LDI TREE: A SAMPLING RATE PRESERVING AND
HIERARCHICAL DATA REPRESENTATION FOR IMAGE-
BASED RENDERING

by
Chun-Fa Chang

A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill
in partial fulfillment of the requirements of the degree of Doctor of Philosophy in the
Department of Computer Science.

Chapel Hill
2001
Approved by:

Advisor: Gary Bishop

Reader: Anselmo Lastra

Reader: Lars S. Nyland

Nick England

Russell M. Taylor I

© 2001
Chun-Fa Chang
ALL RIGHTS RESERVED

ABSTRACT

Chun-Fa Chang
LDI TREE: A SAMPLING RATE PRESERVING AND
HIERARCHICAL DATA REPRESENTATION FOR IMAGE-
BASED RENDERING
(Under the direction of Dr. Gary Bishop)

Multiple reference images are required to eliminate disocclusion artifacts in
image-based rendering based on McMillan's 3D image warping. Simply warping each
individual reference image causes the rendering time to grow linearly with the number of
reference images. This calls for a new data representation for merging multiple reference
images.

In this dissertation | present a hierarchical data representation, the LDI Tree, for
merging reference images. It is distinguished from previous works by identifying the
sampling rate issue and preserving the sampling rates of the reference images by
adaptively selecting a suitable level in the hierarchy for each pixel. During rendering, the
traversal of the LDI Tree is limited to the levels that are comparable to the sampling rate
of the output image. This allows the rendering time to be driven by the requirements of
output images instead of the number of input images. | also present a progressive
refinement feature and a hole-filling agorithm implemented by pre-filtering the LDI
Tree.

| show that the amount of memory required has the same order of growth as the
2D reference images in the worst case. | aso show that the rendering time depends
mostly on the quality of the output image, while the number of reference images has a
relatively small impact.

To
my wife,
my parents,
and

my grandparents.

ACKNOWLEDGEMENTS

Special thanks to my advisor, Gary Bishop, for being a mentor, afriend and arole
model, for his guidance and encouragement, and for many discussions during which he
patiently followed every detail of my work while making sure that | did not lose sight of
the big picture.

Thanks to the other members of my dissertation committee: Anselmo Lastra, Lars
Nyland, Nick England and Russell Taylor for their comments and encouragement.

| would like to aso thank Turner Whitted for spending precious time and sharing
his research philosophy with me during my early exploration of image-based rendering.

| would like to acknowledge the following people who provided help during my
project: Nathan O’'Brien for creating the Rayshade model of Il Redentore, David
McAllister, Voicu Popescu, Chris McCue, Lars and Anselmo for providing the reading
room model, and the entire UNC ImageFlow project team for many inspiring discussions.

Thanks to Norman Jouppi for the wonderful internship at Western Research
Laboratory during the summers of 1996 and 1997.

Thanks to Mu-Yu Yang for helping me settle when | first arrived in the Triangle
area, and Ta-Ming Chen, Heng Chu, Gentaro Hirota, Wei-Chao Chen, William Jiang, and
many other fellow graduate students for many joyful years since then.

Thanks to many friends in King's Park International Church and Churches
Serving Internationals, especially John and Yunhee Gray, Todd and Rachel Schwartz,
and Wayne and Sharon Mitchell, for their support and prayers during several inevitable
difficult timesin life.

Thanks to Y ao-Wen Chang for persuading me to pursue a doctoral degree and for
his assistance during my job search.

Finally, my deepest appreciation to my wife, Chia-Lin Yang, my parents and my
grandparents for their everlasting and unconditional love.

TABLE OF CONTENTS

LIST OF FIGURES. ... oottt sttt st st ne s IX
LIST OF ABBREVIATIONS... ..ottt st s nne e nne s Xi
CHAPTER 1 —INTRODUCTIONottt sttt 1
11 Image-Based RENAENNG.. ..ot 1
1.2 3D IMAGEWAEAIPINGceiieriirieirieeeiesieses e este et ses e se e sesee e se e sesbenesseseesessns 1
1.3 Layered Depth IMage... ..o 4
14 Hierarchical REPreSENTAtiON.........ccciiririreirerie st 4
15 THheSIS SEAEMENT........ceieieeeee ettt 5
1.6 FramEWOIK ..ottt ettt 6
O A © 11 1T 0= OSSR 6
CHAPTER 2 —BACKGROUND AND RELATED WORK ... 7
21 Image-Based RENEITNG. ..o 7
22 Light Field and LUumigraph.......cccoooiiineeeeere e 7
2.3 Plenoptic Modeling and 3D Image WarPing........cccoeereerereriereseseseseseeeseesesenens 9
24 3D Image Warping with aLarge Set of Depth Images..........ccccooeveerercicneninenens 10
25 INVEIrSEWAIPING ...ecuerieeeiirieisie sttt ettt ne et be e sesbe e ne e 11
26 Layered Depth IMAge.......cccoriiiireirerieisie ettt 11
2.7 Multiple-Center-of -Projection Image and Other Static Setscoovvevecererernennns 12
2.8 VOIUMELNIC MENOUS........ccoieiieeee e 13
281 Isosurface Extraction from Range IMages.......c.covererreneicneneseseesie s 13
282 Octree Generation from Range IMages..........ccoceereererereneiesesesese e 13
283 Hierarchical SPlatting........cccccoiiririneireree e 14

29 Image Caching for Rendering Polygonal MOdelS...........coeovenrineinineceneneeens 14
210 SUMIMEIY .ot se eneennens 15

CHAPTER 3 —HIERARCHICAL REPRESENTATION AND THE LDI TREE .. 16
3.1 Hierarchical REPIESENIALIONS.......cocvieruirieirierieeriereee st ses s e seas 17

vi

311 TRELDI TR ..ttt 18

312 MemOry EffiCIENCYcooorireeeeeeees et 19
313 The GENEITC FOMM.....c.oiiiiieeee ettt 20
3.2 Construction of the LDI Tree from Source IMages...........ccoverererererenesiesiesenenens 20
321 Storing aReference Image into the LDI Tree........ccoeeverecenenereneeseseeeene 22
322 Sample Merging and Redundancy Removalccoeoreininnenenneneeenen, 25
G2 B o 11 (= 11 oo PSS 26
3.3 Rendering from the LDl Tree......coiiirereeeree ettt 28
331 Compositing inthe OUtPUt BUFFEXccoeoiriirieeree e 30
332 HOIE FIING ettt 30
3.3.3 Progressive REfINEMENT ..o 32
334 Batk-Fate CUlliNgccccoiiieeeeee e 32
B4 RESUIES ..ttt e bt ne e 34
3.5 DISCUSSION...cueiuiitiieiirieeeiesie e te e st st be et st e e aesae e s be st e sesbe e sseseeneeseseenesteeesensas 36
351 TheProblem of Near-Perpendicular SUIfaCes.........cccoovvreiererrenerereee, 36
352 Real-World ENVIrONMENT ..o 37
CHAPTER 4 — COST ANALY SIS, .ottt 40
41 MEMOIY USBJE ..ottt e e s n s sn e e sr e nnis 40
411 LOOSEUPPEr BOUNG.......coiiieriiieiesieiriese sttt 41
412 MorePractical Upper BOUNG..........cooiirieirininerierisesee e 42
4.1.3 OCtree OVErNEadcoviiieeiee e 44
414 Experimental RESUILS........ccooiiirieerr e 45
415 Disk Storage and PrefetChingccoooeveerenreneresesees e 51
4.2 ReNAENTNG TIME...uiiiiiiiiesieere ettt et neene e 52
421 Experimental RESUILS........cccooiiiireesene e 53
A3 CONCIUSIONS......coiiiiieiirieine sttt sttt st et sesbe e s seseenesbeneene e 57
CHAPTER 5 —CONCLUSIONSAND FUTURE WORK ... 59
5.1 CONCIUSIONS......couiiiiieieesie ettt se bt ne e 59
52 OCCIUSION CUING....citiiriirieiiriesieisieese sttt se st e ne e 59
521 A SceneWhere Occlusion Culling Works Wellcoooeoniniininncniecnn. 61
522 A SceneWhere Occlusion Culling Works Poorlycccccverrennnencniecnenn. 63
5.3 HarOWAIE ISSUES.......cceerierieirienieesie ettt ettt ne et e e 64

vii

54 Placement of Camera Positions for Acquiring Reference Images..........ccoceeeeunee. 64

55 LDI TreeasImage CaChe.......ccrireiinereiereres et 65
5.6 FULUTEWOIK......oiiiie e 66
APPENDIX A DERIVATION OF 3D IMAGE WARPING EQUATION 67
APPENDIX B EPIPOLAR GEOMETRY ..o 70
BIBLIOGRAPHY ..ttt 73

viii

LIST OF FIGURES

Figure 1-1: Disocclusion artifacts of 3D Image Warping.........ccccceeeeererereneneseseseseesenenens 2
Figure 1-2: The LDI does not preserve the sampling rates of the reference images. 4
Figure 2-1: The two-plane parameterization of [ine SPace.cccoeevererrereinenecerereees 8
Figure 2-2: An example of 3D Image WarPing.........ccccerererreneneseseeesesese s eseens 10
Figure 3-1: A pinhole cameramodel. ... 21

Figure 3-2: Examples of pixelsthat are warped to the same pixel locationinan LDI. ...26

Figure 3-3: When an object is sampled from multiple reference images, its samples might
not be merged until the filtering ProCeSS.cocrirenirriene e 27

Figure 3-4: To estimate the range of stamp size for al pixelsin the LDI, the corners of

the bounding box are warped to the OUtPUL IMABJE.cccoerereererrerere e 28
Figure 3-5 An example of hole filliNg. ..o 31
Figure 3-6: How to identify a possibly forward-facing LDI. The back-face culling

algorithm culls away those LDIsthat cannot be identified as forward facing. 33
Figure 3-7: A new view from four reference images (taken at the same position)............. 34

Figure 3-8: A new view from 12 reference images (taken at three different positions)....35
Figure 3-9: A new view from 36 reference images (taken at 9 different positions). 35

Figure 3-10: A new view from 36 reference images (taken at 9 different positions). Hole
fIIING IS @NADIEM. ... e 35

Figure 3-11: Surface orientation may affect how well a surfaceis sampled...................... 36

Figure 3-12: A new view from the reading room model which is captured from real-world

ENVITONMMIENE. ...ttt e et s b e e b e e s b e s bt en e r e 39
Figure 3-13: The same view as Figure 3-12 with holefilling enabled.ccccccreneneeee. 39
Figure4-1: The dataflow of an LDI TTE.cccoevieireerereereres e 40
Figure 4-2: Top view of the octree cells after two reference images are added to an LDI

1L PR 41
Figure 4-3: A reference image from the scene of an empty room.cccceeeeveeerereeenn. 45

Figure 4-4: The memory usage for the scene of an empty room.cccocevrererererieenenn. 46

Figure 4-5: A reference image from the scene of a cathedral model. ... 48
Figure 4-6: The memory usage for the scene of a cathedral model. ... 49
Figure 4-7: A reference image from the scene containing onetree.coceevveeeveneeenen. 50

Figure 4-8: A reference image from the scene containing four trees that are replicated
frOM thE trEE IN FIQUIE 4-T7 ...t e 50

Figure 4-9: The rendering time for awalkthrough of the cathedral model. 53

Figure 4-10: The average rendering time per output image versus the number of reference
images for the scene of cathedral Model. ... 54

Figure 4-11: The average number of splatting operations per output image for the
cathedral model versus the number of reference images...........ccoceevverecnennencccniene 55

Figure 4-12: The average rendering time per output image for the tree models versus the
NUMDEr Of FEfEIENCE IMAGES. ..ottt neas 56

Figure 4-13: The average number of splatting operations per output image for the tree
models versus the number of referenCe imMages.ooovererererrienr e 56

Figure 5-1: The performance of occlusion culling, measured in the number of splats at
each frame, for the scene of emMpPLY rOOMS.........ccoiviirireierer s 62

Figure 5-2: The performance of occlusion culling, measured in the number of rendered
cells at each frame, for the scene of empty roOMS.........ccccoverreneienienecese s 62

Figure 5-3: The performance of occlusion culling, measured in the number of splats at
each frame, for the scene of cathedral Model. ... 63

LIST OF ABBREVIATIONS

2D ¥, two-dimensional

3D ¥ three-dimensional

LDI % layered depth image

MB ¥ megabyte; equivalent to 22° bytes

MCOP % multiple-center-of-projection

Xi

CHAPTER 1 — INTRODUCTION

1.1 Image-Based Rendering

In computer graphics, photorealistic rendering refers to producing images that are
indistinguishable from real photographs. Traditionally it has been accomplished by
meticulously modeling the geometry and material properties of the objects to be rendered
and correctly computing the subtle interaction of lighting between those objects. Most of
the scenes encountered in our daily life contain such complexity that models containing
tens or hundreds of millions of polygons are necessary to convey all the details to make a
photorealistic rendering. With the recent advances in processor performance and in
specialized graphics hardware subsystems, rendering those complex models might no
longer be a formidable task. However, building such complex models is still time

consuming.

Recently, image-based rendering has gained popularity and provides an
alternative to the traditiona polygon-based modeling and rendering processes. Inimage-
based rendering, no three-dimensional (3D) model is explicitly provided as the input data.
Instead, images are acquired from a limited number of positions in the scene. When the
user moves beyond those positions, the image-based rendering program attempts to
reconstruct the scene and render the output images using the information that is available
in the input images.

1.2 3D Image Warping

There are two main branches of image-based rendering, depending on whether the
input images contain depth information. In this work, | only consider input images that
contain depth information. The rendering algorithms described here are derived from the
3D Image Warping agorithm of McMillan and Bishop [McMillan97]. In contrast, some
image-based rendering methods such as the Light Field Rendering [Levoy96] and the

Figure 1-1:: Disocclusion artifacts of 3D Image Warping (shown in the
blue background color.

Lumigraph [Gortler96] use input images that do not require depth information, but those

methods need significantly larger amount of input data.

Given an image and the camera parameters of that image, 3D image warping can
generate images for novel viewpoints by moving the pixels of the input image to their
locations on the output images.

