying data structures must be

able to support the increased quantity of data.

Overcoming these issues enables many powerful new video tools. Tasks such as video

compositing and object removal can be performed in a temporally coherent manner. Videos

may be adaptively filtered and enhanced using large kernels that span space, time, and even

across multiple spectra. The linear progression of time can be altered and resampled to change

the underlying structure of the original video.

Thus, given this potential of computational video, my thesis statement is:

Computational video enables a new class of processing tools for

enhancing and improving video capture quality by leveraging

information found across many frames.

2



1.1 Contributions

My research makes the following contributions:

• I employ spatio-temporal video volumes as a domain for computational video operations

and extend them with shearing. Spatio-temporal volumes stack the frames of a video

in chronological order to create a 3D volume, as shown in Figure 1.1, thus emphasizing

relationships between adjacent spatial and temporal samples. Shearing is the process

of spatially warping the frames of the volume to align temporally-adjacent samples to

greatly assist the processing of moving objects and non-static cameras.

• I develop the Proscenium spatio-temporal video editing framework to address the mem-

ory and processing requirements of computational video and spatio-temporal volumes.

This framework encapsulates spatio-temporal volumes within a per-pixel, bi-directional,

lazily-evaluated filter graph model. This model also supports virtual shears that can be

created and removed dynamically to support editing. This framework is then used to

develop a prototype video editor that performs computational video manipulation tasks

such as object removal, temporal filtering, and multi-frame editing.

• I present a computational video approach to improving the quality of captured low-light,

LDR (Low Dynamic Range) video by virtually extending the exposure times of each

x

y

t

Figure 1.1: An illustration of a spatio-temporal volume constructed as a series of video
frames stacked on top of each other. The samples in the volume are indexed using an (x, y, t)
sampling.
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sample (pixel). This is possible with the non-linear integration of information from

large neighborhoods of temporally and spatially adjacent samples. Two interconnected

concepts make this possible. First is a spatially-varying LDR tone mapping algorithm

that finds the optimal exposure time in a well-exposed image. This is used as an ob-

jective for the integration and noise reduction ASTA (Adaptive Spatio-Temporal Accu-

mulation) filter which extends the exposure time to find the correct original luminance

had it been properly exposed. When used together, this combined method is referred

to as the Virtual Exposure Camera model.

• To improve captured video in a different context, I also address enhancing low-light video

using spectra outside of the standard visible red, green, and blue channels. Specifically,

information from registered video in the IR spectrum is used to enhance noisy RGB

footage. My approach differs from previous multispectral fusions because it enhances the

RGB footage using the IR, but without introducing elements imaged only in IR. This is

accomplished through edge-preserving decomposition and cross-spectral normalization,

assisted by a novel dual bilateral filter. This filter preserves edges detected in both

spectra but only uses samples from the visible-spectrum video.

• Having considered video manipulation and enhancement as examples of computational

video, I then consider temporal resampling of videos to alter their duration. Specifically,

the problem of time-lapse video generation from video-rate footage is considered. A

non-uniform sampling algorithm is presented that optimizes the sampling of the input

video to match the user’s desired duration and visual output characteristics. This can

be either to generate time-lapse videos that preserve motion, avoid fast motion, control

the uniformity of the output sampling, or a combination of these characteristics. By

considering the entire video as a whole, the optimal sampling can be found.

• To complement the computational video resampling, I extend ideas from computational

photography to combine the input frames together to alter the aliasing characteristics of

the video output. This virtual shutter combines many frames together using both com-

mon linear and non-linear filtering methods, such as low-pass, minimum, maximum, and
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median filtering, and more complex effects, such as compositing. Thus, new synthetic

exposures are created which are related to both the low-light ASTA exposures and the

spatio-temporal filtering performed in Proscenium.

1.2 Dissertation Overview

My approaches to computational video are presented as follows:

To begin, the field of computational video will be reviewed in Chapter 2. Because this

field is an outgrowth of image processing, video processing, and computational photography,

relevant topics from those areas are discussed as well.

In Chapter 3, the use of spatio-temporal volumes for computational video processing is

examined. This is presented along with volume shearing, the Proscenium spatio-temporal

video editing framework, and discussion of how computational video operations, in this case

video editing and enhancement, can be performed within these volumes.

In Chapter 4, a computational approach to video enhancement is discussed for improving

the quality of noisy low-light videos, showing the strengths of adaptive filtering with large

spatio-temporal kernels. Visible-spectrum-only enhancement is discussed, with the Virtual

Exposure Camera model, combining LDR tone mapping and the ASTA filter. Multi-spectral

video enhancement is then addressed with a focus on the new dual bilateral filter.

In Chapter 5, a computational video approach to video resampling and frame combination

is presented to shorten the duration of videos into time-lapse sequences. This demonstrates the

ability of computational video to dramatically alter the content of an input video. The sampler

is presented along with a variety of metrics to achieve many output sampling characteristics.

The output frames are then generated by the virtual shutter that combines all the frames in

the original video using linear and non-linear techniques.

Finally, Chapter 6 concludes my discussion of computational video and presents possible

future directions for research in the field.
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CHAPTER 2

PREVIOUS WORK

In this chapter, I provide an overview of the previous literature regarding computational video.

Computational video is an outgrowth of video processing and computational photography,

both of which are based on image processing. Thus, to consider computational video is

to consider each of these component fields. Specifically, the common thread through this

discussion is that the potential of computational video is derived from its ability to enhance

the samples in a video by combining observations from other similar frames.

I begin this literature review by considering the established methods for processing digital

video: traditional video editors and video processing frameworks. I then review recent work

in spatio-temporal volumes, which present an alternate representation of video that lends

itself to filtering and enhancement applications. Further investigation of traditional filtering

is then discussed in the context of the classic image processing area of noise reduction. The

focus then shifts to computational photography, specifically in the domains of High Dynamic

Range (HDR) imaging, multispectral fusion, and multi-image combination. Given all this

work as a basis, computational video is then considered, addressing both the summarization

and compositing of video sources.

2.1 Video Editing

The most common interface for processing or enhancing video is through a dedicated video

editing application. Therefore, I begin by discussing the goals of these applications along

with those of the low-level frameworks often used to encapsulate video processing.

The primary function of most modern digital video editing systems, such as Apple Final

Cut Pro, Adobe Premiere, and Avid Media Composer, is to cut raw footage into a series of



clips, and then assemble those clips with transitions along some timeline into a finished video.

Such editors perform cuts, cropping, editing, color-correction, and insertion of transitions be-

tween clips. Applications such as Adobe After Effects focus on making modifications primarily

on individual clips (often a few seconds long). These modifications are often more complex

and concentrate on the modification of video pixels and less on temporal arrangement. These

operations are closer to the type of actions considered by computational video.

The visual interface used for interaction in all of these applications is a timeline plus

a frame-by-frame viewer. Thus time and space dimensions are treated inherently different

from each other. This does not lend itself well to the incorporation of samples and other

elements from multiple frames that are necessary for computational video. Alternate repre-

sentations, such as 3D spatio-temporal volumes, discussed in Chapter 3, consider the entirety

of a video at once. However, there have been recent efforts in mixing standard 2D image

editing user-interface metaphors with such 3D visualizations. Ideas from Adobe Photoshop,

a popular commercial image-editing tool, are, in fact, frequently applied to both 3D and video

applications because of its ease of use, flexibility, and rich set of tools. Furthermore, systems

have been proposed to extend Photoshop’s rich image-editing environment to volumetric data

(Zwicker et al., 2002). By extension, such techniques may hold promise for processing video

in spatio-temporal volumes.

Many video processing systems are based upon filter graphs which have been utilized for

many applications in the area of image and multimedia processing (Pratt, 1997). Conceptu-

ally, the idea is that individual processing components can be ordered and arranged so that

data flows from the input of a filter graph to the output; passing through the interconnected

components that lie along that path. Each component (often called a filter) may modify data

before passing it along to the next filter. Each filter is only responsible for processing data

in a standardized manner without knowledge of what filters might be connected to it. This

allows a uniform interface with components that are interconnected in any order, as in the

Decorator design pattern (Gamma et al., 1995). These filters are often representative of the

common operations that occur throughout video editing: color correction, smoothing, scaling,

and compositing.
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For instance, Apple’s QuickTime (Apple Inc., 2007) framework and Microsoft’s Direct-

Show (Microsoft Corporation, 2007) framework implement multimedia filter graphs for video

and audio. At a higher level of abstraction, the Berkeley Continuous Media Toolkit (Mayer-

Patel and Rowe, 1997) implements a powerful filter graph in the form of a scripting protocol,

as opposed to a compiled API. Filter graphs treat video data as a stream that flows in buffers

of entire frames of pixels from the graph’s input to the graph’s output. This is ideal when an

entire frame’s output is desired, but is not ideal to calculate small sub-frame regions.

As mentioned, the frame-by-frame timeline nature of these video editors and frameworks

differs from the needs of computational video to consider many frames simultaneously for

enhancement. Thus, a different method for thinking about video, the spatio-temporal volume,

is now discussed.

2.2 Spatio-Temporal Volumes

Considering videos as three-dimensional volumes of their stacked constituent frames was first

proposed in the epipolar video processing research of Bolles et al. (1987). In this work, object

and scene motion are measured by taking a planar cut of a spatio-temporal volume containing

the video. Each cut results in a still image that contains portions of many frames, allowing

for correlations to be made in 2D between position and time to measure object velocity. An

underlying assumption of these measurements is that the camera that captured the source

video was static so that spatial positions in the video are constant through time.

These volumes and planar cuts were later realized as an interactive visualization in “Inter-

active Video Cubism” (Fels et al., 2000). These spatio-temporal cuts (originally planar and

later spherical) again provide a view into the video, but do not modify the underlying data.

More advanced applications are then explored in (Klein et al., 2001) and (Klein et al., 2002),

which both use multiple spatio-temporal cuts to create artistic video interpretations of the

source material. In an extreme case, “Making Space For Time in Time-Lapse Photography”

(Terry et al., 2004) scales the cut plane concept to visualize the total contents of multiple

days of video footage in a single image. Alternatively, Zomet et al. (2003) identified particu-

lar slices through videos with specific camera motions that correspond to camera projections
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different from the projection of the imaging device. These works demonstrate a wide range

of visualizations that motivate the possibilities of spatio-temporal processing.

The spatial-alignment of individual frames is essential to video processing within a spatio-

temporal volume. As will be further discussed in Section 3.1, this alignment guarantees that

a consistent spatial pixel location in the volume is always imaging the same scene element.

Thus, enhancement algorithms can access other samples of the same object at the same

(x, y) coordinate but at different t values (time). I call this spatial remapping of the volume

shearing. Planar cuts of a sheared volume represent non-planar cuts of the original spatio-

temporal volume. Non-planar spatio-temporal cuts have since been used as an interface to

specify multi-frame compositing operations (Wang et al., 2005).

It follows then that the parameters for shearing are derived from stabilizing a scene element

through time. Shearing can be used to stabilize each element one-at-a-time, allowing each

visual element to be edited, processed, or enhanced independently. This approach is influenced

by the video layers concepts of Wang and Adelson (1994) who developed the notion that

general planes of motion in a video should be edited independently.

To solve for a spatio-temporal volume’s underlying shear function, a variety of stabi-

lization methods exist. Buehler et al. (2001) demonstrate how foreground and background

stabilization can be used to generate novel videos with refined camera and object motions.

Their work relies on extensive offline analysis for dense feature tracking, local warping, and

iterative smoothing of the source sequence. More recently, Sand and Teller (2004) presented

a “Video Matching” method for aligning slightly different video sources. This alignment is

between videos, and is able to robustly handle cases of missing scene elements between those

videos. At a lower-level, single visual elements (trackable points) or sparse sets of points can

be tracked through a video using a feature tracker such as the Lucas-Kanade algorithm (Shi

and Tomasi, 1994). An efficient implementation of this technique is publicly available as part

of the OpenCV toolkit (Bouguet, 2000).

Spatio-temporal volumes can serve as the basis for a wide range of computational video

techniques, as further explored in Chapter 3. I next consider another class of video processing

techniques that combine information from local neighborhoods to create an improved or
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enhanced result. For example, noise filtering can be considered as a computational video

method.

2.3 Noise Filtering

A unique strength of computational video is its ability to improve or enhance every pixel

value of a video by considering the additional temporal and spatial information within a local

neighborhood of samples. Similarly, the standard concept of filtering changes the value of a

signal’s sample based upon a kernel of surrounding samples, using either linear or non-linear

methods. Such filtering is an essential part of computational video.

One particularly useful class of filters is for noise reduction. The noise apparent in images

and video sources is due to many factors, including sensor noise, low signal strength, and data

corruption (noise characteristics, measurement, and modeling are discussed in Section 4.1).

Here, an introduction to 2D spatial noise filtering is presented along with an overview of the

video filtering literature.

2.3.1 Spatial Filtering

Noise filtering methods have a long history throughout the signal processing literature. First,

I discuss noise filters for processing still images and then I consider noise reduction methods

for video in the next section as an extension of those methods.

The most basic noise filter to consider is Gaussian smoothing (and its discrete approxima-

tions), which results in a spatial low-pass filter of the image (Bovik, 2000). While Gaussian

smoothing is effective at removing random shot noise (noise characteristics are discussed in

more detail in Section 4.1), high-frequencies are also removed, thus blurring the image edges

and textures. The formula for a general n-dimensional Gaussian filter with equal support in

all dimensions (i.e., a 1D Gaussian falloff based on Euclidean proximity) is given below:

Js =

∑
p∈Ω

g(‖p− s‖, σh)Ip∑
p∈Ω

g(‖p− s‖, σh)
, (2.1)
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g(x, σ) ≡ 1
σ
√

2π
e
−x2

2σ2 . (2.2)

Gaussian smoothing is an LSI (Linear Spatially/Shift Invariant) filter, incorporating in-

formation from nearby samples in its 2D kernel Ω and weighting their importance uniformly

based on the proximity of each pixel to the filter’s center (its output pixel). It can be consid-

ered as a “domain” filter of the kernel’s samples. The weighting is center biased and falls off

as a normalized Gaussian function (Eq. 2.2), hence its name.

An alternate class of filters, called range filters, combine samples whose weights are based

instead upon photometric proximity rather than their spatial proximity. One popular range

filter, the Sigma filter (Lee, 1983), combines samples within the spatial kernel Ω that are

within 2σ of the value at the kernel’s center. The value of σ can be determined by the

standard deviation of the original image itself. Sigma filtering is very sensitive to the size of

Ω because faraway samples can make equivalent contributions to those at the center of the

kernel, potentially corrupting edges due to its non-regularizing formulation.

To overcome the edge blurring artifacts of the Gaussian filter and the potential edge

corruption artifacts of the Sigma filter, edge-preserving filters can be used from the anisotropic

diffusion and bilateral filter families. These filters attempt to filter pixels within smooth areas

while avoiding crossing over contours of significant change (i.e., edges). Anisotropic diffusion

of images (Perona and Malik, 1990) provides an iterative filtering method that adapts to the

image’s gradient, based upon heat flow equations:

It = div((c(x, y, t)∇I) = c(x, y, t)∆I +∇c · ∇I, (2.3)

c(x, y, t) = υ (||∇I(x, y, t)||) , (2.4)

υ(∇I(x, y, t)) = e(−(||∇I||/K)2) or υ(∇I(x, y, t)) =
1

1 +
(
||∇I||

K

)2 . (2.5)

The value of K determines which edges are preserved and which are smoothed, based on

their gradient magnitudes. In the discrete implementation of anisotropic diffusion given by

Perona and Malik (1990), only the four adjacent pixels are considered at each step. Thus,
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to smooth large neighborhoods many iterations of the diffusion process are required. This

results in the most significant downside to anisotropic diffusion: its slow execution speed.

Alternatively, bilateral filtering (Tomasi and Manduchi, 1998) provides a single-pass noise

removal process that shares many of the advantages of anisotropic diffusion, as discussed by

Barash et al. (2002). It is simultaneously a range and a domain filter, weighting samples

based on both spatial proximity and photometric similarity. The bilateral filter is also a

specific instance of the more general range and domain SUSAN filter of Smith and Brady

(1997). Bilateral filtering requires two parameters: σh, the Gaussian spatial falloff, and σi,

the Gaussian intensity difference falloff. The bilateral filter is formulated as:

Js =

∑
p∈Ω

g(‖p− s‖, σh)g(D(p, s), σi)Ip∑
p∈Ω

g(‖p− s‖, σh)g(D(p, s), σi)
, (2.6)

D(p, s) ≡ Ip − Is. (2.7)

The utility of bilateral filtering goes beyond applications in edge-preserving noise reduc-

tion filtering. The output of the bilateral filter contains smooth regions separated by sharp

edges, which are commonly called the large-scale features. These large-scale features can be

considered a piecewise-constant approximation of the original image. The differences between

the original image and the bilateral filter’s output are the detail features which contain the

textures, as shown in Figure 2.1. The utility of this large-scale/detail decomposition was orig-

inally discussed in terms of High Dynamic Range (HDR) processing by Durand and Dorsey

(2002), where each component was processed separately. More generally, the decomposition

and recomposition of image components is related to earlier work by Peli and Lim (1982),

who used high-pass and low-pass frequency separation of signals in a similar manner.

There have also been many extensions to the bilateral filter. Boomgaard and Weijer (2002)

posed the question of how to improve the robustness of the bilateral filter’s noise-handling

by considering alternate dissimilarity values (Eq. 2.7) that measure photometric differences.

The trilateral filter (Choudhury and Tumblin, 2003) takes a different approach to improving

the bilateral filter model by biasing its kernel away from edges and dynamically choosing the

kernel’s size in an attempt to model signals as piecewise-linear rather than piecewise-constant
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Figure 2.1: Images comparing high/low frequency decomposition from Gaussian filtering with
large-scale/detail feature separation with the edge-preserving bilateral filter. In the Gaussian
decomposition, the sharp edges are captured in the high-frequencies, whereas in the bilateral
decomposition they are part of the large-scale features, keeping only the subtle textures in
the detail features.
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functions in the limit. Although the quality of filtering is improved, performance is decreased.

If speed is required, a fast bilateral implementation (O(log r), where r is the kernel radius) is

presented by Weiss (2006) that assumes no spatial falloff (i.e., σh = ∞).

To specifically address the reduction of severe shot noise and salt-and-pepper noise,

statistically-motivated rank order filters were introduced. These filters sort the values in

the kernel Ω and use that information to select only certain values to use, such as the median,

minimum, or maximum. The most popular of these is the median filter (Tukey, 1971), which

chooses the median intensity from all intensities in the kernel. This reduces noise, but can

corrupt edges by growing or shrinking them (dilation or erosion) similar to Sigma filtering,

as they are influenced by the kernel’s samples.

The “bilateral median” filter described by Francis and Jager (2003) combines bilateral

filtering and median filtering to reject outliers from the bilateral kernel. Garnett et al. (2005)

used a robust Rank Order Absolute Difference (ROAD) metric to robustly detect if the

bilateral kernel itself is centered on a sample of shot noise. This metric is the sum of the

absolute differences of the n most similar neighboring pixels to the kernel’s center value Is.

The original bilateral filter preserves shot noise because it is considerably different from its

neighbors, but the ROAD metric distinguishes shot noise from actual edges that appear in

neighboring pixels.

To demonstrate the effects of many of these standard filters, comparisons are provided in

Figures 2.2 and 2.3. These filters are designed for 2D still images, so their kernels are entirely

spatial. For video noise reduction, however, 3D kernels that utilize temporal information

become possible.

2.3.2 Video Filtering

When processing videos, as opposed to still images, noise filtering can be performed consid-

ering information from adjacent temporal samples to introduce more samples into the kernel

and improve consistency in the filtering from frame-to-frame (temporal coherence). For in-

stance, Dubois and Sabri (1984) perform non-linear temporal noise filtering assisted by optical

flow displacement estimation. Each pixel is combined temporally using a recursive low-pass
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Original Image Gaussian Filter

Sigma Filter Median Filter

Anisotropic Diffusion Filter Bilateral Filter

Figure 2.2: Comparison of existing spatial filtering techniques. The original image exhibits
a high noise level in both luminance and chrominance. The Gaussian filter (σ = 5.0) blurs
the edges but removes the noise. The Sigma filter (σ = 30) preserves some of the edges but
corruption begins to occur at this Ω kernel size (11x11). The 11x11 median filter preserves
many eges, but introduces new distortion in blotchy regions. Anisotropic diffusion (50 iter-
ations with K = 7) does an excellent job, save some stray pixels in the background. The
bilateral filter (σh = 5 and σi = 30) also does an excellent job filtering in a single pass with
very smooth regions within objects.
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Original Image Gaussian Filter

Sigma Filter Median Filter

Anisotropic Diffusion Filter Bilateral Filter

Figure 2.3: Additional comparison of spatial filtering techniques with a surveillance data
source of a stairwell. In very low-light, the original amplified image suffers from very high
noise levels. The Gaussian filter (σ = 3.0) blurs the edges, making the scene difficult to
interpret. The Sigma filter (σ = 20 with a Ω kernel size = 7x7) does a good job, but
is somewhat blotchy. The 5x5 median filter also results in a blotchy image. Anisotropic
Diffusion (50 iterations with K = 4) has some trouble reducing the large amount of shot
noise, especially on the walls. The bilateral filter (σh = 5 and σi = 15) does the best overall
noise reduction, although detail is lost in the face region, making identification difficult.
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temporal filter weighted by the reliability of the displacement estimate. This method requires

well-exposed, easy-to-track video to correctly filter.

Jostschulte et al. (1998) presented a spatio-temporal shot noise filter that first spatially

and then temporally filters video while preserving edges that match a template set. A motion-

sensing algorithm is used to vary the amount of temporal filtering. Thus, its filtering can be

considered as a 2D spatial filter augmented by temporally-adjacent samples, thus time and

space are treated differently. Alternatively, “Spatio-Temporal Anisotropic Diffusion” (Lee

and Kang, 1998) uses a three-dimensional kernel to remove video noise, treating temporal and

spatial dimensions similarly. This approach is a 3D variant of the 2D anisotropic diffusion

already discussed in Section 2.3.1.

As opposed to filtering in the local spatio-temporal neighborhood, the NL-means noise

reduction of Buades et al. (2005) searches for matching neighborhoods, which may or may

not be spatially aligned or temporally continuous, to attenuate noise. These neighborhoods

are used to refine the information about the correct underlying values in the original, noisy

neighborhood. In contrast, by finding a statistical mapping of a known video to a set of many

small spatio-temporal training patches “Video Epitomes” (Cheung et al., 2005) allows the

simultaneous enhancement of many similar video regions. This is used for noise reduction in

addition to super-resolution and the estimation of dropped video frames.

Video noise filtering is effective because each pixel can incorporate information from many

frames to estimate its true value using images (frames) that are very similar to it. This is

analogous to HDR capture, where each luminance value is combined from a set of registered

images with varying exposures.

