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ABSTRACT
WEI-CHAO CHEN. Light Field Mapping:

Efficient Representation of Surface Light Fields.
(Under the direction of Henry Fuchs.)

Recent developments in image-based modeling and rendering provide significant advantages

over traditional image synthesis process, including improved realism, simple representation and

automatic content creation. Representations such as Plenoptic Modeling, Light Field, and the

Lumigraph are well suited for storing view-dependent radiance information for static scenes and

objects. Unfortunately, these representationshavemuchhigher storage requirement than traditional

approaches, and the acquisition process demands very dense sampling of radiance data. With

the assist of geometric information, the sampling density of image-based representations can be

greatly reduced, and the radiance data can potentially be represented more compactly. One such

parameterization, called Surface Light Field, offers natural and intuitive description of the complex

radiance data. However, issues including encoding and rendering efficiency present significant

challenges to its practical application.

In this dissertation, I present a method for efficient representation and interactive visualization

of surface light fields. I propose to partition the radiance data over elementary surface primitives

and to approximate each partitioned data by a small set of lower-dimensional discrete functions. By

utilizing graphics hardware features, the proposed rendering algorithm decodes directly from this

compact representation at interactive frame rates on a personal computer. Since the approximations

are represented as texture maps, I refer to the proposed method as Light Field Mapping. The

approximations can be further compressedusing standard image compression techniques leading to

extremely compact data sets that are up to four orders ofmagnitude smaller than the uncompressed

light field data. I demonstrate the proposed representation through a variety of non-trivial physical

and synthetic scenes and objects scanned through acquisition systems designed for capturing both

small and large-scale scenes.
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Chapter 1

Introduction

In the field of computer graphics research, the quest for photo-realistic image synthesis has focused

on the light transport mechanisms. Starting with analytical models of both the surface geometry

and reflectance properties, these algorithms render images by using a combination of physical sim-

ulations and heuristics. Following this paradigm, we have witnessed a tremendous improvement

in image quality, rendering efficiency and scene complexity over the past three decades. The variety

of simulated effects has also increased considerably. However, since these algorithms require much

information about the scene, authoring and content creation remains a time-consuming and labor-

intensive task. Research in computer vision, on the other hand, considers the opposite problem

to computer graphics. Many computer vision algorithms take images and camera parameters as

input, and output scene descriptions such as scene geometry, structure, and lighting information.

Because the output generated by computer vision algorithms can be used as input for computer

graphics algorithms, these two research fields are often regarded as complimentary to each other

(Figure 1.1).

As the efficiency of computers improve, scene modeling and authoring gradually dominate the

pipeline. Although more and more modeling tools are available, the complexity of scenes that

can be handled by renderers grow significantly, and clearly we need to find alternative solutions.

Image-Based Rendering and Modeling (IBRM) research emerged to address this issue . Under the

IBRM framework, scenes are normally acquired using either 2D or 3D imaging devices, processed

with computer vision techniques, and stored into a sample database. IBRM rendering algorithms

work by querying into the database, followed by a combination of geometric operations and signal

reconstruction. Figure 1.2 illustrates the image synthesis process under the IBRM framework.

Compared to the conventional image synthesis process, IBRM promises to require significantly
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Images

Physics
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Geometry

Computer Graphics Research

Light Transport Simulation
Behavioral Simulation
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Computer Vision Research

Pattern Recognition
Geometry Reconstruction
Structure Analysis
...

Figure 1.1: Overview of traditional computer graphics and computer vision research. These two
research fields compliment each other in terms of their goals.

less effort for content creation. Furthermore, since modeling algorithms use input images acquired

from real environments, IBRM representations can achieve a much higher level of realism than

the conventional process. However, since representation of the sample database has not been

extensively studied, IBRMrepresentationsnormally have a significantly higher storage requirement

than conventional graphics with similar scene complexity. This shortcoming is one of the major

reasons that limit the widespread application of IBRM techniques.

I believe that by properly analyzing and modeling the sample database, we may achieve a

very compact representation comparable to conventional graphics representations. Research in this

dissertation suggests that parameterization of the image samples plays a crucial role in designing

an effective representation. Parameterization can be viewed as partitioning of the samples, and

proper partitioning leads to a sample database that is extremely compressible. I will demonstrate

that, by using simple linear approximation schemes, the compressed samples can be effectively

decompressed and reconstructed on-the-fly using commodity graphics hardware. The proposed

approximation schemes are entirely data-driven, and they do not rely on physical assumptions of

the scene.

1.1 Background

The scene definition of conventional computer graphics normally consists of an object model in

Euclidean space together with surface material descriptions. Advances in memory and storage

technology enabled the realization of the frame buffer during mid 1970s. Many image precision
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Figure 1.2: Overview of Image-Based Rendering and Modeling. The sample database is essentially
the IBRM representation. In general, this database consist of samples from the source images.

rasterization and visibility algorithms have since been developed for frame buffer based graphics

systems. Various representations and algorithms have also been developed to take advantage of the

advancements in computing technology, and I will survey some of the most well-known examples

in this section.

1.1.1 Representations

Surface detail representations gradually adopt samples as the underlying unit of storage. For

example, texture mapping, bump mapping and environment mapping are commonly used with

extensive support in many graphics systems. These representations store surface details in a

sampled format. During rendering, for each destination pixel in the frame buffer, the rendering

algorithm performs inverse lookups into the samples to reconstruct the desired images. To model

surface reflectance properties, these representations are augmentedwith certain reflectancemodels.

Because a reflectance model is a high dimensional function, storing it in sampled format is quite

space inefficient. Therefore, analytical models has been predominant until recently. Although the

notion of Bidirectional Reflectance Distribution Function (BRDF) [Glassner95] is widely accepted,

most graphics hardware only implement the empirical and simplistic Phong illumination model

[Phong75] despite the inadequacy of this model for many purposes.

In order to perform rasterization effectively, many representations require geometric models.

The most popular geometric model representation uses a piecewise linear approximation of the

surfaces, although other primitives such as higher-order surfaces and solids may be more appro-

priate for certain applications. Some IBRM representations discard geometric models entirely by

using sampled geometry, or by eliminating geometric information altogether. These representations
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can be regarded as pure sample-based approaches. Volumetric representation is another example of

sample-based approach.

1.1.2 Rendering

Rendering has traditionally been referred to as the process of converting from scene representations

to pictures. This process involves two primary stages, namely light transport simulation, and

solution visualization. A recursive ray-tracing algorithm, for example, performs simulation by

casting rays onto objects and light sources recursively, and the solution of the simulation is simply

a rasterized image. A solution calculated by a radiosity algorithm, on the other hand, requires a

separate visualization stage, commonly through texture-mapping techniques.

Most of the current IBRM rendering algorithms are in fact visualization algorithms because

these representations actually contain samples of the light transport solutions. Recent works on

inverse rendering strive to recover surface and lighting parameters from input samples. Since

the parameters are normally physically-based, the parameter recovery processes are normally

nonlinear, and this class of inverse simulation problem remains difficult.

Contemporary graphics hardware implements a variety of operations to accelerate visualization

process. These feature include Gouraud shading, texture mapping and Z-buffer. Due to the

complexity of light transport simulation algorithms, commodity hardware supports only limited

local illumination algorithms that do not take into account secondary effects. Ingenious use of these

hardware features leads to effective approximations to the simulation algorithms such as shadows

and reflections at interactive rates.

1.2 Motivation

I became interested in IBRM when I joined the “Office of the Future” research group at the De-

partment of Computer Science of the University of North Carolina at Chapel Hill (UNC-CH CS),

under the direction of Henry Fuchs. The vision of this project is to build a better everyday working

environment and human-computer interface by integrating the office environment with cameras

and projectors for real-time scene acquisition and ubiquitous display [Raskar98]. Several compo-

nents of this system present significant challenges to the state-of-the-art and the realization of this

vision is difficult. To provide early assessment of the vision, we performed an experiment that

demonstrated a convincing static portal to a different place [Chen00]. In this demonstration, the
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environment was acquired by a laser rangefinder system designed byNyland et al. [Nyland98], and

the imagery were presented to the user with a head-tracked stereo display. The laser rangefinder

was constructed as part of the ongoing IBRM research effort in UNC-CH CS, and it has provided

valuable real-life data to the research field.

During this experiment, I encountered many problems in constructing the scene from the raw

laser rangefinder data into a representation suitable for rendering purposes. For example, it is diffi-

cult to merge multiple scans from different positions without significant effort. In particular, when

images taken at different locations need to be merged together, radiance samples corresponding to

the same surface point change depending on the viewpoint. Also, commodity hardware is opti-

mized for geometric primitives rather than points, and converting from the rangefinder’s sampled

depth maps into unified geometry is a non-trivial problem. In addition, although IBRM promises

easier content creation and more realistic images, because of a lack of compact and high-quality

representation, both the image quality and rendering efficiency remain inferior to conventional im-

age synthesis process under similar hardware and software constraints. Despite active research in

IBRM during the past several years, none of the existing representations to my knowledge satisfies

all of the following criteria simultaneously:

• Applicability to a wide variety of scenes,

• Simple and straightforward implementation,

• Efficient real-time visualization, and

• High rendering quality.

Shortly after, I had an opportunity to work at the Microprocessor Research Lab of Intel Corpo-

ration as an intern. Not long before I arrived at Intel, researchers Jean-Yves Bouguet and Radek

Grzeszczuk had already built a small-scale acquisition system that is capable of accurately acquir-

ing object geometry and pictures. They took about 40 images per object and rendered the scene by

dynamically texture-mapping suitable images onto the acquired geometry. This method is concep-

tually easy, but the representation is not efficient. These raw images take up most of the memory in

the system, and rendering performance was less than satisfactory. I realized that I could leverage

this effort to design a suitable IBRM representation that would satisfy the criteria stated above.

To improve the quality of the scene, we took many more images at higher resolution, and this

effectively increased the raw data size by at least an order of magnitude. Without an efficient
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and carefully-designed representation, it would not be possible or practical to render the scenes at

interactive rates. Given the random-access nature of 3D applications, we can not simply extend

linear playback media compression algorithms for our purposes, and on-the-fly decompression is

certainly a preferred feature. However, most of the existing IBRM representations, such as the light

field [Levoy96] and the lumigraph [Gortler96], were not designed with these features in mind, and

an adequate quality scene would require a very large sample database.

In the meantime, I was introduced to a recent trend of sample-based techniques for efficient

image synthesis [Heidrich99, Kautz99]. These algorithms achieve both high-quality and real-

time rendering for conventional model-based scenes. In particular, they approximate the material

reflectance properties as a set of images and store them in conventional texture maps. By using

these techniques, it is possible to utilize complicated reflectancemodels for real-time applications on

contemporary graphics hardware that supports texture mapping and fragment operations. These

algorithms also provide compression of the samples effectively by approximating the 4DBRDFwith

a set of lower-dimensional functions. Because of their simplicity and efficiency, these algorithms

are widely embraced by both the academia and practitioners in the field. I realized that it is quite

possible to apply similar techniques to an IBRM sample database and, with careful design, the

decompression of the database can be executed efficiently by using graphics hardware features.

However, the sample database size of the IBRM representation is several orders of magnitude

larger than a single BRDF. To compress these samples efficiently, we need local windows of scope,

and within each window the samples should be highly coherent. Since it is known that geometry

can be used to reduce the sampling rate of IBRM scenes, and geometry are the primitives supported

in commodity hardware, I believe an efficient representation that satisfies all the above criteria will

cluster and partition samples based on geometric primitives.

1.3 Thesis Statement and Contributions

In order to compactly represent an IBRM sample database, it is crucial to design an effective

compression algorithm that allows efficient decompression on current hardware. An effective

representation therefore incorporate mathematical models for the compression purposes, but the

goals of these models are not to approximate the original physics of the scene. Instead, these

models are used to transform the raw samples into a different domain for effective compression.

To achieve this goal, the underlying sample parameterization should lead to natural clustering and
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partitioning of the database. Within a local scope, the data should be redundant to reduce search

cost in compression. This leads to the followings thesis statement:

Geometry-assisted radiance sample clustering improves local data coherence, which allows effec-

tive sample partitioning and compression in a local scope using simple linear approximations.

With proper mapping between the decoding algorithm and graphics hardware, these approxima-

tions can be decoded efficiently and progressively for real-time visualization.

In this dissertation, I will present a new representation that encompasses effective compression

and decoding algorithms. These algorithms provide very good approximation quality and high

compression ratios. The decoding algorithm is very efficient; it allows real-time visualization of

complicated scenes directly from the compressed format. Specifically, the contributions of this

dissertation are:

• Partitioning of IBRM radiance samples on geometry for high-quality compression.

I propose a partitioning of the radiance samples into small manageable pieces. The proposed

partitioning scheme allows efficient compressionwhile reducingdata approximation artifacts.

• An efficient and high-quality compression algorithm for the radiance samples.

I propose a class of compression algorithms based on established numerical methods. These

algorithms use simple linear approximations and are entirely data-driven. With no assump-

tions about the underlying physics of the scenes, these algorithms work very well for intricate

real-life scenes.

• A simple decompression algorithm suitable for real-time visualization.

The decompression algorithm take advantage of commodity graphics hardware features.

The rendering algorithm decodes on-the-fly without a priori decompression. Independent

improvements in the compression algorithm under the proposed framework will not change

the proposed decompression algorithm.

Figure 1.3 illustrates the modified IBRM processing pipeline. The introduction of functional

approximation of samples is obviously not new. However, in my proposed methods, the tight

integration of the on-the-fly decompression algorithms in the rendering routines allow minimal

run-time memory overhead for decompression. In the next section, I will briefly describe the

proposed algorithm under this model-based IBRM framework.
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Figure 1.3: Model-based IBRM incorporates mathematical models to transform and approximate
the raw sample database more compactly. As such, sample decoding should be integrated as a part
of the rendering process.

1.4 Light Field Mapping Overview and Chapter Outline

A surface light field [Miller98, Wood00, Chen02] is a 4-dimensional function f (r, s, θ, φ) that com-

pletely defines the radiance of every point on the scene surface geometry in every viewing direction.

The first pair of parameters of this function (r, s) describes the surface location and the second pair

of parameters (θ, φ) describes the viewing direction. In practice, a surface light field function is

normally stored in sampled form, where as the geometry information are normally represented as

surface mesh. Figure 1.4 illustrates the surface light field parameterization.

Because of its large size, a direct representation and manipulation of the light field data is

impractical. I propose to approximate the discrete 4-dimensional surface light field function f (·) as
a sum of products of lower-dimensional functions

f (r, s, θ, φ) ≈
K∑

k=1

gk(r, s) hk(θ, φ). (1.1)

In the remainder of the dissertation, Iwill demonstrate that it is possible to construct approximations

of this form that are both compact and accurate by taking advantage of the spatial coherence of the

surface light fields. This is accomplished by partitioning the surface light field data across small

surface primitives and building the approximations for each part independently. The proposed

partitioning also ensures continuous approximations across the neighboring surface elements. By
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Figure 1.4: The surface light field parameterization. This parameterization is suitable for represent-
ing static sample-based scenes.

taking advantage of existing hardware support for texture mapping and composition, we can

visualize surface light fields directly from the proposed representation at highly interactive frame

rates. Because the discrete functions gk and hk encode the light field data and are stored in a sampled

form as texture maps, I will call them the Light Field Maps. Similarly, I will refer to the process of

rendering from this approximation as Light Field Mapping [Chen02].