McMillan's 3D Image warping agorithm uses regular single-layered depth
images (which are called source images or reference images) as the initial input. One of
the major problems of the 3D image warping is the disocclusion artifact that is caused by
the areas that are occluded in the original reference images but visible in the current view.
Those artifacts appear as holes or gaps in the output image. Figure 1-1 shows an
example. In Mark’s Post-Rendering Warping [Mark97], the techniques of splatting and
meshing are proposed to deal with the disocclusion artifacts. Both splatting and meshing
are adequate for post-rendering warping where the current view does not deviate much
from the view of the reference image. However, the fundamental problem of the

disocclusion artifact is that the information of the previously occluded areais missing in
the reference image. By using multiple reference images taken from different
viewpoints, the disocclusion artifacts can be reduced because an area that is not visible
from one view may be visible from another. When multiple source images are available,
we expect the disocclusion artifacts that occur while warping one reference image to be
eliminated by one of the other reference images.

An advantage that image-based rendering has over traditional polygon-based
rendering is that the rendering cost does not grow with the scene complexity. While
using multiple reference images can attenuate the disocclusion artifacts, it also increases
the rendering cost. If too many reference images are used, then we lose an advantage of
image-based rendering.

The problem comes from the redundant information among the reference images.
While the additional reference images provide information on previously occluded
surfaces, they aso introduce redundancy to those surfaces that are already visible. If we
render the new views by warping every reference image, then most of the rendering time
iswasted in processing the redundant information.

Another problem with multiple reference images is the difficulty in arbitrating
between the redundant information. When a surface is visible in multiple reference
images, it may look like multiple overlapping surfaces if its redundancy is undetected.
This is a typical problem for graphics hardware that use Z-buffer for hidden-surface
removal because small numerical errors could cause different ordering of those
overlapping surfaces, which can lead to noticeable artifacts.

Therefore it is desirable to merge multiple reference images into an intermediate
data structure for rendering. By merging the depth images into a new representation, we
are able to eliminate the redundancy and render the output images more efficiently.
However, merging multiple reference images and eliminating the redundant information
remains a challenging problem.

Figure 1-2: The LDI does not preserve the sampling rates of the reference images.

1.3 Layered Depth Image

Recently, the Layered Depth Image (LDI) was proposed by Shade et al [Shade98]
to merge many reference images under a single center of projection. It tackles the
disocclusion problem by keeping multiple depth pixels per pixel location, while till
maintaining the smplicity of warping a single reference image. Its limitation is that the
fixed resolution of the LDI may not provide an adequate sampling rate for every
reference image. Figure 1-2 shows two examples of such situations. Assuming the two
reference images have the same resolution as the LDI, the object covers more pixels in
reference image 1 than it does in the LDI. Therefore the LDI has a lower sampling rate
for the object than reference image 1. Similar analysis shows the LDI has a higher
sampling rate than reference image 2. If we combine both reference images into the LDI
and render the object from the center of projection of reference image 1, the insufficient
sampling rate of the LDI will cause the object to look blurrier than it looks in reference
image 1. When we render the object from the center of projection of reference image 2,
the excessive sampling rate of the LDI might not hurt the quality of the output. However,
processing more pixels than necessary slows down the rendering.

1.4 Hierarchical Representation

Let uslook at the sampling rate issue in more detail. During rendering, we would
like to efficiently extract samples that are adequate for the desired viewpoints from this
intermediate data structure that we created from the reference images. This sample
extraction problem is in fact a view dependent problem. That is because every output
image poses a different sampling rate requirement for all the visible surfaces in the

rendered scene. Mismatch in the sampling rate between the extracted samples and the
output pixels will result in either apoorly rendered output image or wasted processing
resources. Thissuggestsahierarchical (or multiresolution) data structure.

Using multiresolution representations to control the level of detail of models in
order to match the requirements of output images is a common practice in rendering of
polygonal models [Erikson00, Lee98]. In fact, much effort has been devoted to
polygonal simplification [Cohen96, Luebked7] to automatically create object models in
various polygon counts. In contrast, building a multiresolution representation for image-
based rendering is much simpler because the objects are already represented as discrete
samples, which are amenable to the operations of filtering, resampling, and

reconstruction.

In this dissertation, | propose to use 3D hierarchical representations for merging
multiple depth images. My approach has the following two properties that distinguish it
from the other methods:

1. It preservesthe sampling rates of each depth image (unlike the LDI).

2. It sorts and merges the samples from the depth images in 3D, while allocating
resources (in terms of storage space and rendering time) comparable to the
origina 2D depth images.

Thisleadsto the following thesis statement.

1.5 Thesis Statement.

By considering depth images as samples of surfaces in a 3D scene and carefully
preserving their sampling rates using a hierarchical representation, we can synthesize new
views in time that is dependent mostly on the output quality, instead of the number of
reference images.

Therefore as many images as necessary may be used to solve the disocclusion
problem without increasing the rendering cost unduly.

1.6 Framework

In this dissertation, | demonstrate the benefits of the hierarchical representations
for combining multiple depth images by implementing a hierarchical representation,
whichiscaled the LDI Tree.

Currently, acquiring source images with precise depth information from the real
world is still adifficult task. Because this thesis focuses on the rendering aspects, not the
modeling and acquisition aspects of image-based rendering and 3D image warping, |
demonstrate my system using source images from synthetic scenes. | also show
preliminary results of using images acquired from the real world and suggest ways to deal
with the associated artifacts due to the imperfection of the data set.

1.7 OQutline

Therest of this dissertation is organized as follows:

Chapter 2 describes the background and related work. It includes various
image-based rendering techniques and 3D Image Warping on which my work
is based.

Chapter 3 describes, in detail, hierarchical representations and the LDI Tree,
in particular how they are built from reference images and how to render
output images from them.

Chapter 4 analyzes the memory usage and the rendering time of the LDI Tree.

Chapter 5 concludes the dissertation and discusses the issues of occlusion
culling, hardware support, and image acquisition, as well as possible future

work.

CHAPTER 2 — BACKGROUND AND RELATED WORK

2.1 Image-Based Rendering

Image-based rendering is a broad term for al rendering techniques that use
images instead of or in addition to geometric models as the input data. The theoretical
background of the image-based rendering is the Plenoptic Function introduced by
Adelson [Adelson9l]. The Plenoptic Function isa 7-dimensional function:

P@.f,l,t,V,,V,.V,)
where
(q,f) represents the viewing angle.
(Vi Vy, V) represents the location in the three-dimensional space.
| represents the wavelength of light.
t represents the time.

For static scenes (i.e., t is constant), the Plenoptic Function may be rewritten as a
5-dimensional function®:

color =P(@.f ,V,,V,,V,)

2.2 Light Field and Lumigraph

It is almost impossible to represent the Plenoptic Function in analytic form.
Therefore we rely on discrete representations of the function by sampling and
reconstruction of the continuous function. One such representation is the Light Field

Figure 2-1: The two-plane parameterization of line space.

representation proposed by Levoy and Hanrahan [Levoy96]. The Lumigraph is asimilar
representation that was independently discovered by Gortler et al [Gortler96] around the
sametime.

The Light Field is a 4D function that is defined for aline in the object space. A
line may be parameterized in many ways, one of which is to use the two-plane
parameterization, which is depicted in Figure 2-1. If the u-v plane and the st plane are
infinite, then any lin€? in the object space may be parameterized by (u, v, s, t) according
to where the line intersects the two planes. Then the Light Field function can be written
as.

color = L(u,v,s,t)
The Light Field has one fewer dimension than the Plenoptic Function by

recognizing the fact that the Plenoptic Function along a ray remains constant in an open
Space.

An interesting relationship between regular 2D images and the Light Field is the
following. When a camera is placed on the u-v plane, an image taken by that camera
contains samples of the Light Field function of the scene with the same (u, v) parameters

! Note that the | parameter is now embedded in the color. Depending on the color
representation, a color channel may be calculated as the integra (along |) of the
plenoptic function multiplied with a weighting function C(l) specific to that color
channel.

2 Except lines that are parallel to the u-v plane and the st plane.

but different (s, t) at each pixel. This meansthat a Light Field function can be built from
2D images without any knowledge of the depth of each pixel or other 3D geometric
information of the scene. However the Light Field must be densely sampled to avoid
blurriness in the reconstructed output images. In Levoy and Hanrahan's system
[Levoy96] the u-v plane contains at least 16" 16 sample points and the s-t plane contains
at least 128" 128 sample points, which results in raw data size of 50 to 1608 MB without

compression.

2.3 Plenoptic Modeling and 3D Image Warping

McMillan and Bishop introduced Plenoptic Modeling [McMillan95b] as a method
to sample the Plenoptic Function with input images at some given viewpoints and to
generate novel views by reconstructing the Plenoptic Function at new viewpoints. The
reconstruction of the Plenoptic Function is made possible by obtaining the disparity (a
guantity inversely proportional to depth or range) associated with each pixel of the input
images. The details about how the disparity values are obtained are in their paper
[McMillan95b]. With the per-pixel disparity values, we may apply the 3D Image
Warping to move each pixel of an input image to its new pixel location on a new image at
a different viewpoint. The following warping egquation shows how we can calculate the
coordinates on the new image (X2, y2) for a pixel on the input image that has the

coordinates (X1, y1) and the disparity d;.

klxl + k2yl + k3 + k4dl k5X1 + k6yl + k7 + k8dl
k9X1 + klOyl + kll + k]2dl k9X1 + klOyl + kll + klZdl

(%, ¥,) = ()

The coefficients k; through ki, are calculated from the viewing parameters of the
input image and the output image. They remain constant until the view changes in the
subsequent frame. Appendix A shows the detailed derivation of the warping equation.

McMillan aso introduced the concept of occlusion compatible order for 3D
Image Warping [McMillan95a], which allows the pixels on the output image to be drawn
in back-to-front order similar to the painter’ s algorithm?®.

3 Anintuitive view of the occlusion compatible order is described in Appendix B.

A major difference between 3D Image Warping and Light Field Rendering is that
3D Image Warping requires a disparity value for each pixel of the input images. With
per-pixel disparity values, 3D Image Warping may reconstruct output images for
viewpoints within a wide range. Therefore a typical scene can now be represented by

only afew images.

2.4 3D Image Warping with a Large Set of Depth Images

(a) (b)

Figure 2-2: An example of 3D Image Warping. (a) A reference image. (b) A new
view where the viewpoint has shifted to the right. The artifacts are shown in the blue
background color.

3D Image Warping may produce artifacts such as those shown in Figure 2-2.
Figure 2-2(a) shows a reference image and Figure 2-2(b) shows the results of 3D Image
Warping where the viewpoint has shifted to the right. There are two types of artifactsin
Figure 2-2(b). Thefirst type of artifacts are those thin cracks on the teapots and the floor.
They occur because 3D Image Warping does not move the pixels uniformly. Fortunately,
those thin cracks may be resolved by better surface reconstruction methods. The second
type of artifacts are caused by the exposure of previously occluded areas. These
disocclusion artifacts can only be resolved by other images that can provide the missing

information of those areas.

10

Therefore we need multiple reference images to work with 3D Image warping in
order to reduce the disocclusion artifacts. The question is: how many reference images
are enough? It is in fact a difficult question that | will discuss further in Section 5.4.
Generally speaking, if we have a nontrivial scene and want to render new views from a
wide range of possible viewpoints, then we may need a large set of depth images. For
example, the scene of a cathedral that is described in Section 3.4 and Figure 3-9 ill
shows noticeable disocclusion artifacts with 36 reference images that are taken from 9
different positions.

However using more reference images increases the rendering cost of 3D Image
Warping. If we naively apply the warping equation to every pixel in all available
reference images, then the rendering time will grow linearly with the number of reference
images. Clearly we need ether a better rendering algorithm or a better data
representation to work with alarge set of depth images.

2.5 Inverse Warping

In [McMillan97] McMillan also proposed an inverse warping algorithm. For each
pixel in the output image, searches are performed in all reference images to find the
pixels that could be warped to the targeted pixel in the output image. If matches are
found in more than one reference image, then the one representing the front-most surface

wins.

Since the mapping from the pixels in reference images to the pixels in an output
image is many-to-one, we cannot avoid searching all reference images (unless each
reference image represents only a portion of the scene, such as the special case of
displacement maps in [Schaufler99].) Although epipolar geometry (see Appendix B)
limits the search space to a one-dimensional line or curve in each reference image and a
guadtree-based optimization has been proposed in [Marcato98], searching through all
reference imagesis still time consuming.

2.6 Layered Depth Image

Another way to deal with the disocclusion artifacts of image warping is to use the
Layered Depth Image (LDI) [Shade98]. The main difference between an LDI and a

11

regular depth image isthat an LDI may have alist of pixels at each pixel location. Given
a set of reference images, one can create an LDI by warping all reference images to a
carefully chosen camera setup (e.g. center of projection and view frustum), which is
usually close to the camera of one of the reference images. When more than one pixel is
warped to the same pixel location of the LDI, some of them may be occluded. Although
the occluded pixels are not visible from the viewpoint of the LDI, they are not discarded.
Instead, separate layers are created to store the occluded pixels. Those extra pixels are
likely to reduce the disocclusion artifacts. Its limitation is that the fixed resolution of the
LDI may not provide an adequate sampling rate for every reference image.

Lischinski and Rappoport used three parallel-projection LDIs to form a Layered
Depth Cube [Lischinski98]. Max’s hierarchical rendering method [Max96] uses the
precomputed multi-layer ZBuffers that are similar to the LDIs. It generates the LDIs
from polygons and the hierarchy is built into the model.

2.7 Multiple-Center-of-Projection Image and Other Static Sets

In this section, | will discuss the other representations for combining multiple
depth images. Like the layered depth image, the shortfall of these representations is that
they do not recognize the different requirement of sampling rate when the viewpoint
changes.

The assumption of having only one center of projection for a whole depth image
contributes much to the disocclusion artifacts of 3D image warping. The Multiple-
Center-of-Projection (MCOP) image proposed by Rademacher and Bishop
[Rademacher98] breaks free from that assumption. Conceptually, a different camera may
be associated with each pixel in an MCOP image. In their paper, they describe a
particular instance of MCOP image that is acquired using a stripe-cameratype of device.
Each vertical column of the image is acquired from a different center of projection when
the camera moves along a path.

Note that MCOP images may not prevent disocclusion artifacts. The path on
which the camera is moving during the acquisition determines how completely the
surfaces in the scene are sampled and how many disocclusion artifacts may till remain.

12

Also, combining regular planar depth images into MCOP images still remains a difficult
problem.

The other method for combining multiple images is to break the images into tiles
or regions and then identify the redundant regions. The main problem, again, is that it
lacks the multi-resolution feature for matching the sampling rate requirement of the
output image.

2.8 Volumetric Methods

Image-based rendering is not the only method in computer graphics that uses
discrete samples as the primitive. In volume rendering, the scene is described by a 3D
array of points which are called voxels. The volumetric data can represent not only the
surfaces but also the interiors of objects by using partially transparent voxels.

