
ON THE DESIGN AND IMPLEMENTATION OF
A CACHE-AWARE SOFT REAL-TIME

SCHEDULER FOR MULTICORE PLATFORMS

John Michael Calandrino

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2009

Approved by:

James H. Anderson

Sanjoy Baruah

Scott Brandt

Kevin Jeffay

Ketan Mayer-Patel

Frank Mueller

c© 2009

John Michael Calandrino

ALL RIGHTS RESERVED

ii

ABSTRACT

JOHN MICHAEL CALANDRINO: On the Design and Implementation of a Cache-Aware
Soft Real-Time Scheduler for Multicore Platforms

(Under the direction of James H. Anderson)

Real-time systems are those for which timing constraints must be satisfied. In this disser-

tation, research on multiprocessor real-time systems is extended to support multicore plat-

forms, which contain multiple processing cores on a single chip. Specifically, this dissertation

focuses on designing a cache-aware real-time scheduler to reduce shared cache miss rates,

and increase the level of shared cache reuse, on multicore platforms when timing constraints

must be satisfied. This scheduler, implemented in Linux, employs: (1) a scheduling method

for real-time workloads that satisfies timing constraints while making scheduling choices that

reduce shared cache miss rates; and (2) a profiler that quantitatively approximates the cache

impact of every task during its execution.

In experiments, it is shown that the proposed cache-aware scheduler can result in signif-

icantly reduced shared cache miss rates over other approaches. This is especially true when

sufficient hardware support is provided, primarily in the form of cache-related performance

monitoring features. It is also shown that scheduler-related overheads are comparable to other

scheduling approaches, and therefore overheads would not be expected to offset any reduction

in cache miss rate. Finally, in experiments involving a multimedia server workload, it was

found that the use of the proposed cache-aware scheduler allowed the size of the workload to

be increased.

Prior work in the area of cache-aware scheduling for multicore platforms has not addressed

support for real-time workloads, and prior work in the area of real-time scheduling has not

addressed shared caches on multicore platforms. For real-time workloads running on multicore

platforms, a decrease in shared cache miss rates can result in a corresponding decrease in

execution times, which may allow a larger real-time workload to be supported, or hardware

iii

requirements (or costs) to be reduced. As multicore platforms are becoming ubiquitous in

many domains, including those in which real-time constraints must be satisfied, cache-aware

scheduling approaches such as that presented in this dissertation are of growing importance.

If the chip manufacturing industry continues to adhere to the multicore paradigm (which is

likely, given current projections), then such approaches should remain relevant as processors

evolve.

iv

To Liz, who will always be my constant.

v

ACKNOWLEDGMENTS

Neither this dissertation nor my graduate school career would have been possible without the

help of a lot of people. I would first like to thank my committee: James Anderson, Sanjoy

Baruah, Scott Brandt, Kevin Jeffay, Ketan Mayer-Patel, and Frank Mueller, for their help

and feedback along the way. I would especially like to thank Jim, who was also my advisor and

committee chair, for transforming a graduate student that had a less-than-perfect experience

at Cornell into one that can both “do research” and really enjoy it at the same time. I would

also like to thank the former and current real-time graduate students at UNC that I have

known for their contributions to my transformation: Aaron Block, Björn Brandenburg, Uma

Devi, Hennadiy Leontyev, Cong Liu, and Glenn Elliott; I would thank those with whom I

have co-authored papers a second time. The real-time community as a whole also deserves

credit—they have made most of my conference experiences a lot of fun, and I have been

excited to be part of their research community over the last few years. My collaborators at

Intel also deserve a large amount of credit for shaping the direction of the research that is

presented in this dissertation: Scott Hahn, Dan Baumberger, Tong Li, and Jessica Young.

Their advice was invaluable, and without their help and assistance during both my internship

in the summer of 2006 and the visits that followed, I think that this dissertation would have

been less interesting. I would also like to thank the UNC Department of Computer Science as

a whole, which in my opinion offers an unusually positive and friendly environment in which

to be a graduate student in computer science. I have also had some great teachers during my

time in the department, where I believe that I learned more about computer science during

two years of taking courses at UNC than I had learned during my previous six years as a

student.

There are also those outside of the field of computer science that deserve credit for this

dissertation. I would like to thank everyone at the UNC Institute of Marine Sciences (IMS),

vi

located on the North Carolina coast, where my wife was a graduate student. The people

there were very supportive of me, especially during the summer of 2008, when I implemented

a large portion of the cache-aware scheduler that is described in this dissertation while sitting

at a desk at IMS. While I was at the coast, I essentially became an honorary IMS graduate

student, thanks in part to my wife’s roommates at the coast: Sandra Mesquita and Angie

Coulliette. Finally, I would like to thank my wife, Liz, for (at least) the following: (1) an

incredible amount of support; (2) tolerating someone that wanted to spend eleven years as

a student; and (3) making sure that I always had plenty of homemade baked goods. The

ongoing scavenger hunt that we have for National Park stamps made this dissertation possible

in its own way as well.

Thanks again everyone, and enjoy the dissertation.

vii

TABLE OF CONTENTS

LIST OF TABLES xii

LIST OF FIGURES xiii

1 INTRODUCTION 1

1.1 Real-Time Systems . 2

1.2 Multicore Architectures . 3

1.2.1 Shared Caches . 3

1.2.2 Related Work . 6

1.3 Application Domains . 8

1.3.1 Multimedia Applications . 8

1.3.2 Gaming and Real-Time Graphics . 9

1.3.3 High-Performance Computing . 10

1.4 Thesis Statement . 10

1.5 Contributions . 11

1.5.1 Cache-Aware Real-Time Scheduling Methods 11

1.5.2 Online Cache Profiling of Real-Time Workloads 12

1.5.3 Implementation and Evaluation . 12

1.6 Organization . 13

2 PRIOR WORK 14

2.1 Real-Time Scheduling Overview . 14

2.1.1 Recurrent Task Model . 14

2.1.2 Hard vs. Soft Real-Time Systems . 16

2.1.3 Uniprocessor Scheduling . 19

viii

2.1.4 Multiprocessor Scheduling . 20

2.1.5 Global Scheduling . 22

2.1.6 Tardiness Bounds Under Global Scheduling 24

2.1.7 Pfair Scheduling . 27

2.1.8 Early-Releasing . 32

2.1.9 Impact of Overheads . 32

2.2 Cache-Aware Non-Real-Time Scheduling and Profiling 34

2.2.1 Caches: An Introduction . 35

2.2.1.1 The ABCs of Caches . 35

2.2.1.2 Cache Misses . 36

2.2.1.3 Physically and Virtually Addressed Caches 39

2.2.2 Assessing the Cache Behavior of Tasks 40

2.2.2.1 Working Set Size . 41

2.2.2.2 Reuse Distance . 41

2.2.2.3 Stack Distance . 43

2.2.2.4 Comparison . 46

2.2.3 Shared Cache Behavior: Task Co-Scheduling 47

2.2.3.1 Combining Reuse Distance Histograms 47

2.2.3.2 Redefining Reuse Distance 49

2.2.3.3 Using Stack Distance Profiles 51

2.2.3.4 Performance Counters . 53

2.3 Real-Time Operating Systems . 54

2.3.1 LITMUSRT . 54

2.3.2 RTLinux . 55

2.3.3 Multiprocessor RTOSs . 55

2.3.4 Linux Real-Time Preempt Patch . 56

2.4 Real-Time Scheduling on Multithreaded Platforms 56

2.5 Conclusion . 58

ix

3 PROBLEM STATEMENT 59

3.1 The Problem: Cache-Aware Real-Time Co-Scheduling 59

3.1.1 Multithreaded Tasks . 59

3.1.2 Problem Statement . 63

3.1.3 NP-Hardness Proof for CARTCP . 63

3.2 Early Approaches . 65

3.2.1 Preventing Thrashing With Megatasks 65

3.2.2 Encouraging MTT Co-Scheduling Through Early-Releasing 72

3.2.3 Problems With Combining These Methods 84

3.3 Conclusion . 84

4 CACHE-AWARE REAL-TIME SCHEDULING 85

4.1 Influencing Co-Scheduling: Job Promotions 85

4.2 Promotion Heuristics . 87

4.2.1 Common Rules . 88

4.2.2 Policies . 92

4.3 Tardiness Bound . 98

4.4 Hiding Tardiness Through Early Releasing and Buffering 98

4.5 Implemented Heuristic . 101

4.6 Conclusion . 104

5 CACHE PROFILING FOR REAL-TIME TASKS 106

5.1 Overview . 106

5.1.1 WSS as a Cache Behavior Metric . 107

5.1.2 Performance Counters . 107

5.2 Assumptions . 109

5.3 Estimating MTT WSS . 110

5.3.1 WSS Versus Cache Footprint . 111

5.3.2 Bootstrapping the Profiler . 112

5.3.3 Profiler Pseudo-code . 115

x

5.4 Conclusion . 117

6 EVALUATION 118

6.1 SESC-Based Experiments . 118

6.1.1 Example Task Sets . 120

6.1.2 Randomly-Generated Task Sets . 122

6.1.3 Video Encoding: A Case Study . 127

6.1.4 Implementation Concerns . 129

6.2 LITMUSRT-Based Experiments . 134

6.2.1 Accuracy of WSS Estimates . 136

6.2.1.1 Machine A . 145

6.2.1.2 Machine B . 146

6.2.1.3 Machine C . 147

6.2.1.4 Summary . 149

6.2.2 Performance Versus GEDF . 149

6.2.2.1 Average-Case Cache Miss Rate 150

6.2.2.2 Worst-Case Cache Miss Rate 156

6.2.2.3 Deadline Tardiness . 163

6.2.2.4 Scheduling Overhead . 164

6.2.3 Multimedia Application Performance 165

6.3 Conclusion . 167

7 CONCLUSION AND FUTURE WORK 169

7.1 Summary of Results . 169

7.2 Other Contributions . 171

7.2.1 Real-Time Scheduling on Asymmetric Platforms 171

7.2.2 The LinSched Linux Scheduler Simulator 172

7.3 Feedback to Chip Designers . 173

7.4 Future Work . 173

BIBLIOGRAPHY 181

xi

LIST OF TABLES

2.1 Categorization of cache misses for a reference pattern. 38

2.2 Stack distance profiles for tasks T and U . 52

3.1 Properties of example task sets. 70

3.2 L2 cache miss rations for example task sets. 70

3.3 Spread under PD2 with and without the method in [3]. 79

5.1 The architectural performance events of Intel processors. 107

5.2 The performance events of the UltraSPARC T1 processor. 108

6.1 Shared cache performance for example task sets. 120

6.2 The heuristics that performed best for random task sets. 124

6.3 Tardiness for GEDF and our heuristics. 125

6.4 Evaluation of one of our heuristics for the 32-core architecture. 126

6.5 Video quality levels and their corresponding MTTs. 129

6.6 Results for video-encoding MTTs. 130

6.7 The impact of avoiding difficult-to-implement policies. 131

6.8 Attributes of machines on which experiments were performed. 135

6.9 Deadline tardiness results. 163

6.10 Average and worst-case kernel overheads. 166

6.11 Worst-case execution times for mplayer applications. 166

xii

LIST OF FIGURES

1.1 An example multicore architecture. 4

1.2 The impact of co-scheduling on shared cache thrashing. 5

2.1 Conventions used in example schedules throughout this dissertation. 15

2.2 An example schedule for a periodic task system. 15

2.3 Comparison of percentage-based and (m,k)-firm guarantees. 18

2.4 An EDF schedule for the task set in Figure 2.2. 20

2.5 An example of how bin-packing affects schedulability. 21

2.6 Two-core GEDF and NP-GEDF schedules for the same task set. 23

2.7 An example policy demonstrating the power of priority points. 26

2.8 Allocation over time for a single task under an ideal allocation, EDF, and PD2. 28

2.9 Pfair window layout for a task with an execution cost of six and period of ten. 29

2.10 Example schedules for different algorithms. 31

2.11 Mappings to cache locations based on cache attributes. 37

2.12 Stack distances for a given reference pattern. 44

2.13 Comparison of different metrics for representing the cache impact of tasks. . . 47

2.14 An example of how cache decay controls the amount of cache used by each task. 50

3.1 The impact of forcing versus influencing MTT co-scheduling. 61

3.2 An example of how megatasks can prevent cache thrashing. 67

3.3 An example of how deadline misses can occur when using megatasks. 67

3.4 Two-core PD2 schedules with early-releasing. 74

3.5 An example of how our scheduling rules reduce spread. 77

3.6 An example demonstrating the maximum execution time of a task under GEDF. 78

3.7 Cache miss ratios for PD2 with and without the method in [3] (simple model). 81

3.8 Cache miss ratios for PD2 with and without the method in [3] (SESC model). 83

4.1 An example of where promoting jobs can reduce cache miss rates. 86

xiii

4.2 Pseudo-code for all heuristics, invoked at every quantum boundary. 90

4.3 Two-core schedules for a set of five tasks. 91

4.4 Four-core schedules demonstrating a variety of cache-aware policies. 95

4.5 Two-core schedules demonstrating how tardiness can be hidden. 100

4.6 Two-core schedules for a set of five tasks under best-performing heuristic. . . 102

5.1 Two-core example schedule demonstrating how the profiler collects information.111

5.2 Two-core example schedule generated when our profiler is used. 113

5.3 Pseudo-code for the cache profiler. 116

6.1 The memory reference pattern for multithreaded motion estimation. 128

6.2 Pseudo-code for each MTT. 139

6.3 Profiler accuracy as a function of MTT WSS (random pattern). 141

6.4 Profiler accuracy as a function of MTT WSS (sequential pattern). 143

6.5 Decrease in the average cache miss rate (machine A). 151

6.6 Decrease in the average cache miss rate (machine B, random pattern). 152

6.7 Decrease in the average cache miss rate (machine B, sequential pattern). . . . 153

6.8 Decrease in the average cache miss rate (machine C, random pattern). 154

6.9 Decrease in the average cache miss rate (machine C, sequential pattern). . . . 155

6.10 Decrease in the worst-case cache miss rate (machine A). 157

6.11 Decrease in the worst-case cache miss rate (machine B, random pattern). . . 158

6.12 Decrease in the worst-case cache miss rate (machine B, sequential pattern). . 159

6.13 Decrease in the worst-case cache miss rate (machine C, random pattern). . . 160

6.14 Decrease in the worst-case cache miss rate (machine C, sequential pattern). . 161

xiv

CHAPTER 1

INTRODUCTION

Real-time systems are those for which timing constraints must be satisfied. The goal of this

dissertation is to extend research on multiprocessor real-time systems to support multicore

platforms, or platforms containing multiple processing cores on a single chip. This research

is important as multicore platforms are quickly becoming ubiquitous in the desktop, server,

and embedded domains—including in settings where real-time constraints must be satisfied.

In this dissertation, our focus is on reducing the miss rates of shared caches, and increasing

the level of reuse for these caches, within such platforms while ensuring the timing constraints

of a real-time workload. In multicore platforms, reducing shared cache miss rates can result

in decreased execution times, which may allow a larger real-time workload to be supported

or hardware requirements (or costs) to be reduced. To this end, we developed a cache-aware

real-time scheduler for Linux that employs: (1) a scheduling method for real-time workloads

that satisfies timing constraints while making scheduling choices that reduce shared cache

miss rates; and (2) a profiler that quantitatively approximates the cache impact of every task

during its execution. The design and implementation of this scheduler is described herein.

Note that the scheduling overheads that are associated with our implementation are of critical

importance—otherwise, such overheads could offset any reduction in cache miss rates.

Prior to the research in this dissertation, no cache-aware real-time scheduling algorithm

had been proposed that addresses these practical concerns—prior work on scheduling in the

presence of shared caches on multicore platforms had not addressed support for real-time

workloads, and prior work in the area of real-time scheduling had not addressed shared

caches on multicore platforms. It is at the intersection of these two research areas that this

dissertation makes its primary contribution.

In the sections that follow, we first provide an introduction to real-time systems. We then

motivate the need for cache-aware real-time scheduling with an introduction to multicore ar-

chitectures. This is followed with a discussion of target applications. We then state the thesis

and contributions of this dissertation. Finally, we conclude by outlining how the remainder

of this dissertation is organized.

1.1 Real-Time Systems

Real-time systems include a notion of temporal correctness in addition to logical correctness.

That is, we not only want such systems to perform correct operations, but to perform them

at the correct times. In other words, timing constraints must be ensured. For example, a

video application might need to decode and display a video frame every 33 ms, in order for

playback to look “smooth” to an end user when a (roughly) 30 frame-per-second frame rate

is desired.

Most real-time workloads contain tasks that require computation time at recurring inter-

vals. For example, the workload of the aforementioned video application could be represented

as a sequence of consecutive 33 ms intervals, where a certain amount of computation time is

required during each such interval. Such timing constraints would result in a natural division

of the workload into recurring jobs, each with its own deadline. The scheduler must ensure

that jobs are allocated sufficient processing capacity so that their timing constraints are met.

In recent years, interest in techniques for effectively scheduling real-time workloads on

multiprocessor systems has been increasing for several reasons. First, recent research on this

topic has led to the development of new scheduling approaches and analytical results that

remove some of the theoretical constraints imposed by prior work. This research includes

Pfair scheduling and the notion of bounded tardiness as an acceptable type of real-time guar-

antee; these concepts will be elaborated upon in Chapter 2. Second, multimedia applications,

perhaps the most ubiquitous class of real-time applications, are increasing in complexity, and

it may soon be impossible to achieve acceptable performance from such applications without

explicitly providing real-time support within general-purpose operating systems. Third, as

mentioned earlier, chip makers have been shifting to multicore processor designs.

2

More recently, a desire has been expressed to provide better real-time support within

general-purpose operating systems such as Linux. These efforts have involved supporting

recurrent task models natively within Linux, rather than attempting to emulate this support

using the Portable Operating System Interface for Unix (POSIX) real-time extensions [68],

which provide no support for recurrent workloads. Native support for recurrent task models

would be especially useful for many applications that naturally exhibit such a pattern of

execution, or that require a proportionate share of the available processing resources.

Given this convergence of events, the time is now ripe to extend prior work on techniques

for scheduling real-time workloads on multiprocessors, particularly in ways that will benefit

multicore platforms. The specific challenges associated with such platforms that are of concern

to us in this dissertation are outlined next.

1.2 Multicore Architectures

In multicore architectures, multiple processing cores are placed on the same chip. Most

major chip manufacturers have adopted these architectures due to the thermal- and power-

related limitations of single-core designs [50, 53]. Dual-core chips are now commonplace, and

numerous four- and eight-core options exist. Further, per-chip core counts are expected to

increase substantially in the coming years [53]. For example, Intel has claimed that it will

release 80-core chips as early as 2013 [1]. Additionally, Azul, a company that creates machines

for handling transaction-oriented workloads, currently offers the 54-core Vega 3 processor,

which is used in systems with 864 total cores [7]. The shift to multicore technologies is a

watershed event, as it fundamentally changes the “standard” computing platform in many

settings to be a multiprocessor.

1.2.1 Shared Caches

On most current multicore platforms, different cores share on-chip caches. Without effective

management by the scheduler, such caches can become performance bottlenecks if cache

thrashing is allowed to take place. Thrashing occurs when the demand for space in the shared

cache (e.g., the amount of cache desired by all tasks scheduled at that time) outpaces the

3

L2 (shared)

Core 1

L1

Core M

L1

Figure 1.1: Multicore architecture with a private L1 cache per core, and an L2 cache shared
by all M cores.

cache size—as a result, tasks that are executing at that time experience high cache miss rates

since their data is frequently evicted from the cache before it can be reused. In the case

of a lower-level cache (i.e., a cache that is closer to main memory), this can result in high

average memory reference times, due to a need to frequently access main memory, which is

much slower than the cache. This, in turn, results in a severe overall degradation in system

performance. For these reasons, the issue of efficient cache usage on multicore platforms is

considered by chip makers to be one of the most important problems with which they are

currently grappling. By effectively addressing this issue, the parallelism within these systems

can be better exploited.

In this dissertation, we address this issue in the context of real-time systems implemented

on a multicore platform where all cores are symmetric and share the lowest-level cache (i.e.,

the level of cache that is most distant from the cores, and closest to main memory), as shown in

Figure 1.1. This architecture is fairly common—the Sun UltraSPARC T1 and T2 processors

have a lowest-level L2 cache shared by eight cores, and the recently-released Intel Core i7 chip

contains a lowest-level L3 cache shared by four cores (in this case, each core contains private

L1 and L2 caches).

In prior work pertaining to non-real-time systems, Fedorova et al. [32] showed that shared

cache miss rates affect overall system performance to a much greater extent than the perfor-

mance of many other processor components. For example, for the chip shown in Figure 1.1,

shared L2 misses would be expected to affect performance considerably more than private

L1 misses or pipeline conflicts. This is precisely due to the severe performance degradation

that would be expected when miss rates are high or thrashing occurs with respect to the

lower-level caches, as noted earlier. At any given time, the miss rate of a shared cache at

4

0 1 2 43

Job 3

Job 1

Job 2

Job 4

(a)
0 1 2 3

Job 3

Job 1

Job 2

Job 4

4 ms5 ms
(b)

Figure 1.2: The impact of co-scheduling on shared cache thrashing and response times.

time t is strongly determined by the set of applications co-scheduled at that time: a set of

applications is said to be co-scheduled at some time t if they are scheduled concurrently at

time t. Fedorova et al. showed that shared cache miss rates can be reduced, and system

performance improved, by discouraging a set of applications from being co-scheduled when

doing so would cause thrashing in the L2 cache.

Example (Figure 1.2). To demonstrate the impact of co-scheduling on shared cache thrash-

ing, consider the example in Figure 1.2, where four jobs need to be scheduled on a four-core

platform, and all four cores share a cache. Each job requires 2 ms of execution time when no

cache thrashing occurs, or 5 ms of execution time if the cache is thrashed. Further, assume

that at most two jobs can be co-scheduled without thrashing the cache. If all four jobs are

co-scheduled, each on a different core, then thrashing occurs, and all jobs complete after 5 ms

(inset (a)). However, if only two jobs are co-scheduled, then two jobs execute concurrently,

followed by the other two jobs, resulting in all jobs completing after 4 ms (inset (b)). This

example demonstrates that there are cases where we can achieve better system performance

by reducing parallelism, if doing so avoids cache thrashing, instead of maximizing parallelism

at all costs. An additional implication is that a cache management policy that is cognizant

of these issues is likely to have a significant impact on system performance.

The problems addressed in this dissertation were initially motivated by the work of Fe-

dorova et al.—we want to show that, in real-time systems, co-scheduling can be influenced

in ways that reduce shared cache miss rates while ensuring real-time constraints. It is our

5

focus on real-time constraints that distinguishes our work from that of Fedorova et al . To the

best of our knowledge, we are the first to consider mechanisms for influencing co-scheduling

choices when analysis validating real-time constraints is required.

Additionally, our methods take this work one step further by encouraging the co-scheduling

of applications when it would reduce shared cache miss rates, typically because the applica-

tions (or the individual tasks associated with such applications) reference the same data in

memory. The benefit of encouraging co-scheduling in these cases is that it increases oppor-

tunities for data in the cache to be reused.

The general problem of influencing co-scheduling in these ways while respecting real-time

constraints is NP-hard in the strong sense. (This is unlikely to be a surprise to the reader, as

many multi-dimensional scheduling problems are similarly difficult.) In Chapter 3, we present

a formal statement of this co-scheduling problem, and prove that it is NP-hard in the strong

sense, by a transformation from 3-PARTITION.

1.2.2 Related Work

Substantial additional prior work exists that is related to this co-scheduling problem, espe-

cially in the non-real-time domain. We briefly present only a few examples here—a larger

body of work is considered in Chapter 2.

Batat and Feitelson [10] found that memory requirements should be taken into account

during the co-scheduling of a multithreaded application—specifically, that it is more efficient

to delay the execution of some threads when memory requirements cannot be met than to

execute all threads concurrently, even if this results in a loss of processing capacity. This

study (which did not consider real-time requirements) is particularly interesting considering

that we take a similar approach to co-scheduling, which we elaborate upon further later in

this dissertation.

In work on parallel computing, Peng et al. [55] found that the memory-reference patterns

of threads can lead to co-scheduling choices that are either constructive or disruptive. Con-

structive choices, such as co-scheduling applications that share data, decrease shared cache

miss rates, while disruptive choices increase miss rates. Scenarios should be avoided where

6

the benefits of parallelization are offset by disruptive co-scheduling choices—in our case, those

that lead to shared cache thrashing or high shared cache miss rates. To this end, the au-

thors of [55] conducted a study to determine the memory reference patterns for multimedia

and artificial intelligence applications. The results of this study can assist in making better

co-scheduling decisions involving these large application classes.

Cache fairness. In another paper by Fedorova et al. [33] (with significant overlap with

the authors of [32]), a cache-aware scheduling approach is proposed that encourages cache

fairness, or fair allocation of a shared cache among threads. Quality-of-service requirements,

such as those related to thread completion times, are considered only experimentally, and are

primarily motivated by cache fairness; no real-time analysis is presented. Other research in

the area of cache fairness includes work of Kim et al. [42], who quantified cache fairness using

several different metrics, and presented a cache-partitioning scheme that uniformly distributes

the impact of cache contention among co-scheduled threads.

Symbiosis-aware scheduling. Additional related work that lacks real-time analysis in-

cludes work on symbiosis-aware scheduling [40, 60, 52] in (non-multicore) systems where

multiple hardware threads contend for shared resources within the same single-core chip.

In symbiosis-aware scheduling, the goal typically is to maximize the overall “symbiosis fac-

tor,” which indicates how well various thread groupings perform when co-scheduled, where

performance is primarily determined by per-thread execution times.

Worst-case execution time analysis. Work also exists that is related to shared-cache-

aware real-time worst-case execution time (WCET) analysis, where an upper bound on the

execution time of a single job of a task is derived (e.g., in [57, 54]). Such work may be

considered to be more in line with the goals of this dissertation; however, this work only

tangentially addresses cache-aware real-time scheduling , and does not address the issue of

efficiently profiling the cache behavior of real-time tasks during execution.

7

1.3 Application Domains

In this section, we describe several application domains that may benefit from the cache-aware

real-time scheduling support described in this dissertation.

1.3.1 Multimedia Applications

Multimedia applications are the most obvious beneficiary of this work. Such applications

comprise one of the most ubiquitous types of real-time workloads, especially within general-

purpose operating systems such as Linux, and are very likely to run on multicore platforms

for that reason. Given the current multicore trend, these applications will need to become

multithreaded as the demanded video quality increases, and there will exist a need to correctly

coordinate the timing of these threads.

Video encoding applications have real-time constraints and are both compute- and memory-

intensive. Most video encoding requires a search as part of motion estimation. Within a mul-

timedia server that encodes live media streams (each encoded by a separate application that

corresponds to a one or more real-time tasks), a reduction in cache miss rates may allow more

memory to be referenced and a more extensive search to be conducted in the same amount

of execution time, thus improving video quality. Alternately, our cache-aware scheduler may

reduce thrashing and result in lower execution-time requirements. This, in turn, would allow

a greater selection of media streams, or a greater number of clients, to be supported without

upgrading hardware.

One envisioned application of larger multicore platforms is to act as multi-purpose home

appliances, where the computing requirements of a household are pooled into a single powerful

general-purpose machine [38]. The cost savings of such an approach could be substantial. Such

computing requirements may include:

• Supporting a wide variety of multimedia applications (e.g., streaming from multiple

live and stored video sources to displays throughout the home, recording video for

playback later, or supporting videoconferencing sessions). Video sources could include

live broadcast television, on-demand services, or the Internet.

8

• Periodically monitoring various conditions of the home, such as temperature, and re-

sponding appropriately.

• Providing general-purpose computing capability as it is needed, perhaps through one

or more user terminals that would emulate the functionality of a desktop system.

Naturally, the multimedia demands on such an appliance could be considerable, requiring

a large number of high-quality (e.g., HDTV) video encoding and decoding applications to

be concurrently supported. In such an environment, providing real-time guarantees for such

applications would be a more direct way of supporting their computing needs, potentially

resulting in more efficient use of the underlying general-purpose hardware. This, in turn, could

make multi-purpose home appliances more viable, or increase their capabilities. Ultimately,

reductions in cache miss rates could directly translate into an improved experience for the

end users of the services provided by such appliances.

1.3.2 Gaming and Real-Time Graphics

Real-time graphics applications are typically assisted by graphics processing units (GPUs).

Due to the nature of GPU hardware and graphics processing, such applications tend to be

inherently parallel (i.e., multithreaded) and memory-intensive. These applications also have

real-time requirements (hence their name, and the need for GPU assistance), and are likely

to run alongside other applications on the same platform. By reducing the execution-time

requirements for such applications through the use of our cache-aware scheduler (which could

be used to manage any similar “cache-like” memory within GPUs), the processor-intensive

applications typically associated with real-time graphics and gaming could be made viable on

less-powerful platforms.

Two additional trends are of note. First, applications with similar characteristics to those

commonly supported for real-time graphics may also see a performance benefit as interest in

treating GPUs as co-processors for general computation continues to increase [34]. Second, if

the core counts of CPUs increase as projected, and cores become simpler or more specialized,

then the research within this dissertation might enable high-quality real-time graphics to be

supported without the need for a specialized GPU or other hardware. Similarly, the cost of

9

specially-designed hardware (e.g., within video game consoles) could be reduced, as a smaller

cache or less processing capacity may be acceptable when the provided resources are better

utilized. Overall, the benefit would be cost reduction, whether those costs are purely monetary

or related to chip area or energy.

1.3.3 High-Performance Computing

High-performance computing applications typically involve splitting large tasks into manage-

able pieces that can be handled by individual processors. As one might expect, such tasks are

compute- and memory-intensive. When running a single high-performance computing appli-

cation on multiple processors, it is often beneficial if all processors have made approximately

the same amount of progress at any point in time, due to the need to periodically synchronize

processors. If every high-performance computing application were represented as one or more

real-time tasks, then a real-time scheduler that attempts to make constructive co-scheduling

choices could assist with the synchronization requirements of the application. This might

allow such an application to finish earlier, or could allow multiple such applications to be

supported, since an application may no longer require exclusive access to the processors that

it is assigned.

1.4 Thesis Statement

The major limitation of prior approaches for multiprocessor real-time scheduling is that they

are they are cache-agnostic; this can result in ineffective use of shared caches, either due to

cache thrashing, missed opportunities for cache reuse, or an unnecessary loss of cache affinity

(e.g., due to preemptions). The result is that task execution-time requirements may need to

be higher than if the cache were effectively used. We attempt to address this limitation in

this dissertation. The thesis statement to be supported is the following.

Multiprocessor real-time scheduling algorithms can more efficiently utilize multi-

core platforms when scheduling techniques are used that reduce shared cache miss

rates. Such techniques can result in decreased execution times for real-time tasks,

10

thereby allowing a larger real-time workload to be supported using the same hard-

ware, or enabling costs (related to hardware, energy, or chip area) to be reduced.

1.5 Contributions

In this section, we present an overview of the contributions of this dissertation.

1.5.1 Cache-Aware Real-Time Scheduling Methods

The first major contribution of this dissertation is the creation of cache-aware scheduling

heuristics that influence co-scheduling choices so that cache miss rates are reduced. As part

of this contribution, we introduce the multithreaded task (MTT) abstraction. MTTs were first

introduced in prior work leading to this dissertation [3] as a first step towards representing

concurrency within task models that typically handle only the sequential execution of tasks

(e.g., the periodic and sporadic task models that are introduced in Chapter 2 and used

throughout this dissertation). In MTTs, multiple (sequential) real-time tasks work together

to perform the same operation. MTTs arise naturally in many settings. For example, multiple

tasks might perform different functions on the same video frame, or the same function on

overlapping portions of the same frame, with a common period implied by the desired frame

rate (Section 1.3 provided additional examples). The benefits of co-scheduling tasks within

the same MTT are taken into account in the design of our cache-aware scheduler.

It is projected that as per-chip core counts increase, the processing power of individual

cores is likely to remain the same (or even decrease if cores become simpler) [53]. As a result,

exploiting parallelism will be essential to achieving performance gains. This fact suggests the

need to investigate abstractions for parallel execution in real-time systems (and most other

sub-disciplines of computer science), and it is for this reason that MTTs are an important

contribution of this dissertation.

In our cache-aware scheduler, co-scheduling is encouraged for tasks within the same MTT,

and discouraged for tasks (within different MTTs) when it would cause shared cache thrashing.

Note that devising methods to support co-scheduling while ensuring real-time constraints is

quite difficult; as stated earlier, the problem of influencing co-scheduling in these ways while

11

ensuring real-time constraints is NP-hard in the strong sense. As this dissertation progresses,

we will find that designing even a sub-optimal approach that imposes few constraints on the

types of task sets that can be supported is difficult. Further, an additional constraint on

any scheduling heuristic that we choose to implement within a real operating system is the

scheduling overheads associated with the heuristic—this issue is also addressed herein.

1.5.2 Online Cache Profiling of Real-Time Workloads

The second major contribution of this dissertation is an automatic cache profiler that deter-

mines the cache behavior of real-time tasks during execution, and supplies this information

to the employed scheduling heuristic. The metric of interest to us is MTT per-job working

set size (WSS), which for the purposes of this dissertation is the size of the per-job cache

footprint of an MTT. The size of this footprint is estimated online using hardware perfor-

mance counters. By profiling the cache behavior of tasks during their execution, the need

to profile tasks offline before execution is eliminated. This would make profiling less of an

inconvenience or impossibility for certain types of workloads.

In prior work, Knauerhase et al. [43] investigated the use of performance counters to reduce

cache miss rates and improve system performance for throughput-oriented tasks. Additionally,

in the real-time domain, Pellizzoni et al. [54] used performance counters to record per-task

cache misses during execution; however, the results were used for WCET analysis rather than

to evaluate the cache behavior of tasks for the purposes of online scheduling, as is the case in

this dissertation.

1.5.3 Implementation and Evaluation

As a “proof of concept” that our scheduler and profiler are viable in practice, we implemented

our cache-aware scheduler within Linux. This scheduler includes both a scheduling heuristic

(as described in Section 1.5.1) and our cache profiler (as described in Section 1.5.2). This

implementation is empirically evaluated on several multicore platforms under both synthetic

and multimedia workloads. Demonstrating the practicality of such a scheduler within a

general-purpose operating system is crucial, as many users would prefer to run certain real-

12

time applications (e.g., video players) in Windows or Linux (environments that may be more

familiar and comfortable) instead of a specialized real-time operating system. We show that

our scheduler often achieves a substantial reduction in shared cache miss rates over other

multiprocessor real-time scheduling approaches, and since overheads are low, this translates

into better overall system performance.

Our experimental evaluation, presented in Chapter 6, was conducted under both Linux

and a hardware (processor and memory) architecture simulator. The use of an architecture

simulator allowed us to get detailed results on the performance of our scheduling heuristics in

a controlled environment, and to experiment with systems that are not commonly available

today, to assess if our heuristics are likely to continue to have a performance impact as mul-

ticore architectures evolve. An initial evaluation of heuristics within the simulator, combined

with some practical aspects of implementing these heuristics, guided our selection of which

scheduling heuristic to use within Linux.

The presented evaluation suggests that eliminating thrashing and reducing miss rates in

shared caches should be first-class concerns when designing real-time scheduling algorithms

for multicore platforms with shared caches. As interest in providing real-time support within

general-purpose operating systems (e.g., Linux) increases, and multicore platforms become

increasingly ubiquitous within many of the hardware domains on which such operating sys-

tems run, a state-of-the-art real-time scheduler will have to address the needs of multicore

platforms to remain relevant.

1.6 Organization

The rest of this dissertation is organized as follows. In Chapter 2, we review relevant prior

work on real-time systems and cache-aware scheduling. In Chapter 3, we formally state the

problem that this dissertation seeks to address, prove its intractability, and discuss early

attempts at a solution. In Chapters 4 and 5, we describe the design and implementation

of our cache-aware scheduling heuristics and cache profiler, respectively. In Chapter 6, we

present an experimental evaluation of our scheduler under both an architecture simulator and

Linux. Finally, we conclude in Chapter 7.

13

CHAPTER 2

PRIOR WORK

In this chapter, we review prior work that is related to this dissertation. We begin with an

overview of real-time scheduling, including multiprocessor scheduling. This is followed by

research on the scheduling and cache profiling of non-real-time tasks in the presence of shared

caches, which are common on multicore platforms. We then address other relevant real-time

systems research, including work on real-time operating systems and real-time scheduling in

the presence of hardware multithreading.

2.1 Real-Time Scheduling Overview

In this section, we present work related to real-time scheduling. We begin with an overview

of concepts in real-time systems, and then discuss the additional challenges presented by

multiprocessor scheduling.

2.1.1 Recurrent Task Model

As indicated in Chapter 1, most real-time workloads require computation time at recurring

intervals. Within the real-time research community, one of the simplest and most common

ways of specifying recurrent workloads is the periodic task model, which was introduced by

Liu and Layland [46]. In this model, the scheduling of a system of tasks τ is considered. Each

task T ∈ τ is specified by a worst-case per-job execution cost e(T) and period p(T). The

utilization of a task T is its execution cost divided by its period, or u(T) = e(T)/p(T). Tasks

release jobs T1, T2, . . . , at the start of each period beginning at time zero—the release time

of job Ti is denoted as r(Ti). Such a released job Ti is considered to be eligible at time t if all

jobs T1 through Ti−1 have completed by time t, and Ti has not completed execution at time

job release

job deadline

deadline of previous job, release of next job

job i of task T is scheduledT i

Figure 2.1: Conventions used in example schedules throughout this dissertation.

0 1 2 4 5 6 7 83 9 10 11 12

T

U(e(U), p(U)) = (3, 6)

(e(T), p(T)) = (2, 4) 1 2 3

21 1 2

Figure 2.2: An example schedule for a periodic task system.

t. The absolute deadline d(Ti) of a job Ti is r(Ti)+D(T), where D(T) is the relative deadline

of T . If job Ti completes its execution after time d(Ti), then it is tardy . Throughout this

dissertation, we assume that deadlines are implicit , that is, D(T) = p(T). Assuming implicit

deadlines, the absolute deadline of a job Ti coincides with the release time of job Ti+1, or

d(Ti) = r(Ti+1). As such, we do not explicitly specify relative deadlines for any task system

considered in this dissertation, and we refer to the absolute deadline of a job as simply its

deadline.

In this dissertation, schedules are shown for a wide variety of scheduling policies and

task sets. Figure 2.1 describes several conventions that are used for these schedules un-

less otherwise noted. Unless otherwise noted, all schedules in this dissertation assume zero

scheduling-related overheads. We also assume that all task sets are synchronous, meaning

that all tasks in a task set release their first job at the same time.

Example (Figure 2.2). Consider the example in Figure 2.2, which consists of two periodic

real-time tasks (with implicit deadlines) scheduled on a single processor. The release time

and deadline of each job Ti is (i−1) ·p(T) and i ·p(T), respectively. Note that job releases and

deadlines are typically combined, since the release time of job Ti+1 coincides with the deadline

15

of job Ti. In this example, task T is statically prioritized over task U . The schedule shown is

for a single hyperperiod of the task set, whose length is the least common multiple of all task

periods. For a given task set, the schedule associated with that task set will repeat across

each hyperperiod, as long as all deadlines are met (or the last job of every task released during

the hyperperiod meets its deadline). All jobs meet their deadlines in this example except for

U1, which misses its deadline by one time unit.

A natural extension of the periodic task model, proposed by Mok [49], is the sporadic

task model . In this model, p(T) specifies the minimum separation between job releases of T ,

rather than the exact separation as is the case in the periodic task model. This means that

d(Ti) may not be equal to r(Ti+1), but it must be the case that d(Ti) ≤ r(Ti+1). For example,

in Figure 2.2, under the sporadic task model, T2 could be released at time 5 instead of time 4,

but could not be released at time 3. Once a job is released, its period still exactly determines

its deadline if implicit deadlines are assumed, just as in the periodic task model; that is, for

any Ti, d(Ti) = r(Ti) + p(T). Although we present the sporadic task model here for the sake

of completeness, throughout the remainder of this chapter and dissertation, the periodic task

model is assumed unless stated otherwise.

2.1.2 Hard vs. Soft Real-Time Systems

Broadly, real-time systems can be divided into two categories: hard and soft . In hard real-

time systems, missing a deadline is catastrophic; in such systems, all deadlines must be met.

Examples of hard real-time systems exist in safety-critical domains including transportation,

aviation, and defense. In soft real-time systems, deadline misses can be tolerated in some

cases. Further, in hard real-time systems, worst-case execution costs must be carefully deter-

mined, whereas in soft real-time systems, such costs can be determined less precisely (e.g., by

executing a large number of jobs of a task and using the maximum observed execution time

as the worst-case execution cost). Examples of soft real-time systems include multimedia

applications for which buffering may be employed or an occasional missed frame is permis-

sible, certain types of real-time transactions (e.g., those that react to changes in the stock

market), and applications for which guaranteeing a share of the system over time is of greater

16

importance than meeting explicit deadlines.

While the primary objective of a real-time scheduling algorithm is to ensure timing con-

straints, recent results by Leontyev and Anderson [44] and Devi and Anderson [30] imply that

soft real-time constraints provide sufficient flexibility to consider secondary objectives. In this

dissertation, reducing miss rates in shared caches that are present in multicore platforms is

the secondary objective. As explained in Chapter 1, such caches are a key bottleneck that

must be addressed within scheduling approaches to achieve good overall system performance.

Several different notions of soft real-time guarantees exist. We now provide an overview

of three different types of soft real-time guarantees.

Percentage of deadlines met. This type of soft real-time guarantee concerns the per-

centage of deadlines met by each task in a given sampling window, and is a function of the

miss ratio, which is the number of deadline misses divided by the number of jobs in that same

sampling window. This type of guarantee was considered by Lu et al. [47] and by Jain et

al. [40]. In [47], feedback control mechanisms are employed to achieve a desired miss ratio for

each task or an entire task system, whereas in [40], scheduling in the presence of hardware

multithreading is considered, where a task set is considered “schedulable” if at most 5% of

the deadlines of any task are missed.

(m,k)-firm guarantees. Alternatively, rather than being concerned with a percentage, we

can make a guarantee related to the number of jobs m that must meet their deadlines within

any window of k consecutive jobs. This type of guarantee was first introduced by Hamadoui

and Ramanathan [36] as an (m,k)-firm guarantee. Such a guarantee tends to be stronger than

a simple percentage-based guarantee, since the guarantee must hold for any window of k jobs

rather than just the sampling window, but exceptions do exist. The differences between these

two types of guarantees are better shown in Figure 2.3. In insets (a) and (b), the percentage-

based guarantee of 50% is met; however, a (1, 2)-firm guarantee is not met in inset (b). In fact,

even a seemingly weaker (1, 3)-firm guarantee is not met. Interestingly, inset (c) presents a

case where the (1, 2)-firm guarantee is met without meeting the 50% guarantee; however, this

is due to the size and position of the sampling window. If the (1, 2)-firm guarantee continued

17

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

(a) (b) (c)

(1,2)−firm guarantee met
50% guarantee met 50% guarantee met

(1,2)−firm guarantee not met (1,2)−firm guarantee met
50% guarantee not met

Figure 2.3: Comparison of percentage-based and (m,k)-firm soft real-time guarantees for
seven consecutive jobs of the same task, where each job is indicated by a box. A hatched box
indicates a deadline miss for the corresponding job.

to be met, then increasing the size of the sampling window by one job, or shifting it left or

right by one job, would result in the 50% guarantee being met as well.

