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ABSTRACT

Slotted Priorities:

Supporting Real-Time Computing

Within General-Purpose Operating Systems

Recent advances in network technologies, processor capabilities, and micro-

computer system hardware, coupled with the explosive growth of the Internet and

on-line data access, have created new demands on personal computer operating

systems and hardware. In large part, these demands are for the ability to acquire,

manipulate, display, and store multimedia data. The computational processes that

successfully acquire and display multimedia data necessarily have deadlines. That

is, the computation must be complete before a speci�ed point in time. Currently,

no general-purpose operating systems support such real-time processes. We have

developed a software architecture, called slotted priorities, that de�nes a way to

add support for real-time computation to existing general-purpose operating sys-

tems for uniprocessor machine architectures. The slotted priorities architecture

shares the resources of a computing system between a general-purpose operating

system and a real-time kernel. Software components called executives manage how

an instance of a resource is shared. Executives ensure that the RTK can gain ac-

cess to the resource at precise times. The resulting operating system will be able
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to guarantee that certain computations will always complete before their stated

deadline. The modi�cations to the general-purpose operating system are modest.

The architecture is comprised of a resource model, an execution model, and a

programming model. The resource model is a classi�cation of resources according

to characteristics relevant to the sharing of the resources between the real-time

kernel and the general-purpose operating system. The execution model de�nes

how real-time tasks acquire the processor. The programming model de�nes how

programmers write and think about real-time programs for an implementation of

the slotted priorities architecture. Finally, we develop a feasibility test which can

determine if a set of periodic real-time threads will all meet their deadlines when

executed on a system implementing this architecture.

We describe an implementation of the architecture and a set of experiments

that validate the implementation. Two real-time demonstration applications were

built and executed on the test implementation. Results and analysis of those

applications are also presented.
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Chapter 1

Introduction

1.1 Motivation

Recent advances in network technologies, processor capabilities, and microcom-

puter system hardware, coupled with the explosive growth of the Internet and

on-line data access, have created new demands on personal computer (PC) oper-

ating systems and hardware. In large part, these demands are for the ability to

acquire, manipulate, display, and store multimedia data. The temporal character-

istics of multimedia data (typically video and audio) are fundamentally di�erent

from all other types of data for which general-purpose computer systems have been

designed, primarily because, for a particular instance of their use, multimedia data

are perishable in time. For example, a particular sequence of bytes comprising a

video frame is usable for only a few tens of milliseconds in an application such as

video conferencing.

Two other unique characteristics of multimedia data streams are also relevant.

First, in some cases, multiple streams such as audio and video, may have to be

synchronized to be useful. Second, for live interactive multimedia streams received



from a network, bu�ering alone cannot be used to smooth out variations in arrival

times of the data packets from the network. This is because the latency created

by bu�ering is unacceptable to humans in two-way communication, not because

of the bu�ering itself, but because of the amount of bu�ering one typically must

do in practice. These temporal characteristics of multimedia data streams place

constraints on executing the tasks1 that manipulate multimedia data streams. Pri-

marily, the task, in concert with its environment, must be able to guarantee its

timely completion or else the data's usefulness will degrade. For example, incom-

ing compressed video frames must be decompressed and displayed approximately

every 33 milliseconds, or the quality of the displayed video will degrade.

In 1973 Liu and Layland published their seminal work in the scheduling of

tasks with real-time execution constraints [24]. Their model is called the periodic

real-time task model. The two de�ning temporal characteristics of periodic real-

time tasks are (1) the tasks are invoked once in every interval of time of a �xed

length, known as the period, and (2) the ith invocation of a task must complete its

computation before the end of the ith period.

At an abstract level, the properties of periodic real-time tasks are exactly the

properties that tasks handling multimedia data streams require. Consider a peri-

odic real-time task that receives, decompresses, and displays video frames arriving

from a network. With a period of 33 milliseconds, this task would, given the timely

1In this work three terms are used to refer to an instance of a program executing on a
computing machine. \Task" is used in the context of describing previous work that used that
term. \Process" is used when referring to the complete program in a general sense. \Thread" is
used when referring to a portion of a program with certain characteristics or requirements.
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arrival of video frames from the network, correctly display the video data at 30

frames per second without distortion. Unfortunately, however, no commercial suc-

cessful operating systems for PC class computer systems support periodic real-time

tasks without auxiliary hardware.

Another useful application of periodic real-time tasks is in the area of process

automation. Control of robotic machines in manufacturing lines has long been

an area where traditional real-time operating systems are employed. A general-

purpose operating system that could correctly control these robotic machines would

have signi�cant value to industry.

This paper develops a practical method to guide additions to general-purpose

operating systems (GPOS) for PC class computer systems to support periodic

real-time tasks.

General-purpose operating system design has developed over four decades in an

environment where the characteristics of the data manipulated by the computer

system have not included a temporal aspect. The correctness of the hardware and

system and application programs have not been de�ned for data that lose value in

time. Note that this is di�erent from response time (a type of temporal require-

ment) that has been much studied. Used often as a quality measure for interactive

programs response time is measured from some event until the completion of the

task initiated by that event.

After the initial problems of transmission, storage, and manipulation of data

were solved in early computer designs, the emphasis shifted to focus on the prob-

3



lem of fairly allocating the resources of a computer system among its various tasks.

Important milestones were interrupts, scheduling and multitasking, virtual mem-

ory, instruction and data caching, pipelining, and direct memory access (DMA).

These features of operating systems and computing devices all increase a com-

puter system's overall e�ciency but add variability to the length of time that any

particular task requires to complete its computation. This variability precludes

supporting periodic real-time tasks, because they have deadlines that may not be

met if the amount of time they need to �nish varies too widely.

Early computer system designs used the processor to interact directly with at-

tached devices, resulting in an interaction paradigm known as programmed I/O.

Then, and now, attached devices were three orders of magnitude slower than the

processor [3]. Interrupts, �rst developed in the IBM Stretch [3], relieved the pro-

cessor from continuous interaction with attached devices. An interrupt is a signal

from an attached device that causes the processor to switch from its current task

to a sequence of instructions (the interrupt handler or device driver) that interacts

with the signalling device. Thus, the processor executes the instructions of the

interrupt handler only when the device is ready to interact with the processor; this

allows the processor to execute instructions for other activities while the device is

busy with its internal operations.

An important point to note here is that devices operate asynchronously with

respect to the processor and each other. As a result, the times when interrupts

arrive at the processor, and hence how frequently interrupt handlers execute, can-
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not be precisely predicted. Thus, a design trade-o� with interrupts is that one

can no longer predict how many processor cycles will be consumed by interrupt

handlers in a given interval and how many will be available for other tasks. This

is a problem for periodic real-time tasks, because they must be able to �nish their

computation before their next period begins.

As interrupts were developed, it became clear that a processor relieved of inter-

action with devices was useful only if it could do other work. The notion of multi-

tasking, with its requirement of task scheduling, became important. Multitasking

describes an operating system that simultaneously multiplexes the execution of

more than one user program. Scheduling refers to the way the operating system

decides which program to execute next.

Many scheduling algorithms were developed, analyzed, and implemented, but

eventually a single design dominated and is used in some form in many general-

purpose operating systems. It comprises a set of round-robin priority queues with

priority promotion. Each queue holds tasks of the same priority, and tasks from

the queue with the highest priority are serviced by allowing each task in the queue

a �xed amount of time (quantum) on the processor in rotating order among all

tasks in that queue. Tasks in the queue with the next highest priority are serviced

in the same manner only when the higher priority queue is empty. As tasks spend

more time in lower priority queues, their priority slowly increases so that they are

eventually serviced. A design trade-o� here is that the time any particular task

may wait in the queue system depends on the number of tasks in the system and
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the task's initial priority. This wait time can be predicted only by using stochastic

methods with assumed distributions of task service requirements and task invoca-

tion times. Thus one cannot predict for how long any particular invocation of a

task will wait in the queue system before completing its computation. This is not

a liability when using a general-purpose operating system since a heavily loaded

computer system can be expected to take longer to �nish any particular task. That

is, in a GPOS one typically only cares about average performance. However, not

being able to predict the completion time of a task means that a system cannot

guarantee completion times as required by periodic real-time tasks.

Another design milestone in the development of operating system theory was

the principle of locality �rst proposed by Denning [6]. This principle simply states

that it is highly likely that the next logical instruction to be executed in a task

will be close, in memory location, to the previously executed instruction. The

principle of locality allows the e�cient implementation of paging. Paging was �rst

implemented on the ATLAS [1]. In a paged system memory pages no longer ac-

tively in use are moved from memory to backing store, providing physical memory

free for other tasks. From paging came the idea of virtual memory, analyzed by

Denning [7]. Virtual memory extends the logical address space available to tasks

by multiplexing the use of physical memory. Again, a design trade-o� with paging

and virtual memory is a decrease in the the ability to predict when any particular

task will �nish, since bringing in a page from disk to resolve a page fault introduces

considerable variability into the execution time of a task.
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Another e�ciency enhancement, direct memory access (DMA) allows an at-

tached device to transfer data between itself and memory, and between itself and

other devices, without much interaction with the processor. The processor must

set up the parameters of the transfer but need not attend to the transfer of each

word. Because of how devices typically behave it is more e�cient to allow the

device using DMA to have priority access to the system bus. This prevents the

processor from accessing memory during DMA transfers. This results in a more

e�cient system overall but makes the completion time of a task less predictable

because the length of time the processor must wait for access to the system bus to

fetch instructions and data from memory is more variable.

Instruction and data caching increases the e�ciency of computer systems by

keeping recently used instructions and data in memorywith low access time, rather

than in relatively slower main memory. E�ciency is increased because main mem-

ory access time is slower than average instruction execution time but cache memory

access time is more closely matched to instruction execution time. Because cache

memory is much more expensive than main memory, caches are typically much

smaller than main memory. This requires keeping a limited number of instructions

and data in the cache and replacing cache lines, according to a particular replace-

ment policy, when a cache miss occurs. Using instruction and data caches again

increases the variability in task completion times.

The unpredictability of task completion time is also increased by the unre-

stricted use of the interrupt enable/disable mechanism, which is current practice
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in some PC systems. This is because during the time when interrupts are dis-

abled, the operating system may not receive the interrupt from the system timer

when the timer expires. Instead it is received later when (1) interrupts have been

enabled, and (2) the interrupt from the system timer obtains priority, among any

other pending interrupts, to interrupt the processor.

For example, consider a process that has issued a call to the GPOS to sleep

for n milliseconds. If, at the end of the n milliseconds, interrupts were disabled by

some privileged but non-kernel code, the GPOS would be unable to gain control

to awaken the sleeping process. In other executions of that process, however,

the sleeping process might be awakened on time giving it a di�erent execution

time. The interrupt enable/disable mechanism, unfortunately, is used in many PC

systems to ensure mutual exclusion of critical sections within the operating system

kernel. In some cases, interrupts may be disabled for rather long periods of time

because, for example, the critical section being protected is a search through a

linked list of events with no practical upper bound on the number of elements.

Any practical method for adding support for periodic real-time tasks to a GPOS

would have to address the variability in task completion time introduced by inter-

rupts, scheduling and multitasking, virtual memory, DMA, caching, RAM refresh2,

and the unrestricted use of the interrupt enable/disable mechanism. One approach

2RAM refresh is an artifact of the realization of memory by memory cells that indicate data
values by storing a voltage potential in a capacitor. Capacitors are not perfect machines and
therefore leak the voltage. In time the voltage in the memory cell will be insu�cient for the
read lines to determine the data value of the memory cell. RAM refresh periodically restores the
voltage potential to its initial value so that subsequent reads occur without error. To do this, it
uses the bus and therefore the bus is unavailable to the CPU or other devices.
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(not the one used in this work) would be to modify the source code of the GPOS

to reduce this variability su�ciently and to add a new scheduler (with or instead

of the existing scheduler) that supports the scheduling of periodic real-time tasks

and non-real-time tasks.

Another approach, proposed by Shaw [33], would be to determine the \dilation"

e�ect that interrupt handlers have on task execution time. If attached devices

were designed so that the minimum interarrival times between interrupts to the

processor and the length of execution times of the interrupt handler for the device

were bounded, then their maximum dilation e�ect on task execution time could

be calculated. This approach does not consider other factors, such as page misses,

DMA, and the unrestricted use of the interrupt enable/disable mechanism, that

contribute to variability in task execution time.

This work develops another approach, named the slotted priorities (SP) archi-

tecture. Instead of modifying the GPOS, SP adds another simple operating system

kernel (a real-time kernel, RTK) that provides the basic services required by peri-

odic real-time tasks and multiplexes the execution of the GPOS and its tasks with

the execution of the real-time kernel and its tasks in alternate intervals.

Both the length of the intervals and their starting points must be precise.

SP addresses the unrestricted use of the interrupt enable/disable mechanism for

mutual exclusion by requiring virtualization of the interrupt enable/disable mech-

anism. This virtualization allows the system to create precise intervals, using the

timers available on the hardware, in which the two kernels and their respective
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tasks execute. Without virtualization of the interrupt enable/disable mechanism,

the interrupt that marks the beginning of the interval in which the real-time kernel

and its tasks execute could be delayed, which could cause a real-time task to miss

its deadline.

SP also disallows interrupts, virtual memory, and may disallow DMA (depend-

ing on the design of the system bus) while the computer system is executing in

the interval belonging to the real-time kernel and its tasks. The real-time kernel

(RTK) should also provide periodic real-time task scheduling, a task admission

control algorithm, and various libraries of real-time utilities.

In addition to de�ning the SP architecture, this work also presents the details of

an implementation of the SP architecture on an Intel i486 hardware platform, the

results of a number of experiments to show that the implementation of the SP ar-

chitecture meets the requirements de�ned in the architecture, and two application

demonstrations to highlight portions of the SP architecture implementation.

1.2 An Overview of the SP Architecture

At a high level, the slotted priorities architecture shares the resources of a com-

puting system between a general-purpose operating system and a real-time kernel.

Software components called executives manage how an instance of a resource is

shared.

The slotted priorities architecture consists of:

� an execution model that explicitly de�nes how the CPU is multiplexed be-
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tween the GPOS and the RTK

� a taxonomy of resources classed by characteristics of the resource and the

services required in an executive to ensure that the executive correctly shares

the resource between the GPOS and the RTK

� for each class in the taxonomy, a description of the services required in an

executive that can correctly share the resources in that class

� a programming model that includes guidelines for writing real-time tasks to

execute on a system which implements the architecture

Executives manage the sharing of a particular resource between the GPOS

and the RTK. Examples of resources are the CPU, memory, display, and network

device. Executives ensure that the RTK can gain access to the resource at precise

times. Various types of executives are needed in any particular implementation of

the SP architecture. For example, the executive needed to manage sharing of the

display di�ers from the executive needed to manage the sharing of the CPU. For

any resource in a particular class in the resource classi�cation, a single executive

model can be used to construct the actual executive.

There are two main classes in the resource classi�cation: partitionable and

slotted. Partitionable resources contain numerous identical units, all of which may

be in simultaneous use. Examples of partitionable resources are main memory,

direct access storage device (DASD) blocks, TCP/IP ports, and display pixels.

Partitionable resources are shared by separating the identical units into two disjoint
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sets. The GPOS and its tasks use the units in one set exclusively and the RTK

and its tasks use the units in the other set exclusively.

Slotted resources contain a single unit that must be multiplexed between the

two OS kernels. An example of a slotted resource is the processor. The execution

model describes the multiplexing between the GPOS and its tasks and the RTK

and its tasks. The processor is in the preemptible subclass of the slotted class,

because almost all computer systems have hardware support that allows preemp-

tion of the processor. Preemption saves the current state, installs a new state, and

resumes the execution of the processor on another sequence of instructions. The

hardware support for preempting the processor reduces the complexity of sharing

the processor between the GPOS and the RTK. Other slotted resources that are

not typically provided with a preemption capability fall in other subclasses of the

slotted class. The executives that manage their sharing are even more complex

than the executive for sharing the processor.

The execution model de�nes how real-time tasks acquire the processor. Time

is viewed as an in�nite series of discrete points starting at time t = 0. A time

unit is the interval between two points. Time units are divided into two classes:

real-time time units and non-real-time time units. A real-time minor cycle is a

contiguous sequence of mcrt real-time time units and a non-real-time minor cycle

is a contiguous sequence of mcnrt non-real-time time units. A major cycle, MC,

is an interval made up of mcnrt time units followed by mcrt time units. Thus the

length of a major cycle is MC = mcnrt +mcrt time units.
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Major cycles occur one after another forever. The GPOS and its non-real-

time tasks execute within successive non-real-time minor cycles, and the RTK and

its real-time tasks execute within successive real-time minor cycles. Figure 1.1

illustrates the relationships between the major cycle and the two types of minor

cycles.

Real-

Time

Minor

Cycle

Real-

Time

Minor

Cycle

Major Cycle

GPOSRTK

Non-Real-Time Minor Cycle

Figure 1.1: Major and Minor Cycles

Within the execution model, the processor executive must allow precise minor

cycle lengths to be created. This will typically be accomplished with an interrupt

from a system timer. If the SP architecture is being implemented on a computer

system whose interrupt enable/disable mechanismhas unrestricted use, the proces-

sor executivemust ensure that the interrupt that marks the minor cycle boundaries

is not delayed because of disabling of interrupts by the GPOS.
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The SP architecture does not specify, nor depend on, particular values for the

lengths of the minor cycles. Consider a set of periodic real-time tasks that use

50 percent of the processor cycles, including the overhead of the RTK and any

variability in the start of the real-time minor cycle. In this situation, the SP

architecture supports any values for the lengths of the minor cycles, as long as the

two minor cycles have equal lengths (50 percent for the RTK and 50 percent for

the GPOS). Thus, the minor cycle lengths of mcrt = 5 ms and mcnrt = 5 ms or

mcrt = 500 ms and mcnrt = 500 ms would be valid.

There are however, practical considerations. There is a trade-o� between the

overhead incurred by switching between the minor cycles and the granularity at

which the real-time tasks can specify their periods. For example, if an implemen-

tation limited minor cycle lengths to at least 30 ms then no real-time task could

specify a period of less than 60 ms. There may also be practical limitations on

the maximum length of a real-time minor cycle, such as existing device drivers

or devices that are not robust when isolated from each other during the real-time

minor cycle. Also note that shorter real-time minor cycles reduce the system's

e�ciency. Thus determining minor cycle length should be a dynamic function of

the RTK that is adjusted for e�ciency and practical considerations as real-time

tasks are created.
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1.3 Thesis Statement

Given the utility a�orded by general-purpose operating systems to their users and

the demand for processing video and audio data, there is a clear need to support

periodic real-time tasks within general-purpose operating systems. The thesis of

this work is one approach to merging the utility of general-purpose operating sys-

tems with support for real-time computation.

The slotted priority architecture de�nes a way to modify general-

purpose operating systems to schedule, manage, and execute periodic

real-time tasks. The resulting modi�ed system will be able to guaran-

tee that all periodic real-time tasks active on the system will meet their

stated deadlines. Periodic real-time tasks may reserve resources, such

as direct access storage device access and network access, and the mod-

i�ed system will guarantee that the resources are available when needed

by the reserving tasks with a reasonable maximum latency. For con-

temporary operating systems the modi�cations to the original general-

purpose operating system are modest.

The thesis has been proved by building a prototype implementation of the

architecture within a general-purpose operating system and then analyzing and

testing the implementation by executing periodic tasks doing multimedia process-

ing. We mathematically derived an analysis to determine the feasibility of a set of

periodic real-time tasks executing on an implementation of the SP architecture. A
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feasible set of real-time tasks was created and executed on the implementation to

see if any task missed its deadline. Additionally, test cases were run to determine

if the minor cycles started with bounded latency and if the variability of real-time

thread completion times was reasonably small.

1.4 Contributions

This work makes several contributions to the existing body of knowledge concern-

ing the fair and e�cient sharing of the resources of a computing machine.

Slotted Priority Architecture: an architecture to add support of periodic real-

time tasks to general-purpose operating systems.

Execution Model: a detailed description of how periodic real-time tasks may

share the CPU with non-real-time tasks. This includes deriving a feasibility

condition that, if satis�ed, ensures that all periodic real-time tasks will meet

their deadlines and a demonstration of how the model can be used to solve

some nontrivial real-time problems.

Resource Model: a taxonomy of classes covering the physical devices typically

attached to a computing machine. All members of a particular class can be

shared between the GPOS and the RTK with a similar executive.
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1.5 Preview of Subsequent Chapters

Chapter 2 examines other work that merges real-time support with general-purpose

operating systems, explores the issues surrounding the joint scheduling of real-time

tasks and non-real-time tasks, and describes extensible kernels. Also reviewed are

time division multiplexing, and operating systems that emulate other operating

systems. Since the SP architecture is conceptually an addition to a GPOS, this

chapter includes work in operating systems theory that provides for the dynamic

addition of function to operating system kernels|the so-called extensible kernel

school of OS design. The SP architecture's guidelines for construction of a CPU

executive multiplexes the CPU into two virtual CPUs in much the same manner

as time division multiplexing uses a single physical link for two, or more, com-

munication streams. Therefore Chapter 2 examines the relation to time division

multiplexing. The SP system can also be viewed as two separate operating systems

sharing the same physical hardware. Two other systems, VM and OS/2, that also

do this are examined.

Chapter 3 presents the complete SP architecture. Two requirements necessary

for any implementation of the SP architecture are derived from �rst principles

and their realization in an actual system is discussed. Once an SP system is

implemented, one must know the criteria for determining that that implementation

can actually meet the performance requirements of real-time tasks. This argument,

described in Section 3.5, has two parts. The �rst part is to determine by analysis

and experimentation if a particular implementation of the SP architecture meets
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the two requirements stated in Section 3.3. The second part is to use the feasibility

analysis presented in Chapter 4 to determine if a particular set of periodic real-time

tasks is feasible when executed on an implementation of the SP architecture. Once

these two parts are complete, an implementation of the SP architecture will be able

to execute that set of real-time tasks so that no task ever misses its deadline.

The three models that constitute the SP system are then described. The exe-

cution model describes how the CPU is shared between the GPOS and the RTK.

The resource model classi�es resources by characteristics that determine how they

are shared, and the programming model describes how a programmer would write

a real-time program for execution on an SP implementation.

Chapter 4 is a complete analysis and proof of the feasibility condition for a

set of periodic real-time tasks executing on an SP implementation. Unlike task

scheduling on a GPOS, real-time task scheduling includes the notion of a saturated

processor. This is the point at which adding another real-time task causes some

real-time tasks to miss their deadline. Thus, for a particular set of real-time

tasks, and a scheduling policy, a feasibility analysis will show whether a schedule

can be determined in which all tasks meet their deadlines. For this reason an

implementation of the SP architecture must include a computationally tractable

feasibility analysis to compute the feasibility of the set of real-time tasks as new

real-time tasks request admission to the system. The Liu and Layland task model

is adapted for use in the SP architecture.

Chapter 5 describes an implementation of the SP architecture and a set of ex-
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periments that verify that the implementation meets the two fundamental require-

ments presented in Chapter 3. The test implementation of SP was accomplished on

a Model-95 PS/2 IBM MicroChannel Intel 80486 based computer. The implemen-

tation used only those circuits normally found on the `AT' motherboard3. The set

of experiments showed that the implementation satis�ed the two fundamental re-

quirements described in Chapter 3 and quantitatively showed the slowdown of the

GPOS when the SP system was added. Also, the issues concerning implementing

the SP system on any computer are described in detail.

Chapter 6 describes two applications built for the SP implementation. The pixel

display application has two real-time tasks that loop continuously and compute an

arti�cial value and display a pixel in each iteration of the loop. This computation

and display must be completed in each period. The two real-time tasks have

di�erent periods. The values of the periods and costs of the two real-time tasks,

as well as system parameters, are used in a sample calculation of the feasibility of

this set of real-time tasks.

The second application is a network audio demonstration. This application

receives packets of musical notes sent over a token ring network from a non-real-

time machine running the OS/2 operating system and plays the musical notes

on the speaker of the test SP implementation. There is minimal bu�ering of

the packets of notes, yet the SP system accomplishes its guarantees. In both

3The AT motherboard is the set of circuits available on the original IBM Model AT computers
and now the de facto standard on all Intel-based personal computers (PCs) produced by various
manufacturers.
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demonstrations, the GPOS was fully active and we show that the real-time threads

always complete before their deadlines.

Chapter 7 summarizes the this work and presents conclusions. It also discusses

the future direction of this work.
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Chapter 2

Related Work

2.1 Introduction

Chapter 1 brie
y described the SP architecture and the problem it solves. This

chapter outlines related work that solves the same problem by di�erent approaches.

Additionally, this chapter presents work from which certain aspects of the SP

architecture derive and which, at a high level, resembles the SP architecture. With

the exception of Real-Time Mach each work presented in this chapter addresses

only part of the problem solved by the SP architecture. Real-Time Mach addresses

the whole problem but uses a fundamentally di�erent approach.

Section 2.2 presents various attempts at mixing the execution of real-time tasks

and typical GPOS tasks in workstation operating systems. Most designs center

around the problem of scheduling this mix of tasks in the context of a GPOS. But

supporting real-time tasks in a GPOS transcends simple scheduling. Issues such

as ensuring predictable computation times once scheduled by controlling DMA,

virtual memory, the interrupt enable/disable mechanism, and the execution of

interrupt handlers must be addressed. If real-time tasks are to be supported, they



must be able to access all required resources when they need them; so simply

modifying the scheduler in a GPOS will not su�ce. Nonetheless, scheduling is

important and Section 2.3 describes two pure scheduling algorithms that could be

employed to schedule real-time and non-real-time tasks.

Another possible approach is to let applications de�ne their own schedulers

(among other things) and download these operating system `extensions' into the

kernel at runtime. Section 2.4 presents work addressing operating system architec-

tures that allow the dynamic addition of function to the operating system kernel.

Section 2.5 compares the allocation of CPU cycles in SP to time division multiplex-

ing, a well-known technique in networking used to share physical communications

links. Section 2.6 describes two operating systems that emulate other operating

system.

2.2 Systems that Mix Real-Time and Non-Real-

Time Tasks

Many commercial operating systems claim to support real-time computation. How-

ever, those claims are usually based on a much looser de�nition of real-time com-

putation than the de�nition used here. We de�ne a real-time task as a task that

has declared a deadline and that is considered to have failed completely if it has

not completed its computation before its stated deadline.

Broader de�nitions of real-time range in meaning from the ability of an operat-

ing system to begin a task with low latency from some de�ned event, to the ability
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to process data as quickly as a human operator can input it, to the existence of a

highest priority class available to user tasks. These looser de�nitions of real-time

are useful in their own systems. However, even if the system faithfully implements

its own speci�cations, it cannot be used to schedule and execute periodic real-time

tasks while providing guaranteed completion times. This section reviews some re-

search based on de�nitions of real-time that are closer to the de�nition used in the

SP architecture.

2.2.1 Integrated Processor Scheduling

Nieh et al. developed the concept of integrated processor scheduling because the

real-time scheduler supplied with System V Release 4 UNIX could not e�ectively

schedule a set of tasks which included both traditional timesharing tasks and tasks

for managing multimedia (which required real-time support) [27]. Integrated pro-

cessor scheduling is so named because it integrates the scheduling of conventional

and real-time tasks within a single system.

Measurements completed on the System V Release 4 (SVR4) UNIX scheduler

showed conclusively that the SVR4 priority based scheduling algorithm could not

schedule both applications with deadlines and typical GPOS applications [27, 28].

The SVR4 real-time scheduler allows real-time tasks to be scheduled at the highest

priority class in the system to allow them to receive processor cycles as needed.

Speci�cally, the real-time scheduler incorporated in UNIX System V Release 4

could not meet its stated claim of being able to e�ciently and fairly schedule real-
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time and non-real-time tasks and the scheduler allowed priority inversion to occur.

Measurements showed that multimedia tasks executing in the SVR4 and scheduled

with the SVR4 real-time scheduler had unacceptable latencies. In addition SVR4

may lock up when attempting to execute multimedia tasks. The lock-up had three

causes. The SVR4 scheduler incorrectly identi�ed a batch type of job as interactive

and raised its priority. The incorrect identi�cation occurred because the batch job

executed many sleep calls to wait for its forked child processes to complete. The

SVR4 scheduler incorrectly identi�ed the windowing subsystem displaying video as

compute intensive and reduced its priority. The priority of the process generating

video frames increased because it slept waiting for new frames.

Thus, due to all three causes, many more frames were generated than the

windowing system could process. This e�ect is an instance of the priority inversion

problem, which is the observation that a low priority task can lock a resource and

then be swapped out, because a higher priority task has become ready to run, while

still holding the lock. If the higher priority task attempts to access the locked

resource it will block. If this occurs when many medium priority tasks become

ready to run, the medium priority tasks will run and block the low priority task

so that the resource remains locked. Thus, the high priority task may be starved

inde�nitely, while medium priority tasks continue to run.

Additionally, although this work did successfully tune task priorities in the

experimental system so that latencies and response times from the experimental

mix of applications were reasonable, it was argued that the priority values were
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useful only for that particular mix of applications and input data. Small di�erences

in the tuning values, the application mix, or the input data could have caused

radically di�erent latencies and response times [27].

Integrated processor can fairly schedule a mix of tasks with deadlines and tradi-

tional priority-scheduled tasks because it does not confuse urgency and importance.

It does not give higher priority to real-time tasks just because they have deadlines,

but rather allocates processor cycles fairly among all tasks active in the system,

both conventional and real-time.

The scheduler operates by �rst giving processor cycles to all real-time tasks in

an earliest deadline �rst order until all have received their fair share of processor

cycles. A fair share is determined by weighing the required processor demand of

the real-time tasks against the workload of the non-real-time tasks. The conven-

tional tasks are then scheduled with a round-robin scheduler. One criterion in

developing this scheduler was that the application programmer would not have to

supply information, such as execution cost, about a particular real-time task that

is di�cult or impossible to obtain.