In Chapter 2, I discuss researchwork related to the proposed representation. I believe a compact

IBRM representation needs to take advantage of the geometric information and, in Chapter 3 I

discuss the role of geometry in other image-based representations. In Chapter 4, I introduce the

proposed partitioning and approximation framework. In Chapter 5, I propose efficient rendering

algorithms that allow on-the-fly decompression in graphics hardware. This representation are

stored as images and can be further compressed using image processing algorithms, and several

algorithms I have experimented with are presented in Chapter 6. Chapter 7 provides description

and implementation of the acquisition system used in the dissertation. Before the acquired data can

be processed into light field maps, they need to be resampled. In Chapter 8, I discuss the surface

light field resampling algorithms together with other implementation issues.



Chapter 2

Background and Related Work

The methods presents in this dissertation are built on several categories of computer graphics

research. In addition to image-based rendering research, my research share ideas similar to recent

research in sample-based reflectancemodeling. In this chapter, Iwill categorize anddiscuss research

that is related to my proposed methods.

2.1 Reflectance Models and Approximations

Much conventional graphics research represents the surface reflectance properties as a model in the

form of 4-dimensional Bidirectional Reflectance Distribution Function (BRDF) ρ(θi, φi, θo, φo). A

BRDF defines the ratio of the outgoing radiance at direction (θo, φo) to the incoming irradiance from

direction (θi, φi). Althoughmany earlier methods represent the BRDF analytically, a recent research

trend is to approximate BRDF by lower-dimensional sampled functions to facilitate hardware-

accelerated rendering. To accommodate for spatial variance on the surface, there are also research

efforts to extend the BRDF beyond 4 dimensions.

2.1.1 Parametric Reflectance Models

The existing parametric representations of BRDFs can be divided into two major categories: phys-

ical and empirical. Empirical models are useful when computing resources are limited, and both

memory and computational efficiency have higher priority over accuracy and physical correct-

ness. Phong [Phong75] developed one of the first and most popular reflectance models used in

computer graphics. Most of the current graphics hardware has build-in support for the Phong

model because of its simplicity. It uses only one parameter for defining the shape of the reflectance
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function, and has been proven to be inadequate for many real-life surfaces. Later methods focus on

models that take more parameters but are able to represent wider classes of reflectance properties.

Ward [Ward92] proposed a reflectance model based on Gaussian lobes. Schröder and Sweldens

[Schröder95] introduced a reflectance function approximation using spherical wavelets. Koen-

derink et al. [Koenderink96] introduced a compact approximation based on Zernike polynomials.

Lafortune et al. [Lafortune97] used multiple generalized Phong cosine lobes, and Cabral [Cabral87]

proposed spherical harmonics. Fournier [Fournier95] used a sum of separable functions to approxi-

mate the Phong model and some experimental data taken from BRDF measurement devices. These

models are not physically-based, but the parameters are often intuitive from user’s perspective.

Some of these models are developed to approximate experimental measurements of BRDFs. The

functional form of the measurements is obviously more compact, and it provides for both efficient

evaluation and interpolation of the missing data.

In the class of physically-based reflectance models, Torrance and Sparrow[Torrance66] devel-

oped a model based on micro-facet geometry. This model was later extended and introduced to the

computer graphics community by Cook and Torrance[Cook82]. He et al. [He91] derived a model

based on physical optics, and Poulin and Fournier [Poulin90] constructed a model assuming a sur-

face consisting of microscopic cylinders in order to support anisotropic reflectance. These models

are developed with some physical assumptions on the underlying surface structure. In practice, a

user needs to specify parameters such as micro-facet surface orientation distribution, and although

these parameters have corresponding physical meanings, they are often not intuitive. However,

sincemost of these parameters can bemeasureddirectly from physical surfaces, use of these models

may avoid the nonlinear fitting process that is required by some of the empirical models.

2.1.2 Sample-based Models and Approximations

Instead of designing parametric reflectancemodels, wemay use a brute-forcemethod for represent-

ing the BRDF and store all the data in tabulated format. However, given the 4-dimensional nature of

the function, this methodmay be neither practical or efficient. Recentmethods on sample-based ap-

proximations seek to represent sampled BRDF more compactly. Heidrich et al. investigated several

parametric reflectance models, and concluded that many of the 4-dimensional models can actually

be separated into products of 2-dimensional functions. Kautz and McCool [Kautz99] propose a

data-driven method for hardware assisted rendering of arbitrary BRDFs through their decompo-

sition into a sum of 2D separable functions. For some BRDFs, a few number of 2D functions can
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adequately represent the original function ρ, but for some other functions the number of terms

can be greatly reduced by reparameterizing BRDF parameters using techniques first proposed by

[Rusinkiewicz98]. The approximation quality can also vary progressively by changing the number

of 2D functions. Another major benefit of sample-based approximations is their applicability for

hardware-accelerated rendering. Given multi-texturing support, we may treat these 2D functions

as texture maps and reconstruct the BRDF in graphics hardware. The homomorphic factorization

of McCool et al. [McCool01] generates a BRDF factorization with positive factors only, which are

easier and faster to render on the current graphics hardware, and deals with scattered data without

a separate resampling and interpolation algorithm. In essence, this approach approximates a BRDF

in the logarithmic domain by a sum of 2D functions. This approximation, when transformed to

the original domain, is simply a product of 2D functions that forms a factorized approximation of

the original BRDF. Although the homeomorphic factorization framework can potentially support

progressive encoding by increasing the number of factors, the authors only presented an algorithm

that limits the factorization to three factors.

The research presented in this thesis is in part inspired by these research, although our appli-

cation is fundamentally different. These methods are limited to sample-based representation of

shift-invariant reflectance models, namely, these representations are applied to surfaces with iden-

tical or slowly-varying BRDFs. On the other hand, research in this dissertation focuses on complex,

real world surfaces that may have different reflectance properties on each point of the surfaces.

We also present a novel method for factorization of light field data that produces only positive

factors using non-negative matrix factorization [Lee99]. Although our factorization still requires

resampling and interpolation of data, it is significantly easier to implement than the homomorphic

factorization in [McCool01].

2.1.3 Inverse Rendering

In the realm of BRDF modeling, the measurements are normally obtained in a lab setting with

controlled illumination. Recent techniques seek to loosen the constraint in measurements, and

they focus on recovering surface properties from a set of photographs without explicitly measur-

ing the surface BRDF. Sato et al. [Sato97] use the Torrance-Sparrow model for representing the

diffuse and specular reflection components of a scanned physical object. Yu et al. [Yu98] represent

sparse radiance data collected as photographs by recovering parameters of the Ward reflectance

model[Ward92] that best describe the data. The major drawbacks to these approaches are that the
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inverse calculation involves nonlinear optimization, and the optimization processmay not be stable

for certain kinds of input data. The user also need to perform manual object segmentation of the

scene, and only a few BRDFs are recovered for each segment.

2.1.4 Shift-Variant BRDFs

Surface details has traditionally been represented by surface texture. The reflectance models used

in texture-mapped scenes are normally chosen arbitrarily, and this approach certainly can not

represent a different BRDF for each surface point effectively. To correctly represent surface details,

a 6-dimensional function is required. A Bidirectional Texture Function (BTF) is a 6-dimensional

function that provides a BRDF for each 2-dimensional surface point. Research by Dana et al.

[Dana99] resulted in the CUReT database which consists of a collection of 60 BTFs observed under

different lighting and viewing conditions. Because of the size of the BTF function and difficulty in

its acquisition, using the BTF for rendering and modeling requires further research effort. Liu et al.

[Liu01] investigates the synthesis of the BTF. They propose to use shape-from-shading approaches

to recover the detailed geometry from the BTF database, and then synthesize novel BTF based on

the recovered geometry. McAllister et al. [McAllister02] acquire a BTF and calculate a BRDF for

each of the surface point independently using the LaFortune reflectance model [Lafortune97]. The

resulting representation is very compact and suitable for hardware-accelerated rendering purposes.

Instead of explicitly sampling the BTF, Lensch et al. [Lensch01] took a different approach. They

take a sparse set of photographs around an object, and by assuming only a number of materials

within the object they were able to reconstruct a set of basis BRDFs using these photographs. The

object isfirst split into clusters with different BRDF properties, then a set of basis BRDFs is generated

for each cluster. Finally, the original samples are reprojected into the space spanned by the basis

BRDFs. This algorithm requires only a small set of photographs, and this feature is its major

advantage. However, this technique does not work very well for complicated surfaces with many

different BRDFs.

2.2 Image-Based Rendering and Modeling

The goal of Image-Based Rendering and Modeling (IBRM) is to synthesize novel images directly

from input images. Since images canbe synthesized fromreal environments, IBRMpromises realism

with little modeling and content creation effort. Some of the representations contain only samples
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Figure 2.1: Taxonomyof image-based representations according to the amount of requiredgeometric
and radiance data.

from the acquisition process, whereas others use traditional surface primitives to store geometric

information. Figure 2.1 categorize these techniques according to the amount of geometric and

radiance data required for each representation. Notice that the axes in the figure represent the

amount of data required in the representation without compression. As pointed out by Chai et

al. [Chai00], for visualization purposes, geometry information can be used to trade off radiance

information, and obviously some of the representations are more redundant than others, and can

be potentially representedmore compactly. I will discuss these techniques in the following section.

2.2.1 Sampled Representations

This class of representations store the scene using color sample database. A rendering algo-

rithm resamples the database to synthesize novel view images. Several examples include the

plenoptic modeling by McMillan and Bishop[McMillan95], the light field rendering by Levoy and

Hanrahan[Levoy96], and the lumigraph by Gortler et al. [Gortler96]. Each of these methods pa-

rameterizes samples from the input images differently, and generates novel images by querying the

database followed by samples reconstruction. These parameterizations are suitable for static scenes

with fixed lighting conditions.



15

s

t
u

v

Figure 2.2: The light field parameterization, a classic two-plane parameterization of IBRM sample
database.

A static, wavelength-independent plenoptic function [Adelson91] parameterizes samples with

5-dimensional parameters. Each sample in the database is assigned a tuple (x, y, z, θ, φ),where x, y, z

represent the position of the camera andθ, φ represent the incoming direction of the sample. The 5D

parameterization is inefficient formost practical purposes, therefore [McMillan95] proposed several

approximations to the plenoptic function. One such approximation incorporates 3D location of the

radiant source in each sample. A class of rendering algorithms, commonly referred to as Image

Warping[McMillan97, Mark97], generate novel images by reprojecting samples followed by visi-

bility sorting for each destination pixel. McMillan [McMillan97] presented an order-independent

rendering algorithm that allows image warping without no sorting. This algorithm takes advan-

tage of the epipolar geometry and traverse the input image samples in an order that guarantees

back-to-front ordering at the target image. However, this method applies only when a single source

image is used. Chang et al. [Chang99] and Popescu et al. [Popescu01b] proposed algorithms to

efficiently select and query the sample database for image warping algorithms.

By further enforcing an empty-space constraint, i.e., by assuming the radiance of light rays

traveling through space remain invariant, a 5D Plenoptic function can be parameterized using

4-dimensional parameters. Figure 2.2 illustrates the 2-plane parameterization used in the light

field [Levoy96] and the lumigraph [Gortler96]. Each sample in the input images forms a light

ray intersecting the two planes uv and st, and the intersection points define the parameters of

this sample in the radiance database. To generate a novel image, we calculate the line-of-sight
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for each destination pixel, and the parameters of the intersection points are used to query the

sample database. Since the lines may not intersect exactly on the plane grids, the rendering

algorithms employ a reconstruction process that queries several nearby samples and reconstruct

the target sample. Although the parameterizations of light field and lumigraph are identical, their

neighborhood querying and reconstruction processes differ. In the case of the light field, nearby

samples are defined on the grid points around the intersection points. On the other hand, the

lumigraph uses scene geometry in the query process. In this case, light rays emitting from similar

3D locations are considered closer even if their parameters are farther away on the two planes.

In general, the reconstruction process of the lumigraph produces fewer artifacts. Without using

geometric information, light field reconstruction technique produces noticeable ghosting artifacts

if the grid density is low, or if the st planes are farther away from the actual geometry of the

scene. Chai et al. [Chai00] discuss the effects of using geometry information. They formulate the

minimum radiance sampling rate as a function of geometry information precision, and showed

that for Lambertian scenes, the radiance sampling rate can be greatly reduced by increasing the

precision of geometry information.

Compression. Because of the size of IBRM sample database, much research has been done on

compression of the sample database. Levoy and Hanrahan [Levoy96] use the Vector Quantization

(VQ) technique [Gersho92] for compression of light field data. Magnor and Girod have developed

a series of disparity-compensated light field codecs that minimize distortion directly in the im-

age plane. Their algorithms are in essence 4-dimensional extensions of the MPEG video coding

standard, and they either make no assumptions about geometry [Magnor00] or use approximate

geometry to generate disparity maps for reducing compression search cost [Eisert00, Girod00].

These algorithms normally consist of two stages. In the first stage, samples are collected into small

blocks. Similar blocks are then clustered to improve redundancy within each cluster. For example,

[Eisert00] uses disparity maps to cluster blocks from similar 3D locations together. In the second

stage, each cluster is approximated and compressed independently.

2.2.2 View-Dependent Texture Mapping and The Surface Light Field

Another class of IBRM representation incorporates conventional geometric primitives rather than

sampled geometry. View-Dependent Texture Mapping (VDTM) is a technique that extends classic

texture mapping algorithms to incorporate view-dependent appearance of surfaces. This represen-
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tation addresses problem of image-based modeling from a sparse set of photographs. Debevec et

al. [Debevec96, Debevec98] and Pulli et al. [Pulli97] are among some of the examples of VDTM.

This representation stores multiple images per surface primitive and, depending on the viewing

parameters, the rendering algorithms work by texture mapping the surface using images taken at

similar viewing directions. To reduce artifacts such as texture seams, the algorithms proposed in

[Debevec98] linearly blend texture maps from several images. One of the primary advantages of

VDTM over pure sample-based IBRM representations is that the required amount of radiance data

in a VDTM is generally much lower. In sample-based IBRM, input photographs are resampled

on a dense high-dimensional grid, whereas VDTM techniques use rectified input images directly

in the representation. Furthermore, VDTM techniques allow synthesis of novel views outside the

convex hull formed by input image cameras. This property is generally not available for sample-

based representations. However, as the number of input images increases, the amount of radiance

data grows proportionally, and therefore VDTM algorithms does not scale to the number of input

images.

Generalization of the lumigraph by Helgl et al. [Heigl99] and Buehler et al. [Buehler01] use

scattered input images directly without resampling. The reconstruction stage chooses appropriate

weighting for each pixel on a per-pixel basis by using several sample blending and selection criteria.

Buehler et al. also devised a hardware-accelerated rendering algorithm to efficiently render this

representation at a high frame rate. This algorithm requires little preprocessing time, but it also has

the inherent scalability problem of VDTM techniques.

