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Abstract

In RFC (Request For Comments) 2309 [9] the active queuing mechanism RED has
been purposed for widespread deployment on Internet routers. This thesis presents
an empirical study of the active queuing mechanism RED where we focus on the
question: How will RED e�ect HTTP response times and can RED be tuned to
optimize these?

The empirical study is conducted on a laboratory network in which we model a
typical scenario in which a router operates and becomes a bottleneck. A realistic
HTTP traÆc load is provided by a set traÆc generator programs. These simulate
the behavior of browsing users using an empirical model of HTTP traÆc that is
both well-founded as well as being widely accepted and used. Response time per-
formance is measured for each request made in the simulation of browsing users,
thus providing a detailed insight on the performance experienced by the end-user.

The study consists of �nding the optimal RED parameters under di�erent o�ered
loads. Where the o�ered load describes the average bandwidth utilization produced
by the traÆc generators on a network with no bandwidth constraints. To determine
the impact of using RED we compare the response time performance with our choice
of optimal RED parameters with the optimal performance of tail-drop queuing and
the performance on the laboratory network without bandwidth constraints.

The results of the study can be summarized as follows:

� Contrary to expectations, compared to tail-drop queuing, RED has minimal
e�ect on HTTP response times for o�ered loads up to 90% of the link capacity.
Response times at loads in this range are not substantially e�ected by RED
parameters.

� Between 90% and 100% load, RED can be carefully tuned to yield performance
somewhat superior to tail-drop queuing, however, response times are quite
sensitive to the actual RED parameter values selected.

� In heavily congested networks, RED parameters that provide the best link
utilization produce poorer response times.

In total, we conclude that for links carrying Web traÆc, RED queue management
appears to provide no clear advantage over tail-drop for end-to-end response times.
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Dansk Sammenfatning1

Denne afhandling dokumenterer en unders�gelse af den aktive k�-mekanisme Ran-
dom Early Detection (RED). Vi fokuserer speci�kt p�a at vurdere, om denne kan
forbedre de svartider, en bruger oplever, n�ar web sider hentes via internettet. Herun-
der er vi specielt interesserede i, hvorledes parametrene til RED skal justeres for at
opn�a optimale svartider.

RED er en aktiv k�-mekanisme, der kan anvendes p�a internet-routere. En
internet-router er en s�akaldt store-and-forward router, idet at pakker kan opbe-
vares i en bu�er, indtil der er b�andbredde til r�adighed p�a destinationsnetv�rket.
Traditionelt bliver denne bu�er administreret efter �rst come �rst serve princippet
og i tilf�lde af, at bu�eren bliver m�ttet, vil nyankomne pakker blive tabt. Denne
form for administration af bu�eren kaldes tail-drop.

RED er en algoritme udviklet som et alternativ til tail-drop med det form�al
at �ge den overordnede netv�rksydelse i tilf�lde af m�tning. Intuitivt er ideen,
at RED algoritmen skal detektere en m�tning af netv�rket allerede i opl�bet, for
derved tidligt at kunne sende et m�tningssignal til senderne. Senderne reagerer p�a
et m�tningssignal ved at reducere transmissionshastigheden, og da dette kommer
tidligt, vil en m�tning af bu�eren undg�as eller m�tningsperioden vil blive reduceret.

Helt konkret er RED en algoritme, der udv�lger hvilke pakker der skal inds�ttes
i bu�eren, og hvilke pakker, der skal tabes. Tabte pakker opfattes som et m�t-
ningssignal af sendere, og herved kan pakketab reducere belastningen af netv�rket.
Selve udv�lgelsen er baseret p�a en v�gtet gennemsnitlig k�l�ngde, som afspejler
belastningen af routeren over en l�ngere periode.

I RFC 2309 [9] tilr�ader forfatterne, at RED generelt anvendes p�a internet-
routere. R�adet er baseret p�a de hidtidige empiriske unders�gelser, som p�a det
tidpunkt var til r�adighed. Disse unders�gelser viser, at anvendelsen af RED p�a
internet-routere vil forbedre ydelsen p�a netv�rket eller i det mindste ikke forringe
den.

Det er vores opfattelse, at det empiriske materiale, der er grundlaget for dette
r�ad, ikke er fyldestg�rende. For eksempel er det et problem, at RED algoritmen
tilf�jer kompleksitet til netv�rket. Dette sker, idet algoritmen har 
ere parametre i
forhold til tail-drop, og disse skal v�lges, inden algoritmen kan tages i brug. Grundet
den meget dynamiske adf�rd af datatransmissioner p�a internettet, er det en ikke-
triviel opgave at afg�re om et givet s�t parametre er det optimale valg. Endvidere
kan de optimale parametre v�re afh�ngige af den situationen, hvorunder algoritmen
opererer.

I denne afhandling fokuserer vi netop p�a det problem, at afg�re hvilken ind-

ydelse det har at anvende RED p�a internet-routere. Vi g�r dette ved at stille
sp�rgsm�alet: Hvordan vil RED p�avirke HTTP svartider, og kan RED blive justeret
til at forbedre disse?

HTTP er den protokol, som anvendes til af udveksle objekter imellem en Web
browser og en web server. Vi har valgt at besk�ftige os med HTTP-svartider, da
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Web-applikationen er den oftest anvendte p�a internettet. HTTP-tra�k udg�r 60-
80% af b�andbredde forbruget p�a internettet i dag [65]. Det at browse p�a internettet
er pr�get af en h�j grad af interaktion imellem browser og server. Derfor er HTTP-
svartider et centralt begreb, n�ar vi diskuterer netv�rksydelse.

Vi s�ger at besvare det stilte sp�rgsm�al igennem en empirisk unders�gelse. Dette
g�res ved en r�kke fors�g p�a et laboratorie-netv�rk, hvor vi modellerer en typisk
situation, hvor en router anvendes og kan v�re en 
askehals. Tra�kken p�a dette
netv�rk genereres ud fra en empirisk model af Web tra�k (HTTP 1.0), som er bredt
accepteret og tidligere blevet anvendt i eksperimentelle sammenh�nge. Baseret p�a
denne opstilling har vi mulighed for at modellere og reproducere den dynamiske
adf�rd af internetprotokoller i et kontrolleret milj�, s�aledes at vi har mulighed for
at studere RED under forskellige forhold, kon�gureret med forskellige parametre.

Ved brug af vores laboratorieopstilling har det v�ret muligt af foretage en de-
taljeret unders�gelse af, hvorledes RED p�avirker HTTP svartider under en r�kke
forskellige omst�ndigheder. Specielt har vi unders�gt hvorledes RED p�avirker
svartider under forskellige belastningsniveauer, baseret p�a b�andbreddekapaciteten i

askehalsen. Disse unders�gelser er blevet sammenlignet, dels med svartider m�alt
ved brug af tail-drop algoritmen, og dels med svartider m�alt p�a et netv�rk, som
ikke er begr�nset af b�andbredde.

Resultaterne af vores unders�gelse viser, at RED har forskellig ind
ydelse p�a
svartiderne afh�ngigt af dens belastningsniveau. For tra�kbelastninger under 90%
af b�andbredde-kapaciteten er svartiderne forholdvist t�t p�a, hvad vi oplever uden
begr�nsninger i b�andbredde-kapacitet. For tra�kbelastninger, som n�rmer sig
b�andbredde-kapaciteten, dvs. over 90% men under 100% belastning, kan vi jus-
tere RED til at give svartider, der er bedre end det, vi har fundet med tail-drop.
Denne observation er dog kun aktuel, n�ar belastningen er imellem 90% og 100%.
N�ar belastingen overstiger 100% af kapaciteten, forringes svartiderne hurtigt, og vi
observerer ingen forskel imellem brugen af RED og tail-drop.

En generel observation for belastninger under 100% af b�andbredde kapaciteten
er, at RED parametre, der generelt virker fornuftige, kan resultere i en forv�r-
ring af svartider. Dette er specielt problematisk, da vi jo netop kun fandt de opti-
male parametre igennem en systematisk afpr�vning af forskellige parameter v�rdier,
hvilket normalt ikke er muligt. En anden vigtig observation er, at de RED parame-
tre, som giver den h�jeste udnyttelse af b�andbredde, og det procentvist laveste tab
af pakker, resulterer i en forv�rring af svartider. Derfor er disse, ellers hyppigt an-
vendte ydelsesparametre, ikke direkte anvendelige til at vurdere ydelsen af svartider.
Til sidst kan vi n�vne, at vi har observeret, at det at v�lge optimale parametre er
en kompleks v�gtning mellem at optimere for de kortest mulige svartider, og det
at f�a f�rre svar med lange svartider.

Helt overordnet viser vores unders�gelse, at det er langt vigtigere for web-
svartider at tilstr�kkelig b�andbredde er til r�adighed, frem for at have de opti-
male RED parametre. I det tilf�lde, at RED anvendes i et netv�rk domineret af
web-tra�k, skal dette omhyggeligt forberedes igennem en lang r�kke fors�g hvor
forskellige RED parametre afpr�ves, for derved at forebygge en eventuel forv�rring
af svartider.
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Chapter 1

Introduction

Random Early Detection (RED) is an active queueing mechanism designed for con-
gestion avoidance in packet switched networks. The queueing mechanism detects
incipient congestion by computing the average queue size of a router queue. When
the average queue size exceeds a threshold, the router signals congestion with a
probability, that is a function of the average queue size. RED was �rst described
in [29] and has later been recommended for deployment on Internet routers in the
RED manifesto [9].

In this dissertation we present an empirical study that evaluates the e�ect of
using RED on Internet routers carrying Web traÆc.

In the following section we give a brief introduction to packet switched net-
working routers and congestion avoidance, in particular. This is followed by an
introduction to the RED queuing mechanism. Based on these concepts we are able
to state the thesis for this dissertation.

1.1 Networks

The most popular application on the Internet is currently the World Wide Web
(Web). Recent studies shows that Web traÆc accounts for 60-80% of the total
traÆc carried on backbone links [65].

Web servers and browsers communicate using the Hyper Text Transfer Protocol
(HTTP) [8, 22]. HTTP is a generic, stateless, object oriented protocol, that, among
other things, allows clients to request a speci�c �le from a Web server. On the
Internet, HTTP communication generally takes place using the TCP/IP protocol
suite. Figure 1.1 illustrates how Web servers and browsers are connected to the
Internet. A client requests a Web page from a server by sending a HTTP request
to the server. The request is transferred to the server through network links that
are shared equally among all hosts on the network.

The Internet protocol (IP) [58, 63] provides a connectionless delivery service for
transmitting blocks of data as packets from sources to destinations on a unreliable
network. This means that IP provides the limited but important functionality of
allowing segments of data to be sent from one host to another independent of the
properties of the physical transmission links.

The Transmission Control Protocol (TCP) [34, 63, 2] builds on IPs delivery
service by allowing applications to establish a reliable virtual-circuit between two
hosts on the Internet, also referred to as a TCP connection. Once a TCP connection
is established, the data sent between the hosts is guaranteed delivery, meaning that
ordering of packet and retransmission of lost packets is transparent both to the
application sending the data, but also to the one receiving. This service is exactly
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2 CHAPTER 1. INTRODUCTION

what the majority of applications using the Internet requires, and as a result TCP
is by far the most dominating transport protocol used on the Internet today.

The functionality of TCP is much more far reaching than establishing a reliable
connection between two hosts on the Internet. As described, links on the Internet
are shared among all hosts on the network. Consequently the cumulative traÆc
load generated by the hosts can exceed the capacity of a link in the network which
is referred to as the link becoming congested. TCP implements algorithms for
congestion avoidance that dynamically control the sending rate such that it matches
the bandwidths available on the path from the sender to the receiver. Congestion
avoidance is extremely important in packet switched networks, because it provides
the mechanism for preserving the bandwidth and essentially avoiding congestion
meltdown [34] during high loads. We return to the TCP congestion avoidance
mechanism in Section 1.3.

When a �le is transferred between a Web server and a browser using HTTP
over TCP/IP, then �rst of all a virtual connection is established between the two
hosts. The �le is then broken into smaller segments of data that can be transferred
in a separate packets. Each packet consists of a TCP/IP protocol header and a
payload with a segment of the �le being transferred. The TCP header contains
information such as which virtual connection the packet belongs to and how the
payload is positioned relative to the payloads of other packets, such that the �le
later can be reassembled. The IP header contains information such as the source
and destination address of a packet.

The stream of packets produced by a TCP connection is referred to as a 
ow.
TCP 
ows are all treated equally in the network and expected to be well behaved,
that is, conform to the TCP protocol speci�cations [2].

The general behavior of traÆc on Internet links has been subject to much study,
see among others [35, 10, 38, 13, 40, 19]. The interest lies in providing models
of traÆc that can be used for designing experiments in which new protocols or
algorithms can be tested. A central result from these studies of traÆc behavior is
that the traÆc generated by the Web shows evidence of probabilistic fractal like
behavior [12]. Probabilistic fractal like behavior describes a packet arrival process
that is highly 
uctuating and unpredictive independent of the timescale at which
it is viewed. Such an arrival process can have a negative impact on the network
performance, because bursts of traÆc can cause periods of congestion even though
the general load on the network is low.

Browser Client

Link
Link

Web Server

Internet

IP

TCP

HTTP

Header
TCP/IP Payload

Packet

TCP Protocol Suite

Figure 1.1: Internet Connection: A Web server and a browsing client are con-
nected to the Internet through physical links. Each host has a pro-
tocol suite for communicating and data is transmitted as packets.



1.2. ROUTERS 3

1.2 Routers

Routers are computers that connect to more than one network, and that provides a
gateway through which packets can be routed between networks. Internet routers
are store and forward routers where packets are stored in a bu�er for the designated
outgoing link until bandwidth becomes available on the link and the packet can be
forwarded. Using this technique, routers have the ability to move packets from one
network to another independent of transmission properties of the networks such as
di�erent delay and bandwidth properties. For instance, routers can move packets
between a network with a 100Mbps Ethernet link and a network with a 56Kbps
modem link.

This 
exibility of store and forward routers, in combination with TCP conges-
tion avoidance algorithms, provides a very strong technology for building networks
consisting of di�erent transmission technologies. However, this also means that the
router may become a bottleneck in a transmission between hosts on the network.

A router, see Figure 1.2, consists of a number of network interface cards (NICs),
these cards receive and send packets on their respective networks. To each NIC there
is an associated bu�er for outbound traÆc. Traditionally this bu�er is managed
using First Come First Serve (FCFS) scheduling. If the bu�er over
ows, then
arriving packets will be dropped. This combination of FCFS bu�er scheduling and
drop selection is generally referred to as tail-drop queueing.

Tail−Drop

Tail−Drop

Network
Interface

Network
Interface

Router

FCFS

FCFS

Figure 1.2: An Internet Router.

The idea of RED and other active queue management (AQM) mechanisms is to
modify the tail-drop mechanism. The modi�cation is done by adding an algorithm
for selecting which packets are dropped and which packets are bu�ered. This is
illustrated in Figure 1.3. Compared to tail-drop queuing, adding an active queue
management algorithm allows us to improve the overall performance in the network
by adding a speci�c algorithm for selecting which packets should be dropped and
when.

AQM

Active Queue Management

FCFS

Figure 1.3: A Bu�er with Active Queue Management.
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1.3 Congestion Avoidance

TCP congestion avoidance is a protocol mechanism that preserves bandwidth by
continuously adjusting the transmission rate based on feedback from the network.
In the following we give an informal introduction to TCP congestion avoidance
principles, while we refer to [34, 63] for a detailed descriptions.

A packet sent to a receiver carries a sequence number which uniquely places the
packet within a 
ow. Upon reception of a packet the receiver acknowledges the re-
ceived packet by sending an acknowledgement back to the sender with the sequence
number of the received packet. Therefore, if an acknowledgement is missing, the
sender times out, and interprets this as a packet drop. Packet drops are interpreted
as an indication of congestion, and TCP reacts to this by reducing the rate at which
packets are injected into the network.

The transmission rate of a TCP sender is controlled using the sliding window
protocol [63]. The sliding window protocol works by only allowing a sender to have
a \window" of data in the network at any time. Then as acknowledgements arrive
from the receiver, indicating that the data has been received, the window slides
forward and the sender can send more data. By changing the size of the window
we can either decrease or increase the sending rate.

TCP congestion avoidance mechanism continuously changes the size of the con-
gestion window of TCP based on the stream of acknowledgements and detections
of packet loss. This continuous adjustment of the transmission rate ensures that
the sender receives the highest possible amount of bandwidth, while allowing the
bandwidth to be shared almost equally between a changing number of 
ows.

To be more exact, the congestion avoidance mechanism is a mix between three
mechanisms: 1) Slow Start, 2) Additive Increase Multiplicative Decrease (AIMD),
and 3) retransmission timers.

Slow start is used during the initial phase of a connection for quickly probing the
network for the amount of bandwidth available for the transfer. Once the connection
passes the initial slow start phase then AIMD is used. Here the sender continues to
send at a steady rate additively increasing the size of the transmission window until
congestion is detected. When congestion is detected then the transmission window
is multiplicatively decreased i.e. cut in half, thus reducing the transmission rate.
This reduction in the transmission is referred to as TCP \backing o�".

The retransmission timer algorithm describes the timeout period from when
packet is sent until the sender interprets a missing acknowledgement as a packet
drop. However drop detection based on retransmission timeout is not very eÆcient
due to the necessary conservative estimation of the propagation delay. Therefore,
TCP has been extended with a fast retransmit/recovery mechanism [2]: If a receiver
receives a packet with an out of order sequence number, then instead of sending a
new acknowledgement, the receiver sends a duplicate of the previous acknowledge-
ment. If the sender receives three or more duplicate acknowledgements, then it is
interpreted as an indication that the packet following the multiple acknowledged
packet has been lost. As in the case of loss detection by timeout, the sender will
reduce its transmission rate and retransmit the lost segment.

1.4 Random Early Detection

The principle goal of Random Early Detection (RED) is to act as a congestion
avoidance mechanism. In practice the idea is to replace the traditional tail-drop
queuing mechanism with a more complex mechanism that supports the TCP con-
gestion avoidance mechanisms, such that periods of congestion on routers can be
avoided or the duration reduced.
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The operation of RED is illustrated in Figure 1.4. RED uses a weighted average
queue length that is computed from samples of the bu�ers instantaneous queue size
(qlen) at each packet arrival. Figure 1.4 shows how RED reacts slowly to changes
in the bu�er utilization by showing both the weighted queue length (wqlen) and the
instantaneous queue length. Therefore, a burst of packets need to be of a certain
duration before the weighted average queue length changes signi�cantly.

Based on the weighted average queue size RED operates in three di�erent modes:
If wqlen is below the minimum threshold (minth) then no packets are dropped, if
above the maximum threshold (maxth) the router drops all arriving packets (force-
drop mode). When wqlen is between the thresholds packets are dropped prob-
abilistically (early-drop mode). In early-drop mode packets are dropped with a
probability between 0 and a maximum drop probability. The drop probability is a
function of the weighted average queue size and the number of packets that have
been forwarded since the last drop, thus ensuring that the packet drops are uni-
formly distributed.

Returning to Figure 1.4, we see that during the entire period, packet drops are
all early drops even though there are periods, where the instantaneous queue length
increases above the maximum threshold.
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Figure 1.4: Illustration of RED in operation.

There are several advantages of using this drop scheme compared to tail-drop
queuing. First of all, 
ows will be a�ected proportionally to the amount of band-
width they use, thus high bandwidth 
ows are more likely to receive congestion
noti�cations than low bandwidth 
ows. Furthermore, the mechanism maintains a
lower average queue size than the traditional tail-drop management, it avoids lock-
out where a 
ow can monopolize the bandwidth, and avoids repeated penalization
of the same 
ow when a burst arrives [29, 9]

RED has been implemented in routers and tested through numerous experi-
ments [9]. Therefore [9] recommends that RED should be widely deployed, based
on the argument that all empirical evidence shows that there are seemingly no
disadvantages in using RED and numerous advantages. However, RED adds com-
plexity to the issue of �ne tuning a network for good performance. Selecting a
queue length parameter that ensures optimal performance with tail-drop queuing
is already a diÆcult task. REDs additional four parameters signi�cantly increases
the complexity of tuning, even though guidelines exist [25].
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1.5 Thesis

In this dissertation we address the problem of determining the impact of using RED
on Internet routers. We do this by asking the question: How will RED e�ect HTTP
response times and can RED be tuned to optimize these?.

We have selected Web traÆc because this is the single most popular class of
traÆc on the Internet today using 60-80% of the total bandwidth on Internet back-
bones [65]. Browsing the Web is a highly interactive application where users follow
hyperlinks and expect a fairly immediate response. This makes response times
central for the users experience, and should therefore be of signi�cant interest to
Internet Service Providers that run networks carrying Web traÆc.

We have chosen to evaluate the RED mechanism because it was suggested for
deployment in the RED manifesto [9], and because it is already supported in much
router software.

We approach this question by performing an empirical study. The experiments
are done in a network where we are able to model a typical scenario in which a
router operates and become a bottleneck. Web traÆc is generated using a well
understood and accepted empirical model of the traÆc generated by users browsing
the Web. Based on this we are able reproduce the dynamic behavior of protocols in
a closed environment and thus able to study the e�ect of using RED under di�erent
conditions and con�gured with di�erent parameter settings.

1.6 Overview

In Chapter 2 on page 7 we study background and related work of the topic of
this dissertation. We especially study the motivation behind developing RED, and
the methods used for evaluating both RED and other active queue management
mechanisms. An important aspect in our methodology is traÆc generation. We
address the issue of generating a realistic traÆc load in Chapter 3 on page 25. We
argue that realistic traÆc generation is important and describe previous work on
the topic. Furthermore, we describe the model of Web traÆc that we have used
along with the implementation of our traÆc generator. Finally, we show the results
of testing the behavior of the traÆc generator. In Chapter 4 on page 49 we go into
detail of describing the experimental network used for the evaluations, the procedure
for running experiments, and the method we use for comparing experimental results.
Chapter 5 on page 59 is the primary result chapter. In this we describe the results
of comparing the performance between RED and tail-drop queuing. The overall
comparison is followed by a further analysis of RED response times, thus providing
an insight on the factors causing the measured changes in performance. In Chapter 7
on page 87 we discuss the consequence of the analysis presented in this thesis and
potential further work.



Chapter 2

Background

We start this chapter with a section describing RED including the motivation for
developing RED, the algorithm, the parameters, and so forth. This is followed by
an introduction of the di�erent approaches used in the literature for evaluating the
e�ects of using active queue management.

We conclude that RED adds additional complexity to tuning Internet routers.
Furthermore, there is no empirical evidence displaying the impact that RED has
on Web traÆc response times, or studies of how to choose parameter settings on
routers carrying Web like traÆc.

2.1 Random early detection

RED was originally described by Floyd and Jacobson in [28] and was later recom-
mended for deployment on Internet routers in [9], with expectations that it would
bene�t the overall performance or at least not have any negative e�ects on perfor-
mance:

\All available empirical evidence shows that the deployment of active
queue management mechanisms in the Internet would have substantial
performance bene�ts. There are seemingly no disadvantages to using the
RED algorithm, and numerous advantages. Consequently, we believe
that the RED active queue management algorithm should be widely
deployed.

We should note that there are some extreme scenarios for which RED
will not be a cure, although it won't hurt and may still help. An example
of such a scenario would be a very large number of 
ows, each so tiny
that its fair share would be less than a single packet per round trip
time. [9]"

In the following we describe the general motivation and ambition of designing
and deploying RED on the Internet, then we describe the algorithm.

2.1.1 Motivation

The primary motivation for developing RED is to provide a router based mechanism
for congestion avoidance. Congestion control of Internet traÆc is implemented by
TCP implementations on the hosts on the edge of the network. However, the
hosts have very limited information regarding the general state of the network and
therefore has limited information for choosing an appropriate sending rate. The
router on the other hand, has very precise knowledge about its state. By developing

7
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active queue mechanisms it may be possible to propagate this knowledge to the
hosts by dropping packets early. Essentially this may improve the general ability
to choose a suitable sending rate and thus avoid congestion.

The idea was originally proposed by Van Jacobson in 1989 [43], and more re-
cently it has gained momentum resulting in the RED manifesto [9] which recom-
mends widespread deployment of RED on Internet routers. Additional motivation
for developing RED was the problems observed with tail-drop queue management,
these include:

1. Full Queues,

2. global synchronization, and

3. bias against bursty traÆc.

In the following sections we take a closer look at each of the problems observed with
using the traditional tail-drop queuing mechanism.

Full Queues

Studies of Internet traÆc shows that the packet arrival process is bursty [38, 68, 13].
This means that routers need to be designed for handling bursty traÆc by actively
avoiding congestion and delays of packets. The bursty traÆc causes the full queues
problem which a�ects the performance with tail-drop queue management [9]. Tail-
drop has no method for limiting the amount of bu�er space being used in the queue.
Therefore, it is possible for the mechanism to maintain a full (or, almost full) status
for long periods of time. If the queue is full or almost full, an arriving burst will
cause multiple packets to be dropped.

Multiple packet drops can cause underutilization of the network because multiple
drops may cause many hosts to reduce their transmission rates simultaneously. Also,
dropping multiple packets may punish bursty 
ows harder then other 
ows and thus
breaking goal of fairness among 
ows.

Another e�ect of the full queues problem is that by allowing the queue to grow
large, the average queue size increases, which again causes an additional delay of
packets traversing the router [9]. If the queue management mechanism can control
the amount of bu�er space used, without increasing the total number of packet
drops, then the mechanism reduces the overall propagation delay of packets traveling
through the router. Thus, the queuing mechanism will provide lower delays which
are important for interactive services like the Web.