2.4 HDR Processing

The real world has a much higher luminance dynamic range than the standard 8-bit sensors

and displays in the imaging pipeline, only capable of a 256:1 maximum dynamic range. High

Dynamic Range (HDR) imagery that can represent more realistic dynamic ranges, often

on order of 10,000:1 or 100:000:1, has thus been long recognized as essential for accurately

modeling light transport (Ward, 1991).
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There are two problems that quickly become evident working with HDR. First, capture

of HDR imagery is impeded by sensors and digitizing precision, requiring multiple images at

different exposures to properly image all visual elements. Even worse, HDR video capture

requires the use of specialized imaging hardware. Another problem is display on 8-bit devices,

requiring a remapping of the image luminances (tone mapping) to match the display’s low

dynamic output range. Thus, HDR processing is a class of computational photography prob-

lem because the correct answers cannot be obtained through a single image or standard image

capture process. Instead, through the combination of multiple images and computation, a

more accurate and useful result is obtained.

2.4.1 HDR Capture

Methods for real-world HDR capture are now considered for both still images and video.

Special consideration is given to the handling of low luminance levels (common in low-light

video) in addition to more typical bright HDR luminance levels. Further low-light imaging

characteristics are addressed in detail in Chapter 4.

Debevec and Malik (1997) developed computational methods for assembling individual

still HDR images from a series of photographs with increasingly long exposure times, using a

common photographic process known as bracketing. The exposure curve of the camera used

to capture these images can be solved for, allowing the determination of a luminance estimate

at each photosite, which is no longer limited by the precision of the source images. This work

relies upon the stillness of the scene over a period of time sufficient to capture each of the

bracketed exposures, making it impractical for video.

Researchers have more recently also constructed prototype HDR video capture systems.

Kang et al. (2003) built a system based on a camera that can sequence through different

exposure settings for each frame. Once the images are registered using optical flow, it is

possible to combine exposures to increase the dynamic range. The small number of exposures

combined into each output frame suggests that a high signal-to-noise ratio (SNR) is assumed

for all exposure settings, and therefore, it is designed for well-lit HDR scenes.

Nayar and Branzoi (2003) present a system whereby a computer controlled LCD panel
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is placed in front of the CCD. The LCD’s per-pixel transparency is varied to modulate the

exposure of image regions based on the previous frame’s luminance. Along with the hardware,

they also discuss a local and global tone mapping approach that addresses temporal coherence

issues. Using LCDs implies attenuation of some minimum percentage of the incoming light,

which complicates capturing dark pixels. Nayar and Branzoi (2004) also introduce a variant

to this method using a DLP micromirror array to modulate the exposure, via time-division

multiplexing (like a camera shutter), throughout the image. In theory, such systems could

provide continuous exposure control at each pixel given the additional hardware requirements.

Note that both of these approaches rely on causal filtering to determine the exposure of each

pixel at capture time. If any pixel is over or underexposed because of an incorrect exposure

time, the photosite’s measurement becomes unusable.

Instead of blocking light reaching the sensor, the sensor itself may be modified for HDR

video capture. Acosta-Serafini et al. (2004) describe an HDR camera that selectively resets a

pixel based on a prediction of when it will saturate. Here, the reset interval and the digitized

pixel intensity level combine to form a floating-point intensity value. They primarily focus on

high-speed HDR sensing and do not specifically address low-light capture. Liu and El Gamal

(2003) combine high-speed samples to reduce noise and improve dynamic range by using

specific imaging device features such as high-speed non-destructive reads. Their filtering

is based on a combination of linear filters and motion detection at each individual pixel.

Bidermann et al. (2003) describe an HDR high-speed CMOS imaging platform with per-pixel

ADCs and storage, which could use the underlying algorithms of Liu and El Gamal (2003) to

capture HDR in well-lit scenes.

2.4.2 HDR Tone Mappings

Using the discussed HDR capture techniques to create images with dynamic ranges larger than

256:1, the images must then be tone mapped for display while minimizing loss of perceived

detail and contrast.

The tone mapping problem was formalized by Tumblin and Rushmeier (1993) and has

led to a variety of spatially uniform (Drago et al., 2003) (logarithmic mapping) compressions
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and spatially varying (Tumblin and Turk, 1999) (Durand and Dorsey, 2002)(Fattal et al.,

2002) tone mappings. By spatially varying the tone mapping, a technique may locally adapt

to maximize displayable contrast. For example, Retinex approaches, such as the multiscale

Retinex (Jobson et al., 1997), suggest that a Gaussian-like kernel can be convolved at each

point in the image and subtracted from the original image in log space, resulting in a more

“viewable” version of an HDR still image. The Retinex approach is fast due to it being

non-iterative, but it can generate unwanted edge blurring artifacts because of its underlying

Gaussian nature.

The tone mapper of Durand and Dorsey (2002) presents a similar system, but uses bilateral

filtering to maintain sharp edges and to reduce fringing artifacts. It operates by separating

the large-scale features from the detail features and processes them separately. As shown

in Figure 2.4, this processing is done in the log-luminance domain, which models the detail

features as modulations to the large-scale features (contrast modifications), instead of being

additive. Once the separation has occurred, the large-scale features are attenuated by some

factor k < 1, then recombined into the output. The resulting image then has a reduced

dynamic range. The technique works because, after compression, all of the uniform regions

fall within an 8-bit range. The lower magnitude textures are also visible because they are

modulating luminances in that displayable range. The results still look plausible because the

contrast ratios are unchanged in smooth regions, only the absolute luminances are modified,

and by Retinex theory (Jobson et al., 1997), the human visual system is not sensitive to

smooth absolute luminance changes over large spatial areas.

Other HDR work includes that of Pattanaik et al. (2000) who present an approach that

mimics the time dependent local adaptation of the human visual system. They also discuss

temporal coherence issues to avoid introducing frame-by-frame tone mapping “flicker” when

processing videos. In “Gradient Domain HDR Compression” (Fattal et al., 2002), the gradient

field of an image is locally attenuated and then reintegrated. It should be noted that they

also describe a method for improving images that already use the display’s full 8-bit dynamic

range. This is the closest problem addressed in the literature to the reverse problem of

increasing the dynamic range of LDR images, discussed in Section 4.2.2.
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Figure 2.4: Illustration of the HDR tone mapping pipeline described by Durand and Dorsey
(2002). The result of the bilateral filter, the large-scale features, are attenuated by a factor k
while everything else, the detail features, remain unchanged. The tone mapping is performed
in the log domain so that the detail features modulate the large-scale features (images shown
have been converted to the linear domain for display). Values of k < 1 cause dynamic range
compression (as originally published) while values of k > 1 expand the dynamic range.

By using multiple images, HDR capture and tone mapping create resulting images that

were not otherwise possible to capture. Another approach that combines multiple images is

multispectral fusion. Because these images are now each from a distinctive spectrum, their

fusion creates enhanced results not visible to the human eye.

2.5 Multispectral Fusion Techniques

Multispectral fusion involves the depiction of multiple, potentially non-visible, spectral bands

as a visible image. The goal can be to communicate information from all sources, or to

augment a poor quality signal in one band with a higher quality one (such as augmenting noisy

night-vision video with heat-detection imagery). In this section, two classic multispectral

applications are summarized: remote sensing (aerial and satellite imagery) and night-vision.

To fuse amplified night-vision data with multiple IR bands, Fay et al. (2000) introduce
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a neural network to create false-color (pseudo-color) images from a learned opponent-color

importance model. Many other false-color fusion models have been suggested in the remote

sensing community. A summary of popular techniques is provided by Pohl and Genderen

(1998). Another common fusion approach is to combine pixel intensities across spatial scales

using multiresolution Laplacian or wavelet pyramid decompositions, as in (Toet, 1990) and

(Li et al., 1994). Also, physically-based models that incorporate more than per-pixel image

processing have also been suggested (Nandhakumar and Aggarwal, 1997).

Therrien et al. (1997) introduce a method to decompose visible and IR sources into their

respective high and low frequencies, and processes them in a decomposition/recomposition

framework inspired by Peli and Lim (1982). A non-linear mapping is applied to each set

of spectral bands to fuse them into the result. Therrien et al. (1997) address normalizing

luminance responses between spectra to overcome differences in surface reflectivity between

bands. These normalized luminances are mapped to a new space defined by a Sammon

mapping (Sammon, 1969). Issues regarding the temporal coherence of such a mapping in

video are not mentioned.

IR colorization algorithms, such as those by Welsh (2002) and Toet (2005), attempt to

learn a mapping from IR to natural chrominance to construct a plausible colorized output.

For that reason, colorization can be considered a class of fusion that estimates chrominance

based on image priors from IR footage. However, acquiring a prior and performing accurate

matching from prior to IR is often difficult and does not guarantee temporal coherence for

video processing.

2.6 Computational Photography

Having considered combining elements from multiple spectra together (often imaged simulta-

neously), we next consider combining exposures taken with the same imager, but at different

times. This allows for existing imagers, such as digital cameras and camcorders, to achieve

enhanced results with the assistance of computational methods.

Therefore, I now present techniques that are typically labeled as computational photogra-

phy, combining visual elements from images taken with a standard camera at different times
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to create an optimal composite image. Specifically, multiple images are used as input, and a

still image is the result. These combination techniques draw on the wealth of algorithms and

techniques that have already been discussed in this chapter.

“Image Stacks” (Cohen et al., 2003) considered the idea of using multiple temporally

adjacent frames to enhance knowledge about a pixel’s true or desired value. Multiple images

are registered and then each pixel of the output image is computed as a function of its temporal

neighbors. “Image Stacks” includes methods for automatically selecting and combining image

regions using compositing and min, max, median, and temporal low-pass filtering. An α-

blended “over” compositing (Porter and Duff, 1984) (Eq. 2.8) is also used to illustrate the

passage of time by compositing so that recent motions occlude past motions:

Over = α · Foreground+ (1− α) ·Background. (2.8)

The concept of combining sequential frames of motion together can be traced back to

the stroboscopic multiple exposure photographs of Harold Edgerton (Edgerton and Killian,

1979) and the motion studies of Muybridge (Muybridge, 1955) and Marey (Braun, 1995),

all performed using traditional film capture. The combination of images to create motion

studies was also addressed by Freeman and Zhang (2003) with the use of stereo depth data

to influence each pixel’s compositing order.

As an extension to “Video Stacks”, “Interactive Digital Photomontage” (Agarwala et al.,

2004) allows the user to choose individual parts of a few images through a simple drawing

interface to quickly specify the best composite image. This fusion is accomplished using both

graph-cut (Kwatra et al., 2003) and gradient domain algorithms (see below).

“Space-Time Scene Manifolds” (Wexler and Simakov, 2005) combined the concept of using

spatio-temporal volumes (Section 2.2) with a similar goal of combining multiple sequential

video frames captured with a non-static camera. The resulting optimized non-planar cuts are

chosen to maximize the visual information in the resulting cut image while simultaneously

mosaicing the constituent video frames.

The seamless integration of scene elements from multiple images has been explored in

the gradient domain using Poisson solvers to reintegrate processed gradient fields. Poisson
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solvers have already been mentioned in the context of HDR tone mapping (Section 2.4.2).

Techniques such as Poisson Image Editing (Perez et al., 2003), and day/night fusion (Raskar

et al., 2004) generate gradient fields that contain visual elements from multiple images.

The ratio-image work of Liu et al. (2001) transfers illumination between multiple images

with the assistance of known illumination priors. The capture of these priors requires images

taken in controlled lighting environments, which are suited for still images, but not for video.

New variants of the bilateral filter, discussed in Section 2.3.1, have been developed for use

in computational photography. The “joint bilateral filter” uses a second image as the source

of comparison for edge identification, thus transferring its edges to the original image. This

filter was used by Petschnigg et al. (2004) and by Eisemann and Durand (2004) (who refer

to it as “the cross bilateral filter”). Both of these papers consider the problem of combining

the qualities of an image captured with the use of a flash with the “look” of a noisy image

captured under ambient illumination. A joint bilateral filter is created by changing Equation

2.7 to instead perform its photometric comparisons in a second image, indicated as I ′:

D(p, s) ≡ I ′p − I ′s. (2.9)

The extent of noise removal depends on how well exposed a given region is in the flash

image. These papers also address flash shadows, which introduce visible edge differences

between the sources. These flash shadows resemble some of the differences seen between

RGB and IR spectra mentioned in Section 2.5.

These approaches are all designed to output a single image as a function of its input

frames. In the final section, computational video techniques that result in video outputs are

considered.

2.7 Computational Video

Computational video is a more recent field than computational photography, so its seminal

literature is not yet established. In this dissertation, computational video involves processing

video inputs to create video results that modify and combine elements across many frames.
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This is accomplished using techniques enabled by modern computational power and the si-

multaneous processing of many frames enabled by the low cost of storage. One type of

computational video is the temporal resampling of a video to change its duration. Com-

putational video techniques are thus allowed to warp both space and time, compressing or

extending the video’s duration and intermixing frames.

2.7.1 Video Summarization

Temporal resampling is commonly used for multimedia summarization. Early work in Video

Skimming (Smith and Kanade, 1997) looked for short, representative video segments that,

when pieced together, could tell the story of the video in a reduced period of time. Segments

were chosen based on characteristics including scene change detection, camera motion, object

recognition, and audio. The documentary films they targeted had distinct scene changes

providing the algorithms additional hints. An alternate summarization approach proposed

by Hua et al. (2003) searched for video segments that contain scene and camera motion

between shot boundaries and combined them to match the rhythm of an audio source to

create music videos.

Using similar documentary films to (Smith and Kanade, 1997) and standard, uniformly-

sampled summarization (fast-forward), Wildemuth et al. (2003) explored how fast videos can

be played back while remaining coherent to the viewer. The result was that showing 1 out

of every 64 frames typically allowed the viewer to comprehend most of the content. Note

that in addition to documentary-style video sources, summarization can also be applied to

static-camera, time-lapse sources. In particular, time-lapse has been shown to have many

applications for viewing slowly changing processes. Time-lapse techniques are regularly used

in fields as varied as biological microscopy (Riddle, 1979) and cinematic effects (Kinsman,

2006).

“Video Summarization By Curve Simplification” (DeMenthon et al., 1998) presents an

algorithm to choose a non-uniform temporal sampling based upon simplification of tracked

motion-path curves. These motion curves can be considered a subset of all motion activity

in the scene. The sampling is derived from the use of the greedy Douglas-Peucker curve-
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fitting algorithm (Douglas and Peucker, 1973). Note that slower, but optimal, dynamic

programming-based curve-fitting solutions (Perez and Vidal, 1994) are possible.

In “Video Summarization Using MPEG-7 Motion Activity and Audio Descriptors” (Di-

vakaran et al., 2003), short video sub-clips identified as containing significant motion are

played at real-time speeds and assembled into a shorter video. The combined duration of

these essential sub-clips forms the lower bound of the output video’s duration. Longer videos

are constructed by padding the result with less interesting frames.

Rav-Acha et al. (2006) summarize long videos by allowing events to occur without the

strict chronological ordering of the source footage, thus events may overlap. The events are

identified and then combined in a manner determined via a spatio-temporal Markov random

field optimization and simulated annealing.

2.7.2 Temporal Resampling and Compositing

Computational video considers a wider range of temporal resamplings and frame combina-

tions. For instance, a class of operations exist that extend the length of videos by repeating

segments. “Video Textures” (Schödl et al., 2000) looks for transitions within a video that are

least noticeable in an attempt to indefinitely extend its playing time. A dynamic programming

solver is used along with a pairwise error metric to evaluate potential jumps.

Other approaches have also attempted to warp time, both globally (full frame) and locally

(region-by-region). “Flow-Based Video Synthesis and Editing” (Bhat et al., 2004) rearranges

repeating patterns of natural phenomena, such as waterfalls, that have reoccurring flow char-

acteristics, to extend their play time. “Evolving Time Fronts” (Rav-Acha et al., 2005a) plays

videos with differing speeds in multiple image regions for the effect of altering their outcomes

or for artistic effects. “Dynamosaics” (Rav-Acha et al., 2005b) carries this idea further by

improving the blending between regions with graph-cuts (Boykov et al., 1999). “Panoramic

Video Textures” (Agarwala et al., 2005) also finds frame-to-frame jumps within non-static

camera videos to create panoramas.

Videos can also be processed to alter their component visual elements. “Motion Mag-

nification” (Liu et al., 2005) renders videos with amplified object motion vectors while not
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changing the underlying temporal sampling, thus increasing apparent object velocity. Al-

ternatively, “Space-Time Super-Resolution” (Shectman et al., 2005) creates a composite of

multiple videos using their relative frame rates and spatial positions to maximize spatial and

temporal information while reducing overall aliasing.

As a parallel to these computational video methods, user-assisted, temporally-aware video

compositing algorithms have also been developed. “Video Matting of Complex Scenes”

(Chuang et al., 2002) approaches the problem using Bayesian methods. “Interactive Video

Cutout” (Wang et al., 2005) combines compositing with spline-based, non-planar spatio-

temporal volume cuts in its interface for extracting foreground elements. In this interface,

the user can specify hints to the alpha compositing engine across multiple frames by painting

directly onto the cut plane. The VideoShop project (Wang et al., 2007) composites multi-

frame visual elements from video clips together in the gradient domain through the use of a

3D multigrid Poisson solver.

2.8 Summary

A wide range of literature related to computational video and its foundations was reviewed to

act as a background for the techniques and applications presented throughout the remainder of

this dissertation. The common element in all of these works is the visualization, combination,

and enhancement of still images and videos to create improved outputs by utilizing all the

information in the source material. As a first step to building efficient computational video

tools, a framework is now presented for working with a new class of spatio-temporal volumes

that enable video editing and processing.
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CHAPTER 3

SPATIO-TEMPORAL VIDEO

PROCESSING

In this chapter, I explore approaches to computational video where videos are abstracted as

spatio-temporal volumes. Computational video often relies on using nearby spatial and tem-

poral samples in order to enhance the underlying video. Likewise, spatio-temporal volumes

provide a representation for accessing and organizing these samples. Furthermore, I extend

spatio-temporal volumes to include sheared volumes that spatially align frames to bring to-

gether important scene elements into a common spatio-temporal neighborhood. This shearing

can be done in relation to the background to stabilize a moving camera, or in relation to a

moving object to stabilize its motion.

Frequently, shears are not meant to be permanent. Therefore it is desirable after process-

ing that the original camera and object motions be restored. Thus, modifications made to

these sheared volumes must be applied to the source data and are formulated as mapping

functions, thus making the shear virtual. Furthermore, there are significant performance is-

sues involved in manipulating and visualizing uncompressed spatio-temporal video volumes

in sheared and un-sheared states. To handle these issues, an efficient graph-based processing

framework called Proscenium is introduced to encapsulate and abstract away the details of

such processing. Finally, as a proof-of-concept, a simple video editor is developed that visual-

izes, edits, and filters in a manner that leverages the capabilities of spatio-temporal volumes

(Figure 3.1).

The chapter begins with discussions of previous spatio-temporal volumes and then an

overview of the new shearing extension. Then, spatio-temporal video processing with Prosce-

nium is described from the bottom up starting at the lowest level, the data representation,
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Figure 3.1: Screenshot from the prototype application depicting an 8 second video segment as
a spatio-temporal volume. The prototype editing system utilizes the Proscenium framework
to enable the shearing, modifying, and enhancing of such volumes.

on up through implementing shearing and the filter-graph framework, then culminating with

the prototype video editor.

3.1 Spatio-Temporal Volumes

A spatio-temporal volume (Bolles et al., 1987) can be conceptualized as the stacking of the

individual frames of a video in chronological order into a right rectangular prism with dimen-

sions of width, height, and time. Thus, any sample in the volume can be accessed with a

unique positional index (x, y, t). In this manner, the spatio-temporal volume treats the time

dimension similarly to the two spatial dimensions and allows for 3D volume processing.

Note, however, sampling is different in the spatial dimensions versus the temporal dimen-

sion. Spatial sampling is usually uniform, with the same aspect ratio vertically as horizontally.

However, the same cannot be said about space and time measurements. Spatially, an edge

between two objects is assumed to occur between two pixels. Temporally, however, an edge

due to motion may move many pixels from frame-to-frame. Thus, unless the frame rate is
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sufficiently high that no motion results in a translation of more than one pixel, the temporal

dimension is undersampled compared to the spatial dimensions. This relationship must be

considered when using information from adjacent temporal samples as opposed to adjacent

spatial samples.

Given a fixed sampling, it also makes sense to consider interpolation between the known

samples (both spatial interpolation and temporal interpolation). Visualizing the volume as

a solid as opposed to a sequence of frames (Figure 3.2) makes this a natural extension.

Interpolation may be nearest-neighbor, trilinear, or via some other reconstruction filter.

From a visualization standpoint, spatio-temporal volumes are useful because all frames are

shown simultaneously, removing the need for a standard timeline-based interface. However,

only pixels on the edge of the volume can be seen, as it is a solid. Thus, the first tool developed

for spatio-temporal volumes was the axis-aligned planar slice (cut plane) that allows the user

to see inside the volume (Bolles et al., 1987), as shown in Figure 3.3. Arbitrary planar cuts

were later introduced by (Fels et al., 2000). These cut planes can reveal motion patterns in

planar slices that allow traits, such as object velocity, to be measured. They also allow for

novel artistic views of the video to be made by sweeping the plane through the volume.

Although cut planes are useful visualizations, there is an inherent assumption that the

volume being cut is from a fixed camera. In particular, a moving camera implies that adjacent

x

y

t

Figure 3.2: An illustration of a spatio-temporal volume as a solid. Although samples in the
volume are typically indexed using integers, values at non-integer indices are interpolated
from the original underlying samples.
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temporal samples in the volume are not imaging the same incoming rays. To overcome this

difficulty, spatio-temporal volumes are extended in this work such that each constituent frame

may be spatially warped via a homography, a process referred to as shearing. Although the

volume is no longer a right rectangular prism, the new frame-to-frame alignment greatly

expands the capabilities of spatio-temporal video enhancement. This shearing operation is

fundamental to the use of spatio-temporal volumes and is shown in Figure 3.4. Once sheared,

cut planes can again be used, except now each plane exposes pixels that were not originally

planar in the input volume. Also, note that the volume can be sheared to temporally-align

any scene element, such as moving foreground elements.

Besides being a useful visualization of the data, spatio-temporal volumes also serve as a

platform for enforcing temporal coherence in video processing algorithms. Temporal coher-

ence ensures that moving objects look natural when played back at full speed because of

consistency in the way they appear from frame-to-frame. Maintaining this coherence across

a multiframe enhancement involves making changes to multiple frames in the same manner,

avoiding variation. Performing similar edits to objects (especially moving objects) is difficult

to do by hand or with algorithms that operate on a frame-by-frame basis.

Now that the underlying concepts of spatio-temporal volumes have been established, we
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Figure 3.3: Visualization of a spatio-temporal volume and a spatio-temporal cut plane. On
the left, a 10 second video is presented as a spatio-temporal volume. The front of the volume
shows the first frame, the right side shows the right-most vertical line through time, and the
top shows the top-most scanline through time. On the right, the volume has been rotated
and been cut using two planar cuts. The first, parallel to the front face, has shortened the
video. The second has revealed a different scanline which shows the motion of people walking
during the duration of the video.
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Figure 3.4: Illustration of the shearing (spatial warping) of a spatio-temporal volume. On the
left is a spatio-temporal volume where the camera rotates from right to left. On the right is
the same video presented in a sheared volume where the background is static through time.
Thus, any given (x, y) is always imaging the same scene element. However, (x, y) samples
may no longer exist for all values of t.

transition to considering the logistics of building a shared set of tools to encapsulate these

concepts.

