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ABSTRACT 
GREGORY J. CLARY:  Image Sequence Classification via Anchor Primitives 

(Under the direction of Stephen M. Pizer, Kenan Professor)
 

I define a novel class of medial primitives called anchor primitives to provide a 

stable framework for feature definition for statistical classification of image sequences of 

closed objects in motion.  Attributes of anchor primitives evolving over time are used as 

inputs into statistical classifiers to classify object motion. 

An anchor primitive model includes a center point location, landmark locations 

exhibiting multiple symmetries, sub-models of landmarks, parameterized curvilinear 

sections and relationships among all of these.  Anchor primitives are placed using image 

measurements in various parts of an image and using prior knowledge of the expected 

geometric relationships between anchor primitive locations in time-adjacent images.  

Hidden Markov models of time sequences of anchor primitive locations, scales and 

nearby intensities and changes in those values are used for the classification of object 

shape change across a sequence.  The classification method is shown to be effective for 

automatic left ventricular wall motion classification and computer lipreading.   

Computer lipreading experiments were performed on a published database of 

video sequences of subjects speaking isolated digits.  Classification results comparable to 

those found in the literature were achieved, using an anchor primitive based feature set 

that was arguably more concise and intuitive than those of the literature.  Automatic left 

ventricular wall motion classification experiments were performed on gated blood pool 
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scintigraphic image sequences.  Classification results arguably comparable to human 

performance on the same task were achieved, using a concise and intuitive anchor 

primitive based feature set.  For both driving problems, model parameters were tuned and 

features were selected in order to minimize the classification error rate using leave-one-

out procedures.
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Chapter 1 

Introduction 
 
 

In this the technology age, sequences of images are commonly captured and 

displayed.  Capture mechanisms include video and motion picture film cameras, medical 

imaging devices such as those that image the heart, and radar.  Many image sequences 

portray objects in motion that undergo shape changes.  Machines of the twenty-first century 

will usefully automatically classify the motion of objects in image sequences.  Example 

applications will include security and medical diagnosis.  Imagine a security system where 

the act of shoplifting is automatically recognized by machines.  Even imperfect systems 

would save retailers millions of dollars!  In an imperfect system, where the probability of 

false alarms is non-zero, human security personnel could review recordings of acts that are 

considered suspicious by the system and decide whether or not to take further action. 

As another example application, consider a “hands-free” dialing system for a mobile 

telephone unit in an automobile.  Various noise types may corrupt an acoustic signal in the 

car environment, including the sounds from passing cars, the engine, the fan, the tires, the 

voices of passengers, and the radio to name a few.  A small camera can be mounted 

unobtrusively on the ceiling or mirror and focused on the driver.  Video signals from the 

camera can be sent to a SmartPhone or similar device to aid in the recognition of spoken 

digits and commands. 
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Most automatic speech recognition research has focused on using the acoustic signal 

to recover the linguistic information intended by the speaker.  Recognition using the acoustic 

signal has proven to be extremely difficult in noisy environments, where the speech portion 

of the acoustic signal is distorted by background interference, possibly from a variety of 

sources.  Many types of noise are mid to high frequency in nature and thus interfere with the 

mid to high frequency components of the acoustic signal.  (The low frequency content of the 

acoustic signal is often largely unaffected by noise.)  The mid to high frequency content of 

the acoustic signal is directly related to the positions of articulators like the lips, teeth and 

tongue.  Obviously, acoustic noise interference does not impact a video sequence of the 

speaker.  The positions of the lips, teeth and tongue are often clearly shown in such a 

sequence.1  Thus, a video signal can be used effectively to augment the acoustic signal in 

automatic speech recognition systems. 

This dissertation explores a novel method for the classification of object shape 

changes in image sequences.  The method describes shape changes in image sequences 

numerically and assigns the shape changes to categories. 

At a high level, the approach to image sequence classification taken is to find the 

object of interest in each frame of the image sequence, generate a numerical description of its 

shape, accumulate the numerical descriptions of the object shape in each frame over time and 

pass the numerical descriptions on to a statistical classifier.  This work focuses on finding the 

object in each frame (segmentation and tracking) and describing its shape numerically 

(feature extraction).  For a statistical classification system, numerical descriptions of shape 

should be 1) concise enough to allow computational efficiency of statistical classification and 
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accurate model parameter estimation and 2) have the right precision to allow accurate 

classification of data not previously encountered. 

Statistical classifiers compute distances between models and new inputs 

(equivalently, they compute the a posteriori probabilities of new inputs).  The computational 

expense of the distance calculations depends on the metric used but can increase as the 

square of the number of extracted features.  Thus, for computationally efficient statistical 

classification, the number of extracted features should be kept small; that is, feature vectors 

that describe object shape should be concise.  Numerous concise ways to describe shape have 

been proposed and explored in the literature, including Fourier coefficients of the object’s 

intrinsic function and moments.  Someone new to the field might be tempted to describe an 

object’s shape in a digital picture by listing all of the pixels that fall within the object, but of 

course this method is not at all concise.  Duda and Hart put it well, “…completely specifying 

the points in the figure does violence to our intuitive notion that a description of a complex 

thing should be simpler in some sense than the thing being described.”2 

Beyond computational efficiency, a further motivation for finding concise feature sets 

is to allow creation of representative statistical models based on a finite set of training data, 

as explained by the following argument.  In statistical classifiers, model parameters such as 

mean vectors and covariance matrices are estimated from training data.  According to the 

Laws of Large Numbers, sample based estimates of distribution parameters approach the true 

distribution parameters as the sample size increases.  The implication for statistical 

classification is that more training samples result in more accurate model parameter 

estimates.  Accurate estimates of appropriately selected model parameters yield high 

classification accuracy.  In many cases, however, training data is scarce.  Thus, a researcher 
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using a statistical classifier is motivated to try to estimate fewer well-chosen parameters, in 

order to better estimate them and achieve better classifier accuracy. 

Whether or not the features have the right precision is judged in part by estimates of 

classification accuracy, obtained by presenting data to the classifier that was not presented 

during training.  Classifier performance is tuned by varying the number and choice of 

parameters and using a technique like cross-validation, in order to avoid “over-training” to a 

particular training set.  The result of over-training is that the classifier has limited 

generalization capability.  That is, when an over-trained classifier sees an input not presented 

during training, it is less likely to classify it correctly than another classifier that has not been 

over-trained to the training set. 

Intuitively, the challenge is to generate from image data a numerical description of 

the object of interest in the image that is concise (like “cow” for the main object in a 

photograph of a cow) but also has the right amount of precision for classification purposes.  

“Right amount” is problem dependent.  For example, if cows are to be classified into various 

breeds (categories) like Holstein and Guernsey, more precise descriptions are needed.  Such 

descriptions could include “cow has black spots on a white background” or “cow is 

completely brown.” 

Methods previously applied by computer image analysts to shape description suffer 

from sensitivity to subtle intensity variations within the object of interest, and many are not 

invariant to translation, rotation and zoom.  An intuitive way to think of invariance is to again 

imagine a photograph that pictures a cow.  Now imagine a second photograph that was taken 

when the photographer stepped toward the cow (zoomed in), took a step to the right 

(translated the camera) and tilted the camera (thereby rotating the cow in the photograph).  
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The description of the object of interest in the second photograph is invariant to the described 

transformations in the sense that it is “cow” regardless of the fact that translation, rotation 

and zooming took place. 

Most of the methods for numerically describing object shape depend on knowing the 

object’s boundaries as a prerequisite.  Typically, they depend on a traditional boundary 

finding technique such as a gradient based one, which is known to cause difficulty when 

there is image noise or perturbations. 

A method that overcomes some of the difficulties of other shape description methods 

is based on the principle that a precise and concise way to describe an object is by describing 

its middle or “medial track” and width along the middle.  There is psychophysical evidence 

to suggest that a fundamental mechanism underlying human object perception (and therefore 

shape description) is the association of opposing boundaries, that is, the performance of 

medial analysis.3  By the performance of medial analysis, a human or machine can concisely 

summarize the shape of an object.  In this dissertation, attributes of this medial summary 

information are used as features for the classification of object shape change in image 

sequences.  Intuitively, a system that performs medial analysis assigns the position of an 

object’s middle by “linking” boundaries, that is, gathering evidence for opposing boundaries.  

Based on evidence of a boundary in one part of an image and evidence for a boundary in 

another part of an image, the system assigns a “medial primitive” to a location in the image 

between the two boundaries. 

A way of describing an object’s shape and capturing its figural geometry was first 

proposed by Blum4 and is known as the medial axis transform.  The medial axis of an object 

is a locus of middle (medial or skeletal) points and a radius (“half-width”) associated with 
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each of the middle points.  The medial axis description of an object is complete in the sense 

that an object’s boundary can be reconstructed if its medial points and associated radii are 

known.  The locus of medial points was defined by Blum to be the locus of centers of disks 

that are tangent to the object boundary in two places.  The associated radii are the radii of the 

doubly tangent disks.  Stephen Pizer and his colleagues at the University of North Carolina at 

Chapel Hill (UNC) have introduced ways of finding medial loci in images in a manner which 

is insensitive to image noise and small perturbations in the object’s boundary and which does 

not depend on knowing the object’s boundary as a prerequisite.  More will be said about the 

UNC method in Chapter 4. 

The central thesis of the dissertation is that novel medial representations called anchor 

primitives are useful as a basis for feature extraction for object shape sequence classification, 

because the resulting features are precise enough for classification and concise enough to 

allow computational efficiency of statistical classifiers and accurate model parameter 

estimation.  An anchor primitive models only salient parts of an image object, and it uses 

symmetries advantageously to produce a compact representation of the image object.  The 

anchor primitive based method is a general framework for image segmentation and statistical 

feature definition.  The framework is evaluated on 2D image segmentation and image 

sequence classification problems in this work. 

Image sequence classification problems considered here include left ventricular 

regional wall motion classification and computer lipreading.  What left ventricular wall 

motion classification and computer lipreading have in common is that useful automatic 

classifications can be made from 2D image sequences.  In addition, the image sequences 

capture a body in motion that can be viewed as consisting of a single figure.  That is, within 
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each image of a sequence, the boundary of the object of interest, namely the left ventricle or 

the mouth, is closed or nearly closed and there is a medial axis that provides an adequately 

good approximation of the object.  The medial topology of the object of interest is fixed over 

the sequence.  Although the high-level approach for image sequence classification described 

in this dissertation is general, results will be demonstrated only for single figure objects that 

are not occluded.  Other problems of interest in the computer vision community include 

classification of the motion of multi-figure objects that can be occluded or self-occluded, for 

example, classification of human activities like walking or hand gestures (or the unfortunate 

shoplifting activity!). 

The focus of the dissertation is on representing image objects for statistical 

classification rather than the search for engineering solutions to the example problems of left 

ventricular wall motion classification and computer lipreading.  Chapter 2 and Chapter 3 

provide further background on these problems.  Brief background on the driving 

classification problems is given here. 

The left ventricular chamber is of primary interest because it is the heart’s 

workhorse—it contracts to pump oxygen-rich blood to the body.  Because of its crucial role 

in the circulatory system, analysis of the motion of its walls is sometimes undertaken as an 

aid to heart disease diagnosis.  Current practice for clinical interpretation relies on subjective 

assessments based on observer training.  Automatic classification of left ventricular regional 

wall motion would 1) enable the computer as an observer in order to save costly human 

observer time and 2) improve reproducibility and reliability. 

The region of the left ventricular wall found roughly in the direction of the human 

feet is known as the apex.  Automatic classification of left ventricular apical motion into two 
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categories, “normal apical motion” and “abnormal apical motion,” is undertaken in this 

research.  Results indicate that wall motion classification using features based on attributes of 

a novel anchor primitive model is efficient in terms of the number of features required by an 

employed statistical classifier. 

Automatic classification of the spoken digits “one” through “four” from video signals 

is also undertaken in this research.  Such computer lipreading is useful in automatic 

recognition environments where the acoustic signal is corrupted by noise.  Other researchers 

have demonstrated that 1) for the studied digit recognition task high recognition accuracy is 

achievable5 and 2) the errors made by audio and video based recognition schemes are 

complementary.6  This dissertation will define an image sequence processing and 

classification system that could be used in an audio-visual speech recognition system.  The 

defined anchor primitive based system is compared to systems of the literature that were 

evaluated on the same spoken digit task and is found to offer arguably more concise and 

intuitive statistical features than those of previous systems while maintaining comparable 

classification accuracy.   

At a high level, the approach taken to image sequence classification is typical.  First, 

images are segmented to find the object of interest.  Features are extracted which represent 

shape and shape change aspects of the segmented object.  These features are accumulated 

over time and used as input into a classifier that assigns a category to the image sequence. 

