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ABSTRACT
GREGORY J. CLARY: Image Sequence Classification via Anchor Primitives
(Under the direction of Stephen M. Pizer, Kenan Professor)

| define anovel class of medial primitives called anchor primitives to provide a
stable framework for feature definition for statistical classification of image sequences of
closed objects in motion. Attributes of anchor primitives evolving over time are used as
inputs into statistical classifiersto classify object motion.

An anchor primitive model includes a center point location, landmark locations
exhibiting multiple symmetries, sub-models of landmarks, parameterized curvilinear
sections and relationships among all of these. Anchor primitives are placed using image
measurements in various parts of an image and using prior knowledge of the expected
geometric relationships between anchor primitive locations in time-adjacent images.
Hidden Markov models of time sequences of anchor primitive locations, scales and
nearby intensities and changes in those values are used for the classification of object
shape change across a sequence. The classification method is shown to be effective for
automatic left ventricular wall motion classification and computer lipreading.

Computer lipreading experiments were performed on a published database of
video sequences of subjects speaking isolated digits. Classification results comparable to
those found in the literature were achieved, using an anchor primitive based feature set
that was arguably more concise and intuitive than those of the literature. Automatic left

ventricular wall motion classification experiments were performed on gated blood pool



scintigraphic image sequences. Classification results arguably comparable to human
performance on the same task were achieved, using a concise and intuitive anchor
primitive based feature set. For both driving problems, model parameters were tuned and
features were selected in order to minimize the classification error rate using leave-one-

out procedures.
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Chapter 1

| ntroduction

In this the technology age, sequences of images are commonly captured and
displayed. Capture mechanismsinclude video and motion picture film cameras, medical
imaging devices such as those that image the heart, and radar. Many image sequences
portray objects in motion that undergo shape changes. Machines of the twenty-first century
will usefully automatically classify the motion of objects in image sequences. Example
applications will include security and medical diagnosis. Imagine a security system where
the act of shoplifting is automatically recognized by machines. Even imperfect systems
would save retailers millions of dollars! In an imperfect system, where the probability of
false alarms is non-zero, human security personnel could review recordings of actsthat are
considered suspicious by the system and decide whether or not to take further action.

As another example application, consider a“hands-free” dialing system for a mobile
telephone unit in an automobile. Various noise types may corrupt an acoustic signa in the
car environment, including the sounds from passing cars, the engine, the fan, the tires, the
voices of passengers, and the radio to name afew. A small camera can be mounted
unobtrusively on the ceiling or mirror and focused on the driver. Video signals from the
camera can be sent to a SmartPhone or similar device to aid in the recognition of spoken

digits and commands.



Most automatic speech recognition research has focused on using the acoustic signal
to recover the linguistic information intended by the speaker. Recognition using the acoustic
signal has proven to be extremely difficult in noisy environments, where the speech portion
of the acoustic signal is distorted by background interference, possibly from avariety of
sources. Many types of noise are mid to high frequency in nature and thus interfere with the
mid to high frequency components of the acoustic signal. (The low frequency content of the
acoustic signal is often largely unaffected by noise.) The mid to high frequency content of
the acoustic signal is directly related to the positions of articulators like the lips, teeth and
tongue. Obvioudly, acoustic noise interference does not impact a video sequence of the
speaker. The positions of the lips, teeth and tongue are often clearly shown in such a
sequence.’ Thus, avideo signal can be used effectively to augment the acoustic signal in
automatic speech recognition systems.

This dissertation explores a novel method for the classification of object shape
changes in image sequences. The method describes shape changes in image sequences
numerically and assigns the shape changes to categories.

At ahigh level, the approach to image sequence classification taken isto find the
object of interest in each frame of the image sequence, generate a numerical description of its
shape, accumulate the numerical descriptions of the object shape in each frame over time and
pass the numerical descriptions on to a statistical classifier. Thiswork focuses on finding the
object in each frame (segmentation and tracking) and describing its shape numerically
(feature extraction). For astatistical classification system, numerical descriptions of shape

should be 1) concise enough to allow computational efficiency of statistical classification and



accurate model parameter estimation and 2) have the right precision to allow accurate
classification of data not previously encountered.

Statistical classifiers compute distances between models and new inputs
(equivaently, they compute the a posteriori probabilities of new inputs). The computational
expense of the distance cal culations depends on the metric used but can increase as the
square of the number of extracted features. Thus, for computationally efficient statistical
classification, the number of extracted features should be kept small; that is, feature vectors
that describe object shape should be concise. Numerous concise ways to describe shape have
been proposed and explored in the literature, including Fourier coefficients of the object’s
intrinsic function and moments. Someone new to the field might be tempted to describe an
object’ s shape in adigital picture by listing al of the pixels that fall within the object, but of
course this method isnot at all concise. Dudaand Hart put it well, “...completely specifying
the pointsin the figure does violence to our intuitive notion that a description of a complex
thing should be simpler in some sense than the thing being described.”?

Beyond computational efficiency, afurther motivation for finding concise feature sets
isto allow creation of representative statistical models based on afinite set of training data,
as explained by the following argument. In statistical classifiers, model parameters such as
mean vectors and covariance matrices are estimated from training data. According to the
Laws of Large Numbers, sample based estimates of distribution parameters approach the true
distribution parameters as the sample size increases. The implication for statistical
classification is that more training samples result in more accurate model parameter
estimates. Accurate estimates of appropriately selected model parametersyield high

classification accuracy. In many cases, however, training datais scarce. Thus, aresearcher



using a statistical classifier is motivated to try to estimate fewer well-chosen parameters, in
order to better estimate them and achieve better classifier accuracy.

Whether or not the features have the right precision is judged in part by estimates of
classification accuracy, obtained by presenting data to the classifier that was not presented
during training. Classifier performance is tuned by varying the number and choice of
parameters and using a technique like cross-validation, in order to avoid “over-training” to a
particular training set. The result of over-training is that the classifier has limited
generalization capability. That is, when an over-trained classifier sees an input not presented
during training, it isless likely to classify it correctly than another classifier that has not been
over-trained to the training set.

Intuitively, the challenge isto generate from image data a numerical description of
the object of interest in the image that is concise (like “cow” for the main object in a
photograph of a cow) but also has the right amount of precision for classification purposes.
“Right amount” is problem dependent. For example, if cows are to be classified into various
breeds (categories) like Holstein and Guernsey, more precise descriptions are needed. Such
descriptions could include “cow has black spots on awhite background” or “cow is
completely brown.”

Methods previously applied by computer image analysts to shape description suffer
from sensitivity to subtle intensity variations within the object of interest, and many are not
invariant to translation, rotation and zoom. An intuitive way to think of invarianceisto again
imagine a photograph that pictures acow. Now imagine a second photograph that was taken
when the photographer stepped toward the cow (zoomed in), took a step to the right

(translated the camera) and tilted the camera (thereby rotating the cow in the photograph).



The description of the object of interest in the second photograph is invariant to the described
transformations in the sense that it is“cow” regardless of the fact that translation, rotation
and zooming took place.

Most of the methods for numerically describing object shape depend on knowing the
object’ s boundaries as a prerequisite. Typically, they depend on atraditional boundary
finding technigue such as a gradient based one, which is known to cause difficulty when
there isimage noise or perturbations.

A method that overcomes some of the difficulties of other shape description methods
is based on the principle that a precise and concise way to describe an object is by describing
its middle or “medial track” and width along the middle. There is psychophysical evidence
to suggest that a fundamental mechanism underlying human object perception (and therefore
shape description) is the association of opposing boundaries, that is, the performance of
medial analysis.® By the performance of medial analysis, a human or machine can concisely
summarize the shape of an object. In this dissertation, attributes of this medial summary
information are used as features for the classification of object shape change in image
sequences. Intuitively, a system that performs medial analysis assigns the position of an
object’smiddle by “linking” boundaries, that is, gathering evidence for opposing boundaries.
Based on evidence of aboundary in one part of an image and evidence for aboundary in
another part of an image, the system assigns a“medial primitive’ to alocation in theimage
between the two boundaries.

A way of describing an object’ s shape and capturing its figural geometry was first
proposed by Blum® and is known as the media axis transform. The medial axis of an object

isalocus of middle (media or skeletal) points and aradius (“half-width™) associated with



each of the middle points. The medial axis description of an object is complete in the sense
that an object’ s boundary can be reconstructed if its medial points and associated radii are
known. The locus of medial points was defined by Blum to be the locus of centers of disks
that are tangent to the object boundary in two places. The associated radii are the radii of the
doubly tangent disks. Stephen Pizer and his colleagues at the University of North Carolina at
Chapel Hill (UNC) have introduced ways of finding medial loci in images in a manner which
isinsensitive to image noise and small perturbations in the object’ s boundary and which does
not depend on knowing the object’ s boundary as a prerequisite. More will be said about the
UNC method in Chapter 4.

The central thesis of the dissertation is that novel medial representations called anchor
primitives are useful as a basis for feature extraction for object shape sequence classification,
because the resulting features are precise enough for classification and concise enough to
allow computational efficiency of statistical classifiers and accurate model parameter
estimation. An anchor primitive models only salient parts of an image object, and it uses
symmetries advantageously to produce a compact representation of the image object. The
anchor primitive based method is a general framework for image segmentation and statistical
feature definition. The framework is evaluated on 2D image segmentation and image
sequence classification problems in this work.

Image sequence classification problems considered here include | eft ventricular
regiona wall motion classification and computer lipreading. What left ventricular wall
motion classification and computer lipreading have in common is that useful automatic
classifications can be made from 2D image sequences. In addition, the image sequences

capture a body in motion that can be viewed as consisting of asingle figure. That is, within



each image of a sequence, the boundary of the object of interest, namely the left ventricle or
the mouth, is closed or nearly closed and there is amedial axis that provides an adequately
good approximation of the object. The medial topology of the object of interest is fixed over
the sequence. Although the high-level approach for image sequence classification described
in this dissertation is general, results will be demonstrated only for single figure objects that
are not occluded. Other problems of interest in the computer vision community include
classification of the motion of multi-figure objects that can be occluded or self-occluded, for
example, classification of human activities like walking or hand gestures (or the unfortunate
shoplifting activity!).

The focus of the dissertation is on representing image objects for statistical
classification rather than the search for engineering solutions to the example problems of |eft
ventricular wall motion classification and computer lipreading. Chapter 2 and Chapter 3
provide further background on these problems. Brief background on the driving
classification problemsis given here.

The left ventricular chamber is of primary interest because it isthe heart’s
workhorse—it contracts to pump oxygen-rich blood to the body. Because of its crucial role
in the circulatory system, analysis of the motion of its walls is sometimes undertaken as an
aid to heart disease diagnosis. Current practice for clinical interpretation relies on subjective
assessments based on observer training. Automatic classification of left ventricular regional
wall motion would 1) enable the computer as an observer in order to save costly human
observer time and 2) improve reproducibility and reliability.

The region of the left ventricular wall found roughly in the direction of the human

feet isknown as the apex. Automatic classification of left ventricular apical motion into two



categories, “normal apical motion” and “abnormal apical motion,” is undertaken in this
research. Resultsindicate that wall motion classification using features based on attributes of
anovel anchor primitive model is efficient in terms of the number of features required by an
employed statistical classifier.

Automatic classification of the spoken digits “one” through “four” from video signals
is also undertaken in thisresearch. Such computer lipreading is useful in automatic
recognition environments where the acoustic signal is corrupted by noise. Other researchers
have demonstrated that 1) for the studied digit recognition task high recognition accuracy is
achievable® and 2) the errors made by audio and video based recognition schemes are
complementary.® This dissertation will define an image sequence processing and
classification system that could be used in an audio-visual speech recognition system. The
defined anchor primitive based system is compared to systems of the literature that were
evaluated on the same spoken digit task and is found to offer arguably more concise and
intuitive statistical features than those of previous systems while maintaining comparable
classification accuracy.

At ahigh level, the approach taken to image sequence classification istypical. First,
images are segmented to find the object of interest. Features are extracted which represent
shape and shape change aspects of the segmented object. These features are accumulated
over time and used as input into a classifier that assigns a category to the image sequence.

At amore specific level, models that consist of my anchor primitive are used to
segment the images. Attributes of these models are used as features. They include distances
between model points; local estimates of width and radius of curvature; and the inter-frame

changesin those values. The features are inputs to a statistical classifier which outputs a



category assignment like “abnormal apical motion” in the case of the left ventricular wall
motion analysis problem or one of the digits “one” through “four” in the case of the computer
lipreading problem. It will be argued that the anchor primitive framework has the following
advantages:
An anchor primitive uses a smaller number of parameters to represent an
image object than would be used by alternative representations.
Anchor primitive distance attributes and changes in those distances when
captured over time can be used to adequately describe image object motion.
Anchor primitives provide accurate statistical features for image sequence
classification.
Anchor primitives provide concise features for statistical classification.
Their attributes often have intuitive meaning, e.g., half-width of the mouth or
half-length of the long axis of the left ventricle.
Anchor primitives can provide arich statistical feature set.

Anchor primitives are able to delineate image objects in noisy data.

1.1 Contributions

The contributions of the dissertation are the following:
| describe anovel medial primitive called an anchor primitive. The anchor
primitive can represent boundary parts of an object with parametric curves.
There are symmetric relationships between represented parts. The anchor
primitive includes an object “center” location, information about |ocations of
the parts, and curve parameters. It will be shown that anchor primitives allow

consistent model placements relative to salient image object features that are



needed for accurately defining statistical features for image sequence
classification. Certain image object features that are found in every example
image object across a population are said to “correspond.” The anchor
primitive is a correspondence maintaining primitive placed in each frame of
an image sequence using the continuity of the sequence. Anchor primitivesin
image sequences effectively generate shape parameter sequences that describe
object motion. Thus, attributes of anchor primitives can be effectively used as
features for image sequence classification.
| show that anchor primitives supply features for statistical classification that
are intuitive and easy to compute.
| introduce a method for classification of object shape change in image
sequences that combines anchor primitive attributes and hidden Markov
models.
| demonstrate that anchor primitive attributes are useful for left ventricular
wall motion classification.
| demonstrate that anchor primitive attributes are useful for computer
lipreading of spoken digits.
| select particular anchor primitive attributes as features for statistical
classifiers.

The remainder of the dissertation is structured as follows. Chapter 2 reviews previous

approachesto left ventricular regional wall motion analysis and classification. Chapter 3
summarizes previous work on the computer lipreading problem. Chapter 4 presents the

theoretical details of previously employed (by this author and other authors) deformable
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models and Hidden Markov Models. Chapter 5 presents the proposed anchor primitive based
methodology in detail with emphasis on the novel contributions of the work and theoretical
justifications for them. Chapter 6 gives evaluations of the methodology for left ventricular
apical motion classification and results for computer lipreading of the digits “one” through
“four.” Chapter 6 also presents those anchor primitive attributes selected as features for the
statistical classifiers. Chapter 6 finishes by discussing the results and drawing conclusions.

Chapter 7 presents ideas for future work.
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Chapter 2

L eft Ventricular Regional Wall
Motion Analysis

Recent cardiac image analysis work has focused on 3D image acquisition modalities
and analysis techniques. Frangi, Niessen, and Viergever give an excellent overview of model
based 3D cardiac image analysis approaches. In addition, recently, an issue of |EEE
Transactions on Medical Imaging was devoted entirely to 3D cardiovascular image analysis.?
The methods studied in this dissertation will apply to 3D image analysis, but their efficacy is
demonstrated herein on 2D images.