However, a real-time task may receive its fair allocation of processor cycles

and still not complete in time. In this case, the scheduler noti�es the task of

the impending missed deadline but does not allocate more processor cycles to

the real-time task, because this may cause other real-time tasks to miss their

deadlines or signi�cantly lengthen the time conventional tasks need to complete

their computation.
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While it is clear that integrated processor scheduling can allocate processor

cycles fairly to a mix of real-time and typical GPOS applications, the results

show that the completion times of the real-time tasks vary signi�cantly. In a

completely quiet system, the standard deviation of the completion times of the

real-time tasks is about 10 percent of the mean (average completion time is 112 ms

and standard deviation is 9.75 ms); on a busy system, the standard deviation of

the completion times of the real-time tasks is about 30 percent of the mean (mean

completion time 177 ms and standard deviation 48.3 ms) [27]. This is undesirable,

because the largest possible completion time would have to be used to determine

the share given to the real-time tasks, thus reducing the amount of processor cycles

available for real-time tasks. By contrast, the SP implementation, as discussed in

Chapter 5, provides real-time task completion times whose standard deviation is

only about 0.03 percent of the mean on a busy system. Also, if the e�ect of

CPU cycle stealing through DMA, of interrupt handlers, and of the unbounded

delays induced by unrestricted use of the interrupt enable/disable mechanism is

not addressed, implementing integrated processor scheduling on a typical GPOS

may not guarantee an upper bound on task completion time. These issues are

discussed further in Section 3.3.

2.2.2 Real-Time Mach

The work on Real-Time Mach attempts to develop a real-time version of the Mach

Kernel [36]. Real-Time Mach addresses the same issues as the SP architecture
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but uses a di�erent approach. All of the subsystems of the Mach kernel are mod-

i�ed to create reasonable upper bounds on the cost of using the services of these

subsystems.

Real-Time Mach adds real-time thread management, an integrated time-driven

scheduler (ITDS), real-time synchronization, and memory resident objects to the

standard Mach kernel. Processes can create real-time and non-real-time threads.

Real-time thread creation requires parameters to de�ne the thread's timing char-

acteristics, such as the period (both periodic and aperiodic threads are supported),

maximum cost, and deadline, and whether the deadline is hard or soft. Real-Time

Mach adds real-time synchronization to solve the priority inversion problem by us-

ing priority inheritance [32]. Real-time synchronization thus establishes an upper

limit to the amount of time a high priority process may be blocked by a lower

priority process that has locked a resource the higher priority process needs.

Externally Real-Time Mach resembles an implementation of the SP architec-

ture because a real-time process in either system sees a uni�ed application pro-

gramming interface (API) with which the process can create real-time threads and

reserve resources. However, although they appear similar, their internal di�erences

are signi�cant. In some sense the design of Real-Time Mach follows an obvious

course: modify a GPOS kernel su�ciently to support the scheduling of tasks with

deadlines. In doing so, most of the GPOS kernel had to be modi�ed or at least an-

alyzed to ascertain the e�ect on real-time threads. A new scheduler to support the

mix of real-time and non-real-time threads had to be designed and implemented,
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and the memory subsystem of the kernel had to be redesigned.

The SP architecture takes the opposite approach: it considers the real-time

and non-real-time requirements to be so di�erent that ultimately it is less costly,

in terms of the programming task, to avoid merging them and to develop a generic

approach that can be used with any GPOS.

2.2.3 Processor Capacity Reserves

Processor capacity reservation (PCR) is an abstraction and mechanism, added to

Real-Time Mach, to allow the user to control allocation of processor cycles among

a number of tasks reserving processor cycles [25]. A new kernel abstraction, the

reserve, is also introduced. The reserve tracks the reservation and measures the

processor cycles used by tasks with reservations. The reserve is not bound to

a process but rather to a thread of execution, so that in microkernel operating

systems and windowing systems like X-windows, processor cycles accumulate both

when a process is executed and when servers are executing on behalf of the task

that reserved processor capacity. PCR solves the problem of scheduling tasks with

real-time requirements and conventional time-sharing tasks.

The work de�nes four issues necessary for the reservation strategy to perform

correctly. The system must:

1. provide some means for application programs to specify their processor re-

quirements.

2. evaluate the processor requirements of new programs to decide whether to
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admit them.

3. schedule programs consistently with the admission control policy.

4. accurately measure the computation time consumed by each program to

ensure that programs do not overrun their reservations.

The task model is that of periodic tasks. PCR handles issue one by measuring

the processor time used by a process during an interval. This time is then divided

by the length of that interval to give the percentage of processor time required by

this application or its rate. This rate, or processor speci�cation, is the criterion by

which tasks are scheduled.

The second issue, admission control, is performed by summing the utilizations

of all of the real-time processes when using dynamic priority assignment. The work

notes problems with this approach and states that �xed priority assignment could

also be used, but that in general �xed priority scheduling cannot schedule 100

percent of the processor. For example, a process that requires 30 percent of the

processor may require 30 ms every 100 ms or 300 ms in 1000 ms, two very di�erent

conditions. Thus two of the following three variables are required to specify the

task's processor requirements, a utilization percentage, a computation time, and

the length of an interval in which the computation must occur. The three variables

are related by the following expression: � = C
T
where C is the computation time,

and T is the interval in which the computation must occur. This analysis allows

straightforward application of the results presented by Liu and Layland [24], for
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the purpose of determining the feasibility of the real-time task set and is what they

use for admission control.

The third issue requires that the scheduler must be consistent across all resource

management policies in the system and that the scheduler and admission control

policy must agree with respect to task ordering, preemption, and measurement.

Issue four is the most complex. Consider a server process with a number of

threads, such as the server used for a graphical user interface (GUI). The threads

of the server often operate on behalf of some application process, so the CPU

cycles used by those server threads should be charged to the task on whose behalf

they operate. Thus the accounting of CPU cycles cannot be done simply on a per

process basis.

To deal with this problem the authors introduce the concept of an activity which

is an abstraction that includes all activities performed within a computer system

on behalf of some particular process. Activities, rather than processes, reserve

processor capacity. A measurement mechanism accurately measures the processor

time accumulated by each activity. Activities that have not yet consumed their

reserve have a higher priority than activities that have.

The measurementmechanism is driven by an auxiliary timer board. The system

described by Mercer et al. [25] does recognize that interrupt handlers arti�cially

increase the amount of processor time a scheduler attributes to a particular task,

because their measurement mechanism speci�cally excludes the execution time of

interrupt handlers. The processor capacity reserve system does not, apparently,
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provide a mechanism to control the inherently high priority of interrupt handlers.

Thus, if many interrupt handlers execute during an activity's period, too few

processor cycles may remain to complete the activity. Like RT-Mach, PCR is an

instance of modifying the complete operating system to support real-time tasks.

2.2.4 Rialto

The Rialto system being developed at Microsoft Research attempts to incorpo-

rate into their operating system high-level reasoning and dynamic inheritance of

scheduling attributes, across boundaries (such as modules and RPC) tradition-

ally closed to such inheritance, to support real-time computation [22, 21]. Rialto

de�nes and uses programming and system abstractions that make it easier to man-

age computer system resources. Each resource providing a service can de�ne how

much resource it needs to accomplish that service. For example, a module which

implements a disk read operation would specify a set of resources, such as CPU

time, bus bandwidth, and memory, that it needs to actually accomplish the read.

The values would be for the worst case. A process can use these data to reason

about its temporal requirements. A resource planner negotiates resource usage

between processes and resources, eventually accepting or rejecting a request from

a process for a set of resources. A mix of real-time and non-real-time activities is

supported in this system since processes not requiring real-time access to resources

can negotiate completion times with long deadlines. However, such negotiations

are arguably unnatural.
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This resource model closely resembles the programming model of the SP archi-

tecture, in that resource use has an associated cost that is considered part of the

processor demand of the real-time task. However, SP does not expose these costs

to the tasks but incorporates them as it calculates the cost of the real-time thread.

Real-time tasks in SP simply state their requirements. As long as the utilization of

the resources requested is below 100 percent after the request is considered and the

resulting schedule of real-time tasks is feasible, the request is granted. Negotiation

could be added to the SP architecture and, in fact, the Rialto abstractions could

be readily accommodated in an implementation of the SP architecture. Issues

surrounding the sharing of attached physical devices are not addressed.

2.2.5 An IPC Mechanism for Continuous Media

The preceding sections have discussed work addressing the modi�cation of com-

plete operating systems. The next sections describe work which modi�es only part

of the operating system, and is therefore closer to SP.

In some of the preceding discussion, the method of accommodating real-time

computation begs the question of how much of the GPOS must support real-time

computation. The answer is all: a real-time task must be able to access any re-

quired resource within a known upper bound on latency. SP largely avoids this

question, because it separates real-time computation from non-real-time computa-

tion via the CPU executive. Even in SP, however, resource executives must ensure

that their managed resource is available when a real-time task attempts to access
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it.

Anderson et al. consider OS support for continuous media [11]. They address

the issue of which OS function should be modi�ed to accommodate real-time ac-

cess by noting that resource con
ict occurs during user/kernel domain switches

and mapping (context) switches. The work tries to minimize the latencies caused

by these switches by adding a new process and scheduler structure and a new

process-to-kernel communication mechanism. They note that in the UNIX asyn-

chronous I/O mechanism, ten domain switches and two mapping switches are re-

quired to read a block of data. The authors make a case for reducing the amount

of overhead incurred when processes cross domain boundaries in typical UNIX

implementations [11]. They have designed two mechanisms that help reduce the

latencies that arise from switching: split-level scheduling with synchronization and

memory-mapped streams.

Split-level scheduling with synchronization minimizes user/kernel interaction

by using several schedulers (one kernel scheduler and a scheduler for each user

address space) rather than only one, and by allowing more than one lightweight

process in a single user address space. The kernel scheduler decides which user

address space should execute, and the user level scheduler in the indicated user

address space decides which lightweight process to execute. The kernel and user

schedulers communicate via shared memory and minimize the number of domain

and mapping switches.

Memory-mapped streams reduce the number of domain switches by providing
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a queue for kernel work requests. These requests are placed on the queue by the

lightweight processes, and removed and acted upon by the kernel. Using this queue

reduces the number of domain switches.

Anderson's design attempts to modify some pieces of a typical GPOS (UNIX)

to provide the timing and scheduling support required by real-time tasks. The

issues of interrupt disabling and interrupt handler execution are not addressed.

2.2.6 Summary

Several systems claim to support a mix of real-time and non-real-time computation.

From their descriptions one can infer that (1) modifying the scheduler of a GPOS

without modifying other OS components is insu�cient; (2) the crucial details of

handling interrupts and the unrestricted disabling of interrupts within the GPOS

must be considered in any modi�cation of a GPOS or system design; and (3)

priority scheduling alone cannot schedule a mix of real-time and non-real-time

tasks.

2.3 Scheduling Work

This section describes methods of supporting real-time tasks in a GPOS by de�ning

new scheduling models. Although the problem of mixing real-time and non-real-

time tasks transcends scheduling, it is nonetheless instructive to examine some

work that addresses the scheduling issue in isolation. We consider three new mod-

els: lottery scheduling, proportional share allocation, and rate-based execution.
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These algorithms address the issue of mixing real-time and non-real-time processes

in the context of a GPOS, but none accounts for latencies at scheduling boundaries

due to the disabling of interrupts or for the e�ect of interrupt handlers executing

below the visibility of the scheduler.

2.3.1 Lottery Scheduling

In lottery scheduling, the CPU is scheduled by randomly selecting a process through

a lottery [37]. Processes obtain a number of `tickets'. The share of a resource that

a process eventually receives is proportional to the number of tickets a process

holds. A random number generator is employed to select the winning ticket and

the ready process holding the winning ticket is given access to the resource. A

number of implementations of the ready queue are given.

The authors state that this scheduling mechanism is responsive and 
exible and

can fairly allocate processor cycles among real-time and non-real-time processes.

Responsiveness is the scheduler characteristic that measures its ability to respond

to changes in the ratio of allocated tickets. Fairness is de�ned as the measure of

the actual ratios of execution time to ticket allocations among tasks. Flexibility

explains that the scheduler accepts changes in relative ticket allocation among

tasks. For example, suppose that a lottery is held every millisecond and there is

one real-time task, with a period of 30 milliseconds and a cost of two milliseconds,

and 28 non-real-time tasks. The real-time task should then get two tickets and

all of the non-real-time tasks should get one ticket each. In every 30 milliseconds,
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then, the real-time task will probabilistically receive two milliseconds of processor

time.

Lottery scheduling solves the priority inversion problem by allowing ticket

transfers. When a real-time task blocks, it can transfer its tickets to the task

for which it is waiting, which increases that task's ability to obtain access to the

resource.

2.3.2 Proportional Share Resource Allocation

Lottery scheduling is a form of proportional share allocation. Other relevant work

in this area includes an algorithm that successfully mixes real-time and non-real-

time scheduling so that all processes in the system progress at precise, well-de�ned,

uniform rates [34]. The algorithm is earliest deadline �rst, but it supports services

of both the GPOS and real-time tasks. It is essentially a cross between processor

sharing and typical periodic real-time scheduling.

Every process is assigned a weight from which a share of the processor is calcu-

lated. If a process's share of the processor is s, then in any interval t, that process

is guaranteed to receive st � �, where 0 � � � � for some constant �. Since all

processes progress at their de�ned rates, no distinction is made between real-time

and non-real-time processes or their threads. The eventual goal of this work is to

use proportional share allocation for all resources, including interrupt handlers and

I/O buses. Using the example of the previous section, the real-time task should be

assigned a weight such that its share would be 0:066. Then in each interval of 30
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milliseconds, the real-time task would receive two (30 � 0:066) milliseconds (��)

of processor cycles.

2.3.3 Rate-Based Execution

Je�ay and Bennett propose a model, rate based execution (RBE), in which pro-

cesses state their timeliness requirements via a rate expressed in activities per

time unit [19]. For example, a process may require enough resources to process

one video frame every 33 ms. The model is general enough to encompass most tra-

ditional periodic and sporadic task models, as well as some proposed multimedia

computation models. It also allows the integration of non-real-time activities with

real-time computation.

The model de�nes a triple (x; y; d), where x is the number of events that must

be processed in an interval of length y, and d speci�es the desired maximum

elapsed time between the arrival of an event and the time at which its processing

is complete. When x = 1 and d = y, the RBE model is identical to the Liu and

Layland periodic task model [24]. RBE has been implemented on YARTOS (Yet

Another Real-Time Operating System) and Real-Time Mach.

Although RBE supports non-real-time and real-time activities, its focus is dif-

ferent from the SP architecture. The SP architecture develops a methodology for

adding support for real-time computation to existing GPOSs whereas RBE de�nes

an abstraction for process execution. So, for example, one could use RBE in an

implementation of the SP architecture where RBE handles the scheduling and SP
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ensures that real-time tasks obtain the number of processor cycles granted to them

by the RBE scheduler.

2.3.4 Summary

Traditional operating system scheduling theory addresses the issue of fairness: does

the particular algorithm allocate resources in a manner such that all processes

receive a fair share of the scheduled resource in a timely manner? In scheduling

real-time tasks, however, fairness is irrelevant. If the algorithm schedules real-time

tasks correctly and the task set is feasible, then every process receives what it

requires to meet its deadline.

When an algorithm attempts to schedule both real-time and non-real-time pro-

cesses, the fairness issue becomes relevant and is more important than in an algo-

rithm that schedules only non-real-time processes. This is because, informally, the

real-time tasks execute to completion before their deadline and thus consume pro-

cessor cycles that could have been used for the non-real-time tasks. This condition

requires that the scheduling algorithm be careful about allocating the resource to

the non-real-time tasks.

The three algorithms presented in this section accomplish this goal e�ciently

and correctly. They are important because they can be implemented in a tradi-

tional operating system and are thus promising for adding support for real-time

computation to GPOSs. However, we do not yet know how much of the original

GPOS would have to be modi�ed to incorporate these new scheduling models.
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2.4 Extensible Kernels

The SP architecture proposes a con�guration where two separate operating system

kernels share the physical devices of a computing system, but it does not de�ne

when the second kernel and its supporting systems become operational. Systems

have been proposed and implemented that allow the dynamic, run-time extension

of a GPOS kernel. Such systems might allow the addition of a real-time kernel, or

its functions, at run-time.

The current implementation of SP is not this general, i.e., it is linked statically

with the GPOS kernel and they are both loaded at boot time. Although the real-

time kernel does not become active until initiated through I/O from the operator,

the interrupt virtualization mechanism is active from the initial load of the kernels.

The virtualization mechanism could be implemented to become active immediately

before the RTK begins operation, which would allow the dynamic addition of an

SP implementation to a GPOS kernel. However, such a system would be more

sophisticated than current extensible kernel architectures.

This section looks at two architectures that represent possible approaches to

dynamically extending an operating system kernel to support periodic real-time

tasks.

2.4.1 SPIN

The SPIN project attempts to facilitate the addition of services in an operating

system by viewing function and procedure calls as events that can be dynamically
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bound to various handlers [29]. The basic SPIN kernel consists only of device

access, dynamic linking, and event handling. All other typical GPOS services, such

as threads and virtual memory, are provided by applications as needed. Although

not explicitlymentioned, one assumes that an application could install various task

schedulers dynamically, which would enforce di�erent scheduling policies. So, for

example, a lottery scheduler and its associated necessary run-time data structures

could be installed.

One can imagine an implementation of the SP architecture being installed dy-

namically as long as the necessary virtualization of the interrupt enabling/disabling

mechanism already existed within the basic SPIN kernel. Minimally, all attempts

to enable or disable interrupts should already be function or procedure calls, which

would allow the dynamic binding of new handlers.

2.4.2 ExoKernel

The ExoKernel proposes an operating system architecture that exports the capa-

bilities of the physical hardware and provides only protection; the goal here is to

separate protection from management [8]. For example, the ExoKernel protects

(prevents access by unauthorized processes to) a component such as a frame bu�er,

but does not attempt to manage it, i.e., it does not maintain a free list, etc. The

ExoKernel architecture was developed because applications can optimize use of

hardware (since they know intimate details about their operation) and because

typical GPOSs attempt to provide general resource management at the expense of
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certain classes of applications. All operating system services are provided by an

operating system library linked with each application.

The ExoKernel securely exposes the hardware by secure bindings, which pro-

tect applications from interfering with one another while enhancing performance

by decoupling authorization from use. The ExoKernel also provides revocation

actions that require it to visibly revoke resources from applications. Visible re-

vocations allow the applications to manage application-level resources e�ectively

because the application-level libraries are aware of how resources are allocated.

Results of experiments show that the particular implementation of the ExoKernel

is signi�cantly faster than a typical GPOS for operations such as an exception

dispatch (a source of overhead in traditional operating systems) [8]. Applications

can also perform scheduling for themselves as well as for other applications.

Since the ExoKernel architecture exports an interface just above the physical

hardware, it seems likely that an implementation of the SP architecture could easily

be constructed within the ExoKernel. An application would de�ne the minor cycles

and dispatch real-time tasks appropriately.

2.4.3 Microkernels and Virtual Machines

Another approach to dynamically adding function to an active kernel is the cre-

ation of virtual machines. One example is the Fluke (Flux �-kernel Environment)

operating system architecture [9] which enhances OS modularity, 
exibility, and

extensibility. The Fluke architecture allows deep hierarchies of virtual machines to
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operate e�ciently. It is a nested process architecture, similar to a virtual machine

architecture. However, it does not incur the performance degradation of virtual

machines when they occur in layers.

The Fluke architecture is speci�cally designed to avoid several problems:

� the requirement of having to emulate all instructions because sensitive infor-

mation, such as privilege level, leaks into user-accessible registers

� performance penalties that increase exponentially with stacking depth

� only parent-child interprocess communication

Instead of the traditional virtual machine architecture, where each virtual ma-

chine exports a hardware interface, in this work each virtual machine exports a

software interface designed speci�cally to e�ciently support deep hierarchies. The

virtual machines, called nesters, nest within each other. Each exposes the same

interface, thereby allowing modular composition of operating system services. For

example, the demand paging nester need not be in the hierarchy at the base level.

It can be at a level where only other virtual machines and applications that require

demand paging have access to demand paging routines and therefore incur their

cost. The performance degradation experienced with deep hierarchies is reduced

by allowing microkernel primitives to be used directly by processes without having

the process's parent involved in the operation. That is, the child process imports

microkernel operations directly from the microkernel rather than from its parent

process.
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Since Fluke is implemented by a microkernel at the hardware layer, implement-

ing SP in the Fluke environment would involve much the same issues as implement-

ing SP in a typical GPOS. The interrupt enable/disable mechanism would have to

be virtualized and an interrupt handler would have to be installed to create the

minor cycles needed by SP.

2.4.4 Summary

The question posed in this section is: can real-time support be added to a oper-

ating system kernel by adding function via provided extension mechanisms? We

claim that it can be done only by adding basically all of the functions of the oper-

ating system, as Real-Time Mach did. This approach, although feasible, requires

tremendous e�ort and in the end must address the same issues that SP addresses

to be successful. These issues are (1) processor cycle stealing of interrupt handlers,

(2) precise control over the starting time of intervals in which real-time processes

execute, and (3) ensuring the availability of resources when real-time processes

require access.

2.5 Time Division Multiplexing

The SP architecture CPU executive manages the GPOS and the RTK by inter-

leaving their executions. One may view this alternate execution as dividing the

CPU's capacity in time. Paradigms to facilitate the e�cient use of a communica-

tions link, such as a telephone network's trunk lines, have long included the notion
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of time division multiplexing [35]. Consider a physical communications link with

bandwidth � and a number of distinct logical channels each of which carries a

conversation on behalf of a link user. Time division multiplexing allows all of the

logical channels to share the physical link. If n channels are multiplexed, each re-

ceives �
n
units of bandwidth. Access to the physical link by each channel is allowed

only in a speci�ed time interval, each channel sending on the physical link during

its own interval.

The SP architecture speci�es that the RTK and GPOS share the CPU in a

manner similar to how time division multiplexing multiplexes a number of logi-

cal channels over a single physical communications link. The executions of the

RTK and the GPOS occur in minor cycles and this sharing is managed by the

CPU executive, which is similar to the controllers that divide use of the physical

communications channel.

2.6 OS Emulation

It is fairly common to �nd operating systems emulating other operating systems.

This is typically done to provide some level of backward compatibility, i.e., allow

users to execute programs which were written for an operating system other than

the dominant one running on the system. Two examples are given below. However,

note that neither host operating systems nor the emulated operating systems claim

to have any hard real-time properties.
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2.6.1 Virtual Machines

The term virtual machine typically refers to software that emulates a particular

hardware system, but need not be executed on any particular hardware. There are

di�erent ways this capability might be used to one's advantage. One can envision

many di�erent virtual machines sharing a single hardware system. For example,

a virtual PS/2, a virtual DecStation, and a virtual Macintosh might all simulta-

neously execute on a single hardware system and within each virtual machine an

appropriate operating system and its associated processes would execute. Thus,

with a single hardware system an enterprise might accommodate many users with

diverse requirements.

Another use of virtual machines might be to provide each user with the illusion

of a complete single user machine while actually executing many identical virtual

machines, each with its own user, on a single hardware system. This is the use

provided by IBM's Virtual Machine (VM/370) [15, 16]. VM/370 is a micro-kernel

architecture, a small kernel interacting directly with the physical hardware and

exporting the 360 architecture. The VM/370 micro-kernel is called the control

program (CP). VM/370 builds a complete virtual hardware system and operating

system for each user and controls all access to the hardware via calls from the

virtual operating system to the CP.

The CPU executive in SP virtualizes the underlying hardware somewhat dif-

ferently. It isolates, in time, various functions to provide two di�erent uses of the

same hardware. In contrast, a virtual machine provides the illusion of complete
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machines to be used as the executing operating system decides. Figure 2.1 shows

the relationship of virtual machines to their hardware system.

OS-1 OS-2 OS-3 OS-4 OS-5 OS-6

User User User User User User

Hardware System

Virtual Machine Manager

Figure 2.1: Emulation of Operating Systems in VM

2.6.2 OS/2

IBM's OS/2 operating system provides the ability to execute programs written for

DOS or Windows in an environment that emulates the original operating system.

Almost all programs written DOS or Windows can run in the simulated environ-

ment without modi�cation. OS/2 provides this environment by creating a virtual

DOS environment (VDM) for each DOS program that is executed, using the mul-
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tiple virtual DOS machine (MVDM) technology [5]. The MVDM is called a kernel

and is scheduled by OS/2 as a single OS/2 task; hence, it is subject to all of the

unpredictability of an OS/2 task.

SP can be viewed as two operating systems executing on a single hardware

system and therefore is similar to executing DOS within OS/2. The di�erence

is that in OS/2 the DOS environment is scheduled by the OS/2 scheduler and

receives CPU cycles like any other OS/2 process. In SP, the GPOS scheduler does

not know that the RTK is executing in the real-time minor cycles. Figure 2.2

shows how the interrupts and traps are received directly by OS/2, then issued to

the appropriate device drivers. The device drivers interact with a set of virtual

device drivers associated with the MVDM, which are shared among the instances

of DOS.

2.6.3 RTX 4.1

VentuCom currently advertises a commercial product, RTX 4.1 [4], that adds sup-

port for a particular type of real-time computation to a general-purpose operating

system. The product is described as a real-time extension to Windows NT. Win-

dows NT provides a hardware abstraction layer (HAL) which virtualizes hardware

resources. The programming interface of RTX 4.1 is called the Real-Time Applica-

tion Programming Interface (RTAPI). RTX 4.1 does not support periodic real-time

threads nor does it have a real-time thread scheduler. RTX 4.1 only guarantees

that for an interrupt identi�ed by RTAPI calls to the extension, an associated
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Figure 2.2: Emulation of DOS in OS/2
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interrupt handler will begin execution within a de�ned time after the interrupt

occurs.

2.7 Summary

The chapter describes work related to the design of SP. SP mixes the execution of

real-time and non-real-time tasks on a single hardware system. Other approaches

to this problem include Real-TimeMach, Processor Capacity Reserves, Rialto, and

various scheduling schemes.

Mixing execution of the two task types transcends scheduling. In a real com-

puter system, just modifying the scheduler to accommodate real-time tasks is insuf-

�cient. Any resource used by a real-time task must be available, with a reasonable

upper bound, when the real-time task requires it. This extends to all hardware and

software subsystems, including memory subsystems, disk drives, network adapters,

virtual memory subsystems, and �le systems.

This requirement also applies to SP, but SP avoids the issue by clearly separat-

ing real-time portions from non-real-time portions of tasks. For example, the Mach

virtual memory subsystem must be modi�ed, creating Real-Time Mach, so that

no stochastic delay occurs when an application requests memory. Compare that

to SP where memory is partitioned and there is no virtual memory for real-time

tasks executing within the RTK. The time to perform memory allocation for these

tasks is therefore deterministic.

Although more than scheduler modi�cation is needed within a GPOS to sup-
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port real-time computation, it is nonetheless useful to look at schedulers such as

lottery scheduling and proportional share allocation that claim to support both

types of tasks. Again SP avoids the issue. Instead of requiring a scheduler to

support both task types it schedules task types independently: non-real-time by

the GPOS scheduler and real-time by the RTK. Thus two simpler, and well un-

derstood, schedulers may be employed. For example, in the implementation de-

scribed in Chapter 5, the RTK scheduler is a straightforward earliest deadline �rst

scheduler|a well known approach.

Can a GPOS that supports real-time computation be created by adding func-

tion to a system in which one can extend the kernel? Yes, if all of the functions

needed by the real-time tasks are modi�ed to provide deterministic access times.
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Chapter 3

The Slotted Priority Architecture

3.1 Introduction

The SP architecture describes a possible modi�cation of general-purpose operating

systems to schedule, manage, and execute periodic real-time threads. It comprises

three components: the execution, resource, and programming models. An imple-

mentation of the SP architecture includes, among other constructs, executives that

share resources between the GPOS and the RTK.

The execution model describes the operation of the processor executive, which

enables processor multiplexing between the GPOS and the RTK. The resource

model classi�es resources according to characteristics that determine the structure

of an appropriate executive. The programming model de�nes the interface pre-

sented to programmers who write periodic real-time threads to be executed on an

implementation of the SP architecture. It also de�nes the interaction between the

real-time and non-real-time threads of a program.

Section 3.2 presents the overall design of the SP architecture. Section 3.3 de-

rives the two requirements that must be met by any implementation of the SP



architecture. Section 3.4 describes how the two requirements might be realized.

Section 3.5 describes how one can argue that an implementation of the SP archi-

tecture will be able to guarantee that a set of feasible periodic real-time threads

will always meet their deadlines. Sections 3.6 through 3.9 describe the execution,

resource, and programming models that comprise the SP architecture.

In the SP architecture, executives share resources between real-time and non-

real-time threads. When the SP architecture is implemented on a particular com-

puting machine, an executive will control access to each resource associated with

the machine and the GPOS used by real-time threads. The execution model, de-

scribed in sections 3.6 and 3.7, is the executive that shares the CPU, a resource,

between the RTK and the GPOS.

Section 3.8 describes the resource model, which has eight classes. A resource

falls into a particular class based on characteristics that determine the structure

of an executive that can correctly manage how that resource is shared.

Section 3.9 describes the programming model. Two examples are given to show

how an application programmer might write code for two di�erent problems. The

problems can be solved only by real-time threads. The �rst example shows the data

decompression and display stage of a postulated video pipeline from a stochastic

network to the display device. The second example shows a stage in a postulated

manufacturing assembly line in which �nal details of a manufactured object are

recorded to disk.
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3.2 A High Level Description of the SP Archi-

tecture

Central to the SP architecture is the sharing of the CPU between the GPOS and

the RTK. Figure 3.1 illustrates an operating system view of the execution model

de�ned by the SP architecture. The GPOS and the RTK share the CPU by exe-

cuting in alternate intervals called real-time minor cycles and non-real-time minor

cycles. Within the execution model, the SP architecture speci�es the structure of

three components:

� the method by which the CPU is shared between two operating system ker-

nels (the GPOS and the RTK)

� the component that manages the sharing, the CPU executive

� a requirement to ensure precise minor cycle lengths and bounded real-time

thread execution times

The CPU executive determines the start of the two types of minor cycles from a

sequence of interrupts from a hardware timer and invokes its dispatcher to dispatch

either the GPOS or the RTK scheduler. The architecture also requires that the

interrupts marking the start of the minor cycles not be delayed inde�nitely by any

action of the GPOS, GPOS device drivers, or attached devices themselves.

The SP architecture suggests useful functions for the RTK to provide: a real-

time thread scheduler, libraries of various real-time system calls, an interface to

the GPOS and applications used to create and control real-time threads, and an
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Figure 3.1: An Operating System View of the Execution Model

interface to the GPOS for non-real-time services that real-time threads could use.

Currently the architecture has speci�ed, and gives proven feasibility conditions

for, earliest deadline �rst scheduling in the RTK. However, other schedulers could

be employed when appropriate feasibility conditions are derived and proven. The

architecture in the programming model speci�es that the RTK and GPOS together
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support queues by which real-time threads can send and receive requests for basic

non-real-time services provided by the GPOS.