Bounded tardiness. The final notion of soft real-time computing considered in this dis-

sertation is bounded tardiness. With this notion, soft real-time guarantees are met if the

amount by which deadlines are missed, known as tardiness, is bounded. For some scheduling

algorithms, tardiness may be bounded by some amount B, meaning that for a task T , any job

Ti must complete execution no later than time d(Ti) + B, where B is a tardiness bound. As

an example, in the schedule shown in Figure 2.2, hard real-time constraints cannot be met,

since deadlines are missed. Since tardiness is at most one time unit, and therefore bounded,

we can meet soft real-time constraints if this bound is suitable. Often, this bound is different

for different tasks; if a bound on the entire system is desired, then a maximum value over

all tasks can be computed. The first major research effort to determine such bounds for a

real-time scheduling algorithm was by Srinivasan and Anderson [62]. This effort was later

improved upon by Devi and Anderson [29], whose work paved the way for additional studies

that provide tardiness bounds for broad classes of scheduling approaches [30, 44]. Further dis-

cussion of this work is best preceded by an overview of multiprocessor and global scheduling,

which are provided in Sections 2.1.4 and 2.1.5.

Comparison. In this dissertation, bounded tardiness is the notion of soft real-time com-

puting that we consider, since it has a number of advantages over the other notions of soft

real-time guarantees. First, the work on bounded tardiness cited earlier allows us to con-

clude that a wide variety of scheduling approaches automatically provide bounded tardiness.

18

As a result, significant scheduling flexibility exists to influence co-scheduling decisions in an

attempt to reduce cache miss rates. Second, bounded tardiness may be more compatible

than other notions of soft real-time constraints for applications that can employ buffering, for

example, multimedia applications. (An explanation of exactly how buffering can be employed

to “hide” tardiness in such applications will be provided in Chapter 4.) Finally, when seeking

to guarantee a share of the system to a task over time, rather than meet every deadline, a

bound on tardiness is more natural than percentage-based or (m,k)-firm guarantees—as long

as tardiness is bounded so that the desired share is maintained over time, the proportion

of deadlines missed is unimportant. For these reasons, in the chapters that follow, bounded

tardiness is the only notion of soft real-time guarantee that we consider. Henceforth, when dis-

cussing soft real-time constraints or guarantees, we mean bounded tardiness unless otherwise

noted.

It is worth nothing that, since we implement our cache-aware scheduler within Linux,

a number of sources of non-determinism exist (related to running a real operating system

on real hardware) that are beyond our control. In such an environment, we interpret “soft

real-time” to mean that deadline tardiness on average remains bounded, even if some tasks

occasionally misbehave due to effects beyond our control. There are now many advocates of

using Linux to support this notion of soft real-time execution. We will revisit this issue when

presenting scheduling overheads in Chapter 6.

2.1.3 Uniprocessor Scheduling

In the schedule in Figure 2.2, a uniprocessor is assumed. This schedule is an example of

static-priority scheduling, in which tasks are statically assigned priorities and scheduled in

priority order. Often, such policies are simple to implement, but result in system under-

utilization, especially when hard real-time guarantees are desired. In particular, a task set

may be feasible, but is not schedulable. A task set is feasible when a schedule exists that

would allow all timing constraints to be met. For hard real-time systems, this means meeting

all deadlines, while for soft real-time systems, this (in our case) means ensuring bounded

tardiness. A feasible task set is schedulable under a particular scheduling algorithm when it

19

0 1 2 4 5 6 7 83 9 10 11 12

T

U(e(U), p(U)) = (3, 6)

(e(T), p(T)) = (2, 4) 1 3

22

2

1

Figure 2.4: An EDF schedule for the task set in Figure 2.2.

is possible to meet the same timing constraints when that algorithm is used. For example,

the task set in Figure 2.2 is feasible for hard real-time systems, but not schedulable using

static-priority scheduling.

Alternately, we could allow task priorities to change during scheduling, otherwise known as

dynamic-priority scheduling. One such scheduling algorithm is earliest-deadline-first (EDF),

where jobs are scheduled in increasing order of their deadlines. Under EDF, all jobs will meet

their deadlines as long as the system is not over-utilized—that is, the total utilization of all

tasks is at most one [46]. In other words, any task set that is feasible for hard real-time

systems on a uniprocessor is schedulable under EDF, since all deadlines will be met. This

implies that, for uniprocessors, EDF is an optimal scheduling algorithm.

Example (Figure 2.4). Figure 2.4 depicts an EDF schedule for the same task set shown in

Figure 2.2. Note that, in this example, all deadlines are met; in particular, U1 has higher

priority than T2 at time 4, which allows its deadline to be met. Since the total utilization of

all tasks is at most one, such a result is guaranteed.

2.1.4 Multiprocessor Scheduling

Multiprocessor scheduling algorithms employ either a partitioned or global scheduling ap-

proach (or hybrids of the two). Under partitioned scheduling, tasks are statically assigned to

processors, and tasks are scheduled on each processor using uniprocessor scheduling policies.

An example of such an approach is partitioned EDF (PEDF), wherein the partitioned tasks

are scheduled on each processor using EDF.

The advantages of a partitioned approach are practical in nature. First, most unipro-

cessor scheduling policies can be easily converted into multiprocessor scheduling policies by

20

(e(T), p(T)) = (2, 3)

(e(U), p(U)) = (2, 3)

(e(V), p(V)) = (2, 3)

T

0 1 2 43 5 6 7 8 9 10 11 12

(a)

U

V

miss by 1

miss by 2 miss by 3miss by 1

T

0 1 2 43 5 6 7 8 9 10 11 12

(b)

U

V

1 3 42

1 2 3

321

1 3 42

1 2 3 4

11 22 33 44

Figure 2.5: An example of how bin-packing affects schedulability under partitioning.

employing partitioning, which makes multiprocessor scheduling (superficially) no harder than

uniprocessor scheduling. Second, scheduling overheads associated with such approaches are

generally low: scheduling decisions only concern a single processor and a fraction of the tasks

in the task set, contention for shared data structures such as run queues is minimal or non-

existent, and migrations (which can result in a loss of cache affinity and an increase in cache

coherency traffic) cannot occur. (The impact of these overheads will be discussed in greater

detail later in Section 2.1.9.)

Partitioning does have some disadvantages, however. First, and most importantly, the

management of a globally-shared resource such as a shared cache can become quite difficult

under partitioning—this is precisely because each processor is scheduled independently, which

was previously argued to be an advantage. Second, partitioning requires solving a bin-packing

problem: on an M -processor system, each task with a size equal to its utilization must be

placed into one of M bins of size one. The bin in which a task is placed indicates the processor

to which it is assigned. There are many feasible task systems for which a bin packing does

not exist.

Example (Figure 2.5). A simple example is shown in Figure 2.5, and concerns partitioning

three tasks onto a two-core platform. For this and future examples, a dotted line as shown in

inset (a) indicates how the tasks are partitioned onto cores. Since each task has a utilization

of 2/3, each core can accommodate only one task without being overloaded. As a result, a bin

21

packing does not exist, resulting in one overloaded core and unbounded tardiness, as can be

seen in the schedule in inset (a), where PEDF is employed. Therefore, no real-time guarantees

can be made; yet, the task set is feasible if one task is allowed to migrate between the two

cores, executing half of the time on each, as seen in inset (b).

In the worst case, bin packing is impossible for certain task sets that require only slightly

more than 50% of the available processing resources—that is, their total utilization is slightly

greater than M/2. Thus, partitioning approaches can result in inferior schedulability, espe-

cially when overheads are negligible and soft real-time schedulability is the primary concern.

For these reasons, we give global scheduling approaches more consideration. These approaches

are described next.

2.1.5 Global Scheduling

In global scheduling algorithms, all processors select jobs to schedule from a single run queue.

As a result, jobs may migrate among processors, and contention for shared data structures is

likely. Our cache-aware scheduler, in which co-scheduling decisions are influenced to reduce

shared cache miss rates, is an example of a global scheduling algorithm.

In this dissertation, we are primarily concerned with two global scheduling policies in ad-

dition to our own: preemptive global EDF (GEDF) and non-preemptive global EDF (NP-GEDF).

Under both GEDF and NP-GEDF, jobs are scheduled in order of increasing deadlines, with

ties broken arbitrarily (e.g., by task identifier). The difference between GEDF and NP-GEDF

is that newly-released jobs can preempt scheduled jobs under GEDF, while under NP-GEDF,

a scheduled job runs to completion without preemption.

Example (Figure 2.6). Consider Figure 2.6, which depicts two-core GEDF and NP-GEDF

schedules for the same task set. At time 3, job V1 is preempted in inset (a), while it continues to

execute without being preempted in inset (b). As a result, the schedules deviate significantly

from that time onwards. V2 and V3 are also preempted in inset (a), resulting in similar

differences in the two schedules.

Prior work has shown that a hybrid scheduling approach known as clustered EDF (CEDF),

first proposed in [19], typically results in better schedulability for soft real-time systems than

22

T(e(T), p(T)) = (2, 3)

(e(U), p(U)) = (2, 3)U

V(e(V), p(V)) = (4, 7)

0 1 2 4 5 6 73 8 9 10 11 12 13 14 15 16 17 18 19 21 2220

(a)

T(e(T), p(T)) = (2, 3)

(e(U), p(U)) = (2, 3)U

V(e(V), p(V)) = (4, 7)

0 1 2 4 5 6 73 8 9 10 11 12 13 14 15 16 17 18 19 21 2220

(b)

3 5 6

1

2 3

2

5 6

3

7

1 2 3 3

81 2 3 4 5 6 7

1 2 4 7

1 2 3

81 2 3 4 5 6 7

1 4

Figure 2.6: Two-core schedules under (a) GEDF and (b) NP-GEDF for the same task set.

other approaches [15, 22]. Under CEDF, tasks are statically assigned to clusters of cores

(preferably clusters that share a cache), and tasks are scheduled on each cluster using GEDF.

For platforms with multiple lowest-level shared caches (e.g., a machine with two quad-core

chips, where each chip contains a single shared lowest-level cache), these caches could be

managed independently using a similar approach, where our cache-aware scheduler (described

in Chapters 4 and 5) is used within each cluster instead of GEDF. It is for these reasons that

in Chapter 6, GEDF is used as a baseline for evaluating the performance of our cache-aware

scheduler. We also introduce NP-GEDF in this dissertation as an example of a non-preemptive

policy, since our cache-aware scheduler attempts to emulate such a policy when feasible by

encouraging (but not forcing) the non-preemptive execution of jobs.

Note that, in Figure 2.6, deadlines are missed under both approaches. Neither GEDF nor

NP-GEDF is optimal; that is, for each algorithm, feasible task sets exist that will result in

missed deadlines when scheduled using that algorithm. However, deadline tardiness under

both GEDF and NP-GEDF is bounded [30] for all feasible task sets. Thus, we could consider

23

such algorithms to be optimal when soft real-time constraints are desired. The tardiness

bounds associated with GEDF and NP-GEDF are introduced next.

2.1.6 Tardiness Bounds Under Global Scheduling

We now provide a more detailed discussion of work related to bounded tardiness under global

scheduling algorithms. Srinivasan and Anderson [62] undertook the first major effort to

determine tardiness bounds for a global multiprocessor real-time scheduling algorithm—in this

case, the earliest-pseudo-deadline-first algorithm, a type of Pfair algorithm (Pfair scheduling is

introduced in Section 2.1.7). Devi and Anderson [29] extended the work of [62] by disproving

the tardiness bound of one that was claimed in that work. Devi and Anderson followed

this work with tardiness bounds for GEDF and NP-GEDF [30], and Leontyev and Anderson

extended that work by providing a generalized tardiness-bound result for global multiprocessor

scheduling algorithms [44]; these bounds are stated next.

The tardiness for a task T ∈ τ scheduled using GEDF is x + e(T), where x is defined as

follows (with minor changes from [30] to maintain consistency with our notation specified

earlier).

x =
Ex −minU∈τ (e(U))

M − Ux
(2.1)

In (2.1), Ex is the sum of the Λ highest execution costs over all tasks in τ , and Ux is the

sum of the Λ − 1 highest utilizations over all tasks in τ , where Λ is defined as follows.

Λ =

⌈

∑

U∈τ

u(U)

⌉

− 1 (2.2)

The tardiness for a task T ∈ τ scheduled using NP-GEDF is y + e(T), where y is similar

to x and defined as follows.

y =
Ey + By −minU∈τ (e(U))

M − Uy
(2.3)

In (2.3), Ey is the sum of the Λ + 1 highest execution costs over all tasks in τ , By is the

sum of the M − Λ − 1 highest execution costs over all tasks in τ (a term required to fully

24

account for non-preemptive execution), and Uy is the sum of the Λ highest utilizations over

all tasks in τ , where Λ is again defined as in (2.2).

Observe that deadlines are missed by at most one time unit in both schedules shown in

Figure 2.6. Using the above formulas to calculate the tardiness bounds under each approach,

we would get Λ = ⌈2/3 + 2/3 + 4/7⌉ − 1 = 1, Ex = 4, Ux = 0, Ey = 4 + 2 = 6, By = 0,

Uy = 2/3, x = (4 − 2)/2 = 1, and y = (6 − 2)/(2 − 2/3) = 3. The largest execution cost

for any task in Figure 2.6 is 4; thus, the resulting tardiness bounds are 5 under GEDF and

7 under NP-GEDF. Typically, it is the case that observed tardiness bounds are considerably

lower than any analytical bound; however, analytical bounds are necessary in order to make

soft real-time guarantees.

As noted earlier, Leontyev and Anderson [44] extended the tardiness-bound proofs in [30]

to apply to a wide variety of global scheduling algorithms. In this work, a priority point

is assigned to each eligible job, with earlier priority points denoting a higher priority (job

preemptions may occur). For example, under GEDF, the priority point of each job is its

deadline. If the priority point of every job is within a window bounded by its release time

and deadline, then job priorities are window-constrained. It is shown in [44] that under

any global scheduling algorithm with window-constrained priorities, deadline tardiness is

bounded provided that the system is not over-utilized, even if the priority point of a job

moves arbitrarily within its window. (Such a guarantee is not possible under partitioned

scheduling.)

Example (Figure 2.7). To demonstrate the use of priority points, consider Figure 2.7,

which depicts a two-core schedule for the task set shown assuming the EVEN-ODD policy,

created specifically for this example. In the EVEN-ODD policy, the priority point of a job at

any time t is its release time if ⌊t/4⌋ is odd and its deadline if ⌊t/4⌋ is even. As we can see in

Figure 2.7, this policy results in deadline misses for jobs T11 and U6. However, even though

job priorities frequently change, such priorities are window-constrained, and the task set does

not over-utilize the system; thus, tardiness is bounded.

As the reader might expect from the above example, many dynamic-priority multiproces-

sor real-time scheduling policies are window-constrained and therefore have bounded tardi-

25

T(e(T), p(T)) = (1, 2)

V(e(V), p(V)) = (3, 6)

(e(U), p(U)) = (2, 4)U

W(e(W), p(W)) = (4, 8)

0 1 2 4 5 6 73 8 9 10 11 12 13 14 15 16 17 18 19 21 2220 23 24

D D D D D DR R R R RD D R R D D R R RD RRD

1 2 3 4 5 6 7 8 9 10 11 12

32

1 2 4 5

43221

63

1

Figure 2.7: A two-core schedule under policy EVEN-ODD, where the power of priority points
is demonstrated by allowing tardiness to be bounded in spite of frequent job priority changes.
A “D” (respectively, “R”) indicates that jobs are prioritized by deadline (respectively, release
time) during that time interval.

ness. This includes the cache-aware scheduling heuristics that are described in Chapter 4,

where the priority point of a job is moved to the current time to influence co-scheduling

decisions, also known as a job promotion.

The tardiness bound for a scheduling algorithm with window-constrained priorities is

similar in nature to those specified for GEDF and NP-GEDF. The tardiness for a task T ∈ τ

scheduled using a window-constrained algorithm is z+ e(T), where z is defined as follows (as

before, with minor changes from [44] to maintain consistency with our notation).

z =
Ez +A(T)

M − Uz
(2.4)

In (2.4), Ez is the sum of the M − 1 highest execution costs over all tasks in τ , and Uz is

the sum of the M − 1 highest utilizations over all tasks in τ . A(T) is defined as follows.

A(T) = (M − 1) · ρ− e(T) +
∑

U∈τ\T

(⌈

ψ(T)+φ(U)
p(U)

⌉

+ 1
)

· e(U) (2.5)

φ(T) (respectively, ψ(T)) indicates the amount by which the priority point of a job of

T can be before its release time (respectively, after its deadline), and ρ = maxT∈τ (φ(T)) +

maxT∈τ (ψ(T)).

26

For the cache-aware scheduling heuristics that are described in Chapter 4, the priority

point of a job is never less than its release time or greater than its deadline; thus, φ(T) =

ψ(T) = 0 for all T ∈ τ , and ρ = 0. The same is true under GEDF, as the priority point of

a job is always its deadline, and under the EVEN-ODD policy used in Figure 2.7. Thus, in

all three cases, A(T) becomes
∑

U∈τ\T e(U) − e(T), and the tardiness bound for a task T

is
Ez+

P

U∈τ\T
e(U)−e(T)

M−Uz
+ e(T). The computed tardiness bound for GEDF, EVEN-ODD, and

our cache-aware scheduling heuristic for the task set in Figure 2.6 would be 4+(4+2)−2
2−2/3 + 2 =

8/(4/3) + 2 = 8 for tasks T and U and 4+(2+2)−4
2−2/3 + 4 = 4/(4/3) + 4 = 7 for task V , or a

tardiness bound of 8 for the task set. For the task set in Figure 2.7, the tardiness bound is

largest for task T , and is 4+(2+3+4)−1
2−1/2 + 1 = 12/(3/2) + 1 = 9.

2.1.7 Pfair Scheduling

Our early attempts at cache-aware scheduling, presented in Chapter 3, rely on Pfair schedul-

ing [6, 9, 61]. Under Pfair scheduling, first proposed by Baruah et al. [9], tasks are scheduled

in discrete time units called quanta; execution costs and periods are required to be integral

multiples of the quantum length. Note that, in this dissertation, it is assumed that scheduling

quanta are both uniformly-sized and aligned across all cores in any quantum-based scheduler.

With Pfair scheduling algorithms, all deadlines can be met for any task set with integral

execution costs and periods that does not over-utilize the system.

A periodic task T with utilization u(T) is scheduled one quantum at a time in a way

that approximates an ideal allocation in which it receives L · u(T) time over any interval of

length L.1 This is accomplished by sub-dividing each task into a sequence of quantum-length

subtasks T(1), T(2), . . . , each of which must execute within a certain time window , defined by

the subtask release time and deadline. Note that each job Ti consists of e(T) subtasks under

Pfair scheduling—subtasks T(e(T)∗(i−1)+1) through T(e(T)∗i). The release time and deadline of

each subtask of a periodic task T are computed as follows (from [6]).

1If T is sporadic, then for any job Ti, zero allocations are received between the deadline of Ti and the release
time of Ti+1. This must be taken into account when computing the ideal allocation to T .

27

0 10 20 30 40 50
0

5

10

15

20

25

30

Time Units

A
llo

ca
tio

n
in

 T
im

e
U

ni
ts

Allocation Over Time

Ideal Allocation
EDF

PD2

Figure 2.8: Allocation over time for a single task under an ideal allocation, EDF, and PD2.

r(T(i)) =
⌊

i−1
u(T)

⌋

(2.6)

d(T(i)) =
⌈

i
u(T)

⌉

(2.7)

All subtasks are scheduled on an EDF basis, and tie-breaking rules are used in case of a

deadline tie. The subtasks of a task may execute on any processor, but not at the same time

(i.e., tasks must execute sequentially).

Example (Figures 2.8 and 2.9). An example of how Pfair schedulers approximate an ideal

allocation as compared to EDF is shown in Figure 2.8 for a task with an execution cost of six

and period of ten, assuming processor allocations are received at the earliest allowable time

under both algorithms. (PD2 is a Pfair algorithm, described next.) In Figure 2.9, we can see

the subtask window layout of this task that resulted in the processor allocations shown in

Figure 2.8.

The most efficient known optimal Pfair algorithm, first proposed by Srinivasan and An-

derson, is PD2 [6, 61], which uses two tie-breaking rules. These rules depend on the successor

bit and group deadline of each subtask. The successor bit b(T(i)) is set whenever the window

28

0 1 2 4 5 6 73 8 9 10

Figure 2.9: Pfair window layout for a task with an execution cost of six and period of ten.
The up- and down-arrows in this case indicate subtask releases and deadlines instead of job
releases and deadlines.

of a subtask overlaps with the window of its immediate successor, and is defined for a subtask

T(i) as follows (from [6]).

b(T(i)) =
⌈

i
u(T)

⌉

−
⌊

i
u(T)

⌋

(2.8)

If we refer to the task in Figure 2.9 as T , then b(T(1)) = b(T(2)) = 1, and b(T(3)) = 0. If

subtask deadlines are the same, then the first PD2 tie-break consists of checking this bit. A

subtask that has its successor bit set has higher priority than a subtask that does not have it

set. The reasoning behind this decision is that not scheduling a subtask that has its successor

bit set may reduce the number of quanta available for scheduling its successor—this is not

the case when the bit is not set.

The group deadline is a tie-break that is needed for “heavy” tasks, or those where u(T) ≥

1/2. For such tasks, cascading subtask windows of length two can arise. Such a group of

subtask windows could be seen as having a single deadline at the end of the group—if any

subtask in the group is scheduled in the last quantum of its window, then all successive

subtasks in the group must also be scheduled in the last quantum of their windows to meet

all subtask deadlines. Thus, a larger group deadline implies a larger cascading subtask group

and a greater urgency to schedule that group. Therefore, if subtask deadlines and successor

bits are the same, then the second PD2 tie-break favors the subtask with the largest group

deadline. The group deadline D(T(i)) of a subtask T(i) can be computed as follows, assuming

29

the periodic task model (from [6]).

D(T(i)) =



















0, if u(T) < 1/2








⌈⌈

i
u(T)

⌉

× (1 − u(T))
⌉

1−u(T)









, if u(T) ≥ 1/2
(2.9)

Again referring to the task in Figure 2.9 as T , D(T(1)) = 3, while D(T(2)) = D(T(3)) = 5.

The second and third subtasks have the same group deadline, since scheduling the second

subtask in the last quantum of its window will force the third subtask to also be scheduled

in the last quantum of its window. Thus, a greater sense of urgency is implied by the need

to schedule T for two consecutive quanta in order for all subtask deadlines to be met.

Under PD2, if a task is allocated a quantum when it requires less execution time, the

unused portion of that quantum is “wasted.” In contrast, under the EDF schemes considered

earlier, such a task would relinquish its assigned quantum “early,” allowing another task to

be scheduled. As a result, there is a utilization loss due to quantum-based scheduling, since

a task with an execution cost slightly greater than x will need to be allocated x+ 1 quanta

of execution time, even though most of the last quantum that is allocated to the task will be

wasted. Despite this utilization loss, quantum-based scheduling is often still appealing since

it results in increased predictability, which can be useful for scheduling purposes. In fact, we

argue in Chapter 4 that quantum-based scheduling is useful for our cache-aware scheduling

heuristics, even though our heuristics do not employ PD2 scheduling.

Example (Figure 2.10). To see some of the differences in the described EDF and PD2

algorithms, consider Figure 2.10, which consists of three tasks scheduled on two cores. There

are several things worth noting here. First, if the execution cost of either task U or V is

increased by one, then a suitable bin packing would not exist, and the task set would not be

schedulable under PEDF, even though the total utilization of the task set would be less than

two and thus schedulable under the other algorithms (assuming that soft real-time guarantees

are sufficient). Second, note that under PEDF and PD2, no deadlines are missed, whereas

deadlines are missed under GEDF and NP-GEDF. Third, note that NP-GEDF is the only

30

T(e(T), p(T)) = (7, 9)

(e(U), p(U)) = (3, 6)U

V(e(V), p(V)) = (4, 8)

0 1 2 4 5 6 73 8 9 10 11 12 13 14 15 16 17 18 19 21 2220 23 24

(a)

T(e(T), p(T)) = (7, 9)

(e(U), p(U)) = (3, 6)U

V(e(V), p(V)) = (4, 8)

0 1 2 4 5 6 73 8 9 10 11 12 13 14 15 16 17 18 19 21 2220 23 24

(b)

T(e(T), p(T)) = (7, 9)

(e(U), p(U)) = (3, 6)U

V(e(V), p(V)) = (4, 8)

0 1 2 4 5 6 73 8 9 10 11 12 13 14 15 16 17 18 19 21 2220 23 24

(c)

T(e(T), p(T)) = (7, 9)

(e(U), p(U)) = (3, 6)U

V(e(V), p(V)) = (4, 8)

0 1 2 4 5 6 73 8 9 10 11 12 13 14 15 16 17 18 19 21 2220 23 24

(d)

1

1

2

2 2 3

4

32

3

1

1

1

2

3

4

321

3

2

1 4

1 2 3

1

2

2

3

33

2 2 3 3 3 4 4 42111

1 1 2 32 3

32

1 2 3

1 1 2 2 3

Figure 2.10: (a) GEDF, (b) NP-EDF, (c) PEDF, and (d) PD2 schedules for the same task
set.

31

scheduling approach where jobs are never preempted (for the sake of this example, in the

case of a deadline tie under EDF or a group deadline tie under PD2, we assume that ties are

broken in favor of the task with the smaller period). Fourth, PD2 schedules the tasks U and

V at a rate of allocation that more closely approximates an “ideal” schedule than the other

algorithms. The rates of allocation over time for tasks U and V are also more similar under

PD2 than the other algorithms. This is because the subtask windows of a task depend on its

utilization, and although execution costs and periods differ for U and V , their utilizations are

identical.

2.1.8 Early-Releasing

Our early attempt at MTT co-scheduling, first presented in [3] and discussed in Chapter 3,

relies on the ability to release jobs or subtasks early ; that is, a job or subtask can become

eligible for execution before its actual release time. Early-releasing was first considered in [5]

in work on Pfair scheduling. In all global, deadline-based scheduling methods known to us,

the ability to meet timing constraints is not compromised if jobs or subtasks (as the case

may be) are allowed to become eligible for execution before their designated release times.

In other words, allowing early-releasing does not cause deadline misses (in hard real-time

systems) or increase tardiness bounds (in soft real-time systems). Further, when a job or

subtask is allowed to be released early, it is entirely optional as to whether the scheduler

considers it for execution until the “official” release time of the job or subtask. This fact is

exploited in the approach described in Chapter 3.

2.1.9 Impact of Overheads

When overheads are negligible, for soft real-time systems, GEDF, NP-GEDF, and PD2 are

clearly the superior algorithms in terms of schedulability, as they allow for full system uti-

lization; however, overheads can drastically alter schedulability, and it is not immediately

obvious which algorithm will prevail in every scenario. Overheads are typically accounted for

by inflating task execution costs appropriately—an extensive discussion of inflation techniques

can be found in [28].

32

In real systems, there are many types of overheads to consider. At the beginning of a

scheduling quantum, tick overhead is incurred, which is the time needed to service a periodic

timer interrupt. When a job is released, release overhead is incurred, which is the time needed

to service the interrupt routine that is responsible for releasing jobs at the correct times, if

such releases do not occur during the timer interrupt. Whenever a scheduling decision is

made, scheduling overhead is incurred, which is the time taken to select the next job to

schedule. This may include synchronization overheads related to accessing shared kernel data

structures, such as a global run queue. Further, note that the majority of scheduling decisions

may occur within the timer interrupt for certain algorithms. Whenever a job is preempted,

context-switching overhead is incurred, as is either preemption or migration overhead ; the

former term includes any non-cache-related costs associated with the preemption, while the

latter two terms account for any costs due to a loss of cache affinity. Preemption (respectively,

migration) overhead is incurred if the preempted job later resumes execution on the same

(respectively, a different) processor. In the case of migrations, additional overheads may be

incurred, which are related to ensuring cache coherency. When inflating execution costs to

determine hard real-time schedulability, worst-case overheads should be used; otherwise, we

assume that for soft real-time schedulability, average overheads suffice.

To determine the impact of overheads on schedulability, we conducted a series of empirical

evaluations of a variety of partitioned and global scheduling approaches in LITMUSRT, a

Linux-based real-time testbed produced at UNC that has been developed over a series of

studies [15, 16, 22] and is publicly available [69]. For soft real-time systems, these studies

contained several findings. First, partitioned approaches (e.g., PEDF) tend to be preferable

in terms of soft real-time schedulability for task sets with exclusively low-utilization tasks,

where the bin-packing problem is less difficult and overheads are considerably lower than other

approaches. Global or hybrid approaches are preferable in most other scenarios. In particular,

it was found that CEDF, a hybrid scheduling approach described earlier in Section 2.1.5,

often performed best in terms of schedulability. Second, when comparing GEDF to NP-GEDF,

schedulability tends to be approximately the same unless preemption or migration overheads

are high, as NP-GEDF does not incur such overheads.

33

Third, with respect to global and hybrid approaches, we have found that allowing mi-

grations tends to drive up overheads (due to an increase in bus and memory subsystem

contention) for both preemptions and migrations [15]. However, in this case, preemption

overheads tend to be larger than migration overheads, since the length of a preemption is

typically longer when a task resumes on the same CPU (instead of a different CPU), and

longer preemption lengths cause a greater loss of cache affinity and hence higher overheads.

This makes sense under GEDF and CEDF: a job that is preempted will only migrate to an-

other CPU if one becomes available before its current CPU is again available. Thus, when

a job migrates, the total length of its preemption is reduced. Since these longer preemption

lengths were relatively rare, the overall average cost of a preemption or migration was found

to be similar across all variants of EDF. As a result, increases in scheduling and release

overheads under global and hybrid approaches, due to an increase in the number of CPUs

and tasks that must be considered, typically accounted for the soft real-time schedulabil-

ity differences—partitioned approaches exhibited better schedulability when these overheads

offset any bin-packing difficulties.

In this dissertation, it is vital that we show that the overheads associated with our cache-

aware scheduler are comparable to other global scheduling approaches—otherwise, any reduc-

tion in cache miss rates could be offset by such overheads.

2.2 Cache-Aware Non-Real-Time Scheduling and Profiling

In this section, we begin with a discussion of the fundamentals of caches, so that the reader

might better understand the work that follows. Next, we present metrics that have been

proposed to assess the cache behavior of tasks. This is followed by a discussion of methods

developed for non-real-time tasks to determine the cache behavior of groups of tasks when

they are co-scheduled, so that better scheduling decisions can be made on multicore and

hardware-multithreaded platforms, where resources (e.g., caches) are often shared.

34

2.2.1 Caches: An Introduction

A cache is a memory unit that exists between the processor and off-chip main memory. This

memory unit is faster and smaller than main memory. For example, a lower-level cache is likely

to be an order of magnitude faster (e.g., 50 processor cycles per access instead of hundreds of

cycles) and several orders of magnitude smaller (e.g., several megabytes as opposed to several

gigabytes). By bringing the correct set of data from main memory into this cache, the speed

gap that exists between main memory and processors can be alleviated.

2.2.1.1 The ABCs of Caches

Caches are often described in terms of three attributes: associativity , block size, and capacity ,

sometimes referred to as “the ABCs” of caches.

Block size. The block size of a cache is the size of a single datum (“block”) in the cache,

each of which is assigned a unique location. For example, a cache for which each location refers

to a 64-byte data block would have a block size of 64 bytes. Today, this is more commonly

known as line size, with each datum referred to as a cache line.

Associativity. The associativity of the cache determines how cache lines are assigned to

locations in the cache. If a cache line may reside in any location in the cache, then the

cache is fully associative. Fully associative caches result in the fewest number of misses,

because any line can be stored in any location, and the cache can thus be treated as a large

set containing some number of locations; however, they are typically slower since a search

must be performed to find cache lines when they are referenced. At the other end of the

spectrum are direct mapped caches, where each line can be stored in only one location in the

cache. In this case, the number of misses increases, since two lines might map to the same

location, forcing one to be evicted—this is known as a conflict miss, discussed in greater

detail in Section 2.2.1.2. However, no search is necessary, so cache accesses are typically

faster. Between these two extremes are set associative caches, where each line maps to a set

of locations, and the size of each set is greater than one and less than the total number of

locations in the cache. Such caches are specified in terms of some number of ways indicating

35

the size of each set. For example, in a 4-way set associative cache, each cache line maps to

four locations. In this case, a search is required, but on a much smaller scale, so access times

are much closer to those of direct mapped caches. By allowing a line to map to four locations

instead of one, the number of misses would typically be lower than in direct mapped caches.

Capacity. The capacity of a cache is its total size, either in terms of bytes (most commonly)

or cache lines. The number of cache sets multiplied by the set associativity of the cache gives

the capacity of the cache in lines; multiplying by the line size gives the capacity in bytes. In

the case of a fully-associative cache, the capacity of the cache determines whether all of the

cache lines that are needed by a task will fit in the cache.

Example (Figure 2.11). Figure 2.11 demonstrates how cache-line-sized pieces of main mem-

ory map to locations in a cache, depending on various cache attributes. All mappings to lo-

cations are indicated by arrows, and the mappings shown continue for the remainder of main

memory; that is, the next cache-line-sized piece of main memory (which would be labeled

“8”) will map to the same location as the piece labeled “0”.

2.2.1.2 Cache Misses

A cache miss occurs when data that is requested by the processor is not present in the cache.

(If the data is present in the cache, the request results in a cache hit .) Such misses are

generally categorized as compulsory (or cold), capacity , or conflict misses; this categorization

is known as “the three Cs” of cache misses. Compulsory misses occur when data is first

referenced, at which point the data is brought into the cache. Since data cannot exist in the

cache without first being brought into the cache, these misses cannot be avoided. Capacity

misses occur when lines that are brought in by a task (and would be reused in the future)

must be evicted from the cache, since the cache is not large enough to hold all of the cache

lines that are needed by that task (or, in the case of a shared cache, it cannot hold the lines

needed by all concurrently executing tasks). As a result, a miss will occur when data from an

evicted line is next referenced. Finally, conflict misses occur when multiple cache lines map

to the same set, and the associativity of the cache is too low to allow all lines to fit in this

36

A
ny location

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

Cache
(4 lines, direct mapped)

Main memory

(a)

Cache
(4 lines, 2−way set assoc.)

Main memory

(b)

Cache
(4 lines, fully associative)

Main memory

(c)

Cache
(8 lines, fully associative)

Main memory

(f)

Cache
(8 lines, 2−way set assoc.)

Main memory

(e)

Cache
(8 lines, direct mapped)

Main memory

(d)

A
ny location

Figure 2.11: Mappings from cache-line-sized pieces of main memory to cache locations, based
on the capacity and associativity of the cache. A 64-byte line size is assumed for all caches
depicted. In the top row (insets (a) through (c)), the capacity of the cache is 256 bytes
(four lines), while it is 512 bytes (eight lines) in the bottom row (insets (d) through (f)). In
each column, from left to right, the caches are direct mapped (insets (a) and (d)), 2-way set
associative (insets (b) and (e)), and fully associative (insets (c) and (f)).

37

Inset Categorization of Misses Miss Rate Access Time Total Ref. Time
(a) C1 C1 C1 C1 C1 H C3 C3 C3 8/9 10 1610
(b) C1 C1 C1 C1 C1 H C3 C3 C3 8/9 20 1620
(c) C1 C1 C1 C1 C1 H H C2 H 6/9 40 1320
(d) C1 C1 C1 C1 C1 H H C3 C3 7/9 10 1420
(e) C1 C1 C1 C1 C1 H H C3 H 6/9 20 1260
(f) C1 C1 C1 C1 C1 H H H H 5/9 80 1320

Table 2.1: Categorization of cache misses for the reference pattern 0, 2, 4, 6, 8, 6, 2, 0, 8,
for a variety of caches. In the categorization, “H” indicates a cache hit, “C1” indicates a
compulsory miss, “C2” indicates a capacity miss, and “C3” indicates a conflict miss. Cache
miss rates and estimated total reference times are also shown, assuming the access time shown
for each cache (all times are in cycles) and a main memory access time of 200 cycles.

set, resulting in evictions. Note that a miss is only categorized as a conflict miss when the

eviction would not have had to occur in a fully-associative cache; otherwise, it is a capacity

miss. As the set associativity of a cache increases, conflict misses become increasingly rare;

only highly-unusual reference patterns, such as referencing single lines in very large strides

across memory, will trigger them on a frequent basis.

Replacement policies. The replacement policy of a cache dictates which cache line will be

evicted when it is necessary to do so. Regardless of the type of cache miss, the replacement

policy will typically be invoked (perhaps to evict or replace lines that were brought in during

the boot process, or during the execution of a previously-running program). One of the most

common replacement policies is least-recently-used (LRU), wherein the line that has been

used least recently (where “recently” is typically measured in terms of references to unique

memory locations) is the one that is evicted. The LRU policy attempts to approximate an

“ideal” replacement policy that would evict the cache line that will not be reused for the

largest amount of time, in an attempt to preserve lines that will be reused in the immediate

future. Since we do not have an oracle that can exactly predict future reference patterns, we

instead use the past to predict the future by assuming that the LRU line is also least likely

to be reused in the immediate future, and therefore evict it when necessary.

Example (Table 2.1). In Table 2.1, cache misses are categorized for the reference pattern

0, 2, 4, 6, 8, 6, 2, 0, 8, where each location refers to a cache-line-sized piece of data, as

labeled in Figure 2.11. These misses are categorized for each of the caches in insets (a)

38

through (f) of Figure 2.11, assuming the mappings as depicted and an LRU replacement

policy. Additionally, the cache miss rate and an estimated total time to reference all data

is provided. We assume that the access time of each cache is a function of its associativity.

The total time to reference all data is computed as the number of cache hits multiplied by

the access time of the cache (as indicated in Table 2.1), plus the number of cache misses

multiplied by the main memory access time (200 cycles). For example, for the cache in inset

(a) of Figure 2.11, the total reference time is 1 · 10 + 8 · 200 = 1610 cycles. For all caches,

the first five references are compulsory misses, as data is brought into the cache for the first

time. For the fully associative caches, the last four references result in four cache hits for the

eight-line cache (since the cache is sufficiently large to hold all referenced lines) and three hits

and one capacity miss for the four-line cache (since line “0” is evicted by line “8” before it can

be reused). For the direct mapped caches, half of the cache lines are never used due to the

mappings of these caches. As a result, in the eight-line cache, two conflict misses occur since

lines “0” and “8” map to the same location, and in the four-line cache, three conflict misses

occur since all lines except line “6” are evicted due to conflicts before they can be reused. For

the 2-way set associative caches, only half of each cache is again used; however, the conflicts

are less severe for the eight-line cache, allowing for one additional cache hit, since the second

reference to line “0” does not evict line “8” as it did in the direct mapped cache.

Overall, as might be expected, increasing cache capacity decreases the miss rate, and

fully associative caches have lower miss rates than direct mapped or 2-way set associative

caches when cache capacity is the same. However, for the eight-line cache, the 2-way set

associative cache results in the lowest total reference time, since lower cache access times

offset the additional cache miss when compared to the fully associative cache. Note also

that the eight-line, 2-way set associative cache performs very similarly to the four-line, fully

associative cache, but since access times are lower, better performance is achieved.

2.2.1.3 Physically and Virtually Addressed Caches

In most general-purpose CPUs, virtual addressing is used so that each program runs in its own

address space—addresses are translated from a virtual address used within the program into a

39

physical address in main memory during a memory reference. As the cache resides between the

CPU and main memory, it may be either physically or virtually addressed. Often, higher-level

caches, which are closer to the CPU, are virtually addressed, while lower-level caches that are

closer to main memory are physically addressed. There are numerous issues to consider when

deciding between a physically or virtually addressed cache. For example, a virtually addressed

cache does not require address translation and therefore typically results in lower access times,

but if multiple virtual addresses are used by different programs to refer to the same physical

address in main memory, then multiple copies of the data located at that address may be

present in the cache, which can reduce cache reuse or increase the amount of cache space

needed by all running programs to minimize cache misses. In our cache-aware scheduler, we

make no assumptions either way about whether physical or virtual addressing is used within

the cache—the issues associated with a physically or virtually addressed cache will persist

regardless of whether our cache-aware scheduler is used. We note, however, that the lower-

level shared caches of concern in this dissertation are typically physically addressed, since

handling problems associated with multiple virtual addresses mapping to the same physical

address becomes more costly as cache size increases.

2.2.2 Assessing the Cache Behavior of Tasks

A number of metrics exist to profile the cache behavior of tasks in non-real-time (throughput-

oriented) systems. These methods can be used to determine the locality exhibited by an

application, in order to determine how a task will perform in the presence of a cache of a

certain size (and associativity). The results of such methods can then be used to determine

how a group of tasks will perform when co-scheduled in the presence of a shared cache. For

soft real-time systems, we can often use these same methods since precise WCET analysis

is not necessary. (Even if it were necessary, tools for performing such analysis on multicore

platforms are in their infancy.)

40

2.2.2.1 Working Set Size

The simplest and most popular cache profiling metric is working set size (WSS), or the size

of the working set (WS) of a task. In [26, 27], the working set model was first proposed by

Denning. In this model (as originally proposed), a WS for a process (or in our case, MTT)

is defined as the set of memory pages that must be loaded and present in main memory at

a given time to achieve the maximum performance impact from the use of main memory by

that process. If sufficient main memory exists so that the WS of every running process can

fit in main memory, then thrashing due to “unnecessary” page faults and evictions can be

avoided. More recently, the notion of WSS has been extended to caches by Agarwal et al. [2],

by defining the WS in terms of the set of cache lines that must be loaded and present in the

cache to maximize process performance, or to minimize process execution times.

The WSS metric is fairly intuitive—a task executing in isolation should perform well in

the presence of a private cache that is larger than its WSS. Similarly, a group of tasks should

perform equally well in the presence of a shared cache that is larger than the sum of the WSSs

of all tasks. Note that this assumes that the cache has a high set associativity, so that the

cache can be treated as fully associative with little loss of accuracy; thus, conflict misses that

could cause thrashing within a set are assumed not to occur. This simple model provides a

fairly accurate estimate of cache locality and performance (in terms of miss rates and potential

for thrashing) when the memory references of a task are distributed uniformly over its WS,

or when WSS is computed separately for small, fixed-length intervals of execution (e.g., for

every job of a real-time task). Otherwise, it could be the case that a task with a large WSS

references only a small amount of its WS very frequently, in which case a single value for

WSS may not accurately capture cache behavior. In such cases, it may be necessary to use

alternate metrics.

2.2.2.2 Reuse Distance

One alternate metric is reuse distance, first proposed by Berg and Hagersten [11] as part of

a probabilistic cache model. Reuse distance is defined as the number of memory references

between references to the same memory location, where a memory location refers to a cache-

41

line sized piece of data. For example, if a task sequentially references memory locations A,

B, C, B, and A, then it has a reuse distance of three for memory location A. Note that

all references between the references to A are counted, rather than just the unique ones;

otherwise, the reuse distance would be two.

The reuse distance can be calculated for all memory references of a task, and used to

create a reuse distance histogram. In [11], this histogram is analyzed to estimate the cache

miss ratio of a task, as follows. First, the authors define a function f(n) as the probability

that a cache line has been evicted from the cache after n cache misses, assuming a random

replacement policy and a capacity of L cache lines (from [11]).

f(n) = 1 −

(

1 −
1

L

)n

(2.10)

For a given reuse distance histogram h, h(n) indicates the number of memory references

with a reuse distance of n. Given f(n) and h(n), the authors specify the following equation

for a task that makes N memory references, which can be solved to estimate the cache miss

ratio R (also from [11]).

R ·N ≈ h(1) · f(R) + h(2) · f(2R) + h(3) · f(3R) + . . . (2.11)

The intuition here is that the left side of the equation, or the total number of references

N multiplied by the miss ratio R, should be approximately equal to the right side of the

equation, which represents a summation over all reuse distances in the histogram. For each

reuse distance n, the number of references with that reuse distance, or h(n), is multiplied by

the probability of a cache miss for a reference with a reuse distance of n, or f(n · R). Note

that f(n · R) is the probability of a cache line being evicted (before it can be reused) after

n ·R misses (the expected number of misses over n references with a miss rate of R is n ·R).