The left ventricle and the names of certain of itswalls and regions are illustrated in
Figure 2.1. Aswas stated, because of the left ventricle' s crucia rolein the circulatory
system, analysis of the motion of itswalls is sometimes undertaken as an aid to heart disease
diagnosis, including evaluation of coronary artery disease, infarcts and ischemia. In addition,
certain chemotherapy regimens are toxic to the heart muscle. Such regimens are commonly
administered until wall motion analysis shows that muscle performance is significantly
degrading. Abnormal wall motion is most easily observed when a patient is subjected to

3 “exercise-induced wall motion

stress such as exercise. According to one source,
abnormalities occur in approximately 50 percent of patients with coronary artery disease

without prior myocardial infarction.” That is, stress-induced wall motion abnormalities can



occur and indicate coronary artery disease even if the patient has not had a prior heart attack.
Left ventricular wall motion can be observed via numerous imaging modalities, including
cineradiography, echocardiography, gated SPECT, and blood pool imaging. Blood pool

images are studied in this work.

Base
£ Left Atrium
Right Atrium g_ Lateral
%
Right Ventricle Apex Left Ventricle

Figure2.1: A schematic of the human heart. Left ventricle region namesare given in italics.

Blood pool imaging is a nuclear medicine technique in which red blood cells are
“|abeled” with aradioactive material, such as technetium-99m. Because arelatively high
volume of blood exists in the chambers of the heart, images of the “blood pools,” collected
by a gamma camera, for example, show the analyst the positions and shapes of the chambers.
Images are collected when scintillations from the crystal in the gamma camera are recorded
as events (defined by spatial location and energy) in an event stream. Image acquisition is
“gated” by the electrocardiogram. The collection process takes advantage of the fact that the
electrocardiogram signal has arelatively consistent shape for each heartbeat. When one
particular part of that shape is detected, a marker is placed in the event stream. The markers
define corresponding parts of each heartbeat from which events can be summed into images,

which when ordered, form an image sequence representative of asingle heartbeat. Events
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from irregular beats are ignored, and the fact that only a small amount of radioactive material
isintroduced into the bloodstream is overcome by the gating and summing process.
“Equilibrium images’ are captured when the radioactive material is uniformly distributed
throughout the blood stream. This research uses modified left anterior oblique (MLAO)
gated blood pool equilibrium image sequences from patient studies. The MLAO view is
used since it most clearly shows the left ventricular chamber.

Wall motion can be classified as normokinetic, mildly hypokinetic, moderately
hypokinetic, severely hypokinetic, akinetic or dyskinetic, that is, regions of the left
ventricular walls can exhibit various types and degrees of motion abnormalities. Current
practice for clinical interpretation relies on subjective assessments based on observer
training, which can sometimes result in significant intra-observer and inter-observer
variability. Reliable, automatic classification of left ventricular (LV) regional wall motion
would 1) enable the computer as an observer in order to save costly human observer time and
2) improve reproducibility and reliability. Presented in thiswork isamodel based approach
to automatic left ventricular wall motion classification.

A commonly used method for quantifying LV regional wall motion isthe “centerline
method” developed by Sheehan et al.* This 2D method measures motion along chords
perpendicular to a*“centerline.” The centerlineisacurve that is halfway between the LV
end-diastolic and end-systolic boundary contours. The boundary contours are typically
chosen manually. The method does not require localization of the apex. Sheehan et al.
showed that the centerline method distinguishes normal patients from patients with

ventricular wall motion abnormalities associated with coronary artery disease. The motion
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measurement it provides correlates well with the severity of stenosis, and the mean wall
motion abnormality it provides correlates well with area gjection fraction.

One example of early work to automatically classify LV regional wall motion isthe
work by Sychra, et al.> They form “Fourier Classification Images’ by harmonic analysis of
pixel time activity curves from cardiac nuclear medicine images as a basis for feature
computation, Fisher’s linear discriminant analysis of the features, and Gaussian modeling of
8 wall motion classes. Wall motion classes are normal 1, normal 2, mildly hypokinetic,
hypokinetic, hypokinetic-akinetic, akinetic, akinetic-dyskinetic, and dyskinetic. Each pixel
in Sychra simagesis assigned awall motion class based on analysis of its time activity
curve. They define “acceptable agreement” with the consensus of sequence analysis by
physicians as differing from the consensus by one class or less. With this definition of
“acceptable agreement,” they achieved an average of 86% pixel accuracy for normal classes
and 73.3% pixel accuracy for hypokinetic classes on their training set. They analyzed atotal
of 70 cardiac studies.

More recently, Nastar and Ayache suggested a 3D model that they claim can be
applied to automatic diagnosis of heart disease.® They define a deformation spectrum based
on modal analysis of a physically based deformable surface. They use the deformation
spectrum to compare deformations.

Gated myocardial perfusion SPECT imaging is commonly used to quantify left
ventricular performance, myocardial perfusion and regional function. Global measures of
performance accurately attainable from cardiac gated SPECT include left ventricular gjection
fraction, end-diastolic chamber volume and end-systolic chamber volume. Local

quantification of wall motion and wall thickening is possible aswell. In addition, gated
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SPECT can provide 3D visualizations of left ventricular wall motion.” Software that
facilitates myocardial perfusion SPECT analysis and interpretation has been developed by
Emory University, Cedars-Sinai Medical Center, and the University of Michigan and has
been licensed to a number of maor companies.

Automatic classification of LV regional wall motion has been attempted before by
Tsotsos using his ALVEN system.® A description of ALVEN was first published in
Tsotsos' s dissertation in 1980. Other descriptions of the ALVEN system can be found in
Tsotsos.>'0

ALVEN used images obtained by left ventricular angiography, a process which was
state-of-the-art at that time, but suffered from limitations. Angiographic images are collected
by taking conventional X-ray images of aradio-opagque dye injected through a catheter into
the desired location. The catheter isinserted into an artery in the upper arm or upper leg, and
guided through the aorta into the area to be imaged, which may be one of the chambers of the
heart or any of the coronary arteries.

ALVEN is asystem that produces output corresponding to the active and most certain
hypotheses of a knowledge base. Much of the terminology used to describe the hypotheses
and organization of the knowledge base is the same as that used to describe modern object-
oriented programming (e.g., “instance-of,” “aggregation,” “inheritance”’) suggesting that a
modern object-oriented language might be used to straightforwardly implement the
knowledge base. Which hypotheses are activated (i.e., which objects are instantiated) is
determined using rules on image and inter-image descriptions. A relaxation labeling
procedure, which limits the search space based on active hypotheses pertaining to the motion

of the ventricle, isused to find boundaries of the ventricle. For example, if “contract” isan
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active hypothesis, the speed and direction of contraction calculated from previous frames can
[imit the areain the current frame in which to search for the boundaries. If the boundaries
are not found, the constraints on the search space can be relaxed by using a parent of the
hypothesis. For example, “beat” might be a parent of “contract” and “expand,” so speeds and
directions for both contraction and expansion could define a search space. A less constrained
default search isused if the more constrained one(s) fail(s) to find an appropriate boundary.
Low-level image and inter-image descriptions are produced from the boundaries.

Hypotheses are activated according to the descriptions. Hypotheses are ranked by certainty
factor. Certainty factors are initialized according to a simple scheme (for example, if one
hypothesisis active and causes another to become active, the two may share equally the
certainty factor of thefirst). The certainty factors are updated using a relaxation labeling
procedure introduced by Zucker.

Most of Tsotsos' s reported results pertain to the analysis of the dynamics of
implanted Tantalum markers.”> Markers wereimplanted in the left ventricular wall of patients
who had undergone coronary bypass surgery. Films of the left ventricle and the markersin
motion allowed the evaluation of the effectiveness of the surgery and drug interventions.
Nine markers were implanted around the left ventricular wall and two on the aortic valve
edges. After hypotheses guided image analysis (described above) using a modified Marr-
Hildreth operator to extract the markers from the images, low-level image and inter-image
descriptions were produced. Low-level image descriptions included “major and minor axes,
volumes, 2D areas of segments, segmental volume contributions, circumferential dimensions,
and changesin radial axislengths.” Low-level inter-image descriptionsincluded “relative

directions of motion and rates of change.” Rules on the image and inter-image descriptions
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caused activation of hypotheses corresponding to anomalies and their degreeslike
“asynchrony, hypokinesis, dyskinesis, too slow or fast rate of change of volume with respect
to LV phase, or too long or short phase duration.” In Tsotsos’, an example left ventricle that
was judged by aradiologist to exhibit hypokinesis of the anterior segment isgiven. ALVEN
gave output for each of the markers, segments, and left ventricle that included a* descriptive
term, possible referent, quantitative values, and atimeinterval or instant.” HYPOKINESIS
is a descriptive term corresponding to one of the motion hypotheses. Quite a number of

HY POKINESIS instances were reported by ALVEN. Most were for the anterior segment, in
agreement with the radiologist’ s opinion.

To summarize ALVEN’s massive textual output, a summary graphic display was
developed. Time was presented on the horizontal axis, marker and segment index were
presented on the vertical axis, and shading indicated how the segment was moving (inward,
outward, not at all, and degree of hypokinesisif present). Tsotsos concluded that for several
studied cases, ALVEN gave output that was more detailed than, but still consistent with, the
radiologist’ s assessment.

L eft ventricular regional wall motion classification was chosen in thiswork as a
driving problem for devel oping and testing a new method for classifying non-rigid object
motion in image sequences. The previously described methods of Tsotsos and Sychra et al.
operate using a knowledge based or pixel time activity curve based approach to the problem.
According to Wechsler, knowledge based computational vision systems suffer because they
depend on knowledge that “is empirical, narrowly focused, involves alarge number of
heuristic rules of thumb, and cannot be easily extended.”** Pixel based methods cannot

handle aspects of cardiac motion like global translation and twisting of the heart during its
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beating, because those global motion effects introduce activity into a pixel from multiple
anatomical locations. Model based approaches to cardiac analysis and segmentation
overcome these difficulties and are currently popular. Thiswork introduces a model based
approach to cardiac image segmentation based on anchor primitives. The anchor primitive
models yield features in each frame, and thus sequences of feature vectors across time, that
have intuitive meaning and are easy to compute. Sequences of feature vectors are often
classified using hidden Markov models, because of their robust statistical nature and their
ability to capture time dependence in away that is representative of atraining set, rather than
based on ad hoc rules. Hidden Markov models allow modeling of non-stationary stochastic
processes and model feature changes that may vary in duration acrosstime. Thiswork
introduces a hidden Markov model based classification approach using anchor primitive
implied features. Sychra achieved about 80% classification accuracy (70 cases) on his
training set when distinguishing normal motion from hypokinetic motion. In a comparable
task in this work, 80% classification accuracy (25 cases) is achieved when distinguishing
normal motion from abnormal motion in aleave-one-out analysis.

The method developed in thiswork for regional wall motion classification is
presented in Chapter 5. Chapter 3 gives background information on the other motivating

image sequence classification problem studied in this work, computer lipreading.
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Chapter 3

Computer Lipreading

This chapter presents a survey of the previous work on computer speechreading or
computer lipreading, with an emphasis on the most recent work. Throughout the chapter, the
terms speechreading and computer lipreading are used interchangeably.

Computer lipreading remains alargely unsolved problem. Recent results of
Matthews, Cootes, et al. suggest the difficulty of the task.> They compared features based on
Active Shape Models, Active Appearance Models and scale-space analysis on a multi-
speaker (not speaker-independent), isolated word recognition task and achieved a maximum
recognition accuracy of 44.6% (260 word test set). However, they rightly point out that the
point of computer lipreading is to augment acoustic speech recognizersin noisy
environments, as was discussed in Chapter 1. Systems where computer lipreading is used to
augment and improve acoustic speech recognition are known as audio-visual systems.

Much important computer lipreading work has been done using gray-scale images by
Matthews and Luettin.*® In addition, Bregler and colleagues used a deformable model to
track the lips and used projections of gray-scale values collected based on the deformable
model positions onto principal components found by principal components analysis (PCA) as
inputs for a hidden Markov model classification system.? Bregler showed a statistically
significant improvement for his audio-visual system over his acoustic system alone, on a

more challenging task than those discussed in Matthews' or Luettin’swork. Both Bregler



and Matthews cite Petgjan® as the first author to show that audio-visual recognition systems
outperform acoustic recognition systems. Matthews cites Goldschen as the first author to
apply hidden Markov models to computer lipreading.* As computer memory and processing
power continue to increase, color images could be used to improve results even further.
Color information has been shown to be useful for finding the lip boundaries in image
sequences by Liew, et al.

L uettin and Thacker use models based on the Active Shape Models of Cootes, et al
for tracking the motion of the lips and extracting features for classification.® Active Shape
Models"®® are built by placing model points by hand aong the boundaries of an object in a
set of training images. Intensity derivative profiles that are centered at each model pointin a
direction perpendicular to the boundary are extracted. For each training image, the (x,y)
coordinates of the model points are grouped into a vector which represents the shape of the
modeled object. Similarly, the intensity derivative profiles for each model point are
concatenated into a vector that represents the intensity information for atraining image.
(Thisiswhere the method of Luettin and Thacker differs dightly from the method of Cootes
et a. Cooteset al. treat the intensity derivative profile vectors for each model point
separately in their ASM work.) Statistics are computed for both the shape and the intensity
derivative profile vectors over the training images. Shape and intensity models consist of
mean vectors and eigenvectors resulting from principal components analysis. Principal
components analysis over the shape vectors yields a subspace to which the shapeis
constrained during model fitting. The cost function for model fitting in a new image is based
on the match between the intensity derivative profile vector for a candidate position and the

intensity derivative profile model obtained from the training images. To initializelip
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tracking, the mean shape model is placed into the initial image of a sequence at arandom
location. To perform tracking, the final model configuration in one frame becomes the initial
model configuration in the following frame.

L uettin and Thacker use the shape projection coefficients, the intensity derivative
profile projection coefficients, inter-frame changes in these values, and an inter-frame change
in scale as features for recognition. Scale is defined for their models to be the distance
between the corner points of the lips. The corner points are the places along the outer
boundaries where the upper and lower lips meet.

In one set of experiments, these features were used as inputs for six state hidden
Markov models. Each hidden Markov model represented one of the words “one” through
“four.” The database consisted of the first four English digits spoken twice by twelve
different speakers. Speaker-independent recognition experiments used aleave-one-speaker-
out technique. The same database was used for evaluations of the methods presented in this
work.

Two active shape models were constructed, one that modeled only the outer boundary
of the lips, and another that modeled both the inner and outer boundaries. For both models,
they used the shape features alone, the intensity features alone and the shape and intensity
features together. They found that the model that consisted of points along both the inner
and outer boundaries gave the best performance when both shape and intensity features were
used, along with inter-frame changes in the features (which they called delta features). They
then tested the recognition performance of each feature individually. Testswere then
performed using the five features (two shape features and three intensity features) that gave

the highest individual recognition accuracy, along with deltafeatures and deltascale. Again
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they found that the model that consisted of points along both the inner and outer boundaries
gave the best performance when both shape and intensity features, along with delta features,
were used. Thislimited feature set gave significantly higher recognition accuracy than the
full feature set used initially. These best results were similar to the performance of humans
not trained in the art of lipreading. They reported an average recognition accuracy of 90.6%.
Thelr results suggest that both shape and intensity information are important to performance,
inter-frame changes in feature values are important to performance, and feature selection
using a greedy approach improves results.