The Layered Depth Image (LDI) and the hierarchical representations that are
proposed in this thesis have similar structures to volumetric data. They may be
considered a compressed form of volumetric data because they describe only the surfaces
but not the interiors of the models.

In the following, | will discuss the most related work in volumetric methods,
which are those that construct volumetric representations from range images, and the
technique of Hierarchical Splatting.

2.8.1 Isosurface Extraction from Range Images

Curless and Levoy presented a volumetric method to extract an isosurface from
range images [Curless96]. The goa of their work, however, was to build highly detailed
models made of triangles. The volume data used in that method is not hierarchical and it
relies on arun-length encoding for space efficiency.

2.8.2 Octree Generation from Range Images

There has also been work related to octree generation from range images
[Chien88][Connolly84][Li94]. However the octree that is generated by those methods is

13

used to encode the space occupancy information. Each octree cell represents either
completely occupied or completely empty parts of the scene.

2.8.3 Hierarchical Splatting

The multi-resolution volume representation in the Hierarchical Splatting work
[Laur9l] by Laur and Hanrahan can be considered as a specia case of the LDI tree in
which the LDIs are of 1" 1 resolution. Hierarchical Splatting also uses the octree to
control the level of detail. The octree is fully expanded initialy (which is caled a
pyramid in their paper). Smaller children cells are combined into a larger parent cell if
the children ae homogeneous or if they are so similar that combing them into a larger
cell results in only a small error within a pre-specified tolerance. By using various error
tolerances, the same data may be represented at different levels of detail by different
octrees. Therefore, an octree with higher error tolerance may be used to achieve
interactive rendering while an octree with lower error tolerance may be used to produce
rendering of better quality.

In hierarchical splatting, the octree to be traversed does not change with the
viewpoint during rendering since it is determined by the error tolerance aone. In
contrast, the octree cells of an LDI Tree that are traversed during rendering change with
the viewpoint because the requirements of sampling rate for an output image change with
the viewpoint as well.

2.9 Image Caching for Rendering Polygonal Models

The image caching techniques of Shade et a [Shade96] and Schaufler et a
[Schaufler96] use a hierarchical structure similar to the LDI tree. Each space partition
has an image (or imposter in terms of Schaufler et al) instead of an LDI. The imposter
can be generated rapidly from the objects within the space partition by using hardware
acceleration. However, the imposter has to be frequently regenerated whenever it is no
longer suitable for the new view. The imposters may be decomposed into multiple layers
to reduce the frequency of updating the imposters [Schaufler98], but the need to
regenerate themis still there.

14

In contrast, the information stored in the LDI treeisvalid at all times and does not
need to be regenerated from frame to frame. By generating the LDI tree from the
reference images instead of the objects within the space partitions, the LDI tree can be
used for non-synthesized (i.e. acquired) scenes aswell.

2.10 Summary

This dissertation builds upon McMillan’'s 3D Image Warping method. The
previous works that are based on 3D Image Warping have been limited to two-
dimensional data structures. For example, the inverse warping described in Section 2.5
and the static sets described in Section 2.7 work directly on reference images. The LDI
described in Section 2.6 and the MCOP image described in Section 2.7 both provide
alternative representations to the original reference images. But they are still extensions
of two-dimensional images and do not consider the sampling rate issues.

Since the objects in the scene reside in a three-dimensional (3D) space, using a
3D data structure such as the one | propose in this dissertation can produce ssimpler or
more natural algorithms. For example, merging samples and detecting redundancy
between reference images become straightforward. However, using a 3D data structure
brings concerns about its cost in terms of memory usage and rendering time.

| believe that the hierarchical representations proposed in this dissertation provide
a solution. By considering the sampling rate issues, a hierarchical representation
maintains many benefits of a 3D data structure while adaptively allocating the memory or
rendering cost based on the sampling rates that are represented in the reference images
and the output images. As we will see in the next two chapters, the memory and
rendering costs are in fact asymptotically comparable to those of two-dimensional

images.

15

CHAPTER 3 — HIERARCHICAL REPRESENTATION AND THE LDI
TREE

One of the most challenging problems of 3D Image Warping is to minimize the
disocclusion artifacts while keeping the rendering efficient; to reduce the disocclusion
artifacts, we need more input depth images, but warping more depth images takes more

time.

The difficulty arises from the lack of a suitable data representation. There are
many redundant samples within a set of depth images since most of the objects that are
visible in one image are visible in the other images. Obvioudly, a new data representation
is required for merging the depth images. There are severa desired features for this new
data representation:

1. It should detect and remove the redundancy among the depth images.

2. It should be memory (space) efficient, which means the empty space should
incur only little overhead in the amount of memory.

3. It should preserve the sampling rate or the level of detail in the origina input
images.

The Layered Depth Image (LDI) [Shade98] meets the requirements of 1 and 2,
but not 3. Feature 3 is important for rendering the output image efficiently, especialy
when the viewpoint for the output image is far from the viewpoint of an input image
because the surfaces may be sampled at very different rates (or levels of detail).

In this chapter, | will describe a hierarchical representation for merging multiple
depth images. It differs from the other solutions such as the LDI by considering the
sampling rates of the depth images, which are carefully preserved through the use of the
hierarchy. During rendering, we only need to traverse the hierarchy to the levels that are
comparable to the sampling rate of the output image.

| will first describe the details of the hierarchical representation in Section 3.1, the
process of constructing the hierarchical representation from depth images in Section 3.2,
and the rendering algorithm in Section 3.3. Some rendering results are shown in Section
3.4. In Section 3.5, | will discuss various issues such as the surface orientation, and the
challenges of using the depth images acquired from the real world environment.

3.1 Hierarchical Representations

The goa of the hierarchical representation is to combine multiple reference
images, detect redundancy across images, and most importantly preserve their sampling
rates. A hierarchical representation consists of two parts. The first part is a space
partitioning scheme that divides the object space into cells. The second part is a cell
representation for storing the samples within acell.

Initialy, the hierarchy consists of only the top-level cell that encompasses the
whole scene. As reference images are added, the hierarchy is expanded adaptively by
subdividing the existing cells. Therefore the final shape of the hierarchy is determined by
the sampling rates represented in the reference images. (Figure 4-2 shows an example.)
In the regions where the surfaces are finely sampled by a reference image, there will be
more levels of subdivided cells in the hierarchy. This process will be described in detail
in Section 3.2.

The samples that are stored in the hierarchical representations are prefiltered.
This means that a parent cell has all the information in its children cells, albeit at a lower
sampling rate. This alows the rendering algorithm (discussed in Section 3.3) to stop at
the levels with sufficient sampling rates without traversing the children cells at lower
levels.

There are many possible implementations of the hierarchical representation in its
generic form. The choice for the space partitioning scheme is independent of the choice
for the cell representation. In this dissertation, | use a particular instance of the
hierarchical representation, which is called the LDI Tree, to illustrate the detail of the
data structure and various algorithms.

17

3.1.1 TheLDI Tree

The LDI tree is an octree with an LDI attached to each octree cell (node). The
octree is chosen for its simplicity but can be replaced by the other space partitioning
schemes. Each octree cell also contains a bounding box and pointers to its eight children
cells. Theroot of the octree contains the bounding box of the scene to be rendered’. The
following is pseudo code representing the data structure:

LDl _tree_node = {
Boundi ng_box[{X, Y, Z}, {Mn,Max}]: array of real;
Children[1l..8]: array of pointer to LDl _tree_node;
LDI[1..6]: array of Layered_depth_i mage;

}

All LDIs in the LDI tree have the same image resolution?, which can be set
arbitrarily. The height (or number of levels) of the LDI tree will adapt to different
choices of resolution. In general, a lower resolution results in more levels in the LDI
tree. Ultimately, we can make the resolution of the LDI be 1" 1 which makes the LDI
tree resemble the volume data in the Hierarchical Splatting [Laur9l]. However, using a
low resolution increases the memory overhead of the octree structure, which is discussed
later in Section 4.1.3. We do not want the resolution to be too high either because it
makes the LDI Tree look more like the regular LDI. In my implementation, | find that

the resolution of 64" 64 works well.

Note that each LDI in the LDI Tree contains only the samples from objects within
the bounding box of the cell. | use the LDI simply as a representation to store multiple
layers of surfaces within acell. Its purpose is different from the LDI originally proposed
by Shade et al, which isintended to store the samples from all visible surfaces.

For ssimplicity, each face of the bounding box is the projection plane of one of the
6 LDIs within a cell. Orthographic projection is used and the projection direction is
perpendicular to the projection plane. The depth values that are stored in an LDI range

! For outdoor scenes, background textures can be added to the faces of the bounding box.
The bounding box can be extended with little overhead if most of the space is empty.

2 |n other words, the LDIs have the same number of grid points. However, the spatial
resolution may vary, depending the size of the cell.

18

from 0.0 to 1.0, where a sample on the projection plane receives depth value 0.0 and a
sample on the opposite face of the bounding box receives depth value 1.0.

In my earlier work [Chang99] | used only one LDI per octree cell. The reason
why | switched to the 6-LDI representation is to deal with the resampling issues arising
from surfaces that are nearly perpendicular to the projection plane of the LDI. This will
be explained in more detail in Section 3.5.1. Using 6 LDIs per cell aso alows me to
distinguish the front side and back side of a thin surface, and to implement a back-face
culling agorithm that | will explain further in Section 3.3.4.

3.1.2 Memory Efficiency

Conceptually, a layered depth image (LDI) can be described by the following
pseudo code:

Layered depth_i mage = {
Nx, Ny: integer; // image resolution
Pixel[1..Nx, 1..Ny]: array of pointer to
Layer ed_pi xel ;
}
Layered_pi xel = {
Next: pointer to Layered_pi xel;
Color: color_type; // e.g., R G B, and Al pha
Dept h: real;
/1 Other flags or tags nay be added here.
}

It must be pointed out here that an LDI in the LDI Tree may have many empty
pixels in most or al of its grid points. This is especialy true in cells that contain no

objects or only small objects. To prevent the LDI Tree from using too much memory, it
isimportant to use a data structure that is suitable for asparse LDI.

My choice is to associate with each pixel its coordinates in the LDI, which leads
to the following modified pseudo code:

Packed | ayered _depth_imge = {

Count: i nteger;

Pixel[1..Count]: array of Packed_ | ayered_pi xel;
}
Packed | ayered pixel = {

X, Y: integer; [/ coordinates

19

Color: color _type; [// e.g., R G B, and Al pha
Dept h: real;
/1 Other flags or tags nay be added here.

This is different from the “Space Efficient Representation” described in the
origina LDI paper [Shade98], which is more suitable for adense LDI. Asin the original
LDI paper, the pixels are stored in a linear array during rendering to maintain the spatial
locality in memory. But a pointer-based data structure for the LDI is used when creating
the LDI Tree.

3.1.3 The Generic Form

We may construct other forms of hierarchical representation by choosing either a
different space partitioning scheme or a different cell representation from the one that is
used in the LDI Tree. For example, we may use the k-d-tree or the BSP-tree [Fuchs80]
instead of the octree as the space partitioning scheme. We may also use only one LDI per
cell in the cell representation as | did in my earlier work [Chang99]. It is easy to verify
that the construction and rendering algorithms that | will describe later in this chapter are
portable to hierarchical representations other than the LDI Tree.

The only caveat is that the cell representation must be memory efficient. This
means that its memory size must be compact and should grow only when samples are
added. Thisexcludes cell representations such as the volumetric representation.

3.2 Construction of the LDI Tree from Source Images

The initial input to a 3D image warper is a set of depth images, which are also
often referred to as source images or reference images. We call them depth images
because they are color images enhanced with per-pixel depth values. Each depth image
also contains camera information, which may be represented as vectors that define a pin-
hole camera model (asillustrated in Figure 3-1). It may also be considered as the basis of
its own coordinate system, which allows each pixel of the image to be projected back to
the 3D coordinates of the object that the pixel samples.

In summary, atypical depth image will contain the following parameters:

20

Figure 3-1: A pinhole camera model.

Nx, Ny: the size of the image.
a ,5 C C : the camerainformation (Figure 3-1).

. color[1..Nx, 1..Ny] : an array of colors. Each color may be stored as multiple
components such as the RGB values.

. depth[1..Ny, 1..Ny]: an array of depth values. They are typically stored as
floating point or fixed point real numbers.

. normal[1..Ny, 1..Ny]: an array of normal vectors. They may be derived from
the depth valuesiif they are not directly provided asinput. My implementation
uses four adjacent pixels to compute the slopes in X and Y directions, then
takes their cross product to obtain the normal vector of each pixel. If a
discontinuity between adjacent pixels is detected from the sudden change in
the slopes along either X or Y direction, then the greater slope is discarded.

The sampling rate or the quality of a pixel of a reference image depends on its

depth information. For example, if (part of) a reference image represents a surface that is

far away, then those pixels that describe that surface do not provide enough detail when

the viewer zooms in or walks toward that surface. Conversely, warping every pixel of a

reference image taken near an object is wasteful when the object is viewed from far

The LDI Tree is constructed from reference images by selecting an octree cell for

each pixel of the reference images to store the pixel in an LDI of that cell, then filtering

the affected LDI pixels to the LDIs of all ancestor cells in the octree. In the following

21

subsections, | will first describe the construction process with a single reference image
(Section 3.2.1). Then | will discuss how the samples are merged and the redundancy
removed when multiple reference images are involved (Section 3.2.2). After all
reference images are added, the samples are filtered to complete the LDI Tree
construction (Section 3.2.3).

3.2.1 Storing a Reference Image into the LDI Tree

In 3D image warping, each pixel of the reference images contains depth
information that is either stored explicitly as a depth value (d) or implicitly as a disparity
value (d). This allows us to project the center of the pixel to a point in the space where

the scene described by the reference images resides.

To be consistent with the notations in [McMillan97], | use the disparity value to
represent the depth information in the following discussion. The disparity value (d) is
closely related to the depth information (d). Their relationship is shown in the following
eguation:

d=f/d
f=cx@ D)
@ 5)

wheref isthe distance from the center of projection to the projection plane.

When a pixel is projected to the 3D object space, we get a point representing the
center of the projected pixel and a “stamp size” The center for the pixel (u,v) is
computed as.

C+(ua+vb+¢)/d 1)
where C is the viewpoint and a ,5 C define the basis of the non-orthogonal

coordinate space of the camera, which was previously defined in Section 3.2. The stamp
size Sis calculated by:

22

s=5,° S, (2)
s, =[d/d

S, =[|/d

To simplify the discussion, | do not consider the orientation of the object surface
from which the pixel istaken. | also ignore the dlight variation of stamp size at the edges
of the projection plane (for example, if we are interested in the solid angle that is covered
by apixd).