Note that, while reuse distance is a better metric than WSS when reuse varies widely

among the memory references of a task (rather than being uniform), it still requires the

execution of a task to be divided into fixed-length intervals, each of which is analyzed inde-

pendently. For some tasks where sufficiently small interval lengths are used, the assumption of

42

uniformly-distributed references may not have a dramatic impact on cache miss rate estimates.

Further, the sampling and computation overheads of using the reuse-distance method during

execution, such as the need to monitor memory locations and to solve for R in (2.11) using

numerical methods, may be too high when scheduling real-time tasks, where the scheduler

is often invoked at least once every millisecond. If several hundred microseconds or more of

computation time is required whenever the scheduler is invoked for the reuse-distance method

to be used effectively, then the amount of real work that can be performed by the system will

decrease substantially, and this in turn may impact task-set schedulability.

An effort to reduce these overheads was proposed by Berg and Hagersten in later work [12].

This approach involves monitoring only a random sampling of referenced memory locations.

This is achieved by randomly generating a value, and triggering an interrupt in hardware when

an instruction counter (that is, a performance counter that counts completed instructions)

has increased by an amount that is equal to that value; the process is repeated after each

sampling. During sampling, the instruction to which the program counter points is decoded;

if it is a memory-referencing instruction, then the location being referenced is monitored using

a watchpoint mechanism. This mechanism is provided by the Solaris operating system that

the authors used for their implementation, and sends a signal when the monitored location

is again referenced, so that reuse distance information can be collected. Note that using

this approach requires significant hardware and operating system support, and still results

in overheads that are likely too high for use within a real-time scheduler (e.g., running times

that are 40% higher, on average, than when the approach is not used).

Like WSS, the reuse distance metric assumes a fully-associative cache. If the set associa-

tivity of the cache is not high enough for such an assumption to be reasonable, then it may

be more appropriate to consider the stack distance metric, presented next.

2.2.2.3 Stack Distance

The stack distance metric was introduced by Mattson et al. [48] as part of a general method

for evaluating the performance of storage hierarchies. For a set of memory pages in a buffer,

the stack distance of a page is its position in an ordering based on when pages would be

43

A B C D E F A D C E B

Set 1

Set 2

E F E

Stack Dist. = 1

A B C D A D C B

Stack Dist. = 3Stack Dist. = 3

Stack Dist. = 2
Stack Dist. = 1

Figure 2.12: Computation of stack distances for a given reference pattern, when references
map to multiple buffers.

evicted by a replacement policy. For example, if an LRU replacement policy is employed,

then pages are ordered from most recently used to least recently used; the page with the

highest stack distance would be replaced next if the buffer is at capacity. Assuming an LRU

replacement policy, we can instead think of stack distance in much the same way as reuse

distance, except that the stack distance is defined as the number of unique pages referenced

between references to the same page. For example, if a task sequentially references pages A,

B, C, B, and A, then it has a reuse distance of three for page A, but a stack distance of two

for page A.

Stack distance can be used to determine if a page that is brought into the buffer will

be available on subsequent references to that page. If the entire buffer is considered as a

single set, then reused pages will always be available during subsequent references if the stack

distance immediately preceding any reference is always less than the buffer size (in pages);

note that immediately following the reference, the stack distance of that page will be zero.

Stack distances are not computed for pages that are never reused, as their presence in the

buffer presents no opportunity to reduce cache miss rates. If different pages map to different

sets, then the same analysis can be performed independently for each set.

Example (Figure 2.12). Figure 2.12 demonstrates how stack distance is calculated for the

reference pattern depicted when different pages map to different sets. The leftmost sequence

represents the entire reference pattern, referenced sequentially starting with page A. The

rightmost sequences represent the pattern divided according to how the pages map to buffers;

in this case, we assume that references to pages E and F map to buffer set 1, and all other

44

references map to buffer set 2. Note that no stack distance is computed for page F since it

is never reused. Given the stack distances from Figure 2.12, and assuming that both buffers

must be the same size, then each buffer must have a capacity of at least four pages to ensure

that pages will always be available for reuse. However, if each buffer could hold only two

pages, then a page would be available if the stack distance for references to that page is at

most one; pages D and E satisfy this requirement.

Note that, if we consider cache lines instead of memory pages, then this model can be easily

used to represent a set associative cache. If the set associativity of the cache (which determines

the size of each set) is greater than the maximum stack distance for any cache line immediately

before any reference, then no capacity or conflict misses should occur. Otherwise, we can

maintain a stack distance profile for a task, which is very similar to a reuse distance histogram:

for a given stack distance profile p, p(n) indicates the number of memory references with a

stack distance of n. Upon reuse of a cache line with a stack distance of s, p(s) is incremented.

For example, given the reference pattern in Figure 2.12, p(1) = 2, p(2) = 1, and p(3) = 2. If

this example concerned a 2-way set associative cache rather than two-page buffers, we could

calculate the hit rate of the cache as the total number of references with a stack distance

less than two, over the total number of references, or 2/11; the miss rate would therefore be

1 − 2/11 = 9/11. Thus, the stack distance metric allows us to determine the impact of set

associativity on cache miss rate for caches where set associativity is low enough that conflict

misses are still non-negligible.

While this method may be more accurate than those previously proposed, the overheads

associated with creating a stack distance profile are similar to those of creating a reuse distance

histogram. These overheads make the creation of a stack distance profile during execution

impractical for real-time tasks, since such overheads are likely to significantly reduce the

amount of real work that can be performed by the system in the worst case, and this worst-case

scenario can impact task set schedulability. Suh et al. [66] showed that stack distance profiles

can be created more efficiently if the necessary hardware performance counters exist; however,

the appropriate counters do not appear to be “standard” on many platforms. Additionally,

when generating a stack distance profile for a task, it is necessary to run that task in isolation.

45

Thus, even when overheads are not a concern, the need to run tasks in isolation makes the

generation of the profile during execution only marginally more convenient than using offline

profiling tools to create the profile, such those described by Cascaval et al. [23]. Unlike

stack distance, the WSS-like profiling metric that we consider in Chapter 5 is well-suited to

the profiling of tasks during their execution, even when these tasks are not run in isolation.

Our method requires only a single performance counter to record shared cache misses; such

counters exist on many multicore platforms today.

2.2.2.4 Comparison

A comparison of the WSS, reuse distance, and stack distance metrics is provided in Figure 2.13,

wherein three different reference patterns are represented using each of the three metrics. Sim-

ilarly to the example in Figure 2.12, assume that cache lines E and F map to cache set 1,

and all other cache lines map to set 2. Inset (a) presents reference patterns (1) through

(3). Insets (b), (c), and (d) present the WSS, reuse distance histogram, and stack distance

profile, respectively, for each of the reference patterns. In insets (c) and (d), the notation

previously introduced for a reuse distance histogram h and a stack distance profile p are used.

For all reference patterns, exactly four unique lines are referenced, for a WSS of four lines.

For reference pattern (1), three unique lines are referenced between each pair of references

to the same line, so the reuse distance histogram and stack distance profile are identical.

For reference pattern (2), reuse distances are twice stack distances, since each unique line

referenced between two identical lines is referenced twice. Finally, reference patterns (2) and

(3) produce identical reuse distance histograms, but since lines E and F map to a different

set, the stack distance histogram is the combination of evaluating patterns A, B, B, A, and

E, F , F , E independently, resulting in the profile shown.

To summarize, the ability of these metrics to differentiate between different reference

patterns is substantially different for the three reference patterns considered; all three patterns

result in the same WSS, and only the stack distance profile indicates differences between all

three reference patterns. However, as previously discussed, any increase in accuracy as a result

of using the stack distance metric is achieved at the cost of overheads that are prohibitive for

46

(1) A B C D A B C D
(2) A B C D D C B A
(3) A B E F F E B A

(1) WSS: 4 lines
(2) WSS: 4 lines
(3) WSS: 4 lines

(1) p(3) = 4
(2) p({3, 2, 1, 0}) = 1
(3) p({1, 0}) = 2

(c) (d)(b)(a)

(2) h({6, 4, 2, 0}) = 1
(3) h({6, 4, 2, 0}) = 1

(1) h(3) = 4

Figure 2.13: Comparison of different metrics for representing the cache impact of tasks, based
on their memory reference patterns. Inset (a) presents three different reference patterns,
and insets (b), (c), and (d) present the WSS, reuse distance histogram, and stack distance
profile, respectively, for each reference pattern. In inset (c), h({X,Y,Z}) = a has a meaning
equivalent to h(X) = h(Y) = h(Z) = a; the same is true for p in inset (d).

real-time systems.

2.2.3 Shared Cache Behavior: Task Co-Scheduling

We now review methods, developed in prior work, to determine shared cache miss rates for

a group of co-scheduled tasks. Many of these methods employ variants of either the reuse

distance or stack distance metrics discussed earlier. Note that for the WSS metric, keeping

shared cache miss rates low is simple if we observe that a group of tasks should avoid shared

cache thrashing if the size of the cache is at least the sum of the WSSs of all tasks. While the

other methods to be described may be more accurate at estimating shared cache miss rates or

the potential for cache thrashing for a group of co-scheduled tasks, such methods are likely to

incur greater overheads when employed during task execution or scheduling. Thus, with one

exception, the methods described below are provided here for completeness (and since they

inspired our work), but are not otherwise addressed in this dissertation. The exception is the

method described in Section 2.2.3.4, which is similar in many ways to the methods that we

will describe in Chapters 4 and 5, except that it is for non-real-time systems.

2.2.3.1 Combining Reuse Distance Histograms

Fedorova et al. [32] devised two methods to combine the reuse distance histograms of multiple

tasks in ways that allow the shared cache miss rate for a group of co-scheduled tasks to be

determined. For individual tasks, reuse distance histograms were found to result in consid-

erably more accurate estimates of cache behavior than WSS, and therefore were chosen over

WSS in this work.

47

The first method of combining reuse distance histograms involves summing the counts in

each “bucket” across all histograms to create a single histogram for the co-scheduled tasks, and

multiplying the reuse distances in the resulting histogram by the number of co-scheduled tasks,

to account for the worst-case reuse distances that could result from concurrent execution. This

combined reuse distance histogram could then be analyzed as described in Section 2.2.2.2

to estimate the cache miss ratio for the co-scheduled tasks. This method was found to be

accurate, but the overheads of such a method would be prohibitive within a real-time scheduler

(especially as the number of cores increases, since more combinations of histograms, and more

histograms in each combination, would have to be analyzed to make an appropriate cache-

aware scheduling decision).

Example. Let L be the number of lines in the shared cache, and let hT and hU represent the

reuse distance histograms for tasks T and U , respectively, where hT (1) = 1000, hT (5) = 2000,

hU (1) = 3000, and hU (10) = 500. Using the first method, we would first create a histogram

hTU representing the sum of the counts in each bucket, where hTU (1) = 4000, hTU (5) = 2000,

and hTU (10) = 500. Next, we multiply all reuse distances by two, so now hTU (2) = 4000,

hTU (10) = 2000, and hTU (20) = 500. This histogram would then be used to estimate the

miss ratio, assuming a cache with L lines.

The second method, which was found to be equally accurate, is considerably more feasible

to implement in practice. In this method, a cache miss ratio is computed for each task using

its reuse distance histogram and the method in Section 2.2.2.2, assuming a private cache

equal to the shared cache size divided by the number of co-scheduled tasks. These miss ratios

are then averaged to determine the miss ratio for the co-scheduled tasks. Thus, the miss

ratio can be computed for each task offline and provided to the scheduler when making online

co-scheduling decisions. (Note, however, that many combinations of co-scheduled tasks may

still have to be analyzed online in order to make a scheduling decision, even if considering

each combination requires less online computation.) In this case, to estimate the miss ratio

when tasks T and U are co-scheduled, we would compute miss ratios RT and RU using hT

and hU , respectively, each time assuming a cache with L/2 lines. The estimated miss ratio

48

for when T and U are co-scheduled would then be (RT +RU)/2.

In [32], both methods resulted in estimates that are within 5-20% of the actual miss rates

for benchmarks from the SPEC CPU benchmark suite; however, both methods still require a

considerable effort to generate the reuse distance histogram for each task, even if that effort

is performed offline and supplied to these methods of combining the histograms. Further,

the authors note that both methods appear to underestimate cache miss ratios as cache

contention increases. This may be because the combination of reuse distance histograms in

these ways “dilutes” the primary benefit of using reuse distance over WSS: that the memory

references of a task do not need to be distributed uniformly over the entire WS to ensure

accuracy. The combination of reuse distance histograms in the ways described assume that

each task is uniformly impacted by the cache interference that results from co-scheduling. If

this is not the case, then the derived estimates could clearly deviate from reality. As cache

contention increases, the effect of such interference would become more pronounced, resulting

in increasingly inaccurate estimates.

2.2.3.2 Redefining Reuse Distance

Petoumenos et al. [56] (including an author from [11]) redefined reuse distance for shared

caches. Specifically, they proposed to redefine reuse distance in terms of the number of cache

replacements, or Cache Allocation Ticks (CATs), between references to the same memory

location (e.g., cache-line sized piece of data), rather than the number of references between

references to the same location. By redefining reuse distance in this way, the authors can

rely on the fact that the expected lifetime of a cache line is a number of CATs equal to the

number of lines in the cache (recall that the reuse distance model assumes a fully-associative

cache) when estimating shared cache miss rates. As before, reuse distance is calculated for all

memory references of a task and used to create a reuse distance histogram, and this histogram

can be analyzed to estimate the cache miss ratio of the task.

The model in [56] can also incorporate a notion of cache decay , in which cache lines are

marked decayed after not being referenced for a certain period of time (measured in CATs),

and decayed lines have statically lower priority than non-decayed lines when a cache line must

49

(a) (b) (c) (d) (e)

X X X X T T T T U U T T U U U T UT U T

Figure 2.14: Cache decay can control the amount of cache used by each task, as shown. The
data in each line is marked by the task that owns the data (T or U) or an X if the line
belonged to a previously-executing task. Decayed lines are shaded.

be replaced; that is, decayed lines are replaced first. Decaying cache lines requires hardware

support, but can be employed to dynamically control the amount of shared cache that a task

is allowed to use without the need for explicit cache partitioning.

Example (Figure 2.14). In Figure 2.14, the impact of decaying lines can be seen when two

tasks are co-scheduled, assuming that cache lines are marked decayed after being inactive for

two CATs. Assume that initially a four-line cache is filled with decayed data from tasks that

previously executed, as shown in inset (a). Next, task T references four cache lines of data,

as shown in inset (b). Since four replacements were made, two of the four lines in the cache

must be decayed. When task U references two cache lines of data, it will replace the decayed

lines first, as shown in inset (c). This process will continue: if U references another cache line

of data, then one line of U must be decayed, as shown in inset (d), after which T can replace

the line with its own data, restoring the balance, as shown in inset (e).

Unfortunately, from our perspective, there are several problems with the approaches in [56]

discussed here. First, even with this new definition of reuse distance, an approach for gen-

erating reuse distance histograms that is very similar to that in [12] for the original reuse

distance model must be employed. As might be expected, since the approach is fundamen-

tally the same, the overheads in this case are no better than they were in [12], and therefore

this method cannot be effectively used within a real-time scheduler. Second, the ability to

count cache replacements is more rare in multicore chips than the ability to count references;

thus, hardware support for this new definition of reuse distance will be more limited than the

original definition. Finally, hardware support is necessary if cache decay is employed, since

it would require fundamental changes to the cache replacement policy to allow lines to be

decayed and randomly replaced.

50

2.2.3.3 Using Stack Distance Profiles

Chandra et al. [24] presented several models for estimating shared cache miss rates by an-

alyzing stack distance profiles. These methods vary significantly in terms of both accuracy

and feasibility of implementation.

The frequency of access (FOA) model assumes that the cache space used by a task is

proportional to its memory reference frequency; tasks that reference memory more frequently

tend to maintain a larger cache footprint as a result. When using this model, each cache set

(of a set associative cache) is proportionately allocated for the purpose of estimating miss

ratios. The allocations are based on the memory reference frequency of each task, relative

to the other tasks. For example, if two tasks are co-scheduled in the presence of an 8-way

set associative shared cache, and the reference counts for these tasks are 750 and 250, then

cache miss ratios will be estimated for these tasks assuming a 6-way and 2-way set associative

cache, respectively, using the stack distance profile for each task as described in Section 2.2.2.3.

This model was the least accurate since it makes many assumptions about the stack distance

profiles of co-scheduled tasks (e.g., that the “shapes” of the stack distance profiles of all tasks

are similar—that is, for all tasks, the histogram indicating the frequencies of observed stack

distances would have a similar shape), but it is the most straightforward to implement. This

is because the stack distance profiles themselves do not need to be manipulated. Only the

set associativity of the cache changes when estimating the miss ratio of each task; otherwise,

tasks are evaluated as if they were running in isolation.

In the stack distance competition (SDC) model, the stack distance profiles of co-scheduled

tasks are compared for each stack distance from zero to the set associativity of the shared

cache minus one. This model proportionately allocates each cache set for the purposes of

estimating miss ratios as in the FOA model, this time based on the reuse frequency of each

task. The intuition behind this model is that, as the reuse frequency of a task increases,

so does the size of its cache footprint. For each stack distance, the task with the highest

count is noted, and cache sets are proportionately allocated based on the number of times

that each task has the highest count for a particular stack distance—if the cache is 8-way set

associative, and one task has the highest count for six of the eight considered stack distances

51

n pT (n) pU (n)
0 1000 0
1 1000 2000
2 1000 2000
3 0 1500
4 0 1500
5 15 50
6 50 10
7 5 1
8 0 500

Table 2.2: Stack distance profiles for tasks T and U .

in its profile, then its miss ratio is estimated assuming a 6-way set associative cache. The

original stack distance profiles are then used to estimate the cache miss ratio of each task, as

in the FOA model.

Example (Table 2.2). For example, assume that pT and pU represent the stack distance

profiles for tasks T and U , respectively, where these profiles are defined as shown in Table 2.2.

Assuming an 8-way set associative cache, we only compare counts for stack distances between

zero and seven, thus pT (8) and pU (8) are ignored. Upon comparing values, we find that task

T has the highest count for three stack distances, and task U has the highest count for the

other five stack distances. Therefore, the cache miss ratios will be estimated for tasks T and

U assuming a 3-way and 5-way set associative cache, respectively.

While the SDC model proved to be more accurate than the FOA model, and is still

relatively easy to implement, since we are simply comparing values and changing the set

associativity of the cache as before, it is inaccurate in certain scenarios, particularly when the

stack distance profiles of each task are very different for stack distances higher than the set

associativity of the cache.

The last model presented by Chandra et al. [24] is the most accurate, but its computa-

tional complexity is too high to be effectively used within a real-time scheduler in practice.

This inductive probability model uses probability theory to predict the cache impact of co-

scheduling tasks. Briefly, this model estimates the miss count for each task by computing

the probability of a cache miss for this task for each stack distance in its profile (note that

this probability is always one for stack distances that are greater than the set associativity,

52

since a stack distance that is greater than the set associativity of the cache implies that a line

with that stack distance would be evicted before it could be reused even if the task ran in

isolation), and then computing an expected miss count based on these probabilities and the

counts at each stack distance.

2.2.3.4 Performance Counters

Knauerhase et al. [43] proposed and implemented a low-overhead, cache-aware scheduling

policy for non-real-time systems. This scheduler consists of an observation subsystem that

collects per-task performance information dynamically using performance counters, and a

scheduling policy that uses this information. In the authors’ prototype system, informa-

tion about cache misses is obtained and used in a policy that attempts to reduce cache

interference in the lowest-level (shared) cache of a multicore platform. This is done by us-

ing the information collected by the observation subsystem to compute a cache weight for

each task—experimentation with several metrics led to the conclusion that computing cache

weights based on shared cache misses per clock cycle provided the best results. For a set

of cores sharing a cache, the policy ensures that multiple tasks with “heavy” cache weights

are not co-scheduled. Experiments revealed that this policy results in significant speedup

for SPEC CPU2000 benchmarks as compared with unmodified Linux and OS X operating

systems.

This cache-aware scheduler is closest in nature to the scheduler that is described in this

dissertation for real-time systems. The observation subsystem and scheduling policy described

here are analogous to our cache profiler described in Chapter 5 and our scheduling heuristic

described in Chapter 4. However, these components behave quite differently in our system

due to the special needs of real-time workloads. In particular, the policies in our scheduling

heuristic are considerably more elaborate so that timing constraints can be ensured, and since

more is known about our workloads a priori , we can choose to idle cores to prevent cache

thrashing when doing so will not violate timing constraints.

53

2.3 Real-Time Operating Systems

In this section, we provide a discussion of real-time operating systems (RTOSs), since we

implement our cache-aware scheduler within LITMUSRT, a Linux-based testbed that provides

much of the functionality of a multiprocessor RTOS.

Most prior work on RTOSs has focused on uniprocessor systems—see [63] for a recent

survey. In most such work, techniques for scheduling multiprocessor workloads are rarely

discussed. The prevailing attitude seems to be that, on a multiprocessor platform, partitioning

is the only viable choice, and therefore, scheduling reduces to a uniprocessor problem. Given

this prior emphasis, we mostly limit our discussion of prior work to LITMUSRT and related

research that pertains to Linux or that addresses multiprocessor systems more directly.

2.3.1 LITMUSRT

LITMUSRT [22], or the LInux Testbed for MUltiprocessor Scheduling in Real-Time sys-

tems, is a Linux-based testbed that supports multiprocessor real-time scheduling and syn-

chronization policies. The creation of LITMUSRT was crucial to demonstrate the potential

viability of various scheduling methods being investigated by our group. Until the creation

of LITMUSRT, such a testbed did not exist, and no implementations of global scheduling

policies existed in real systems. The author of this dissertation led the original effort to

create LITMUSRT and conduct the first empirical evaluation of global multiprocessor real-

time scheduling policies [22], and was also involved in later studies that used LITMUSRT

to explore synchronization [16] and scalability [15] issues. During our studies, our empirical

evaluations provided a better understanding of the “common case” for a variety of scheduling

and synchronization problems. By designing algorithms to perform well in the common case

rather than under a myriad of theoretical corner cases, the resulting approaches tended to

be simpler and easier to analyze. Thus, a recurring theme of this work was that simpler

approaches often resulted in better performance in practice, since they resulted in lower over-

heads or allowed for more accurate schedulability tests to be used. The most recent version of

LITMUSRT, which is a patch against Linux kernel version 2.6.24, is publicly available [69].

54

2.3.2 RTLinux

Yodaiken and Barabanov [71] are responsible for an early effort at creating an RTOS, known

as RTLinux, which has evolved over time into a commercial product. RTLinux runs real-

time tasks in a thin real-time kernel, with Linux itself running on top of this kernel as a

low-priority background task . This strategy prevents the Linux kernel from disrupting real-

time tasks, but at the same time, restricts the ability of such tasks to invoke Linux kernel

services, and may severely impact the performance of non-real-time tasks by forcing them

to be scheduled at the lowest priority at all times. In contrast, LITMUSRT incorporates

the scheduling algorithms that are required directly into Linux itself. RTLinux supports

periodic threads, but scheduling is limited to FIFO, round-robin, and fixed-priority schemes.

While various multiprocessor scheduling algorithms could potentially be incorporated within

RTLinux, this would preclude supporting in a straightforward manner tasks that require the

services of the Linux kernel.

2.3.3 Multiprocessor RTOSs

To our knowledge, multiprocessor-based RTOSs were first considered as part of work on the

Spring kernel, created by Stankovic and Ramamritham [64]. The scope of Spring extended be-

yond stand-alone multiprocessor systems and encompassed distributed systems comprised of

several multiprocessing nodes and tasks with synchronization requirements; however, Spring

predated almost all of the recent advances in multiprocessor scheduling. In particular, this

includes advances in global multiprocessor scheduling algorithms, such as PD2, and results

related to soft real-time systems.

In other recent work concerning multiprocessors, Stohr et al. [65] presented the REaltime

with Commercial Off-The-Shelf Multiprocessor Systems (RECOMS) software architecture,

which is a framework for running a general-purpose OS and an RTOS on the same multi-

processor machine. This framework partitions the system by placing the general-purpose OS

on its own processor and preventing I/O accesses from interfering with the RTOS. RECOMS

was designed as an extension to the RealTime Application Interface, or RTAI [31], which

is closely related to RTLinux, and therefore the work in [65] is different from LITMUSRT

55

in the same ways. The static partitioning of the system may allow tasks to perform better

with the RECOMS architecture than RTLinux, especially if the non-real-time and real-time

workloads are assigned to cores that share different sets of resources (e.g., caches), but is still

less flexible than LITMUSRT. Additionally, the work in [65] suffers from the problem that

real-time tasks cannot invoke Linux kernel services.

2.3.4 Linux Real-Time Preempt Patch

The Real-Time Preempt Patch [51] is a patch against mainline Linux, and represents a large-

scale effort to create a version of Linux that is more suitable for real-time applications. The

main feature that is provided as a part of this project is a fully preemptible kernel. The

features to support a fully preemptible kernel include preemptible spin locks and critical sec-

tions with support for priority inheritance, representation of interrupt handlers as preemptible

kernel threads, and a new Linux timer API that supports user-space high-resolution POSIX

timers. One goal of this project is to merge many of these features into the mainline kernel,

so that more sophisticated real-time support can be provided natively—in fact, merging is

in progress for some of the features listed here. This would eliminate the need for patches

that must “keep up” with mainline Linux changes independently (meaning that the latest

mainline Linux kernel features cannot be used until a patch is created for that kernel release).

2.4 Real-Time Scheduling on Multithreaded Platforms

A number of publications exist on scheduling in systems employing simultaneous multithread-

ing (SMT), where multiple hardware threads, all on the same single-core chip, contend for

shared hardware resources. The goal of SMT is to allow a single core to be treated as multi-

ple logical CPUs (one per hardware thread) by an operating system, particularly within the

scheduler; thus, threads can contend for shared chip resources much in the same way that

multiple cores may contend for resources on a multicore chip.

Jain et al. [40] considered scheduling for SMT systems in the context of schedulability for

soft real-time workloads (in this case, percentage of deadlines met was the metric of interest).

This was done by comparing a variety of scheduling policies for task sets representing either

56

synthetic or multimedia workloads. Approximately half of these policies were symbiosis-

aware, meaning that they attempted to increase the overall “symbiosis factor” of the system

when making scheduling decisions. The symbiosis factor of the system represents the impact

of co-scheduling a set of jobs as the ratio of instructions-per-cycle (IPC) achieved by each

job when co-scheduled over its IPC achieved in isolation (during single-threaded execution),

defined for a set of N co-scheduled jobs as follows (from [40]).

symbiosis factor =

N
∑

i=1

realized IPC of job i

single-threaded IPC of job i
(2.12)

In this study, the primary system of concern contained a single processor with two hard-

ware threads. When considering the percentage of schedulable task sets, the best performing

policy was a global approach where the job J with the earliest deadline is co-scheduled with a

set of jobs that will maximize symbiosis when co-scheduled with J . Additionally, an exception

is made to this policy that allows slightly better schedulability when tasks with high utiliza-

tions exist. This policy outperformed partitioning policies and those that did not consider

symbiosis. The downside to the policies considered in [40] is that most of them, including all

symbiosis-aware policies, do not provide a way to analytically guarantee schedulability—in

this work, schedulability was determined through empirical observations of deadline misses

during experiments. Another downside of this work is that determining the symbiosis factor

for every possible set of co-scheduled jobs may be infeasible in many scenarios, especially as

the number of hardware threads increases.

Snavely et al. [60] considered symbiosis-aware and symbiosis-oblivious scheduling policies

in experiments on a simulated SMT platform where jobs may have different priorities that

entitle them to some share of the processing resources of the system. The policies examined in

this work resulted in system throughput increases of up to 40% and a reduction in average job

response times; however, these policies do not directly consider real-time schedulability and

result in even weaker guarantees than those in [40]. Further, these approaches still require the

computation of a symbiosis factor for each possible set of co-scheduled jobs, which can quickly

become infeasible as the number of hardware threads increases. Additionally, these policies

rely on the assumption that maximizing parallelism within an SMT system is typically the

57

best approach, but such an approach is often not best for multicore platforms with shared

caches.

2.5 Conclusion

In this chapter, we reviewed several different areas of prior work. This review included an

overview of real-time scheduling concepts, methods for scheduling and profiling tasks in the

presence of a shared cache (for non-real-time systems), RTOSs, and SMT-aware real-time

scheduling. In the remainder of this dissertation, we focus our attention at the intersection

of the multiprocessor scheduling research being conducted within the real-time community

(discussed in Section 2.1) and the multicore (i.e., shared-cache-aware or resource-constrained)

scheduling research being conducted outside of the real-time community (discussed in Sec-

tion 2.2). It is at this intersection that this dissertation makes its primary contribution.

58

CHAPTER 3

PROBLEM STATEMENT

In this chapter, we will formally state the problem that this dissertation addresses. We then

show that the problem, as formally stated, is NP-hard in the strong sense. Therefore, a

practical, efficient, and exact solution to the problem is unlikely to exist, and we must rely

on less perfect approaches. Finally, we review two of our early approaches to solving parts

of the problem and discuss their shortcomings, which warranted the additional research that

led to the work presented in Chapters 4 and 5.

3.1 The Problem: Cache-Aware Real-Time Co-Scheduling

In this section, we begin with a more detailed introduction to MTTs, first mentioned in

Chapter 1, as a deeper understanding of MTTs is necessary before stating the problem that

this dissertation addresses. Next, we formally present the problem and prove that it is NP-

hard in the strong sense.

3.1.1 Multithreaded Tasks

In Chapter 1, the MTT abstraction was stated as a contribution of this dissertation. MTTs

are groups of tasks that reference a common set of data, and are intended to specify groups of

cooperating tasks. To use the terminology from [55], MTTs specify groups of tasks for which

co-scheduling would be constructive. (Note that an ordinary periodic or sporadic task is just

a “single-threaded” MTT.) For example, each real-time task of an MTT could be represented

within an operating system as a single thread of the same process; thus, all tasks of the MTT

would share resources.

The (periodic or sporadic) tasks within an MTT may have different execution costs, but

have a common period. Further, in sporadic task systems, task periods within an MTT must

coincide. We consider this to be reasonable since we intend an MTT to represent a single

recurrent real-time computation, and the tasks within an MTT are assumed to be cooperating

to perform different portions of that computation. In this dissertation, we assume that, on a

machine with M cores, each MTT has at most M tasks, representing the maximum achievable

level of parallelism.

If cache miss rates are not a concern, then the tasks of an MTT can be treated as individual

independent tasks during scheduling; however, since the tasks within an MTT reference a

common set of data (and thus are assumed to share data), we would expect to see cache

miss rate reductions from co-scheduling such tasks, for two reasons. First, co-scheduling the

tasks within an MTT increases the likelihood of cache reuse, which can reduce cache miss

rates for such tasks. Second, co-scheduling the tasks within an MTT minimizes the amount

of time that the set of data referenced by that MTT, or its working set, must be available in

the shared cache. This frees space in the cache for other MTTs. As a result, the cache miss

rates of the tasks within those MTTs may improve, especially if shared cache thrashing can

be avoided as a result.

We would like to devise mechanisms that encourage all tasks within an MTT to be co-

scheduled.1 Thus, the essence of the problem at hand is to encourage parallelism within an

MTT: when one task of an MTT is scheduled, all tasks of that MTT should be scheduled

to increase cache reuse and reduce the possibility of cache thrashing. Unfortunately, this is

not always possible in the presence of real-time constraints. Due to this limitation, we do not

force co-scheduling to occur, but rather strongly influence co-scheduling choices so that, in

the absence of pressing timing constraints (e.g., tardy jobs), co-scheduling is achieved.

Example (Figure 3.1). Consider Figure 3.1, where the schedules shown in this example are

not intended to reflect any particular scheduling policy—indeed, for inset (b), any policy that

1Note that for certain types of applications, it may be more beneficial to schedule MTT tasks differently, e.g.,
in a pipelined manner. (Liu and Anderson [45] have recently explored issues related to the pipelined execution
of real-time tasks.) While this issue is not considered further in this dissertation, we believe that allowing
MTTs to specify their co-scheduling preferences would make such an abstraction considerably more powerful,
and thus plan to consider this important issue in future work.

60

T

U

V(e(V), p(V)) = (3, 4)

(e(U), p(U)) = (1, 2)
(e(T), p(T)) = (1, 2)

MTT:

miss by 1

0 1 2 4 5 6 73 8 9 10 11 12 13 14 15 16 17 18 19 21 2220 23 24

(b)

T

U

V(e(V), p(V)) = (3, 4)

(e(U), p(U)) = (1, 2)
(e(T), p(T)) = (1, 2)

MTT:

miss by 1

0 1 2 4 5 6 73 8 9 10 11 12 13 14 15 16 17 18 19 21 2220

miss by 3 miss by 5

23 24

miss by 7

(a)

miss by 2 miss by 2 miss by 2 miss by 2

2

2

2 3 6 8

10986 7

4 5211

1

1

3 4 5

41 10 12

1211

6

2

2 3 5 6 7 8 9

10986 7

3 432 32211

1

1

3 4 5

41 10 11 12

1211

4 4

5

3 3 4 5

7 9 11

Figure 3.1: Example two-core schedules demonstrating (a) how forcing the co-scheduling of
the tasks in an MTT can result in unbounded deadline tardiness for other tasks in the task
set; but (b) merely influencing co-scheduling can result in bounded tardiness.

could generate the schedule shown would have to be clairvoyant. Instead, this example intends

to prove a point related to co-scheduling MTTs. In Figure 3.1(a), forcing the co-scheduling

of the jobs of tasks T and U , both of which belong to the same MTT, results in unbounded

deadline tardiness for task V . (Continuing this job execution pattern into the future causes

the tardiness of V to increase with each successive job.) Thus, even soft real-time guarantees

cannot be made. In inset (b) of Figure 3.1, the jobs of T and U are only co-scheduled when

a tardy job of V does not need to execute. This results in less co-scheduling, but allows soft

real-time guarantees to be made due to bounded tardiness. (Note that, in the latter half

of the schedule, there is a consistent job execution pattern and the tardiness of V does not

increase.)

When global scheduling approaches such as our cache-aware scheduler are employed,

scheduling-related data structures (e.g., run queues) are shared. As a result, encouraging

61

co-scheduling becomes relatively straightforward; since the tasks of an MTT have a com-

mon period, we can encourage co-scheduling by changing how jobs are prioritized within

run queues. Such approaches are described further in Section 3.2.2 of this chapter and in

Chapter 4.

Note that this method of encouraging the co-scheduling of MTTs to reduce cache miss

rates is similar to the gang scheduling approach taken by Batat and Feitelson [10] for non-

real-time systems. Their work found that, for a set of parallel jobs that would benefit from

co-scheduling, delaying the execution of some of the jobs in the set when the memory require-

ments of all jobs cannot be satisfied is more efficient than co-scheduling all jobs regardless

of memory requirements. In this dissertation, the sets of jobs to schedule would be within

MTTs, which are intended to represent a similar notion of parallelism in real-time systems,

particularly in recurrent task models that traditionally handle only the sequential execution

of tasks. As we will discuss further in Chapter 4, we also take a similar approach to co-

scheduling, though it is somewhat more coarse-grained, and is instead concerned with cache

requirements: we avoid scheduling any job of an MTT in a quantum unless the cache re-

quirements of all jobs can be satisfied, as determined by the size of the cache footprint of the

MTT. Further, we do not force the desired co-scheduling to occur, but instead influence co-

scheduling so that it occurs whenever it will not cause timing constraints to be violated—the

addition of real-time constraints adds a (non-trivial) dimension to the problem that has not

been considered before.

In light of the work on symbiosis-aware scheduling by Jain et al. [40] and Snavely et

al. [60] that was described in Chapter 2, one could think of an MTT as a group of tasks

with an infinite symbiosis factor. In other words, co-scheduling the tasks of an MTT should

always be encouraged, and it is assumed that every MTT benefits equally when its tasks are

co-scheduled (which may be seen as an oversimplification). However, note that MTTs avoid

some of the downsides to the symbiosis-aware work discussed in Chapter 2. These downsides

include: (1) a lack of techniques for analytically guaranteeing schedulability, (2) the need

to determine a symbiosis factor for every possible set of co-scheduled jobs, and (3) in many

cases, an assumption that maximizing parallelism is the best strategy, even when doing so

62

(instead of idling cores) would result in shared cache thrashing.

3.1.2 Problem Statement

We now formally state the problem that we address in this dissertation. Given a task set τ , a

set M of MTTs where every task T ∈ τ belongs to exactly one MTT T ∈ M (to specify how

tasks are grouped into MTTs), a WSS WT for each MTT T , and M cores sharing a cache of

size C, we first define what it means for a set of jobs within an MTT to execute with maximal

concurrency ; this is followed with the decision problem itself.

Maximal Concurrency: Assume that a set of n jobs J1, J2, . . . , Jn exists, and these jobs

are ordered such that the execution cost of J i is at most the execution cost of J i+1,

and all jobs have a common release time and deadline. Such a set of jobs executes with

maximal concurrency if, for each job J i, J i executes only when job J i+1 executes. (This

definition implies that job Jn has no restrictions on when it executes, and job J1 must

execute concurrently with every other job in the set.)

The decision problem is as follows.

Cache-Aware Real-Time Co-scheduling Problem (CARTCP): Does there exist an M -

core schedule (with a length equal to the hyperperiod of the task set, that can be

repeated indefinitely to generate longer schedules) for the tasks in τ so that: (i) no job

deadline is missed; (ii) for any set S of co-scheduled MTTs,
∑

T ∈S WT ≤ C, and (iii)

co-scheduling within MTTs occurs such that, for any i and MTT T , the set of jobs

consisting of each Ti, where T ∈ T , executes with maximal concurrency?

We next show that CARTCP is NP-hard in the strong sense.

3.1.3 NP-Hardness Proof for CARTCP

We now show that CARTCP is NP-hard in the strong sense by a polynomial-time transfor-

mation from 3-PARTITION, a problem that is already known to be NP-hard in the strong

sense [35], to CARTCP. 3-PARTITION is defined as follows.

63

3-PARTITION (from Garey and Johnson [35]): Given a finite set A of 3m elements, a

bound B ∈ Z+, and a “size” s(a) ∈ Z+ for each a ∈ A, such that each s(a) satisfies

B/4 < s(a) < B/2 and such that
∑

a∈A s(a) = mB, can A be partitioned into m

disjoint sets S1, S2, . . . , Sm such that, for 1 ≤ i ≤ m,
∑

a∈Si
s(a) = B? (Notice that the

above constraints on the item sizes imply that every such Si must contain exactly three

elements from A.)

We transform 3-PARTITION to CARTCP by showing that an arbitrary instance of 3-

PARTITION returns the answer “yes” if and only if an equivalent instance of CARTCP returns

the answer “yes”. The equivalent instance is created as follows.

• Each task represents a unique element in the set A (there are 3m tasks total). Each

task has an execution cost of one and a period of m.

• Each task belongs to a different MTT; in other words, all tasks are single-threaded.

Therefore, (iii) in CARTCP is trivially satisfied.

• The WSS of each task is s(a) for the equivalent element a ∈ A, with the same restrictions

on its value as in 3-PARTITION.

• Three cores share a cache of size B. The tasks scheduled at any time will map to the

same set in 3-PARTITION. If (i) in CARTCP is satisfied and no deadlines are missed,

then exactly three tasks will be scheduled at any time. All sets will be disjoint, and

there will be m such sets, due to task execution costs and periods.

• If (ii) in CARTCP is satisfied, then the sum of the size of all “co-scheduled” elements

(as determined by the tasks that represent them) is at most B. Further, given the

restrictions imposed on task WSSs from 3-PARTITION, this size must be exactly B at

all times in the schedule; otherwise, the sum of the size of all co-scheduled elements

would have to exceed B at some time, which would violate (ii).

Since this transformation can be accomplished in polynomial time, CARTCP is NP-hard

in the strong sense.

64

3.2 Early Approaches

In this section, we review two of our earlier approaches to deriving partial solutions to

CARTCP. We first describe a method to enforce (i) and (ii), and then describe a method

to enforce (i) and (iii). We conclude the presentation of each method by stating its limita-

tions, and conclude this section by explaining why combining the two methods (to create a

method that satisfies all three conditions of CARTCP) is problematic, and warranted addi-

tional research.

3.2.1 Preventing Thrashing With Megatasks

In [4], co-scheduling a group of (single-threaded) tasks was discouraged when it would cause

shared cache thrashing. This was accomplished by grouping tasks into megatasks. A megatask

is a set of tasks that is treated as a single schedulable entity by a top-level scheduler. Each

task of a megatask is referred to as a component task ; if a megatask is scheduled on M

processors at time t, then (up to) M of its component tasks may be scheduled at time t. PD2

is the scheduling policy used at both levels of this scheduling hierarchy.

Unlike MTTs, where parallelism is encouraged within each MTT, megatasks prevent cache

thrashing by restricting parallelism, as it is assumed that cache thrashing could occur when

“too many” of the component tasks of a megatask are co-scheduled. Let γ be a megatask

comprised of component tasks with total utilization u. The component tasks of γ will require

between ⌊u⌋ and ⌈u⌉ processors for their deadlines to be met. A megatask is allocated ⌊u⌋

allocations every quantum, and an additional allocation whenever a “special task” associated

with it is scheduled by the top-level scheduler. This special task has a utilization of u− ⌊u⌋,

corresponding to the fractional portion of the total utilization of the megatask. Therefore,

this scheme ensures that at most ⌈u⌉ tasks in γ are ever co-scheduled. Megatasks prevent

cache thrashing when, for each megatask γ, co-scheduling at least x ≥ ⌈u⌉ tasks within that

megatask is necessary to cause thrashing. As a result, when tasks are effectively grouped into

megatasks, restricting parallelism in this way prevents groups of tasks that could cause cache

thrashing from being co-scheduled.

Our approach for preventing thrashing by using megatasks is a two-step process: (i) com-

65

bine tasks into groups, where we want to discourage co-scheduling among the tasks within

each group—each group becomes a megatask; and (ii) at runtime, use a scheduling policy

that reduces concurrency within megatasks, to prevent thrashing.

Example (Figure 3.2). Consider a four-core system with a 1 MB shared cache. Naturally,

we would like to avoid thrashing by ensuring that the combined WSSs of any co-scheduled

tasks does not exceed the size of this shared cache. As shown in Figure 3.2, the task set is

comprised of three tasks of utilization 0.6 and a WSS of 400K (Group A), and four tasks of

utilization 0.3 and with a WSS of 100K (Group B). The total utilization of the task set is

three, so co-scheduling at least three tasks during any quantum is unavoidable. However, since

the combined WSS of the tasks in Group A exceeds the shared cache capacity, it is desirable

that the three co-scheduled tasks not all be from this group; otherwise thrashing can occur, as

shown in inset (a) when PD2 is used without megatasks. In inset (b), megatasks are employed;

because the total utilization of Group A is 1.8, we can combine the tasks in Group A into a

single megatask, and ensure that at most two tasks from it are ever co-scheduled. The same

is also done with Group B to create a megatask of utilization 1.2.

Sub-optimality of using megatasks. Unfortunately, the hierarchical scheduling policy

required for megatasks may result in component task deadline misses, even though PD2 is

used at both levels of the hierarchy. This is because there may be a misalignment between

when processing time is allocated to a megatask, and when the component tasks of that

megatask are able to consume that time. As a result, the processing time that is assigned

to a megatask may sometimes be unused, and sufficient processing time will be unavailable

when it is needed, resulting in missed deadlines.