Movellan has conducted experiments to find features for visual speechreading. In
fact, Movellan provided the database used by L uettin and Thacker. In one set of
experiments, he defined a speaker-independent recognition task of the first four English
digits.'® Several image-preprocessing steps were taken. The first was a process he defined,
“symmetrizing” images, where corresponding pixels from the left and right sides of each
image were averaged. This reduced the number of relevant pixelsto one-half of the original
number. The difference between each symmetrized image and the immediately prior one (in
time) was taken. Movellan referred to these as deltaimages. The symmetrized images and
the delta images were compressed and subsampled using Gaussian filters. The outputs of the
filters were fed through alogistic function and scaled. The processed symmetrized images
and the deltaimages were concatenated together and used as inputs to a hidden Markov
model based classifier. The best performance was obtained using models with three states
and three Gaussian mixtures per state. These models provided a recognition accuracy of
89.58% on average. Movellan compared the HMM performance to human performance on

the same task. Six people with normal hearing not trained to lip read achieved an average
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recognition rate of 89.93%. Three people with profound hearing losstrained to lip read
achieved an average recognition rate of 95.49%. Movellan demonstrated in this work that
simple image based features can be used for recognition, that the performance on this task
was comparable to the performance of humans not trained to lip read and that the delta
images had a significant impact on recognition accuracy. Thislast point is consistent with
the conclusions reached by numerous researchers, namely that the explicit use of dynamic
information can have a great impact on classifier performance. Often dynamic information is
modeled and captured in two ways, via the feature set and the hidden Markov model states
and transition probabilities.

In more recent work, Movellan and his colleagues studied the use of different types of
dynamic information as features for recognition.* Specifically, they compared performance
on the task described in the previous paragraph using four different feature sets. One feature
set was the same as that described in the previous paragraph, which they called “low-pass +
delta’ inthis paper. The second feature set was obtained by performing principal
components analysis on the symmetrized and deltaimages, rather than low-pass filtering and
subsampling them using Gaussians. The third feature set was a 140-dimensional input vector
representing the optic flow. The fourth feature set was the combination of the low-pass
filtered intensity values and the optic flow input vector. They found that the “low-pass +
delta’ feature set gave the best performance—it outperformed both PCA and the feature sets
which incorporated optic flow. Those feature sets that used the delta images significantly
outperformed those that used optic flow. The authors speculate that the thresholding to

eliminate noisy estimates that is part of the optic flow computation may make the flow
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representation too sparse. They also found that normalizing the images for differencesin
rotation, tranglation, and scaling had a significant positive impact on recognition accuracy.

Movellan has also studied the issue of classifier fusion in audiovisual speech
recognition. He and his colleagues present results that suggest that the audio and visual
signals produced in human speech communication are conditionally independent. Such
results imply that probabilities produced by models for audio and models for video speech
recognition can be easily combined. This fact further motivates the study of computer
lipreading systems to augment acoustic speech recognizers.

Recently, Chalapathy Neti and his colleagues at IBM Research have demonstrated
promising results for audio-visual speech recognition. In fact, they showed the performance
of an audio-visual system to be significantly better than audio-only systems at certain audio
signal-to-noise ratios on a speaker-independent, large-vocabulary task (10,400 word
vocabulary, 1038 test utterances).'® Their visual features are based on a discrete cosine
transform of pixel values from aregion of interest containing the mouth, followed by linear
discriminant analysis (LDA).

Several authors, including Goldschen, Matthews et al., Bregler et al., Luettinet al.,
and Movellan et a., have used hidden Markov models successfully for computer lipreading.
Several authors, including Bregler et a., Matthews et al., and Luettin et a., have used model
based approaches for image sequence segmentation and feature extraction. Shape and
intensity features and inter-frame changes in feature values were important to successful
computer lipreading in the previous work of Luettin et al. The approaches of Bregler et al.,
Matthews et al., Luettin et al., Movellan et al., and Neti et a. operate by performing PCA or

LDA on functions of image intensities to determine statistical features for classification.
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Rather than perform PCA or LDA, which are linear methods and depend on having an
adequate amount of training data to correctly capture covariance across a population, in this
work, | introduce the anchor primitive model that provides intuitive, appropriately correlated
and easily computed geometric features.

Here, asin much of the work reviewed in this chapter, amodel based approach is
taken to lip tracking (segmentation) and feature extraction. The model based approach
produces time sequences of feature vectors. Asin much of the reviewed work, a hidden
Markov model based classification system using the time sequences of feature vectors as
inputs is used for classification experiments on the database provided by Movellan.*® | show
that given accurate segmentations of lip images by anchor primitive models, easily computed
intuitive geometric features (rather than PCA based features) are implied by the model and
yield accurate classification results. Anchor primitive based classification yielded 89.58%

(86/96 sequences correct) accuracy on Movellan’s task, equaling Movellan’ s best results.
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Chapter 4

Background on Image
Segmentation and Statistical
Classification of Time Seguences

The system that performs image sequence classification evaluated in this work finds
the object of interest in each image, makes measurements of the object, groups measurements
across the image sequence over time, and passes those measurements to a statistical
classifier. Thefocus of thiswork is an anchor primitive based framework for statistical
feature definition for image objects in image sequences. Alternative approaches to statistical
feature definition for image sequence classification are, of course, possible; they include
performing 3D object finding (2 spatial dimensions plus time)—thereby performing spatio-
temporal analysis and making measurements based on that analysis. This chapter motivates
and provides background on the object finding and statistical classification methods of this
work.

Delineating the object of interest in an image is known as image segmentation. Many
approaches to automatic and interactive image segmentation have been developed.! The
general approach taken in thiswork is deformable model based segmentation. Background
on these methods is given in this chapter. Deformable model based segmentation methods

use a combination of intensity information and a geometric model of the object sought. They



use a geometric model of the object in order to guide the segmentation process when
intensity information is unreliable. Intensity information may be unreliable in regions where
neighboring objects provide interfering information and the neighboring object location
varies. Also, intensity information may be inconsistent across the population of images of an
object. Several deformable model based segmentation methods are reviewed in this chapter,
with special attention given to medial methods, because they motivated some of the
contributions of this work.

There are many possible approaches to automatically classifying time sequences of
feature vectors including dynamic time warping, time-delay neural networks, knowledge
based approaches and statistical classification. According to Wechsler, knowledge based
computational vision systems suffer because they depend on knowledge that “is empirical,
narrowly focused, involves alarge number of heuristic rules of thumb, and cannot be easily
extended.”? Statistical approaches exhibit power and generalization capability by modeling
real world situations by learning their characteristics from atraining population assuming one
can find a representative underlying model. A popular statistical model used to represent
time sequences is the hidden Markov model. Background from the literature on hidden
Markov modelsis given in this chapter aswell. The previous work and background
theoretical material form the basis and motivation for the contributions presented in Chapter
S.

4.1. Deformable M odel Based Segmentation Methods

Deformable model based approaches have gained widespread acceptance in the
medical image analysis community. The power of the approaches are summarized by

Mclnerney and Terzopoulosin the following:
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The widely recognized potency of deformable models stems from their

ability to segment, match, and track images of anatomic structures by

exploiting (bottom-up) constraints derived from the image data together

with (top-down) a priori knowledge about the location, size and shape of

these structures. Deformable models are capable of accommodating the

often significant variability of biological structures over time and across

different individuals.*

Deformable model based segmentation methods include landmark based methods,
boundary based methods, atlas based methods and medial methods. To place deformable
models in an image (thereby delineating the object of interest and therefore “ segmenting” the
image), typically afunction is optimized that includes a measurement of model to image
match (*image match” based on intensity information) and a measurement of the consistency

of the model shape with the candidate shape in the image (“geometric typicality”).

4.1.1. Landmark Methods

Landmarks are places on image objects that exhibit correspondence across instances
of images of the same anatomy. Landmarks are often homologous across instances as well.

Landmark based approaches have historically been used for image registration.
Image registration is often necessary to monitor the effects of disease treatment, therapy or
progression over time, quantify the effects of disease on abnormal versus normal patient
populations, or display information from multiple imaging modalities simultaneously. Itis
common practice to choose landmarks manually when registering images. Some techniques
used in landmark based registration approaches can also be applied to landmark based
segmentation.

In landmark based segmentation, asis usual, algorithms seek an optimal combination
of image match given alandmark configuration and geometric typicality of the landmark

configuration. Landmark configuration to image match can be determined by measuring
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salient features of the image that correspond to landmark locations using statistical template
based or analytic kernel approaches. Geometric typicality can be determined by measuring
the difference between a candidate configuration from a statistical model obtained from
training images or a configuration in a previous frame in the case of image sequence
segmentation.

Morphometric differencesin landmark configurations can be measured by standard
techniques. One such technique is the Procrustes distance. When using the Procrustes
distance to measure the shape difference between landmark configurations, configurations
are normalized so that trandlation, rotation, and scaling differences are eliminated. The sum
of squared distances between corresponding landmarks is then used as a measure of the shape
difference between two landmark configurations and can be used as a measure of geometric
typicality for image segmentation.

Minimizing an energy function that has the following form (for 2D images):
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has been used to find \7 avector displacement field mapping one landmark configuration to
another. This energy has been called the “bending energy” or “thin-plate spline” energy,®

although it is based on the Frobenius norm rather than a physical law. The minimal bending

energy over all vector fiel ds(/(g) consistent with the knownv values at the landmarksis a

measure of geometric typicality when comparing a new landmark configuration to a model
(“typical”) landmark configuration.
Alternatives to geometric measures on model deformation are measures based on

physical laws such as those governing fluid flow or matter deformation. The minimal fluid



flow energy between landmark configurations is a measure of the shape difference between
landmark configurations. Aswas proven by Joshi and Miller,* fluid flow produces a
diffeomorphic map meaning that a transformation implied by fluid flow is smooth and will
not fold. Diffeomorphisms maintain topology, thus preserving connectivity of subregions
and neighbor relationships.®> These diffeomorphic properties ensure that landmarks warp into

sensible locations in atarget image.

4.1.2. Boundary Based Methods for Segmentation

Boundary representations (b-reps) are used for image segmentation aswell. Model to
image match is computed using statistical templates or analytic kernels placed relative to the
boundary model position and orientation. Correlation, sum of squared differences, or a
statistical comparison measure between templates or kernels and the image to be segmented
is summed along the boundary. Geometric typicality is computed by comparing geometric
representations between a candidate configuration and a statistical model. In the Point
Distribution Models (PDMs) of Taylor and Cootes, b-reps are lists of points and are
compared using the Procrustes distance (defined above). In b-rep mesh models, boundary
points are ordered and linked so that additional information like neighbor relationships and
curvature can be used to compare model configurations.® Orthogonal basis function
decomposition has also been used to represent boundaries.” Summed squared differencesin
coefficients can be used as a measure of geometric typicality. Orthogonal basis function
boundary representations can be sampled so that |ocations along the boundary can be carried
along with the representation. The problem with b-rep modelsis that correspondence

between boundary points of models to be compared is usually difficult to establish and

35



maintain. This means that measures of geometric typicality can be unreliable and

inconsi stent.

4.1.3. AtlasBased Methods

Atlas based methods frequently model alarger set of anatomy than other methods
(e.g., “brain atlas’ versus “ corpus collosum b-rep”). In addition, atlas based methods usually
have a class |abel at every voxel in the model of the anatomy that can be carried into new
images. Again, both image match and geometric typicality can be optimized to perform atlas
based segmentation. Image match between the atlas model and a new image can be
measured by comparison to a statistical template, normalized cross-correlation with the
template, squared differences of template and target image pixel intensities, optic flow based
functions, and mutual information between template and target images. Geometric typicality
can be landmark based, curve based, displacement vector based, voxel based, or boundary

based to name a few possibilities.

4.1.4. Deformable M-reps

Based on evidence of aboundary in one part of an image and evidence for a boundary
in another part of an image, amodel designer using deformable m-reps assigns “ medial
primitives’ to locations in the image between the two boundaries. A medial primitive
(pictured in Figure 4.1) is a spatial location on an image equidistant from two image object
boundaries together with local estimates of object width r, boundary normals n; and ny,
object angle ? and medial track direction b.2%*° Thelocal estimate of object width is

commonly referred to as the radius or scale of the primitive. The medial track direction
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estimate is alocal indication of how the object is oriented. The object angle is the angle

measuring the difference between the medial track direction and the boundary normals.

medial track direction

medial primitive location

Figure4.1l: A medial primitivein a 2D image object. X representsthe medial primitive’ s spatial location.
Normalsn; and n, are perpendicular to the object boundary. The distance from the medial primitive
location to the object boundariesisr. ?isthe angle between the boundary normalsand the medial track
direction, b.

Models that consist of medial primitives have been used for image segmentation by
Stephen Pizer and his colleagues. These models have been referred to as Deformable Medial
Representations (deformable m-reps).®** They combine prior knowledge about an object’s
expected shape with image evidence for the object to locate it in animage. They are similar
in spirit to other Bayesian and deformable model based approaches; however, they appear to
be more robust because they incorporate multiscale medial and boundary information such as
locations, orientations, scales, relationships between paired boundary points and relationships
between neighboring medial primitives. Medial primitives deform viamedial primitive
transformations, which are similarity transformations composed with object angle change.

A deformable m-rep figural model consists of a structured collection of medial points
(located on or near a multiscale medial axis) and a dense displacement field on the boundary
implied by the medial primitives. When the model is applied to an image, it isallowed to

evolve so that model points are optimally placed, according to a probabilistic approach that
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optimizes the position of the model with respect to the image information (image match),
weighted by the deviation of the overall shape from amodel template (geometric typicality).
Deformable m-rep models are created by interactively generating initial medial primitives,
possibly through stimulated multiscale medial axis (core) generation, followed by iterative
refinement of medial primitives. Deformable m-rep models that consist of multiple figures
(that is, they have multiple distinct medial tracks) can be constructed and applied aswell. An
example of adeformable M-rep model applied to images from a cardiac nuclear medicine

image sequence is shown in Figure 4.2.

Figure 4.2: Thelefthand imageisa blood pool frame, two frames after the frame used to create
a deformable m-rep model. The middleimage shows the defor mable m-rep model manually
rotated and trandated away (by 4 pixels and 20 degr ees) from an optimal position. Following

optimization, the defor mable m-rep model nicely segmentsthe left ventricle (righthand image).

Multiscale deformable m-reps allow a coarse-to-fine approach to image segmentation.
At each scale level, a probabilistic formulation says that alog posterior probability, namely
the log probability of the model given the image information, should be maximized over the
parameters of a geometric transformation appropriate to that scale level. This probability is
found in a Bayesian fashion, by taking the log of a prior of the model M and adding alog

likelihood function of the image information | given the model, and ignoring aterm that is
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independent of the model’ s position and configuration (log(P(1))), asin the following
eguation:

log(P(M [ 1) =log(P(l [ M)) +log(P(M)) - log(P(1)).

Thelog likelihood function can be defined at each scale level by correlation of the model’s
intensity templates (analytically or statistically defined) with intensity information based on
the implied boundary at the current scale in the image undergoing segmentation.

One example of defining the log priors for the multiscale m-rep segmentation
approach isasfollows.” At the coarsest level of scale, the object level, the log prior is
defined for a candidate similarity transformation as a Gaussian prior on boundary
displacement. At the media primitive level, thelog prior is defined for media primitive
transformations of the primitive as a Gaussian prior on boundary displacement with a
Markov random field prior relative to the medial primitive transformations of neighboring
medial primitives at thislevel. At the boundary level of scale, the prior isaMarkov random
field prior on the boundary displacement field relative to the displacements of neighboring
boundary points at thislevel.