At a more specific level, models that consist of my anchor primitive are used to 

segment the images.  Attributes of these models are used as features.  They include distances 

between model points; local estimates of width and radius of curvature; and the inter-frame 

changes in those values.  The features are inputs to a statistical classifier which outputs a 
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category assignment like “abnormal apical motion” in the case of the left ventricular wall 

motion analysis problem or one of the digits “one” through “four” in the case of the computer 

lipreading problem.  It will be argued that the anchor primitive framework has the following 

advantages: 

• An anchor primitive uses a smaller number of parameters to represent an 

image object than would be used by alternative representations. 

• Anchor primitive distance attributes and changes in those distances when 

captured over time can be used to adequately describe image object motion. 

• Anchor primitives provide accurate statistical features for image sequence 

classification. 

• Anchor primitives provide concise features for statistical classification. 

• Their attributes often have intuitive meaning, e.g., half-width of the mouth or 

half-length of the long axis of the left ventricle. 

• Anchor primitives can provide a rich statistical feature set. 

• Anchor primitives are able to delineate image objects in noisy data. 

1.1  Contributions 
 

The contributions of the dissertation are the following: 

• I describe a novel medial primitive called an anchor primitive.  The anchor 

primitive can represent boundary parts of an object with parametric curves.  

There are symmetric relationships between represented parts.  The anchor 

primitive includes an object “center” location, information about locations of 

the parts, and curve parameters.  It will be shown that anchor primitives allow 

consistent model placements relative to salient image object features that are 



 10

needed for accurately defining statistical features for image sequence 

classification.  Certain image object features that are found in every example 

image object across a population are said to “correspond.”  The anchor 

primitive is a correspondence maintaining primitive placed in each frame of 

an image sequence using the continuity of the sequence.  Anchor primitives in 

image sequences effectively generate shape parameter sequences that describe 

object motion.  Thus, attributes of anchor primitives can be effectively used as 

features for image sequence classification.   

• I show that anchor primitives supply features for statistical classification that 

are intuitive and easy to compute. 

• I introduce a method for classification of object shape change in image 

sequences that combines anchor primitive attributes and hidden Markov 

models. 

• I demonstrate that anchor primitive attributes are useful for left ventricular 

wall motion classification. 

• I demonstrate that anchor primitive attributes are useful for computer 

lipreading of spoken digits. 

• I select particular anchor primitive attributes as features for statistical 

classifiers. 

The remainder of the dissertation is structured as follows.  Chapter 2 reviews previous 

approaches to left ventricular regional wall motion analysis and classification.  Chapter 3 

summarizes previous work on the computer lipreading problem.  Chapter 4 presents the 

theoretical details of previously employed (by this author and other authors) deformable 
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models and Hidden Markov Models.  Chapter 5 presents the proposed anchor primitive based 

methodology in detail with emphasis on the novel contributions of the work and theoretical 

justifications for them.  Chapter 6 gives evaluations of the methodology for left ventricular 

apical motion classification and results for computer lipreading of the digits “one” through 

“four.”  Chapter 6 also presents those anchor primitive attributes selected as features for the 

statistical classifiers.  Chapter 6 finishes by discussing the results and drawing conclusions.  

Chapter 7 presents ideas for future work.
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Chapter 2 

Left Ventricular Regional Wall 
Motion Analysis 

 
Recent cardiac image analysis work has focused on 3D image acquisition modalities 

and analysis techniques.  Frangi, Niessen, and Viergever give an excellent overview of model 

based 3D cardiac image analysis approaches.1  In addition, recently, an issue of IEEE 

Transactions on Medical Imaging was devoted entirely to 3D cardiovascular image analysis.2  

The methods studied in this dissertation will apply to 3D image analysis, but their efficacy is 

demonstrated herein on 2D images. 

The left ventricle and the names of certain of its walls and regions are illustrated in 

Figure 2.1.  As was stated, because of the left ventricle’s crucial role in the circulatory 

system, analysis of the motion of its walls is sometimes undertaken as an aid to heart disease 

diagnosis, including evaluation of coronary artery disease, infarcts and ischemia.  In addition, 

certain chemotherapy regimens are toxic to the heart muscle.  Such regimens are commonly 

administered until wall motion analysis shows that muscle performance is significantly 

degrading.  Abnormal wall motion is most easily observed when a patient is subjected to 

stress such as exercise.  According to one source,3 “exercise-induced wall motion 

abnormalities occur in approximately 50 percent of patients with coronary artery disease 

without prior myocardial infarction.”  That is, stress-induced wall motion abnormalities can 
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occur and indicate coronary artery disease even if the patient has not had a prior heart attack.  

Left ventricular wall motion can be observed via numerous imaging modalities, including 

cineradiography, echocardiography, gated SPECT, and blood pool imaging.  Blood pool 

images are studied in this work. 

Left Ventricle

Left Atrium

Right Ventricle

Right Atrium

Apex

Base

Lateral
S

ep
tu

m

 

Figure 2.1: A schematic of the human heart.  Left ventricle region names are given in italics. 

Blood pool imaging is a nuclear medicine technique in which red blood cells are 

“labeled” with a radioactive material, such as technetium-99m.  Because a relatively high 

volume of blood exists in the chambers of the heart, images of the “blood pools,” collected 

by a gamma camera, for example, show the analyst the positions and shapes of the chambers.  

Images are collected when scintillations from the crystal in the gamma camera are recorded 

as events (defined by spatial location and energy) in an event stream.  Image acquisition is 

“gated” by the electrocardiogram.  The collection process takes advantage of the fact that the 

electrocardiogram signal has a relatively consistent shape for each heartbeat.  When one 

particular part of that shape is detected, a marker is placed in the event stream.  The markers 

define corresponding parts of each heartbeat from which events can be summed into images, 

which when ordered, form an image sequence representative of a single heartbeat.  Events 
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from irregular beats are ignored, and the fact that only a small amount of radioactive material 

is introduced into the bloodstream is overcome by the gating and summing process.  

“Equilibrium images” are captured when the radioactive material is uniformly distributed 

throughout the blood stream.  This research uses modified left anterior oblique (MLAO) 

gated blood pool equilibrium image sequences from patient  studies.  The MLAO view is 

used since it most clearly shows the left ventricular chamber. 

Wall motion can be classified as normokinetic, mildly hypokinetic, moderately 

hypokinetic, severely hypokinetic, akinetic or dyskinetic, that is, regions of the left 

ventricular walls can exhibit various types and degrees of motion abnormalities.  Current 

practice for clinical interpretation relies on subjective assessments based on observer 

training, which can sometimes result in significant intra-observer and inter-observer 

variability.  Reliable, automatic classification of left ventricular (LV) regional wall motion 

would 1) enable the computer as an observer in order to save costly human observer time and 

2) improve reproducibility and reliability.  Presented in this work is a model based approach 

to automatic left ventricular wall motion classification. 

A commonly used method for quantifying LV regional wall motion is the “centerline 

method” developed by Sheehan et al.4  This 2D method measures motion along chords 

perpendicular to a “centerline.”  The centerline is a curve that is halfway between the LV 

end-diastolic and end-systolic boundary contours.  The boundary contours are typically 

chosen manually.  The method does not require localization of the apex.  Sheehan et al. 

showed that the centerline method distinguishes normal patients from patients with 

ventricular wall motion abnormalities associated with coronary artery disease.  The motion 
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measurement it provides correlates well with the severity of stenosis, and the mean wall 

motion abnormality it provides correlates well with area ejection fraction. 

One example of early work to automatically classify LV regional wall motion is the 

work by Sychra, et al.5  They form “Fourier Classification Images” by harmonic analysis of 

pixel time activity curves from cardiac nuclear medicine images as a basis for feature 

computation, Fisher’s linear discriminant analysis of the features, and Gaussian modeling of 

8 wall motion classes.  Wall motion classes are normal 1, normal 2, mildly hypokinetic, 

hypokinetic, hypokinetic-akinetic, akinetic, akinetic-dyskinetic, and dyskinetic.  Each pixel 

in Sychra’s images is assigned a wall motion class based on analysis of its time activity 

curve.  They define “acceptable agreement” with the consensus of sequence analysis by 

physicians as differing from the consensus by one class or less.  With this definition of 

“acceptable agreement,” they achieved an average of 86% pixel accuracy for normal classes 

and 73.3% pixel accuracy for hypokinetic classes on their training set.  They analyzed a total 

of 70 cardiac studies. 

More recently, Nastar and Ayache suggested a 3D model that they claim can be 

applied to automatic diagnosis of heart disease.6  They define a deformation spectrum based 

on modal analysis of a physically based deformable surface.  They use the deformation 

spectrum to compare deformations. 

Gated myocardial perfusion SPECT imaging is commonly used to quantify left 

ventricular performance, myocardial perfusion and regional function.  Global measures of 

performance accurately attainable from cardiac gated SPECT include left ventricular ejection 

fraction, end-diastolic chamber volume and end-systolic chamber volume.  Local 

quantification of wall motion and wall thickening is possible as well.  In addition, gated 
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SPECT can provide 3D visualizations of left ventricular wall motion.7  Software that 

facilitates myocardial perfusion SPECT analysis and interpretation has been developed by 

Emory University, Cedars-Sinai Medical Center, and the University of Michigan and has 

been licensed to a number of major companies. 

Automatic classification of LV regional wall motion has been attempted before by 

Tsotsos using his ALVEN system.8  A description of ALVEN was first published in 

Tsotsos’s dissertation in 1980.  Other descriptions of the ALVEN system can be found in 

Tsotsos.9,10,11 

ALVEN used images obtained by left ventricular angiography, a process which was 

state-of-the-art at that time, but suffered from limitations.  Angiographic images are collected 

by taking conventional X-ray images of a radio-opaque dye injected through a catheter into 

the desired location.  The catheter is inserted into an artery in the upper arm or upper leg, and 

guided through the aorta into the area to be imaged, which may be one of the chambers of the 

heart or any of the coronary arteries. 

ALVEN is a system that produces output corresponding to the active and most certain 

hypotheses of a knowledge base.  Much of the terminology used to describe the hypotheses 

and organization of the knowledge base is the same as that used to describe modern object-

oriented programming (e.g., “instance-of,” “aggregation,” “inheritance”) suggesting that a 

modern object-oriented language might be used to straightforwardly implement the 

knowledge base.  Which hypotheses are activated (i.e., which objects are instantiated) is 

determined using rules on image and inter-image descriptions.  A relaxation labeling 

procedure, which limits the search space based on active hypotheses pertaining to the motion 

of the ventricle, is used to find boundaries of the ventricle.  For example, if “contract” is an 
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active hypothesis, the speed and direction of contraction calculated from previous frames can 

limit the area in the current frame in which to search for the boundaries.  If the boundaries 

are not found, the constraints on the search space can be relaxed by using a parent of the 

hypothesis.  For example, “beat” might be a parent of “contract” and “expand,” so speeds and 

directions for both contraction and expansion could define a search space.  A less constrained 

default search is used if the more constrained one(s) fail(s) to find an appropriate boundary.  

Low-level image and inter-image descriptions are produced from the boundaries.  

Hypotheses are activated according to the descriptions.  Hypotheses are ranked by certainty 

factor.  Certainty factors are initialized according to a simple scheme (for example, if one 

hypothesis is active and causes another to become active, the two may share equally the 

certainty factor of the first).  The certainty factors are updated using a relaxation labeling 

procedure introduced by Zucker. 

 Most of Tsotsos’s reported results pertain to the analysis of the dynamics of 

implanted Tantalum markers.5  Markers were implanted in the left ventricular wall of patients 

who had undergone coronary bypass surgery.  Films of the left ventricle and the markers in 

motion allowed the evaluation of the effectiveness of the surgery and drug interventions.  

Nine markers were implanted around the left ventricular wall and two on the aortic valve 

edges.  After hypotheses guided image analysis (described above) using a modified Marr-

Hildreth operator to extract the markers from the images, low-level image and inter-image 

descriptions were produced.  Low-level image descriptions included “major and minor axes, 

volumes, 2D areas of segments, segmental volume contributions, circumferential dimensions, 

and changes in radial axis lengths.”  Low-level inter-image descriptions included “relative 

directions of motion and rates of change.”  Rules on the image and inter-image descriptions 
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caused activation of hypotheses corresponding to anomalies and their degrees like 

“asynchrony, hypokinesis, dyskinesis, too slow or fast rate of change of volume with respect 

to LV phase, or too long or short phase duration.”  In Tsotsos5, an example left ventricle that 

was judged by a radiologist to exhibit hypokinesis of the anterior segment is given.  ALVEN 

gave output for each of the markers, segments, and left ventricle that included a “descriptive 

term, possible referent, quantitative values, and a time interval or instant.”  HYPOKINESIS 

is a descriptive term corresponding to one of the motion hypotheses.  Quite a number of 

HYPOKINESIS instances were reported by ALVEN.  Most were for the anterior segment, in 

agreement with the radiologist’s opinion. 