Nishino et al. [Nishino99] proposed the eigen-texture method that compresses generalized

VDTM data. The input data consist of pictures from various viewing positions and lighting con-

ditions. For each surface primitive, the eigen-texture approach starts by collecting the portion of

the picture visible to the primitive, resamples them, and performs Principle Component Analysis

(PCA) [Bishop95] on the resampled images to achieve an approximately 20:1 compression ratio. The

proposed Light Field Mapping technique is sometimes confused with the eigen-texture method.

Although both techniques perform PCA approximation on image data, the original formulation of

the eigen-texture method only allows synthesis of input images, and novel views on the path con-

nected by a pair of images. The eigen-texture technique is thus not a general VDTM representation.

Unlike for Light Field Mapping method, there are no reported real-time rendering algorithms for

the eigen-texture representation. For more detailed comparison, please refer to Appendix A.

The surface light field parameterization, shown in Figure 1.4, is obviously similar to a VDTM
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parameterization. However, VDTM defines the viewing parameters θ, φ on a per surface primitive

basis, whereas surface light field parameterization treats each surface point differently. VDTM is

therefore an approximation of surface light field. Miller et al. in [Miller98] proposed a method

of rendering surface light fields from input images compressed using JPEG-like compression. A

more recent method by Wood et al. [Wood00] uses a generalization of VQ and PCA to compress

surface light field and proposes a two-pass rendering algorithm that displays compressed light

fields at interactive frame rates. The approach taken by Wood et al. is very different from ours.

In Appendix B I will briefly describe their techniques and provide experiments comparing our

technique with Wood et al.



Chapter 3

Geometry in Image-Based Rendering

Radiance sample parameterization plays a crucial role in a IBRM representation. An effective pa-

rameterization can reduce reconstruction artifacts, improve scene quality and rendering efficiency.

We can divide IBRM representations into two categories, namely, geometry-less and geometry-based

schemes1. The light field [Levoy96] and the plenoptic modeling [McMillan95] belong to the first

category, whereas lumigraph [Gortler96], surface light fields and VDTM belong to the second.

The use of geometry in the parameterization greatly affects the acquisition process and the

representation. On one hand, highly-detailed geometry can be difficult to acquire for many appli-

cations. On the other hand, geometry-less parameterizations tend to requiremuchmore images than

geometry-based parameterizations. Recent research has suggested that a continuum exists between

geometry-based and geometry-less representations, and surface geometry can be incorporated into

geometry-less parameterizations to reduce the number of required images [Chai00, Zhang01]. This

chapter is a tutorial that discusses the effects of surface geometry information in IBRM represen-

tations. I also describe why approximated surface geometry can be used to reduce artifacts and

improve data coherence. These observations justify the proposed Light Field Mapping represen-

tation which is capable of reducing data redundancy by incorporating varied degree of geometry

and radiance information.

1Obviously, all IBRM representations parameterize samples by using some geometry information. For example, light
field parameterizes each sample by its intersection points on two parallel planes. The geometry of the planes however
does not correspond to the actual surface geometry of the scene. For simplicity, I shall use the terms “surface geometry” and
“geometry” interchangeably.
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3.1 Radiance Sample Parameterization

IBRM representations such as [Levoy96, Gortler96, Shum99] parameterize samples without using

surface geometry. Some of these representations, however, use geometry in other parts of the

pipeline. For example, the lumigraph [Gortler96] incorporates geometry to improve quality. During

rendering, they intersect the target pixel ray with scene geometry and select samples near the

3D intersection point. Therefore, although the lumigraph representation is geometry-based, its

parameterization is actually geometry-less. Isaksen et al. [Isaksen00] uses a similar technique

to achieve real-time camera effects such as depth-of-field and refocusing. On the other hand,

the surface light field [Miller98, Wood00, Chen02], VDTM [Debevec96, Debevec98, Pulli97] and the

imagewarping algorithms [McMillan97,Mark97] explicitly parameterize samples on geometry. The

surface light field and the VDTM store geometry information as meshes, whereas image warping

algorithms store the information as sampled geometry of the scene.

The use of geometry information in parameterization accounts for the primary differences in

sample database traversal for the following reasons. Rendering geometry-less parameterizations is

inherently an inverse process – one queries appropriate input samples directly for each output pixel.

For example, the lumigraph representation calculates the depth of each destination pixel and uses

this information to query the sample database. On the other hand, rendering for geometry-based

parameterizations is a forward process that sometimes requires screen space distance sorting. For

example, VDTM techniques render each primitive onto the screen and use visibility algorithms

such as the z-buffer to resolve occlusion.

Based on the above observation, it is obvious that rendering of geometry-less parameterizations

is output sensitive because every reconstructed pixel is destined to the final image. On the other

hand, rendering of geometry-based parameterizations is both output and input sensitive. That

is, the size of the input data also affects the rendering efficiency. This input sensitivity problem

has been actively studied as part of conventional graphics research, and these techniques can be

directly applied to rendering algorithms using geometry-based parameterizations. For surveys of

these visibility and occlusion culling algorithms, refer to [Zhang98, Cohen-Or01].

For geometry-based parameterizations, samples on the same surface primitive are likely to be

accessed together, and they can be organized in adjacent locations in memory to improve data

access and cache efficiency. Furthermore, each surface primitive is independent of each other, and

can be rendered in parallel followed by an image composition stage. This independence property is
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Figure 3.1: Plenoptic sampling for Lambertian scenes. (a) The frequency support of a diffuse scene.
The vertical and horizontal axes represent the frequency domain parameters of the far plane and
near plane respectively. (b) Sampling of (a). (c) Reconstruction of (b) using infinite depth resulting
in aliasing. (d) Anti-aliased reconstruction at lower sampling rate than (b).

particularly useful for hardware-acceleratedrenderer implementations. In comparison, it is difficult

to achieve the data independency property with geometry-less representations. For example, to

reconstruct and render one pixel in the light field parameterization, we need samples with different

near plane and far plane parameters. These source samples may in turn be used to reconstruct

another pixel. Therefore, for parallel rendering of geometry-less representations, it is a non-trivial

problem to divide the sample database without replicating the source samples across different

processing units.

3.2 Sampling Rate

Geometry-less parameterizations normally require very high sampling density to achieve satisfac-

tory rendering quality. Sampling rate in the light field parameterization, for example, is defined
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Figure 3.2: Plentopic sampling for non-Lambertian scenes. (a) The frequency support for a non-
diffuse scene. (b) The sampled signal of (a) and its anti-aliased reconstruction kernel.

by the density of the grids on the two parameterization planes. Without adequate sampling, the

rendered image will exhibit aliasing artifacts2. Although we may reduce artifacts by increasing

sampling rate, we would like to find a minimum anti-aliased sampling rate to reduce the storage

cost.

Because of the complexity of the signal, it has been difficult to decide the optimal sampling

rate for image-based scenes. Researchers have started investigating this problem by making some

assumptions about the scene. Chai et al. [Chai00] formalize this problem for Lambertian scenes

with no occlusions. They point out that the frequency-domain support of the scene is only bounded

by the maximum and minimum depth of the scene, and an optimal reconstruction kernel can be

designed with the knowledge of these two bounding depths alone. Their reconstruction process

coincides with the geometry-corrected reconstruction kernel proposed in the lumigraph. Zhang

et al. [Zhang01] further extended the plenoptic sampling theorem to incorporate occlusion and

non-Lambertian scenes. They also proposed a reconstruction kernel that provides lower sampling

rates than [Chai00].

Figure 3.1-3.23 explain the light field sampling and reconstruction process in the frequency

domain. For simplicity, the figures represent spectral diagrams for 2D light fields sampled on a

regular grid. The horizontal and vertical axes represent the near and far planes in the light field

parameterization (Figure 2.2). A scene with constant depth is represented as a line on the spectral

2An artifact in the reconstruction process that mistakenly treat high frequency signals as low frequency ones due to
inadequate sampling rate.

3adapted from [Chai00] and [Zhang01]
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diagram, and its slope is proportional to the depth of the scene. Figure 3.1(a) shows the spectral

support of a diffuse scene bounded by two known depth values. The bandwidth on the vertical axis

corresponds to either the maximum resolution of input images or the spatial frequency of the scene,

whichever is lower. This scene, when sampled regularly on the near plane, results in the spectral

diagram in Figure 3.1(b). The replicated spectral support in this figure is a result of sampling,

and the distance between each support is proportional to the sampling rate on the near plane, or

inversely proportional to the size of the sampling grid. An image is reconstructed by taking the

sampled scene and convolving it with a low-pass reconstruction kernel. This process is equivalent

to multiplying the spectral support of the kernel in the frequency domain. Figure 3.1(c) shows one

such reconstruction by assuming an infinite scene depth. Because of the poorly-designed kernel,

the reconstructed signal in this case is different from Figure 3.1(a), and this is the source of aliasing.

With the knowledge of maximum andminimum depth, we can construct an optimal reconstruction

kernel, as shown in Figure 3.1(d). This knowledge also allows us to reduce and control the sampling

rate properly.

In the case of a non-diffuse scene, the spectral support of a constant depth scene is increased

by the bandwidth of the reflected radiance. Figure 3.2(a) shows the spectral support of a non-

diffuse scene with band-limited reflected radiance. Figure 3.2(b) shows the optimal sampling and

reconstruction strategy for this scene. From this figure, we can see that the minimum sampling rate

in this case is increased by the bandwidth of reflected radiance.

In the surface lightfield parameterization, the portion of radiance data corresponding to a single,

planar surface primitive is effectively a light field where the near plane is replaced by the (θ, φ)

domain and the far plane is simply the surface primitive. Therefore, the above analysis can be

applied to a surface light field by treating it as a collection of small light fields. When we use

accurate geometry, the surface light field sampling rate at (θ, φ) is directly related to the bandwidth

of reflected radiance. In Figure 3.2(a), we observe that when the far plane spectrum or the reflected

radiance bandwidth is reduced, the sampling rate requirement is lowered. In this case, we can

reduce the sampling rate or increase the distance between maximum and minimum depth without

producing aliasing artifacts . This implies that when surface material is not too complicated, and

when the surface has less texture complexity, we may simplify the surface geometry or reduce the

number of input images. A surface light field can therefore be made more compact and efficient

by performing adaptive geometry simplification and sampling strategy. On the other hand, we

may simply over-sample the scene and apply appropriate compression algorithms to reduce data
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Figure 3.3: Prefiltering strategies for geometry-less IBRM scenes. (a) The frequency support for a
non-diffuse scene. (b) The sampled signal of (a). Aliasing occurs due to insufficient sampling. (c)
Prefiltering of (a) on far plane. (d) Prefiltering of (a) on near plane.

redundancy.

3.3 Reconstruction

For image warping algorithms, because accurate depth is available, the reconstruction problem is

effectively a 2D signal resampling problem. An image warping algorithm normally uses a forward

algorithm that splats samples onto the target image. Point splatting algorithms are normally

implemented in software due to their complexity. Popescu [Popescu01a] proposed a more efficient

forward rasterization algorithm that is suitable for hardware implementation. These forward

algorithms are developed because image warping algorithms do not store sample neighborhood

and connectivity information, and there is no efficient method for querying the location of input

samples given the output target pixel. When connectivity information is available, we may instead
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Figure 3.4: Prefiltering strategies for geometry-based IBRM scenes.(a) The frequency support of a
non-diffuse scene with one known depth value. (b) Prefiltering of (a).

use efficient inverse rasterization algorithms that are implemented ubiquitously in contemporary

graphics hardware. Because the VDTM and the surface light field store geometry as conventional

surface primitives, their reconstruction algorithms can leverage this hardware feature to accelerate

the reconstruction process.

For the light field parameterization, we may design reconstruction kernels based on the dis-

cussion from the previous section. In practice, because a perfect low-pass filter has an infinite

spatial-domain support, we normally adopt a higher sampling rate and use a non-ideal low-pass

filter to reduce the reconstruction cost. Since it is often difficult to acquire the scene with high

sampling rate, we may have to lower the resolution of the scene to reduce aliasing artifacts in

reconstruction. This process can be performed beforehand to reduce the rendering overhead and

is therefore referred to as prefiltering. It reduces undersampling artifacts, commonly exhibited as

ghosting, by blurring the sampled scene with a low-pass filter. Figure 3.3-3.4 illustrates several

prefiltering strategies. Figure 3.3(a)-(b) shows a non-diffuse scene under insufficient sampling rate.

Figure 3.3(c) shows a prefiltering strategy that effectively reduces the resolution of the final image,

whereas Figure 3.3(d) presents a strategy that reduces the depth of view in the scene. Both of the

strategies blur the reconstructed images andmay not be desirable for all applications. In the case of

geometry-based parameterizations, because the scene depth is available, we may prefilter the scene

by reducing the bandwidth of reflected radiance, as shown in Figure 3.4. The result of this strategy

is reduced view-dependent effect or blurred highlights, and this effect is less visually disturbing

than geometry-less prefiltering strategies, in particular if the surface is not transmissive.
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3.4 Summary

In summary, although a geometry-based parameterization is input sensitive, it offers several ad-

vantages including a lower sampling rate requirement and a more efficient reconstruction process.

The visual artifacts due to lowered sampling rate is also less visible when geometry-based param-

eterization is adopted. This suggests that a high quality representation can incorporate surface

geometry information to improve the space efficiency, and geometry information can be used to

exploit redundancy in sampled radiance data. The Light Field Mapping method is effective in part

because of these reasons, and I will present this method in Chapters 4 and 5.



Chapter 4

Surface Light Fields Approximation

The primary goal of this dissertation is to design an efficient IBRM representation suitable for

hardware-accelerated decoding and visualization. Since the rendering of geometric primitives can

be parallelized in hardware, we can design a representation that partitions the radiance data using

geometric primitives. Since there is no data dependency between partitions, wemay also parallelize

the approximation algorithms to reduce preprocessing cost.

This chapter describes our method for approximating the radiance data. I first present a novel

partitioning method that allows each partition to be approximated independently without intro-

ducing discontinuity artifacts. Then, I describe our approximation framework based on matrix

factorization and decomposition algorithms. These approximations can be decoded and visualized

very efficiently using the proposed Light Field Mapping rendering algorithms in Chapter 5.

4.1 Surface Light Field Partitioning

A IBRM sample database is generally very large, and in practice, we can only handle a local scope of

data during preprocessing. To enable efficient compression, the sampleswithin a local scope should

be highly coherent. For surface light field parameterization, surface primitives naturally define the

unit of scope for our purposes. The units together form a partitioning of the sample database, and

if we can process each part independently without introducing artifacts, we can parallelize both

the approximation and decoding algorithms. Based on these observations, an effective surface light

field partitioning scheme should possess the following criteria:

• Partitioning should divide surface light field data in the (r, s) domain without altering the
original data.
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• Independent approximation of each part should not introduce artifacts.

Since the geometry of our models is represented as a triangular mesh, an obvious partitioning

of the light field function f (r, s, θ, φ) is to split it between individual triangles

f�t (r, s, θ, φ) = Π�t (r, s) f (r, s, θ, φ) (4.1)

where Π�t(r, s) is a step function that is equal to one within the triangle �t and zero elsewhere.

This approach satisfies the first criteria because the union of all triangle light field functions f�t

constitutes the original surface light field function. Because the partitioning breaks the original

surface light field function on the triangle boundaries, I refer to this approach as triangle-centered

partitioning. Unfortunately, when each function is approximated independently, the approximation

process results in visible discontinuities at the edges of the triangles.