An octree cell is then selected to store this pixel. The center location determines
which branch of the octree to follow. The stamp size determines which level (or what
size) of the octree cell should be used. The level is chosen such that the stamp size
approximately matches the pixel size of the LDI in that cell.

After an octree cell has been chosen, the pixel can then be warped to one of the
LDIs in that cell. The detalls of the warping are described in [Mark97]. The normal
vector associated with the pixel determines which one of the 6 LDIsis used. By ssmply
checking which of the X, Y, and Z coordinates of the normal is the largest in magnitude,
we can narrow down our choices to two of the 6 LDIs. Then its Sgn determines which
one of thetwo LDIsis chosen.

Usually, the center of the pixel will not fall exactly on the grid of the LDI, so
resampling is necessary. This is done by splatting [Westover9l] the pixel to the
neighboring grid points. In this system | use a bilinear kernel. Usually four LDI pixels
are updated for each pixel of areferenceimage. More specifically, the alpha values that
result from the splatting are computed by:

23

apha =W, W, 3

! Kernd (X; - xC|,§—X), S, > P,
X

i
_1
W, =i S (33)
I Kernd (|Xi - XC|,1)*—X, S, £ Py
1 Py
§ Kernd (Y- Y2, s >R
WY =1 YSY (3b)
i Kerndl (Y, - Y, D* 2, S, £R,
1 R
P, =B, /N,
R, =B, /N,
}1— E d£s
Kernd (d,s) =i s’
+ 0, d>s

where Bx and By are the physical sizes of the LDI projection plane (which is a
face of the bounding box) in object space. Nx and Ny are the resolutions of the LDI. Px
and Py represent the physical size of the pixel that is being splatted. Sx and Sy represent
the stamp size as defined in Equation 2. (X, Yc) isthe center of splatting in the selected
LDI and (X, Y;) is one of the grid points covered by the splatting. The conditions in
Equations 3a and 3b guarantee that the splat size will not be smaller than the LDI grid
size, which represents the maximal sampling rate of the LDI.>

The reader is encouraged to verify that the alpha values sum to 1.0 for a planar
surface that is uniformly sampled in a reference image and is paralel to the LDI. It is
true not only for the octree cell we have chosen, but also for the ancestor cells where the
same pixd is splatted to a smaller area (because more pixels will be splatted). Therefore
Equation 3 is also used during the filtering process, which will be described in Section
323

The above are summarized in the following pseudo code:

3 Itissimilar to how the subpixels are prefiltered in supersampling for antialiasing.

24

AddDept hl mage(1 mage) {

1. For each pixel of Image {
2. Comput e Pi xel _Center and Stanp_Si ze;
3. AddSanpl e(Root _Cel |, Pixel Center, Stanp_Size);
}
}

AddSanmpl e(Cctree, Pixel Center, Stanp_Size) {

1. | f Pixel _Center is not inside Cctree,
2. then return;
3. If Stanp_Size is too big for Cctree then {
4. Subdi vide Cctree if it has no children cells;
5. Child = the child cell of Octree that
Pi xel _Center is inside.
6. AddSanmpl e(Chil d, Pixel Center, Stanp_Size);
}
7. el se {
8. Splat the pixel to the LDIs in the Cctree cell;
}
}

3.2.2 Sample Merging and Redundancy Removal

An LDI pixel may get contributions from many pixels of the same surface. When
only one reference image is involved, they may only come from the overlapping splats of
neighboring pixels in the reference image. When multiple reference images are involved,
an LDI pixel may get contributions from pixels in different reference images that sample
the same surface. The contributions from those pixels must be merged and blended
together. Figure 3-2(a) shows an example of those cases. When we merge the pixels
from different reference images that sample the same surface, we have detected and
removed the redundancy between those reference images.

An LDI pixel can aso get contributions from many pixels of different surfaces.
In those cases, we assign them to different layers of the LDI pixel. Figure 3-2(b) shows
an example of those cases. To determine whether they are from the same surface or not,
we check the difference in their depth value against a threshold. We select the threshold
to be dightly smaller than the spacing between adjacent LDI pixels, so that the sampling
rate of asurface that is perpendicular to the projection plane of the LDI can be preserved.

25

o

|
X Retf .2
(b)

P
|

(@)

Ref.2

Figure 3-2: Examples of pixels that are warped to the same pixel location in an LDI.
(a) Two pixels from reference image 1 and a pixel from reference image 2 are taken
from the same region of a surface. Blending is used to combine their contribution to
the LDI pixel. (b) One of the pixels from reference image 2 is taken from a different
surface. A separate layer in the LDI is created to accommodate its contribution to the
same LDI pixel.

Note that we may encounter an interesting situation where multiple reference
images sample the same surface but at different sampling rates. In that case, the sample
merging will happen after the sample from a lower leve is filtered to the higher levels
during the filtering process that will be discussed next.

3.2.3 Filtering

The splatting process described in Section 3.2.1 stores each pixel of the reference
images into only one cell initially. After the filtering process, each pixel also contributes
to the parent cell and all ancestor cells of the initially chosen cell. The result is that a cell
also contains the samples of its descendants, even though those samples are filtered down
to the lower sampling rate of the current cell. Therefore, later in the rendering process we
need not traverse the children cellsif the current cell already provides enough detail.

The filtering is done by splatting each pixel to the LDIs of al ancestor cells. Note
that the same splatting described in Section 3.2.1 may be used for filtering as well, even
though the stamp size is smaller than the pixel size of the LDIs in ancestor cells. The
filtering may be performed either on the fly while each pixel of a reference image is
being added or in batch mode after al reference images have been added to the LDI Tree.

| classify the pixels in the LDI Tree into two categories: unfiltered and filtered.
The unfiltered pixels are those that come from splatting to the octree cell that was

26

<[object
*

reference filtered

images
~p v |
unfiltered o
(from left image)

(@) (b)

Figure 3-3: When an object s sampled from multiple reference images, its samples
might not be merged until the filtering process. (a) shows the object and two reference
images. (b) shows the structure of the octree and where the samples are stored. The
filtered samples from the left image and the unfiltered samples from the bottom image
might be merged if they are from the same area of the object.

unfiltered
(from bottom image)

initially chosen for areference image pixel. Those pixels that come from the splatting to
the ancestor cells during filtering are classified as filtered. Note that an unfiltered pixel
may be merged with a filtered pixel during the filtering process. The merged pixel is
considered filtered because better-sampled pixels exist in the LDIs of some children cells
of the current cell.

An example is shown in Figure 3-3. Figure 3-3(a) shows an object and two
reference images that sample the object at different distances. Figure 3-3(b) shows the
schematic or structural view of the octree cells that contain the samples. Because the
upper left image sees more details of the object at a closer distance, its pixels are splatted
to the cell in the lower level (which represents the higher sampling rate) and stored as
unfiltered samples. The pixels from the bottom image are splatted to the middle level
initially because the bottom image samples the object at alower sampling rate.

A common mistake is to think that unfiltered samples exist only in leaf cells of an
LDI Tree. Figure 3-3 shows a counter-example, where one of non-leaf cellsin Figure
3-3(b) contains both filtered and unfiltered samples. Those unfiltered samplesin non-leaf
cells must be taken into account in the design of rendering algorithm, which | discuss

next.

27

output octree

RLDI

Figure 3-4: To estimate the range of stamp size for dl pixelsin the LDI, the corners of
the bounding box are warped to the output image.

3.3 Rendering from the LDI Tree

A new view of the sceneis rendered by warping the LDIs in the octree cellsto the
output image. The advantage of having a hierarchical model is that we need not render
every LDI in the octree. We can render those cells that are farther away at less detail by
using the filtered samplesthat are stored in the LDIs higher in the hierarchy.

To start the rendering, | traverse the octree from the top-level cell (i.e. the root).
At each cdll, | first perform view frustum culling, then check whether it can provide
enough detail if its LDI is warped to the output image. If the current cell does not
provide enough detail, then its children are traversed. An LDI is considered to provide
enough detall if the pixel stamp size covers about one output pixel. Therefore the
traversal of the LDI tree during the rendering will adapt to the resolution of the output
image. Note that we do not calculate the pixel stamp size for each individual pixel in an
LDI. Because al the pixelsin the LDI of an octree cell represent samples of objects that
are within its bounding box (as shown in Figure 3-4), we can estimate the range of stamp
size for all pixels of the LDI by warping the LDI pixels that correspond to the corners of
the bounding box. The corners of the bounding box are obtained by placing the maximal
and minimal possible depth at the four corner pixel locations of the LDI. We use
Equation 2 to compute the stamp size with the vector aand b of the output image and
the disparity value d obtained from the warping. Note that a special case existsif the new

viewpoint iswithin the octree cell. When this happens we traverse the children.

The pseudo code for the octree traversal follows:

28

Render (Cctree) {

1. | f outside of view frustum
then return;
2. Estimate the stanp size of the LD pixels;
3. If LD stanp size is too large or the viewer is
i nsi de the boundi ng box then {
4. Call Render() recursively for each child;
5. Warp the unfiltered pixels in LD to the Qutput
buffer; }
6. el se {
7 Warp both unfiltered and filtered pixels in LD

to the output buffer; }

Note the dfference in step 5 and step 7 of the pseudo code. As mentioned in
Section 3.2.3, each LDI in the octree may contain both unfiltered and filtered pixels.
When we warp both the LDI in a parent cell and the LDI in achild cell, the filtered pixels
in the parent cell should not contribute to the output image because the unfiltered pixels
in the child cell already provide better sampling for the same part of the scene.

Let us revisit the example in Figure 3-3. If the octree traversal during the
rendering reaches the bottom level, we will render al the unfiltered samples but none of
the filtered samples in the middle cell. However the unfiltered samples in the middie cell
(if they are not merged during filtering) will be rendered. Here we see why it is
necessary to classify filtered and unfiltered samples. Without the classification, we
would not be able to tell which samples in the middle cell are those unfiltered samples
from the bottom reference image and need to be rendered.

One feature of the original LDI isthat it preserves the occlusion compatible order
in McMillan's 3D warping agorithm [McMillan95a[McMillan95b]. However this
feature is lacking in the LDI tree. Although the back-to-front order can still be obtained
within an LDI and across LDIs of sibling cells of the octree, | cannot obtain such order
between LDIs of a parent cell and a child cell. This causes problems when unfiltered
samples exist in both parent and child cells. In addition, the warped pixels are partially
transparent due to the splatting process (see Equation 3 in Section 3.2.1). Therefore, |
need to keep a list of pixels for each pixel location in the output buffer. 1 implement the
output buffer as an LDI, which resembles the A-Buffer [Carpenter84]. At the end of the

29

rendering, each list is composited to a color for display. The details of the compositing
are discussed next.

3.3.1 Compositing in the Output Buffer

As discussed above, each pixel location of the output image may have a list of
semi-transparent pixels at the end of the rendering process. To obtain the final color for
each pixel location, | sort the list of pixels in depth and then use alpha blending starting
from the front of the sorted list. An exception is that two pixels with similar depth should
be merged first and their alpha values summed together before they are apha-blended
with the other pixels. That is because they are likely to represent sampling of the same
surface.

Therefore, the pixel merging is aso performed in the output LDI, which is similar
to the pixel merging in the LDI of the octree cell as discussed in Section 3.2.2. The
difference is that a single threshold value of depth difference does not work anymore
because the pixels can come from different levels of the LDI tree. This difficulty is
solved by attaching the level of octree cell which the pixel comes from to each pixel in
the output LDI. The threshold value that is used for that level of octree is then used to
determine whether two pixelsin the output LDI should be merged.

Because the objects in the rendered scene are not uniformly sampled, some
surfaces may look translucent. If that is not desired, we may loosen the definition of
opagueness to include pixels with dightly lower alpha values and allow the apha
blending of the sorted list to stop when the desired opaqueness is reached.

3.3.2 Hole Filling

When we construct the LDI tree from many reference images, chances are we
have eliminated most of the disocclusion artifacts. However, it is possible that some
disocclusion artifacts still remain. | propose a two-pass agorithm that uses the filtered
pixels in the LDI tree to fill in the holes in the output image. The algorithm consists of
the following steps:

)

@ (b)
Figure 3-5 An example of hole filling. (a) The blue hole is the disocclusion artifact
when the viewpoint moves to the left. (b) The holeis filled by the algorithm described
in Section 3.3.2. Note the contribution from the part of checkerboard that is hidden
under the wood.

1. Render the output image from the LDI tree as discussed in Section 3.3. This

isthefirst pass.
2. A stencil (or coverage of pixels) isthen built from the output image.

3. Render the output image from the LDI tree again. But in this pass, splat only
the filtered pixels that were skipped during the first pass, i.e. step 5 of the
pseudo code in Section 3.3 is changed to splat only filtered pixelsand step 7 is
changed to do nothing.

4. Use the stencil from step 2 to add the image from step 3 to the output image
rendered from step 1.

The stencil from step 2 allows the filtered pixels to draw only to the holes in the
output image from step 1. This assumes that the output image would be completely filled
if no disocclusion artifact occurred.

The two-pass hole-filling algorithm is not completely accurate. For example, the
filtered samples in higher levels of the hierarchy are not needed during hole filling if the
filtered samples at dightly lower levels aready fill al holes. This means that the second
pass of the hole-filling agorithm may actualy fill the holes with an image that is blurrier
than necessary. However, the two-pass hole-filling algorithm is till a practical
implementation since a dightly blurrier result is acceptable for hole filling purposes and
an accurate implementation may require too many passes to be efficient.

31

What distinguishes my hole-filling method from the other work is the fact that
occluded surfaces may contribute to the hole filling if they are near boundary of a hole.
That is because my method is based on the filtered samples that reside in the 3D domain.
Figure 3-5 shows such an example. In contrast, the other hole-filling methods often
utilize only the information on the output image that comes from visible surfaces.

3.3.3 Progressive Refinement

Another feature of the hierarchical representation is that it is easy to produce
output images at reduced resolutions. The rendering algorithm (described in Section 3.3)
will adapt to the reduced resolutions and fewer octree cells will be traversed. This
provides opportunities for progressive refinement during the rendering of output images.

The simplest method to create the effect of progressive refinement is to render the
LDI tree to a low-resolution output image first, then increase the resolution gradually.
However, this method does not utilize the coherence between the renderings of two
different resolutions.