To summarize ALVEN’s massive textual output, a summary graphic display was 

developed.  Time was presented on the horizontal axis, marker and segment index were 

presented on the vertical axis, and shading indicated how the segment was moving (inward, 

outward, not at all, and degree of hypokinesis if present).  Tsotsos concluded that for several 

studied cases, ALVEN gave output that was more detailed than, but still consistent with, the 

radiologist’s assessment. 

Left ventricular regional wall motion classification was chosen in this work as a 

driving problem for developing and testing a new method for classifying non-rigid object 

motion in image sequences.  The previously described methods of Tsotsos and Sychra et al. 

operate using a knowledge based or pixel time activity curve based approach to the problem.  

According to Wechsler, knowledge based computational vision systems suffer because they 

depend on knowledge that “is empirical, narrowly focused, involves a large number of 

heuristic rules of thumb, and cannot be easily extended.”12  Pixel based methods cannot 

handle aspects of cardiac motion like global translation and twisting of the heart during its 
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beating, because those global motion effects introduce activity into a pixel from multiple 

anatomical locations.  Model based approaches to cardiac analysis and segmentation 

overcome these difficulties and are currently popular.  This work introduces a model based 

approach to cardiac image segmentation based on anchor primitives.  The anchor primitive 

models yield features in each frame, and thus sequences of feature vectors across time, that 

have intuitive meaning and are easy to compute.  Sequences of feature vectors are often 

classified using hidden Markov models, because of their robust statistical nature and their 

ability to capture time dependence in a way that is representative of a training set, rather than 

based on ad hoc rules.  Hidden Markov models allow modeling of non-stationary stochastic 

processes and model feature changes that may vary in duration across time.  This work 

introduces a hidden Markov model based classification approach using anchor primitive 

implied features.  Sychra achieved about 80% classification accuracy (70 cases) on his 

training set when distinguishing normal motion from hypokinetic motion.  In a comparable 

task in this work, 80% classification accuracy (25 cases) is achieved when distinguishing 

normal motion from abnormal motion in a leave-one-out analysis. 

The method developed in this work for regional wall motion classification is 

presented in Chapter 5.  Chapter 3 gives background information on the other motivating 

image sequence classification problem studied in this work, computer lipreading.
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Chapter 3 
 

Computer Lipreading 
 
 

This chapter presents a survey of the previous work on computer speechreading or 

computer lipreading, with an emphasis on the most recent work.  Throughout the chapter, the 

terms speechreading and computer lipreading are used interchangeably. 

Computer lipreading remains a largely unsolved problem.  Recent results of 

Matthews, Cootes, et al. suggest the difficulty of the task.1  They compared features based on 

Active Shape Models, Active Appearance Models and scale-space analysis on a multi-

speaker (not speaker-independent), isolated word recognition task and achieved a maximum 

recognition accuracy of 44.6% (260 word test set).  However, they rightly point out that the 

point of computer lipreading is to augment acoustic speech recognizers in noisy 

environments, as was discussed in Chapter 1.  Systems where computer lipreading is used to 

augment and improve acoustic speech recognition are known as audio-visual systems. 

Much important computer lipreading work has been done using gray-scale images by 

Matthews and Luettin.1,6  In addition, Bregler and colleagues used a deformable model to 

track the lips and used projections of gray-scale values collected based on the deformable 

model positions onto principal components found by principal components analysis (PCA) as 

inputs for a hidden Markov model classification system.2  Bregler showed a statistically 

significant improvement for his audio-visual system over his acoustic system alone, on a 

more challenging task than those discussed in Matthews’ or Luettin’s work.  Both Bregler 
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and Matthews cite Petajan3 as the first author to show that audio-visual recognition systems 

outperform acoustic recognition systems.  Matthews cites Goldschen as the first author to 

apply hidden Markov models to computer lipreading.4  As computer memory and processing 

power continue to increase, color images could be used to improve results even further.  

Color information has been shown to be useful for finding the lip boundaries in image 

sequences by Liew, et al.5 

Luettin and Thacker use models based on the Active Shape Models of Cootes, et al 

for tracking the motion of the lips and extracting features for classification.6  Active Shape 

Models7,8,9 are built by placing model points by hand along the boundaries of an object in a 

set of training images.  Intensity derivative profiles that are centered at each model point in a 

direction perpendicular to the boundary are extracted.  For each training image, the (x,y) 

coordinates of the model points are grouped into a vector which represents the shape of the 

modeled object.  Similarly, the intensity derivative profiles for each model point are 

concatenated into a vector that represents the intensity information for a training image.  

(This is where the method of Luettin and Thacker differs slightly from the method of Cootes 

et al.  Cootes et al. treat the intensity derivative profile vectors for each model point 

separately in their ASM work.)  Statistics are computed for both the shape and the intensity 

derivative profile vectors over the training images.  Shape and intensity models consist of 

mean vectors and eigenvectors resulting from principal components analysis.  Principal 

components analysis over the shape vectors yields a subspace to which the shape is 

constrained during model fitting.  The cost function for model fitting in a new image is based 

on the match between the intensity derivative profile vector for a candidate position and the 

intensity derivative profile model obtained from the training images.  To initialize lip 
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tracking, the mean shape model is placed into the initial image of a sequence at a random 

location.  To perform tracking, the final model configuration in one frame becomes the initial 

model configuration in the following frame. 

Luettin and Thacker use the shape projection coefficients, the intensity derivative 

profile projection coefficients, inter-frame changes in these values, and an inter-frame change 

in scale as features for recognition.  Scale is defined for their models to be the distance 

between the corner points of the lips.  The corner points are the places along the outer 

boundaries where the upper and lower lips meet. 

In one set of experiments, these features were used as inputs for six state hidden 

Markov models.  Each hidden Markov model represented one of the words “one” through 

“four.”  The database consisted of the first four English digits spoken twice by twelve 

different speakers.  Speaker-independent recognition experiments used a leave-one-speaker-

out technique.  The same database was used for evaluations of the methods presented in this 

work. 

Two active shape models were constructed, one that modeled only the outer boundary 

of the lips, and another that modeled both the inner and outer boundaries.  For both models, 

they used the shape features alone, the intensity features alone and the shape and intensity 

features together.  They found that the model that consisted of points along both the inner 

and outer boundaries gave the best performance when both shape and intensity features were 

used, along with inter-frame changes in the features (which they called delta features).  They 

then tested the recognition performance of each feature individually.  Tests were then 

performed using the five features (two shape features and three intensity features) that gave 

the highest individual recognition accuracy, along with delta features and delta scale.  Again 
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they found that the model that consisted of points along both the inner and outer boundaries 

gave the best performance when both shape and intensity features, along with delta features, 

were used.  This limited feature set gave significantly higher recognition accuracy than the 

full feature set used initially.  These best results were similar to the performance of humans 

not trained in the art of lipreading.  They reported an average recognition accuracy of 90.6%.  

Their results suggest that both shape and intensity information are important to performance, 

inter-frame changes in feature values are important to performance, and feature selection 

using a greedy approach improves results. 

Movellan has conducted experiments to find features for visual speechreading.  In 

fact, Movellan provided the database used by Luettin and Thacker.  In one set of 

experiments, he defined a speaker-independent recognition task of the first four English 

digits.10  Several image-preprocessing steps were taken.  The first was a process he defined,  

“symmetrizing” images, where corresponding pixels from the left and right sides of each 

image were averaged.  This reduced the number of relevant pixels to one-half of the original 

number.  The difference between each symmetrized image and the immediately prior one (in 

time) was taken.  Movellan referred to these as delta images.  The symmetrized images and 

the delta images were compressed and subsampled using Gaussian filters.  The outputs of the 

filters were fed through a logistic function and scaled.  The processed symmetrized images 

and the delta images were concatenated together and used as inputs to a hidden Markov 

model based classifier.  The best performance was obtained using models with three states 

and three Gaussian mixtures per state.  These models provided a recognition accuracy of 

89.58% on average.  Movellan compared the HMM performance to human performance on 

the same task.  Six people with normal hearing not trained to lip read achieved an average 
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recognition rate of 89.93%.  Three people with profound hearing loss trained to lip read 

achieved an average recognition rate of 95.49%.  Movellan demonstrated in this work that 

simple image based features can be used for recognition, that the performance on this task 

was comparable to the performance of humans not trained to lip read and that the delta 

images had a significant impact on recognition accuracy.  This last point is consistent with 

the conclusions reached by numerous researchers, namely that the explicit use of dynamic 

information can have a great impact on classifier performance.  Often dynamic information is 

modeled and captured in two ways, via the feature set and the hidden Markov model states 

and transition probabilities. 

In more recent work, Movellan and his colleagues studied the use of different types of 

dynamic information as features for recognition.11  Specifically, they compared performance 

on the task described in the previous paragraph using four different feature sets.  One feature 

set was the same as that described in the previous paragraph, which they called “low-pass + 

delta” in this paper.  The second feature set was obtained by performing principal 

components analysis on the symmetrized and delta images, rather than low-pass filtering and 

subsampling them using Gaussians.  The third feature set was a 140-dimensional input vector 

representing the optic flow.  The fourth feature set was the combination of the low-pass 

filtered intensity values and the optic flow input vector.  They found that the “low-pass + 

delta” feature set gave the best performance—it outperformed both PCA and the feature sets 

which incorporated optic flow.  Those feature sets that used the delta images significantly 

outperformed those that used optic flow.  The authors speculate that the thresholding to 

eliminate noisy estimates that is part of the optic flow computation may make the flow 
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representation too sparse.  They also found that normalizing the images for differences in 

rotation, translation, and scaling had a significant positive impact on recognition accuracy. 

Movellan has also studied the issue of classifier fusion in audiovisual speech 

recognition.  He and his colleagues present results that suggest that the audio and visual 

signals produced in human speech communication are conditionally independent.  Such 

results imply that probabilities produced by models for audio and models for video speech 

recognition can be easily combined.  This fact further motivates the study of computer 

lipreading systems to augment acoustic speech recognizers. 

Recently, Chalapathy Neti and his colleagues at IBM Research have demonstrated 

promising results for audio-visual speech recognition.  In fact, they showed the performance 

of an audio-visual system to be significantly better than audio-only systems at certain audio 

signal-to-noise ratios on a speaker-independent, large-vocabulary task (10,400 word 

vocabulary, 1038 test utterances).12  Their visual features are based on a discrete cosine 

transform of pixel values from a region of interest containing the mouth, followed by linear 

discriminant analysis (LDA). 

Several authors, including Goldschen, Matthews et al., Bregler et al., Luettin et al., 

and Movellan et al., have used hidden Markov models successfully for computer lipreading.  

Several authors, including Bregler et al., Matthews et al., and Luettin et al., have used model 

based approaches for image sequence segmentation and feature extraction.  Shape and 

intensity features and inter-frame changes in feature values were important to successful 

computer lipreading in the previous work of Luettin et al.  The approaches of Bregler et al., 

Matthews et al., Luettin et al., Movellan et al., and Neti et al. operate by performing PCA or 

LDA on functions of image intensities to determine statistical features for classification.  
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Rather than perform PCA or LDA, which are linear methods and depend on having an 

adequate amount of training data to correctly capture covariance across a population, in this 

work, I introduce the anchor primitive model that provides intuitive, appropriately correlated 

and easily computed geometric features.   

Here, as in much of the work reviewed in this chapter, a model based approach is 

taken to lip tracking (segmentation) and feature extraction.  The model based approach 

produces time sequences of feature vectors.  As in much of the reviewed work, a hidden 

Markov model based classification system using the time sequences of feature vectors as 

inputs is used for classification experiments on the database provided by Movellan.10  I show 

that given accurate segmentations of lip images by anchor primitive models, easily computed 

intuitive geometric features (rather than PCA based features) are implied by the model and 

yield accurate classification results.  Anchor primitive based classification yielded 89.58% 

(86/96 sequences correct) accuracy on Movellan’s task, equaling Movellan’s best results.
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Chapter 4 

Background on Image 
Segmentation and Statistical 

Classification of Time Sequences 
 
 

The system that performs image sequence classification evaluated in this work finds 

the object of interest in each image, makes measurements of the object, groups measurements 

across the image sequence over time, and passes those measurements to a statistical 

classifier.  The focus of this work is an anchor primitive based framework for statistical 

feature definition for image objects in image sequences.  Alternative approaches to statistical 

feature definition for image sequence classification are, of course, possible; they include 

performing 3D object finding (2 spatial dimensions plus time)—thereby performing spatio-

temporal analysis and making measurements based on that analysis.   This chapter motivates 

and provides background on the object finding and statistical classification methods of this 

work. 