To eliminate the discontinuities across triangle boundaries, we propose to partition surface light

field data around each vertex. The part of surface light field corresponding to each vertex is referred

to as the vertex light field and for vertex v j it is denoted as f vj (r, s, θ, φ). This partitioning is computed

by multiplying weighting to the surface light field function

f vj (r, s, θ, φ) = Λvj(r, s) f (r, s, θ, φ) (4.2)
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frame (x, y, z). For vertex-centered approximation, the reference frame is attached at each vertex v
where the z axis is parallel to the surface normal at the vertex.

where Λvj is the barycentric weight of each point in the ring of triangles centered around vertex vj.

The value of Λvj is equal to 1 on vertex vj, and it decreases linearly toward zero at the boundary.

Because of their shape, theweighting functions areoften referred to as the hat functions. In Figure 4.1,

the top row shows hat functions Λv1 , Λv2 , Λv3 for three vertices v1, v2, v3 of triangle �t. The bottom

row of the same figure shows that these three hat functions add up to unity inside triangle �t.

Therefore, Equation (4.2) defines a valid surface light field partitioning, because the original surface

light field can be reconstructed by simply summing up individual vertex light fields.

Although vertex-centered partitioning is slightly more complicated, approximations based on

thismethod do not produce visible discontinuity because hat functions areC0 continuous throughout

the surface domain (r, s). On the other hand, the function Π�t in triangle-centered partitioning is

discontinuous on the triangle boundary. Hat function is certainly not the only choice for vertex-

centered partitioning; any Ck, k ≥ 0 continuous function can be utilized to design a partitioning
scheme.

The final step of vertex-centered partitioning reparameterizes each vertex light field to the local

vertex reference frame, as shown in Figure 4.2. A vertex reference frame is defined such that its

z-axis is parallel to the normal at the vertex. The reparameterized (θ, φ) are simply the polar and

azimuth angles of viewing directions in this frame. The vertex light field functions together with

their corresponding local coordinates allow us to reconstruct the original data unambiguously. In

the rest of the chapter, when I refer to a vertex light field function, I assume it to be expressed in the

local coordinate, and for simplicity I use the same notation for both local and global parameters.
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4.2 Vertex Light Field Approximation

As stated, vertex-centered partitioning of light field data allows us to approximate each partition

independently without introducing discontinuity artifacts. We propose to approximate vertex light

field as

f vj (r, s, θ, φ) ≈
K∑

k=1

gvj

k (r, s) h
vj

k (θ, φ). (4.3)

The 2D functions g
vj

k contain only the surface parameters, and I refer to them as surface maps.

Similarly, I refer to hvj

k as view maps. The above approximation can effectively compress the function

f vj if we only need a few approximation terms K to achieve high quality of approximation. We

leverage existingmatrix factorization algorithms to calculate the above approximations numerically.

Before I discuss details of these algorithms, I will describe how the vertex light field approximation

problem can be transformed into a 2D matrix factorization problem.

For practical purposes, we assume that the vertex light field is stored in discrete format

f vj [rp, sp, θq, φq], where index p = 1, . . . ,M refers to the discrete values [rp, sp] describing the surface

location within triangle ring of vertex vj, and index q = 1, . . . ,N refers to the discrete values [θq, φq]

of the viewing angles. We may rearrange the discrete vertex light field into a 2D matrix

Fvj =



f vj [r1, s1, θ1, φ1] · · · f vj [r1, s1, θN, φN]
...

. . .
...

f vj [rM, sM, θ1, φ1] · · · f vj [rM, sM, θN, φN]


, (4.4)

whereM is the total number of surface locations andN is the total number of views at each surface

location. I refer to matrix Fvj as the vertex light field matrix. In practice, to obtain vertex light field

matrices from input images, we need to resample the input samples or photographs. Our 4D

resampling algorithm will be described later in Chapter 8.

Matrix factorization algorithms construct approximate factorizations of the form

F̃vj =

K∑
k=1

ukvT
k (4.5)

where uk is a vectorized representation of discrete surface map gvj

k [rp, sp] and vk is a vectorized

representation of discrete view map h
vj

k [θq, φq]. The matrix Fvj contains M × N samples, whereas

its approximation contains K × (M +N). If K � min(M,N), the size of approximation will be much
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smaller than the size of original matrix Fvj .

4.3 Matrix Approximation Algorithms

In Equation 4.5, we have observed that matrix factorization algorithms can be used to approxi-

mate the light field matrix. Among these, I experimented with two algorithms to calculate the

approximations: Principal Component Analysis (PCA) [Bishop95] and Non-Negative Matrix Fac-

torization (NMF) [Lee99]. Both of these algorithms compute matrix factorization in a form similar

to Equation 4.5, and they have been used in a wide range of applications such as data compression

and unsupervised learning. The differences between the two algorithms arise from the constraints

imposed on the approximation factors uk and vk. PCA enforces the factors uk and vk to be or-

thogonal vectors and keeps the factorization progressive; that is, once an order K factorization is

computed, the first (K − 1) pairs of vectors provide the best order (K − 1) approximation. NMF, on
the other hand, enforces all entries in vectors uk and vk to be positive. Unlike PCA, NMF produces

a non-progressive factorization. In other words, a new approximation has to be recomputed when

a different order K is chosen.

Between these two algorithms, the aforementioned characteristics provide different capabilities

and constraints in the context of our application. PCA approximations naturally support progres-

sive encoding since adding successive basis images improves the accuracy of the approximation

produced by the preceding basis images. However, PCA allows the approximation factors to be of

arbitrary sign. Because most current hardware support positive-valued pixels, this attribute makes

rendering more difficult.1 On the other hand, NMF does not allow negative values, and NMF

approximations are therefore much easier and faster to render on generic graphics hardware.

The process of converting from 4D vertex light field into matrix (Equation 4.4) involves lineariz-

ing 2D parameters (rp, sp) and (θq, φq) respectively. In our case, the ordering of indices p and q does

not affect the approximation for both PCA and NMF algorithms. We can observe this by noting

that reordering index p in (rp, sp) parameters in matrix Fvj is equivalent to multiplying a M ×M

permutation matrix P with Fvj . The approximation of the permuted matrix is

P̃Fvj =

K∑
k=1

u′kv
T
k =

K∑
k=1

(Puk)vT
k . (4.6)

1Refer to Section 5.2 for details.
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Algorithm 4.1 Principal Component Analysis Algorithm

Require: M ×N matrix F = {Fij}, where ∑M
i=1
∑N

j=1 Fij = 0.
Require: Scalar K = number of approximation terms.
Ensure: {up, vp|p = 1 . . .K} = PCA(F,K)
1: for p = 1, . . . ,K do
2: Fp ← F −∑p−1

k=1 ukvT
k

3: Ap ← FT
p Fp

4: Initialize vp ← random N × 1 non-zero vector
5: repeat
6: vp ← Apvp

7: vp ← vp/‖vp‖
8: until vp converges
9: λp ← √Apvp

10: up ← Fpvp/λp

11: maxu ←max of the absolute values of all the entries of up

12: maxv ←max of the absolute values of all the entries of vp

13: α← √maxuλp/maxv

14: up ← λpup/α
15: vp ← αvp

16: Quantize the entries of up and vp for target texture precision
17: end for

The last equality holds because both approximations produce identical Root Mean Square (RMS)

error. This property is also true for index q in (θq, φq).

Since the matrices Fvj are generally quite large, computing matrix factorization may be quite

time consuming. However, with proper implementation, the efficiency of these algorithms can

be drastically improved. Furthermore, since each vertex light field matrix is processed indepen-

dently, the computation can be easily parallelized. In the following sections, I will describe our

implementations of these two algorithms.

4.3.1 PCA Algorithm

The PCA factorization is based on computing the partial Singular Value Decomposition (SVD)

of a matrix. The SVD of aM ×N matrix F has the following form

F =
min(M,N)∑

i=1

uisivT
i , (4.7)

where the column vectors ui and vi are the orthonormal left- and right- singular vectors of the

matrix F, respectively. The singular values si are ranked in non-ascending order so that si ≥ sj for

all i < j. An important property of this decomposition is that a partial sum of Equation 4.7 gives
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the RMS optimal approximation to matrix F. Specifically,

∀



K < min(M,N)

s′i ∈ (1 × 1)
u′i ∈ (M × 1)
v′i ∈ (N × 1)

,

‖F −∑K
i=1 uisivT

i ‖F ≤ ‖F −
∑K

i=1 u′i s
′
i v
′T
i ‖F,

(4.8)

where ‖ · ‖F denotes the Frobenius norm of a matrix. The approximation
∑K

i=1 uisivT
i is therefore the

RMS optimal K-term approximation of the matrix F.

Because our goal is to approximate a matrix, it is unnecessary to perform the time-consuming

SVD. In order to efficiently compute a K-term approximation of a matrix F, we can instead compute

the eigenvectors corresponding to the K largest eigenvalues of the covariance matrix FTF. The

power iteration algorithm is well suited to achieve this goal [Golub96]. Our PCA implementation is

a slightly modified version of the standard power iteration. Algorithm 4.1 lists the pseudo code

of our implementation. In practice, computing the covariance matrix Ap = FT
p Fp in line 3 may be

both time- and space-consuming if the number of columns N in Fp is much larger than the number

of rows M. In this case, instead of constructing Ap explicitly, we may compute Apvp in line 6 by

FT
p (Fpvp). The coefficient α in line 13 helps splitting the multiplicative factor λp among the vectors

up and vp so as to minimize the maximum quantization error. In line 16, the algorithm quantizes

the approximation vectors in order to account for the storage quantization error. Since we execute

the decoding algorithm in graphics hardware, the residue Fp computed in line 2 should model the

same arithmetic in the target hardware. A careful implementation of Algorithm 4.1 thus guarantees

convergence in the presence of quantization errors.

The precondition of PCA algorithm requires the elements in matrix F to have zero mean. The

algorithm will proceed without error even when this precondition is not satisfied. However, if

matrix mean is much larger than its variance, the first term will be used to approximate the mean

of the matrix. As a result, the algorithm will need one extra term to achieve the same quality

of approximation. To satisfy this precondition, I subtract the average column vectors from the

matrix F before performing PCA. The extracted vectors contain only surface parameters and can

be treated as traditional diffuse texture maps during the rendering process. This diffuse 0-term
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Algorithm 4.2Non-Negative Matrix Factorization Algorithm

Require: M ×N matrix F
Require: Scalar K = number of approximation terms.
Ensure: {U,V} = NMF(F,K)
1: Initialize U← randomM × K matrix of all strictly positive entries
2: Initialize V← random N × K matrix of all strictly positive entries
3: repeat
4: Un1 =

[
un1 (i, j)

]← FV
5: Un2 =

[
un2 (i, j)

]← UVTV
6: Un =

[
un(i, j)

]← [un1 (i, j)/un2(i, j)
]

7: Vn1 =
[
vn1 (i, j)

]← FTU
8: Vn2 =

[
vn2 (i, j)

]← VUTU
9: Vn =

[
vn(i, j)

]← [vn1 (i, j)/vn2(i, j)
]

10: U =
[
u(i, j)

]← [u(i, j) ∗ un(i, j)
]

11: V =
[
v(i, j)

]← [v(i, j) ∗ vn(i, j)
]

12: U =
[
u(i, j)

]← [u(i, j)/∑M
r=1 u(r, j)

]
13: until U and V converge

approximation, when visualized alone, is similar to the results demonstrated by Neugebauer and

Klein [Neugebauer99].

4.3.2 NMF algorithm

We apply the iteratively algorithm presented by Lee et al. [Lee99] to compute NMF approxima-

tion. Our implementation of this algorithm is described in Algorithm 4.2. Unlike PCA algorithm,

all approximation vectors uk and vk, k = 1 · · ·K are updated simultaneously in every iteration, and
I denote the matrix form of these vectors as U and V respectively. To improve approximation

precision, we subtract the minimum column vector from matrix F before performing NMF. These

minimum vectors are also treated as diffuse texture maps in the rendering process.

4.4 Experiments

The proposed approximation framework is practical only when the number of approximation

terms K is small for many surface materials. In this experiment I would provide quantitative

measurements of the quality of both PCA and NMF datasets. The scenes used in the experiments

are acquired using the small-scale acquisition system as described in Section 7.1.

The four physical objects acquired in the experiment have diverse and complex reflection prop-

erties. The Van Gogh bust shown in Figure C.4 is approximately one foot tall. The simplified

surface geometry does not contain details such as chisel marks, but our experiments show that
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these details are modelled quite well by using images only. The dancer shown in Figure C.3, a

replica of Degas’ sculpture2, has a metallic look except on the blouse and the skirt of the model,

which are colored with very diffuse paint. The topology of this object introduces interesting effects

such as self shadowing. The star shown in Figure C.5 is approximately 1/2 feet tall and made out of

glass covered with twirled engravings and thin layers of paint. Depending on the viewing angle,

it is either semi-transparent or anisotropically reflective. Such reflectance properties are difficult to

model analytically. The toy turtle shown in Figure C.2 is covered with a velvet-like material that is

normally difficult to represent using traditional techniques.

4.4.1 Partitioning Methods Comparison

Before evaluating approximation quality, we experimentedwith both vertex-centered and triangle-

centered partitioning methods, as illustrated in Figure 4.3. In this figure, instead of using real

photographs, we use rendered synthetic images to exclude artifacts caused by acquisition error. We

can clearly see that triangle-centered approximations produce discontinuity artifacts across triangle

boundaries. After adding more approximation terms, such artifact becomes less obvious but still

visible. This artifact can not be entirely eliminated also because each triangle light field function

samples θq, φq in its local reference frame, and this results in a different sampling grid for each

function. This problem is inherent in the representation and cannot be corrected by adding more

approximation terms, especially when the original surfaces are smooth with very little texture. On

the other hand, vertex-centered partitioning does not exhibit similar artifact even when only one

approximation term is used.

Naturally, a major disadvantage of vertex-centered approximations is that it requires three

times more light field maps for each approximation term. However, this does not imply that

vertex-centered approximation is three times larger than triangle-centered ones. For a model with

V vertices and T triangles, each triangle-centered approximation term contains T view maps and

T surface maps, where as each vertex-centered approximation term contains V view maps and

3T surface maps. In general, 2V ≈ T, and thus a vertex-centered approximation may even be

smaller than a triangle-centered approximation depending on the size of surface and viewmaps. In

our experiments, vertex-centered approximations are on average 50% larger than triangle-centered

ones.

2Edgar Degas, Petite danseuse de quatorze ans, circa 1880
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4.4.2 PCA and NMF Quality Comparison

To measure the quality of the surface light field approximations, I calculate the RMS difference

between the original and approximated light field matrices. I also calculate Peak Signal-To-Noise

Ratio (PSNR), a commonly used image quality metric directly related to RMS error by

PSNR = 20log10(
Imax

RMS
), (4.9)

where Imax represents the maximum pixel intensity. Figure 4.4 shows the approximation quality for

both PCA and NMF algorithms. For each object, a PSNR is calculated over all of its vertex light

field matrices. In this figure, we use 24-bit RGB pixel and therefore Imax = 28 − 1 = 255. As shown in
the figure, both techniques provide high quality approximations using very small number of terms.