Example (Figure 3.3). As an example, consider the case where five tasks are placed within

a single megatask, as shown in Figure 3.3, with a total utilization of 7/5. The component tasks

receive two processor allocations during any quantum that the special task S is scheduled (as

shown), and one allocation otherwise. As usual, PD2 is employed. From time 6 to time 9, the

special task receives no allocations. As a result, sufficient processing capacity does not exist

to allow all deadlines to be met, resulting in a deadline miss for job W3.

66

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

(e(U), p(U)) = (3, 5)
400K WSS

(e(V), p(V)) = (3, 5)
400K WSS

(e(T), p(T)) = (3, 5)
400K WSS

W

(e(X), p(X)) = (3, 10)
100K WSS

(e(W), p(W)) = (3, 10)
100K WSS

(e(Y), p(Y)) = (3, 10)
100K WSS

(e(Z), p(Z)) = (3, 10)
100K WSS

G
ro

up
 A

G
ro

up
 B

W

T

U

V

X

Y

Z

0 1 2 4 5 6 73 8 9 10

(b)

T

U

V

X

Y

Z

0 1 2 4 5 6 73 8 9 10

(a)

Figure 3.2: An example of how megatasks can prevent shared cache thrashing. Both insets
show schedules for the same task set when PD2 is employed (a) without megatasks and
(b) with megatasks. Thrashing occurs during “hatched” quanta.

V

W

X(e(X), p(X)) = (1, 15)

(e(W), p(W)) = (1, 3)

(e(V), p(V)) = (1, 3)

(e(S), p(S)) = (2, 5)

T

U

S
Special Task

(e(T), p(T)) = (1, 3)

(e(U), p(U)) = (1, 3)

0 1 2 4 5 6 73 8 9 10

C
om

po
ne

nt
 T

as
ks

miss by 1

Figure 3.3: An example of how deadline misses can occur when using megatasks, due to a
mis-alignment between when processing time is allocated to the special task S, and when the
component tasks need that processing time.

67

We can handle this issue in two ways. First, we note that the amount by which deadlines

are missed in these scenarios is bounded, since the megatask is receiving a sufficient share of

the system to eventually complete all tardy jobs; therefore, soft real-time constraints can be

ensured. Second, we can avoid these misses altogether by slightly inflating the utilization of

each megatask, a process that we call reweighting , during which we increase the utilization of

the megatask so that it is slightly larger than the total utilization of its component tasks. This

approach allows processing time to be available when it is needed by providing allocations

to the megatask at a more frequent rate, even if some of those allocations are wasted. We

have found that the benefits of using megatasks often far outweigh any utilization loss due to

reweighting.

Packing strategies. The packing strategy determines how tasks are grouped into megatasks.

In the strategy that we proposed, tasks are considered in decreasing order of WSS. One

megatask is created at a time. If the current task could be added to the current megatask

without pushing the utilization of the megatask beyond the next integer boundary, then this

is done, because if the megatask could prevent thrashing among its component tasks before,

then it could do so afterwords (recall that tasks are considered in decreasing order of WSS).

Otherwise, a check is made to determine whether creating a new megatask would be better

than adding to the current one—adding to the current one is preferred if allowing an extra

task to be scheduled would still prevent thrashing. While this is an easy packing strategy,

it does not necessarily result in the best possible packing for avoiding cache thrashing. For

example, a better packing might be possible by allowing a new task to be added to a megatask

generated prior to the current one.

Example. Consider a task set with seven tasks: two with utilization 1/2 and a WSS of

300K, two with utilization 2/10 and a WSS of 299K, two with utilization 9/10 and a WSS

of 298K, and one with utilization 3/10 and WSS of 297K. Assume an eight-core platform

with a 1 MB shared cache, so no more than three of these tasks can be co-scheduled without

causing thrashing. Tasks are added to the current megatask in decreasing order of WSS

while the utilization of the megatask remains at most three. This results in all tasks with

68

utilization 1/2 and 2/10, and one task with utilization 9/10, being added to one megatask,

and the remaining two tasks being placed into their own megatask. As a result, our packing

strategy creates two megatasks with utilizations 23/10 and 12/10, and at most five tasks will

be co-scheduled, reducing thrashing. Note that, if the task with utilization 3/10 could be

placed into the first megatask, then the utilization of that megatask would be 26/10, which

is still less than three, and the utilization of the second megatask would be 9/10, ensuring

that no more than four tasks were ever co-scheduled, reducing thrashing further.

Experimental results. To assess the efficacy of using megatasks in reducing cache con-

tention, we conducted experiments comparing its performance to both PD2 and PEDF using

the SESC architecture simulator [58]. The simulated architecture we considered consists of

a variable number of cores, each with dedicated 16K L1 data and instruction caches (4- and

2-way set associative, respectively) with random and LRU replacement policies, respectively,

and a shared 8-way set associative 512K on-chip L2 cache with an LRU replacement policy.

Each cache has a 64-byte line size. Each scheduled task was assigned a utilization and WS.

A task references its WS sequentially, looping back to the beginning when the end is reached.

All scheduling, preemption, and migration costs were accounted for in these simulations. For

PEDF, tasks were placed onto cores in decreasing order of WSS using a first-fit approach. If

successful, this ensures that the largest possible combined WSS of all tasks running concur-

rently is small, and thrashing is likely to be avoided. Therefore, in these experiments, we

believe that PEDF is treated more fairly than megatasks, for which a less optimal packing

strategy is used.

We performed experiments with both hand-crafted and randomly-generated task sets. In

this overview, we will discuss only the hand-crafted task sets, as they most clearly demonstrate

the impact of using megatasks.

Hand-crafted task sets. The hand-crafted task sets that we created are listed in Table 3.1.

Each was run on either a four- or eight-core machine, as specified, for the indicated number

of quanta (assuming a 1-ms quantum length). Table 3.2 shows for each case the L2 (shared)

cache miss rates that were observed.

69

No. No. No.
Task Set Tasks Task Properties: (e(T), p(T), WSS) Cores Quanta
BASIC 3 (3, 5, 250K) 4 100
SMALL BASIC 5 (7, 20, 250K) 4 60
ONE MEGA 5 (7, 10, 120K) 8 50
TWO MEGA 6 Half (3, 5, 190K) and half (3, 5, 60K) 8 50

Table 3.1: Properties of example task sets.

Task Set PEDF PD2 Megatasks
BASIC 89.12% 90.35% 2.20%
SMALL BASIC 17.24% 28.84% 2.89%
ONE MEGA (1 megatask) 11.07% 11.36% 0.82%
ONE MEGA (2 megatasks of utilizations 2.1 and 1.4) 11.07% 11.36% 1.79%
TWO MEGA (1 megatask, all tasks included) 10.94% 10.97% 5.67%
TWO MEGA (1 megatask, only 190K WSS tasks) 10.94% 10.97% 5.52%
TWO MEGA (2 megatasks, one each for 190K and 60K tasks) 10.94% 10.97% 1.02%

Table 3.2: L2 cache miss ratios for example task sets.

BASIC consists of three high-utilization tasks. Running any two of these tasks concur-

rently will not thrash the L2 cache, but running all three will. The total utilization of all

three tasks is less than two, but the number of cores is four. Both PD2 and PEDF use more

than two cores, causing thrashing. By combining all three tasks into one megatask, thrashing

is eliminated. In fact, the difference here is quite dramatic. SMALL BASIC is a variant

of BASIC with tasks of smaller utilization. The results here are similar, but not quite as

dramatic.

ONE MEGA and TWO MEGA give cases where one megatask is better than two and vice

versa. In the first case, one megatask is better because using two megatasks of utilization 2.1

and 1.4 allows an extra task to run in some quanta, during which thrashing may occur. In

the second case, using two megatasks ensures that at most two of the 190K WSS tasks and

two of the 60K WSS tasks run concurrently, thus guaranteeing that their combined WSS is

under 512K. Packing all tasks into one megatask ensures that at most four of the tasks run

concurrently; however, it does not allow us to specify which four. Thus, all three tasks with a

190K WSS could be scheduled concurrently, which is undesirable. Interestingly, placing just

these three tasks into a single megatask results in little improvement—thrashing is less likely,

but still possible.

70

Limitations. While this method of packing tasks into megatasks to avoid thrashing is often

highly effective at reducing cache miss rates, such a method is also significantly limited in

certain ways, as follows. Most of these limitations are related to the fact that the scheduler

itself does not make any cache-aware scheduling decisions online, and as a result, the packing

strategy must often be conservative.

• A task can be part of only one megatask. This means that if two tasks would thrash the

cache if co-scheduled, then both tasks must be within the same megatask if thrashing is

to be avoided. For example, one task T in a task set with n tasks may cause thrashing

when co-scheduled in isolation with any of the other n − 1 tasks. While we only need

to ensure that T always runs in isolation, we cannot achieve this without placing all n

tasks within the same megatask. If the utilization of this megatask exceeds one as a

result, then the guarantee provided by megatasks would be too weak, and no megatask

packing would be sufficient to avoid thrashing. In practice, it may be possible to meet

timing constraints by scheduling T in isolation and co-scheduling the other n− 1 tasks

whenever T is not scheduled.

• Similarly, note that it is impossible to guarantee that fewer than ⌈u⌉ of the tasks in

a megatask γ with a utilization of u will execute at any time. If co-scheduling all

possible sets of ⌈u⌉ tasks in γ will thrash the shared cache, then the system simply

must be re-designed (e.g., by finding a better assignment of tasks to megatasks, or

failing that, actually modifying the tasks in the system). If thrashing will only occur

when specific ⌈u⌉-sized groups within the megatask are co-scheduled, rather than any

⌈u⌉-sized group, then better results might be obtained if we could dynamically reduce

co-scheduling below the threshold guaranteed by the megatask (e.g., by delaying one or

more processor allocations to the megatask) when it can be shown that thrashing will

occur otherwise.

• Alternately, the maximum amount of concurrency that can be supported within the

megatask without thrashing may be considerably higher than ⌈u⌉. As a result, par-

allelism is restricted unnecessarily. For example, consider a system with ten tasks of

71

utilization 1/10, each with a WSS equivalent to one-third of the shared cache size. Three

such tasks can be co-scheduled without causing thrashing; however, the utilization of

the megatask will restrict parallelism so that at most one processor is utilized. This

may not appear to be a major concern unless we want to introduce MTTs into our

task model, and allow some degree of co-scheduling within MTTs in addition to using

megatasks to avoid thrashing. In that case, restricting parallelism in this way will keep

one processor continually busy, limiting the parallelism available to MTTs. More gen-

erally, unnecessarily restricting parallelism may not allow other scheduling constraints

to be satisfied.

• In dynamic systems, this method can result in high scheduling overheads, as new task ar-

rivals or changes to task WSSs may require a complete repacking of tasks into megatasks.

As a result, this method may be infeasible to use in such systems.

• Megatasks as described rely on Pfair scheduling. The methods described in Chapters 4

and 5 instead consider GEDF, as it has been shown to perform better in terms of

schedulability for soft real-time systems when overheads are considered.

3.2.2 Encouraging MTT Co-Scheduling Through Early-Releasing

In [3], the notion of an MTT described earlier is introduced, and a method to encourage the

co-scheduling of tasks within MTTs is proposed. It was found that, by selectively allowing

jobs or subtasks to be released early (that is, before their designated release times as described

in Chapter 2), the amount by which higher-priority jobs or subtasks interfered with MTT co-

scheduling can be significantly reduced. As a result, co-scheduling guarantees could be made

based on how early jobs or subtasks were allowed to be released. This method often resulted

in significantly lower cache miss ratios for MTTs, especially those containing low-utilization

tasks.

The focus of the method proposed in [3] is on minimizing a factor (also introduced in [3])

called spread . Assume that each MTT is comprised of tasks that have the same execution

cost (and a common period, as required by definition). An MTT has a spread of k if for

all i, the ith unit of computation for each task of the MTT is scheduled within the interval

72

[t, t+k) for some t (where a “unit of computation” can be defined as the size of the scheduling

quantum).

While the method in [3] does not explicitly require each MTT to be comprised of tasks

that have the same execution cost, we make such an assumption here for several reasons.

First, it allows for a more straightforward presentation of the co-scheduling method in [3],

as both the definition of spread and the scheduling rules, presented later, are simplified.

Second, when all tasks in an MTT have the same execution cost, we can make analytical

spread guarantees. When tasks have varying execution costs, our method still reduces spread;

however, no guarantees can be made. In this case, the method is more of a heuristic than an

exact approach for which co-scheduling guarantees can be made.

In the method in [3], MTTs are scheduled so that real-time constraints are met and spread

is minimized to the extent possible. When spread is one, condition (iii) of problem CARTCP

is satisfied; otherwise, by minimizing spread, we get as close as possible to satisfying (iii).

Note that, even when spreads exceed one but remain small, a potential for cache reuse exists.

Proposed approach. The approach for minimizing spread while meeting real-time con-

straints is based upon two observations.

1. Global scheduling algorithms are more naturally suited to minimizing spread than par-

titioning approaches. This is particularly the case when using deadline-based scheduling

methods. This is because “work” with a common deadline submitted at the same time

will occupy consecutive slots in the run queue of the scheduler, and thus, such work will

be scheduled in close proximity over time, unless disrupted by later-arriving, higher-

priority work.

2. As discussed in Chapter 2, allowing jobs or subtasks to be released early does not affect

timing guarantees, and the use of early-releasing is entirely optional for each job or

subtask. We can exploit this fact to minimize disruptions to the co-scheduling of an

MTT that are caused by higher-priority work.

Example (Figure 3.4). As an example, consider the PD2 schedules in Figure 3.4, where

tasks W and X are in the same MTT. Inset (a) shows a schedule without early-releasing. In

73

(b)
1 2 3 540

Spread: 3

(a)
1 2 3 40

Spread: 3
W

X

T

U

V

1 2 3 540

(c)

(e(W), p(W)) = (1, 4)
(e(X), p(X)) = (1, 4)

MTT:

(e(T), p(T)) = (1, 2)

(e(U), p(U)) = (1, 2)

(e(V), p(V)) = (1, 2)

(e(W), p(W)) = (1, 4)
(e(X), p(X)) = (1, 4)

MTT: W

X

T

U

V

(e(T), p(T)) = (1, 2)

(e(U), p(U)) = (1, 2)

(e(V), p(V)) = (1, 2)

1 2 3 540

(d)

Spread: 2
W

X

T

U

V

Spread: 2
W

X

T

U

V

1

1

1

1

1

1

1

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

2

1

1

2

2

1

2

1

1

2

Figure 3.4: A two-core PD2 schedule of a set of five tasks with (a) no early-releasing; (b) early-
releasing by one quantum, where all windows are right-shifted by one quantum; (c) similarly-
shifted windows, but selective early-releasing; (d) no shifting or early-releasing, but subtasks
are considered optional within the first quantum after their release, and deadlines can be
missed by one quantum.

74

inset (b), all subtask windows are shifted right by one quantum, and all subtasks are early-

released by one quantum (indicated by dotted lines before each official release), producing

the same schedule as in (a). (All deadline comparisons are the same.) We refer to a schedule

in which all subtask windows are right-shifted by k quanta and all subtasks are early released

by k quanta as a k-shifted schedule. In inset (b), k = 1. The schedules in (a) and (b)

both result in a spread of three for the MTT. In inset (c), we show that selectively allowing

early-releasing can reduce spread to two. Alternately, instead of shifting the schedule and

early-releasing subtasks, as in (b) and (c), we can instead consider a subtask to be optional

for scheduling for the first k quanta after its release, and allow it to miss its deadline by up

to k quanta, as shown in inset (d). Here, the dotted lines after each window indicate by how

much each deadline could be missed (though no misses occur here). In general, if subtasks

can be early-released to the extent we require, then no deadlines will be missed; otherwise,

deadlines may be missed, but by bounded amounts only.

Scheduling rules. Based upon the above observations, we have devised a set of rules for

guaranteeing low spreads in deadline-based, global scheduling approaches. We have applied

these rules to both PD2 and GEDF, assuming an (X−1)-shifted schedule is used (or alternately,

that deadlines can be missed by up to X − 1 quanta—see Figure 3.4(d)).

Three rules are required, and are outlined in detail for PD2 below.

• Urgent Tasks. When subtask T(i) is scheduled, where task T corresponds to a task

within some MTT T , and T is the first task in T whose ith subtask is scheduled, each

subtask U(i), where U is also a task of T and U 6= T , is flagged “urgent” until it is also

scheduled.

• Early-Release Eligibility. A non-urgent subtask T(j) at time t is “early-release eligi-

ble” at t if all of the following hold:

1. r(T(j)) − (X − 1) ≤ t < r(T(j)) (i.e., time t is within X − 1 quanta of the actual

release time of subtask T(j)).

2. All subtasks T(k) of T , where k < j, have already been scheduled prior to time t.

75

3. |U| + |H| < M , where M is the number of cores and at time t, U is the set

of eligible urgent subtasks, and H is the set of non-urgent eligible subtasks T(k),

where r(T(k)) ≤ t, such that each subtask in H has higher priority than at least

one subtask in U . Note that tasks in H are (by definition) not early-release eligible

at time t.

4. Subtask T(j) is one of the e = M − (|U| + |H|) highest-priority subtasks at time t

satisfying (i) and (ii) above.

A subtask T(j) that is urgent at time t is “early-release eligible” at time t if conditions

(i) and (ii) hold for it.

• Priorities. Eligible subtasks (early-released or not) are scheduled using the same pri-

ority rules as in PD2. In the case of a tie, urgent subtasks have higher priority, with

the MTT identifier used as a tie-break. (This ensures that MTTs achieve the lowest

possible spread when nothing in the PD2 priority rules would prevent it.)

Example (Figure 3.5). These rules are illustrated in Figure 3.5, where a 1-shifted schedule

is used. With regular PD2 (inset (a)), the task set achieves maximum spreads of two and six

for MTTs 1 and 2, respectively. Our rules reduce the spread of MTT 2 to two (inset (b)),

without changing the spread of MTT 1. This reduction happens because at time 4 in (b), the

scheduling of subtask W(1) results in subtask X(1) being favored over all other subtasks by

the Urgent Tasks rule. Note that the Early-Release Eligibility rule only allows T(4) to become

early-release eligible at time 5, so that urgent subtask X(1) can be scheduled. Note also that,

if the task set included some additional tasks with a deadline of 11 that were eligible at time 5,

then the Priorities rule would ensure that the urgent subtask was scheduled first, and MTT 2

would still have a spread of two.

Analytical guarantees. When these rules are applied to PD2, and each MTT is comprised

of tasks that have the same execution cost, we can achieve the following spread guarantees

for a task set τ [3].

76

(e(X), p(X)) = (1, 10)

MTT 2:
(e(W), p(W)) = (1, 10)

(e(V), p(V)) = (3, 5)

(e(U), p(U)) = (3, 5)

MTT 1:
(e(T), p(T)) = (3, 5)

1 2 3 40

W

X

5 6 7 8 9 10

(a)

V

T

U

1 2 3 40

W

X

5 6 7 8 9 10 11

(b)

Spread: 2

T

U

V

Spread: 61

1

6

4

5

3

1

2

1

1

5

1

5

4

6

1

1

2

3 6

4

2

3

5

2

3

4

6

6

6

5

4

5

4

2

3

1

2

3

1

Figure 3.5: An example two-core schedule demonstrating how our scheduling rules reduce
spread. Both insets show schedules for the same task set when PD2 is employed (a) without
our rules and (b) with our rules. The shaded quanta indicate where the two schedules deviate
so that spread is reduced in inset (b). In this figure, the number within each scheduled piece
of work denotes the corresponding subtask index, rather than job index.

77

T(e(T), p(T)) = (3, 4)

0 1 2 4 5 6 7 83

1 2

Figure 3.6: An example demonstrating the maximum execution time of a task under GEDF

in the absence of deadline tardiness, wherein T1 begins execution exactly e(T) time units
prior to its deadline, T2 begins execution exactly at its release time, and both jobs are not
preempted.

Theorem 3.1. If PD2 is modified as described above, subtasks are eligible for early-releasing

X − 1 quanta before their actual release times, and all tasks in the same MTT have the same

execution cost, then the spread of any MTT is no greater than X as defined in (3.1), where

umax = maxT∈τ u(T).

X =























3, if umax ≤ 1/3

4, if 1/3 < umax ≤ 1/2

2 ×
⌈

1
1−umax

⌉

− 1, if umax > 1/2

(3.1)

For GEDF, we can state a similar theorem. In this case, assuming that all tasks have a

utilization less than one, a task T can execute for at most 2 ·e(T) consecutive time units in the

absence of tardy jobs, as seen in Figure 3.6. Therefore, the maximum amount of time that any

task in the task set can execute is 2 · emax consecutive time units, where emax = maxT∈τ e(T).

Assume that task T is the first task in some MTT T to schedule its ith unit of computation,

and this occurs at time t. As a result, all other tasks U ∈ T , where U 6= T , will be flagged

urgent. Given the upper bound on the number of consecutive time units that any task may

execute, we argued in [3] that any task that interferes with the scheduling of these urgent

tasks must be ineligible for at least one time unit in the interval [t, t + 2 · emax + 1). From

this, it can be shown that sufficient processing capacity exists so that all other tasks U ∈ T

will have their ith units of computation scheduled in the interval [t, t+ 2 · emax + 1), resulting

in a spread of 2 · emax + 1. This result is stated formally in the following theorem.

Theorem 3.2. Consider a task set τ for which tardiness is at most ∆ under GEDF, and let

emax denote the largest job execution cost in τ . If GEDF is modified as described above for

78

Spread
Util. MTT Size = 2 MTT Size = 3 MTT Size = 4

Alg. Constr. X ER Min Avg Max Min Avg Max Min Avg Max
PD2 (0, 1/3] – 0 1 1.35 41 1 1.66 40 1 1.99 41
[3] (0, 1/3] 3 2 1 1.27 2 1 1.52 2 1 1.77 3

PD2 (0, 1/2] – 0 1 1.40 37 1 1.78 41 1 2.18 37
[3] (0, 1/2] 4 3 1 1.28 2 1 1.53 2 1 1.77 3

PD2 (0, 3/4] – 0 1 1.39 25 1 1.83 33 1 2.29 41
[3] (0, 3/4] 7 6 1 1.29 2 1 1.57 2 1 1.81 3

Table 3.3: Spread under PD2 with and without the method in [3]. Each entry represents
50,000 task sets.

PD2, but instead jobs (rather than subtasks) are allowed to become eligible for early-release up

to 2 · emax time units before their actual release times, all tasks in the same MTT have the

same execution cost, and p(T) ≥ e(T) + 1 + ∆ for each T ∈ τ , then the spread of any MTT

is at most 2 · emax + 1.

Note that, if the method is employed by allowing deadline tardiness instead of shifting

the schedule and early-releasing, then any tardiness arising from our method must be added

to the tardiness bound for GEDF.

Spread experiments. To assess the effectiveness of our approach, we conducted two exper-

imental evaluations. In the first, we randomly generated 50,000 task sets in several categories,

and simulated the scheduling of these task sets on a four-core system. We measured the spread

for each MTT both with and without our method under PD2 scheduling. An upper bound

of 1/3, 1/2, or 3/4 was enforced on task utilizations, depending on the experiment. In this

and all of the other experiments presented in [3], the utilization of every task in an MTT

is assumed to be the same. All simulations were run up to the hyperperiod of each task

set. Results are shown in Table 3.3. These experiments show that our rules often have an

impact on both average and maximum spreads so that they are closer to one (i.e., perfect

parallelism)—in fact, spreads are much lower than might be expected from the analytical

spread guarantees presented earlier. Most significantly, note that our method always prevents

extremely high spreads, as shown in the boldface columns of Table 3.3.

79

Shared cache miss rates. We also conducted experiments that demonstrate the effective-

ness of our method in reducing shared cache miss rates. We first estimated miss ratios for the

same 50,000 task sets considered earlier using a simple (hand-coded) cache model. This model

assumes a “best-case” scenario where the cache was fully associative. Each task was specified

to sequentially reference 10,000 cache lines, or 640K of memory, every quantum. The region

of memory referenced was dependent on the subtask—equivalent subtasks of tasks in the

same MTT referenced the same unique region of memory. Thus, the only opportunities for

cache reuse existed when tasks of the same MTT referenced the same region of memory. We

assumed that the amount of data referenced per subtask is the same every quantum regardless

of cache miss rates: if a task finishes early, the rest of the quantum is wasted. We further

assumed that the shared cache can hold exactly four working sets of data, and employs an

LRU replacement policy. Cache lines that could be reused during the current quantum were

reused before being replaced (an idealistic assumption). Cache lines that were not reused

were eventually replaced per the LRU policy. This admittedly simplistic cache model allowed

all tasks to be scheduled up to the task set hyperperiod, as done in the prior experiment.

This was not possible with the experiments discussed below, where SESC was used (SESC is

very exact, but also quite slow). The results of experiments conducted assuming our simple

cache model, shown in Figure 3.7, are quite dramatic. Note that the best achievable cache

miss ratio for an MTT T (with |T | tasks) is 1/|T |, and most MTTs approach this miss ratio

with our method.

We next ran more realistic and complex experiments using SESC. SESC executes actual

task and scheduling code, and therefore scheduling, preemption, and migration costs were

accounted for in these simulations. In order to examine the benefits of our method per MTT,

the simulator was modified so that each memory reference could be “tagged” with a value

indicating the MTT with which it was associated. The simulated architecture consisted of

four cores, each with dedicated 16K L1 data (4-way set associative) and instruction (2-way

set associative) caches with random and LRU replacement policies, respectively, and a shared

2048K 8-way set associative on-chip L2 cache with an LRU replacement policy. Each cache

has a 64-byte line size. The memory reference pattern of all tasks remained the same as in

80

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization of Each Task in MTT

C
ac

he
 M

is
s

R
at

io

Cache Miss Ratios Per MTT (PD2)

MTT Size = 2
MTT Size = 3
MTT Size = 4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization of Each Task in MTT

C
ac

he
 M

is
s

R
at

io

Cache Miss Ratios Per MTT (PD2 + Method)

MTT Size = 2
MTT Size = 3
MTT Size = 4

Figure 3.7: Cache miss ratios for PD2 with and without the method in [3], using a simulated
simple cache model. Each scatter plot represents the same 50,000 task sets from Table 3.3
with utilization constraint (0, 3/4].

81

the simpler experiments, and thus the L2 cache could hold approximately three working sets

of data. Additionally, all tasks in the same MTT reference the same memory region, but

starting from different locations, wrapping if necessary. This better utilizes the cache and

prevents tasks from proceeding in “lock step” while waiting for lines to be loaded into the

cache from main memory, resulting in virtually no cache benefit.

In these experiments, we simulated 50 randomly-generated task sets for 20 quanta (instead

of up to the hyperperiod) assuming a 0.75-ms quantum. While SESC is very accurate, it

comes at the cost of being quite slow. Therefore, longer and more detailed results could

not be obtained because of the length of time that it took the simulations to run. In order

to demonstrate the substantial impact of our method on MTTs with low-utilization tasks,

we required all tasks to either have utilization at most 1/4 or at least 3/4. (This creates

opportunities for high-utilization tasks to disrupt the co-scheduling of low-utilization tasks

that belong to the same MTT.) Task periods varied from three to 100, and all task sets fully

utilized all four cores, with MTTs containing between two and four tasks. In all cases, we

early-release by only six quanta—we would need to early release by much more in order to

make spread guarantees, but we can still see substantial benefits with limited early-releasing.

Results are shown in Figure 3.8. These results, while not as dramatic, still demonstrate a

significant benefit for lower-utilization tasks. Note the especially large benefit for MTTs with

three and four tasks, where cache miss ratios in the range of 50% to 75% decrease to at most

50% with few exceptions. Note also that opportunities for cache reuse are limited by our

memory reference pattern, and therefore all miss ratios are quite high. However, our method

shows a substantial overall improvement with these task sets.

Limitations. While the method in [3] is effective at reducing spread and shared cache miss

rates for MTTs, it encourages co-scheduling on a per-subtask or per-unit-of-execution basis

rather than per-job (as in problem CARTCP). As a result, job priorities change considerably

during execution, and cache affinity may be lost due to frequent job preemptions or migra-

tions. By using a per-job metric, many jobs may avoid losing cache affinity during execution,

resulting in more significant cache miss rate reductions. Additionally, when this method is

used in conjunction with GEDF (and most other non-Pfair policies), the spread guarantee is

82

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization of Each Task in MTT

C
ac

he
 M

is
s

R
at

io

Cache Miss Ratios Per MTT (PD2)

MTT Size = 2
MTT Size = 3
MTT Size = 4

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Utilization of Each Task in MTT

C
ac

he
 M

is
s

R
at

io

Cache Miss Ratios Per MTT (PD2 + Method)

MTT Size = 2
MTT Size = 3
MTT Size = 4

Figure 3.8: Cache miss ratios for PD2 with and without the method in [3], using the cache
model within SESC. Each scatter plot represents the same 50 task sets.

83

relatively weak, and only applies in specific cases. As a result, this method, like the use of

megatasks, is heavily reliant on Pfair scheduling—the schedulability benefits of using GEDF

as the baseline policy could be offset by weaker spread guarantees. Optimally, it would be

desirable to have both the practical schedulability benefits of GEDF and the co-scheduling

benefits that can be achieved when using this method with PD2.

3.2.3 Problems With Combining These Methods

Unfortunately, the methods described in Sections 3.2.1 and 3.2.2 cannot be combined effec-

tively. This was hinted at when describing the limitations of megatasks, since megatasks limit

the parallelism available to MTTs.

More generally, megatasks achieve performance gains by discouraging parallelism (Sec-

tion 3.2.1), while MTT co-scheduling achieves gains by encouraging parallelism (Section 3.2.2).

There is no straightforward way to combine these mechanisms, since encouraging and discour-

aging are opposite goals. The static restrictions on parallelism that are imposed by megatasks

make it very difficult to encourage co-scheduling, even if such co-scheduling would actually

contribute towards the goal of reducing cache miss rates and preventing thrashing. Upon

further reflection on this point, we observed it is necessary only to discourage co-scheduling

of tasks from different MTTs—encouraging co-scheduling of tasks within the same MTT im-

plicitly satisfies this goal. This observation led to the work in [17], which will be discussed

further in Chapter 4.

3.3 Conclusion

In this chapter, we have formally introduced the cache-aware co-scheduling problem that we

seek to address in this dissertation, and proven that finding an exact solution to the problem

is NP-hard in the strong sense. We also described two earlier attempts to address aspects

of the problem and discussed limitations that make them both individually restrictive and

impractical to combine. In the remaining chapters, we will present a more complete solution

to the problem that also has low enough scheduling overheads to be used in a real operating

system in practice.

84

CHAPTER 4

CACHE-AWARE REAL-TIME

SCHEDULING

In this chapter,1 we present our methods for cache-aware real-time scheduling. These meth-

ods influence co-scheduling through the use of a technique, called a job promotion, that we

introduce to reduce cache miss rates. This chapter is organized as follows. First, we discuss

how job promotions can be used to influence co-scheduling, and present an example of how

certain co-scheduling choices can affect the cache miss rates experienced by real-time work-

loads. We then introduce a large number of cache-aware real-time scheduling policies that

dictate when and how job promotions are used; these policies are employed within heuristics.

A large number of heuristics are evaluated in Chapter 6 based on their ability to reduce cache

miss rates. Next, we present the tardiness bounds of our method, and explain how buffering

can sometimes be used to hide tardiness from an end user. Finally, we present a detailed

example of our best-performing heuristic, and discuss implementation concerns that guided

our selection of the heuristic to implement within LITMUSRT, and then conclude.

4.1 Influencing Co-Scheduling: Job Promotions

Co-scheduling decisions can have a significant impact on the cache miss rates of real-time

tasks. Our scheduler is concerned with reducing cache miss rates for periodic tasks within

soft real-time workloads, where tasks are grouped into MTTs.

1Contents of this chapter previously appeared in preliminary form in the following papers:
Calandrino, J., and Anderson, J. (2008). Cache-aware real-time scheduling on multicore platforms: Heuristics
and a case study. In Proceedings of the 20st Euromicro Conference on Real-Time Systems, pages 299–308.
Calandrino, J., and Anderson, J. (2009). On the design and implementation of a cache-aware multicore real-
time scheduler. In Proceedings of the 21st Euromicro Conference on Real-Time Systems, pages 194–204.

768K
Job K

768K
Job J

Priority points
moved hereJob W

Job V
MTT:
256K

3210

Figure 4.1: An example of where promoting jobs can reduce cache miss rates, assuming the
WSSs shown and a cache size of 1 MB.

As stated in Chapter 1, our cache-aware scheduler attempts to reduce cache miss rates

by encouraging the co-scheduling of tasks within the same MTT, and discouraging the co-

scheduling of tasks within different MTTs when doing so would cause shared cache thrashing.

This is achieved through job promotions, wherein a job is given a temporary increase in

priority by moving its priority point, originally located at the job deadline, to the current

time. Cache impact is determined by examining per-job working set sizes (WSSs), which

are specified for each MTT. The per-job WSS of an MTT indicates the amount of memory

referenced by all tasks of that MTT while executing one “job” of the MTT, where the ith

job of an MTT consists of the ith jobs of all tasks in the MTT. Shared cache thrashing is

assumed to occur during a quantum if the sum of the WSSs of all MTTs with jobs scheduled

in that quantum exceeds the shared cache size. For the time being, we simply assume that

accurate WSS information already exists for each MTT. In practice, the profiler described in

Chapter 5 is responsible for providing this information.

Example (Figure 4.1). Figure 4.1 presents an example for a three-core platform where

influencing co-scheduling in the ways previously stated can be useful. Assuming the use of

GEDF scheduling, jobs J and K have the highest priority at time 0, but would thrash the

shared cache if co-scheduled, since the sum of the WSSs of jobs J and K is 768+768 = 1536K,

which exceeds the shared cache size of 1 MB, or 1024K. We can avoid thrashing by scheduling

job V instead of job K. Additionally, since jobs V and W are part of the same MTT, we

want to encourage job W to be scheduled when job V is scheduled. To accomplish this,

86

the priorities of jobs V and W need to be increased, which has the potential to negatively

impact real-time guarantees later in the schedule. However, if we were to use job promotions,

then priority points would remain window-constrained, as defined in Chapter 2; that is, the

priority point of each job would remain between its release time and its deadline, and as a

result, tardiness would remain bounded as it is under GEDF. Knowing this, we can promote

jobs V and W in Figure 4.1 at time 0. Doing so causes V and W to be scheduled next, which

should reduce cache miss rates, while still allowing soft real-time guarantees to be made. This

method of promoting jobs indirectly discourages the co-scheduling of certain groups of tasks

by encouraging other groups to be co-scheduled instead.

While promoting jobs can lead to reduced cache miss rates in the near term, it might result

in higher cache miss rates, or cache thrashing, later. For example, if we always promote jobs

from MTTs with the smallest WSSs, then eligible jobs from MTTs with larger WSSs will

be pushed later in the schedule, which may be problematic. Thus, the choice of when to

promote jobs, and which jobs to promote, can have a substantial impact on the effectiveness

of our scheduler. Moreover, this choice is not always straightforward. For this reason, we

propose (in this chapter) and evaluate (in Chapter 6) a large number of heuristics within this

dissertation. Each heuristic represents a set of policies that dictate when to promote jobs and

which jobs to promote. These heuristics, and the policies that they employ, are described

next.

4.2 Promotion Heuristics

The heuristics presented in this chapter are used to make scheduling decisions at every quan-

tum boundary in an effort to reduce cache miss rates, based on the WSSs of the MTTs that

must be scheduled. Note that our heuristics do not perform any scheduling, monitoring,

or other activity between quantum boundaries; later in this chapter, we briefly discuss why

allowing scheduling between quantum boundaries can be problematic.2 Scheduling decisions

are made iteratively over all cores—even when jobs are promoted, jobs that have already been

2Note that our profiler, discussed in Chapter 5, does perform monitoring activities between quantum bound-
aries, which are necessary for generating accurate WSS estimates.

87

scheduled on some core at the current quantum boundary are unaffected.

4.2.1 Common Rules

Several rules, stated below, are common to all heuristics.

• Promoted Jobs. A promoted job is given a new priority point that is equal to the

current time. Tardy jobs are never promoted, as doing so might move the priority

point of a tardy job from its deadline to a time after its deadline. As a result, the job

would actually experience a priority decrease, and priority points would no longer be

window-constrained, resulting in potentially unbounded deadline tardiness. Instead of

promoting tardy jobs, such jobs are simply scheduled first, in EDF order, after which

non-tardy promoted jobs can be scheduled. This allows priority points to remain

window-constrained, and therefore tardiness is bounded. Note that this means that

a promoted job is highly encouraged, but not guaranteed , to be scheduled next. The

duration of a job promotion is determined by the promotion-duration policy, described

in Section 4.2.2.

• Urgent Jobs. When a job Ti is scheduled, where task T corresponds to a task within

some MTT T , and T is the first task in T to schedule its ith job at this quantum

boundary, each job Ui that has not yet executed to completion, where U is also a task

of T and U 6= T , is flagged urgent and promoted. Note that this only occurs if Ti

itself is not urgent. Regardless of the promotion duration policy that is employed, all

urgent jobs remain promoted until at least the time that they are next scheduled, and

no non-urgent job (from a different MTT) can be promoted while eligible urgent jobs

exist. This rule encourages jobs from the same MTT to be scheduled together, in order

to increase the level of shared cache reuse.

• Priorities. Released jobs are scheduled in increasing order of their current priority

points (including promotions). Ties are broken in favor of promoted jobs, since schedul-

ing such jobs is expected to reduce cache miss rates. Additionally, urgent promoted

jobs have priority over non-urgent promoted jobs, in the event that both types of jobs

88

exist when making a scheduling decision.

Note that these rules allow us to speak of promoting MTTs instead of jobs when presenting

the policies in Section 4.2.2. Promoting an MTT means that we choose a single eligible

job within that MTT to promote; however, when the ith job of some task in that MTT is

promoted, then by the Urgent Jobs rule, the (incomplete) ith jobs of all other tasks in that

MTT will be flagged urgent and promoted as soon as the promoted job is scheduled. By the

Priorities rule, co-scheduling of the MTT will be encouraged.

Figure 4.2 presents pseudo-code that describes how scheduling decisions are made by each

heuristic. Note that some heuristic-specific thresholds and policies used in the pseudo-code

are undefined, as indicated by bold type. A heuristic is defined in terms of the thresholds and

policies that it employs; however, similarities exist among all heuristics. First, all heuristics

encourage jobs to be scheduled by promoting them, and all heuristics encourage the co-

scheduling of MTTs based on the rules stated earlier and the promotion-duration policy that

is employed. Second, all heuristics maintain the current cache utilization for the shared

cache, which is defined as the sum of the WSSs of all MTTs with jobs scheduled thus far

at the current quantum boundary divided by the shared cache size. For example, if jobs

from two MTTs with WSSs of 256K and 512K have been scheduled, then the current cache

utilization of a 1 MB cache would be 75%. Third, all heuristics use GEDF scheduling until the

cache utilization reaches a cache utilization threshold , at which point a cache-aware policy is

employed to promote jobs. Finally, if cache utilization reaches the lost-cause threshold , or a

threshold at which we assume that cache thrashing is inevitable during the current quantum,

then a lost-cause policy is employed to promote jobs. Heuristics might also employ the use of

phantom tasks, or avoid the scheduling of partially-eligible MTTs; both of these policies are

described in Section 4.2.2.

Example (Figure 4.3). Figure 4.3 presents an example of how cache miss rates can be

reduced over GEDF scheduling using our heuristics. The heuristic shown uses a 50% cache

utilization threshold, an infinite lost-cause threshold, a cache-aware policy that promotes jobs

from the MTT with the smallest WSS, and a promotion-duration policy where, for non-urgent

jobs, promotions persist until the next scheduling decision is made (regardless of the job that

89

MakeSchedulingDecisions(numCores , cacheSize)

� Initialize variable to track sum of MTT WSSs
1 usedCache := 0;

� Initially, assign each job a priority point equal to its deadline
2 AssignJobPriorityPointsEqualToDeadlines();

� Make scheduling decisions by iterating over all cores
3 for i := 1 to numCores do

� Promote job if applicable
4 if (No eligible urgent jobs) then

� Compute C and N for use by policies
5 C := max(0, cacheSize − usedCache);
6 N := numCores − i+ 1;

� Apply policies as necessary

7 if (usedCache
cacheSize

≥ Lost-cause Threshold) then

8 PromoteJobUsingLostCausePolicy(Lost-Cause Policy, C,N)

9 elseif (usedCache
cacheSize

≥ Cache Utilization Threshold) then

10 PromoteJobUsingCacheAwarePolicy(Cache-Aware Policy, C,N);
11 J := Promoted job;
12 if (Avoid scheduling partially-eligible MTTs ∧

MTT of J is partially eligible) then
13 AdjustPromotedJobToFullyEligibleMTT(J,C,N)

fi;
14 J := Promoted job (may have changed);
15 if (Use phantom tasks ∧

WSS of J is greater than C) then
16 AttemptToPromotePhantomTasks(J)

fi
fi
� Else no job is promoted, use GEDF

fi;
� Schedule highest-priority job on core i, using Priorities rule

17 ScheduleHighestPriorityJob(i);
18 J := Scheduled job;
19 mtt := MTT of J ;
20 jobIndex := Job index of J ;
21 if (J is first job of mtt with job index jobIndex scheduled at this quantum boundary) then
22 usedCache := usedCache + WSS(mtt)

fi;
� Set urgent flags and promote/demote jobs by Promoted Jobs and Urgent Jobs rules

23 SetUrgentAndPromotionStatus(Promotion Duration Policy)
od

Figure 4.2: Pseudo-code for all heuristics, invoked at every quantum boundary.

90

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

50% cache
utilization
threshold
reached

1 2 3 40 0 1 2 3 4

(b)(a)

T
(e(T), p(T)) = (1, 2)

768K

U

V256K

(e(U), p(U)) = (1, 2)

(e(V), p(V)) = (1, 2)

768K

W

X

MTT:

256K

(e(W), p(W)) = (1, 4)
(e(X), p(X)) = (1, 4)

T

U

V

W

X

1 2

21

1 2

1

1 1

1

21

21

21

Figure 4.3: Two-core schedules for a set of five tasks. Tasks are scheduled using (a) GEDF

scheduling and (b) one of our heuristics. WSSs are shown along with execution costs and
periods. Thrashing occurs during “hatched” quanta, assuming a shared cache size of 1 MB,
and black triangles indicate the new priority points of promoted jobs.

is scheduled next), and for any urgent job, promotions persist until that job is scheduled.

At time 0, job V1 is promoted by the cache-aware policy after the 50% cache utilization

threshold is reached by scheduling T1, since V1 has the smallest WSS (and ties are broken by

task identifier), and the Priorities rule causes V1 to be scheduled. At time 1, the threshold

is again reached by scheduling U1, and W1 is promoted and scheduled; this causes X1 to be

promoted and flagged urgent by the Urgent Jobs rule. The Priorities rule X1 to be scheduled

at the next available time (at time 2).

Tardy jobs. A large number of tardy jobs can make it difficult to influence scheduling

decisions through job promotions, but this is necessary if any real-time guarantees are to be

made. By making appropriate scheduling decisions before such problematic scenarios arise,

we can reduce the impact on cache miss rates when we “lose control” of the system in this

manner. In the discussion of policies that follows, we return to this issue.

91

4.2.2 Policies

We now present the policies that define a heuristic. While thresholds specify when to promote

a job, policies specify which job to promote. In the discussion that follows, we speak of

promoting MTTs instead of jobs for the reasons discussed Section 4.2.1.