Global Synchronization

Global synchronization describes the situation where hosts on a network uninten-
tionally become synchronized. The synchronization e�ect can occur at di�erent
levels of network: protocols can become synchronized by reacting to observed be-
havior simultaneously, and applications can become synchronized.

At the application level, paper [30] studies the e�ects of periodic routing mes-
sages and shows that synchronization e�ects can be avoided by adding a small delay
of random size to the routing timer intervals.

Zhang et al. studies and example of synchronization at protocol level is studied
in [70]. This case shows that TCP window increase/decrease cycles of separate TCP
connections sharing a common bottleneck router using drop tail queue management.
The synchronization e�ect arises when the router is congested for some period and
a sequence of packets arriving at the router is dropped. This causes all 
ows to
detect congestion and thus their window increase/decrease cycles can become syn-
chronized. Overall global synchronization cause the traÆc in a network to become
more bursty, which has a negative impact on the performance in a network.
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Bias against bursty traÆc

Floyd et al. [28] studies the bias against bursty traÆc when using tail-drop queuing
on routers. The study uses simulations to study traÆc phase e�ects in networks
with highly periodic traÆc and deterministic routers. The conclusion is that traÆc
phase e�ects, combined with the use of tail-drop queuing on routers can result in
systematic discrimination against a particular 
ow. To understand this we need to
describe the traÆc phase e�ect.

Consider a simple network with a single router through which a sender makes a
bulk transfer to a receiver. The packets from the sender are all of equal size and sent
at a �xed frequency. The network pipe is completely full, meaning that all bu�ers
on the path from the sender to the receiver are full. Consequently all packets have
the same transfer time, thus keeping the system in a stable state. The phase is
the time in which there is space available in the bu�ers of the routers between the
departure of on packet and the arrival of the next. Figure 2.1 illustrates the phase
by describing the router as two parallel processes arrival and departure in a message
sequence chart. The arrival processes experience a number of arrival events when
packets arrive, likewise the departure process have departure events when packets
depart from the router bu�er. When the bu�er is full or can contain only one
packet, then send and receive are mutually related. An arrival is always followed by
a departure, and a departure is always followed by an arrival, as illustrated by the
arrows. The phase is the time during which the router is able to accept an arrive
event

Arrival Departure

Phase

Buffer
Full

time time

Depart

Arrive

Arrive

Depart

Figure 2.1: The TraÆc Phase E�ect.

Now consider adding a non periodic transfer, such as a telnet connection that
can be characterized by a Poisson probability distribution [28]. The packets from
the telnet connection will only be allowed in the bu�er if they arrive within the
phase, otherwise they will be dropped. If the phase is small, the telnet connection
may be completely shut out. In contrast, if the phase is large, the telnet connection
may always get preference. This e�ect is referred to as the traÆc phase e�ect.

2.1.2 The Algorithm

The RED algorithm [29] consists of two main parts. The �rst part estimates the
burstiness of the traÆc by maintaining a weighted average queue size. The second
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part takes the packet drop decision based on the weighted average queue size and
the number of packets processed since the previous drop.

Calculation of the weighted average queue size (avg) is done using a low-pass
�lter which is an exponential moving average (EWMA). This essentially means that
avg only changes when changes in the queue size have a certain duration:

avg  (1� wq)avg + wq � q; where 0 < wq � 1 (2.1)

where q is the instantaneous queue size, and wq is the weight. If wq = 1, then avg
corresponds to the instantaneous queue size.

Periods may occur where the router is idle, i.e. the queue is empty. When a
packet arrives to an empty queue, the idle period is taken into account. This is
done by estimating the number of packets (m) that might have been transmitted
since the queue became empty, and using that estimate for estimating the average
queue size.

m  (time� qtime)=s (2.2)

avg  (1� wq)
m � avg (2.3)

where time is the current time, and qtime is start of the queue idle time. s is a
typical transmission time for a small packet.

RED operates in three di�erent packet drop modes depending on the value of
the weighted average queue size compared to the threshold valuesminth andmaxth.
If the weighted average queue size lies below minth, no packets are dropped. If avg
lies above maxth then all arriving packets are dropped. When avg lies between the
two thresholds, RED drops packets probabilistically. The packets dropped while in
this mode are referred to as early drops, while packets dropped while avg > maxth
are referred to as force drops.

The drop probability of packets, while in early drop mode, is described by pb
and pa. The probability pb increases linearly from 0 to maxp as a function of the
weighted average queue size:

pb  maxp(avg �minth)=(maxth �minth) (2.4)

where maxp describes the maximum drop probability and (minth � avg < maxth).
The drop probability pa increases as a function of pb and the number count of
packets that has arrived since the previous drop:

pa  pb=(1� count � pb); (2.5)

where count < 1=pb. Inclusion of count in the drop probability calculation ensures
that packet drops are close to a uniform distribution.

In early drop mode, 
ows are expected to experience packet drops roughly pro-
portional to the share of the bandwidth being used at the router, simply because
sending a higher number of packets through the router increases the chance of expe-
riencing a packet drop due to the uniform distribution of drops. Furthermore, evenly
distributing the packet drops may help avoid global synchronization e�ects where
many senders reduce their windows simultaneously, thus increasing the burstiness
of the traÆc.

It is expected that RED removes the bias against 
ows that send traÆc in
bursts. A traditional tail-drop queuing mechanism may over
ow when a burst of
traÆc arrives, resulting in a large percentage of the packets in the burst being
dropped. RED, on the other hand, will try to absorb the burst, and avoid dropping
a sequence of packets. However, these advances are removed if the mechanism is
pushed into force drop mode too often.

To complete the description of the RED algorithm we have included a detailed
description of the algorithm in Figure 2.1.2.
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Saved Variables:
avg : average queue size
qtime: start of the queue idle time
count : packets since last dropped packet

Fixed Parameters:
wq : queue weight
minth: minimum threshold
maxth: maximum threshold
maxp: maximum drop probability
s: is a typical transmission time for a small packet

Other:
q: current queue size
time: current time

Initialization:
avg  0
count  �1

for each packet arrival
calculate the new weighted average queue size avg :
if the queue is nonempty then
avg  (1� wq)avg + wqq

else
m (time� qtime)=s
avg  (1� wq)

mavg
if (minth � avg < maxth) then
increment count
calculate packet drop probability pa:
pb  maxp(avg �minth)=(maxth �minth)
pa  pb=(1� count � pb)

with probability pa:
drop the arriving packet
count  0

else if (maxth � avg) then
drop the arriving packet
count  0

else
count  �1

when queue becomes empty
qtime  time

Figure 2.2: Detailed describing the RED algorithm[29].
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2.1.3 Parameters

From our description of RED we can see that one has to choose several parameters
for a RED router. These are the weight, wq , the thresholds minth and maxth, the
maximum drop probability maxp, and additionally the total amount of bu�er space
allocated for the algorithm, which was not mentioned in the description of RED.
Guidelines exists for setting the parameters and can be found in [25].

In the following we discuss the e�ect of each of these parameters.

The weight (wq)

The weight is the key parameter for setting the sensitivity or responsiveness of RED
to changes in the traÆc behavior. If wq is set too large, then RED may react too
fast to transient bursts of traÆc, and thus not �lter out transient congestion at the
router. If wq is too small, then the weighted average queue length may not re
ect
the current average queue size, and RED will not be able to detect congestion early.
The recommended value of wq is 1=500.

Figure 2.3 shows the e�ect of changing wq from 1=500 to 1=100 on a 10Mbps
link. From the plot we can see that using a high wq value increases the speed at
which the algorithm reacts to changes in the instantaneous queue size. However,
changing between di�erent values of wq may not have an impact on the overall
number of packets being dropped by the router. The question is rather when to
react to congestion and for how long. This is illustrated in the �gure where we can
see that a small wq value causes RED to operate between the two thresholds during
the entire period, and that a larger value changes the weighted average queue length
to values outside the threshold window.
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Figure 2.3: Two plots showing the e�ect of wq on the weighted average queue
length.

Thresholds

The threshold values bound the desired average queue size. When the weighted av-
erage queue size reaches the level of minth, RED actively signals congestion thereby
trying to limit the queue size. In [25] a general rule is stated that one should choose
a low value of minth if possible. However, if the traÆc is bursty, one should choose
a higher value allowing space for bursts of traÆc. maxth should be several times
larger then minth, so that the window between the two thresholds is large enough
for RED to operate. The guidelines for tuning RED says that maxth should be two
to three times larger then minth.
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The optimal setting of the threshold values is mainly a function of link speed and
propagation delay. A 10Mbps router is able to forward approximately 1000 packets
per second with an average packet size around 1KB. For instance, if the average
queue size is 20 packets, the average delay is 20ms per packet. Over short distances
20ms may be a signi�cant contribution to the propagation delay, where as in other
situations 20ms may be an almost negligible contribution to the propagation delay.
Therefore there is no simple way to choose optimal threshold values.

Maximum drop probability (maxp)

maxp describes how aggressively RED should respond with packet drops while op-
erating between the threshold watermarks. The problem of choosing a good maxp
value is that it is highly dependent on the number of 
ows sharing the bandwidth
of the router. It has been shown that the optimal maxp setting increases as the
number of simultaneous 
ows on the router increases [21], thus making it a diÆcult
parameter to choose. A small maxp value may cause the RED algorithm to deteri-
orate to a tail-drop algorithm where the majority of drops occur when the weighted
average queue size reaches maxth, on the other hand too high a value may force the
average queue size to be lower then the intended or even cause underutilization of
the link. The general guidelines [25] for con�guring RED suggests a value of 0:1.

Parameter dependence

Con�guring the parameters of the RED algorithm is made diÆcult by the depen-
dency between parameters. All the parameters e�ects the drop probability function
pb in some way. This is illustrated in Figure 2.4 which shows the drop probability pb
as a function of avg . It is clear that changing any of the parameters maxp, minth,
and maxth will e�ect the drop probability described by the function pb. The pa-
rameter wq , not shown, implicitly a�ects pb by having a signi�cant impact on the
value of the weighted average queue size.

Weighted Queue Length

100%

0%

Drop probability (pb)

minth maxth

maxp

Figure 2.4: RED drop probability dependence on parameters.

2.1.4 Aggressive 
ows

Fairness among 
ows is an important issue of the Internet. Floyd and Jacobson
argue that RED increases fairness among 
ows compared to tail-drop queuing, by
removing the bias against 
ows that transmit data in bursts. However, fairness
among 
ows in strict sense it supported neither by tail-drop nor RED because this
requires per 
ow scheduling such as Fair Queuing [16].
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One problem is fairness among TCP 
ows that all implement the TCP conges-
tion control algorithms correctly. Another problem is fairness among 
ows when
some of the 
ows do not react to congestion in a TCP conformant manner. A confor-
mant 
ow is responsive to congestion noti�cation, and uses in steady-state no more
bandwidth than a conformant TCP 
ow running under comparable conditions [9].

Applications that typically produce non-conformant traÆc are multimedia ap-
plications. The 
ows that carry sound or video have requirements di�erent from
traditional TCP 
ows. That is, they may react to congestion, but react di�erently
from traditional TCP 
ows [54]. Consequently these 
ows are not conformant in the
strict sense and thus may impact the fairness between 
ows. Because this segment
of traÆc is growing, it is important to address the fairness issues before it becomes
a dominant problem. Another type of non-conformant traÆc is TCP implementa-
tions that react more aggressively to congestion than what is de�ned in the TCP
standard [2]. For instance an aggressive TCP implementation ignore congestion
signals by refusing to reduce the transmission rate.

TraÆc not responding to congestion signals is considered a real threat to the
Internet, because these 
ows can cause a signi�cant reduction in the performance of
conformant traÆc. The problem is that tail-drop or RED queue management does
not have a mechanism for isolating conformant from non-conformant traÆc. Thus,
if a router becomes congested, packets are dropped from both conformant and non-
conformant traÆc. The conformant traÆc will reduce the transmission rate, while
the non-conformant traÆc continues without changing the transmission rate. This
causes the non-conformant traÆc to use more than its fair share of bandwidth.

Much research has gone into developing mechanisms that protect TCP confor-
mant traÆc from non-conformant traÆc. The paper [39] describes 
ow random
early drop (FRED). FRED is derived from RED but has limits on the minimum
and maximum number of packets each 
ow can have in the queue. Furthermore, it
has a variable for each 
ow that counts the number of times the 
ow has failed to
respond to congestion noti�cation, such that these 
ows can be penalized. Similar
mechanisms are described in [3, 53].

Parris [54] has developed the \class based thresholds" (CBT) mechanism. It
is also derived from RED. Instead of operating with a single pair of thresholds,
CBT has a separate set of thresholds for non-conformant traÆc. These thresholds
are typically set lower than the thresholds for TCP conformant traÆc, thus only
allowing the non-conformant traÆc to use some smaller amounts of bu�er space
in the queue. This mechanism di�ers from FRED because it expects the non-
conformant traÆc to be identi�able either by a marker in the packet header or
simply by the protocol.

Another approach is to use scheduling algorithms. CBQ [31] divides traÆc into
di�erent classes, and applies scheduling to ensure fairness among these classes.

2.1.5 Summary

In summary the primary goal of RED is to serve as a congestion avoidance mech-
anism that can increase the overall performance of the Internet. The increased
performance is gained by increasing the queueing mechanism's ability to absorb
bursts of traÆc thus avoiding packet drops, and by improving interactive service by
reducing the average packet delay on routers. Additionally, RED will increase the
fairness amongst TCP conformant 
ows by removing the traditional bias against
bursty traÆc, and by signalling congestion to 
ows proportionally to the share of
bandwidth used by the 
ow. Finally, RED avoids global synchronization, by avoid-
ing longer periods of congestion signalling.

RED does not provide isolation between conformant and non-conformant traÆc.
However other queuing mechanisms such as FRED and CBT, have proved to be
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e�ective solutions to this problem.
In general RED adds additional complexity to Internet routers. This manifests

itself in the addition of several new parameters for controlling the e�ect of the
algorithm. Even though guidelines exists for parameter tuning [25], the general
understanding of the impact of the parameter settings in an environment with Web
traÆc is limited.

2.2 Related Work

Evaluating the e�ect of using a queueing mechanism is diÆcult due to the dynamic
and complex environment under which it operates. There are two issues to this:
First, does the evaluation model describe an environment well enough to provide
suÆciently accurate results? Second, is the described environment a relevant envi-
ronment?

In the following sections we look closer at how queue management mechanisms
have been evaluated, describing the approach used, and emphasizing interesting
results regarding RED, and particularly RED parameter settings.

2.2.1 The Original Evaluation

The original RED paper [29] demonstrates that RED operates as intended through
four simulations. Each simulation addresses some particular aspect of the func-
tionality that the authors want to examine. In the following we describe these
simulations. This is mainly interesting because the method used for the experi-
ments has been one of the main sources of inspiration when designing tests of other
queueing mechanisms.

The REAL simulator [37] is used for all the simulations. REAL has later become
the basis of the Network Simulator (ns) [46] which is currently the most widely used
simulator for testing and experimenting with networks. Each simulation runs for 1-
10 seconds, under which the queue size on the router is measured along with packet
statistics such as transmission, drop and retransmission times.

In total we present four of the simulations presented in [29]. These can be
summarized as follows:

1. Show that RED is able to control the average queue size in response to a
dynamically changing load,

2. demonstrate that RED has superior performance over tail-drop queuing when
two identical 
ows are competing for bandwidth,

3. study the e�ect of using RED in an environment with heavy congestion, and

4. study how RED treats bursty traÆc sources compared to tail-drop queuing.

The goal with their �rst simulation is to show that RED is able to control the
average queue size at the router in response to a dynamically changing load. This is
done by simulating four FTP 
ows with di�erent bandwidth-delay products sending
traÆc, to a sink placed on a shared bottleneck link, through a RED router. The
topology of the network is shown in Figure 2.5. Flows are started sequentially with
a �xed interval of 0.2s; resulting in a simulation that displays the behavior of RED
as the load increases on the router. As expected, the results show that RED is
successful in controlling the average queue size on the bottleneck router in response
to the dynamically increasing load.

A second simulation demonstrates that RED has superior performance over tail-
drop queueing when two identical 
ows are competing for bandwidth. The topology
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Figure 2.5: Simulation network for the average queue size test: Four FTP
sources each on a separate 100Mbps link and with di�erent round
trip times send data to a sink through a router. The link from the
router to the sink is a 45Mbps link with a 2ms delay.

of the simulation network is shown in Figure 2.6. The traÆc is produced by two
identical FTP 
ows, being transferred on separate 100Mbps, 1ms delay links to a
router. The sink receiving the data from the sources is connected to the router
through a 45Mbps, 20ms delay bottleneck link. The two FTP sources are started
at slightly di�erent times.

The results show that for TCP 
ows with large transmission windows, the ratio
of throughput to delay is higher with RED than with tail-drop queuing. The reason
for this is found to be that tail-drop has to operate with a small queue to ensure low
average delay of packets. This has the e�ect of causing packet drops while the 
ows
are in slow-start, thus reducing throughput. Furthermore, tail-drop is more likely
to drop packets simultaneously potentially causing global synchronization e�ects
and loss of throughput.

The third simulation studies the e�ect of using RED in an environment with
heavy congestion. The traÆc is the result of having many FTP and TELNET 
ows,
each with a small window and a limited amount of data to send. It should be noted
that the authors are not claiming that the traÆc in the simulation is a realistic
traÆc model; they are simply studying RED in a range of environments.

Figure 2.7 shows the topology of the network used in this simulation. It is
somewhat more complex than in the previous simulations. The network allows
congestion to occur in both directions. This is important because this allows for
ack- compression [61, 71] to occur. Ack-compression causes traÆc to become more
bursty. The reason is that each acknowledgement received by the sender allows it
to send another packet. This would normally cause the sender to transmit data at
an even rate as the acknowledgements arrive. However, if bu�ering of packets occur
on the path from the receiver to the sender, the acknowledgements are queued in a



2.2. RELATED WORK 17

Router

Sink

100Mbps

45Mbps

1ms 1ms

20ms

FTP sources

Figure 2.6: Simulation network for the RED and tail-drop comparison: Two
FTP sources with equal round trip times, but on separate 100Mbps
links send data to a sink through a router. The link from the router
to the sink is a 45Mbps link with a 20ms delay.

bu�er. This can potentially cause the acknowledgements to be compressed because
they are forwarded from the router with a shorter interval than when they arrived at
the router. Thus, when a sender receives a series of compressed acknowledgements
the use of the sliding windows protocol, allows it to send a burst of packets. However,
a recent study suggests that ack-compression is in fact a quite rare event [56].

Router Router
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100Mbps 100Mbps

0.5ms

1ms
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1ms
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2ms

Figure 2.7: Simulation network for studying e�ects of heavy congestion.

In this simulation it is demonstrated that RED is able to control the average
queue size with bursty traÆc, caused by ack-compression.

The fourth and �nal simulation in [29] studies how RED treats bursty traÆc
sources compared to tail-drop queuing. The simulations show that RED does not
have the bias against bursty traÆc which tail-drop queue management has.

The topology of the network used in these simulations is shown in Figure 2.8.
The topology in this simulation is quite similar to the one in Figure 2.5. How-
ever, in terms of bandwidth and delay there are signi�cant di�erences. Five traÆc
generators send traÆc through a bottleneck router to the traÆc sink. Four 
ows,
1-4, have the same round-trip times of 1ms and equal maximum window sizes of 12
packets. The �fth 
ow is the bursty 
ow with a longer round trip time of 16ms and
a smaller window of only 8 packets. The small window size and larger delay forces
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the 
ow to send packets in bursts because it has to wait for the acknowledgements
before sending more packets.

2
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Figure 2.8: Network topology used for fairness testing.

The central question studied in this simulation is to see how much bandwidth
the bursty traÆc source is allowed to use as a function of the amount of bu�erspace
allocated on the bottleneck router. To study this a series of simulations with tail-
drop queue management and with RED was run. In each of these series the bu�er
size on the bottleneck router was increased.

These results shows that with RED, the �fth 
ow is allowed to send at its
maximum possible transmission rate independent of the the threshold values of the
RED queuing mechanism. With tail-drop the bu�er has to be quite large before
the �fth 
ow is allowed to send at its maximum transmission rate. The reason is
that the �fth 
ow receives a large percentage of the packet drops on the routers and
only a small amount of bandwidth.

Floyd and Fall [26] has later repeated some of these simulations using ns [46]
with similar results. Furthermore, Floyd also included random drop [42] in the
simulation testing for bias against bursty traÆc. The results of these experiments
show that routers using random drop also has a bias against bursty sources, and
thus perform similarly to tail-drop.

In general, these simulations show that RED works as expected in some speci�c
scenarios. Furthermore, the simulations has supported the choice of recommended
parameter settings for RED. However, providing little evidence to the impact RED
will have in a setting with a more realistic traÆc load.

2.2.2 An Empirical Evaluation

Villamizar and Song report experience with RED in a series of experiments on a
Wide-Area network [66]. The overall goal with the study is to demonstrate e�ects of
queuing capacity, and to quantify queuing capacity requirements. As an additional
aspect they have included the use of RED in the study.

In general the study shows the importance of providing adequate bu�er space
and large transmission windows in high speed networks. With regard to RED, the
study shows that RED slightly increases the overall throughput in the network.
However more importantly, it was shown that RED can be used for removing po-
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tential congestion collapse due to oversized transmission windows, that exceed the
storage capacity of the network.

The test network used was an unchannelized DS3 network consisting of FDDI
rings and DS3 circuits that resemble the equipment used in NSFNET and ANSNET.
Two paths through the network are used. The �rst runs on a fairly direct path
between New York and Michigan providing a WAN with a 20ms round trip time.
The second path also runs between New York and Michigan, but via Texas,with a
total round trip time of 68ms.

The primary bottleneck on the paths is the �rst DS3 circuit. Experiments
are done with two di�erent bu�er sizes and with both tail-drop and RED queue
management.

TraÆc in these experiments consists of 1, 4, or 8 
ows sharing the bandwidth.
The assumption is that these cases are likely to be far more bursty than aggregations
of very large numbers of slower TCP 
ows. Furthermore, these cases constitute
worst case situations which may arise if supercomputer centers are encouraged to
make use of high bandwidth applications.

The 
ows are tuned to provide the highest possible throughput by allowing a
maximum transmission window size up to 512KB. Furthermore, a series of exper-
iments were done with a reverse traÆc 
ow. This forces ack-compression of the
forward data 
ow, and thus more bursty traÆc, because the reverse traÆc 
ow
causes packets to be queued at routers.

A very important result in this paper is that RED seems to be able to remove
the performance tuning dilemma of choosing a good maximum transmission window
size. The problem is that to achieve maximum throughput for a given 
ow, one
must choose a window size large enough to keep the 
ow active, and small enough to
avoid injecting too many packet into the network. More precisely, the window size
should be equal to the bandwidth-delay product or equal to the queuing capacity of
the network. If the window becomes too large, congestion will occur, and as demon-
strated in the paper, this can have a very signi�cant impact on the performance of
high bandwidth 
ows.

The reason for the severe performance degradation seen in the paper is that con-
gestion in a network with traditional tail-drop queuing will cause longer sequences
of packet drops, e.g. sequences where dropped packets are not retransmitted before
the next drop occurs. This causes TCP to recover using retransmission timeout
instead of fast retransmit. However, it is found that when using RED, congestion
is signalled in such a manner that 
ows generally recover from congestion using
fast retransmit. Thus, the danger of choosing too large transmission windows is
removed.

Another important result is that if queuing capacity is inadequate at some bot-
tleneck, then this will limit the bandwidth utilization. At higher loads they found
a greater tendency toward degradation or what is referred to as a mild congestion
collapse. In general it was found that routers should have queueing capacity of
more than 1-2 times the bandwidth-delay product. RED was found to be helpful
for reducing the queue utilization, especially for a larger number of 
ows, but could
not compensate for inadequate queuing capacity.

2.2.3 Alternative Queuing Mechanisms

Several alternatives to the RED mechanism have been suggested in the literature:

ow random early drop (FRED) [39], Balanced RED (BRED) [3], BLUE [20], Sta-
bilized RED (SRED) [53], and Adaptive RED [21]. Some of these focus on issues
related to aggressive 
ows, while others suggest optimizations or alternative ap-
proaches to handling the congestion avoidance problem. Our interest here is not on
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these speci�c algorithms, but on how they have been evaluated and whether any
speci�c results regarding RED have been reached.

FRED

The motivation for developing 
ow based RED (FRED) [39] is found in a series of
simulations that display down sides of the RED mechanism using simulations that
closely resemble those from the original RED paper, see Section 2.2.1.

The �rst simulation use a network topology similar to the topology used in [29]
for studying REDs ability to avoid bias against a bursty traÆc source, see Figure 2.8.
Four high bandwidth and low delay 
ows share a bottleneck link with a �fth and
fragile 
ow that has a higher per packet delay and less bandwidth. Measurements
taken during these simulations show that RED managed to keep the packet drop
distribution proportional to the bandwidth distribution, but that the bandwidth
capacity of the bottleneck link is not shared fairly among the 
ows. Therefore,
dropping packets proportional to the resource consumption does not lead to fair
sharing of bandwidth.

The second simulation studies how the fragile 
ow is punished when competing
with four non-fragile 
ows. This is done by �rst letting the fragile 
ow run without
the competing traÆc, showing that the fragile 
ow can consume up to 39% of the
bottleneck bandwidth. Repeating the simulation again, now with the competing
traÆc, shows that the fragile 
ow is unable to obtain its 20% share of the bottleneck
bandwidth.

In total, these simulations demonstrate that RED does not provide fairness
among competing 
ows, even though packets are being dropped proportional to the
resource usage.

BLUE and Adaptive RED

BLUE [20] and adaptive RED [21] are both suggestions for replacements of RED
for congestion avoidance. Both mechanisms are suggested by the same authors.