Between the two algorithms, PCA produces better quality than NMF. However, the difference is

visually almost indistinguishable. These results provide a quantitative proof of the effectiveness of

light field approximation through matrix factorization.

4.4.3 Geometry Detail and Approximation Quality

In Equation 4.5, the compression ratio through approximation is directly related to the size of the

matrix. Given the same number of approximation terms, the compression ratio of a larger vertex

light field matrix is higher. However, because larger vertex light fields are likely to be less coherent,

more terms are generally requires to achieve the same quality of approximation. Furthermore, a

larger vertex light field requires more processing resources. On the other hand, smaller vertex light

fields means more triangles, and the rendering performance may be lower for smaller vertex light

fields. Ultimately, the size of triangles is a trade-off between the preprocessing time, approximation

quality and rendering performance.

Figure 4.5 illustrates the relationship of the compression ratio and the approximation quality

to the triangle size for the bust object. Each curve represents the result of a different resolution of

the same mesh. As illustrated, smaller triangles provide better approximation quality but lower

compression ratio, a result congruent with our expectation. It is also interesting to note that for

the same target error, larger triangles always yield a better compression ratio. Depending on the

target hardware platform, user may choose to optimize the number of triangles while increasing

the number of required passes, or vice versa, to achieve desired frame rate and compression ratio.
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(a) Input Image (b) 1-term Triangle-Centered (c) 3-term Triangle-Centered
Light Maps Size: 2.2 MB Light Maps Size: 5.5 MB

(d) 1-term Vertex-Centered (e) 3-term Vertex-Centered
Light Maps Size: 3.5 MB Light Maps Size: 8.5 MB

Figure 4.3: Comparison between triangle- and vertex-centered partitioning. Input picture (a) is a
synthetic chess piece rendered using 3D Studio MaxTM. A total of 256 input pictures, renderedwith
virtual cameras positioned uniformly around the upper hemisphere surrounding the object, are
used to compute the PCA-based light field maps used to render (b)-(e).



38

1 2 3 4 5

30

32

34

36

38

40

42

44

46

48

50

Terms

P
S

N
R

 (
d

B
)

Approximation Quality (bust)

PCA

NMF

8.06

6.41

5.09

4.04

3.21

2.55

2.03

1.61

1.28

1.02

0.81

R
M

S
 (

8 
b

it
s/

ch
an

n
el

)

1 2 3 4 5

30

32

34

36

38

40

42

44

46

48

50

Terms

P
S

N
R

 (
d

B
)

Approximation Quality (dancer)

PCA

NMF

8.06

6.41

5.09

4.04

3.21

2.55

2.03

1.61

1.28

1.02

0.81

R
M

S
 (

8 
b

it
s/

ch
an

n
el

)
1 2 3 4 5

30

32

34

36

38

40

42

44

46

48

50

Terms

P
S

N
R

 (
d

B
)

Approximation Quality (star)

PCA

NMF

8.06

6.41

5.09

4.04

3.21

2.55

2.03

1.61

1.28

1.02

0.81

R
M

S
 (

8 
b

it
s/

ch
an

n
el

)

1 2 3 4 5

30

32

34

36

38

40

42

44

46

48

50

Terms

P
S

N
R

 (
d

B
)

Approximation Quality (turtle)

PCA

NMF

8.06

6.41

5.09

4.04

3.21

2.55

2.03

1.61

1.28

1.02

0.81

R
M

S
 (

8 
b

it
s/

ch
an

n
el

)

Figure 4.4: Approximation quality for different models and different number of decomposition
terms. PSNR and RMS are based on the weighted average of the approximation errors for all light
field matrices.
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terms for a givenmesh resolution. The number of samples per triangle is proportional to the triangle
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Chapter 5

Rendering Algorithms

In Chapter 4 I described the process of partitioning and approximating surface light field data. The

process generates sets of images collectively referred to as light fieldmaps. In this chapter I propose

algorithms that use light field maps to achieve real-time rendering and on-the-fly decompression

by taking advantage of graphics hardware features.

5.1 Rendering by Texture-Mapping

In Chapter 4, I describe approximation algorithms for vertex light fields. Let gvj

k [rp, sp] be the surface

map and h
vj

k [θq, φq] be the view map corresponding to the k− th approximation term of vertex light

field f vj [rp, sp, θq, φq]. The approximation of the light field data for triangle �t can be written as

f̃�t[rp, sp, θq, φq] =
K∑

k=1


3∑

j=1

(gvj

k [rp, sp]�t) (h
vj

k [θq, φq])

 , (5.1)

where index j runs over the three vertices of triangle �t, and gvj

k [r, s]�t denotes the portion of

the surface map g
vj

k corresponding to triangle �t. Equation (5.1) suggests that even though the

approximation is done in a vertex-centered fashion, an approximation term for each triangle can

be expressed independently as a sum of its 3 vertex light fields. This allows us to write a very

efficient rendering routine that repeats the same sequence of operations for each mesh triangle. I

now describe the rendering algorithm for one approximation term for one triangle. For simplicity

I also drop the index k in functions gk and hk.

Without assuming graphics hardware support, we may devise a straightforward rendering

algorithm as follows. For each target pixel in the triangle, we calculate the parameters (r, s, θ, φ) for
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Figure 5.1: The process of converting viewing direction into the texture coordinates, or the XY-map
projection.

this pixel, and evaluate the function in Equation (5.1) to decode the approximation. The parameters

of the target pixel may not lie on the discrete grid [rp, sp, θp, φp], so wemay need to evaluatemultiple

pixels on the grid and reconstruct the target pixel via interpolation. This rendering algorithm is

certainly not efficient; in particular, parameters (r, s, θ, φ) need to be calculated for each pixel in the

triangle.

To speed up the rendering process, we may utilize texture mapping features in contemporary

graphics hardware. Texture coordinateswithin surface primitives are normally linearly interpolated

from the vertex texture coordinates. For surface maps, interpolating texture coordinates linearly

yields correct results. For viewmaps, interpolating viewing directions in the (θ, φ) domain does not

yield desired results because interpolation does not wrap around the angleφ using the shortest path

over the viewing direction sphere. Therefore, we need to transform the viewing parameters into a

space compatible with linear texture coordinates interpolation. Assume vector d is the normalized

viewing direction, and that vectors x and y correspond to the axes of the local reference frame. We

may then calculate the texture coordinate (x, y) by the orthographic projection of d onto the plane

defined by vectors x and y

xp = sx(d · x) + xc, yp = sy(d · y) + yc. (5.2)

where the scale-and-bias parameters (sx, sy, xc, yc) represent the size and relative location of the

view map on the texture map. This projection, as shown in Figure 5.1, is normally referred to as

an XY-map. This projection offers a reasonable approximation on the interpolation quality and it

is quite efficient to compute. Other transformations, such as the hyperbolical maps described in

Heidrich et al. [Heidrich99], can also be used for the viewing projection of light field maps.
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Figure 5.2 illustrates the 6 light field maps used to compute one approximation term of a light

field for triangle �t. The shaded portions indicate the parts of the light field maps that will be used

to decode appearance from a certain viewing direction. The middle column shows surface maps

gvj [rp, sp]�t . As a result of the hat function weighting applied during the construction of vertex light

field function f vj (r, s, θ, φ), the pixels of the surfacemaps areweighted, as illustrated in the figure by

gradient shading. The right column shows view maps hvj [θq, φq]. The samples on the view maps

are parameterized with the XY-map of the local reference frame attached to the vertex. Based on

where the camera is located, the rendering algorithm calculates the texture coordinates (xvj

i , y
vj

i ) for

each view map. To this end, we apply Equations (5.2) to the viewing direction vector di in the local

reference frame (x j, y j, z j) of vertex vj to calculate the texture coordinate (x
vj

i , y
vj

i ) on the XY-maps.

This results in 3 texture fragments shown in the right column of Figure 5.2. Note that the texture

coordinates are different for each view map fragment because we use different reference frames to

compute them. The surface map texture coordinates do not depend on the viewing angle and they

remain static throughout the rendering process.

Evaluating one complete approximation term then proceeds as follows. We texture map each

pair of surface map and view map texture fragments and multiply the results pixel-by-pixel. The

product is then placed into the accumulation buffer. Multiple term approximation of each triangle

light field is computed by running the same algorithm multiple times using their corresponding

light field maps. This algorithm requires reading back the texture mapped images from the frame

buffer and is potentially expensive. Also, the accumulation buffer and framebuffermay not support

sufficient data range for correctmultiplication; for example,many contemporary graphics hardware

support positive pixels only. In the next section I will discuss hardware features that can be utilized

to improve the efficiency of the rendering algorithm.

5.2 Utilizing Hardware Features for Efficient Rendering

The light field maps decoding process is simple and amendable for hardware implementation.

Instead of designing hardware specifically for the purpose of Light Field Mapping, we may take

advantage of features already exist in contemporary graphics hardware. In this section I discuss

efficient rendering algorithms using specific hardware features, such as multitexturing, extended

color range, and vertex shaders.
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Figure 5.2: Calculation of light field maps texture coordinates for one approximation term of one
triangle. Vertex reference frames are shown in the left column.

5.2.1 Multitexturing Support

One of the fundamental operations of the light field maps decoding algorithm is the pixel-by-pixel

multiplication of the surface map fragment by the corresponding viewmap fragment. Multitextur-

ing hardware support enables us to compute the modulation, or multiplication, of multiple texture

fragments very efficiently in one rendering pass. Consequently, for the NMF-based approxima-

tions, which contain strictly positive light field maps, we need 3 rendering passes to render each

approximation term with multitexturing graphics hardware that supports 2 texture sources. Each

rendering pass decodes the approximation from one of the three vertices vj in Equation 5.1. With-

out multitexturing hardware we can implement the rendering algorithms described above using

an accumulation buffer, though significantly less efficiently.

The PCA-based approximation algorithm described in Algorithm 4.1 requires that we subtract

themean view from the vertex light field functions before performing the decomposition. It changes

the rendering routine only slightly—we texture map each triangle using its mean view before

rendering the rest of the approximation terms exactly as it was done before. One of the advantages

of extracting the mean view and rendering it separately is that, in many cases, the mean value
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represents an approximation to the diffuse component of the surface material and is interesting to

visualize independently.

5.2.2 Extended Color Range and Vertex Shaders

For the PCA-based approximation, which in general will produce light field maps that contain

negative values, rendering can benefit from graphics hardware that permits a change to the limits

of the color range from the traditional [0, 1] range to [min,max], e.g., [−1.5, 5]. Without extended
range support, we may need up to four rendering passes for each full-range modulation [Kautz99].

Recently more hardware platforms are supporting extended color range [Spitzer00], but the output

results are normally clamped to positive values. We may use this feature to evaluate full-range

modulation in two rendering passes as follows. Let M be the result of modulation of two texture

fragments A and B. Let M+ and M− be the clamped modulation of fragments (A,B) and (−A,B)

respectively. We can computeM by subtracting the outputs of the two modulationsM =M+ −M−.

Rendering of the light fieldmaps approximation requires that we calculate the viewmap texture

coordinates every time the cameramoves. Some graphics hardware, such as [Lindholm01], support

programmable shaders that allow users to write small customized programs that manipulate the

data associated with a vertex. This feature can be used to calculate the view map coordinates in

graphics hardware. The static data in each vertex are the vertex reference frame basis vectors x, y.

During rendering, a global camera position is loaded into the vertex data and the vertex shader is set

to calculate the viewing vector d followed by the XY-map projection described in Equation 5.2. This

method is also efficient because it only needs one vertex shader program throughout the rendering,

and vertex shader program swapping, a generally very slow operation, is not necessary.

Algorithm 5.1 provides the pseudo code of the proposed rendering algorithm for the one-

term, one-triangle approximation. Algorithm 5.2 presents the Light Field Mapping algorithm for

decoding the light fieldmaps approximations. In practice, the texture binding, or texture swapping

operation in this algorithmmay be quite expensive depending on the characteristics of the graphics

hardware. Thus, tiling smaller light field maps into larger texture maps will greatly improve the

performance of the algorithm. I discuss these issues in the next section.
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Algorithm 5.1 Rendering Algorithm for 1-Term, 1-Triangle Light Field Maps.

Require: Triangle �t and its three surrounding vertices vj, j = {1, 2, 3}.
Require: Texture unit 1 contains surface maps g

vj

k [rp, sp]�t and corresponding coordinates (µ
vj

i , ν
vj

i ),
i = {1, 2, 3}.

Require: Texture unit 2 contains h
vj

k [θp, φp] and corresponding scale-and-bias parameters
(xc, yc, sx, sy)vj for each vertex map.

1: for j = 1 . . .3 do
2: (x j, y j)← local reference frame of v j.
3: for i = 1 . . . 3 do
4: di← normalized vector from vertex vi to the global camera position.
5: (xvj

i , y
vj

i ) ← XY-map projection of di in frame (x, y) with scale-and-bias parameters
(xc, yc, sx, sy)vj .

6: assign texture coordinates for vi to (µ
vj

i , ν
vj

i ) to texture unit 1.
7: assign texture coordinates for vi to (x

vj

i , y
vj

i ) to texture unit 2.
8: end for
9: render triangle by the modulation of texture units 1 and 2 and add results to frame buffer.
10: end for

5.3 Improving Memory Bus Efficiency

The rendering algorithm presented inAlgorithm5.2 is straightforward to implement. However, this

algorithm performs several texture swapping operations just to render one triangle approximation,

and this may lead to slow implementation on some systems. In particular, for graphics systems

using a non-unified memory architecture, the amount of memory in the graphics subsystem may

be limited, and the penalty for using external memory grows significantly if the access pattern

is bursty. In this section, I will discuss an alternative, texture-centric rendering algorithm that

minimizes texture swapping overhead to increase rendering performance.

In order to reduce texture swapping overhead, individual light field maps can be tiled or

mosaicked together into larger texturemaps, or texture atlases. The rendering routine goes through

each texture atlas and reconstructs approximations associated with this texture. Optimal texture

swapping requires that all light field maps in each atlas are used before being swapped out. Based

on this observation, I devised the tiling routine in two steps. First, surface geometry of the model

is divided into several groups. Then, light field maps corresponding to the same group are tiled

together to generate texture atlases.

5.3.1 Model Segmentation

When the texture memory in the graphics subsystem is abundant, one simply tiles all surface maps

and view maps into two large texture atlases. In practice, not only may the size of texture memory
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Algorithm 5.2 Light Field Mapping Algorithm

1: clear frame buffer and set depth function to LESS-OR-EQUAL
2: render diffuse appearance of all triangles �t

3: set depth function to EQUAL
4: for all terms k do
5: for all triangles �t do
6: vj ← vertices belonging to triangle �t.
7: bind texture containing g

vj

k [rp, sp]�t to texture unit 1.
8: bind texture containing h

vj

k [θp, φp] to texture unit 2
9: execute Algorithm 5.1
10: end for
11: end for

not be sufficient, the maximum size of a texture map is also limited.

Since the rendering routine is triangle-centric, we may cluster the surface geometry into several

groups of triangles and collect the view maps and surface maps within each group into texture

atlases. Because a view map is shared by all triangles surrounding the vertex, some view maps

may need to be replicated in several groups. In order to minimize duplication, each group should

be geometrically connected so that we only need to duplicate vertex maps on the boundary of the

group.