Promotion-duration policy. This policy dictates the duration of a job promotion. Two

options exist:

1. For non-urgent jobs, promotions persist until the next scheduling decision is made;

this means that a job may be promoted and demoted without being scheduled. For

urgent jobs, promotions persist until the job is scheduled; that is, the job will not

be demoted until it is scheduled, at which time the urgent flag for that job is also

cleared. The rationale is that non-urgent promoted jobs are promoted to influence the

current scheduling decision; in future scheduling decisions, it may make more sense to

promote a different job, regardless of whether the currently-promoted job is actually

scheduled. However, urgent promoted jobs are promoted so that they are scheduled as

close as possible in time (preferably, co-scheduled) with another recently-scheduled job

in the same MTT. As such, until an urgent promoted job is scheduled, it must remain

promoted so that it is scheduled at the earliest possible time that will not cause timing

constraints to be violated.

2. For all jobs, promotions and urgency persist until the job completes—the urgent flag

for a job is also cleared upon its completion. Thus, in this case, the set of promoted

jobs is often identical to the set of urgent jobs. As a result of this policy, only tardy

jobs can preempt the execution of promoted jobs or interfere with MTT co-scheduling.

In the absence of tardy jobs, promoted jobs execute non-preemptively, which preserves

cache affinity and increases cache reuse among jobs belonging to the same MTT.

Note that policy (1) was employed for all heuristics in [17], while policy (2) was employed

in [18]—many of the heuristics described in this chapter previously appeared in preliminary

form in these papers (the author of this dissertation is a co-author of both papers).

92

Cache-aware policy. This policy is employed when cache utilization reaches the cache

utilization threshold. Once this threshold is reached, we assume that cache utilization is high

enough that thrashing is a concern for any remaining scheduling decisions that are made at

this quantum boundary. Therefore, cache miss rates are given higher priority than timing

constraints (as long as tardy jobs do not exist) when this threshold is reached. This policy

is used for the current quantum boundary until all cores are scheduled or cache utilization

reaches the lost-cause threshold. Each policy chooses an MTT to promote based on the

remaining “un-utilized” cache C and “free” cores N (see Figure 4.2). We present five different

cache-aware policies. Assume that the WSS of an MTT T is denoted WSS(T). If all tasks

within an MTT have the same execution cost, then tc(T) indicates the task count of the

MTT. Otherwise, tc(T) is the number of tasks that have not completed job i, where i is the

lowest job index such that, for at least one task T ∈ T , Ti has not completed execution (this

definition works for same-execution-cost MTTs as well, but the prior definition is simpler).

This definition of tc(T) has an implicit time parameter, as tc(T) must be defined with respect

to the time at which we are making scheduling decisions. For all policies, we only promote

an MTT if it contains eligible jobs.

1. Promote T with the smallest WSS(T).

2. Promote T with the largest WSS(T) that does not exceed C, or exceeds it by the

smallest amount if no such MTT exists.

3. Promote T with the smallest WSS(T)/tc(T) ratio.

4. Promote T with the largest WSS(T)/tc(T) ratio, where WSS(T) does not exceed C,

or exceeds it by the smallest amount if no such MTT exists.

5. Promote T with the largest WSS(T)/tc(T) ratio that does not exceed C/N , or exceeds

it by the smallest amount if no such MTT exists.

When C = 0, policies (2) and (4) become equivalent to (1), as both policies promote the

MTT T where WSS(T) exceeds C = 0 by the smallest amount, which defaults to promoting

T with the smallest WSS(T) (even if a T does exist where WSS(T) = 0, the MTT T with

93

the smallest WSS(T) is still being promoted). Additionally, when C = 0, policy (5) becomes

equivalent to (3).

Example (Figure 4.4). Insets (b) through (f) of Figure 4.4 show the differences between

policies when scheduling the task set in inset (a). Policies (1) and (3) make locally greedy

decisions that should reduce cache miss rates in the near term, but can result in cache thrash-

ing later, since the remaining eligible jobs are from MTTs with large WSSs. Over time, these

policies would result in periodic cache thrashing for this task set. Policies (2) and (4) attempt

to reduce the impact of high-cache-impact MTTs by scheduling them whenever they will not

cause thrashing. As a result, the jobs that are eligible later are from lower-cache-impact

MTTs, cache utilizations are lower, and thrashing is less extreme. However, these policies

differ in their definition of a “high-cache-impact” MTT. We believe that the definition used

by policy (4) is most accurate, as an MTT T with a large WSS(T)/tc(T) ratio demands a

large amount of the cache, yet is easily co-scheduled with jobs from other MTTs. This makes

T quite difficult to schedule when cache miss rates are a concern. Finally, policy (5) is similar

to (4), except that it tends to delay scheduling MTTs with the highest cache impact; this

results in periodic cache thrashing as was seen in policies (1) and (3).

Note that, while some policies are not very effective in this example, they may be more

effective when cache utilization thresholds are higher (a threshold of zero is assumed here),

depending on which MTTs are scheduled before the threshold is reached. Moreover, certain

cache-aware policies may perform better when used in conjunction with the other types of

policies that are discussed in this section. Therefore, it is not clear which policy will result in

the best performance in all cases, or if such a policy exists—we use experiments (in Chapter 6)

to assist us in making recommendations.

Lost-cause policy. Each heuristic also employs a lost-cause policy when cache utilization

reaches the lost-cause threshold. This threshold is typically greater than 100% cache utiliza-

tion. Once this threshold is reached, we assume that cache thrashing, or high cache miss

rates, are inevitable during the current quantum. We present three policies for when this

occurs.

94

1: [768K, 3]
2: [256K, 2]
3: [256K, 2]
4: [255K, 1]
5: [257K, 1]
6: [512K, 1]
7: [512K, 1]
8: [512K, 1]
9: [64K, 3]
10: [65K, 1]

(a)

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

Core 1

9

9

9

10

4

2

2

3

3

5

6

7

8

1

1

1

Core 0

Core 2

Core 3

0 1 32 4 5

(b)

Policy (1)

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

0 1 32 4 5

(c)

Policy (2)

Core 1

1

1

1

2

2

6

3

3

7

8

9

9

9

5

4

10Core 3

Core 2

Core 0

���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���

0 1 32 4 5

(d)

Policy (3)

Core 1

9

9

9

10

2

2

3

3

4

1

1

1

5

6

7

8Core 3

Core 2

Core 0

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

0 1 32 4 5

(e)

Policy (4)

Core 1

6

7

9

9

9

8

5

10

1

1

1

4

2

2

3

3Core 3

Core 2

Core 0

��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��

0 1 32 4 5

(f)

Policy (5)

Core 1

Core 2

Core 3

Core 0 1

1

1

4

2

2

5

3

3

10

9

9

9

6

7

8

0 1 32 4 5

(g)

Phantom Tasks

Core 1

6

7

8

5

4

1

1

1

2

2

3

3

10

9

9

9Core 2

Core 0

Core 3

0 1 32 4 5

(h)

Core 1

6

7

8

5

4

1

1

1

2

3

9

9

9

3

2

10

Core 0

Core 2

Core 3

Avoid Part. Elig. MTTs

Figure 4.4: Four-core schedules demonstrating a variety of cache-aware policies, assuming a
cache utilization threshold of 0%, an infinite lost-cause threshold, and a 1 MB shared cache.
Inset (a) shows the task set to be scheduled, consisting of ten MTTs, one specified per line
using the format “MTT identifier: [WSS, task count]”. Each task has an execution cost of
one and period of five. Insets (b)-(f) show schedules when using cache-aware policies (1)-(5),
respectively. Insets (g) and (h) show schedules when using policy (4) and phantom tasks—for
inset (h), we also avoid scheduling partially-eligible MTTs. The numbers in boxes indicate
the MTT that is scheduled on a core during a quantum—for example, in inset (b), three
jobs of MTT 1 are scheduled on cores 1-3 between times 3 and 4. Hatching indicates cache
thrashing, i.e., cache utilization exceeding 100%—cross-hatching indicates a cache utilization
exceeding 150%.

95

1. Revert to GEDF.

2. Promote T with the largest WSS(T).

3. Promote T with the largest WSS(T)/tc(T) ratio.

Policy (1) attempts to reduce average tardiness, while policies (2) and (3) schedule high-

cache-impact MTTs so that it is easier to avoid thrashing in future quanta, since near-term

cache miss rates are essentially guaranteed to be high. Note that policies (2) and (3) can

backfire—since high-cache-impact MTTs will be most negatively affected by cache thrashing,

and such MTTs generate the majority of memory references, the overall cache miss rate might

increase rather than decrease.

Phantom tasks. If the system is not fully utilized, then it may be possible to idle one or

more cores to prevent thrashing. A heuristic can choose to idle cores by promoting jobs of

phantom tasks, which are single-threaded tasks that have a period equal to the hyperperiod

of the real-time workload, an execution cost of one, and a WSS of zero. Phantom tasks

represent the available idle time, divided into quantum-length intervals (as each task has an

execution cost of one) so that one job of a single phantom task can be scheduled on a core

to idle that core during a quantum. A heuristic will promote jobs of phantom tasks only to

avoid cache thrashing. Let T be the MTT that would be promoted if phantom tasks were not

used. If WSS(T) > C, and therefore, it is assumed that promoting T would cause thrashing,

then we can promote jobs of the phantom tasks instead if the total number of eligible jobs

of all phantom tasks is at least tc(T). Doing so avoids thrashing by reducing parallelism in

scenarios where better system performance is achieved by reducing parallelism to avoid cache

thrashing, rather than maximizing parallelism at all costs (recall the example in Figure 1.2

presented in Chapter 1). If phantom tasks are employed, then a job of a phantom task must

be scheduled whenever a core is idle and at least one such job is eligible, even if no “real”

jobs are eligible, as phantom tasks are intended to account for available idle time, whether it

is used to prevent thrashing or not.

Example (Figure 4.4(g)). Figure 4.4(g) shows the impact of using phantom tasks along

96

with cache-aware policy (4), which allows cores 2 and 3 to be idle at time 0, and core 3 to be

idle at time 1. As a result, cache thrashing is avoided entirely.

Partially-eligible MTTs. We consider an MTT T to be partially eligible either because

fewer than tc(T) jobs are eligible at the time that it is considered for promotion by the cache-

aware policy (in which case, at least one tardy job Ti−1, where T ∈ T , is scheduled in the

current quantum, so that job Ti is not eligible until the next quantum) or tc(T) exceeds the

current value of N . We may want to avoid scheduling such MTTs since their working sets will

need to be referenced in at least one future quantum in addition to the quantum for which

scheduling decisions are being currently made. If a heuristic chooses to avoid scheduling

partially-eligible MTTs, then such MTTs are promoted only when all other eligible MTTs

have WSSs that are greater than C. In this case, we would choose to schedule a partially-

eligible MTT before scheduling phantom tasks, as both choices avoid thrashing in the current

quantum, but the former choice also allows some real work to be accomplished and “saves”

eligible phantom tasks for times when thrashing cannot be avoided without scheduling them.

Example (Figure 4.4(h)). Figure 4.4(h) shows how avoiding the scheduling of partially-

eligible MTTs impacts scheduling when employed along with policy (4) and phantom tasks.

At time 2, we avoid scheduling MTT 2 in favor of MTT 10 (when comparing insets (h) and

(g), respectively, of Figure 4.4). This allows all jobs of MTT 2 to be co-scheduled at time 3.

As a result, the amount of time that the WS of MTT 2 must be present in the cache (again,

as compared to inset (g) of Figure 4.4) decreases by 50%.

Scheduling between quantum boundaries. We now consider allowing scheduling deci-

sions to be made between quantum boundaries—this would most commonly occur when jobs

complete between quantum boundaries. By letting N = 1 and defining C based on the MTTs

executing on the other M − 1 cores (assuming an M -core platform), we can use the same

heuristics used at each quantum boundary. However, since job priorities change over time

due to promotions, jobs scheduled between quantum boundaries may be quickly preempted

at the next quantum boundary. For example, if the next quantum boundary is at time t, and

a job completes at time t− ǫ, then a job scheduled at time t− ǫ could be preempted at time t

97

when its priority changes. If ǫ is not large relative to scheduling overheads, then the utiliza-

tion gains resulting from scheduling a job at time t − ǫ may be negligible. Additionally, by

scheduling jobs between quantum boundaries, reliably predicting the potential for thrashing

in a quantum becomes more difficult. As a result, scheduling between quantum boundaries

may decrease overall system performance and offset any utilization gains. Thus, in all of

the heuristics considered in this dissertation, scheduling is not performed (and neither is any

other activity except profiling) between quantum boundaries.

4.3 Tardiness Bound

As discussed in Chapter 2, our tardiness bound follows directly from the work of Leontyev

and Anderson [44], since job priority points are window-constrained for all heuristics. There-

fore, the tardiness bound for a task T when using our heuristics, also presented in Chapter 2,

is
Ez+

P

U∈τ\T
e(U)−e(T)

M−Uz
+ e(T). Note that scheduling phantom tasks will increase the tardi-

ness bound, since such tasks must be treated as “real work” when this bound is calculated.

Specifically, for every phantom task that is added to the task set, the tardiness bound must

be calculated as if another “real” task P were added, where e(P) = 1 and p(P) is equal to

the hyperperiod of the real-time workload without phantom tasks. As a result, each phantom

task will add one to the summation term when calculating the tardiness bound for any “real”

task. However, while it is necessary to include the impact of phantom tasks when computing

tardiness bounds for any “real” task, we do not need to include the tardiness bounds for the

phantom tasks themselves when computing a maximum tardiness bound for the entire task

set; since phantom tasks are not real tasks, any “tardiness” experienced by the jobs of these

tasks is irrelevant.

4.4 Hiding Tardiness Through Early Releasing and Buffering

We now describe a method that, in some cases, allows tardiness to be “hidden” from an

end user. This method employs a combination of early-releasing jobs and buffering results.

Specifically, we convert a schedule with a tardiness bound of B into a B-shifted schedule,

98

where all jobs are early-released by B time units, and the scheduled is shifted right by B

time units, as described in Chapter 3. Doing so creates a “preprocessing interval” of length

B at the beginning of task set execution (assuming a synchronous task set where all tasks

release their first job at the same time) during which no job is “officially” released. In the

resulting preprocessing interval, work can be completed early (and the results of the work

buffered if necessary), so that jobs always finish by their new shifted deadlines; thus, deadlines

are never missed. One caveat to this method is that it requires an end user to wait for the

duration of the preprocessing interval before any results are seen; however, long wait times

upon launching an application are quite standard, and unless tardiness bounds are very large

(e.g., ten seconds), such waiting should not be excessive. Alternately, if the tardiness bounds

that are analytically guaranteed are not sufficient, but we do not need to ensure hard real-

time constraints, then we can choose an “intermediate” solution where a smaller amount of

preprocessing is exchanged for an equivalent decrease in our tardiness bound. Finally, we note

that this method of hiding tardiness might not be feasible in scenarios where early-releasing

jobs is not possible; for example, when a job release is dictated by an externally generated

event, so that performing work related to that job before its release time is not possible.

Example (Figure 4.5). Consider the two-core schedules in Figure 4.5, where tasks are

scheduled using GEDF in all insets. In inset (a), no shifting or early-releasing is used (0-

shifted schedule), and a maximum tardiness of two is observed. In inset (b), the schedule is

2-shifted, resulting in no deadline tardiness and a preprocessing interval of two time units,

during which a user must wait, as shown. Finally, inset (c) shows an “intermediate” solution

where a 1-shifted schedule is used, resulting in a maximum tardiness of one and a smaller

preprocessing interval of one time unit. If necessary, work that is completed before the official

release time of a job can be buffered until its release.

Cache impact of buffering. If buffering is employed, then it will likely have an impact on

cache miss rates. For example, consider a job for which 20K of data, representing the result

of computations performed during job execution, must be buffered if the job completes before

its release time. This 20K of data must be accounted for as part of the WSS of the job (even if

99

(e(T), p(T)) = (4, 6)

(e(U), p(U)) = (4, 6)

(e(V), p(V)) = (4, 6)

T

U

V

1 2 3 40 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(a)

Maximum tardiness: 2
0−shifted schedule

(e(T), p(T)) = (4, 6)

(e(U), p(U)) = (4, 6)

(e(V), p(V)) = (4, 6)

T

U

V

1 2 3 40 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(b)

Maximum tardiness: 0
2−shifted schedule

(e(T), p(T)) = (4, 6)

(e(U), p(U)) = (4, 6)

(e(V), p(V)) = (4, 6)

T

U

V

1 2 3 40 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

(c)

Maximum tardiness: 1
1−shifted schedule

1

2

1

1

2

2

3

3

3

1

2

1

1

2

2

3

3

3

1

2

1

1

2

2

3

3

3

Figure 4.5: Two-core schedules demonstrating how tardiness can be hidden from an end user.
All insets use GEDF scheduling. (a) No shifting or early-releasing, which results in deadline
misses by up to two time units. (b) A 2-shifted schedule, which results in no deadline misses.
(c) A 1-shifted schedule, which results in deadline misses by up to one time unit. In each
schedule, the preprocessing interval, during which a user must wait, is shaded.

100

the buffering activities are not technically part of that job), so that the cache-aware scheduler

knows the full cache impact of scheduling a job. Note that this implies that the amount of

memory that is required to buffer results should be relatively small compared to the WSS of

a job; otherwise, the cache requirements can rise significantly, perhaps offsetting any gains

achieved by using a cache-aware heuristic. Alternately, we could prevent memory pages that

belong to the buffer from being cached at all, if this is supported by hardware, in which case

no additional accounting would be necessary, but the time required to retrieve buffered data

could become non-negligible. As a result, a model where a certain portion of every job must

be completed after its official release, and the remaining computation can occur before its

release, might be appropriate. This type of execution model would be interesting to pursue

in future work.

4.5 Implemented Heuristic

The previous sections imply that determining how and when to promote jobs to reduce cache

miss rates is not straightforward. As such, we conducted evaluations of a large number of

heuristics, representing different sets of scheduling policies, within the SESC architecture

simulator, the results of which are shown in Chapter 6. One of these heuristics was found

to be particularly effective at improving system performance for a wide variety of task sets.

We hereafter refer to this heuristic as the “best-performing” heuristic, and it is this heuristic

that we implemented within LITMUSRT along with the profiler described in Chapter 5.

The best-performing heuristic. The best-performing heuristic, based on the experiments

presented in Chapter 6, employs a cache utilization threshold of zero (that is, the cache-

aware policy is always used to promote and schedule jobs instead of GEDF, except when jobs

become tardy), cache-aware policy (1), and phantom tasks. The heuristic does not support

any lost-cause policy, nor does it avoid scheduling partially-eligible MTTs—both policies

were found to be difficult to implement efficiently in practice, so that scheduling overheads

remain low, for reasons discussed later in this section. Although we show in experiments in

Chapter 6 that not supporting a lost-cause policy can result in increased cache miss rates (as

101

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

0 1 2 4 5 6 7 83
(a)

768K
(e(T),p(T)) = (1,2)

(e(U),p(U)) = (1,4)
512K

W

512K

T

U

V

X

(e(V),p(V)) = (1,4)

0 1 2 4 5 6 7 83
(b)

T

U

V

W

X

MTT:
(e(W),p(W)) = (2,8)
(e(X),p(X)) = (2,8)

768K

1 2 43

2

2

1

1

1

1 1

1

1

21 3 4

2

2

1

1

Figure 4.6: Two-core schedules for a set of five tasks. Tasks are scheduled using (a) GEDF

and (b) the best-performing heuristic. WSSs are shown along with task execution costs and
periods. Thrashing occurs during “hatched” quanta, assuming a shared cache size of 1 MB.

compared to a heuristic that supports a lost-cause policy), we believe that in practice, the

additional complexity required to support such a policy would offset any decrease in miss rate

resulting from using the policy. Interestingly, we also found that not avoiding the scheduling

of partially-eligible MTTs actually reduced cache miss rates.

Our best-performing heuristic also employs promotion-duration policy (2). In Chapter 6,

we show that promotion-duration policy (2) results in performance differences as compared

to policy (1), some positive and some negative. However, policy (2) allows for a more effi-

cient LITMUSRT implementation, since the tracking of promoted and urgent jobs is more

straightforward. As such, we would expect heuristics employing policy (2) to perform slightly

better in practice.

For these reasons, we believe that our selection of the best-performing heuristic is justified—

we elaborate upon this justification further in Chapter 6. For the convenience of the reader,

we next provide a detailed example of how the best-performing heuristic, which we implement

within LITMUSRT, makes scheduling decisions.

Example (Figure 4.6). We illustrate the implemented heuristic with an example, shown in

Figure 4.6—the schedule under GEDF is shown in inset (a), and the schedule generated by

the heuristic is shown in inset (b). In the example considered here, tasks W and X belong

102

to the same MTT, so for every i, jobs Wi and Xi reference the same working set and would

benefit from being co-scheduled. As before, black triangles indicate the new priority points

of promoted jobs, and a shared cache size of 1 MB is assumed. At time 0, jobs U1 and V1,

each with a 512K WSS, are promoted (by cache-aware policy (1)) and scheduled. At time 1,

job T1 is scheduled. If we chose to also schedule either job W1 or X1, then thrashing would

occur, so we idle the second core by scheduling a phantom task. (We assume that exactly

four phantom tasks are eligible per hyperperiod, where each hyperperiod is eight time units

long. This ensures that a sufficient number of phantom tasks exist to account for all of the

available idle time in each hyperperiod.) At time 2, job T2 is scheduled, and the second core

is idled again. At time 3, jobs W1 and X1, both belonging to the same MTT, are scheduled.

Since they share the same working set, thrashing does not occur. At time 4, jobs W1 and

X1 are again scheduled—since promotion-duration policy (2) is employed, these jobs remain

promoted until they complete, preventing jobs U2 and V2, which have smaller WSSs, from

executing immediately following their release. At time 5, jobs U2 and V2 are promoted and

scheduled, and job T3 becomes tardy as a result, but is scheduled at time 6. (Note that T3

is not promoted, but would have higher priority than any promoted job.) Finally, at time 7,

the remaining job T4 is scheduled. We can see from comparing insets (a) and (b) that the

heuristic should result in reduced cache miss rates—thrashing occurs 62.5% of the time under

GEDF, and is eliminated entirely by the heuristic.

Implementation efficiency. Efficiency is very important in a real scheduler, so that

scheduling overheads do not offset any reduction in shared cache misses. Interestingly, the

best-performing heuristic is one of the easiest to implement efficiently in practice, by main-

taining two separate run queues for eligible jobs: one that is EDF-ordered, and a promotion

queue in which eligible jobs are arranged in the order that they would be promoted. Jobs in

the promotion queue are ordered from smallest to largest WSS, with promoted jobs remaining

“pinned” at the front of the queue (so that they remain promoted until completion) regard-

less of their WSS and future job releases. The heuristic schedules the job at the head of the

EDF-ordered queue if it is tardy; otherwise, it peeks at the job at the head of the promotion

queue and determines whether scheduling it will cause thrashing. This requires maintaining

103

a running total of the WSSs of all MTTs with jobs scheduled thus far in the quantum, so that

the amount of “un-utilized” cache C can be determined (see Section 4.2.2 and Figure 4.2).

If the WSS of the job to schedule exceeds C, then it is assumed that thrashing would occur.

(Note that the job WSS is zero if a job from its MTT is already scheduled.) If thrashing

would occur, and we can idle a core without violating timing constraints (using phantom

tasks), then the core is idled; otherwise, the job is scheduled. As both the “real” deadline and

WSS of each job is fixed over its entire execution, the overhead incurred to maintain these

run queues is relatively small.

Other heuristics from Section 4.2 are considerably less feasible to implement, since the

ordering of the promotion queue depends on factors that change as scheduling decisions are

made. As a result, jobs in the queue may need to be frequently reordered, resulting in high

queue-maintenance overheads. For example, most of the remaining heuristics in Section 4.2,

including those that employ any of the three lost-cause policies, choose a job to promote

based on the current cache utilization or the current value of C, both of which were defined

earlier. (Note that this is different from using the value of C to detect thrashing.) Scheduling

decisions typically cause the cache utilization and C to change, requiring the promotion queue

to be reordered. Alternately, when attempting to avoid the scheduling of partially-eligible

MTTs, the number of utilized cores will impact job priorities; clearly, the number of utilized

cores changes after every scheduling decision, and this will lead to frequent reordering of

the promotion queue. The higher overheads associated with such heuristics make them less

practical from an implementation standpoint, and therefore disqualify them as candidates for

implementation within a real system (e.g., within LITMUSRT).

4.6 Conclusion

In this chapter, we proposed heuristics to reduce shared cache miss rates, and avoid shared

cache thrashing, on multicore platforms while ensuring real-time guarantees in the form of

bounded tardiness. We showed that when a suitable heuristic is employed for a real-time

workload, cache miss rates can significantly decrease and thrashing can be avoided. We also

showed that bounded tardiness can be hidden from an end user in scenarios where early-

104

releasing and buffering are possible, as could be the case for certain multimedia applications.

Finally, we presented a detailed example of the best-performing heuristic, and discussed issues

related to its implementation. As we will show in Chapter 6, cache miss rates often decrease

for a wide variety of task sets when these heuristics are effectively used; such cache miss

rate decreases can translate into performance improvements for higher-level metrics that are

better perceived by an end user.

105

CHAPTER 5

CACHE PROFILING FOR

REAL-TIME TASKS

In this chapter,1 we describe our online profiler, which quantifies the cache impact of each

MTT as a single value, and supplies these values to the cache-aware scheduling heuristics

described in Chapter 4 so that scheduling decisions can be made that reduce cache miss

rates. This profiler operates during execution, dynamically converging on accurate estimates

for each MTT. We begin with an overview and justification of our profiling approach. Next,

we state the assumptions required for accurate estimates by this profiler, and then describe

the profiler in detail.

5.1 Overview

Our profiler provides a per-job WSS estimate for each MTT. We profile MTTs rather than

tasks since for a particular job i, all tasks in the same MTTs reference a common working

set.2 As stated earlier, profiling occurs during job execution, eliminating the need for an

offline profiling tool; however, as the profiler is essentially part of the scheduler, it must be

efficient, in that it results in low scheduling overheads.

1Contents of this chapter previously appeared in preliminary form in the following paper:
Calandrino, J., and Anderson, J. (2009). On the design and implementation of a cache-aware multicore real-
time scheduler. In Proceedings of the 21st Euromicro Conference on Real-Time Systems, pages 194–204.

2This does not mean that tasks reference exactly the same data, only that the sets of data referenced by all
tasks overlap sufficiently to make co-scheduling the jobs of such tasks beneficial. As such, the WSS of the
MTT is defined to be the size of the union of all of the sets of data referenced by all tasks in the MTT. For
example, if tasks T and U belong to the same MTT and independently reference 200K and 300K of data,
respectively, and 50K of the data referenced by each task is shared by both tasks, then the WSS of the MTT
would be (200K−50K) + (300K−50K) + 50K= 450K.

Event Name Event Description
UnHalted Core Cycles Core clock cycles when core is not halted.
Instruction Retired Number of retired instructions.
UnHalted Reference Cycles Core reference cycles (fixed frequency, does not change when core

frequency changes).
LLC Reference Cache references for lowest-level on-chip cache. If shared, counts

only events originating from core.
LLC Misses Cache misses for lowest-level on-chip cache. If shared, counts

only events originating from core.
Branch Instruction Retired Number of retired branch instructions.
Branch Misses Retired Number of branch mispredictions.

Table 5.1: The architectural performance events that most Intel processors are capable of
monitoring, along with a brief description of each event, from [39].

5.1.1 WSS as a Cache Behavior Metric

WSS may be seen as an overly simplistic predictor of cache behavior; however, as discussed

in Chapter 2, the WSS metric tends to work well for small intervals, such as the execution

time of a single job of a real-time task, and it is typically the easiest metric (by far) to

approximate efficiently given current hardware. Assuming a fully-associative shared cache (or

high set-associativity, i.e., eight ways or more—see [37]) so that conflict misses are avoided,

our profiler can allow for significant reductions in cache miss rates over GEDF when used

within our cache-aware scheduler, as we will see in Chapter 6.

5.1.2 Performance Counters

Shared cache misses for each MTT are recorded by the profiler using performance counters.

Performance counters are available in many processors today, and can be programmed to

monitor a wide variety of events. In Chapter 6, we describe in detail the three machines

on which we implemented and evaluated our profiler in LITMUSRT; these machines contain

Intel Core i7, Intel Xeon E5420, and Sun UltraSPARC T1 processors. On the Intel platforms,

performance counters are programmed by writing to the performance event select registers.

Most current and future Intel processors, including ours, are capable of monitoring any of the

same seven architectural performance events, shown in Table 5.1, in addition to a large number

of events that are specific to a particular type of processor [39]. On the Sun UltraSPARC T1

processor, a single counter can be programmed to monitor one of the eight events shown

107

Event Name Event Description
SB full Number of cycles that a hardware thread is stalled due to a full store

buffer.
FP instr cnt Number of completed floating-point instructions (executed by the shared

floating point unit).
IC miss Number of L1 instruction cache misses.
DC miss Number of L1 data cache misses.
ITLB miss Number of instruction TLB misses.
DTLB miss Number of data TLB misses.
L2 imiss Number of L2 misses due to instruction cache requests.
L2 dmiss ld Number of L2 misses due to data cache load requests (stores cannot be

counted).

Table 5.2: The performance events that can be monitored on the UltraSPARC T1 processor
by writing to the performance control register, along with a brief description of each event,
from [67].

in Table 5.2 by writing to a performance control register ; a second counter also exists that

always counts the number of completed instructions [67].

Typically, a separate set of performance counters is available for each core, and can be

programmed to track events originating from that core. On the UltraSPARC T1, there

is actually a set of counters on each core, one for each of the four hardware threads, and

events originating from a particular thread can be recorded. On the Intel Core i7 chip, a

single counter exists for each core, even though there are two hardware threads per core; the

counters can be programmed to track events from one or both threads. (In Chapter 6, we

avoid issues related to multiple hardware threads sharing a single set of performance counters

on the Core i7 machine, among other issues, by disabling hardware multithreading on that

machine.)

Regardless of the hardware platform, we programmed a counter at each logical CPU

(a single core for our Intel machines, or a single hardware thread for our UltraSPARC T1

machine) to track lower-level (shared) cache misses. Since jobs execute sequentially, we can

measure the number of cache misses incurred for a job by resetting the counter to zero at the

start of execution, and recording the total misses observed by the counter upon completion.

The observed misses can then be used to calculate a per-job WSS estimate. Since accessing

performance counters and recording data are low-overhead operations, and computed WSS

estimates are cached to reduce computation, the overhead of the profiler is relatively low, as

will be shown in Chapter 6.

108

5.2 Assumptions

The profiler described in this dissertation requires several assumptions.

1. The ith jobs of all tasks in the same MTT reference the same set of data, which is unique

to this set of jobs, but of similar size to the sets referenced by other similarly-constructed

sets of jobs in the same MTT. Further, each task of the MTT performs roughly the same

operations during every job (even though those operations are performed on different

sets of data). This has two implications: (a) the ith job of task T and the jth job of

task U , where T and U belong to the same MTT, share significant data only if i = j

(even if T = U , significant data is not shared if i 6= j); and (b) the per-job WSS of an

MTT remains approximately the same over all jobs.

2. Profiled jobs are not preempted and do not cause shared cache thrashing.

We consider assumption (1) to be in line with other work (e.g., that of Ramaprasad and

Mueller [57]), and natural for certain types of (multimedia) applications. To ensure assump-

tion (2), we discard measurements obtained for jobs that are preempted, or for which cache

thrashing occurred at some time during their execution. As was the case in Chapter 4 when

describing our heuristics, thrashing is assumed to have occurred if, for some quantum in which

a job is scheduled, the sum of the WSSs of all MTTs with jobs scheduled in that quantum ex-

ceeds the shared cache size. For MTTs, measurements for the ith job of all tasks in the MTT

must be discarded if the ith job of any task in the MTT was preempted or caused thrashing,

as one inaccurate measurement can result in inaccurate WSS estimates being generated for

that MTT.

Assumption (2) also implies that we are not interested in profiling MTTs with per-job

WSSs greater than the size of the shared cache, which would thrash the shared cache even if

scheduled in isolation. We believe this assumption to be reasonable, as the size of the lowest-

level shared cache in multicore chips is on the order of megabytes and continues to increase

(in fact, caches are sometimes so large that they occupy more space on the chip than all of

the other processor components combined). Further, assumption (2) ensures that the number

of capacity misses observed over non-discarded jobs is negligible—without preemptions or

109

thrashing, data that is brought into the cache by a job should remain in the cache during the

entire time that it executes.

5.3 Estimating MTT WSS

The above assumptions allow us to compute over all (non-discarded) jobs an average per-job

MTT WSS, which we use as our per-job WSS estimate for an MTT. We can conclude from

our assumptions that the first reference to a particular line of data during the execution of

a job should result in a compulsory miss, and future references should result in cache hits,

since data brought into the cache should not be evicted during job execution. Thus, the

vast majority of shared cache misses that are recorded by our performance counters should

be compulsory misses. As such, we can compute the average per-job WSS for an MTT by

dividing the total cache misses observed over all profiled jobs by the total number of profiled

jobs for the MTT, and multiplying the resulting value by the cache line size. (Profiling the ith

job of an MTT requires profiling the ith job of all tasks in the MTT, and recording the total

misses observed for all jobs.) This computation results in an estimate of the cache “footprint”

of an MTT, which we use as an approximation of WSS.

Example (Figure 5.1). As an example, consider Figure 5.1, which depicts a two-core GEDF

schedule for a task T and an MTT containing two tasks, U and V , as well as the profiling

activities that occur. When jobs U1 and V1 of the MTT are profiled, cache miss counts of

997 and 1,242 are recorded for each job, respectively, for a total miss count of 2,239 for the

first job of the MTT. Next, the data obtained for the second job of the MTT is discarded,

since job V2 is preempted—recall that measurements for the ith job of an MTT (that is, the

measurements obtained for the ith job of all tasks in the MTT) must be discarded if the ith

job of any task in the MTT is preempted. Finally, profiling jobs U3 and V3 results in counts

of 1,072 and 1,203 being recorded for each job, respectively, for a total miss count of 2,275 for

the third job of the MTT, and a total miss count of 4,514 over both profiled jobs. Assuming

a 64-byte cache line size, the WSS estimate that our profiler would produce (over the two

non-discarded MTT jobs) before the fourth job begins execution is (4, 514/2) · 64 = 144, 448

bytes, or a WSS of roughly 141K. (Note that we divide by two in this computation since there

110

0 1 2 4 5 6 73 9 10 12 13 14 1511

U

T

V

(e(T),p(T)) = (1,3)

(e(U),p(U)) = (2,5)
(e(V),p(V)) = (2,5)

MTT:

997 and 1,242
Counts recorded:

1,072 and 1,203
Counts recorded:

Counts discarded:
preemption occurred

8

1 2 543

1

1 2

22

3

3

Figure 5.1: Two-core example schedule demonstrating how the cache profiler collects infor-
mation during job execution. The recorded cache miss counts are shown for each job of the
MTT, except the second job (which consists of jobs U2 and V2), where measurements are
discarded due to the preemption of V2.

are two non-discarded MTT jobs, not because there are two tasks in the MTT.)

5.3.1 WSS Versus Cache Footprint

Thus far, we have defined WSS in this dissertation to be the size of the per-job cache footprint

of an MTT. However, it is possible that many lines that are brought into the shared cache

by an MTT, and thus are part of the cache footprint of that MTT, will not be reused. Such

cache lines are not truly part of the “real” WSS of the MTT as defined by Denning [26, 27]

and Agarwal et al. [2] and discussed in Chapter 2, since the absence of these lines in the cache

would not have any (negative) impact on any aspect of MTT performance (e.g., job execution

times).

Given this distinction between cache footprint size and “real” WSS, we choose to use cache

footprint size as our WSS estimate for two reasons. First, generating a WSS estimate that

better approximates the “real” WSS of an MTT would require detailed information about

cache reuse. This information could be collected online with additional hardware support,

but otherwise is difficult to obtain during execution. Without reuse information, WSS will

continue to be overestimated as the size of the cache footprint. Second, when using WSS

estimates to avoid shared cache thrashing, the cache footprint of an MTT actually may be

111

more useful than a “real” WSS. This is because shared cache interference may occur whenever

a line is brought into the cache, since a line that is brought into the cache by one job, regardless

of the frequency of reuse of that line, can evict a line of another co-scheduled job that would

have otherwise been reused. The cache footprint size (conservatively) accounts for this fact

by assuming that all cache lines that are brought into the cache by an MTT, and together

represent the cache footprint of that MTT, may cause shared cache interference.

5.3.2 Bootstrapping the Profiler

Before any measurements have been obtained for an MTT, it is still necessary to make schedul-

ing decisions and execute jobs. These jobs are then profiled during their execution. At such

a time, the heuristics from Chapter 4 do not have sufficient information to make cache-

aware scheduling decisions, yet decisions must be made. (This is an issue that we avoided in

Figure 5.1, by using the profiler in conjunction with GEDF.) Such a situation poses problems

for the profiler as well—before any measurements have been obtained, it is impossible to know

when to discard job measurements due to thrashing, since we do not have the data necessary

to compute a WSS estimate. This makes it difficult to guarantee assumption (2), in particular

that profiled jobs do not cause shared cache thrashing.

Example (Figure 5.2). To circumvent these issues, profiling begins with a bootstrapping

process, illustrated with an example in Figure 5.2 (which uses the same task set and heuristic

from Figure 4.6). Assume for the sake of simplicity that a job that causes thrashing results in

a WSS estimate of exactly 1 MB being generated by the profiler—for correct operation of the

heuristic, all WSS estimates are capped at the size of the shared cache. A job that does not

cause thrashing results in an accurate estimate being generated, which is equal to its MTT

WSS, as specified in Figure 5.2.

At the beginning of execution, each MTT is assigned a WSS of zero, which is the WSS

assigned to an MTT until measurements are recorded for its first profiled job. This approach

provides the heuristic with sufficient information to make scheduling decisions (even if those

decisions are likely to be poor) so that the profiler can begin collecting information. This

policy is reflected in Figure 5.2, where at time 0, all MTTs have a WSS of zero. As a result,

112

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��
��

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

0 1 2 4 5 6 73

zero for all MTTs
Initial WSSs are Two 768K estimates recorded,

converges on 768K WSS

9 10 12 13 14 15 16118

768K
(e(T),p(T)) = (1,2)

(e(U),p(U)) = (1,4)
512K

W

512K

T

U

V

X

(e(V),p(V)) = (1,4)

Thrashing results in
1MB WSS estimates

for all MTTs
by 512K WSS estimates,
1MB estimates replaced

then converges on 512K

1MB estimate replaced
by 768K WSS estimate,

schedule repeats and
will converge on 768K

768K
(e(X),p(X)) = (2,8)

(e(W),p(W)) = (2,8)
MTT:

1 2 3 4 5 6 7 8

2

2

4

43

32

21

1

1

1

Figure 5.2: Two-core example schedule generated using the heuristic and task set from
Figure 4.6 when our profiler is used. As before, thrashing occurs during “hatched” quanta,
assuming a shared cache size of 1 MB. WSS estimates over time for each MTT are noted.

the heuristic (which is not very effective when all WSSs are zero) co-schedules jobs T1 and U1,

resulting in thrashing. At time 1, thrashing also occurs when jobs V1 and W1 are scheduled.

The promotion and scheduling of job W1 also causes job X1 to be promoted by the heuristic;

both jobs remain promoted until they complete execution. Job W1 completes execution at

time 3, allowing job T2 to be scheduled. At time 4, all jobs profiled thus far have experienced

thrashing, resulting in a 1 MB WSS estimate being generated for every MTT. In this case,

none of the measurements obtained by the profiler are discarded due to thrashing; since each

MTT is assigned a WSS of zero before execution, thrashing is not detected, resulting in miss

counts that include a large proportion of capacity misses (in addition to compulsory misses)

and overestimated WSSs for every MTT. However, note that these overestimates will result

in very conservative scheduling by the heuristic, which ultimately leads to accurate WSSs

being generated, as we will see next.

As a result of these overestimated WSSs, MTTs are scheduled in isolation from time 4

113

until time 8. When jobs are profiled during this time, thrashing does not occur, and we would

expect accurate WSS estimates from our profiler. In light of this expectation, the profiler

initially uses measurements from only the most recently profiled job of each MTT when

computing its WSS, instead of computing an average WSS over all (non-discarded) profiled

jobs in the way described earlier. This approach allows earlier inaccurate measurements to

be discarded, rather than being incorporated into a running average WSS for the MTT.

Therefore, at times 5, 6, and 8, the profiler computes WSS estimates for tasks T , U , and V

using measurements from completed jobs T3, U2, and V2, respectively, and discards earlier

measurements. This results in accurate WSS estimates for tasks T , U , and V , instead of

estimates that are an average of earlier overestimates and the current accurate estimate.

Only once converging estimates are detected for an MTT do we begin using an average

over all profiled jobs. Convergence is said to occur when the difference between the estimates

for two consecutive profiled jobs of an MTT (not including those discarded due to preemptions

or thrashing) drops below some threshold. This threshold can be set appropriately depending

on when it is considered safe to use average estimates. In our implementation, we set this

threshold to 100 cache misses, or 6,400 bytes, since the line size of the shared cache was 64

bytes on all platforms on which we implemented this profiler (these platforms are described

in detail in Chapter 6). However, for simplicity in this example, we assume that convergence

only occurs after observing two identical consecutive WSS estimates. This first occurs at

time 7 for task T , when the profiler generates the same 768K WSS estimate for jobs T3 and

T4. Thus, from time 7 onward, WSS estimates for task T are computed as averages over all

successive profiled jobs. Note that, when the WSS estimates of two consecutive jobs must

both be capped at the size of shared cache (e.g., due to thrashing), we do not consider such

estimates to have converged even though they are technically identical, since they are only

identical because they were capped (and these estimates are unlikely to be accurate in any

case)—this is why the WSS estimates converged for task T at time 7 instead of time 4.

The last eight time units of the schedule are identical to the schedule in Figure 4.6(b). At

time 9, jobs U3 and V3 complete execution, and since thrashing does not occur, the correct

WSS estimates are generated a second time for both tasks U and V , resulting in converg-

114

ing estimates. At time 13, jobs W2 and X2, both from the same MTT, complete without

thrashing, which allows the first accurate WSS estimate for that MTT to be generated. Note

that the last eight time units of the schedule repeat indefinitely; thus, thrashing is avoided

from time 4 onwards. Therefore, the WSS estimates of the MTT containing tasks W and X

converge at time 21 (not shown), after the completion of jobs W3 and X3, at which time all

WSS estimates have converged.

5.3.3 Profiler Pseudo-code

Figure 5.3 presents pseudo-code for our cache profiler. Procedure InitializeProfiler() ini-

tializes the profiler variables for a particular MTT before any of its jobs are scheduled. (We

assume that a data structure exists for each MTT with the four fields shown in this pro-

cedure.) Procedure ProfileAfterJobCompletion() is invoked whenever a job of a task

within an MTT completes, where ReadAndResetMissPerfCtr() reads the (per-CPU)

performance counter that is counting cache misses for the shared cache, resets the counter

to zero, and returns the result of reading the counter to the caller. Note that the correct

operation of ReadAndResetMissPerfCtr() depends on each performance counter being

correctly programmed at boot time, and a counter being reset to zero whenever a job begins

execution (a counter might be non-zero at the beginning of job execution due to non-real-

time or background task activity on the same logical CPU). Procedure WasPreempted()

returns a boolean value that indicates whether the job passed to it was preempted, and proce-

dure CausedThrashing() returns a boolean value that indicates whether the job passed to it

caused thrashing during its execution, where thrashing is assumed to have occurred if, for some

quantum in which a job is scheduled, the sum of the WSSs of all MTTs with jobs scheduled

in that quantum exceeds the shared cache size, as stated in Section 5.2. ProfileAfter-

JobCompletion() also includes the bootstrapping process illustrated in Figure 5.2—the

Converged() procedure checks whether the two measurements that are passed to it have

converged, using the test described earlier. Finally, procedure ComputeWSS() is invoked by

the heuristic whenever a WSS estimate is needed for an MTT. This procedure assumes that

the shared cache line size can be obtained by calling procedure SharedCacheLineSize().