Delineating the object of interest in an image is known as image segmentation.  Many 

approaches to automatic and interactive image segmentation have been developed.1  The 

general approach taken in this work is deformable model based segmentation.  Background 

on these methods is given in this chapter.  Deformable model based segmentation methods 

use a combination of intensity information and a geometric model of the object sought.  They 
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use a geometric model of the object in order to guide the segmentation process when 

intensity information is unreliable.  Intensity information may be unreliable in regions where 

neighboring objects provide interfering information and the neighboring object location 

varies.  Also, intensity information may be inconsistent across the population of images of an 

object.  Several deformable model based segmentation methods are reviewed in this chapter, 

with special attention given to medial methods, because they motivated some of the 

contributions of this work. 

There are many possible approaches to automatically classifying time sequences of 

feature vectors including dynamic time warping, time-delay neural networks, knowledge 

based approaches and statistical classification.  According to Wechsler, knowledge based 

computational vision systems suffer because they depend on knowledge that “is empirical, 

narrowly focused, involves a large number of heuristic rules of thumb, and cannot be easily 

extended.”2  Statistical approaches exhibit power and generalization capability by modeling 

real world situations by learning their characteristics from a training population assuming one 

can find a representative underlying model.  A popular statistical model used to represent 

time sequences is the hidden Markov model.  Background from the literature on hidden 

Markov models is given in this chapter as well.  The previous work and background 

theoretical material form the basis and motivation for the contributions presented in Chapter 

5.  

4.1.  Deformable Model Based Segmentation Methods 

Deformable model based approaches have gained widespread acceptance in the 

medical image analysis community.  The power of the approaches are summarized by 

McInerney and Terzopoulos in the following:
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 The widely recognized potency of deformable models stems from their 
ability to segment, match, and track images of anatomic structures by 
exploiting (bottom-up) constraints derived from the image data together 
with (top-down) a priori knowledge about the location, size and shape of 
these structures.  Deformable models are capable of accommodating the 
often significant variability of biological structures over time and across 
different individuals.1 

 
Deformable model based segmentation methods include landmark based methods, 

boundary based methods, atlas based methods and medial methods.  To place deformable 

models in an image (thereby delineating the object of interest and therefore “segmenting” the 

image), typically a function is optimized that includes a measurement of model to image 

match (“image match” based on intensity information) and a measurement of the consistency 

of the model shape with the candidate shape in the image (“geometric typicality”). 

 4.1.1.  Landmark Methods 
 
 Landmarks are places on image objects that exhibit correspondence across instances 

of images of the same anatomy.  Landmarks are often homologous across instances as well. 

Landmark based approaches have historically been used for image registration.  

Image registration is often necessary to monitor the effects of disease treatment, therapy or 

progression over time, quantify the effects of disease on abnormal versus normal patient 

populations, or display information from multiple imaging modalities simultaneously.  It is 

common practice to choose landmarks manually when registering images.  Some techniques 

used in landmark based registration approaches can also be applied to landmark based 

segmentation. 

 In landmark based segmentation, as is usual, algorithms seek an optimal combination 

of image match given a landmark configuration and geometric typicality of the landmark 

configuration.  Landmark configuration to image match can be determined by measuring 
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salient features of the image that correspond to landmark locations using statistical template 

based or analytic kernel approaches.  Geometric typicality can be determined by measuring 

the difference between a candidate configuration from a statistical model obtained from 

training images or a configuration in a previous frame in the case of image sequence 

segmentation. 

 Morphometric differences in landmark configurations can be measured by standard 

techniques.  One such technique is the Procrustes distance.  When using the Procrustes 

distance to measure the shape difference between landmark configurations, configurations 

are normalized so that translation, rotation, and scaling differences are eliminated.  The sum 

of squared distances between corresponding landmarks is then used as a measure of the shape 

difference between two landmark configurations and can be used as a measure of geometric 

typicality for image segmentation. 

 Minimizing an energy function that has the following form (for 2D images): 
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has been used to find v , a vector displacement field mapping one landmark configuration to 

another.  This energy has been called the “bending energy” or “thin-plate spline” energy,3 

although it is based on the Frobenius norm rather than a physical law.  The minimal bending 

energy over all vector fields )(xv consistent with the known v  values at the landmarks is a 

measure of geometric typicality when comparing a new landmark configuration to a model 

(“typical”) landmark configuration. 

 Alternatives to geometric measures on model deformation are measures based on 

physical laws such as those governing fluid flow or matter deformation.  The minimal fluid 
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flow energy between landmark configurations is a measure of the shape difference between 

landmark configurations.  As was proven by Joshi and Miller,4 fluid flow produces a 

diffeomorphic map meaning that a transformation implied by fluid flow is smooth and will 

not fold.  Diffeomorphisms maintain topology, thus preserving connectivity of subregions 

and neighbor relationships.5  These diffeomorphic properties ensure that landmarks warp into 

sensible locations in a target image. 

4.1.2. Boundary Based Methods for Segmentation 
 

Boundary representations (b-reps) are used for image segmentation as well.  Model to 

image match is computed using statistical templates or analytic kernels placed relative to the 

boundary model position and orientation.  Correlation, sum of squared differences, or a 

statistical comparison measure between templates or kernels and the image to be segmented 

is summed along the boundary.  Geometric typicality is computed by comparing geometric 

representations between a candidate configuration and a statistical model.  In the Point 

Distribution Models (PDMs) of Taylor and Cootes, b-reps are lists of points and are 

compared using the Procrustes distance (defined above).  In b-rep mesh models, boundary 

points are ordered and linked so that additional information like neighbor relationships and 

curvature can be used to compare model configurations.6  Orthogonal basis function 

decomposition has also been used to represent boundaries.7  Summed squared differences in 

coefficients can be used as a measure of geometric typicality.  Orthogonal basis function 

boundary representations can be sampled so that locations along the boundary can be carried 

along with the representation.  The problem with b-rep models is that correspondence 

between boundary points of models to be compared is usually difficult to establish and 
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maintain.  This means that measures of geometric typicality can be unreliable and 

inconsistent. 

4.1.3. Atlas Based Methods 
 
Atlas based methods frequently model a larger set of anatomy than other methods 

(e.g., “brain atlas” versus “corpus collosum b-rep”).  In addition, atlas based methods usually 

have a class label at every voxel in the model of the anatomy that can be carried into new 

images.  Again, both image match and geometric typicality can be optimized to perform atlas 

based segmentation.  Image match between the atlas model and a new image can be 

measured by comparison to a statistical template, normalized cross-correlation with the 

template, squared differences of template and target image pixel intensities, optic flow based 

functions, and mutual information between template and target images.  Geometric typicality 

can be landmark based, curve based, displacement vector based, voxel based, or boundary 

based to name a few possibilities. 

4.1.4.  Deformable M-reps 
 

Based on evidence of a boundary in one part of an image and evidence for a boundary 

in another part of an image, a model designer using deformable m-reps assigns “medial 

primitives” to locations in the image between the two boundaries.  A medial primitive 

(pictured in Figure 4.1) is a spatial location on an image equidistant from two image object 

boundaries together with local estimates of object width r, boundary normals n1 and n2, 

object angle ? and medial track direction b.8,9,10  The local estimate of object width is 

commonly referred to as the radius or scale of the primitive.  The medial track direction 



 37

estimate is a local indication of how the object is oriented.  The object angle is the angle 

measuring the difference between the medial track direction and the boundary normals. 
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Figure 4.1: A medial primitive in a 2D image object.  X represents the medial primitive’s spatial location.  
Normals n1 and n2 are perpendicular to the object boundary.  The distance from the medial primitive 
location to the object boundaries is r.  ? is the angle between the boundary normals and the medial track 
direction, b. 

 
Models that consist of medial primitives have been used for image segmentation by 

Stephen Pizer and his colleagues.  These models have been referred to as Deformable Medial 

Representations (deformable m-reps).6,11  They combine prior knowledge about an object’s 

expected shape with image evidence for the object to locate it in an image.  They are similar 

in spirit to other Bayesian and deformable model based approaches; however, they appear to 

be more robust because they incorporate multiscale medial and boundary information such as 

locations, orientations, scales, relationships between paired boundary points and relationships 

between neighboring medial primitives.  Medial primitives deform via medial primitive 

transformations, which are similarity transformations composed with object angle change. 

A deformable m-rep figural model consists of a structured collection of medial points 

(located on or near a multiscale medial axis) and a dense displacement field on the boundary 

implied by the medial primitives.  When the model is applied to an image, it is allowed to 

evolve so that model points are optimally placed, according to a probabilistic approach that 
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optimizes the position of the model with respect to the image information (image match), 

weighted by the deviation of the overall shape from a model template (geometric typicality).  

Deformable m-rep models are created by interactively generating initial medial primitives, 

possibly through stimulated multiscale medial axis (core) generation, followed by iterative 

refinement of medial primitives.  Deformable m-rep models that consist of multiple figures 

(that is, they have multiple distinct medial tracks) can be constructed and applied as well.  An 

example of a deformable M-rep model applied to images from a cardiac nuclear medicine 

image sequence is shown in Figure 4.2. 

 

 

 

 

 

 

 

 

 

Multiscale deformable m-reps allow a coarse-to-fine approach to image segmentation.  

At each scale level, a probabilistic formulation says that a log posterior probability, namely 

the log probability of the model given the image information, should be maximized over the 

parameters of a geometric transformation appropriate to that scale level. This probability is 

found in a Bayesian fashion, by taking the log of a prior of the model M and adding a log 

likelihood function of the image information I given the model, and ignoring a term that is 

Figure 4.2: The lefthand image is a blood pool frame, two frames after the frame used to create 
a deformable m-rep model.  The middle image shows the deformable m-rep model manually 

rotated and translated away (by 4 pixels and 20 degrees) from an optimal position.  Following 
optimization, the deformable m-rep model nicely segments the left ventricle (righthand image). 
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independent of the model’s position and configuration (log(P(I))), as in the following 

equation:   

)).(log())(log())|(log()|(log( IPMPMIPIMP −+=  

The log likelihood function can be defined at each scale level by correlation of the model’s 

intensity templates (analytically or statistically defined) with intensity information based on 

the implied boundary at the current scale in the image undergoing segmentation. 

One example of defining the log priors for the multiscale m-rep segmentation 

approach is as follows.9  At the coarsest level of scale, the object level, the log prior is 

defined for a candidate similarity transformation as a Gaussian prior on boundary 

displacement.  At the medial primitive level, the log prior is defined for medial primitive 

transformations of the primitive as a Gaussian prior on boundary displacement with a 

Markov random field prior relative to the medial primitive transformations of neighboring 

medial primitives at this level.  At the boundary level of scale, the prior is a Markov random 

field prior on the boundary displacement field relative to the displacements of neighboring 

boundary points at this level. 

Recently, alternatives for defining log priors (geometric typicality) for multiscale 

deformable m-rep models have emerged based on the work of Fletcher et al.12  These are 

based on the fact, used advantageously by Fletcher et al., that medial primitives are elements 

of a Lie group.  Based on this property, a distance metric has been defined allowing 

comparison of two medial primitives along Lie group geodesics.  The distance metric could 

be used to measure geometric typicality of a candidate m-rep versus a template m-rep.  

Furthermore, the Lie algebra allows definition of “principal geodesic analysis” on members 

of a m-rep group.  Candidate m-reps could be projected onto principal geodesics and squared 
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differences of projection coefficients between a candidate and a template summed to measure 

geometric typicality.  Finally, Fletcher et al. have defined Gaussian distributions on m-rep 

Lie groups, allowing the definition of Gaussian priors for m-reps. 

Deformable m-reps can be used to track the shape changes of an object in an image 

sequence, as was shown in Clary et al.13  The final configuration of the deformable m-rep in 

a frame is used as the initial configuration in the immediately subsequent frame.  Extensions 

to the deformable m-rep approach are introduced and evaluated in this work.  Features based 

on the attributes of special medial primitives known as anchor primitives are used as inputs 

to a statistical classifier in order to perform image sequence classification. 

Multiscale medial primitives include a width attribute.  The width attribute is a local 

estimate of object size and is also commonly referred to as the object’s radius.  In the case of 

medial primitives that are found at the end of medial tracks, that is, “endpoints,” the radius is 

a local estimate of the radius of curvature of the boundary.  The width attributes of anchor 

primitives (detailed in Chapter 5), normalized by their maximum over an image sequence, 

are in this work proposed and evaluated as features for classification for both the left 

ventricular regional wall motion application and the computer lipreading problem.  In 

addition, the inter-frame change in the width attribute is used as a feature as well. 

Because multiscale deformable m-rep models can robustly track the location of an 

object’s middle, data specific to the object middle or near middle can be used as features as 

well, if desired.  For example, a Gaussian weighted intensity value or intensity profile values 

taken near a medial point that corresponds to the middle of the mouth opening may be (a) 

useful feature(s) for classification in the lipreading problem.  This is due to the fact that, for 

some speech, the visibility of the teeth and tongue is an important cue for human 
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classification.14   

4.2.  Hidden Markov Models 

The statistical classifiers used in this work are hidden Markov models (HMM’s).  