The resource model was designed to help the SP architecture provide useful

guidelines for the construction of executives that share resources. The alternative

would be the impossible task of providing details on every one of the overwhelming

number of devices and device interfaces available today. Similar executives can be

used to share, between the RTK and GPOS, resources that have similar charac-

teristics. For example, sharing a resource similar to the CPU (preemptible with

state saving and restoration) could be managed by an executive similar to that

described in the execution model.

The programming model suggests a paradigm of how programmers should write

and think about real-time programs written for an implementation of the SP ar-

chitecture. Real-time threads are threads of traditional GPOS processes that are

scheduled by the RTK and execute in real-time minor cycles. The implementation

supports the creation of periodic real-time threads via operating system calls to

the GPOS and RTK. These real-time threads then execute in a continuous loop

with one wait statement per loop.

An implementation also supports and requires the reservation of resources.

Each real-time thread reserves a resource it intends to use within its continuous

loop. How a resource is used is independent of its class in the resource model.

The programmer does not have to explicitly reserve the CPU; rather it is reserved

as a result of the call to create a real-time thread. Any other resource is simply
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reserved, and the underlying executive and execution model ensure that an instance

of that resource is available, within some reasonable upper bound, as needed by

the real-time thread.

3.3 Two Fundamental Requirements of an SP

Implementation

Two necessary conditions must be true before an implementation of the SP archi-

tecture can guarantee that all real-time threads will meet their stated deadlines.

A real-time thread has a cost of c time units and a period of p time units. The

explicit requirement is that a real-time thread execute for c time units on the pro-

cessor in each interval [(k� 1)p; kp];8k > 0. However, this de�nition is not precise

enough.

Assume a computing machine on which the CPU operates at �fty million cycles

per second, (20 nanoseconds per cycle). A real-time thread with a cost of 200 ms

implies that the thread requires 10 million CPU cycles to complete. It therefore

requires 10 million CPU cycles in each interval as de�ned above.

In general-purpose operating systems, the amount of CPU time the scheduler

assigns to a thread cannot be used to determine the number of CPU cycles actually

used in executing the thread's instructions while it was assigned to the CPU.

There are two reasons for this condition. First, interrupt handlers operate below

the visibility of the operating system scheduler. Typical schedulers allocate time

on the CPU to threads in �xed quanta during which interrupt handlers may also
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execute in response to interrupts from hardware devices. Typically, the scheduler

code does not account for the execution of interrupt handlers. Thus, although the

scheduler has allocated a complete quantum to the thread, in fact, the thread has

not received all of the CPU cycles implied by the length of the quantum.

Second, typical computing machines provide DMA, which may cause the CPU

to wait for access to the internal memory bus. During this wait period, the thread

receives no CPU cycles with the same result as in the interrupt handler case: the

quantum expires, yet the thread has not received a quantum's worth of CPU cycles.

Thus, the fundamental requirement given above can now be restated: if a sys-

tem claims to guarantee that, given a feasible schedule, periodic real-time threads

will complete execution before their stated deadlines, it must ensure that each

real-time thread receives the number of CPU cycles implied by the magnitude of

its cost within each interval [(k � 1)p; kp];8k > 0.

This fundamental requirement has straightforward and profound implications.

When the real-time thread scheduler assigns a real-time thread � to execute on

the CPU for an interval of time [t0; t1] where t0 < t1, of length L > 0, there must

exist a function or method that can precisely determine the minimum number of

CPU cycles used to execute the instructions of � . If L must be larger than some

reasonable �, such as a real-time scheduling quantum, then a function F or method

can exist on a real computing machine. The SP architecture de�nes how this can

be accomplished on a computing machine within the context of a GPOS.

The problem is not that interrupt handlers steal cycles from threads, but that
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the interrupt handler's frequency and length can be determined only stochastically.

Consider a system that 1) enforced a minimum interarrival time between invoca-

tions of any interrupt handler, 2) set an upper bound on the length of execution,

in CPU cycles, of interrupt handlers, and 3) limited the length and frequency of

intervals used by the DMA subsystem. For such a system, ignoring other concerns,

it is possible to derive a function equivalent to F . However, in a GPOS it is di�-

cult, if not impossible, to enforce a minimum interarrival time between interrupts

and to enforce a maximum execution time for interrupt handlers.

Another fundamental di�culty arises when attempting to mix execution of real-

time and non-real-time threads within a typical GPOS, speci�cally a system that

uses a preemptive, quantum-based, round robin scheduler. Assume a system that

mixes execution of real-time and non-real-time threads by executing the two types

of threads in alternate quanta. Now, consider the quantum in which a real-time

thread must �nish execution to meet its deadline. If the start of this quantum is

arbitrarily delayed, then the thread maymiss its deadline. Hence, no guarantee can

be made that a real-time thread will �nish before its stated deadline if the start

of a quantum may be delayed by an arbitrary amount. A second fundamental

principle can now be stated: if a system executes real-time threads in regular,

periodic intervals, then the system must ensure that the intervals begin when they

are scheduled to begin or that they begin with a delay that does not exceed some

de�ned upper bound.

In summary, two requirements must be considered when attempting to imple-
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ment the SP architecture. There must be a method to determine how many CPU

cycles are dedicated to a real-time thread executing in the intervals for real-time

threads, and the intervals in which real-time threads execute must begin no later

than some known upper bound. More formally:

Requirement A If a system interleaves the execution of real-time and non-real-

time threads in alternate intervals and the intervals in which real-time threads

execute are scheduled to begin every l time units, then it must ensure that

the intervals begin at times t where kl � t � kl + � ;8k � 0 (where � is a

small, implementation dependent integer value).

Requirement B For L > �, (for a suitable �) for which the real-time thread

scheduler has assigned a real-time thread, � , to be executed on the CPU,

there must be a function or method by which the minimum number of CPU

cycles available to execute the instructions of � can be determined.

These two conditions are necessary for any implementation to claim that it

implements the SP architecture. Note that requirements A and B are necessary

but not su�cient to reason about the real-time performance of real-time threads.

One still needs a task model, scheduler, kernel, etc. The analysis in Chapter 4

describes the necessary and su�cient conditions for determining the feasibility

of a set of real-time threads that will execute on an implementation of the SP

architecture.
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3.4 Realization of the Two Requirements

The realization of requirement A stated in Section 3.3 requires that the signal

used to transfer control from the GPOS to the RTK must never be disabled.

In a typical system this signal is an interrupt and typical OS implementations

disable interrupts for two reasons. First, most operating systems do not support

the nested execution of interrupt handlers and so they disable interrupts during

their execution. Second, many OS implementations use the disabling and enabling

of interrupts to enforce mutual exclusion in critical sections within the operating

system kernel. Thus an implementation of the SP architecture must be able to

selectively disable interrupts, so that the GPOS cannot disable the interrupt used

to switch between the GPOS and the RTK. However, the interrupt may need to

be disabled by the RTK at certain points or by modi�cations to the GPOS made

by the implementer of the SP architecture.

Our method for realizing requirement B can be best understood by considering

a simple CPU with no attached devices, caches, interrupts, DMA, pipelining, traps,

or RAM refresh. In this simple system we have only memory, a bus, and a CPU.

All CPU cycles in this imaginary system are dedicated to executing instructions;

nothing else shares the CPU. Moreover, assume no random variables in calculating

the number of CPU cycles required to complete a particular instruction. Thus, the

rate at which the sequence of instructions executes can be calculated precisely, and

the system would have the function described in Section 3.3; i.e., for any interval of

length L, the number of CPU cycles available for execution of a speci�ed sequence
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of instructions can be determined. Although such a system may be useful for

specialized applications, it is not useful for general-purpose computing because it

can do no I/O and would perform poorly.

However, if a typical general-purpose computing machine could be precisely

and periodically converted into such an imaginary, simple system, during those

intervals, a function F or method as described in Section 3.3 could exist. These

intervals could be called the real-time intervals. This is the essence of the SP

execution model: to operate the computer system such that periodically, precisely,

and for reasonable length intervals, the minimum number of CPU cycles available

to execute a particular sequence of instructions can be precisely determined.

So far, this hybrid system can only execute CPU instructions during the special

intervals when it is acting as a simple imaginary system. (The system is behaving

as a normal computing system with a GPOS during the other intervals.) Without

interacting with attached physical devices during the special intervals, executing

CPU instructions alone is not very useful. So the next addition to the hybrid

system is controlled access to attached devices.

Section 3.8 describes model SP uses for resources in detail. For now it is

su�cient to say that for each instance of a resource, the SP architecture requires

that an executive multiplex access by the GPOS and the RTK to that resource.

Essentially, the executive ensures that any object required for access to the resource

is available in the real-time intervals in which real-time threads have reserved that

resource. One can then compute the cost, in time units, of accessing the resource,
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since no stochastic quantities are involved. And if the cost can be computed,

the access to the device can be considered as part of a real-time thread, and the

real-time scheduler can schedule the combination of the real-time thread and the

instructions used to access the device, thus guaranteeing completion before the

deadline.

The imaginary system disallows attached devices, caches, interrupts, traps1,

DMA, and pipelines. Since real systems have all of these items, an implementation

of the SP architecture must accommodate their existence. The items fall into

two categories. The �rst category contains those items that would invalidate a

function F as described in Section 3.3|interrupts, traps, and DMA. For example,

an interrupt handler may, for a relatively large interval, dedicate all CPU cycles

to a sequence of (the handler's) instructions that is not the sequence belonging to

the thread assigned to the CPU. The second category contains those items that

increase variation in the number of CPU cycles needed to complete any particular

instruction|caches and pipelines.

An implementation of the SP architecture requires either that interrupts be

disabled during real-time intervals or that the host system be able to enforce a

minimum interarrival time between the execution of any two interrupt handlers

from the same source and to enforce a strict upper bound on the number of CPU

cycles any interrupt handler may consume in a particular invocation. Because

1In this work an interrupt is considered to be a signal generated in the CPU by hardware
that transfers control from the currently executing sequence of instructions to a de�ned interrupt
handler. These signals must occur asynchronously with respect to the executing sequence of
instructions. Traps are considered similar to interrupts, but their occurrence is synchronous with
respect to the executing set of instructions.
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most general-purpose computer systems lack the latter capability, the interrupts

must be disabled during real-time intervals.

Essentially the same requirements are placed on traps and DMA, but a typical

general-purpose computer system can constrain their activity. In the implemen-

tation described in Chapter 5, DMA is constrained by the bus design. In that

design, the IBM MicroChannelTM , no device is allowed to hold access to the bus

for more than 7.8 microseconds if another device requests it. Thus active DMA

can steal only a bounded number of CPU cycles from the scheduled thread and

hence is constrained.

The programming model of the SP architecture ensures that some traps, such

as page faults, do not occur. Other traps under programmer control, such as

divide-by-zero, must be restricted by programming practice. SP accommodates

the existence of caches and pipelines by noting that their e�ect is to reduce the

actual number of cycles used by a sequence of instructions of a real-time thread.

Thus, as long as the cost of a real-time thread is calculated without including any

optimizations from caching and pipelining, the result may be that the real-time

threads use less of the CPU than scheduled. The SP implementation returns this

time to the GPOS for use by non-real-time threads.
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3.5 Arguing that an Implementation of the SP

Architecture Can Meet Guarantees

The SP architecture is a set of methods and guidelines for modifying a GPOS and

a hardware computing system to support periodic real-time thread execution. This

section describes how to structure the argument that a set of real-time threads,

when executed on a particular implementation of the SP architecture, will all meet

their deadlines.

The argument has two steps. The �rst step, deferred until Chapter 4, is to

determine if the real-time threads meet the assumptions and conditions of a feasi-

bility test. If so, the real-time threads have a feasible schedule. The second step of

the argument is to show that a particular system implements the two fundamental

requirements given in Section 3.3. This second step is argued based on the results

of experiments on the implementation and by an analysis of the source code of the

target GPOS and hardware speci�cations of the target hardware platform.

An example of this argument is given in Chapter 5, which describes the exper-

iments performed on the implementation and analyses of the GPOS source code

and hardware speci�cations of the target system to verify that that implementation

meets these requirements.

3.6 Execution Model

The execution model de�nes how real-time threads acquire the CPU. The CPU ex-

ecutive described by the execution model must enforce precise minor cycle lengths,
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typically with an interrupt from a system timer. If the SP architecture is being

implemented on a computer system with unrestricted use of the interrupt en-

able/disable mechanism, the executive must ensure that the interrupt that marks

the minor cycle boundaries is not unduly delayed due to the disabling of interrupts

by the GPOS.

An implementation accomplishes this function with a virtualized interrupt en-

able/disable mechanism. This mechanism is hardware-speci�c and each implemen-

tation of the SP architecture must be designed to best accomplish the virtualiza-

tion. The SP architecture only speci�es that minor cycles lengths must be precise.

Basically, the interrupt virtualization mechanism must protect the interrupt that

marks the minor cycle boundaries when the GPOS disables interrupts. This im-

plies that an interrupt can occur during intervals in which the GPOS has requested

that no interrupts occur.

Consider the interrupt that marks the beginning of a real-time minor cycle.

Two conditions need to be considered. In the �rst condition, the GPOS is in a

critical section and has disabled interrupts to enforce mutual exclusion. As long

as no code is executed in the RTK or its real-time threads that accesses the object

being protected in the GPOS critical section, then no fault will occur.

In the second condition, the GPOS has disabled interrupts during execution

of an interrupt handler, and communication between it and its device is paused.

That is, the interrupt handler cannot execute instructions to interact with its device

until the the real-time minor cycle is complete. In practice this pause may cause
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problems because the interrupt handler or the device has not been designed to

accommodate such pauses. However, at the expense of some device ine�ciencies,

we assert that interrupt handlers and their devices can be modi�ed to operate

correctly in this environment. Note that the interrupt virtualization mechanism

allows the RTK and its threads to execute within critical sections of the GPOS

and within the execution of the GPOS device drivers. Careful consideration in the

construction of the executive is demanded.

The real-time and non-real-time minor cycles are time constructs and are used

by the CPU executive to share the CPU between the RTK and the GPOS. On

some hardware platforms it is di�cult to arrange for precise interrupts to occur

at intervals of varying length (in this case two di�erent lengths, mcnrt and mcrt),

but relatively easy to arrange for precise interrupts to occur at intervals of a �xed

length. Thus, if it is di�cult to obtain precise interrupts at varying lengths, another

construct related to the passage of time must be de�ned. This construct, a slot,

is de�ned to be a constant number of contiguous time units. The slot length is

determined at the time the system starts and does not change. A slot may contain

either real-time time units or non-real-time time units, but not both. Thus, minor

cycle lengths are an integral number of slot lengths, so the length of a slot must

be less than or equal to the length of the shortest minor cycle. The existence of

slots is not crucial to the architecture but is strictly implementation dependent.

Figure 3.2 illustrates the relationships between the major cycle, the two types of

minor cycles, and slots.
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The low-level dispatcher that runs at each slot boundary handles the switch

between real-time minor cycles and non-real-time minor cycles. At each execution

either (1) no switch occurs, (2) the real-time kernel state is saved and the GPOS

state is installed in the CPU, or (3) the GPOS state is saved and the real-time

kernel state is installed in the CPU.

3.7 The Executive

An implementation of the SP architecture includes, among other constructs, ex-

ecutives that share resources between the GPOS and the RTK. An executive is

required for each instance of a resource that is to be shared between the GPOS

and the RTK. The design, structure, and operation of the executive are driven by

the resource model class in which the resource resides.

As an example consider partitionable resources (described more fully in Sec-

tion 3.8). A partitionable resource is composed of many identical units which can

be separated into two disjoint sets, one set each for the RTK and the GPOS. Ex-

ecutives for partitionable resources are relatively simple, because they only need

to partition the units of the resource into two sets, allocate one to the GPOS and

one to the RTK, and manage any requested changes to the partitioning.

The pixels of the display device are a partitionable resource. Consider a typical

windowing system such as the presentation manager of the OS/2 operating system.

If a periodic real-time thread displays live video, the display executive can arrange

to allocate the pixels of one window created and managed by the presentation
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manager to the real-time thread by sending the coordinates of two corners of the

window to the thread. The real-time thread then simply writes appropriate data to

the frame bu�er for the given coordinates and the video appears within the window

boundaries. When the user attempts to relocate the window, the executive �rst

informs the real-time thread to halt writing to the frame bu�er, allows the window

to be relocated, and then sends the new coordinates to the real-time thread and

indicates that the real-time thread can resume writing data to the frame bu�er.

Executives for slotted resources are more complicated. Slotted resources, which

are described fully in Section 3.8 are resources composed of a single unit which must

be shared between the RTK and the GPOS in time. One example of a slotted re-

source executive is the processor executive described previously. For other slotted

resources, the executives must ensure that the real-time threads have a reason-

able and bounded wait-time to gain access to the resource. This is accomplished

di�erently for the various slotted resource classes (see Section 3.8).

The executive must disallow access to the resource by the GPOS long enough

before the time when a real-time thread will require the resource so that at that

point any use of the single functional unit by the GPOS is complete. For example,

consider a disk drive. Although many disk adapter cards allow multiple work

requests to queue on the card itself, the card's interaction with the device driver

usually requires using a single instance of shared memory into which the device

driver writes commands for the disk and reads responses from the disk. The

executive then must ensure that the shared memory is not currently in use by
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either the device driver or the disk when a real-time thread requires access to the

disk2.

Although the SP architecture does not di�erentiate between software and hard-

ware resources, resources are typically physical devices. Figure 3.3 shows the re-

lationship between the traditional organization of physical devices, their device

drivers, and the operating system in both a typical GPOS and an implementation

of the SP architecture. Figure 3.3b illustrates the relationship of the executive to

the device, device driver, and operating system.

3.8 Resource Model

The resource model allows the SP architecture to provide useful guidelines for con-

structing executives to multiplex resources without having to provide details on

every available device and device interface. One constraint placed on this work by

the author was that the host GPOS be modi�ed as little as possible. Obviously,

real-time threads can be supported if major portions of the GPOS are rewrit-

ten. However, rewriting operating systems is di�cult under normal circumstances.

Attempting to include support for real-time threads complicates the e�ort signi�-

cantly. The view taken in this work is that separating concerns, non-real-time and

real-time, reduces the overall complexity of the programming e�ort. The GPOS

2Many issues arise in the actual implementation of an executive for a disk drive, which is not
covered here, such as whether or not the disk device driver is to be modi�ed. If so, constructing
the executive is simpler but the executive must still ensure reasonable and bounded waiting time
to access the disk. Some slotted resource devices, such as the IBM 16/4 token ring adapter, may
require the executive to ensure that any operation started by a real-time thread completes before
permission to access the device is returned to the GPOS.
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needs to be modi�ed in only the most straightforward manner and the RTK can

be constructed in isolation, giving thought to the issues of real-time threads and

their requirements. The result of this constraint is the resource model described

here.

We develop a hierarchy of resources based on the characteristics of resources
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that require di�erent capabilities in an executive that can correctly share resources

between the GPOS and the RTK. The resource hierarchy is shown in Figure 3.4.

All resources are divided into classes: partitionable and slotted.

(Sensor)

Resources

Slotted
Partitionable
(Memory)

(CPU)
PreemptibleNon-Preemptible

(Disk)

Externally Triggered Internally Triggered

Stochastic Process

(Network Card)
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Figure 3.4: Resource Model Classi�cation

To motivate the need for the complexity of the resource model we begin with an

example that illustrates the subtle reasoning that encourages further subdividing
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the slotted class. We argue that a simple, obvious approach to sharing slotted

resources other than the processor actually results in an unacceptable level of

variability in the minor cycle lengths.

Consider Figure 3.5. The approach to multiplexing access to the physical de-

vices illustrated there is that the implementation would modify the GPOS device

drivers to provide an operation to the RTK that would allow it to insert the work

request of a real-time thread at the head of the device queue. The resulting delay

until the work request was done could be calculated as the amount of time to queue

the request plus the maximum time required for any work request for this device

to complete. The design is appealing and simple, but problematic.

First, three requirements of this design are not immediately obvious.

1. The operation that removes a work item from the queue and gives it to the

device must operate on an interrupt thread. If the dequeue operation occurs

on a user or kernel thread, it will be subject to the variations imposed by

the GPOS scheduler. That is, its completion time would be a function of

the other threads currently executing on the system. So the dequeue must

occur on the interrupt thread created by the device when it interrupts for

the completion of the previous request.

2. The operation used by the RTK to place a work item at the head of the

queue must be protected by a real interrupt disable and not a virtualized

interrupt disable. This is simply a mutual exclusion issue: since the RTK

and GPOS are both accessing the queue, it must be protected.
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3. The interrupt multiplexor circuit on the computer system must provide dy-

namically alterable priorities among the input lines from devices. Unless the

priorities of the interrupt lines from the devices into the multiplexing circuit

can be altered to a higher priority, busy devices may keep a lower priority

device from starting on the real-time thread work request assumed to be at

the head of its queue.

Now, consider that these three requirements are met and imagine a computer

system with a provision for attaching sixteen devices through two cascaded inter-

rupt controllers, such as is the case on the popular PC motherboard architecture.

If the interrupt controllers and devices are in a particular state, a device attached

to the slave interrupt controller may have to wait through 64 interrupt handlers

before it can dequeue the work request at the head of its queue. This is because

device priorities may rotate after completion of an interrupt. So the slave must

wait for all devices on the master to be serviced before it is serviced if:

� the device to which a real-time thread queued a request just completed an

interrupt (making its priority now the lowest), and

� this device is on the slave controller, and

� the slave controller was the last device to interrupt the master controller

(making the slave controller the lowest priority device on the master con-

troller), and

� all other devices raise their interrupts simultaneously (or nearly so).
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Now the slave controller can get one of its devices serviced and the device trying

to dequeue the real-time request moves up one priority level. If all of the devices

on the master controller now raise their interrupts again, the slave controller will

have to wait again for all of the devices of the master controller to be serviced.

This cycle can continue six more times before the device attempting to dequeue

the real-time request can be serviced. All in all, the device would have waited for

64 interrupt handlers to execute before its own interrupt handler could run. Since

a typical execution time for device interrupt handlers is about 100 microseconds,

the real-time request may have to wait 6.4 milliseconds in the device queue before

being dequeued. Therefore, a real-time thread using the example device would

have to have its cost in
ated by 6.4 milliseconds in order for the real-time thread

scheduler to perform a correct feasibility analysis.

We assume typical real-time thread execution times to be in the hundreds of

microseconds, so the few milliseconds of in
ation would raise the cost by an order of

magnitude above the real cost. This amount of in
ation is considered unacceptable.

The three previous conditions are required to ensure a bounded waiting time for

access to the device (or else the waiting time would be unbounded). But further

analysis shows that, although bounded, the waiting time is unacceptably large.

Figure 3.6 illustrates the approach of the SP architecture to multiplexing slot-

ted resources other than the processor. The three requirements for the obvious

approach described above are not required for the SP approach. The SP archi-

tecture allows the executive for the resource/device to ensure that access to the
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resource incurs no waiting time. It does this by scheduling all accesses to the re-

source such that any serializable portion of the resource is idle when a real-time

thread requires access.

Operating System

Real-Time 

General Purpose 

Kernel

Devices

Device Drivers Physical 

Figure 3.6: The SP Architecture Approach to Multiplexing

The resource model de�nes the parameters that separate devices into distinct

classes. These parameters have so been determined that the resources in a partic-

ular class can be managed by similar executives. The SP architecture requires an
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executive for each instance of a resource existing on a computing machine which

is used by a real-time thread (that is, the real-time thread intends to use the re-

source sometime in its execution). The resources are classi�ed in a way that guides

implementers in constructing executives that should require only minimal changes

to the low-level physical device drivers already on the system. In some cases those

device drivers need no modi�cation at all.

Also, though not explicitly stated in Section 3.6, it is worth noting here that the

real-time minor cycles can begin during the execution of the GPOS device drivers.

This is necessitated by requirement A: if the intervals in which real-time threads

execute are scheduled to begin every l time units then the CPU executive must

ensure that the intervals begin at times t, where kl � t � kl+� ;8k � 0. The device

drivers should continue to function correctly, since when they resume, no detectable

change in system state has occurred, only time has passed. Section 3.8.1 describes

partitionable resources in detail and Sections 3.8.2 through 3.8.2.6 describe the

subclasses of the slotted resource class.

3.8.1 Partitionable Resources

The primary characteristics of resources in this class are that each comprise many

identical units that are simultaneously usable. Examples of instances of this re-

source type are, memory, video display pixels, IP ports, and disk blocks. In each

example the resource is composed of identical units that may be used by either the

GPOS or RTK without modi�cation.
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The executives for this class of resources are the easiest to construct. The issue

here is that real-time threads must have exclusive access to the subset of units

assigned to the RTK. This is because the real-time and non-real-time threads are

not synchronized. For example, the pixels of the display device can be partitioned

and a subset assigned to the RTK. The windowing subsystem of the GPOS must

be informed, by some means, that the set of pixels assigned to the RTK are not

available to non-real-time threads in the GPOS. The partition is now established.

However, repartitioning may occur over time as the window is moved around the

display, changing the set of pixels that should be assigned to the RTK. The exec-

utives created for this class are, in some sense, static. Repartitioning may occur

over time, as in the case of a window of pixels assigned to the RTK, but once the

partitioning is established, and until another repartitioning occurs, the RTK and

GPOS use only the pixels in their respective static subsets.

Note that in some cases even though the resource is partitioned in an imple-

mentation, and the RTK has exclusive access, the RTK must access the units of

the resource through yet another resource that may fall in a di�erent class. For

example, disk blocks need to be partitioned between the RTK and GPOS; other-

wise the �le system of the GPOS would need extensive modi�cation because the

sharing would occur within the GPOS �le system. This is because the �le system

assumes it has exclusive access to all blocks on the disk (ignoring the fact that some

disk blocks may be unused and that blocks may be partitioned between di�erent

�le systems; we are considering only the set of blocks known by the �le system).
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Therefore in this case, use of some of the disk blocks by real-time threads would

have to be coordinated, within the �le system, with use by non-real-time threads.

This implies that the disk blocks would be partitioned between the RTK and the

GPOS by the �le system and not a resource executive. However, the further im-

plication is that the whole �le system would have to be modi�ed to accommodate

the sharing. To avoid this, the SP architecture speci�es that the disk blocks be

partitioned by a disk block executive which allows exclusive access to a disjoint

set of disk blocks by the real-time threads3. However, this simple partitioning is

not su�cient to allow the RTK access to the disk blocks which occurs through the

device driver associated with the disk. The disk device driver would, typically, fall

into another class within the resource classi�cation and require its own executive.

3.8.2 Slotted Resources

Some resources must be multiplexed dynamically in time, because the communi-

cation method between the driver and the resource/device is non-reentrant and

requires mutual exclusion over certain intervals. This typically results from mem-

ory mapped I/O ports or command blocks. If the port or command block is being

used by the GPOS, it is unavailable for use by the RTK. As an example of a

driver-to-device non-reentrant communication method, consider an imaginary net-

work device card which is accessed via four memory mapped blocks of memory

3In practice this can easily be accomplished by having a non-real-time program create an
unused �le within the GPOS �le system of a size required by the RTK and then passing the list
of disk blocks to the RTK to use as required.

80



into which the device and its device driver place commands and responses4. Fur-

thermore, assume a �nite state machine that de�nes sequences of commands and

responses between the device and its device driver.

Figure 3.7 shows a sequence of device driver interactions that might occur when

the device driver intends to send a packet into the network. The parenthesized

phrases are actions that are taken by either the device or the device driver, and

the phrases with arrows are commands or responses for the driver to the device

(right pointing arrow) or from the device to the driver (left pointing arrow).

Note the points in the �gure identi�ed by `(X)' and `(Y)'. Between these points

the command block is in use. If the commands were issued by the GPOS, the

command block would not be available to an SP executive. In fact, without modi-

�cations to the device driver code, an SP executive should avoid using the device at

any point in this sequence between `(X)' and `(Z)'5, because the device driver and

the device make assumptions about each other's state based on past interactions.

Another device driver attempting to interact with the device could invalidate these

assumptions, resulting in error in either the device or the device drivers.

There are six subclasses of the slotted class, of which two are further subdivided.

Since actual instances exist for only leaves of the resource hierarchy tree, only four

of the subclasses contain resources. The slotted class hierarchy will be brie
y

described here and each subclass will be described in detail in its own section

4This example adapter closely resembles the IBM 16/4 Token Ring network adapter.
5A point worth noting here is that executives for network adapter cards are the most di�cult

type executive to construct.
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Device Driver Device

-------------------------------------------------------

(X)(Writes send Command to Command Block)

A Command is in the Command Block -->

(Reads command)

(Writes response to response block)

<-- The Command has Been Read

(Reads response)(Y)

(Writes response to response block)

<-- Ready to Send

(Reads response)

(Writes location of Data to Command Block)

A Command is in the Command Block --> (Reads command)

(Writes response to response block)

<-- The Command has Been Read

(Reads response)

(Writes response to response block)

<-- The Data have Been Read

(Reads response)

(Writes response to response block)

<-- The Data have Been Sent

(Reads response)(Z)

Figure 3.7: Sequence of Commands and Responses for a Network Send Operation
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below. The slotted class hierarchy is shown in Figure 3.4.

The �rst division in the slotted class hierarchy separates those resources that

can be preempted from those that cannot. The CPU is an example of a preemptible

resource, the typical direct access storage device is an example of a non-preemptible

resource. The preemptible class is a leaf.

The non-preemptible class is subdivided into resources that are internally trig-

gered and resources that are externally triggered. In internally triggered non-

preemptible resources, all interactions begin in the GPOS and its associated pro-

cesses. In externally triggered non-preemptible resources, some interactions are

initiated by a process outside the computing machine (such as a packet arriving

from the network). The externally triggered class is subdivided into those resources

for which the triggering process is periodic (a leaf) and those resources for which

the triggering process is stochastic (another leaf).

3.8.2.1 Preemptible Resources

The only example of a resource in this class of which we are aware is the CPU.

Preemptibility has been a requirement of CPUs since the very earliest designs.

This feature typically facilitates the use of attached devices that operate at much

slower (relative) speeds than the CPU. The SP resource model considers this class

as a leaf, because for a resource with this capability, no other issues a�ect con-

struction of its executive. In fact, the executive, although complex, is the most

straightforward of all executives for slotted class resources. This is because the
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hardware system has been designed to ease the transfer of control from one se-

quence of instructions to another asynchronously (with respect to the execution

of programs) by activating an electrical input into the device. Thus, a system can

gracefully suspend and resume program execution at well de�ned points.