The BLUE mechanism [20] is compared with RED through a number of simula-
tions where the RED weight parameter wq is evaluated. The particular interesting
aspect is that the traÆc in this study consists of 1000 to 4000 traÆc sources that
generate traÆc with Pareto on/o� periods1. Consequently this might provide clues
to the behavior in an environment with web like traÆc. However, since the test uses
Explicit Congestion Noti�cation (ECN) [24] where packets are marked instead of
dropped, this study is not directly comparable with evaluations using packet drops.

Simulations in [21] studies the impact of the maximum drop probability maxp
of RED on the drop rate compared to tail-drop queuing. The simulation setup is
again that a number of traÆc sources send traÆc to a sink through a bottleneck
router. The traÆc consists of either 32 or 64 concurrent TCP 
ows sending to the
sink.

The simulations lead to the observation that RED has marginal impact on the
number of packet drops. By �ne tuning the maxp value, the drop rate can be
reduced with up to 0.5% compared to tail-drop queuing. However, choosing too
small a value leads to loss rates close to those experienced with tail-drop, and
choosing larger values of maxp leads to a increase of up to 2% in the packet loss
rate.

Additionally, the simulations show that the optimal value of maxp is a function
of the number of 
ows carried by the router. This means that for the optimal maxp
value for 32 
ows was slightly smaller than the optimal value for 64 
ows. The
optimal maxp values varies around 1=10.

1The Parato distribution is a heavy-tailed distribution, see also Section 3.2 on page 26.
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A general argument is made that the e�ectiveness of RED decreases as the
number of 
ows sharing the queue increases. This is because the proportion of 
ows
that actually receive and act on RED-induced congestion indications is reduced, as
the number of 
ows sharing the queue increases.

Stabilized RED (SRED)

SRED [53] is compared to the performance of RED through two main simulations.
The �rst simulation studies bu�er occupancy with 10-1000 persistent 
ows sending
through a 45Mbps bottleneck link. The key observation from this simulation is that
the bu�er occupancy of RED increases with the number of 
ows sharing the link.
This means that with a small number of 
ows the bu�er utilization is at or below
minimum threshold, while with a large number of 
ows, it stabilizes around the
maximum threshold.

Another set of simulations use a more realistic traÆc model to compare the
performance of SRED and RED. The traÆc model used here is derived by Neid-
hardt [50], and is based on the data generated by Web access of students at Boston
University [12]. The model consists of two distributions: a �le size distribution
that describes the �le sizes of retrieved Web objects, and a think time distribution
that describes the time between transfers. Between each transfer the 
ow is forced
into slow start thus modeling the behavior of HTTP 1.0, where each Web object is
transferred by a separate 
ow. To increase the traÆc load produced by the model
the think times are divided by 10.

From the simulations with the more realistic traÆc model only measurements
of bu�er occupancy is reported. These measurements show that bu�er occupation
tends to stabilize around the maximum threshold for larger number of active 
ows.

2.2.4 Analytical Evaluation

There are only a few evaluations that solely focus on evaluating the impact of
using RED. However, Martin May et al. has published two: an analytic and an
empirical evaluation. We �rst look closer at the analytic evaluation [45] and then
the empirical [44].

The analytical evaluation compares the performance between RED and tail-drop
queueing. The analysis quanti�es how RED in
uences the packet loss rate under
traÆc conditions with mixes of bursty (TCP) and smooth (UDP) traÆc. The focus
is especially on patterns of consecutive loss, mean delay, and delay jitter of packets.

The results from their analysis was validated through simulation using ns [46].
The network used in the simulation consists of a bottleneck router that feeds a
10Mbps link, receiving traÆc from several 100Mbps links. The traÆc consists of
over 10-300 simultaneous 
ows. To introduce burstiness in the traÆc the di�erent

ows experience di�erent round trip times ranging from 120ms to 220ms. UDP
traÆc is also generated. This traÆc is sent at a constant bit rate, consuming 10%
of the bottleneck bandwidth. During the simulations the authors measure drop rates
of both TCP and UDP traÆc and the delay of the UDP packets. Furthermore, the
authors calculated the \goodput" for the TCP 
ows. The goodput of a 
ow is the
bandwidth delivered to the receiver, excluding duplicate packets [27].

Overall, the results show that RED does not improve the TCP \goodput" signif-
icantly, and that this e�ect is largely independent of the number of 
ows. Further-
more, the analysis shows that RED has a lower mean queuing delay but increases
delay variance.

The empirical evaluation directly addresses the problem of tuning RED param-
eters. This is done empirically using the Cisco WRED [11] implementation on a
Cisco router, where WRED is Cisco's own implementation of RED. As with the



22 CHAPTER 2. BACKGROUND

analytical approach the traÆc consists of a mix between TCP and UDP traÆc:
80% TCP traÆc and 20% UDP traÆc. 60% of the TCP traÆc is FTP like traÆc
with an average �le size of 100KB, and the remaining 40% is HTTP like traÆc with
a mix of small and large �le sizes. The key performance indicators are throughput,
bytes sent, and the loss rate for UDP traÆc.

The results show that WRED parameters generally have little impact on the
traÆc, and that it is diÆcult to choose good values for the parameters. In com-
parison with tail-drop queuing, the study shows that the Cisco implementation of
RED does not exhibit much better performance than tail-drop queuing. Only in
situations where the amount of bu�erspace is increased does RED seem to give some
improvement.

Both of these evaluations provide interesting results, however none of them link
the packet loss rates and delay to the end-to-end response times for interactive web-
like traÆc. Furthermore, the empirical evaluation is not directly comparable with
experiments with RED because the Cisco WRED implementation is used.

2.2.5 Feedback Control

Firoiu et al. [23] model RED as a feedback control system which allows the authors
to discover fundamental laws governing the traÆc dynamics in TCP/IP networks.
Based on these, the authors derive a set of recommendations for the the architecture
and implementation of congestion control modules in routers. The results of the
analysis are validated through simulation with ns [46].

The traÆc assumed in the model is a constant number of concurrent 
ows.
Furthermore the model assumes that all 
ows have the same �xed average round
trip time.

An interesting observation with regard to RED parameter setting is their dis-
cussion covering the weight, wq , used in the weighted average queue size calculation
of RED. The authors see two opposing conditions for choosing a good wq value.
The �rst condition is that wq should not be in
uenced by the linear increase and
multiplicative decrease of transmission rates of the 
ows. The second condition is
that the queueing algorithm should change its weighted average queue size as fast as
possible to match change in traÆc conditions. This includes changes in the number
of 
ows or round trip times.

The general recommendation is that wq should be set equal to the periodic-
ity of the TCP 
ows. Where the periodicity is the period between experiencing
congestion, decreasing the sending rate, and increasing it again until congestion is
detected.

2.2.6 Pilot Tests

We are aware of only two available reports from network operators that have con-
ducted pilot tests of RED in production - those by Doran at Ebone [17] and Reynolds
at QualNet [59] (now Verio). Doran's measurements using the Cisco implementa-
tion indicate that RED was able to sustain near 100% utilization on a 1920Kbps
customer-access link which tail-drop queuing could not.

Reynolds used the Cisco implementation of WRED on both a DS3 core network
link and a DS1 customer-access link. For the heavily congested periods on the core
link, it was found that a wide separation of queue thresholds (minth = 60;maxth =
500) produced the best tradeo� for link utilization and low drop rates. Overall the
performance was somewhat superior to tail-drop queuing. The default values for
the maximum drop probability of 1=10 and the weight of 1=500 was used and their
e�ects not studied.
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For customer access DS1 links, (apparently) the default settings were used.
These were congested only during some intervals and some increase in end-to-end
latency was observed with RED but the claim was made that \... the user is not,
in my opinion, inconvenienced, and has the bene�t of limited packet loss..." [59].

2.2.7 Summary

In the previous section we have described the methods and in some cases results
of evaluations queue management algorithms described in the literature. Overall
we can group the described studies in two categories: studies of speci�c behavior
in a simple environment with only a few competing 
ows. This category includes
the original studies of RED described in Section 2.2.1 and the experiments with
FRED described in Section 2.2.3. The second category includes studies that focus
on providing a realistic scenario under which an active queuing mechanism can be
tested. In this category we have evaluations such as the one of BLUE, and of SRED
in Section 2.2.3 and the analytical evaluations that we described in Section 2.2.4.

With our goal of providing an realistic environment for studying the e�ects of
using RED the category of evaluations with a realistic environment is of central
interest to us. However, several of the studies have signi�cant di�erences in terms
of environment making i impossible to compare results. For example in one case
a di�erent congestion noti�cation mechanism is used and in other cases there are
algorithmic di�erences between the evaluated queuing mechanism and RED. Fur-
thermore, while these studies provide a realistic scenario the evaluations mainly
focus on network central measures such as drop-rate, throughput and goodput and
not on the impact on the end-to-end performance.

2.3 Summary

In the previous sections we have �rst given a detailed description of the RED queue-
ing mechanism. We have then studied di�erent approaches for evaluating the e�ects
of active queueing mechanisms, and especially focused on any results regarding
REDs impact on the performance of Web like traÆc. However, only a limited
amount of information is available.

None of the evaluations of RED focus on the impact that RED may have on Web
traÆc response times. Response time is the central parameter for the end user when
browsing Web pages on the Internet. Therefore, we believe that it is important to
study and understand the e�ect that RED may have on the performance of Web
response times.





Chapter 3

TraÆc Generation

In this chapter we focus on describing how traÆc is generated for our study of RED
queue management. Generating a realistic traÆc load is not a new concept and
there has been conducted considerable research on the topic. A central motivation
is to provide better modelts for performance simulation of algorithms such as 
ow
control and congestion control algorithms.

In the following we �rst look at the background of traÆc modeling. We then
look closer that the general properties observed in studies of Web traÆc. Based on
this we describe the traÆc generation tool used for generating Web-like traÆc on
the laboratory network.

3.1 Related Work

Network traÆc is one of the basic elements necessary when performing network
experiments or simulations. In some cases it is suÆcient to simply have one or
two competing connections or some other simple scheme to prove a speci�c point.
An example of this is the original evaluation of RED described in Section 2.2.1 on
page 15, where a very simple traÆc load is used for illustrating a speci�c aspect in
an evaluation. However, in our case it is a central point to have a realistic traÆc
workload.

Some of the earliest work on generating a realistic workload in Internet network
simulations was performed by Danzig and Jamin in their work on TCPlib [14].
TCPlib is a library that includes empirical models describing characteristics of the
most popular applications at that time, such as TELNET, NNTP, and SMTP.

The models used in TCPlib, see [10, 15], are derived from network packet traces.
Each application is described through a number of cumulative distribution functions
describing the probability distribution of characteristic events. These distributions
are used for modeling a particular application in a simulator. The simulator follows
the 
ow of the modeled application, and when necessary, it makes choices by random
sampling from the distributions describing the characteristic events.

For instance, the model describing the behavior of TELNET conversations con-
sists of three distributions: the duration of the conversations, the interarrival times
of packets, and the distribution of packet sizes. An instance of a TELNET connec-
tion is modeled by letting the simulation follow the behavior described by the 
ow
chart shown in Figure 3.1. Each time a duration, interarrival time, or packet size
is needed it is simply random sampled from one of the distributions describing the
model.

A key aspect of this method for modeling traÆc is that the model only describes
the application behavior. This means that low level protocol behavior is abstracted
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Figure 3.1: Flow chart of a TELNET connection.

out of the models, and thus the models are independent of both low level protocol
behavior and speci�c network characteristics.

Danzig and Jamin used only empirically derived distributions in their library.
Another approach is to derive analytical functions from the empirical distributions.
Paxson describes how he derived analytical models of Wide-Area TCP connections
in [55]. He explains how this has several advances compared to empirical distribu-
tions. The analytical distributions are easier to convey and analyze, because they
have more compact and descriptive representations. For instance, by making an
analytical model we know which group of distributions, normal, exponential, or
other, that can be used for describing an empirical distribution. This gives general
insight on the behavior that can be observed when using the model.

Paxson concludes that both empirical and analytical models can be used for
modeling wide-area network connections. Though pointing out that for both em-
pirical and analytical models, we must be careful because of frequent discrepancies
of the upper 1% tails. Furthermore, the work shows that the signi�cant variation
in network traÆc means that both types of models must be a somewhat rough
compromise.

3.2 Web TraÆc

A number of studies of network traÆc behavior provides important results that
should be taken into account when generating Web traÆc, thus ensuring that the
properties of real traÆc remain present in the generated traÆc. In the following
sections we look closer at the statistical properties of Web traÆc and how we can
ensure that these properties remain present when generating Web traÆc.

In 1994 Leland et al. [38] published a study of the statistical properties of local
area Ethernet traÆc. By analyzing per packet network traces the authors found
evidence that the traÆc was self-similar while also being extremely bursty, and
even being bursty independent of the timescale at which the traÆc is viewed. This
lead to the hypothesis that network traÆc, in addition to being self-similar, has
long-range dependence. This essentially means that the models used at that time
did not correspond well to the actual behavior observed in actual traces of network
traÆc.

A later study of Web traÆc [13] by Crovella and Bestavros shows evidence of
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presence of long-range dependence in Web traÆc, thus providing evidence that the
hypothesis from [38] holds for Web traÆc. Crovella and Bestavros used packet
network traces collected from their local site, as it was done in [38]. In addition,
they were able to collect very exact data describing Web object sizes, transfer times,
and other Web activity by instrumenting the Web browsers used on their site. By
analyzing this data they were able to provide evidence that Web object sizes and
quite periods are heavy tailed and thus the presence of long-range dependence.

The consequence of these results means that we can describe the characteristics
of Web traÆc parsimoniously using a simple statistical model, called the ON/OFF
model or packet train model in combination with heavy-tailed distributions. The
advantage of this is that this model is well understood and only depends on a few
parameters, making it simple and less sensitive to errors, thus ensuring that we are
on the right track when modeling Web traÆc.

In the following sections we �rst describe the central concepts: self-similarity,
heavy-tailed distributions, and long-range dependence. Then we explain how the
ON/OFF model can be used for modeling Web traÆc.

3.2.1 Self-similarity

Self-similarity is a property that seems often to arise when analyzing network traf-
�c [38, 57, 13, 18]. As we shall see the general strength of showing that measured
data is self-similar lies in the fact that there is a repetitive pattern in the data.
Consequently, it is only necessary to study a limited set of data in order precisely
describe the behavior or network traÆc. Furthermore, the repetitive pattern makes
is easy to reproduce self-similar traÆc with a traÆc generator.

In the following we �rst describe self-similarity on a set and show how self-
similarity can be used to calculate the dimension of the set. We then describe
probabilistic self-similarity which is the type of self-similarity detected in measure-
ments of network traÆc.

To illustrate the principle of self-similarity, we describe how to calculate the
fractal dimension of the von Koch curve.

Example

To calculate the dimension of a set S we cover the set with a minimal number of
spheres Nr, where each sphere has a �xed diameter r 6= 0. Now assume that we
have Nrr

dr = 1, then:

rdr =
1

Nr

, dr � ln(r) = �ln(Nr), dr = �
ln(Nr)

ln(r)
(3.1)

where dr is the integer dimension of the set S. In most cases the dimension is an
integer value, however in some special cases it can also be a non-integer. To handle
this case we extend the notion of dimension by computing the limit as r ! 0+:

d = lim
r!0+

dr (3.2)

we call d the fractal dimension.
An example of a set which has non-integer dimension is the von Koch curve,

which can be described by the following recursive algorithm:

1. Start with a line segment. Divide it into thirds. Place the vertex of an
equilateral triangle in the middle third.

2. Copy the whole curve and reduce it to 1/3 its original size. Place these reduced
curves in place of the sides of the previous curve.
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Figure 3.2: von Koch curves from 1 to 5 iterations.
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Figure 3.3: Covering von Koch curves with spheres.

3. Return to step 2 and repeat.

Figure 3.2 shows the von Koch curve at 1,2, 3, and 5 iterations of the algorithm.
To calculate the dimension of the von Koch curve we cover the curve with spheres
each with a �xed diameter, as we described earlier. Figure 3.3, shows the result of
this process for the �rst few iterations. Based on this we can see that in this case
the number of spheres and the diameter is a function of the number of iterations:
Nr = 4n, and r = 1

3n
where n is the number of iterations. Using Equation 3.1, we

can calculate the dimension dn:

dn = �
ln(4n)

ln( 1

3n
)
=

ln(4)

ln(3)
; 8n � 1 (3.3)

Using this we determine the fractal dimension of the von Koch curve:

d = lim
r!0+

dr = lim
n!+1

dn =
ln(4)

ln(3)
; and therefore 1 < d < 2 (3.4)

thus we have showed that the von Koch curve has non-integer dimension. To do
this we have used self-similarity:

Exact self-similarity Let S be a set. S is said to be self-similar if for any open
subset S0 � S, there exists a bijection h : S0 ! S such that h(S0) = S.

In the context of the von Koch curve, self-similarity describes the in�nitely repeating
repetition of the curve we used for generalizing the calculation of Nr and r. More
generally self-similarity can be described as the \zoom e�ect" where the exact same
pattern will repeat itself in�nitely independent of the zoom level.

Probabilistic self-similarity

Let Y be a stochastic continuous-time process Y = fY (t); t � 0g, with continuous
time parameter t. Y is called self-similar with self-similarity parameter 0 < H < 1
(Hurst parameter), if for any positive stretching factor c, it satis�es:

Y (t)
d
= c�HY (ct); 8t � 0 (3.5)
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If the rescaled process c�HY (ct), with timescale ct, is equal in distribution to the
original process Y (t), then Y (t) is self-similar. As with the deterministic self-similar
process we can \zoom" in on a probabilistic self-similar process. However, instead of
seeing the exact same picture, we will see that each zoom-level will look qualitatively
the same, see [6, page 48].

The classical example of a stochastic process that has been proved probabilistic
self-similar is fractional Brownian motion (fBm) with 1=2 < H < 1 [69]. Fractional
Brownian motion is special process because it is both self-similar and has a non-
integer dimension, by de�nition this means that fractional Brownian motion is a
fractal.

3.2.2 Long-range Dependence and Heavy-tailed Distributions

Long-range dependence refers to a stochastic process that has long memory, be-
cause the dependence between events that are far apart diminishes very slowly with
increasing distance [6]. Long memory processes can be described using heavy-tailed
distributions that satisfy:

P [X > x] � x��; as x!1; 0 < � < 2 (3.6)

Whether a distribution is heavy-tailed depends only on the higher values of the
random variable e.g. the tail of the distribution. If the asymptotic shape of the
distribution is hyperbolic, it is heavy-tailed. Heavy-tailed distributions and thus
long-range dependence can be modeled parsimoniously with Parato distributions.
A Parato distribution is hyperbolic over its entire range. With the shape parameter
� and the location parameter k it has the cumulative distribution function:

F (x) = P [X � x] = 1� (k=x)�; k; � > 0; x � k (3.7)

with the corresponding probability density function:

f(x) = �k�x���1; �; k > 0; x � k (3.8)

If � � 2, then the distribution has in�nite variance, and if � � 1, then it also has
in�nite mean. The parameter k represents the smallest possible value of the random
variable.

3.2.3 ON/OFF model

As we stated earlier, the work by Crovella and Bestavros [13] shows that we can use
the ON/OFF model with heavy-tailed distributions, as described in [69], to describe
the behavior of Web traÆc.

The use of the ON/OFF model is based on the observation, made by Jain and
Routhier in [35], that packets in networks travel in trains. Thus the interarrival
time between trains from a traÆc source is much greater then the interarrival time
between packets.

This observation is used in the ON/OFF model, by describing traÆc sources as
being strictly alternating between being ON (transmitting) or OFF (quite). Hereby
assuming that data is being sent as constant bit rate when ON.

ON and OFF periods are controlled by two distributions, one describing the
lengths of the ON periods and one describing the lengths of OFF periods. These
distributions are required to be independent and identically distributed (i.i.d.), that
is the distribution describing the length of ON times must be independent of the dis-
tribution describing OFF times, and vice versa. Additionally, identically distributed
requires that it does not change over time.
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Mandelbrot originally developed and used the ON/OFF model [41, 69]. He
showed that the aggregate load produced from a large number of ON/OFF sources
that are i.i.d. is self-similar. However, as described in [69], if the ON and OFF
distributions have �nite variance, the aggregate load will be similar to white noise,
which is signi�cantly smoother than the traÆc found in network traces [38]. There-
fore we need to use a more restrictive version of the ON/OFF model which was
developed by Taqqu and Levy [64].

Taqqu's and Levy's more restrictive model has the additional requirement that
either the ON or OFF distribution is a heavy-tailed distribution with in�nite vari-
ance, such as a Parato distribution with � < 2. This has signi�cant in
uence on the
traÆc generated by the model. In fact, it can be proved that with a large number
of sources the aggregate traÆc from this model is approximately equivalent with
the behavior of a fractional Brownian motion with dimension 1=2 � H < 1 [68].

This result is important because it also explains why self-similar behavior can
be observed in network traÆc. Leland et al. found evidence of self similar behavior
in Ethernet traÆc. Crovella and Bestavros found evidence showing that the distri-
bution of ON and OFF times are heavy-tailed. Taqqu' and Levy's proof that the
aggregate traÆc from a large number of sources is approximately equivalent with
the behavior of a fractional Brownian motion links heavy-tails and self-similar be-
havior together because we know that a fractional Brownian motion is per de�nition
self-similar.

A more general consequence of this result is that we can use the ON/OFF
model for modeling Web traÆc. In fact this model gives us a very simple and exact
method of modeling traÆc. The only really important requirement is the presence
of a heavy-tailed distribution. Also, using the ON/OFF model when generating
Web-traÆc from a traÆc model is quite simple since the model already de�nes the
behavior of each individual source.

3.2.4 Summary

Returning to the hypothesis that network traÆc, in addition to being self-similar,
has long-range dependence, which we described in Section 3.2. Leland et al. ob-
served that Ethernet traÆc exhibited self-similar behavior, yet the traÆc remained
bursty over several timescales. This lead to the hypothesis that traÆc could be
modeled with the restrictive ON/OFF model, which requires the presence of heavy-
tailed distributions on the traÆc sources.

As described, Crovella and Bestavros [13] continued the work of Leland et al.,
however focusing solely on analyzing the behavior of Web traÆc. In their model of
Web traÆc, ON-times correspond to transmission times of individual objects, and
OFF-times correspond to the intervals between transmissions.

Through an analysis of the ON- and OFF-times they determine that both ON-
and OFF-times in their traces are heavy-tailed, and can be well modeled with a
Parato distribution. Further analysis of the ON-times shows that the primary reason
for ON-times being heavy-tailed is the sizes of the transferred Web objects, because
this distribution also turned out to be heavy-tailed. Finally, because both the ON-
and the OFF-distribution can be modeled with a heavy-tailed Parato distribution,
it is nessesary to compare the � parameters of each of these to determine which of
them has the most dominant role in causing the fractal like behavior of Web traÆc.
The result of this comparisson points to the distribution of ON-times. Modeling
ON- and OFF- times with the Parato distribution, ON-time has � � 1:0�1:3 while
OFF times has � � 1:5. Thus they conclude that ON-times is the most dominant
factor, since this distribution has the \heaviest tail".
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3.3 The Mah TraÆc Model

The central element of the Web-like traÆc generator is the model from which the
traÆc generator generates traÆc. In our case we have chosen to use an empirical
model developed by Bruce Mah [40], that describes the behavior of a user browsing
the Internet in terms of the traÆc generated by a user.

The model describes the behavior of clients retrieving pages from Web servers
using HTTP 1.0 [8]. The model was derived using basically the same methods as
those used in TCPlib [14]. This means that the traÆc model is an application
level model that has been derived from network packet header traces taken from a
backbone network. Additionally, Mah has taken into account the analysis described
in Section 3.2 by Crovella and Bestavros [13] by testing the distribution of Web
objects sizes for being heavy-tailed. In total, making the Mah model well suited for
our needs.

3.3.1 Behavior

The behavior of Web traÆc in the Mah model is characterised by user behavior,
the internal structure of Web pages, and the size of pages being transferred. In the
following we describe the distributions and the overall behavior described by the
model.

A Web transfer is initiated by the client when a Web page is selected for retrieval
from a Web server. A page generally consists of a HTML [7] document with a
number of embedded references to images, sounds, or other. Retrieval of the page
consists of �rst retrieving the main HTML document, and then retrieving embedded
objects, as the main HTML document is being parsed. When using HTTP 1.0 [8],
each object of the page is retrieved on a separate TCP connection and thus browsers
tend to use concurrent connections in order to reduce the time it takes to retrieve
a page.

Distributions

Mah has chosen a set of six distributions for characterising the general structure of
Web pages. These are summarised in Table 3.1. At the lowest level the request and
reply length distributions that characterise the sizes of objects being transferred to
and from Web servers. For characterising the structure of pages the distributions
document size describes the number of objects per Web page. User dependent be-
havior is characterised through the three distributions: 1) think time, 2) consecutive
document retrievals, and 3) server selection. The think time distribution describes
the time a user spends looking at a retrieved Web page before continuing to the next
page. Consecutive document retrievals describes how many pages a user retrieves
from a server before moving on to the next server, and server selection describes
the relative popularity of the Web servers.

As we shall see in Section 3.3.2, where we describe each distribution in detail,
the actual number of distributions is somewhat larger. The reason is that Mah
found that request and reply lengths are better modeled when dividing them into
two groups. One for primary requests and replies, and one for secondary requests
and replies. Where primary refers to the HTML document and secondary refers to
any objects embeded in the HTML document.