Hidden Markov models provide a powerful way to represent discrete-time stochastic 

processes and have been used effectively in speech and handwriting recognition 

applications.15,16  A hidden Markov model can be constructed for a class, for example, 

“severely hypokinetic apical wall motion” in the case of the left ventricular regional wall 

motion problem or digit “one” in the case of the computer lipreading application, based on 

training data for which class membership is known.   

S1 S2

a12

a11 a22

A Two State Hidden Markov Model

Example time
sequence:

 O={O1,O2,O3} b1(Ot) b2(Ot)

 
 

Figure 4.3: A two state HMM is shown above.  The model ? has two states S1 and S2.  Three observation 
vectors O1, O2, and O3  are modeled. Transition probabilities P(st=Sj | st-1=Si) label the state transitions in 
the graph, aij.  Output probabilities, the probabilities of generating a particular observation Ot in a 
particular state Si are denoted bi(Ot).  The probability that the model generated the observation sequence 
is P(O|?).  Assuming both states are valid final states and S1 is the only valid initial state, P(O|?) = b1(O1) 
a12 b2(O2) a22  b2(O3) + b1(O1) a11 b1(O2) a12  b2(O3) + b1(O1) a11 b1(O2) a11  b1(O3). 

 
The model ? can then be used to compute the probability that a new input sequence O 

belongs to the represented class according to the a posteriori probability:  
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To perform classification, the class assigned to an input sequence is that represented 

by the model with the highest probability P(?|O).  The prior probability of a particular model 

is assumed to be uniformly distributed in this work.  The prior probability of an input 

sequence is independent of the models and can be ignored.  Thus the model ? that maximizes 

P(O| ?) is sought across all models.  A hidden Markov model is graphically represented in 

Figure 4.3 and an example of computing P(O| ?) is given. 

A hidden Markov model consists of two components, a finite-state Markov chain and 

a finite set of output probability density functions.  Models are viewed as “generative,” that 

is, the probability that a given model produced a given input sequence is computed.  HMM’s 

are called “hidden” because the state sequence which generates a particular observation 

sequence is not directly observable.  In general, either states or transitions in the Markov 

chain may have output probability density functions associated with them.  In this work, the 

output probability densities are associated with the states. 

The output probability densities can be used to compute the probability that a 

particular state or transition generated a given “observation,” that is, input feature vector.  In 

the case of continuous parameter HMM’s, observations can be real-valued feature vectors.  

Figure 4.3 illustrates a two state first order hidden Markov model that can generate three real-

valued feature vectors (in this example), O1, O2, and O3.  aij is the probability of a transition 

between states i and j, and p(Ot| Si) is the probability that feature vector at time t was 

generated in state Si, bi(Ot). This example under the given assumptions, then, says that the 

probability of the model generating the observation sequence O1, O2, and O3 is equal to the 

probability of generating the feature vectors via all valid state sequences.  The probability of 
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a feature vector given a state is often obtained in hidden Markov model applications from a 

Gaussian distribution or a mixture of Gaussian distributions.  Maximum likelihood (ML) 

estimates of Gaussian distribution parameters can be made to estimate output probability 

distribution parameters (and the ML estimates correspond to the usual definitions of 

Gaussian model parameters).  Maximum likelihood estimation assumes that the training 

observations are independent.  

Both the parameters of the output probability distributions and the state transition 

probabilities for a set of models can be obtained using standard training algorithms, such as 

the Baum-Welch re-estimation algorithm, and pre-classified data.17  Once a set of models is 

in place, new inputs can be classified using a “decoding” algorithm known as the Viterbi 

algorithm, which is based on dynamic programming and gives the value of P(O| ?) for each 

model.18 

4.3.  Summary 

Approaches to deformable model based segmentation have included landmark based 

methods, boundary based methods, atlas based methods and medial methods.  Medial 

methods have shown particular promise because of their ability to establish an object-centric 

coordinate system that allows correspondence between model points across image object 

instances to be defined.  Such correspondence is necessary for statistical feature extraction 

and is one of the motivating aspects contributing to the definition of anchor primitives in this 

work.  The anchor primitive based segmentation framework introduced in this work is similar 

to landmark based approaches, but it uses symmetries in an m-rep inspired way to reduce the 

number of parameters required to represent an image object.   

Hidden Markov models are widely used in a number of time sequence classification 



 44

applications.  Features based on anchor primitives are used as inputs to hidden Markov 

model based classifiers in this work to classify image sequences.  Chapter 5 defines anchor 

primitives and discusses specific example models for left ventricles and lips in 2D images.
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Chapter 5 

Image Sequence Classification via 
Anchor Primitives 

 

In this chapter, details of the approach to classifying image sequences using anchor 

primitives are given.  A general discussion of anchor primitives is followed by sections on 

applying anchor primitives to heart image sequences and lip image sequences. 

 5.1.  Correspondence and Deformable Models 
 
 A problem with the deformable m-reps approach (and with other deformable model 

based approaches) has been referred to as the correspondence problem.1  The correspondence 

problem is that model points may not be consistently placed (with respect to salient image 

features) by the optimization algorithm on different instances of an image object, because of 

the sparse nature of the models.  For example, medial points may slide toward one end of a 

figure or the other along the medial track.  Reliable measurements for statistical feature 

extraction cannot be made unless model points are consistently placed. 

One approach to enforcing correspondence is to penalize heavily for any sliding in 

the medial track direction, assuming a reasonable initial model point.  The problem is, what 

does “heavily” mean?   Another approach is to consider endpoints to exhibit correspondence, 

and to sample uniformly between the two endpoints of a figure.  The problem is that 
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endpoints exhibit sliding behavior as well (as illustrated in Figure 5.1), so considering them 

to exhibit correspondence is dangerous. 

 

 

 

 

 

 

 

 

Figure 5.1: Medial primitives, including end primitives, may “slide,” that is, change scale and location 
between frames of an image sequence, not because they are following a corresponding image object 
feature but because they begin to track a different image feature. 

 
The approach taken here to combating the correspondence problem is to define and 

use special primitives for image segmentation based on medial primitives.  I begin by 

defining correspondence more precisely.  Primitives placed on multiple instances of an image 

object are said to have correspondence if their attributes are consistent relative to some 

repeated property of the image object, e.g., a salient image feature.   My corresponding 

primitives are called anchor primitives, which are placed using image measurements in 

various parts of an image and prior knowledge of the expected geometric relationships 

between the locations for the image measurements.  To place anchor primitives, an objective 

function is optimized that combines image measurements and geometric penalty terms that 

incorporate the prior knowledge.  To place deformable m-reps that include anchor primitives, 

penalty terms that capture the expected relationships between attributes of the anchor 
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primitives and between anchor primitives and other primitives are also included in the 

objective function. 

5.2. Anchor Primitive Definition 
 

The central idea behind anchor primitives is that if the object is a closed object, it is 

possible to keep the object’s model simple, in terms of the number of primitives.    A single 

anchor primitive may be used to represent a closed object.  The “center point” may be found 

by dividing the boundary into two pieces twice (e.g., a left and right piece and a top and 

bottom piece) and measuring boundariness along each piece.  Note that the pieces may 

overlap—i.e., the left piece may share a portion of the top piece and a portion of the bottom 

piece, etc.  Each of the boundary pieces may be represented by arbitrarily complex curves, 

but complexity is limited in practice by the increase in the size of the search space.  The use 

of anchor primitives simplifies deformable m-reps in terms of the number of primitives 

required, but due to complex boundary representations the anchor primitives themselves may 

be more complex than previously defined medial primitives.  The locations for the anchor 

primitive image measurements are chosen based on the expected locations of corresponding 

geometric entities in the image. 

The purpose of anchor primitives is to provide a stable framework for consistent and 

concise statistical feature definition.   Anchor primitives consist of the following: 

• A center point location.  Note that for a closed 2D object, a “center point” can 

be defined by dividing the object boundary into pieces and specifying 

symmetric relationships between the boundary pieces along the medial axis 

(or axes).  Equivalently, a closed 2D object can be blurred until its primary 

medial axes emerge.  The “center point” is typically medial at more than one 



 50

scale and in more than one medial track direction simultaneously.  The anchor 

primitive center point location provides a reference point for defining salient 

image object feature locations and distances that are also attributes of the 

anchor primitive model. 

• Salient image object feature locations.  Image object feature locations define 

the locations of geometric entities including those boundary pieces 

represented by parametric curves or deformable m-rep models.  For example, 

salient image object feature locations along the left ventricular wall are chosen 

by the model builder (the author in this example) in the left ventricle’s anchor 

primitive model--septal wall center, basal wall center, apical wall center, and 

lateral wall center.  Salient image object feature locations along the lips are 

chosen in the lip anchor primitive model--upper left lip and lower left lip 

corner, upper lip center, upper right lip and lower right lip corner. 

• Curve parameters or deformable m-rep model parameters.  Anchor primitives 

represent geometric entities of the image object using parametric curves or 

deformable m-rep models.  The parametric curves or deformable m-rep 

models can be arbitrarily complex.  The salient image object feature 

(geometric entity) locations may specify curve parameters or locations of 

medial nodes.  Parametric curves or deformable m-rep models constrain the 

search space during anchor primitive fitting and define geometric models for 

model to image match measurement making. 

• Constraints on the relationships between image object feature locations.  

Constraints may be hard or soft.  A hard constraint specifies a fixed 
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relationship between two geometric entities.  A soft constraint penalizes 

model configurations that vary from the typical geometry of the entities. 

Consider the top view of a salamander in motion captured by an image sequence.  A 

schematic of such a salamander is pictured in Figure 5.2 along with its anchor primitive.  

Such an image sequence could be used to study the gait of the salamander. 
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Figure 5.2: A schematic of a salamander and its anchor primitive model.  The stars represent salient 
image object feature locations (geometric entity locations). 
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Consider the attributes of the salamander anchor primitive pictured in Figure 5.2: 

• A center point location denoted by (X, Y).  The salamander has a center that is 

medial with respect to both the tip of its nose and the tip of its tail and the left 

and right sides of its body. 

• Salient image object feature locations denoted by (1,2,3,4,5,6).  There are six 

locations corresponding to salient image object features: head, tail, left front 

leg, right front leg, left hind leg, right hind leg.  Locations may be specified in 

the most convenient coordinate system.  Locations may consist of end points 

of boundary pieces or medial tracks rather than single locations. 

• Curve parameters.  Supplemental parameters that specify control points or 

curvatures may be used to specify curves representing the salamander’s salient 

geometric entity boundaries.  Such control points could be at the tips of the 

legs, head and tail, for example.  Alternatively, another parametric 

representation such as a Fourier representation could be used for the salient 

image object features (geometric entities). 

• Constraints on the relationships between image object feature locations. 

There are hard constraints on distances between adjacent legs on opposite 

sides of the body (between “front legs” or “hind legs”) because the body is 

considered to be rigid in cross-section by this example model.  There are soft 

constraints on distances between legs on the same side of the body (between 

“right legs” or “left legs”) because the body is limited in the amount it can 

turn between frames of an image sequence, assuming an appropriate frame 

rate. 
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The anchor primitive attributes include the center location and the salient geometric 

entity model definitions.  The (X,Y) location of the center point is the (X, Y) attribute of an 

anchor primitive.  The remaining anchor primitive attributes are parameters used to define 

curves or deformable m-rep models representing salient geometric entities of the object.  

Such attributes may include angles, scales, and explicit locations relative to the center point.  

In addition, constraints on the placement of and properties of the geometric entities and their 

relationships to one another play an important role in anchor primitive placement.  By fitting 

models of the most important geometric entities of an object to local image data and 

constraining their placement relative to one another, anchor primitives are placed in an image 

and globally represent a closed image object.   

Consistently placing anchor primitives on image objects from a population allows 

statistical models of the population to be efficiently trained and to exhibit discriminatory 

power.  Anchor primitives are consistently placed because they utilize local image object 

features corresponding to salient geometric entities in a globally optimal model placement 

approach.  By virtue of anchor primitives having long curve sequences to represent salient 

geometric entities, and making image measurements only on salient geometric entities where 

intensity variance is limited, the anchor primitive maintains correspondence more effectively 

than many alternative geometric models.  Thus, variance of statistical features defined by 

anchor primitives due to model placement is significantly reduced.  

5.3.  Anchor Primitive Representing the Left Ventricle 
 

For example, in the left ventricular wall motion tracking application (using MLAO 

view ventriculograms), there is a point that is medial with respect to the left and right (i.e., 
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septal and lateral) boundaries of the left ventricle (LV) and also medial with respect to the 

top and bottom (i.e., basal and apical) boundaries of the ventricle.  

Figure 5.3: The anchor primitive for left ventricular segmentation consists of a location, two different 
scales (the distances between the center location and each set of paired boundaries), two orientations (the 
directions of the rays along which the scales are measured) and four curvature values.  Each boundary 
piece is approximated by a partial ellipse.  The a values are curvature parameters of the partial ellipses. 