3.2 A Spatio-Temporal Video Editing Framework

I have developed a spatio-temporal video editing framework called Proscenium for processing

with spatio-temporal volumes that abstracts away the representation details. Specifically,

Proscenium handles the underlying storage along with shearing and filter-to-filter interactions.

Given these capabilities, it is simple to build interactive full-featured computational video

applications.

To begin, the low-level storage of spatio-temporal volumes is addressed. This is followed

by a discussion of shearing to support the alignment of spatial elements through time. The

requirements of shearing then lead to the development of a filter-graph system tuned to

spatio-temporal processing. Finally, examples of filters that fit within this framework are

presented.

3.2.1 Spatio-Temporal Volume Representation

At a base level, each source video segment is represented as a three dimensional array ad-

dressed in spatial dimensions by x and y and in time by frame number t. If the dimensions of

the video volume are constant, a 3D array may be used, however the ability to insert additional
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Figure 3.5: Illustration of a spatio-temporal volume that specifically indicates the intercon-
nections between each sample and its neighbors. When considering spatio-temporal video
processing (particularly filtering), the information in nearby spatial and temporal samples is
essential to accurate video reconstruction and temporal coherence (consistent changes from
frame-to-frame).

frames in the t dimension implies storing the video as a list of individual 2D frames.

For working with multichannel color videos, the typical representation for storing pixels is

as unsigned bytes with RGBα (0-255) values (32 bits/pixel). The α component serves as either

a traditional blending factor (Porter and Duff, 1984) or as a pixel-specific auxiliary variable for

Boolean or more complex operations. The color (0, 0, 0, 0) is reserved as being empty, meaning

that nothing is present at a pixel location. Although not used in this implementation, floating

point values and alternate color spaces are easily supported.

The spatio-temporal volumes of Proscenium support both discrete and continuous sam-

ple access. Discrete addressing is analogous to standard integer-indexed array access of the

underlying samples, whereas continuous access allows for fractional addressing and implies

interpolation. Although discrete addressing is most efficient, continuous access becomes im-

portant when accessing pixels within a sheared volume. The quality of the continuous sam-

pling’s interpolation (nearest-neighbor, trilinear, etc.) can be either application dependent or

user-specified.

By definition, spatio-temporal volumes are right rectangular prisms, and each of the con-
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stituent frames is assumed to have the same spatial size and orientation. In the next section,

that assumption is removed.

3.2.2 Spatio-Temporal Volume Shearing

The fundamental innovation introduced by my work to existing spatio-temporal volumes is

the ability to virtually shear these volumes, thereby spatially warping each of the volume’s

frames. The benefit of this operation is that it enables the alignment of objects within spatio-

temporal neighborhoods, allowing information in that neighborhood to be used to enhance its

constituent samples. I now present the specifics of how shearing is implemented with minimal

data movement along with the user interface details that will be used later in Section 3.3.

Specifically, shearing (S) is a subset of all possible volumetric warps in which all values in

the temporal t dimension remain constant, as shown in Figure 3.6. Specifically, each frame in

the volume has a unique spatial mapping St between its sheared position and its position in the

original volume from the class of general 2D projective transforms. To allow lookups in both

directions, the inverse transform S−1
t is also maintained. These projective transform mappings

model a wide range of spatial changes including frame-to frame translations, rotations, scales,

skews, and any combination of these. This class of transforms is easily specified and sufficient

for the alignment of rigid nearly-planar objects. As discussed as future research (Setion 6.1)

more general, non-planar mappings are also a possibility for shearing.

The formulation of the shearing transform for frame t is shown below. The value of t itself

is not included inside the matrix to avoid projective normalization. By convention, the first

frame of a movie remains stationary (an identity transform), while all other frames generate

their correspondences in relation to that frame:


x

y

1

 =


St,0 St,1 St,2

St,3 St,4 St,5

St,6 St,7 1



x′

y′

1

 and t = t′. (3.1)

The user specifies the shear by choosing scene features that should remain spatially con-

stant. This is done using small sets of user-defined inter-frame correspondences. Although
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Figure 3.6: Illustration of the shearing process. On the right, the original un-sheared volume
stored in memory is shown. On the left, the sheared volume is shown, where each frame
has its own 2D projective transform. The shear is applied virtually, so all pixel lookups are
processed through a transform into the original volume. To allow lookups in both directions,
the inverse transform is stored as well. The first frame is, by convention, stationary, and thus
uses an identity transform.

full-projective transforms are supported, when only a single correspondence is specified, frame-

to-frame translations are assumed. When two correspondences are provided a similitude

transformation is found (a translation and rotation with a global scale). With three corre-

sponding points affine transformations of the images are computed. Four correspondences

specify a unique projective transformation. When more than 4 correspondences are provided

the closest projective transformation (in the least-squares sense) is computed. All of the coef-

ficients for the transforms can be found using linear methods (Wolberg, 1995) and are solved

here in real-time using Gauss-Jordan elimination (Press et al., 1992).

Having a user in-the-loop to select correspondences to specify the shear transforms makes

for an straightforward user interface. However, the process of selecting correspondences in

every frame can be tedious. So, instead, the user selects corresponding points at appropriate

intervals in the video, and those points are linearly interpolated or tracked using an image-
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based feature tracker (Bouguet, 2000) in the intervening frames.

Thus, the goal is to provide all of the benefits of computer-vision based tracking without

its shortcomings. When it works, feature-based methods provide excellent tracking of vi-

sual elements from frame-to-frame, saving the user time and often providing more consistent

tracking than rough user-specification. However, occlusion, noise, and homogeneous image

regions all can cause these methods to fail, often making a mistake in one frame that causes

all subsequent frames to track the wrong path. In these cases, the user’s job becomes to

intervene when necessary, because the user has a better understanding of the overall content

of the video and the purpose of the shear. Often with correction of a small number of frames

containing errors, the tracker can perform the remainder of the tracking correctly. This ap-

proach is similar to the interface in the compositing work of Chuang et al. (2002) that allowed

the user to continuously refine the assumptions made by the compositing solver.

If the intention of shearing the volume is to permanently change its shape, a resampling of

the volume using the planar transforms may be used and the original video discarded. How-

ever, it is more often the case that shearing is performed to aid in editing and enhancement,

with the intention that the shear will be removed, restoring the original video. Thus, having

a mechanism to “virtually” shear the volume to allow visualization and processing is needed

with the capability to apply edits to the sheared volume, yet have them be propagated to the

un-sheared volume. To handle that task, and other, more general purpose video processing

tasks, Proscenium’s dynamic filter graphs are used. Multiple examples of such workflows are

presented in the Results (Section 3.4).

3.2.3 Proscenium Filter Graphs

Now, the underlying bi-directional filter graphs used by Proscenium are discussed. These

graphs extend existing video processing filter graphs by tuning them to account for the pixel

access patterns common in spatio-temporal processing. These dynamically constructed graphs

are then populated with individual PFilters (Proscenium Filters) that conform to a common

interaction interface. PFilters each encapsulate a single video processing task, such as color

correction, cropping, or shearing. By combining these PFilters together, complex interactions,
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Figure 1.2: Diagram illustrating the interconnections of PFilters in a Proscenium filter
graph. Each filter is only aware of those filters that comprise its inputs.
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Figure 1.3: Illustration of the flow of pixel queries through an example filter graph.
Data requests traverse down the graph until the source data is reached, then are passed
back up the chain, possibly being modified along the way. This particular filter graph
stabilizes a video then crops its edges, creating a synthetic camera motion.

8

PFilter

Tex

PFilter

PFilter PFilter

Application

Pointer

D
a

ta
 F

lo
w

Figure 3.7: Diagram illustrating the interconnections of PFilters in a Proscenium filter graph.
Each filter is only aware of those filters that comprise its inputs.

such as manipulating and enhancing sheared volumes, are efficiently enabled.

The primary intuition when constructing a system for spatio-temporal video processing

is that the access patterns are inherently different from those of frame-at-a-time video pro-

cessing. Traditional filter graph implementations, such as QuickTime (Apple Inc., 2007) and

DirectShow (Microsoft Corporation, 2007), treat pixel data in large buffers of entire frames.

Working in spatio-temporal volumes often implies requiring access to individual pixels in

small regions of the volume that span many spatial pixels and many temporal frames. Thus,

the Proscenium framework’s filter graphs never process anything larger than a single pixel at

a time to maximize flexibility.

To accomplish this, Proscenium’s graph is fully bi-directional, instead of being a traditional

directed acyclic graph that forces data to flow from the input of the system to the output.

Bi-directionality allows the application at the output of the graph to request only the pixels

it needs for interactive display or processing. By only solving volume samples as they are

needed, these graphs are inherently lazily evaluated. The filter graph is also designed to insert

and remove PFilters (Proscenium Filters) at run-time without rebuilding the entire graph.

All actions begin with a request from the application that it wants a pixel at some (x, y, t).

This request is sent to the output of the filter graph (not the input) which decides what actions

to take (Figure 3.7). The most basic action is to say nothing was found and return an empty

pixel. It can also return a constant, such as a background color. Finally, it can request pixel
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Figure 1.2: Diagram illustrating the interconnections of PFilters in a Proscenium filter
graph. Each filter is only aware of those filters that comprise its inputs.
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Figure 1.3: Illustration of the flow of pixel queries through an example filter graph.
Data requests traverse down the graph until the source data is reached, then are passed
back up the chain, possibly being modified along the way. This particular filter graph
stabilizes a video then crops its edges, creating a synthetic camera motion.
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Figure 3.8: Illustration of the flow of pixel queries through an example filter graph. Data
requests traverse down the graph until the source data is reached, then are passed back up the
chain, possibly being modified along the way. This particular filter graph stabilizes a video
then crops its edges, creating a synthetic camera motion.

data from any of the filters at its inputs, modify that color, and return it to the requestor.

The proper ordering of requests (Figure 3.8) is crucial to achieve the correct functionality in

the filters described later. There is an added performance bonus in this ordering of operations

that if the final PFilter (the first queried) is able to return a value without querying the other

PFilters, it foregoes the trouble of having to traverse through the entire graph.

Each PFilter implements a common interface for interacting with the graph. It speci-

fies its spatial dimensions, pixelWidth and pixelHeight, along with its temporal dimen-

sion, numFrames. Discrete accesses to pixel values are made with getActualPixel(int

x,y,t), continuous accesses to pixel values are made with getPixel(float x,y,t), and

edits are made with setActualPixel(int, x,y,t, Color newColor). For complete de-

tails, the PFilter class structure specification is given in Appendix A.1. Examples of such

filters are now presented to illustrate the types of processing these graphs support in addition

to “virtual” shearing.

3.2.4 Spatio-Temporal Operators

To make more concrete the types of spatio-temporal operations that can be part of a Prosce-

nium filter graph, a series of PFilters are now described. These particular PFilters represent

only a small subset of the filters that have been designed and are included to be instructional.
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Figure 1.5: This filter graph depicts the effect of tinting the edges in a video. The raw
color is mixed with a color corrected grayscale gradient edge, whose output is cached
to avoid later re-calculation. Our per-pixel request model handles bifurcated graphs
without need for any further abstraction.

16

Color Corrector

Application

50% Blend

PCache

Gradient

PMovie

Figure 3.9: This filter graph depicts the effect of tinting the edges in a video. The raw color
is mixed with a color corrected grayscale gradient edge, whose output is cached to avoid later
re-calculation. The per-pixel request model handles bifurcated graphs without need for any
further abstraction.

However, interesting editing permutations are possible with just a few, as in Figure 3.9.

Most PFilters can be categorized into a few useful groups. First are those PFilters that

alter the color value of the pixel that was passed into it through its input, such as for color

or contrast adjustment. Next are those filters that pull their values from pixels in the spatio-

temporal neighborhood surrounding the requested pixel, such as the background restoration

filter. Finally are those filters that alter the shape of the individual frames as they pass

through the PFilter, such as for performing virtual shears.

Here is a summary of the example PFilters. Full specifications, technical descriptions, and

pseudocode are included in Appendix A.2.

• Simple Color Correction (PCorrect): Given an (x, y, t) coordinate, it returns the

pixel at (x, y, t) in its source filter with an adjusted color value.

• Video Framing (PFrame): Crops a video’s width, height, and/or duration by sub-

stituting alternate pixelWidth, pixelHeight, and numFrames values while dynamically

offsetting the underlying volume.
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• Shearing (PShear): Implements the virtual shearing of the spatio-temporal volume

(Figure 3.6). Thus, given an (x′, y′, t′) in the sheared volume, it uses an inverse projective

transform to find (x, y, t) in the original, un-sheared volume. This hides the fact that

the underlying volume has a different shape. All pixel-level sampling issues (for both

reading and writing) are handled within this filter. Edits made to the filter graph

pass through this filter, modifying the underlying data so that when the stabilization is

removed, the edits remain.

• Background Restoration (PBackground): Given an (x, y) pair, returns the back-

ground plate seen at that (x, y) location through the entire video. This background

plate is calculated through either the median statistic or edge filling, the process of

returning the temporally nearest pixel value in a warped volume to fill in the edges of

panoramas.

• Video Caching (PCache): Acts as a cache within a filter graph to remember pixel

values that have already been solved by the portion of the graph connected to its input.

• Video Input & Output (PMovie & PAVIOut): Provides a method to bring video

from disk into the filter graph and write the results back to disk, respectively.

By themselves, these filters are not very interesting. However, now they are combined

into a prototype system for video editing that can achieve far more sophisticated results.

3.3 Spatio-Temporal Video Editing

The remainder of this chapter explores the flexibility of spatio-temporal volumes to directly

manipulate video in a manner influenced by existing video-editing applications. To do so, the

construction of a prototype spatio-temporal video editor is described. With this application,

the performance of spatio-temporal processing can also be measured.

The goal of building this prototype is two-fold. First is to demonstrate that the Prosce-

nium framework provides the baseline capabilities of existing spatio-temporal visualizations

as well as the functionality of existing video editors. Second is to enable new interactive
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computational video tools for manipulating video with similar flexibility and ease of use as

current 2D image editing applications by harnessing relationships between pixels in adjacent

frames. Establishing these inter-frame temporal relationships relies on the ability to shear

the volume, visualize its effect, and perform edits into the sheared volume. In the interest of

flexibility, no constraints are placed on the type of source footage that can be edited.

The implementation of such a system introduces issues relating to performance, interac-

tivity, and data flow. Such selected issues are now discussed.

Because spatio-temporal video processing is intended for users from seasoned professionals

to amateurs, it is important that it can scale well from workstation class hardware down to

mid-range consumer desktops. System utilization for the underlying Proscenium framework

can be broken down into three major areas: CPU, Video, and RAM. The CPU performs the

filter graph functions and is usually the limiting factor for the rate pixels’ colors are calculated

via calls to getActualPixel(). Thus, the faster the CPU, the more filters can be applied while

still maintaining a sense of interactivity. The quality of the displayed interactive volume can

be subsampled to increase speed, leaving the complete full resolution rendering of the video for

the time of output. The video card determines the refresh rate when slicing and manipulating

the volume. Specifically, the volume is visualized as a stack of flat, textured polygons drawn

from back to front to ensure correct z ordering for α-transparency (the orientation of planes

is also dynamically swapped to appear solid from all sides). RAM is an issue because movies

must be stored uncompressed for fast random access. This is a disadvantage of supporting

visualization of arbitrary cut planes, because they show small parts of many frames. If video

were kept compressed on disk, as in most video editors, a whole frame must be decompressed

in order to read just a few pixels. Fortunately, most special effects shots are short, allowing

them to fit in RAM uncompressed.

To provide an interactive environment, the application architecture in Figure 3.10 is used.

The application controls two concurrent threads: one for visualization and another for ap-

plying user edits. The visualization thread operates by initiating getActualPixel() filter

graph calls to fill in the subsampled volume seen by the user. These requests are made at the

head of the filter graph and are propagated down to the source footage. The application can
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Figure 1.8: A view of the application architecture, highlighting data flow and thread
responsibilities.

(using the same criteria as PPZR: one-to-one, one-to-many, or one-to-none) and then

sends appropriate setActualPixel commands back into the filter graph.

Experience has shown that this process must be handled carefully, or else errors can

occur, especially when dealing with alpha blending. For example, imagine the imple-

mentation of a paint brush painting at 50% opacity. In order to initiate a pixel color

write into the volume, the current color must be known in order to apply the blending.

So, a getActualP ixel() is issued at that (x, y, z) and a color value is returned. If PPZR

is implemented correctly, this returns the right answer, and when adjusted, it writes

the correct value back into the volume. On subsequent getActualP ixel() requests, a

danger exists that due to sampling (using after a rotation), a getActualP ixel() access

rounds to a pixel in the raw data that had already been modified. When this color

is modified, it will then have been blended twice. An easy fix is when performing an

operation on a block of adjacent pixels in a subsampled/PPZR environment, to do all

the getActualP ixel() calls before initiating any setActualP ixel() calls. That way, only

virgin data is being modified and written.

When an edit occurs, the visualization thread must be notified of invalidated areas,

so it can reprocess those pixels through the filter graph to rebuild the polygon texture
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Figure 3.10: A view of the application architecture, highlighting data flow and thread respon-
sibilities. One thread handles the sampled 3D visualization while the other performs edits
within the filter graph at its full resolution.

insert filters into the graph at any time at the expense of having to invalidate the pixels in

the subsampled view and start again.

However, when users perform edits that are not filters (such as painting), those edits must

occur at the full resolution of the source footage, thus using the second thread. This is where

sampling issues akin to those mentioned for PShear in Appendix A.2 reoccur. The problem

is caused because the user is interacting with a subsampled view of the transformed data. If

changes were made to the subsampled data and written back into the volume directly, the

result would not change all the pixels in the affected region (or if supersampling occurred,

multiple overwrites may result). Thus, edits must occur at the full resolution of the video’s

filter graph output.

When an edit occurs, the visualization thread must be notified of invalidated areas, so it

can reprocess those pixels through the filter graph to rebuild the polygon texture set. If the

edit is small, the invalidation area is subsequently small, but if the edit involves adding a full-

frame filter, such as a color correction, all pixels will change, requiring a total recalculation. To

make the system more interactive during total invalidations, a background thread dynamically

adjusts the level of detail of the textures. When the user initially applies a global modification

filter, a low resolution set of textures is quickly built and displayed. While the user examines

the new volume the textures refine themselves until a sufficiently high resolution is reached.
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Given the construction of this application, it can then be used to perform computational

video manipulations within spatio-temporal video volume visualizations.

3.4 Results

To demonstrate the possibilities of spatio-temporal video editing, a series of editing workflows

are now described enabled by Proscenium. Timing information is provided throughout on a

uniprocessor Pentium IV at 2.4 GHz with 1 GB of RAM. The majority of computation is the

interface calling getActualPixel() to calculate pixels in the filter graph. Thus, the more

pixels in the interactively subsampled volume texture, the longer the delay. To account for

this relation, timing data for requesting pixels is measured in time per-pixel, but calculations

altering the data or rendering final output are given as total processing times.

3.4.1 Object Removal

For the first example, I show the steps involved in the removal of a Frisbee being thrown in a

720x480 120 frame video clip (Figure 3.11) where the camera loosely tracks its path from right

to left. The difficulty of removing the Frisbee from the video is two-fold because neither the

Frisbee nor the background is stationary over the course of the video. Each element will be

sheared separately and edits will be made in each sheared state. Once the edits are complete,

the shears will be removed, but the edits will remain.

• First, the video is sheared to stabilize the Frisbee. Loading the video from disk takes

3.3s, and display is .92µs/pixel. Once the Frisbee is mid-air, correspondence points are

placed on it in every few frames and tracked. The transform matrices for each frame

are calculated (.01s) and applied through the PShear filter (Figure 3.12). Display of the

wider view takes 1.53µs/pixel.

• The next step involves deleting the Frisbee by selecting a bounding box around it, which

is easily done because of the shearing. These selected pixels are then erased (resulting

in a hole in the video). At this point, all PFilters, including the PShear, are removed,

restoring the original volume (although now with a hole in it).
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Figure 3.11: Two original frames from a 3 second DV resolution video clip of two people
throwing a Frisbee with a panning camera that follows the Frisbee.

• The hole must be filled to restore the background, but the PBackground filter requires

the background to be static to build the background plate. The solution is to again

shear the volume so the background becomes static, as shown in Figure 3.13. The

PBackground filter is now run (64.7s). Note the results of the background replacement

are propagated back to the original video volume, replacing the empty pixels.

• Finally, the shear is removed, restoring the original camera motion.

The resulting video is shown in Figure 3.14. Note that due to the efficient bi-directional

filter graph, RAM usage for the edit was only the original uncompressed movie size plus

25-50% more of garbage collected scratch space.

3.4.2 Aspect Widening

A different effect that can be applied to the Frisbee footage is to expand its aspect ratio from

its original 4:3 aspect ratio to 16:9 (Figure 3.15). When the background was stabilized in the

previous section, the spatio-temporal volume resembled a panorama. This stabilized volume

can be used to to add pixels to the left and right of the original frames, in effect making a

solid panoramic volume.

• After stabilization and filling (this time using the edge filling filter at 2.14µs/pixel after

a 34s pre-calculation), the original video is inlaid into the full width of the panorama;

now with the aspect ratio of the full panorama, which is wider than even 16:9.
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Figure 3.12: Sheared volume after the Frisbee has been stabilized. Three visualizations of the
volume are shown above. The top-left image shows the sheared volume at a given time. The
right image shows a fixed column through time and the bottom image shows a fixed scan line
after the Frisbee has been stabilized.

Figure 3.13: A shearing of the volume with the background stabilized is shown. A constant
time slice is shown in the upper-left, a fixed column is shown in the upper-right, and the
bottom is a fixed scan line through the aligned volume.
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Figure 3.14: Before (left) and after (right) removal of a white Frisbee by stabilizing the
Frisbee, cutting it from the video, and replacing those pixels with the background.
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Figure 3.15: Before and after widening the aspect ratio of the Frisbee sequence by background
stabilization and background replacement.

• The user could crop the panoramic video to 16:9, but because the video is stabilized,

there would be no camera movement. Fortunately, the user can instead shear the volume

prior to cropping (2.60µs/pixel), thus adding a synthetic camera motion.

• After shearing, a 16:9 crop can be made (3.21µs/pixel) completing the effect.

3.4.3 Temporal Painting

A common task in post-production is to paint directly onto a moving scene object. This

involves performing the same edit to multiple frames while maintaining temporal coherence.

To demonstrate temporal painting in spatio-temporal volumes across multiple sheared frames,

video of Pixar’s walking teapot toy is painted upon (720x480 with 77 frames). The teapot

has a logo on it with a bouncing ball that can be painted to “glow” red, as if it had an LED

behind it (Figure 3.16).

• The teapot in the video moves from left to right and shows perspective distortion as

it bounces up and down while moving. By specifying a shear with three automatically

tracked points (.05s to compute and 1.68µs/pixel to display), the distortion around the

ball in the logo can be removed, making it appear the same way and in the same location

in all frames.

• Once in the sheared domain, a temporal paint brush with a feathered edge and a

temporal depth equal to that of the movie is chosen. By drawing a single brush stroke

in the first frame, every frame in the sequence is modified (5s).
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Figure 3.16: A frame from the walking teapot sequence before and after temporal painting of
all frames simultaneously with a feathered brush while sheared to provide object stabilization.

• The shear can then be removed and the resulting video will have a glowing LED yet re-

tain its original motion. This entire process (including final rendering) can be completed

in a minute and a half, and it handles all perspective distortion of the fictional LED,

which an artist would have to painstakingly tweak frame-by-frame to appear correct.