Flow

Using the approach in [14] we describe the actual 
ow of the model by a 
ow
diagram. This is shown in Figure 3.4. The diagram shows both the 
ow of the
browsing user and of the server.
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Distribution Units Description

request length bytes HTTP request length
reply length bytes HTTP reply length
document size objects Number of objects per document
think time seconds Interval between retrieval of two succes-

sive documents
consecutive docu-
ment retrievals

pages Number of consecutive documents re-
trieved from any given server

server selection server Relative popularity of any Web server,
used to select each succeeding server ac-
cessed

Table 3.1: Summary of distributions in the HTTP traÆc model.

Following the 
ow of the browsing user in the 
ow diagram, we see that browser
�rst selects which Web server to access. It then decides on the number of pages
to retrieve from the server, and selects the size of the next document is by �rst
sampling from consecutive document retrievals and then from document size.

Based on these values the browser connects to a Web server to retrieve the
page. Each object in the page is retrieved from the server by �rst establishing a
TCP connection to the chosen server, and then sending a request. The size of the
request is selected from request length. Once the server receives the entire request
from the client it responds by sending a reply with a size sampled from reply length.

Once a page has been retrieved we model that the user thinks for a while before
proceeding to the next page. This is simply done by waiting for some amount
of time sampled from think time. After waiting, the model either proceeds by
retrieving another page from the same server or starts over, and selects another
server, dependent on the value sampled from consecutive document retrievals.

The actual behavior of a browsing client implemented in the traÆc generator is
somewhat more complex then what we just described. The reason is that commer-
cial Web browsers use several concurrent connections to reduce the time it takes to
retrieve a Web page with more than one object. To model this we allow up to two
simultaneous connections per browser even though some browser products are know
to use more [67]. Furthermore the model in the implementation includes steps for
terminating after a certain period of time.

3.3.2 Distributions

The distributions used in the Mah model of Web traÆc has been derived from
network packet header traces. These were collected on the Computer Science De-
partment backbone at University of California at Berkeley in late 1995. Table 3.2
summarises the four traces that were used for the model: the date at which the
trace was taken, duration of the trace, number of HTTP packets in the trace, and
the number of HTTP request/reply pairs found in each of the traces.

In the following we look closer at the empirical distributions that Mah had
derived from the network traces.

Page Length

The distributions describing the page length plays a key role for several of the other
distributions. The problem is that packet header traces do not exactly describe
the number of elements in a page and whether two connections transfer objects
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Figure 3.4: Flow diagram of Mah's HTTP traÆc model.

belonging to the same page. Therefore it is necessary to use a simple heuristic to
estimate the approximate length of a page in terms of number of Web objects.

This heuristic says that two connections belong to the same page if the client
addresses are identical, and if the time from when the �rst connection completes
until the next connection starts is less than a time interval Tthresh . Note that this
de�nition also allows for concurrent connections since this would just give a negative
time di�erence.

By deriving a number of di�erent distributions for the page length with di�erent
Tthresh values, Mah arrived at choosing to set Tthresh = 1s. The intuition was that
users generally take more than one second to react to the display of a new page
and requesting a new document. Furthermore, as we can see from Figure 3.5,

Starting Date Duration (hr:min) Packets request/reply pairs

19 Sep 1995 39:40 186068 5030
11 Oct 1995 29:31 458264 5699
1 Nov 1995 25:30 369671 3659
20 Nov 1995 138:14 676256 18034

Table 3.2: Summary of traÆc traces [40].
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Figure 3.6: CDF of user think times for all traces [40].

choosing other values in the same range (�1s) provided results close to the one
with Tthresh = 1s.

User Think Time

Closely related to the page length is the user think time distribution, since this
distribution also depends on the choice of Tthresh . Figure 3.6 shows the Cummula-
tive Distribution Function (CDF) for User think time from 0 to 2000 seconds and
with Tthresh = 1s. The distribution seems to be consistent with the think time
distribution found in [12], however Mah does not test whether these think time
distributions are heavy-tailed. Generally, the median think time is about 15s, and
95% of the think times are lower then 30000s. The highest think times are longer
then 24hours.
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Figure 3.7: CDFs for consecutive document retrievals for all traces [40].

Consecutive Document Retrievals

Consecutive document retrievals describes the number of pages that users retrieve
fromWeb servers before proceeding to another server. Figure 3.7 shows the CDF for
consecutive document retrievals. As we can the median for consecutive document
retrievals lies around two pages before moving on the the next server. However,
some rather long sessions where a user retrieves dozens of pages from a single server
before moving on were also found. Furthermore we should note that this distribution
indirectly depends on the choice of Tthresh because it requires the requests to be
grouped into pages.

Request Length

The CDF of the request length is shown in Figure 3.8a. As observed by Mah, the
request length distribution shows bimodal behavior, by having at least two separate
groups of request lengths [40]. The �rst group, which covers around 80-90% of the
requests, uses around 250 bytes per request and the second group uses around 1KB
per request. Mah argues that this could be due to di�erent types of requests where
the group around 250 bytes corresponds to simple Web object retrievals, while the
group around 1KB corresponds to more complex requests such a those generated
by HTML forms. However, he is unable to provide proof simply because the packet
header traces do not provide this information.

Grouping requests by pages when �nding the page length distribution also allows
requests to be grouped into primary and secondary requests. Primary requests
consists of the requests made for the �rst Web object of each Web page. Secondary
requests consists of all the remaining requests made to retrieve the entire page.

Figure 3.8b shows the result of dividing one of the request length distributions
by by primary and secondary requests. The result yields two signi�cantly di�erent
distributions, and therefore Mah chooses to include this division of requests in the
HTTP-traÆc model.

Reply Length

The reply length distribution describes the length of the Web objects, such as HTML
documents or images, being transferred from the Web server back to the client.
Figure 3.9a shows the CDF for the reply length distribution for each of the traces.
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Figure 3.8: Request length distributions.

From the plot we can see that the median reply length lies around 1.5-2 KB and
that approximatly 95% of all the reply lengths are smaller than 30KB. Furthermore
it was found that in each of the traces, reply lengths larger than 1MB were present.

By performing an analysis of reply sizes equivalent with the one performed
by Crovella and Bestavros in [12], Mah found the behavior of the distribution of
requests larger than 1KB to be \reasonably well modeled" with a Parato distribu-
tion [40]. The � value estimate in Mah's estimation ranges from 1:04 to 1:14, while
the estimated � value in [12] was 1:06.

As with the request length distribution, Mah found it appropriate to divide
the reply size distribution into a primary and a secondary distribution. Figure 3.9b
shows the CDFs for reply length distributions for the trace taken the 19. September
1995.
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Figure 3.9: Reply Length Distributions.

Server Selection

The server selection distribution describes the relative frequency with which each
Web server is visited for some set of consecutive document retrievals. Mah was
unable to derive this distribution from the traces since the majority of traÆc in
the traces was to the local department Web server. Instead Mah used a Zipf's
Law distribution [72] to describe the popularity of di�erent Web servers. This is
a heavy-tailed distribution and thus re
ecting the fact that some sites are many
times more popular than other sites.

Summary

The Mah model model gives a very detailed description of the main quantities in
Web traÆc. It is based on a quite small data sample. However, we feel that the
key elements for a Web traÆc model are present. Especially the evidence that the
reply length distribution is heavy tailed strengthens credibility of the model because
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this is the primary requirement for the ON/OFF model. Furthermore, because the
model gives such a detailed description of user behavior, we �nd very it suitable for
modeling the individual browsing user, thus allowing us to measure the performance
experienced by the modeled users.

A general problem with traÆc models such as the one developed by Mah is that
they are only credible for a certain amount of time because traÆc characteristics
may change as new applications become popular on old applications may be used
in di�erent ways. Again we claim that the presence of heavy-tailed characteristics
provides a strong indication that the model has the key characteristics of more
recent models. However, the Web is very dynamic and the di�erent distributions of
the model have certainly changed since 1995, and thus this should be an aspect to
remember when drawing conclusions on experiments with this traÆc model.

3.4 Implementation

Based the techniques described in [4] and [14] we have successfully implemented
a traÆc generation tool that eÆciently models a user browsing the Web, allowing
us to generate a high aggregate traÆc load produced by modeling hundreds of
simultaneously browsing users. In practice the tool consists of a browser program
that simulates browsing users, and a server program that responds to requests
generated by the browser program.

With the aspects of traÆc generation and traÆc behavior in mind, we set the
following high level goals for the traÆc generator:

� The traÆc generator should produce a realistic traÆc workload, that is, the
traÆc should be generated based on an well understood empirical or analytical
model of Web traÆc as described in the previous sections.

� Given that suÆcient resources are available, the traÆc generator should al-
ways exhibit the same behavior independent of any surplus in resources, both
counting CPU power or network bandwidth, that may be available.

3.4.1 Performance Measurements

A central aspect of our study of RED queue management performance is that we
want a user centric performance measure. In the case of Web traÆc we measure the
response time. That is, the time it takes to retrieve Web objects from servers. This
measure re
ects how changes in a network con�guration impacts the performance
experienced by a user using the network.

The traÆc generator is instrumented to measure the response time experienced
by each modeled user. The response time is de�ned as the elapsed time between
the time of the socket connect() operation and until the client has received the
data requested from the server and reads an EOF marker. Figure 3.10 describes
the response time using a message sequence chart of a request for a Web object.

Following the messages sequence chart we can see that the request begins when
the client opens a connection to the server by sending a SYN packet. After TCP's
initial three way handshake the connection is established and the client sends the
request data. The server responds to the request when all the request data has been
received from the client, by sending the reply data. Once the server receives an ACK
on the last data sent to the client it performs an active close on the connection. The
response time is the time from the initial SYN is sent from the client until the client
receives the FIN from the server. Note that there are no drops or retransmissions in
the illustration, and acknowledgements are only shown for connection establishment
and termination.
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It should be clear that we do not include the entire four way handshake of the
connection termination in the response time measurement. The tool models HTTP
1.0 traÆc. Therefore each element of a Web page is retrieved in a separate TCP
connection. This means that response time is the time it takes to retrieve an element
of a Web page, not the time it takes to retrieve the entire page.

ACK

Client Server

timetime

reply data + FIN

request data
request data

SYN ACK

SYN

reply data

reply data

FIN

ACK

Response Time

Figure 3.10: Message sequence chart of a Web object request.

Page response times are also measured by the tool. Page response time is the
time from the �rst request is issued until the last reply has been received. This makes
it possible to compare the performance between di�erent techniques for transferring
Web pages. For instance one may be interested in comparing the performance using
persistent connections versus non persistent connections. In addition to the response
time measurements, the tool associates relevant information such a the reply size,
and connection IP and port numbers to each measurement, allowing association of
response times to for instance reply sizes or speci�c hosts in the network.

3.4.2 Protocol

To simplify the implementation as much as possible to ensure eÆciency, the traÆc
generator only \simulates" HTTP though an extremely simple protocol. This means
that TCP connections are established and data transferred, in amount prescribed
by the Mah model, but without the actual HTTP requests or replies. Instead the
client simply sends a request containing the amount of data it expects returned from
the server. The server responds to client requests by sending the speci�ed amount
of data. A bene�t of this design is that we avoid having to use an actual Web server
to respond to the requests, thus avoiding the processing overhead of having a much
more general server. Tools like SURGE [5] and SCLIENTS [4] implements a traÆc
generator that make actual HTTP requests that can be parsed by a Web server,
thus making the tools applicable for performance testing of Web servers. However
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our focus is to generate Web like traÆc on a backbone network, not to build tool
for performance testing Web servers.

3.4.3 Multiplexed I/O and TCP Con�guration

The client side of the traÆc generation program needs to model hundreds of actively
browsing users simultaneously. Each model can have several open TCP connections
to a server, and at any time transfer data or pause while waiting for the think
time to timeout. To implement this eÆciently we relied on experiences described
in [4], where the authors describe how I/O multiplexing was used for building the
SCLIENTS tool. We have adapted the same technique for our traÆc generation
program, and again, it has proved to be an eÆcient method for implementing a
traÆc generator. One drawback of this method is that one must be careful that the
application does not block for longer periods for time, leaving other connections un-
serviced for too long. Another drawback is that the traÆc generation tool operates
in a polling loop so the tool always monopolizes the CPU of the local machine.

To ensure optimal performance we have disabled the Nagle algorithm in the
traÆc generator. The Nagle algorithm has been included in TCP to optimize band-
width utilization on the Internet [49]. The idea is to try to minimize the overhead of
packet headers by increasing the average size of the payload in TCP packets. Thus,
if a TCP sender only has a small amount of data (less then Maximum Transfer
Unit) ready to be sent, then it should wait until all previously sent data has been
acknowledged by the receiver, before sending the packet. As described in [47] using
Nagle in an application can signi�cantly decrease the network performance.

3.4.4 Modi�cations and Bugs

In the actual implementation we decided to limit the duration of the think times
to 10 minutes. This corresponds to the 90% quantile of the think time probability
distribution. The reason that we want to avoid having browser instances remaining
passive during the entire time the traÆc generator runs. Another way to do this
could be by scaling the think times, as was done in [53]. A second modi�cation is
that we do not use the Zipf's Law distribution when choosing Web servers. Instead
the servers are chosen uniformly, so that each server will receive approximately an
equal number of requests.

The implementation has a number of unintentional di�erences from what we
have just described. The �rst problem is that, by accident, the �rst two reply sizes
are always samples from the primary reply size distribution. This makes the reply
size distribution slightly di�erent from the distribution reported in the Mah paper.
However, we believe that this does not signi�cantly impact generated traÆc. The
second problem is that we do not have any think time when the modeled browsing
user moves from one server to another server. This has the e�ect that clients will
generate more traÆc, than the clients would do if they followed the de�nition of
think time described earlier. Again we do not believe that this signi�cantly alters
the traÆc generated by the tool, except that we would need to model more browsing
users to generate the equivalent amount of traÆc.

3.5 Test of TraÆc Generator

We have conducted a number of tests of the implemented traÆc generator. First,
experiments are performed for studying the traÆc generated by the tool to con�rm
that it behaves as we expect, and to choose the optimal duration of an experiment.
Second, we tested the tools hardware requirements by both testing whether the tool
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is constrained by lack of resources on our test machines, and whether it is in
uenced
by the amount of available resources. Finally, we performed a test that calibrates
the tool so that we have a measure of o�ered load as a function of the number of
simulated browsing users.

3.5.1 Network Setup

The experiments are conducted on the laboratory network that we describe in detail
in Chapter 4 on page 49, along with a description for the experimental procedure.
However, we give a brief introduction here.

The laboratory network is shown in Figure 3.11. We use 7 client machines and
7 server machines. Each machine is connected to a full-duplex 10Mbps Ethernet
segment which again is connected to a switch. The switch multiplexes the aggregate
traÆc from all the client machines and all the server machines on to a unidirectional
100Mbps link to the opposite switch. This ensures that packet congestion and
collisions cannot occur in this network. The network is instrumented so that we
can measure the aggregate traÆc load on the path from the servers to the clients.
We refer to this network con�guration as the unconstrained network, because the
network is designed such that no traÆc congestion can occur.

Browsing Users Web Servers

Ethernet
Switch

Ethernet
Switch

Router Router

Hub

Hub

Network Monitor

10/100Mbps10Mbps

100Mbps 100Mbps

10Mbps

Figure 3.11: Diagram of the laboratory network.

3.5.2 Bursty TraÆc

As we have described, the generated Web-traÆc should behave as a fractional Brow-
nian motion, e.g. it should be probabilistically self-similar and be bursty over several
time scales. We check the burstiness of the generated traÆc through a simple visual
test.

The experiment simulates approximately 3500 browsers corresponding to an
average aggregate load around 10Mbps. During the experiment each of the clients
machines runs an instance of the program simulating browsing users and each of
the servers runs an instance of the program simulation a Web server. The browser
programs are con�gured to make requests to any of the servers, and the duration
of the entire experiment is 55 minutes; measurements from the �rst 20 minutes are
discarded because of startup and stabilization e�ects.

To illustrate the burstiness of the generated traÆc we �rst show two �gures
illustrating the actual behavior of the browser programs. Figure 3.12 shows a plot
of the aggregate number of requests issued by 3500 users. From the plot we see
that the number of requests per second constantly varies from around 50 requests
per second up to around 200 requests per second. Figure 3.13 shows a plot of the
aggregate number of bytes requested per second by 3500 users. The number of bytes
requested per second is constantly oscillating, varying from 250 KB per second to
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Figure 3.12: Requests per second.
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Figure 3.13: Requested KB per second.

more than 4500 KB per second, giving a clear impression of how the o�ered load

uctuates over time.

The central indicator of burstiness in the generated traÆc is the actual aggregate
load produced on the backbone of the laboratory network on the path from the
servers to the clients. It is shown in Figure 3.14. The plot shows the number of
packets on the path from the servers to the clients over three di�erent timescales.
Figure 3.14a shows number of packets per second. Figure 3.14b is a zoom in of the
marked range in Figure 3.14a from 820� 920s, showing the number of packets per
0.1 second. Again, Figure 3.14c is a zoom of the marked area in Figure 3.14b from
680� 780s averaged in periods 0.01 seconds. The stating point for each interval in
which we zoom has been randomly chosen.

Comparing the plots with time intervals 1s and 0.1s we �nd that these seem
to be qualitatively the same as described in [6]. The plot at 0.01s is also bursty,
however the in a somewhat di�erent way compared to the previous plots. Overall,
based on Figure 3.14, we conclude that the generated traÆc is bursty independent
of time scale.
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Figure 3.14: Packets per time unit at 3 di�erent timescales.

3.5.3 Bottleneck and Independence Tests

In our requirements to the traÆc generator we stated that given suÆcient resources,
the traÆc generator should behave independently of any surplus of resources. To
test whether this requirement is ful�lled requires testing several di�erent aspects:
First, we need to ensure that suÆcient resources are available for running the traÆc
generator within the range of parameter settings that we will be using. Second, we
need to ensure that the behavior is identical and independent of the machine on
which the traÆc generator runs.

To perform these tests we have designed a set of two almost identical tests that
each test the client side, and the server side traÆc generator.

Browser Program

Like the previous experiment, we use the unconstrained laboratory network for
these experiments. However, in this test we only use one client machine and 7
server machines. Consequently, only the machine running the browser program is
a potential bottleneck in these experiments. Again each experiments runs for 55
minutes, leaving 35 minutes of useable measurements.
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Since we both need to test for potential bottlenecks on the client machine and
for independence of any additional resources, we test the browser on two di�erent
machines: the one with the slowest CPU, a 66MHz 80486, and the fastest, a 200MHz
Pentium Pro.

On each of the two machines we run a number of experiments where we gradually
increase the number of browsers simulated by the browser program, ranging from
300 browsers up to 1500 browsers.

We expect the results to show a linear relationship between the number of sim-
ulated browsers and the bandwidth utilization on the path from the servers to the
client. The observation leading to this conclusion is that each browser is based on
the same empirical model of HTTP traÆc, meaning that each modeled browsers
will on average use the same amount of bandwidth, if measured for long enough a
period (35 minutes). Therefore, a linear relationship between the number of mod-
eled browsers and the average amount of bandwidth used by the browser program
should exist. If not then a bottleneck may be present or the implementation may
be sensitive to the amount of available resources.

Table 3.3 lists the experiments run for the browser program test. Additionally,
we have added the measured bandwidth utilization on the path from the servers
to the client. To show that a linear relationship exists between the number of
simulated browsers, and the bandwidth utilization, we have plotted the bandwidth
measurements as a function of the number of simulated browsers. From Table 3.3

486-66MHz Pentium Pro 200MHz
browsers link util (Kbps) link util (Kbps)
500 1368 1464
650 1888 2008
800 2312 2400
950 2624 2752
1100 3008 3088
1250 3696 3552
1400 4048 4096

Table 3.3: Browser program tests.

and the plot in Figure 3.15 we see that a linear relationship certainly exists between
the number of modeled browsers and the bandwidth utilization. Furthermore, we
see that the bandwidth utilization is nearly identical independent of machine.

As a �nal note we should mention that we did try to simulate more browsers
then the results show here, and for the 80486 machine the limit was around 1700
simulated browsers and a slightly more for the the Pentium Pro machine. Thus, we
should be careful not to increase the number of simulated browsing users to a value
greater then what we have tested here.

Server Program

The test of the server program is similar to the test we performed with the browser
program. The only di�erence is that when testing the server program we run with
7 instances of the client program and only one instance of the server program.

Like the test of the browser program, we run a series of these with a low end
and a high end machine. On each of these machines a series of experiments is run
where the aggregate number of browsers simulated by the clients ranges from 500 to
1500 browsers. Since there is only one server available, all the simulated browsers
will only use that server.
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Figure 3.15: Browser program test.

A possible problem with the general setup where we run with several browser
programs and server programs, is that there is a risk that one server at some point
is signi�cantly more popular then the other servers in the experiment. Such a
situation could cause a peak load on the server to be higher than what we test for
here. We see this as a minimal risk since servers are chosen uniformly, and because
the load in this test is nearly twice the average load during the actual study.

The experiments and the results are summarised in Table 3.4. Figure 3.16
shows the plot of bandwidth utilization as a function of simulated browsers. From

486-66MHz Pentium II 400MHz
browsers link util (Kbps) link util (Kbps)
100 307 314
300 840 888
600 1680 1712
900 2664 2512
1200 3456 3440
1400 4040 4040

Table 3.4: Server program test.

the results we see that the server program is not a bottleneck for the performance
of the browser program within the range of browsers we simulate, and furthermore,
that the performance seems to be independent any surplus of resources available on
the machine running the server program.

3.5.4 Calibration

In this �nal set of experiments we calibrate the browser program, to obtain a func-
tion describing the o�ered load from the traÆc generator as a function of the number
of simulated browsers. The o�ered load is the load the traÆc generator will generate
without constraints from CPU or network resources.

For these experiments we also use the laboratory network con�gured without
bandwidth constraints. We use all seven client machines and all seven server ma-
chines. Each experiment runs for 55 minutes leaving 35 minutes of simulation
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Figure 3.16: Server program test.

measurements.
In each experiment we increase the number of modeled browsers ranging from

700 to 5200. In each experiment we measure the bandwidth utilization on the path
from the servers to the clients. Thus, the bandwidth measurements only re
ects
the load produced from Web replies, and not requests.

Figure 3.17 shows the results of the measurements and a linear approximation
of average bandwidth utilization as a function of the number of simulated browsers.
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Figure 3.17: O�ered load as a function of the number of simulated browsers.

3.5.5 Summary

We have conducted a number of experiments in which we ensure that the imple-
mented traÆc generator performs and behaves as predicted. We have demonstrated
how the generated traÆc is bursty over several time scales. This test was followed
by tests that showed that the traÆc generator is independent of CPU resources
within the range of browsers that we intend to simulate in our experiments.

In a �nal set of experiments we have calibrated the traÆc generation tool, thus
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Link utilization (Mbps) Number of browsers
5.0 1714
7.0 2389
8.0 2727
9.0 3065
9.8 3353
11 3740

Table 3.5: Typical o�ered load levels used and number of simulated browsers.

providing us with a load measure describing the o�ered load as a function of the
number of simulated browsers.

3.6 Conclusion

In this chapter we started by describing previous work on traÆc generators. Then
we looked closer at studies describing the statistical properties of Web traÆc and
how Web traÆc can be modeled parsimoniously using the ON/OFF model with a
heavy-tailed ON or OFF distribution.

We then described the HTTP traÆc model developed by Bruce Mah, which we
have chosen to used in our traÆc generator. Following this we described how the
traÆc generator has been implemented and how we measure HTTP response times.

Finally we have shown the results of testing the traÆc generator tool. By �rst
demonstrating how the traÆc is bursty, and then showing that there are no bottle-
necks when using the traÆc generator on our unconstrained network. Finally we
showed the results of a series of calibration experiments which gives us a measure
of o�ered load as a function of simulated browsing users.





Chapter 4

Network Design and

Experimental Procedures

In this chapter we describe the laboratory network on which we perform the exper-
iments for studying the impact of using RED. In addition, we describe the experi-
mental procedures, and furthermore, the results of two experiments are presented.
We use these to illustrate how we compare performance experimentally.

4.1 Network Design

The central issues in the design of the laboratory network is to provide a environ-
ment in which we can measure the impact of changing the queuing mechanism or
its parameters. It is important to realize that the laboratory network must provide
an environment such that the traÆc generator generates a realistic workload. Only
high level protocol events are modeled in the traÆc generator, the remaining events
are created dynamically and in some sense controlled by the network environment
in which the experiment runs.

4.1.1 Network Model

We aim at modeling a campus or small enterprise network with a single wide-area
link to an Internet Service Provider (ISP) as illustrated on Figure 4.1. Starting
on the left side of the illustration, we have a local area network (LAN) for the
campus or small enterprise. TraÆc, generated by browsing users, from the campus
or enterprise network is carried to the Internet (on the right) through two routers.
One router is located at the edge of the local network and the other at the edge of
the ISP network.

The laboratory network depicted in Figure 4.2 models the scenario that we
have described. Notice that each Ethernet segments has been labeled E1 to E6

and routers have been labeled R1 and R2. On the left side we model the LAN of
the campus or enterprise network (E1) by simulating a number of client machines
that run instances of a browser program that issues Web requests. At the other
side we model the Internet (E2) by simulating a set of server machines running
instances of the Web response generator. The LANs on each side of the network
are switched, and each host is connected to the network switch through a separate
10Mbps Full-Duplex link.1.

1To be precise, we use only one physical switch, but by using Cisco VLAN technology we divide
the switch into several separate LANs.

49
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Figure 4.1: The scenario modeled by the laboratory network.

At the core of the laboratory network are the two routers R1 and R2 connecting
the LANs at the edges of the network. Each router has one 100Mbps Full-Duplex
Ethernet interface attached to the LAN from which it is forwarding data (E3 and
E4). Each router also has two additional 10/100Mbps Ethernet interfaces con�gured
to create two point-to-point Ethernet segments E5 and E6 (using two hubs) that
connect the routers R1 and R2. Static routes are con�gured on the routers such
that all traÆc 
owing from the servers to the browsers use Ethernet segment E5

and all traÆc in the opposite direction use the Ethernet segment E6.