The location of the anchor primitive is defined to be the point that serves as the basis 

for measurement making where the objective function that combines model to image match 

and geometric typicality is optimal.  For example, the point that is medial with respect to the 

septal and lateral and basal and apical boundaries is the anchor primitive location in the left 

ventricular wall motion tracking application.  Included in the LV anchor primitive (see 

Figure 5.3) are two scales, s1 and s2, which are the distances between the anchor primitive 

location and the boundaries.  s1 corresponds to the distance to the septal and lateral 

boundaries and s2 to the basal and apical boundaries.  Also included in the primitive are two 

orientation parameters, ?1 and ?2, which are the directions with respect to the horizontal of 

the lateral and basal boundaries, respectively.  α1, α2, α3, and α4 are parameters of four 
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independent ellipses (see Figure 5.4) that model the boundaries in the ?1, ?2, π+?1 and π+?2 

directions, respectively.  Each of these ellipses is used to define a kernel with partial elliptical 

level sets that is used to measure boundariness according to the primitive parameters. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Partial ellipses are chosen to model the boundary pieces because of their relative 

simplicity.  The anchor primitive parameters are used to render each ellipse in a bitmap.  The 

Danielson Distance Transform is used to compute the distance from each pixel in the bitmap 

to the rendered ellipse.  These distances are then used as the radii for a derivative of a 

Gaussian in polar form to compute the kernel values.  More general curves could be chosen 

that might make anchor primitives more powerful, including splines, curves generated using 

Fourier descriptors and hodograph curves.   

u

v

s

αs 

u2 + v2 /α2 = s2 

u2 + v2 /α1
2 = s1

2 /α1
2  

Figure 5.4: The anchor primitive α values, 
the ratios of partial ellipse axis lengths, are 
defined as in this figure.  The u and v 
coordinate axes lie along the axes of the 
ellipse.  s and αs are the lengths of the axes of 
the ellipse.  The second equation above shows 
the relationship between α1 and s1, for 
example, in the defined anchor primitive of  
Figure 3.  The second equation above is 
obtained by letting s1=α1*s. 
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Anchor primitives make it possible to make an object measurement that is consistent 

with the expected behavior of the object over an image sequence. Figure 5.5 shows how a 

length measurement of the left ventricle changes as a function of time.  The measured length 

is the distance between the anchor primitive location and the location of the boundariness 

measurement in the direction of the apex.  As is shown, the length gets smaller as the heart 

contracts and becomes larger again as the ventricle expands.  The length changes are 

consistent with the expected behavior of the left ventricle in a ventriculogram. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 5.5:  The distance S2 between the anchor primitive location and the apex decreases as the 

heart contracts and then increases as the heart expands. 
 
5.4.  Approach to Fitting Anchor Primitives to the Left Ventricle 

 
The approach to image sequence classification is to find optimal anchor primitives for 

each frame of the sequence and then use geometric features based on the anchor primitives 
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and other anchor primitive implied features across the sequence as the basis for statistical 

classification.  Anchor primitive segmentation of each frame in the sequence proceeds as 

follows.  Parameters of an anchor primitive may be manually initialized for the first frame by 

adjusting the size, location and shape of the anchor primitive to visually match the image 

object.  For each image of the sequence beyond the first frame, the initial parameters of the 

anchor primitive are the optimal parameters of the primitive for the previous frame.  (Finding 

optimal anchor primitive parameters is described below.)  Parameters of the template anchor 

primitive on which geometric penalty calculations are based are the optimal anchor primitive 

parameters for the previous frame as well. 

In any given frame, an evolutionary optimization strategy is used to find optimal 

parameters for an anchor primitive with respect to the image object to be segmented. 

5.4.1.  Objective Function 

The objective function optimized by the evolutionary strategy consists of the 

combination of an image match function and a geometric penalty function.  The objective 

function tends to have local optima, so a stochastic optimization method such as evolutionary 

optimization is useful.  When the objective function is evaluated, the image match function 

and the penalty function are computed as outlined in the next section. 

5.4.2.  Image Match Function 

The anchor primitive for the left ventricle specifies that boundariness measurements 

should be made in four directions specified by two orientation angles.  (Two of the four 

directions are π radians from the directions specified by the two orientation angles.)  The 

orientation angles, anchor primitive scales and axis length ratios determine partial ellipses 

along which boundariness measurements are made.   A weighted sum of the four 
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boundariness measurements Bi is the image match function, I =B1*? 1 + B2* ? 2 + B3* ? 3 + 

B4* ? 4.  Each boundariness measurement is weighted by a measure ? j of how well local 

gradients along a given partial ellipse match the normals to the partial ellipse.  In addition, 

boundariness may be reduced non-linearly if the number of pixels of a partial ellipse changes 

significantly between frames, if a partial ellipse semi-axis length changes significantly 

between frames, or if its boundary direction changes significantly between frames. 

5.4.3.  Measuring Boundariness 

Boundariness Bi is measured along partial ellipses using derivative of Gaussian 

kernels whose level sets are partial ellipses.  Partial ellipses are specified according to the 

anchor primitive parameters, as explained above.  The extents of the partial ellipses are 

determined as depicted in Figure 5.6 and the following algorithm description. 

v

u

u

v

u=boxlimit_u

v=boxlimit_v

u=boxlimit_u

Case 1

Case 2

(v0,u0)

(v0,-u0)
(v0,-u0)

(v0,u0)

 

Figure 5.6:  The normals (depicted by the bold arrows) to a partial ellipse (defined by the anchor 
primitive) determine an area into which a derivative of Gaussian boundariness kernel with elliptical level 
sets is placed in the image.  The algorithm for determining the extents of the partial ellipses, the normals 
and ultimately the kernel area is given below. 

 
To construct kernels, for each of four directions specified by the left ventricle’s 

anchor primitive, 
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− boxlimit_v = Beta * r   (r is semi-axis length for current partial ellipse axis along the 
current direction – r and “current direction” are anchor primitive parameters.  Beta is 
a hyperparameter.) 

− boxlimit_u = Beta * os (os is semi-axis length for ellipse corresponding to the other 
direction.) 

− find intersection of ellipse with line v = boxlimit_v, call it (v0, u0) (Case 1 of Figure 
5.6) 

− if (u0 > boxlimit_u) (then apply Case 2 of Figure 5.6) 
− u0 = boxlimit_u 
− v0 comes from intersection of ellipse and line u = boxlimit_u 

− Compute normals to ellipse at (v0, u0) and (v0, -u0) 
− If point (v,u) falls within area between normals and is less than 3*sigma (sigma = 

ρ*r) from the ellipse then the kernel is non-zero at (v,u).  Each kernel value is 
computed as a derivative of a Gaussian with standard deviation sigma along a line 
perpendicular to the partial ellipse. 

The image data is convolved with such a kernel to get a boundariness value for each 

of the four partial ellipses specified by the anchor primitive parameters. 

5.4.4.  Geometric Penalty Function for Left Ventricle Anchor Primitive 

A penalty is imposed when the direction of the left-most boundary point as defined by 

the anchor primitive differs from the direction of the center of the boundary of the left partial 

ellipse.  A similar penalty is imposed when the direction of the southern-most boundary point 

as defined by the anchor primitive differs from the direction of the center of the boundary of 

the bottom partial ellipse.  Another term penalizes variation in the difference between the two 

orientation parameters from π/2.  These model configuration penalties reflect prior 

knowledge that the position of the left ventricle is largely consistent between frames and 

across patients. 

Most geometric penalty function terms penalize changes in the anchor primitives 

between the current frame and the previous frame.  The more change in any anchor primitive 

value from frame-to-frame, the stiffer the penalty.  This reflects prior knowledge of the 
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physics of the contraction and expansion of the left ventricle; only limited motion is possible 

between frames of the image sequence. 

5.5.  Anchor Primitive Based Segmentation of Lip Image Sequences 
 

To segment the lip image sequences, anchor primitives are placed in each frame by 

optimizing an objective function composed of image match terms and geometric penalty 

terms.  Image measurements are made at places that have correspondence between different 

frames—different frames across time and across speakers.  Corresponding places are three 

boundary segments: the left edge of the upper lip boundary, the right edge of the upper lip 

boundary and the lower lip boundary.  The shape of each of the three boundary segments is 

modeled by a quadratic of the form: 

222 222)( scsbsasbsaasf +−++−=

 a

b

c

where a, b, and c are control points.  For each of the boundary segments, a and c 

correspond to the end points of the segments.  b does not necessarily lie on the curve; it is 

similar to a B-spline control point.  A quadratic was chosen because it is simple to 

compute and it models the boundary segment shapes well. 

 The anchor primitive model used to segment lip images is pictured below. 
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Figure 5.7:  Anchor primitive representing the lips.  The outer boundaries of the upper and lower 
lips  are represented by the dotted lines.  The anchor primitive attributes include X,Y, S1, S2, S3, S4, 
S5, O1, O2, O3, O4, and O5..  (X, Y) is the “center” location of the anchor primitive representing the 
center of the mouth.  Si’s are the distances to the quadratic control points defined above.  Oi’s are the 
orientations of the control points relative to the horizontal and origin (X,Y). 

 
 

5.5.1.  Image Match Terms 

Image match terms are calculated using squared z scores of correlations of 

intensity profiles with intensity profile templates, T, extracted in a direction perpendicular 

to the boundary at equally spaced points along the boundary.  The template T is obtained 

from the anchor primitive in the frame immediately prior to the current frame.  (X,Y) 

positions along the boundary are part of the template, TX, TY.  The correlation function for 

each boundary segment is the following: 
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where pi is the intensity profile at the ith position along the boundary for a given segment 

and NB is the number of positions along the boundary for a given segment.  This function 

is converted to a z score for each segment using standard deviations obtained for the 
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correlation values from training sequences.  The means for the z scores are taken to be 

the maximum possible correlation value for each boundary segment.  Thus, the more a 

correlation value is below the maximum possible value, the worse (larger) the z score.  

The squared z score is the image match term for a given boundary segment. 

5.5.2.  Geometric Penalty Terms 

 A geometric penalty reflects that the movement of the mouth is limited between 

frames.  The penalty measures the consistency of the shape of the mouth in the current 

frame with the previous frame and ensures that the shape is “lip-like.”  The geometric 

penalty terms are added to the objective function for each boundary segment.  For a 

particular boundary segment, the penalty is the following: 
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where (X , Y) are positions along the boundary in the current frame, and (TX , TY ) are the 

boundary positions of the template (boundary positions in the previous frame).  ST is the 

scale parameter of the template anchor primitive for this particular boundary segment.  

Geometric penalties are converted to squared z scores for combining with the image 

match terms in the objective function.  Conjugate gradient optimization minimizes 

accumulated squared z scores to find optimal anchor primitive parameters. 

The following chapter discusses the results of classifying image sequences when 

the anchor primitive based segmentation method is combined with a statistical classifier. 

5.5.3.  Tracking Approach for Lip Image Sequences 

In the experiments reported in the next chapter, the first and last frames of the lip  

image sequences are segmented manually.  The manual segmentations are used to 
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initialize the tracking process for both forward in time and backwards in time tracking.  

Templates, including intensity profiles and boundary positions, are defined for the first 

and last frames using the manual segmentations, and templates are defined for the 

remaining frames by the optimal model position in each frame.  Templates are used in 

immediately subsequent frames to compute model to image match and geometric 

typicality in either the forward or backwards in time directions. 

The algorithm for picking the best segmentation of each frame is the following for 

the considered digit classification problem.  Start from the beginning of the sequence.  

For each frame, if the score corresponding to forward in time tracking is better, choose 

the model configuration for forward in time tracking.  If the score corresponding to 

backwards in time tracking is better, choose the model configuration for backwards in 

time tracking for all of the remaining frames.  In other words, once the switch is made to 

the model configuration for backwards in time tracking, never switch back to the forward 

in time model configurations.  The motivation for this algorithm is in tracking a digit like 

“four,” the lower lip dramatically accelerates when the voiceless plosive /ph/ is released 

and the image sequence capture process undersamples the motion in the studied data set.  