To utilize the coherence between two renderings, we can tag the octree cells that
are traversed in the previous rendering and skip them in the current rendering. Note that
some filtered pixels may have been warped to the output buffer if they are from the leaf
nodes of the subtree traversed of the previous rendering®. Those pixels must also be
tagged so they can be removed from the output buffer if the leaf nodes in the previous
rendering become interior nodes of the current rendering.

3.3.4 Back-Face Culling

Since each octree cell of the LDI Tree contains 6 LDIs, it islikely that at least one
of the LDIs is backward facing and does not need to be warped during the rendering.
Note that culling a backward facing LDI is different from simply culling a back face of
an octree cell because aface of octree cell represents only the projection plane of an LDI.

The actual samples that are stored in an LDI may come from surfaces that are still

* Seeline 7 of the pseudo code in Section 3.3.

32

V7 v8

view direction

TaN

Figure 3-6: How to identify a possibly forward-facing LDI. The back-face culling
algorithm culls away those L DIs that cannot be identified as forward facing.

V6

viewer

forward facing even when the projection plane of the LDI is backward facing. The
following describe my back-face culling agorithm to detect those LDIs.

Figure 3-6 explains the thinking behind my back-face culling agorithm. Instead
of finding the backward facing LDIs, | identify the LDIs that may contain samples from
forward facing surfaces. If we mark all those LDIs, then the backward facing LDIs are

simply those that are left unmarked.

Assume that the rectangle (v1, v2, v3, v4) is the projection plane of an LDI. The
LDl may contain samples from surfaces whose normal vectors are within the range
represented by the pyramid formed by v1, v2, v3, v4 and the center of the cell>. To
determine whether any normal vector within that range may be facing the viewer, we
need to consider all possible viewing directions. This can be achieved by comparing the
normal vectors with 8 viewing directions, each of which is formed between the viewer
and one of the cell vertices. For example, if we form the first vector from the cell center
to any one of v1-v4 and the second vector from any of v1-v8 to the viewer, then the LDI
may contain forward-facing samplesif the dot product of the two vectorsis positive. The
first vector represents any possible normal vector and the second vector represents any
possible viewing direction.

> As discussed in section 3.2.1, asampleis assigned to one of the 6 LDIs of the cell based
on the magnitudes and signs of the coordinates of its normal vector. If the cell does not
have equal sides, then this pyramid is computed with a unit cube instead.

33

The above observations lead to a back-face culling algorithm, which is shown in
the following pseudo code:

Back Face Culling (Cctree) {

1. Mark all 6 LDI's as back-faced;
2. for (vi = vl to v8) {
3. normal = vi - center;
4. for (vj = vl to v8) {
5. viewDir = viewer — vj;
6. if dot(normal, viewbDir) > 0 then {
7. mark the 3 LDIs containing vi as front-
faced;
8. exit early fromthe vj | oop;
}
}
}
9. Cull away the LDIs that are still marked back-
faced;
}
3.4 Results

| demonstrate the results of the LDI Tree algorithms using a model of the interior
of a cathedral, Palladio’s Il Redentore in Venice [O’'Brien93]. The reference images are
generated by ray-tracing using the Rayshade program [Kolb94]. Each reference image
has 512" 512 pixels and a 90-degree field of view. The reference images are taken from

up to 25 different positions, with four images taken at each position to complete a 360-
degree horizontal field of view.

Figure 3-7: A new view from four reference images (taken at the same position).

Figure 3-8: A new view from 12 reference images (taken at three different positions).

Figure 3-9: A new view from 36 reference images (taken at 9 different positions).

Figure 3-10: A new view from 36 reference images (taken at 9 different positions). Hole
filling is enabled.

35

octree octree

cell cell
reference reference
image ’ image

Figure 3-11: Surface orientation may affect how well a surface is sampled. (a) A surface
iswell sampled when it is facing the viewpoint. (b) A surface is poorly sampled when it is
viewed at agrazing angle.

Figure 3-7 to Figure 3-9 show the effects of disappearing disocclusion artifacts
when more reference images are added. | disabled the gap filling to let the disocclusion
artifacts appear in blue background color. Figure 3-7 has severe disocclusion artifacts
because only four reference images from the same viewpoint are used. Figure 3-8 and
Figure 3-9 show the same view but with 12 and 36 reference images (from 3 and 9
viewpoints) respectively. Figure 3-10 is generated from the same reference images as
Figure 3-9 but with hole filling enabled.

3.5 Discussion

3.5.1 The Problem of Near-Perpendicular Surfaces

When a reference image is stored in an LDI Tree using the method described in
Section 3.2, the calculation of sampling rate is based on depth information only.
However, as shown in Figure 3-11, the surface orientation also affects how well a surface
is sampled by a reference image. When a reference image sees a surface at a grazing
angle, the reference image samples the surface with fewer pixels than it would if the
surfaceisfacing it.

It is possible to include the surface orientation in the computation of sampling
rates by an approach similar to the splat size computation in the original LDI paper
[Shade98]. However, finding how the surface orientation changes the splat size aone is

36

not sufficient either, because the surface orientation also affects the shape of the splatting.
For example, a vertical surface that is almost perpendicular to the reference image may
be poorly sampled in the horizontal direction of the reference image but ill well
sampled in the vertical direction. The splatting is thus stretched in one direction only.
This problem is smilar to the filtering in anisotropic texture mapping [Williams83]
[McCormack99].

A possible extension to my algorithm is to include the surface orientation in the
computation of sampling rates and the shape of splatting. However, such an extension is
not as important as it seems for the LDI Tree because the LDI Tree can handle the poorly
sampled surfaces in a similar fashion to the occluded surfaces. More specifically, the
other reference images may look at the same surface from a better angle and eliminate the
problem. If no other reference image has a better view of the surface, then it isalimit of
the input data and we simply do not have sufficient samples for that surface. So from a
different perspective, we may consider the artifact that is caused by the surfaces viewed
from grazing angles as a special case of the disocclusion artifact.

The surface orientation poses a different problem when the surface is almost
perpendicular to an LDI. Figure 3-11(a) shows an example if the right wall or left wall of
the octree cell is the projection plane of an LDI. Even though the surface is well sampled
in the reference image, the samples are splatted to only a few pixels when the surface is
resampled to the LDI. This will result in long lists at a small number of pixels of the
LDI. Itisindeed a limitation of the LDI which was mentioned by Shade et a in the
discussion section of their LDI paper [Shade9§].

By using 6 LDIs per octree cell, | avoid the above problem because a different
wall of the octree cell will be chosen as the projection plane.

3.5.2 Real-World Environment
So far, | have assumed that the depth information from reference images is
accurate. However, acquiring source images with precise depth information from real-

world environment is till a difficult task. Does the LDI Tree still work when errors are
present in the depth values?

37

The answer is yes if the errors are small. The sample merging and redundancy
removal scheme of the LDI Tree (described in Section 3.2.2) requires depth information
to the precision that is approximately equal to the distance between two adjacent samples.
This means that the LDI Tree can tolerate small errors in the depth. Furthermore, we
may consider using a lower sampling rate for samples with errors in depth that is only
dightly larger than the tolerance.

| believe the above requirement of small error rates is reasonable because larger
errors will likely cause difficulty in registration of reference images that are taken from
different centers of projection. The registration problem between reference images taken
from real-world environment is not within the scope of my work. (Had the LDI Tree
been able to handle larger errors, it would have solved the registration problem by
transforming the registration problem into an LDI Tree problem.)

| have tested my algorithms on the reading room model which was acquired by
Nyland et a using a time-of-flight laser range-finding device [Nyland99]. Unfortunately
the errors are beyond the tolerance of the LDI Tree. Therefore, the samples that are from
the same surface but taken at different centers of projection are not merged. Most of the
errors are in fact due to the misregistration of scans across different centers-of-projection.
However, the LDI Tree can still be useful for the purpose of hole filling.

Figure 3-12 and Figure 3-13 show the results when it is applied to the reading
room model. The reference images are taken from the same center of projection. The
hole filling algorithm is disabled in Figure 3-12 but is enabled in Figure 3-13.

Figure 3-12: A new view from the reading room model which is captured from real-
world environment.

Figure 3-13: The same view as Figure 3-12 with hole filling enabled.

39

CHAPTER 4 — COST ANALYSIS

—><}_,

Figure4-1: Thedataflow of an LDI Tree.

The hierarchical representations and the LDI Tree are three-dimensional (3D) data
structures. A natural concern is how much memory they need and how efficient the
rendering algorithmis. | answer those questionsin this chapter.

To put the above questions in perspective, keep in mind that the strength of the
hierarchical representations is to model a large environment where a large number of
reference images are required. To keep the information that is represented in all those
images does require large amounts of storage space. However, we need only a subset of
the available information during the rendering. In other words, the memory or storage
requirement is driven by the input data, while the data accessed during the rendering are
driven by the requirement of the output image. These relationships are depicted
conceptualy in Figure 4-1.

4.1 Memory Usage

There are two approaches to analyze the memory usage of an LDI Tree. The first
approach is to define the memory usage as a function of the number of reference images
and the number of pixels in each reference image. In Section 4.1.1, | use the first
approach to show aloose upper bound of memory usage that grows linearly with the total
number of pixels in reference images. The second approach is to define the memory

usage as a function of the sum of all surface areasin the scene. In Section4.1.2, | use the
second approach to show that there exists atheoretical upper bound that isindependent of
the number of reference images.

The first approach shows that although the LDI Tree is a 3D data structure, its
memory usage is limited by the size of the two-dimensiona (2D) reference images. It
reflects a scenario where the sample merging never occurs and thus the memory grows
linearly with the number of reference images used. In practice, such a scenario rarely
happens and the memory usage does level off when more reference images are added.
The existence of such an upper bound is supported by the second approach of analyzing
the memory usage. However, computing the upper bound requires knowledge of the
surface areas, which are difficult to obtain from reference images.

| validate my analyses by experiments, which are shown in Section 4.1.4.

4.1.1 Loose Upper Bound

Figure 4-2: Top view of the octree cells after two
reference images are added to an LDI Tree.

The concern that an LDI Tree consumes too much memory might come from
perceiving it as a nearly complete octree, i.e., as if the octree is ailmost fully expanded at
each non-leaf cell. However that is rarely the case because an octree cell is expanded
(i.e. subdivided) only if it receives pixels that exceed its sampling rate from reference
images. Figure 4-2 shows an example where the octree cells of an LDI Tree are viewed
from the top when two reference images have been added to the LDI Tree. Those finely

41

subdivided cells are those that are near the camera positions of the reference images
because they receive samples at greater level of detail.

One way to estimate the memory usage of an LDI Tree is to look at how the
memory is alocated during the construction process. When we construct the LDI Tree
from reference images, we add a constant number of unfiltered LDI pixels to the octree
cell chosen for each pixel of the reference images. We also add a constant number of
filtered LDI pixels to each of the h ancestor cells. That means the amount of memory
used by the LDI Tree grows in the same order as the amount taken by the origina
reference images, only if his bounded.

We can further assume that h is bounded because the maximal height of the LDI
Tree exists. It is because we are not interested in infinite details of surfaces. This limit
may be characterized by defining aminimal viewing distance.

Let L be the longest side of the bounding box of the scene, N be the resolution of
an LDI, d be the smallest feature in the scene the human eyes can discern at a minimum
distance, and H be the maximal height of the LDI Tree. Then we have:

A L u

H=Ho0g,—~

8°% g

Therefore h is bounded and we have obtained an upper bound of the memory size.
This upper bound grows linearly with the total number of pixelsin the reference images.
It is a loose upper bound because it assumes that no sample merging occurs, which
should not happen for applications that require the use of LDI Trees. Although thisloose

upper bound reveals little about the real memory size, it does show that the memory
usage of an LDI Treeisakin to that of 2D images.

4.1.2 More Practical Upper Bound

An LDI Tree is an intermediate data structure for merging the reference images.
Ideally, its memory usage grows only if new information is added. In other words, we
may consider an LDI Tree as a database for storing the information that is available in the
reference images, and maintaining the indexes of 3D locations. The new information that
areference image adds to the database may be separated into two categories:

42

It provides information on surfaces that were not seen by previous reference
images,

Or it provides more detailed (i.e. higher sampling rate) information of surfaces
that were already seen.

So what we may expect is that the memory size will grow rapidly when the first
few reference images are added to the LDI Tree because most of the information in those
images is new. But the growth should slow down as more images are added, containing
mostly redundant information. However, will the growth stop at all?

It islikely that the growth from the new information in the first category, i.e. from
previously occluded surfaces, will decelerate quickly. In fact, it will be a good thing even
if it keeps growing because the reason why we took so many reference images was to see
those surfaces. However, there is no guarantee that the growth from the second category
will slow down because a reference image may add more detailed views of certain
surfaces. To take it to extreme, we may take microscopic views of the surfaces in the
scene! But in practice those kinds of details are rarely desirable. Usually we are only
interested in details down to a certain level. By limiting the level of details, we can stop
the growth from the new information in the second category when all the desired details
have been recorded.

There are many different ways to specify the level of details we are interested in.
For example, we may use any one of the following:

Specify the minimal distance between two sampling points on a surface.

Specify the minimal viewing distance between the viewer and a surface, when
the field of view and the image size (or resolution) are given.

Specify the maximal level of the hierarchy in the octree.

When the level of detail is limited, no more new information can be added when
every surface has been sampled to that level of detail. Therefore the maximal amount of
information will be proportional to the sum of al surface areas. This means that we have
an upper bound of memory usage. Note that unlike the loose upper bound we derived in
Section 4.1.1, this upper bound does not depend on the number of reference images.

43

To verify that the memory usage of an LDI Tree observes this upper bound, we
need knowledge of the surface areas, which is difficult to obtain from the input reference
images alone. However we do have the prior knowledge of surface areas for reference
images that are generated synthetically from polygonal models. One example using a
simple model of an empty room is shown in Section 4.1.4.

4.1.3 Octree Overhead

To simply the above discussion, so far | have ignored the amount of memory that

is required for maintaining the octree structure. This overhead is now addressed as
follows.

Let us look a how much memory is required for a single octree cell. Typicaly,
an octree cell hasthe following items:

1. A pointer to its parent cell.
2. Eight pointersto its children cells.

3. Six numbers to represent the spatial boundaries of the cell. Six additional
numbers may also be used to represent a tighter bounding box of actually
occupied space.

In the above example, an octree cell consumes about 84 bytes of memory inthe C
programming language.

In contrast, a sample that is stored in an LDI contains at |east:

1. The color, which is usually represented as the red, green, blue, and alpha
components.

2. Thedepth.
3. Theimage coordinates.

This consumes about 7 to 12 bytes per sample, depending on whether byte, short
integer, integer, or floating-point numbers are used for the depth and the image
coordinates. Let usassumethat it is 8 bytes per sample for the following discussion.

