VIEW - A System for Prototyping

Scientific Visualizations

TRI93-065
1993

Lawrence D. Bergman

Department of Computer Science
University of North Carolina at Chapel Hill
Chapel Hill, NC 27599-3175

UNC is an Equal Opportunity/Affirmative Action Institution.




This report is an excerpt from the dissertation, VIEW - A System for
Prototyping Scientific Visualizations, by Lawrence D. Bergman. It is
intended to serve as an introduction to the VIEW systemn, which is explained
more fully in VIEW: Exploratory Molecular Visualization System (UNC
Technical Report #93-030) and VIEW Maintenance Guide (UNC Technical
Report #93-034).



Use of the VIEW System

This document presents the VIEW system through a series of examples. The first
section presents use of VIEW drawing tools, mostly from the system-supplied
tool library, to construct a presentation graphic. The second section introduces
the drawing tool language through a development sequence, starting with a very
simple tool and progressing through a series of more sophisticated versions. The
third and fourth sections present examples of interactive events specified in the
drawing tool language. The final section presents an example of the graphical
debugging capabilities of the system.

4.1 AN EXAMPLE OF TOOL USE

Professor Jane Richardson of Duke University’s Department of Biochemistry
produced the visualization of the protein Concanavalin A shown in figure 4.1
using VIEW drawing tools. A variation of this image appeared in Biophysical
Journal [Richardson 92a]. The image shows the orientation of an amino acid
(phenylalanine) and two possible but less favorable orientations. The steps in
constructing the visualization were as follows:

1) Richardson selected a tool that creates initial geometry starting with
Brookhaven Protein Databank atomic coordinates. The tool in this case is
one which creates vectors connecting just the alpha carbons of adjacent
amino acids (figure 4.2). This representation gives a clear global view of
the structure.

2) Using a mainchain drawing tool, she sketched in atomic level detail for
each of three strands of the chain, each time merely selecting a starting



Figure 4.1 Figure 4.2

Final result of a visualization Initial geometry for
construction sequence -
phenylalanine in beta sheet
showing alternate conformations

data-drawing

Figure 4.3 Figure 4.4

Drawing mainchain Drawing in hydrogen bonds



3)

4

and ending point by picking alpha-carbon atom positions in the original
representation. On each pick, the system draws a small red sphere to
mark the selection. After both ends are selected, the system draws the
connecting mainchain at the atomic level automatically using atom
coordinates fetched from the molecular data. After drawing the main
chain, the tool removes the marker spheres. Figure 4.3 shows the
drawing after specification of the second strand, just before the system
removes the red markers. The use of database information by this tool
makes it possible to produce this detailed scale drawing with only one
tool selection and six datapoint selections.

Using a line drawing tool, she sketched in hydrogen bonds that couple
the strands together. The particular tool employed knows nothing about
hydrogen bonds; Richardson selected the termini of each bond. It would
have been possible to write a new tool to automatically draw in all
hydrogen bonds for the molecule, but since we wanted only a small,
selected set, manual specification of each bond seemed reasonable.

The line-drawing tool bases each drawing operation on two atom
selections. This time, the selections are made using the geometry
produced in step 1; display of the original representation has been
toggled off. In the figures that follow, geometry will often be turned off
to simplify the display. VIEW users often do this — the interface allows
individual groups of geometry to be toggled using virtual buttons in the
interface. Users often switch between sparse global views and detailed

local views.

The line-drawing tool allows the user to lengthen or shorten lines that
connect the centers of selected atoms. An interactive event for defining
the length scaling was triggered by pressing the “1” key. The event pops
up a query window requesting a scaling factor. Richardson specified .65
before proceeding with the drawing shown in figure 4.4.

Next, she sketched a single sidechain using a sidechain drawing tool,
which draws an entire sidechain based on one atom selection and
information from the molecular database. Once the bonds of the
sidechain were drawn, Richardson used a tool that draws marker spheres



6)

at atom positions to identify each of the atoms in the sidechain. Figure
4.5 shows the result of a single selection with the sidechain tool and eight
selections with the sphere marker tool.

In order to produce the two rotated positions of the sidechain, Richardson
created a duplicate of the marker spheres using a group duplication tool.
VIEW places the geometry created by each drawing tool in a separate
geometry group labeled with the name of the tool that produced it. These
groups may be individually manipulated by other tools. The duplication
tool requested that she select any element of geometry from the group to
be duplicated, and then queried for a name for the new group. This
specification of group by identifying a member is common throughout
VIEW.