Depending on the network con�guration of the two routers, the laboratory net-
work is con�gured to operate either in constrained mode or in unconstrained mode.
To operate in constrained mode, we con�gure the router-to-router Ethernet seg-
ments to run at only 10Mbps. Our representation of the ISP link is a potential
bottleneck since the aggregate bandwidth available to the machines at each edge
of the network is limited only by the 100Mbps links from the LANs to the routers.
When the links connecting the routers are con�gured to run at 100Mbps, this po-
tential bottleneck is removed and we run in unconstrained mode.

The router machines machines run Alternate Queueing (ALTQ) version 1.2 [36]
extensions to FreeBSD. ALTQ extends the network-interface output queuing disci-
pline to include, among others: tail-drop, RED, CBQ, andWFQ queue-management
disciplines. Appendix C describes a small di�erence between the Floyd and Jacob-
son [29] de�nition of RED and the ALTQ implementation, and how we repair it.

The load on the core of the network is highly asymmetric. This is because
Web responses are generally much larger than Web requests, and therefore traÆc
from servers to clients consumes several times more bandwidth than the traÆc
in the opposite direction. On the constrained network this means that only the
outbound interface on the ISP router carrying traÆc to the browsing users can be
congested. Consequently, it is only on this interface that the e�ects of di�erent
queue management algorithms on the IP output queue will show. Therefore, it is
only on this interface that we operate with di�erent queue management mechanisms
and con�gurations, see Figure 4.2. IP output queues for the link interfaces on all
other machines in the network are tail-drop queues with the FreeBSD default queue
size of 50 elements.

Appendix A contains a detailed network diagram and describes the hardware
we use in the network.

4.1.2 Modeling Latency

Another important factor in modeling this con�guration is the e�ect of the end-
to-end latency. Apart from being a fundamental element of the Web, latency has
a signi�cant on the behavior of TCP. For instance the latency controls the speed
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Figure 4.2: Laboratory network. Each Ethernet segment is labeled E1 to E6,
and routers are labeled with R1 and R2.

brain taz tweetie howard lovey speedy petunia
goddard 81 105 64 64 67 147 114
wako 126 137 47 53 41 86 114

oyd 33 42 40 114 112 117 108
goober 35 45 95 100 31 100 116
thelmalou 105 92 78 41 53 109 66
roadrunner 85 112 38 83 55 8 41
yako 124 87 101 87 95 7 61

Table 4.1: Round-trip times in milliseconds between pairs of machines.

at which the transmission window can grow because this is controlled by the rate
at which packets are acknowledged. Furthermore by modeling latency we avoid
potential synchronization e�ects in the laboratory network.

We use the dummynet [60] component of FreeBSD to con�gure in-bound packet
delays on the hosts running the Web server program. This allows us to emulate
di�erent round-trip times between each pair of a browser machine and a server
machine. Table 4.1 gives the delay between each pair of machines. Figure 4.3 shows
a histogram of round trip times. The values we use are taken from measurements
obtained at the NetStat.net web site [51] and were chosen to represent a sample
of Internet round-trip times within the continental U.S. Using these values, the
minimum round-trip time experienced by an arbitrary TCP connection will be one
of these values depending on which pair of machines makes the connection, assuming
no delays in the two routers. As described in Section 3.4 on page 38, the browser
program chooses a server based on a uniform distribution, and thus, each of the
round-trip time values is represented equally and we can therefore calculate the
mean nominal round-trip time for all TCP connections sharing the network as
approximately 79ms.

4.1.3 Monitoring

As we described in Section 3.4.1 on page 38 the traÆc generation tool is instru-
mented to report response time measurements. To gain further insight in the general
performance of the laboratory network, we have instrumented the laboratory net-
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Figure 4.3: Histogram of round-trip times between pairs of machines.

work to collect general statistics of bandwidth utilization and packet drops during
experiments.

The monitoring is done by two programs. The �rst program monitors the be-
havior of the queue management algorithm. When running it reports a summary of
events every 100ms. This summary consists of the number of dropped/forwarded
packets, minimum and maximum queue length since the last summary. Addition-
ally, the program reports the mean and variance of the queue size based on samples
of the queue length taken every 3ms.

The second monitoring program runs on an external machine connected to the
hubs forming the link between the routers. It collects the TCP/IP headers in each
frame traversing the link and processes these to produce a log of link throughput
over each speci�ed time interval (typically 1s).

To ensure that no unexpected bu�er over
ows in any other parts of the network,
we also monitor the IP packet queue of each network interface in the network, using
the netstat command. Furthermore we collect traÆc summaries from the switch
which among other facts shows whether it has dropped any packets.

4.1.4 Operating System and Protocol Con�guration

All machines in the network are FreeBSD 2.2.8 machines with TCP Reno imple-
mentation that support the timestamp feature described in RFC 1323 [33]. Window
scaling is disabled and SACK is not included in the implementation. The default
window size of 16KB is used. To increase the timer resolution, all kernels are con-
�gured to run at 1000Hz.

As described in Section 3.4.3 on page 40, the traÆc programs have the Nagle
algorithm disabled to avoid the additional time added to transactions.

4.2 Experimental Procedures

Each experiment uses the following procedure: After initializing and con�guring all
router and end-system parameters, the server-side processes are started followed by
the browser processes. Each browser process emulates an equal number of users
chosen, to place a nominal o�ered load on an unconstrained (100Mbps) network.
The o�ered loads we have chosen to use in the experiments are: 50,70,80,90,98,110
percent of the capacity of the 10Mbps links connecting the two router machines.
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Loads exceeding 110% were tried; it turned out, however, that the extreme duration
of the connections when using a congested link caused the traÆc generators to
occasionally use all available sockets and fail to generate the desired load. Because
the measured response times at a load of 110% had deteriorated well beyond levels
that most users would tolerate, we have decided to not consider loads beyond 110%
on the congested link.

Each experiment runs for 90 minutes, but data collected during the �rst 20
minutes are discarded in the reported results to eliminate startup and stabilization
e�ects. These e�ects are shown in Figure 4.4 which is a plot of mean response times
of all requests averaged in one second periods in a typical experiment.
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Figure 4.4: Average response time per second during an experiment. The plot
includes the initial 20 minutes, where traÆc generators are in the
initial startup phase (marked by the vertical dotted line).

4.3 Performance Evaluation

Each completed experiment is described though a set of summary statistics describ-
ing the performance. As we stated in the introduction, our focus is to determine
the impact that RED has on the end users experience of performance. Thus the
primary indicator of performance is the response times measured by the traÆc
generator during each experiment. The response times provide a complete view
of the performance experienced by the browsing user. However, they provide lit-
tle information about the actual cause of good or bad performance. Therefore we
supplement the measurement of response times with more traditional measures of
performance such as link utilization and packet drop rates.

In the following we present the summary of two experiments. The �rst exper-
iment runs at 98% o�ered load on the 10Mbps network (3353 browsers) on the
unconstrained network with tail-drop queue management. The second experiment
runs with the same o�ered load, but now we use the constrained network and RED
queue management. We use these to show how we compare performance between
experiments.

4.3.1 Experiment: unconstrained (100Mbps) network

This experiment was run on the laboratory network con�gured to provide uncon-
strained bandwidth. This is equivalent to the setup used for the calibration exper-
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iments that we presented in the evaluation of the traÆc generator in Chapter 3 on
page 25. The experiment runs with 3353 browsers, generating a 9.8Mbps average
load for the entire experiment (after the startup period).

As we described in section 4.1.1, using the unconstrained network no packets
are dropped for any connection between browsing users and Web servers, and no
signi�cant queues builds up during the experiment, because there is a signi�cant ex-
cess of bandwidth available in the network. Consequently the HTTP response times
measured in this experiment corresponds to the best-case performance, independent
of queuing mechanism, that one can achieve on our laboratory network.

Overall this measurement of best-case performance will serve as a reference point
when evaluating the performance of experiments run on the constrained network,
where congestion can occur.

The response times measured by the traÆc generators is the central result of
running an experiment. To present these without too much loss of information we
plot Cumulative Distribution Functions (CDFs). This is shown in Figure 4.5 which
shows the response time CDF for this experiment. From this �gure we conclude
that about 90% of the requests complete within 500ms or less.
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Figure 4.5: Response time CDF for the experiment on the unconstrained net-
work.

The additional performance measurements are summarized in Table 4.2. The
�rst �eld shows the average number of KB sent per second on the link from R2

to R1 during the experiment. The next �eld shows the percentage of packet drops
for all packets arriving at router R2 from LAN L2 on which the server programs
are running. The mean (�) queue length is the mean of the mean queue lengths
that are reported every 100ms (see Section 4.1). The median (�) response time is

the 50th percentile of the measured response times. Finally, we group the response
times into three intervals, and report the percentage of requests in each interval:
0 � i1 � 1 , 1 < i2 � 2, 2 < i3 � 3, and i4 > 3 seconds.

The most interesting information in this particular table is that there are no
packet drops during the experiments, and the mean queue length on the interface
is zero. This is a clear indication that the link from the servers to the clients was
indeed unconstrained during the experiment.

4.3.2 Experiment: constrained network with RED

The second experiment was performed on the constrained network. As with the
�rst experiment, the load was 98% (3353 browsers). The queuing mechanism used
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KB
s

% drops � qlen � response time i1 i2 i3 i4

1187 0.0 0.0 229 97.7 1.74 0.19 0.40

Table 4.2: Performance summary of an experiment with 3353 browsers on the
unconstrained network.

for this experiment is RED using the default parameter settings from ALTQ, see
Table 4.3.

name value
qlen 60
minth 5
maxth 15
maxp 1=20
wq 1=512

Table 4.3: Default RED parameter settings in ALTQ.
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Figure 4.6: CDF for response times for an experiment on a constrained network.

As before, the primary result from the experiment is the response time CDF
shown in Figure 4.6. Table 4.4 provides summary statistics for the experiment. Two
additional columns that only apply to RED experiments have been added compared
to Table 4.2. They divide packet drops into two categories: unforced drops and force
drops, as shown in Figure 1.4 on page 5. Unforced drops are packets dropped early
by the RED queuing mechanism, e.g. when the weighted average queue length is
between minth and maxth. Force drops are packets dropped when the weighted
average queue length of RED exceeds the maximum threshold or when the actual
queue length exceeds the queue length. Thus, looking in Table 4.4 we see that
11:2% of all arriving packets were dropped; of these, 43:3% were dropped by the
early drop mechanism in RED, while 56:6% were force drops.
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KB
s

% drops % un-
forced

% forced � qlen � resp.
time

i1 i2 i3 i4

1142 11.2 43.4 56.6 12.2 402 62.7 12.8 9.56 14.9

Table 4.4: Performance summary at 98% o�ered load on the constrained net-
work using RED with default parameters.

4.3.3 Comparing Response Time Performance

To demonstrate how we compare the performance between experiments we now
compare the measured performance of the two experiments described in the previous
two sections.

The response times CDFs are our primary base for comparing experiments.
Figure 4.7 shows the response time CDFs for the two experiments in one plot. From
this it is clear that constraining the bandwidth signi�cantly impacts the response
time performance for the generated Web traÆc.

Another approach could be to assume similar distributions and identify the pa-
rameters of the distributions. This would allow us to use well established methods
for comparing performance such as mean, con�dence intervals and so forth. How-
ever, the distribution of response times is quite complex and cannot be well modeled
by a single distribution. Consequently, an analytical approach would require a sig-
ni�cant amount of statistical analysis without necessarily improving the quality of
the study at hand.
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Figure 4.7: Comparison of response time performance.

A potential side e�ect of running an experiment on the unconstrained network
is that since the average request takes longer to complete, the total number of re-
quests completed on the unconstrained network may be signi�cantly larger than
the equivalent experiment on the constrained network. In fact, the same problem
could occur when comparing two experiments with di�erent parameter con�gura-
tions on the constrained network. Therefore we always ensure that this is not the
case when comparing experimental results by comparing the number of completed
HTTP requests in each experiment.

As a reference, Table 4.5 shows the number of requests generated during a 70
minute interval for each of the loads in typical runs on the unconstrained network.
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Experiment Load % Requests

1 50 240,379
2 70 329,638
3 80 375,673
4 90 425,293
5 98 461,837
6 110 521,561

Table 4.5: Typical numbers of requests in a 70 minute interval for each load.

In total we �nd our approach for comparing performance between experiments
to be suÆcient for studying the impact on HTTP response times when using RED
queuing. However, we should be careful not to draw conclusions on marginal per-
formance di�erences.

4.4 Summary

In this chapter we described the laboratory network and the experimental proce-
dures. This is followed by the results of two example experiments for which we
demonstrate performance measurements and our procedure for comparing response
time performance between experiments.

The laboratory network models a typical scenario in which routers operate. A
campus or small enterprise network is connected to an Internet though a link to
a Internet Service Provider (ISP); this link may be congested when users on the
campus or enterprise network request Web pages that are placed on Web servers
located somewhere beyond the ISP.

To allow comparison of performance with and without bandwidth constraints,
the laboratory network can be con�gured as a unconstrained network or a con-
strained network, depending on whether there is a potential bandwidth bottleneck
in the network.

Programs are used for monitoring the performance of the network, thus giving
detailed information on the behavior of the queuing mechanism on the potentially
congested router, and providing summary statistics about the bandwidth utilization
in the network.

The experimental procedures were described, and to illustrated them, we showed
the results of running experiments on the unconstrained network and on the con-
strained network. The main performance measure of each experiment a cumulative
distribution function (CDF) representing measured HTTP response times.

The response time measurements from these experiments were by performing
a visual comparison of the CDFs from each experiment. We �nd this method for
comparing performance suÆcient, but acknowledge that we should be careful when
comparing experiments with marginal performance di�erences.





Chapter 5

Tuning RED

This chapter presents the results from our study of using RED on interface queues
carrying Web traÆc. The strategy for the experiments is �rst to examine the
e�ects of tail-drop queuing behavior in the laboratory network with the goal of
�nding queue lengths resulting in good HTTP response time performance. Then
we examine the e�ect that RED parameter settings have on HTTP response time
performance and again we �nd the parameters resulting in good performance. Hav-
ing a good understanding of the e�ect of tail-drop and RED parameters on HTTP
response times in the laboratory network, allows us to compare the e�ect of using
either.

Based on the analysis we learn that at loads near or below the levels of link
saturation (90% or less), there is little di�erence in the end-to-end response time
between the best-tuned RED and tail-drop con�gured with 1-2 times the bandwidth-
delay product in bu�er space. At o�ered loads approaching the link saturation
(above 90%) RED can be carefully tuned to yield performance somewhat superior
to a properly con�gured tail-drop. However, when o�ered loads exceed the link
capacity, we cannot detect any di�erence in response time performance between the
two mechanisms.

5.1 Tail-Drop Results

To establish a baseline for evaluating the e�ects of using RED, we examine the
e�ects of tail-drop queuing in our laboratory network. For these experiments we
use the constrained network, where a bottleneck link is created between the two
routers by con�guring the two segments connecting the router machines to run at
10Mbps using 10Mbps hubs, as described in Section 4.1 on page 49.

5.1.1 Methodology

The critical parameter for a tail-drop queuing mechanism is the size of the bu�er
space allocated to hold the queue elements. Guidelines (or \rules of thumb") for
determining the \best" queue size have been widely debated in various venues in-
cluding the IRTF end2end-interest mailing list [32]. The guideline that appears to
have become most popular is to provide bu�ering approximately equal to 2-4 times
the bandwidth-delay product of the link. Bandwidth in this context is that of the
link for the interface using the queue, and delay is the mean round-trip time for
all connections sharing the link { a value that is, in general, very diÆcult to deter-
mine. For our laboratory network, the mean minimum round-trip time is 79 ms, see
Section 4.1.2 on page 50, resulting in a bandwidth-delay product of approximately
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Figure 5.1: Tail-drop performance at 80% load.

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

(%
)

Response Time (ms)

qlen=15
qlen=30
qlen=60

qlen=120
qlen=240

Figure 5.2: Tail-drop performance at 90% load.

96KB with a 10 Mbps link. FreeBSD queues are allocated in terms of a number
of bu�er elements (mbufs) each with capacity to hold an IP datagram of Ethernet
MTU size. We measured the mean IP datagram size in our generated Web response
traÆc to be just over 1KB so the tail-drop queue should have approximately 190-380
queue elements to fall within the guidelines.

The tail-drop experiments cover parameter settings with o�ered load values
ranging from 50 up to 110% of the link capacity, and queue lengths ranging from
15 to 240 packets. A complete list of experiment con�gurations can be found in
Appendix B.1.1 on page 93.

5.1.2 Results

We ran a number of experiments with a tail-drop queue on the bottleneck link vary-
ing the o�ered load and queue size. Figure 5.1-5.4 shows the cumulative response
time distributions for di�erent tail-drop queue sizes at loads of 80%,90%,98%, and
110%. At a load of 80%, there is little e�ect from increasing the queue size from
30 to 240 elements. At 90% load we begin to see queue size having more signi�cant
e�ects on response times, and observe that a queue of 120 elements is a reasonable
choice for this load.
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Figure 5.3: Tail-drop performance at 98% load.

0

20

40

60

80

100

0 500 1000 1500 2000

C
um

ul
at

iv
e 

P
ro

ba
bi

lit
y 

(%
)

Response Time (ms)

qlen=15
qlen=30
qlen=60

qlen=120
qlen=240

Figure 5.4: Tail-drop performance at 110% load.

The e�ect that queue size has on response times is shown on the plots for 98%
load, Figure 5.3. Increasing the queue size from 30 to 120 has a slightly negative
e�ect on requests with relatively short response times. With a queue length of 30
packets these requests complete within approximately 150-250ms, but with a queue
length of a 120 packets this is closer to 250-350ms. For a 10Mbps Ethernet link and
an average frame size around 1KB, approximately 1,000 packets can be forwarded
per second. Thus a packet arriving at the queue already containing 100 packets has
to wait approximately 100ms on the router. Such a delay is signi�cant for requests
with short responses that may otherwise complete within 200-350ms.

On the other hand, increasing the queue size from 30 to 120 signi�cantly reduces
the the number of requests with long response times that are greater than 1000ms.
Even though the response time spent in the queue by each packet is longer, the
reduced rate of drops means that fewer 
ows are likely to encounter retransmission
timeouts (which are often longer than queuing delays by a factor of 5-10 times).
At queue sizes of 190 or 240 the increased delay of short response times appears to
o�set any improvement gained for long response times from reduced drops.

Our results indicate that, overall, a tail-drop queue size of 120 elements (1.25
times that bandwidth-delay product) to 190 elements (2 times bandwidth-delay) is
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Figure 5.5: Tail-drop performance for di�erent loads with a queue length of 120
elements.

a reasonable choice for loads up to the link capacity. For o�ered loads that only
slightly exceed the link capacity (e.g., 110%), we observe that queue sizes beyond
120 only exacerbate an already bad situation.

Additional measures of performance in these experiments, including link utiliza-
tion and drop rates, are given in Appendix B.2 on page 94. These results con�rm
that our selection of queue sizes of 120-190 represent reasonable tradeo�s for re-
sponse times without signi�cant loss of link utilization or high drop rates.

These experiments illustrate (as queuing theory predicts) the dramatic e�ect
that o�ered loads near or slightly beyond the link capacity have on response times.
Figure 5.5 shows the cumulative distribution of response times for these loads with
a tail-drop queue of 120 elements. Clearly, response times degrade sharply when the
o�ered load approaches or exceeds link capacity. If an ISP has links that experience
utilization above 90% over intervals greater than a few minutes, response times for
Web users are seriously impacted. A second important observation is that at loads
below 80% there is no signi�cant change in response times as a function of load.

5.2 RED Results

In our experiments with RED we study the e�ects of RED parameters on HTTP re-
sponse time performance, and thereby determine the set of parameters that provides
the best response time performance in our laboratory network.

5.2.1 Methodology

The RED queuing mechanism has �ve di�erent parameters for adjusting the queu-
ing algorithms behavior. An exhaustive search for the best parameter values is
impossible because of the number of possible combinations of values. Our approach
for the RED experiments is to design an initial set of experiments that could give a
broad approximation of parameter values that result in good HTTP performance.
We then examine the e�ects of varying each parameter individually using this initial
determination as baseline.

From our experiments with tail-drop queuing it is clear that there is a complex
tradeo� between short response times that can be completed in a few hundred mil-
liseconds (best with a short queue) and the number of requests that complete with
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Figure 5.6: The performance of RED at di�erent loads. wq = 1=512, maxp =
1=10, minth = 30, maxth = 90, and qlen = 480.

long response times that take more than one second (best with longer queues and
lower drop rates). The original Floyd and Jacobson paper [29] suggests guidelines
for tuning parameters. These have been revised based on subsequent experience
and analysis (see [25] for the current guidelines). The guidelines suggest that the
most fundamental e�ects are determined byminth and wq parameters which control
tradeo�s between average queue size and sensitivity to the duration of periods of
congestion.

For our initial experiments we decided to eliminate the size of the physical queue
as a factor and set the number of queue elements to 480 a value signi�cantly larger
than any maxth value used in the experiments. In these experiments we varied
minth, beginning with the guideline value of 5 and ranging up to 120. We �xed
maxp at 0.10, wq at 0.002 (actually 1/512), andmaxth at 3 timesminth as suggested
in the current guidelines.

Each of the parameter setting was tried at �ve di�erent o�ered loads: 50%, 70%,
80%, 90%, 98%, and 110%. See Appendix B.1.2 on page 93 for a complete list of
experiments.

5.2.2 Results

Figure 5.6 illustrates typical results from these experiments by showing the e�ect
of varying loads on response time distributions with (minth;maxth) set (30; 90). In
addition we have included the response time performance measured on the uncon-
strained network.

At 50% load the number of dropped packets was between 0.00% and 0.01% of
the total number of packets transmitted, see Table B.6 on page 103. This means
that at loads of 50% and below, there is limited room for increasing the performance
of the router queuing mechanism. This is also clear if we compare the performance
at 50% o�ered load with the performance measured on the unconstrained network.

Post processing of the logs shows that the queue size never reaches the maximum
value of 480 even at a load of 110%, though it is possible in a worst-case scenario.
As expected, the performance changes signi�cantly as the load is increased from
50% to 110%.

It is encouraging to see that performance degradation only occurs at loads
greater then 70%, especially when combined with the fact that the drop rates at
50% load never exceeds 0.01% of the packets received at the router. This indicates
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that parameter tuning will have limited e�ect until loads reach levels of 70-80% of
link capacity. When loads exceed 70%, the performance decreases monotonically as
the load increases. The most signi�cant performance decrease occurs at load levels
90-110%. These are the most interesting targets for optimizing, since this is where
there is signi�cant performance to gain.

Exploring minth and maxth

We start by exploring possible choices for minth and maxth. Figure 5.7 shows the
response time distributions for the 90% and 98% o�ered loads, respectively. These
results clearly show that a naive application of the guidelines in [25] with a minth
of 5 would result in poor performance of Web-dominated traÆc. The best overall
response-time performance is obtained with values for (minth;maxth) of (30; 90)
or (60; 180). Appendix B.3.1 on page 100 shows the equivalent plots for the other
threshold values.

We see, as in the case of tail-drop queuing, that there is a tradeo� between better
short response times at (30; 90) and reducing the number of requests with longer
response times at (60; 180), especially at the 98% load. Although the di�erences
are not great, we prefer (30; 90) on the grounds that about 70% of the requests
experience somewhat better response times than with (60; 180). One could also
argue that (60; 180) is the best because it improves the most noticeable delays.

General statistics on the experiments, including link utilization and drop rates
are summarized in Table B.6 on page 103. These indicate a slight drop in link
utilization for the (30,90) setting over the (60,180) setting. Like tail-drop results,
response times at loads of 110% are quite bad and are not improved by changing
the RED settings for (minth;maxth).

We next consider varying the ratio between minth and maxth by holding one
constant and varying the other. To see the e�ect of minth, we �rst �xed maxth at
90 and varied minth. We then held minth constant at 30 and varied maxth. We
�xed maxp at 0.10, wq to 1=512, and qlen at 480 as in the previous experiments.
Figure 5.8 illustrates the e�ect of varying minth on the response time distributions
for the 90% load. The results obtained by varying maxth are similar. The results
from these experiments, in general, show only marginal changes in response times
(or link utilization) and con�rmed the notion that the best balance of response
times for all sizes of responses with the loads considered here are achieved with
minth = 30 and maxth = 90. Appendix B.3.3 on page 107 provides summary
statistics and plots from additional experiments.

The Parameters wq and maxp

Experiments testing the impact of changing wq and maxp were combined because
of the close relationship between the two parameters. The values used for wq were:
1=512, 1=256, and 1=128. (The implementation of RED requires the denominator
to be a power of 2 as described in [29]). Decreasing wq to 1=1024 was tried, but we
found it to be quite slow. The values of maxp used were 0:05, 0:10, and 0:25. The
remaining parameters were �xed at minth = 30, maxth = 90, and qlen = 480. All
the di�erent settings were tested at loads of 90, 98, and 110%.

These experiments showed that at all load levels, the setting of maxp to 0:25
has a negative impact on performance, because too many packets are dropped.
Figure 5.9 shows the results from the experiments at 90% load (the results at 98%
load are similar). At 90% and at 98% load, the di�erence between the settings occurs
beyond the knee (above the 75th percentile) of the CDF, meaning that changes of
wq and maxp mainly impact the number of 
ows with long response times. Overall,
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Figure 5.7: Response time CDF for o�ered loads of 90 and 98% of link capacity.
(wq = 1=512;maxp = 1=10, and qlen = 480).

however, we conclude that there is no strong evidence to indicate using values other
than the suggested wq = 1=512 and maxp = 0:10.