Now we want to estimate how much memory is used for storing the samples in
the LDIs of an octree cell and compare that to the 84 bytes that we estimated for the
octree cell itself. Remember that all LDIs in the LDI tree have the same image resolution
(Section 3.1.1). However, the number of samplesin each LDI is not fixed because some
pixels may not have any samples, yet some other pixels may have multiple samples.
Therefore we cannot find the exact amount of memory taken by the samples. But we can
still see that overhead is relatively small if at least some pixels are occupied, because
merely 11 samples consume more memory than the overhead of the octree cell.

In my experiments that are shown in Section 4.1.4, the overhead of the octree

comprises less than 1% of the memory usage.

Note that although the image resolution for the LDIs in octree cells may be set
arbitrarily, the above suggests that a very low resolution should be avoided since it will
increase the overhead of the octree.

4.1.4 Experimental Results

To characterize the memory usage of LDI Trees, | use the experiments in this
section to support the two upper bounds that | mentioned earlier in this chapter. The first
experiment involves a simple scene of an empty room, which allows easy estimates of
surface areas. The second experiment uses a Cathedral church model, which reveals the
growth in memory usage when the number of reference images increases. The third
experiment explores the relationship between the scene complexity and the memory
usage, by replicating the objects in the scene.

Experiment of an Empty Room

Figure 4-3: A reference image from the scene of an empty room.

The first scene is an empty room, which consists of six walls of checker-board
pattern. | generate the reference images by ray tracing using the POV Ray ray-tracer with
my own extension to generate depth images [POV Ray].

The width, height, and depth of the room are all 200 units. Each reference image
has 100" 100 pixels and a 90-degree field of view. They are taken from a minimal
distance of 50 units to the closest wall. These parameters are chosen such that the
maximal sampling rate of the surfacesis exactly one unit per pixel. Figure 4-3 shows one
of the reference images.

| generated 80 reference images for this experiment. The first 48 images are
taken from the eight vertices of the cube that represents the range of the alowable
viewpoints within the room. Six images are taken at each vertices of the cube, each of
which looks at one of the six walls. The other 32 images are taken at random locations.

The total area of surfaces is 200" 200" 6 = 240,000. As | discussed in Section
4.1.2, we can expect the maximal number of samples in its LDI Tree to be around
240,000" 4/3 = 320,000. The extraonethird isfor thefiltered samples of the LDI Tree.

The following chart shows the result of my experiment:

Memory Usage (Empty Room)

350,000

300,000 W
250,000 /

200,000 /

150,000 /

100,000 /

50,000 7

Number of Samples

0 10 20 30 40 50 60 70 80
Number of Reference Images

Figure 4-4: The memory usage for the scene of an empty room.

46

The actual numbers of samples when 80 reference images are used is 335,403. It
is dightly larger than the 320,000 samples that we expected. The extra samples comes
from the following:

An extraLDI pixel may be needed for samples from the edges of walls.

| assign each sample according to its normal vector to one of the 6 LDIsin the
selected cell. The normal vectors are derived from the depth images
according to the gradients between adjacent pixels. But this method cannot
correctly handle specia cases such as those samples from where two walls
meet. Therefore some samples may be assigned to incorrect LDIs and cost
some extra L DI pixels.

In my implementation, each sample uses 16 bytes. So the memory usage is about
5.12MB. Note that the LDI Tree has 73 octree cells and the overhead of maintaining the
octreeis merely 0.01MB, which is about 0.2% of the total memory usage.

Size of Root Cell

The LDI Tree built from those 80 reference images has LDIs of 64" 64 image
resolution. The size of the root cell is 256 units in each dimension. As discussed in
Section 3.2.1, we may need to subdivide the root cell recursively, so that the LDIs in the
octree cell have high enough sampling rates to store the samples from reference images.
In this experiment, the height of the LDI Treeis 3 (i.e., two levels of subdivision). Note
that if we use adifferent size for the root cell, the number of samplesin the LDI Tree will
increase because the sampling rates in the LDIs might not match exactly the sampling
rates of the reference images. For example, if we use a dightly smaller root ol of 200
units in each dimension, the height of the LDI Treeis still 3 but the LDI in aleaf cell will
have only 200/256 unit of distance between pixels. This means that more pixels will be
used for resampling. If we use a dightly larger root cell instead, then the original leaf
cell will have more than one unit of distance between pixels. Therefore, one more level
of subdivision will occur, and the distance between pixels in new leaf cell will be only
dightly larger than 0.5. This will result in even more LDI pixels being used for
resampling.

47

In short, unlessin a highly simplified scene such as the one in this experiment and
with carefully chosen parameters, a reference image pixel usualy requires more than
only one LDI pixel to be stored inthe LDI Tree.

Experiment on A Cathedral Model

The scene in the second experiment is a model of the interior of a cathedral,
Palladio’s I| Redentore in Venice [O'Brien93]. It better represents the scenes that we are
more likely to encounter in practice. The reference images are generated by ray-tracing
using the Rayshade program [Kolb94]. Each reference image has 512" 512 pixels and a
90-degree field of view. The reference images are taken from up to 25 different
positions, with four images taken at each position to complete a 360-degree view. Figure
4-5 shows one of the reference images.

Figure 4-5: A reference image from the scene of a cathedral model.

The following chart shows the growth of the memory size. Again the chart shows
that the memory size is approaching an upper bound as the number of reference images
increases, even though we cannot calculate the upper bound analytically. Note that the
growth of memory size does not level off as dramatically as in the previous experiment of
an empty room. That is expected because new details near each new viewpoint are still
being added to the LDI Tree.

Memory Usage (Cathedral)

200 W

Memory Size (in MB)

100 /
50
0 T T T T

0 20 40 60 80 100
Number of Reference Images

Figure 4-6: The memory usage for the scene of a cathedral model.

It is worth noting that the first reference image adds 1.2 million samples, or about
18 MB* of memory to the LDI Tree. If each of the 512" 512 pixelsin the first reference
image resulted in exactly one unfiltered sample of the LDI Tree, we would have 512" 512
unfiltered samples and about 512" 512" 0.33 filtered samples, i.e., about 0.35 million
samples or 5.3 MB. Although the number in my experiment is about 3.4 times as large, it
is indeed a reasonable number. The reason is that, in practice it is highly unlikely for a
reference-image pixel to add only one unfiltered sample to the LDI Tree. | was able to
achieve that in the experiment of an empty room because the parameters (especially the
bounding box for the root cell) were carefully chosen such that the LDIs at some level
had the same sampling rate as the reference-image pixels. Otherwise, a reference-image
pixel ismore likely to cover more than one pixel in the LDIs of octree cell.

Experiment with Tree Models

So far, | have focused on the growth of memory usage when the number of
reference images increases. In the third experiment, | investigate how the scene

! Each sample uses 16 bytes.

49

complexity affects the memory usage. This is done by replicating the objects in the
scene.

Figure 4-8: A reference image from the scene containing four trees that are replicated
from the tree in Figure 4-7.

The scenes in this experiment contain tree models which are generated
procedurally. The reference images are generated by ray tracing using the POV Ray ray-
tracer with my own extension to generate depth images [Povray00]. Each reference
image has 640" 480 pixels.

In the first part of this experiment, there is one tree in the scene. The tree contains
37,175 primitives®, which include 24,948 spheres and cones for the branches and 12,227
triangle meshes for the leaves. | generate 32 reference images from positions that circle
the tree. Figure 4-7 shows one of the reference images. In the second part of the
experiment, the scene contains four trees that are replicated from the first tree. Two of
the replicated trees also have different colors of leaves, but the geometry of the leaves
remains the same. The three replicated trees are rotated 90, 180, and 270 degrees
respectively so they look like a single tree but with four times as many branches and
leaves. There are also 32 reference images taken from positions identical to those in the
first part. Figure 4-8 shows areference image of the replicated trees.

The LDI Tree built for the scene of one tree consumes 146.46 MB of memory.
The memory usage increases to 197.17 MB for the scene of four trees. Although the
scene of four trees contains almost four times as many objects as the scene of one tree,
the memory usage only increases by 34.6%. Later in this chapter, we will also see how
the scene complexity affects the rendering time.

It is not surprising that a more complex scene consumes more memory in the LDI
Tree, because each new reference image is more likely to see previously occluded areas.
A scene with more objects may also contain larger total surface areas, which means a
higher upper bound for the memory usage as discussed in Section 4.1.2. This also
implies that we may need to use more reference images to approach that upper bound.
However if the number of reference imagesis fixed, this experiment shows that the scene
complexity has only alimited impact on the memory usage.

4.1.5 Disk Storage and Prefetching

In my current implementation, the whole LDI Tree resides in the main memory.
However the space partitioning of the LDI Tree makes it easy to store the whole or parts
of LDI Tree on disks instead, if alarger dataset demands such a solution. Furthermore,
prefetching is easy to implement for the rendering algorithm, because only a subset of the

2| do not know the exact number of triangles in the tree because the objects in POV Ray
may not be represented as triangles or polygons.

51

LDI Treeis needed at each frame and the subsequent frames are likely to access only the
immediate children cells of that subset.

4.2 Rendering Time

To characterize the rendering time for generating an output image from the LDI
Tree, | revist two of the experiments that are described in Section 4.1.4. Those
experiments show how the rendering time changes with the number of reference images
and the scene complexity.

In image-based rendering, we would like the rendering time to be dependent on
only the image size. 3D image warping achieves that goal when only one reference
image is used, but leaves the disocclusion problem unsolved. In thiswork, | address the
disocclusion problem by showing the following in the experiments:

While multiple reference images are used to reduce the disocclusion artifacts,
the rendering time approaches a limit as the number of reference images

increases.

The limit of the rendering time for a given scene is comparable to the size of
output image. In fact, the number of splatting operations used to generate an
output image is a small constant times the number of pixels in the output
image.

Even in the most difficult cases such as the one demonstrated in the
experiment on tree models, the scene complexity only increases the rendering
time by arelatively small fraction.

Currently, rendering output images from an LDI Tree is ill not at interactive
rates. The main reason is that the rendering agorithms are implemented in software only
because the following are not well supported in currently available graphics hardware:

The basic operation of the rendering is splatting.

As discussed in Section 3.3, the splatting generates partially transparent pixels
in unsorted order.

52

Therefore in addition to the actual wall-clock time, | also measure the cost of
rendering in terms of number of basic operations, i.e., the number of splattings. Those
numbers reflect the potential performance that may be achieved by new hardware
designs. In Section 5.3, | will further discuss the hardware issues.

The rendering time for the experiments in this chapter is measured on a Silicon
Graphics Onyx2 workstation with 300 MHz MIPS R12000 processors and 16 gigabytes
of main memory.

4.2.1 Experimental Results

Experiment on A Cathedral Model

The first scene is the cathedral model, which is aso used in Section 4.14. |
rendered 40 output images along a typical walkthrough path. Each frame has 480" 360
pixels. To investigate how the rendering time changes when the number of reference
images increases, | repeat the rendering of the same walkthrough path when the number

of reference images is 4, 12, 20, 36, and 100 respectively. The results are in the
following chart.

Rendering Time

()]

(&)

N

—&— 100 reference Images
| —8— 36 reference Images
- 20 reference Images
12 reference Images

—*— 4 reference Images

|

CPU time (in second)
w

=

o

0 10 20 30 40

frame number

Figure 4-9: The rendering time for awalkthrough of the cathedral mode!.

53

To see the trend more clearly, the following chart shows the average rendering
time versus the number of reference images.

Average Rendering Time (Cathedral)

0O 10 20 30 40 50 60 70 8 90 100
Number of Reference Images

Figure 4-10: The average rendering time per output image versus the number of
reference images for the scene of cathedral model.

The above charts show that the rendering time approaches a limit when the
number of reference images increases. This is actually no surprise since we know from
Section 4.1.4 that the memory usage and the number of samples approach an upper bound
as well. So the rendering time could not be worse than the time required to process all
samples.

However, we are till interested in the relationship between the rendering time
and the number of pixels in an output image. The following chart shows the average
number of samplesthat are accessed from the LDI Tree and drawn to the output image by
splatting at each frame. The numbers are already divided by the number of pixelsin an
output image.

#Splats (Normalized)

#Splats (x 480x360)

0O 10 20 30 40 50 60 70 80 90 100
Number of Reference Images

Figure 4-11: The average number of splatting operations per output image for the
cathedral model versus the number of reference images. The numbers shown are already
divided by the number of pixels (480" 360) in an output image.

The above shows that the number of splats is within a small constant time of the
number of pixels in an output image. Note that a fraction of that constant is actually
caused by resampling the reference images in the LDIs of higher than necessary sampling
rates. For example, when only four reference images taken from the same position are
used, the relative number of splatsis aready 2.5. When 100 reference images are used,
the relative number of splatsincreasesto 9.2, which represents aratio of 3.68.

Experiment with Tree Models

In the second experiment, | use the scenes of tree models (which are al'so used in
Section 4.1.4) to investigate the impact of the scene complexity.

There are 36 viewpoints, which are placed evenly on a circle surrounding the trees
for generating the output images. Each output image has 640" 480 pixels. Figure 4-12
and Figure 4-13 show the average rendering times and average number of splats under
difference numbers of reference images. The lower line in each chart is the result from
the scene with only one tree. The upper lineisfrom the scene with four replicated trees.

Average Rendering Time (Trees)

0 10 20 30
Number of Reference Images

Figure 4-12: The average rendering time per output image for the tree models versus the
number of reference images. The upper line is for the scene with four tress. The lower
lineisfor the scene with one tree.

#Splats (Normalized)

N
o

[EnY
oo

—

:cg > /
< 14
é /
< 10
s T —~— Four|
< 5 ‘— —&— One |
o
R 4

2 -

0 T T T T T T

0 5 10 15 20 25 30

Number of Reference Images

Figure 4-13: The average number of splatting operations per output image for the tree
models versus the number of reference images. The upper lineis for the scene with four
tress. The lower line is for the scene with one tree. The numbers shown are already

divided by the number of pixels (640" 480) in an output image.

56

The charts show continuing growth in rendering time and the number of splats
when more reference images are added. Because there are many occlusions between
leaves, each reference image is more likely to contribute new information to the LDI
Tree. However, our interest in this experiment is to see how the rendering time and the
number of splats change with scene complexity.