Once the group had been duplicated, she used a rotation tool to rotate the
duplicate into position. The rotation tool requests selection of a rotation
axis, followed by selection of one or more geometry groups that are to be
rotated. Rotation may then be performed with a dial or by key presses.
In this case, Richardson wanted to rotate the group by a precise amount;
an event triggered by pressing the “d” key allowed her to type in the
desired angle (120 degrees), and then pressing the “r” key applied the
rotation. Figure 4.6 shows the rotated markers. The rotation axis is
highlighted in white.

7) Steps 4 and 5 were repeated to produce a second duplicate rotated to 240

degrees.

8) In order to generate the open framework of lines connecting markers at the

rotated positions, I scripted a new drawing tool that connects a sequence
of selected positions with wireframe cylinders. The tool was created by
merging and modifying two prior tools. The first of these tools connected
a sequence of positions with solid cylinders (using the system cylinder
primitive). The other produced a tessellated cylinder {not using the
system cylinder primitive) given two end points and a radius.
Development of the new tool required under a half-hour, including
testing. Figure 4.7 shows the open cylinders being drawn; the last two
selected positions are highlighted white.



Figure_ 4.5 Figure 4.6

Phenylalanine drawn with all Atom markers duplicated and
atoms marked rotated

Figure 4.7

Sketching in wireframe cylinders -



9) Richardson used a group recoloring tool to finalize colors in the image,
shown in figure 4.1. The sequence of operations described can be carried
out in about fifteen minutes (excluding the tool development in step 7).
In actuality, Richardson spent a couple of hours producing the
visualization. A large amount of trial-and-error is required to design a
useful image. She tried a score of possibilities before settling on the
above result, including: changing colors, radii, lengths, and number of
facets for the wireframe cylinders.

4.2 AN EXAMPLE OF TOOL DEVELOPMENT

The following example describes the development of a drawing tool using the
VIEW tool language. The example is a modified version of a tool developed with
Alisa Wolberg, a graduate student in Darrel Stafford’s lab in the Biology
Department at UNC, Chapel Hill.

The final tool to be developed is one which displays spheres (constant-sized) for
all atoms in a molecule that belong to residues of a specified type. 1will develop
the code gradually, in a series of steps. Each working tool will be a bit more
complex. This is the way that we normally develop VIEW tools - by growing
them.

Each code example will contain comments on selected lines that are of the form:
! 1)

The exclamation point is the VIEW comment character. Any text on that line
following the exclamation is ignored by the VIEW interpreter. The number will
indicate that a corresponding comment with that number follows the code,
explaining the construct.

All keywords in the language are capitalized. Lower case words in the examples
will be user-defined variable names, text strings, or attributes.



The first tool draws a single sphere at a selected atom location. The user clicks on
some element of geometry that has an atom identifier associated with it. The

sphere drawn is pink and 1.5 angstroms in radius.

M

@)

3
@

sph_color = COLOR(255,60,60); ! define the sphere color

sph_radius = 1.5; ! define the sphere radius
SELECT_DB (item, “Select an atom”); @
pnt = item.atom.position; ' @
sph = SPHERE (pnt, sph_radius, sph_color); I @)
! @

sph.db_ptr = item.atom;
DISPLAY(sph); ! display the sphere

The SELECT_DB statement indicates that the tool is to pause, waiting for
the user to select an element of geometry that has a database pointer
associated with it (in this case the database pointer is to an atom record).
The statement will return the element of geometry selected in the variable
item. The second argument is a message to be displayed at the top of the
screen while the system awaits the selection.

This statement retrieves the position field from the atom record in the
database that is associated with the geometric element item. The position

is assigned the variable name pnt.
This statement constructs a sphere and assigns it to the variable sph.

A database pointer to the atom record associated with item is assigned to
the sphere sph.

The second version of the tool displays a sphere for each atom of the residue that
is selected. The atom selection is used as a starting point in the database, and a
search for all records with the same residue number is conducted, first forward
in the database from the initial selection, and then backward. Note that this tool
assumes that all atom records for a given residue are contiguous in the database
(this is always the case for Brookhaven Protein Databank data). Code that was
incorporated directly from the previous version is shown in plain type; new code
is displayed in bold type.