These results have demonstrated both common traditional video manipulation function-

ality and also more complex computational video operations that, due to shearing, exhibit

temporal coherence across the entire edit. Thus, the potential of using spatio-temporal vol-

umes as the basis for advanced video editing is established.

3.5 Summary

In this chapter, computational video effects were generated by leveraging the strengths of

spatio-temporal volumes. Essential to this process was the novel capability to shear the

volume, which aligns similar image regions in multiple frames. Once sheared, information

from adjacent frames may be used, such as to easily propagate paint strokes or to build

background mattes.

To illustrate in a working system that spatio-temporal volumes can exhibit capabilities

beyond those of traditional video editors, a framework for spatio-temporal volumes and an

associated video-editing application were introduced. The framework, Proscenium, demon-

strated how bi-directional filter graphs are well suited to spatio-temporal data access patterns.

The video editor then utilized these tools to perform edits (which were subsequently measured

for performance).
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Continuing the line of reasoning that the power of computational video comes from com-

bining information in nearby samples, enhanced here with shearing, another problem is now

addressed. By combining many samples in badly-exposed, low-light video, the desired well-

exposed, noise-free pixel values can be estimated. These samples are obtained from local

spatio-temporal neighborhoods and also cross-spectral neighborhoods to filter with as much

information as possible.

48



CHAPTER 4

LOW-LIGHT VIDEO ENHANCEMENT

In this chapter, two complete computational video approaches are presented to the problem of

enhancing low-light video1. Low-light video, or Low Dynamic Range (LDR) video, contains

high noise levels and significant quantization noise because it only uses a few of the bits

of dynamic range the sensor offers. The problem domain of enhancing LDR footage is an

excellent test case for proving the capabilities of computational video processing because its

enhancement is aided by additional information from nearby spatial and temporal samples.

The first approach presented here considers the problem of enhancing a low-light visible-

spectrum video by itself, while the second presents a fusion of both visible and non-visible

spectra videos, integrating samples from both spectra. Besides both enhancing low-light video,

these approaches are also unified by their use and extension of concepts of the edge-preserving

bilateral filter (Tomasi and Manduchi, 1998) for a variety of filtering and decomposition tasks.

Visible-spectrum-only enhancement is performed inside a processing model called the Vir-

tual Exposure Camera (VEC) which provides simultaneous tone mapping and noise reduction.

Specifically, noise reduction is performed with a novel computational video filter called the

Adaptive Spatio-Temporal Accumulation (ASTA) filter. Alternatively, the multispectral fu-

sion in Section 4.3 decomposes each of the input videos and combines the best elements of

each into the output video. These underlying components are also enhanced with a new

multispectral filtering technique called the dual bilateral filter.

To begin, the characteristics of LDR videos are discussed, followed by descriptions and

results of each of the two enhancement techniques.
1This low-light video enhancement work was sponsored through DARPA-funded, AFRL-managed Agree-

ment FA8650-04-2-6543.



4.1 LDR Video Characteristics

The LDR videos considered in this chapter have a small signal-to-noise ratio and low precision.

To be specific, in addition to typical low-light videos themselves, the class of LDR videos also

includes videos with “peaky” histograms. Such videos are composed of elements that span a

dynamic range larger than the sensor’s, leading to low precision renditions of all elements.

Many common applications result in LDR videos. For instance, filming theatrical lighting

is difficult because background scenery is seldom well exposed in comparison to the spotlights

placed on the actors. LDR video also results from high speed imaging, where fast shutter

speeds are necessary. Small aperture video to increase depth-of-field can also lead to LDR

video. Poor lighting scenarios, such as is common in surveillance applications can also result

in underexposed videos.

The consideration of LDR video characteristics is really a matter of considering the char-

acteristics of the underlying sensors. There are a variety of noise sources in CCD (Charge

Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor) sensors that con-

found imaging in low-light situations, such as readout, photon shot, dark current, and fixed

pattern noise in addition to photon response non-uniformities. These factors, along with noise

measurement techniques are discussed by Reibel et al. (2003).

Readout noise results from the amplification and A/D (Analog to Digital) conversion of

the analog electronics to digital measurements. Photon shot noise results from the photon

light transport process being a Poisson distribution in nature. Dark current thermal noise

results from heat on the sensor causing incorrect pixel readings, while fixed-pattern noise

is always present. Non-uniformities change the ratio of the number of photons hitting the

photosite to the measured luminance at that photosite.

Combining these concepts, a noise model is assumed similar to that of (Tsin et al., 2001).

At a high level, an image (I) can be decomposed into the actual signal (E), fixed pattern

noise (Nf ), and temporal Poisson shot noise which is approximated with zero-mean Gaussian

distributions. Thermal dark current sensor noise (Nc) is modeled with constant variance while
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shot noise (Ns) is modeled with a variance dependent on exposure time and intensity:

I = E +Ns +Nc +Nf . (4.1)

To simplify this model, a total noise variance, σi, is calculated for a sensor and the sum

of temporal noise is labeled as Nt:

I = E +Nt +Nf . (4.2)

It is assumed that dark current noise and fixed pattern noise Nf can be removed via

subtraction of a reference dark image at the same temperature and exposure settings. Photon

shot and readout noise are the primary problems, but they are assumed zero-mean, so if

multiple samples of the same pixel from temporally adjacent frames (M) can be found, their

average will reduce the contribution of the per-frame error Nt(m) (computing the mean of

n samples improves the precision of the luminance readings by a
√
n factor). However, a

significant problem for dealing with dark areas captured with CCDs is that the amplitude of

sensor read noise is independent of exposure whereas photon shot noise varies linearly with

exposure time. Therefore, read noise is more significant than shot noise at very dark pixels

and, likewise, the SNR is comparatively smaller.

lim
M→∞

1
M

[
M∑

m=0

[
E +Nt(m) +Nf

]
−Nf

]
= E. (4.3)

As an aside, the term “salt-and-pepper noise” is often used to describe significant dark

current and photon shot noise that makes random pixels in the image appear very different

(either brighter or darker) than their correct value. Salt and pepper noise also may indicate

actual corruption of the image itself, either by electronic file corruption or physical occluders

in the imaging system. In this work, the term “shot noise” is generically used to refer to

photon shot noise, but may also include contributions from read noise and temporal thermal

noise if they are particularly strong.

Another source of noise is due to quantization, which occurs at the lowest end of a sensor’s
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dynamic range. With each additional bit used for luminance, the number of intermediate

values is doubled. Thus, far more subtle detail is visible in brighter objects. This is noticeable

when a linear gain factor is applied to a dark image, resulting in significant stair-stepping of

luminance values because intermediate values could not be represented in so few bits.

In this work, it is assumed that quantization errors can be overcome by averaging many

samples, as in Equation 4.3, to achieve sub-integer luminances. However, a more robust model

(PQ-noise) is presented by Alter et al. (2006) where it is shown that the averaged fractional

luminance is biased toward integer results, as a function of the number of photons required to

achieve each luminance level. In effect, the quantization error does not completely cancel out.

In that work, a robust non-Euclidean luminance dissimilarity metric is also described that

could be used to supplement the dissimilarity values throughout this chapter at the expense

of significantly increased computation.

Note that these model assumptions are not true for compressed video footage, where

quantization is non-uniform both spatially and across frequencies. In this work, a linear

camera response is also assumed, which is true for raw CCD samples, but not for the hidden

post-processing found in many camcorders.

Given LDR video, the problem now becomes enhancing it to reduce the sensor noise and

quantization errors. Now, a computational enhancement method is presented that extends

the exposure time of each sample while simultaneously reducing noise.

4.2 The Virtual Exposure Camera for the Enhancement of

LDR Video

The Virtual Exposure Camera (VEC) is a model for analyzing and enhancing LDR video

with computational video concepts. The VEC model identifies poorly exposed regions of

video and increases precision by simulating longer exposure times. This simulation involves

temporal integration (filtering) of the contributions of as many pixel values as would have

been captured over the interval of the longer exposure. Figure 4.2 illustrates the high-level

VEC processing model, which will now be discussed. The specifics of implementation of its
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Figure 4.1: A frame from a video processed using the Virtual Exposures Camera (VEC)
model. Upper Left: original frame; Upper Right: histogram stretched version; Bottom Left:
red = number of temporal pixels integrated, green = number of spatial pixels integrated;
Bottom Right: the VEC result after filtering and tone mapping.

Figure 4.2: The VEC model for processing LDR video. Since no single frame contains suffi-
cient information for noise reduction and tone mapping, spatio-temporal processing is done
with knowledge of recent frames and how tone mapping was applied. Rudimentary tone
mapping is performed before filtering to guide the adaptive filter’s settings.
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components are presented in the following sections.

An important relationship is that the amount of filtering (“Combine/Filter” in Figure 4.2)

necessary at each pixel relies on how bright that pixel eventually will be displayed, as to avoid

amplifying pixels with sensor and quantization noise (i.e., improving that pixel’s precision).

This is equivalent to determining how many pixels are additively combined to achieve each

new per-pixel exposure time, called the gain factor λ. For example, if the desired exposure

time is 10 times greater than the input exposure (i.e., λ = 10), this is equivalent to additively

combining 10 similar exposures, or averaging 10 exposures together then amplifying the value

by 10. The former is similar to holding the shutter open across exposures to achieve a longer

exposure, while the latter implies filtering to improve precision and remove noise prior to

amplification, although both are equivalent.

For the VEC, λ is defined as the ratio of the output luminance of a pixel to its input

luminance. The luminance increases because, at the end of the VEC pipeline, a tone mapping

algorithm (“Exposure/Tone Map” in Figure 4.2) is applied to the result, targeted at improving

the visibility of poorly exposed areas and further reducing noise.

However, the tone-mapped result cannot be known prior to actually performing the fil-

tering, which in turn needs to know the tone-mapped result to determine λ. To overcome

this circular dependence, an estimate of the post-filtered, tone-mapped luminance is used

to determine λ. The approximated tone mapping is found by applying a spatially uniform

tone-mapping function m(x, ψ) to a Gaussian blurred version of the pixel (to approximate

the ASTA output). This tone mapping then determines λ which is used by ASTA to actually

filter the pixel. The result of that filtering is then tone mapped to find the VEC result.

As a matter of implementation, the VEC model treats video as a FIFO queue of frames,

where filtering occurs in the current frame but with knowledge of the frames that come before

or after it (in a real-time, low latency system, the future might not be known). This allows

information from temporally adjacent samples to be integrated into the current frame (as in

any computational video approach) but without having to keep the entire video in memory

at any given time. As in Proscenium (Chapter 3), pixels are indexed using (x,y,t) notation,

with t being the frame number.
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To begin analyzing the VEC process, the noise reduction and extended exposure filter will

be discussed. Then, in Section 4.2.2, the tone mapping approach is presented.

4.2.1 The ASTA Filter

The underlying noise reduction filter used in my approach for enhancing LDR videos, the

Adaptive Spatio-Temporal Accumulation (ASTA) filter, seeks out similar pixels to integrate

together to simultaneously extend the exposure time and reduce noise. Two major factors

affect how ASTA filters: how many pixels it wants to combine (λ) and if these pixels are in

an area of the image with motion. ASTA adapts by transitioning between temporal-only and

spatial-only bilateral-inspired filtering while choosing its support based on local illumination.

To begin, the progression of filters that are part of ASTA are presented (temporal and

spatial bilateral filters), followed by extensions to those filters in Sections 4.2.1.3 and 4.2.1.4,

and then a presentation of the ASTA filter in Section 4.2.1.5.

4.2.1.1 The Spatial Bilateral Filter

ASTA is based on the edge-preserving bilateral filter (Tomasi and Manduchi, 1998). As

detailed in the Previous Work, the bilateral filter performs a Gaussian smoothing that atten-

uates the contributions of pixels by how different their intensities are from the intensity at the

center of the kernel. Although a simple subtractive difference is often used to measure this

difference of intensities, here this notion is generalized to include non-photometric differences

which are also treated as dissimilarity values. A dissimilarity value is any relationship that

satisfies the following properties: D(x, x) = 0 and D(x, y) = D(y, x). A dissimilarity is metric

if the triangle inequality holds: D(x, y) +D(y, z) ≥ D(x, z).

As was shown in Section 2.3.1, the spatial bilateral filter centered at a pixel s with a

subtractive dissimilarity value D(p, s), is formulated as follows:

Js =

∑
p∈Ω

g(‖p− s‖, σh)g(D(p, s), σi)Ip∑
p∈Ω

g(‖p− s‖, σh)g(D(p, s), σi)
, (4.4)
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Figure 4.3: Left: The bilateral filter recovers the signal (blue) from the noisy input (red).
Right: The bilateral filter is unable to attenuate the shot noise because no other pixels fall
within the intensity dissimilarity Gaussian.

D(p, s) ≡ Ip − Is, (4.5)

and g(x, σ) ≡ 1
σ
√

2π
e
−x2

2σ2 . (4.6)

Here, the spatial kernel Ω is also formalized as

Ω =

 px = [sx − k, sx + k]

py = [sy − k, sy + k]

 . (4.7)

Three variables control the bilateral filter’s operation. First, σh controls how quickly

the spatial Gaussian falls off. The second, σi, controls the Gaussian dissimilarity weighting.

It attenuates the contributions of neighboring pixels that are that are too different and is

typically chosen based on an estimate of the signal’s SNR. Finally, k determines the kernel

size.

The bilateral filter does a good job of smoothing out small signal variations (imperfections)

while preserving edges, but it is incapable of removing shot noise from a signal (see Figure

4.3). When the filter kernel is centered on an outlier pixel, the intensity Gaussian will exclude

all other values, leaving it unchanged, which accentuates it compared to the otherwise cleaned

signal.

As an alternate approach to spatial filtering, applying the bilateral filter temporally, en-

abled by random access to frames by computational video, is now discussed.
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4.2.1.2 Bilateral Filtering in Time

In the case of a fixed camera, the best estimate of a pixel’s true value is predicted by those

pixels at the same location in different frames. In the absence of motion, a simple average of

all pixels at each (x, y) coordinate through time gives an optimal answer, assuming zero-mean

noise. However, averaging in the presence of motion creates ghosting artifacts. The solution

is to consider changes in a pixel’s value through time due to motion as “temporal edges”.

Because a bilateral filter maintains edges while providing noise reduction in areas with small

amplitude noise it will not filter across motion. Because of this, a temporal 1D-bilateral filter

is used as the basis of the ASTA noise reduction filter. Formally, the temporal 1D-bilateral

filter is created by using a standard bilateral filter (Equation 4.4) with the following Ω kernel:

Ω =


px = sx

py = sy

pz = [sz − k, sz + k]

 . (4.8)

A difficulty of applying a temporal bilateral filter is choosing an appropriate value for σi

(the dissimilarity falloff) that simultaneously removes noise while preserving motion based

entirely on differences of pixel luminances. If σi is too large, ghosting still results, and if σi

is too small, noise will remain. Therefore, an ideal value of σi often does not exist for noisy

videos.

4.2.1.3 Alternate Dissimilarity Values

As a solution to the typical bilateral filter’s inability to remove shot noise (both with spatial

and temporal bilaterals) mentioned in Section 4.2.1.1, alternate dissimilarity values D(p, s)

for the bilateral filter can be used. Specifically, instead of using a simple intensity difference,

an arbitrary function may be substituted that returns a value for each pair of pixels in a video

or image that may or may not be solely intensity-based.

For example, the dissimilarity value could be the difference between p and some statistic

of the local spatial neighborhood around s, making the filter more robust to shot noise. The

problem of choosing the intensity at the bilateral filter’s center as the sole reference was
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discussed by Boomgaard and Weijer (2002), but no suggestion of an alternative statistic was

given. A wide variety of other statistics could be applied to choose the s pixel’s intensity,

such as local minima, local maxima, or even other bilateral filters. Even measures not directly

associated with luminance at all could be used.

I propose a median-centered bilateral filter in which the value of s would be determined

by a small kernel median filter centered at the bilateral kernel’s center to improve quality in

noisy image areas. This is useful for spatial filtering (and will be used later as part of ASTA),

but does not consider temporal filtering, which is preferred when no motion is present. Thus,

I now discuss an improvement targeted at temporal bilateral filtering.

4.2.1.4 Spatial Neighborhood Dissimilarity Value

For the purposes of improving temporal bilateral filtering, I propose a specific new dissimilarity

value. This dissimilarity value compares the local spatial neighborhoods centered at the same

pixel in different frames to improve the distinction between noise and motion. Equation

4.9 shows this normalized Gaussian weighted dissimilarity for an n × n neighborhood and a

temporal edge tolerance of σe.

D(pxyt, sxyt) ≡

sx+n∑
x=sx−n

sy+n∑
y=sy−n

g (||x− px, y − py||, σe) |Ix,y,pt − Ix,y,st |

sx+n∑
x=sx−n

sy+n∑
y=sy−n

g (||x− px, y − py||, σe)

. (4.9)

The difference between two pixels’ intensities does not provide enough information to

judge if they are significantly different. However, by comparing spatial neighborhoods, a

judgment can be reached. Thus if only a small percentage of pixels change, it is assumed to

just be noise so averaging into the filter occurs. However, if many pixels change, it is assumed

to be a more significant event, so no blending occurs. For clarification, despite the fact that

neighborhoods are being are compared, only the pixels at the center of each neighborhood

are ultimately blended together. This neighborhood size, often between 3 × 3 and 5 × 5,

can be varied depending on noise characteristics, as can σe (usually between 2 and 6). This

neighborhood dissimilarity value is inspired by correspondence measures frequently used in
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Figure 4.4: Illustration of the spatial neighborhood dissimilarity value used in temporal fil-
tering. The original frame is shown on the left. Each (x,y) for a pair of nearby frames are
shown in the middle image. Two metronome arms are seen because the dissimilarity value is
based on absolute value. The right image is the same frame processed using VEC with both
ASTA and the tone mapper.

stereo imaging. Both Sum of Absolute Differences (SAD) and Sum of Squared Differences

(SSD) have been implemented and achieve similar results, although SSD occasionally creates

artificially sharp edges. Figure 4.4 illustrates the SAD version.

4.2.1.5 Implementing ASTA

The ASTA filter is now presented which adaptively combines the benefits of spatial and

temporal bilateral filtering. Specifically, the filter adapts from the temporal bilateral filter

(with the spatial neighborhood dissimilarity value) to the median-centered spatial bilateral

filter to achieve the exposure target λ determined by the VEC model.

First, consider that if only temporal bilateral filtering with the spatial neighborhood

dissimilarity value is used, and it is applied to an area of high motion, only the center pixel

of the kernel will make a sizable contribution to the result. In this case, the filter would not

integrate enough pixels to achieve the desired gain factor and the result will be unchanged.

To overcome this problem, ASTA adapts to its surroundings by finding enough pixels

to integrate even in the presence of motion. For a static pixel, ASTA reduces to a temporal

bilateral filter with the spatial neighborhood difference dissimilarity value. However, if it does

not find enough similar pixels to achieve the desired exposure it transitions to a spatial-only

median-centered bilateral filter, as shown in Figure 4.5. Like Yee et al. (2001), ASTA also
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exploits the psychophysical phenomenon that in areas of motion, the human visual system’s

ability to perceive high frequencies is reduced. Thus, in areas with insufficient temporal

information due to motion, it transitions to spatial filtering.

In its implementation, ASTA can be conceptualized as a voting scheme, where each vote

is a measure of the support of the filter. Before ASTA is run on a pixel, the total number of

required votes λ is already known. The temporal bilateral filter gathers some votes, and if

they are not sufficient, more votes are gathered from the spatial bilateral filter.

The actual vote target is defined as λ × g(0, σh) × g(0, σi). The factor g(0, σh) × g(0, σi)

is used as the definition of a vote because it is the contribution to the denominator of the

bilateral filter from a pixel that is an exact match in space and intensity (D(x, y) = 0). The

larger the dissimilarity value, the lower its contribution to the denominator is. Thus, by

analyzing the denominator of a bilateral filter, it can be determined if a sufficient number of

votes were tallied. ASTA is thus formalized in Equation 4.10. The terms n and d represent

the numerator and denominator of Equation 4.4, respectively.

nT
dT

= temporalBilateral(x, y, t, σh, σi),

nS
dS

= spatialBilateral(x, y, t, σ′h, σ
′
i),

ω = λ× g(0, σh)× g(0, σi),

ASTA(x, y, t, λ, σi, σ
′
i) =


nT
dT
, dT ≥ ω

nT +nS
dT +dS

, dT < ω AND dT + dS < ω

nT +nS
ω−dT

dS
ω , dT < ω AND dT + dS ≥ ω.

(4.10)

ASTA adapts its filtering settings based on the number of pixels it wants to combine.

First, not every pixel could ever get a full vote, because even though it may have the same

neighborhood it is attenuated by the distance Gaussian. Therefore, the temporal filter kernel

size and Gaussian σh are chosen dynamically such that if every comparison were a perfect

match, dT ≈ 2 × ω. Similarly, if the vote count for the temporal bilateral filter comes up

short, the spatial bilateral filter attempts to have the remaining number of votes fall within

the area of one standard deviation of its distance Gaussian by dynamically choosing σ′h. The

remaining sigmas, σi for the temporal bilateral (and σe for its dissimilarity value) and σ′i for
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Figure 4.5: Illustration of the temporal-only and spatial-only nature of ASTA. The temporally
filtered red pixels are preferred to be integrated into the filter, but if not enough are similar
to the center of the kernel, the blue spatial pixels begin to be integrated.

the spatial bilateral, are held constant in each video’s processing.

Temporal bilateral filters are run on the image’s luminance and mapped to each channel,

but only spatial filtering is done on each color channel. Furthermore, spatial filtering is done

in the log domain, whereas temporal filtering is not. This is because, in very dark areas, it is

difficult to choose σi in the log domain for the spatial neighborhood dissimilarity due to the

combined contributions of noise fluctuations that each become much larger in log space.

So far, it has been assumed that the camera used to capture footage is stationary, assuring

spatial correspondences for background pixels. For moving cameras, the shearing operations

described for Proscenium are used. The camera motion is removed by shearing the volume,

then the ASTA algorithm can be applied, and the shear removed to achieve the desired result

with the original motion.

Now, the problem becomes finding λ, which is a function of the LDR tone mapping

operation. Note, the tone mapping is used again after running ASTA to refine the result

because more accurate tone mapping can be performed with decreased noise.

4.2.2 LDR Tone Mapping

The VEC’s tone mapping approach is now presented which determines the per-pixel amplifi-

cation of imaged pixels. Most tone mapping approaches attenuate luminance levels, however,

with LDR, luminances need to be increased. Here, the HDR tone mapping approach of
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Durand and Dorsey (2002) is modified to consider the specific issues of LDR videos, shown

in Figure 4.6.

The VEC’s tone mapping approach considers the notion that SNR varies with intensity

(as shown in Section 4.2.3). Thus, details in dark regions are less accurate than those in

brighter regions. A tone mapper specialized for underexposed video should therefore associate

a confidence level for details based on their luminous intensity. For instance, in the brightest

areas of a video where the CCD received a reasonable exposure, the mix of details and large-

scale features should be adjusted to achieve the tone mapping. In darker areas the details

should be attenuated to suppress noise.