My current implementation segments the model into multiple pieces by running a breadth-first

search algorithm on surface triangles. Each search generates a connected group of triangles, and

the search stops when all triangles connected to the root node are visited, or when the number of

triangles or vertices exceeds a user-defined size.

5.3.2 Texture Atlas Generation

After themodel segmentation process, surfacemaps and viewmaps can be tiled into texture atlases.

To simplify the problem, my current implementation generates fixed size view maps for the whole

model, and I only allow a predefined set of surfacemap sizes during the resampling process. Same-

size light field maps from the same approximation term are then tiled together into one texture

atlas. Since one triangle requires three surface maps per approximation term, these maps are tiled

in the same texture.

Assume that the surface geometry is divided into p groups. I will denote the view map atlas for

term k, group i as Vi
k. Let [S

i1
k , S

i2
k , . . . , S

iqi

k ] be the list of surface map atlases in group i. The rendering

order of Algorithm 5.2 is modified into Algorithm 5.3. In this algorithm, each viewmap and surface

map is loaded only once, and is thus optimal in terms of texture swapping cost.
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Algorithm 5.3 Improved Light Field Mapping Algorithm using Texture Atlas

1: clear frame buffer and set depth function to LESS-OR-EQUAL
2: render diffuse appearance of all triangles �k

3: set depth function to EQUAL
4: for all terms k do
5: for i = 1, . . . , p do
6: bind view map atlas Vi

k into texture unit 1
7: for j = 1, . . . , qi do
8: bind surface map atlas S

ij

k into texture unit 2
9: for all triangles �t in current surface map atlas do
10: execute Algorithm 5.1
11: end for
12: end for
13: end for
14: end for

Contemporary graphics hardware support early geometry culling, and rendering efficiency can

be improved significantly if the surface primitives are sorted in a roughly front-to-back ordering.

To take advantage of this feature, we may calculate the geometric bounding box of each group and

sort the bounding boxes in front-to-back order to further improve rendering performance.

5.4 Experiments

Figure 5.3 compares the rendering performance of PCA-based and NMF-based approximations.

The frame rates in this figure are reported using a system with sufficient texture memory, and I use

Algorithm 5.3 with one triangle group p = 1 for these experiments. On this platform, rendering a

full-range multitexturing modulation requires 2 rendering passes. Excluding the diffuse layer, we

need 6K rendering passes for aK-term PCAapproximation, whereas only 3K passes is required for a

K− termNMF approximation. We observe that NMF-based rendering is 50% faster than PCA-based

for the same number of approximation terms. The performance disparity will be larger if the target

platform only supports positive texture values. The rendering performance is not very sensitive to

the size of light field map data—doubling the image size reduces the frame rate by less than 20%.

Rendering from compressed and uncompressed light field maps are equally fast if image sets in

both cases fit into the texture cache.

Figure 5.4 shows the effects of the model segmentation on rendering performance. The model

segmentation algorithm isdrivenby themaximumallowed texture size. The systems inFigure5.4(a)
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and (b) are identical except for the amount of available texture memory in the graphics subsystem1.

In both cases I use uncompressed light field maps, and both systems are not capable of retaining

light field maps from all approximation terms in the texture memory simultaneously. In the

experiments, using a small texture atlas size results in excessive texture swapping operations

and the overall rendering performance is reduced significantly. Using larger textures reduces the

number of texture swapping operations, but fewer texture atlases can reside in the texture memory.

Since an efficient multi-texturing operation requires both textures to reside in the texture memory

simultaneously, using very large textures in practice reduces rendering performance. For example,

the optimal texture size is 4096KB in both Figure 5.4(a) and (b). The performance disparity between

the two largest texture sizes is smaller in Figure 5.4(b) because this system contains more texture

memory than (a).

1The graphics subsystem in Figure 5.4 is also much slower than that of Figure 5.3
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Figure 5.3: Rendering performance using an nVidiaTMGeForce3TM64MB graphics card on a 2GHz
Pentium4TMPC, displayed in a 1024× 768 window with objects occupying approximately 1/3 of the
window. No model segmentation is performed in these experiments.
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Figure 5.4: Rendering performance comparison using different numbers of model segments. Both
experiments render the bust model on a 2.2GHz Pentium4 PC, displayed in 1024 × 768 win-
dow with objects occupying approximately 1/3 of the window. (a) Performance with nVidia
GeForce2MXTM32MB graphics card. (b) Performance with nVidia GeForce2MX 64MB graphics
card.



Chapter 6

Compression of Light Field Maps

Approximation through matrix factorization described in Chapter 4 can be thought of as a com-

pression method that removes local redundancy in the vertex light field function. The compression

ratio of this method is closely related to the size of the surface primitives used for partitioning. On

the one hand, a fine mesh with many vertices will produce an unnecessarily large number of view

maps, and the resulting compression ratio is lower. On the other hand, a coarse mesh produces

fewer view maps for each approximation term, but it may require more approximation terms to

achieve similar approximation quality to the fine mesh approximations1. Currently, I choose the

size of triangles empirically to obtain about two orders of magnitude compression ratio through

approximation while maintaining high approximation quality without using many approximation

terms.

Figure 6.1 shows portions of surface maps (left) and view maps (right) of the bust model. It

is easy to see that the light field maps are still redundant. First, individual maps are similar to

each other, suggesting global redundancy of the data. Second, some of the light field maps have

very little information content and can be compressed further using a variety of existing image

compression techniques.

Figure 6.2 gives an overview of the different types of compression algorithms applied to the

surface light field data. For optimal run-time performance, compressed light field maps need to

fit in the texture memory and be decompressed on-the-fly during rendering. This process should

only introduce minimal run-time memory overhead. In the following paragraphs I discuss several

techniques that satisfy these criteria. Other image compression techniques can be used to further

1See Section 4.4.3 for the analysis of the relationship of the compression ratio and the approximation quality to the triangle
size.
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Figure 6.1: Surface maps (left) and view maps (right) computed using PCA-based approximation
for the bust model. The lower portion of the left image represents the extracted mean textures. All
other light field maps are stored in [−1, 1] range, where −1 is mapped to black and 1 is mapped to
white.

reduce the off-line storage size, but are not discussed in this dissertation.

6.1 Global Redundancy Reduction

Data redundancy across individual light fieldmaps can be reduced effectively using VQ [Gersho92].

This technique partitions a vector space into a set of discrete regions and defines a code vector for

each region. The code vector yi for region Ri has a property that any point x in region Ri has less

distortion when reproducedwith the code vector yi than with any other code vector. The collection

of code vectors is called the codebook. The compression step consists of computing the codebook

and partitioning the source data into regions Ri based on their distance to each code vector. The

decompression process is very fast since it consists solely of looking up the indices in the codebook

and outputting the corresponding code vectors.

To apply VQ algorithms to the light field maps, each triangle surface map gvj

k [rp, sp]�i and each

view map hvj [θq, φq] are treated as a vector. The algorithm groups these vectors based on their size,

and generates a separate codebook for every group. The codebooks can be generated based on all

vectors within the group, or only set of training vectors. The advantage of the first method is that

it offers higher precision, but on the other hand it is also quite slow. Therefore, I adopt a hybrid

algorithm that first initializes codebooks on a training set, and then improves the codebooks over

all vectors.
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Figure 6.2: Compression Overview. The number under each technique describes its approximate
compression ratio.

The algorithm first initializes codebooks using either the pairwise nearest neighbor algorithm

(PNN) or the split algorithm on a set of training vectors [Gersho92]. The PNN algorithm starts

by assigning one individual region for each vector. At each iteration, the algorithm reduces the

number of regions by merging the two closest regions together. The algorithm stops until a desired

number of code vectors is reached. The time complexity of PNN algorithm is O(M2(M−K)), where

M is the number of vectors in the training set, and K is the number of desired code vectors with

K < M. The split algorithm starts with one region that represents the centroid of all vectors, and

recursively splits each region into two regions. The complexity of the split algorithm depends on

how the splitting is performed. In the simplistic case that random splitting is chosen, this algorithm

has O(M log(K)) time complexity. In general, the PNN algorithm is slower but produces better

codebooks than the split algorithm.

The second stage of the VQ algorithm improves on the initial codebooks by the generalized

Lloyd algorithm utilizing square Euclidean distance as the cost function over all vectors. The

improvement algorithm selects vectors in each region, and computes the new centroid of the region

using these vectors. Each iteration reduces the average distortion and improves the codebooks.

The algorithm stops when the code vectors are stabilized or an user-specified distortion is reached.

With N input vectors and K code vectors, the time complexity of this algorithm is O(NK) time for

each iteration. The codebooks are then stored codebooks as images. The rendering algorithm from
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VQ-compressed images does not change much – it simply indexes into a different set of light field

maps.

I use either an user-specified compression ratio or the average distortion to drive the VQ com-

pression algorithms. With the distortion-driven algorithm, the light field maps corresponding to

the higher approximation terms exhibit more redundancy and thus are often compressed into a

smaller codebook. In practice, light field maps can be compressed by an order of magnitude using

VQ without significant loss of quality. In the current implementation, VQ is applied after all light

field maps are computed. However, since the light field maps in the PCA algorithm are computed

incrementally, we could potentially apply VQ after each iteration of the approximation algorithm

and then factor the resulting error into the next approximation term.

6.2 Local Data Redundancy

Data redundancy within individual light field maps can be reduced efficiently using block-based

algorithms. One such method, called S3TCTM, is often supported on commodity graphics cards

today. It offers compression ratios between 6:1 and 8:1 and can be cascadedwith VQ for further size

reduction. Limited by hardware implementation cost, these algorithms are not very sophisticated

in nature. For example, the S3TC algorithm divides the textures into 4-by-4 texel blocks, andwithin

each block it calculates and stores two representative colors. Each textel in the original block is then

replaced by the linear interpolation of the representative colors. Since this algorithm uses blocks

that are smaller than most light field maps, when compared to VQ, it generates noisier images but

it preserves the specularities and sharp highlights better.

For PCA-based approximations, I have observed that in general the light field maps associated

with higher approximation terms contain lower spatial frequency. I implemented a simple method

that subsamples the image resolution for higher approximation terms. The results, although not

reported in the dissertation, proved effective. A more sophisticated approach would apply selec-

tive resolution reduction to each light field map, or simply reduce the vertex light field function

resolution during the resampling process described in Chapter 8.
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Number Input Effective Resampled SamplingModels Triangles
of Images Image Size Image Size Data Size Density (θ, φ)

Bust 6531 339 2.5GB 289 MB 5.1 GB 32×32
Dancer 6093 370 2.7 GB 213 MB 2.9 GB 32×32
Star 4960 282 2.1 GB 268 MB 5.2 GB 32×32
Turtle 3830 277 1.7 GB 233 MB 3.8 GB 32×32

Table 6.1: The sizes of the experimental data sets.

6.3 Results and Discussions

Table 6.1 provides information on the data sizes of the models used in the experiments. I use

24-bit RGB images in all the experiments. The input image size in this table represents the total

size of input images from the acquisition system. The effective image size represents the size of

all the pixels that are used in the input images, namely, the total size of data corresponding to the

foreground pixels of the input images. The resampled data size represents the size of actual surface

light field function used for approximation. In this process, viewing directions are resampled on a

32 × 32 pixel grid2. The resulting resampled data size is approximately twice as large as the input
images.

Traditionally, research on light field compression reports results based on the size of the re-

sampled light field function [Levoy96, Magnor00] instead of the amount of input images. In the

Light Field Mapping approach, the size of the light field function is greatly affected by the resam-

pling process, which converts input images into the surface light field function. In the following

experiments I calculate the compression ratio also based on the resampled data.

Table 6.2 lists the size and compression ratio of the light field data obtained through light field

maps approximation and additional compressions of the light field maps. For all the objects, the

size of the geometric data falls below 10KBwhen compressed using topological surgery [Taubin98]

and therefore is negligible compared to the size of light field maps. By combining VQ with S3TC

hardware texture compression, our method achieves a run-time compression ratio of over 5000:1

for a 3-term approximation. For interactive purposes, 1-term approximation is often sufficient and

thus the resulting compression ratio approaches 4 orders of magnitude.

Figures C.2-C.5 compare the rendering quality of our routines against the input images and

report the corresponding image errors. The errors reported in the figures are computed based on

the differences between the input images and the rendered images using both Average Pixel Error

2For details on the resampling process, please refer to Chapter 8
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Light Field Maps Compression of Light Field MapsModels (3-term) VQ S3TC VQ+S3TC
Bust 47.7 MB (106:1) 5.7 MB (885:1) 8.0 MB (636:1) 951 KB (5475:1)
Dancer 35.7 MB (82:1) 5.4 MB (542:1) 5.9 MB (490:0) 904 KB (3303:1)
Star 42.3 MB (122:1) 7.2 MB (716:1) 7.0 MB (737:1) 1.2 MB (4301:1)
Turtle 31.7 MB (121:1) 4.5 MB (847:1) 5.3 MB (726:1) 755 KB (5084:1)

Table 6.2: The size and compression ratio of the radiance data obtained through the light field map
approximation and additional compression of the surface light field maps.

(APE) and PSNR for the foreground pixels only. The image errors are larger than the approximation

error in Figure 4.4, and I attribute the reason to the resampling process. In this process, if samples

from the input images do not coincide with the viewing parameter grid, the original samples is lost

andwe can not reconstruct input images from the resampled surface light field functions. Currently

I discard partially visible triangles during resampling, which also contributes to the error. In the

future, I plan to address the problem of partially occluded triangles by looking at factor analysis

algorithms that use data statistics such as the EM-PCA algorithms proposed by Roweis [Roweis98]

to fill in missing information.



Chapter 7

Acquisition of Surface Light Fields

Although real-life scene acquisition is not directly related to the central thesis, data from the

acquisition system affect the process of generating surface light field function. In this chapter, I will

describe the acquisition systems used in this dissertation. I first describe an accurate acquisition

system for small-scale scenes, and move on to discuss another system that uses a different design

to capture larger environments.

7.1 Small-Scale Acquisition

Figure 7.1 illustrates the small-scale acquisition system used in this dissertation 1. This system

is capable of scanning a 1 f t3 volume accurately. Other systems such as ones used in Woods et

al. [Wood00] can also be used by Light Field Mapping (LFM). This system employs a registration

platform for automatic registration between images and range scans. The object is placed on the

platform and remains static with respect to the platform throughout the acquisition process. The

system scans geometry and radiance as two separate steps, and data from both steps are registered

together using the coordinate system defined on the platform.

The first acquisition stage acquires radiance data with a hand-held camera, as shown in Fig-

ure 7.1(a). The internal parameters of the camera are calculated in a separate calibration stage. For

each object, we capture between 200 to 400 images, covering the upper-hemisphere of the platform.

Figure 7.1(b) shows one sample image capturedwith this process. Notice that we remove nonlinear

distortion in the camera images by using the internal camera parameters. The color circles on the

platform are first automatically detected on the images using a simple color segmentation scheme.

1Developed by Jean-Yves Bouguet and Radek Grzeszczuk at Intel Corporation.
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(a) (b)

(c) (d) (e)

Figure 7.1: Small-scale scene acquisition. (a) The user is capturing images of the object under afixed
lighting condition using a hand-held digital camera. (b) One sample image. (c) The painted object
being scanned using the structured lighting system. (d) The complete and simplified 3D triangular
mesh constructed from 20 scans. (e) Reprojection of the triangular mesh onto image (b).
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Figure 7.2: Recovered camera poses from small-scale acquisition system. In this bust object, camera
poses from 339 images are calculated in the acquisition process.