Y

sph_color = COLOR(255,60,60); ! define the sphere color
sph_radius = 1.5; ! define the sphere radius

SELECT DB (item, "Select an atom");

rec = item.atom; I M
start_rec = rec;
res_number = rec.res_num; 1 Q

! look forward through the database for atoms from same residue
WHILE ((rec {= EOD) AND (rec.res_num == res_number)) ! G
{

pnt = rec.position; ! @

sph = SPHERE (pnt, sph_radius, sph_color);

sph.db_pir = rec;

DISPLAY(sph); ! display the sphere

rec = NEXT_RECORD(rec); 1 (5

! look backward through the database for atoms from same residue
! start one record prior to selection
rec = PREV_RECORD(start_rec); ! (6
WHILE ((rec 1= EOD) AND (rec.res_num == res_number))
{

pnt = rec.position;

sph = SPHERE (pnt, sph_radius, sph_color);

sph.db_ptr = rec;

DISPLAY(sph); ! display the sphere

rec = PREV_RECORD(rec);

The variable name rec is assigned to the atom record associated with item.

(2) The res_num field, which contains the residue number, is retrieved from

the atom record rec and assigned to the variable res_number.



(3) The tool will search forward through the database, retrieving one record
at a time. The retrieval will continue as long as we are not at the end of
the data, and the residue number for the current record is equal to the
residue number of the initial selection. Note use of the C relational
operators != (not equal to) and == (equal to).

(@) The atom position is retrieved from the current atom record, rec.

(5) This statement retrieves the next record in the database. The record that
follows rec (indicated within the parentheses) will be assigned to rec (the
variable to the left of the equals). Thus, the value of rec is updated to be
the next record in the database. If rec was the last record in the database
prior to this statement, rec will receive the value EOD.

(6) A block of code that searches backward through the database in exactly
the same way as the forward search begins here. Note that we start the
search with the record before the initial selection (PREV_RECORD gets
the previous record in the database exactly as NEXT_RECORD gets the
following record), to avoid drawing the initial selection twice.

The third version of the tool draws spheres for every atom of each arginine
residue in an entire molecule. The user specifies the molecule by selecting some
element of geometry from that molecule on-screen. We implement this tool by
converting the previous tool into a subroutine, Draw_residue. The subroutine is
passed an atom record and locates all other atoms in the same residue. Spheres
are drawn for each atom. Note that unlike C, the user does not name a
subroutine within the drawing-tool language. The name of the file containing
the routine is used as the routine name; this name is assigned through the user

interface. The subroutine is:

PARAMETERS (rec IN); 1 @

sph_color = COLOR(255,60,60); ! define the sphere color
sph_radius = 1.5; ! define the sphere radius

start_rec = rec;
res_number = rec.res_num;



! look forward through the database for atoms from same residue
WHILE ({rec != EOD) AND (rec.res_num == res_number))
{

pnt = rec.position;

sph = SPHERE (pnt, sph_radius, sph_color);

sph.db_ptr = rec;

DISPLAY(sph); ! display the sphere

rec = NEXT_RECORD(rec);

I look backward through the database for atoms from same residue
! start one record prior to selection
rec = PREV_RECORD(start_rec);
WHILE {(rec != EOD) AND (rec.res_num == res_number))
{
pnt = rec.position;
sph = SPHERE (pnt, sph_radius, sph_color);
sph.db_ptr =rec;
DISPLAY(sph); ! display the sphere
rec = PREV_RECORD(rec);

(1) This statement defines parameters for the subroutine. A single input
parameter rec is passed to the routine. This is a database record, and
substitutes for the record retrieved from the selected geometry in the
previous version of the tool.

Note that this routine differs from the previous tool in two ways. First is the
addition of the PARAMETER statement that defines rec as a parameter to be
passed by the calling program. Second is the removal of the SELECT_DB
statement and the statement following it which retrieves the database pointer
from the element of geometry and assigns it to rec. Thus, rec is no longer
specified through on-screen selection, but through a subroutine parameter.

The main program (i.e. the code for the tool itself) is:

10



D

2

®

@

SELECT DB (item, "Select the molecule");

dbase = item.DB; f
FOREACH (rec IN dbase.atom) I ()
{ IF ({(rec.res_name =="ARG") AND I
(rec.atom_wqual == "CA"))
Draw_residue (rec); 1 @

The database associated with the selected element, item, is assigned the
variable name dbase.