115

InitializeProfiler(mtt)

� Initialize the profiler for an MTT
1 mtt .JobMisses := 0;
2 mtt .TotalMisses := 0;
3 mtt .ProfiledJobs := 0;
4 mtt .ThrashingOrPreemptionOccurred := 0

ProfileAfterJobCompletion(mtt)

� Read cache miss performance counter, then reset to zero
1 counterMisses := ReadAndResetMissPerfCtr();

� Add misses to running total for ith job of all tasks in MTT (job i of MTT)
2 mtt .JobMisses := mtt .JobMisses + counterMisses ;

� If completed job caused thrashing or was preempted during execution, then set flag
3 J := Completed job;
4 if (WasPreempted(J) ∨ CausedThrashing(J)) then
5 mtt .ThrashingOrPreemptionOccurred := 1

fi;
� If job i of every task in the MTT completed, then perform bookkeeping

6 if (Job i of every task in MTT completed) then
� Only keep measurements if thrashing or preemptions did not occur

7 if (mtt .ThrashingOrPreemptionOccurred = 0) then
8 if (mtt .ProfiledJobs = 1 ∧ ¬Converged(mtt .JobMisses , mtt .TotalMisses)) then

� No convergence of job measurements yet, replace old miss count with new
9 mtt .TotalMisses := mtt.JobMisses

10 else
� Data is valid and has converged, or we are profiling the first job

11 mtt .TotalMisses := mtt.TotalMisses + mtt .JobMisses ;
12 mtt .ProfiledJobs := mtt .ProfiledJobs + 1

fi
fi;
� Reset job miss count and flag

13 mtt .JobMisses := 0;
14 mtt .ThrashingOrPreemptionOccurred := 0

fi

ComputeWSS(mtt)

� If no jobs have been profiled, then return a WSS of zero
1 if (mtt .ProfiledJobs = 0) then
2 return 0

fi;
� Otherwise, return miss count divided by the number of profiled jobs, multiplied by line size

3 estWSS := (mtt .TotalMisses/mtt .ProfiledJobs) ∗ SharedCacheLineSize();
4 return estWSS

Figure 5.3: Pseudo-code for the cache profiler.

116

5.4 Conclusion

In this chapter, we have presented the design and implementation of an online automatic

cache profiler for real-time tasks that are grouped into MTTs. The profiler was implemented

within LITMUSRT, along with the selected heuristic described in Chapter 4, as part of our

cache-aware scheduler. We will show in Chapter 6 that this profiler is accurate across a variety

of architectures and that, by allowing a real-time scheduler to take this profiling information

into consideration, system performance can be substantially improved in practice.

117

CHAPTER 6

EVALUATION

In this chapter,1 we present two sets of experiments. First, we present the results of ex-

periments conducted within the SESC architecture simulator. In these experiments, our

heuristics were evaluated in detail and a “best-performing” heuristic was identified, based on

a combination of raw performance (in terms of cache miss rates and instructions per cycle)

and implementation concerns—this is the same best-performing heuristic that is described

in Chapter 4. Second, we discuss experiments conducted to evaluate the performance of a

LITMUSRT-based implementation of our cache-aware scheduler, which consists of both the

best-performing heuristic and the cache profiler, on three multicore machines with substan-

tially different architectures.

6.1 SESC-Based Experiments

In this first set of experiments, we assessed the efficacy of our heuristics in improving both

cache and user-perceived performance by conducting experiments using the SESC architec-

ture simulator [58], which is capable of simulating a variety of multicore architectures. The

simulated architectures that we considered consist of eight or 32 3-GHz (single-threaded)

cores, each with a dedicated 4-way (respectively, 2-way) set associative 16K L1 data (respec-

tively, instruction) cache with a random (respectively, LRU) replacement policy; and a shared

8-way set associative 2 MB (8 MB on the 32-core machine) on-chip unified L2 cache with an

LRU replacement policy. Each cache has a 64-byte line size. The 32-core architecture is a

1Contents of this chapter previously appeared in preliminary form in the following papers:
Calandrino, J., and Anderson, J. (2008). Cache-aware real-time scheduling on multicore platforms: Heuristics
and a case study. In Proceedings of the 20st Euromicro Conference on Real-Time Systems, pages 299–308.
Calandrino, J., and Anderson, J. (2009). On the design and implementation of a cache-aware multicore real-
time scheduler. In Proceedings of the 21st Euromicro Conference on Real-Time Systems, pages 194–204.

“scaled-up” version of the 8-core architecture that is used to gain a basic understanding of

how our heuristics might perform on a large-scale multicore platform—we acknowledge that,

in practice, 32 cores may not directly share a cache.

While eight-core architectures are available today, such as the Sun UltraSPARC T1 pro-

cessor that was used in the experiments described in Section 6.2, we chose to use SESC for

this set of experiments for a number of reasons. First, SESC allowed us to get detailed results

on the performance of our heuristics in a more controlled environment where only a minimal

operating system layer exists. This allowed us to evaluate and compare heuristics in the

absence of operating system “noise” that might make our results a function of the underlying

operating system characteristics, rather than a function of the scheduling policies that are

employed by each heuristic. Second, SESC allowed us to experiment with systems containing

more cores than are commonly available today—for example, our 32-core platform. Experi-

menting with both an eight-core and 32-core platform, both of which are quite similar in all

ways except core count and shared cache size, allowed us to make reasonable comparisons

between an architecture that is feasible today and one that may exist several years in the

future. This, in turn, allowed us to make an educated prediction as to whether our heuristics

will continue to have a performance impact as multicore architectures evolve.

We used CACTI 4.2 [41] to obtain realistic cache access time estimates for our simulations.

(The cache access time is the time required to access a single line of the shared cache.) CACTI

is a tool that provides estimates of cache access times, energy consumption, and chip area,

when given as inputs certain cache attributes such as size and associativity. The estimates

provided by CACTI are based on a detailed analytical cache model that has been calibrated,

in part, by empirical data from real processors. These CACTI estimates were used in place

of the default cache access times in the SESC configuration files. Since the default times in

the SESC configuration files assume the default system attributes, such as a 512K shared

cache size, the use of CACTI improved the accuracy of our cache modeling, and the overall

accuracy of our simulations.

We now describe experiments involving example task sets, randomly-generated task sets,

and a multithreaded video encoding application workload. In each set of experiments, GEDF

119

Figure Miss Rate Per-MTT Improvement
Figure 4.3(a) 23.99% [0, 0, 0]%
Figure 4.3(b) 15.41% [11.02, 41.69, 71.30]%
Figure 4.4(b) 9.07% [0, 0, 0]%
Figure 4.4(c) 7.90% [-50.05, 21.26, 155.20]%
Figure 4.4(d) 8.70% [-64.93, 0.54, 76.97]%
Figure 4.4(e) 7.94% [-16.88, 15.41, 71.39]%
Figure 4.4(f) 8.94% [-64.22, 0.76, 68.39]%
Figure 4.4(g) 6.60% [-13.82, 37.45, 166.12]%
Figure 4.4(h) 6.71% [-13.51, 36.58, 166.30]%

Table 6.1: Shared cache performance for example task sets.

scheduling was compared to some subset of our heuristics. All task sets were scheduled

and run for 20 (simulated) milliseconds (or 20 quanta, as the size of a quantum was 1 ms).

Previous experimental studies using SESC have indicated that this is long enough to observe

performance differences [4]—we ran a subset of our randomly-generated task sets for 100 ms

to confirm this for our experimental setup.

Each task in an MTT references the same memory region—the size of this region is equal to

the WSS of the MTT. In Sections 6.1.1 and 6.1.2, tasks reference data in memory sequentially,

looping back to the beginning of the region when the end is reached, for their entire specified

execution time; thus, tasks are backlogged. The data memory reference pattern for video

encoding MTTs considered in Section 6.1.3 is more complicated: each task references its

assigned video frame slice, plus some “nearby” slices, and the memory region referenced

changes with every job. We accounted for scheduling, preemption, and migration costs in all

simulations.

6.1.1 Example Task Sets

To demonstrate the performance impact of our heuristics, we first present results for some

example schedules from Figures 4.3 and 4.4 (found in Chapter 4). The results are categorized

by figure and presented in Table 6.1. Each task set was run using the heuristic, shared cache

size, and core count indicated in its respective figure and inset—thus, in these experiments, the

core count and shared (in this case, L2) cache size deviated from the simulated architectures

described at the beginning of Section 6.1. The “Per-MTT Improvement” column presents

the minimum, average, and maximum percentage increase in the number of per-quantum

120

memory references per MTT, relative to the first schedule depicted in each figure (inset (a)

in Figure 4.3 and inset (b) in Figure 4.4). For example, the schedule in Figure 4.4(c) resulted

in a 21.26% increase in per-quantum memory references on average for each MTT when

compared to the schedule in Figure 4.4(b); for one MTT, per-quantum memory references

increased by 155.20%, but for another MTT, per-quantum memory references decreased by

50.05%.

These results show that, when suitable heuristics are employed, performance can improve

substantially (see the bold entries in Table 6.1). For example, the overall shared cache miss

rate decreased by over one third as compared with GEDF for the task set in Figure 4.3 when

the specified heuristic was used, and MTTs were able to perform an average of over 41%

more memory references. For the schedules in Figure 4.4, we see that different cache policies

can influence performance in very significant ways. The heuristic that performs best in this

case resulted in a 37% increase in memory references on average, and a 166% increase in

the best case, compared to the heuristic that achieved the lowest number of per-quantum

memory references (the schedule associated with Figure 4.4(b)). Note that heuristics that

perform better on average can still result in worse performance for some MTTs, resulting in

negative minimum per-MTT improvement values; however, these values are often small when

compared to the average- and best-case increases in per-quantum memory references when

better-performing heuristics are used.

Of course, these experiments are not conclusive—as stated in Chapter 4, the heuristics

that perform well in these examples will not necessarily be the heuristics that perform best

across a wide variety of task sets. The experiments that follow demonstrate the broader

applicability of our heuristics. However, an implication of these results, particularly those

related to Figure 4.4, is that a relative decrease in cache miss rate often results in at least a

corresponding relative increase in memory references in the average case even if the absolute

decrease in cache miss rate is small .

121

6.1.2 Randomly-Generated Task Sets

In the next set of experiments, we evaluated many heuristics, representing different combina-

tions of policies, on task sets representing a variety of system utilizations, task utilizations,

and WSS distributions. Experiments were initially conducted on the eight-core architecture—

the heuristic that was found to be particularly effective at improving system performance for

a wide variety of task sets was then evaluated on the 32-core architecture. We considered

heuristics that employed the following thresholds and policies.

• Promotion-duration policy: (1).

• Cache utilization threshold: 0%, 50%, or 75%.

• Cache-aware policy: All policies (1)-(5) considered.

• Lost-cause threshold: 110%.

• Lost-cause policy: All policies (1)-(3) considered.

• Phantom tasks: Used and not used.

• Avoid scheduling partially-eligible MTTs: Yes.

Note that, in these experiments, we sometimes chose to consider only one threshold or policy

choice. This was done when we did not expect the choice to have a significant impact on

the performance of the heuristics, especially for the purpose of making relative performance

comparisons between various policies. This greatly reduced the number of policy combina-

tions that needed to be evaluated; considering additional policy variations would have made

the required number of experiments prohibitive. Later, in Section 6.1.4, we consider making

changes to the heuristics that performed well in these experiments for the purpose of im-

plementation efficiency, so that scheduling overheads are low. The changes considered there

were evaluated by conducting experiments with additional threshold or policy choices beyond

those considered here, particularly in categories where only one choice was considered.

122

Task-set generation methodology. When generating random task sets, we varied the

following parameters. In this chapter, the utilization of an MTT indicates the utilization of

every task within that MTT—the execution cost and period of an MTT are defined similarly.

Note that this means that, in our experiments, all tasks within an MTT have the same

utilization, execution cost, and period.

• System utilization: 50% or 100% utilized.

• MTT periods: Between 10 and 100 ms (some values removed to avoid arithmetic

overflow), except for the the last-generated MTT, which may have a larger period.

• MTT utilizations: Uniform over [0.01, 0.1], [0.1, 0.4], [0.5, 0.9], or [0.01, 0.9].

• MTT execution costs: Derived from periods and utilizations, and at least 1 ms.

• MTT task counts: Uniform over [1, 8].

• MTT WSSs: Uniform over [64 bytes, 2 MB]; or equal to the task count multiplied by

a size uniform over [64 bytes, 512K], and capped at 2 MB.

Each heuristic was used to schedule 20 task sets for each combination of these parameters.

In total, this resulted in nearly 30,000 experimental runs using SESC. Due to the large

amount of time and processing power that is required for each experimental run, running

additional experiments is problematic (which is why, as stated earlier, considering additional

policy combinations would have required a prohibitive number of experiments). Even with

the assistance of a large research cluster, we were able to complete only a few thousand

experimental runs per day in the best case (i.e., when there is little contention for the cluster,

which is shared across campus). Like many architecture simulators, SESC is quite slow,

especially when timing accuracy is required.

Task set justification. We believe that our task periods represent a reasonable range of

those observed in real applications, and our task utilization ranges are similar to those used in

other work [8, 16, 22]. System utilizations were chosen so that scheduling flexibility was either

substantial (at 50%) or very limited (at 100%). For half of the experiments, MTT WSSs were

123

Task Set Parameters Heuristic L2 Miss Rate IPC
%S MTT U WD T CP LP PT GEDF H %Im GEDF H %Im
50 [0.01, 0.1] TC 0 (1) (1) used 3.62 1.60 55.88 0.97 1.23 26.46
50 [0.01, 0.1] Uni 0 (1) (3) used 7.14 3.16 55.76 0.80 1.17 44.90
50 [0.1, 0.4] TC 0 (1) (1) used 1.22 0.36 70.62 1.21 1.20 -1.07
50 [0.1, 0.4] Uni 0 (3) (1) used 6.70 0.67 90.00 0.93 1.17 25.19
50 [0.5, 0.9] TC 0 (1) (1) used 1.07 0.28 73.67 1.03 1.01 -2.28
50 [0.5, 0.9] Uni 0 (3) (1) used 15.38 0.98 93.61 0.77 0.92 18.99
50 [0.01, 0.9] TC 0 (3) (1) used 3.61 0.63 82.68 1.01 1.12 10.77
50 [0.01, 0.9] Uni 0 (1) (1) used 7.92 0.78 90.12 0.97 0.95 -2.15
100 [0.01, 0.1] TC 0 (3) (1) N/A 5.30 1.67 68.55 0.85 1.16 36.96
100 [0.01, 0.1] Uni 0 (3) (2) N/A 7.22 2.57 64.38 0.76 1.11 45.26
100 [0.1, 0.4] TC 0 (3) (2) N/A 3.75 1.35 64.00 0.96 1.18 22.44
100 [0.1, 0.4] Uni 0 (3) (3) N/A 7.02 3.46 50.71 0.89 1.14 28.20
100 [0.5, 0.9] TC 0 (1) (3) N/A 3.81 2.83 25.66 1.05 1.13 7.20
100 [0.5, 0.9] Uni 50 (1) (1) N/A 5.03 3.58 28.93 0.99 1.06 6.28
100 [0.01, 0.9] TC 0 (1) (1) N/A 2.49 0.88 64.56 1.09 1.23 13.29
100 [0.01, 0.9] Uni 50 (1) (1) N/A 4.30 3.70 14.04 0.99 1.05 6.26

Table 6.2: The heuristics that performed best for random task sets. When specifying task
set parameters, the columns labeled “%S”, “MTT U”, and “WD” correspond to percent
system utilization, MTT utilization distribution, and WSS distribution, respectively. For
WSS distributions, “Uni” means uniformly distributed and “TC” means correlated by task
count. For the policies used by the heuristics, the columns “T”, “CP”, “LP”, and “PT” stand
for cache utilization threshold, cache policy, lost-cause policy, and phantom tasks, respectively.
Finally, when presenting L2 miss rates and instructions per cycle (IPC), the column labeled
“H” presents performance numbers for the heuristic indicated, and the column labeled “%Im”
presents the relative percentage improvement in miss rate or IPC over GEDF.

correlated with task count. This seems realistic, since a larger number of tasks would be

more capable of referencing and processing a larger memory region. WSSs were often large,

but never exceeded the size of the L2 cache—otherwise, thrashing would be inevitable. Large

WSSs are realistic in practice; for example, the authors of [25] claim that the WSS for an

HDTV-quality MPEG decoding task could be as high as 4.1 MB, and statistics presented

in [70] show that substantial memory usage is required for video-on-demand applications.

Finally, note that while these experiments certainly should not be considered definitive, similar

task sets have been used effectively in other published work [3, 4, 16, 22].

Results. Table 6.2 presents average cache miss rates and average per-core instructions per

cycle (IPC)2 for both GEDF and the heuristic that exhibited the best performance in terms

2In comparing this data to that presented in Section 6.1.1, note that IPC is often correlated with the number
of memory references performed.

124

Algorithm Average Maximum
GEDF 0.216 474
Heuristics 1.843 572
Best heuristic only 3.711 493

Table 6.3: Tardiness for GEDF and our heuristics (in quanta).

of these two metrics, as indicated. We can make several observations from this data. First,

in almost all cases, the heuristic that performed best for a particular combination of task-

set generation parameters outperformed GEDF, often by a substantial margin (see the bold

entries in Table 6.2). Second, heuristics that use cache-aware policies (1) or (3) performed

best; however, as we will see in Section 6.1.4, when policy (3) performed better than policy

(1), it was often by a negligible margin. Third, the use of phantom tasks was clearly bene-

ficial, as every heuristic in the table employs their use when applicable; in fact, we believe

that performance improvements tended to be larger at 50% system utilization solely because

phantom tasks could be effectively employed. Fourth, the heuristics that performed best

almost unanimously employed a cache utilization threshold of 0% and lost-cause policy (1),

though lost-cause policies (2) and (3) sometimes performed best at 100% system utilization.

This is probably because, at 100% system utilization, phantom tasks cannot be employed,

and lost-cause policies (2) and (3) present another way of reducing the impact of MTTs that

have the greatest potential to cause thrashing. Overall, we conclude that the heuristic that

performed best for the widest variety of task sets employed a cache utilization threshold of

0%, cache-aware policy (1), lost-cause policy (1), and phantom tasks.

Deadline tardiness. We next tabulated average and maximum observed deadline tardi-

ness. These results are shown in Table 6.3. In this case, we ran each task set for 2,000 quanta

rather than 20 quanta. Tardiness is higher with our heuristics than with GEDF, but average

tardiness is reasonable, and maximum tardiness is comparable to GEDF with our best heuris-

tic. The somewhat high maximum tardiness values are an artifact of our task generation

methodology, which produces some tasks with very large execution costs. The average-case

results suggest that tardiness will not significantly restrict the extent to which our heuristics

can be employed. Further, if tardiness is undesirable, then a combination of early-releasing

125

Task Set Parameters L2 Miss Rate IPC
%S MTT U WD GEDF H %Im GEDF H %Im
50 [0.01, 0.1] TC 3.10 3.30 -6.65 0.90 1.29 43.72
50 [0.01, 0.1] Uni 4.72 5.02 -6.41 0.78 1.24 58.87
50 [0.1, 0.4] TC 0.66 0.59 11.76 1.25 1.31 4.67
50 [0.1, 0.4] Uni 1.40 0.94 32.54 1.15 1.30 12.63
50 [0.5, 0.9] TC 0.22 0.23 -2.68 1.51 1.52 0.77
50 [0.5, 0.9] Uni 0.51 0.37 27.75 1.50 1.52 1.84
50 [0.01, 0.9] TC 0.35 0.33 7.77 1.41 1.44 1.72
50 [0.01, 0.9] Uni 0.75 0.40 47.28 1.34 1.42 6.40
100 [0.01, 0.1] TC 6.01 3.22 46.37 0.92 1.96 113.47
100 [0.01, 0.1] Uni 6.62 6.04 8.84 0.91 1.87 106.73
100 [0.1, 0.4] TC 1.19 0.60 49.85 1.13 1.41 25.10
100 [0.1, 0.4] Uni 2.40 0.98 59.09 0.96 1.34 39.18
100 [0.5, 0.9] TC 0.64 0.49 23.15 1.20 1.29 7.70
100 [0.5, 0.9] Uni 1.69 0.79 53.29 1.08 1.26 15.88
100 [0.01, 0.9] TC 0.75 0.60 20.03 1.18 1.31 10.31
100 [0.01, 0.9] Uni 1.14 0.78 31.78 1.13 1.27 12.96

Table 6.4: Evaluation of one of our heuristics for the 32-core architecture. This heuristic
employs a cache utilization threshold of 0%, cache-aware policy (1), lost-cause policy (1),
and phantom tasks. The meaning of each column in the table is identical to its meaning in
Table 6.2.

and buffering can be employed to “hide” tardiness from an end user, as described in Chapter 4.

32-core architecture evaluation. We next ran similar experiments for the 32-core ar-

chitecture, where task sets were generated identically to those for the eight-core architecture

(i.e., same parameters, but many more tasks per task set, since the platform is considerably

larger). Task sets were scheduled using GEDF and the heuristic that performed best over the

widest variety of task sets in the eight-core experiments (cache utilization threshold of 0%,

cache-aware policy (1), lost-cause policy (1), and phantom tasks). The results in Table 6.4

are similar to the eight-core results in Table 6.2, with the heuristic outperforming GEDF.

Interestingly, on the 32-core architecture, there were several instances where cache miss

rates increased slightly when our heuristic was used; however, per-core IPC was always higher

under our heuristic (as done earlier, entries representing large improvements are in bold in Ta-

ble 6.4). In one of the cases where the cache miss rate increased (the fifth entry in Table 6.4),

the IPC increase is somewhat small; therefore, we assume that performance differences be-

tween GEDF and our heuristic were not substantial. In the two other cases where the cache

miss rate increased (the first and second entries in Table 6.4), substantial IPC increases were

126

observed—these also happen to be cases where task utilizations are low, and MTT task counts

are more likely to be high as a result. In these cases, the results may have less to do with

cache miss rates (especially if thrashing was avoided under both GEDF and our heuristic),

and more to do with memory bandwidth, and perhaps even contention for accessing lines of

the shared cache itself. In this case, if MTTs are being co-scheduled more often when our

heuristic is used, then there is more data being shared, and a smaller total set of data being

referenced, at any point in time. This reduced pressure on the entire memory subsystem may,

in turn, result in IPC improvements even if cache miss rates are relatively the same. Further,

reducing pressure on the memory subsystem would be much more likely to have a noticeable

impact when the number of cores in the system quadruples. In summary, these results give

us reason to believe that the tested heuristic will continue to perform well as the core counts

of multicore architectures increase.

6.1.3 Video Encoding: A Case Study

We next evaluated the performance of real-time MPEG-2 video encoding applications when

using our heuristics by emulating the motion estimation portion of the encoding within SESC.

Motion estimation is the most compute- and memory-intensive portion of MPEG video encod-

ing. We emulated motion estimation in our experiments by mimicking its potential memory

reference pattern. As discussed in Chapter 1, as the core counts of multicore platforms in-

crease, and the processing power of individual cores remains similar (or even decreases), most

compute-intensive applications such as video encoding will need to become multithreaded to

continue to achieve performance gains. Such performance gains are mandatory if the video

quality demanded by users continues to increase.

We mimicked a potential memory reference pattern of multithreaded motion estimation

by splitting each video frame into identically-sized horizontal slices, each of which is processed

by a different task of the same MTT. All motion estimation requires a search—for each task

in an MTT, this involves searching a memory region that includes both its assigned slice and

several nearby slices, such as the slices immediately above and below its assigned slice. In our

experiments, tasks reference the memory region of their assigned slice first, and then search

127

(a) (b) (c)

1280 x 720 pixels

Each slice is 1280 x 90 pixels

Task 7 slice

Task 4 slice

Task 6 slice

Task 5 slice

Task 3 slice

Task 2 slice

Task 1 slice

Task 0 slice

Task 4 slice 0

1

2

3

4

1

2

3

Figure 6.1: The memory reference pattern for multithreaded motion estimation. The insets
show (a) a 720p HDTV video frame; (b) the same frame divided into eight slices, each
processed by a different task of the same MTT; and (c) the search pattern for the task that is
processing the fifth slice (the numbers on the right-hand side of each slice indicate the order
in which the slices would be incorporated into the search).

progressively more distant slices. It is often desirable to search the largest space possible

(to approximate an exhaustive search), so we assumed that tasks were backlogged in that

they continue the search until either their execution time or search space is exhausted. The

memory regions that are referenced by each task in an MTT overlap more as the size of the

region searched per task increases.

Example (Figure 6.1). As an example, consider Figure 6.1, which concerns a 720p HDTV

video, containing frames of 1280 x 720 pixels (900K per frame assuming one byte per pixel),

as shown in inset (a). This video could be divided into eight slices of size 1280 x 90 (112.5K

per frame), as shown in inset (b), each of which is processed by a different task in the same

MTT. The search pattern for the task that is processing the fifth slice, assuming eight slices

and a corresponding eight-task MTT, is shown in inset (c). In inset (c), the numbers on the

right-hand side of each slice indicate the order in which the slices would be incorporated into

the search.

Both GEDF scheduling and the heuristic that performed best in Section 6.1.2 (cache

utilization threshold of 0%, cache-aware policy (1), lost-cause policy (1), and phantom tasks)

were used to schedule task sets on the eight-core architecture. MTTs were generated according

to the video quality level of the video that they represented. These levels define resolutions

and frame rates that are typical for real applications, some of which are more demanding

than others. Table 6.5 presents these levels and their corresponding MTTs, along with a use

128

Level Resolution FPS WSS Task Count Period Use in Practice
1 1920 x 1080 30 2025K 8 33 1080p HDTV (high-quality),

moderate frame rate
2 1920 x 1080 30 2025K 5 33 1080p HDTV (high-quality),

moderate frame rate
3 1280 x 720 60 900K 8 16 720p HDTV (mid-quality),

high frame rate
4 1280 x 720 60 900K 4 16 720p HDTV (mid-quality),

high frame rate
5 720 x 480 30 338K 1 33 standard TV and DVD
6 352 x 288 30 99K 1 33 video conferencing
7 320 x 240 24 75K 1 41 high-end portable devices
8 176 x 144 15 25K 1 66 low-end portable devices

Table 6.5: Video quality levels and their corresponding MTTs. The column labeled “FPS”
indicates the frames-per-second of the video, and the last column provides one use for each
video quality level in practice. All tasks have an execution cost of one—jobs are expected to
be backlogged.

for each video quality level in practice.3 Note that the only difference between levels 1 and

2, and levels 3 and 4, is the number of tasks in the MTT that processes each video frame.

Video encoding task sets were randomly generated according to the following methodology.

System utilization was either 50% or 100%, and the video quality levels for the MTTs in each

task set were uniform over [1, 8], [1, 6], [7, 8], or [1, 4]. Since there is little freedom when

choosing task parameters for the MTTs in these task sets, only 10 task sets were generated

for each combination of system utilization and video quality level.

All results are shown in Table 6.6. In almost all cases, the tested heuristic outperformed

GEDF, resulting in an average 10.65% increase in IPC over GEDF in all experiments. Note

that an increase in IPC can allow for a proportionate increase in the number of videos or

clients supported by the platform, an increase in the space searched for each video during

motion estimation (to improve encoding quality), or upgrades in the quality level of some

videos.

6.1.4 Implementation Concerns

In Chapter 4, we noted that (i) avoiding the scheduling of partially-eligible MTTs, (ii) em-

ploying lost-cause policies, and (iii) using promotion-duration policy (1) are all problematic

3This information is readily available on the Internet—one good resource for such information is the “list of
common resolutions” page at Wikipedia.

129

Parameters L2 Miss Rate IPC
System Util. Video Quality GEDF Heur. % Impr. GEDF Heur. % Impr.

50% [1, 8] 25.97 17.12 34.06 1.36 1.30 -4.37
50% [1, 6] 27.55 17.12 37.86 1.30 1.42 9.26
50% [7, 8] 74.52 60.09 19.36 0.24 0.26 10.87
50% [1, 4] 28.34 16.45 41.94 1.29 1.38 6.62
100% [1, 8] 25.21 18.22 27.75 1.29 1.29 0.05
100% [1, 6] 26.15 18.00 31.16 1.27 1.38 8.42
100% [7, 8] 55.36 17.70 68.04 0.22 0.32 44.44
100% [1, 4] 30.85 16.94 45.10 1.23 1.35 9.85

Table 6.6: Results for video-encoding MTTs (best results in bold). As in Table 6.2, both the
actual performance numbers for the tested heuristic and relative percentage improvements
over GEDF are presented for each combination of parameters.

when implementation efficiency is a concern; that is, when we want to keep scheduling over-

heads low. Thus, we do not use these policies in the heuristic that is implemented within

LITMUSRT, even though these policies were employed in all of the heuristics that were evalu-

ated in Section 6.1.2. The experiments presented in this section were conducted to determine

the impact of that decision on cache miss rates and IPC. In these experiments, we took the

heuristic that performed best in Section 6.1.2 for each combination of task-set generation

parameters (sixteen heuristics in total) and modified it so that three new heuristics were

created (48 heuristics in total). We henceforth refer to the set of heuristics that performed

best for each combination of task-set generation parameters, before any modifications, as the

original heuristics. Table 6.7 presents the cache miss rate and IPC for the new heuristics as

compared to both each original heuristic (presented in the column labeled “H” in Table 6.7)

and GEDF. For each combination of task-set generation parameters, the three new heuristics

were created from the corresponding original heuristic as follows.

1. Each original heuristic was modified so that it does not avoid scheduling partially-

eligible MTTs (note the double-negative), instead treating them as it would any other

MTT. The column that presents the results for this heuristic is labeled “P” in Table 6.7.

2. Heuristic (1) was modified so that no lost-cause policy is employed. (This is also equiv-

alent to employing a lost-cause policy, but with an extremely high or infinite lost-cause

threshold.) The column that presents the results for this heuristic is labeled “PL” in

Table 6.7.

130

Task Set Parameters L2 Miss Rate
%S MTT U WD GEDF H P PL PLD B
50 [0.01, 0.1] TC 3.62 1.60 1.31 3.28 3.58 3.58
50 [0.01, 0.1] Uni 7.14 3.16 2.53 17.65 11.12 11.12
50 [0.1, 0.4] TC 1.22 0.36 0.36 1.14 1.31 1.31
50 [0.1, 0.4] Uni 6.70 0.67 0.60 5.79 7.30 7.30
50 [0.5, 0.9] TC 1.07 0.28 0.28 1.08 1.08 1.08
50 [0.5, 0.9] Uni 15.38 0.98 0.85 15.13 15.48 15.48
50 [0.01, 0.9] TC 3.61 0.63 0.61 2.60 3.27 3.27
50 [0.01, 0.9] Uni 7.92 0.78 0.76 7.91 9.28 9.28
100 [0.01, 0.1] TC 5.30 1.67 1.44 4.87 4.71 4.71
100 [0.01, 0.1] Uni 7.22 2.57 1.97 24.86 14.17 14.17
100 [0.1, 0.4] TC 3.75 1.35 1.14 9.66 4.99 4.99
100 [0.1, 0.4] Uni 7.02 3.46 3.25 22.75 15.38 15.38
100 [0.5, 0.9] TC 3.81 2.83 0.76 1.99 2.27 2.27
100 [0.5, 0.9] Uni 5.03 3.58 3.57 4.51 5.05 5.08
100 [0.01, 0.9] TC 2.49 0.88 2.70 6.16 3.43 3.43
100 [0.01, 0.9] Uni 4.30 3.70 3.55 6.07 5.20 5.13

Task Set Parameters IPC
%S MTT U WD GEDF H P PL PLD B
50 [0.01, 0.1] TC 0.97 1.23 1.27 1.00 1.00 1.00
50 [0.01, 0.1] Uni 0.80 1.17 1.26 0.62 0.73 0.73
50 [0.1, 0.4] TC 1.21 1.20 1.41 1.29 1.28 1.28
50 [0.1, 0.4] Uni 0.93 1.17 1.34 0.98 0.90 0.90
50 [0.5, 0.9] TC 1.03 1.01 1.58 1.46 1.46 1.46
50 [0.5, 0.9] Uni 0.77 0.92 1.61 1.18 1.16 1.16
50 [0.01, 0.9] TC 1.01 1.12 1.46 1.20 1.17 1.17
50 [0.01, 0.9] Uni 0.97 0.95 1.60 1.09 1.08 1.08
100 [0.01, 0.1] TC 0.85 1.16 1.22 0.91 0.93 0.93
100 [0.01, 0.1] Uni 0.76 1.11 1.15 0.46 0.61 0.61
100 [0.1, 0.4] TC 0.96 1.18 1.20 0.70 0.89 0.89
100 [0.1, 0.4] Uni 0.89 1.14 1.17 0.51 0.68 0.68
100 [0.5, 0.9] TC 1.05 1.13 1.25 1.12 1.11 1.11
100 [0.5, 0.9] Uni 0.99 1.06 1.07 0.99 0.98 0.98
100 [0.01, 0.9] TC 1.09 1.23 1.14 0.95 1.09 1.09
100 [0.01, 0.9] Uni 0.99 1.05 1.06 1.00 1.03 1.03

Table 6.7: The cache impact of avoiding policies that are difficult to implement efficiently
in LITMUSRT. Task-set generation parameters are specified identically to Table 6.2. The
column labeled “H” presents performance numbers for the heuristic that performed best (in
Section 6.1.2) for the combination of task-set generation parameters indicated. The columns
that follow then present results for the same heuristic, modified based on the following code:
“P” indicates that the heuristic does not avoid scheduling partially-eligible MTTs; “L” in-
dicates that the heuristic does not employ any lost-cause policy; and “D” indicates that
promotion duration policy (2) was used instead of policy (1). Finally, the column labeled
“B” presents performance numbers for the “best-performing” heuristic that was implemented
within LITMUSRT.

131

3. Heuristic (2) was modified so that promotion-duration policy (2) is used instead of

policy (1). The column that presents the results for this heuristic is labeled “PLD” in

Table 6.7.

Additionally, Table 6.7 presents results for the “best-performing” heuristic that is described

in Section 4.5 of Chapter 4 and implemented within LITMUSRT. This heuristic does not

use the policies specified by (i), (ii), or (iii) stated at the beginning of this section. These

results are presented in the column labeled “B” in Table 6.7.

Table 6.7 shows that, for each combination of task-set generation parameters, significant

performance differences exist between each original heuristic and the new heuristics. First,

for each combination of task-set generation parameters, heuristic (1) (column “P”) always

results in lower cache miss rates and higher IPC than the corresponding original heuristic

(column “H”). This result was quite unexpected, but upon further reflection, we believe that

it is because avoiding the scheduling of partially-eligible MTTs does not really achieve its

intended goal of reducing pressure on the system in the future. When we schedule a partially-

eligible MTT in the current quantum, that MTT must still be scheduled in a future quantum;

however, the same is true when we do not schedule the MTT in the current quantum, except

that more cores will be needed to fully schedule the MTT. In this case, the additional demand

may often result in less scheduling flexibility, especially for MTTs with many tasks. This is

because such MTTs may have their scheduling delayed multiple times, which can result in

tardy jobs that must immediately be scheduled. Additionally, if an MTT is partially scheduled

in the current quantum, then in most cases, all remaining cores were used to schedule it, and

it will be the last MTT that is scheduled in the current quantum. As such, when scheduling

that MTT does not result in thrashing, the jobs of that MTT that are scheduled in the future

will likely benefit from cache reuse, since in the absence of tardy jobs, the remaining jobs will

be scheduled in the next quantum.

Second, for each combination of task-set generation parameters, heuristic (2) (column

“PL”) always results in higher cache miss rates and lower IPC than heuristic (1) (column

“P”). We believe that employing a lost-cause policy impacted scheduling in the following

ways. First, as discussed in Section 6.1.2, at 100% system utilization, phantom tasks cannot

132

be employed, so lost-cause policies (2) and (3), which schedule high-cache-impact MTTs in the

current quantum (since thrashing will occur anyway) sometimes result in better performance

in future quanta. Second, we believe that lost-cause policy (1) did more than just reduce

average tardiness—when thrashing could not be avoided, the use of GEDF allows the jobs that

would otherwise become tardy soonest to be scheduled. Since tardy jobs have higher priority

than all other jobs under all of our heuristics (in order to ensure timing constraints), such jobs

can make cache-aware scheduling considerably more difficult, as they will be scheduled with

no regard to their cache impact. Thus, it makes sense to schedule jobs before they become

tardy when possible, to ensure that sufficient scheduling flexibility will exist to prevent cache

thrashing in future quanta.

Third, switching from promotion-duration policy (1) to policy (2) (in comparing column

“PL” to column “PLD”) seems to have either a minor negative impact on miss rates and

IPC, or a significant positive impact. We also believe that policy (2) is more natural for an

EDF-based policy, especially when considering more than the first 20 quanta of execution, as

it promotes a job for its entire execution rather than for a single quantum-sized unit of its

computation (the latter may be more natural for Pfair-based policies that schedule quantum-

sized subtasks).

Fourth, performance seems to improve across all heuristics (and GEDF) when the task

count is correlated with MTT WSS—when WSS is not correlated with the task count, there

is a greater potential that MTTs exist with low task counts and high WSSs. Such MTTs are

often very difficult to schedule in a way that avoids thrashing. Regardless of the reason, a

correlation between task count and MTT WSS is desirable, as we believe such a correlation to

be the more realistic scenario, since a larger number of tasks should be capable of referencing

a larger region of memory.

Finally, note that, when comparing heuristic (3) for each combination of task-set gen-

eration parameters (column “PLD”) to the best-performing heuristic that is implemented

in LITMUSRT (column “B”), the performance differences were almost always negligible.

Further, the best-performing heuristic typically outperforms GEDF except in several notable

cases where system utilization is 100%. As discussed in Section 6.1.2, these tended to be the

133

cases where lost-cause policies had the most significant impact, as such policies presented a

way to avoid thrashing in scenarios where phantom tasks could not be employed. Since the

best-performing heuristic does not employ any lost-cause policy to keep scheduling overheads

low, and phantom tasks cannot be employed, the best-performing heuristic has considerable

difficulty achieving performance gains in these cases.

Overall, it appears that not employing a lost-cause policy has the greatest negative im-

pact on system performance. Therefore, we conclude that finding a way to support lost-cause

policies in the LITMUSRT implementation in a low-overhead manner should be our most

pressing concern related to improving our cache-aware scheduler, as supporting such policies

would likely result in significant reductions in cache miss rates, and increases in IPC. How-

ever, note that even without support for lost-cause policies, our cache-aware scheduler often

performs very well when compared to GEDF, as we will see next.

6.2 LITMUSRT-Based Experiments

We next evaluated our LITMUSRT-based cache-aware scheduler, consisting of both the best-

performing heuristic and the cache profiler, in terms of profiler accuracy and performance as

compared to GEDF. To do so, we performed experiments on three different machines, the

attributes of which are shown in Table 6.8.

Machine A contains the Intel Core i7 processor, which represents nearly the state-of-the-

art for released Intel multicore chips (it became publicly available in November 2008), and is

the first general-purpose chip released by Intel where four cores share a single low-level cache.

While hyperthreading allows two hardware threads to be supported per core on machine A,

we disable hyperthreading in our experiments—the entries in Table 6.8 marked (*) have

been adjusted to account for disabling hyperthreading. Hyperthreading can result in timing

anomalies related to when each hardware thread is allowed access to core resources, which

can make it difficult to enforce timing constraints and thus difficult to support real-time

workloads. Therefore, in machine A, four logical CPUs share an 8192K cache.

In machine B, pairs of cores within the same processor package share a low-level cache;

there are two pairs of cores (and two low-level caches) in each package. As we are concerned

134

Attribute Machine A Machine B Machine C
Physical Processors 1 2 1
Processor Type Intel Core i7 Intel Xeon E5420 Sun UltraSPARC T1
Processor Frequency 2.66 GHz 2.5 GHz 1.2 GHz
Cores per Processor 4 4 8
Hardware Threads per Core 1 (*) 1 4
Logical CPUs per Shared Cache 4 (*) 2 32
On-chip Cache Levels 3 2 2
L1 Instruction Cache Size 32K 32K 16K
L1 Instruction Cache Set Assoc. 4-way 8-way 4-way
L1 Instruction Cache Line Size 64 bytes 64 bytes 32 bytes
L1 Data Cache Size 32K 32K 8K
L1 Data Cache Set Assoc. 8-way 8-way 4-way
L1 Data Cache Line Size 64 bytes 64 bytes 16 bytes
L2 Cache Size 256K 6144K 3072K
L2 Cache Set Assoc. 8-way 24-way 12-way
L2 Cache Line Size 64 bytes 64 bytes 64 bytes
L3 Cache Size 8192K N/A N/A
L3 Cache Set Assoc. 16-way N/A N/A
L3 Cache Line Size 64 bytes N/A N/A
Shared Cache Level L3 L2 L2
Off-Chip Main Memory 4 GB 8 GB 16 GB

Table 6.8: Attributes of the three different machines on which experiments were performed.

with the performance of our cache-aware scheduler in the presence of a single shared cache,4

real-time tasks are prevented from executing on all but a single pair of cores sharing a single

L2 cache. Thus, we treat machine B as a single dual-core machine, where two logical CPUs

share a 6144K cache. Machine B also has the most fully-featured performance monitoring for

the shared cache—issues related to performance monitoring will be discussed in more detail

in Section 6.2.1, where results related to the accuracy of our profiler are presented for each

of the three machines.

Finally, in machine C, all 32 hardware threads share a single L2 cache. Unlike machine A,

hardware multithreading is enabled on this machine. This is because multithreading is consid-

erably more deterministic on this hardware platform—each of the four threads is “scheduled”

on each core in a round-robin manner, and the cores themselves do not support out-of-order

execution, prefetching, branch prediction, or other features that would increase the possibility

4As stated in Chapter 2, multiple shared caches can be supported if we use a clustered variant of our cache-
aware scheduler, where each cache is managed independently within each cluster; however, this scheduler
was not implemented. Since clusters are scheduled independently, demonstrating a performance improvement
through the use of our scheduler within a single cluster under a wide variety of real-time workloads should
imply that performance improvements will be observed when a larger real-time workload is partitioned across
multiple clusters.

135

of timing anomalies due to hardware multithreading. Since multithreading is enabled, the

four hardware threads on each core share an L1 cache. While there are multiple levels of

cache sharing in this machine, we only focus on avoiding L2 cache thrashing, since we expect

L2 cache miss rates to have the most significant impact on overall system performance. Thus,

machine C is viewed as containing 32 logical CPUs sharing a 3072K cache. It is worth noting

that the effective speed of each logical CPU in machine C is considerably slower than the

logical CPUs in machines A and B.

As stated in Chapter 4, we implemented our scheduler within LITMUSRT on all three

machines. LITMUSRT contains a GEDF implementation, which was used in these experi-

ments. Also, the default quantum length in LITMUSRT is 1 ms, which we did not change.

In both GEDF and our scheduler, performance counters were programmed so that the total

number of shared cache misses and references could be recorded for each MTT; this allowed

cache miss rates to be determined. Since machine C cannot record shared cache references

for each MTT with its performance counters, we instead counted instructions, and calculated

misses per instruction instead of miss rates.

The rest of this section is organized as follows. In Section 6.2.1, we determine the accu-

racy of our profiler for MTTs with known memory reference patterns and WSSs, noting the

considerable differences in accuracy across the three machines. Then, in Section 6.2.2, we

compare our cache-aware scheduler to GEDF in terms of shared cache miss rates, deadline

tardiness, and scheduling overheads. Finally, in Section 6.2.3, we evaluate the performance

of our scheduler as compared to GEDF for a multimedia server workload.