Limiting the queue size

Finally, we consider the e�ect of having a limit on the queue size such that there
are occasionally forced drops because the queue intermittently exceeds the bu�er
capacity. Table 5.1 gives experimental results using our recommended values of
RED parameters for actual queue sizes of 480, 160, and 120 elements.

These results are very similar to the tail-drop results { the 120 element queue
(1.25 times bandwidth-delay) is a reasonable choice at 90% and 110% loads while a
longer queue of 2-3 times bandwidth-delay might provide some advantage at loads
just below link saturation.
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Figure 5.8: The e�ect of changing minth. Load = 90% and maxth = 90; wq =
1=512;maxp = 1=10, and qlen = 480.

load
(%)

qlen KB
s

%
drops

�

qlen

� rsp-
time
(ms)

i1 i2 i3 i4

90 480 1079 0.83 20.2 269 92.4 4.30 1.98 1.32
90 160 1093 1.11 22.2 281 91.1 4.72 2.44 1.72
90 120 1066 0.72 18.8 269 92.9 4.11 1.75 1.21
98 480 1164 4.09 39.4 349 79.1 8.18 6.33 6.39
98 160 1175 5.92 46.3 401 72.3 9.70 8.20 9.78
98 120 1171 5.48 44.3 381 74.1 9.23 7.67 9.01
110 480 1187 19.7 76.0 1852 39.4 12.9 12.2 35.6
110 160 1188 19.5 76.6 1871 39.0 13.0 12.2 35.8
110 120 1188 19.4 77.4 1888 38.6 13.1 12.4 35.8

Table 5.1: RED performance with recommended parameters and queue lengths.
Remaining parameters remained �xed at: minth = 30, maxth = 90,
wq = 1=512, and maxp = 1=10.

Evaluation

Our conclusion is that, except for minth which should be set to larger values to
accommodate the highly bursty character of Web traÆc, the guidelines for RED
parameter settings and for con�guring interface bu�er sizes (tail-drop and RED)
also hold for the Web-like traÆc used in our experiments. We also conclude that
attempting to tune RED parameters outside these guidelines is unlikely to yield
signi�cant bene�ts.

To illustrate this point, we examined the entire suite of experiments conducted
for 90% and 98% loads (including some trial experiments with parameter values
outside the ranges reported above) to �nd the combination of settings that gave the
best results on three performance measures:

� \best" response times,

� best link utilization, and

� lowest drop rate
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Figure 5.9: Results for di�erent values of wq and maxp. Load = 90%, and
qlen = 480;minth = 30; andmaxth = 90.

where the \best" response times is a subjective choice because of the trade-o�
between improving for short versus long response times. The result of this search
is shown in Table 5.2 and Figure 5.10 shows the response time CDFs for the found
experiments. As a reference we have included the response time performance plot
on the unconstrained 100Mbps network, these plots are labeled \uncongested".

For 90% load, there are relatively small di�erences between tuning for highest
link utilization or lowest drop rates and tuning for response times. At 98% loads,
tuning for highest link utilization has potentially serious e�ects on response times.
Note that the \best" overall response times are obtained for the 98% load (only)
with parameters that are quite di�erent from our generally recommended settings.
There is however some degree of uncertainty in the choice of parameter settings at
98% load. The reason is that at this load we are running very close to the maximum
link capacity, thus the experiments are quite sensitive to both parameter settings
and the behavior of the generated traÆc. As a consequence we weigh our choice of
\best" parameter setting at 90% o�ered load highest when selecting an overall best
setting.
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Load (%) minth maxth wq maxp Notes
90 30 90 1/512 1/10 best overall response times
90 30 90 1/512 1/20 highest link utilization
90 120 360 1/512 1/10 lowest drop rate
98 5 90 1/128 1/20 best overall response times
98 30 180 1/512 1/10 highest link utilization
98 90 150 1/512 1/10 lowest drop rate

Table 5.2: Empirically determined \best" RED parameter settings.

Load (%) minth maxth wq maxp qlen
90 5 15 1/512 1/10 480
90 5 120 1/256 1/20 480
90 120 150 1/512 1/10 480
98 5 15 1/512 1/20 60
98 5 45 1/512 1/10 480
98 5 90 1/512 1/4 480
98 120 360 1/512 1/10 480

Table 5.3: Empirically determined \bad" RED parameter values. The experi-
ment with a queue length of 60 corresponds to the default setting of
RED in the ALTQ distribution.

There is, moreover, a signi�cant risk of choosing \bad" parameter settings, es-
pecially at near-saturation loads above 90%. We again searched the entire set of
experiments for the 90% and 98% loads looking for combinations of RED parame-
ters that produced response times that subjectively represented poor choices (i.e.,
choices that increased response times signi�cantly). The result of this search is
shown in Table 5.3 and Figure 5.11. Note that plots marked with \best setting"
refers to the experiment with the best overall response time that we found when
searching for the \best" parameter settings.

Clearly some parameter settings produce results that are considerably less de-
sirable than our recommended ones, however, the e�ects of \bad" settings is most
signi�cant at 98% load. It is diÆcult to give a general rules for avoiding \bad"
parameter settings. However, limiting the bu�er size on the router, for instance
by setting (minth;maxth) = (5; 15), is generally a bad idea, providing an oversized
bu�er is likely also deteriorate performance. However in other cases the combina-
tion of parameters deteriorate performance. This is for instance the case for the
experiment at 98% load where minth = 5 and maxp = 1=4. The low threshold
value in combination with a rather aggressive drop probability causes many packet
drops which impacts the response time performance.

5.3 Comparing Tail-drop and RED

Figure 5.12 shows the response time distributions for RED and tail-drop queuing
at o�ered loads at 90%, 98%, and 110% with our recommended parameters selected
as a result of our experiments. Also we have included the results from the uncon-
strained network. The only case in which there is a distinct advantage in using RED
is at the 98% load where response times for shorter responses (80% of requests) are
improved with carefully tuned RED parameters.
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Figure 5.10: \good" RED parameter settings.

5.4 Summary

Based on our experiments we summarize our conclusions as follows. Contrary to
expectations, for o�ered loads near or below the levels of link saturation (90% or
less), there is little di�erence in end-to-end response times between the best-tuned
RED and tail-drop tail-drop queuing con�gured with 1-2 times the bandwidth-delay
product in bu�er space. Tuning of the RED parameters generally produces little
gain (or loss) in response time performance. However, as illustrated in Figure 5.11a,
one can use plausible values for certain RED parameters and produce poorer per-
formance.

At loads that approach link saturation (above 90%), RED can be carefully tuned
to yield performance somewhat superior to properly con�gured tail-drop. In our
experiments, the di�erence is signi�cant only between 90% and 100% loads because
response times degrade so rapidly above this level that any \improvement" from
tuning RED(or tail-drop) is, at best, a second-order e�ect. Moreover, at loads above
90%, response times are more sensitive to the actual values of RED parameters. In
particular, there is greater risk of choosing \bad" parameter values as illustrated
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Figure 5.11: \bad" RED parameter settings.

in Figure 5.11b. This is important because parameter settings that outperformed
tail-drop were arrived at only through extensive trial-and-error experimentation and
may be quite sensitive to the scenario. It was also the case that the RED parameters
that provided the best link utilization at this load produce poorer response times
compared our subjective choice of \best" setting.

In general we observed a complex trade-o� between choosing parameters that
improve short response times (0-500ms) versus parameters that reduce the number
of 
ows with long response times (greater than 1000ms). We have chosen to fa-
vor those parameter settings that improve performance for the largest fraction of

ows, and hence have focused on improving response times for the 
ows with short
response times.

Quantitatively these conclusions imply that providing adequate link capacity
(utilization less than 90%) is far more important for Web response times than
tuning queue management parameters. If one decides to deploy RED for any reason,
response times for Web-dominated traÆc are not likely to be impacted positively,
and unless careful experimentation is performed, response times can su�er. Given
the current lack of a widely-accepted analytic model for RED performance or �eld-
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tested engineering guidelines for RED deployment and the complexity of setting
RED parameters, there seems to be no advantage to RED deployment on links
carrying only Web traÆc.
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Figure 5.12: Tail-drop and RED comparisons at di�erent o�ered load levels.



Chapter 6

Analysis of RED Response

Times

When discussing the results from evaluation of RED that we presented in chapter 5,
a reoccuring question has been whether there is a single dominating cause of the
observed reduction in HTTP response time performance.

To answer this question we have conducted two studies that provides insights
on the impacts of congestion on the response time performance and arrival process
at the bottleneck router. In the �rst study we analyze response times for RED
queue management. The results re-enforce our understanding that response times
for HTTP traÆc is a complex issue involving many trade-o�s. The second study
considers the impact that congestion has on burstiness in the generated traÆc.
The results show that as the load on the bottleneck router increases towards the
link capacity the TCP/IP congestion control and avoidance algorithms changes the
packet arrival from a bursty too a smoothened arrival process. Essentially this
change allows high bandwidth utilization while maintaining a low drop rate on the
bottleneck router.

6.1 Impact of Packet Drops/Retransmissions

In this section we present a short analysis in which we document the impact of
packet drops on the RED response times. The results of this analysis shows that no
single class of packets cause deterioration of response time performance, it is rather
a mix between many di�erent events and thus we conclude that response times for
HTTP traÆc is a complex issue involving many trade-o�s.

6.1.1 Methodology

For this analysis we are particularly interested in determining the general impact of
packet drops on response time performance, and whether a speci�c class of packet
drops dominate the change in response time performance one a congested network.
In order to shed some light on these issues we added further instrumentation to the
laboratory network in order to collect more detailed traces.

Instrumentation

Data is collected from the laboratory network by adding further instrumentation, as
shown in the network diagram in Figure 6.1. We have added two 100Mbps hubs, that
are placed between the switches and the routers. These hubs are then connected

73



74 CHAPTER 6. ANALYSIS OF RED RESPONSE TIMES

to the monitoring machine which collects packet header traces (TCPdumps) for
all traÆc traversing the hubs during an experiment. An important point is that
only one monitoring machine is used in order to ensure timestamping of packets
according to a single clock.

Through postprocessing of the collected traces we link the exact packet traces
for request/response pairs with the actual measurements of response times. This
allow us to calculate more detailed statistics on the number of retransmitted packets
and the period from when a packet has been dropped until it is retransmitted.

Introducing hubs on the 100Mbps links forces the links to run in half-duplex
mode where Ethernet packet collisions are possible. A study of the netstat log
�le for an experiment at 98% o�ered load shows collisions for approximately 1-
2% of the packets. With the retransmission times for Ethernet lying below 0:5ms
for �rst and second retransmission on Ethernet, then this is an insigni�cant delay
compared to the fact that the bottleneck link can only forward approximately 1
packet per ms. Thus the additional delay introduced by a collision is comparable
with the insigni�cant delay of a packet when it arrives at a queue already holding
one packet.

Browsing Users Web Servers

Router Router

Hub

Hub

Ethernet
Switch

10Mbps

Ethernet
Switch

10Mbps

Network Monitor

10/100Mbps

Hub
Hub

100Mbps
100Mbps

Figure 6.1: Laboratory network with additional instrumentation.

Experiments

For the analysis we repeat two RED experiments that previously has produced
clearly di�erent response time results. Both experiments are run at 98% o�ered
loads and with �xed parameter settings of maxp = 1=10; wq = 1=512, and qlen =
480. The di�erence between the experiments lies in the threshold parameters. These
are set to (minth;maxth) = (5; 15) for the �rst experiment, and (60; 180) for the
second experiment.

6.1.2 Results

To summarize the measurements from these experiments, we have grouped the 
ows
of each experiment into four classes dependent on retransmissions on the path from
the server to the client (no retransmissions have been observed on path from the
client to the server). As described in Table 6.1, the �rst class describe 
ows with
no retransmissions, the next classes describe 
ows that have experienced one or
more retransmissions of SYN,FIN, or data packets, while the last class describe

ows with any combination of SYN, FIN or data retransmissions. The class of
FIN retransmissions is relevant since these are often piggy-bagged on the �nal data
packet of a transmission, therefore a lost FIN will in
uence the measured response
time.
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Table 6.2 and Table 6.3 summarizes the results from the experiments. From
Table 6.2 we can see that there is a clear di�erence in retransmission characteristics
for the two experiments. In the experiment with (minth;maxth) = (5; 15), we see
that 56.1% of all the 
ows have no retransmissions, while in the experiment with the
larger thresholds it is 87.1% of the 
ows that have no retransmissions. Looking at
the distribution between the di�erent classes of retransmissions it is clear that data-
packet retransmissions is the dominant class, but SYN and FIN retransmissions play
a signi�cant role.

Class Description
NR Flows with no retransmissions
S+ Flows with one or more SYN retransmissions
F+ Flows with one or more FIN retransmissions
D+ Flows with one or more data retransmissions
SFD+ Flows with any combination of SYN, FIN, or data retransmissions

Table 6.1: Retransmission classes.

Class of retransmission event % of all requests
Experiment (minth;maxth) (5,15) (60,180)
NR 56.1 87.1
S+ 7.4 2.0
F+ 6.0 2.0
D+ 25.5 8.5
SFD+ 5.0 0.4

Total 1 or more retransmissions 43.9 12.9

Table 6.2: Summary retransmission statistics.

minth maxth % drops % un-
forced
drops

%
forced
drops

� qlen � re-
sponse
time

connections

5 15 12.4 69.1 30.9 11.1 498 440 � 103

60 180 2.40 100 0.0 65.7 381 460 � 103

Table 6.3: Performance summary for the repeated experiments.

Figure 6.2 gives the cumulative distributions of response times for each class of
retransmission events. Also shown is the cumulative distribution of response times
for all the 
ows (the curve in bold). Notice that we here show requests with a
response time up to 6s.

From the �gure we see that the response times for about 50% of the 
ows with
FIN or data retransmissions are shifted relative to those with no retransmissions
by an amount corresponding to typical retransmission timeouts in our experiments
(� 1:5s). The response times for 
ows with SYN retransmissions are shifted even
more because of the longer timeouts on TCP connection establishment. Connections
with one or more data retransmissions or with combinations of retransmission types
have heavier distribution tails (longer response times) because of the cumulative
e�ects of multiple retransmissions.
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Comparing the Figures 6.2a and 6.2b we observe that the response times for
those connections having retransmissions are longer in Figure 6.2b by a factor some-
what greater than the additional mean queueing delay for this case (about 65ms).
Our preliminary analysis indicates that changes in the response times because of re-
transmissions are a complex combination of factors that in
uence the retransmission
delays. These include:

� the mean queuing delay, which in
uences the estimated RTT,

� the deviations in RTT caused by increased variance in queueing delays, which
are magni�ed by a factor of 4 in the TCP algorithm for computing timeout,

� the timer granularity (500ms), and

� the minimum timeout value (1s).

See [1] for a more comprehensive analysis of these and other factors a�ecting
TCP retransmissions.

The relative contribution of each class of retransmission to the overall response
time distribution is shown in the plots in Figure 6.3. We do this by showing each
separate class combined with the class of 
ows that did not experience retransmis-
sions. That is: those with no retransmissions, those with either no retransmissions
or only FIN retransmissions, and those with either no retransmissions or only data
segment retransmissions. To magnify the relative contributions of each class we

only show the portion of the distribution beyond the 50th percentile. Contrary to
our expectations, retransmissions of lost SYNs (even when most of the TCP con-
nections transfer relatively few bytes) is far from being the dominant factor leading
to the increased response times. It is, in fact, data segment retransmissions that
have the greatest cumulative e�ect.

Another view of these dynamics is shown in Figure 6.4 that gives a scatter
plot of response times versus server reply sizes. There is one dot in this plot for
each of the approximately 400; 000 request response pairs with reply sizes less than
16KB in the experiment with (minth;maxth) = (5; 15). Connections experiencing
one or more retransmissions are marked with dark black dots while those with no
retransmissions are marked with gray dots. Several features of this plot are striking:

� The large in
uence of retransmissions on response times for short responses
(e.g., the number of replies of size less than 4KB that take 5 seconds to
complete).

� The clear regions of response times divided between connections with and
without retransmissions.

� The distinct bands of response times at intervals roughly proportional to the
granularity of the TCP retransmissions.

� The sharp step increase in response times with no retransmissions for those
responses with lengths greater than 2.88KB (corresponding to the initial TCP
congestion window).

� The relatively few connections with retransmissions that avoid a timeout, e.g.,
with fast retransmission (indicated by black dots in the region dominated by
connections with no retransmissions).
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Figure 6.2: Absolute performance of 
ows experiencing retransmissions.

6.1.3 Summary

This brief analysis has re-enforced our view that understanding the e�ects of RED
and tail-drop queue management on the end-to-end response times for HTTP traÆc
is a complex issue. We show that there is no single dominating cause of reduction
in HTTP response times, instead we have shown that the reduction in response
times involves many tradeo�s and parameters including not only parameters set
on routers but also those controlled at the end-systems (e.g., TCP retransmission
parameters).

6.2 Congestion and Web-like TraÆc

In our second study we analyze e�ect of a bottleneck link on the behavior of the
generated traÆc. The results show, that even low levels of congestion in
uences the
traÆc behavior by smoothening the packet arrival process at the bottleneck router.
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Figure 6.3: Relative contribution of 
ows experiencing retransmissions to total
distribution.

We argue that the smoothening process is a consequence of the TCP congestion con-
trol algorithms, however, determining the exact process of the smoothening requires
additional work.

6.2.1 Methodology

For these experiments the instrumentation of the laboratory network described in
the Section 6.1 is reused. By capturing header traces of packets on the network
segment before the bottleneck router, we are able to monitor the packet arrival
process at the bottleneck router.

To get an overview of the impact of the packet-arrival process with a bottleneck
router we ran a series of experiments with RED queue management at di�erent
o�ered loads. Starting at 50% o�ered load where no packets were dropped by the
bottleneck router, and increasing it to 70, 80, 90, and ending at 98%.

The parameter setting for RED is shown in Table 6.4, and remained �xed for the
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Figure 6.4: Scatter plot of response times versus reply size under RED for
(minth;maxth) = (5; 15). Flows with no retransmissions are marked
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experiments used in this section. These correspond to our choice of recommended
parameters that was determined in the analysis of REDs impact on HTTP response
times, see Chapter 5 on page 59.

Parameter Value
minth 30
maxth 90
wq 1=512
maxp 1=10
qlen 480

Table 6.4: RED parameter settings.

6.2.2 Results

Table 6.5 gives the summary statistics for the 5 experiments that we have performed
for this analysis. From this we can see that the experiments behaved as we expect
them to, based on our knowledge from previous experiments. In particular we
observe that packet drops grow from 0.01% at 50% load to 4.3% at 98% load, and
that the average queue length grow from 1.4 packets at 50% load to an average of
40 packets at 98% load.

Figure 6.5 shows the packet arrival process on the network ahead of the bot-
tleneck router for loads ranging from 50-90% o�ered load. Each plot shows the
number of packets arriving on the network from the \Web servers" per second.

What we �nd interesting is that the arrival process is smoothened signi�cantly,
as the load on the network is increased. At 50% we have a bursty arrival process that
is similar to the behavior which we have observed on the unconstrained network.
If we compare the arrival process at 50% load and the process at 80% o�ered load,
then we see a change in the general behavior of the arrival process. At 80% o�ered
load, bursts are wider and there appears to be a common maximum burst size 1300
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% load % drops % unforced drops % forced drops � qlen max qlen KB
s

50 0.01 100 0.0 1.43 86 629
70 0.10 100 0.0 5.62 100 835
80 0.26 100 0.0 10.9 123 967
90 1.04 100 0.0 21.7 119 1091
98 4.30 99.5 0.53 39.8 149 1162

Table 6.5: Performance summary for the repeated experiments.

packets/s. At 90% o�ered load this tendency is even more clear, and the arrival
process can be described as smooth, rather than bursty, with an arrival rate around
1300 packets/s. At 98% (see Figure 6.6), the behavior is similar to what we have
seen at 90% o�ered load.

To study the change in behavior of the arrival process we take the analysis a
step further by performing the test of fractal like behavior that we also used in
Section 3.5.2 on page 41. Figure 6.6 shows the result of this test for the experiment
running at 98% o�ered load on the constrained network and as reference Figure 6.7
shows the result from an experiment running at 98% load on the unconstrained
network. The marked intervals correspond to the range covered by \zoom" plot
with a �ner Time Unit.

Comparing Figure 6.6 and 6.6 we clearly see that there is a signi�cant di�erence
between the arrival processes of the two experiments. In particular we see no bursts
of traÆc in the plots from the constrained network when averaging over intervals
of 1 and 0.1 seconds. However, when averaging in intervals 0.01s both experiments
remain to have a bursty arrival process. In general we conclude that the behavior
of the packet arrival process at 98% o�ered load on the constrained network is not
fractal-like, because plots qualitatively change dependent on the timescale.

We �nd that the smoothened arrival process is a natural consequence of intro-
ducing a bottleneck link in the experimental network, rather then being an artifact.
In the following we present analyze our results and argue for why the smoothening
of the arrival process occurs.

The basic observation is that increasing the traÆc load towards the link capacity
changes two aspects:

� The average queue size on the bottleneck router increases; more packets are
bu�ered before reaching their destination, and

� packets are dropped.

In the following we analyze how these aspects in
uence the packet arrival process.

Impact of bu�ering

When the bottleneck link is used, packets are stored in the bu�er for a period,
and then forwarded when bandwidth becomes available. As a consequence traf-
�c arriving to the non-empty bu�er will be smoothened when forwarded. This
smoothening has considerable in
uence on the behavior of TCP senders in our ex-
periments because of the self-clocking behavior imposed by the use of the sliding
window algorithm in TCP.

Once a sender has sent the data corresponding to the size of its current transmis-
sion window, new packets can only be sent when earlier packets have been acknowl-
edged. Acknowledgements (ACKs) are returned by the receiver when packets are
received, and thus the stream of ACKs corresponds to the arrival rate of packets at
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Figure 6.5: Packet arrival process from loads ranging from 50-90%.

the receiver. Therefore a sender can only send data as fast as the receiver receives
it or increases the size of the transmission window.

In our case, the cumulative bandwidth of data that all receivers can accept at
any time is 10Mbps, and thus on average only 10Mbps of data can be acknowledged.
Consequently traÆc generators have limited room for generating bursts of traÆc.
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Figure 6.6: Behavior on the constrained network at 98% o�ered load.

In fact creating new connections and increasing the size of transmission windows is
the only way to produce a burst of traÆc, and TCP congestion control algorithms
signi�cantly limits the potential size of these bursts.

ACK-compression [61, 71] has been described as a potential cause of bursty
packet arrival processes. It occurs in networks where congestion arises on the trans-
mission path on which acknowledgements travel. An example scenario is that a
receiver responds to receiving data packets by sending a stream of ACKs corre-
sponding to a data packet arrival rate of 10Mbps arrive at a non-empty router
queue. Since ACK-packets are sent in response to arriving data packets, the density
of the ACK-packets is what characterizes the arrival rate at the receiver. However,
ACK-packets are much smaller than data packets (40bytes versus 1KB), therefore,
when a sequence of ACK packets are queued and then later forwarded from a queue,
then the density of the packets may have been signi�cantly increased compared to
when they arrived. This causes the ACK-stream to correspond to a much higher
arrival rate than before being bu�ered.

We have not included elements of ACK-compression in our evaluation of RED
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Figure 6.7: Behavior on the unconstrained network at 9.8Mbps load.

queue management and it is diÆcult to say how this may e�ect the results. Research
has been conducted to determine role of ACK-compression on the Internet today.
For example Paxson [56] concludes that it has no real e�ect on network performance,
and Feldmann et al. [19] notes that ACK-compression may not have a direct impact
on performance, but suggest that it may be related to the highly complex behavior
of measured IP traÆc. However, further research is necessary to better understand
these issues.

With respect to the used traÆc model, we should consider the impact of bu�er-
ing, since the arrival process does not behave as predicted. By introducing a bottle-
neck, a fundamental problem arises, because 
ows can in
uence each others trans-
mission rate. This essentially means that 
ows are no longer independent. Using
the ON/OFF model we assume that ON and OFF periods are independent, how-
ever, with a bottleneck, the duration of a 
ow depends on other 
ows that are active
in the same period, and thus we cannot assume independence.
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Impact of packet drops

As with bu�ering, packet drops may also contribute to smoothening of the arrival
process. For instance, one or more packet drops during a burst in the arrival process
may quickly limit the size of the burst, and instead increase the period with high
load by retransmitting shortly after the burst.

Again, introducing a bottleneck link may change the assumptions on which we
generate traÆc. A key element in generating fractal-like traÆc is that the tails of
the ON or OFF distributions of the traÆc model are modeled well by a heavy-tailed
distribution. Furthermore, the ON and OFF distributions should be independent
and identically distributed, see Section 3.2.3 on page 29, and the model assumes
traÆc to be transmitted at a constant bit-rate.

Assuming constant bit-rate transmission may be problematic in an environment
where a larger percentage of 
ows experience passive periods of 1-3 seconds while
waiting for a retransmission timeout. With the presence of these long inactive
periods Web object transfers may not be well modeled as one long ON period.
Instead it may be necessary to model a Web-object transfer as a number of smaller
ON periods.

Breaking Web object transfers into a number of smaller transfers again has
the causes the ON/OFF distributions to change as a function of the number of
packet drops. Consequently we cannot assume identically distributed ON- and
OFF-periods. Furthermore, the heavy-tailed distributions may not remain heavy-
tailed.

In total, if we cannot assume a transfer to be one long ON-period even with the
presence of packet drops, then we cannot expect fractal-like traÆc behavior.