Forward tracking correctly tracks lip motion up to the time of the release.  Backwards 

tracking correctly tracks lip motion from the end of the sequence to the frame 

immediately following the release.  This approach only allows for one dramatic 

acceleration per word.  Detecting these discontinuity events is a subject for future 

research. 
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5.6.  Classification of Image Sequences Using Anchor Primitives 
 

Anchor primitives have been applied to statistical feature extraction for image 

sequence classification to show that they provide concise and consistent statistical 

features.  For both the left ventricular wall motion classification problem and the 

computer lipreading problem, anchor primitive attributes and functions of anchor 

primitive attributes are selected in each frame of each image sequence to form a time 

sequence of feature vectors.  The time sequences of feature vectors are used for hidden 

Markov model based classification of the image sequences.  The features selected for 

statistical classification, classification results and conclusions about anchor primitives are 

detailed in the following chapter.
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Chapter 6 
 

Results and Conclusions 
 
 

“An interesting early application of setting the optimal criterion is seen in Pascal’s 
famous “wager.”  In 1670, Blaise Pascal, a French mathematician, claimed that to believe 
in God was rational.  He noted that there are two possibilities, existence of God or 
nonexistence of God, and two possible responses, belief in God or disbelief in God.  
Pascal argued that, even if the probability of God’s existence is extremely small, the gain 
(value) of asserting His existence and the cost of denying it make belief in God the 
rational choice.  In [Theory of Signal Detection] terms, the decision criterion should be 
set infinitely low because the value of a hit is infinitely high as is the cost of a miss, and 
at the same time there is no cost to a false alarm and no value to a correct rejection.  
Thus, `If you gain, you gain all; if you lose, you lose nothing.  Wager, then, without 
hesitation that He is’ (Pensee No. 233, Pascal, 1958).”  --from Psychophysics: The 
Fundamentals, pp. 112-113. 

 
To evaluate the performance of the anchor primitive based image sequence 

classification methodology, classification experiments were designed that used attributes of 

anchor primitives as features.  For each of the two driving problems of this dissertation, left 

ventricular wall motion classification and computer lipreading, several aspects will be 

discussed in this chapter.  They include the following: 

• a brief review of the motivation and background for the classification 

application,  

• the anchor primitive model used to represent the image objects,  

• a summary of possible features for statistical classification implied by the 

anchor primitives,  

• the database used for classification experiments, 
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• results of semi-automatically segmenting the image objects through the image 

sequences,  

• the assumptions made about sequence segmentation when performing 

classification experiments,  

• properties of the statistical classifiers used for classification experiments, 

• the approach to feature selection from the population of features implied by 

the anchor primitives, and 

• results of this work compared to other classification results.  Bases for 

comparison include automatic classification results of other researchers on the 

same task in the case of the lipreading results and results of human expert 

observers in the case of the left ventricular wall motion task. 

 The chapter finishes with conclusions that can be drawn from the results and 

summarizes how the results support the contributions of the work outlined in Chapter 1. 

6.1.  Left Ventricular Regional Wall Motion Analysis 
 

As was stated in Chapter 2, analysis of the motion of the left ventricle’s walls can be 

performed using blood pool image sequences to aid in the diagnosis of coronary artery 

disease and determine the impact of chemotherapy on the heart muscle.  Human experts 

watch “movie loops” (thirty-two frame image sequences) of the left ventricle’s blood pool.  

The volume of the blood pool decreases and increases as the left ventricle contracts and 

expands.  What this means in image terms is that the area of the bright spot representing the 

left ventricle decreases and increases over time.  Human experts watch for irregularities of 

motion of the regions of the left ventricle.  If a region moves irregularly, the coronary artery 

supplying blood to it may be blocked or partially blocked or the muscle tissue may be 
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damaged.  Wall motion can be classified as normokinetic, mildly hypokinetic, moderately 

hypokinetic, severely hypokinetic, akinetic or dyskinetic.  That is, regions of the left 

ventricular walls can exhibit various types and degrees of motion abnormalities.  Regions 

include (see Figure 6.1) lateral (to the patient’s left), basal (toward the patient’s head), septal 

(to the patient’s right), and apical (toward the patient’s diaphragm). 

 

 

 

 

 

 

 

 

Figure 6.1: The regions of the left ventricle from a modified left anterior oblique (MLAO) viewpoint.  
Parts of the walls (regions) are referred to by these names when a clinician describes a regional wall 
motion abnormality. 

For purposes of demonstration, apical wall motion classification is undertaken in this 

work.  An anchor primitive model that allows the motion of the apex to be tracked and 

described is used to generate features for statistical classification. 

6.1.1.  Anchor Primitive for Left Ventricle 

The anchor primitive model used to segment the left ventricle (LV) is pictured in 

Figure 6.2 (repeated from Chapter 5 for the reader’s convenience).  The anchor primitive 

captures the ellipsoidal shape of the left ventricle by modeling 4 of its projected regions as 

partial ellipses.  The lateral and basal region partial ellipses are roughly 90 degrees from one 
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another.  The septal and apical partial ellipses are 180 degrees from the lateral and basal 

partial ellipses, respectively.  The nature of the partial ellipse based anchor primitive is 

detailed in Chapter 5. 

 

Figure 6.2: The anchor primitive for left ventricular segmentation consists of a location, two different 
scales (the distances between the center location and the boundaries), two orientations (the directions of 
the rays along which the scales are measured) and four curvature values.  Each boundary piece is 
approximated by a partial ellipse.  The a values are curvature parameters of the partial ellipses.  The 
length of each partial ellipse is determined by its a and scale values according to an algorithm given in 
Chapter 5. 
 

Attributes of the anchor primitive model are given in the Figure 6.2 and are used as a 

basis for defining statistical features for left ventricular apical motion classification.  The 

attributes include an (x,y) anchor primitive location, distances from the anchor primitive 

location to the lateral and septal and basal and apical regions, respectively, orientations 

relative to the horizontal of the lateral and basal regions (the septal and apical regions are 180 

degrees from the lateral and basal regions, respectively) and curvature parameters of   each 

region’s partial ellipse. 
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6.1.2. Left Ventricle’s Statistical Features Implied by the Anchor Primitive 
Model 

 
With the exception of the anchor primitive position and orientations, I experimented 

with each of the attributes of the anchor primitive model as statistical features for 

classification.  In addition, inter-frame changes in attributes were used as features as well.  

Table 6.1 summarizes the left ventricle anchor primitive attributes that were used as features 

for statistical classification.  Some of these are actual attributes, and others, with names 

starting with “d,” are inter-frame differences in the designated attribute.  For example, dα3 is 

the frame-to-frame change in curvature α3.  Position and orientation were not considered 

because apical wall motion should be independent of absolute left ventricle position and 

rotation.  Because the number of anchor primitive attributes is relatively small, it was 

possible to evaluate all of the remaining attributes as potential statistical features for 

classification, as discussed in the section below on feature selection. 

Feature S1 S2 α1 α2 α3 α4 dS1 dS2 dα1 dα2 dα3 dα4 

Table 6.1: Attributes of left ventricle anchor primitive model used as features for classification.  Names of 
features correspond to the names given in Figure 6.2.  dx is defined as the inter-frame change in attribute 
x. 

6.1.3.  Left Ventricular Image Data 

Forty ECG gated blood pool equilibrium stress cases were selected for this study by a 

single radiologist who specializes in cardiac nuclear medicine.  Abnormal wall motion 

typically is observed when the patient is subjected to exercise or medicinally induced stress.  

Figure 6.3 shows one of the cases.  An automatic classifier was designed to distinguish 

between normal and abnormal apical motion.  “Truth” was defined as a consensus of the 

opinions of two human experts on the motion of the apex.  The experts’ diagnoses with 

respect to the motion of the apex were the same in 28 of the 40 cases.  The 28 cases on which 

the experts agreed were studied in this work.  The remaining 12 cases were discarded.  Any 
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abnormalities affecting the septal-apical, apical, or latero-apical regions were considered to 

be apical motion abnormalities.  The utility of defining a consensus of two experts as “truth” 

is given by the following argument. 

 

Figure 6.3: An example ECG gated blood pool equilibrium 32 frame image sequence.  The camera is at 
the MLAO viewpoint, thus the left ventricular chamber is in the lower right portion of each frame.  
Frame at time 0 is at the upper left corner.  Time increases from left-to-right and from top-to-bottom. 
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Assume that a “golden truth” exists for each case.  The probability that the experts are 

wrong (event “W”—they disagree with golden truth) given they agree (event “A”) should be 

as low as possible to justify using a consensus of two experts as truth.  Using Bayes’ Rule, 
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P(A) can be obtained using a frequency based estimate: 28/40=0.7 is the frequency 

based probability of the experts’ agreement.  Also, 
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P(A,W) = P(A) – P(A,R), where R is the event that both experts agree with golden 

truth.   

Also, ),(),(),( RalBothAbnormPRBothNormalPRAP += , where “BothNormal” and 

“BothAbnormal” are the events where the experts agreed on the same normal or abnormal 

diagnosis.  Continuing, 
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To reflect a lack of information about the relationship between the experts’ agreement 

on normality or abnormality and their agreement with golden truth, I use the relationship 

P(R|BothNormal)=P(R|BothAbnormal)=P(R|A).  Again using Bayes’ Rule, 
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P(A|R)=1 by the definitions of event R and event A.  Substituting gives the following 

equation for P(W|A) (the probability the experts are wrong given that they agree): 
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Also, the expression above for P(W|A) reduces to the following: 
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This simplification is due to the fact that P(A)=P(BothNormal) + P(BothAbnormal).  

Also, this simplification corresponds to the argument made above that P(A|R)=1, so 

P(A,R)=P(R). 

A plot of P(W|A) versus P(R) for the estimated value of P(A) is given in the 

following figure. 
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Figure 6.4: P(W|A) for various values of P(R), using the frequency based estimate of P(A)=0.7.  This 
shows that given reasonable expertise on the part of the experts (reasonable values of P(R)), the 
probability that they are wrong given they agree is low.  

The plot of Figure 6.4 shows that assuming reasonably good expertise on the part of 

the experts, e.g., they both agree with golden truth in over 65% of cases, the probability of 

the consensus being incorrect is low.  Furthermore, assuming P(A) is 0.7, and assuming the 

experts’ performance is maximal (P(W|A)=0), the maximum probability of both of them 

agreeing with golden truth is 0.7.  P(A), an estimate of the probability that the experts agree, 

is the value of P(A,R)=P(R) (the probability that both agree with golden truth) that gives the 

minimum value of P(W|A)=0, the probability that the experts are wrong given they agree.  
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Because an assumption of reasonably good expertise yields a low probability of an incorrect 

consensus, it was decided to use the consensus of two experts as truth in the experiments 

below. 

To estimate the probability that an individual expert’s diagnosis agrees with golden 

truth, I assume that both experts have the same degree of expertise.  Let the probability that 

an expert’s regional wall motion classification is the same as “golden truth” equal p.  The 

probability that the expert’s regional wall motion classification is different from “golden 

truth” equals q=1-p.  A contingency table based chi-square test of independence shows that 

the experts’ observations are highly unlikely to be independent (P<0.0005).  The degree of 

dependence of the experts’ observations lies somewhere between the extremes of total 

dependence (P(R)=p) and independence (P(R)=p2).  Considering the extreme case where 

their observations are independent, 
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P(W|A) for this case is plotted in Figure 6.5. 
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Figure 6.5: P(W|A) for various values of p for a probability of agreement of  0.7.  The plot shows that for 
reasonable values of p (reasonably good expertise), P(W|A) is low. 

The plot of Figure 6.5 shows that assuming reasonably good individual expertise on 

the part of the experts, i.e., agreement with golden truth in over 80% of cases, the probability 

of the consensus being incorrect is low.  Furthermore, assuming P(A) is 0.7, and assuming 

the experts’ performance is maximal (P(W|A)=0), their maximum individual probability of 

agreement with golden truth is 0.837 assuming their observations are independent.  Stated 

another way, if the probability of the experts’ agreement is 0.7 and the probability they agree 

with golden truth is the same, the probability that an individual expert agrees with golden 

truth cannot exceed 0.837 because the probability that they are wrong given that they agree 

cannot be negative.  As was stated, the degree of dependence of the experts’ observations lies 

somewhere between the extremes P(R)=p (total dependence) and P(R)=p2 (independence).  
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For example, if P(R)=p3/2, then the maximum value of p is 0.788 assuming P(A)=0.7 and 

letting P(W|A)=0.  The probability p=0.837 will be used as a measure of human performance 

on this task for comparison with the classification results presented below because it is an 

upper bound on the experts’ individual performance. 

Table 6.2:  Cases where a consensus was reached by two human experts on apical regional wall motion.  
Their detailed analyses are given in columns 2 and 3, and the consensus is given in column 4.  Column 5 is 
the apical wall motion class used in statistical classification experiments.  The experts evaluated the cases 
blindly and their consensus was defined by independent analysis of their independent results. 