This is an iterator (much like a C FOR loop or a FORTRAN DO loop). The
atom records in the database assigned to dbase are to be iterated on. rec is
the iteration variable. Each record in the atom portion of the database will
be assigned to rec in turn, and the code within the braces will be executed

for each.

We wish to draw residue atoms for each arginine, but we must ensure that
the atoms are drawn only once. For this reason only the alpha carbon
(atom name CA) is passed to the residue drawing routine. This scheme is
somewhat inefficient, since the Draw_residue routine will re-process
database records scanned by the main routine. However, we have
produced a very readable program, using already-built code.

The subroutine that draws the residue is invoked with an alpha carbon
record for each arginine.

The final version of the tool draws all residues of a specified type for a molecule.
The molecule is selected once on-screen. The user then enters the residue type in

a query, and that type is drawn. The user may repeat this process for as many

residue types as she wishes. Each type is placed in a separate geometry group

(each of which can be individually toggled, removed, renamed, written to file, or
operated on by other drawing tools) identified by the residue type name. The

Draw_residue subroutine was modified as follows and renamed

Draw_residue_grp.

11



PARAMETERS (rec IN, grp IN_OUT); 1@

sph_color = COLOR(255,60,60); ! define the sphere color
sph_radius = 1.5; ! define the sphere radius

start_rec = reg;
res_number = rec.res_num;

I look forward through the database for atoms from same residue
WHILE ((rec = EOD) AND (rec.res_num == res_number))
{
pnt = rec.position;
sph = SPHERE (pnt, sph_radius, sph_color);
sph.db_ptr =rec;
grp &= sph; L V)
rec = NEXT_RECORD(rec);

! look backward through the database for atoms from same residue
! start one record prior to selection
rec = PREV_RECORD(start_rec);
WHILE ((rec != EOD) AND (rec.res_num == res_number))
{
pnt = rec.position;
sph = SPHERE (pnt, sph_radius, sph_color);
sph.db_ptr =rec;
grp &=sph;
rec = PREV_RECORD(rec);

(1) An extra argument has been added to the routine. grp, which is both an
input and an output parameter (IN_OUT), stores the geometry group to
which all spheres are to be added.

(2) The subroutine no longer displays the spheres, instead they are added to
the geometry group, grp, using the concatenation operator, &-=.

12



The main tool routine is:

ey

)

&)

res_type = "ARG";
SELECT DB (item," Select the molecule");
dbase = item.DB;

LOOP ! @
{
ASK_STRING ("Enter the type of residue to display:”,
res_type); ! @
res_grp = GROUP (res_type); L )

FOREACH (rec IN dbase.atom)
{ IF ({rec.res_name == res_type) AND (rec.atom_wqual == "CA"))
{ Draw_residue_grp (rec, res_grp);
DISPLAY (res_grp); I @
}
}
}

The LOOP statement specifies that the body (in braces) is to be performed
repeatedly, without end. LOOPs are terminated by exiting the tool, either
explicitly, by pressing EXIT, or implicitly by executing another tool.
LOQP substitutes for the awkward construct WHILE (1) in C. LOOP is
used here to permit multiple residue types to be displayed.

ASK_STRING creates a user query that returns a string variable. The first
argument is the prompt to be printed in the query. The second argument
res_type is the variable that will contain the string entered by the user.
ASK_STRING requires that this variable contain an initial value
(assigned in the first line of the tool).

This statement creates (or retrieves if it already exists), a geometry group
with the name stored in the string variable res_type. The group is assigned
to the variable res_grp.

13



@

The group res_grp containing the spheres created by Draw_residue_grp
must be displayed. I chose to display the group after each residue is
processed rather than after all residues are processed (in which case the
DISPLAY would be positioned outside the FOREACH loop).

4.3 EXAMPLE OF A TOOL CONTAINING A SIMPLE EVENT

In this section, we will examine a tool which contains an event triggered by dial

rotation.

The tool (a simplified version of change_radius_object in the tool library) allows
us to change the radius of a selected object by turning dial 7. Turning the dial
clockwise will cause the radius to increase, counterclockwise to decrease.

oy

@

3)

SELECT (obj, "Select object whose radius is to be changed"); ! (D

EVENT ("change_radius"; ON DIAL 7) I @
{
IF (EXISTS(obj)) I (3
{ obj.RADIUS = 0bj.RADIUS +
(DIALRATE/50 * 0bj.RADIUS); 1 @
IF (0bj.RADIUS < 0.01) obj.RADIUS = 0.01; 1 (5
REDRAW(); N (3
1
}

This is the single line that will be executed when the tool is started. The
rest of the tool is an event definition, and will not be triggered until dial 7

is rotated.