Recently, aternatives for defining log priors (geometric typicality) for multiscale
deformable m-rep models have emerged based on the work of Fletcher et a.** These are
based on the fact, used advantageously by Fletcher et a., that medial primitives are elements
of aLiegroup. Based on this property, a distance metric has been defined allowing
comparison of two medial primitives along Lie group geodesics. The distance metric could
be used to measure geometric typicality of a candidate m-rep versus atemplate m-rep.
Furthermore, the Lie algebra allows definition of “principal geodesic analysis’ on members

of am-rep group. Candidate m-reps could be projected onto principal geodesics and squared
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differences of projection coefficients between a candidate and a template summed to measure
geometric typicality. Finally, Fletcher et a. have defined Gaussian distributions on m-rep
Lie groups, allowing the definition of Gaussian priors for m-reps.

Deformable m-reps can be used to track the shape changes of an object in an image
sequence, as was shown in Clary et al.** Thefinal configuration of the deformable m-repin
aframeisused astheinitial configuration in the immediately subsequent frame. Extensions
to the deformable m-rep approach are introduced and evaluated in this work. Features based
on the attributes of special media primitives known as anchor primitives are used as inputs
to adtatistical classifier in order to perform image sequence classification.

Multiscale media primitives include awidth attribute. The width attribute isalocal
estimate of object size and is also commonly referred to as the object’ sradius. In the case of
media primitives that are found at the end of medial tracks, that is, “endpoints,” the radiusis
alocal estimate of the radius of curvature of the boundary. The width attributes of anchor
primitives (detailed in Chapter 5), normalized by their maximum over an image sequence,
arein thiswork proposed and evaluated as features for classification for both the left
ventricular regional wall motion application and the computer lipreading problem. In
addition, the inter-frame change in the width attribute is used as a feature as well.

Because multiscal e deformable m-rep models can robustly track the location of an
object’ s middle, data specific to the object middle or near middle can be used as features as
well, if desired. For example, a Gaussian weighted intensity value or intensity profile values
taken near amedial point that corresponds to the middle of the mouth opening may be (a)
useful feature(s) for classification in the lipreading problem. Thisis dueto the fact that, for

some speech, the visibility of the teeth and tongue is an important cue for human
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classification.™

4.2. Hidden Markov Models

The statistical classifiers used in thiswork are hidden Markov models (HMM’s).
Hidden Markov models provide a powerful way to represent discrete-time stochastic
processes and have been used effectively in speech and handwriting recognition
applications.*>*® A hidden Markov model can be constructed for aclass, for example,
“severely hypokinetic apical wall motion” in the case of the left ventricular regional wall
motion problem or digit “one” in the case of the computer lipreading application, based on

training data for which class membership is known.

A Two State Hidden Markov Model

11 22

Example time
sequence:
0={0,,0,,0.}

~_ 7

a12

Figure4.3: A two state HMM is shown above. Themodel ? hastwo states S, and S,. Three observation
vectors O,, O, and Oz are modeled. Transition probabilities P(s=S | 5.4=S) label the state transitionsin
thegraph, ;. Output probabilities, the probabilities of generating a particular observation O; in a
particular state S are denoted b;(O;). The probability that the model generated the observation sequence
isP(Q]?). Assuming both statesarevalid final statesand S; isthe only valid initial state, P(O]?) = b;(O,)
12 b2(O2) @z b2(O3) + by(O1) ars bi(Oz) ar2 bo(O3) + by(O1) ays bi(Oy) ay; by(Os).

The model ? can then be used to compute the probability that a new input sequence O

belongs to the represented class according to the a posteriori probability:
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To perform classification, the class assigned to an input sequence is that represented
by the model with the highest probability P(?|O). The prior probability of a particular model
isassumed to be uniformly distributed in thiswork. The prior probability of an input
sequence is independent of the models and can beignored. Thus the model ? that maximizes
P(O] ?) is sought across al models. A hidden Markov model is graphically represented in
Figure 4.3 and an example of computing P(O| ?) is given.

A hidden Markov model consists of two components, afinite-state Markov chain and
afinite set of output probability density functions. Models are viewed as “generative,” that
is, the probability that a given model produced a given input sequence is computed. HMM’s
are called “hidden” because the state sequence which generates a particular observation
sequence is not directly observable. In genera, either states or transitions in the Markov
chain may have output probability density functions associated with them. In thiswork, the
output probability densities are associated with the states.

The output probability densities can be used to compute the probability that a
particular state or transition generated a given “observation,” that is, input feature vector. In
the case of continuous parameter HMM'’ s, observations can be real-valued feature vectors.
Figure 4.3 illustrates a two state first order hidden Markov model that can generate three real-
valued feature vectors (in this example), Oy, O,, and Os. g; is the probability of atransition
between statesi and j, and p(Oy S) is the probability that feature vector at timet was
generated in state S, bi(Oy). This example under the given assumptions, then, says that the
probability of the model generating the observation sequence O,, O,, and Oz is equal to the

probability of generating the feature vectors viaall valid state sequences. The probability of
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afeature vector given a state is often obtained in hidden Markov model applications from a
Gaussian distribution or a mixture of Gaussian distributions. Maximum likelihood (ML)
estimates of Gaussian distribution parameters can be made to estimate output probability
distribution parameters (and the ML estimates correspond to the usual definitions of
Gaussian model parameters). Maximum likelihood estimation assumes that the training
observations are independent.

Both the parameters of the output probability distributions and the state transition
probabilities for a set of models can be obtained using standard training algorithms, such as
the Baum-Welch re-estimation algorithm, and pre-classified data.’’ Once a set of modelsis
in place, new inputs can be classified using a*“decoding” agorithm known as the Viterbi
algorithm, which is based on dynamic programming and gives the value of P(O| ?) for each
model .*®

4.3. Summary

Approaches to deformable model based segmentation have included landmark based
methods, boundary based methods, atlas based methods and medial methods. Medial
methods have shown particular promise because of their ability to establish an object-centric
coordinate system that allows correspondence between model points across image object
instances to be defined. Such correspondence is necessary for statistical feature extraction
and is one of the motivating aspects contributing to the definition of anchor primitivesin this
work. The anchor primitive based segmentation framework introduced in thiswork is similar
to landmark based approaches, but it uses symmetriesin an m-rep inspired way to reduce the
number of parameters required to represent an image object.

Hidden Markov models are widely used in a number of time sequence classification
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applications. Features based on anchor primitives are used as inputs to hidden Markov
model based classifiersin this work to classify image sequences. Chapter 5 defines anchor

primitives and discusses specific example models for left ventricles and lipsin 2D images.
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Chapter 5

| mage Sequence Classification via
Anchor Primitives

In this chapter, details of the approach to classifying image sequences using anchor
primitives are given. A general discussion of anchor primitivesis followed by sections on
applying anchor primitives to heart image sequences and lip image sequences.

5.1. Correspondence and Deformable Models

A problem with the deformable m-reps approach (and with other deformable model
based approaches) has been referred to as the correspondence problem.* The correspondence
problem isthat model points may not be consistently placed (with respect to salient image
features) by the optimization algorithm on different instances of an image object, because of
the sparse nature of the models. For example, medial points may slide toward one end of a
figure or the other along the medial track. Reliable measurements for statistical feature
extraction cannot be made unless model points are consistently placed.

One approach to enforcing correspondence is to penalize heavily for any diding in
the medial track direction, assuming a reasonable initial model point. The problem is, what
does “heavily” mean? Another approach isto consider endpoints to exhibit correspondence,

and to sample uniformly between the two endpoints of afigure. The problem isthat



endpoints exhibit sliding behavior aswell (asillustrated in Figure 5.1), so considering them
to exhibit correspondence is dangerous.

Object End Primitive
Boundary L ocation

T v

@

Figure5.1: Medial primitives, including end primitives, may “dide,” that is, change scale and location
between frames of an image sequence, not because they are following a corresponding image obj ect
feature but because they begin to track a different image feature.

The approach taken here to combating the correspondence problem is to define and
use special primitives for image segmentation based on media primitives. | begin by
defining correspondence more precisely. Primitives placed on multiple instances of an image
object are said to have correspondence if their attributes are consistent relative to some
repeated property of the image object, e.g., asaient image feature. My corresponding
primitives are called anchor primitives, which are placed using image measurementsin
various parts of an image and prior knowledge of the expected geometric relationships
between the locations for the image measurements. To place anchor primitives, an objective
function is optimized that combines image measurements and geometric penalty terms that
incorporate the prior knowledge. To place deformable m-reps that include anchor primitives,

penalty terms that capture the expected relationships between attributes of the anchor
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primitives and between anchor primitives and other primitives are also included in the
objective function.
5.2. Anchor Primitive Definition
The central idea behind anchor primitivesisthat if the object isaclosed object, itis
possible to keep the object’s model simple, in terms of the number of primitives. A single
anchor primitive may be used to represent a closed object. The “center point” may be found
by dividing the boundary into two pieces twice (e.g., aleft and right piece and atop and
bottom piece) and measuring boundariness along each piece. Note that the pieces may
overlap—i.e., the left piece may share a portion of the top piece and a portion of the bottom
piece, etc. Each of the boundary pieces may be represented by arbitrarily complex curves,
but complexity islimited in practice by the increase in the size of the search space. The use
of anchor primitives simplifies deformable m-reps in terms of the number of primitives
required, but due to complex boundary representations the anchor primitives themselves may
be more complex than previoudly defined medial primitives. The locations for the anchor
primitive image measurements are chosen based on the expected locations of corresponding
geometric entitiesin the image.
The purpose of anchor primitivesis to provide a stable framework for consistent and
concise statistical feature definition. Anchor primitives consist of the following:
A center point location. Note that for aclosed 2D object, a“center point” can
be defined by dividing the object boundary into pieces and specifying
symmetric relationships between the boundary pieces along the medial axis
(or axes). Equivalently, aclosed 2D object can be blurred until its primary

medial axes emerge. The “center point” istypically medial at more than one
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scale and in more than one medial track direction simultaneously. The anchor
primitive center point location provides a reference point for defining salient
image object feature locations and distances that are also attributes of the
anchor primitive model.

Salient image object feature locations. Image object feature locations define
the locations of geometric entities including those boundary pieces
represented by parametric curves or deformable m-rep models. For example,
salient image object feature locations along the left ventricular wall are chosen
by the model builder (the author in this example) in the left ventricle' s anchor
primitive model--septal wall center, basal wall center, apical wall center, and
lateral wall center. Salient image object feature locations along the lips are
chosen in the lip anchor primitive model--upper left lip and lower left lip
corner, upper lip center, upper right lip and lower right lip corner.

Curve parameters or deformable m-rep model parameters. Anchor primitives
represent geometric entities of the image object using parametric curves or
deformable m-rep models. The parametric curves or deformable m-rep
models can be arbitrarily complex. The salient image object feature
(geometric entity) locations may specify curve parameters or locations of
media nodes. Parametric curves or deformable m-rep models constrain the
search space during anchor primitive fitting and define geometric models for
model to image match measurement making.

Constraints on the relationships between image object feature locations.

Constraints may be hard or soft. A hard constraint specifies afixed
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relationship between two geometric entities. A soft constraint penalizes
model configurations that vary from the typical geometry of the entities.
Consider the top view of a salamander in motion captured by an image sequence. A
schematic of such a salamander is pictured in Figure 5.2 along with its anchor primitive.

Such an image sequence could be used to study the gait of the salamander.

Figure5.2: A schematic of a salamander and itsanchor primitive model. The starsrepresent salient
image obj ect feature locations (geometric entity locations).
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Consider the attributes of the salamander anchor primitive pictured in Figure 5.2:
A center point location denoted by (X, Y). The salamander has a center that is
media with respect to both the tip of its nose and the tip of itstail and the | eft
and right sides of its body.
Salient image object feature locations denoted by (1,2,3,4,5,6). There are six
locations corresponding to salient image object features: head, tail, left front
leg, right front leg, left hind leg, right hind leg. Locations may be specified in
the most convenient coordinate system. Locations may consist of end points
of boundary pieces or media tracks rather than single locations.
Curve parameters. Supplemental parameters that specify control points or
curvatures may be used to specify curves representing the salamander’ s salient
geometric entity boundaries. Such control points could be at the tips of the
legs, head and tail, for example. Alternatively, another parametric
representation such as a Fourier representation could be used for the salient
image object features (geometric entities).
Constraints on the relationships between image object feature locations.
There are hard constraints on distances between adjacent legs on opposite
sides of the body (between “front legs’ or “hind legs’) because the body is
considered to berigid in cross-section by this example model. There are soft
constraints on distances between legs on the same side of the body (between
“right legs’ or “left legs’) because the body islimited in the amount it can
turn between frames of an image sequence, assuming an appropriate frame

rate.
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The anchor primitive attributes include the center location and the salient geometric
entity model definitions. The (X,Y) location of the center point isthe (X, Y) attribute of an
anchor primitive. The remaining anchor primitive attributes are parameters used to define
curves or deformable m-rep models representing salient geometric entities of the object.
Such attributes may include angles, scales, and explicit locations relative to the center point.
In addition, constraints on the placement of and properties of the geometric entities and their
relationships to one another play an important role in anchor primitive placement. By fitting
models of the most important geometric entities of an object to local image data and
constraining their placement relative to one another, anchor primitives are placed in an image
and globally represent a closed image object.

Consistently placing anchor primitives on image objects from a population allows
statistical models of the population to be efficiently trained and to exhibit discriminatory
power. Anchor primitives are consistently placed because they utilize local image object
features corresponding to salient geometric entities in a globally optimal model placement
approach. By virtue of anchor primitives having long curve sequences to represent salient
geometric entities, and making image measurements only on salient geometric entities where
intensity variance is limited, the anchor primitive maintains correspondence more effectively
than many alternative geometric models. Thus, variance of statistical features defined by
anchor primitives due to model placement is significantly reduced.

5.3. Anchor Primitive Representing the Left Ventricle

For example, in the left ventricular wall motion tracking application (using MLAO

view ventriculograms), there is a point that is medial with respect to the left and right (i.e.,
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septal and lateral) boundaries of the left ventricle (LV) and also medial with respect to the

top and bottom (i.e., basal and apical) boundaries of the ventricle.

Figure5.3: Theanchor primitivefor left ventricular segmentation consists of a location, two different
scales (the distances between the center location and each set of paired boundaries), two orientations (the
directions of the rays along which the scales are measured) and four curvature values. Each boundary
pieceis approximated by a partial ellipse. Theavaluesare curvature parameters of the partial ellipses.

Anchor Primitive for LV
Segmentation

a

ay

A={x,y, s, s, h;, h,a,a,asa,
The location of the anchor primitive is defined to be the point that serves as the basis

for measurement making where the objective function that combines model to image match
and geometric typicality isoptimal. For example, the point that is medial with respect to the
septal and lateral and basal and apical boundaries is the anchor primitive location in the left
ventricular wall motion tracking application. Included in the LV anchor primitive (see
Figure 5.3) are two scales, s; and s, which are the distances between the anchor primitive
location and the boundaries. s; corresponds to the distance to the septal and lateral
boundaries and s, to the basal and apical boundaries. Also included in the primitive are two
orientation parameters, ?; and ?,, which are the directions with respect to the horizontal of

the lateral and basal boundaries, respectively. ai, a,, as, and a4 are parameters of four



independent ellipses (see Figure 5.4) that model the boundariesin the ?;, ?,, p+?1 and p+?,
directions, respectively. Each of these ellipses is used to define a kernel with partial elliptical

level setsthat is used to measure boundariness according to the primitive parameters.

u

u*+ve/a’=¢’

U2 + V2/a12: 512/312
as

\Y

Figure5.4: Theanchor primitivea values,
theratios of partial ellipse axislengths, are
defined asin thisfigure. Theuandv
coordinate axes lie along the axes of the
ellipse. sand asarethelengths of the axes of
the dlipse. The second equation above shows
the relationship between a; and sy, for
example, in the defined anchor primitive of
Figure 3. The second equation aboveis
obtained by letting s;=a;-s.