Executives for the preemptible class, such as a CPU, are considerably more

di�cult to construct than executives for the partitionable class. As required of

all executives, the executive constructed for this class must gain access to the

resource at precise intervals. In this case this amounts to a process switch from

some process in the GPOS to the CPU executive. One way to provide this context

switch is via an interrupt to the CPU from a hardware timer. The code that

executes in response to this interrupt can be considered to be the executive. The

executive decides to execute either a process in the GPOS or the RTK according

to the execution model described in Section 3.6. To ensure that this interrupt

occurs on time GPOS access to the interrupt enabling/disabling mechanism must

be virtualized.

3.8.2.2 Non-Preemptible Resources

Two primary characteristics drive the structure of an executive for a non-preemptible

resource:

� the resource cannot be conveniently preempted

� sequences of GPOS driver/resource interactions exist during which the RTK

cannot access the resource
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Such sequences must be atomic with respect to the GPOS driver and the resource.

The key problem designing an executive for non-preemptible resources is to iden-

tify the points between sequences at which the RTK can access the resource and

to manage the resource so that such a between-sequence point exists when the

resource is needed by a real-time thread. The details of how an executive can

accomplish this function are described in Sections 3.8.2.3, 3.8.2.5, and 3.8.2.6.

The programming model, described in Section 3.9, speci�es two modes of in-

teraction with these resources: real-time and non-real-time. The real-time mode

allows a real-time thread to ensure that its operation with the resource completes

during its execution.

Note that the real-time mode continues to guarantee that the real-time thread

will complete before its deadline. The non-real-time mode only guarantees that

the call to queue the request to the resource completes while the real-time thread

is executing. Of course, the real-time thread will complete before its deadline,

but the operation for the resource may complete at any time after the request is

queued. The non-real-time mode simply queues the work request for the GPOS

via a non-blocking, real-time queue, which is required to ensure that the queue

operation completes in bounded time.

The real-time mode works as follows: the real-time thread includes all instruc-

tions executed from the time the request is made in the real-time thread until the

physical device has issued a start command to commence processing the real-time

request. The time necessary for the device to complete the request is also con-
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sidered part of the real-time thread, but does not require CPU cycles. Thus, in

the real-time minor cycles that occur during this virtual portion of the real-time

thread, the RTK is free either to schedule other real-time threads that do not

require this resource or to return to the GPOS.

When the device completes the request, the original real-time thread regains

control at the start of the next real-time minor cycle, just after the call site. The

real-time thread scheduler accommodates access to the device by considering the

call to be a blocking call with a certain cost. This cost includes several parts:

� the cost of executing instructions from the call site to the point at which the

RTK device driver completes the request to the device

� the time the resource uses to processing the request

� and the cost of executing instructions within the RTK device driver up to

the return to the statement after the call in the real-time thread

The RTK scheduler may also avoid complexities by scheduling the complete real-

time thread, both actual and virtual portions, as though they both really used

CPU cycles. In this case real-time minor cycles may occur in which the scheduled

real-time thread is blocked waiting for the resource to �nish processing the request.

The low-level dispatcher can then simply return to the GPOS.

Another issue to consider is how the resource executive avoids an unbounded

wait in the RTK device driver. Typical GPOS device drivers accept requests from

threads for work the device is to perform. If these requests arrive faster than the
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device can complete them, the device driver queues the requests. Thus, in a GPOS,

the completion time of a request can be determined only stochastically.

There are two possible models for avoiding this unbounded wait and replacing

it with either a zero wait or a bounded wait. In the bounded wait model, the

RTK device driver interacts with the GPOS device driver and places the request

from the real-time thread at the head of the queue. Thus, the longest wait will be

the time the device needs to complete a single, largest possible request, plus the

longest time that an interrupt from the device may have to wait for service. This

wait is included in the cost of the real-time thread, because the real-time thread

scheduler must know the cost of all of the real-time threads so that it can perform

the feasibility test and set the sizes of the minor cycles.

This model requires signi�cant modi�cation of the existing device drivers and

may signi�cantly increase the variability in how long a thread requires to complete.

The other model is for the RTK device driver to interact (minimally) with the

GPOS device driver before the request from the real-time thread, and to have the

GPOS device driver stop issuing requests to the device. Thus, when the request

arrives from the real-time thread, the physical device and its GPOS device driver

are at a point in their interaction sequences at which an RTK device driver can

access the device, so the device can start the real-time work request immediately.

The two models di�er in the length of the virtual portion of the real-time

thread. The �rst model requires that the virtual portion be the length of time

the device needs to complete a single, largest possible request, plus the time an
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interrupt may have to wait for service plus the length of time the device needs to

complete the request from the real-time thread. The second model requires the

virtual portion to be the length of time the device needs to complete the request

from the real-time thread. It allows the RTK scheduler to be more e�cient, at a

cost of restricting GPOS requests to the resource at appropriate times. However,

neither model changes the way the RTK scheduler accomplishes its work; the

models are transparent to the RTK scheduler.

That the resources in this class cannot be preempted complicates the design of

an executive that can correctly multiplex access to the resource between the GPOS

and the RTK. A trade-o� in the design of executives for these resources is where to

merge the work requests from both the GPOS and the RTK into a single stream.

The closer to the resource this occurs, the lower the variability in real-time thread

cost that can be achieved by the system but the e�ciency of the GPOS decreases.

The decreased e�ciency in the GPOS with respect to this resource results from the

lower amount of coordination between the GPOS and the RTK about the use of

this resource. The resource executive may have to disallow access to the resource

by the GPOS for longer periods of time in advance of use of the resource by a

real-time thread. Merging requests closer to their source increases programming

e�ort and real-time thread cost variability but better GPOS e�ciency.

Because a preemptible resource can be stopped precisely and with �ne granular-

ity (in time) the two request streams do not merge. Rather, the real-time requests

preempt the resource's operation on non-real-time requests. To accomplish this
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with a non-preemptible resource might be possible, but only with a very thorough

understanding of the interaction sequences between the resource and its software

driver and the ability to determine, at any point, the states of the resource and the

software driver. In addition, the RTK, on behalf of one of its real-time threads,

would need to retain control of the resource until the interaction sequence between

the real-time thread and the resource was complete6. The advantage of this de-

sign is that it requires no modi�cations to the software driver. Its disadvantage is

that the RTK must rapidly poll the resource to determine when it can safely take

control.

Another possible design requires a minimal modi�cation of the software driver

that allows the executive to restrict the 
ow of work requests from the GPOS

to the resource. The executive would then stop the software driver early enough

from starting a new interaction sequence that when the real-time thread required

the resource, it would be available. How, then, does the executive know when

the resource will be needed? We postulate a real-time thread scheduler with a

lookahead feature. The scheduler allocates all of the CPU cycles in the real-time

minor cycles to appropriate real-time threads for the next given interval of time.

At each scheduling decision, the scheduler looks ahead and compares its list of

resources reserved for real-time threads to the actual real-time threads that have

been allocated CPU cycles in the lookahead interval. Note that each resource has a

speci�ed time interval after which it is available to start a sequence of interactions

6This may require extending a real-time minor cycle.
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with a new driver, assuming that requests from the GPOS are stopped at or before

the interval begins. If the time to stop requests for a resource is approaching

(because that resource has been reserved by a real-time thread scheduled in the

lookahead interval), the scheduler informs the resource executive to stop requests

from the GPOS. This is the recommended design of executives for non-preemptible

resources. Its advantage is that it requires no polling of the resource and only

minimal modi�cations to the GPOS software driver.

A �nal executive design is to modify the GPOS software driver to provide an

RTK entry point that places the real-time thread work request at the head of

its queue. As mentioned previously, this method can signi�cantly increase the

variability in the cost of a real-time thread and may require changes to other

GPOS software drivers and to hardware programming. However, it may be the

only option for externally triggered resources.

3.8.2.3 Internally Triggered Non-Preemptible Resources

For the resources in this class, all requests originate from within the GPOS, unlike

externally triggered resources where some requests arise from processes outside the

computing machine. The unique characteristic of internally triggered resources is

that the SP executive and GPOS device driver can completely control the schedul-

ing of the communication medium used by the resource and the GPOS device

driver. For an externally triggered resource this is not possible, since the commu-

nication medium may become busy due to an event that neither the SP executive
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nor the GPOS device driver can control. As a result, the SP executive and GPOS

device driver cannot schedule of the use of the communication medium between

the GPOS device driver and the resource.

A direct access storage device is one type of internally triggered resource. Al-

though it will interrupt the processor when it has completed a request, the request

originated from the GPOS on behalf of one of its threads. Therefore, the SP exec-

utive, along with the GPOS device driver, could have prevented this interrupt by

preventing the originating request from proceeding from GPOS to resource. This

design works well for any internally triggered resource, because no matter how

obscure the interaction sequence is or whether one can determine the states of the

software driver and resource, by stopping requests from the GPOS, the executive

knows that the resource will eventually complete all of its pending requests and be

ready to start an interaction from the RTK. The more the executive knows about

the interaction sequence and the easier it can correctly determine the states of

the software driver and the resource, the better it can interact with both. Better

interaction here means that the executive can stop the 
ow of requests from the

GPOS closer to the point at which the resource will be required by a real-time

thread. This is a better method than adding the real-time request to the head

of the resource queue, because it does not expand the variability in the cost of

the real-time threads by increasing the contention for the resource queue between

the GPOS and the RTK. Moreover, it requires no modi�cation to other software

drivers and hardware.
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Di�erent techniques can be used to cut o� the 
ow of requests to the physical

device. For example, the physical device itself may allow the executive to set the

device's state to busy for diagnostic purposes. Once this 
ag is set the GPOS

device driver will stop issuing requests to the resource and pending requests will

complete. Another technique is to modify the GPOS device driver slightly to check

a 
ag before issuing a request to the device. The executive then sets this 
ag at

the appropriate time based on an indication from the real-time thread scheduler

analyzing its lookahead interval. Although this technique requires access to the

source code and build environment of the GPOS device driver, it is valid for all

of the GPOS device drivers considered here. This technique should also be valid

for all physical device drivers in the internally-triggered class. A GPOS device

driver is the only component in a computing system that delivers work to an

internally triggered device. With access to the source code and build environment

of the device driver, coding a 
ag that controls whether or not the driver issues a

command to the device is straightforward.

3.8.2.4 Externally Triggered Non-Preemptible Resources

The externally triggered resources, such as network adapters and keyboards, are

problematic. Use of the communication medium between the GPOS device driver

and the resource can be generated by external processes, such as arrivals of net-

work packets and keystrokes. At times, even though the executive tries its best to

ensure that the communication medium between the GPOS device driver and the
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resource is free when a real-time request arrives, the mediummay instead be in the

middle of an interaction sequence originated by a request from an external process.

For example, consider a network device whose medium includes a memory block

shared between the device and the GPOS device driver. When a packet arrives,

the network device places a command into the shared memory block and inter-

rupts the CPU. Placing the command into the shared block initiates a sequence of

interactions between the device and the GPOS device driver. Until this sequence

ends the RTK device driver is denied access to the communication medium of the

device.

The characteristic variation of the interarrival times of events from these ex-

ternal processes forms the basis for the decomposition of this class. If the external

process generates events whose interarrival times theoretically do not vary, then

the resource is said to have a periodic process. An executive can easily manage such

a resource, because it can predict the use of the communication medium between

the resource and the GPOS device driver. Thus the SP executive can ensure access

of the RTK device driver to the resource with a bounded delay. If, however, the

external process generates events whose interarrival times vary stochastically, the

resource is said to have a stochastic process. In such a case the executive has great

di�culty managing the resource because the communication medium between the

GPOS device driver and the resource is unpredictable, so the SP executive cannot

guarantee access to the resource with a bounded delay. The delay is unbounded

because when a real-time minor cycle begins the communication medium may be
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busy, disallowing access by the RTK. Therefore, the only option is for the RTK to

return control to the GPOS, so that it can complete its sequence of interactions

with the resource. But the same situation may occur as the next real-time minor

cycle begins, now due to an interaction sequence started by another externally

generated event.

These coincident events may continue, thus denying the RTK access to the

resource. Note that no modi�cation to the GPOS device driver will alleviate this

problem and allow the real-time thread to use the communication medium to issue

the real-time request directly to the resource. One solution is to have the RTK

device driver simply queue the real-time request in the GPOS device driver's queue.

However, this method, as explained earlier, can cause signi�cant variation in the

cost of a real-time thread.

It is worth restating here that the minimal modi�cation constraint means that

the design of the executive must embody an essentially complete device driver for

the physical device. Such an RTK device driver will interact directly with the

physical device's interface and must adhere to its rules. Physical devices rarely

accommodate multiple device drivers, so their interfaces provide little support

for the interleaving of interaction sequences from multiple device drivers. Thus,

for now the best solution for real-time access to, and completion of requests to,

externally triggered, non-preemptible, stochastically driven resources is to enter

the real-time request into the GPOS device driver queue and absorb the attendant

increase in cost variability.
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3.8.2.5 A Periodic Process Driving an Externally Triggered Non-Pre-
emptible Resource

If the all of the processes generating events to an externally triggered resource do

so at precise intervals, then the resource falls in the periodic process class. Even

when many processes all generate periodic events, the pattern of arrivals is still

deterministic, although it is no longer periodic. These resources still fall into this

class. An example of such a device is a sensor that collects temperature data and

generates a report every 30 seconds (� some known variation).

The executive for a resource in the periodic process class must have a schedule

of when requests will arrive from the external processes at the resource and how

much execution time each request will need to complete. Using this schedule, the

executive can calculate the longest busy interval of the resource Rb. When the

�rst real-time thread reserves the resource, the real-time thread scheduler adds Rb

to the reservation cost, because a real-time request from the real-time thread may

occur at the beginning of the resource's longest busy interval.

3.8.2.6 A Stochastic Process Driving an Externally Triggered Non-
Preemptible Resource

This last class is the most di�cult for an SP implementation to manage. Un-

fortunately, many useful resources, such as network adapters and keyboards, fall

into this class. Their events, for example the arrival of a packet from the physical

network link or a user pressing a key on the keyboard, initiate a transaction from

the physical device to the GPOS device driver. In no case could any action within
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the computing machine regulate when the transaction begins because the machine

cannot control events outside itself. Although the ability of the physical device to

actually generate a signal to the GPOS device driver could be disabled, the physi-

cal device would still be busy and its interface would probably block the start of a

second transaction until the pending transaction was handled. Handling the pend-

ing transaction might include the ability to reset the adapter, losing the pending

data. However, since the executive lacks information about the state that exists

between the GPOS device driver and the physical device, arbitrarily resetting the

physical device is problematic.

There is no way to ensure that the RTK device driver can communicate with

a resource in this class when a real-time thread requires it. In fact, for some high

speed network adapters, events can arrive faster than the GPOS device driver

can move the data to bu�ers, resulting in lost data. The higher level protocols

acknowledge this possibility of loss and assume that the sender will retransmit;

however, the e�ect on a real-time thread in the SP system would be dramatic if the

lost packet were intended for that thread. However, the SP architecture does not

address device utilization overruns. For resources in this class, the resource itself

and its �rst-level interrupt handler should be considered as part of the stochastic

process that is beyond control of the executive and RTK device driver. Device

utilization overrun also a�ects the GPOS, but, of course, no guarantees are broken,

since the GPOS does not guarantee completion time.

Two categories of recommendations can be fruitfully discussed at this point:
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recommendations for constructing devices and recommendations for constructing

the interfaces between devices and their controlling software.

The best possible functional addition to a device previously falling into the

stochastic process class is one that completely preempts and restores an arbitrary

sequence of interactions between the GPOS device driver and the resource. Thus,

the executive can the interact with the device just as it does with the CPU. At any

point the executive can preempt the active sequence and start a real-time sequence

for a real-time thread. Since the completion time of the transaction would have

an upper bound, feasibility could be determined correctly. Although this asks

much of device designers, there is a move to employ general purpose processors

as the controlling entity in adapter devices and with modest design e�ort this

recommendation may be realizable.

Another alternative would be to allow the abnormal termination of any active

sequence of interactions between the GPOS device driver and the resource. This

would accomplish the same result with some performance degradation, since the

processes involved in the terminated sequence would eventually restart it, thereby

wasting the processing already completed but relying on higher level software to

retry. Note that this method would not work for keyboard devices because asking

the user to retry is not acceptable. This design would also require that the device

and controlling software be able to prevent a situation where so many interaction

sequences are terminated that no useful work is accomplished. This situation

is analogous to operating system virtual memory thrashing and CSMA physical
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network media collisions.

A third design is to modify the interface between the resource and the GPOS

device driver so that the executive can ensure that the resource can begin a given

sequence at the next available time and operate on only one sequence at a time. In

this case, even though the executive might not be able to start a real-time thread's

sequence at a particular point, the amount of time the transaction would have to

wait would be limited. This design would, again, allow the correct calculation of

feasibility.

The remaining option is to install a separate, dedicated device for exclusive use

by the RTK and the real-time threads.

3.9 Programming Model

The programming model de�nes how programmers write and think about real-

time programs for an implementation of the SP architecture. Real-time threads

are threads of traditional GPOS processes. The SP architecture de�nes how peri-

odic real-time threads are created via GPOS system calls. These real-time threads

then execute a continuous loop with one period-expiration wait statement per loop.

The SP architecture also de�nes and requires that resources be reserved for real-

time threads in the real-time mode. Each real-time thread reserves the real-time

resources it intends to use within its continuous loop. How it uses each resource

is somewhat independent of the resource's class in the resource model. The un-

derlying executive and execution model ensure that the resource can communicate
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freely with its device driver, within some reasonable upper bound, when required

by a real-time thread. The CPU is the exception because it is reserved not by

the programmer but by the call to create a real-time thread. One other slight dif-

ference among the use of resources is that in the reservation call the programmer

must specify how much resource is required in units particular to the resource. The

RTK uses this value to calculate how many CPU cycles the real-time thread needs

(the thread's cost) and how long the device will require to complete the request.

3.9.1 Video Display Example

Consider a requirement for a real-time thread to receive video data from an external

communications network, process each incoming data bu�er, and display those

data on the video display device (see Figure 3.8). The code fragment in Figure 3.9

demonstrates how this function might be implemented in an SP implementation

and represents the box labeled `ProcessData' in Figure 3.8.

This example illustrates the use of a resource (the network device) in the

stochastic externally-triggered non-preemptible resource class. One operational

mode, as described in the resource model, is for the executives to manage resource

sharing by polling. Polling adds no more variability to the real-time performance

of threads using resources in this class above that already induced by the stochastic

process generating the events.

In Figure 3.8 the ellipse labeled `Network Device Executive' watches the in-

coming packets on the `Network Device.' If one is destined for a real-time thread,
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main ( ) {

double p = 33.0; /* period in ms */

double c; /* assume (c) cost = 4.0 ms */

RTThread * pProcessData;

static shared char inbuf[INBUFSIZE];

char outbuf[OUTBUFSIZE];

/* share inbuf with the communications protocol */

ShareMemoryWithCommStack ( READ, inbuf );

/* compute execution time of ProcessData thread*/

c = ComputeRTCost(ProcessData);

/* create the real-time thread */

pProcessData = CreateRTThread (c,p,ProcessData);

/* if the real-time thread was created, start it */

if ( pProcessData != NULL )

startRTThread ( pProcessData );

/* wait until the real-time thread quits */

WaitOnRTThread ( pProcessData );

}

RTThread ProcessData ( ) {

while ( true ) {

if ( data ) {

/* read and decompress data from the network */

for(i=0;i<INBUFSIZE;i++,j+=compressionFactor)

Uncompress ( inbuf[i], outbuf[j] );

/* display the video data */

for(i=0;i<OUTBUFSIZE;i++)

display[i] = outbuf[i];

data = false;

}

} /* wait until the next period */

WaitForPeriodExpiration ( );

}

Figure 3.9: Code for Video Display Example

101



it calls the `RTK Network Device Driver,' which communicates with the `Network

Device' to read the packet. The packet is then passed to the `RTK Communica-

tions Protocol' to strip headers, etc; and thence is written into `inbuf.' The bu�er

`inbuf' is set up as shared memory for the `RTK Communication Protocol' and

`ProcessData.' The `Network Device Executive,' `RTK Network Device Driver,'

and `RTK Communication Protocol,' execute in response to an interrupt from the

'Network Device,' The `ProcessData' threads execute once every 33 ms and are

scheduled by the real-time thread scheduler. The shared variable `data' serializes

access to `inbuf.' During each period the `ProcessData' thread checks for new data

(`data' equal to true) and uncompresses it, displays it, and sets `data' to false. If a

packet arrives and `RTK Communication Protocol' �nds `data' equal to true, the

packet is discarded. If `data' equals false, `RTK Communication Protocol' writes

the data into `inbuf.'

This example also shows the disparity between the stochastic driven process

and the deterministic process. Because the stochastic events occur unpredictably,

packets will be discarded and the quality of the display will degrade. Although

bu�ering can be used to some degree to smooth out this discrepancy, it increases

latency, which may be undesirable at times.

It is now useful to examine how `ProcessData' would be scheduled in an imple-

mentation of the SP architecture. To make things more interesting, consider four

instances of `ProcessData,' each of which is displaying a separate video stream.

To start, consider how these four instances might be scheduled in a traditional
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real-time system such as a cyclic executive.

A cyclic executive is a static execution schedule for a �xed set of threads, so

organized that all threads meet their deadlines. The schedule is made up of major

and minor cycles. A minor cycle is a constant time period in which a �xed sequence

of threads, or subthreads (logical pieces of threads), execute. A major cycle is a

repeating sequence of minor cycles.

Assume the four instances of `ProcessData' are labeled A, B, C, and D, and that

two background processing threads, labeled E1 and E2, do required background

processing. Assume also that the cost of each instance of `ProcessData' is 4 ms and

that E1 and E2 have costs 4 ms and 5 ms. The period of each instance is 33 ms. A

minor cycle in a cyclic executivemight look like (A|E1|B|E1|C|E1|D|E2).

The cost of this minor cycle is 33 ms; and if it is continuously repeated, each in-

stance of `ProcessData' would receive its 4 ms of processor time in each period.

Now consider how the four instances might be scheduled in an implementation

of the SP architecture. The instances would be created serially and the RTK would

set up the real-time minor cycle and non-real-time minor cycle lengths, mcrt and

mcnrt, after each creation as shown in Table 3.1.

The extra 0:5 in the minor cycle length accommodates (possible) known vari-

ation in the start of the real-time minor cycles and the execution of the RTK at

the start of each real-time minor cycle. After the second instance is created, each

instance will execute in alternate real-time minor cycles. After the third instance

is created, each instance will execute in every third real-time minor cycle. After
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Active Instances mcrt mcnrt MC

A 4.5 28.50 33.00

A and B 4.5 12.00 16.50

A, B and C 4.5 6.50 11.00

A, B, C, and D 4.5 3.75 8.25

Table 3.1: Minor and Major Cycle Lengths for Four Instances of `Process Data'

the fourth instance is created, each instance will execute in every fourth real-time

minor cycle. At all times each instance executes once in every 33 ms as required.

Another reasonable approach to setting the minor cycle values as each instance

was created would be to increase the real-time minor cycle length by 4 ms and

decrease the non-real-time minor cycle length by 4 ms. After the four instances

were created the values would be mcrt = 16:5 and mcnrt = 16:5. These values

show better utilization of the CPU, because the RTK needs to execute only at

the start of a real-time minor cycle (except for some small scheduling actions as

each instance calls the Wait function). However, the real-timeminor cycle is rather

long and the GPOS would lose e�ciency as various devices and their device drivers

waited for the end of the real-time minor cycle.

This example illustrated the use of a resource in the stochastic, externally-

triggered, non-preemptible resource class in an appropriate manner for its class.

The network device and some of its low level controlling software are considered
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as logical parts of the stochastic process generating events. The next example

illustrates the use of a internally-triggered non-preemptible resource, a disk drive,

in real-time mode.

3.9.2 Disk Write Example

Consider a requirement of a real-time thread to read data from the network, process

them, and write them to disk while guaranteeing that the data bits are on the disk

media before the end of each 100 ms period. Figure 3.10 illustrates the relationship

between modules of this application. Figure 3.11 shows a code fragment, similar

to the previous example, that might implement this function in an application

running on an SP system. This rather contrived example still shows how a real-

time thread would satisfy the requirement that the write to disk must happen

before the deadline of the real-time thread.

Two di�erences from the previous example are that the disk is reserved and

that data are written to the disk instead of to the display. The disk is an internally-

triggered non-preemptible resource. The resource model encourages the executive

to stop the requests from the GPOS before the real-time thread uses resource so

that the communication medium between the RTK device driver and the resource

is free when accessed by the RTK device driver.

In this case, assume that the communication medium needs up to 2 ms to

complete any pending interaction sequence, so the lookahead interval of the real-

time thread scheduler should be set to 2 ms. If this example is the only real-time
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main ( ) {

long rc = 0;

double p = 100.0; /* period in ms */

double c; /* assume (c) cost = 28.0 ms */

RTThread * pProcessData;

static shared char inbuf[INBUFSIZE];

char outbuf[OUTBUFSIZE];

/* share inbuf with the communications protocol */

ShareMemoryWithCommStack ( READ, inbuf );

/* reserve the disk for a write of OUTBUFSIZE */

rc = ReserveRTResource ( RTDisk,

DiskWrite, OUTBUFSIZE, WriteRTDataDisk );

if ( rc == 0 ) {

/* compute execution time of ProcessData thread*/

c = ComputeRTCost(ProcessData);

/* create the real-time thread */

pProcessData = CreateRTThread (c,p,ProcessData);

/* if the real-time thread was created, start it */

if ( pProcessData != NULL )

startRTThread ( pProcessData );

/* wait until the real-time thread quits */

WaitOnRTThread ( pProcessData );

else

exit ( error );

}

RTThread ProcessData ( ) {

while ( true ) {

if ( data ) {

/* read and process data from the network */

for(i=0;i<INBUFSIZE;i++,j++)

Process ( inbuf[i], outbuf[j] );

/* write the data */

WriteRTDataDisk ( OUTBUFSIZE, outbuf );

data = false;

}

} /* wait until the next period */

WaitForPeriodExpiration ( );

}

Figure 3.11: Code for Disk Write Example
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thread in the system, the real-time thread scheduler would send a signal to the

disk executive 2 ms before each period begins, telling it to set the 
ag in the GPOS

disk driver so that the GPOS device driver will not begin any new sequences of

interactions with the disk device. The `ProcessData' thread checks for data from

the network device as in the `Video Display Example,' processes any it �nds before

writing it to the disk with a call to WriteRTDataDisk.

Assume that the WriteRTDataDisk will take up to 23 ms to complete and that

the other actions of ProcessData take 5 ms. The CPU executivewould set the real-

time minor cycle to mcrt = 28:5 and the non-real-time minor cycle to mcnrt = 71:5

with a major cycle of MC = 100. Although the real-time minor cycle is rather

long, the CPU executive can return to the GPOS while ProcessData is blocked

waiting for the disk to complete.

3.10 Intra-thread Communication

The SP architecture expects a particular structure for programs that use an im-

plementation's real-time and non-real-time capabilities. The structure is driven

by the observation that the amount of computation and I/O that must actually

be accomplished in real time is small, well-constrained, well-de�ned, and local-

ized. These properties are considered with respect to the overall program. An

example would be a program to receive, control, and display live audio and video

data from a network. The video should be displayed in a graphical user interface

window which would be created and controlled by the GPOS's window manager.
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The audio should be played on the speaker. The threads of the program that

received, processed, and displayed the live video and audio should be programmed

as real-time threads with appropriate parameters.

The program, however, should also provide the user with non-real-time features,

such as threads that control the placement of the live video window on the display

screen, and threads to monitor user-activated window controls to modify the video

tint, brightness, and contrast, or the audio volume. Additionally, the real-time

threads might generate data that could be handled by GPOS services, such as

accounting data that should be written to log �les. Such activities need not be

handled in the real-time threads because they have no inherent deadlines.

The problem is how the real-time and non-real-time portions of the program

could interact. For example, the real-time thread that processed the incoming

video might also control brightness, if the real-time thread would have to incorpo-

rate any change in the brightness setting into its processing. Also, the real-time

thread processing the video might need to detect and log framing errors while con-

tinuing to display the video. The log information may be moved to disk at any

point, but the real-time and non-real-time threads must communicate easily.

Although many mechanisms for this intra-thread communication are possible,

their essential component, viewed from the real-time thread, is an abstract wait-

free queue [31]. Thus, the real-time thread would queue a work request to the queue

and that queue operation would have a bounded completion time. The thread that

dequeues and accomplishes the work request could exist in the GPOS, in a RTK
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device driver, or in the non-real-time portion of the program. The GPOS could be

modi�ed to support these queues directly, allowing it to de�ne the structure and

type of work requests and make them available to real-time threads.

Another approach would be to implement the queues in RTK device drivers

that would export a non-real-time interface to the real-time threads. For example,

the RTK disk device driver could export a WriteNRTDataDisk call that had a

bounded completion time. The call would be an implementation of the wait-free

queue operation. The RTK disk device driver would then write the data to disk

in a non-real-time mode.

Another option would be for the GPOS to support the creation of the queues

between the real-time and non-real-time threads of a program. This option is the

most 
exible, because all of the GPOS services are available to the non-real-time

threads, and because the programmer de�nes the structure and type of work re-

quests. Using the disk write example again, the real-time thread would queue a

work request, a non-real-time thread in the program would dequeue it and deter-

mine that this was a work request to write data to the disk. The non-real-time

thread would then call the GPOS disk services for �le creation and write.

The non-real-time thread could also modify attributes of the video display, in

response to user input, by changing the value of a global variable in the address

space of the real-time thread. Some serialization would be required, because the

non-real-time thread could change the value of the variable when the real-time

thread was partially through processing the video data of one packet. This could
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happen if the real-time thread was executing during two, or more, subsequent real-

time minor cycles. The easy solution is to have the real-time thread make a copy

of the value at the start of processing and use that value to process a complete

video packet. If the non-real-time thread then changed the value, the new value

would not be used until the real-time thread started processing the next packet of

video data.

3.11 Summary

The SP architecture de�nes three models|execution, resource, and programming|

that together help an implementer modify a GPOS to support periodic real-time

threads that require a guaranteed completion time. The execution model de�nes

the sharing of the CPU (classed as preemptible in the resource model) between

the GPOS and the RTK by the time division multiplexing of the execution of the

RTK and GPOS. The resource model classi�es the typical resources found on a

computing machine (memory, display, network adapters, etc.) by the structure

of the executive that manages how the resource is shared between the RTK and

the GPOS. Thus, the resources in each class can use similar executives to manage

the sharing between the GPOS and the RTK. The programming model de�nes

the system calls a programmer uses to carry out real-time computation on an SP

system.