The tone-mapping approach of Durand and Dorsey (2002), discussed in Section 2.4.2,

separates an image into details and large-scale features. Subtracting the original log-image

from a bilaterally filtered log-image provides an estimate of the image details. Durand and

Dorsey then attenuate the large-scale features by a uniform scale factor in the log domain to

reduce the overall contrast of the HDR image, but leave the details untouched. This is not a

problem for low-noise source images.

However, for LDR tone-mapping, details and large-scale features need to be processed

with different pipelines. Specifically, detail features need to be attenuated based on their

estimated accuracy, as determined by local luminance, and large-scale features need to be

adjusted to achieve the desired contrast. These two signals are then remixed into the output.

For this purpose, a non-linear mapping function is introduced to serve both mappings.

This non-linear mapping function, with independent parameters, is used to both attenuate

image details and to adjust the contrast of large-scale features. It obeys the Weber-Fechner

law of just-noticeable difference response in human perception but provides a parameter to

adapt the logarithmic mapping in a way similar to the logmap function of Drago et al. (2003)

and Stockham (1972). The mapping is given by:

m(x, ψ) =
log

(
x

xMax(ψ − 1) + 1
)

log(ψ)
. (4.11)

The white level of the input luminance is set by xMax and ψ controls the attenuation

profile. As shown in Figure 4.7, the shape of the detail attenuation and contrast mapping
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Figure 4.6: A flowchart of the entire process for the Virtual Exposure Camera, including
detail of the LDR tone-mapping process. The highlighted areas show the different processing
paths of large scale and detail features.
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Figure 4.7: Plots showing the non-linear LDR tone mapping function. The left plot shows how
the function does not have as steep a slope for luminances near 0 as does gamma correction
as to not over-accentuate dark regions (γ=2.0 for gamma correction, ψ = 64 for m(x, ψ)).
The inset shows that over the rest of 0-255, they are mostly similar. The right plot shows a
family of m(x, ψ) curves of ψ = 2 (the most linear) through ψ = 1024 (the most curved).

function, m(x, ψ), is similar to a traditional gamma function, but it exhibits better behavior

near the origin. As noted by Drago (2003) the high slope of standard gamma correction for

low intensities can result in loss of detail in shadow regions. This is particularly troublesome

for underexposed images like the LDR sources considered here.

Given the large-scale/detail feature separation of Durand and Dorsey (2002) and the

m(x, ψ) mapping function, the LDR tone mapping process shown in Figure 4.6 can be con-

structed. The tone mapping begins by extracting the luminance of each frame and the

chrominance ratio of each color component as discussed by Eisemann and Durand (2004). A

bilateral filter is then applied to the log-image to extract the large-scale features. For tem-

poral coherence in the absence of motion, a temporal bilateral filter, with narrow support (a

small σi), is applied to maintain similar tone-mapped values from frame-to-frame. This result

is then subtracted from the log luminance of the original frame to yield the detail features.

To expand the dynamic range of the large-scale features (which are primarily in the lowest

bits of the imager), the linear intensities of the large-scale features are uniformly tone mapped

using Equation 4.11, with a ψ1 of approximately 40.

Separately, the log-intensities of the details are attenuated based on the brightness of the

linear large-scale features. Again, this is important to remove details from very dark regions
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that contain no useful information due to low SNR. If attenuated linearly, a pixel with a

brightness of .5 × xMax would have half of its high frequency masked. However, since the

confidence of details degrades most at dark values, details are also attenuated based on the

curve. For simplicity, the same curve from Equation 4.11 is used, but with a different ψ2

(often around 700.0), resulting in a desirably steep roll off for low intensities.

Finally, the log large-scale features and log detail features are recombined to generate

the final output luminance. Separately, noise in the chrominance is attenuated via standard

Gaussian blurring, taking advantage of the low spatial acuity for chrominance in the human

visual system. Finally, the luminance and chrominance ratios are then recombined into the

result. The results exhibit better overall use of the dynamic range with reduced detail features

in originally dark areas where they were assumed to not be correct.

4.2.3 Results

In this section, the quality of the VEC model is evaluated both qualitatively and quantita-

tively. However, straightforward evaluation is confounded by the coupled nature of the tone

mapping and ASTA filtering because they are designed to work together, yet no appropriate

comparison method exists. Furthermore, the video contains motion, which makes comparison

to average frames misleading. Alternatively, for completely static scenes, ASTA degenerates

to 1D temporal bilateral filtering, which eliminates the benefits of its adaptive nature. Thus,

in order to convey the quality of enhancement, a number of metrics are discussed.

All color video footage was captured using a Sony DFW-V500 4:2:2 uncompressed video

camera and a Point Grey Research Color Flea at 30 frames per second. The high-speed

grayscale footage used for the “Marshmallows” video was captured using a Point Grey Re-

search Dragonfly Express operating at 120 frames per second.

First, examples are shown of stills taken from video sequences with moving foreground

objects under low light. Figure 4.1 depicts the entire VEC process for a noisy piece of video

of “walking fingers” with a single, dim light source. The pseudo-color image demonstrates

how ASTA adapts its integration strategy in different areas of each frame. Figures 4.8 and

4.9 then show additional examples of the VEC system. Figure 4.8 illustrates the processing
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of a typical LDR frame, and Figure 4.9 shows initial poor utilization of dynamic range.

Next, I illustrate how the VEC model affects the underlying histograms. Figure 4.10

shows the histograms of raw and processed VEC results. ASTA does not noticeably change

the shape of the histogram from the original, but the tone mapped result shows the enhanced

dynamic range of the VEC approach. Also, the quantization artifacts are removed through

the VEC process, as seen in the histogram stretched version, because the ASTA filtering

improved the underlying precision of the video.

To further quantify the type of noisy LDR videos the VEC system is designed to handle,

the histograms and standard deviations at each luminance level are calculated. Table 4.2

gives a full breakdown of per-luminance errors, summarized in Table 4.1, for four LDR videos

(stills are shown in Figure 4.11). This data is also represented as plots in Figures 4.12 and

4.13. Given these values, it is clear that sensor noise dominates over quantization error. The

standard deviation of the noise grows slowly and linearly, meaning that it dominates dark

pixels, but becomes much less significant as intensities increase, as assumed in Section 4.1.

To arrive at these statistics without captured ground truth, this analysis was performed

on dark, static portions of these videos that contain very dark details that would most benefit

from the VEC system, but are also the noisiest areas. Given these regions, temporal averaging

is used to find the ground truth. As noted before, the downside to this style of analysis is that

ASTA tends to become a temporal-only filter in static scenes, which disregards its ability to

switch to spatial filtering. However, its spatial filtering element, bilateral filtering, has already

been analyzed in the literature (Tomasi and Manduchi, 1998).

Finally, to present the quantitative improvement of these videos, post-enhancement statis-

tics are presented in Table 4.3 for two representative videos. The video of marshmallows is

enhanced with the entire pipeline, hence it has a larger mean luminance because of tone

mapping. The video of a parking lot used tone mapping to configure the ASTA filter, but

the post-filtering tone mapping was never applied, hence it has a similar mean luminance.

A complete video enhancement process has now been presented that used only that video

as a source of information. Temporal and spatial filtering were used to find information,

because each pixel did not contain sufficient information to create a well-exposed image.
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Figure 4.8: A frame from a video processed using the VEC system. Upper Left: original
frame; Upper Right: histogram stretched version; Bottom Left: red = number of temporal
pixels integrated, green = number of spatial pixels integrated; Bottom Right: the VEC result
after filtering and tone mapping.
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Figure 4.9: A frame from a video processed using the VEC system. Upper Left: original
frame; Upper Right: histogram stretched version; Bottom Left: red = number of temporal
pixels integrated, green = number of spatial pixels integrated; Bottom Right: the VEC result
after filtering and tone mapping.
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Figure 4.10: Inspection of color histograms in the VEC process. From top to bottom: the
original video frame and its histogram; a histogram stretched frame and its histogram show-
ing quantization error; an ASTA processed frame and its histogram which is similar to the
unfiltered histogram; the tone mapped ASTA frame and its stretched histogram without
quantization error. Note that the vertical scale in these histograms is separately stretched to
show maximum detail in each.
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Figure 4.11: Images of four LDR videos with no enhancement, with histogram stretching,
and after being run through the VEC system. The marshmallows video shows a dart hitting
a stack of marshmallow, filmed at 120 fps. The second shows people walking around a stage.
This video is an excellent example of a “peaky” histogram where a few image elements are
well exposed, but nothing else is. The third shows a nighttime surveillance video of a parking
lot. Finally, a video with a moving camera is shown, enhanced using video shearing to align
samples spatially between frames.

Unprocessed Video Footage Statistics

Marshmallows Stage Parking Lot Panning Camera
Mean 6.535 2.182 2.964 5.345
Standard Deviation 2.536 1.130 1.742 2.437
SNR (Ratio) 2.577 1.931 1.701 2.193
SNR (dB) 8.223 5.717 4.616 6.821
Frames Analyzed 29 30 23 25

Table 4.1: Video noise statistics for the four example videos shown in Figure 4.11. Specifically,
these statistics are for dark, static regions in the video, for which the ground truth was
determined by temporal averaging.

69



Marshmallows Stage Parking Lot Panning Camera
Mean StdDev % StdDev % StdDev % StdDev %

0 2.469 0.17 0.966 30.34 1.562 0.64 3.688 1.12
1 2.445 3.13 1.043 61.6 1.659 15.05 2.464 15.31
2 2.437 13.8 1.176 75.96 1.730 61.71 2.419 44.98
3 2.451 30.39 1.275 86.24 1.747 88.37 2.368 58.4
4 2.462 42.31 1.330 92.63 1.713 95.82 2.300 65.61
5 2.487 49.18 1.357 95.92 1.713 97.35 2.254 70.21
6 2.485 57.85 1.373 97.26 1.744 98.03 2.249 73.81
7 2.499 69.18 1.408 98.3 1.794 98.59 2.259 77.18
8 2.522 76.92 1.452 98.88 1.793 99.12 2.293 79.64
9 2.589 83.82 1.479 99.27 1.785 99.53 2.338 82.13
10 2.619 90.78 1.537 99.55 1.822 99.83 2.381 84.77
11 2.639 93.52 1.565 99.65 1.864 99.91 2.383 87.64
12 2.685 94.67 1.573 99.69 2.050 99.94 2.390 90.07
13 2.705 95.85 1.520 99.7 1.844 99.95 2.381 92.43
14 2.726 96.75 1.589 99.72 1.880 99.96 2.352 94.72
15 2.756 97.73 1.553 99.74 1.915 99.97 2.361 97.88
16 2.746 99.14 1.706 99.77 2.075 99.97 2.399 99.75
17 2.762 99.9 1.835 99.8 1.533 99.97 2.481 99.97
18 2.747 100 1.646 99.84 2.198 99.98 3.504 99.99
19 3.128 100 1.398 99.86 1.872 99.98 3.217 99.99
20 None 1.682 99.92 1.796 99.99 4.637 100
21 None 1.740 99.97 2.320 99.99 3.141 100
22 None 1.766 99.99 2.221 99.99 4.650 100
23 None 1.208 100 2.045 99.99 None
24 None None 1.837 99.99 None
25 None None 0.000 99.99 None
≥26 None None 2.016 100 None

Table 4.2: Breakdown of image statistics for the videos shown in Figure 4.11. Percentages
shown are for the cumulative percentage of pixel luminances at or less than that value,
but standard deviations are for that luminance bucket only. The intuition is that although
noise does increase slowly along with luminance, the noise is a far greater percentage of the
luminance at dark samples than at bright samples. After processing, the exposures exhibit
an expanded dynamic range due to tone mapping, shown in the histograms of Figure 4.10.

VEC Footage Processing Statistics

Marshmallows Parking Lot
Original Full VEC Original ASTA Only

Mean 6.535 53.673 2.964 2.959
Standard Deviation 2.536 1.298 1.742 0.283
SNR (Ratio) 2.577 41.350 1.701 10.456
SNR (dB) 8.223 32.330 4.616 20.388
Frames Analyzed 29 23

Table 4.3: Video noise statistics before and after processing of two datasets shown in Figure
4.11. The marshmallows video was run through the entire VEC pipeline, resulting in tone
mapping which significantly brightens the footage. The parking lot video was only run though
the ASTA noise reduction, hence the similar mean but improved SNR. Again, all statistics
are derived from dark, static regions of the video.
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Figure 4.12: A plot of the SNR data from Table 4.2 showing the SNR of pixels at each
luminance level in four videos. The data in the table has been converted to SNR to clearly
show that as luminance rises, the noise level becomes less and less significant.
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Figure 4.13: A plot of the cumulative distribution of luminances (histogram) of the four
videos, using data from Table 4.2. This clearly shows that roughly only 3 bits of precision
(0-7) are being used to capture the LDR videos.
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4.3 Multispectral Low-Light Video Enhancement

In the remainder of this chapter, the alternate problem of enhancing visible-spectrum video

with additional information from a non-visible spectrum video is considered.

A significant issue in night-vision imaging is that, while IR imagery provides a bright

and relatively low-noise view of a dark environment, it can be difficult to interpret due to

inconsistencies with visible-spectrum imagery. Therefore, attempts have been made to correct

for the differences between IR and the visible-spectrum. The first difference is that the

relative responses in IR do not match the visible spectrum. This problem is due to differing

material reflectivities, heat emissions, and sensor sensitivities in the IR and visible spectra.

These differing relative responses between surfaces hinder the human visual system’s ability

to perceive and identify objects. The other difference is the IR spectrum’s lack of natural

color. Unfortunately, colorization (chromatic interpretation) of IR footage and correction of

relative luminance responses are difficult because there exists no one-to-one mapping between

IR intensities and corresponding visible-spectrum luminances and chrominances.

In contrast, visible-spectrum video is easy to interpret due to its natural relative lumi-

nances and chrominances, but visible-spectrum sensors typically fail in low-light and night-

vision situations due to poor sensor sensitivity. To achieve sufficient responses, long exposure

times must be used, making them impractical for video applications.

Because RGB video has desirable perceptual characteristics, I now present a fusion tech-

nique that enhances visible-light video using information from a registered and synchronized

IR video sensor (Figure 4.14). The goal is to create video that appears as if it was imaged

only in the visible spectrum and under more ideal exposure conditions than actually existed.

This differs from most multispectral fusion approaches that combine elements from all sen-

sors, creating a mixed spectral representation (Pohl and Genderen, 1998). It also differs from

learning-based methods that rely on sparse priors of the visible-light spectrum to enhance IR

(Welsh et al., 2002) because an IR/RGB pair is captured for every frame.

The fusion decomposes the visible-spectrum and IR-spectrum videos into low frequencies,

edges, and textures (detail features). Specifically, the visible spectrum considered here is 400-

700 nm and the IR spectrum is considered as either Short Wave Infrared (SWIR, 900-1700
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Figure 4.14: Diagram of the prototype multispectral imaging system mounted on an optical
bench. The incoming optical path is split with a cold mirror, which provides an efficient
separation of spectra, along with an IR pass filter to verify only IR reaches the IR sensor.

nm) or Near Infrared (NIR, 700-2500 nm). These decompositions are enhanced and fused

back together in a manner that corrects for their inherent spectral differences.

4.3.1 Fusion Overview

The video fusion can be broken down into four distinct stages:

1. Noise reduction of the RGB video

2. IR video normalization using ratio images

3. Decomposition of input videos into RGB luminance low frequencies, edges, and IR detail

features

4. Fusion of multispectral components into the RGB output

The LDR visible spectrum’s noise is reduced using bilateral filtering techniques (Section

4.3.2, “Prefilter” in Figure 4.15). This noise reduction improves the accuracy of the decom-

positions, particularly in static image areas. It also filters chrominance, which is provided by

the RGB and is processed in a separate pipeline (Figure 4.18).

Many visible-spectrum textures are corrupted by video noise and must instead be acquired

from the IR video. However, the IR textures cannot be transferred directly due to relative
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Figure 4.15: Illustration of the luminance processing of the fusion technique. The RGB lu-
minance signal (Y) provides the low frequencies. Assisted by the IR signal, the edges are ex-
tracted as well. The IR signal is normalized by a ratio of bilateral filters (large-scale features)
then its detail features (textures) are isolated. The right side of the diagram demonstrates
the linear combination of image components weighted by α and β.

luminance differences. Thus, the IR video is normalized to exhibit similar relative luminances

to the RGB image (Section 4.3.3.1, “IR Normalization” in Figure 4.15).

To extract sharp RGB edges a novel filter called the dual bilateral filter is introduced

(Section 4.3.3.2, “Dual Bilateral” in Figure 4.15). This filter uses shared edge-detection

information from both spectra simultaneously while considering sensor noise tolerances. It

also enables more robust IR normalization.

Finally, the extracted components are fused into a single video stream that contains

reduced noise, sharp edges, natural colors, and visible-spectrum-like luminances (Section 4.3.4,

“Fusion” in Figure 4.15).

4.3.2 RGB Video Noise Reduction

To begin, the visible spectrum video is filtered to improve the signal-to-noise ratio (SNR)

of static objects and to provide improved color reproduction. This allows for more accurate

decomposition and fusion later in the pipeline (Figure 4.15).

The ASTA filter in Section 4.2.1 provides a great starting place for the design of an

algorithm, especially its use of the spatial neighborhood dissimilarity value (Section 4.2.1.4).

However, for this multispectral fusion, the fallover to spatial filtering is not used, only the 1D

filtering aspect of the algorithm is included. Instead, it is improved in a different manner by

using additional IR information.
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To further improve the filtering, ideas are incorporated from the joint bilateral filter

introduced in (Petschnigg et al., 2004) and (Eisemann and Durand, 2004). Joint bilateral

filters allow a second image to shape the kernel’s weights. Thus, all dissimilarity comparisons

are made in one image, but the filter weights are applied to another. As was presented in

Section 2.5, this is accomplished by using a new dissimilarity value, in this case, based on the

IR video source:

D(p, s) ≡ IIR
p − IIR

s . (4.12)

For ASTA-style temporal filtering, this means that the n × n-neighborhood SSD motion

detection should occur in the IR video to determine the visible image’s filter support. This

is accomplished by modifying Equation 4.9 as follows:

D(pxyt, sxyt) ≡

sx+n∑
x=sx−n

sy+n∑
y=sy−n

g (||x− px, y − py||, σe)
∣∣IIR

x,y,pt
− IIR

x,y,st

∣∣
sx+n∑

x=sx−n

sy+n∑
y=sy−n

g (||x− px, y − py||, σe)

. (4.13)

The complete noise reduction technique is a temporal-only joint bilateral filter that uses

n× n SSD neighborhood dissimilarities calculated in the IR video to filter the visible video.

This de-noises the static regions of the RGB video and improves color reproduction.

In most cases, visible-spectrum motion can be detected in the IR video even in the pres-

ence of significant relative luminance differences between spectra. However, if the above

SSD bilateral neighborhood motion detection fails, the system can be made more robust by

replacing it with Equation 4.19, discussed in Section 4.3.3.2.

4.3.3 Video Decomposition Techniques

In this section, methods are described to decompose pre-filtered visible and IR videos into

separate components. These components are then assembled (in Section 4.3.4) into the final

fusion result. First, a per-pixel scaling of the IR video is introduced that normalizes it to

resemble the visible light video. This allows the detail features to be acquired from the IR

and appear correct when fused with RGB components. However, this normalization mapping
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requires knowledge of the large-scale features from the visible imagery, which cannot be

robustly extracted using existing bilateral filters because of the remaining confounding noise.

Therefore, an extension to the bilateral filter (the dual bilateral filter) is given to address

this problem. Because of its robustness, this new filter is also used to extract the image

components that provide sharp edges in the final fusion.

From this point on, the notation “Y” is used to refer to only the luminance channel of the

LDR visible-spectrum input. The chrominance channels, U and V, are separated from the

RGB video in YUV color space after pre-filtering (Section 4.3.2) and processed separately in

Section 4.3.4.

4.3.3.1 Y and IR Video Normalization

Before decomposing the input videos for fusion, their characteristics are adjusted to more

closely resemble the desired system output. To prepare the dark and underexposed Y, it is

histogram stretched to the display’s full range, often 0-255, or to an HDR range.

Since the eventual goal is to combine IR detail features with visual elements from the

visible image, the IR video, from which those detail features are extracted, is remapped to

better resemble the stretched Y video. These sources differ in both absolute and relative

luminances, so features transferred from IR to visible may not smoothly fuse. Therefore, by

correcting these luminance differences by modulating the IR per-pixel image statistics they

then resemble those of the Y video.

The concept of ratio images, discussed by Liu et al. (Liu et al., 2001), resembles this

normalization process. In their application, images were captured of two faces in neutral

poses (A and B). By assuming a Lambertian illumination model, given a new expression on

the first person’s face (A′) a similar expression could be simulated on the face of the second

person (B′) at each pixel (x, y) with the following modulation:

B′(x, y) = B(x, y)
A′(x, y)
A(x, y)

. (4.14)

In this IR normalization there exists no neutral pose image standard. Instead, to correct

differing relative responses, the ratio is the surface-to-surface luminance ratio. Since relative
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response differences are characteristic of surface types, it follows that their ratios in uniform

image regions are ideal for normalization. Uniform regions of the Y and IR videos can be

approximated with the spatial bilateral result, the large-scale features (YLS and IRLS).

Thus, the following formulation normalizes the IR video:

IR′(x, y) = IR(x, y)
YLS(x, y)
IRLS(x, y)

. (4.15)

This normalization is also similar to the per-pixel log-space texture transfers of Durand and

Dorsey (2002) and Eisemann et al. (2004) and to the linear-space modulation of Petschnigg et

al. (2004). However, this IR normalization is applied to the original images, not to just a single

component (such as their detail features). Normalization is crucial because of the significant

relative luminance differences between image sources. Normalizing the entire image before

decomposition may substantially change the image structure, meaning that pre-normalized

large-scale features may become detail features after normalization, and vice versa.

Spatial bilateral filters are run on both the visible and IR videos to obtain YLS and IRLS

respectively. For the well-exposed, relatively noise-free IR video, spatial bilateral filtering

extracts the large-scale features as expected. However, directly recovering the large-scale

features from the Y video using spatial bilateral filtering fails because it is confounded by the

remaining noise. Recall, from Section 4.3.2, that many samples are required to significantly

reduce noise and sufficient samples were unavailable in moving regions. Although adapting

to spatial filtering to handle these scenarios is an option (as was done in ASTA), here sensor

readings from both video sources are simultaneously used to accurately reconstruct the visible

video large-scale features for the normalization.

4.3.3.2 Dual Bilateral Filtering

The registered IR video can be used to filter the visible video while preserving edges in order

to extract the large-scale features. However, the IR joint bilateral filter, discussed in Section

4.3.2, cannot be directly used because of the inherent differences in spatial edges between the

two sources (Figure 4.23). As noted in Section 4.3, features often appear in one spectra but

not the other. The goal is to maintain all features present in the visible spectrum to avoid
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smoothing across edges. Therefore, multiple measurements are used to infer edges from the

two non-ideal videos sources: the IR video, with its unnatural relative luminances, and the

noisy Y video.

Therefore, I introduce a bilateral filter that includes edge information from multiple sen-

sors, each with its own estimated variance, to extract the Y large-scale features. Sensor noise

variance estimates are determined through analysis of fixed-camera, static-scene videos. In

the noisy visible video, edges must be significantly pronounced to be considered reliable. The

less-noisy IR edges need not be as strong to be considered reliable.