Partial ellipses are chosen to model the boundary pieces because of their relative
simplicity. The anchor primitive parameters are used to render each ellipsein abitmap. The
Danielson Distance Transform is used to compute the distance from each pixel in the bitmap
to the rendered ellipse. These distances are then used as the radii for a derivative of a
Gaussian in polar form to compute the kernel values. More general curves could be chosen
that might make anchor primitives more powerful, including splines, curves generated using

Fourier descriptors and hodograph curves.
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Anchor primitives make it possible to make an object measurement that is consistent
with the expected behavior of the object over an image sequence. Figure 5.5 shows how a
length measurement of the left ventricle changes as afunction of time. The measured length
is the distance between the anchor primitive location and the location of the boundariness
measurement in the direction of the apex. Asisshown, the length gets smaller as the heart
contracts and becomes larger again as the ventricle expands. The length changes are

consistent with the expected behavior of the left ventricle in a ventriculogram.
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Figure5.5: Thedistance S2 between the anchor primitive location and the apex decreases asthe
heart contracts and then increases asthe heart expands.

5.4. Approach to Fitting Anchor Primitivesto the Left Ventricle
The approach to image sequence classification is to find optimal anchor primitives for

each frame of the sequence and then use geometric features based on the anchor primitives
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and other anchor primitive implied features across the sequence as the basis for statistical
classification. Anchor primitive segmentation of each frame in the sequence proceeds as
follows. Parameters of an anchor primitive may be manually initialized for the first frame by
adjusting the size, location and shape of the anchor primitive to visually match the image
object. For each image of the sequence beyond the first frame, the initial parameters of the
anchor primitive are the optimal parameters of the primitive for the previous frame. (Finding
optimal anchor primitive parameters is described below.) Parameters of the template anchor
primitive on which geometric penalty calculations are based are the optimal anchor primitive
parameters for the previous frame as well.

In any given frame, an evolutionary optimization strategy is used to find optimal
parameters for an anchor primitive with respect to the image object to be segmented.

5.4.1. Objective Function

The objective function optimized by the evolutionary strategy consists of the
combination of an image match function and a geometric penalty function. The objective
function tends to have local optima, so a stochastic optimization method such as evolutionary
optimization isuseful. When the objective function is evaluated, the image match function
and the penalty function are computed as outlined in the next section.

5.4.2. Image Match Function

The anchor primitive for the left ventricle specifies that boundariness measurements
should be made in four directions specified by two orientation angles. (Two of the four
directions are p radians from the directions specified by the two orientation angles.) The
orientation angles, anchor primitive scales and axis length ratios determine partial ellipses

along which boundariness measurements are made. A weighted sum of the four
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boundariness measurements B; is the image match function, | =B1*?, + Bo* ?,+ Bs* ?3+
B4* ?4. Each boundariness measurement is weighted by a measure ?; of how well local
gradients along a given partia ellipse match the normals to the partial ellipse. In addition,
boundariness may be reduced non-linearly if the number of pixels of apartial ellipse changes
significantly between frames, if a partial ellipse semi-axis length changes significantly
between frames, or if its boundary direction changes significantly between frames.

5.4.3. Measuring Boundariness

Boundariness B; is measured along partial ellipses using derivative of Gaussian
kernels whose level sets are partial ellipses. Partial ellipses are specified according to the
anchor primitive parameters, as explained above. The extents of the partial ellipses are

determined as depicted in Figure 5.6 and the following algorithm description.

Case 1l
u o Case 2
N ey mooes u=boxlimit_u
(vO,u0) u
(vOuO) ---- u=boxlimit_u
v v
(v0,-u0)
(v0,-u0)
v=boxlimit_v

Figure5.6: The normals (depicted by the bold arrows) to a partial ellipse (defined by the anchor
primitive) determine an areainto which a derivative of Gaussian boundariness kernel with elliptical level
setsisplaced in theimage. Thealgorithm for determining the extents of the partial ellipses, the normals
and ultimately thekernel areaisgiven below.

To construct kernels, for each of four directions specified by the left ventricle's

anchor primitive,
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- boxlimit_v =Beta* r (rissemi-axislength for current partial ellipse axis along the
current direction —r and “current direction” are anchor primitive parameters. Betais
a hyperparameter.)
- boxlimit_u = Beta* os (osis semi-axis length for ellipse corresponding to the other
direction.)
- find intersection of ellipse with line v = boxlimit_v, call it (vO, u0) (Case 1 of Figure
5.6)
- if (u0 > boxlimit_u) (then apply Case 2 of Figure 5.6)
- U0 = boxlimit_u
- vO comes from intersection of ellipse and line u = boxlimit_u
- Compute normalsto elipse at (vO, u0) and (vO, -u0)
- If point (v,u) falls within area between normals and is less than 3*sigma (sigma =
r *r) from the ellipse then the kernel is non-zero at (v,u). Each kernel valueis
computed as a derivative of a Gaussian with standard deviation sgmaalong aline
perpendicular to the partial ellipse.

The image datais convolved with such a kernel to get a boundariness value for each

of the four partial ellipses specified by the anchor primitive parameters.

5.4.4. Geometric Penalty Function for Left Ventricle Anchor Primitive

A penalty isimposed when the direction of the left-most boundary point as defined by
the anchor primitive differs from the direction of the center of the boundary of the left partial
ellipse. A similar penalty isimposed when the direction of the southern-most boundary point
as defined by the anchor primitive differs from the direction of the center of the boundary of
the bottom partial ellipse. Another term penalizes variation in the difference between the two
orientation parameters from p/2. These model configuration penalties reflect prior
knowledge that the position of the left ventricle is largely consistent between frames and
across patients.

Most geometric penalty function terms penalize changes in the anchor primitives
between the current frame and the previous frame. The more change in any anchor primitive

value from frame-to-frame, the stiffer the penalty. Thisreflects prior knowledge of the
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physics of the contraction and expansion of the left ventricle; only limited motion is possible
between frames of the image sequence.

5.5. Anchor Primitive Based Segmentation of Lip | mage Sequences

To segment the lip image sequences, anchor primitives are placed in each frame by
optimizing an objective function composed of image match terms and geometric penalty
terms. Image measurements are made at places that have correspondence between different
frames—different frames across time and across speakers. Corresponding places are three
boundary segments: the left edge of the upper lip boundary, the right edge of the upper lip
boundary and the lower lip boundary. The shape of each of the three boundary segmentsis

modeled by a quadratic of the form:

f(9) =a- 2as+2bs+as’ - 2bs’ +cs® ®o

1)

c
where g, b, and ¢ are control points. For each of the boundary segments, aand c
correspond to the end points of the segments. b does not necessarily lie on the curve; it is
similar to a B-spline control point. A quadratic was chosen because it is simpleto
compute and it models the boundary segment shapes well.

The anchor primitive model used to segment lip imagesis pictured below.
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Figure5.7: Anchor primitiverepresenting thelips. The outer boundaries of the upper and lower
lips arerepresented by thedotted lines. Theanchor primitive attributesinclude X,Y, S;, S, Ss, S,
S5, Oy, Oy, 03,04, and Os.. (X, Y) isthe“center” location of the anchor primitive representing the
center of themouth. §’'sarethedistancesto the quadratic control points defined above. O;'sarethe
orientations of the control pointsrelative to the horizontal and origin (X,Y).

5.5.1. Image Match Terms

Image match terms are calculated using squared z scores of correlations of
intensity profiles with intensity profile templates, T, extracted in a direction perpendicular
to the boundary at equally spaced points along the boundary. The template T is obtained
from the anchor primitive in the frame immediately prior to the current frame. (X,Y)

positions along the boundary are part of the template, Tx, Ty. The correlation function for

each boundary segment is the following:

Ng Np

é é. pij (T” - mj) pRMSTRMS

i=1 j=1

NB
where p; isthe intensity profile at the ith position along the boundary for a given segment
and N is the number of positions along the boundary for a given segment. This function

is converted to a z score for each segment using standard deviations obtained for the
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correlation values from training sequences. The means for the z scores are taken to be
the maximum possible correlation value for each boundary segment. Thus, the more a
correlation value is below the maximum possible value, the worse (larger) the z score.
The sguared z score is the image match term for a given boundary segment.

5.5.2. Geometric Penalty Terms

A geometric penalty reflects that the movement of the mouth is limited between
frames. The penalty measures the consistency of the shape of the mouth in the current
frame with the previous frame and ensures that the shape is“lip-like.” The geometric
penalty terms are added to the objective function for each boundary segment. For a

particular boundary segment, the penalty is the following:

& 06T+ (- T
SN,

where (X, Y) are positions along the boundary in the current frame, and (Tx , Ty) arethe
boundary positions of the template (boundary positions in the previous frame). Sristhe
scale parameter of the template anchor primitive for this particular boundary segment.
Geometric penalties are converted to squared z scores for combining with the image
match terms in the objective function. Conjugate gradient optimization minimizes
accumulated squared z scores to find optimal anchor primitive parameters.

The following chapter discusses the results of classifying image sequences when
the anchor primitive based segmentation method is combined with a statistical classifier.

5.5.3. Tracking Approach for Lip Image Sequences

In the experiments reported in the next chapter, the first and last frames of thelip

image sequences are segmented manually. The manual segmentations are used to
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initialize the tracking process for both forward in time and backwards in time tracking.
Templates, including intensity profiles and boundary positions, are defined for the first
and last frames using the manual segmentations, and templates are defined for the
remaining frames by the optimal model position in each frame. Templates are used in
immediately subsequent frames to compute model to image match and geometric
typicality in either the forward or backwards in time directions.

The algorithm for picking the best segmentation of each frame is the following for
the considered digit classification problem. Start from the beginning of the sequence.
For each frame, if the score corresponding to forward in time tracking is better, choose
the model configuration for forward in time tracking. If the score corresponding to
backwards in time tracking is better, choose the model configuration for backwardsin
time tracking for all of the remaining frames. In other words, once the switch is made to
the model configuration for backwards in time tracking, never switch back to the forward
in time model configurations. The motivation for thisalgorithmisin tracking adigit like
“four,” the lower lip dramatically accel erates when the voiceless plosive /ph/ is released
and the image sequence capture process undersamples the motion in the studied data set.
Forward tracking correctly tracks lip motion up to the time of the release. Backwards
tracking correctly tracks lip motion from the end of the sequence to the frame
immediately following therelease. This approach only allows for one dramatic
acceleration per word. Detecting these discontinuity eventsis a subject for future

research.
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5.6. Classification of I mage Sequences Using Anchor Primitives

Anchor primitives have been applied to statistical feature extraction for image
sequence classification to show that they provide concise and consistent statistical
features. For both the left ventricular wall motion classification problem and the
computer lipreading problem, anchor primitive attributes and functions of anchor
primitive attributes are selected in each frame of each image sequence to form atime
sequence of feature vectors. The time sequences of feature vectors are used for hidden
Markov model based classification of the image sequences. The features selected for
statistical classification, classification results and conclusions about anchor primitives are

detailed in the following chapter.
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Chapter 6

Results and Conclusions

“An interesting early application of setting the optimal criterion is seen in Pascal’s
famous “wager.” In 1670, Blaise Pascal, a French mathematician, claimed that to believe
in God was rational. He noted that there are two possibilities, existence of God or
nonexistence of God, and two possible responses, belief in God or disbelief in God.
Pascal argued that, even if the probability of God's existence is extremely small, the gain
(value) of asserting His existence and the cost of denying it make belief in God the
rational choice. In[Theory of Signal Detection] terms, the decision criterion should be
set infinitely low because the value of a hit isinfinitely high asisthe cost of amiss, and
at the same time there is no cost to afalse alarm and no value to a correct rejection.

Thus, "If you gain, you gain all; if you lose, you lose nothing. Wager, then, without
hesitation that Heis' (Pensee No. 233, Pascal, 1958).” --from Psychophysics: The
Fundamentals, pp. 112-113.

To evaluate the performance of the anchor primitive based image sequence
classification methodology, classification experiments were designed that used attributes of
anchor primitives as features. For each of the two driving problems of this dissertation, left
ventricular wall motion classification and computer lipreading, several aspects will be
discussed in this chapter. They include the following:

abrief review of the motivation and background for the classification
application,

the anchor primitive model used to represent the image objects,
asummary of possible features for statistical classification implied by the
anchor primitives,

the database used for classification experiments,



results of semi-automatically segmenting the image objects through the image
sequences,
the assumptions made about sequence segmentation when performing
classification experiments,
properties of the statistical classifiers used for classification experiments,
the approach to feature selection from the population of featuresimplied by
the anchor primitives, and
results of thiswork compared to other classification results. Bases for
comparison include automatic classification results of other researchers on the
same task in the case of the lipreading results and results of human expert
observersin the case of the left ventricular wall motion task.
The chapter finishes with conclusions that can be drawn from the results and
summarizes how the results support the contributions of the work outlined in Chapter 1.

6.1. Left Ventricular Regional Wall Motion Analysis

Aswas stated in Chapter 2, analysis of the motion of the left ventricle' swalls can be
performed using blood pool image sequencesto aid in the diagnosis of coronary artery
disease and determine the impact of chemotherapy on the heart muscle. Human experts
watch “movie loops’ (thirty-two frame image sequences) of the left ventricle s blood pool.
The volume of the blood pool decreases and increases as the |eft ventricle contracts and
expands. What this means in image termsis that the area of the bright spot representing the
left ventricle decreases and increases over time. Human experts watch for irregularities of
motion of the regions of the left ventricle. If aregion movesirregularly, the coronary artery

supplying blood to it may be blocked or partialy blocked or the muscle tissue may be
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damaged. Wall motion can be classified as normokinetic, mildly hypokinetic, moderately
hypokinetic, severely hypokinetic, akinetic or dyskinetic. That is, regions of the | eft
ventricular walls can exhibit various types and degrees of motion abnormalities. Regions
include (see Figure 6.1) lateral (to the patient’s left), basal (toward the patient’ s head), septal

(to the patient’ s right), and apical (toward the patient’ s diaphragm).

Left Ventricular Regions

Basal - Latero-

Left Ventricle

Apical

Figure6.1: Theregions of theleft ventricle from a modified left anterior oblique (MLAQ) viewpaint.
Parts of the walls (regions) arereferred to by these names when a clinician describes a regional wall
motion abnor mality.

For purposes of demonstration, apical wall motion classification is undertaken in this
work. An anchor primitive model that allows the motion of the apex to be tracked and
described is used to generate features for statistical classification.

6.1.1. Anchor Primitivefor Left Ventricle

The anchor primitive model used to segment the left ventricle (LV) is pictured in
Figure 6.2 (repeated from Chapter 5 for the reader’ s convenience). The anchor primitive
captures the ellipsoidal shape of the left ventricle by modeling 4 of its projected regions as

partial ellipses. The lateral and basal region partial ellipses are roughly 90 degrees from one
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another. The septal and apical partial ellipses are 180 degrees from the lateral and basal
partial ellipses, respectively. The nature of the partial ellipse based anchor primitiveis

detailed in Chapter 5.

Anchor Primitive for LV

Segmentation
S,
h, S . a;
a %1 i 1
’ S

a

A={x,y,s,8,hy, hy 85,8, 85 a,}

Figure 6.2: Theanchor primitivefor left ventricular segmentation consists of a location, two different
scales (the distances between the center location and the boundaries), two orientations (the dir ections of
the rays along which the scales are measured) and four curvature values. Each boundary pieceis
approximated by a partial ellipse. Theavaluesare curvature parametersof the partial ellipses. The
length of each partial ellipseisdetermined by itsa and scale values according to an algorithm given in
Chapter 5.