This is the header line for the dial event. The event will be named
“change_radius” and will be triggered each time dial 7 is moved. On each
trigger, the code within the braces will be executed.

The EXISTS function returns TRUE if obj is defined, and returns FALSE
otherwise. This test prevents access of obj before it is defined (obj will be
undefined until the SELECT statement has completed).

14



(4) This statement modifies the radius of the selected object based on the
amount of dial movement. DIALRATE is a system variable which
measures the amount that the dial has been rotated since the last event

execution.
(5) This statement ensures that the radius of obj will always be positive.

(6) Once the radius of obj has changed, the screen is updated.

4.4 EXAMPLE OF A TOOL CONTAINING A CONDITIONAL EVENT

The tool presented in this section uses a conditional event to determine if a user-
steerable cursor is near any residue of a molecule. If it is, all atoms for that
residue are drawn as spheres using the Draw_residue subroutine described
above. The routine uses only alpha carbon locations to determine proximity.

After the user specifies the molecule to be processed by selecting an element
from it, the routine scans the database searching for all alpha carbons of that
molecule. Each alpha carbon position in added to an array (using the
concatenation operator, &=), and the atom record is stored in a corresponding
array. A conditional event checks the distance between a user-defined cursor
(probe) location and each of the alpha carbon positions. A 3-dimensional search
function, SEARCH3D is used to perform this check. If any points fall within the
specified distance from the probe, the residue is drawn and then that residue’s
alpha carbon is removed from the search list.

A set of events defines movement of the spherical cursor. The “x”, “y”, and “z”
keys cause movement in the horizontal, vertical, and in-out-of-screen directions
respectively. Pressing the “n” key causes reversal of movement for all of these
keys (e.g. movements to the left become movements to the right).

SELECT_DB (item, "Select the molecule");
dbase = item.DB;

! store alpha carbon atom positions in atom_pos array, and

! corresponding atom records in atom_records
atom_pos = ARRAY(); @

15



atom_records = ARRAY();
FOREACH (atom_rec IN dbase.atom)
{
IF (atom_rec.atom_wqual =="CA")
{ atom_pos &= atom_rec.position; !add the atom position to the array
atom_records &= atom_rec;
}
}

! place probe at the center of the screen, define movement events for it
probe = SPHERE (ORIGIN, 2.0, COLOR(255,0,0));
DISPLAY (probe);

move_amt =.5;
EVENT ("toggle_dir"; ON KEY "n")
{ move_amt = -move_amt; }

EVENT ("move_x"; ON KEY "x")

{ TRANSLATE_SCREEN (probe, move_amt, 0, 0); ' @
REDRAW();

}

EVENT ("move_y"; ON KEY "y")

{ TRANSLATE_SCREEN (probe, 0, move_amt, 0);
REDRAW();

}

EVENT ("move_z"; ON KEY "z")

{ TRANSLATE_SCREEN (probe, 0, 0, move_amt);
REDRAW();

}

! define the conditional event that controls residue display
EVENT ("search_side"; (SEARCH3D (1, atom_pos, probe.CENTER, 3.0,
found_pnts; INDEX = indices))) N )

16



1)
@)

(3)

)

()

ndx = indices[0];
rec = atom_records[ndx]; ! @
Draw_residue(rec); ! (5

! remove this alpha carbon from the search list
REMOVE(atom_records[ndx]);
REMOVE(atom_pos[ndx]);

}

An empty array is defined.

The TRANSLATE _SCREEN command specifies movement in the plane of
the screen for the named geometry. In this case, probe is to be moved in
the “x” direction by move_amt units (angstroms).

The SEARCH3D function is the condition to be checked for each
evaluation of this conditional event. This system-defined function returns
TRUE if any point in the array afom_pos is within 3.0 angstroms of the
center of the cursor sphere probe. The first argument specifies that only a
single such point is to be located, which will be returned in an array
found_pnts. If a point is located, the array indices will contain its index in
the original array atom_pos (a one-to-one correspondence exists between

found_pnts and indices).