Any implementation of the SP architecture has two requirements:

� There must be a minimum number of CPU cycles in any interval in which
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real-time threads execute.

� There must be an upper bound on the start time latency of the real-time

intervals.

Typically these two requirements can be met by 1) virtualizing interrupts and 2)

selectively disabling interrupts.
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Chapter 4

Analysis of the Slotted Priority

Architecture CPU Executive

4.1 Introduction

In Chapter 3 we noted that a system that supports periodic real-time tasks must

be able to determine whether adding a new real-time task would prevent other

real-time tasks from meeting deadlines. A GPOS need not address this because

tasks executed by a GPOS do not have to meet deadlines and it is expected that

the addition of new tasks will increase the average completion time for all tasks.

However, periodic real-time tasks must be completed before their deadlines so one

must determine, before additional real-time tasks join the system, whether the

system will be able to meet its deadlines. This requires a feasibility analysis, also

called admission control. This chapter derives an algorithm to test the feasibility

of a set of periodic real-time tasks executing on a system implementing the SP

architecture.

Scheduling real-time tasks with completion time deadlines is fundamentally

di�erent from scheduling non-real-time tasks. Typically, GPOSs use schedulers,



such as �rst in �rst out (FIFO), shortest job �rst (SJF), or least remaining time

�rst, (LRTF) [30]. The quantitative measures of system performance (such as task

completion times) for these schedulers are computed using assumed stochastic

distributions for the service requirement of each task and for the interarrival times

of tasks at the ready queue. These stochastic methods estimate the average time a

task waits in the queue [23]. For GPOSs this is the best that can be done, since the

actual interarrival times and service requirements of its tasks cannot be predicted.

Given that estimated average and a predicted service time, one can compute the

expected completion time of any task: the average time required from when the

task becomes ready to when it completes its computation. However, this expected

completion time is useful only for analyzing a particular system during its design

phase to predict its capacity under various loads or during o�-line system tuning.

It is cannot be used while a system is in operation to predict if any particular task

will complete its computation before a given deadline1. However, a system that

supports real-time tasks as de�ned here must be able to do just that.

Two separate issues are involved in scheduling real-time tasks: the scheduling

policy, such as earliest deadline �rst (EDF), and admission control or feasibility

analysis. In GPOSs and their schedulers, admission control is typically not an

issue, since all new tasks are admitted to the system. However, as the number

1Note that none of the queuing theory analyses were intended to be used during the operation
of a system to predict the actual values of metrics for particular tasks but rather were intended
to be used during the design phase of the system or for o�-line for operational tuning. During the
design phase capacities of the various components of the system, such as the CPU, DASD, etc.,
are changed and the analysis run and various metrics, such as average wait time, are compared.
The intent of this activity is to determine the combination of components that minimize and
maximize, appropriately, the various metrics, including the total cost of the system.
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of tasks increases, the system performance, as measured by, for example, average

waiting in the queue, decreases. This is not acceptable, since real-time tasks must

all meet their deadlines or the system is considered to have failed. Admission

control (feasibility analysis) determines whether a set of real-time tasks with their

costs, periods, and deadlines, operating under a particular scheduling policy will

all meet their deadlines in each of their periods. This section develops a feasibility

analysis for real-time tasks executed on an implementation of the SP architecture.

Such a feasibility analysis is fairly straightforward. Many of the existing anal-

yses of real-time task systems can be modi�ed slightly to accommodate the fact

that these tasks are allowed only a fraction of the CPU, as opposed to traditional

real-time systems where such tasks are assumed to have all of the CPU. The mod-

i�cations are simple because the SP architecture requires that the lengths of the

two types of minor cycles (and, therefore, the major cycle) be constant.

Section 4.2 reviews previous analyses. The �rst, the Rate Monotonic Priority

Assignment, is the seminal work in analyzing real-time tasks and has essentially

de�ned the fundamental task model.

A second task model and execution scheme, the cyclic executive, is described

in Section 4.2.2. This model de�nes a set of rules to facilitate the static, o�-line

scheduling real-time task modules such that all tasks, when dispatched according

to the calculated schedule, will meet their deadlines.

Work on accounting for the overhead of interrupt handlers is presented in Sec-

tion 4.2.3. Although seemingly unrelated, it is very useful in analyzing real-time
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tasks executing on an implementation of the SP architecture.

4.2 Prior Work Related to this Analysis

The problem of assessing the feasibility of real-time tasks has been well studied.

The seminal work on de�ning real-time tasks, along with two algorithms for as-

signing priorities, is by Liu and Layland [24]. The SP system uses this model for

the tasks which it speci�cally supports. The cyclic executive model described in

Section 4.2.2 also has some useful features.

4.2.1 The Liu and Layland Model of Periodic Tasks

A task, �i = (ci; pi) is characterized by a cost, ci, and a period, pi. The cost of a

task is the time required to execute its instructions on a dedicated uniprocessor,

and is assumed to remain constant. Task �i becomes ready to run, or is invoked, at

the beginning of each interval of length pi, i.e., at times t = kpi for k = 0; 1; 2; : : : .

A task is considered to have missed its deadline if the kth invocation of task �i has

not completed execution at time t = (k + 1)pi.

Two algorithms for scheduling real-time tasks are speci�ed and proven opti-

mal. The rate monotonic algorithm is a static priority assignment method, and

the earliest deadline �rst algorithm is a dynamic scheduling method. For either

algorithm, the tasks are considered independent, that is, the individual invoca-

tions of a particular task do not depend on the invocation or completion of any

other task. Also, any nonperiodic tasks in the system are special, initialization
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or failure-recovery routines; they displace periodic tasks while they themselves are

being run, and lack hard, critical deadlines.

Liu and Layland show that the rate-monotonic assignment algorithm is optimal

in the following sense. If a feasible priority assignment exists for some task set, the

rate-monotonic priority assignment is feasible for that set. The EDF algorithm is

optimal in the sense that it will schedule any set of real-time tasks as long as they

do not require more than 100 percent of the processor time.

The rate-monotonic priority assignment simply assigns priority to tasks by

period length. Tasks with shorter periods receive higher priority. The utilization

of a set of m tasks is given by:

U =
mX
i=1

ci

pi
(4.1)

Liu and Layland show that the rate-monotonic priority assignment will result in a

feasible schedule if:

U � m(21=m � 1): (4.2)

For large m: U ' ln 2 � 0:67.

At any time during execution, the currently executing task must be the task

with the highest priority. Thus, the dispatcher must be preemptive since a task

with a higher priority might become ready before the current task is �nished2.

The rate-monotonic scheduling algorithm requires a preemptive dispatcher and

2A note on the di�erence between a dispatcher and a scheduler in a real system. A scheduler
is the task that decides the priority of each task in the system. A dispatcher is the task that,
from a set of ready tasks (i.e., tasks that are awaiting execution) selects the next task to execute
based on the priority set by the scheduler.
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we say that the rate-monotonic scheduling algorithm is a preemptive scheduling

algorithm.

The earliest deadline �rst (EDF) scheduling algorithm is dynamic, in the sense

that a task's priority may vary from request to request. Simply stated, the algo-

rithm schedules, from a set of ready tasks, the task with the closest deadline. Liu

and Layland show that a set of m real-time tasks can be scheduled using EDF if

and only if

mX
i=1

Ci

Ti
� 1 (4.3)

Liu and Layland also give feasibility conditions for an alternate model in which

some tasks are scheduled by the rate monotonic algorithm and the rest by the

earliest deadline �rst algorithm. Je�ay and Stone solve this alternate model exactly

(see Section 4.2.3).

4.2.2 Cyclic Executives

A cyclic executive is the execution model used most often to schedule hard real-

time tasks in embedded systems. A cyclic executive is a dispatcher that continually

executes a schedule for a �xed set of periodic tasks. The schedule is made up of

major and minor cycles. A task in a cyclic executive is generally characterized by

the triple (ci; pi; di), where ci is the cost, pi is the period, and di is the deadline.

The schedule is so organized that all tasks meet their deadlines. For a set of n

tasks the constraints on the length m of a minor cycle are [2]:

� m < di for i = 1 to n.
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� m must be greater than the the longest task or subtask.

� m must divide the major cycle M .

� m+ (m� gcd(m; pi)) � di for i = 1 to n.

Some portions of the schedule do not specify the execution of any periodic task.

In these regions aperiodic tasks, such as non-real-time, may execute. The schedule

is prepared o�-line and cannot be changed while the system is executing. It has

been shown that �nding a schedule is NP-hard for one processor [10]. Although

the cyclic executive does allow the execution of aperiodic and periodic tasks, it �ts

poorly into a general-purpose operating system because it is static.

The SP architecture borrows notation and concepts from the work on cyclic

executives. However, in the SP architecture, a minor cycle is either a time interval

that contains only real-time tasks (if any real-time tasks are ready to run) or a

time interval that contains only non-real-time tasks. In addition, the SP model

permits dynamic adjustment of the relative size of the real-time and non-real-time

intervals and there is no static schedule. Scheduling is all done on-line.

4.2.3 Interrupt Overhead Cost Accounting

In a real-time system that manages physical devices with interrupts and interrupt

handlers, the feasibility analysis must consider the e�ect of executing interrupt han-

dlers on the total execution time of a particular real-time task. Interrupt handlers

are executed below the scheduler's awareness and a�ect how long a real-time task

119



takes to complete its computation. The amount of time depends on the frequency

and duration of interrupt handler execution. The SP architecture eliminates the

e�ect of interrupt handlers on feasibility by disallowing their execution in real-time

minor cycles.

Another approach is to account for the time the interrupt handlers execute,

i.e., make that time visible to the scheduler. Je�ay and Stone solve the feasibility

conditions exactly for the alternate model given by Liu and Layland. In the work

by Je�ay and Stone the e�ect of execution of interrupt handlers is taken into

account when deciding the feasibility of a set of periodic real-time tasks [20]. The

di�culty is determining the amount of CPU time the interrupt handlers consume

because their interarrival times and costs are known only stochastically.

The Je�ay and Stone model considers two types of tasks, interrupt handlers

and application tasks (periodic real-time tasks). An application task T is a pair

(c; p), where c is the maximum amount of time required to execute task T and

p is the interval between invocations of task T . An interrupt handler I is a pair

(e; a), where e is the maximum amount of processor time required to execute the

interrupt handler I and a is the interval between occurrences of I.

The feasibility analysis then derives the amount of CPU time consumed by the

interrupt handlers. A function f(t) is speci�ed to be the CPU time the interrupt

handlers consume in the interval [0; t]. It is shown that for a set of n applica-

tion tasks (c1; p1); : : : ; (cn; pn) and m interrupt handlers (e1; a1); : : : ; (em; am), the

amount of CPU time consumed by them interrupt handlers in an interval of length
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l is:

8l > 0; f(l) =

8>>>>>>>>>><
>>>>>>>>>>:

0 if l = 0

f(l � 1) if f(l � 1) =
mX
i=1

&
l

ai

'
ei

f(l � 1) + 1 if f(l � 1) <
mX
i=1

&
l

ai

'
ei

(4.4)

The application tasks will then be feasible if and only if for all L;L > 0,

L� f(l) �
nX
i=1

$
L

pi

%
ci (4.5)

Equation 4.5 states that L units of work are available to both application tasks

and interrupt handlers and L� f(l) units of work are available to the application

tasks alone. Thus, if the applications need fewer units of work than are available

in every interval the application set is feasible. Je�ay and Stone also show that

Equation 4.5 is equivalent to the Liu and Layland feasibility condition, for their

alternate model, as Equation 4.6 is equivalent to Equation 4.7, which they also

show.

8L � 0; L �
nX
i=1

$
L

pi

%
ci (4.6)

is equivalent to

nX
i=1

ci

pi
� 1 (4.7)

Je�ay and Stone also show that one need not look at all Ls to determine if a

particular task set is feasible; in fact one need only look at a polynomial number

of Ls.
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4.2.3.1 Relationship of SP to the Interrupt Handler Work

The SP architecture proposed in this paper is a special case of the model developed

by Je�ay and Stone. In an implementation of the SP architecture the GPOS can be

considered as a single interrupt handler with costmcnrt and periodMC. SinceMC

is constant with respect to an analysis, the recursive function, f() in Equation 4.4,

can be expressed in a closed form when analyzing the CPU executive in an SP

implementation.

4.3 Determining Feasibility in an SP Implemen-

tation

We start with a simple analysis that requires assumptions about the relationships

between the costs of the real-time tasks and the length of the real-time minor cycle

and between the periods of the real-time tasks and the length of the major cycle.

Our goal is to provide a simple computational method to determine appropriate

lengths of the real-time minor cycle and the major cycle for SP implementations,

assuming that currently executing tasks meet the assumptions, or can be made to,

by choosing appropriate cycle lengths. This simple analysis also serves as a starting

point for the subsequent, more general analysis and illustrates that feasibility for

the simple case is a function of processor utilization, as in the Liu and Layland

work.

The analysis �rst imposes rather strict assumptions and considers a case in

which feasibility is a function of processor utilization, similar to the analysis given
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by Liu and Layland [24]. The assumptions are then relaxed in the analysis of

Section 4.3.1: feasibility then requires a test for all intervals, but covers the general

case where the costs and periods of the real-time tasks are unrelated to the lengths

of the minor cycles. Finally, in Section 4.3.2, the number of intervals that have to

be checked to determine feasibility is limited so that the computation of feasibility

is tractable.

The goal of the analyses is to show that a set � of n tasks, when executed on

an implementation of the SP architecture, is feasible: it is possible to schedule the

tasks so that each invocation of each task �nishes at or before its deadline.

Time is viewed as an in�nite series of discrete points starting at time t = 0.

The distances between these discrete points are divided into two classes: real-time

time units and non-real-time time units. The assumptions for the initial analysis

are:

For a set, � , of m real-time tasks, � = ((c1; p1); : : : ; (cm; pm)) where:

1. mcrt divides ci, 8i = 1 to m.

2. mcrt +mcnrt divides pi, 8i = 1 to m.

3. The tasks are scheduled by the EDF algorithm.

4. The system starts with a non-real-time minor cycle.

Theorem 1: � is feasible if and only if

mX
i=1

ci

pi
�

mcrt

mcrt +mcnrt
(4.8)
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The necessity of Equation 4.8 is obvious since, as discussed in Section 4.2.3,

the left hand side is the utilization of the real-time tasks in the system and it is

clear that one cannot schedule a set of tasks that require a utilization greater than

the fraction mcrt
MC

.

The su�ciency of Equation 4.8 is now proved by contradiction. Assume Equa-

tion 4.8 is true but yet � is not feasible, that is, 9 a time td such that at td some

task does not meet its deadline. Since a task can only over
ow at the end of its

period and mcrt +mcnrt divides all periods, then td is a multiple of mcrt +mcnrt.

Choose a point t < td which is the greatest of:

� 0

� the end of the last idle period prior to td

� the last time a task with a deadline after td executed

This time t is also a multiple of mcrt + mcnrt. Of course 0 is a multiple of

mcrt + mcnrt. Note that, given the assumption that mcrt divides all of the ci,

either a single real-time task executes in any real-time minor cycle or no real-time

tasks execute in a real-time minor cycle. Thus, the end of the last idle period is

at the end of a real-time minor cycle, as is the last time a task with a deadline

after td executed. Since the system starts with a non-real-time minor cycle, times

at which the ends of the real-time minor cycles occur all divide mcrt +mcnrt.

The amount of work required in the interval, [t; td], is

mX
i=1

$
td � t

pi

%
ci (4.9)
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If some task misses its deadline at td then the following must be true.

mX
i=1

$
td � t

pi

%
ci >

�
td � t

mcrt +mcnrt

�
mcrt (4.10)

The right hand side of Equation 4.10 is the amount of processor time available to

real-time tasks in the interval, [t; td]. Since td � t is a multiple of mcrt +mcnrt we

can drop the 
oor on the right hand side of Equation 4.10 and since x � bxc 8x

we can drop the 
oor on the left hand side of Equation 4.10. We now have

mX
i=1

td � t

pi
ci >

td � t

mcrt +mcnrt
mcrt (4.11)

Dividing through by td � t, we get

mX
i=1

ci

pi
>

mcrt

mcrt +mcnrt
(4.12)

This is a contradiction of Equation 4.8 and thus proves the su�ciency of Equa-

tion 4.8.

4.3.1 Relaxing Assumptions

Assumptions in Section 4.3 are somewhat restrictive. All the assumptions (except

the assumption that an earliest deadline scheduler is used to schedule the real-time

threads) can be relaxed at the cost of a feasibility test with greater time complexity.

We start by showing:

Lemma 1: For all l; l � 0,

$
l

MC

%
mcrt +MAX(0; lmodMC �mcnrt) (4.13)
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is the greatest lower bound on the number of real-time processor units in the

interval [t; t+ l].

Proof: For all t; t � 0, in the interval [t; t+ l], at least
j

l
MC

k
mcrt time units

are available for executing real-time tasks and at least
j

l
MC

k
mcnrt time units are

available for executing non-real-time tasks. Of the remaining

l �

 $
l

MC

%
mcrt +

$
l

MC

%
mcnrt

!
= l�

$
l

MC

%
MC = lmodMC

(4.14)

processor units in the interval, at most mcnrt of these can be non-real-time units.

Thus, if mcnrt � lmodMC, then at least lmodMC �mcnrt additional processor

units must be available for executing real-time tasks. Therefore the greatest lower

bound on the number of real-time processor units in the interval [t; t+ l] is

$
l

MC

%
mcrt +MAX(0; lmodMC �mcnrt) (4.15)

Theorem 2: A set of periodic tasks � = f(c1; p1); c2; p2); : : : ; cn; pn)g can be

scheduled on an SP implementation with real-time minor cycle length mcrt and

non-real-time minor cycle length mcnrt if and only if for all L � 0:

nX
i=1

$
L

pi

%
ci �

�
L

MC

�
mcrt +MAX(0; LmodMC �mcnrt) (4.16)

where MC = mcnrt +mcrt.

Proof: (() A set of tasks can be scheduled only if for all l; l � 0, the amount

of processor time available to real-time tasks in the interval [0; l], is at least as big

as the work requested by the invocations of tasks with deadlines in [0; l].
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In [0; l], each real-time task will require
j
l
pi

k
ci units of processor time to ensure

no invocation of that task misses its deadline in the interval [0; l]. Thus the work

requested by all invocations of tasks with deadlines in [0; l] is
Pn

i=1

j
l
pi

k
ci.

By Equation 4.13, the amount of processor time available to real-time tasks in

the interval [0; l] is at least Equation 4.13. Thus, since Equation 4.13 is a greatest

lower bound, � can be scheduled only if

nX
i=1

$
l

pi

%
ci �

$
l

MC

%
mcrt +MAX(0; lmodMC �mcnrt) (4.17)

Note that no assumptions are made (or needed) about whether or not time 0

corresponds to the start of a real-time or non-real-time minor cycle.

()) To show su�ciency of Equation 4.16, it su�ces to show that if a task

system � satis�es Equation 4.16 for all L;L > 0, then a deadline-driven scheduler

will succeed in scheduling � . This is shown by contradiction.

Assume that for all L;L > 0, � satis�es Equation 4.16 but yet a real-time task

misses a deadline when scheduled according to a deadline driven algorithm. Let td

be the earliest time at which a deadline is missed and let t be the greater of:

� the end of the last interval in a real-time minor cycle during which which no

real-time task executed (or 0 if all processor units in every real-time minor

cycle up to time td have been consumed), or,

� the latest time before td at which an invocation of a real-time task with

deadline after time td executes (or 0 if such an invocation does not execute

prior to Td).
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By the choice of t, no invocation of a real-time task with deadline after td executes

in the interval [t; td]. If deadline-driven scheduling is performed, then the processor

demand in the interval [t; td], is
Pn

i=1

j
(td�t)
pi

k
ci. Moreover, at least

�
td � t

MC

�
mcrt +MAX(0; (td � t) modMC �mcnrt) (4.18)

real-time processor units are available for real-time tasks in [t; td]. Since a deadline

is missed at time td, it follows that

X
i=1

n

$
td � t

pi

%
ci >

�
td � t

MC

�
mcrt +MAX(0; (td � t) modMC �mcnrt):

(4.19)

However, this contradicts the assumption that � satis�es Equation 4.16 for all L.

Hence, if � satis�es Equation 4.16 then a deadline-driven scheduler will succeed in

scheduling � . It follows that satisfying Equation 4.16 for all L;L > 0, is a su�cient

condition for feasibility.

4.3.2 Reducing Computation Complexity

A feasibility computation using Equation 4.16 requires evaluation for all positive

integers up to the point where one can trust that all possible permutations of

real-time task invocations and periods and minor cycles have occurred. The time

complexity of this computation is exponential in the number of periods, since such

a point is, in general, the product of the periods of each of the real-time tasks.

In certain special cases, though, the value of such a point is small and the time

required for the computation is reasonable. An example of such a special case

is when all of the periods are the same, I = p1 = p2 = : : : = pn. In this case
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Equation 4.16 would have to be evaluated only for the integer values 0 � I to

determine if the task set is feasible. Other special cases, where Equation 4.16 is

computationally reasonable, include task sets where all of the periods are multiples

of some integer or when there are relatively few tasks.

This section proves that the evaluation of Equation 4.16 need only be done for

integer values of L that are multiples of any of the periods up to a computed value

B, which is often much smaller than the product of the periods.

To start, de�ne the total utilization, UT , of the SP system as:

UT =
nX
i=1

ci

pi
+
mcnrt

MC
(4.20)

This is the fraction of processor time required by the real-time tasks plus the

fraction of processor time dedicated to the GPOS.

Theorem 3: Let � be a task system as given for Theorem 2 with UT < 1. Let

B =
mcnrt

1� UT
(4.21)

and let P = fkpijkpi < B ^ k � 0 ^ 1 � i � ng be the set of nonnegative multiples,

less than B, of the periods of the real-time tasks. � will be feasible if and only if

for all L, L 2 P :

�
L

MC

�
mcrt +MAX(0; LmodMC �mcnrt) �

nX
i=1

$
L

pi

%
ci (4.22)

Proof: ()) The necessity of Equation 4.22 for all L, L 2 P is a direct conse-

quence of Theorem 2.

(() The su�ciency of Equation 4.22 is shown in two parts. First, it is shown

that Equation 4.22 need hold at only the multiples of the periods for the task
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to be feasible. Second, it is shown that only values of L less than B need to be

considered.

Let Q = fkpijk � 0 ^ 1 � i � ng. Choose t; t0 2 Q, such that no r 2 Q; t <

r < t0 exists. Let � be an integer such that 0 � � < t0 � t. It follows that for all i,

1 � i � n;
j
t
pi

k
=
j
(t+�)
pi

k
. If Equation 4.22 is satis�ed at t, then adding � to t on

the rhs preserves the inequality:

�
t

MC

�
mcrt +MAX(0; tmodMC �mcnrt) �

nX
i=1

$
t+ �

pi

%
ci

The next step of the proof is to add � to each instance of t on the lhs, giving

�
t+ �

MC

�
mcrt +MAX(0; t+ �modMC �mcnrt) �

nX
i=1

$
t+ �

pi

%
ci

(4.23)

However, some explanation is in order with regard to why the inequality is pre-

served. Clearly,
j
t+�
MC

k
mcrt �

j
t

MC

k
mcrt, but two cases need to be examined when

� is added to t in MAX(0; tmodMC �mcnrt):

Case 1:

MAX(0; t+ �modMC �mcnrt) �MAX(0; tmodMC �mcnrt)

and Equation 4.23 holds.

Case 2:

MAX(0; t+ �modMC �mcnrt) < MAX(0; tmodMC �mcnrt):

However, if this is true, then

t � kMC < t+ � for integer k � 1
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and � is large enough to cause t+ � to be greater than at least the next multiple

of MC. But then, �
t+ �

MC

�
mcrt =

�
t

MC

�
mcrt +mcrt

and since

0 � MAX(0; tmodMC �mcnrt) � mcrt � 1

then

�
t+ �

MC

�
mcrt +MAX(0; t+ �modMC �mcnrt) �

�
t

MC

�
mcrt +mcrt +MAX(0; t+ �modMC �mcnrt) �

�
t

MC

�
mcrt +MAX(0; tmodMC �mcnrt) �

nX
i=1

$
t

pi

%
ci

and Equation 4.23 holds.

Thus if Equation 4.22 holds at the multiples of the pi, then it holds at all values

between those multiples. So it su�ces only to consider the positive multiples when

using Equation 4.16.

Next we show that only those multiples of the pi less than B need to be con-

sidered when using Theorem 2 to determine feasibility of a task set. Consider the

following function:

g(L) =
nX
i=1

$
L

pi

%
ci �

��
L

MC

�
mcrt +MAX(0; LmodMC �mcnrt)

�

(4.24)

By Theorem 2, � will be feasible if and only if g(L) � 0 for all L � 0. g(L) is
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bounded from above by the function:

h(L) = (UT � 1)L +mcnrt

To see this, �rst show

g(L) �
nX
i=1

$
L

pi

%
ci �

�
L �

�
L

MC

�
mcnrt �MIN(LmodMC;mcnrt)

�

(4.25)

from Equation 4.24. To see this we examine two cases.

Case 1: L in this case is a multiple of MC. Thus:

MAX(0; LmodMC �mcnrt) = 0

and

MIN(LmodMC;mcnrt) = 0

Since

L =
�

L

MC

�
mcnrt +

�
L

MC

�
mcrt

L�
�

L

MC

�
mcnrt =

�
L

MC

�
mcrt

L�
�

L

MC

�
mcnrt �MIN(LmodMC;mcnrt) =

�
L

MC

�
mcrt +MAX(0; LmodMC �mcnrt)

Thus, Equation 4.25 follows when L is a multiple of MC.

As an example of case 1 consider, as depicted in Figure 4.1, a system with

L = 16, MC = 4, mcrt = 1, mcnrt = 3
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L

MC

mc
mc

rt

nrt

Figure 4.1: L is a multiple of MC

L�
�

L

MC

�
mcnrt =

�
L

MC

�
mcrt +MAX(0; LmodMC �mcnrt)

16 �
�
16

4

�
3 =

�
16

4

�
1 +MAX(0; 16 mod 4� 3)

16 � (4� 3) = (4)1 + 0

4 = 4

Case 2: L is not a multiple of MC

To see that Equation 4.25 holds we must show that

L �
�

L

MC

�
mcnrt �MIN(LmodMC;mcnrt)

�
�

L

MC

�
mcrt +MAX(0; LmodMC �mcnrt)

(4.26)

Algebraic manipulation and replacement are applied, noting that MC = mcnrt +
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mcrt.

L�
�

L

MC

�
mcnrt �MIN(LmodMC;mcnrt)

�
�

L

MC

�
mcrt +MAX(0; LmodMC �mcnrt)

L�
�

L

MC

�
mcnrt �

�
L

MC

�
mcrt

� MAX(0; LmodMC �mcnrt) +MIN(LmodMC;mcnrt)

L�
��

L

MC

�
mcnrt +

�
L

MC

�
mcrt

�

� MAX(0; LmodMC �mcnrt) +MIN(LmodMC;mcnrt)

L�
�
(mcnrt +mcrt)

�
L

MC

��

� MAX(0; LmodMC �mcnrt) +MIN(LmodMC;mcnrt)

L�
�
MC

�
L

MC

��

� MAX(0; LmodMC �mcnrt) +MIN(LmodMC;mcnrt)

Since xmod y = x� y
j
x
y

k
, y 6= 0

LmodMC �MAX(0; LmodMC �mcnrt) +MIN(LmodMC;mcnrt)

Thus for case 2 it remains to show that

MAX(0; LmodMC �mcnrt) +MIN(LmodMC;mcnrt) � LmodMC

If 0 � LmodMC � mcnrt then

MAX(0; LmodMC �mcnrt) = 0

and

MIN(LmodMC;mcnrt) = LmodMC
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Thus

MAX(0; LmodMC �mcnrt) +MIN(LmodMC;mcnrt) = LmodMC

If mcnrt < LmodMC < MC, then

MAX(0; LmodMC �mcnrt) = LmodMC �mcnrt

and

MIN(LmodMC;mcnrt) = mcnrt

Thus

MAX(0; LmodMC �mcnrt) +MIN(LmodMC;mcnrt) = LmodMC

Therefore, Equation 4.26 is true. As an example of case 2 consider, as depicted in

Figure 4.2, a system with L = 19, MC = 4, mcrt = 1, mcnrt = 3.

L�
�

L

MC

�
mcnrt �

�
L

MC

�
mcrt +MAX(0; LmodMC �mcnrt)

19�
�
19

4

�
3 �

�
19

4

�
1 +MAX(0; 19 mod 4 � 3)

19 � (4� 3) � (4)1 + 0

7 � 4

Now, starting with Equation 4.25

g(L) �
nX
i=1

$
L

pi

%
ci �

�
L�

�
L

MC

�
mcnrt �MIN(LmodMC;mcnrt)

�

then rearrange

g(L) �
nX
i=1

$
L

pi

%
ci � L +

�
L

MC

�
mcnrt +MIN(LmodMC;mcnrt)
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A + B = L mod MC

MC

mc
mc

rt

nrt

L

A B

Figure 4.2: L is not a multiple of MC
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dropping the 
oors preserves the inequality

g(L) �
nX
i=1

L

pi
ci � L+

L

MC
mcnrt +MIN(LmodMC;mcnrt)

rearranging

g(L) � L
nX
i=1

ci

pi
� L+ L

mcnrt

MC
+MIN(LmodMC;mcnrt)

noting that MIN(LmodMC;mcnrt) � mcnrt

g(L) � L
nX
i=1

ci

pi
� L+ L

mcnrt

MC
+mcnrt

factoring out L and rearranging

g(L) � L

 
nX
i=1

ci

pi
+
mcnrt

MC
� 1

!
+mcnrt

substituting UT

= (UT � 1)L +mcnrt

Thus, it is seen that g(L) � h(L) for all L � 0. h(L) is a linear function in L with

slope (UT � 1) and an L intercept at the point L = B = mcnrt
(1�UT )

. Since UT < 1,

h(L) has a negative slope and thus for all L � B, g(L) � h(L) � 0. Thus � will

be feasible if and only if g(L) � 0 for all L 2 P . This proves Theorem 3.