Attributes of the anchor primitive model are given in the Figure 6.2 and are used as a
basis for defining statistical features for left ventricular apical motion classification. The
attributes include an (x,y) anchor primitive location, distances from the anchor primitive
location to the lateral and septal and basal and apical regions, respectively, orientations
relative to the horizontal of the lateral and basal regions (the septal and apical regions are 180
degrees from the lateral and basal regions, respectively) and curvature parameters of each

region’s partial ellipse.
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6.1.2. Left Ventricle's Statistical Features Implied by the Anchor Primitive
M odel

With the exception of the anchor primitive position and orientations, | experimented
with each of the attributes of the anchor primitive model as statistical features for
classification. In addition, inter-frame changes in attributes were used as features as well.
Table 6.1 summarizes the left ventricle anchor primitive attributes that were used as features
for statistical classification. Some of these are actual attributes, and others, with names
starting with “d,” are inter-frame differences in the designated attribute. For example, da3is
the frame-to-frame change in curvature as. Position and orientation were not considered
because apical wall motion should be independent of absolute left ventricle position and
rotation. Because the number of anchor primitive attributesisrelatively small, it was
possible to evaluate all of the remaining attributes as potential statistical features for

classification, as discussed in the section below on feature selection.

Feature | S1 [ S2 | a1 [ a2 | a3 | a4 | dSl | dS2 | dal | da2 | da3 | da4 |

Table 6.1: Attributes of left ventricle anchor primitive model used asfeaturesfor classification. Names of
features correspond to the namesgiven in Figure 6.2. dx isdefined asthe inter-frame changein attribute
X.

6.1.3. Left Ventricular Image Data

Forty ECG gated blood pool equilibrium stress cases were selected for this study by a
single radiologist who specializesin cardiac nuclear medicine. Abnormal wall motion
typically is observed when the patient is subjected to exercise or medicinally induced stress.
Figure 6.3 shows one of the cases. An automatic classifier was designed to distinguish
between normal and abnormal apical motion. “Truth” was defined as a consensus of the
opinions of two human experts on the motion of the apex. The experts diagnoses with
respect to the motion of the apex were the samein 28 of the 40 cases. The 28 cases on which

the experts agreed were studied in thiswork. The remaining 12 cases were discarded. Any
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abnormalities affecting the septal-apical, apical, or latero-apical regions were considered to
be apical motion abnormalities. The utility of defining a consensus of two experts as “truth”

is given by the following argument.

+| - opt] Quit| Ret| Edrt| Lihd| 0 84535200 10000000

Ay oy wrsl w52 et t2 sral a2 wrad  wrad

Figure 6.3: An example ECG gated blood pool equilibrium 32 frame image sequence. Thecameraisat
the MLAO viewpoint, thustheleft ventricular chamber isin thelower right portion of each frame.
Frameat timeQisat the upper left corner. Timeincreases from left-to-right and from top-to-bottom.
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Assume that a“golden truth” exists for each case. The probability that the experts are
wrong (event “W”—they disagree with golden truth) given they agree (event “A™) should be

aslow as possible to justify using a consensus of two experts as truth. Using Bayes' Rule,

P(A|W)PW)
PW|A) =————~.
(W|A) P(A)
P(A) can be obtained using a frequency based estimate: 28/40=0.7 is the frequency

based probability of the experts' agreement. Also,

P(AW)
PW)

P(A|W) =

P(A,W) = P(A) — P(A,R), where R is the event that both experts agree with golden
truth.

Also, P(A R) = P(BothNormal, R) + P(BothAbnormal, R) , where “BothNormal” and

“BothAbnormal” are the events where the experts agreed on the same normal or abnormal
diagnosis. Continuing,

P(A R) = P(BothNormal ) P(R | BothNormal ) + P(BothAbnormal ) P(R | BothAbnormal ).

To reflect alack of information about the relationship between the experts' agreement
on normality or abnormality and their agreement with golden truth, | use the relationship
P(R|BothNormal)=P(R|BothAbnormal)=P(R|A). Again using Bayes Rule,

P(AIR)P(R) _ P(R)

PRIA=""om TR

P(A|R)=1 by the definitions of event R and event A. Substituting gives the following

equation for P(W|A) (the probability the experts are wrong given that they agree):
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P(A) - (P(BothNormal) PR) P(BothAbnormaI)@)
= P(A) P(A)
PW[A) = = |

Also, the expression above for P(W|A) reduces to the following:

P(A) - P(R)
P(A)

PWI[A) =

This simplification is due to the fact that P(A)=P(BothNormal) + P(BothAbnormal).
Also, this simplification corresponds to the argument made above that P(A|R)=1, so
P(A,R)=P(R).

A plot of P(W|A) versus P(R) for the estimated value of P(A) isgiven in the

following figure.
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Frobability Experts are Wrong Given That They Agree,

Yersus Probability Both Agree with Golden Truth, for PA=0.7
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Figure 6.4: P(W|A) for variousvalues of P(R), using the frequency based estimate of P(A)=0.7. This
showsthat given reasonable expertise on the part of the experts (reasonable values of P(R)), the
probability that they are wrong given they agreeislow.

The plot of Figure 6.4 shows that assuming reasonably good expertise on the part of
the experts, e.g., they both agree with golden truth in over 65% of cases, the probability of
the consensus being incorrect islow. Furthermore, assuming P(A) is 0.7, and assuming the
experts’ performance is maximal (P(W|A)=0), the maximum probability of both of them
agreeing with golden truth is 0.7. P(A), an estimate of the probability that the experts agree,
isthe value of P(A,R)=P(R) (the probability that both agree with golden truth) that gives the

minimum value of P(W|A)=0, the probability that the experts are wrong given they agree.
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Because an assumption of reasonably good expertise yields alow probability of an incorrect
consensus, it was decided to use the consensus of two experts as truth in the experiments
below.

To estimate the probability that an individual expert’s diagnosis agrees with golden
truth, | assume that both experts have the same degree of expertise. Let the probability that
an expert’ sregiona wall motion classification is the same as “ golden truth” equal p. The
probability that the expert’ s regional wall motion classification is different from “golden
truth” equals g=1-p. A contingency table based chi-square test of independence shows that
the experts’ observations are highly unlikely to be independent (P<0.0005). The degree of
dependence of the experts observations lies somewhere between the extremes of total
dependence (P(R)=p) and independence (P(R)=p?). Considering the extreme case where

their observations are independent,

P(A)- p*

PWIA) = P(A)

P(W|A) for this case is plotted in Figure 6.5.
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Frobability Experts are Wrong Given That They Agree, Yersus Experise for P(A)=0.7
1

=
(4]
T

=
oo
T

]
|
T

=
o
T

=
=
T

0.3

0.2

0.1

0.9

Figure 6.5: P(W|A) for variousvalues of p for a probability of agreement of 0.7. The plot showsthat for
reasonable values of p (reasonably good expertise), P(W|A) islow.

The plot of Figure 6.5 shows that assuming reasonably good individual expertise on
the part of the experts, i.e., agreement with golden truth in over 80% of cases, the probability
of the consensus being incorrect islow. Furthermore, assuming P(A) is 0.7, and assuming
the experts’ performance is maximal (P(W|A)=0), their maximum individual probability of
agreement with golden truth is 0.837 assuming their observations are independent. Stated
another way, if the probability of the experts’ agreement is 0.7 and the probability they agree
with golden truth is the same, the probability that an individual expert agrees with golden
truth cannot exceed 0.837 because the probability that they are wrong given that they agree
cannot be negative. Aswas stated, the degree of dependence of the experts’ observations lies

somewhere between the extremes P(R)=p (total dependence) and P(R)=p? (independence).
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*2_ then the maximum value of p is 0.788 assuming P(A)=0.7 and

For example, if P(R)=p
letting P(W|A)=0. The probability p=0.837 will be used as a measure of human performance
on this task for comparison with the classification results presented below because it isan

upper bound on the experts’ individual performance.

Table 6.2: Caseswhere a consensus wasreached by two human expertson apical regional wall mation.
Their detailed analyses are given in columns 2 and 3, and the consensusis given in column 4. Column 5is
the apical wall motion class used in statistical classification experiments. The experts evaluated the cases

blindly and their consensus was defined by independent analysis of their independent results.

Case Physician 1 | Physician2 | Consensus | Apical Wall
Number Diagnosis Diagnosis Motion
Class
5781 Normal Normal Normal Normal
57811 Normal Normal Normal Normal
57831 Normal Normal Normal Normal
5784 Normal Normal Normal Normal
57853 Normal Normal Normal Normal
57858 Latero-Basal Mild | Normal Normal Apical Normal
Hypokinesis
57862 Normal Normal Normal Normal
57922 Normal Normal Normal Normal
57926 Latero-Apical Apica Apica Abnormal
Mild Hypokinesis | Hypokinesis Hypokinesis
Infero-Apical
Severe
Hypokinesis
Septal-Apica Mild
Hypokinesis
57946 Normal Normal Normal Normal
5799 Latero-Apical Apical Apical Abnormal
Moderate Hypokinesis Hypokinesis
Hypokinesis Lateral Akinesis
58016 Infero-Apical Apical Apica Abnormal
Moderate Hypokinesis Hypokinesis
Hypokinesis
5803 Normal Normal Normal Normal
58040 Latero-Apical Mild Global Apica Abnormal
Severe Hypokinesis Hypokinesis
Hypokinesis
58042 Latero-Apical Mild Global Apica Abnormal
Severe Hypokinesis, most | Hypokinesis
Hypokinesis prominent at Apex
58056 Septal-Apical Apical and Septal | Apica Abnormal
Moderate Hypokinesis Hypokinesis
Hypokinesis
58061 Septal-Apical Mild Apical Apica Abnormal
Moderate Hypokinesis Hypokinesis
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Hypokinesis

58062 Septal-Apical Apica Apica Abnormal
Moderate Hypokinesis Hypokinesis
Hypokinesis
5811 Lateral Severe Apical Akinesis, Apica Akinesis Abnormal
Hypokinesis Severe Global
Septal Severe Hypokinesis
Hypokinesis
Infero-Apical
Akinesis
58120 Septal-Apical Apica Apica Abnormal
Moderate Hypokinesis Hypokinesis
Hypokinesis
Infero-Apical
Severe
Hypokinesis
83149 Latero-Apical Apical and Lateral | Apical Abnormal
Moderate Hypokinesis Hypokinesis
Hypokinesis
Infero-Apical
Moderate
Hypokinesis
83246 Infero-Apical Mild | Global Apica Abnormal
Hypokinesis Hypokinesis Hypokinesis
Septal Mild Apical Dyskinesis, | Abnormal Apical Abnormal
Hypokinesis Global Motion
Latero-Basal Hypokinesis
Moderate
Hypokinesis
83734 Latero-Apical
Severe
Hypokinesis
Infero-Apical
Severe
Hypokinesis
84535 Normal Septal Dyskinesis | Normal Apical Normal
86862 Normal Normal Normal Normal
87037 Normal Normal Normal Normal
87047 Normal Normal Normal Normal
87479 Normal Borderline Norma | Normal Normal

The consensus of the experts, where consensus was defined by independent analysis

of the experts' individual results, was used as “truth” for an automatic apical motion

classifier. Table 6.2 shows the opinions of the experts, along with their consensus. The

apical wall motion class (“normal” or “abnormal™) used in the classification experimentsis

given in the rightmost column of the table for each case (two possible classes).
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6.1.4. Semi-Automatic Segmentation of Left Ventricular | mage Sequences

The procedure for segmenting the left ventricular image sequences was as follows.
An anchor primitive model was manually configured in the first frame of each sequence, by
adjusting al of its attributes until a reasonable visual segmentation of the left ventricle was
obtained. Optimization of an objective function consisting of geometric typicality and image
match components proceeded according to the method outlined in Chapter 5. The final
model configuration in frame t was used as the initial model configuration in framet+1. An

example segmentation of an image sequence using the left ventricular anchor primitive

model is shown in Figure 6.6.

Figure 6.6: An example of automatic segmentation of the left ventriclein an image sequence. The anchor
primitive model is manually initialized in the first frame of the sequence (Ieftmost frame). Thefive
framesimmediately following thefirst frame are shown.

Of the 28 cases where the human experts reached a consensus, the system tracked the
regional wall motion correctly according to subjective visual assessment in 25 cases. Semi-
automatic segmentation failed in three cases where the contrast between the left ventricular
chamber and other heart chambers was extremely poor. The three tracking failures case
87479, case 86862 and case 57926 are highlighted in Table 6.2 in bold italics. One normal
case (86862) and one hypokinetic case (57926) were not segmented correctly. The third
segmentation failure was on a case where one expert expressed some doubt about his

assessment of normality (87479—"borderline normal” according to Physician 2). The
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classification experiments discussed below were on the 25 cases where semi-automatic
anchor primitive based segmentation was successful.

6.1.5. Feature Selection and Hidden Markov Modelsfor Left Ventricular
Regional Wall Motion Classification

A hidden Markov model (HMM) was used to represent each class, one for “normal
apical motion” and one for “abnormal apical motion.” (HMM'’s are described in more detall
in Chapter 4.) Using the “truth” shown in Table 6.2, models were trained using a leave-one-
out training procedure. It is not possible to make precise statements about the generalization
capability of the system based on the leave-one-out analysis because of the following
limitations. The leave-one-out set isrelatively small, so there may be aspects of the general
population not seen in the leave-one-out set. Thus, training and testing on larger populations
may yield different performance. Also, feature selection was tuned based on the leave-one-
out set, so it may not generalize. Thisis because selected features yield different models for
each |eave-one-out case, and the models corresponding to the selected features could be
different for adifferent (larger) training population. That said, the |leave-one-out results are
good for the data at hand, which is suggestive of good capability in general.

To select features for recognition, classification experiments were run on each feature
inisolation (asingle feature extracted per frame). Results for the single feature per frame
experiments are presented in Table 6.3. For the results of Table 6.3, hidden Markov models
with asmall number of parameters were chosen to represent each class, namely models with
three states and two Gaussian mixture components per state. The intuition behind choosing
three states was that one would represent systole (left ventricle contraction), one would
represent diastole (Ieft ventricle expansion), and one would represent the transition between

systole and diastole (end-systole). Two Gaussian mixture components per state were chosen
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to keep the number of model parameters small because of the relatively small number of
training cases considered. It istypical in sequence classification applications like speech and
handwriting recognition to use more than one Gaussian per state—often many Gaussians per

state are used.

Feature S1 S2 al a2 a3 a4 dsi ds2 dal | da2 | da3 | da4

Errors 9 20 15 12 13 14 12 9 18 10 6 14

Table 6.3: Number of classification errorsfor each individual left ventricle anchor primitive feature.
Hidden Markov Model Number of States = 3, Number of Gaussians per State = 2.

A greedy approach to combining individual features into feature vectors was taken based on
the single feature experiments. The greedy approach selected the features with the best
classification performance when taken alone and combined them into multidimensional
feature vectors. The features with the minimal number of classification errors were

combined, according to Table 6.4.

Features Errors
S1, dsS2 7
S1, dS2, da3 10
ds2, da3 9
S1, da3 8

Table 6.4: Number of classification errorsusing a greedy selection of featuresbased on Table 6.3.
Hidden Markov Model Number of States= 3, Number of Gaussians per State = 2.