6.2.1 Accuracy of WSS Estimates

We first determine how well our profiler estimates MTT WSSs. In these experiments, the

per-job WSS is known for each MTT. To determine profiler accuracy for a given MTT, we

compared its known WSS to the WSS estimate generated by our profiler. Since the known

WSS does not account for cache space taken by instructions and bookkeeping variables, we

would expect our estimates to be slightly higher than the known WSS values in most cases.

We generated task sets with the following parameters. Recall from Section 6.1.2 that

136

MTT utilization indicates the utilization of every task within an MTT, with execution cost

and period defined similarly, and therefore all tasks within an MTT have the same utilization,

execution cost, and period.

• System utilization: Between 55% and 65%, assuming negligible scheduling overheads.

• MTT periods: Between 20 and 2,400 ms on machine A, and between 40 and 2,400 ms

on machines B and C (some values removed to avoid arithmetic overflow). Larger

periods were necessary to allow larger execution costs, which were needed to support

large per-job WSSs under certain memory reference patterns. For machines A and C, the

lower bound on MTT periods was raised to 40 ms to further ensure that execution costs

would be high, thus ensuring higher MTT WSSs. This was necessary for interesting

experiments on machine A, since only two cores share a cache. Similarly, it was necessary

on machine C since it takes considerably longer to reference memory on that machine

than on machines A and B.

• MTT utilizations: Uniform over [0.01, 0.1], [0.1, 0.4], [0.5, 0.9], or [0.01, 0.9]; or

bimodal, with a 50% probability of being distributed over [0.01, 0.1] or [0.5, 0.9]. Each

task set generated with the bimodal distribution was required to have at least one MTT

from each of the two utilization ranges.

• MTT execution costs: Derived from periods and utilizations, and at least 3 ms. Jobs

are not backlogged, making exactly three passes over their working sets.

• MTT task counts: Uniform over [1, 4] on machines A and C, and uniform over [1, 2]

on machine B.

• MTT per-job data WSSs: Generated as a function of execution cost. For an MTT

with execution cost e, its WSS was set to min(⌊e/3⌋ · 128K, 7.5 MB) on machine A,

min(⌊e/3⌋ · 128K, 5.5 MB) on machine B, and min(⌊e/3⌋ · 8K, 1.5 MB) on machine C.

(Recall that it takes much longer to reference a memory location on machine C.) Due

to the lower bound of 3 ms on execution cost, the minimum MTT WSS was 128K on

machines A and B, and 8K on machine C. For every machine, the upper bound on WSS

137

was intended to increase the probability that thrashing can be avoided when MTTs

are co-scheduled, assuming that some level of co-scheduling will be required in order to

meet timing constraints. To this end, the upper bounds on WSS were within 0.5 MB of

the shared cache size on machines A and B, rather than exactly the shared cache size.

For machine C, a more conservative upper bound was required due to the large number

of logical CPUs, which resulted in large task sets: the upper bound was half the size of

the shared cache.

For each combination of the above parameters, we scheduled and profiled 100 task sets (which

were different for each machine), where either a sequential or random memory reference pat-

tern was employed by all jobs. Figure 6.2 presents pseudo-code for each MTT, where pro-

cedure RandomPattern() or SequentialPattern() is invoked once per job depending

on whether a random or sequential reference pattern was employed by all jobs for a given

experiment. In the case of the random memory reference pattern, different jobs in the same

MTT employed entirely different random patterns, as can be seen in Figure 6.2 where Gen-

erateRandomValue() is invoked independently by each job—this was in contrast to the

sequential memory reference pattern, where the per-job reference pattern is the same. All

task sets were executed for one minute.

Under all experiments, each MTT (including each single-threaded MTT) is launched as

a process—this process is represented by the procedure LaunchMTT() in Figure 6.2, which

takes as parameters both the number of tasks in the MTT and the MTT WSS. This process

allocates a two-dimensional array representing the working set of all tasks in the MTT by

invoking procedure AllocateIntegerArray(), after which one thread is launched (using

the POSIX Threads, or Pthreads, API in Linux) for every real-time task that is associated

with that MTT—in Figure 6.2, a thread is created using CreateThread(), which creates a

thread executing the code of procedure TaskThread() with the arguments shown. In other

words, an MTT maps to a process, and the tasks within an MTT map to individual threads;

as such, the threads of the MTT process share an address space (and a working set) in the

same way that we conceptually assumed that tasks within an MTT share a working set. Once

each thread is launched, it continues to be available for execution for one minute, releasing

138

RandomPattern(jobNum ,workingSet ,WSS)

� Make three random passes over working set
1 for i := 1 to 3 ∗ WSS do
2 nextRandLoc := GenerateRandomValue(WSS);
3 tempVariable := workingSet [jobNum mod numberOfWorkingSets][nextRandLoc]

od

SequentialPattern(jobNum ,workingSet ,WSS)

� Make three sequential passes over working set
1 for i := 1 to 3 ∗ WSS do
2 tempVariable := workingSet [jobNum mod numberOfWorkingSets][i mod WSS]

od

TaskThread(workingSet ,WSS)

� Reference memory until the task is told to stop
1 jobNum := 0;
2 while continueExecuting do

� Sleep until the next job is released
3 SleepUntilNextJobRelease();

� Reference memory appropriately
4 if (Random memory reference pattern employed) then

� Invoke random reference pattern
5 RandomPattern(jobNum, workingSet , WSS)
6 else

� Invoke sequential reference pattern
7 SequentialPattern(jobNum, workingSet , WSS)

fi;
8 jobNum := jobNum + 1

od

LaunchMTT(numTasks ,WSS)

� Allocate memory for shared working set
1 workingSet := AllocateIntegerArray(numberOfWorkingSets, WSS);

� Launch a thread for each real-time task in the MTT
2 for i := 1 to numTasks do
3 CreateThread(TaskThread, workingSet , WSS)

od

Figure 6.2: Pseudo-code for each MTT. Working sets are allocated as integer arrays, and
the WSSs that are passed to procedures RandomPattern() and SequentialPattern()
indicate the size of this integer array. A fixed number of such arrays, indicated by the global
variable numberOfWorkingSets , are used so that working sets appear to be different for every
job of a task. Variable continueExecuting is a conditional variable, initialized to true, which
becomes false after one minute of execution (the length of an experiment).

139

one job per period. After one minute (of wall clock time, not execution time), the conditional

variable continueExecuting becomes false, and all threads in the MTT stop executing, at

which point the MTT is considered to have completed execution. Since all MTTs begin

execution at the same time (recall that we are concerned with synchronous task sets in this

dissertation), each experiment lasts for one minute, after which all MTTs complete execution

and data is logged before the next task set is launched. (This ensures that each task set is

executed for one minute, as stated earlier.)

During thread execution, procedure SleepUntilNextJobRelease() is called so that

the thread does nothing until the release time of the next job, as determined by the task

with which the thread is affiliated. Upon awakening, each thread then references memory

randomly or sequentially, as shown. Different working sets are referenced for every job, so

that the ith job of task T and the jth job of task U , where T and U belong to the same MTT,

do not share significant data unless i = j (even if T = U)—this allows the assumptions upon

which our profiler relies, stated in Chapter 5, to be satisfied.

All pages that are associated with an MTT process are locked in main memory—this

includes all pages that are mapped into the address space of the MTT process, including those

pages that comprise the working set that is referenced by all tasks within the MTT. Therefore,

during our experiments, real-time tasks do not generate page faults, and since background

activity is negligible during our experiments, paging activity that would be associated with

virtual memory has no significant impact on our shared cache management policy or job

execution times.

For each MTT, the WSS estimate produced at the end of the minute of execution was

compared to the known WSS. Overall, this resulted in 2,700, 2,309, and 19,263 MTTs being

profiled under each memory reference pattern for machines A, B, and C, respectively.

Results. Figures 6.3 and 6.4 show the proportionate error in the WSS estimates generated

by the profiler on each machine, when compared to the known WSS of each MTT, for both

random and sequential memory reference patterns, respectively. Proportionate error is defined

to be the difference between the WSS estimate generated by the profiler and the actual WSS

of the MTT, divided by the actual WSS of the MTT. Since we found little difference in

140

0 1 2 3 4 5 6 7 8

x 10
6

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
Accuracy of WSS Estimates: Random Reference Pattern

Actual WSS (bytes)

(E
st

im
at

ed
 W

S
S

 −
 A

ct
ua

l W
S

S
)/

(A
ct

ua
l W

S
S

)

(a)

0 1 2 3 4 5 6

x 10
6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Accuracy of WSS Estimates: Random Reference Pattern

Actual WSS (bytes)

(E
st

im
at

ed
 W

S
S

 −
 A

ct
ua

l W
S

S
)/

(A
ct

ua
l W

S
S

)

(b)

Figure 6.3: Profiler accuracy for (a) machine A, (b) machine B, (c) machine C, and (d)
machine C with very large error values removed, when a random reference pattern is employed.
(Continued on the next page.)

141

0 2 4 6 8 10 12 14 16

x 10
5

−50

0

50

100

150

200
Accuracy of WSS Estimates: Random Reference Pattern

Actual WSS (bytes)

(E
st

im
at

ed
 W

S
S

 −
 A

ct
ua

l W
S

S
)/

(A
ct

ua
l W

S
S

)

(c)

0 2 4 6 8 10 12 14 16

x 10
5

−1

0

1

2

3

4

5
Accuracy of WSS Estimates: Random Reference Pattern

Actual WSS (bytes)

(E
st

im
at

ed
 W

S
S

 −
 A

ct
ua

l W
S

S
)/

(A
ct

ua
l W

S
S

)

(d)

Figure 6.3: (continued) Profiler accuracy for (a) machine A, (b) machine B, (c) machine C,
and (d) machine C with very large error values removed, when a random reference pattern
is employed.

142

0 1 2 3 4 5 6 7 8

x 10
6

−1

−0.95

−0.9

−0.85

−0.8

−0.75

−0.7

−0.65

−0.6
Accuracy of WSS Estimates: Sequential Reference Pattern

Actual WSS (bytes)

(E
st

im
at

ed
 W

S
S

 −
 A

ct
ua

l W
S

S
)/

(A
ct

ua
l W

S
S

)

(a)

0 1 2 3 4 5 6

x 10
6

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Accuracy of WSS Estimates: Sequential Reference Pattern

Actual WSS (bytes)

(E
st

im
at

ed
 W

S
S

 −
 A

ct
ua

l W
S

S
)/

(A
ct

ua
l W

S
S

)

(b)

Figure 6.4: Profiler accuracy for (a) machine A, (b) machine B, (c) machine C, and (d) ma-
chine C with very large error values removed, when a sequential reference pattern is employed.
(Continued on the next page.)

143

0 2 4 6 8 10 12 14 16

x 10
5

−20

0

20

40

60

80

100
Accuracy of WSS Estimates: Sequential Reference Pattern

Actual WSS (bytes)

(E
st

im
at

ed
 W

S
S

 −
 A

ct
ua

l W
S

S
)/

(A
ct

ua
l W

S
S

)

(c)

0 2 4 6 8 10 12 14 16

x 10
5

−1

0

1

2

3

4

5
Accuracy of WSS Estimates: Sequential Reference Pattern

Actual WSS (bytes)

(E
st

im
at

ed
 W

S
S

 −
 A

ct
ua

l W
S

S
)/

(A
ct

ua
l W

S
S

)

(d)

Figure 6.4: (continued) Profiler accuracy for (a) machine A, (b) machine B, (c) machine C,
and (d) machine C with very large error values removed, when a sequential reference pattern
is employed.

144

profiler accuracy when varying MTT utilizations, results are presented as a function of the

actual WSS of each MTT. We now discuss the results for each machine.

6.2.1.1 Machine A

The results for machine A are presented in inset (a) of Figures 6.3 and 6.4. Our profiler is

typically accurate on machine A for random reference patterns. Exceptions are clearly shown,

and become more frequent at larger WSSs. This is because, as WSS increases, it becomes more

difficult for the bootstrapping process (described in Chapter 5) to result in WSS estimates

that converge, due to the large number of discarded measurements resulting from shared

cache thrashing, and a threshold of convergence that may be too low for larger WSSs (100

lines, or 6,400 bytes). However, note that error then decreases as WSSs approach the shared

cache size, since WSS estimates are capped at that size by the profiler. Therefore, to some

extent, the upper bound on WSS partially “cancels out” this issue with the bootstrapping

process, since as WSS increases, inaccurate measurements are much more likely to be capped.

Overall, the exceptions were outliers, since the maximum observed error was under 10% and

5% for over 91% and 78%, respectively, of the MTTs (with random reference patterns) that

were profiled on machine A.

Hardware limitations. For sequential reference patterns, our profiler is extremely inac-

curate, producing estimates that are close to zero for all profiled MTTs (see inset (a) of

Figure 6.4). This suggests that most cache misses were not counted by the performance

counters in machine A. This is due to the hardware prefetcher, which attempts to anticipate

the data needs of a core and fetch data earlier than it is needed; this reduces the perceived

latency of referencing data and improves core utilization. The prefetcher is very likely to be

triggered frequently by a sequential memory reference pattern, while a random pattern will

trigger it rarely. While prefetching generally improves system performance, especially under

sequential reference patterns, per-core shared cache misses related to this prefetcher are not

included as part of any performance event in the Core i7, and the prefetcher cannot be dis-

abled for experimental purposes. Thus, poor WSS estimates cannot be avoided for sequential

reference patterns on our Core i7 processor.

145

Interestingly, both the ability to count prefetching-related events (via a processor-specific

performance event) and disable the prefetcher were available in most Core 2 chips, and the

Xeon chip in machine B, both of which preceded the Core i7. (The ability to disable prefetch-

ing is also available in some in-house versions of the Core i7 at Intel, but this feature has been

locked, if present at all, in the commercial versions of the chip.) In particular, while the Core

2, Xeon, and Core i7 chips all have the ability to count lower-level cache misses, the Core 2

and Xeon chips allow prefetching events to be included in the counts by slightly changing the

bits that are written to a performance event select register to program the counters. While

the Core i7 does include additional “uncore” performance counters, which are intended to

count events that are related to off-core (but on-chip) components such as the shared cache,

these counters also do not provide any way to account for prefetching events, especially if

events originating from different cores need to be counted separately, as is needed in this

case. Therefore, the new “uncore” counters are not particularly useful for our purposes. In

summary, the existence of the prefetching-related features in earlier Intel processors suggests

that it is not unreasonable to expect them, and we believe that the loss of these features is a

step in the wrong direction, since it makes shared cache management more difficult (and not

just for real-time applications).

6.2.1.2 Machine B

The results for machine B are presented in inset (b) of Figures 6.3 and 6.4. As indicated earlier,

the performance counters on this machine can account for prefetching effects. As a result,

the profiler was more accurate for sequential reference patterns on machine B than on any

other machine employing either reference pattern—the maximum observed error was under

10% and 5% for over 97% and 79%, respectively, of the MTTs (with sequential reference

patterns) that were profiled. Interestingly, the results for random reference patterns were

actually slightly worse than those for machine A—the maximum observed error was under

10% and 5% for over 89% and 39%, respectively, of the MTTs that were profiled when random

reference patterns were used. However, trends appear to be quite similar on both machines,

with accuracy being quite good until larger WSSs are reached, at which time error increases

146

due to difficulties with the bootstrapping process.

We believe that, under random reference patterns, additional misses were counted by

the prefetcher that were related to the additional logic required to generate a random refer-

ence pattern, which requires more instructions and bookkeeping than generating a sequential

reference pattern. These misses were then factored into the estimated WSS, which, in turn,

resulted in error values for random reference patterns that were slightly worse than machine A,

where prefetching events were not counted. While we could claim that counting prefetching

events was actually undesirable in this case, in reality, the effect of the additional logic will

increase the size of the cache footprint of the MTT, and should be accounted for. Thus, we

believe that the profiler was most accurate by far on machine B under both reference patterns,

as compared to the other machines.

Another trend worth noting under machine B is a pronounced upswing in minimum error

at the largest WSSs under both the random and sequential reference patterns, clearly seen in

inset (b) of Figures 6.3 and 6.4—in fact, as WSS approaches the shared cache size, minimum

errors close to zero are never observed, replaced instead by a minimum error that peaks at

roughly 20% and 10% under the random and sequential reference patterns, respectively. In

these cases, we believe that conflict misses, which are assumed to be negligible due to the

high set associativity of the shared cache, may have occurred more frequently than expected.

Such misses are more likely to occur during periods of high contention for the shared cache,

such as when a job is scheduled with a WSS that approaches the shared cache size. This

is especially true under the random reference pattern, where the potential for generating

reference patterns that result in conflict misses increases, which would explain why we see a

greater minimum error in this case.

6.2.1.3 Machine C

The results for machine C are presented in insets (c) and (d) of Figures 6.3 and 6.4. Due to a

large number of extremely inaccurate estimates that make it difficult to see detail in inset (c)

of each figure, inset (d), which shows the same results with the large error values removed,

has been included in each figure (note the different y-axis range in each inset). Overall,

147

profiler accuracy was very poor on machine C, though for very different reasons than those

encountered on machine A. Instead, we believe that the results are mostly related to shared

cache misses being counted multiple times when different jobs in the same MTT reference

the same memory locations. When multiple jobs of the same MTT attempt to reference the

same location in memory, we would assume that the first job to reference the location would

bring data from that location into the cache, resulting in a cache miss, and the remaining

jobs would then use the data in the cache; thus, the location would generate one cache miss.

Unfortunately, in reality, this is not what happened when different jobs referenced the same

location at approximately the same time, as was often the case in the sequential reference

pattern. Instead, since the time to bring a piece of data from main memory into the cache

is considerably higher on machine C than on machines A or B, the first job to reference the

location was often still waiting for data to be brought into the cache when the remaining jobs

referenced the data. As a result, some of the remaining jobs would be forced to wait, and the

performance counters associated with those jobs would also record a cache miss, resulting in

the miss being counted two or more times for the same location. In the worst case, this can

result in a “lock-step” sequential reference pattern where all jobs must wait for every memory

location to be brought into the cache, resulting in each miss being recorded multiple times.

The impact of this lock-step effect can be seen clearly for sequential reference patterns

in inset (d) of Figure 6.4, where the proportionate error congregates around integer values

between zero and three, corresponding to MTTs that contained between one and four tasks

(in the worst case, misses would be recorded X times for an MTT with X tasks, resulting in

an error of X − 1). Under random reference patterns, the lock-step effect is likely to occur

much less frequently, since it will only occur when multiple tasks attempt to reference the

same memory location (or two locations that are part of the same cache line); this is seen in

inset (d) of Figure 6.3, where the effect occurs, but since it does not occur reliably throughout

the reference pattern, errors do not congregate around integer values. There also appears to

be additional error under machine C that cannot be fully accounted for by the lock-step effect,

though we do expect that it is related to the large amount of time required to bring data

from a memory location into the cache, during which any references to that data will result

148

in cache misses being recorded by the performance counters.

Additionally, the counters themselves are somewhat limited, as they are unable to count

events related to data stores, and can only count either events related to data loads or

instruction cache requests. Since there is only one programmable counter per hardware thread,

both events cannot be counted simultaneously, so we chose to count data loads, since we

expected data loads to have a larger impact on WSS than instruction cache requests.

6.2.1.4 Summary

Overall, we found that, regardless of hardware limitations, the experimental results for random

reference patterns on machine A, and for both random and sequential reference patterns on

machine B, show that our concepts are sound—given sufficient hardware support to accurately

count shared cache misses, our profiler is often quite accurate. Moreover, the needed hardware

support is not complicated . We shall see next that system performance can be improved over

GEDF when our cache-aware scheduler is used and the profiler is reasonably accurate.

6.2.2 Performance Versus GEDF

In the next set of experiments, the same task sets generated in Section 6.2.1 were scheduled

under both our scheduler and GEDF, again for one minute. In these experiments, only the

random reference pattern was employed under Machine A, since the profiler was inaccurate

for sequential reference patterns due to the hardware limitations described earlier. (While the

profiler was also inaccurate for both patterns in machine C, the estimates were typically higher

than reality, rather than roughly zero, and we could therefore expect to see at least a marginal

decrease in cache miss rates when our scheduler is used.) MTTs were compared on the basis of

several performance metrics under both our scheduler and GEDF. These performance metrics

are: cache miss rate, deadline tardiness, and scheduling overheads. Results related to each

metric are presented next.

149

6.2.2.1 Average-Case Cache Miss Rate

Figures 6.5–6.9 present differences in cache miss rates or misses per instruction under GEDF

and our scheduler, for each utilization distribution on machines A (random reference pat-

tern), B (random and sequential reference patterns), and C (random and sequential reference

patterns), respectively. In all figures, insets (a) through (e) present histograms for each dis-

tribution indicating the (absolute, not relative) improvement in the average cache miss rate

(or misses per instruction, for machine C) for each MTT over all of its jobs. For machines A

and B, a value of 1.0 would imply a 100% cache miss rate under GEDF and a 0% cache miss

rate under our scheduler; for machine C, a value of 1.0 would indicate a drop in average

misses per instruction of one. Inset (f) presents additional statistics for each histogram: the

minimum, average, and maximum miss rate (or misses per instruction) decrease observed un-

der our scheduler (with respect to GEDF), and the percentage of MTTs that were positively

impacted, not impacted, and negatively impacted by our scheduler (x represents the amount

of the decrease). Finally, note that the range of the x-axis often varies substantially between

figures and within insets of the same figure.

Machine A. On machine A (Figure 6.5), our scheduler tends to result in a reduction in

cache miss rates over GEDF under all distributions, sometimes by a large margin, and rarely

results in miss rate increases. This is more easily observed in Figure 6.5(f): for a given uti-

lization distribution, cache miss rates improved (i.e., decreased) for as many as 33.20% of

MTTs, and worsened for at most 9.22% of MTTs. The positive impact of our scheduler is

slightly higher when lower-utilization MTTs exist. This is because lower-utilization MTTs

tend to have smaller WSSs, meaning that they execute less frequently and reference memory

less frequently during execution, making it more difficult for their jobs to retain their work-

ing sets in the cache when thrashing occurs. This provides increased opportunities for our

scheduler to reduce cache miss rates by avoiding thrashing.

Machine B. Our scheduler demonstrated the greatest miss rate improvements on ma-

chine B, as expected since profiler accuracy was greatest on this machine. Under the random

reference pattern (Figure 6.6), improvements were comparable to those seen on machine A.

150

−0.4 −0.2 0 0.2 0.4 0.6
0

200

400

600

800

1000
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.1]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.2 0 0.2 0.4 0.6
0

50

100

150

200

250

300
Miss Rate Decrease versus G−EDF, Util. [0.1, 0.4]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(a) (b)

−0.2 0 0.2 0.4 0.6
0

20

40

60

80

100
Miss Rate Decrease versus G−EDF, Util. [0.5, 0.9]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.2 0 0.2 0.4 0.6
0

50

100

150

200
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.9]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(c) (d)

−0.2 0 0.2 0.4 0.6
0

50

100

150

200
Miss Rate Decrease versus G−EDF, Util. Bimodal

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

Util. Dist. Min. Avg. Max.
[0.01, 0.1] -0.307 0.013 0.470
[0.1, 0.4] -0.196 0.016 0.570
[0.5, 0.9] -0.017 0.015 0.491
[0.01, 0.9] -0.061 0.019 0.475
Bimodal -0.169 0.016 0.506
Overall -0.307 0.014 0.570

Util. Dist. x < −0.01 |x| ≤ 0.01 x > 0.01
[0.01, 0.1] 5.41% 61.39% 33.20%
[0.1, 0.4] 8.45% 65.46% 26.09%
[0.5, 0.9] 4.83% 74.48% 20.69%
[0.01, 0.9] 8.21% 65.30% 26.49%
Bimodal 9.22% 60.06% 30.73%
Overall 6.63% 62.93% 30.44%

(e) (f)

Figure 6.5: The decrease in the average shared cache miss rate over each utilization dis-
tribution, as compared with GEDF, for machine A (random reference pattern). A positive
value indicates a performance increase over GEDF, whereas a negative value indicates a de-
crease. Insets (a) through (e) present histograms for each distribution, while inset (f) presents
statistics for each histogram.

151

−0.04 −0.02 0 0.02 0.04 0.06
0

100

200

300

400

500

600
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.1]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.06 −0.04 −0.02 0 0.02 0.04
0

20

40

60

80

100

120
Miss Rate Decrease versus G−EDF, Util. [0.1, 0.4]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(a) (b)

−0.03 −0.02 −0.01 0 0.01 0.02
0

10

20

30

40
Miss Rate Decrease versus G−EDF, Util. [0.5, 0.9]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.06 −0.04 −0.02 0 0.02 0.04
0

20

40

60

80
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.9]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(c) (d)

−0.04 −0.02 0 0.02 0.04
0

20

40

60

80
Miss Rate Decrease versus G−EDF, Util. Bimodal

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

Util. Dist. Min. Avg. Max.
[0.01, 0.1] -0.032 0.006 0.054
[0.1, 0.4] -0.041 0.002 0.029
[0.5, 0.9] -0.027 0.004 0.020
[0.01, 0.9] -0.049 0.002 0.032
Bimodal -0.024 0.004 0.035
Overall -0.049 0.005 0.054

Util. Dist. x < −0.01 |x| ≤ 0.01 x > 0.01
[0.01, 0.1] 0.24% 57.11% 42.65%
[0.1, 0.4] 7.53% 69.88% 22.59%
[0.5, 0.9] 7.94% 76.19% 15.87%
[0.01, 0.9] 9.78% 72.89% 17.33%
Bimodal 4.72% 69.17% 26.11%
Overall 3.33% 63.40% 33.26%

(e) (f)

Figure 6.6: The decrease in the average shared cache miss rate over each utilization dis-
tribution, as compared with GEDF, for machine B (random reference pattern). A positive
value indicates a performance increase over GEDF, whereas a negative value indicates a de-
crease. Insets (a) through (e) present histograms for each distribution, while inset (f) presents
statistics for each histogram.

152

−0.05 0 0.05 0.1 0.15
0

100

200

300

400

500
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.1]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.05 0 0.05 0.1 0.15
0

20

40

60

80

100
Miss Rate Decrease versus G−EDF, Util. [0.1, 0.4]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(a) (b)

−0.05 0 0.05 0.1 0.15
0

5

10

15

20

25

30
Miss Rate Decrease versus G−EDF, Util. [0.5, 0.9]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.05 0 0.05 0.1 0.15
0

20

40

60

80
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.9]

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(c) (d)

−0.15 −0.1 −0.05 0 0.05 0.1
0

20

40

60

80

100
Miss Rate Decrease versus G−EDF, Util. Bimodal

Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

Util. Dist. Min. Avg. Max.
[0.01, 0.1] -0.048 0.035 0.125
[0.1, 0.4] -0.024 0.035 0.096
[0.5, 0.9] -0.023 0.042 0.087
[0.01, 0.9] -0.017 0.028 0.086
Bimodal -0.110 0.032 0.092
Overall -0.110 0.034 0.125

Util. Dist. x < −0.01 |x| ≤ 0.01 x > 0.01
[0.01, 0.1] 0.55% 47.95% 51.50%
[0.1, 0.4] 2.11% 44.58% 53.31%
[0.5, 0.9] 2.38% 28.57% 69.05%
[0.01, 0.9] 3.56% 49.33% 47.11%
Bimodal 3.61% 43.61% 52.78%
Overall 1.65% 45.86% 52.49%

(e) (f)

Figure 6.7: The decrease in the average shared cache miss rate over each utilization distri-
bution, as compared with GEDF, for machine B (sequential reference pattern). A positive
value indicates a performance increase over GEDF, whereas a negative value indicates a de-
crease. Insets (a) through (e) present histograms for each distribution, while inset (f) presents
statistics for each histogram.

153

−2 0 2 4 6
x 10

−3

0

1000

2000

3000

4000

5000

6000
Misses/Instr. Decrease vs. G−EDF, Util. [0.01, 0.1]

Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

−2 0 2 4 6
x 10

−3

0

200

400

600

800
Misses/Instr. Decrease vs. G−EDF, Util. [0.1, 0.4]

Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

(a) (b)

−4 −2 0 2 4 6
x 10

−3

0

50

100

150

200
Misses/Instr. Decrease vs. G−EDF, Util. [0.5, 0.9]

Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

−4 −2 0 2 4
x 10

−3

0

50

100

150

200

250

300
Misses/Instr. Decrease vs. G−EDF, Util. [0.01, 0.9]

Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

(c) (d)

−2 0 2 4 6
x 10

−3

0

100

200

300

400

500

600
Misses/Instr. Decrease vs. G−EDF, Util. Bimodal

Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

Util. Dist. Min. Avg. Max.
[0.01, 0.1] -0.0005 0.0000 0.0053
[0.1, 0.4] -0.0015 0.0002 0.0047
[0.5, 0.9] -0.0027 0.0001 0.0047
[0.01, 0.9] -0.0020 0.0001 0.0035
Bimodal -0.0016 0.0000 0.0048
Overall -0.0027 0.0001 0.0053

Util. Dist. x < −0.01 |x| ≤ 0.01 x > 0.01
[0.01, 0.1] 0.00% 100.00% 0.00%
[0.1, 0.4] 0.00% 100.00% 0.00%
[0.5, 0.9] 0.00% 100.00% 0.00%
[0.01, 0.9] 0.00% 100.00% 0.00%
Bimodal 0.00% 100.00% 0.00%
Overall 0.00% 100.00% 0.00%

(e) (f)

Figure 6.8: The decrease in the average shared cache miss rate over each utilization dis-
tribution, as compared with GEDF, for machine C (random reference pattern). A positive
value indicates a performance increase over GEDF, whereas a negative value indicates a de-
crease. Insets (a) through (e) present histograms for each distribution, while inset (f) presents
statistics for each histogram.

154

−5 0 5 10 15
x 10

−4

0

200

400

600

800

1000

1200
Misses/Instr. Decrease vs. G−EDF, Util. [0.01, 0.1]

Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

−2 −1 0 1 2
x 10

−3

0

100

200

300

400

500
Misses/Instr. Decrease vs. G−EDF, Util. [0.1, 0.4]

Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

(a) (b)

−1 −0.5 0 0.5 1 1.5
x 10

−3

0

50

100

150

200
Misses/Instr. Decrease vs. G−EDF, Util. [0.5, 0.9]

Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

−1 −0.5 0 0.5 1 1.5
x 10

−3

0

50

100

150

200

250
Misses/Instr. Decrease vs. G−EDF, Util. [0.01, 0.9]

Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

(c) (d)

−1 −0.5 0 0.5 1 1.5
x 10

−3

0

50

100

150

200

250
Misses/Instr. Decrease vs. G−EDF, Util. Bimodal

Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

Util. Dist. Min. Avg. Max.
[0.01, 0.1] -0.0004 0.0000 0.0010
[0.1, 0.4] -0.0012 0.0000 0.0012
[0.5, 0.9] -0.0007 0.0000 0.0012
[0.01, 0.9] -0.0005 0.0000 0.0013
Bimodal -0.0007 0.0000 0.0013
Overall -0.0012 0.0000 0.0013

Util. Dist. x < −0.01 |x| ≤ 0.01 x > 0.01
[0.01, 0.1] 0.00% 100.00% 0.00%
[0.1, 0.4] 0.00% 100.00% 0.00%
[0.5, 0.9] 0.00% 100.00% 0.00%
[0.01, 0.9] 0.00% 100.00% 0.00%
Bimodal 0.00% 100.00% 0.00%
Overall 0.00% 100.00% 0.00%

(e) (f)

Figure 6.9: The decrease in the average shared cache miss rate over each utilization distri-
bution, as compared with GEDF, for machine C (sequential reference pattern). A positive
value indicates a performance increase over GEDF, whereas a negative value indicates a de-
crease. Insets (a) through (e) present histograms for each distribution, while inset (f) presents
statistics for each histogram.

155

Under the sequential reference pattern (Figure 6.7), improvements were somewhat greater,

and in most cases, the majority of MTTs experienced a reduction in cache miss rates when

our scheduler was used. Note that, under both reference patterns, we also see a bimodal trend

in the results. We believe that the two peaks correspond to MTTs with one or two tasks,

where MTTs with two tasks benefit more due to co-scheduling. If this belief is true, then

for MTTs with two tasks, a greater benefit is seen under the sequential reference pattern,

which makes sense since under such a reference pattern, there is more predictable data sharing

within MTTs.

Machine C. As was expected, due to the poor accuracy of the profiler on machine C,

differences in misses per instruction were not very significant when our scheduler was used on

machine C, as seen in Figures 6.8 and 6.9. Additionally, our performance metric was different

on this machine, since shared cache references could not be counted, which may have made

performance differences more difficult to see. If performance differences were not impacted

by the change in metric, then in the average case, there was virtually no benefit to using our

scheduler; however, as we will see next for all machines, there was some benefit to using our

scheduler when considering worst-case per-job misses per instruction.

6.2.2.2 Worst-Case Cache Miss Rate

Figures 6.10–6.14 present differences in cache miss rates or misses per instruction on ma-

chines A (random reference pattern), B (random and sequential reference patterns), and C

(random and sequential reference patterns), respectively, this time with respect to the max-

imum observed (i.e., worst-case) per-job cache miss rate or misses per instruction for each

MTT. The differences are relative to GEDF for each utilization distribution, and insets (a)

through (f) present the results identically to the figures for average-case performance. As with

the average-case results, note that the range of the x-axis often varies substantially between

figures and within insets of the same figure.

Machine A. On machine A (Figure 6.10), the results are similar to, but considerably more

significant than, those observed in the average case. Our scheduler had a substantial impact

156

−1 −0.5 0 0.5 1
0

50

100

150

200

250
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.1]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−1 −0.5 0 0.5 1
0

10

20

30

40
Miss Rate Decrease versus G−EDF, Util. [0.1, 0.4]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(a) (b)

−0.5 0 0.5 1
0

5

10

15
Miss Rate Decrease versus G−EDF, Util. [0.5, 0.9]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−1 −0.5 0 0.5 1
0

5

10

15

20

25
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.9]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(c) (d)

−1 −0.5 0 0.5 1
0

10

20

30

40
Miss Rate Decrease versus G−EDF, Util. Bimodal

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

Util. Dist. Min. Avg. Max.
[0.01, 0.1] -0.754 0.023 0.930
[0.1, 0.4] -0.536 0.110 0.748
[0.5, 0.9] -0.273 0.167 0.633
[0.01, 0.9] -0.532 0.122 0.626
Bimodal -0.616 0.102 0.814
Overall -0.754 0.064 0.930

Util. Dist. x < −0.01 |x| ≤ 0.01 x > 0.01
[0.01, 0.1] 27.19% 8.84% 63.96%
[0.1, 0.4] 14.98% 5.07% 79.95%
[0.5, 0.9] 4.14% 4.83% 91.03%
[0.01, 0.9] 11.94% 4.85% 83.21%
Bimodal 16.76% 3.35% 79.89%
Overall 21.19% 6.93% 71.89%

(e) (f)

Figure 6.10: The decrease in the maximum (worst-case) per-job shared cache miss rate over
each utilization distribution, as compared with GEDF, for machine A (random reference pat-
tern). A positive value indicates a performance increase over GEDF, whereas a negative value
indicates a decrease. Insets (a) through (e) present histograms for each distribution, while
inset (f) presents statistics for each histogram.

157

−0.5 0 0.5 1
0

50

100

150
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.1]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

0 0.2 0.4 0.6 0.8
0

5

10

15

20

25

30
Miss Rate Decrease versus G−EDF, Util. [0.1, 0.4]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(a) (b)

−0.2 0 0.2 0.4 0.6
0

2

4

6

8

10
Miss Rate Decrease versus G−EDF, Util. [0.5, 0.9]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.2 0 0.2 0.4 0.6
0

5

10

15
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.9]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(c) (d)

0 0.2 0.4 0.6 0.8
0

5

10

15

20

25
Miss Rate Decrease versus G−EDF, Util. Bimodal

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

Util. Dist. Min. Avg. Max.
[0.01, 0.1] -0.136 0.417 0.872
[0.1, 0.4] 0.039 0.410 0.648
[0.5, 0.9] -0.011 0.359 0.542
[0.01, 0.9] -0.019 0.378 0.568
Bimodal 0.001 0.415 0.642
Overall -0.136 0.409 0.872

Util. Dist. x < −0.01 |x| ≤ 0.01 x > 0.01
[0.01, 0.1] 0.24% 0.08% 99.68%
[0.1, 0.4] 0.00% 0.00% 100.00%
[0.5, 0.9] 0.79% 0.79% 98.41%
[0.01, 0.9] 0.44% 0.89% 98.67%
Bimodal 0.00% 0.56% 99.44%
Overall 0.22% 0.26% 99.52%

(e) (f)

Figure 6.11: The decrease in the maximum (worst-case) per-job shared cache miss rate over
each utilization distribution, as compared with GEDF, for machine B (random reference pat-
tern). A positive value indicates a performance increase over GEDF, whereas a negative value
indicates a decrease. Insets (a) through (e) present histograms for each distribution, while
inset (f) presents statistics for each histogram.

158

−0.2 0 0.2 0.4 0.6
0

20

40

60

80
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.1]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.2 0 0.2 0.4 0.6
0

5

10

15

20
Miss Rate Decrease versus G−EDF, Util. [0.1, 0.4]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(a) (b)

−0.2 0 0.2 0.4 0.6
0

2

4

6

8
Miss Rate Decrease versus G−EDF, Util. [0.5, 0.9]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

−0.2 0 0.2 0.4 0.6
0

5

10

15
Miss Rate Decrease versus G−EDF, Util. [0.01, 0.9]

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

(c) (d)

−0.2 0 0.2 0.4 0.6
0

5

10

15

20
Miss Rate Decrease versus G−EDF, Util. Bimodal

Maximum Per−Job Miss Rate Improvement

N
um

be
r

of
 M

T
T

s

Util. Dist. Min. Avg. Max.
[0.01, 0.1] -0.192 0.213 0.503
[0.1, 0.4] -0.029 0.257 0.470
[0.5, 0.9] -0.062 0.219 0.405
[0.01, 0.9] -0.139 0.212 0.425
Bimodal -0.106 0.232 0.534
Overall -0.192 0.223 0.534

Util. Dist. x < −0.01 |x| ≤ 0.01 x > 0.01
[0.01, 0.1] 3.63% 1.11% 95.26%
[0.1, 0.4] 1.51% 0.30% 98.19%
[0.5, 0.9] 8.73% 1.59% 89.68%
[0.01, 0.9] 4.00% 2.22% 93.78%
Bimodal 1.39% 1.11% 97.50%
Overall 3.29% 1.13% 95.58%

(e) (f)

Figure 6.12: The decrease in the maximum (worst-case) per-job shared cache miss rate over
each utilization distribution, as compared with GEDF, for machine B (sequential reference
pattern). A positive value indicates a performance increase over GEDF, whereas a negative
value indicates a decrease. Insets (a) through (e) present histograms for each distribution,
while inset (f) presents statistics for each histogram.

159

−0.04 −0.02 0 0.02 0.04
0

1000

2000

3000

4000
Misses/Instr. Decrease vs. G−EDF, Util. [0.01, 0.1]

Max. Per−Job Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

−0.04 −0.02 0 0.02 0.04
0

100

200

300

400

500

600
Misses/Instr. Decrease vs. G−EDF, Util. [0.1, 0.4]

Max. Per−Job Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

(a) (b)

−0.06 −0.04 −0.02 0 0.02 0.04
0

50

100

150

200

250
Misses/Instr. Decrease vs. G−EDF, Util. [0.5, 0.9]

Max. Per−Job Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

−0.8 −0.6 −0.4 −0.2 0 0.2
0

500

1000

1500
Misses/Instr. Decrease vs. G−EDF, Util. [0.01, 0.9]

Max. Per−Job Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

(c) (d)

−0.4 −0.3 −0.2 −0.1 0 0.1
0

200

400

600

800

1000

1200
Misses/Instr. Decrease vs. G−EDF, Util. Bimodal

Max. Per−Job Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

Util. Dist. Min. Avg. Max.
[0.01, 0.1] -0.0370 -0.0016 0.0252
[0.1, 0.4] -0.0201 0.0012 0.0234
[0.5, 0.9] -0.0436 0.0036 0.0206
[0.01, 0.9] -0.6096 0.0021 0.0221
Bimodal -0.3557 0.0017 0.0228
Overall -0.6096 -0.0002 0.0252

Util. Dist. x < −0.01 |x| ≤ 0.01 x > 0.01
[0.01, 0.1] 1.90% 97.24% 0.86%
[0.1, 0.4] 0.17% 96.22% 3.61%
[0.5, 0.9] 0.09% 91.04% 8.87%
[0.01, 0.9] 0.19% 93.51% 6.31%
Bimodal 0.20% 94.73% 5.07%
Overall 1.22% 96.16% 2.61%

(e) (f)

Figure 6.13: The decrease in the maximum (worst-case) per-job shared cache miss rate over
each utilization distribution, as compared with GEDF, for machine C (random reference pat-
tern). A positive value indicates a performance increase over GEDF, whereas a negative value
indicates a decrease. Insets (a) through (e) present histograms for each distribution, while
inset (f) presents statistics for each histogram.

160

−0.02 −0.01 0 0.01 0.02 0.03
0

1000

2000

3000

4000
Misses/Instr. Decrease vs. G−EDF, Util. [0.01, 0.1]

Max. Per−Job Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

−0.02 −0.01 0 0.01 0.02 0.03
0

500

1000

1500
Misses/Instr. Decrease vs. G−EDF, Util. [0.1, 0.4]

Max. Per−Job Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

(a) (b)

−0.01 0 0.01 0.02 0.03
0

50

100

150
Misses/Instr. Decrease vs. G−EDF, Util. [0.5, 0.9]

Max. Per−Job Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

−0.02 −0.01 0 0.01 0.02 0.03
0

100

200

300

400

500

600
Misses/Instr. Decrease vs. G−EDF, Util. [0.01, 0.9]

Max. Per−Job Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

(c) (d)

−0.02 −0.01 0 0.01 0.02 0.03
0

200

400

600

800
Misses/Instr. Decrease vs. G−EDF, Util. Bimodal

Max. Per−Job Misses/Instr. Improvement

N
um

be
r

of
 M

T
T

s

Util. Dist. Min. Avg. Max.
[0.01, 0.1] -0.0180 -0.0024 0.0203
[0.1, 0.4] -0.0139 0.0012 0.0233
[0.5, 0.9] -0.0001 0.0038 0.0212
[0.01, 0.9] -0.0137 0.0022 0.0240
Bimodal -0.0165 0.0005 0.0239
Overall -0.0180 -0.0008 0.0240

Util. Dist. x < −0.01 |x| ≤ 0.01 x > 0.01
[0.01, 0.1] 6.60% 92.85% 0.55%
[0.1, 0.4] 0.24% 96.29% 3.47%
[0.5, 0.9] 0.00% 88.72% 11.28%
[0.01, 0.9] 0.50% 92.50% 7.00%
Bimodal 3.00% 91.98% 5.02%
Overall 4.40% 93.01% 2.59%

(e) (f)

Figure 6.14: The decrease in the maximum (worst-case) per-job shared cache miss rate over
each utilization distribution, as compared with GEDF, for machine C (sequential reference
pattern). A positive value indicates a performance increase over GEDF, whereas a negative
value indicates a decrease. Insets (a) through (e) present histograms for each distribution,
while inset (f) presents statistics for each histogram.

161

on worst-case per-job cache miss rates for the majority of MTTs in every distribution. This

result has one important implication: under our scheduler, worst-case per-job cache miss rates

are generally lower, which can directly result in a decrease in worst-case execution times. As

a result, on machine A, our scheduler has a much greater potential than GEDF to efficiently

utilize the system.