6.2.3 Summary

We have presented an analysis of the packet arrival process with the presence of
a bottleneck link. The analysis shows that limiting the bandwidth also limits the
burstiness of the arrival process. Our conjecture is, that the main cause of this is
the self-clocking behavior of TCP, and potentially also behavior related to drops
and retransmissions.

To explain how it is possible that the general behavior of the packet arrival
process changes as loads approach the capacity of the bottleneck link we look closer
at the assumptions made when using the ON/OFF model to generate fractal-like
traÆc. The main observation is that 
ows are no longer independent with the
presence of a bottleneck link. E.g. the bandwidth usage of one 
ow has an impact
on the bandwidth usage of another 
ow. Furthermore the long passive periods of

ows occurring when packets are dropped may also change assumptions about the
distributions in the traÆc model, thus explaining a change in the general behavior.

We also considered whether ACK-compression could potentially change the be-
havior of the smoothened arrival process to becoming more bursty or fractal-like.
We found that there is no clear indication of this in the literature, however we
do �nd that ACK-compression should considered included in a future evaluation
model, however, a model, describing the general behavior and presence of ACK-
compression on the Internet, is necessary.

Overall this analysis provides an explanation to why it is possible up to 80-90%
of the bottleneck link capacity without seeing signi�cant deterioration in HTTP
response time performance.
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6.3 Summary

In this chapter we have presented two studies that describe the lower level changes
in traÆc behavior as the load in our experimental network increases towards con-
gestion. In particular we describe the impact of packet drops and retransmissions
on the response time performance and changes in the packet arrival process as the
load on the bottleneck router increases.

The primary motivation for studying the impact of packet drops and retransmis-
sions was to determine whether there is a single dominating cause of the observed
reduction in HTTP response times. From the study we learn that the changes in
response times as a result of packets drops and retransmissions is a complex issue.
It involves many tradeo�s, including not only parameters set on routers but also
those controlled at the end-systems (e.g., TCP retransmission parameters).

In the second study we show that the packet arrival process at the bottleneck
router signi�cantly changes as the load on laboratory network increases towards
congestion. As a result we have observed that at 80% and higher o�ered load the
packet arrival process is smoothened. We argue that the cause of the cause of this
change is due to the TCP congestion control and avoidance mechanisms rather
then an artifact occurring in the laboratory network. Additionally we consider the
potential impact of modeling ACK-compression in the experiments. We �nd that
this should be considered in a future experiments, however, a model, describing the
general behavior and presence of ACK-compression on the Internet, is necessary.





Chapter 7

Conclusion and Further

Work

In RFC (Request For Comments) 2309 [9] the active queuing mechanism RED was
purposed for widespread deployment on Internet routers. This dissertation is a
comment; we have performed an empirical evaluation of RED using a laboratory
network in which Web-like traÆc was generated using a well founded and widely
accepted HTTP traÆc model. The performance of RED was measured in terms of
HTTP response times, and compared to the performance of traditional tail-drop
(FIFO) queuing.

7.1 Results

The results of the experiments with RED queue management are summarized as
follows:

For o�ered loads near or below the levels of link saturation (90% or less), the
response times are fairly close to what we would experience on an unconstrained
network without congestion. Additionally, at these loads we see little di�erence
in the response times between the best tuned RED and the best tuned tail-drop
queuing con�gured with 1-2 times the bandwidth-delay product in bu�er space.
Tuning of the RED parameters generally produces little gain (or loss) in response
time performance. Worse, we show that one can use plausible values for certain
RED parameters and get poorer performance.

At o�ered loads that approach link saturation (above 90%), RED can be care-
fully tuned to yield performance somewhat superior to properly con�gured tail-drop
queuing. However, this di�erence is likely only to be signi�cant between 90% and
100% o�ered loads. The reason is that at loads above 100%, the performance de-
grades so rapidly that any improvement is likely to be a second-order e�ect. Addi-
tionally, between 90-100% o�ered load, the response times are more sensitive to the
actual values of RED parameters. In particular, there is greater down-side potential
from choosing \bad" parameter values. This is important because the parameters
that out performed tail-drop queuing were found only through extensive trial an
error experimentation. Furthermore, it is also the case that the RED parameters
that provide the best link utilization or lowest drop rate at this load, produce poorer
response times.

Overall the study of RED has provided a general insight on the behavior of
HTTP response times. First, our study shows that there is a complex trade-o�
between choosing parameters that improve short response times (0-500ms) versus
parameters that reduce the number of 
ows with long response times (greater than
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1000ms). We have chosen to favor those parameter settings that improve per-
formance for the largest fraction of 
ows, and hence have focused on improving
response times for the 
ows with short response times. Secondly, the study demon-
strates that optimizing for highest link utilization and/or lowest loss rates has a
negative e�ect on response time performance.

Qualitatively these conclusions imply that providing adequate link capacity (uti-
lization less than 90%) is far more important for Web response times than tuning
queue management parameters. If one decides to deploy RED for some reason,
Web-dominated traÆc is not likely to be impacted positively and, unless careful
experimentation is performed, response times can su�er. Given the current lack of
a widely-accepted analytic model for RED performance or �eld-tested engineering
guidelines for RED deployment and the complexity of setting RED parameters,
there seems to be no bene�t to be gained by RED deployment on links mainly
carrying Web traÆc.

7.2 Further Work

The methodology we have used for evaluating REDs performance is limited in two
ways. We only consider congestion on the path from servers to clients and we only
model Web-like traÆc in the network.

As we discussed in Section 6.2 on page 77, congestion on both paths may intro-
duce some changes in the behavior of the traÆc. ACK-compression is a potential
problem for performance in such an environment. However, to increase validity of
such a study we need better models that describe ACK-compression and maybe
also congestion on the Internet. To our knowledge such models are currently not
available.

We study a link carrying only Web-like traÆc. More realistic mixes of HTTP
and other TCP traÆc as well as traÆc from UDP-based applications need to be
examined. Especially the introduction of UDP-based traÆc may show interesting
results, since the behavior of this traÆc deviates signi�cantly from TCP traÆc by
not reacting to congestion noti�cations. Models of UDP traÆc have been developed
making it possible to attack this question.

Many new transfer technologies have been proposed for improving the HTTP
response times on the Internet. Most signi�cant is probably the introduction of
HTTP/1.1 [22] which among other introduces the idea of persistent connections,
see [48], which allows pipelining of severalWeb objects over a single TCP connection.
Evidently, this minimization of the overhead is likely to improve HTTP response
times, as shown by Nielsen et al. [52]. It is unclear how HTTP 1.1 will change
the general traÆc behavior. We �nd it relevant to persue a study of the impact of
using RED in combination with a model of HTTP 1.1 traÆc. However, if the new
model has characteristics similar to the Mah model, we believe that the performance
impact will be quite similar to what we have observed in our study.

A second technology that may improve HTTP response times is Explicit Con-
gestion Noti�cation (ECN) [24]. ECN changes the TCP congestion noti�cation
mechanism from being implicit, signalled through packet drops, to being explicit by
setting bits in packet headers. For instance a router using RED queue management
will set a bit in the packet header instead of dropping a packet early. ECN may
therefore limit the number of packet drops. Using ECN in combination with RED
will essentially be reduced to problem quite similar to what we have experienced
with tuning RED: Making a choice of parameters avoiding large queues while avoid-
ing underutilized links. One should consider evaluating ECN and RED to quantify
the parameter range in which RED operates well with ECN.

Our experiments are based on an HTTP traÆc model that is derived from
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network traces taken in 1995. This may question the validity of the current model.
On the other hand Bruce Mah has analyzed the distribution of HTTP response
sizes and hereby provided evidence that this distribution may be heavy-tailed. This
links the behavior found in the Bruce Mah's model with more recent results showing
heavy-tailed distributions of Web reply sizes. If more recent models shows signi�cant
changes in the behavior of Web traÆc, these should be applied in a similar evaluation
of RED queue management. Such new models are currently being developed at
University of North Carolina [62].

In summary, we �nd that extending the evaluation method to include aspects
of ACK-compression and modeling a mix between di�erent classes of traÆc to be
of greatest interest, because these aspects could change the nature of the packet
arrival process on the bottleneck router.

7.3 Summary

To answer RFC 2309 [9]. In an environment dominated by Web traÆc we have
found that RED provides no advantage over tail-drop queuing when considering
end-to-end response times. Further work in performance analysis is necessary in
order to extend the evaluation methodology. Most interesting is addressing the
problems of including other classes of traÆc in the evaluation, and study the impact
of ACK-compression.





Appendix A

Laboratory Network

A.1 Network Diagram

Figure A.1 shows a detailed diagram of the laboratory network. Table A.1 lists
machines and their hardware con�guration. Network cards on end hosts are mainly
either Intel EtherExpress Pro or 3COM-905 cards. On the congested interface on
da�y we use the 3COM-905 for 10Mbps experiments and an Intel EtherExpress Pro
for experiments on the unconstrained network.

The Switch we use is a Cisco Catalyst 5000. The hub's are standard 10Mbps or
100Mbps hub's
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Figure A.1: Detailed diagram of laboratory network.
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Hostname CPU MEM (MB)
brain Pentium II 400MHz 128
howard 486DX 66MHz 16
lovey 468DX 66MHz 16
speedy Pentium 120MHz 32
petunia Pentium II 400MHz 128
tweetie Pentium II 450MHz 256
taz Pentium II 450MHz 256
goddard Pentium 90MHz 16

oyd 486DX 66MHz 16
goober 486DX 66MHz 16
thelmalou Pentium 120MHz 32
roadrunner Pentium II 400MHz 128
yako Pentium II 300MHz 64
wako Pentium II 450MHz 256
bollella Pentium II 300MHz 64
da�y Pentium II 300MHz 64
yosemite Pentium II 400MHz 128

Table A.1: Machine Con�gurations.



Appendix B

Experiments with Tail-drop

and RED

This appendix provides additional plots and statistics for the experiments on which
the RED versus tail-drop comparison, Chapter 5 on page 59, was done. Some of the
plots shown here are identical to the ones shown in the presentation of the results,
however we have included these to provide a complete picture of the experimental
results. First we give complete listings of the experiment con�gurations tried for
each of the queuing mechanisms, then we show plots and summary statistics for
each of these.

Throughout this presentation of results a number of abbrevations are used.
These are de�ned in table B.1.

Abbreviation Meaning

bwdp bandwidth delay product
i1 % of response times � 1s
i2 % of response times from 1� 2s
i3 % of response times from 2� 3s
i4 % of response times greater than 3s
� rsp-time median response time
� qlen mean queue length

Table B.1: Abbreviations used in the presentation of results.

B.1 Experiments

B.1.1 Tail-drop Experiments

Table B.2 shows the combination of parameters that we have tested with tail-drop
queuing on the constrained network.

B.1.2 RED Experiments

Table B.3 gives an overview of the experiments performed with RED queuing on
the constrained network. Each row in the table describes a subset of experiments
where all combinations of the given parameters are tested.
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P
P
P
P
P
P
PP

qlen
load

50 70 80 90 94 98 102 110 130

15 0 5 10 15 20 25 30
30 1 6 11 16 21 26 31
60 2 7 12 17 43 22/56/57 46 27 32
90 40 44 41 47 42
120 3 8 13 18 45 23/58/59 48 28 33
150 49 50 51
190 60 61 62 63
240 4 9 14 19 24 29 34
1000 52 53 54

Table B.2: Tail-drop experiments, constrained 10 Mbps network. Load is the
o�ered load in percent and qlen is the size of the queue in terms of
packets. Each cell contains on or more id each corresponding to an
experiment.

B.2 Tail-drop Summary

The tail-drop results are presented in two series of plots. The �rst series illustrates
the e�ect of changing the queue length under di�erent loads. The second series
shows the e�ect of changing the load with a given queue length.

The e�ect of changing the queue length under di�erent o�ered load levels is
shown in Figure B.1 and B.2. Table B.4 gives summary statistics for these plots.

The second tail-drop series, Figure B.3 and Table B.5, shows the e�ect of in-
creasing the o�ered load from 50% to 110% at two di�erent queue lengths. The
point here is that the overall e�ect is the same if we choose a queue length of 60 or
120 packets. Table B.5 gives summary statistics for the experiments in the plots.
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Purpose minth maxth wq maxp qlen load

Test minth,
maxth

5, 15,
30, 60,
120

3�minth 1=512 1=10 480 50, 70,
80, 90,
98, 110,
130,
150

Test default
setting

5 15 1/512 1/20 60 50, 70,
80, 90,
98, 110

Test wq ,
maxp, maxth

5 90, 120,
150

1/512,
1/256,
1/128

1/20,
1/10,
1/4

480 90, 98,
110

Test wq , maxp 30 90 1/512,
1/256,
1/128

1/20,
1/10,
1/4

480 90, 98,
110

Test di�erent
loads

5 90 1/512,
1/256,
1/128

1/20,
1/10

480 94, 102

Test minth 30, 60,
90

150 1/512 1/10 480 90, 98,
110

Test minth 15, 45,
60

90 1/512 1/10 480 90, 98,
110

Test maxth 60 90, 120,
150,
180,
240

1/512 1/10 480 90, 98,
110

Test maxth 5 45, 180,
150,
240

1/512 1/10 480 90, 98,
110

Test maxth 30 45, 60,
180

1/512 1/10 480 90, 98,
110

Test qlen 60 150 1/512 1/10 120,
160,
240

90, 98,
110

Test qlen 30 90 1/512 1/10 120,
160

90, 98,
110

Table B.3: List of RED experiments on the constrained 10Mbps network. Each
row corresponds to a series of experiments where all combinations of
the given parameters are tested.
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Figure B.1: Queue length variation, 80-90% load.
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Figure B.2: Queue length variation, 98-110% load.
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load
(%)

qlen KB
s

%
drops

�qlen � rsp-
time
(ms)

i1 i2 i3 i4

80 15 987 2.60 3.20 253 85.9 7.29 4.22 2.59
80 30 992 1.11 6.48 249 92.1 4.50 2.14 1.28
80 60 980 0.32 11.7 259 95.2 3.15 0.95 0.68
80 120 990 0.12 22.7 268 95.7 3.02 0.64 0.65
80 240 981 0.00 25.8 269 95.8 3.14 0.50 0.54
90 15 1059 5.19 4.69 274 76.9 10.3 6.74 6.08
90 30 1081 2.20 9.94 261 87.6 6.17 3.75 2.48
90 60 1075 0.92 20.0 268 92.3 4.25 2.05 1.35
90 120 1085 0.34 40.3 302 93.6 4.05 1.28 1.04
90 240 1101 0.29 85.7 398 89.8 6.88 1.56 1.70
98 15 1128 11.4 7.13 455 59.4 14.3 10.2 16.2
98 30 1163 6.69 16.6 336 71.7 11.1 8.53 8.64
98 60 1177 6.22 41.6 443 72.9 9.19 7.98 9.92
98 120 1178 3.07 84.8 423 81.1 7.58 5.16 6.13
98 240 1167 1.43 154 558 79.8 11.5 3.66 5.01
110 15 1154 20.2 9.07 1583 42.9 15.0 11.0 31.2
110 30 1183 18.9 22.6 1541 44.6 14.4 11.2 29.9
110 60 1188 16.4 52.4 1582 46.9 12.5 12.0 28.6
110 120 1188 17.0 112 1601 45.1 11.3 13.0 30.6
110 240 1188 16.5 232 1921 38.6 12.3 13.9 35.1

Table B.4: Summary statistics for the experiments at di�erent o�ered loads.

load
(%)

qlen KB
s

%
drops

�qlen � rsp-
time
(ms)

i1 i2 i3 i4

50 60 631 0.01 1.43 227 97.0 2.23 0.36 0.45
70 60 860 0.10 6.05 237 96.7 2.33 0.47 0.50
80 60 980 0.32 11.7 259 95.2 3.15 0.95 0.68
90 60 1075 0.92 20.0 268 92.3 4.25 2.05 1.35
98 60 1177 6.22 41.6 443 72.9 9.19 7.98 9.92
110 60 1188 16.4 52.4 1582 46.9 12.5 12.0 28.6
50 120 615 0 1.40 221 97.2 2.05 0.31 0.44
70 120 879 0.02 11.2 243 96.6 2.51 0.41 0.50
80 120 990 0.12 22.7 268 95.7 3.02 0.64 0.65
90 120 1085 0.34 40.3 302 93.6 4.05 1.28 1.04
98 120 1178 3.07 84.8 423 81.1 7.58 5.16 6.13
110 120 1188 17.0 112 1601 45.1 11.3 13.0 30.6

Table B.5: Summary statistics for the experiments with where the queue length
is varied.
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Figure B.3: Queue length plots.
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B.3 RED summary

In the following sections we present the series of experiments done for the evaluation.
Each series is presented with a plot and a table with summary statistics covering
the experiments in the plot. We start out with the results of experiments where the
thresholds are changed, then we present results evaluating the e�ect of each of the
threshold parameters separately. Then we show the results of studying the e�ect of
wq and maxp. Finally we study the e�ect of reducing the queue length.

B.3.1 Experiments with minth and maxth

The e�ect of the threshold values were studied by �rst running a series of exper-
iments with di�erent minth values while keeping maxth = 3 _minth. Figures B.4
and B.5 show the results of changing the threshold values at di�erent load levels
ranging from 50 to 110% o�ered load. The summary statistics for the experiments
in these plots are listed in Table B.6.
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Figure B.4: Threshold experiments 50-80% load.
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Figure B.5: Threshold plots 90-110% load.
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load
(%)

minth maxth
KB
s

%
drops

�

qlen

�

rsp-
time
(ms)

i1 i2 i3 i4

50 5 15 601 0.08 0.83 228 97.3 1.96 0.36 0.40
50 15 45 613 0.03 1.25 229 97.4 1.86 0.32 0.39
50 30 90 621 0.01 1.45 230 96.8 2.36 0.39 0.44
50 60 180 625 0.00 1.65 229 96.7 2.41 0.41 0.44
50 120 360 609 0 1.58 230 97.4 1.93 0.27 0.36
70 5 15 860 0.53 2.87 236 94.7 3.32 1.14 0.80
70 15 45 868 0.24 4.74 235 96.0 2.65 0.72 0.59
70 30 90 846 0.08 5.69 237 96.9 2.19 0.44 0.46
70 60 180 852 0.03 8.44 241 96.8 2.32 0.39 0.45
70 120 360 863 0.01 10.5 242 96.7 2.48 0.39 0.47
80 5 15 991 1.55 5.08 249 90.0 5.41 2.71 1.87
80 15 45 955 0.53 7.46 247 94.4 3.47 1.28 0.87
80 30 90 991 0.38 12.8 255 94.8 3.30 1.08 0.82
80 60 180 1001 0.15 19.1 263 95.6 3.02 0.75 0.66
80 120 360 988 0.04 25.7 273 95.4 3.30 0.61 0.66
90 5 15 1068 3.15 7.11 260 83.5 8.02 4.79 3.66
90 15 45 1088 2.32 15.3 267 88.0 5.91 3.42 2.64
90 30 90 1079 0.83 20.2 269 92.4 4.30 1.98 1.32
90 60 180 1095 0.51 35.5 294 93.0 4.14 1.62 1.19
90 120 360 1094 0.14 53.8 328 93.6 4.46 1.03 0.89
98 5 15 1135 15.2 11.6 686 51.5 14.8 10.2 23.4
98 15 45 1158 5.82 24.0 342 73.2 10.5 7.91 8.34
98 30 90 1164 4.09 39.4 349 79.1 8.18 6.33 6.39
98 60 180 1178 2.42 69.1 388 83.1 7.14 5.03 4.71
98 120 360 1182 3.06 147 557 75.5 10.2 6.05 8.28
110 5 15 1147 24.0 12.6 1938 36.9 13.9 9.86 39.4
110 15 45 1175 23.4 36.1 1961 37.0 13.4 10.3 39.2
110 30 90 1187 19.7 76.0 1852 39.4 12.9 12.2 35.6
110 60 180 1187 17.9 158 2123 37.8 10.5 15.5 36.1
110 120 360 1188 15.5 303 2469 31.6 14.0 14.5 39.8

Table B.6: Summary statistics for RED experiments where the o�ered load is
varied while qlen = 480, maxp = 1=10 and wq = 1=512.
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B.3.2 Experiments with maxth

Based on the results of experiments where maxth was changed as a function of
minth we ran a series of experiments where we only study the impact of changing
maxth. This series was only run for o�ered load levels ranging from 90 to 110%
load, due to the observation that giving enough bu�er space, there is limited e�ect
of changing the thresholds at loads below 90% of the link capacity. Furthermore,
we chose two series where we had two substantially di�erent minth values to ensure
that the observations made were independent of the minth value. The results of
these experiments are shown in Figures B.6, B.7, and B.8, and Table B.7 shows
the summary statistics.
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Figure B.6: Plots with maxth at 90% load.
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Figure B.7: Plots with maxth at 98% load.
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Figure B.8: Plot with maxth at 110%.
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load
(%)

minth maxth
KB
s

%
drops

�

qlen

�

rsp-
time
(ms)

i1 i2 i3 i4

90 5 45 1072 2.07 9.88 265 87.5 6.29 3.59 2.57
90 5 90 1087 1.59 12.8 267 89.2 5.69 3.09 2.03
90 5 120 1069 1.16 12.3 262 91.2 4.91 2.38 1.49
90 5 150 1086 1.43 16.1 270 89.8 5.34 2.89 1.94
90 5 180 1091 1.46 18.2 276 89.8 5.30 2.90 2.00
90 5 240 1085 1.09 18.3 272 91.3 4.81 2.37 1.55
90 60 90 1085 0.79 29.5 291 92.1 4.34 2.04 1.54
90 60 120 1084 0.38 28.9 285 94.0 3.74 1.26 0.96
90 60 150 1089 0.51 33.9 298 93.0 4.15 1.61 1.21
90 60 180 1068 0.38 30.9 289 94.0 3.81 1.26 0.96
90 60 240 1089 0.40 35.1 297 93.5 4.02 1.38 1.05
98 5 45 1157 5.84 18.7 334 72.5 11.3 8.03 8.18
98 5 90 1149 4.18 24.3 319 78.7 8.94 6.41 5.91
98 5 120 1170 4.20 30.8 335 78.0 9.05 6.84 6.11
98 5 150 1165 4.76 40.2 365 76.3 9.01 7.06 7.64
98 5 240 1175 3.74 49.5 370 78.9 8.29 6.56 6.24
98 60 90 1174 5.30 57.0 395 76.2 7.87 7.13 8.77
98 60 120 1165 3.31 58.9 376 81.6 7.00 5.42 5.95
98 60 150 1177 3.61 70.4 405 79.4 7.69 6.13 6.76
98 60 180 1172 2.63 68.8 392 82.5 7.19 5.09 5.16
98 60 240 1170 3.04 80.2 421 80.8 7.45 5.45 6.26
110 5 45 1180 21.6 36.5 1827 37.6 14.9 10.4 37.1
110 5 90 1188 19.7 75.0 1919 38.0 13.2 12.5 36.3
110 5 120 1188 19.2 100 1984 38.1 12.1 13.6 36.2
110 5 150 1188 18.3 126 2046 38.0 11.3 14.7 36.0
110 5 240 1188 16.6 195 2136 37.5 10.6 16.2 35.6

Table B.7: RED experiments with maxth, where qlen = 480, maxp = 1=10, and
wq = 1=512.
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B.3.3 Experiments with minth

As with maxth we ran a series of experiments with minth. The maxth was kept
�xed at 150 packets, while minth was changed from 5 to 120 packets. The results
of these experiments are shown in Figure B.9 and the summary statistics are given
in Table B.8.

load
(%)

minth maxth
KB
s

%
drops

�

qlen

�

rsp-
time
(ms)

i1 i2 i3 i4

90 5 150 1086 1.43 16.1 270 89.8 5.34 2.89 1.94
90 30 150 1091 0.89 24.4 283 91.8 4.54 2.12 1.53
90 60 150 1089 0.51 33.9 298 93.0 4.15 1.61 1.21
90 60 150 1083 0.53 32.8 293 93.2 4.01 1.52 1.21
90 90 150 1090 0.33 40.9 308 93.5 4.13 1.28 1.05
90 120 150 1091 0.28 46.4 320 93.3 4.39 1.28 1.07
98 5 150 1165 4.76 40.2 365 76.3 9.01 7.06 7.64
98 30 150 1173 3.71 50.4 368 79.7 7.90 6.15 6.25
98 60 150 1177 3.61 70.4 405 79.4 7.69 6.13 6.76
98 90 150 1169 2.23 78.0 405 83.7 6.85 4.70 4.77
98 120 150 1181 3.63 101 461 78.9 7.78 5.70 7.58
110 5 150 1188 18.3 126 2046 38.0 11.3 14.7 36.0
110 30 150 1188 17.9 127 1982 39.1 11.2 14.5 35.2
110 60 150 1188 20.9 135 2367 35.1 10.4 14.7 39.8
110 60 150 1188 20.2 135 2308 35.8 10.6 14.7 38.8
110 90 150 1188 17.7 134 1932 40.4 10.7 14.2 34.7
110 120 150 1188 21.0 140 2233 37.6 9.90 13.7 38.8

Table B.8: Summary statistics for RED experiments with minth, where qlen =
480, maxp = 1=10, and wq = 1=512.
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Figure B.9: Plots with minth experiments.
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B.3.4 Experiments with wq and maxp

The parameters wq andmaxp were tested in a combined series of experiments, where
the threshold values were kept �xed at (30; 90). We tried a series of 3 di�erent values
of each of the two parameters. For wq this means values ranging from 1=512 to 1=128
and for maxp this meant values from 1=20 to 1=4. Figure B.10 shows the response
time CDF plots for the experiments and Table B.9 gives the summary statistics.

load
(%)