This information is combined in the bilateral kernel as follows. The Gaussian distributions

used by the bilateral filter’s dissimilarity values, shown in Equations 4.5 and 4.12, can each be

recast as the Gaussian probability of both samples p and s lying in the same uniform region

given a difference in intensity, denoted Up,s:

P (Up,s|Y ) = g
(
IY
p − IY

s , σY

)
, (4.16)

P (Up,s|IR) = g
(
IIR
p − IIR

s , σIR

)
. (4.17)

This requires estimating the probability of samples p and s being in the same uniform

region (i.e., no edge separating them) given samples from both sensors, P (Up,s|Y, IR). If the

noise sources in Equations 4.16 and 4.17 are considered independent, it can be inferred that:

P (Up,s|Y, IR) = P (Up,s|Y )P (Up,s|IR). (4.18)

From Equation 4.18 it is clear that P (Up,s|Y, IR) will be low if either (or both) P (Up,s|Y )

or P (Up,s|IR) are low due to detection of a large photometric difference (an edge). So, I

substitute Equations 4.16, 4.17, and 4.18 into Equation 4.4 to derive a dual bilateral filter

which uses sensor measurements from both spectra to create a combined dissimilarity value:

Js =

∑
p∈Ω

g(‖p− s‖, σ)P (Up,s|Y )P (Up,s|IR)Ip∑
p∈Ω

g(‖p− s‖, σ)P (Up,s|Y )P (Up,s|IR)
. (4.19)
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This dual bilateral is now used to extract the large-scale features from the visible-spectrum

video. The advantages of this approach beyond joint bilateral filtering are illustrated in Figure

4.23.

In the presence of appreciable single-pixel shot noise, the P (Up,s|Y ) measure can be con-

founded, resulting in edges being detected where none exist. It is therefore assumed that no

single-pixel detail in the noisy Y video should be considered an edge. To incorporate this

notion, the P (Up,s|Y ) term in Equation 4.19 should be calculated using a median-filtered Y

video that eliminates this shot noise (the Y video filtered by the dual bilateral is unaffected).

If desired, any remaining Gaussian temporal noise in the Y edge-detection source can be fur-

ther attenuated via bilateral filtering. This additional filtering is depicted prior to the dual

bilateral in Figure 4.15.

This framework also supports additional sensors by multiplications of P (Up,s|Sensor)

in both the numerator and denominator. Because of the normalized bilateral form, any

associated scalars will cancel out.

4.3.4 Multispectral Bilateral Video Fusion

The final step is to gather the necessary image components and fuse them together into the

result. However, first an optimal fusion for creating enhanced RGB visible-spectrum images

is considered. To reiterate, the goal is to reconstruct the RGB source in an enhanced manner

with the assistance of the IR imager only as needed.

Figure 4.16 illustrates two methods for decomposing images: Gaussian decomposition

into low and high frequencies and edge-preserving decomposition into large-scale features and

detail features. The image’s sharp edges lie in the area indicated by the dashed lines. To

construct the fusion, RGB luminance low frequencies, IR detail features, edges, and chromi-

nance are combined together. The rationale for these filtering and fusion choices are now

summarized.

Even in the presence of noise, the RGB luminance video (Y ) contains low frequencies of

sufficient quality. These provide correct relative luminances for large, uniform image regions.

The low frequencies (LowFreq) can be extracted by Gaussian smoothing the pre-filtered RGB
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Figure 4.16: Illustration of two common image decomposition methods and how those com-
ponents are combined by the fusion method. Gaussian smoothing of an image extracts its
low frequencies while the remainder of the image constitutes the high frequencies. Similarly,
edge preserving filtering extracts large-scale features and details. Edges are separated out
(the image components present in the high frequencies but not in the details) and used in the
output fusion.

luminance from Section 4.3.2 (YGaussian).

Because the Y details are most corrupted by visible-spectrum sensor noise, evidence for

them is sought in the normalized IR footage (IR′). Detail features (Details) are obtained

by subtracting the IR spatial bilateral’s large-scale features (IR′Bilateral) from its unfiltered

image (IR′) (Figure 4.16). The IR′ detail features are used for the entire output image,

including static regions, because, from (Grossberg and Nayar, 2004), the minimum signal

recoverable from a video source is the mean of the dark current noise at any pixel. Therefore,

there are textures in dark areas of the visible-spectrum video that luminance averaging cannot

reconstruct. In this case, the better-exposed IR′ footage provides those unrecoverable details.

Obtaining accurate edges (Edges) is crucial to the sharpness of the fusion output image,

yet the visible-spectrum edges were corrupted by noise during capture. On the other hand,

not all the edges are present in the IR footage, preventing a direct IR edge transfer. However,

the dual bilateral filter in Section 4.3.3.2 can extract enhanced visible-spectrum large-scale

features with additional IR measurements (Y IR′
DualBilateral). The edge components are isolated

by subtracting a Gaussian with matching support (YGaussian). Considering the image decon-

struction model (Figure 4.16), the edges complete the fusion along with the RGB luminance

low frequencies and the IR detail features.
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Histogram-Stretched Spatial Bilateral-Only
RGB Input Noise Reduction

Pre-Filtered RGB Lum. RGB Dual Bilateral
(Y ) (Y IR′

DualBilateral)

Original IR Input Normalized IR
(IR) (IR′)

RGB Low Frequencies IR Details (Amplified)
(LowFreq) (Details)

Edges (Edges) Fusion Output

Figure 4.17: Illustration of images at various stages of the multispectral fusion processing
pipeline associated with the variables used in Section 4.3.4. Specifically, note the quality
of the dual bilateral, the proper relative luminances of the normalized IR, and the image
components which constitute the final fused output. For comparison, the spatial bilateral-
only noise reduction is also shown. Note that although at this size the normalized IR and
dual bilateral Y images appear similar, the dual bilateral lacks texture details found in the
IR’.
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Equations 4.20 and 4.21 detail this entire luminance fusion process (this pipeline is also

shown in Figure 4.15 and depicted with step-by-step images in Figure 4.17):

LowFreq ≡ YGaussian, (4.20)

Edges ≡ Y IR′
DualBilateral − YGaussian,

Details ≡ IR′ − IR′Bilateral,

Y ′ = LowFreq + α(Edges) + β(Details). (4.21)

A linear combination of the image components determines the final reconstruction. For

the examples in the next section, α was set at 1.0 and β was varied between 1.0 and 1.2

depending on the texture content. Values of α greater than 1.0 result in sharper edges but

would lead to ringing artifacts. When α = 1.0, it is unnecessary to decompose LowFreq and

Edges, as Y IR′
DualBilateral contains both. Subsequently, Equation 4.21 becomes:

Y ′ = Y IR′
DualBilateral + β(Details). (4.22)

The UV chrominance is obtained from the pre-filtered RGB from Section 4.3.2. Gaussian

smoothing is used to remove chrominance noise (especially in the non-static areas not sig-

nificantly improved by pre-filtering). The full chrominance pipeline is shown in Figure 4.18.

Although it is possible to filter the UV in the same manner as the luminance (i.e., using the

detected edges to limit filtering across edges) doing so limits each pixel’s support compared

to Gaussian smoothing. Insufficient support leads to noise artifacts and local “blotchiness”.

Likewise, I chose to trade off sharpness for lower chrominance noise and thus rely on the low

spatial chrominance sensitivity of the human visual system to limit blurring artifacts.

4.3.5 Results

Having discussed the foundations of performing low-light, LDR enhancement using multiple

spectra, now the results are discussed. First, the specifics of capture are presented followed

by the processing of the actual multispectral datasets.
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Figure 4.18: Diagram of chrominance processing in the multispectral fusion pipeline. After
the RGB temporal noise pre-filtering, the signal is converted to YUV. The Y component goes
through the pipeline in Figure 4.15, while the U and V channels are Gaussian smoothed to
remove any noise where it was not removed by the pre-filtering (i.e., in areas of motion). Note,
pre-filtering is shown in both figures to illustrate when in the overall pipeline the luminance
and chrominance signals are split, but pre-filtering is performed only once.

The source RGB and IR videos are captured using two synchronized (genlocked) video

cameras sharing a common optical path. Two PointGrey Flea cameras (one grayscale and one

RGB) are used with the grayscale camera covered by a longpass filter passing only IR light

(780nm 50% cutoff, Edmund Optics #NT32-767). The two cameras are arranged as shown

in Figures 4.14 and 4.21. A cold mirror (reflects ∼90% of the visible spectrum, transmits

∼80% of the IR spectrum, Edmund Optics #NT43-961) is used as a beamsplitter because

the spectral sensitivities of these sensors are mutually exclusive. This increases the number

of photons reaching the appropriate CCD over traditional beamsplitting. Since each camera

has its own lens and sensor alignment, their optical paths may differ slightly. Therefore,

a least-squares feature-based homography transform (Wolberg, 1995) is used to register the

RGB video to the IR video prior to processing. The RGB sensor has a higher resolution, so

some downsampling occurs during the registration. A benefit of this two sensor setup is that

in well-lit environments, this same capture rig can also capture visible RGB footage.

For performing RGB and IR fusion, a combined sensor with sensitivity to all four channels

would be ideal, but instead multiple registered sensors are used along with a beamsplitter to

achieve a similar result. This type of multi-sensor configuration was recently used for multi-

sensor matting (McGuire et al., 2005). However, their system was configured using similar

cameras at differing focuses, as opposed to using cameras with varying spectral sensitivities.
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Because the IR sensor is an unmodified off-the-shelf imager, it is significantly less sensitive

to IR than specialized IR sensors, such as InGaAs SWIR sensors. Such high-end sensors would

be ideal for this fusion algorithm. Yet even with the current setup, the IR sensor is sensitive

up to roughly 1000 nm and provides sufficiently bright imagery for fusion. Also, there is

an added benefit from having similar Flea camera bodies, allowing for accurate alignment

between imagers.

The noise reduction filters in Sections 4.2.1.1, 4.3.2, and 4.3.3.2 rely upon σ values derived

from sensor noise characteristics in static environments. Experimentally, I found an average

σY of 8.78 for the RGB sensor and σIR of 2.25 for the IR sensor. However, I chose values of

σY =7.5 and σIR=2.5 to account for subsequent median and bilateral processing.

The first example, shown in Figure 4.19, shows a frame from a video sequence processed

using the multispectral fusion method. In this video, a person walks across the camera’s view.

Note that the plaid shirt, the plush crocodile, the flowers, and the writing on the paper in the

IR video do not match the RGB footage (Figure 4.23). With the fusion, the result contains

preserved details and reduced noise in all image regions. Figure 4.22 shows the improvement

in signal quality (mean variance) without loss of sharpness for a frame of this video. The

second example video, shown in Figure 4.20, shows the reconstruction of a moving robot.

This video poses similar problems to the previous example in addition to proper handling of

specular highlights.

Finally, Figure 4.17 illustrates the stages of the full processing pipeline by showing images

as they are filtered and fused through the system. The images were taken from a 20 frame

video with no motion.

4.4 Summary

In this chapter, two computational video methods were presented that take different ap-

proaches to solve the problem of enhancing low-light, LDR videos. The first approach im-

proved LDR videos with the Virtual Exposure Camera, which is a combination of an adaptive

spatio-temporal filter (ASTA) and a tone-mapping objective. The second approach addressed

the usage of an additional registered non-visible spectrum video source that had better visual
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Original RGB Original IR

Histogram-Stretched RGB Fusion Result

Figure 4.19: Result 1 - Upper Left: A frame from an RGB video of a person walking; Upper
Right: the same frame from the IR video; Lower Left: the RGB frame histogram stretched to
show noise and detail; Lower Right, the fusion result. Notice the IR video captures neither
the vertical stripes on the shirt, the crocodile’s luminance, nor the plush dog’s luminance.
Furthermore, note the IR-only writing on the sign. These problem areas are all properly
handled by the multispectral fusion.

characteristics. By using multispectral noise reduction and decomposition the fusion appears

to be imaged only in the visible spectrum. Thus, by considering information in multiple

frames (and multiple spectra) these methods are capable of improving image quality.

The results of these enhancements are videos of the exact same duration as the original

(i.e., each sample in the input is enhanced and included in the output). In the next chapter, an

algorithm addressing the problem of significantly altering the video (by drastically shortening

its duration) is presented that combines spatial analysis with temporal modification.
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Original RGB Original IR

Histogram-Stretched RGB Fusion Result

Figure 4.20: Result 2 - Upper Left: A frame from an RGB video of a moving robot; Upper
Right: the same frame from the IR video; Lower Left: the RGB frame histogram stretched
to show noise and detail; Lower Right: the fusion result.

Figure 4.21: A photograph of the multispectral fusion capture setup with a Point Grey Color
Flea capturing the visible-spectrum RGB and a filtered Point Grey Grayscale Flea capturing
the non-visible IR spectrum.
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Histogram-Stretched Input IR
Input RGB Luminance of Equal Mean Fusion Output
Mean Variance = 418 Mean Variance = 91.5 Mean Variance = 73.6

Figure 4.22: Comparison of the mean spatial variance within a 3 × 3 window and power
spectrum of each of the input images and the fused output. The original noisy RGB luminance
input (left) is shown with its mean variance and spectral noise. As in the multispectral
fusion process, it is histogram stretched to use more of the display’s range. The less-noisy
IR input (middle) exhibits less high-frequency noise and a lower mean variance than the
visible spectrum sensor. For a fair comparison, the histogram of the IR was also stretched
to match the visible-spectrum mean, a step not part of our fusion. The fusion result (right)
is significantly improved with reduced noise and mean variance while still preserving high-
frequency content. These statistics are similar to the IR video, yet are achieved with a
visible-spectrum-like response.
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Plush Pug

Printed Text
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Spray Bottle

Intentionally Hidden IR Writing

Figure 4.23: Illustration of the difference in quality between the joint bilateral filter
((Petschnigg et al., 2004), (Eisemann and Durand, 2004)) and the new dual bilateral filter,
each configured for the best output image quality. The desired output is a enhanced version
of the RGB luminance (Y) that preserves all edges. Because the joint bilateral filter relies
on IR edges to filter the Y, it cannot correctly handle edges absent in the IR due to relative
luminance response differences. This results in blurring across the non-detected edges in the
result. However, the dual bilateral filter detects edges in both inputs (weighted by sensor noise
measurements) and is thus better at preserving edges only seen in the Y video. Again, note
that the target filter output should resemble the visible spectrum, meaning objects visible
only in IR should not be included.
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CHAPTER 5

COMPUTATIONAL TIME-LAPSE

VIDEO

In this chapter, I consider the application of computational video techniques to altering the

duration of a video by temporal resampling. It has already been established that over the

course of a video, the same objects are imaged repeatedly, implying an underlying redundancy

across video frames. Thus, those videos should be representable in fewer frames with reduced

redundancy, thus shortening their duration. An extreme case of this, condensing standard-

frame-rate videos into very short time-lapse videos is now presented that can yield superior

time-lapse results to traditional capture methods.

I now present such a system for generating time-lapse videos with improved sampling,

reconstruction, and enhanced artistic control beyond traditional time-lapse capture methods.

Traditional time-lapse methods use uniform temporal sampling rates and short, fixed-length

exposures to capture each frame. As is the case with any periodic sampling method, the

sampling rate must be sufficiently high to capture the highest-frequency changes, otherwise

aliasing will occur. This places an upper bound on the capture interval of the time-lapse

output if it is to be free of aliasing artifacts. When shorter versions of the output are desired,

the filmmaker is forced to make a tradeoff between aliasing, which exhibits itself as popping

artifacts in time-lapse videos, missing motions, or pre-filtering, which introduces blurring.

My computational time-lapse video approach simplifies time-lapse capture by removing

the need to specify a sampling rate and exposure time a priori. This is accomplished through

non-uniform sampling to select salient output frames and non-linear integration of multiple

frames to simulate normalized long exposures. However, it requires the input footage be

initially captured at video rates. As a post-process, it has knowledge of the entire video, so



sampling and exposure settings are based on the entire video’s content.

This system relies on two techniques. The first chooses the constituent frames in the

output time-lapse by calculating an optimal non-uniform downsampling of the video-rate

footage. By downsampling after capture, the most important frames can be selected with

knowledge of all motions and changes that occur during the video. Furthermore, it corrects

the case where the interesting action occurs out of phase with the uniform sampling. This

sampling is derived from a dynamic programming approach to curve approximation that can

easily be tuned to support any error metric defined between a pair of frames. I discuss error

metrics to achieve a variety of effects, including maximizing change, minimizing change, and

controlling sampling uniformity.

The second technique simulates a virtual camera shutter by combining sequential frames

together to simulate extended exposure times. This virtual shutter acts as a non-linear down-

sampling pre-filter that reduces aliasing artifacts. One virtual shutter setting provides motion

tails that depict dense motion paths over time similar to the multiple-exposure motion studies

of Muybridge (1955). However, by leveraging non-linear frame combinations possible through

computational video, combinations not achievable via traditional photography are achieved,

including “over” compositing, maximum, and median operations. These filters are extentions

to the original spatio-temporal filters introduced in the Proscenium architecture in Section

3.2.4 and also related to the synthetic exposures generated by the Adaptive Spatio-Temporal

Accumulation (ASTA) filter described in Section 4.2.1.

Independently, each of these two techniques improves the quality of time-lapse videos.

When used in combination they provide a flexible tool for constructing time-lapse videos

that are both non-uniformly sampled and have variable non-linear exposures, neither possible

without computational video methods.

5.1 Traditional Time-Lapse Techniques

To contrast my computational time-lapse video approach against existing approaches, the

two most common methods of configuring a film-based time-lapse capture setup are now

presented. The most common employs a device called an intervalometer that takes a fixed-
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Uniform Sampling

Uniform Sampling With Motion Tails

Non-Uniform Sampling

Non-Uniform Sampling With Motion Tails

Frame n− 1 Frame n Frame n+ 1

Figure 5.1: Sequences of three consecutive time-lapse frames that illustrate the sampling issues
of traditional time-lapse methods and the computational time-lapse techniques presented here
that reduce aliasing. In a standard uniform sampling, the truck appears in only a single frame,
resulting in “popping”. Adding motion tails makes the truck appear more noticeable and in
multiple frames. Using non-uniform sampling chooses additional output frames containing the
truck. Finally, a result is shown combining both techniques. The motion tails are shortened
because less motion occurs between frames.
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Figure 5.2: Diagram of the flow of the computational time-lapse video system. Video-rate
footage (s) is input into the sampler, which chooses the uniform or non-uniform sampling (v)
that best matches the user’s desired duration and characteristics. This sampling determines
the times and durations of the virtual shutter’s non-linear synthetic exposures.

length exposure every few seconds, with sampling interval Ts (Equation 5.1). Doing so risks

missing motions that occur between exposures or undersampling fast motions which result in

aliasing upon playback. A less common approach, used in low-light conditions, takes longer

exposures throughout the entire time step. As the exposure length increases, so does motion

blur. Motion blur guarantees high-frequency motion will be imaged, but that motion will be

blurred and often fades into the background.

Ts =
EventDuration

totalOutputFrames− 1
. (5.1)

As digital still photographers have long known, it is better to capture at high resolutions

and perform spatial downsampling and/or cropping as a post-process, which allows multiple

alternatives to be explored and tried non-destructively. I argue that a similar philosophy

can be applied to the construction of time-lapse videos. This means capturing at a higher

frame-rate than the Ts step dictates, then temporally downsampling in a controlled post-

processing environment with global knowledge of the video. The entire computational time-

lapse video approach assumes a video-rate input and transforms it into a shorter video through

a combination of downsampling and integration techniques. Until recently, capturing long

videos at high resolutions was impractical due to storage requirements, but it is now possible

to store days of video on most commodity PCs.
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In computational time-lapse, time is discretely sampled into frames in the original video-

rate footage. Taking a single short exposure at each time step (i.e., one sample from many

samples) is a non-optimal downsampling, potentially generating temporal aliasing. The dis-

crete sampling interval Td is a re-expression of Ts:

Td =
totalInputFrames

totalOutputFrames− 1
. (5.2)

Considering this uniform downsampling as modulation with an impulse train, the train’s

phase (the offset of the first sample frame) can drastically alter the results. Leaving the

shutter open for a longer fraction of each time step is analogous to convolving the source

signal with a low-pass filter prior to downsampling. While this decreases aliasing, it is not

ideal for conveying motion. The computational time-lapse video methods instead provide

flexibility both in which frames are chosen and how samples are integrated to simulate an

exposure.

Another class of time-lapse systems uses feedback instead of an intervalometer. Using

a CCD attached to a computer, the last recorded exposure is compared with the most re-

cent exposure. If they are dissimilar enough, the new exposure is recorded and the process

repeated. Similarly, some surveillance cameras use motion detectors to trigger video-rate

recording. However, the methods presented in this chapter generate videos of user-specified

duration whereas these other approaches cannot.

Now, having considered traditional sampling at time of capture, we can consider the

problem of optimally sampling a completely known signal in a post-process, first in 1D then

in video.

5.2 Non-Uniform Temporal Sampling

In this section, I develop a non-uniform temporal sampling algorithm to select the frames of a

time-lapse video. The user specifies the duration and visual characteristics of the time-lapse

output then the sampler chooses the frames accordingly. To explain this technique, I revisit

the 1D piecewise linear signal approximation technique of Perez and Vidal (1994) that forms
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the basis of the sampler. This algorithm is then extended to video, modeled with a unique

high-dimensional vector signal through time. Finally, alternate error metrics and algorithmic

optimizations are discussed.

5.2.1 1D Signal Approximation

To understand the computational time-lapse video sampling approach, first consider the prob-

lem of finding a piecewise-linear approximation of a sampled 1D signal s of length N . The

goal is to find the optimal subset, v, of M samples from s, that, when linearly interpolated be-

tween their original positions, best reconstruct s. The signal is approximated by interpolating

samples already present in s, thus only the indices of v need to calculated. In computational

geometry, this problem is known as min− ε (Perez and Vidal, 1994).

The quality of a reconstruction can be measured by the sum of squared errors between all

samples sk in the original signal s and their values in the interpolated signal. Therefore, the

optimal solution has the lowest total error over all of its linearly-interpolated segments. The

error incurred by each piecewise segment is calculated with the metric ∆(i, j): the error given

two sample indices i and j from the original signal s that form a segment’s endpoints. ∆(i, j)

is a sum-of-squared error metric between all points on that interpolated segment (modeled

with slope bij and y-intercept aij) and the sk samples they approximate:

∆(i, j) =
j∑

k=i

((aij + bijk)− sk)
2 , (5.3)

aij = si − biji , bij = (sj − si)/(j − i). (5.4)

We now seek D̂(s,M), the optimal vertex set v, that results in the minimum error recon-

struction of s when M = |v|. The reconstruction error is the total of the individual ∆(i, j)

segment errors:

D̂(s,M) = minv

M−1∑
n=1

∆(vn, vn+1). (5.5)
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The solution of D̂(s,M) can be expressed via the following recursive algorithm (Perez and

Vidal, 1994):

D(n,m) =


minm−1≤i≤n−1(D(i,m− 1) + ∆(i, n)),n ≥ m > 1

0, n = m = 1

+∞, otherwise

(5.6)

D̂(s,M) = D(N,M). (5.7)

This recursion can be efficiently solved with dynamic programming. The time complexity

of a näıve implementation is Θ(M ·N3), derived from computing the D(N,M) memoization

table of size M×N . Solving each D(N,M) requires finding the minimum of up to N different

segment possibilities. Evaluation of the underlying errors requires solving up to N points along

that segment. For further analysis of the time complexity and a pseudo-code implementation

for curve approximation consult (Perez and Vidal, 1994). Having established this optimal

sampling in 1D, I now extend it to video signals.