Machine B. On machine B, the use of our cache-aware scheduler resulted in reductions in

cache miss rates for the vast majority of MTTs, and almost never resulted in a significant

miss rate increases, when considering worst-case per-job cache miss rates. Further, the ob-

served miss rate reductions were quite high, especially with respect to the other machines: an

average reduction of 40.9% in the worst-case per-job cache miss rate for each MTT under the

random reference pattern (as seen in Figure 6.11(f)), and an average reduction of 22.3% in

the worst-case per-job cache miss rate for each MTT under the sequential reference pattern

(as seen in Figure 6.12(f)), over all utilization distributions. Unlike the average-case results,

the distributions were not bimodal. One reason that miss rate reductions were higher under

random reference patterns might be that such patterns are more likely to bring their entire

footprint into the cache earlier, creating a greater potential for our scheduler to reduce cache

miss rates by avoiding thrashing. To see this, recall that if a memory location is brought

into the cache as the result of a cache miss, then the entire cache line containing the location

of interest must be brought into the cache as well. This means that a sequential reference

pattern will not bring its entire footprint into the cache until it has referenced nearly every

location in its footprint, since it references those locations sequentially. On the other hand,

a random reference pattern need only reference a single location in any cache line to bring

the entire line into the cache; as a result, a random pattern is likely to reference at least one

location within each cache line considerably earlier, resulting in the footprint being brought

into the cache earlier. Overall, regardless of the reference pattern, and for the same reasons

discussed for machine A, our scheduler has a much greater potential than GEDF to efficiently

utilize machine B.

162

Machine A
Algorithm Average Maximum

GEDF 0.00 18.76
CA-SCHED 12.26 1037.69

Machine B
Algorithm Average Maximum

GEDF 0.00 46.29
CA-SCHED 28.48 979.16

Machine C
Algorithm Average Maximum

GEDF 0.00 93.23
CA-SCHED 47.89 3343.91

Table 6.9: Deadline tardiness results for each machine (in ms).

Machine C. As in the average case, changes in misses per instruction were least significant

in machine C as compared to the other machines—see Figures 6.13 and 6.14. However,

when we look at only the results for machine C, reductions in misses per instruction were

considerably more significant than in the average case. While it is still the case that no

significant reductions in misses per instruction were observed for the majority of MTTs, more

substantial gains were observed for the MTTs when a benefit was seen, as compared to the

average case.

6.2.2.3 Deadline Tardiness

Table 6.9 shows the average and maximum observed deadline tardiness of jobs executing under

both GEDF and our scheduler (denoted CA-SCHED). Our scheduler resulted in higher average

tardiness than GEDF, but the difference is not overly substantial, being well under the smallest

period of any MTT for machines A and B, and slightly higher than the smallest period on

machine C (recall that the minimum period was different on machine A than on machines B

and C). Worst-case tardiness is much higher under our scheduler, but is artificially inflated

by our large task periods, especially on machine C, which was heavily loaded relative to the

other machines, since it had 32 logical CPUs. Nevertheless, as stated earlier in Section 6.1.2,

a combination of early releasing and buffering can be employed to “hide” tardiness from an

end user, as discussed in Chapter 4. In such a case, these values are reasonable—a buffer of

several seconds could be typical for many types of (multimedia) applications.

163

6.2.2.4 Scheduling Overhead

Finally, we used Feather-Trace [14] to measure scheduling-related overheads under both GEDF

and our scheduler during the execution of a subset of the generated task sets. This subset

consisted of five task sets from each of the five distributions: two containing the lowest and

highest number of MTTs for that distribution, respectively, and the remaining three chosen

randomly. On machine A, we collected over 37 million overhead measurements (over 1 GB of

raw data) during these experiments, and on machine B, we collected nearly 39 million overhead

measurements (also over 1 GB of raw data). On machine C, we collected significantly more

data due to the large number of logical CPUs and the large sizes of the task sets: over

434 million overhead measurements and over 14 GB of raw data.

Table 6.10 presents average- and worst-case overheads. (These overheads were defined

earlier in Chapter 2.) Note that, in repeated measurements of some overhead, a small number

of samples may be outliers. As overheads for both GEDF and our cache-aware scheduler must

be determined experimentally using a real operating system running on real hardware, these

outliers may be due to a variety of factors that are beyond our control. Such factors include

warm-up effects in the instrumentation code, the many sources of unpredictability within

Linux (such as interrupt handlers and priority inversions within the kernel), and the lack of

determinism on the hardware platforms on which Linux typically runs (and on the machines

that we used in our experiments). The last point is especially a concern, regardless of the

operating system, on multiprocessor platforms. Indeed, research on timing analysis has not

matured to the point of being able to analyze complex interactions among tasks due to atomic

operations, bus locking, and bus and cache contention. In light of the fact that such outliers

may exist, the top 1% of measurements were discarded. The same approach has been used

previously, with similar justification, in both [15] and [16].5

Release overhead and scheduling overhead are both part of the tick overhead for our

scheduler, as releases and most scheduling decisions occur at quantum boundaries. This is

not true in GEDF, where the times at which jobs are released, and scheduling decisions are

5We should note that, despite these observations, there are now many advocates of using Linux to support
applications that require some notion of real-time execution, under which “soft real-time” is usually interpreted
to mean that deadline tardiness on average remains bounded, even if some tasks occasionally misbehave due
to effects beyond our control. This notion of soft real-time is exactly that described in Chapter 2.

164

made, are independent of when timer interrupts occur—timers are armed to release jobs, and

scheduling decisions occur as a result of both job releases and completions. Note that our

scheduler does not result in significantly larger combined overheads than GEDF on any of the

three machines, implying that overheads will not offset reductions in cache miss rates.

6.2.3 Multimedia Application Performance

We next present the results of an experiment conducted on machine A to compare our cache-

aware scheduler to GEDF in terms of job execution times when executing a multimedia server

workload. This workload was simulated with multiple instances of the mplayer application,

modified so that one frame is processed per job. Thus, the period of the mplayer application,

as specified to LITMUSRT, determined the frame rate.

Multiple copies of the same segment of high-quality video (taken from [13]) were processed

by different applications so that they appeared to be from different sources. All copies were

resident in main memory using RAM disks, to avoid issues with hard disk accesses. The

resolution of the video is 1920x1080 with a 24 fps frame rate, resulting in a period of 41 ms.

Based on our observations of the amount of execution time that an application needed to

process a frame of this video, we decided to assign an execution cost of 14 ms to each appli-

cation (though we note that execution costs vary widely per frame). (Our observations came

from running the application multiple times, each time specifying a different execution cost.)

We also observed that the maximum WSS of the application was roughly 3 MB per frame.

Therefore, co-scheduling three of more MTTs has the potential to thrash the 8192K shared

cache on machine A. Each application was represented as a single-threaded MTT.

In our experiments, we ran one, six, and twelve mplayer applications under both GEDF and

our scheduler. Table 6.11 shows the measured worst-case job execution times for each case.

(Note that, in the case of twelve applications, the system is overloaded since (14/41) ∗ 12 ≈

4.098 > 4, although execution times are often lower in practice, which allows all twelve ap-

plications to be supported. Additionally, and also in the case of twelve applications, pairs of

mplayer applications were forced to share the same video copy due to RAM disk space con-

straints.) When one video is scheduled in isolation, the execution time under both schedulers

165

Machine A

Algorithm Tick AVG Sched. AVG Context Sw. AVG Release AVG
GEDF 1.166 3.358 0.953 4.592

CA-SCHED 2.762 2.052 0.972 —

Algorithm Tick WC Sched. WC Context Sw. WC Release WC
GEDF 1.847 11.478 1.532 8.922

CA-SCHED 14.445 6.278 1.507 —

Machine B

Algorithm Tick AVG Sched. AVG Context Sw. AVG Release AVG
GEDF 4.179 7.011 2.125 7.410

CA-SCHED 2.803 1.761 1.052 —

Algorithm Tick WC Sched. WC Context Sw. WC Release WC
GEDF 7.602 34.005 3.483 13.869

CA-SCHED 9.153 6.183 1.938 —

Machine C

Algorithm Tick AVG Sched. AVG Context Sw. AVG Release AVG
GEDF 4.283 50.001 4.661 48.413

CA-SCHED 62.858 8.633 3.783 —

Algorithm Tick WC Sched. WC Context Sw. WC Release WC
GEDF 8.890 370.023 18.647 214.613

CA-SCHED 361.983 31.890 7.103 —

Table 6.10: Average and worst-case kernel overheads for each machine, in µs.

Algorithm 1 Video 6 videos 12 videos
GEDF 14.004 14.947 14.956

CA-SCHED 13.771 13.935 13.972

Table 6.11: Worst-case execution times for mplayer applications (in ms).

166

is about 14 ms. Under GEDF, this increases to roughly 15 ms when scheduling six and twelve

applications, while it remains about 14 ms under our scheduler. Thus, through the use of our

cache-aware scheduler, we are able to ensure that worst-case execution costs do not increase

as a result of thrashing. In doing so, the worst-case cost for each application is roughly 6-7%

less than GEDF in the case of six and twelve applications. As a result, since the system is

able to support twelve video applications under GEDF, the same system should be capable

of supporting an additional mplayer application under our cache-aware scheduler. If a large

number of these systems were used within a cluster of systems that support a multimedia

server workload, then the ability to support an additional application on each machine could

be quite significant.

Interestingly, the memory reference patterns of these mplayer applications are arguably

more sequential than random (since the memory where a video frame is stored is often scanned

in predictable manner, such as strides across memory, instead of randomly), yet we still see

a significant performance improvement when using our scheduler on machine A. We would

expect that, if sufficient hardware support was available to allow more accurate profiling for

sequential reference patterns, the performance benefit of our scheduler would be even greater

on that machine.

6.3 Conclusion

In this chapter, we presented the results of experiments wherein the performance of our cache-

aware scheduler was evaluated. First, we presented a set of experiments, conducted within

SESC, that showed that, when the correct heuristic is selected, system performance can im-

prove substantially as compared to GEDF. These experiments also allowed us to identify

a “best-performing” heuristic, which was implemented within LITMUSRT along with our

cache profiler. Our second set of experiments then evaluated this LITMUSRT implementa-

tion in terms if its capability to generate accurate WSS estimates, and its performance as

compared to GEDF. We found that the accuracy of the profiler depended heavily on the

performance monitoring features that were provided by hardware; however, when sufficient

hardware support existed, our profiler was typically quite accurate. We also found that, when

167

our cache-aware scheduler was used on platforms where the profiler was accurate, reductions

in cache miss rates were often significant. Further, the overheads of our scheduler were roughly

equivalent to those in GEDF. The “true” cost for achieving these reductions in cache miss

rates was an increase in deadline tardiness; however, with a combination of early-releasing

and buffering, this tardiness potentially could be hidden from an end user. Finally, we con-

ducted experiments with a simulated multimedia workload, and found that execution costs

were lower as compared to GEDF when our scheduler was used; these lower costs could allow

a larger workload to be supported with the same hardware.

168

CHAPTER 7

CONCLUSION AND FUTURE WORK

In this dissertation, we extended research on multiprocessor real-time systems to support

multicore platforms, specifically by designing a cache-aware real-time scheduler that reduces

miss rates and avoids thrashing for shared caches on such platforms while ensuring real-time

constraints. Prior work in the area of cache-aware scheduling for multicore platforms did not

address support for real-time workloads, and prior work in the area of real-time scheduling

did not address shared caches on multicore platforms. Further, the cache-aware real-time

scheduling methods that we created earlier, described in Chapter 3, were only partial solutions

and had not been evaluated within the context of a real operating system.

As multicore platforms are quickly becoming ubiquitous within many domains, creating

scheduling policies to address bottlenecks that are common in these platforms, such as shared

caches, is necessary to ensure acceptable system performance and permit a state-of-the-art

real-time scheduler to remain relevant. Effectively addressing a bottleneck such as the shared

cache can enable a larger real-time workload to be supported on a multicore platform, or may

allow hardware-related costs (related to processor components, energy, or chip area) to be

reduced.

7.1 Summary of Results

In Chapter 1, we presented the following thesis statement, which was to be supported by this

dissertation.

Multiprocessor real-time scheduling algorithms can more efficiently utilize multi-

core platforms when scheduling techniques are used that reduce shared cache miss

rates. Such techniques can result in decreased execution times for real-time tasks,

thereby allowing a larger real-time workload to be supported using the same hard-

ware, or enabling costs (related to hardware, energy, or chip area) to be reduced.

In support of this thesis statement, we have presented a cache-aware scheduler, consisting

of both a set of cache-aware scheduling policies, embodied in a single heuristic, and a cache

profiler that allows the cache behavior of each MTT to be quantified at runtime. The choice

of exactly which heuristic to implement was supported by experimentation with roughly

one hundred combinations of policy choices within an architecture simulator; however, all

heuristics operate similarly in that they attempt to influence the co-scheduling of MTTs

through job promotions so that cache miss rates are reduced. Namely, tasks within the same

MTTs are co-scheduled to facilitate cache reuse, and the co-scheduling of tasks from different

MTTs is avoided when it would cause cache thrashing.

Our cache profiler quantifies the cache behavior of each MTT as a per-job WSS; these

WSSs are used by the heuristic to make scheduling decisions. Per-job WSS estimates are

obtained during execution using performance counters. By profiling MTTs during execu-

tion, the need to profile MTTs offline is eliminated, which might make profiling less of an

inconvenience for certain types of workloads. In experiments, we found that our profiler

is quite accurate when sufficient hardware support is provided; otherwise, accuracy varied

considerably depending on the nature of the limited support that was available.

As both a “proof of concept” that our cache-aware scheduler was viable in practice, and

to allow the empirical evaluation presented in Chapter 6 to be conducted, we implemented

our scheduler within Linux. In experiments, our cache-aware scheduler often outperformed

GEDF under a wide variety of real-time workloads and machine architectures. This is best

demonstrated in the experiments that were conducted on machines A and B in Chapter 6.

Additionally, since overheads were found to be comparable to GEDF, we would not expect the

scheduling-related overheads of our scheduler to offset any reductions in cache miss rates when

compared with other scheduling approaches. We also described how deadline tardiness, while

higher under our method, can often be managed through a combination of early-releasing

jobs and buffering results. Lastly, in an effort to directly support the second half of the

170

thesis statement of this dissertation, we conducted experiments involving a multimedia server

workload, and showed that the use of our cache-aware scheduler allowed execution costs to

be reduced, thereby allowing the size of the workload to be increased. Overall, the presented

evaluation suggests that eliminating thrashing and reducing miss rates in shared caches should

be first-class concerns when designing real-time scheduling algorithms for multicore platforms

with shared caches.

Finally, we consider the introduction of the MTT abstraction in this dissertation to be a

contribution in itself, as it allows a notion of concurrency to be incorporated into the periodic

and sporadic task models, which traditionally handle only sequentially-executing tasks. If the

chip manufacturing industry continues to adhere to the multicore paradigm (which is likely,

given current projections), then increasing per-chip core counts will be the primary way in

which the potential processing power of chips will be increased. In this case, exploiting

the available parallelism within these chips will be essential to achieving performance gains

from the use of new processor technology. As end users continue to demand applications

with greater features and sophistication, or of higher quality, such as improved video quality

in multimedia applications, there will be increasing pressure to address issues related to

concurrency at some level within virtually all areas of computer science.

7.2 Other Contributions

We now describe two other contributions by the author during his tenure at The University

of North Carolina at Chapel Hill that are not directly related to the research described in

this dissertation, and were not discussed in prior chapters of this dissertation.

7.2.1 Real-Time Scheduling on Asymmetric Platforms

In [20], we devised an approach for supporting soft real-time periodic tasks in Linux running on

an asymmetric multicore platform. In such a platform, multiple processing cores are placed on

one chip or several chips, and all processing cores are capable of executing the same instruction

set, but at potentially different performance levels. Such a platform is often more flexible

than symmetric platforms when considering the types of workloads that can be supported,

171

since acceptable performance can be achieved for both highly-parallel and highly-sequential

applications, instead of for only one of these two classes of applications, when a reasonable mix

of core counts and speeds are selected. In this work, we first identified deficiencies in Linux

in supporting periodic real-time tasks, highlighting when these deficiencies were particularly

problematic on an asymmetric platform, and then overcame each deficiency by making a small

number of modifications to Linux. In experiments, we found that we were able to effectively

support periodic real-time workloads in our modified version of Linux.

In the next portion of this work, we investigated ways in which performance could be

improved for non-real-time tasks when they are executing alongside real-time tasks on an

asymmetric platform. In many environments in which Linux runs, the performance of non-

real-time tasks is at least as important as ensuring real-time constraints. In our approach,

real-time tasks are assigned to the slowest available cores that can support their execution

requirements—doing so leaves faster cores available for non-real-time tasks, for which response

times are typically a greater concern (assuming that the timing constraints of real-time tasks

are met). Additionally, a high-priority server is placed on each core to explicitly reserve

a share of the core for non-real-time execution. These servers allow response times to be

reduced, especially when tasks need short bursts of processing capacity, such as might be the

case for an interactive application. We found that the addition of a small server to each core

often had a significant impact on response times, while having little impact on the size of the

real-time workload that could be supported.

7.2.2 The LinSched Linux Scheduler Simulator

LinSched [21] is a user-space program that hosts the Linux scheduler, and is intended to assist

with the early stages of scheduler development. It was created in response to the steep learning

curve experienced by those new to Linux kernel development—a spike in new developers is

likely due to a recent resurgence of interest in the Linux scheduler. LinSched has recently

been made publicly available at http://www.cs.unc.edu/~jmc/linsched.

172

7.3 Feedback to Chip Designers

To enable the performance improvements demonstrated in this dissertation to be attained

across a wide spectrum of applications, chip makers must provide needed hardware support .

The support required by our profiler is not complex: we merely need performance counters

that can be used to accurately count shared cache misses. As remarked earlier in Chapter 6,

the effectiveness of such counters has declined in moving from the Intel Xeon chip in ma-

chine B (and its Core 2 counterpart) to the new Core i7 chip in machine A. Further, support

for tracking misses and references in the shared cache is seriously lacking in the Sun Ultra-

SPARC T1 processor (machine C)—this support is only marginally better in its successor, the

UltraSPARC T2. We view these design choices as a serious mistake. If chip makers are really

serious about tackling the issue of effective shared cache usage, then they need to re-think

which performance monitoring hardware features they provide, and determine a standard set

of supported features—this set should remain stable as chip architectures evolve, regardless

of production deadline pressures. (The same can be said more generally for hardware sup-

port related to managing caches.) In doing so, performance counters would become primary

features of the chip, rather than secondary features that are supported less rigidly. As a

result of becoming primary features of the chip, operating systems designers might take these

features more seriously, and begin incorporating them into their designs as was done in this

dissertation, hopefully to the benefit of end users.

7.4 Future Work

There are several ways in which the work described in this dissertation could be extended, as

we discuss next.

Incorporating blocking into the scheduler. There are two relatively common scenarios

where jobs may be forced to block. First, blocking can occur due to the synchronization

required for jobs to safely access critical sections. Second, jobs can block due to precedence

constraints, such as those that would be required to schedule jobs in a pipelined manner—Liu

and Anderson [45] have recently explored issues related to the pipelined execution of real-

173

time tasks, including the utilization loss resulting from the need to wait due to precedence

constraints. If jobs block when our cache-aware scheduler is used, then it may cause assump-

tions related to how jobs are promoted and scheduled to be violated. For instance, when

an urgent job blocks, it can prevent other jobs from being promoted, which could effectively

disable cache-aware scheduling until the urgent job completes. We could make an exception

to this rule for blocking jobs, and allow another job to be promoted, but this could reduce the

effectiveness of the scheduler if a large number of jobs become promoted, and would greatly

complicate a LITMUSRT implementation. As such, we need to develop methods that will

allow job blocking to occur within our scheduler without having a significant impact on its

effectiveness.

Dynamic real-time workloads. In the environment in which our scheduler was imple-

mented, dynamic real-time workloads are likely to be common. Therefore, we must ensure

that our scheduler can handle such workloads effectively. There are at least three types

of dynamic behavior that we would like to consider: new task arrivals, exiting tasks, and

changes in MTT WSSs over time. Under the cache-aware scheduler that we implemented

within LITMUSRT, adding new tasks at runtime, either as stand-alone tasks or to an exist-

ing MTT, is possible as long as doing so does not result in an over-utilized system; however,

it will present some challenges for the profiler. For a stand-alone task, we can obtain WSS

estimates using the same bootstrapping process that was used for all other tasks, described in

Chapter 5. For a task that is part of an MTT, the task will initially be assigned the same WSS

as all other tasks in that MTT, which could be problematic, as the addition of a new task to

that MTT could result in an increased WSS for that MTT. Similarly, when a task exits the

system and is no longer part of the real-time workload, and that task was part of an MTT

that still contains at least one real-time task, then the WSS of that MTT may have decreased

(although in this case, the higher WSS estimate is safe to use). Ultimately, the issue in these

cases is that the WSS of an MTT changed over time, whereas we assumed in Chapter 5 that

MTT WSSs do not change. A conservative solution to this problem would be to require an

MTT to undergo the bootstrapping process again whenever the MTT gains or loses a task;

in this case, the existing WSS can be used until it is discarded during bootstrapping (as it is

174

probably a better estimate than zero). The effectiveness of such an approach depends on how

frequently MTTs gain and lose tasks. In fact, such a method could be employed for MTTs

where WSS changes over time even when the task count does not change—an MTT would

be required to undergo bootstrapping whenever sufficient divergence between two consecu-

tive measurements is detected (the opposite of the convergence test described in Chapter 5).

Again, this may not be particularly effective if changes occur so frequently that the MTT is

always bootstrapping.

Analytical cache thrashing guarantees. While our work is analytically “grounded” with

respect to ensuring soft real-time guarantees, there is not yet any analytical work that would

allow cache thrashing guarantees to be made under our scheduler. For example, it might

be useful to have a test that takes as input a task set and a cache size, and outputs “yes”

if the task set would cause cache thrashing when scheduled with our cache-aware scheduler

(where thrashing is assumed to occur in the same scenarios where it was assumed to occur in

Chapters 4 and 5), and “no” otherwise. A “no” answer would allow lower worst-case execution

times to be used, since such an answer guarantees that cache thrashing will be avoided with

our scheduler, allowing for effective use of the cache. If similar tests were provided for other

algorithms, then it would allow us to analytically compare different algorithms in terms of

expected cache miss rates and potential for cache thrashing, and incorporate any differences

into an overall comparison of scheduling algorithms.

Handling frequent job priority changes. We want to allow run queues to handle fre-

quent changes in job priority more efficiently; that is, in a way that results in lower schedul-

ing overheads. Doing so might make a greater set of the policies from Chapter 4 feasible

in practice—in particular, the lost-cause policies that had a substantial impact on cache

miss rates, as we saw in Chapter 6. As a first step in this direction, we could focus on

identifying and supporting scenarios where the manner in which job priorities can change is

still somewhat restricted, but in such cases, designing an efficient implementation is easier.

For instance, we could first identify those scenarios that could be supported in a straight-

forward manner through simple run-queue-related pointer manipulations. Work to support

175

frequent job priority changes might also enable results such as those in [44], which showed

that bounded deadline tardiness can be ensured for global scheduling approaches even when

jobs can undergo frequently priority changes (within a bounded range), to have a greater

practical impact.

Preventing caching. Tasks should be prevented from caching data that they do not reuse.

Otherwise, tasks with a large memory footprint and little reuse, such as those associated with

data streaming applications, can pollute or thrash a shared cache, causing data belonging to

other tasks to be evicted before any reuse can occur. Additionally, polluting tasks receive

little benefit themselves from caching data. Some hardware architectures provide a way to

prevent certain memory pages from being cached (e.g., recent Intel architectures [39]). For

such an architecture, we would like to automatically identify pages that are not being reused,

and prevent them from being cached. This might be accomplished by counting the number of

times that a page is referenced, and allowing data from that page to be cached only when a

certain reference count for the page is reached. By preventing data from being cached when it

is not reused, the cache footprint of a task would more closely approximate its “real” working

set, which may cause the WSS estimates provided to the cache-aware scheduling heuristics

to decrease and result in an increased ability to avoid cache thrashing.

Multiple shared caches. We want to provide better support within our scheduler for

handling multiple shared caches, using the clustered approach that was described briefly in

Chapter 2. A clustered approach would require either an offline bin-packing of tasks onto

clusters, or an online admission control protocol, where a new task is placed onto an available

cluster, and the utilization of each cluster is tracked.

Buffering implementation. We have stated that soft real-time scheduling approaches

are sufficient for hard real-time systems if early-releasing and buffering can be employed.

Developing a system where such buffering is implemented correctly and in a low-overhead

manner is an interesting and substantial area of future work, for two reasons. First, it is

necessary to account for the impact of buffered data on the cache, either by including the

176

buffered data in the WSS of each MTT, or by preventing buffered data from being cached.

Second, it is necessary to ensure that buffered data can be quickly supplied to a job upon its

“official” release (note that data will be more quickly supplied if it is cached, which further

complicates the first issue). Otherwise, it might be necessary to divide jobs into two portions:

one that can execute prior to its release time, and one that must execute after its official

release time. Dividing jobs makes the use of early-releasing and buffering to hide tardiness

considerably more difficult, and additional analytical results will be required to show that

performing such a division will still allow all deadlines to be met.

Other hard real-time support. Considering hard real-time support again, we would like

to determine if a variant of our scheduler could be appropriate for systems with hard real-time

requirements, even when buffering and early-releasing cannot be employed. In this case, the

first step would be to design a hard real-time schedulability test for our cache-aware scheduler.

Such a schedulability test might be derived from a test concerning analytical tardiness bounds,

by determining whether the tardiness bound is zero for all tasks. Unfortunately, analytical

tardiness bounds are often very conservative, and most such bounds include in the bound the

execution cost of the task for which a tardiness bound is being computed, which means that

the bound cannot be zero by definition.

Safety-critical real-time tasks. Thus far, we have assumed that the profiler that is used

in our cache-aware scheduler could be used in hard real-time systems without modification.

However, in a safety-critical hard real-time system where worst-case execution costs must

be carefully determined, the WSS estimates that are computed by our profiler will not be

sufficient. This is primarily because we assume that conflict misses are negligible and therefore

can be ignored, due to the high set associativity of the low-level shared caches that are of

interest in this dissertation. While this is generally true in high set associativity caches, where

the associativity is often large enough to mask conflict misses, there are cases where a job may

still experience a significant number of conflict misses in a shared cache even when the cache

has a high set associativity. For example, in a system where a 16-way set associative cache

is shared by four cores, and all four cores are utilized, the “effective” set associativity for a

177

job that is running in that system might be four ways or less, depending on the pressure that

is placed on the cache by other running jobs. When the number of ways is reduced, conflict

misses again have the potential to become a significant proportion of the cache misses that

are experienced by a job. The violation of the assumption that conflict misses are negligible

has a two-fold impact on our cache-aware scheduler. First, conflict misses will inflate the miss

counts recorded by the performance counters, thereby resulting in inflated WSS estimates.

Second, when these WSS estimates are used in our cache-aware scheduler, thrashing may

sometimes occur due to conflict misses, even when jobs are scheduled such that the sum of

the WSSs of all scheduled jobs does not exceed the shared cache size (which only ensures that

capacity misses are avoided). Thus, methods that better account for conflict misses need to

be incorporated into our scheduler when safety-critical tasks are supported. It might be easier

to develop such methods if cache partitioning is employed (when supported by hardware),

as doing so may allow conflict misses due to other co-scheduled jobs to be avoided (but

not conflict misses that would occur in isolation), thus providing additional isolation so that

conflict misses can be better accounted for during timing analysis.

Task migrations and private caches. In the work presented in this dissertation, we

have been primarily concerned with shared cache miss rates and thrashing; private caches

have mostly been ignored. During a task migration, overhead will be incurred due to a

loss of private cache affinity, which must be incorporated into schedulability analysis by

inflating execution costs, as we discussed in Chapter 2. While such execution cost inflation

is typically sufficient for handling the impact of task migrations in the soft real-time systems

considered in this dissertation, it may not be sufficient for safety-critical systems, since worst-

case migration overheads may be too high for execution cost inflation to be a viable technique

when considering schedulability. Sarkar et al. [59] recently considered the issue of private

caches during task migrations. In experiments, they observed task migration overheads that

were as high as 56.6% of the execution cost of a task. In such scenarios, the use of execution

cost inflation to account for migration overheads would require significant system under-

utilization in the best case. Motivated by this, Sarkar et al. proposed a hardware-based

mechanism that reduces task migration overheads by proactively pushing data from the source

178

core to the target core during a migration before that data is requested by the task when it

resumes execution on the target core. Thus, migration overheads due to a loss of private cache

affinity are reduced by anticipating the data needs of the task after migration and moving the

data to the target core. The presence of such a mechanism can reduce worst-case migration

overheads, thus allowing lower worst-case execution costs to be used. If hardware support

like that presented by Sarkar et al. is not available, then more precise timing analysis will be

required to account for the effects of private caches during task migrations.

Support for non-real-time tasks. The cache-aware real-time scheduler described in this

dissertation may have some applicability to non-real-time workloads, if the tasks of which

these workloads are comprised can be explicitly allocated a share of the processing resources of

the system, or can otherwise be represented as recurrent tasks. In this case, more sophisticated

cache profiling may be required, as non-real-time tasks are likely to violate the assumptions

made by the profiler in Chapter 5, particularly the assumption that such tasks perform

roughly the same operations every job on similarly-sized sets of data, and therefore per-job

WSSs will remain relatively stable. If the profiler is modified so that it is better able to

handle MTTs where WSSs change over time, as discussed earlier in this section, then a more

sophisticated profiler may not be necessary; otherwise, we could devise methods to identify

recurrent behavior within non-real-time tasks, particularly as related to memory reference

patterns, and take that behavior into account when profiling non-real-time tasks so as to

increase the accuracy of our WSS estimates.

Comparison to other scheduling approaches. Finally, we would like to compare our

cache-aware scheduler to other approaches besides GEDF. In particular, it would be interesting

to compare it to NP-GEDF scheduling, as NP-GEDF is comparable to GEDF in terms of most

overheads and deadline tardiness, but executes jobs non-preemptively, which may reduce

overheads that are related to a loss of cache affinity. Another interesting policy for comparison

would be first-in-first-out scheduling, otherwise known as FIFO. Under FIFO scheduling, jobs

execute non-preemptively in the absence of tardiness, overheads are likely to be lower than

in EDF policies, and tardiness is higher than in EDF policies, but probably lower than in our

179

cache-aware scheduler.

180

BIBLIOGRAPHY

[1] F. Abazovic. Intel showcases 80-core CPU. http://www.fudzilla.com/index.php?option=
com content&task=view&id=10107&Itemid=1, 2008.

[2] A. Agarwal, M. Horowitz, and J. Hennessy. An analytical cache model. ACM Transac-

tions on Computer Systems, 7(2):184–215, 1989.

[3] J. Anderson and J. Calandrino. Parallel real-time task scheduling on multicore platforms.
In Proceedings of the 27th IEEE Real-Time Systems Symposium, pages 89–100. IEEE,
2006.

[4] J. Anderson, J. Calandrino, and U. Devi. Real-time scheduling on multicore platforms.
In Proceedings of the 12th IEEE Real-Time and Embedded Technology and Applications

Symposium, pages 179–190. IEEE, 2006.

[5] J. Anderson and A. Srinivasan. Early-release fair scheduling. In Proceedings of the 12th

Euromicro Conference on Real-Time Systems, pages 35–43. IEEE, 2000.

[6] J. Anderson and A. Srinivasan. Mixed Pfair/ERfair scheduling of asynchronous periodic
tasks. Journal of Computer and System Sciences, 68(1):157–204, 2004.

[7] Azul Systems. Azul compute appliances. http://www.azulsystems.com/products/compu
te appliance.htm, 2008.

[8] T. Baker. A comparison of global and partitioned EDF schedulability tests for multipro-
cessors. Technical Report TR-051101, Department of Computer Science, Florida State
University, 2005.

[9] S. Baruah, N. Cohen, C. Plaxton, and D. Varvel. Proportionate progress: A notion of
fairness in resource allocation. Algorithmica, 15(6):600–625, 1996.

[10] A. Batat and D. Feitelson. Gang scheduling with memory considerations. Proceedings

of the 14th IEEE International Parallel and Distributed Processing Symposium, pages
109–114. IEEE, 2000.

[11] E. Berg and E. Hagersten. StatCache: A probabilistic approach to efficient and ac-
curate data locality analysis. In Proceedings of the IEEE International Symposium on

Performance Analysis of Systems and Software, pages 20–27. IEEE, 2004.

[12] E. Berg and E. Hagersten. Fast data-locality profiling of native execution. In Proceed-

ings of the SIGMETRICS International Conference on Measurement and Modeling of

Computer Systems, pages 169–180. ACM, 2005.

[13] Blender Foundation. Big Buck Bunny. http://www.bigbuckbunny.org/.

[14] B. Brandenburg and J. Anderson. Feather-Trace: A light-weight event tracing toolkit.
In Proceedings of the Third International Workshop on Operating Systems Platforms for

Embedded Real-Time Applications, pages 19–28. IEEE, 2007.

181

[15] B. Brandenburg, J. Calandrino, and J. Anderson. On the scalability of real-time schedul-
ing algorithms on multicore platforms: A case study. In Proceedings of the 29th IEEE

Real-Time Systems Symposium, pages 157–169. IEEE, 2008.

[16] B. Brandenburg, J. Calandrino, A. Block, H. Leontyev, and J. Anderson. Real-time
synchronization on multiprocessors: To block or not to block, to suspend or spin? In
Proceedings of the 14th IEEE Real-Time and Embedded Technology and Applications

Symposium, pages 342–353. IEEE, 2008.

[17] J. Calandrino and J. Anderson. Cache-aware real-time scheduling on multicore platforms:
Heuristics and a case study. In Proceedings of the 20th Euromicro Conference on Real-

Time Systems, pages 299–308. IEEE, 2008.

[18] J. Calandrino and J. Anderson. On the design and implementation of a cache-aware
multicore real-time scheduler. In Proceedings of the 21st Euromicro Conference on Real-

Time Systems, pages 194–204. IEEE, 2009.

[19] J. Calandrino, J. Anderson, and D. Baumberger. A hybrid real-time scheduling approach
for large-scale multicore platforms. In Proceedings of the 19th Euromicro Conference on

Real-Time Systems, pages 247–256. IEEE, 2007.

[20] J. Calandrino, D. Baumberger, T. Li, S. Hahn, and J. Anderson. Soft real-time scheduling
on performance asymmetric multicore platforms. Proceedings of the 13th IEEE Real-Time

and Embedded Technology and Applications Symposium, pages 101–110. IEEE, 2007.

[21] J. Calandrino, D. Baumberger, T. Li, J. Young, and S. Hahn. LinSched: The Linux
scheduler simulator. In Proceedings of the ISCA 21st International Conference on Parallel

and Distributed Computing and Communications Systems, pages 171–176. ISCA, 2008.

[22] J. Calandrino, H. Leontyev, A. Block, U. Devi, and J. Anderson. LITMUSRT: A testbed
for empirically comparing real-time multiprocessor schedulers. In Proceedings of the 27th

IEEE Real-Time Systems Symposium, pages 111–123. IEEE, 2006.

[23] C. Cascaval, L. DeRose, D. Padua, and D. Reed. Compile-time based performance pre-
diction. In Proceedings of the 12th International Workshop on Languages and Compilers

for Parallel Computing, pages 365–379. IEEE, 1999.

[24] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread cache contention
on a multi-processor architecture. In Proceedings of the 11th International Symposium

on High-Performance Computer Architecture, pages 340–351, 2005.

[25] H. Chen, K. Li, and B. Wei. Memory performance optimizations for real-time software
HDTV decoding. Journal of VLSI Signal Processing, 41(2):193–207, 2005.

[26] P. Denning. Thrashing: Its causes and prevention. In Proceedings of the AFIPS 1968

Fall Joint Computer Conference, pages 915–922. ACM, 1968.

[27] P. Denning. The working set model for program behavior. Communications of the ACM,
11(5):323–333, 1968.

[28] U. Devi. Soft Real-Time Scheduling on Multiprocessors. PhD thesis, University of North
Carolina, Chapel Hill, NC, 2006.

182

[29] U. Devi and J. Anderson. Improved conditions for bounded tardiness under EPDF Pfair
multiprocessor scheduling. Journal of Computer and System Sciences, to appear.

[30] U. Devi and J. Anderson. Tardiness bounds under global EDF scheduling on a multi-
processor. Real-Time Systems, 38(2):133–189, 2008.

[31] Dipartimento di Ingegneria Aerospaziale Politecnico di Milano. RTAI - the RealTime
Application Interface for Linux from DIAPM. http://www.rtai.org, 2007.

[32] A. Fedorova, M. Seltzer, C. Small, and D. Nussbaum. Throughput-oriented scheduling
on chip multithreading systems. Technical Report TR-17-04, Division of Engineering
and Applied Sciences, Harvard University, 2004.

[33] A. Fedorova, M. Seltzer, and M. D. Smith. Cache-fair thread scheduling for multicore
processors. Technical Report TR-17-06, Division of Engineering and Applied Sciences,
Harvard University, 2006.

[34] R. Fernando, editor. GPU Gems: Programming Techniques, Tips, and Tricks for Real-

Time Graphics. Addison-Wesley Publishers, 2004.

[35] M. Garey and D. Johnson. Complexity results for multiprocessor scheduling under re-
source constraints. SIAM Journal on Computing, 4(4):397–411, 1975.

[36] M. Hamadoui and P. Ramanathan. A dynamic priority assignment technique for streams
with (m,k)-firm deadlines. IEEE Transactions on Computers, 44(12):1443–1451, 1995.

[37] J. Hennessy and D. Patterson. Memory hierarchy design. In Computer Architecture: A

Quantitative Approach, pages 390–525. Morgan Kaufmann Publishers, 2003.

[38] Intel Corporation. Intel digital home software vision guide 2007. http://isdlibrary.intel-
dispatch.com/isd/42/SSPR DigHomeGuide 2007.pdf, 2006.

[39] Intel Corporation. Intel 64 and IA-32 architectures software developer’s manuals.
http://www.intel.com/products/processor/manuals/, 2009.

[40] R. Jain, C. Hughs, and S Adve. Soft real-time scheduling on simultaneous multithreaded
processors. In Proceedings of the 23rd IEEE Real-Time Systems Symposium, pages 134–
145. IEEE, 2002.

[41] N. Jouppi. CACTI website. http://www.hpl.hp.com/personal/Norman Jouppi/cacti4.
html.

[42] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning on a chip mul-
tiprocessor architecture. In Proceedings of the 13th International Conference on Parallel

Architectures and Compilation Techniques, pages 111–122. IEEE, 2004.

[43] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using OS observations to improve
performance in multicore systems. IEEE Micro, 28(3):54–66, 2008.

[44] H. Leontyev and J. Anderson. Generalized tardiness bounds for global multiprocessor
scheduling. In Proceedings of the 28th IEEE Real-Time Systems Symposium, pages 413–
422. IEEE, 2007.

183

[45] C. Liu and J. Anderson. Supporting pipelines in soft real-time multiprocessor systems.
In Proceedings of the 21st Euromicro Conference on Real-Time Systems, pages 269–278.
IEEE, 2009.

[46] C. Liu and J. Layland. Scheduling algorithms for multiprogramming in a hard-real-time
environment. Journal of the Association for Computing Machinery, 20(1):46–61, 1973.

[47] C. Lu, J. Stankovic, S. Son, and G. Tao. Feedback control real-time scheduling: Frame-
work, modeling, and algorithms. Real-Time Systems, 23(1-2):85–126, 2002.

[48] R. Mattson, J. Gecsei, D. Slutz, and I. Traiger. Evaluation techniques for storage hier-
archies. IBM Systems Journal, 9(2):78–117, 1970.

[49] A. Mok. Fundamental Design Problems of Distributed Systems for Hard Real-Time En-

vironments. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA, 1983.

[50] K. Olukotun, B. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for a single-
chip multiprocessor. In Proceedings of the 7th International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 2–11. ACM, 1996.

[51] Open Source Automation Development Lab. OSADL Project: Realtime Linux.
http://www.osadl.org/Realtime-Linux.projects-realtime-linux.0.html.

[52] S. Parekh, S. Eggers, H. Levy, and J. Lo. Thread-sensitive scheduling for SMT processors.
http://www.cs.washington.edu/research/smt/.

[53] J. Parkhurst, J. Darringer, and B. Grundmann. From single core to multi-core: preparing
for a new exponential. In Proceedings of the International Conference on Computer-Aided

Design, pages 67–72. IEEE, 2006.

[54] R. Pellizzoni, B. Bui, M. Caccamo, and L. Sha. Coscheduling of CPU and I/O trans-
actions in COTS-based embedded systems. In Proceedings of the 29th IEEE Real-Time

Systems Symposium, pages 221–231. IEEE, 2008.

[55] L. Peng, J. Song, S. Ge, Y. Chen, V. Lee, J. Peir, and B. Liang. Case studies: Memory
behavior of multithreaded multimedia and AI applications. In Proceedings of Seventh

Workshop on Computer Architecture Evaluation using Commercial Workloads, pages
33–40. IEEE, 2004.

[56] P. Petoumenos, G. Keramidas, H. Zeffer, S. Kaxiras, and E. Hagersten. Modeling cache
sharing on chip multiprocessor architectures. In Proceedings of the IEEE International

Symposium on Workload Characterization, pages 160–171. IEEE, 2006.

[57] H. Ramaprasad and F. Mueller. Tightening the bounds on feasible preemptions. IEEE

Transactions on Embedded Computing Systems, to appear.

[58] J. Renau. SESC website. http://sesc.sourceforge.net.

[59] A. Sarkar, F. Mueller, H. Ramaprasad, and S. Mohan. Push-assisted migration of real-
time tasks in multi-core processors. In Proceedings of the SIGPLAN Conference on

Languages, Compilers, and Tools for Embedded Systems, pages 80–89. ACM, 2009.

184

[60] A. Snavely, D. Tullsen, and G. Voelker. Symbiotic job scheduling with priorities for a si-
multaneous multithreading processor. In Proceedings of the SIGMETRICS International

Conference on Measurement and Modeling of Computer Systems, pages 66–76. ACM,
2002.

[61] A. Srinivasan and J. Anderson. Optimal rate-based scheduling on multiprocessors. In
Proceedings of the 34th ACM Symposium on Theory of Computing, pages 189–198. ACM,
2002.

[62] A. Srinivasan and J. Anderson. Efficient scheduling of soft real-time applications on
multiprocessors. In Proceedings of the 15th Euromicro Conference on Real-time Systems,
pages 51–59. IEEE, 2003.

[63] J. Stankovic and R. Rajkumar. Real-time operating systems. Real-Time Systems, 28(2-
3):237–253, 2004.

[64] J. Stankovic and K. Ramamritham. The Spring kernel: A new paradigm for real-time
systems. IEEE Computer, 8(3):62–72, 1991.

[65] J. Stohr, A. Bulow, and G. Farber. Using state of the art multiprocessor systems as
real-time systems—the RECOMS software architecture. Work-in-progress proceedings of

the 16th Euromicro Conference on Real-Time Systems. IEEE, 2004.

[66] G. Suh, S. Devadas, and L. Rudolph. A new memory monitoring scheme for memory-
aware scheduling and partitioning. In Proceedings of the Eighth International Symposium

on High-Performance Computer Architecture, pages 117–128. IEEE, 2002.

[67] Sun Microsystems. UltraSPARC T1 processor supplement to UltraSPARC architecture
2005. http://www.sun.com/processors/documentation.html, 2006.

[68] The Open Group. The Realtime Extension. http://www.unix.org/version2/whatsnew/
realtime.html, 1998.

[69] UNC Real-Time Group. LITMUSRT project. http://www.cs.unc.edu/˜anderson/litmus-
rt/.

[70] S. Viswanathan and T. Imielinski. Metropolitan area video-on-demand service using
pyramid broadcasting. Multimedia Systems, 4(4):197–208, 1996.

[71] V. Yodaiken and M. Barabanov. A real-time Linux. Proceedings of the Linux Applications

Development and Deployment Conference, pages 1–9. USENIX, 1997.

185