For example, let uslook at the rendering times and the numbers of splats when 32
reference images are used. In the scene with one tree, the rendering time is 12.65
seconds and the number of splats relative to the output image is 13.59. In the scene with
four replicated trees, the rendering time increases to 17.03 seconds and the relative
number of splats increases to 17.82 when the scene contains four replicated trees. The
increases are 34.6% and 31.1% in rendering time and the number of splats respectively.
Those increases are considered small since the number of objects in the scene has
increased by four times.

4.3 Conclusions

Using the experimentsin this chapter, | have demonstrated the following:

1. No matter how many reference images are added to the LDI Tree, its memory
usage does not exceed an upper bound if we do not need infinite level of
detail. Also, thisupper bound is proportional to the total areas of surfaces.

2. The rendering time is linear to the number of pixels in the output images,
instead of the number of reference images. Moreover, when measured in
numbers of splats, the rendering cost is a small constant times the number of
pixelsin an output image.

The reason why the rendering time is proportional to the output image is that we
are able to use the hierarchical representations to select the samples that cover about one
pixel in the output image. However, each pixel in the output images may be covered by
more than one sampl e because of the depth complexity. Another way to look at the depth
complexity is by considering which octree cells are intersected by a ray connecting the
viewer to a pixel in the output image. The surfaces in those octree cells may be warped
to that specific pixel in the output image. When the number of reference images or the

57

scene complexity increases, the depth complexity also increases and results in slightly
higher rendering cost. But keep in mind that the octree cells that are selected for
rendering become larger when they are farther away from the viewer. Therefore the
number of layers of octree cells aong each viewing direction is still limited.

Another approach to address the issue of depth complexity is by using the
techniques of occlusion culling, which | will discuss later in the next chapter.

CHAPTER 5 — CONCLUSIONS AND FUTURE WORK

5.1 Conclusions
In this dissertation, | have demonstrated the following:

1. A novel data representation for merging reference images and removing their
redundancy.

2. The algorithms to identify the sampling rates and levels of detail of reference
images and to preserve them using hierarchical representations.

3. No matter how many reference images are added to a hierarchical
representation, its memory usage does not exceed an upper bound when the
level of detail isfinite. This alows usto use any number of reference images
to remove the disocclusion artifacts.

4. A rendering agorithm that selects from the hierarchical representations the
samples that have the matching sampling rates with the output images.

5. A hole filling method that is based on the available three-dimensional
information, instead of the two-dimensional information on the output images.

6. A compatible back-face culling algorithm.

7. Therendering cost isasymptotically of the same order as the size of the output
images.

In the rest of this chapter, | discuss some other issues that are related but not
essential to my work, and possible future work.

5.2 Occlusion Culling

Occlusion culling is a technique to reduce the rendering time by detecting the

objects that will not appear on an output image before spending major efforts in rendering

those objects. It is sometimes referred as visibility culling. Unlike the ZBuffer which
determines whether a pixel is occluded, occlusion culling determines whether a surface or
a set of surfaces within a bounding volume are occluded. Two of the representative
works in occlusion culling for rendering polygon-based objects are the Hierarchical Z-
Buffer [Greene93] and the Hierarchical Occlusion Maps [Zhang97].

| implement the Hierarchical Z-Buffer in the LDI Tree. It is impractica to
perform occlusion culling for each sample because we need its screen coordinates for
occlusion culling. But there is little saving in rendering time even if the sample is
occluded because most of the effort in rendering has already been done in finding its
screen coordinates. Therefore the occlusion culling is performed for each octree cell of
the LDI Tree by the following steps:

1. Before an octree cell is warped to the output image, the 8 corners of the cell
are warped to the output image to produce their positions and the depthsin the
coordinates of the output image.

2. A minimal bounding rectangle and a minimal depth for the above 8 corners
are then defined in the coordinates of the output image.

3. The minimal bounding rectangle and the minimal depth for the octree cell is
then compared to the hierarchical ZBuffer to determine whether the cell is
occluded.

However, we still have the following choices of how often the Hierarchical Z
Buffer is updated:

1. It may be updated whenever a sample is splatted to the output image.
2. It may be updated whenever an octree cell is rendered.

3. It may be updated only once per frame, either after a set of potential occluders
are already rendered or by warping the depth buffer of the previous frame.

Obvioudly, the occlusion culling is more accurate if the Hierarchical ZBuffer is
updated more frequently. However the cost of updating the Hierarchica Z-Buffer is
nontrivial, especially without hardware support. Since the occlusion culling is performed
at the octree cell level, the first two choices should produce the same results.

60

In order to see how effective the occlusion culling is, | implement the second
choice, which refreshes the Hierarchical ZBuffer from the output buffer (described in
Section 3.3.1) after each octree cell is rendered. Since most of the rendering time is now
spent in refreshing the Hierarchical Z-Buffer, | will show only the numbers of splats in
the following results. The numbers of splats tell us how effective the occlusion culling
could be, if I implemented a better occlusion culling technique which requires fewer
updates to the Hierarchical Z-Buffer.

5.2.1 A Scene Where Occlusion Culling Works Well

To create a scene that isidea for occlusion culling, | take the model of an empty
room that is used in Section 4.1.4 and replicate the room to create a scene of 4 rooms.
The rooms are placed side by side along the Z-axis. There are 36 output images rendered
in this experiment. The viewpoint is aways at the center of the first room for all 36
output images but the viewing direction changes. The viewing direction is along the Z-
axis at the beginning and is rotated by 10 degrees around the Y-axis in each subsequent
frame.

Figure 5-1 shows the numbers of splats at each frame. The top line is when
occlusion culling is disabled. The middle line shows that the results when the occlusion
culling is performed. The bottom line serves as the absolute lower bound because it is
obtained when there is only one room in the scene.

61

Occlusion Culling (Rooms)

600000
500000 —e— No Culling
2 ‘N\ —=— with Culling g
g- 400000 \ Lower Bound
'S 300000
5 A\ /
2 200000 \ /
>
Z 100000 Tﬁmﬁ*ﬁi awnan
MNATASAI A ATA A A A ATATATA AT A AT
O ! T T T T T T l
0 5 10 15 20 25 30 35

Frame

Figure 5-1: The performance of occlusion culling, measured in the number of splats at
each frame, for the scene of empty rooms.

Occlusion Culling (Rooms)

120
) :
100 Ny —— NQ Cullln.g o
o \ —s— with Culling /
& 80 \ Lower Bound /
° 60
()]
Q \ /
g 40 ¥
> A ¢ < ¢ N
Z 20 A
0 T T T T T T
0 5 10 15 20 25 30 35

Frame

Figure 5-2: The performance of occlusion culling, measured in the number of rendered
cells at each frame, for the scene of empty rooms.

The chart in Figure 5-1 shows that occlusion culling reduces the numbers of splats
from about 10 times of the lower bound to about only twice of the lower bound. A

reason why the numbers with culling do not reach the lower bound is because of those

62

rendered octree cells that contain samples from both the viewer’s room and the next
room. Another reason is that the bounding rectangle of the actual projected area of an
octree cell on the screen is larger than the projected area of the cell. This sometimes
causes an occluded cell to not be culled. Figure 5-2 shows the numbers of octree cells
that are rendered instead of the numbers of splats. It shows that the occlusion culling is

very effectivein this scene.

5.2.2 A Scene Where Occlusion Culling Works Poorly

To see how the occlusion culling actually performs in scenes that cannot easily be
divided into isolated spaces or rooms, | repeat the experiment of the cathedral model
which is described in section 4.2.1, but with occlusion culling. The following chart
shows the results in average number of splats with and without occlusion culling.

Occlusion Culling (Cathedral)
10 g : : . : : : PRRR
—_ 9 I I i i Fe=e=== i """ i el i fes===- ge===== i Sl
D 8 e .
A R e S —&— No Culling
Q6 b fy b —s— Culling
< i
< 5 deaeaeadgete. Ahen00a0 aoao0s o000 ono0n Nrene0G Sam000 oo
~ 4 S eme-. P mmmm IR LI L -: --------------- Lecmame L, Parmenm Fe -
0 :
3 et e s e e
E_ 2 I I i i Fe=e=== ges===- 'E """"""" fes===- ge===== A b i
(:Q N JUP M SR A - R M S
0 T T T T T T T T T T
0O 10 20 30 40 50 60 70 80 90 100
Number of Reference Images

Figure 5-3: The performance of occlusion culling, measured in the number of splats at
each frame, for the scene of cathedral model.

Using occlusion culling to reduce the depth complexity to one is actually a lofty
goa in genera. Although occlusion culling is not effective in scenes with large open
spaces like the cathedral model, it does expand the possible applications of the LDI Tree
to scenes such as the building models, where each room isindividually modeled.

5.3 Hardware Issues

| chose the splatting method to reconstruct the surfaces from the samples that are
warped to the output images because the splatting works well with the multi-resolution
nature of the hierarchical representations. However, it does slow down the rendering
because splatting is not well supported by the architecture of traditional graphics
hardware. Also, it requires an A-Buffer-like output frame buffer to properly store, blend,
and antialias the pixel fragments generated by the splatting.

Therefore the most desirable new features of graphics hardware to support the
LDI Trees are the support of a faster splatting operation and the support of order-
independent transparency. The support of faster splatting operations may also find other
applications in volume rendering. Although the order-independent transparency is
infeasible in theory, an approximation agorithm for hardware support of order-
independent transparency has been proposed in [Jouppi99].

There are also variations of my rendering algorithms that could approximate the
origina agorithms on currently available graphics hardware, if dightly incorrect results
are acceptable. The following are two of such variations:

1. Since the splat size is comparable to the pixel size of the output image, we
may simply draw a point during each splatting operation. This could produce
adequate output images for previewing.

2. Although the occlusion compatible order that is described in McMillan’s 3D
image warping does not exist between a parent and a child cell, we may
simply ignore their order and process the samples in the children cells first.
The reason is that the samples in the parent cell are at lower sampling rates
and thus have less importance. If they are incorrectly occluded by the samples
in the children cells, the errors are usually tolerable.

5.4 Placement of Camera Positions for Acquiring Reference Images

During the acquisition of reference images, we face the question of where the
camera should be positioned in order to see any many surfaces as possible while keeping
the number of reference images small. However, finding the optimal placement of

64

camera positions is a difficult problem, which is also discussed in [Stuerzlinger99] and
[O’ Rourke87]. Therefore, the alternative of placing the cameras in a regular pattern is
often used instead.

The hierarchical representations | propose in this work remove the adverse impact
on the memory usage and the rendering time when more reference images result from
using a more regular or mechanical placement of camera positions. This makes the
planning of the acquisition process ssmpler. However my work is compatible with any
placement of camera positions, if the acquisition process still favors an approach of using
fewer camera positions that are more strategically placed. One reason to favor such an
approach may be that moving the camera to a different position requires significant re-
calibration of equipment or other manual work.

5.5 LDI Tree as Image Cache

As mentioned earlier in Section 2.9, Image Caching is a technique to use image-
based representations to speed up the rendering of polygonal objects. However, the
technigue is limited by the fact that the imposters that are used to represent a set of
already rendered objects become invalid when the viewpoint is moved beyond a certain
range.

If the LDI Tree is used as an image cache, then the imposters in each space
partition are replaced by the LDIs. By using 3D Image Warping, the same LDIs may be
used for any viewpoint. Therefore the need to regenerate the impostersis eliminated. To
generate the initia image cache, we may use any previously rendered output images as
the reference images and add them to the LDI Tree. Those output images may be
recorded from a previous walkthrough of the scene.

Furthermore, we may divide the rendering task into the rendering of near objects
and the rendering of far objects, which is similar to the concept in [Aliaga97]. This
means that we may increase the minimal viewing distance of the surfaces that are stored
inthe LDI Tree. Asdiscussed in Section 4.1.2, thiswill greatly reduce the memory usage
of the LDI Tree.

65

However, the biggest issue is the slow rendering time of the LDI Tree because of
the lack of hardware support. In the imposter-based image cache, the imposters may be
generated quickly by the graphics hardware. It may be faster than using 3D image
warping even though the latter is a more elegant solution.

5.6 Future Work

So far | have used only circular or square' footprints for splatting, regardless of
surface normal or orientation information. However the footprints for splatting could be
stretched in a certain direction that is determined by the surface orientation. Thisisin a
way similar to the anisotropic filtering in texture mapping. Therefore a direction for
future work is to incorporate the surface orientation into my framework for use in the
splatting and the calculation of stamp size.

When a surface is sampled in multiple reference images, we should be able to get
better sampling of the surface than what we can get from any single image. How to
explore thistype of cross-image supersampling is another direction of future work.

Like the origina LDI, pixels that fall into the same pixel location and have
similar depth values are merged together in an LDI Tree. That is based on the
assumption that the surface is diffuse and little view-dependent variance can occur.
However we may extend the cell representation (see Section 3.1) of an LDI Tree to store
additional information about those merged pixels and to produce view-dependent shading
effects during rendering. How to extract view-dependent properties of the surface from
those merged pixels (or even from other nearby pixels) is yet another direction for future

work.

! Depending on the distance metric. The footprint is circular if Euclidian distances are
used, or square if Manhattan distances are used.

66

APPENDIX A

DERIVATION OF 3D IMAGE WARPING EQUATION

Q)

(LSS S
(LSS S S

RN
N
N
N
N

RN
N
N
N
N

N

N

Figure A-1: The input image and the camera model.

(LSS

Given an image and the camera parameters of that image, 3D image warping can
generate images for the new viewpoints by moving the pixels of the image to new pixel
locations on the output images.

Figure A-1 describes a planar input image and the associated camera parameters
using the pinhole camera model.

| borrow the notation used in [McMillan97] and [Mark99]. Each pixel at the
image coordinates (X, y) contains a color values color(x, y) and a disparity vaue d(x, y).

The disparity value is closely related to the depth information. In fact we may obtain the
depth d by:

d=f/d
foox@ b Eq.A-1
@ b

where f represents the distance from the center of projection to the projection plane.

67

sl

Figure A-2: A point that isrepresented by a pixel of the input imageisre-
projected to anew view.