5.2.2 Min-Error Video Time-Lapse Sampling

One definition of an “optimal” time-lapse video is the video that retains as much of the

original motion and change as possible. However, this is not the only desirable time-lapse

output and in the following sections I discuss alternate time-lapse characteristics.

Now, consider finding the optimal M frame time-lapse video of an N frame 1 pixel movie.

This movie is modeled as a 1D signal of its luminance over time. To create a time-lapse

version, it must be determined which samples should be included in the output.

The curve-approximation algorithm from the previous section can be used to choose sam-

ples, as it includes samples that adaptively model a signal to achieve a duration M . It

guarantees that as many signal changes as possible will be included by the interpolated sam-

ples v. Playing back the v samples sequentially without interpolation gives a time-lapse video

that represents the best non-uniformly sampled frames to approximate the full-length video.

I extend this idea to select the set of v frames that generate the optimal 2D time-lapse

96



video. A straightforward analogy to finding the optimal piecewise-linear approximation to a

1D curve is to find a set of frames that, when piecewise-linearly interpolated, best approximate

the original movie. This frame interpolation can be thought of as a “cross-fade movie” where

each of the v frames is blended together to create the interim frames. Again, these frames

include as much motion and change as possible in M frames.

I now modify the Perez and Vidal (1994) algorithm to process 2D videos. In Equation

5.3, the function ∆(i, j) specifies the error introduced when an interpolated segment exists

between frames i and j in a 1D signal. Because the interim frames between i and j are

omitted in the resulting time-lapse output, ∆(i, j) can also be thought of as the cost of

jumping between samples. The video is treated as a vector signal sxy
k (where k is a frame at

time t) evaluated under this metric. Like all computational video approaches, this method

relies heavily on random access to all of the video’s samples to generate these error metrics:

∆(i, j)xy =
j∑

k=i

(
(axy

ij + bxy
ij k)− sxy

k

)2
. (5.8)

Here, the error of a video segment (the segment’s error between each of its original frames

and the interpolated “cross-fade movie” frames) is the sum of the segment errors of all the

frame’s pixels. ∆(i, j) is from now on referred to as the min-error metric:

∆(i, j) =
∑

x

∑
y

∆(i, j)xy. (5.9)

As before, a dynamic programming solver is used to identify the v frames whose corre-

sponding interpolated segments have the lowest total error. These frames then become the

time-lapse output.

Although this solution produces useful results as-is, “shape” controls are included to

modify ∆(i, j). This way, the user can affect the impact of particularly low or high errors on

the final sampling. Specifically, I propose the following modified form:

∆′(i, j) = (β∆(i, j))α . (5.10)
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In many cases, α and β are near 1, and adjusting them affects sample clustering. For

videos with significant scene or sensor noise an advanced form, with a per-frame threshold

term γ, can be used:

∆′(i, j) = (β ×MAX (0,∆(i, j)−MAX(0, (j − i− 1)γ))α . (5.11)

Finally, the Perez and Vidal (1994) solution must be modified to force time to monotoni-

cally increase by adjusting Equation 5.6 to incur an error of +∞ when n = m, except when

n and m are both 1. This creates degenerate solutions for M > N , but that would imply a

non-time-lapse video output.

5.2.3 Min-Change Error Metric

The default algorithm generates time-lapse videos that preserve as much motion and change

as the duration M permits. Now, the construction of time-lapse videos is considered that

avoids including frames that are significantly different from other sampled frames. This means

choosing similar frames that minimize temporal aliasing by avoiding objects that “pop” in

and out.

The resulting v can be controlled by introducing the min-change error metric δ(i, j) that

may be used in place of ∆(i, j), the cost of a segment being included in v. Because dissimilar

frames should not be included sequentially in v, δ(i, j) is penalized based on the dissimilarity

between frames i and j. In other words, a low-error segment is now defined as one whose end

frames are similar and thus jumping between i and j will be minimally noticeable, i.e.,

δ(i, j)xy =
(
sxy
j − sxy

i

)2
. (5.12)

When the full-frame δ(i, j) is calculated, the result is a sum-of-squared difference between

the two end frames only (the interim frames do not affect the error of the segment/jump).

This calculation is reminiscent of the metric used for jump evaluation in Video Textures

(Schödl et al., 2000).
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As in Section 5.2.2, Equation 5.10 (substituted with δ(i, j)) may be used to “shape” the

errors to refine v. As before, α and β are near 1. If an offset is required, a per-jump γ error

offset form is suggested:

δ′(i, j) = (β ×MAX (0, δ(i, j)− γ))α . (5.13)

5.2.4 Enforcing Uniformity

Up to this point, it has been assumed that uniform sampling was undesirable. However,

if samplings become very non-uniform, as in the case of the minimum change error metric,

samples tend to cluster in close temporal proximity and everything else is ignored. This

results in the playback of a segment rather than a summation. Thus, I now introduce an

error metric that can be used in addition to the previous metrics to control the uniformity of

the sampling.

As in Section 5.1, the uniform discrete sampling interval Td can be determined. A unifor-

mity metric should attempt to include segments in v that are Td apart and penalize others

by how far they stray from Td. This is done with another error metric, Υ(i, j), this time with

a normalized penalty based on dissimilarity from Td:

Υ(i, j) =
j − i− Td

Td
. (5.14)

This metric alone is useless, since it results in a uniform sampling. When used in con-

junction with either the min-error ∆(i, j) or min-change δ(i, j) metrics from Sections 5.2.2

and 5.2.3 it acts like a spring force pulling the solution towards uniformity. Below, linearly-

weighted combinations are presented to accomplish this that are called the combined uniform

error metrics:

∆(i, j)combined = λ∆′(i, j) + (1− λ)Υ(i, j), (5.15)

δ(i, j)combined = λδ′(i, j) + (1− λ)Υ(i, j). (5.16)

Note, the shape variables α, β, and γ must act to normalize ∆′(i, j) and δ′(i, j) between
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Figure 5.3: Plots showing the uniform and non-uniform samplings v (circles) of the time-
lapse sampler on a variety of test signals. For each test, the number of output samples,
M , is 7. First, the uniform sampling always selects a constant interval. The min-error
metric minimizes the total sum-of-squared approximation error for the entire signal. The
min-change metric minimizes the total squared change between samples, sometimes resulting
in significant clustering in areas of no change. Finally, the combined uniform metric enhances
the min-change metric by pulling the solution toward uniformity.
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0 and 1 to be of relative scale to Υ(i, j). This and all of the computational time-lapse video

metrics are compared in 1D in Figure 5.3.

5.2.5 Efficient Calculation

Given the min-error, min-change, and combined uniform metrics, the user has a wide range

of time-lapse characteristics to select from. However, these approaches are designed for opti-

mality, not for speed. To accelerate the process, the efficiency of calculation is now discussed.

Perez and Vidal noted the complexity of the original min-error 1D line approximation

solution (Section 5.2.1) can be improved to Θ(M · N2) by incrementally solving ∆(i, j) for

sequential values of j when i is fixed. Equation 5.3 can be expanded as follows:

∆(i, j) = (j − i)a2
ij + 2aijbij

j∑
k=i

k − 2aij

j∑
k=i

sk

+b2ij

j∑
k=i

k2 + 2
j∑

k=i

s2k − 2bij
j∑

k=i

ksk.

(5.17)

In this form, each of the
∑j

k=i cumulative sums can be reused to find ∆(i, j + 1) by

recalculating ai,j+1 and bi,j+1 and adding the k = j + 1 values to the sums. This requires

storage of 5 double precision variables between iterations.

My additional optimization only requires the storage of 2 double precision variables and

an 8-bit luminance while significantly reducing the number of calculations. Doing so involves

subtracting si from all s and subtracting i from all indices, effectively moving the start of all

line segments to (0, 0). This eliminates a, which is always 0, but requires storage of si. The

solution of the slope bij remains unchanged, as now shown:

∆(i, j) = 2bij
j−i∑
k=0

(k(sk+i − si)) +
j−i∑
k=0

(sk+i − si)2 + b2ij

j−i∑
k=0

k2, (5.18)

j−i∑
k=0

k2 =
(j − i) + 3(j − i)2 + 2(j − i)3

6
. (5.19)

Although this is unnecessary for a single 1D signal, it is beneficial when processing millions

of video pixels.
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Even with this optimization, the slowest part of the solution method remains calculating

∆(i, j) for each segment. To accelerate the process, I introduce a final constraint: no two

sequential samples in v may be more than q frames apart from each other. In the array

containing all ∆(i, j) for every i, j pair, this is equivalent to solving a band of ∆(i, j) values

q wide (only i < j is solved, as time must move forward). This drops the time complexity to

Θ(M ·N · q).

Enforcing a maximum sampling interval q no longer guarantees an optimal solution be-

cause the system cannot generate time-lapse results with any sampling interval larger than q.

Care must be taken when choosing q because it impacts both the minimum and maximum

segment lengths. For example, if two adjacent samples are chosen in v, then a future segment

must become longer to cover the resulting gap. I typically chose a q 3 to 4 times larger than

Td to account for this.

The values of ∆(i, j) are pre-calculated and cached for later use. This allows the user

to interactively choose the “shape” variables α, β, γ, and λ without re-solving the underly-

ing metric. Again, these variables are purely for giving the user fine controls to tweak the

sampling.

A complete time-lapse sampling system has now been presented. However, many video

frames are not included in the final video, although they may contain useful information.

Use of the min-error metric implies as much motion and change should be included in the

output as possible, but the user-specified duration may not be sufficient to capture all the

motion. Thus, information from the skipped frames should be propagated to the included

frames. Similarly, use of the min-change metric implies that motion should be minimized

in the output, thus any remaining post-sampling motion that could not be sampled around

could be removed and replaced with the background from temporally adjacent frames. Both of

these scenarios imply a method, inspired by computational photography frame combination,

to create optimal exposures using information from the skipped frames.

102



5.3 Virtual Shutter

The virtual shutter computationally combines nearby frames and enables effects not possible

with traditional optical cameras. Each output exposure is a combination of a sliding window

of video-rate exposures from the input signal s. In these new exposures frames are combined

to decrease aliasing, accentuate or remove changing scene elements, and highlight motion

paths.

5.3.1 Virtual Shutter Features

The primary reason to use a post-process to create exposures is it allows the system to

arbitrarily choose any start and end time for each exposure. Thus, it is no longer constrained

by the sampling interval. In a traditional camera, an exposure must end before the next

exposure begins, fixing the maximum exposure time to the sampling interval. However, in a

computational video post-process with access to all frames, exposures can be created longer

than the sampling interval allows. Each input video-rate frame acts as a short, discrete

time-step that is, in turn, integrated into much longer time-lapse exposures.

Furthermore, with a post-process, exposures can be made whose lengths adapt to the

non-uniform sampling from Section 5.2. Since the sampling indices of the time-lapse video

result from the sampling post-process, there is no way to know the corresponding exposure

lengths at capture time. Thus, it is necessary to use a post-process to adapt exposures to the

sampling. Note that the virtual shutter may also be used independently of Section 5.2, with

uniform sampling.

Each exposure interval is a function of the input sampling v of s. The user specifies how

many sampling intervals the output should integrate over: Ψ. Values of Ψ > 1 imply overlaps

between exposures, causing the same input frame to be integrated into multiple exposures.

Thus, an output frame t integrates the frames in s within the interval v(t−Ψ) to vt. This is a

causal, non-symmetric process, as frames in the future are not included in the exposure.

Creating exposures as a post-process frees the system from the linear integration of CCDs

or film, similar to the low-light enhancement in Chapter 4. Instead, the user has the flexibility

to integrate each discrete time step (frame in s) with any weighting or non-linear function,
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Figure 5.4: Illustration of the virtual shutter sliding a window of frames through the video
that are combined into synthetic exposures. Each exposure ends at a sample v and extends
Ψ indices in v back in time, allowing for adaptively-sized exposure times.

such as weighting by chronological order. Because the individual exposures s are short (the

input exposures were 1-10 ms, although 33 ms exposures were used at night) they are assumed

to not be saturated, temporally aliased, or contain motion blur, all common problems with

long or multiple exposures. Long and multiple exposures are digitally simulated to avoid

these problems, thus handling a wider variety of illumination capture conditions.

The virtual shutter can be considered a general purpose spatio-temporal filter based on

established computational photography concepts. Previous work in computational photog-

raphy has focused on processing a series of images as input and outputting a single frame.

Alternatively, the virtual shutter slides a window of input frames through the video, creating

an exposure for each v frame (Figure 5.4). Each individual exposure created by the virtual

shutter is related to the image combination work in “Image Stacks” (Cohen et al., 2003).

However, I extend this work with an adaptively-sized temporal window and by creating ex-

posures that better illustrate events as part of a complete time-lapse video, thus bringing it

into the computational video domain.

5.3.2 Virtual Shutter Filters

The computational time-lapse video system currently supports a variety of virtual shutter

effects targeted at the specific needs of time-lapse video sources:
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• Maximum Virtual Shutter: The maximum virtual shutter simulates film’s non-

linearity due to saturation. Nighttime time-lapse videos of car headlights are effective

because the headlights saturate the film, creating bright, uniform streaks. Here, a similar

effect is created by choosing the maximum value at each pixel, thus accentuating the

prominence of bright foreground objects against dark backgrounds:

V Sxy
t = MAXvt

f=v(t−Ψ)
sxy
f . (5.20)

• Minimum Virtual Shutter: The minimum virtual shutter alternatively chooses the

darkest pixels within the exposure window. Although no photographic analog exists,

this frequently removes bright foreground phenomena, such as fog or smoke:

V Sxy
t = MINvt

f=v(t−Ψ)
sxy
f . (5.21)

• Median Virtual Shutter: The median virtual shutter creates an exposure of the

most representative pixels, even if those pixels never appeared simultaneously. This

is another effect unachievable with a real camera. It is best used as a complement to

the min-change non-uniform sampling (Section 5.2.3) to remove any residual “popping”

that could not be sampled around. This is actually an extension to the PBackground

filter discussed in 3.2.4, except that it runs the median over only a subset of all video

frames:

V Sxy
t = MEDIANvt

f=v(t−Ψ)
sxy
f . (5.22)

• Extended Exposure Virtual Shutter: The extended exposure virtual shutter sim-

ulates holding the shutter open between exposures. This is accomplished with low-pass

filtering to mimic the response of a camera along with normalization to mimic aperture

adjustments to avoid saturation:

V Sxy
t =

1
vt − v(t−Ψ) + 1

vt∑
f=v(t−Ψ)

sxy
f . (5.23)
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This represents a discrete approximation of the resulting motion blur, which can be

further enhanced by the use of motion estimation techniques, such as in the work of

Brostow and Essa (2001). The progression of time can be depicted by placing more

weight on the most recent samples, indicating chronology:

V Sxy
t =

1∑
ω(t)

vt∑
f=v(t−Ψ)

ω(f)sxy
f . (5.24)

I chose the ω(f) weighting to be an adaptive exponential falloff curve whose tail length

matches the exposure window. Here, I set µ to 30 and allow the user to configure the

curve’s falloff with ζ:

ω(f) = ζκ, κ = µ · vt − f

vt − v(t−Ψ)
, 0 < ζ ≤ 1, 1 < µ. (5.25)

• Motion Tails Virtual Shutter Another virtual shutter effect uses compositing to

simulate dense stroboscopic motion studies that illustrate paths of motion. Using just

the extended exposure virtual shutter on fast moving objects causes them to fade into the

background, as the background is seen far more often than the motion. To overcome this

issue, the foreground is separated from the background then composited back into the

background image. This borrows concepts from the “Image Stacks” (Cohen et al., 2003)

matte filter that used the median image as a background plate and image subtraction

to extract foreground elements. These images were then composited using the “over”

operation (Porter and Duff, 1984) into the final image. Because the compositing was

performed in temporal order, more recent motions occluded older motions.

I extend this idea by considering it over a sliding window of frames in the video that

contribute to the exposure. If Ψ > 1, the resulting motion tails will overlap. To better

show the direction of motion in the video output, the “over” α blending term is adjusted

using ω(f) (Equation 5.25). This fades the older frames into the background and makes

the newer frames more opaque. My experience is that this ω(f) is particularly important

for visualizing fast moving actions with long tails.
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Burning Cookie Reefer Building
Candle Baking Madness Front

Nighttime Car Street Crowded
Headlights Defrosting Corner Sidewalk

Figure 5.5: Unprocessed input frames from each of the example videos discussed in Section
5.4. From left to right: Top: a 13 second time-lapse of a candle burning with wax dripping,
an 8 second sequence of a cookie baking, a 20 second summarization of the film “Reefer
Madness”, a 5 second time-lapse of people walking, Bottom: a 6 second time-lapse of car
headlights, a 10 second sequence of a car defrosting, a 7 second time-lapse of a street corner,
and a 15 second time-lapse of a busy sidewalk during a class change.

5.4 Results

Having discussed the concepts of non-uniform sampling and the virtual shutter, implementa-

tion of those methods as a complete system is now presented along with the results of eight

example videos. The computational time-lapse system is implemented as a series of applica-

tions that mirror Figure 5.2’s structure. The first application generates the ∆(i, j) min-error

(Section 5.2.2) and δ(i, j) min-change (Section 5.2.3) metrics from the source video s (the

Υ(i, j) uniformity metric from Section 5.2.4 is calculated on-the-fly). I also have the ability

to selectively choose sub-regions within the video to analyze to “focus” the sampler on partic-

ular visual elements. Also, the errors can be calculated at lower resolutions without noticeable

degradation. These errors are then used by the non-uniform sampler application to perform

dynamic programming optimization. Here, the user may specify the “shape” variables along

with a visualization of their impact. The resulting sampling v is fed into the virtual shutter

application where the exposure effects of Section 5.3.2 are exported as a video.

For the remainder of this section, I describe the processing behind each of a number of
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test sequences (Figure 5.5) and their results. The system settings and runtimes are detailed

in Table 5.1 while the non-uniform samplings are shown in Figure 5.8. All videos are 720x480,

except for “Reefer Madness” which is 320x240. The output durations were chosen to create

compelling time-lapse results that were too short to be handled properly by traditional time-

lapse methods (i.e., they exhibited undesirable temporal aliasing artifacts).

Non-Uniform Sampling Results:

• Burning Candle (58 Minutes → 13 Seconds)

This uniform 262x time-lapse of a candle burning misses the events of wax dripping

and the candle breaking. To make a video with more of the overall duration showing

the dripping wax I primarily used the min-error metric for the candle’s wax (masking

the flame, which was not of interest), thus making the sampler approximate the wax’s

changes. A small amount of uniformity was used to prevent the wax movement at the

end from monopolizing the samples.

• Cookie Baking (9 Minutes → 8 Seconds)

This uniform 65x time-lapse of a cookie baking is not temporally aliased, but the cam-

era was slightly unsteady due to nearby vibration from footsteps. The stabilized out-

put sampling used the min-change metric along with Υ(i, j) to identify similar frame

pairs with a mostly-uniform sampling. Thus, the frames where the camera moved were

avoided.

• “Reefer Madness” (68 Minutes → 20 Seconds)

For this 1936 film, I used the non-uniform sampler with the min-change metric. Playing

the video uniformly >200x results in incomprehensible scene flashes. The non-uniform

sampler chose a few frames from longer scenes that appeared similar, thus keeping the

time-lapse within each scene long enough to allow identification. Although many scenes

are skipped, the scenes that are included are recognizable. Note, this summary could
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Input 1/30th Second Exposure Virtual Shutter 1/3rd Second

Virtual Shutter 1 Second Virtual Shutter 2 Seconds

Figure 5.6: An input frame from the nighttime car headlights sequence and three extended
exposures using the maximum virtual shutter to mimic film saturation. Although the longest
sampling interval for a 10x speedup is 1/3rd of a second, the virtual shutter simulates longer
exposures from video-rate footage.

be used as an index into the full-length video as long as the v is preserved to provide

reverse lookup from the time-lapse to the source.

Virtual Shutter Results:

• Building Front (34 Seconds → 5 Seconds)

This short video of walking students shows the benefits of motion tails to convey motion,

even with 7x uniform sampling. Low-pass filtering makes the students nearly disappear

but motion tails of either Ψ = 4 or 8 make the motion contiguous and fluid (Figure 5.9).

• Nighttime Car Headlights (60 Seconds → 6 Seconds)

A popular time-lapse effect seen on Internet video sites captures car headlights at night.

Because the headlights saturate the sensor, long exposures appear as uniform streaks.

The streak lengths are limited by the sampling interval, because the shutter must close

before the next exposure. Here, the maximum virtual shutter is used to create expo-

sures 3 and 6 times times longer than the maximum sampling interval (Figure 5.6).
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• Car Defrosting (29 Minutes → 10 Seconds)

This time-lapse of a car’s windshield defrosting allows for several alternate interpreta-

tions: minimizing the aliased motion and also depicting all the motion. To minimize

aliasing, both the median virtual shutter with a wide Ψ neighborhood and low-pass

filtering are shown (Figure 5.7). To depict all motion, motion tails were used to show

the cars and other street activity that were badly aliased.

Combined Results:

• Street Corner (12 Minutes → 7 Seconds)

This 120x uniform time-lapse (Figure 5.1) depicts a street corner with sporadic traffic

that contains frames where cars pop in and out. Using the min-error metric, I generated

a non-uniform sampling that slows down when cars drive by. Aliasing was then further

reduced with motion tails. Alternatively, I solved with the min-change metric (with

a small λ uniformity term), creating a sampling with smooth cloud motion and no

cars. Because some blowing leaves remained, a short median virtual shutter was used

to remove them.

• Crowded Sidewalk (17 Minutes → 15 Seconds)

A uniform 70x time-lapse video shows a sidewalk before, during, and after a class change

that exhibits severe “popping” aliasing artifacts. Initially, only a few students walk by,

then traffic picks up, then dies down again. I improved the video with a min-error

non-uniform sampling (and a tiny λ uniformity mix), which better approximated the

motion by devoting more samples to frames with the most activity, in this case during

the class change (resulting in a uniformly busy sidewalk). Motion tails were also added

to provide visual cues of the students’ paths (Figure 5.9).
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Original Exposure Low-Pass Filtered

Median Virtual Shutter Motion Tails Virtual Shutter

Figure 5.7: An input frame from the car defrosting sequence and three different output
exposures from the virtual shutter with varying characteristics. The low-pass results washout
regions where the car’s exhaust appeared, while the median virtual shutter result removes
the exhaust. The motion tails output shows the combined exhaust of multiple frames plus
evidence of an SUV driving by.