The conclusion from the experiments of Table 6.4 was that the greedy choice of S1,
dS2, da3 did not yield good results because of insufficient training data (too many model
parameters given the training set size). It was thus decided to decrease the complexity of the
models of each state by reducing the number of Gaussians per state from two to one. Because
this choice reduces the number of mixture model parameters by one half, the number of
states in each hidden Markov model can be doubled without substantially increasing the

number of model parameters found when there are two Gaussians per state.
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Table 6.5 presents the results for various combinations of features, using one
Gaussian per state, for various numbers of states. The best result achieved was 5 errors out
of 25 sequences. Thiswas achieved using (dS2, S1) feature vectors from each frame with
each model having 9 states or 15 states, and aso achieved using (S1) alone from each frame
with each model having 12 states or 13 states. It was expected that a feature vector involving
dS2 would yield good apical motion classification. It is somewhat surprising that S1 alone
yields good apical motion classification; however, the apical, septal, and lateral walls are of
course connected by muscle tissue thus motion in one region influences motion in others.

Most of the abnormal apical motion cases correspond to some degree of hypokinetic
motion. Thus, it was observed that cases 5811 and 83734 were potential outliers with respect
to the abnormal motion class. In case 5811, both physicians suspected apical akinesis. In
case 83734, one physician suspected apical dyskinesis, in addition to global hypokinesis.
However, in all experiments reported in Table 6.5 for various numbers of hidden Markov
model states for the (dS2, S1) feature set, cases 5811 and 83734 were classified correctly.
This suggests that based on case 5811, akinesis was better represented by the “abnormal
apical motion” model, formed mainly on the basis of hypokinetic cases, because it always
yielded a higher probability of case 5811 given the abnormal apical motion model in the
leave-one-out experiments. This corresponds to intuition that says that akinesis—no wall
motion—is more like hypokinesis—sluggish motion—than it is like normal motion. The fact
that the physician who mentioned dyskinesis of case 83734’ s apical motion also gave an
observation of global (for al regions) hypokinesis indicates he could have been admitting the
possibility of hypokinetic apical motion rather than dyskinetic apical motion. Hypokinetic

apical motion is suggested by the classifier because case 83734 was never misclassified for
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the (dS2, S1) feature set; thus case 83734 agreed well with the “abnormal apical motion”

class trained mainly on cases where there was a consensus of experts of apical hypokinesis.

Features | 952 S1 dsz, si, DS2,da3 | Si1,da3 ds2 da3 S1

# States da3
3 8
4 8 10
5 10 9
6 8 7
7 7 11
8 6 7
9 5 8 11 | 10 | 16 | 8 6
10 6 6
11 8 6
12 7 5
13 7 5
14 6 6
15 5 | 10 [ 10 | 16 | 6
16 7
17 9

Table 6.5: Number of classification errorsfor various combinations of featuresfor various numbers of
states per hidden Markov model. Best classification performanceis5 errors, achieved in several
different ways. Number of Gaussians per state=1.

6.1.6. Comparison of Left Ventricular Classification Resultsto Other Work
Asinthiswork, Sychra attempted to automate classification of left ventricular
regional wall motion in gated blood pool images.> Sychra achieved about 80% classification
accuracy (70 cases) on his training set when distinguishing normal motion from hypokinetic

motion. Two of his classes represented normal motion and three of his classes represented
degrees of hypokinesis. He defined “acceptable agreement” with the physician consensus as
amaximum of one class difference from the consensus. Using this definition of acceptable
agreement, he achieved an average of 86% pixel accuracy for normal cases and an average of
73% accuracy for hypokinetic cases. These reported accuracies are classification accuracies

on histraining set.
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Based on the upper bound derived above, the maximal theoretical performance of
each expert who classified the data used in this study was p=0.837. 80% classification
accuracy (25 cases) where truth is taken to be consensus of two experts is achieved by the
anchor primitive/hidden Markov model system in aleave-one-out analysis when
distinguishing normal apical motion from abnormal apical motion. The human’s task was
more detailed that the system’ s task, however, because the number of regions and the number
of wall motion classes considered by the experts were larger than those considered by the
system. Aswas noted, because of the small set size, |leave-one-out analysisis suggestive of
good performance but does not give a precise indication of generalization capability.

6.2. Computer Lipreading

Computer lipreading is automatic classification of lip image sequences. Computer
lipreading was discussed in Chapter 3. The point of computer lipreading is to augment
acoustic speech recognizers in noisy environments, as was discussed in Chapter 1 and in
Chapter 3. It has been shown that systems that combine computer lipreading and acoustic
speech recognition outperform acoustic speech recognition systems in noisy environments.

6.2.1. Anchor Primitivefor Lips

An anchor primitive was designed to represent the lips. The lip anchor primitive used
three parametric curves. One parametric curve each for the two halves of the upper lip and
one parametric curve for the lower lip were used. Anchor primitive attributes include the
distances, represented by S, i=1,...,5, in Figure 6.7 (repeated from Chapter 5 for the reader’s
convenience), to the parametric curve control points from the center point. Other attributes
include the (X,Y) location of the center of the anchor primitive representing the middle of the

mouth, and angles that when combined with the distances specify the locations of each of the



control points. There are 12 lip anchor primitive attributes. The I¢ values, k=1,...,3, of
Figure 6.7 are intensity features implied by the anchor primitive model, not geometric
attributes of the model. They are not used for anchor primitive based segmentation but are

candidate statistical features for anchor primitive based classification.

o

Figure6.7: Schematic of the Lip Anchor Primitive. S1 and S3 are distances from the center of the
primitive to points on the mouth (center to corners— Si, center to midpoint of upper lip —S3). S2, $4,
and S5 are distances from the center of the primitive to control pointsfor parametric curves representing
thelip boundaries. Example control pointsfor the quadratic representing the upper right portion of the
lip boundary aregiven by g, b, and c. Similar quadratics defined by the anchor primitive attributes
represent the upper left and lower boundaries aswell. Angles O1, 02, O3, O4 and O5 (not pictured)
corresponding to S1, S2, S3, $4 and S5 precisely locate the control pointsfor the 3 parametric curves
representing thelip boundaries. 11,12 and I3 are intensity values at the center of the mouth (11) and a +/-
offset from the center of the mouth that is proportional to S1 (12 and 13).

6.2.2. Lip’sStatistical FeaturesImplied by the Anchor Primitive M odel

Because it was assumed that lip image sequence classification should be independent
of the trandation and global rotations of the mouth during speech, the position and angle
attributes of the lip anchor primitive were not used as features for classification. Instead it
was felt that the control point distances from the center of the anchor primitive and intensity
values around the center of the mouth would be most useful for classification. Inter-frame
changes in these values were used as features for statistical classification aswell. A list of

the features used for classification isgiven in Table 6.6.
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|Feature | S1 [ S2 | S3 [ 4] S5 [ 112 [ 12 | 13 [ dS1 [ dS3 [ dS5 [ di1 | di2 ] di3 |

Table 6.6: Features used for lip image sequence classification. SX denotes distanceto a parametric curve
control point asindicated in Figure 6.7 above. dx is theinter-framechangeinx. 11,12, and I3 are
intensity values collected based on the anchor primitivelocation, asillustrated in the figur e above.

6.2.3. Lip Image Data

The Tulips 1 database of isolated digits® was used for all computer lipreading
experiments. It iscomposed of image sequences from 12 speakers speaking each of the first
four English digits (“one,” “two,” “three,” “four”) twice, for atotal of 96 sequences. Speaker
independent recognition experiments were performed using a cross-validated, “leave-one-
speaker-out,” procedure. From Luettin's description of the database:®

The subjects were asked to talk into a video camera and to position

themselves so that their lips were roughly centered in afeed-back display.

The gray-scale images were digitized at 30 frames/s, 100x75 pixels, 8 bits

per pixel. The database contains atotal of 934 images and consists of

speakers with different ethnic origins, [9 males and 3 females|, some with

makeup or facia hair and different illumination.

An example of a sequence from the database is shown in Figure 6.8. The low
contrast between the lower lip boundary and the face is typical of images in the database.

This database was of interest because other researchers have published classification

performance results on it.
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Figure 6.8: An example of a sequence from the Tulips 1 lip image sequence database. The low contrast
between the lower lip boundary and the faceistypical of image sequences from the database. TimeOQis
at the upper left corner of thefigure. Timeincreasesfrom left to right and from top to bottom.

6.2.4. Semi-Automatic Segmentation of Lip Image Sequences

Semi-automatic segmentation of the lip image sequences using anchor primitives was
attempted. The procedure wasto find initial segmentations of the first and last frame of each
sequence manually by adjusting the anchor primitive parameters (there are 12 parameters-2
positional parameters, 5 scales and 5 orientations). Optimization of an objective function
consisting of geometric typicality and image match components proceeded according to the
method outlined in Chapter 5. After initial manual adjustment of all anchor primitive

parameters, optimization was run only over distances between the anchor primitive center
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point and control points. The final anchor primitive configuration in frame t was used as the
initial configuration in frame t+1. Segmentation was also run backwards so that the optimal
anchor primitive configuration in framet was theinitial anchor primitive configuration in
frame t-1, using the manual segmentation of the last frame as the starting point for the
backwards sequence segmentation. For each frame, the forward or backwards segmentation

was selected according to the algorithm given in Chapter 5. An example of semi-automatic

segmentation achieved when using this method is given in Figure 6.9.
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Figure 6.9: Anchor primitive based semi-automatic segmentation of a lip image sequence “four” from
talker “Anthony.” The discontinuity observed between frames 3 and 4 above (upper right corner) is
typical of the digit “four” for many speakers, because the lower lip accelerates rapidly following release
of the plosive.
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For the classification experiments discussed below, 74 semi-automatic segmentations
were used and 22 manual segmentations were used, where the anchor primitives were
manually placed in each frame of 22 image sequences. Semi-automatic segmentation was
hindered by the facts that shadows severely limited contrast between the lower lip and the
face in many images and that the lower lip boundary extended beyond the image boundary in
some Cases.

6.2.5. Feature Selection and Hidden Markov Modelsfor Computer Lipreading

All classification experiments described below were speaker independent, leave-one-
speaker-out experiments, which were the same as those conducted by Luettin. To select
features for recognition, classification experiments were run on each feature in isolation (a
single feature extracted per frame). Results for the single feature experiments are presented
in Table 6.7. Then agreedy approach to combining individual features into feature vectors
was taken. The features with the minimal number of classification errors were combined
(ignoring S2 and $4), according to Table 6.8. Classification results for various feature
vectors are presented in Table 6.8. The best result of 10 out of 96 errors was achieved using
(S1, dS1, S3, dS3, S5, dS5, 11) from each frame. The selected set of features correspond well
to intuition that says normalized distances from the center of the mouth to the middle of the
upper lip, middle of the lower lip, and corners of the mouth and inter-frame changes in those
values describe lip movement during speaking. In addition, normalized intensity feature |1
from the anchor primitive center location was an important feature as well, as was expected
based on the literature that showed the importance of the visibility of the teeth and tongue to

lipreading.
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Feature S1 | 2| S8 |#A | S |11 12 I3 | dS1 | dS3 | dS5 | di1 | di2 | di3

Errors 45 | 49 | 52 | 47| 42 | 42 | 53 | 56 50 51 50 57 57 53

Table 6.7: Number of classification errorsfor each individual lip anchor primitive feature. Leave-one-
speaker-out classification experiments wererun using a single featur e extracted from each frame of each
image sequence. Number of States = 4, Number of Gaussians per State = 2.

Features Errors Errors Errors
(4 States) (3 States) (5 States)

S5, 11 28

S5, 11, S1 16

S5, 11, S1, dS1 14

S5, 11, S1, dS1, dS5 13

S5, 11, S1, dS1, dS5, dS3 12

S5, 11, S1, dS1, dS5, dS3, S3 10 16 | 16
S5, 11, S1, dS1, dS5, dS3, S3, dI3 14

S5, 11, S1, dS1, dS5, dS3, S3, dI3, 12 15

Table 6.8: Number of classification errorsusing a greedy selection of features based on Table 6.7 without
considering S2 and 4. Number of Gaussians per State= 2.

6.2.6. Comparison of Lip Image Sequence Classification Resultsto Other Work

The 10 out of 96 errorsresult is not very different from the 9 out of 96 errors
achieved as their best-reported result by Luettin and Thacker on the same database using the
same | eave-one-speaker-out analysis technique.> The result using the lip anchor primitive
based approach was achieved using 7 features including shape and intensity features and
inter-frame changes in shape features. Luettin’s best-reported result was achieved using 10
features including shape and intensity features and their inter-frame changes. The number of
errors of the two approaches with 95% confidence intervals are shown in Figure 6.10. It
should also be noted that L uettin and Thacker were able to achieve 10 errors on the task
using 3 intensity features only using an approach based on the work of Taylor and Cootes.
However, on amore difficult task, an intensity-only approach might not yield good

performance.
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Figure 6.10: Comparison between numbers of classification errorson the Tulips 1 database (with 95%
confidence intervals) and numbers of featuresfor Luettin’s shape and intensity based approach and
Clary’sanchor primitive based approach.

The lip anchor primitive result is also similar to the 89.93% classification accuracy
achieved by humans with no lipreading knowledge who were asked to classify the same
sequences. Hearing impaired humans with lipreading knowledge achieved 95.49% accuracy
on this database.™?

The approach of Luettin and Thacker includes a more automated lip segmentation
solution. The purpose of thiswork was to evaluate the anchor primitive model itself asa
basis for feature extraction, rather than any particular combination of model to image match
and geometric typicality. To produce an automated segmentation and classification method,
aspects of Luettin’s segmentation approach could be combined with the anchor primitive
model, including the use of a more robust statistical model of boundary intensities for model
to image match measurement, following the work of Taylor and Cootes. More will be said

about thisin Chapter 7, Future Work. The limitations discussed previously of leave-one-out
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analysis regarding conclusions about generalization capability also apply to the computer
lipreading results.

6.3. Conclusions Regarding Anchor Primitives

Anchor primitive attributes can be used as intuitive and easy to compute geometric
features for statistical classification of image object evolution in image sequences. The
features are intuitive because they are based directly on geometric aspects of the anchor
primitive model. The features are easy to compute after image segmentation because they
are obtained directly from anchor primitive attributes or differences in those attributes over
time. These features are more intuitive and easier to compute than pixel based features like,
for example, those based on filtering (derivative of Gaussian, etc.), optic flow features, other
functions of pixel time activity, or principal components analysis on functions of intensity
values.

The anchor primitive model provides a global representation of an object by modeling
its landmarks and by providing local representations of object parts via the use of analytic
boundary representations. Anchor primitives are designed to be used to establish
correspondence at large spatial scale. Aswas explained, using naturally occurring
symmetries between corresponding locations allows anchor primitives to be consistently
placed across a population of image objects.

While global, anchor primitives can allow consistent placement of associated sub-
models that model an image object in amore detailed way. For example, if anchor primitives
are used in conjunction with m-reps, it may be useful to constrain a medial atom to have the
same location as the anchor primitive center point location (the “anchor primitive medial

atom”). If an m-rep is used to model an image object in more detail in the direction of one of
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the anchor primitive' s corresponding locations, it may be useful to place a constant number
of equally spaced medial atoms between the anchor primitive medial atom and the anchor
primitive corresponding location along the distance and direction to the corresponding
location. (Assume the distance and direction of each of the anchor primitive’s corresponding
locations is given by the anchor primitive model.) This constraint during m-rep placement
would provide useful correspondence between medial atoms if the important
correspondences are captured by the anchor primitive.