4.4 Summary

The analysis of the SP CPU executive presented in this section is derived from the

seminal work of Liu and Layland [24] and the work by Je�ay and Stone [20]. Liu

and Layland de�ned the fundamental characteristics of real-time tasks and proved
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for their model that the feasibility of a task set is a function of processor utilization

when scheduled by an EDF scheduler.

The initial analysis presented here shows that a simple test for feasibility based

on utilization can be used for a task set an SP implementation, given certain

assumptions about the relationships between the minor cycle lengths and the costs

and periods of the real-time tasks. In the general case, where the assumptions

about the relationships between periods and costs are removed, the feasibility test

can no longer be a simple function of processor utilization but must be a set of

tests, one for each interval of integer length up to some value. In some systems

that value can be rather large, since it may be the product of all of the periods.

However, the analysis continues to show that all intervals must be checked, or

rather, only those intervals which are a multiple of one of the periods and less

than a computed value that is typically much smaller than the product of all the

periods.
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Chapter 5

An Implementation of the Slotted

Priority Architecture

5.1 Introduction

The previous chapter presented a derivation of a feasibility analysis that can be

used to determine if a set of periodic real-time threads executing on a system

implementing SP can be scheduled by an earliest deadline �rst scheduler so that all

of the threads meet their deadlines. This chapter describes the details of an actual

implementation of the SP architecture that employs EDF scheduling. This chapter

also presents the results of a set of experiments used to verify the implementation

and show its e�ect on GPOS performance.

To accomplish the implementation, the systemmust be able to precisely execute

the RTK at the beginning of each real-time minor cycle. Moreover, the RTK must

be able to determine the minimum number of processor cycles available to execute

real-time threads in any real-time minor cycle. The �rst issue is that the enabling

and disabling of interrupts has to be virtualized. This is because the unrestricted

use of disabled interrupts to, for example, enforce mutual exclusion in the GPOS



kernel can cause unpredictable delays in executing the RTK. The second issue is

that during the real-time minor cycles, interrupts must be selectively disabled,

because the feasibility analysis assumes that all CPU cycles in a real-time minor

cycle, except for the cycles used to execute the RTK itself, are available to real-time

threads.

Section 5.2 describes the hardware system used for the implementation. An

implementation of the SP architecture is very speci�c to its hardware system as well

as to its GPOS. Some of the software modules described in Section 5.3 are speci�c

to the GPOS, in this case the IBM MicroKernel. Others are generic and could be

easily ported to an implementation using any GPOS. Section 5.4 introduces a set of

experiments that show that this particular implementation of the SP architecture

meets the correctness criteria established by the architecture de�ned in Chapter 3.

Section 5.5 describes issues that should be considered when when attempting to

port an implementation of the SP architecture from a particular hardware/GPOS

combination to another combination. In addition, Section 5.5 describes issues to

consider when choosing a minor cycle length.

5.2 Hardware Description

The implementation described here was constructed on an IBM PS/2 Model 95

workstation which uses the Intel 80486DX2 (i486), as the main processor with a

20 nanosecond CPU internal cycle time (50 MHz CPU internal bus clocked with

a 25MHz external clock signal). The execution times of instructions in the i486
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instruction set vary from one cycle to 329 cycles with the average being about

�ve cycles1. The DMA controller operates at 25MHz and can transfer a single

byte in approximately 740-900 nanoseconds, depending on whether the operation

is a read or a write to memory and whether the memory page is present [14]. In

burst mode, the DMA controller can transfer data between 300 + (320 + 160) � n

and 300 + (320 + 280) � n bytes/ns, where n = the number of bytes in the burst.

This model has no level-2 cache, and its �rst level cache is a 8KB, 4-way, write-

through, internal cache [14]. This particular machine has 32 megabytes of 80 ns

main memory and an IBM MicroChannel Bus. During a burst, an adapter can

continue to hold access to the bus for up to 7.8 microseconds after an adapter with a

higher arbitration level has raised the bus request line [12]. The microprocessor has

a high priority arbitration level and may thus have to wait only 7.8 microseconds

for access to the bus while another adapter �nishes a burst request.

The motherboard contains two programmable interrupt controller (PIC) cir-

cuits [13, 18], one programmable system timer circuit, and a Real-Time Clock Plus

Battery Backed CMOS Ram (RTClock) with a periodic interval timer [13, 26].

The system timer, the RTClock, and the PICs are sources of hardware inter-

rupts to the i486 CPU. The system timer provides a number of di�erent modes

that determine when and if an interrupt will be generated. In the mode used by

1Repeat REP instructions perform a simple action, such as moving a word of memory from
one address to another, for a variable number of times. The number of times the simple action
is repeated is controlled by the programmer. With a single repeat instruction the programmer
can thus move large regions of memory. A potential problem is that if the processor architecture
does not allow interrupts between the actions of a repeat instruction, long, unpredictable, and
irrevocable delays may occur before an interrupt may be handled. The i486 architecture allows
interrupts between the actions of repeat instructions [17].
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the IBM MicroKernel, the timer generates an interrupt when the value of a two-

byte countdown register reaches zero. The countdown resumes when either a new

value is written into the countdown register or a control word is written to the

circuits control register. The timer frequency is 1.193 MHz, which decrements the

countdown register each 838.223 nanoseconds. The MicroKernel uses this timer as

its fundamental hardware timer and derives all other time measurements from it.

Figure 5.1 illustrates connections among the CPU, the system timer (8254),

the Real-Time Clock, and the programmable interrupt controllers (8259A). The

two PICs are connected to the CPU interrupt line in a cascade. The slave PIC's

interrupt line is connected to the number 2 input line of the master PIC, whose

interrupt line is connected to the CPU's interrupt input. When a device attached

to an input line of the slave PIC raises its interrupt line, the slave PIC, according

to its internal algorithm for multiplexing interrupts, will raise its interrupt line,

which is input to the master PIC. At the appropriate time the master PIC will raise

its interrupt line into the CPU, and when the CPU acknowledges the interrupt,

the master PIC will transfer the appropriate codes to the CPU to indicate which

device is requesting service.

The PICs multiplex interrupts from peripheral devices onto the single interrupt

line of the i486. In addition, the PICs provide a means of assigning priorities to

each incoming interrupt line as it maps each line to a physical device. The priority

assignment feature is important for this implementation of the SP architecture,

because the line used by the timer that de�nes slots (see Section 3.6) is given the
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highest priority. This priority assignment decreases the variability in slot lengths,

since the SP timer will interrupt the CPU before any other device that becomes

ready at the same time. Also, each PIC has a bit mask which can enable and

disable each line, and therefore each device, individually.

The RTClock provides a programmable interval interrupt function. The inter-

val may be set to one of 16 values from 30.5 microseconds to 500 milliseconds. The

RTClock generates an interrupt that de�nes the start of each slot.

The host operating system is the IBM MicroKernel using OSF/1 as the dom-

inant personality2. The host operating system was chosen primarily because the

kernel source code and a build environment were readily available.

5.2.1 Periodic Interrupt Generators

The version of the IBM MicroKernel used in this implementation of the SP archi-

tecture did not use the RTClock for periodic interrupts. Instead the implementers

of the MicroKernel chose to use the system timer and schedule variable interrupts

as necessary to process events on the event queue. This minimized the changes

necessary to the IBM MicroKernel, since the SP implementation could use the

RTClock independently3.

2The IBM MicroKernel is a version of the Mach Operating System developed at Carnegie
Mellon University. The dominant personality refers to the operating system implementation
with which the user interacts.

3IBM's OS/2 operating system, on the other hand, uses the RTClock for its timing services,
but it does not use the system timer. So to implement SP in OS/2 one would have to use the
system timer for its periodic interrupts or share the RTClock. The latter solution would require
more changes to the host kernel. A host kernel that used both the RTClock and the system timer
would need to be modi�ed to allow SP to share one of the sources of interrupts.
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5.2.2 Use of Hardware Task Switch Mechanism

Another issue that a�ects an SP implementation on this hardware is that the IBM

MicroKernel does not use the i486 hardware task switch mechanism. The i486

provides hardware support for task or context switches. If an operating system

opts to use the hardware support for task switching, each task is allocated a task

state segment (TSS) which is a segment of memory with a descriptor in the global

descriptor table (GDT). A descriptor is an 8-byte entry, in one of the descriptor

tables, that contains information about a memory object. There are segment,

interrupt gate, and task gate descriptors. Information in the descriptors includes

a pointer to the location in memory of the memory object, its privilege level, an

indicator of whether the descriptor is globally or locally accessible, and a segment

present bit. A task gate descriptor points to a TSS. To initiate the hardware task

switch mechanism the program simply includes a jump instruction with the o�set

of the task gate descriptor in the GDT as the operand to the jump instruction.

For example the single assembler instruction ljmp 0x20; 0 when executed by the

RTK low-level dispatcher causes the hardware task switch mechanism to perform

a task switch from the RTK to the IBM MicroKernel.

Instead, the implementers of the MicroKernel chose to use their own mechanism

to do task switching in software. The basic data structure involved in an i486 task

switch is the TSS. Although the IBM MicroKernel does not use the i486 hardware

task switch mechanism, it does have to provide a TSS for every task, because the

i486 obtains the address for a kernel stack from the TSS any time a user level task
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is interrupted. Moreover, the TSS contains a bit mask for I/O ports which the

i486 uses to determine if a particular task has permission to access an I/O port.

Since the IBM MicroKernel had already set a TSS for each task and for itself, it

required only a few changes to initialize a number of �elds in the TSSs for the SP

implementation. The implementation's use of the TSS switch tasks required that

locks be placed around a few lines of code within the IBM MicroKernel. These

lines of code set the task register and the page directory base register (PDBR) in

the i486. The task register points to the TSS of the currently executing task and

the PDBR holds the physical address of the page table directory for the currently

executing task; together they constitute the hardware's view of the executing task.

If the SP interrupt handler executed while this view is inconsistent, the state of the

MicroKernel task saved in a TSS might be inconsistent; when the SP dispatcher

switched back to that TSS, the IBM MicroKernel would crash. An interesting

point, showing an unexpected advantage of the SP architecture's separation of

real-time and non-real-time threads, is worth noting here. In most cases when

the IBM MicroKernel crashes the RTK does not. In fact, even when the IBM

MicroKernel intentionally traps to the debugger the RTK continues to execute

unabated. This is because the trap handler for the MicroKernel simply executes

and transfers control to the debugger. The CPU executive continues to switch

between minor cycles. The debugger executes in the non-real-time minor cycles

and the RTK and its tasks execute in the real-time minor cycles.
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5.3 Description of the Software Modules

This implementation of the SP architecture consists of an interrupt enable/disable

virtualization component, a real-time kernel (RTK), a CPU executive, a network

adapter device executive, a speaker executive for the built-in audio output device,

and a display executive for a VGA display. The real-time kernel comprises a real-

time thread scheduler (earliest deadline �rst), an admission control function, an

RTK personality-neutral server, and an RTK real-time thread library component.

The name, personality-neutral server, has its roots in the architecture of the

MicroKernel which is derived from the Mach Operating System. In these systems

personality neutral refers to services that are independent of the particular operat-

ing system server that executes above the MicroKernel. These services provide the

operating system interface to user processes of that particular operating system.

The CPU executive includes an interrupt handler as well as logic that manages

how the CPU is shared between the GPOS and the RTK. Figure 5.2 shows the

relationship among the major software modules for this implementation of the SP

architecture. The following sections describe each of the major components in

Figure 5.2 in greater detail.

5.3.1 The Interrupt Enable/Disable Virtualization Com-
ponent

The �rst and most important function required by any implementation of the SP

architecture is a predictable, periodic interrupt vectored to the CPU executive
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interrupt handler. The CPU executive interrupt handler is the �rst code that ex-

ecutes in response to the interrupt that marks the start of a minor cycle or slot, if

slots are necessary. In this particular implementation, the source is the RTClock.

The RTK and the GPOS guarantee that the interrupts will execute the CPU-

executive interrupt handler with a bounded (and small) latency after the exact

moment of the interrupt. The RTK real-time thread scheduler uses this bound

on the latency as a constant when calculating feasibility. In this implementation,

empirical measures show that the latency does not exceed 330 microseconds. This

implementation guarantees interrupt latency by disallowing the IBM MicroKer-

nel access to the interrupt bit (the IF bit) in the CPU 
ags register. This bit

determines whether the CPU responds to the INT line from the set of PICs.

All requests from the IBM MicroKernel to change the state of the IF bit are

handled by the SP virtualized interrupt enable/disable component (IEC). The IEC

ignores IBM MicroKernel requests to disable interrupts. That is, it leaves the IF

bit in the CPU 
ags register set, but sets the interrupt masks in the PICs so that

only the interrupt from RTClock used by SP can get through to the CPU. Since

only SP uses the RTClock, the IBMMicroKernel can proceed as normal, since none

of the interrupts that a�ect its operation will be allowed. By never disabling the

RTClock interrupt the CPU executive interrupt handler will be executed at each

slot boundary. When the IBMMicroKernel requests that interrupts be enabled, the

IEC sets the interrupt masks in the PICs so that all normal MicroKernel interrupts

(plus the RTClock interrupt) are enabled. The overall e�ect is to isolate the IBM
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MicroKernel from the hardware, while SP still has access to a periodic timer.

The IEC implementation required that the IF bit be cleared (i.e., that all

interrupts be disabled) to enforce mutual exclusion within the IEC itself. These

critical sections are approximately 200 CPU cycles at most. On the hardware used,

each cycle is 20 nanoseconds. This means that the RTK itself disables the IF bit

for no more than 4 microseconds, which can delay the interrupt from the RTClock.

There are also critical sections between the GPOS and the RTK. These two types

of critical sections contribute to the variability in slot lengths.

Note that in Figure 5.2, part of the GPOS extends around the IEC down to

the hardware. This illustrates the critical sections in the GPOS that have to be

serialized with the RTK. To do this, the GPOS must call the hardware interrupt

enable/disable mechanism directly.

5.3.2 The CPU Executive

The CPU executive includes a function to manage the lengths of the minor cycles

and an interrupt handler that is the �rst code executed in response to an interrupt

from the RTClock that begins each slot. The values of mcrt and mcnrt are set by

the admission control function of the RTK in multiples of the slot length. The

CPU executive implements minor cycles by counting slots and switching between

the GPOS and the RTK when appropriate. When the RTClock interrupts, the

interrupt handler executes the following logic:
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� If the previous slot and the next slot are both in a non-real-time minor cycle,

the interrupt handler signals end-of-interrupt and immediately returns to the

GPOS.

� If the previous slot was in a non-real-time minor cycle and the next slot is

in a real-time minor cycle, the interrupt handler switches to the RTK and

indicates that this call begins a new real-time minor cycle.

� If the previous slot and the next slot are both real-time minor cycles, the

interrupt handler switches to the RTK and indicates that the RTK is within

a real-time minor cycle.

� If the previous slot was in a real-time minor cycle and the next slot is in a

non-real-time minor cycle, the interrupt handler switches back to the GPOS.

Slots are artifacts of the hardware used in this implementation of the SP archi-

tecture. The preferred implementation would generate interrupts at minor cycle

boundaries. However, the Mod-95 lacks the hardware necessary for generating

precise interrupts that have such widely varying values4|anywhere from a few

microseconds to hundreds of milliseconds|and that can be reprogrammed after

each interrupt. The RTClock can actually generate interrupts in the appropriate

range. However, attempts failed to get it to work correctly, as determined by a

relatively large variability in minor cycle lengths, while reprogramming it after

each interrupt, Thus we chose to program the RTClock with a single value and

4The values should be able to accommodate reasonable, possible lengths of minor cycles.
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create the minor cycles out of these �xed intervals (slots).

The details of how the interrupt handler is started are interesting. At the loca-

tion reserved for the RTClock interrupt, the interrupt vector table has a descriptor

called a CPU task descriptor. It causes the CPU to invoke special functions when

it is accessed and includes a pointer to a CPU Task State Segment (TSS). When

the CPU detects this type of descriptor during an interrupt, the complete state of

the currently executing process is saved in the task's TSS. The task state from the

TSS pointed to by the descriptor is loaded into the CPU, and execution begins at

the instruction pointer for the just loaded task. Even though this type of interrupt

costs more than others, it is implemented this way to minimize changes to the

GPOS and to provide complete separation between the GPOS and the RTK.

This implementation of a CPU executive also required modi�cation of the �rst

level interrupt handler of the IBM MicroKernel. When a hardware interrupt oc-

curs, the IEC is called, which sets the interrupt masks in the PICs and IF bit

in the CPU 
ags register so that the RTClock can interrupt the CPU. This al-

lows the CPU executive interrupt handler to execute within the context of the

device interrupt handlers in the IBM MicroKernel. If a particular interrupt from

the RTClock occurs during the execution of a MicroKernel device interrupt han-

dler and the CPU executive should start a real-time minor cycle, it does so and

the real-time minor cycle is maintained for its full length, delaying the execution

of the device interrupt handler. We have found that this design does not cause

non-recoverable failures on devices such as disks, although it may contribute to
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the general overhead imposed on the MicroKernel by the implementation, because

the MicroKernel interrupt handlers and their associated device are not interacting

optimally.

5.3.3 The Real-Time Kernel

The real-time kernel is an umbrella term for functions required by the real-time

threads:

� scheduling the set of real-time threads

� managing the attributes, such as the periods, of the real-time threads

� providing services, such as a library of video display calls, to the real-time

threads

The RTK is logically equivalent to the GPOS for its functions and is thus shown in

Figure 5.2 next to the GPOS. It is smaller than the GPOS because it includes less

function. The SP architecture was designed so that the type of computation and

I/O that a non-real-time task could likely require of a periodic real-time thread

was constrained and well-de�ned. Therefore, the function that a real-time thread

should require of the RTK would be much less than that required of the GPOS by

non-real-time threads.

The RTK in this implementation of the SP architecture employs an earliest-

deadline-�rst scheduling algorithm. In theory, an EDF scheduler begins executing

a new real-time thread at each instant when a real-time thread with a deadline
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closer than the currently executing thread becomes ready to run. However, in

practice the scheduler will be able to make these scheduling decisions only at

de�ned times. In this implementation of the SP architecture, these scheduling

points occur whenever the RTK executes, i.e., at the start of each real-time minor

cycle and at the start of each slot within a real-time minor cycle. Thus, at these

points the RTK makes a scheduling decision as to which real-time thread should

execute next (when this execution of the RTK is �nished). Because the scheduler

is EDF, the next thread will be the real-time thread with the closest deadline. In

the case of a tie, the �rst thread in the RTK ready queue is chosen. In addition

to the scheduling decision, the RTK collects accounting data on the current set of

real-time threads and itself each time it executes.

The RTK uses the hardware task switch mechanism to dispatch the real-time

threads. The RTK switches to a real-time thread by a long jump to a global

descriptor table entry that contains a task descriptor for the real-time thread.

Note that some of the RTK is implemented in the GPOS. The RTK is actually

just another real-time thread, and thus can communicate, in a non-real-time mode,

with the GPOS. The admission control function (feasibility analysis) of the RTK

is in the GPOS. Since the new real-time thread need not be accepted in real time

and the feasibility analysis can be lengthy, it is more properly implemented in the

GPOS.
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5.3.3.1 The Real-Time Thread Scheduler

The scheduling policy used in this implementation is EDF, in which the scheduler

makes a scheduling decision at two points: when the RTK executes at the start of

each slot and any time that a real-time thread calls its WaitForPeriodExpiration

function. The granularity of the scheduler is thus equal to the length of a slot. For

many of the experiments and application demonstrations, the slot length was just

under 1 millisecond. Note that in practice, the feasibility analysis will have to add

to each real-time thread's cost the cost of executing the RTK.

5.3.3.2 The RTK Admission Control Function

Any real-time system must restrict the activation of real-time threads because

if demand for \real-time" CPU cycles is excessive, some real-time threads will

miss their deadlines. Admission control is an implementation of the feasibility

analysis associated with the particular scheduling policy currently in use. This

implementation uses the feasibility analysis presented in Chapter 4. When a new

real-time thread requests admission into the real-time ready queue, the admission

control function �rst determines if the current values of the minor cycle lengths

are appropriate. For example, if the current values are mcrt = 2 ms and mcnrt =

200 ms and the requesting thread has a period of 50 ms, the current values of

minor cycles lengths are clearly inappropriate and the feasibility analysis is certain

to fail. In these cases the admission control function calculates appropriate values

for mcrt and mcnrt and then determines feasibility of all real-time threads with the
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cost and period of the requesting real-time thread included.

If the minor cycles have appropriate lengths, the admission control function also

computes a feasibility analysis that includes the cost and period of the requesting

real-time thread, but uses the current values of the minor cycle lengths. If the set

of real-time threads, including the new real-time thread, is feasible the requesting

thread is accepted. If the new set of threads is not feasible, the admission control

function computes new values of the minor cycle lengths and performs the feasi-

bility analysis again. If, after two tries, feasibility is not obtained the request is

rejected.

5.3.3.3 The RTK Real-Time Thread Services Library

The real-time threads managed by the RTK will require services to perform real-

time I/O; communicate with the non-real-time portion of their creating task; com-

municate with the GPOS for non-real-time access to I/O devices; and carry out

other services, such as blocking and timing calls, provided by the RTK itself.

5.3.3.4 The RTK Personality Neutral Server

In this implementation, the non-real-time task that creates a real-time thread

does so with a call to CreateRTThread, which is implemented in the RTK real-

time thread services library. As part of completing the CreateRTThread call, the

services library calls the personality neutral server function of the RTK for function

provided by the MicroKernel. This function is the ability to copy the text of a

real-time thread from user memory space into kernel memory space, because in
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this implementation, all real-time threads execute in kernel memory space.

Having the real-time threads execute in kernel memory space is a convenience,

not a necessity. There is fundamentally no reason why the RTK could not transfer

control to code that is logically in user space. As the personality neutral server

transfers code, which will become a real-time thread, from user space to GPOS

kernel space, it communicates a number of parameters to the RTK: the logical

address of the thread's start, the period of the thread, and the cost in CPU time

required by the thread during one period. The RTK real-time thread scheduler uses

these values to determine when to execute the thread and, by the RTK real-time

thread services component to set up a TSS for this thread. Each real-time thread is

written as a C function that takes two parameters. These parameters are pointers

to structures that contain pointers to RTK exported functions and data. The real-

time threads in this implementation can access a real-time screen output library

and RTK administrative data. The RTK real-time thread services component sets

up the stack provided to the real-time thread with these parameters before the

real-time thread's �rst execution. The current implementation has no protection

and real-time threads can corrupt the GPOS kernel, since the pointers give them

unrestricted access to the GPOS kernel's logical address space.

5.3.4 Other Device Executives

Three other device executives are used on the hardware platform in this implemen-

tation. They are all described in greater detail in Chapter 6 but are mentioned
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here for completeness.

� The network adapter falls into the non-preemptible, externally triggered,

stochastic process resource class of the SP architecture resource model.

� The speaker device falls into the partitionable resource class of the SP archi-

tecture resource model.

� The display device falls into the partitionable resource class of the SP archi-

tecture resource model.

5.4 Experiments

This section presents the description and results of some quantitative experiments

involving an implementation of the SP architecture. The primary purpose of the

experiments is to validate the implementation by determining whether it realizes

the two fundamental requirements originally presented in Section 3.3:

Requirement A If a system interleaves the execution of real-time and non-real-

time threads in alternate intervals and the intervals in which real-time threads

execute are scheduled to begin every l time units, then it must ensure that

the intervals begin at times t where kl � t � kl+ � ;8k � 0.

Requirement B For L > � (for a suitable �) for which the real-time thread sched-

uler has assigned a real-time thread, � , to be executed on the CPU, there

must be a function or method by which the minimum number of CPU cycles

available to execute the instructions of � can be determined.
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Two sets of experiments were conducted. To satisfy requirementA, this imple-

mentation must ensure that the real-time minor cycles begin with bounded latency

after their scheduled start time. This is shown by measuring the lengths of con-

secutive slots. If there were zero variability in the slot initiation times, all of the

measured lengths would be identical. If the start of a slot were delayed, it would

be longer and the subsequent slot would (likely) be shorter.

To satisfy requirement B, there must be a function or method for determining

the minimum number of CPU cycles available to execute the instructions of the

real-time thread. In other words, the elapsed execution time of an instance of

a particular periodic real-time thread (given that any conditional paths through

the code of the thread are considered) varies only slightly under all conditions

of system loading. This second notion of requirement B was used to design the

experiments to test requirement B.

5.4.1 Requirement A Experiments

If a system to support the execution of real-time threads correctly interleaves the

execution of real-time and non-real-time tasks, then the intervals in which real-

time threads execute must begin at times t where kl � t � kl+ � 8k � 0. Our SP

architecture implementation does correctly interleave the execution of real-time

and non-real-time tasks. The minor cycles are de�ned in terms of slots delineated

by interrupts from the RTClock. How long the slots last is de�ned by RTClock

programming. It is assumed that the RTClock generates interrupts precisely at
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the times necessary to create the slot interval. A test will show if the CPU and

low-level interrupt handler code handles the interrupt from the RTClock with a

maximum upper bound on latency. The results of the experiments indicate that

there appears to be an upper bound on the maximum delay for an interrupt from

RTClock of about 300�s, the longest slot length deviation measured. This delay

is due to the critical sections in the GPOS that must be serialized with the RTK

by the real interrupt enable/disable mechanism, i.e., not the IEC. Although for

some of these experiments the GPOS was forced to idle by being held in the

kernel debugger, some kernel threads were still executing. The debugger thread

was generally blocked on input from the debugger terminal, so the kernel was

executing its idle loop. The GPOS kernel timer was still generating interrupts,

so the GPOS scheduler ran at each interrupt to detect any threads ready to run,

etc. Also, the critical section around some of the code that resets the GPOS timer

caused some of the variance.

5.4.1.1 Slot Length Variation

Three experiments determined if the implementation met requirementA. The �rst

experiment measured the lengths of slots of over 10 million RTClock interrupts

when the GPOS was essentially inactive5. The purpose was to determine the

maximumvariation in the length of a slot under ideal circumstances. The expected

slot length was 976.562 microseconds (1,165 ticks of a timer at a rate of 1 tick every

5The GPOS was held in a trapped state with the kernel debugger, and the network adapter
connection to the token ring was removed.
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838.223 nanoseconds). As shown in Figure 5.3, the distribution of measured slot

lengths was from 1,134 to 1,169 timer ticks (939.2 �s - 979.88 �s), primarily in the

interval 1,154-1,157 (967.31 �s-969.82 �s). A constant shift of approximately 10 �s

less than the expected value was found in all all of the experiments on the system.

We conjecture that the RTClock is being clocked by the motherboard timing signal

of 1.193MHz instead of the designed input for the RTClock of 1.048576MHz. This

would cause the RTClock to produce intervals about 1.1 percent shorter than

design. Our measurements agree with this discrepancy, but the issue is still under

investigation.

Figure 5.4, another view of the data presented in Figure 5.3, illustrates that

99.6 percent of all measured slot lengths were within 8 �s of the expected value.

Given an assumed clock frequency error of about 8 �s, it can be said that 99.6

percent of all measured slots should be within 0 �s of the expected value given the

programming of the RTClock (that is, the RTClock should generate an interrupt

every 976.562 microseconds).

The second experiment is identical to the �rst, except that the GPOS is now

forced to be very active by building a new version of the MicroKernel, speci�cally

by compiling a kernel source �le and linking the resulting object �le with all other

object �les of the GPOS kernel. The procedure for doing this requires a number of

di�erent processes to be active and imposes a signi�cant I/O and computational

load on the system. The result is a greater variation in slot length, as illustrated

by Figures 5.5 and 5.6.
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Slot lengths were measured from 802 to 1,485 timer ticks (672.25 �s - 1,244.76 �s)

a deviation from the expected value of -304 �s to +268 �s. This variation occurs

because the critical sections in the GPOS that are serialized by calls to the real

interrupt enable/disable mechanism (not the virtualized one) take much longer to

execute and because the GPOS is performing DMA between the disk and memory

and DMA has priority for use of the bus. The cache on the machine has sixteen

byte lines and the longest protected critical section is 523 bytes. This requires 33

main memory accesses to load the code of the largest critical section in the worst

case. The processor may be locked out from the bus for up to 7.8 �s. Including

the time required for memory accesses, this means the critical section may take

346 �s to load into memory. This time is calculated as follows:

� 33 memory accesses times 7.8 �s wait time for each access equals 257 �s.

� Compute the memory access time for each cache line: 400 ns (worst case

memory access time) times 4 words (16 bytes per cache line) plus 300 ns to

access the system bus transfer equals 1.9 �s to load each cache line.

� 1.9 �s times 33 cache lines is 63 �s.

� 63 �s plus 257 �s is 320 �s.

Note that this time does not include time to execute the instructions of the

critical section. However, this execute time would overlap with the memory access

time and the bus waiting time, so an accurate value would be hard to determine.
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The delays in this experiment correlate well with this analysis. Figure 5.6

presents the data of the second experiment di�erently, illustrating that 99.8 percent

of the slot lengths were within 77 �s of the value one would expect, given the

programming of the RTClock (i.e., the RTClock should generate an interrupt every

976.562 microseconds).

The third experiment measured major cycle lengths in a busy system with a

load generated as in experiment two. The real-timeminor cycle length is 2 slots and

the non-real-time minor cycle length is 8 slots, which means the major cycle length

is 10 slots or 9.76 milliseconds. The postulated clock crystal frequency problem

mentioned earlier in this section appears in these measurements, also, most of the

cycle lengths were about 70 �s (83 ticks), less than the expected values would

indicate. Figure 5.7 shows a histogram of the measured major cycle lengths that

compares well with the histogram of slot lengths in a busy system. Figure 5.8

presents the data of the third experiment di�erently and shows that 99.8 percent

of the major cycle lengths were within 67.1 �s (80 timer ticks) of the the value

one would expect given the programming of the RTClock; that is, the RTClock

should generate an interrupt every 976.562 microseconds, and the number of slots

in a major cycle.

5.4.2 Requirement B Experiments

The next set of experiments proved that the implementation satis�es requirement

B. This implementation uses time to measure the progress of the real-time threads
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and therefore measures intervals as time rather than CPU cycles. The experiment

uses a real-time thread that executes a tight loop for a speci�ed number of iter-

ations, which determines the number of CPU cycles the loop consumes. If the

function between elapsed time and CPU cycles consumed were linear, i.e., if a

constant number of CPU cycles were available for real-time thread execution in

the interval in which the loop executed, then the elapsed time from the start of

the loop until the speci�ed number of iterations were complete would be constant

for all executions of the loop.