5.5 Summary

I have presented methods for creating computational time-lapse videos which provide su-

perior sampling characteristics over traditional time-lapse methods. Based on user-specified

characteristics, time-lapse videos were generated with non-linear spatio-temporal filtering and

non-uniform sampling, both not possible in traditional cameras. The non-uniform sampling

optimally chooses the constituent frames of the video using knowledge of the entire video’s

samples and motion. The virtual shutter then combines neighborhoods of multiple video-rate

exposures into longer exposures with reduced aliasing artifacts. These techniques were then

used, both independently and together, to process a variety of typical and novel time-lapse

videos.
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Street Corner Uniform Sampling

Min-Error (Cars)

Min-Change (Clouds)

Burning Candle Uniform Sampling

Min-Error (Wax)

Reefer Madness Uniform Sampling

Min-Change

Cookie Baking Uniform Sampling

Min-Change

Crowded Sidewalk Uniform Sampling

Min-Error

Figure 5.8: Visualization of the sampling results, where each vertical line represents a sam-
pled frame in v. Samplings using the min-error metric choose the majority of their frames
from within periods of change and motion to best approximate the video. Alternatively, the
samplings using the min-change metric avoid frames dissimilar to other frames.

Duration (Frames) Non-Uniform Error Metric Uniformity Virtual Shutter Run Time
Title Input Output q Sampling α log β log γ λ Type Ψ ζ hours:minutes

Burning Candle 104849 400 600 Min-Error 1.09 -6.11 4.87 .05 - - - 7:20
Cookie Baking 15757 240 200 Min-Change 1.00 -5.24 0 .04 - - - :05

“Reefer Madness” 40975 600 500 Min-Change 1.00 -7.08 5.89 - - - - :15
Building Front 1025 150 - Uniform - - - - Tails 4, 8 .96 :15
Car Headlights 3096 300 - Uniform - - - - Max. 6 - :10
Car Defrosting 52544 300 - Uniform - - - - Median 10 - :30
Car Defrosting 52544 300 - Uniform - - - - Tails 4 .93 :45

Street Corner - Cars 25483 210 500 Min-Error 1.00 0 0 - Tails 3 .95 5:15
Street Corner - Clouds 25483 210 500 Min-Change .65 -7.37 5.38 .15 Median 2 - :45

Crowded Sidewalk 31128 450 500 Min-Error 1.00 -9.49 0 .01 Tails 4 .92 3:15

Table 5.1: Parameters used to generate the video results. These were selected manually
by the user. Cells marked as ‘-’ indicate variables not used in the result. A value in the λ
category indicates the combined uniformity metric Υ(i, j) was used along with the listed error
metric. Runtimes reflect all processing (error calculation, sampling, and virtual shutter) on
a single core of a 2 GHz Intel Core Duo. Most of the running time is spent on error metric
calculations, which are a function of the metric, duration, q, and resolution.
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Original Exposure Motion Tails Virtual Shutter

Figure 5.9: Two examples of using motion tails to depict dense motion paths between sampled
time-lapse frames. The building front result (above) uses uniform sampling, while the crowded
sidewalk (below) is non-uniformly sampled.
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CHAPTER 6

CONCLUSIONS

In the preceding chapters, both the foundation and applications of computational video were

explored to address the claims made in the thesis statement:

Computational video enables a new class of processing tools for

enhancing and improving video capture quality by leveraging

information found across many frames.

Chapter 3 addressed the underlying issues of how computational video can be conceptu-

alized and efficiently processed. Spatio-temporal volumes, and their sheared variants, were

presented to allow information from adjacent pixels and frames to be readily accessed. Effi-

ciency was addressed through the Proscenium spatio-temporal video editing framework which

showed how bi-directional filter graphs can reduce memory and computational requirements.

To demonstrate how volumes could be interactively used for computational video, a prototype

video editing and enhancement system was also presented.

Having proven its viability, I then dedicated the remainder of the dissertation to addressing

the claim that computational video methods can enhance and improve captured video by using

information found throughout the video.

First, the quality of low-light video was enhanced to resemble well-exposed video. By

using additional information from the local neighborhood of poorly-exposed samples, their

true underlying value was determined. This process involved extending the exposure time

of those samples by integrating many temporally and spatially-adjacent samples. How much

integration was necessary was determined by tone mapping, while the integration itself was

determined through adaptive non-linear filtering. This resulted in spatially-varying exposure

times for each pixel, not possible in a traditional imager. This concept was carried further by



introducing neighborhoods of information that spanned multiple spectra by using non-visible

IR video. Dual bilateral filtering demonstrated that multispectral enhancement was possible

without introducing non-visible elements into the result.

As an alternate type of computational video enhancement, the resampling of videos was

also discussed. In addition to the spatial resampling of videos (seen as shearing of spatio-

temporal volumes), resampling can change the temporal properties of video. Time-lapse

videos, being significantly shorter than video-rate footage of the same capture duration, ex-

hibit an extreme class of resampling. This was performed by learning about the video in its

entirety and finding the optimal temporal resampling. Finally, spatio-temporal filtering was

again considered to achieve non-linear multi-frame filtering effects.

In conclusion, computational video techniques have been shown to be viable and capable

of a wide range of enhancements including the improvement of captured video quality. These

improvements included effects not possible in-camera, including optimal resamplings, over-

lapping exposures, object removal, non-linear filtering, and expanded dynamic range. Thus,

computational video enables a wide range of desirable video characteristics that increase the

overall quality of video.

6.1 Directions for Future Research

Computational video has recently established itself as an active research area in computer

graphics as witnessed by the large number of works involving computational video mentioned

in the Previous Work. As a result, there has been a great deal of concurrent research with

the work described in this dissertation. Thus, there is continuing interest in the general area

of finding better ways to enhance video, and thus there will be future research in the field of

computational video. I now discuss such future research in the areas of computational video’s

technical underpinnings, its existing applications, and new computational video applications.

• One of the core problems of computational video is that it has very high memory

requirements to enable random video access. This was overcome in the later chapters

by processing in a FIFO queue of frames where only a reasonable window (often a few
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seconds) of a much longer clip was decompressed and stored in RAM at any given time.

Finding a compression and decompression scheme that allows much finer random access

to pixels (as opposed to decompressing whole frames or large blocks of spatial pixels)

would then require only the compressed video to be stored in memory.

• For real-time video processing, the ideal goal is to process video at or faster than 30 fps,

as opposed to the current offline model, allowing both the LDR enhancement and time-

lapse algorithms to be performed in-camera. Reducing noise and improving dynamic

range prior to compression might also lead to reduced bit rates and support for compres-

sion schemes that incorporate foreground and background models. For time-lapse, the

reduction of the number of frames stored would be drastically reduced. However, the

current offline model is useful because it allows large non-causal kernels, non-destructive

processing, and solutions optimal to the entire video to be found.

• Throughout this dissertation, the algorithm implementations were entirely uni-processor

based. Thus, an obvious extension to this work would involve finding efficient mul-

tiprocessor implementations. The filter graph nature of Proscenium makes for easy

separation of processing components, but algorithms such as ASTA are more difficult

to distribute, as processing time is related to the overall brightness and noise level of

each pixel, which changes over time. For this reason, a research group is already using

the ASTA algorithm as an example of modern adaptive image processing algorithms

to study multiprocessor scheduling (Block et al., 2007). Another direction is to im-

plement such algorithms on the GPU (Graphics Processing Unit) which can compute

many per-pixel filters in parallel.

• Many of the algorithms described here involved shearing to remove camera motion,

which in turn requires stabilization. Making this more general (i.e., allowing spatially

varying transforms more complex than the current planar projective transforms) would

allow improved processing of transforming 3D shapes. However, there are difficulties

involved due to tracking and stabilization which are often confounded by poor imaging

conditions. In the case of low-light enhancement, the tracking requires cleaner images
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(less noise, sharper edges, etc.), but the algorithms doing that enhancement require

better tracking. An iterative back-and-forth approach or possibly a combined method

may be an improved way to tackle this problem.

• There still remains much work in developing techniques for tone mapping LDR videos

to screen dynamic ranges or even HDR dynamic ranges. The approach presented in

Section 4.2.2 is a good starting place, as it tone maps while masking high-frequency

noise in dark areas. However, the tone mapping of videos with “peaky” histograms

(those with an uneven distribution of dynamic range) are still very difficult without

washing out the bright elements at the expense of amplifying dark areas.

• There are also areas for further development in computational time-lapse video. The

min-change metric δ(i, j) could be altered to compare neighborhoods of frames as op-

posed to single frames. As in “Video Textures” (Schödl et al., 2000), velocity would

be preserved in addition to visual similarity. Also, repetitive motions could be cleverly

resampled to give the illusion they were occurring at video-rate speeds in the time-lapse

result (thus, a desirable form of aliasing exploiting beat frequencies). Although camera

motion between frames was not considered because time-lapse cameras are typically

fixed, an error metric could be constructed to optimize for a constant camera velocity.

A shortcoming of the time-lapse solver’s dynamic programming approach is that errors

must be defined pairwise between i and j. Because objectives such as maximizing the

smoothness of the derivative of intervals in v are not possible, other solution techniques

may be worth considering.

• Computational color processing is another area that warrants consideration. Chromi-

nance could be enhanced robustly using multispectral edge detection or multiframe

blending. Low-level color handling, such as for multi-frame color demosaicing, is al-

ready an interesting area of ongoing and future work (Bennett et al., 2006).

• Finally, many more applications exist that would be benefitted by combining infor-

mation imaged throughout a video. These could range from generating HDR imagery

from well-exposed 8-bit video captured with automatic gain control to automated wire
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removal using backgrounds propagated from surrounding samples. The application do-

main of video restoration of missing or corrupted samples offers a problem also well

suited to this type of enhancement.

6.2 Closing Remarks

I have presented a wide variety of uses of computational video that have applicability to both

professional and amateur users. Arguably, computational video has the most potential to help

less-experienced users, as it can help bring a professional look to less than optimally captured

video. Therefore, as computational video algorithms receive more research and solve new

and exciting problems, it is a reasonable hope that these techniques will make their way to a

community outside of pure research. Empowering the amateur filmmaker to create amazing

video is a lofty but attainable goal that we all should aspire to.
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APPENDIX A

PROSCENIUM PFILTER

SPECIFICATIONS

This appendix provides the full specifications of how PFilters are implemented for use in

Proscenium filter graphs (Section 3.2.3) along with expanded descriptions of the example

PFilters of Section 3.2.4.

A.1 PFilter Specification

Bi-directional data flow through PFilters is enforced by having each fulfill the requirements of

a basic interface shown in Figure A.1. They must also be able to describe their size in width,

height, and number of frames. They must internally know if they are a discrete or continuous

filter. Most importantly, they must be able to handle reading and writing of individual

pixels, which is done by connecting the input filters and defining the filter’s functions. If not

overridden, the defaults pass along the values obtained from their input PFilters.

The pixelWidth and pixelHeight are the measurements in pixels of the viewable area

of each frame. Proscenium assumes that these are constant across all frames of a sequence,

so smaller images must be padded with empty pixels. The number of frames, numFrames, is

a discrete quantity that makes the assumption that the frame rate is constant, but variable

rates (i.e. resampling) can be simulated through intermediary PFilters.

Pixel values are queried with the discrete getActualPixel(int x,y,t) function or the

continuous getPixel(float x,y,t). These functions only know the requested pixel coordi-

nate and return the color at that pixel; nothing else. Unless these functions are overridden

they pass along the query to the private functions runDiscreteFilter(int x,y,t) and

runContinuousFilter(float x,y,t) after providing bounds checking. These are the most

commonly overridden functions when creating a new filter. If a PFilter is defined as discrete

(by Boolean parameter isDiscrete), a call to getPixel() defaults to trilinear interpolation.
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Figure 1.4: Each PFilter object supports multiple input ports and a single output. By
combining the results from different input filters, video sequences can be modulated
and combined. The methods shown comprise the standard interface for all PFilters.

x,y,t) and runContinuousFilter(float x,y,t) after providing bounds checking.

These are the most commonly overridden functions when creating a new filter. If a

PFilter is defined as discrete (by parameter isDiscrete), a call to the continuous

getPixel will use tri-linear interpolation.

Inside each PFilter is an array called inputFilters[] which associates a PFilter

pointer with an integer index. The filter graph is constructed by setting these values.

By convention, the PFilter associated with the number 0 is its main data path, carrying

the video output of the filters below, while the others are designed for specific purposes

for each filter type. For data flow reasons PFilters only know what PFilters are their

inputs and do not know their outputs. Many PFilters may share the output of a PFilter,

but only one PFilter can be assigned to each input of a PFilter.

8

Out

256...0 1 2 3

inputFilters[256]

PFilter
Member Functions:

Color getPixel(float x,y,t);

Color getActualPixel(int x,y,t);

Color runDiscreteFilter(int x,y,t);

Color runContinuousFilter(float x,y,t);

void setActualPixel(int x,y,t, Color c);

Properties:

int pixelWidth, pixelHeight, numFrames;

bool isDiscrete;

Figure A.1: Each PFilter object supports multiple input ports and a single output. By
combining the results from different input filters, video sequences can be modulated and
combined. The methods shown comprise the standard interface for all PFilters.

Inside each PFilter is an array called inputFilters[] which associates a PFilter pointer

with an integer index. The filter graph is constructed by setting these values. By convention,

the PFilter associated with the number 0 is its primary data path, carrying the video output

of the filters below, while the others are designed for specific purposes depending on the filter

type. For data flow reasons PFilters only know what PFilters are their inputs and do not

know their outputs. Many PFilters may share the output of a PFilter, but only one PFilter

can be assigned to each input of a PFilter.

A.2 Example PFilter Implementations

Now, the full details of the PFilters described in Section 3.2.4 are given to allow the reader

to implement PFilters similar to those used in Proscenium.

A.2.1 Simple Color Correction

To demonstrate a simple discrete filter, PCorrect adjusts the blue values of its input pixel and

sends it to the output with the red, green, and α unchanged. The isDiscrete parameter is
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set to true so that all processing will pass through the runDiscreteFilter() virtual function:

class PCorrect : public PFilter
{
public:

PCorrect() { isDiscrete = true; blueAdjust = 20; }

Color runDiscreteFilter(int x, int y, int t)
{

Color inColor = inputFilters[0]->getActualPixel(x,y,t);
int tempBlue = inColor.B + blueAdjust;
if(tempBlue > 255)tempBlue = 255;
if(tempBlue < 0)tempBlue = 0;
return Color::FromArgb(inColor.A,

inColor.R,inColor.G,tempBlue);
}
int blueAdjust = 0;

};

This PFilter has no internal storage, so any user requested color changes must be propa-

gated down to its input. In the process, the color correction must be run in reverse, so that

when it progresses through the filter in the forward direction at a later time, it will be filtered,

and the desired color will result again (assuming no bracketing at 0 and 255 occurs). This is

easily accomplished by overriding another function:

void setActualPixel(int x, int y, int t, Color newColor)
{

int tempBlue = newColor.B - blueAdjust;
if(tempBlue > 255) tempBlue = 255;
if(tempBlue < 0) tempBlue = 0;
Color alteredColor = Color::FromArgb(newColor.A, newColor.R,

newColor.G, tempBlue);
inputFilters[0]->setActualPixel(x, y, t, alteredColor);

}

A.2.2 Video Framing

With PFrame, the true extents of a movie can be hidden by manipulating the PFilter’s

pixelWidth, pixelHeight, and numFrames properties. This PFilter serves two purposes.

First, it acts as a zoom. Videos are sampled during interaction, meaning that removing data

on the edges allows greater detail to be shown for the remaining portion. If the PFrame is
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left in place it will continue to act as a crop, but if it is removed all of the occluded data on

the sides is still present.

This effect is achieved by substituting new values for pixelWidth, pixelHeight, and

numFrames. The filter then becomes responsible for handling the fact that the origin may no

longer be at (0,0,0). Finally, it must reverse this operation when a pixel is written so that

the write it transmits to its input PFilter will be the original coordinate and not the offset

coordinate.

To simplify this example, only the x-dimension will be framed, but the same technique

applies to all three dimensions. myOffset is the horizontal distance from the origin that the

frame begins, and myWidth is its horizontal size:

Color runDiscreteFilter(int x, int y, int t)
{

if ((x >= 0) && (x < myWidth))
return inputFilters[0] > getActualPixel(x + offX, y, t);

else return Color::FromArgb(0,0,0,0); // Empty Pixel
}

void setActualPixel(int x, int y, int t, Color newColor)
{

inputFilters[0]->setActualPixel(x + offX, y, t, newColor);
}

The use of the empty pixel is important, as it indicates the presence of an area outside

the video. Bounds checking is explicitly done here because it is crucial to make sure occluded

pixels cannot pass through.

A.2.3 Background Restoration

The PBackground filter returns a color based on a function of the matching (x, y) coordinates

in every frame. Therefore, if this function were solved for every (x, y) pair in the video a new

image of the background would result. Here, the median of each color channel is combined

into a new color to estimate the background color. Also, those pixels with an α below some

threshold are not considered. Alternatively, background filters are also possible that select

the modes of the color component distributions. Iterative background filling approaches also

exist, such as those by Bertalmio et al (2000).
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The runDiscreteFilter() function disregards the t value, and takes the median of all

the pixels with the matching (x, y) and returns that color. No setActualPixel() method is

provided because this output is not directly related to any single frame’s pixel.

Color runDiscreteFilter(int x, int y, int t)
{

Color tempColor, finalColor;
for(int i=0;i<inputFilters[0]->numFrames;i++)
{

tempColor = inputFilters[0]->getActualPixel(x,y,i);
if(tempColor.A == 255)

Sort the Red, Green, and Blue values into buckets
}
return Color::FromArgb(255, Median of Red, Blue, and Green);

}

I designed another background restoration filter called the edge filling filter which returns

the temporally nearest opaque pixel that is spatially aligned to a transparent pixel. This

technique is particularly useful for videos with translating or rotating cameras when building

panoramas. This filter also keeps track of auxiliary information in order to speed up its

execution. When a pixel is first accessed, it starts at t = 0 and tries every pixel at that

(x, y) in temporal order until a sufficient α is found. The same process is repeated in reverse

from the end of the movie. It then stores the frame numbers of these first and last frames.

On subsequent requests to any t at that (x, y), a comparison determines if the location falls

within this usable range. If so, that pixel’s color is returned, else it uses the color of the

nearest pre-determined temporal edge.

A.2.4 Caching

Performing the operations of a large number of interconnected PFilters can become very com-

pute intensive. At some point caching becomes a convenient method to speed up operations.

The PCache is a configurable cache that complements Proscenium’s model of lazy evaluation.

When a PCache is added into a filter graph it does not immediately cache all the pixels.

Instead, it waits to be queried about a pixel before retrieving a value from its input PFilter.

This accelerates subsequent accesses, but not the initial access.
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A PCache exists as a block of RGBα or monochrome pixels exactly the same size as the

PCache’s input video source. Each frame is separately stored as a bitmap, and pointers to

each frame are stored in an array for quick access. This allows frames to be deleted or inserted

without regenerating the entire data structure.

The cache is initially filled with an arbitrary reserved value, which is referred to as the

unsolved color. When the cache receives a getActualPixel() it checks its personal data

structure, and upon finding the unsolved value at that coordinate, it queries its input. It

takes the return of that function, updates its own data structure, and then returns it back

up the filter graph. As a special case of a PCache, a locked PCache is one that will never

perform a lookup even upon finding the unsolved color.

The PCache’s behavior exhibits the following qualities. First, changes made through calls

to setActualPixel() affect the data in the PCache, but are not propagated to its input

terminals. Therefore, when a PCache receives an incoming setActualPixel() request, its

internal data structure is modified so that subsequent calls to the PCache return the new

value. Enforcing this creates a difficulty in alerting PCaches that they are invalidated by

upstream changes to their inputs. Because all requests for pixel data flow in the opposite

direction, there is no direct way for a PFilter to notify later PCaches that its data changed.

They will either go on unaware of the inconsistency or rely on the application to invalidate a

portion of the PCache back to its unsolved state, which is the solution used in this work.

A.2.5 Video Files

To process video, the filter graph must at some point contain the raw source video footage.

The raw data is provided as yet another PFilter derived class. The source data class, called

PMovie, is derived from the PCache class. It is essentially an unchanged PCache that defaults

to being in the locked state, and therefore causes no input data lookups. It also adds member

functions to load video and bitmap files into its frames.

For output to video files on disk, the mechanism is a PFilter called PAVIOut. It is placed

on the end of the filter graph where the application would normally make its queries so that

it uses the exact same data that the user sees on screen.
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Figure A.2: Proscenium supports arbitrary projective shears of the volume. This facility
enables objects moving within the field of view to be spatially stabilized across all frames.

A.2.6 Video Shearing

Proscenium’s virtual shearing is implemented as a filter that can be added and, if desired,

removed from the filter graph. The filter handles all bi-directional data flow in the filter

graph for reading from and writing to the underlying, un-sheared volume. It is important to

again note that shearing is performed as a filter to both eliminate the need to keep a second

copy in memory and to allow edits to be propagated to the original video. The specifics of

determining the underlying projective transform matrices for shearing are discussed in Section

3.2.2.

Once the transform matrices are known, they are loaded into the PShear filter. It then

solves to find the coordinates of the four corners of each frame. The minima and maxima

of these values determine the rectangular bounding box of the new volume. To enforce the

convention that the upper-left hand corner of each frame is always at (0, 0), a translation is

used to reorient PShear’s transformed coordinate space to the origin. The pixelWidth and

pixelHeight of the PFilter are substituted with the sizes of the new extents.

PShear handles getActualPixel() requests by returning discrete pixel data without com-

plex interpolation or blending. It receives a discrete pixel coordinate which it multiplies by

the transform matrix for that frame, and then rounds to an integer value and returns that

color or empty if it fell outside the volume. Because only one sample is taken, it results in

nearest-neighbor-style interpolation. As before, more complex interpolations are possible.
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Figure A.3: Multistep process to ensure all pixels that round to a stabilized pixel are modified
to reflect an edit.

setActualPixel() is implemented in a similar fashion, but it cannot operate using the

same nearest-neighbor approach. A näıve implementation would take the target coordinate

and multiply it by the transform matrix and then set the pixel color in the source material at

that coordinate. However, this often does not result in the expected effect. This is because

although each discrete coordinate input to getActualPixel() corresponds to just a single

source pixel, setActualPixel() can have a one-to-many, one-to-one, or even a one-to-none

relationship, which can occur when large minimizations result because of stabilizations.

If the user wants to change the color of an entire region, as opposed to a single pixel,

a useful solution involves taking the corners of the bounding polygon in the transformed

coordinate space and warping them back to the original coordinate space. Performing the fill

operation in the new polygon in the source materials coordinate space will then be sure to

change all pixels that fall in the transformed boundary.

However, this strategy only works for large areas, and a more precise methodology is

needed for performing per-pixel edits in transformed space (Figure A.3). The following

methodology implements such an approach:

To handle the per-pixel case, the transformed pixel coordinate is backwards-

mapped to the source material and rounded to the nearest pixel’s “center”. This

slightly-adjusted coordinate is mapped back to the transformed space and rounded

to the nearest pixel. If after these two phases of rounding and transformation the
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pixel coordinate is different from the one that it began upon, it is labeled as a

one-to-none relationship and no change is made.

If the original and modified coordinates in the transformed space are the same,

then the change is made in the source material, as if it were a one-to-one map-

ping. Now, each of the adjacent pixels in the source material are mapped to the

transformed space and rounded. If any of these map to the original transformed

coordinate, they are also changed, signifying a one-to-many relationship. Every

time a match is found, the search window is expanded by one pixel. It is assumed

that all possible stabilizations will have all affected source pixels adjacent to each

other (thus, no “bow-tie” projective transforms are allowed).
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