This provides an initial estimate for the position of all the grid corners on the platform. The initial

estimates are then accurately localized using a corner finder. Given the corner locations and the

camera internal parameters, we may calculate the camera pose relative to the object. The outcome

of this process is a set of NI images captured from known vantage points in 3D space. Figure 7.2

shows an example of the recovered camera poses for the bust object.

The 3D geometry of the object is computed using a structured lighting system consisting of

a projector and a camera. The two devices are visible in Figure 7.1(a). We paint the objects

with white removable paint in order to improve the accuracy of the scanned geometry. This

technique is especially useful when dealing with dark, highly specular or semi-transparent objects.

Figure 7.1(c) shows an example camera image acquired during scanning. The projected stripped

patterns observed by the camera are used to triangulate the position of the object surfaces. We use

a temporal analysis similar to Curless et al. [Curless95] and Bouguet et al. [Bouguet99] for accurate

range sensing.

Since each scan only covers parts of the object, we take between 10 and 20 scans to completely

cover the surface of the object. Between two consecutive scans, the registration platform is rotated

in front of the projector-camera pair by about 20 degrees. The individual scans are automatically
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registered together on the registration platform. The resulting point cloud contains approximately

500,000 points. Based on the point cloud, we use mesh editing software [Raindrop99] to reconstruct

the final triangular surface mesh shown in Figure 7.1(d).

Sinceweuse the same calibrationplatform for both image andgeometry acquisition, the acquired

triangular mesh is naturally registered to the camera images. Figure 7.1(e) shows the projection of

the mesh onto the camera image displayed in Figure 7.1(b). The error of mesh reprojection is less

than one out of two thousand pixels on the object silhouette.

In this system, the data processing pipeline is almost entirely automatic except for the geom-

etry generation. Given the assumptions of scenes in the small-scale acquisition system, we can

potentially apply methods such as visual hulls by Matusik et al. [Matusik00] or volumetric surface

reconstruction by Curless and Levoy [Curless96] to reconstruct the scene geometry automatically.

7.2 Large-Scale Acquisition

It is difficult to scale up the small-scale acquisition system described in the previous system to a

larger scene. In particular, the range scan system need to be capable of scanning a much larger

volume. Also, the camera pose estimation process requires a special calibration platform, and

this process has to be modified for larger scenes when on-site acquisition is necessary, and when

modifying the scene environmentwith calibration targets is not permitted. Furthermore, acquisition

planning of the scene is a non-trivial problem. To date, efficient and fully-automatic environment

scanning remains an active research topic [Mavner93, Reed00].

Light FieldMapping is inherently scalable to larger scenes, because this approachpartitions light

field data into vertex light field function and process each function independently. To demonstrate

the scalability, we first simulate the LFM process using synthetic surface light fields. Figure C.1

showsa synthetic scene composedwith scannedobjects. In thedata generationprocess, images from

different view points are rendered using a commercial renderer2. Because the camera positions and

scene geometry are known in this case, they are used directly as input for the LFM data processing

pipeline. The resulting scene can be rendered at interactive rate, or at approximately one thousand

times faster than the commercial renderer used to generate input images.

The large-scale surface light field acquisition system I use consists of a commercial laser

rangefinder, the DeltaSphereTM[3rdTech00], for geometry acquisition, as shown in Figure 7.3(a),

23D Studio Max
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(a) (b)

(c)

Figure 7.3: Large-scale scene acquisition. (a) DeltaSphere rangefinder. (b) A picture of the environ-
ment after undistortion. (c) A depth map acquired by the rangefinder. Darker samples represent
smaller depths. Low-confidence depth samples are colored in red for illustrative purposes.
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and a wide-angle hand-held camera for radiance acquisition. Figure C.6 shows the 3-term PCA

approximation of an office scene scanned using this system. This scene can also be rendered at

interactive rate on a PC.

The laser rangefinder acquires depth maps on a spherical coordinate system, and each scan

produces approximately 8 million depth samples. Figure 7.1(c) shows one of the depth maps. Each

range scan takes approximately 20 minutes. As stated before, automatic acquisition planning is

currently an open research problem, therefore the planning in my experiment is done empirically.

For the scene shown in Figure C.6, I took a total of 7 panoramic scans at different positions in the

environment. For complete coverage of the environment, I take images on a grid position in the

environment. At each position I take several images at different heights and orientations. Since

most of the surfaces in the environment are not very specular, about 100 wide-angle images covers

most of the surfaces several times. Figure 7.3(b) shows one example image after removing nonlinear

distortions.

To produce surface geometry of the environment, I use a commercial software package called

PolyworksTMto bring all scans into the same reference frame [InnovMetrics01]. This software

package contains an implementation of Iterative Closest Point (ICP) algorithm for point-cloud

registration3. After depth maps are registered, I triangulate each depth map separately and merge

individual triangular mesh into a unified geometry with Polyworks.

To register the radiance datawith the surface geometry, I recover the camera poses usingmanual

2D-3D correspondences. For each image, a userfirst chooses a depthmap, and then selects 6 ormore

pairs of corresponding points on both the depth map and the image. This allows the calculation

of the external parameters with respect to the coordinate system of the depth map. Then, the

transformations between individual depthmaps and the global coordinate systemobtained through

the ICP algorithm during the geometry reconstruction stage are used to recover the global camera

pose of the image. This process relies on an accurate ICP registration, which also requires accurate

rangefinder calibration. Currently inaccuracies in rangefinder calibration account for most of the

overall error. However, as shown in Figure C.6, artifacts due to inaccurate registration can largely

be resolved by the view-dependent nature of surface light fields representation.

In conclusion, this acquisition system is designed to validate the feasibility and effectiveness of

Light Field Mapping algorithms for large-scale scenes. At the current stage the system is still at its

infancy, and significantly more research needs to be done before it becomes fully automatic.

3For a survey on ICP algorithms, refer to Rusinkiewicz and Levoy [Rusinkiewicz01]



Chapter 8

Implementation Issues and Discussions

The proposed approximation and rendering algorithms take densely sampled surface light field

functions as input. In practice, however, data from the acquisition systems are scattered samples of

the actual surface lightfield functions. In this chapter, I will discussmethods and issues in preparing

these data for the approximation algorithms. In particular, I will assume that the input data consist

of a triangular geometric mesh together with a set of camera images registered to the mesh. In

this chapter, I first describe the resampling algorithm, and then discuss alternative algorithms that

bypass the resampling process altogether at a cost of lower approximation quality.

8.1 Radiance Data Resampling

The input data at this stage consist of a triangular mesh and a set ofN images I1, I2, . . . IN taken with

known camera internal and external parameters. The goal of resampling is to construct a surface

light field function f [rp, sp, θq, φq] that best represents the input data. The problem of surface light

field resampling is, in general, a 4D data reconstruction problem. However, if the reprojection

sizes of the triangles are relatively small compared to their distances to the camera, for a triangle

the samples from the same image can be regarded as having identical viewing directions (θ, φ).

Under this assumption, the resampling process can be approximated by a two-stage algorithm

that first resamples on [rp, sp] and then on [θq, φq]. I will refer to the first resampling stage as the

surface normalization stage and the second resampling stage as the view interpolation stage. Since

the resampling process is identical for each vertex, I focus the discussion on one vertex light field

function f vj [rp, sp, θq, φq].
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(a) (c)(b)

Figure 8.1: View Interpolation Process. (a) Projection of original views, (b) Delaunay triangulation
of projected views, (c) uniform grid of views computed by blending the original set of views.

8.1.1 Surface Normalization

Before normalization, we need to determine the visible cameras for the target vertex v j. In the

visibility algorithm, I take a conservative approach that considers a vertex visible only if all its

surrounding triangles are not occluded. This visibility algorithm discards radiance data from

partially occluded views in exchange for continuity in the (r, s) domains, and in practice I find this

approach produces fewer visual artifacts compared to more aggressive visibility algorithms.

Repeating the visibility calculation for all N camera images results in a list of Nj visible vertex

views. I will denote the viewing directions of the visible views as [θj
v, φ

j
v], where the index vj =

1, . . .Nj. The visible vertex views correspond to a set of texture patches of irregular size captured

fromvarious viewing directions. The algorithm then normalizes each texturepatch to have the same

shape and size as the others by using bilinear interpolation of the pixels in the original views. In

order to preserve image sampling rate, the size of the normalized patch is chosen to be proportional

to the size of the largest projected view. Since the normalized size is larger than the original views,

using bilinear interpolation will not introduce texture minification artifacts.

The last stage in surface normalization multiplies each vertex view with the hat function Λvj

described in Section 4.1. This multiplication can also be done after the next view interpolation stage,

but because the fully resampled matrix is normally much larger, it is more efficient to apply the hat

function before view interpolation.
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8.1.2 View Interpolation

At this stage, we have a uniform number of samples for each triangle view, but the sampling of

views is still irregular. I denote the input function at this stage as τvj [rp, sp, θ
j
v, φ

j
v]. Given the input

function, the goal is to reconstruct the vertex light field function f vj [rp, sp, θq, φq]. To do this, we

may construct an interpolation function Qj(θ, φ) that returns a 3 × 2 matrix whose first and second
columns define the indices to the original views and the interpolation weights respectively. The

components of Qj(θ, φ) have the following properties

∀ {θ, φ | − π ≤ θ ≤ π,−0.5π ≤ φ ≤ 0.5π},
Qj(θ, φ)k1 ∈ {1, 2, . . .Nj},∑3

k=1 Qj(θ, φ)k2 = 1.
(8.1)

This allows us to perform view interpolation as follows



i1 w1

i2 w2

i3 w3


← Q j(θq, φq)

f vj [rp, sp, θq, φq] =

3∑
k=1

wkτ
vj [rp, sp, θ

j
ik
, φ j

ik
]. (8.2)

What remains is the definition of the interpolation functionQj, which involves the interpolation

weights wk and interpolation indices ik. I will use Figure 8.1 to explain the definition of the

interpolation function. First, the viewing directions from the visible views [θj
v, φ

j
v] are projected

onto the xy plane using XY-map projection. The result is a set of texture coordinates, as shown

in Figure 8.1(a). These coordinates are used to generate a Delaunay triangulation as shown in

Figure 8.1(b). We can now define the interpolation function as follows. For each point on the XY-

map, the indices ik are defined as the three vertices of the triangle surrounding it, and the weights

wk are the barycentric coordinates in this triangle. The resampled directions [θp, φp] are the regular

grid shown in Figure 8.1(c).

If we combine the 2D indices [rp, sp], [θq, φq], and [θ
j
v, φ

j
v] into one dimension respectively similar

to Equation 4.4, we can rewrite Equation 8.2 using 2D matrices as follows

Fvj = IvjWvj (8.3)
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where components of matrices Fvj , Ivj are defined by

F
vj
mn = f vj [rm, sm, θn, φn],

I
vj

ml = τvj [rm, sm, θ
j
l , φ

j
l ], (8.4)

and the components of the interpolation matrixWvj are defined by

Wvj

ln =


Qj(θn, φn)k2, when l = Qj(θn, φn)k1,

0, when l � {Qj(θn, φn)k1, k = 1, 2, 3}.
(8.5)

Since there are at most 3 non-zero rows for each column of matrix Wvj , the resampling process of

Equation 8.3 can be speeded up significantly using sparse matrix multiplication routines.

8.2 Approximation without Resampling

The view interpolation process is important for two reasons. Factorization of the fully resampled

matrix results in a more precise approximation and it encodes the view-dependent information

allowing us to synthesize a correct image for any camera location using the rendering algorithm

proposed in Section 5. The major drawback of the full resampling process is the extra processing

overhead. Since the size of matrix Fvj may be much larger than Ivj , the resampling process in

Equation 8.3 is generally quite time-consuming. Also, the approximation of the fully resampled

matrix Fvj is slower to compute than Ivj .

Instead of computing the explicit matrix approximation on the fully resampled matrix, we may

compute the approximation on matrix Ivj , which contains normalized views of the vertex triangles.

Let the approximation of Ivj be

Ĩvj =

K∑
k=1

u′kw
T
k .

This approximation cannot beused to synthesize arbitrarynovel viewswith the algorithmpresented

in Chapter 5 because the matrix Ivj does not represent a vertex light field function. To convert the

above approximation into light field maps, we may apply the view interpolation process after Ivj

has been approximated

F̃′
vj
= ĨvjWvj
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=

K∑
k=1

u′k(w
T
k Wvj )

=

K∑
k=1

u′kv
′T
k , (8.6)

where v′k ≡ (wT
k Wvj )T. The vectors u′k and v′k define a valid approximation of Fvj , and we may

convert them to light field maps and visualize them using the proposed rendering algorithms.

This approximation, however, is not optimal. In particular, since the PCA approximation is RMS

optimal, the error of approximation on Fvj

EF = ‖ Ivi W −
K∑

k=1

ukvT
k ‖F (8.7)

must be less than or equal to the error produced by the PCA approximation of Ivj

EI = ‖ (Ivi −
K∑

k=1

u′kw
T
k )W ‖F. (8.8)

The implication of the above result is that, if the original views in the normalized matrix Ivj

are not evenly distributed, the approximation of Ivj will be biased toward angles with higher

sampling density. Although this approach does not approximate the resampled matrix Fvj very

well under biased sampling situation, there may be advantages to this property. For example,

because appearances at specular angles change more rapidly, we may acquire more views at the

specular angles than at non-specular angles. In practice, if the viewing directions are uniformly

distributed, the approximation of Ivj produces similar result to the approximation of Fvj .



Chapter 9

Conclusions and Future Work

In this dissertation, I presented a new representation of surface light fields and demonstrated its

effectiveness on both synthetic and real data. Using our approach, surface light fields can be com-

pressed several thousand times and efficiently rendered at interactive speed on modern graphics

hardware directly from their compressed representation. Simplicity and compactness of the result-

ing representation leads to a straightforward and fully hardware-accelerated rendering algorithm.

Additionally, I proposed a new light field data factorization algorithm that produces positive only

factors. This method allows faster rendering using commodity graphics hardware. Furthermore,

I discussed a detailed explanation of the data acquisition and preprocessing steps, providing a de-

scription of the complete modeling and rendering pipeline. Finally, the PCA-based approximation

technique is potentially useful for network transport and visualization of 3D photography data

because it naturally implies progressive transmission of radiance data.

One of the limitations of the surface light field is that it parameterizes only the outgoing radiance

of the data. Consequently, the proposed method can only represent a static 3D environment with

constant lighting. On another front, my current implementations of light field maps compression

algorithms only demonstrated part of a variety of possible algorithms, and this issue certainly

deserves more attention. Also, although the decompression algorithm is designed with hardware

acceleration in mind, not all the desired features are implemented in contemporary graphics hard-

ware. With certain modifications, we may improve the rendering performance significantly. I will

now discuss some future research proposals in the rest of this chapter.
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Incident Directional Light Source
Reflected Radiance

l
v

s

Figure 9.1: A Bidirectional Surface Reflectance Function (BSRF) is a six-dimensional function that
describes for all viewing directions the reflected radiance over the surface illuminated with a
directional light source.