The e�ect of the instruction cache is constant in these experiments. This is

reasonable, since the real-time minor cycles have no interrupts. The e�ect of the

instruction cache will be the same at the start of each real-time minor cycle for

each experiment because the test loop is small enough to �t in the cache and the

real-time minor cycles are relatively far apart (so the cache will be cold in certain

experiments). In the experiments where the GPOS is not executing, the cache will

likely contain the test loop instructions at the start of each real-time minor cycle.

In the experiments where the GPOS is executing, the cache will likely not contain

the instructions of the test loop at the start of each real-time minor cycle. If the

implementation satis�es requirement B, then the time needed to execute the loop

should remain fairly constant.

The following experiments all run the programmed loop 1000 times and record

the elapsed time used for each run. The graphs plot the measured time (y-axis)

against the run number (x-axis). The granularity of the timer is again 838.222
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nanoseconds. In each pair of graphs the �rst (Execution Time) shows the execution

time of the loop and the second (Completion Time) shows the execution of the

RTK and the test loop. The logic performed by the RTK depends on whether the

slot marks the beginning of a real-time minor cycle or a non-real-time minor cycle,

or is within either a real-time or a non-real-time minor cycle (see Section 5.3.3).

Table 5.1 shows the values of the minor cycles used in all of the requirement B

experiments.

5.4.2.1 Baseline Experiment

The baseline experiment attempts to eliminate all sources of variability not con-

trolled by the SP implementation to determine how small the variability in real-

time thread execution time can be. Additionally, as the sources of variability are

progressively added, the additional variability is clearly seen in the results. For the

baseline case, the loop is set for a number of iterations that will make it execute in

less time than the length of a slot plus the time the RTK executes at the start of

each slot (which removes the inherent variability in the RTK), the GPOS is held

Cycle MC mcrt mcnrt

Slots 20 5 15

Milliseconds 19.531 4.883 14.648

Table 5.1: Minor Cycle Lengths used in Requirement B Experiments
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almost6 completely quiet by using the debugger, and the loop has no instructions

that use any I/O device.

Figure 5.9 illustrates the interval in which the programmed test loop executes,

where the RTK executes relative to where the loop executes, the slot boundaries,

and starting and stopping points of the measured intervals of execution time and

completion time.

Graph 5.10 shows the 1,000 points of measured execution time (see Figure 5.9)

for the baseline case. The apparent horizontal lines are actually a sequence of

points (each point is marked with a +). Note that the lines are just a little less

than 1 microsecond (actually 838.222 nanoseconds) apart. This is the resolution

of the timer used to measure the execution and completion interval lengths. The

di�erence between the longest and shortest measured execution times is 2.5 mi-

croseconds or 3 timer ticks. This variability, about 0.36 percent, probably comes

from the unaddressed variability in the MicroChannel bus, such as use of the bus

for RAM refresh.

Graph 5.11 shows the 1,000 points of measured completion time(see Figure 5.9).

Here the di�erence between the longest and shortest measured completion times

is 3.3 microseconds or about 4.6 percent. The additional variability comes from

the execution of the RTK: the RTK must perform a number of tasks, such as de-

ciding on the type of the current slot, deciding which real-time thread to execute

6Note that interrupts are enabled while in the debugger; the debugger is simply a module in
the kernel, since the debugger code has to respond to keyboard input from the auxiliary terminal
via the serial port. Thus with interrupts enabled, the GPOS device drivers are free to respond
to any requests from devices.

172



Time

Non-Real-Time Minor CycleReal-Time Minor Cycle

Slot

Major Cycle

RTK Execution of Real-Time Task

Start Execution TIming

Start Completion Timing

Stop Execution Timing

Stop Completion Timing
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if this slot is in a real-time minor cycle, and accumulating various administrative

statistics. For any implementation of the SP architecture, this variability will have

an upper bound which must be determined experimentally. The upper bound on

RTK execution time was found to be 90 �s by subtracting the shortest execution

time from the longest completion time of the experiment with the greatest vari-

ability, which was the last experiment that measured execution and completion

times when the test loop executed in two subsequent real-time minor cycles.

5.4.2.2 Loop Execution Time Variation with Calls to the Display Li-
brary

In this set of experiments, the only change from baseline is that at the end of

each run the test loop now writes characters to a display device, the console, using

memory mapped IO. The test loop simply writes a byte of data to a particular

memory location. However, since there is a real physical device on the receiving

end of the system bus, one would expect somewhat more variability. As in the

baseline case, the time needed to execute the loop is less than a slot and the

GPOS is still held with the debugger. Although the di�erences between the longest

and shortest measured execution and completion times are about the same as the

baseline, Graphs 5.12 and 5.13 show that considerably more of the runs had longer

measured times. That is, variation was more common: the standard deviation

(SD) in the execution times of the baseline experiment is 0.531, compared to an

SD for this experiment of 0.574.
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5.4.2.3 Loop Execution Time Variation with Loop Execution in Two
Slots

The next experiments add invocations of the RTK and the CPU executive inter-

rupt handler to the measured times. Figure 5.14 shows the measured test loop,

execution time, and completion time intervals. The change is that su�cient itera-

tions are programmed in the test loop to cause it to execute across a slot boundary

but within a real-time minor cycle. At �rst glance, this additional invocation of

the RTK would seem to add about as much variability as a single invocation of

the RTK. However, the CPU executive interrupt handler, i.e., the mechanism that

responds to the interrupts from the RTClock that de�nes slots, executes within

an interval measured by the experiment. Thus, additional variability arises in the

measured interval not just from the RTK and CPU executive interrupt handler,

but also from the o�-CPU timer chip, the programmable interrupt controller chips,

and the low-level interrupt dispatching function of the CPU. The experiment tests

whether these additional components introduce more variation in the loop execu-

tion and completion times. Graphs 5.15 and 5.16 indicate that the variability is

only slightly above the baseline.

5.4.2.4 Loop Execution Time Variation Caused by GPOS Execution

This set of experiments includes GPOS execution, i.e., the GPOS is not held

inactive with the debugger. This experiment particularly examines the e�ect of

DMA started by non-real-time tasks in non-real-time minor cycles that continues

during real-time minor cycles. This e�ect appears only at the start of the real-
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time minor cycle during RTK execution because the instruction cache probably

does not contain the instructions of the RTK. The e�ect is not prominent in the

loop execution time because the loop is small enough to �t completely in the

instruction cache and no other task, thread, interrupt handler, or trap handler

executes during loop execution (so loop instructions stay in the cache).

The MicroChannel bus allows active DMA to stall the CPU, as is typical in most

architectures. This increases the time to access memory (since the bus is used by

the DMA process) and therefore increases the time needed to execute the test loop.

This implementation of the SP architecture does not attempt to control the DMA

process. Figures 5.17 and 5.18 show that the e�ect of DMA is evident in completion

time but not execution time. This is just an artifact of the size of the test loop and

availability of the instruction cache. The completion time measurements start at

the beginning of the slot and the execution time measurements start at the point

at which the loop begins execution. The average execution time of the RTK in

this experiment is about 44 �s or about 20 percent longer than its execution in the

baseline experiment.

5.4.2.5 Loop Execution Time Variation with Loop Execution in Two
Real-Time Minor Cycles

This set of experiments increases the number of iterations of the test loop

so that it requires about six slots to execute. Since a real-time minor cycle is

only �ve slots long, test loop execution will span a non-real-time minor cycle

and will include six executions of the RTK. Figure 5.19 illustrates the measured
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intervals. Figures 5.20 and 5.21 show that the average execution and completion

time required to execute the test loop is now about 19 milliseconds. The shortest

and longest measured times di�er by about 0.058 milliseconds, or about 0.3 percent.

The three points that contribute to that di�erence, at about 19.6 milliseconds on

each graph, can be predicted from Figure 5.6. On that graph, about 99.8 percent

of the slot lengths are within 0.058 milliseconds of nominal. It appears that the

length of the last slot in the non-real-time minor cycle is one of the longer slots and,

therefore, the �rst slot of the second real-time minor cycle begins late. This e�ect

is not seen when the the test loop executes in two subsequent slots, because the

GPOS does not execute between the slots of a real-time minor cycle, and therefore

the critical sections in the GPOS that must be serialized with the RTK do not

delay the second, and subsequent, slots of a real-time minor cycle, causing the

higher values seen in the requirement A experiments. This experiment illustrates

two important points about slot length variation: the errors are not cumulative

and they tend to cancel out. If these conditions were not true, the variability in

this experiment would be rather large.

5.4.3 Arguing that this Implementation of the SP Archi-
tecture Meets Guarantees

To show that a particular implementation of the SP architecture can guarantee

that real-time threads will all meet their deadlines, the subject implementation

must meet the two requirements restated in Section 5.4. The results of our experi-

ments demonstrate that this implementation does meet them. Chapter 6 presents
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an analysis of a set of real-time threads which provides additional proof that a

feasible set of real-time threads will all meet their deadlines when executed on this

implementation.

5.4.4 SP Overhead

The experiments presented in this section quantify the overhead introduced when

the components of this implementation of the SP architecture are executed. The

experiments are designed so that a constant computational demand is executed

on the system and the time required for its completion is recorded. As various

components of the SP architecture implementation are introduced into the system,

the constant computational demand is executed in the new environment and the

time recorded. The recorded times indicate the amount of overhead introduced by

each component.

Table 5.2 shows the times obtained by measuring the time used to execute a

constant load (a build of the IBM MicroKernel) under varying conditions. The

�rst experiment refers to the time required for the load when the MicroKernel

has no modi�cations for the SP implementation. The second experiment refers

to the CPU executive interrupt handler, which was responding to interrupts from

the RTClock but immediately returning to the GPOS. The third experiment refers

to the situation where the CPU executive interrupt handler switches to the RTK

for the slots in the real-time minor cycle but �nds no real-time threads ready to

execute. The fourth experiment is the same as the third but with real-time threads
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ready to execute.

Build Time (slot = 488�s, mcrt = 2 slots, mcnrt = 24 slots)

Experiment Elapsed Time (seconds)

Unmodi�ed IBM MicroKernel 180

Interrupt enable/disable virtualization 184

CPU executive interrupt handler execution 201

Two real-time threads executing 216

Table 5.2: Execution time in seconds for an IBM MicroKernel build.

Table 5.3 shows that the interrupt enable/disable virtualization mechanism

increases the execution time about 2 percent. This value is calculated from the

data in Table 5.2 and is the increase in load execution time caused by the interrupt

enable/disable virtualization mechanism, compared to the time to execute the load

by the unmodi�ed MicroKernel. Although this �gure may seem high at �rst, it is

reasonable for this implementation. The IBM MicroKernel enables and disables

interrupts often (about 900,000 times in the �rst two minutes of power up). An

additional function call was added to each call, along with the logic needed to

virtualize the interrupt bit for the GPOS.

The interrupt processing in the RTK takes another 6 percent. This includes

at least two task switches for each interrupt, one to start the RTK executing and

another to switch back to the task in the GPOS. The percent increase in the

CPU executive interrupt handler execution in Table 5.3 is the overhead, above
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Overhead (slot = 488�s, mcrt = 2 slots, mcnrt = 24 slots)

Component Percent

Interrupt enable/disable virtualization 2.17

CPU executive interrupt handler execution 8.46

Two real-time threads executing 6.94

Total of all SP implementation code 16.67

Table 5.3: Measured overhead in percent of all processor cycles consumed.

the interrupt enable/disable virtualization component overhead. The two real-

time threads executing row in Table 5.3 is the overhead imposed by the real-time

threads over that of the two previous rows. And the last row in Table 5.3 is the

total overhead introduced by the implementation.

5.4.5 GPOS Slowdown

In these experiments (see Tables 5.4 and 5.5) a constant computational demand is

executed �ve times on the system while the SP implementation is executing a con-

stant real-time load, and the time required for each trial to complete is recorded.

The real-time load is increased in each experiment from 0 to almost 50 percent.

The recorded times indicate the amount of slowdown introduced by the SP im-

plementation. For all of the experiments, slots are 976.562 �s, the major cycle

length is 20 slots for all experiments, the real-time minor cycle length is 5 slots for

experiments 1-5, 10 slots for experiment 6, and 15 slots for experiment 7.
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GPOS Slowdown

(slot = 976.562�s, MC = 20 slots = 19.531 ms)

Experiment 1 2 3 4

mcrt;mcnrt (slots) 5,15 5,15 5,15 5,15

RT-thread Percent 0 0.296 2.96 5.92

User Loop Time 25,672,355 25,778,910 26,791,177 27,892,439

25,672,423 25,776,856 26,791,369 27,870,389

25,672,445 25,778,010 26,791,168 27,881,933

25,672,451 25,776,791 26,785,379 27,892,443

25,672,403 25,776,828 26,785,289 27,892,457

Average 25,672,415 25,777,479 26,788,876 27,885,932

Percent Increase NA 0.41 4.35 8.62

Factor Increase NA 1.0041 1.043 1.086

Percent Overhead NA 0.112 1.16 1.99

Table 5.4: Percent Slowdown of a User Loop

As real-time threads in the system use more CPU, non-real-time tasks will take

longer to complete, since the CPU is now shared and the real-time threads get as

much CPU as they need to complete on time. In this implementation, overhead

is associated with each slot, the execution of the RTK, the time required by the

hardware task switch mechanism, and the CPU executive interrupt handler.
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GPOS Slowdown

(slot = 976.562�s, MC = 20 slots = 19.531 ms)

Experiment 5 6 7

mcrt;mcnrt (slots) 5,15 10,10 15,5

RT-thread Percent 11.84 23.7 47.7

User Loop Time 30,371,156 37,141,288 66,498,582

30,391,223 37,141,187 66,461,377

30,328,074 37,146,016 66,530,311

30,359,462 37,146,161 66,461,631

30,336,140 37,111,096 66,530,196

Average 30,357,213 37,137,149 66,496,419

Percent Increase 18.25 44.7 159

Factor Increase 1.182 1.447 2.589

Percent Overhead 3.56 7.19 13.68

Table 5.5: Percent Slowdown of a User Loop (continued)

Tables 5.4 and 5.5 show the percent increase in wall-clock time expended by a

user task executing in the GPOS as the percent of CPU used by a real-time thread

increases. The third row in each table gives the measured percent of CPU used by

a real-time thread. The real-time thread uses 10 times more CPU in experiment

3 than in experiment 2 and 2 times more in each subsequent experiment after
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experiment 3. The next �ve rows contain the measured times (in timer ticks,

838.222 nanoseconds) taken by the user (non-real-time) task to complete in �ve

trials. The average of the �ve trials is also given. The percent increase row in the

tables shows the increase in percent of the user task over the time needed when no

real-time threads were executing. The factor increase row in the tables expresses

the percent increase as a factor.

Experiment 7 gives an execution time increase factor of 2.589, with 47.7 percent

of the CPU used by a real-time thread. One would expect a factor increase of about

1.91. So, given the 2.589 factor increase, the percent CPU used by the real-time

thread, the RTK, and the task switches is 61.38. This implies that the RTK and

task switches use 13.68 percent of the CPU under these conditions. Note that the

RTK overhead percentage increases linearly with the percent increase of CPU used

by the real-time thread. This is expected since the overhead is incurred for each

slot; if the real-time thread took twice as much CPU, it would execute in about

twice as many slots.

5.4.6 Summary of Experiments

The experiments described in this chapter show that the implementation meets

the two fundamental requirements. The slot length experiments measured over

10,000,000 slot lengths and found that all were within 360 microseconds of the

expected length. The experiments that measured the real-time thread test loop

showed that for tasks that execute in the real-time minor cycles, time, rather than
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CPU cycles, can be used to measure the progress of tasks. This is because in any

interval comprised of real-time minor cycles, the minimum number of CPU cycles

dedicated to executing the instructions of real-time threads can be determined. A

set of experiments that were run to determine the e�ect of adding the SP system

to the IBM MicroKernel showed that the GPOS slows down as real-time tasks use

more of the CPU.

From these results one can conclude that the variations in major cycle lengths

and task execution times are reasonable. One can also conclude that the maximum

delays in lengths or extensions of execution times are upper bounds, as supported

by an analysis of the source code and hardware speci�cations that agrees well

with the empirical observations. The analysis of the source code concluded that

the largest critical section between the RTK and the GPOS would require 33

memory accesses by the CPU to �ll the cache and that bus contention between

the 33 memory accesses, plus the memory access time itself, would result in the

critical section requiring 320 �s to complete. Most importantly, given the two

previous conclusions, a feasible set of periodic real-time threads executing on this

implementation will all meet their deadlines.

5.5 Discussion

This chapter describes one implementation of the SP architecture on a particular

hardware platform and with a particular GPOS. Investigators need to be know the

essential issues, such as:
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� What types of resources are typically found on the particular hardware plat-

form?

� What kinds of executives will have to be constructed?

� What are the sources of periodic or variable interrupts on the hardware?

� Which of those, if any, does the GPOS use when applying SP to a particular

hardware and GPOS combination?

A particular GPOS implies a particular set of device driver implementations.

Also, in this particular implementation of SP the relative sizes of the minor cycles

are important. Both these issues are discussed.

5.5.1 New Implementation Design Considerations

This section describes some of the thought necessary in the design phase of a

project to implement the SP architecture on a new hardware/GPOS combination.

The SP architecture requires a predictable source of interrupts from the hard-

ware to create the minor cycles. If the device creating the interrupts can dynam-

ically vary the time between successive interrupts, slot implementation will not

be necessary. The intervals should be programmable from a few microseconds to

several hundred milliseconds. If the hardware lacks a dynamic capability, �xed

intervals (slots) can be used with additional overhead. In the �xed interval case,

minor cycles are created out of some number of �xed intervals. If the hardware

lacks a predictable timer, or the GPOS has monopolized all the hardware timers
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and timers cannot be shared between the GPOS and the RTK, a separate timing

board must be used.

Since a particular SP implementationmust virtualize the interrupt enable/disable

mechanism, having a programmable interrupt controller (PIC) considerably sim-

pli�es coding the virtualization modules. The essential feature is the ability to

mask the various interrupt lines from physical devices so that the interrupts from

physical devices can be selectively stopped at the PIC. This is easier than than

allowing the CPU to recognize virtualized interrupts and having the virtualization

code record the interrupt and then delay the actual processing of the interrupt

handler. When the GPOS requests that interrupts be enabled, the virtualization

module can restore the mask so that the PIC will raise the interrupt line to the

CPU when any line from the physical devices indicates an interrupt. The coding of

the virtualization module is signi�cantly complicated without a mask at the PIC.

If the hardware supplies a task switch mechanism and the GPOS uses all, or

part of it, the CPU executive will have to be coded with critical sections around

such use. Typically, the GPOS will have disabled interrupts around its use of

the task switch mechanism, but since the virtualization module has virtualized

interrupts, with respect to the GPOS, the interrupt from the predictable timer

used to de�ne a minor cycle can still occur when the GPOS uses the task switch

mechanism. If the CPU executive also uses the hardware task switch mechanism

to switch to the RTK, a critical section will be violated and the system will become

corrupted. Thus, it is important when implementing SP architecture to correct
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for any resources, such as the task switch mechanism, that are shared between the

GPOS and the RTK. In the case of critical sections of code, the options are either

not to share the code or to use the real interrupt enable/disable mechanism.

If the GPOS provide system calls to copy code into the kernel, this call can be

used to implement a CreeteRTThread system call. Real-time threads can then be

copied into the kernel and executed in the address space of the RTK. Alternatively,

the real-time threads may be executed in user space but the two requirements the

SP architecture imposes on an implementation must still be met. For example,

the memory in which the real-time threads exist will have to be excluded from the

paging mechanism (usually called `pinning the memory').

The device drivers of a particular GPOS may need to be modi�ed when ex-

ecutives for the devices are created, because there is no clean way to allow an

executive to access the particular device when isolated from the GPOS device

driver or when the GPOS device driver is not robust enough to handle exclusion

from the device during the real-time minor cycles. One issue that can be problem-

atic is the robustness of the device drivers when they are interrupted by a real-time

minor cycle. Typically, GPOSs are not coded to allow nested interrupts although

hardware support for such interrupts is generally available. Thus, the existing de-

vice drivers will have been coded and tested in an environment where they are not

interrupted. Implementing the SP architecture requires that minor cycles begin

on time, even if they occur while a GPOS device driver is executing. The issue

here is not that new critical sections need to be handled, but that the drivers may

199



be unable to recover after being interrupted by a real-time minor cycle, because

they have entered a new state. Since the device driver does not recognize the new

state, it will interact with the device as though it were in its previous state. When

the device responds as dictated by its new state, the device driver may not expect

that particular response.

5.5.2 Minor Cycle Lengths

The admission control function of the RTK sets values of mcrt and mcnrt to ensure

that enough CPU cycles are available to the set of real-time threads that they all

meet their deadlines. But for a given set of real-time threads, many sets of possible

values for mcrt and mcnrt exist that will ensure su�cient CPU cycles. This section

addresses which set of values the admission control function should choose and

how that decision is made.

Consider a set, T , of n periodic real-time threads, as described by Liu and

Layland, such that thread �i has cost ci and period pi [24]. We know that
Pn

i=1
ci
pi

is the CPU utilization of the real-time threads. Thus, we know that the following

must hold (it is necessary but not su�cient) before the feasibility analysis will

succeed:

mcrt

MC
�

nX
i=1

ci

pi

But this is not the whole story. Suppose
Pn

i=1
ci
pi
= 0:5. Then the ratio R =

mcrt
MC

= 0:5 would be realized when mcrt = 500s and MC = 1000s. However, if

one real-time thread has a period of 100 seconds, the feasibility analysis would
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not indicate that the thread set was feasible. So as a �rst step, the length of the

MC must be bounded from above by min(pi) for 1 � i � n, which would indicate

that MC = 100s and mcrt = 50s in the example. Although R is the same 0:5,

the feasibility analysis would indicate that the real-time thread was feasible (given

that the cost of the real-time thread was less than 50s).

Now consider how one might determine a minimum length for the major cycle.

Let O be the overhead introduced by some of the components of an SP implemen-

tation:

� the execution of the RTK at the start of each real-time minor cycle (and, if

slots were used, at the start of each slot within a real-time minor cycle)

� the cost of switching among the GPOS, RTK, and the real-time threads

� the cost of handling the interrupt that marks the minor cycle, or slot, bound-

aries.

Note that the overhead of the interrupt enable/disable virtualization mechanism

(IEC) is speci�cally not included in O, because it is within the GPOS and inde-

pendent from the minor cycle lengths.

Now, consider the e�ect of allowing MC to be about the same value as O.

The overhead, not including the IEC, of the SP implementation is 50 percent. We

suggest O
MC

� 0:01. In this implementation the average execution time of the RTK

is about 36 �s and, including the other overhead factors, assume O = 40 �s. This

would indicate that MC � 4 ms.
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If only one real-time thread is in the system it may be possible to make the

length of the real-time minor cycle equal to the cost of the real-time thread plus

the overhead, and the length of the major cycle equal to the period of the real-time

thread. This may also be possible for a set of real-time threads whose periods are

identical, such as the reception and display of a video stream. Although many

real-time threads may be involved in the reception and display, they would all

have the same period|the interval between video frames.

5.6 Summary

An implementation of the SP system was constructed on an IBM PS/2. The GPOS

was a version of the IBM MicroKernel with OSF/1 as the dominant personality.

The interrupt disabling system was virtualized and a real-time kernel which used an

earliest deadline �rst scheduler was built. A set of experiments showed empirically

that the implementation met the two requirements stated in Chapter 3. The

�rst set of experiments measured the lengths of consecutive slots to determine

if the interrupt from the RTClock was initiating the start of the slots at precise

intervals. The second set of experimentsmeasured the execution time of a test loop

to determine the amount of variability in execution time for threads executing in

the real-time minor cycles.

Based on these experiments, one can conclude that the variations in major cycle

lengths and task execution times are primarily due to instruction caching and bus

contention induced by DMA. In any event, the variations are reasonable and upper
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bounds on slot deviation and execution time within real-time minor cycles can be

proven, as shown by analyzing the source code and hardware speci�cations and

comparing that analysis with empirical observations. Most importantly, given the

two previous conclusions, a feasible set of periodic real-time threads executing on

this implementation will all meet their deadlines.
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Chapter 6

Application Demonstrations

6.1 Introduction

From the implementation description and experimental results presented in the

previous chapter, one can conclude that a feasible set of periodic real-time tasks

executing on that implementation would meet their deadlines. This chapter carries

that work further. First, it empirically validates a feasibility analysis on a set of

real-time threads and, second, it demonstrates the programming paradigm and the

use of the system. Two real-time applications were designed and programmed on

the implementation. The �rst displayed a character on the display device in each

period of a set of real-time threads. The second real-time application received an

audio stream from the network and played the audio on the system speaker. All

of the real-time threads of the two applications met their deadlines.

In addition, this chapter also introduces the notion of a sporadic real-time

task with another audio application demonstration. This alternate demonstration

shows how the SP architecture can support other models of real-time computation

and how resources are shared as de�ned by the SP architecture. The character



display demonstration described in Section 6.2 illustrates sharing of the display,

the processor, and system timers. The network audio demonstration, described in

Section 6.3, illustrates the use of sporadic real-time tasks and sharing of the net-

work adapter card. Both demonstrations execute on the implementation described

in Chapter 5.

6.2 Character Display Demonstration

This application demonstrates empirically that a successful feasibility analysis of

two real-time threads implies that the threads will meet their deadlines even though

the GPOS is heavily loaded. Additionally, the demonstration uses two GPOS

non-real-time threads programmed to display characters in the same manner as

the real-time threads, but on di�erent horizontal lines. These two non-real-time

threads illustrate the load placed on the GPOS and the e�ects of real-time vs.

non-real-time scheduling.

Before a character is displayed at location (x; y), the character at location

(x� 1; y) is erased. The visual e�ect is that of a character moving from the

left edge of the display horizontally toward the right edge of the display. When

the previous character displayed reaches the right edge of the display the current

character is displayed at the leftmost position of the same line and the previous

character is erased. The visual e�ect is that the character instantaneously restarts

at the leftmost position after reaching the rightmost position.

In the application, two instances of this display process are active (on separate
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lines). Each character is displayed by its own real-time thread and thus the speeds

at which the characters are displayed may di�er. The speed at which a character

moves across the display is controlled by the period of the real-time thread that

displays the character. Since 70 (out of a possible 80) horizontal character positions

are used for each display line, a character controlled by a real-time thread with

a period of 100 ms will move 10 horizontal positions every second and take 7

seconds to cross the display. In addition to displaying the character, each real-

time thread has an arti�cial computational load which consists of a loop with

addition operations as its body. The number of iterations of the loop determines

its computational load.

This application demonstration uses three shared resources: the CPU (a pre-

emptible resource) the video display terminal (a statically partitionable resource)

and a timer chip (also a statically partitionable resource). The slot length was

976.562 microseconds and the major cycle length was 33 slots (32.2 ms). The real-

time minor cycle length was 2 slots (1.95 ms), so the non-real-time minor cycle

length was 31 slots (30.3 ms). The test ran for 48 hours. During this time various

loads were run on the GPOS, including network transfers of large �les and compi-

lations of the GPOS kernel, and no real-time thread ever missed its deadline. In

contrast, the two GPOS non-real-time display threads missed deadlines often.
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6.2.1 Shared Resources

The SP model speci�es that any resource used by both the GPOS and the RTK

must be shared such that a real-time thread scheduled by the RTK will have the

resource when needed. In this demonstration the CPU, the video display, and

the 8254 programmable interval timer were the three resources used by both the

GPOS and the RTK. These are among the simplest of resources to share, because

the actions of their executives are straightforward. As explained in Section 3.8.2,

the SP model considers the CPU a dynamically preemptible resource. This means

that at well de�ned points, the complete state of the resource can be saved and

subsequently restored with no e�ect on the thread using the resource except for the

passage of time. For example, the primary requirement of the CPU executive is

that it can control and preempt the CPU at well-de�ned times by the virtualizing

the interrupt enable/disable mechanism and use of the RTClock.

The display is an example of a partitionable resource. This type of resource,

described in Section 3.8.1, is the easiest to build an executive for. Its individual

units are character locations in the display memory. In the system used for this im-

plementation each character is represented by two memory-mapped bytes of main

memory (although the memory address is not really main memory but memory

on the display adapter card). The starting address, s, of the memory-mapped

display represents the character in the lower left corner of the display. The values

written to bytes with even addresses, s+ (2k); k = 0; 1; 2; : : : , de�ne the character

to be displayed at the location (x; y) whereas the values written to bytes at odd
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addresses, s + (2k + 1), de�ne the attributes of the character at location (x; y).

Attributes include foreground and background color, intensity, and whether the

character is 
ashing.

For this demonstration, the character bu�er locations of the display were stat-

ically partitioned into two sets: Those for the lower four rows of the display were

assigned to the GPOS, and those for the remaining rows were assigned to the

RTK. This partitioning was accomplished with a UNIX utility called window run-

ning on the GPOS. This utility partitions the display into a number of windows

which the user of the system can use independently. Two windows were created:

window 1 was the lower four rows of characters and window 2 was the remaining

rows. GPOS threads all used the lower window; when the RTK started, it wrote

directly to the memory-mapped bytes for the characters of the remaining rows.

However, the window utility could be switched to the window reserved for the real-

time threads, allowing non-real-time threads to overwrite the display1 Although

this demonstration used the standard 25x80 character display, the technique could

easily be generalized to a bit-mapped, graphical, windowed user interface. For

example, one could modify the X-windows server to create real-time threads to

display speci�c data.

The second shared resource used by this demonstration was the 8254 pro-

grammable interval timer, which is also a partitionable resource. The chip, or its

1With other utilities, however, it would be possible to de�ne the display size to the GPOS as
just the lower four rows, which would preclude the overwrite problem. This alternate method
was not investigated.
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emulation in some larger circuit, has three registers which can be used for timing.

The GPOS (IBM MicroKernel) used only one register for its timing needs. The

GPOS sometimes used this register to produce a waveform that would be routed

to the speaker. Because the GPOS also used this register when it needed to create

a sound at the speaker, it already had code to use a di�erent register for its timing

needs when the primary register was used for the speaker. We exploited this for-

tunate situation by using the �rst register for SP timing and statically requiring

that the GPOS always use the second. This was done by modifying the source

of the GPOS so that it always detected that the speaker was in use. This is an

instance of partitioning. The RTK thread services timing routines used the timer

to provide real-time threads and the RTK with submicrosecond timing granularity.