The camera parameters and the disparity values allow usto project a pixel to a3D
location in the scene, i.e., the sample point from the surface or object that the pixel is
representing. This may be expressed as the following equation:

P=C+(ax+by+c)/d Eq.A-2
Or the following equation if expressed in the matrix form:

@, b clxi

S _ A8 e, ul
P=C+ &2y b, c, L,éyaa Eq.A-3
g, b, cpelg

Figure A-2 shows that point and the second camera for the new viewpoint. To
find out the image coordinates on the second image for that pixel, we can smply
inversely project the pixel to the image plane of the second camera. That leads to the

following equation:

G, b, CLiBul Gy Dy Co08U
Y — (S u — (S u
P= Cl + éaly bly Cly A lad_ - CZ + éaZy b2y C2y t’élz l:ld_ EqA'4
A cAa A1 A ;A P]
z 1z 1z 2z 2z 2z
6, b, c,pelg 6, b, C,M8lh

Therefore,

Ve AN 7z _ l 7z _ l 7 A4 AN
eX,u 1 €8y, b, Cy u €8y, b, Cy u e, b, c uex,u 1
e, u _ € u - 3 (S u e ue,, u
éyz Ud_ - éaZy b2y C2y U (Cl - CZ) + éaZy b2y C2y U éaly bly Cly l:éyl l:ld_
~q4 Y2 ~ i ~ ;A A 21
6 1 g @22 bZZ CZZ g @22 bZZ CZZ g @lz blz Clz % 1 g
Eq.A-5

Because C,, C, and the camera parameters are fixed, the above may be rewritten

asthefollowing form:

éng é lel + szl + k3 + k4d1 l;'
gyz 3@ = g KsX, + Ky, +K; +kqd, g Eq.A-6
élg 6(9X1+k10y1+k11+k12d1g

where k; through k,, are defined as:

ék,u 6, b, c,u’

ngH:gazy b2y CZyH (Cl' Cz) Eq.A-7
&0 682, b, C,.f

ékl K, kzl;| éa,, b,, C2xl;|_l§alx b,, Cu U

K ke K iT@ay by Gy &y By Gy Eq.A-8
K, Ko kufl 82, b, G0 64, b, c.f

That leads to the familiar 3D image warping equation:

lel + k2 yl + k3 + k4dl k5Xl + k6 yl + k7 + k8dl

(X2, Y2) = (,
’ ’ k9X1+klOyl+kll+k]2dl k9X1+k10yl+kll+k12dl

) Eq.A-9

The above equation is evaluated once for each pixel of the input images.
Therefore the cost of rendering depends only on the size or the total number of pixels of
the input images. This distinguishes the image-based rendering from the traditional

polygon-based rendering where the cost of rendering depends on the complexity of the
scenes or the number of polygons.

69

APPENDIX B

EPIPOLAR GEOMETRY

N R

Figure B-1: The epipolar geometry between two images.

Many properties of 3D Image Warping are derived from the epipolar geometry
between two images. Here | briefly discuss two of the important properties that are
closely related to thisdissertation. They are:

1. A pixel onone of theimagesis corresponding to aline on the other image.

2. The existence of the occluson compatible order, i.e., if the pixels from one
image is warped to the other image in a certain order, then the pixels arrive in
back-to-front order if they are warped to the same pixels on the second image.

Figure B-1 shows a pair of images whose camera positionsareat C and C(. M
isapoint in object space which projectsto m and m¢ on thetwo images. e and et mark
the points where the camera position from one image is projected to a point on the other
image.

Let uslook at the pixel m on the left image. Assume that the pixel coordinatesis
fixed but we do not know the disparity of the pixel. This means that M could be

anywhere on the line passing through C and m. Although we cannot compute the pixel

70

coordinates of m(without knowing the disparity, we still know that mc falls on the line
where the plane formed by m, C and C¢ intersects with the right image. Thisresultsin
thefirst property listed above.

Conversdly, if we want to search for the pixels on the right image tha could fall
on the pixel coordinates of m on the left image, we need not look further beyond aline
on the right image. This property is used in the inverse warping which is described in
Section 2.5.

Figure B-2: The pixels from one image are mapped to lines passing through the epipole
on the other image.

When we consider many different pixels on the right image, they correspond to
different lines on the left image. What is interesting is that all those lines pass through
the pixel e, which is aso caled epipole. It is where the line connecting two camera

positions intersects the image. Figure B-2 depicts those lines and the epipole.

The epipole is important in defining the occlusion compatible order, which is the
second property listed above. In fact we can derive the occlusion compatible order from
the first property. For example, if Figure B-2 depicts the left image and the line passing
through my and my, corresponds to the pixel mcon the right image, then any pixel on that
line could potentialy be warped to m(. Assume that my and m, happen to be two of
those pixels. From Figure B-1, we can see that my represents a point in object space that
is closer to C¢, the camera position of right image, than m,. Therefore if we can

71

somehow guarantee that my is warped to the right image after mp, then they are warped in
the occlusion compatible order. This occlusion compatible order is clearly observed if
we traverse the pixels along the lines toward the epipole. If we need to traverse the pixels
in scanline (or horizontal) directions, then we can divide the image into four rectangles
based on the location of the epipole and traverse the pixels in the directions that are

approaching the epipole.

Note that the above is not meant to formal proofs of the mentioned properties. |
only discussed the ssmple cases where the epipoles are visible on the images. For more
complete discussion of the epipolar geometry, please refer to [Faugeras93].

72

BIBLIOGRAPHY

[Adelson9l]

[Aliagag7]

[Carpenter84]

[Chang99]

[Chiensg]

[Cohen96]

[Connolly84]

[Curless96]

[EriksonOQ]

[Faugeras93]

Edward H. Addson and James R. Bergen. “The Plenoptic Function
and the Elements of Early Vision”. Computational Models of Visual
Processing, Chapter 1, Edited by Michael Landy and J. Anthony
Movshon. MIT Press, Cambridge, Mass. 1991.

Daniel G. Aliaga and Anselmo A. Lastra. “Architectural Walkthroughs
Using Portal Textures’. In Proceedings of |IEEE Visualization 97, pages
355-362, October 1997.

Loren Carpenter. “The A-buffer, an Antialiased Hidden Surface
Method”. In Computer Graphics (SSGGRAPH 84 Conference
Proceedings), volume 18, pages 103-108, July 1984.

Chun-Fa Chang, Gary Bishop and Anselmo Lastra. “LDI Tree: A
Hierarchical Representation for Image-Based Rendering’. In
SIGGRAPH 1999 Conference Proceedings, pages 291-298, August
1999.

C. H. Chien, Y. B. Sm and J K. Aggarwa. “Generation of
Volume/Surface Octree from Range Data’. The Computer Society
Conference on Computer Vision and Pattern Recognition, pages 254—
60, June 1988.

Jonathon Cohen, Amitabh Varshney, Dinesh Manocha, Greg Turk,
Hans Weber, Pankg) Agarwal, Frederick Brooks and William Wright.
“Simplification Envelopes’. In SSGGRAPH 1996 Conference
Proceedings, pages 119-128, August 1996.

C. I. Connolly. “Cumulative Generation of Octree Models from Range
Data’. InProceedings, Intl” Conf. Robotics, pages 25-32, March 1984.

Brian Curless and Marc Levoy. “A Volumetric Method for Building
Complex Models from Range Images’. In SGGRAPH 96 Conference
Proceedings, pages 303-312, August 1996.

Carl Erikson. Hierarchical Level of Detail to Accelerate the Rendering
of Large Satic and Dynamic Polygonal Environments. Ph.D.
Dissertation. University of North Carolina at Chapel Hill, Department
of Computer Science, 2000.

Olivier Faugeras. Three-dimensional computer vision: a geometric
viewpoint. MIT Press, 1993.

73

[Fuchs80]

[Gortler96]

[Greene93]

[Jouppi99]

[Kolbo4]

[Laur9l]

[Leeos]

[Levoy85]

[Levoy96]

[Li94]

[Lischinskiog]

[Luebke97]

Henry Fuchs, Zvi M. Kedem, and Bruce Naylor. “On Visible Surface
Generation by A Priori Tree Structures’. In Computer Graphics
(SSGGRAPH 80 Conference Proceedings), volume 14, pages 124-133,
June 1980.

Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski and Michael F.
Cohen. “The Lumigraph”. In SIGGRAPH 96 Conference Proceedings,
pages 43-54, August 1996.

Ned Greene, Michagl Kass and Gavin Miller. “Hierarchical ZBuffer
Vighility”. In SGGRAPH 93 Conference Proceedings, pages 231238,
August 1993.

Norman P. Jouppi and Chun-Fa Chang. “Z3: An Economica Hardware
Technique for High-Quality Antidiasing and Order-Independent
Transparency”. In Proceedings of 1999 Eurographics/S GGRAPH
Wor kshop on Graphics Hardwar e, pages 85-93.

Craig Kolb. Rayshade. http://www-graphics.stanford.edu/~cek/ray-
shade/.

David Laur and Pat Hanrahan. “Hierarchical Splatting: A Progressive
Refinement Algorithm for Volume Rendering”. Computer Graphics
(S GGRAPH 91 Conference Proceedings), volume 25, pages 285-288,
July 1991.

Aaron W. F. Lee, Wim Sweldens, Peter Schroder, Lawrence Cowsar,
and David Dobkin. “MAPS. Multiresolution Adaptive
Parameterization of Surfaces’. In SGGRAPH 98 Conference
Proceedings, pages 95-104, July 1998.

Marc Levoy and Turner Whitted. “The Use of points as a Display
Primitive’. Technical Report 85-022, University of North Carolina at
Chapel Hill, Department of Computer Science, 1995.

Marc Levoy and Pat Hanrahan. “Light Field Rendering”. In
S GGRAPH 96 Conference Pr oceedings, pages 31-42, August 1996.

A. Li and G. Crebbin. “Octree Encoding of Objects from Range
Images’. Pattern Recognition, 27(5):727—739, May 1994.

Dani Lischinski and Ari Rappoport. “Image-Based Rendering for Non-
Diffuse Synthetic Scenes’. Rendering Techniques ‘98 (Proc. 9th
Eurographics Workshop on Rendering), June 29-July 1, 1998.

David Luebke and Carl Erikson. “View-Dependent Simplification of
Arbitrary Polygona Environments’. In SGGRAPH 97 Conference
Proceedings, pages 199-208, August 1997.

74

[Marcato98]

[Mark97]

[Markog]

[Max96]

[McCormack99]

[McMillan95d]

[McMillan95b]

[McMillan97]

[Nyland99]

[O'Brieng3]

[O’ Rourke87]

[POVRay]

Robert W. Marcato Jr. Optimizing an Inverse Warper. Master's of
Engineering Thesis, Massachusetts I nstitute of Technology, 1998.

William R. Mark, Leonard McMillan and Gary Bishop. “Post-
Rendering 3D Warping”. In Proceedings of the 1997 Symposium on
Interactive 3D Graphics, pages 7-16.

William R. Mark. Post-Rendering 3D Image Warping: Visibility,
Reconstruction, and Performance for Depth-lmage Warping. Ph.D.
Dissertation. Technical Report 99-022, University of North Carolina at
Chapel Hill, Department of Computer Science, 1999.

Nelson Max. “Hierarchica Rendering of Trees from Precomputed
Multi-Layer Z-Buffers’. Rendering Techniques ‘96 (Proc. 7th
Eurographics Workshop on Rendering), pages 165-174, June 1996.

Joel McCormack, Ronald Perry, Keith |. Farkas and Norman P. Jouppi.
“Feline: Fast Elliptica Lines for Anisotropic Texture Mapping”. In
S GGRAPH 99 Conference Pr oceedings, pages 243-250, August 1999.

Leonard McMillan. “A Ligt-Priority Rendering Algorithm for
Redisplaying Projected Surfaces’. Technical Report 95-005,
University of North Carolina at Chapel Hill, Department of Computer
Science, 1995.

Leonard McMillan and Gary Bishop. “Plenoptic Modeling: An image-
based rendering system”. In SSGGRAPH 95 Conference Proceedings,
pages 3946, August 1995.

Leonard McMillan. An Image-Based Approach to Three-Dimensional
Computer Graphics. Ph.D. Dissertation. Technical Report 97-013,
University of North Carolina at Chapel Hill, Department of Computer
Science, 1997.

Larss Nyland, David McAllister, Voicu Popescu, Chris McCue, and
Anselmo Lastra. “Interactive exploration of acquired 3D data’. In
Proceedings of the SPIE Applied Image and Pattern Recognition
Conference (AIPR99), Washington, DC, October 13-15, 1999.

Nathan O’ Brien. Rayshade - || Redentore. http://www.fbe.unsw.edu.-
au/exhibits/rayshade/church/

J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford University
Press, New York, 1987.

The Persistence of Vision Raytracer. http://www.povray.org/

75

[Rademacher98] Paul Rademacher and Gary Bishop. “Multiple-Center-of-Projection

[Schaufler96]

[Schaufler9g]

[Schaufler99]

[Shade96]

[Shadeos]

Images’. In SGGRAPH 98 Conference Proceedings, pages 199206,
July 1998.

Gernot Schaufler and Wolfgang Stirzlinger. “A Three-Dimensional
Image Cache for Virtua Reality”. In Computer Graphics Forum,
15(3), pages 227-236, Blackwell Publishers, August 1996.

Gernot Schaufler. “Per-Object Image Warping with Layered
Impostors’. In Rendering Techniques ‘98 (Proc. 9th Eurographics
Workshop on Rendering), pages 145-156, June 29-July 1, 1998.

Gernot Schaufler and Markus Priglinger. “Efficient Displacement
Mapping by Image Warping”. In Rendering Techniques ‘99 (Proc.
10th Eurographics Workshop on Rendering), pages 175-186, June
1999.

Jonathan Shade, Dani Lischinski, David H. Salesin, Tony DeRose and
John Snyder. “Hierarchica Image Caching for Accelerated
Walkthrough of Complex Environments’. In SIGGRAPH 96
Conference Pr oceedings, pages 75-82, August 1996.

Jonathan Shade, Steven Gortler, Li-wei He and Richard Szeliski.
“Layered Depth Images’. In SGGRAPH 98 Conference Pr oceedings,
pages 231242, July 1998.

[Stuerzlinger99] W. Stuerzlinger. “Imaging all Visible Surfaces’. In Graphics Interface

[Westover91]

[Williams83]

[Zhang97]

Proceedings 1999, pages 115-122, June 1999.

Lee Westover. SPLATTING: A Paralle, Feed-Forward Volume
Rendering Algorithm. Ph.D. Dissertation. Technical Report 91-029,
University of North Carolinaat Chapel Hill. 1991.

Lance Williams. “Pyramidal Parametrics’. In Computer Graphics
(S GGRAPH 83 Conference Proceedings), volume 17, pages 1-11,
Detroit, M1, July 2529, 1983.

Hansong Zhang, Dinesh Manocha, Tom Hudson and Kenneth E. Hoff

1. “Vighbility Culling using Hierarchica Occluson Maps’. In
S GGRAPH 1997 Conference Pr oceedings, pages 77-88, August 1997.

76