9.1 Higher-Dimensional Sample-Based Representations

The proposed framework in Equation 1.1 approximates a four-dimensional surface light field func-

tion by a set of two-dimensional functions. Mathematically, we may extend this framework to

approximate higher dimensional data. For a six-dimensional function f (·), the approximation
equation becomes

f (l, s, v) =
K∑

k=1

αk(l) βk(s)γk(v), (9.1)

where each of the parameters l, s, v represents a two-dimensional vector. The six-dimensional

function f (·) can be a BTF similar to [Dana99, McAllister02], or a function that embeds global effects
such as shadows and inter-reflections as shown in Figure 9.1. This function is an extension of

the surface light field – the function f (l, ·, ·) represents the surface light field of the scene lit by a
unit point light source at direction l, and I shall refer to this function as the Bidirectional Surface

Reflectance Function (BSRF). This function encodes the appearance of a rigid object under various

lighting conditions. Given a BSRF, we need to apply inverse global illumination algorithms to

calculate the underlying BTF.

There are several issues involved with the above approximation. First, we need to acquire the

source function f (·). This may be done by either making some assumptions of the scene similar
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to [Lensch01], or by aquiring the function directly followed by a resampling process. Because the

resampled function is likely to be very large, we may employ techniques proposed in Chapter 8 to

bypass the resampling process.

The second issue involves the calculation of the approximation in the form of Equation 9.1. For

this purpose, a 3D SVD algorithm would solve this problem, but to date a 3D SVD algorithm which

retains all the properties of 2D SVD algorithms has not been found to the best of my knowledge. A

pseudo-SVD algorithm, proposed independently by Carroll and Chang [Carroll70] and Harshman

[Harshman70], iteratively calculates a local optimal solution given afixed number of approximation

vectors K. This method is however not progressive like the PCA method discussed in Chapter 4.

To calculate a progressive approximation, we may extend the power iteration method [Golub96],

albeit at a lower quality than the pseudo 3D SVD algorithm.

The third issue is related to rendering of the approximation. Rendering scenes defined by the

BTF functions require light transport simulation. On the other hand, a BSRF encodes the global

illumination solution of the scene and can be potentially rendered at higher and interactive rates.

To render the BSRF function f (·) with a point light source, we may apply techniques discussed in
Chapter 5. The modified rendering process involves multi-texturing operation using three texture

units, one for each of the texture maps αk, βk, γk. For a directional light source, we may reduce

the number of required texture maps to two because the value of αk will be identical within each

partition and can be stored in the vertex color. Rendering using arbitrary lighting, however, may be

difficult because this involves convolution of the incident lighting function with the function f (·).
Although this requires further investigation, it may be possible to apply similar techniques such

as the environment map prefiltering technique in [Kautz00] or the spherical harmonic technique in

[Sloan02] to solve this problem.

9.2 Image Compression Algorithms for Light Field Maps

My implementations of light field map compression algorithms presented in Chapter 6 are targeted

to minimize hardware texture cache and to reduce online memory requirements. One of the

proposed algorithms uses VQ to compress light field maps. For my implementation, this algorithm

is effectively an averaging scheme that replaces similar light field maps by their average. This

algorithm is designed such that the compressed light field maps can be used without modification

by the rendering algorithms.
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The proposed compression algorithms in their current form have several disadvantages. First,

because each light fieldmap is treated as a vector, the vector dimensionality is generally quite large.

As a result, its compression quality may not be satisfactory for larger light field maps. Second, each

triangle surface map is treated independently, and this produces discontinuity across triangles.

This problem can be eliminated by treating a ring of triangles as a single vector. However, this

undesirably leads to even larger vector dimensionality.

In the near future, I expect the growing demand of scene complexity will lead to hardware

implementations of high quality and efficient texture compression algorithms. Before then, we

may implement hardware-accelerated image decompression algorithms by multi-pass rendering

operations, although this process may require intermediate storage for the decompressed light field

maps.

9.3 Hardware Features for Efficient Rendering

The only reason to apply NMF approximation algorithms is because many graphics cards demand

positive only pixels. Also, commodity graphics hardware only supports fixed point pixel opera-

tions. If graphics hardware supported higher precision per-pixel arithmetic, our problem would

be effectively solved and there would be no need for NMF approximation for our purposes. Also,

the Light Field Mapping algorithm can be made more efficient if we improve the multi-pass blend-

ing operations. Because graphics hardware are normally heavily pipelined, if we implement the

blending operation with a generic Arithmetic Logic Unit (ALU) that takes the result of the previ-

ous rendering pass as input, the data dependency may introduce pipeline bubbles that drastically

reduce the overall performance. A per-pixel accumulator at the end of the pipeline eliminates all

data dependency and makes the Light Field Mapping algorithm more efficient.

Many contemporary graphics hardwarehave built-in texture rasterization support such as bilin-

ear interpolation andMip-mapping [Williams83]. Whenwe tile light fieldmaps into texture atlases,

these hardware features may cause several issues because a rasterized pixel may be generated by

blending samples from different but neighboring light field maps, causing visible artifacts in the

rendered image. As a result, I sometimes have to surround boundaries of individual light field

maps with extra pixels, but this overhead is particularly large for Mip-mapped light field maps. To

solve this problem, I propose to introduce inner texture boundaries that divides a texture map into

smaller and regular rectangular or triangular regions. During rasterization, the hardware uses only
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textels within the same region for interpolation. This feature solves both of the problemsmentioned

above, and it requires relatively smallmodifications to contemporary graphics hardware. Of course,

an efficient per-triangle texture map hardware support will solve our problem, and I believe this

feature will find applications for many other purposes in addition to Light Field Mapping.
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Appendix A

Eigen-Texture Method

The input data for the eigen-texturemethod[Nishino99] consists of a set of images and the geometry

mesh registered to the images. The images are captured on a circular camera path around the object,

as shown in FigureA.1. For a given triangle�i, the eigen-texture approachuses PCA to approximate

a set of V original views I�i = [ I�i
1 I�i

2 . . . I�i
V ], normalized to have the same shape and number of

samples, as

Ĩ�i =

K∑
k=1

g�i

k (h
�i

k )
T, (A.1)

where vectors g�i

k are the K principal eigenvectors of I�i and vectors (h�i

k )
T = [ h�i

k,1 h�i

k,2 . . . h�i

k,V] can

be used to form matrix

H�i = [ h�i
1 h�i

2 . . . h�i
K ] (A.2)

that represents the blending coefficients obtained byprojectingmatrix I�i onto the subspace spanned

by vectors g�i

k . Note that vector [h
�i
1,m h�i

2,m . . .h
�i
K,m]

T represents the blending coefficients for image I�i
m .

Each original view can be synthesized from this approximation quite easily as

Ĩ�i
m =

K∑
k=1

g�i

k h�i

k,m. (A.3)

The authors propose to synthesize novel views along the circular path spanned by a linear interpo-

lation of the basis images as follows. Let Ĩ�i
m,m+1 be a novel view that lies on the path connecting the

m’th and m + 1’th original view. The eigen-texture method computes this view by interpolating in

the eigenspace of the basis images

Ĩ�i
m,m+1 =

K∑
k=1

g�i

k (α1h
�i

k,m + α2h
�i

k,m+1). (A.4)

This is more efficient than interpolating directly in the image space but produces the same outcome.

Since the authors do not report any results on the rendering efficiency, it is not clear whether a



74

Original  Views
ovel  Views

Figure A.1: Typical eigen-texture method captures images along a circular path around an object.
Synthesis of novel views is only possible along this path.

real-time rendering algorithm is feasible.

I would like to stress that in the last equation weights α1 and α2 are identical for all the triangles

and that the view-dependent ordering for the blending coefficients h�i

k is not defined. Because of

this, the eigen-texture method cannot generate a correct approximation of a view that is away from

the circular path shown in Figure A.1. It is thus not possible to compare the eigen-texture method

with any other type of light field representation, since the latter parameterizations allow image

synthesis under general camera poses. I believe it is more appropriate to think of the eigen-texture

method as an image compression technique that uses geometry to improve coherence. However,

this is not a general image synthesis technique, since the synthesis of novel views is notwell-defined.
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Appendix B

Related Surface Light Field Research

The research byMiller et al. [Miller98] is considered one of the first studies of the surface light field.

The method proposed by Wood et al. [Wood00] represents one of the more recent methods, and I

will focus my following discussion on this method.

This method treats each surface point independently and produces for each point a piece-wise

linear 2D function called a Lumispherewhich encodes the radiance of a surface point for all viewing

directions. Their compression algorithms can be regarded as variants of PCA and VQ algorithms

performed over the Lumispheres. However, instead of generating the Lumispheres for each surface

point, they use the original scattered input data directly and perform non-linear optimization to

minimize the error between the data to the piecewise-linear Lumisphere functions. Because in this

process the Lumispheres are treated as functions rather than vectors, they refer to their extensions

to PCA and VQ as Principal Function Analysis and Functional Quantization respectively.

Because the Lumispheres are parameterized in a global coordinate frame, neighboring Lumi-

spheres may not be similar to each other. Nearby Lumispheres with identical reflectance properties

should be similar if they are parameterized using local reference frames on the surface point. To im-

prove on this, they reflect the viewing angle with the local surface normal in their parameterization,

which is equivalent to reparameterizing each Lumisphere with the local reference frame.

They propose a two-pass rendering algorithm for their representation. In the first pass, the

algorithmencodes the surfaceparametersof eachvertex in the four-channelvertex color, and renders

the geometry using Gouraud shading. The first two color channels encode the base mesh triangle

number where the vertex is located, and the last two channels encode the barycentric coordinate

of this vertex in the designated base mesh triangle. In the second pass, the algorithm scans each

pixel in the frame buffer and uses the pixel color to query for its corresponding Lumisphere. It then

calculates the viewing parameters from the camera location and uses this information to evaluate

the Lumisphere function. In the compression stage, they reflect viewing parameters around surface

normals. In order to perform the reflection efficiently, they store a normal map for each surface
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point. The querying and decoding process is performed in the host processor, and the efficiency and

memory requirement of this process depends very much on the implementation. The rendering

performance thus depends both on the mesh geometry complexity, the size of target image, and the

Lumisphere reconstruction and query process. Because they parameterize the surface parameters

r, s on the base mesh of a multi-resolution surface, they can potentially render the mesh at a lower

resolution to improve the rendering performance. Wood et al. proposed using view-dependent

refinement of the mesh as a compromise between rendering performance and quality, but the

resulting algorithm is more difficult to implement.

They demonstrate editing operations by applying image-processing algorithms to the Lumi-

spheres. For example, they rotate the Lumispheres to achieve similar effects to rotation of environ-

ment lighting. They also deform the scene geometry to achieve animation effects. These plausible

operations are however not physically correct.

The approaches taken by our method and Wood et al. are very different. In our method, all

samples on nearby surface primitives are collected and compressed through matrix approximation

algorithms. Their algorithms, on the other hand, compress a training set of Lumispheres and

then use the trained results to reproject original data onto the approximated space. The choice of

training set is thus critical to the compression results, and finding a good training set is a non-trivial

problem. Their method also relies on non-linear optimization algorithms. On the other hand, the

only parameter in the proposed approximation algorithm is the number of approximation terms,

and these approximation algorithms are stable linear numerical processes. These properties makes

the proposed method more general and applicable to a wider range of scenes and objects.

As a comparison, I processed the same fishdata set1 from [Wood00]with the techniques proposed

in this dissertation. Figure B.1 shows renderings of this data set with different compression quality.

In this figure, the surface geometry is simplified to use only one thousand triangles. In this case,

a 3-term PCA approximation with texture compression using less than 1 MB of data provides

comparable approximation quality to the results by Wood et al. , who demonstrated compressed

data of similar quality using about 2.5-2.7MB of data. In terms of rendering efficiency, they reported

a performance at less than 3 frames per second. They however did not describe the platform it was

measured with, and unfortunately I have no access to their updated performance measurements.

Using Light Field Mapping, I observed performance of over 300 frames per second on a PC with

1Courtesy of the Surface Light Field Project at the Grail Lab, University of Washington. Project website –
http://grail.cs.washington.edu/projects/slf/
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1-term PCA 3-term PCA 5-term PCA
2.71MB 5.74MB 8.77MB

1-term PCA+S3TC 3-term PCA+S3TC 5-term PCA+S3TC
0.45MB 0.96MB 1.46MB

Figure B.1: The fish object rendered using light field maps with different compression algorithms
and approximation terms. These approximations can be rendered at 100-400 FPS with a GeForce 3
graphics card on a 2GHz Pentium 4 PC at original input image resolution 640 × 480.

GeForce 3 graphics card and 2GHz Pentium 4 processor. Although my experiment is performed

one and half years after their experiment, advances in hardware technology alone should not have

accounted for the almost one hundred times speedup. Based on this experiment, I believe the

proposed method is more compact and efficient than the previously proposed method by Wood et

al.
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Appendix C

Color Plates
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Figure C.1: A combination of synthetic and physical objects rendered using Light Field Mapping.
Complex, physically realistic reflectance properties of this scene are represented and visualized.
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Figure C.2: Comparison for the turtle model between the input images shown at the left column
and the images synthesized from the 1-term PCA approximation compressed using both VQ and
S3TC shown at the right column. APE = 9.5, PSNR = 25.5 dB, the compression ration is 8202:1, and
the size of compressed light field maps is 468 KB.
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Photograph 4-term PCA 2-term PCA
APE=5.42, PSNR=27.63 dB APE=6.43, PSNR=26.77 dB

46.4 MB(63:1) 24.9 MB(117:1)

4-term NMF 2-term NMF
APE=5.82, PSNR=27.35 dB APE=6.76, PSNR=26.54dB

46.4 MB(63:1) 24.9 MB(117:1)

Figure C.3: Comparison between PCA and NMF approximation methods. Using the same number
of terms, PCA light field maps produce less error, but are slower to render than NMF.
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Photograph 3-term PCA 3-term PCA+VQ 3-term PCA+VQ+S3TC
APE=4.57, PSNR=31.04 dB APE=6.98, PSNR=27.90 dB APE=7.49, PSNR=27.51 dB

47.7 MB (106:1) 5.7MB (885:1) 951KB (5475:1)

Figure C.4: Comparison between different light field map compression algorithms using the bust
model. VQ tends to diminish the highlight while S3TC preserves highlights better at the expense
of color quality.

Photograph 5-term PCA 4-term PCA
APE=4.52, PSNR=30.48 APE=4.86, PSNR=30.06 dB

66.5MB (78:1) 54.4MB (95:1)

3-term PCA 2-term PCA 1-term PCA
APE=5.34, PSNR=29.49 dB APE=6.07, PSNR=28.64 dB APE=7.42, PSNR=27.27 dB

42.3MB (122:1) 30.2MB (171:1) 18.1MB (285:1)

Figure C.5: The figure demonstrates the progressive nature of PCA approximation. The same star
model is rendered using different number of approximation terms.
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(a)

(b)

FigureC.6: A real office scene acquiredusingour large-scale acquisition systemand renderedwith 3-
term PCA light field maps approximation. The physical dimensions of the office are approximately
15 f t(W) × 10 f t(D)× 8 f t(H).
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