1

wq

1

maxp

KB
s

%
drops

�

qlen

�

rsp-
time
(ms)

i1 i2 i3 i4

90 128 4 1104 1.65 18.8 278 89.1 5.41 3.14 2.30
90 256 4 1088 1.25 17.7 273 90.7 4.93 2.60 1.74
90 512 4 1091 1.47 20.3 277 89.8 5.18 2.97 2.04
90 128 10 1111 1.26 22.3 282 90.4 5.02 2.67 1.87
90 256 10 1084 0.93 19.7 274 92.0 4.43 2.13 1.45
90 512 10 1079 0.83 20.2 269 92.4 4.30 1.98 1.32
90 128 20 1102 1.00 24.6 285 91.4 4.65 2.29 1.65
90 256 20 1099 0.78 23.2 280 92.4 4.28 1.95 1.34
90 512 20 1115 1.17 28.5 293 90.4 5.05 2.64 1.91
98 128 4 1161 5.72 29.8 343 75.0 9.54 7.18 8.29
98 256 4 1158 7.47 34.3 387 69.1 10.8 8.77 11.3
98 512 4 1165 7.28 36.8 394 69.0 10.6 9.07 11.4
98 128 10 1179 4.71 41.5 362 76.4 9.00 7.19 7.37
98 256 10 1163 3.09 34.8 328 82.6 7.33 5.39 4.70
98 512 10 1164 4.09 39.4 349 79.1 8.18 6.33 6.39
98 128 20 1179 5.82 56.1 401 74.2 8.69 7.40 9.65
98 256 20 1171 3.29 45.3 352 81.7 7.37 5.57 5.39
98 512 20 1173 3.51 48.0 360 80.7 7.75 5.77 5.73
110 128 4 1183 19.3 50.8 1771 38.2 16.0 11.4 34.4
110 256 4 1185 21.4 54.8 2121 33.4 15.4 12.0 39.2
110 512 4 1183 20.4 53.9 1954 35.6 15.1 12.1 37.3
110 128 10 1188 19.9 75.3 1897 38.9 12.7 12.2 36.2
110 256 10 1187 20.2 73.9 1871 39.2 12.7 12.1 35.9
110 512 10 1187 19.7 76.0 1852 39.4 12.9 12.2 35.6
110 128 20 1188 21.1 81.6 1780 42.9 10.0 11.0 36.1
110 256 20 1188 20.0 81.7 1648 44.7 10.6 10.7 34.0
110 512 20 1188 21.0 81.5 1736 43.4 10.2 10.7 35.7

Table B.9: Summary statistics of RED experiments with wq and maxp. Other
parameters are �xed as follows: qlen = 480, minth = 5, and
maxth = 90.
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Figure B.10: Experiments with wq and maxp.
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B.3.5 Experiments with qlen

A �nal series of experiments evaluated the e�ect of reducing the queue length from
the in�nite 480 packets to something closer to the maximum threshold. As a basis
for choosing the values of 120 and 160, we used the measurements of the queue
length that were made during our previous experiments. The results are shown in
Figure B.11 and Table B.10 gives the summary statistics.

load
(%)

qlen KB
s

%
drops

�

qlen

� rsp-
time
(ms)

i1 i2 i3 i4

90 480 1079 0.83 20.2 269 92.4 4.30 1.98 1.32
90 160 1093 1.11 22.2 281 91.1 4.72 2.44 1.72
90 120 1066 0.72 18.8 269 92.9 4.11 1.75 1.21
98 480 1164 4.09 39.4 349 79.1 8.18 6.33 6.39
98 160 1175 5.92 46.3 401 72.3 9.70 8.20 9.78
98 120 1171 5.48 44.3 381 74.1 9.23 7.67 9.01
110 480 1187 19.7 76.0 1852 39.4 12.9 12.2 35.6
110 160 1188 19.5 76.6 1871 39.0 13.0 12.2 35.8
110 120 1188 19.4 77.4 1888 38.6 13.1 12.4 35.8

Table B.10: Summary statistics for RED experiments with reduced queue sizes.
Other parameters are �xed as follows: minth = 30, maxth = 90,
wq = 1=512, and maxp = 1=10.
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Figure B.11: Experiments with di�erent values of qlen at o�ered loads from
90-110%. Other parameters are �xed as follows: minth = 30,
maxth = 90, wq = 1=512, and maxp = 1=10.
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B.3.6 \Good" and \Bad" Parameter Settings

Finally based on the series of RED experiments we are able to empirically determine
\good" and \bad" RED parameter settings. Table B.11 lists the \good" parameter
settings. We have made a subjective choice for the best overall response time at 90
and 98% load. Furthermore, we list parameter settings where we have optimized for
highest linkutilization and lowest drop rate. Figure B.12 shows the response time
CDF and Table B.12 the summary statistics for each of these parameter settings at
90-110% load. These plots also includes, as a reference point, the optimal response
time measured on the unconstrained network.

load (%) minth maxth wq maxp qlen Notes

90 30 90 1/512 1/10 120 best overall response (90%)

90 5 90 1/128 1/20 480 best overall response (98%)

90 30 90 1/512 1/20 480 highest link utilization

90 120 360 1/512 1/10 480 lowest drop rate

98 30 90 1/512 1/10 120 best overall response (90%)

98 5 90 1/128 1/20 480 best overall response (98%)

98 30 180 1/512 1/10 480 highest link utilization

98 90 150 1/512 1/10 480 lowest drop rate

110 30 90 1/512 1/10 120 best overall response (90%)

110 5 15 1/512 1/20 60 best overall response (110%)

Table B.11: Empirically determined \good" RED parameter values.

load
(%)

Notes
KB
s

%
drops

�

qlen

�

rsp-
time
(ms)

i1 i2 i3 i4

- unconstrained 994 0 0 227 98.0 1.44 0.23 0.35
90 best 90% 1066 0.72 18.8 269 92.9 4.11 1.75 1.21
90 best 98% 1061 1.03 12.9 262 91.9 4.59 2.17 1.37
90 highest link util 1102 1.23 23.3 284 90.4 5.03 2.73 1.88
90 lowest drop rate 1094 0.14 53.8 328 93.6 4.46 1.03 0.89
98 best 90% 1171 5.48 44.3 381 74.1 9.23 7.67 9.01
98 best 98% 1165 3.34 33.0 326 81.7 7.77 5.59 4.93
98 highest link util 1181 6.27 60.1 439 70.0 10.0 8.76 11.2
98 lowest drop rate 1169 2.23 78.0 405 83.7 6.85 4.70 4.77
110 best 90% 1188 19.4 77.4 1888 38.6 13.1 12.4 35.8
110 best 110% 1154 24.9 13.5 1849 39.3 12.5 9.25 38.9

Table B.12: Summary statistics on \good" RED experiments. See Table B.11
for parameter settings.

Secondly we found experiments that had plausible parameter settings that caused
a signi�cant reduction in response time performance. The experiment con�gura-
tions for these are listed in Table B.14 and we refer to them as the \bad" parameter
settings. As a reference for the performance impact of choosing a bad parameter
setting we have included the \good" parameter setting for each of the o�ered loads
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Figure B.12: \Good" settings.
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90% and 98%. Figure B.13 shows the response time CDFs and Table B.14 lists
summary statistics.

load (%) minth maxth wq maxp qlen Notes

90 30 90 1/512 1/10 120 best overall response (90%)

90 5 15 1/512 1/10 480 small bu�er size

90 5 120 1/256 1/4 480 high maxp value

90 120 150 1/512 1/10 480 large queue size

98 5 90 1/128 1/20 480 best overall response (98%)

98 5 15 1/512 1/20 60 default setting

98 5 45 1/512 1/10 480 small bu�er size 2

98 5 90 1/512 1/4 480 high maxp value

98 120 360 1/512 1/10 480 large bu�er size

Table B.13: Empirically determined \bad" RED parameter values.
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Figure B.13: \Bad" settings.
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load
(%)

Notes
KB
s

%
drops

�

qlen

�

rsp-
time
(ms)

i1 i2 i3 i4

90 best 90% 1066 0.72 18.8 269 92.9 4.11 1.75 1.21
90 small bu�er 1068 3.15 7.11 260 83.5 8.02 4.79 3.66
90 high maxp value 1082 2.30 10.6 268 86.5 6.67 3.86 2.92
90 large bu�er 1091 0.28 46.4 320 93.3 4.39 1.28 1.07
98 best 98% 1165 3.34 33.0 326 81.7 7.77 5.59 4.93
98 default setting 1142 11.2 12.2 402 62.7 12.8 9.56 14.9
98 small bu�er 1157 5.84 18.7 334 72.5 11.3 8.03 8.18
98 high maxp value 1165 9.22 22.5 434 62.1 13.8 9.78 14.4
98 large bu�er 1182 3.06 147 557 75.5 10.2 6.05 8.28

Table B.14: Summary statistics on empirically determined \bad" RED experi-
ments. See Table B.13.

B.4 Comparing RED and Tail-drop

This �nal section presents the RED versus tail-drop comparison. Based on the
empirical evaluation we have subjectively selected a RED and a tail-drop con�g-
uration that we �nd to give the best overall performance independent of o�ered
load level. In Figure B.14 we show the best overall con�gurations combined with
tail-drop con�gured with a queue length of 1-2 times the bandwidth-delay product.
Furthermore, for each o�ered load we show the best RED parameter setting for
that load level. And �nally as a performance reference we have added the response
time CDF measured on a network with the unconstrained link.

Table B.15 lists the con�guration of each of the experiments shown in the Figures
and Tables B.16- B.18 gives the summary statistics for the experiments shown in
the plots.

Note Parameters

best tail-drop overall qlen = 120
best tail-drop 1-2�bwdp qlen = 190
best RED overall th = (30; 90),maxp = 1=10,wq = 1=512,qlen = 120
best RED at 90% th = (60; 180),maxp = 1=10,wq = 1=512,qlen = 480
best RED at 98% th = (5; 90),maxp = 1=20,wq = 1=128,qlen = 480
best RED at 110% th = (30; 90),maxp = 1=20,wq = 1=256,qlen = 480

Table B.15: RED vs tail-drop.
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(b) 98% load
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Figure B.14: Tail-Drop and RED comparisons at di�erent o�ered load levels.
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Note
KB
s

%
drops

�

qlen

�

rsp-
time
(ms)

i1 i2 i3 i4

uncongested 994 0 0 227 98.0 1.44 0.23 0.35
best tail-drop overall 1085 0.34 40.3 302 93.6 4.05 1.28 1.04
tail-drop w/ 1-2�bwdp 1106 0.21 66.6 364 92.0 5.45 1.32 1.21
best tail-drop overall 1066 0.72 18.8 269 92.9 4.11 1.75 1.21
best RED at 90% 1068 0.38 30.9 289 94.0 3.81 1.26 0.96

Table B.16: RED compared with tail-drop at 90% o�ered load.

Note
KB
s

%
drops

�

qlen

�

rsp-
time
(ms)

i1 i2 i3 i4

uncongested 994 0 0 227 98.0 1.44 0.23 0.35
best tail-drop overall 1178 3.07 84.8 423 81.1 7.58 5.16 6.13
tail-drop w/ 1-2�bwdp 1166 1.28 119 481 84.0 8.61 3.34 3.99
best RED overall 1171 5.48 44.3 381 74.1 9.23 7.67 9.01
best RED 98% 1165 3.34 33.0 326 81.7 7.77 5.59 4.93

Table B.17: RED compared with tail-drop at 98% o�red load.

Note
KB
s

%
drops

�

qlen

�

rsp-
time
(ms)

i1 i2 i3 i4

uncongested 994 0 0 227 98.0 1.44 0.23 0.35
best tail-drop overall 1188 17.0 112 1601 45.1 11.3 13.0 30.6
tail-drop w/ 1-2�bwpd 1188 19.3 183 2153 37.3 10.9 14.7 37.0
best RED overall 1188 19.4 77.4 1888 38.6 13.1 12.4 35.8
best RED at 110% 1188 20.0 81.7 1648 44.7 10.6 10.7 34.0

Table B.18: RED compared with tail-drop at 110% o�ered load.



Appendix C

Alternate Queueing

This note describe a small di�erence between the RED implementation used is in
Alternate Queueing (ALTQ) [36] and the RED algorithm described in [29]. Further-
more we describe how we �t the parameters to avoid any impact of this di�erence.

In general the implementation follows the algorithm that we described in Sec-
tion 2.1 except for on small di�erence in the calculation of pa. The original de�nition
of pa is given by:

pa = pb=(1� count � pb) (C.1)

The ALTQ implementation di�ers slightly by using the following de�nition:

p0a = pb=(2� count � pb) (C.2)

The question is how does this e�ect the RED algorithm and its parameters. We have
determined that we can avoid any impact of this di�erence by �tting the parameter
maxp. First we observe that pb should be doubled for the implementation of pa to
be equivalent with the de�nition:

pa =
pb

1� count � pb
=

2pb
2� count � 2pb

(C.3)

To get 2pb by adjusting the parameters to RED, then we need double the value of
maxp:

2pb =
2maxp(avg �minth)

maxth �minth
(C.4)

Whenever describing the value of maxp in this thesis we always refer to the value
in agreement with the original de�nition in [29].

119





Bibliography

[1] M. Allman and V. Paxson. On estimating end-to-end network path proper-
ties. In Proceeding of ACM SIGCOMM, pages 263{274, Cambridge, MA, USA,
September 1999.

[2] M. Allman, V. Paxson, and W. Stevens. RFC 2581: TCP congestion control.
RFC, Internet Engineering Task Force, April 1999. Status: STANDARD.

[3] F. M. Anjum and L. Tassiulas. Balanced RED: An algorithm to achieve fairness
in the internet. Technical report, University of Maryland at College Park,
March 1999. A short version of the paper appeared at INFOCOMM 99.

[4] G. Banga. Measuring the capacity of a web server. In USENIX Symposium
on Internet Technologies and Systems (USITS), pages 61{71, Monterey, CA,
USA, December 1997.

[5] P. Barford and M. Crovella. Generating representative web workloads for net-
work and server performance evaluation. In Proceedings of ACM SIGMET-
RICS, pages 151{160, Madison, WI, USA, June 1998.

[6] J. Beran. Statistics for Long-Memory Processes. Chapman & Hall, 1994.

[7] T. Berners-Lee and D. W. Connolly. RFC 1866: Hypertext Markup Language
| 2.0. RFC, Internet Engineering Task Force, November 1995. Status: PRO-
POSED STANDARD.

[8] T. Berners-Lee, R. Fielding, and H. F. Nielsen. RFC 1945: Hypertext Transfer
Protocol | HTTP/1.0. RFC, Internet Engineering Task Force, May 1996.
Status: INFORMATIONAL.

[9] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,
V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan,
S. Shenker, J. Wroclawski, and L. Zhang. RFC 2309: Recommendations on
queue management and congestion avoidance in the Internet. RFC, Internet
Engineering Task Force, April 1998. Status: INFORMATIONAL.

[10] R. C�aceres, P. B. Danzig, S. Jamin, and D. J. Mitzel. Characteristics of wide-
area TCP/IP conversations. In Proceedings of ACM SIGCOMM, pages 101{
112, Zurich, Switzerland, 1991.

[11] Cisco Systems. http://www.cisco.com.

[12] M. E. Crovella and A. Bestavros. Self-similarity in world wide web traÆc:
Evidence and possible causes. In Proceedings of ACM SIGMETRICS, pages
160{169, Philadelphia, PA, USA, May 1996.

[13] M. E. Crovella and A. Bestavros. Self-similarity in world wide web traÆc: Evi-
dence and possible causes. IEEE/ACM Transactions on Networking, 5(6):835{
846, December 1997.

121



122 BIBLIOGRAPHY

[14] P. B. Danzig and S. Jamin. tcplib: A library of TCP internetwork traÆc
characteristics. Technical report, Computer Science Department, University of
Southern California, Los Angeles, California 90089-0781, 1991.

[15] P. B. Danzig, S. Jamin, R. C�aceres, D. J. Mitzel, and D. Estrin. An empirical
workload model for driving wide-area TCP/IP network simulations. Journal
of Internetworking: Research and Experience, 3(1):1{26, March 1992.

[16] A. Demers, S. Keshav, and S. Shenker. Analysis and simulations of a fair
queuing algorithm. In Proceedings of ACM SIGCOMM, pages 1{12, Austin,
TX, USA, 1989.

[17] http://adm.ebone.net/~smd/red-1.html.

[18] A. Feldmann. Characteristics of TCP connection arrivals. Technical report,
AT&T Labs-Research, December 1998.

[19] A. Feldmann, A. C. Gilbert, P. Huang, andW.Willinger. Dynamics of ip traÆc:
a study of the role of variability and the impact of control. In Proceedings of
ACM SIGCOMM, pages 301{313, Cambridge, MA, USA, 1999.

[20] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin. BLUE: A new class of
active queue management algorithms. Technical Report 99/387, University of
Michigan, 1999.

[21] W. Feng, D. D. Kandlur, D. Saha, and K. G. Shin. A self-con�guring RED
gateway. In Proceedings of IEEE INFOCOM, volume 3, pages 1320{1328,
March 1999.

[22] R. Fielding, J. Gettys, J. Mogul, H. F. Nielsen, and T. Berners-Lee. RFC 2068:
Hypertext Transfer Protocol | HTTP/1.1. RFC, Internet Engineering Task
Force, January 1997. Status: PROPOSED STANDARD.

[23] V. Firoiu and M. Bordon. A study of active queue management for congestion
control. In Proceedings of IEEE INFOCOM, pages 1435{1444, Tel Aviv, Israel,
March 2000.

[24] S. Floyd. TCP and explicit congestion noti�cation. ACM Computer Commu-
nication Review, 24(5):10{23, October 1994. This issue of CCR incorrectly has
"1995" on the cover instead of "1994".

[25] S. Floyd. RED: Discussions of setting parameters. http://www.aciri.org/

floyd/REDparameters.txt, 1997.

[26] S. Floyd and K. Fall. NS simulator tests for random early detection (RED)
queue management. Technical report, Lawrence Berkeley Laboratory, One
Cyclotron Road, Berkeley, CA 94704, Appril 1997.

[27] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control in
the internet. IEEE/ACM Transactions on Networking, 7(4), August 1999.

[28] S. Floyd and V. Jacobson. On traÆc phase e�ects in packet-switched gateways.
Internetworking: Research and Experience, 3(2):115{156, September 1992.

[29] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1(4):397{413, August
1993.

[30] S. Floyd and V. Jacobson. The synchronization of periodic routing messages.
IEEE/ACM Transactions on Networking, 2(2):122{136, April 1994.



BIBLIOGRAPHY 123

[31] S. Floyd and V. Jacobson. Link-sharing and resource management models
for packet networks. IEEE/ACM Transactions on Networking, 3(4):342{356,
August 1995.

[32] Internet Research Task Force (IRTF). ftp://ftp.isi.edu/end2end/

end2end-interest-1998.mail, 1998.

[33] V. Jacobson, R. Braden, and D. Borman. RFC 1323: TCP extensions for
high performance. RFC, Internet Engineering Task Force, May 1992. Status:
PROPOSED STANDARD.

[34] V. Jacobson and M. Karels. Congestion avoidance and control. In Procceedings
of ACM SIGCOMM, pages 314{329, Stanford, CA, USA, 1988.

[35] R. Jain and S. Routhier. Packet trains-measurements and a new model for
computer network traÆc. IEEE Journal of Selected Areas in Communications,
SAC-4(6), September 1986.

[36] C. Kenjiro. A framework for alternate queueing: Towards traÆc management
by pc-unix based routers. In Proceedings of USENIX Annual Technical Con-
ference, pages 247{258, New Orleans, LA, USA, June 1998.

[37] S. Keshav. REAL: A network simulator. Technical Report 88/472, Department
of Electrical Engineering and Computer Science, Computer Science Depart-
ment, University of California at Berkeley, Berkeley, California 1988, 1988.

[38] W. E. Leland, M. S. Taqqu, W. Willinger, and D. V. Wilson. On the self-
similar nature of ethernet traÆc(extended version). IEEE/ACM Transactions
on networking, 2(1), February 1994.

[39] D. Lin and R. Morris. Dynamics of random early detection. In Proceedings of
ACM SIGCOMM, pages 127{137, Cannes, France, September 1997.

[40] B. A. Mah. An empirical model of HTTP network traÆc. In Proceedings of
IEEE INFOCOM, pages 592{600, Kobe, Japan, April 1997.

[41] B. B. Mandelbrot. Long-run linearity, locally gaussian processes, h-spectra and
in�nite variances. International Economic Review, 10:82{113, 1969.

[42] A. Mankin. Random drop congestion control. In Proceedings of ACM SIG-
COMM, pages 1{7, Philadelphia, PA, USA, September 1990.

[43] A. Mankin and K. Ramakrishnan. RFC 1254: Gateway congestion control
survey. RFC, Internet Engineering Task Force, July 1991. status: INFORMA-
TIONAL.

[44] M. May, J. Balot, C. Diot, and B. Lyles. Reasons not do deploy RED. In
Proceedings of 7th. International Workshop on Quality of Service (IWQoS'99),
pages 260{262, London, UK, June 1999.

[45] M. May, T. Bonald, and J. Bolot. Analytic evaluation of RED performance.
In Proceedings of IEEE INFOCOM, pages 1415{1424, Tel-Aviv, Israel, March
2000.

[46] S. McCanne and S. Floyd. ns network simulator. http://www.isi.edu/nsnam/
ns.

[47] G. Minshall, Y. Saito, J. C. Mogul, and B. Verghese. Application performance
pitfalls and TCP's Nagle algorithm. In In Workshop on Internet Server Per-
formance, May 1999.



124 BIBLIOGRAPHY

[48] J. C. Mogul. The case for persistent-connection http. In Proceedings of the
ACM SIGCOMM, pages 299{313, Boston, MA, USA, August/September 1995.

[49] J. Nagle. RFC 896: Congestion control in IP/TCP internetworks. RFC, Inter-
net Engineering Task Force, January 1984.

[50] A. Neidhardt. TraÆc source models for the bestavros and crovella data. Private
Communication, 1996.

[51] Netstat. http://www.netstat.net (service no longer available).

[52] H. F. Nielsen, J. Gettys, A. Baird-Smith, E. Prud'hommeaux, H. W. Lie, and
C. Lilley. Network performance e�ects of HTTP/1.1, CSS1, and PNG. In
Proceedings of ACM SIGCOMM, Cannes, France, 1997.

[53] T. J. Ott, T. V. Lakshman, and L. Wong. SRED: Stabilized RED. In Pro-
ceedings of IEEE INFOCOMM 99, pages 1346{1355, San Francisco, CA, USA,
March 1999.

[54] M. Parris, K. Je�ay, and F. D. Smith. Lightweight active router-queue man-
agement for multimedia networking. In Proceedings of Multimedia Computing
and Networking, SPIE Proceedings Series, pages 162{174, San Jose, CA, USA,
January 1999.

[55] V. Paxson. Empirically derived analytic models of wide-area TCP connections.
IEEE/ACM Transactions on Networking, 2(4):316{336, August 1994.

[56] V. Paxson. End-to-end internet packet dynamics. IEEE/ACM Transactions
on Networking, 7(3):277{292, June 1999.

[57] V. Paxson and S. Floyd. Wide area traÆc: The failure of poisson modeling.
IEEE/ACM Transactions on Networking, 3(3):225{244, June 1995.

[58] J. Postel. RFC 791: Internet Protocol. RFC, Internet Engineering Task Force,
September 1981. Status: STANDARD.

[59] B. Raynolds. http://null0.qual.net/brad/papers/reddraft.htm. link now
broken.

[60] L. Rizzo. Dummynet. http://www.iet.unipi.it/~luigi/ip_dummynet.

[61] S. Shenker, L. Zhang, and D. D. Clark. Some observations on the dynamics of a
congestion control algorithm. Computer Communications Review, 20(5):30{39,
October 1990.

[62] F. D. Smith, F. H. Compos, K. Je�ay, and D. Ott. What TCP/IP protocol
headers can tell us about the web. In Proceedings of ACM SIGMETRICS,
pages 245{256, Cambridge, MA, USA, June 2001.

[63] W. R. Stevens. TCP/IP Illustrated, volume 1. Addison-Wesley, 1994.

[64] M. S. Taqqu and J. Levy. Dependence in Probability and Statistics: A Survey
of Recent Results, pages 73{90. Birkh�auser, 1986.

[65] K. Thompson, G. J. Miller, and R. Wilder. Wide-Area internet traÆc patterns
and characteristics. IEEE Network, 11(6), November/December 1997.

[66] C. Villamizar and C. Song. High performance TCP in ANSNET. ACM Com-
puter Communications Review, 24(5):45{60, October 1994.



BIBLIOGRAPHY 125

[67] Z. Wang and P. Cao. Persistent connection behavior of popular browsers. http:
//www.cs.wisc.edu/~cao/papers/persistent-connection.htm, December
1998.

[68] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity
through high-variability: statistical analysis of ethernet LAN traÆc at the
source level. In Proceedings of ACM SIGCOMM, pages 100{113, Cambridge,
MA, USA, August 1995.

[69] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson. Self-similarity
through high-variability: statistical analysis of ethernet LAN traÆc at the
source level. IEEE/ACM Transactions on Networking, 5(1):71{86, 1997.

[70] L. Zhang and D. D. Clark. Oscillating behavior of network traÆc: A case study
simulation. Internetworking: Research and Experience, 1:101{112, 1990.

[71] L. Zhang, S. Shenker, and D. D. Clark. Observations on the dynamics of a
congestion control algorithm: The e�ects of two-way traÆc. In Proceedings of
ACM SIGCOMM, pages 133{147, Zurich, Switzerland, September 1991.

[72] G. K. Zipf. Human Behavior and the Principle of Least E�ort. Hafner Pub-
lishing Company, New York, NY, USA, 1949.