Because anchor primitives take advantage of object symmetry to define a center point
location, if areference direction is defined, then an object-centric coordinate system can be
defined for 2D image objects. The object-centric coordinate system is useful for making
shape comparisons among image objects segmented via anchor primitives. The reference
direction could be defined based on the location of the most stable corresponding place based
on atraining population for the image object under consideration. Defining the most stable
corresponding place is discussed further in Chapter 7.

Given accurate image segmentations, a small number of anchor primitive implied
features—a concise feature set—can provide accurate hidden Markov model based
classification of image sequencesin leave-one-out analysis. A small number of features
means that a smaller training set can potentially yield accurately estimated models that have
good generalization performance. Also, the computational complexity of estimating
Gaussian distributions with full covariance matrices is quadratic in the dimensionality of the
feature space. Thus, the fact that anchor primitives can yield useful featuresin afeature
space of low dimensionality means more computationally efficient training and potentially

more accurate statistical classification using hidden Markov models.
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Using hidden Markov models for time series modeling has implications for time scale
selection. With a constant number of Gaussians per state, if arepresentation with alarge
number of states gives good classification performance, it is suggested that fine temporal
scale details are important to classification. However, care must be taken to ensure that all
states are truly useful to the representation by examining the sequence of visited states using
standard techniques. It may be necessary to interpolate the training data to produce alarger
number of frames to ensure that an adequate amount of training datais available for a
representation with alarge number of states. If arepresentation with a smaller number of
states gives good classification performance, then fine temporal scale details may not be
relevant for classification. In this case, one might consider windowing the data across time
to yield a smaller number of input frames.

Because a segment-then-recognize approach was taken to classification in thiswork,
with segmentation considered separately from classification, semi-automatic segmentation
results presented in this chapter have implications for segmentation using anchor primitives
of static images, not only time sequences of images. The studied blood pool images are quite
noisy, and anchor primitive based segmentation of them was largely successful. Because
image measurements are made at places where intensity information is likely to be consistent
with atraining set, model to image match is likely to be maximal where expected. Because
geometric typicality involves relationships between corresponding places that are likely to be
consistent across different image objects and because anchor primitives use analytic
representations of curvilinear segments, deformable model based segmentation is adequately

constrained.
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It has been shown that anchor primitives can provide an efficient image object
representation for deformable model based image segmentation. Anchor primitives make it
possible to compute model to image match function values only in corresponding locations
rather than around the entire boundary of an image object asis the case for many b-rep
deformable models. The left ventricle anchor primitive of thiswork required image
measurements in four key locations only. In addition, anchor primitives via the use of
symmetries can provide a search space of lower dimensionality for deformable model
placement than other representations. The best performing b-rep in terms of classification
accuracy used by Luettin and Thacker to model the lips required a search space of 14
dimensions for model placement. The anchor primitive for the lips evaluated in this work
has 12 parameters. However, Luettin’s best b-rep modeled both the inner and outer contour
of thelips.

What has been shown is that carefully designed anchor primitives where center
locations and corresponding locations are hand selected can provide useful features for
statistical classification. Methods for computer aided anchor primitive design should be
developed and evaluated. This subject will be addressed more fully in Chapter 7.

In summary, it has been shown that anchor primitives can provide concise and
accurate statistical features for image sequence classification, producing reasonable
classification accuracy in leave-one-out analysis and computationally efficient statistical
classification. Anchor primitives could be useful for image segmentation and image object

comparison in general, a statement that can be more thoroughly studied in future research.
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6.4. Contributions
A summary of how the contributions of the dissertation outlined in Chapter 1 are
supported by the experimental resultsis given here.

A novel medial primitive called an anchor primitive has been introduced. The
anchor primitive is a correspondence maintaining primitive placed in each
frame of an image sequence using the continuity of the sequence. Semi-
automatic segmentation of image sequences using anchor primitives was
successful in the majority of cases considered in thiswork. It was shown that
given accurate image segmentations, classification performance using anchor
primitives as abasis for statistical features was similar to that found in the
literature for the computer lipreading task. Anchor primitivesin image
sequences effectively generate shape parameter sequences. Thus, accurately
placed anchor primitives provide consistent model to image object feature
correspondence needed for the analysis of the shapes found in the example
image sequences and classification of their evolution. There are obvious
segmentation techniques for model to image match and geometric typicality
measurement that should be incorporated into the anchor primitive framework
to yield automatic segmentation. Some of these are discussed in Chapter 7.
Because statistical features for classification can come directly from anchor
primitive attributes or inter-frame changes in attributes, anchor primitives
supply features for statistical classification that are easy to compute. Because
anchor primitives capture the geometry of the modeled shape in a holistic and

natural way in afew parameters, anchor primitive attributes are intuitive.
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Intuitive geometric features enable discussion of classification resultsin
medically relevant terms.
A method was described that uses anchor primitive based features as inputs to
hidden Markov models for statistical classification.
For 25 example cases, anchor primitive based features and hidden Markov
models provided left ventricular regional wall motion classification accuracy
in leave-one-out analysis suggestive of similarity to that of human experts.
The human experts agreed with one another 70% of the time, and the semi-
automatic classification method agreed with the experts on 80% of cases
where the human experts agreed. It should be noted, however, that the
analysis of the human experts was more challenging than the semi-automatic
analysis because the experts considered more “ classes’—more wall regions
and types and degrees of abnormality.
For 96 example image sequences, and given accurate image sequence
segmentations, anchor primitive based features and hidden Markov models
provided computer lipreading accuracy similar to that found in the literature
using leave-one-speaker-out analysis.
Distances from the anchor primitive center point location and anchor primitive
model point locations and changes in those distances were useful features for
statistical classification vialeave-one-out analysis of image object shape
evolution.

Through empirical studies of anchor primitive based segmentation and statistical

classification using anchor primitive implied features, the contributions of the dissertation
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outlined in Chapter 1 have been supported. The following chapter makes suggestions for

interesting future research directions.
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Chapter 7

FutureWork

There are many promising directions based on this work that can be explored. The
directionsfall into two major categories: 1) improving the current implementations of anchor
primitives including by extension of the theory of anchor primitives and 2) further
applications of anchor primitives. Both categories apply to static image segmentation and
statistical feature extraction as well asimage sequence segmentation and feature extraction
using anchor primitives.

Because a segment-then-recognize approach was taken to classification in this work,
with segmentation considered separately from classification, semi-automatic segmentation
results presented in Chapter 6 are suggestive of capability for ssgmentation of static images
in general using anchor primitives. Aswas stated in Chapter 6, because image measurements
are made at places where intensity information islikely to be consistent with atraining set,
model to image match is likely to be maximal where expected. Because geometric typicality
involves relationships between corresponding places that are likely to be consistent across
different image objects, segmentation is adequately constrained. Research on improved
segmentation methods based on this idea might incorporate the aspects discussed in this

chapter.



Image segmentation in many cases in this work involved manual steps, including
initializing the object tracking algorithms. The purpose of the work was to prove that anchor
primitives could produce useful statistical features for classification of shape evolutionin
time sequences of images, rather than to prove that automatic anchor primitive based image
segmentation could be accomplished. Some, if not al, of the manual steps could be
eliminated by using more robust model to image match measures. Following the active
appearance model approach of Cootes and Taylor to computing model to image match would
be useful. An alternative, and perhaps more effective, approach is the multiscale boundary
profile approach of Ho and Gerig.* The first place this author saw multiscale model to image
match measurement was in the work of Coggins, and it was inspirational in this regard.

Anchor primitives were defined in Chapter 5. They consist of a center point location,
deformable models of corresponding locations, and relationships between the models of
corresponding locations. An interesting future study isto identify ways to build anchor
primitive models. Two issues are critical. Oneisidentifying the anchor primitive center
point location. The other isidentifying corresponding places across training populations of
image objects. Anchor primitives model corresponding places using parametric curves or
deformable m-reps and use the geometric rel ationshi ps between the corresponding places to
measure geometric typicality.

| dentifying a center point location can be performed manually by the model builder.
The model builder can choose to examine the largest scale medial tracks of a representative
image object or mean object representing atraining population. The center point location
can be specified as the spatial intersection point of the largest scale medial tracks.

Alternatively, the model builder may examine extremal boundary points of a representative
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image object or mean object representing a training population and specify the center point as
the centroid of the extremal points.
| dentifying corresponding places across training populations is a significant area for

further research that has implications not only for anchor primitive model building but also
for deformable model based segmentation in general. By definition, places that are said to
exhibit correspondence have unique but consistent intensity and shape properties across
populations of image objects. To find corresponding places, | recommend that an
unsupervised statistical technigue such as K-Means clustering be performed on shape and
intensity features and neighboring primitive (boundary or medial) relationships of atraining
population of image objects. The most compact clusters represent the corresponding places.
An agorithm could proceed as follows:

Perform deformable m-rep segmentation using a dense sampling of the medial

manifold(s) of atraining population.

Run k-means clustering (or another statistical clustering technique) on the

media atom attributes together with intensity features that correspond to the

medial atoms and neighboring medial atom relationships. The k-means

algorithm will need to be modified to incorporate the Lie group geodesic

distance metric and Lie group based Gaussian distribution definitions for m-

reps.

Scatter plot medial atom locations corresponding to the most compact clusters

on arepresentative object of the training population. Use the cluster labels as

labels on the scatter plot. Viewing the scatter plot isto account for cases

where multiple corresponding locations have shape, intensity and neighbor
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relationship properties similar enough to cause them to belong to the same
cluster.

If the scatter plot of the medial atom locations from the training population
corresponding to the most compact clusters produces a reasonable number of
corresponding places, select those places to model with anchor primitive
parametric curves or deformable m-reps.

In a place where the neighboring corresponding locations are relatively far
apart, use parametric curves to model the corresponding location, because
immediately neighboring locations do not exhibit correspondence by the
cluster analysisimplying that boundary information is potentially more
consistent in the area versus medial information.

In a place where there is a dense collection of neighboring corresponding
locations, use a deformable m-rep to model the corresponding location
because the dense collection of neighboring corresponding locations
represents a stable figure.

In addition, if the trace of the covariance matrix of the intensity features from
aparticular corresponding location is smaller than the trace of the covariance
matrix of the m-rep features, consider using a curve to model the
corresponding place. If covariance matrices from the intensity features of the
two boundary places corresponding to the medial atom at the corresponding
location are considered separately, it could be decided to use a curve to
represent one boundary place but not the other based on the traces of the

covariance matrices.
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If the trace of the covariance matrix of the m-rep featuresis smaller than the
trace of the covariance matrix of the intensity features, consider using an m-
rep to model the corresponding place.

Correspondence of modeled locations across image objectsis critical to consistent
statistical feature extraction. Pizer et al. have made amajor contribution by referring to any
location in a 3D image in object medial manifold relative (u,v,t) coordinates. (u,v,t) are
consistently defined across image objects based on amedial surface. A similar formalism
can be developed for anchor primitives. A reference direction can be defined (?=0) based on
the most stable corresponding place given by the cluster analysis above. Any placein a2D
image with an object defined by an anchor primitive can then be described in terms of an
object-centric angle ?. Because there may not be a 1-to-1 correspondence between ? and the
boundary of an image object, a multi-scale approach to using the anchor primitive based
coordinate system for object comparisons could be taken. For example, ? could be used to
make global comparisons between corresponding figures (corresponding places) in an anchor
primitive model (i.e., comparison of figure locations), and m-rep (u,t) coordinates could then
be used to make figure-to-figure boundary comparisons between corresponding features.

Aswas mentioned, an approach to spatio-temporal image segmentation is to consider
an N+1 dimensional image segmentation technique for N-D image objects evolving over
time, basically treating time as another dimension. Another way to incorporate time
information into the segmentation process is to make segmentation dependent on class
membership. That is, for each class there is a separate segmentation procedure. This
procedure could involve including the probability that a particular hidden Markov model

(representing a particular class) generated an observation sequence up to the current framein
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the objective function for image segmentation. The training algorithm would proceed as
follows. Start with a segmentation algorithm that is the same for all classes (as before)—
optimize image match and geometric typicality. Use the segmentations produced by the
algorithm to train initial hidden Markov models for each class. Re-segment using class
dependent segmentation, by including the probability that the class s initial HMM generated
the observation sequence up to the current frame in the objective function. Using the new
segmentations for every class, re-train HMM’ sfor each class. Iterate until performanceis
optimized. 1 call this new term in the posterior function to be maximized “evolution
typicality.” When a new sequenceisto be classified, it is automatically segmented a number
of timesthat is equal to the number of classes, because segmentation is class dependent.
A massive amount of research is being conducted on 3D medical image analysis.

This is because modern imaging modalities provide information over 3 spatial dimensions
that allows accurate and more complete understanding of the imaged anatomy. Defining
anchor primitives for 3D image objects would provide a stable basis for measuring them and
extracting statistical features from them. The same principles used to define 2D anchor
primitives in this work will apply, including defining the following:

A center point location

Salient image object feature locations

Curve, surface, or medial mesh model parameters

Constraints on the relationships between image object feature locations.

Many computer vision problems of interest involve occlusion. Animage object’s

parts (figures) may move in and out of the view of the imaging device. Occlusion could be

handled by anchor primitive based models by building explicit models of occluded and non-
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occluded figures. During segmentation, all of the occluded and non-occluded models could
be applied and the chosen model would be the one with the highest posterior probability.
Handling occlusion by building anchor primitives to explicitly model situations when
occlusion occursis an interesting direction.

Although the anchor primitives considered in this work modeled single figure objects,
anchor primitives can be defined for multi-figure objects. In fact, m-repsfor each of the
figures can be linked to an anchor primitive defined object center point location to form a
multi-figure anchor primitive. Building multi-figure anchor primitives would aid in time
sequence applications like gait analysis or gesture recognition.

Because complex motions of the heart like twisting cannot be captured in asingle
view by a 2D imaging device, left ventricular analysisistypically performed using a 3D plus
time imaging modality. 3D anchor primitives could provide a stable basis for |eft ventricular
measurement making, left ventricular wall motion quantification, and left ventricular wall
motion classification from typical 3D plus time cardiac imaging modalities such as gated
SPECT.

Analyzing time sequences of images of anatomical structures to determine the effect
of drug or radiation therapies on them is an interesting direction. It is becoming common
practice to image areas of the anatomy that are expected to undergo change as a result of
therapy. Anchor primitive based techniques can be used to measure and classify shape
changesin theseimages. Recently an entire issue of |EEE Transactions on Medical Imaging
was devoted to image analysisin drug development.?

Performing independent components analysis or independent geodesic analysis on

attributes of anchor primitive models of lips in motion may have useful applications to facial
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motion synthesis during synthetic speech. Computer animations of “talking heads’ have
recently been used to help deaf children learn to speak and to read lips. See

http://abcnews.go.com/sections/primetime/2020/PRIMETIME. 010315 baldi feature.html for more

information on this application of lip motion modeling.

It has been shown by at least two authors that color information aids lip image
segmentation. Color information could easily be incorporated into anchor primitive models
for lips to improve the model to image match function.

Using a*“non-linear principal components analysis’ technique like principal geodesic
analysis® as abasis for statistical feature extraction will prove valuable to many image
oriented classification problems, including image sequence classification. Building statistical
models of features from non-Euclidean space will be important as well.*

This dissertation showed that m-rep inspired primitives known as anchor primitives
provide a useful basisfor statistical feature extraction for image sequence classification and
thus suggested significant future research directions. Directions include extensions of the
theory of anchor primitivesto interactively build anchor primitive models, handle new
situations and incorporate more powerful statistical techniques, and empirical evaluations of

anchor primitive methods in additional image analysis applications.
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