The first element (index number zero) in indices is the index number of the
atom position found in atom_pos and of the corresponding atom record in

atom_rec.

Call the residue-drawing routine of section 4.2, passing it the alpha carbon
record for the residue.

4.5 AN EXAMPLE OF GRAPHICAL DEBUGGING

This example shows some of the graphical debugging features of the VIEW
system. Graphical debugging provides a capability for linking the textual
representation of a tool with an on-screen graphical representation. This
example shows how geometric computations performed in a section of code

17



were traced, using the graphical display facility in VIEW to create
representations of geometric entities on-screen and/or to highlight in the code
the line displaying an entity selected on-screen.

The code for this example is a portion of the Ribgen subroutine, invoked by both
the ribbon and ribbon_select tools. Ribgen creates ribbon geometry from a list of
alpha carbon and carbonyl oxygen positions assembled by the calling routine.
After the ribbon had been in use for a while, I noted that the ends of the ribbons
were unusually narrow, and that the ribbons appeared somewhat kinked. In
order to see what the code was doing, I set a breakpoint at the position indicated
in the following code segment:

FOR (i=0; i<len-1; i=i+1)
{
a = VECTOR(ca_list[i+1],ca_list[i]); <
b = VECTOR(ca_listli], o_list[i]);
¢ = CROSS(b,a);
d = CROSS(c,a);
d_list[i] = d/SQRT(d*d);
pnt = (ca_list[i] + ca_list[i+1]}/ 2,;
p_listlil = pnt;

I executed the ribbon_select tool and selected a start and end atom for the ribbon.
The debugger containing the Ribgen code popped up with the breakpoint line
highlighted, indicating that the debugger was stopped at that line.

In order to see graphical display of the computations in this code block, I clicked
on the Construct button in the debugger. This turned on the construction
facility, a graphical debugging feature that automatically produces on-screen
displays of points and vectors as they are created by the currently executing tool.
As I stepped through the code, one statement at a time, white cylinders appeared
on-screen representing the vectors a, b, ¢, d and a sphere appeared representing
the point pnt.

18



At any time after a point or vector was created, I was able to highlight it by
selecting the name of the variable in the debugger window and then clicking on
Display. This caused the representation of the variable to change color (if it
already existed on-screen) or to be drawn using the same representations as the

construction facility.

Figure 4.8 shows the on-screen display after this block of code has been stepped
through once. The red spheres show the atom selections. The cylinders and
white dots were produced by the construction facility and represent variables as
labeled (the labels shown in the figure were added as a post-process). The
cylinder representing the variable 4 was turned red by Displaying that variable.

So far, the vectors and computed point were positioned as I expected. I turned
construction off (by clicking the Construct button), set a new breakpoint further
on in the code, and clicked on Continue. When the new breakpoint was reached,
I again turned construction on, and continued to step through the following

block of code:

IF i ==0) ! handle start of ribbon

{
d_add = d_list[0]*w; <
end1_list &= ca_list[0] + d_add; I (a)
end?2_list &= ca_list[0] - d_add; ! (1b)
! replicate start point for spline
end1_list &= ca_list[0] + d_add; I (1a)
end2_list &= ca_list[0] - d_add; I (1b)
endl_list &= pnt + d_add; ! (2a)
end2_list &=pnt-d_add; 1 (2b)
}
end1_list &= (p_list[i+1] + d_list[i+1]*w); ! (3a)
end?2_list &= (p_listli+1] - d_list[i+1]*w); ! (3b)

The graphics produced after stepping through this code is shown in figure 4.9.
Each point is labeled to correspond with the code line that produced it. The

19



display feature was used to display a (turning it back to white), and d_add
creating the red and white striped cylindrical segment (the striping is an artifact
caused by the way the SGI renders coincident geometric primitives; d_add is
collinear with d).

The vector d_add was positioned as I expected, but was not as long as I had
anticipated. Thus, the six points drawn in this code segment were nearer the
original atom positions than I wished. I printed the value of w (using Display),
and noted that it was too small. With a bit of additional code browsing, I located
an error in the w calculation.

BIBLIOGRAPHY

[Richardson 92a] ].S. Richardson et al, “Looking at Proteins: Representations,
Folding, Packing, and Design”, Biophysical Journal, Vol. 63,
Nov. 1992, pp. 1186-1209.

20



Figure 4.8 Figure 4.9

Graphical debugging — after Graphical debugging - after
first code block second code block