6.2.2 Real-Time Kernel

The real-time kernel in this demonstration consisted of an earliest deadline �rst

(EDF) scheduler and a set of library functions. The library functions provide

real-time threads with calls to set the character and attributes of a given display

character bu�er location, to measure and convert time, and to block until their

next invocation. The RTK maintains data structures for each real-time thread

including the thread's period and deadline (in units of slots) and an indicator

of whether the thread is ready to run or is blocked. Since each slot is 976.562

microseconds the granularity with which the RTK can perform activities within a

real-time minor cycle is approximately once every millisecond. At the beginning of
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each real-time minor cycle, the RTK schedules the ready real-time thread whose

deadline is closest. If a real-time thread �nishes before the end of a real-timeminor

cycle, the RTK schedules the real-time thread with the closest deadline from among

the ready real-time threads.

6.2.3 Real-Time Threads

This demonstration system used two real-time threads, which were processes with

respect to the CPU architecture. Each thread's CPU state is represented in a

task state segment (TSS), as de�ned by the Intel i486 architecture. In addition

to a TSS, the RTK also maintains a number of data structures for each real-time

thread that record thread parameters and state variables such as a thread's period,

deadline, a blocked/ready indicator, and a missed deadline counter. The period

is usually set at the time of thread initialization, although it can be changed at

any time. The deadline is set at the end of the current period. The blocked/ready

indicator is used by both the thread itself and the RTK. When a thread has �nished

the work that it is programmed to accomplish in a period, it calls a system call to

suspend its execution; this call sets the indicator to blocked. At each invocation

of the deadline scheduler in the RTK, the blocked/ready indicator for each thread

is checked and the thread with the nearest deadline among the ready threads is

dispatched. At each invocation of the RTK, the blocked/ready indicator of any

thread whose deadline has expired is set to ready. If the RTK detects that a

thread's period has expired and the blocked/ready indicator for that thread is not
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set to blocked, the RTK increments the missed deadline counter for that thread.

The real-time threads performed the computation shown in pseudocode in Fig-

ure 6.1. The real work of these threads occurs on lines 3, 5, and 6. Line 5 calculates

a location (row, column) for the next character to be displayed. Thus it is an ar-

ti�cial load that varies and that simulates the computation a real real-time video

display thread might have to accomplish. Line 6 calls the real-time display library

to update the values of the particular character. Lines 1, 4, 7, 8, and 9 call the real-

time timing library and are used to accumulate the data displayed in some of the

graphs in Chapter 3. Line 10 sets the blocked/ready indicator in the thread's RTK

data structures to blocked and jumps to the RTK. This indicates that the thread

has completed its required work for a particular period. In this demonstration

each real-time thread displays one character in each period.

BEGIN

1 Get Starting Time

2 Do Forever

3 For Character Location

4 Start Execution Timing

5 Compute Character Values

6 Set Character Values at Location

7 Stop Execution Timing

8 Stop Completion Timing

9 Save Timing Values

10 WaitForPeriodExpiration

End For

End Do

END

Figure 6.1: Real-Time Thread's Computation Loop

The attributes (cost, period) of the real-time threads in this demonstration can

be varied dynamically; many combinations were considered and run. One such set
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was �0 = (1 ms; 33 ms) and �1 = (2 ms; 250 ms). The CPU utilization of �0 is

1
33
�100 = 3:03 percent and for 2

250
�100 = 0:8 percent for �1. For �0 the statement

on line 5 was con�gured so that the loop took 1 ms to complete and for �0 it was

con�gured such the loop took 2 ms to complete. The period value in the RTK

data structure for �0 was set to 33 ms and to 250 ms for �1.

6.2.4 Non-Real-Time Threads

The non-real-time threads of this demonstration were very similar to the real-time

threads. They were actual MicroKernel threads whose pseudocode was identical

to that of the real-time threads. The only di�erence in actual code was in line

10 which called routines in the MicroKernel used to block threads. Note that the

non-real-time threads used the real-time library calls for displaying characters and

obtaining timings, so that they were as similar to the real-time threads as possible.

Although using the real-time library calls biased the results, it only favored the

non-real-time threads, since their use of real-time calls only increased their own

predictability. The experiment tested whether any threads missed their deadlines

because of the computation of line 5.

6.2.5 Analysis

In this section the analysis in Chapter 4 is used with the actual parameter values of

the real-time threads to determine if the threads are feasible for certain real-time

and non-real-time minor cycle lengths. The feasibility condition is re-stated here:
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A set of periodic tasks � = f(c1; p1); (c2; p2); : : : ; (cn; pn)g can be scheduled on

an SP implementation with real-time minor cycle length mcrt and non-real-time

minor cycle length mcnrt if and only if for all L � 0:

nX
i=1

$
L

pi

%
ci �

�
L

MC

�
mcrt +MAX(0; LmodMC �mcnrt) (6.1)

where MC = mcnrt +mcrt. Table 6.1 shows the values of the SP parameters and

the real-time thread parameters. The cost values c0; c1 were set experimentally by

adjusting the load of each thread's computational statement.

Section 4.3.2 showed that only certain values of L need to be considered in

an analysis. We �rst calculate the upper bound on the values of L we need to

consider. The utilization of the system (UT ) is:

UT =
nX
i=1

ci

pi
+
mcnrt

MC

UT =
�
1

33
+

2

250

�
+
23

25
= 0:0383 + 0:92

UT = 0:9583

Next, �nd B:

B =
mcnrt

1� UT

B =
23

1 � 0:9583

MC mcrt mcnrt c0 c1 p0 p1

25 2 23 1 2 33 250

Table 6.1: SP and Real-Time Thread Parameters
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B = 551:5

Thus, the values of L that must be considered when using Equation 6.1 to

determine the feasibility of the real-time threads in this real-time demonstration

application are multiples of the thread's periods, 33 and 250, up to 551. Table 6.2

shows the results of the feasibility analysis. The row labeled with the left-hand-side

of Equation 6.1 is the demand for CPU cycles, expressed as time, by the real-time

threads in the interval L. The row labeled with the right-hand-side of Equation 6.1

is the minimum number CPU cycles, expressed as time, available for the real-time

threads in the interval L.

The results indicate that Equation 6.1 is true for all required values of L, so

this set of real-time threads is feasible when executed on an implementation of the

SP architecture with the minor cycle lengths given in Table 6.1. Therefore, all

invocations of these two threads should meet their deadlines.

L 33 66 99 132 165 198 231 250 264

P
n

i=1

�
L
pi

�
ci 1 2 3 4 5 6 7 9 10

�
L
MC

�
mcrt +MAX(0; LmodMC �mcnrt) 2 4 6 10 12 14 18 20 20

L 297 330 363 396 429 462 495 500 528

P
n

i=1

�
L
pi

�
ci 11 12 13 14 15 16 17 19 20

�
L
MC

�
mcrt +MAX(0; LmodMC �mcnrt) 22 26 28 30 34 36 38 40 42

Table 6.2: Evaluation of Feasibility
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6.2.6 Empirical Results

The character display demonstration ran for various durations, up to 50 hours, with

di�erent types of non-real-time threads loading the CPU which included a compi-

lation and linking of the MicroKernel itself (which is alternately I/O bound and

CPU bound). During the demonstration we also transferred large �les using FTP

(�le transfer protocol), which is I/O bound. In all cases the two real-time threads

always met their deadlines|the expected result. The non-real-time threads that

duplicated the real-time thread's computation often missed deadlines.

6.2.7 Summary

The character display demonstration used two real-time display threads, two GPOS

display threads, and three shared resources. The shared resources were the CPU (a

preemptible resource) the video display terminal (a partitionable resource) and a

timer chip (also a partitionable resource). The CPU was shared by an SP executive

that multiplexed execution of the GPOS and its threads with the RTK and its

threads. The display was partitioned by allocating some of the character bu�er

locations to the RTK for it to re-allocate to real-time threads and some of the

bu�er locations to the GPOS for it to re-allocate to non-real-time threads. The

RTK employed an earliest deadline �rst scheduler to schedule the real-time threads.

The real-time threads performed an arti�cial computation for each character

displayed. That computation and the display of a character had to be completed

before a deadline. Two non-real-time threads, scheduled by the GPOS, also at-
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tempted to �nish computing in intervals corresponding to the periods of the real-

time threads. The analysis determined that the real-time threads were feasible

and the empirical data con�rmed that assertion.

6.3 Network Audio Demonstration

The second real-time application demonstration uses three real-time threads to

receive, process, and play a continuous audio stream arriving from a network

and originating on another computer using the OS/2 operating system. This

demonstration further validates the architecture and scheduling analysis by us-

ing a resource from the non-preemptible, externally-triggered, stochastic process

class|the class for which executives are hard to build.

Four resources are shared between the RTK and the GPOS:

� the network adapter, an externally triggered stochastic process resource

� UDP ports, a partitionable software resource

� the CPU, a preemptible resource

� the system speaker and its controlling 8254 timer chip, another partitionable

resource

Figure 6.2 shows a functional diagram of the components of the demonstration.

A second general-purpose machine sends a series of UDP packets containing a

description of musical notes to be played on the speaker across the token ring to

the test SP implementation system. The sender and the network are dedicated to
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this demonstration and the packets arrive at the receiver at predictable intervals.

The network adapter's function in this demonstration is to receive from the network

the UDP datagram containing audio data. The RTK network device executive uses

the UDP port numbers to determine if a particular UDP message is for a non-real-

time thread in the GPOS or a real-time thread in the RTK. The system speaker

and its controlling circuit create the correct sound indicated by the data in the

UDP datagrams.

On the SP implementation machine, the token ring device driver is not modi�ed

but shared by placing intercept code in the low-level interrupt handler, the piece

of code that initially handles all interrupts and eventually invokes the appropriate

device driver.

The application uses three real-time threads. The �rst executes with each

invocation of the RTK at the start of each slot within a real-time minor cycle and

polls the network adapter during real-time minor cycles. The second executes at

the start of every slot and polls the speaker to see whether the current note has

been played for its indicated duration. If so, it turns o� the speaker. The third

thread starts a note playing in the speaker if the previous note has �nished. More

details on the operation of these real-time threads are given below.

The application's correctness is determined by listening to the notes since any

that are missed or played late are easily identi�ed. The results of running the

application with four di�erent combinations of GPOS and network loadings are

given in Section 6.3.4. Together they indicate that the real-time threads meet
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their deadlines in all circumstances except one. Deadlines are missed only because

during an interaction sequence between the GPOS token-ring device driver and the

token-ring device, the GPOS token-ring device driver is not scheduled on the CPU

by the GPOS scheduler for about a second. Since the device driver and device

are in the middle of a sequence that cannot be interrupted, the RTK device driver

cannot interact with the device to receive incoming audio packets. This results in

either a missed note or a note played late. That the GPOS device driver is not

scheduled correctly is an artifact of how the GPOS is constructed2. In such cases,

the SP architecture recommends the addition of a separate device dedicated to the

RTK and the real-time threads or the complete re-write the device driver so that

all device speci�c code that is needed by the real-time threads runs as real-time

threads.

6.3.1 Shared Resources

This application uses four shared resources: the CPU, the network adapter, the

8254 timer chip (in its role as speaker frequency generator), and UDP ports. The

CPU is shared by using the same executive as in the character display application.

The User Datagram Protocol (UDP) is a transport level protocol used ex-

tensively in the Internet with implementations of the Internet Protocol (IP). A

UDP port identi�es the particular process waiting to receive a particular data-

gram among all processes waiting for UDP datagrams. Each machine has a range

2In subsequent versions of the IBM MicroKernel the model was changed to allow correct
scheduling of the token-ring device driver.

219



of UDP port numbers. This demonstration shared the available UDP ports by

partitioning. A subset of the ports was allocated to the RTK to dispense to any

real-time threads wishing to use UDP; the rest remained with the IP implementa-

tion in the GPOS. Real-time threads in the RTK opened a UDP socket indexed by

a UDP port. The RTK kept track of the UDP ports for which a real-time thread

had opened a socket.

The 8254 timer chip is also a partitionable resource, but in this application it

was shared slightly di�erently than it was in the character display application. The

register in the 8254 used for timing in the character display application was also

used to make the speaker produce a sound of a particular frequency. The value

in the register was considered the duration of an interval, measured in timer ticks

(approximately 838 nanoseconds), between pulses sent to the speaker. Thus to get

a 60Hz tone from the speaker, a value of 19,889 would be placed in the register.

This value is derived as follows:

value =
1

60
� 838 � 10�9

=
109

60� 838

= 19; 889

As in the character display application, the GPOS must always use the second

register on the 8254 for its timing needs.

The most di�cult instance of resource sharing in the application is the net-
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work adapter. This resource|non-preemptible, externally-triggered, stochastic

process|is the most di�cult to share because its immediate availability to a real-

time thread cannot be guaranteed. This is because an external, nonperiodic event

may make it busy independently of any action the GPOS or RTK can control.

Thus, when the network adapter receives an incoming network packet and a se-

quence of interactions between the adapter and the GPOS device driver begins,

the RTK is locked out until that sequence is complete.

This e�ect is exacerbated by the structure of device drivers in the early pre-

release of the IBM MicroKernel used in this experiment. The network adapter

device driver executes in user space and is subject (unintentionally, since this was

a development release) to scheduling delays. When the GPOS is loaded and the

network is busy, the network adapter device driver may take seconds to complete

a transaction with the network adapter. In this case the RTK must wait, since

the network adapter will not begin any other transaction until it has received an

end-of-interrupt (EOI) from the device driver.

The executive for the network adapter is a modi�cation of the low-level inter-

rupt handler code. The executive checks to see if the current interrupt is from the

network adapter; if so, it calls an additional network adapter device driver in the

RTK before invoking the GPOS network adapter device driver. The RTK device

driver looks on the adapter to see if this interrupt is for an incoming packet. If it

is, the driver looks at the packet to determine if it is for a thread in the RTK, as

indicated by the partitioning of the UDP ports. If the incoming packet is a UDP
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packet and has a port number used by a real-time thread, the RTK device driver

removes the packet from the adapter and returns to the low-level interrupt han-

dler, which then invokes the GPOS device driver which subsequently throws away

the UDP packet3. Note that the RTK interrupt handler runs in response to an

interrupt from the network adapter even during a non-real-time minor cycle. This

is typical of an executive for a non-preemptible, externally-triggered, stochastic-

process resource, because work destined for real-time threads may arrive at any

time from the external environment.

6.3.2 Real-Time Kernel

The RTK in this application is essentially the same as the one used in the character

display application with one important di�erence: for e�ciency, two real-time

threads were coded to run at each invocation of the RTK to poll the network

adapter and speaker. Their cost is very small, only hundreds of nanoseconds.

They were implemented in this manner to save task switch time, when the RTK

switches to a real-time task, since their periods should be about as long as the

interval between invocations of the RTK.

6.3.3 Real-Time Threads

This application contains three real-time threads modelled after the Liu and Lay-

land task model [24]. (An alternate model for these real-time threads is described

3An obvious optimization here would be to modify the low-level interrupt handler to determine
if the RTK device driver removed the packet and, in that case, simply issue an end-of-interrupt
to the device and return, rather than call the GPOS device driver. However, this optimization
would not a�ect the correctness.
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in Section 7.2.) The three real-time threads are:

� a thread to poll the network adapter during real-time minor cycles (since the

network adapter interrupt is disabled)

� a thread to poll the speaker and turn it o� when the current note has been

played for its given duration

� a thread to start playing the next note on the speaker if the previous note

has completed

The �rst two threads are not executed within the SP system as traditional periodic

threads which typically are executed in real-time minor cycles. Instead, because

these two threads have inherently small periods (high frequency) and small costs,

they are implemented as part of the RTK.

The �rst real-time thread in this application polls the network adapter for

receive interrupts during real-time minor cycles. During real-time minor cycles

interrupts from all devices, except the timing circuit for the slots, are disabled.

Thus, were a UDP packet to arrive during a real-time minor cycle, it would not

be received until the next non-real-time minor cycle, when all interrupts are again

enabled and the GPOS device driver can run. This thread has a period of one

slot-time (976 microseconds) and executes at each invocation of the RTK, and

determines if the network adapter is signalling that it has received a packet. If so,

the thread calls the RTK network adapter device driver which checks if the packet

is for a real-time thread and, if so, removes it from the adapter. Thus, this thread
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allows the system to avoid the delay that could occur if a packet of notes arrived

during a real-time minor cycle. This real-time thread can be considered as part of

the RTK network adapter device driver and its cost can be accounted for in RTK

cost.

The second real-time thread is similar to the �rst. This thread also executes at

each invocation of the RTK to determine if the current note playing at the speaker

has �nished, and if so, to turn o� the speaker.

The third real-time thread, with a period of 30 milliseconds, starts the next

note playing on the speaker. If no notes remain to be played it reads the next

packet of notes from the communication socket bu�er. If the bu�er is empty, then

the network has delayed the packet, the sending process on OS/2 has experienced

a scheduling delay, or the GPOS device driver has had a scheduling delay. These

conditions are expected, since no timeliness guarantees are made by either the

network or OS/2 and as explained earlier, the GPOS device driver is subject to

delays, causing the network adapter to appear busy when needed by a real-time

thread.

6.3.4 Results

Table 6.3 shows the results of four tests run with this application in four di�erent

environments. The two binary variables were the GPOS and the network, run

under high utilization (Active) or low utilization (Quiet) conditions. To force the

GPOS to high utilization, a large compilation was run, and for a high utilization
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network, the system was connected to the production ring at an IBM software

development facility. We listened to the audio output to determine if notes were

missed or delayed. As the table shows, no notes were missed in three of the four

environments.

Notes are missed when a discarded network packet happens to be a packet of

notes. Since the sending process does not resend the packet, the audio stream is

interrupted and notes are deleted.

Notes can be delayed if the network adapter is busy when the last note of the

bu�er has been played, preventing the real-time thread from obtaining the next

packet of notes. The packet of notes has not been discarded from the adapter, but

a scheduling delay in the GPOS device driver holds the adapter in a busy state.

When the adapter becomes idle, the real-time thread can read the packet o� the

adapter and put it in the socket bu�er, but the note will be played late.

If the GPOS is active and the network is quiet, no notes are missed or delayed,

because the only packets on the network are the packets of notes from the OS/2

machine. That no notes are delayed when the GPOS is active demonstrates that

GPOS Network

Active Quiet

Active Missed and Delayed Notes No Missed or Delayed Notes

Quiet No Missed or Delayed Notes No Missed or Delayed Notes

Table 6.3: Notes Missed in Network Audio Demonstration
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the notes are played and received by real-time threads without scheduling delays.

That no notes are missed in this case demonstrates that because the network tra�c

is low, the GPOS device driver can remove packets fast enough to avoid discarding

packets.

When the GPOS is quiet and the network is active, no notes are missed or

delayed. That no notes are missed demonstrates that although the network tra�c

is high, the GPOS device driver can remove packets from the network adapter fast

enough that no packets are discarded. That no notes are delayed demonstrates

that the real-time threads are executed at the appropriate times.

The feasibility analysis for the three real-time threads in this demonstration is

straightforward and the set of threads is feasible.

6.3.5 Network Audio Demonstration Summary

This application demonstrates that an SP implementation can share diverse re-

sources and guarantee real-time execution of threads using those resources. The

CPU, network adapter, 8254 timer chip (in its role as the speaker frequency gener-

ator), and UDP ports were the shared resources. Packets of notes were sent from

a machine running the OS/2 operating system to the SP test implementation over

a token ring LAN. Three real-time threads cooperated to read the notes from the

network adapter, start the notes playing on the speaker and stop the sound from

the speaker when the current note had played for its indicated duration. All three

threads were modelled, in the application, as traditional periodic threads. How-
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ever, during this work an alternate model and an extension to the SP architecture

were developed (see Section 7.2.1). The application was run in three di�erent ex-

periments where the GPOS, the network, or both were busy. In the �rst two no

notes were missed or delayed. However, due to the construction of the GPOS net-

work adapter device driver, notes were missed and delayed when both the GPOS

and network were busy.

6.4 Chapter Summary

This chapter describes two real-time applications implemented on the test SP im-

plementation described in Chapter 3. The applications shared various resources

with the GPOS and allowed the real-time threads of the applications to complete

their computation before their deadlines, even when the system was at high uti-

lization. The �rst application consisted of two real-time threads that computed

a dummy load and then displayed a character on the display device. The sec-

ond application received packets of musical notes from a token ring network, sent

by a non-real-time machine, and played the notes on a speaker. Both applica-

tions demonstrated that the test SP implementation can reliably execute real-time

threads so that they always meet their deadlines, which validates the analysis in

Chapter 4 and shows how applications might be written and how they execute.
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Chapter 7

Implications and Summary

7.1 Introduction

In this chapter we present starting points for continuing the investigation into

supporting real-time computation within GPOSs and a summary of all of the pre-

vious chapters. Section 7.2 describes those starting points. Section 7.2.1 describes

in detail how an alternate real-time task model might be supported by the SP archi-

tecture. Section 7.2.2 describes the discrepancy we believe to exist in the hardware

used for the implementation and demonstrations. Section 7.3 is the summary. We

draw the primary conclusion from this work in the �nal section.

7.2 Further Research

Useful and direct implementation extensions of this work include:

1. Build device executives for other devices.

2. Design and implement real-time utilities that real-time threads can use in

the real-time kernel.



3. Implement the SP architecture in other hardware and GPOS combinations

for testbeds.

Useful and direct research extensions of this work include:

1. Extend the investigation of varying minor cycle lengths while holding the

ratio mcrt
MC

constant to provide system con�guration parameters that could be

used for tuning an implementation for e�ciency.

2. Implement the SP architecture on a variety of other hardware and GPOS

combinations to determine its robustness and to illustrate possible useful

changes.

3. Implement the SP architecture within the extensible kernel model of operat-

ing system design to provide easier implementation.

4. Investigate the use of real-time task models other than this periodic model to

provide more general support for real-time computation (see Section 7.2.1).

5. Investigate the use of other real-time thread schedulers in the RTK to provide

more general real-time computation.

6. Extend the investigation of varying minor cycle lengths while holding the

ratio mcrt
MC

constant to better understand the relationship between real-time

computation models and shared CPUs.

7. Examine classes of non-real-time applications, such as communications con-

gestion control algorithms, graphical user interfaces, network management
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utilities, to see if they are more e�cient when redesigned using the real-time

thread scheduling paradigm.

8. Design interfaces for attached physical devices that support multiple, simul-

taneous sequences of interactions from multiple device drivers.

9. Design interfaces for attached physical devices that allow e�cient preemption

of sequences of interactions.

The next section looks at another real-time thread model.

7.2.1 An Alternate Real-Time Thread Model

To look at future research and extensions of the basic SP model, consider the

generic pseudocode shown in Figure 7.1 and the possible variation in intervals

between consecutive calls to the Compute statement when executed on a typical

GPOS (without SP).

BEGIN

Do Forever

Compute

SleepValue = ComputeNewSleepValue ( )

Sleep ( SleepValue )

End Do

END

Figure 7.1: Typical Real-Time Thread Loop

De�ne a new minor cycle called a sporadic minor cycle which may occur in

either a real-time minor cycle or non-real-time minor cycle. A sporadic thread

is de�ned as a tuple, si = (ei; qi), where ei equals the processor units required
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by sporadic thread si in an interval of no shorter than qi. Require that for all i,

qi > mcrt to ensure that no sporadic thread will be invoked more than once in any

real-time minor cycle. Sporadic threads must be accounted for in the feasibility

analysis of the periodic real-time threads so for each sporadic thread, add a periodic

real-time thread �k = (ck; pk), where ck = ei and pk = MC. Thus any sporadic

thread will be invoked only once in a real-time minor cycle and its use of processor

cycles will be accounted for in the feasibility analysis. The feasibility analysis is

not a�ected by invocations of sporadic threads in the non-real-time minor cycle.

Now consider the two periodic real-time threads of the network audio demon-

stration application that start and stop the notes played on the speaker. Since

notes are played for varying amounts of time, periodic real-time tasks would not

be as e�cient since they have to poll for the correct times to start the notes play-

ing. Instead, the real-time threads could be modelled as a single sporadic thread

shown by the following pseudocode.

BEGIN

Do Forever

If ( No_More_Notes )

Then

Notes = Read_Note_from_Socket_Buffer ( )

i = 0;

End

Start_Note_Playing_on_Speaker ( Notes[i].Pitch )

Sleep ( Notes[i].Length )

i = i + 1;

End Do

END

Since an implementation of the SP architecture can precisely and accurately

execute the RTK and its threads, only a small modi�cation to the RTK would
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cause it to invoke itself when the sleep times for the sporadic threads expire. Thus

the SP architecture can accommodate sporadic threads, and when they become

ready to execute, begin their execution with low latency. One class, rate-based

congestion control, of computer communication protocols might bene�t from pre-

cise execution. Research into these issues is currently ongoing at IBM and the

University of North Carolina at Chapel Hill.

7.2.2 RTClock Frequency Discrepancy

As mentioned in Section 5.4.1.1, slots have been measured about 1.0 percent less

than is indicated by the documentation of the RTClock. We conjecture that this

discrepancy is caused by using the motherboard timing frequency of 1.193 MHz to

clock the RTClock rather than the designed input frequency of 1.048576 MHz. Our

measurements agree with a computed interval length generated by the RTClock if

it were clocked with the motherboard frequency.

Three issues for further research become apparent:

� to investigate the typical design parameters for personal computer class ma-

chines to determine the actual tolerances in timer outputs one might expect

to �nd.

� design a methodology for accommodating the known tolerances in a manner

transparent to the programmer of real-time threads.

� establish an industry-wide standard reporting framework for personal com-

puter manufacturers to document the tolerances found in their products.

232



7.3 Summary

This work had several goals:

1. Present an architecture that de�nes a way to add support for real-time tasks

to a general-purpose operating system with minimal modi�cation.

2. Provide a means for proving that an implementation of the architecture was

correct.

3. Provide guidelines for implementing the architecture.

4. Provide guidelines for implementing executives.

5. Derive feasibility conditions for determining whether a set of periodic real-

time threads, as described by Liu and Layland, executing on an implementa-

tion of the architecture and scheduled by an earliest deadline �rst scheduler

would all meet their deadlines.

6. Using the programming model, show example programs written to solve real-

time application problems.

The architecture was presented in Chapter 3. Two fundamental requirements

were derived from �rst principles. A general methodology for realizing the re-

quirements and a method for arguing that an implementation has realized those
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requirements are given. Three models of the architecture|the execution model,

the resource model, and the programming model|were described.

The execution model speci�es the interaction between the CPU and the two

operating system kernels as was shown in Figure 3.1. The GPOS and the RTK

share the CPU by executing in alternate intervals called real-time minor cycles

and non-real-time minor cycles. Within this model, the SP architecture speci�es

the design of three concepts

� the method by which the CPU is shared between two operating system ker-

nels, (the GPOS and the RTK)

� the component that manages the sharing, the CPU executive;

� a requirement to ensure precise minor cycle lengths and bounded real-time

thread execution times.

The CPU executive determines when the two types of minor cycles begin from a

sequence of interrupts from a hardware timer and invokes its dispatcher to dispatch

either the GPOS or the RTK scheduler. The architecture also requires that the

interrupts that mark the start of the minor cycles are not inde�nitely delayed by

any action of the GPOS, the GPOS device drivers, or the attached devices.

The resource model assures that the SP architecture can provide useful guide-

lines for constructing executives that share resources. The alternative would be

the impossible task of providing details on every one of the overwhelming number

of devices and device interfaces available today. Fortunately, similar executives
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can manage the sharing, between the RTK and GPOS, of resources with similar

characteristics. For example, an executive similar to the executive described in the

execution model can manage the sharing of a resource similar to the CPU; that is,

one supporting preemption with state saving and restoration.

The programming model de�nes how programmers write and think about real-

time programs in an implementation of the SP architecture. Real-time threads

are threads of traditional GPOS processes that are scheduled by the RTK and

execute in real-time minor cycles. The implementation supports the creation of

periodic real-time threads via operating system calls to the GPOS and RTK. These

real-time threads then execute in a continuous loop with one wait statement per

loop.

An implementation also supports and requires the reservation of resources.

Each real-time thread reserves a resource it intends to use within its continuous

loop. How a resource is used is somewhat independent of its class in the resource

model. The CPU does not have to be explicitly reserved by the programmer,

but is reserved by the call to create a real-time thread. The underlying executive

and execution model ensure that an instance of any reserved resource is available,

within some reasonable upper time bound, when needed by the real-time thread.

Feasibility conditions are derived and proved in Chapter 4. These are com-

putationally tractable expressions that allow an implementation to determine if a

real-time thread requesting admission into the active set of real-time threads will

cause any of the real-time threads to miss their deadlines. Thus, the implementa-
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tion can either expand the real-time minor cycle or refuse admission.

Chapter 5 describes an implementation of the architecture and presents the

result of a series of experiments conducted to determine if the implementation

correctly realized the two requirements stated in Chapter 3.

Chapter 6 empirically validates a feasibility analysis on a set of real-time threads

and demonstrates the programming paradigm and the use of the system. Two real-

time applications were designed and programmed on the implementation. The �rst

displayed a character on the display device in each period of the real-time threads.

The second received an audio stream from the network and played the audio on

the system speaker. All of the real-time threads of the two applications met their

deadlines. This chapter also introduces the notion of a sporadic real-time task and

section 7.2.1 shows how the SP architecture can support other models of real-time

computation. Initially, the audio real-time application used periodic real-time tasks

but it was noted that the function of the demonstration could have been better

implemented with sporadic real-time tasks. Thus, two demonstrations highlight

the correct execution of periodic and sporadic real-time tasks and show the sharing

of resources (beyond the sharing described in Chapter 5 for the experimental test

loops) as de�ned by the SP architecture.

7.4 Conclusion

In Chapter 1 we stated the following thesis:
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The slotted priority architecture de�nes a way to modify general-

purpose operating systems to schedule, manage, and execute periodic

real-time tasks. The resulting modi�ed system will be able to guaran-

tee that all periodic real-time tasks active on the system will meet their

stated deadlines. Periodic real-time tasks may reserve resources, such

as direct access storage device access and network access, and the mod-

i�ed system will guarantee that the resources are available when needed

by the reserving tasks with a reasonable maximum latency. The ar-

chitecture methodology also provides that modi�cations to the original

general-purpose operating system will be modest.

We have described such an architecture; shown that the architecture can be

implemented on typical personal computer hardware; shown that the completion

times of a feasible set of real-time threads can be predicted; shown that real-time

threads can reserve resources such as the speaker and network adapter; and shown

that all of these tasks can be accomplished with minimal modi�cations to the

original general-purpose operating system.

We conclude that the thesis has been proven.
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