 

Case 
Number 

Physician 1 
Diagnosis 

Physician 2 
Diagnosis 

Consensus Apical Wall 
Motion 
Class 

5781 Normal Normal Normal Normal 
57811 Normal Normal Normal Normal 
57831 Normal Normal Normal Normal 
5784 Normal Normal Normal Normal 
57853 Normal Normal Normal Normal 
57858 Latero-Basal Mild 

Hypokinesis 
Normal Normal Apical Normal 

57862 Normal Normal Normal Normal 
57922 Normal Normal Normal Normal 
57926 Latero-Apical 

Mild Hypokinesis 
Infero-Apical 
Severe 
Hypokinesis 
Septal-Apical Mild 
Hypokinesis 

Apical 
Hypokinesis 

Apical 
Hypokinesis 

Abnormal 

57946 Normal Normal Normal Normal 
5799 Latero-Apical 

Moderate 
Hypokinesis 

Apical 
Hypokinesis 
Lateral Akinesis 

Apical 
Hypokinesis 

Abnormal 

58016 Infero-Apical 
Moderate 
Hypokinesis 

Apical 
Hypokinesis 

Apical 
Hypokinesis 

Abnormal 

5803 Normal Normal Normal Normal 
58040 Latero-Apical 

Severe 
Hypokinesis 

Mild Global 
Hypokinesis 

Apical 
Hypokinesis 

Abnormal 

58042 Latero-Apical 
Severe 
Hypokinesis 

Mild Global 
Hypokinesis, most 
prominent at Apex 

Apical 
Hypokinesis 

Abnormal 

58056 Septal-Apical 
Moderate 
Hypokinesis 

Apical and Septal 
Hypokinesis 

Apical 
Hypokinesis 

Abnormal 

58061 Septal-Apical 
Moderate 

Mild Apical 
Hypokinesis 

Apical 
Hypokinesis 

Abnormal 
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Hypokinesis 
58062 Septal-Apical 

Moderate 
Hypokinesis 

Apical 
Hypokinesis 

Apical 
Hypokinesis 

Abnormal 

5811 Lateral Severe 
Hypokinesis 
Septal Severe 
Hypokinesis 
Infero-Apical 
Akinesis 

Apical Akinesis, 
Severe Global 
Hypokinesis 

Apical Akinesis Abnormal 

58120 Septal-Apical 
Moderate 
Hypokinesis 
Infero-Apical 
Severe 
Hypokinesis 

Apical 
Hypokinesis 

Apical 
Hypokinesis 

Abnormal 

83149 Latero-Apical 
Moderate 
Hypokinesis 
Infero-Apical 
Moderate 
Hypokinesis 

Apical and Lateral 
Hypokinesis 

Apical 
Hypokinesis 

Abnormal 

83246 Infero-Apical Mild 
Hypokinesis 

Global 
Hypokinesis 

Apical 
Hypokinesis 

Abnormal 

83734 

Septal Mild 
Hypokinesis 
Latero-Basal 
Moderate 
Hypokinesis 
Latero-Apical 
Severe 
Hypokinesis 
Infero-Apical 
Severe 
Hypokinesis 

Apical Dyskinesis, 
Global 
Hypokinesis 

Abnormal Apical 
Motion 

Abnormal 

84535 Normal Septal Dyskinesis Normal Apical Normal 
86862 Normal Normal Normal Normal 
87037 Normal Normal Normal Normal 
87047 Normal Normal Normal Normal 
87479 Normal Borderline Normal Normal Normal 
 

The consensus of the experts, where consensus was defined by independent analysis 

of the experts’ individual results, was used as “truth” for an automatic apical motion 

classifier.  Table 6.2 shows the opinions of the experts, along with their consensus.  The 

apical wall motion class (“normal” or “abnormal”) used in the classification experiments is 

given in the rightmost column of the table for each case (two possible classes). 
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6.1.4.  Semi-Automatic Segmentation of Left Ventricular Image Sequences 

The procedure for segmenting the left ventricular image sequences was as follows.  

An anchor primitive model was manually configured in the first frame of each sequence, by 

adjusting all of its attributes until a reasonable visual segmentation of the left ventricle was 

obtained.  Optimization of an objective function consisting of geometric typicality and image 

match components proceeded according to the method outlined in Chapter 5.  The final 

model configuration in frame t was used as the initial model configuration in frame t+1.  An 

example segmentation of an image sequence using the left ventricular anchor primitive 

model is shown in Figure 6.6. 

 

Figure 6.6: An example of automatic segmentation of the left ventricle in an image sequence.  The anchor 
primitive model is manually initialized in the first frame of the sequence (leftmost frame).  The five 
frames immediately following the first frame are shown. 

Of the 28 cases where the human experts reached a consensus, the system tracked the 

regional wall motion correctly according to subjective visual assessment in 25 cases.  Semi-

automatic segmentation failed in three cases where the contrast between the left ventricular 

chamber and other heart chambers was extremely poor.  The three tracking failures case 

87479, case 86862 and case 57926 are highlighted in Table 6.2 in bold italics.  One normal 

case (86862) and one hypokinetic case (57926) were not segmented correctly.  The third 

segmentation failure was on a case where one expert expressed some doubt about his 

assessment of normality (87479—“borderline normal” according to Physician 2).  The 
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classification experiments discussed below were on the 25 cases where semi-automatic 

anchor primitive based segmentation was successful. 

6.1.5.  Feature Selection and Hidden Markov Models for Left Ventricular 
Regional Wall Motion Classification 

 
A hidden Markov model (HMM) was used to represent each class, one for “normal 

apical motion” and one for “abnormal apical motion.”  (HMM’s are described in more detail 

in Chapter 4.)  Using the “truth” shown in Table 6.2, models were trained using a leave-one-

out training procedure.  It is not possible to make precise statements about the generalization 

capability of the system based on the leave-one-out analysis because of the following 

limitations.  The leave-one-out set is relatively small, so there may be aspects of the general 

population not seen in the leave-one-out set.  Thus, training and testing on larger populations 

may yield different performance.  Also, feature selection was tuned based on the leave-one-

out set, so it may not generalize.  This is because selected features yield different models for 

each leave-one-out case, and the models corresponding to the selected features could be 

different for a different (larger) training population.  That said, the leave-one-out results are 

good for the data at hand, which is suggestive of good capability in general. 

To select features for recognition, classification experiments were run on each feature 

in isolation (a single feature extracted per frame).  Results for the single feature per frame 

experiments are presented in Table 6.3.  For the results of  Table 6.3, hidden Markov models 

with a small number of parameters were chosen to represent each class, namely models with 

three states and two Gaussian mixture components per state.  The intuition behind choosing 

three states was that one would represent systole (left ventricle contraction), one would 

represent diastole (left ventricle expansion), and one would represent the transition between 

systole and diastole (end-systole).  Two Gaussian mixture components per state were chosen 
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to keep the number of model parameters small because of the relatively small number of 

training cases considered.  It is typical in sequence classification applications like speech and 

handwriting recognition to use more than one Gaussian per state—often many Gaussians per 

state are used. 

Feature S1 S2 α1 α2 α3 α4 dS1 dS2 dα1 dα2 dα3 dα4 
Errors 9 20 15 12 13 14 12 9 18 10 6 14 

Table 6.3: Number of classification errors for each individual left ventricle anchor primitive feature.  
Hidden Markov Model Number of States = 3, Number of Gaussians per State = 2. 

A greedy approach to combining individual features into feature vectors was taken based on 

the single feature experiments.  The greedy approach selected the features with the best 

classification performance when taken alone and combined them into multidimensional 

feature vectors.  The features with the minimal number of classification errors were 

combined, according to Table 6.4. 

Features Errors 
S1, dS2 7 
S1, dS2, dα3 10 
dS2, dα3 9 
S1, dα3 8 

Table 6.4: Number of classification errors using a greedy selection of features based on Table 6.3.  
Hidden Markov Model Number of States = 3, Number of Gaussians per State = 2. 

 
The conclusion from the experiments of Table 6.4 was that the greedy choice of S1, 

dS2, dα3 did not yield good results because of insufficient training data (too many model 

parameters given the training set size).  It was thus decided to decrease the complexity of the 

models of each state by reducing the number of Gaussians per state from two to one. Because 

this choice reduces the number of mixture model parameters by one half, the number of 

states in each hidden Markov model can be doubled without substantially increasing the 

number of model parameters found when there are two Gaussians per state. 
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Table 6.5 presents the results for various combinations of features, using one 

Gaussian per state, for various numbers of states.  The best result achieved was 5 errors out 

of 25 sequences.  This was achieved using (dS2, S1) feature vectors from each frame with 

each model having 9 states or 15 states, and also achieved using (S1) alone from each frame 

with each model having 12 states or 13 states.  It was expected that a feature vector involving 

dS2 would yield good apical motion classification.  It is somewhat surprising that S1 alone 

yields good apical motion classification; however, the apical, septal, and lateral walls are of 

course connected by muscle tissue thus motion in one region influences motion in others. 

Most of the abnormal apical motion cases correspond to some degree of hypokinetic 

motion.  Thus, it was observed that cases 5811 and 83734 were potential outliers with respect 

to the abnormal motion class.  In case 5811, both physicians suspected apical akinesis.  In 

case 83734, one physician suspected apical dyskinesis, in addition to global hypokinesis.  

However, in all experiments reported in Table 6.5 for various numbers of hidden Markov 

model states for the (dS2, S1) feature set, cases 5811 and 83734 were classified correctly.  

This suggests that based on case 5811, akinesis was better represented by the “abnormal 

apical motion” model, formed mainly on the basis of hypokinetic cases, because it always 

yielded a higher probability of case 5811 given the abnormal apical motion model in the 

leave-one-out experiments.  This corresponds to intuition that says that akinesis—no wall 

motion—is more like hypokinesis—sluggish motion—than it is like normal motion.  The fact 

that the physician who mentioned dyskinesis of case 83734’s apical motion also gave an 

observation of global (for all regions) hypokinesis indicates he could have been admitting the 

possibility of hypokinetic apical motion rather than dyskinetic apical motion.  Hypokinetic 

apical motion is suggested by the classifier because case 83734 was never misclassified for 



83 

the (dS2, S1) feature set; thus case 83734 agreed well with the “abnormal apical motion” 

class trained mainly on cases where there was a consensus of experts of apical hypokinesis. 

 

Features 
# States 

dS2, S1 dS2, S1, 
dα3 

DS2, dα3 S1, dα3 dS2 dα3 S1 

3 8  
4 8 10 
5 10 9 
6 8 7 
7 7 11 
8 6 7 

 

9 5 8 11 10 16 8 6 
10 6 6 
11 8 6 
12 7 5 
13 7 5 
14 6 

 

6 
15 5 10 10 16 6 
16 7 
17 9 

 
 

 
 

Table 6.5: Number of classification errors for various combinations of features for various numbers of 
states per hidden Markov model.  Best classification performance is 5 errors, achieved in several 
different ways.  Number of Gaussians per state = 1. 

 
6.1.6.  Comparison of Left Ventricular Classification Results to Other Work 

As in this work, Sychra attempted to automate classification of left ventricular 

regional wall motion in gated blood pool images.1  Sychra achieved about 80% classification 

accuracy (70 cases) on his training set when distinguishing normal motion from hypokinetic 

motion.  Two of his classes represented normal motion and three of his classes represented 

degrees of hypokinesis.  He defined “acceptable agreement” with the physician consensus as 

a maximum of one class difference from the consensus.  Using this definition of acceptable 

agreement, he achieved an average of 86% pixel accuracy for normal cases and an average of 

73% accuracy for hypokinetic cases. These reported accuracies are classification accuracies 

on his training set.   
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Based on the upper bound derived above, the maximal theoretical performance of 

each expert who classified the data used in this study was p=0.837.  80% classification 

accuracy (25 cases) where truth is taken to be consensus of two experts is achieved by the 

anchor primitive/hidden Markov model system in a leave-one-out analysis when 

distinguishing normal apical motion from abnormal apical motion.  The human’s task was 

more detailed that the system’s task, however, because the number of regions and the number 

of wall motion classes considered by the experts were larger than those considered by the 

system.  As was noted, because of the small set size, leave-one-out analysis is suggestive of 

good performance but does not give a precise indication of generalization capability. 

6.2.  Computer Lipreading 
 

Computer lipreading is automatic classification of lip image sequences.  Computer 

lipreading was discussed in Chapter 3.  The point of computer lipreading is to augment 

acoustic speech recognizers in noisy environments, as was discussed in Chapter 1 and in 

Chapter 3.  It has been shown that systems that combine computer lipreading and acoustic 

speech recognition outperform acoustic speech recognition systems in noisy environments. 

6.2.1.  Anchor Primitive for Lips 

An anchor primitive was designed to represent the lips.  The lip anchor primitive used 

three parametric curves.  One parametric curve each for the two halves of the upper lip and 

one parametric curve for the lower lip were used.  Anchor primitive attributes include the 

distances, represented by Si, i=1,…,5, in Figure 6.7 (repeated from Chapter 5 for the reader’s 

convenience), to the parametric curve control points from the center point.  Other attributes 

include the (X,Y) location of the center of the anchor primitive representing the middle of the 

mouth, and angles that when combined with the distances specify the locations of each of the 
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control points.  There are 12 lip anchor primitive attributes.  The Ik values, k=1,…,3, of 

Figure 6.7 are intensity features implied by the anchor primitive model, not geometric 

attributes of the model.  They are not used for anchor primitive based segmentation but are 

candidate statistical features for anchor primitive based classification. 

(X,Y) S1

S2S4
S3

S5

I1 I2I3

a

b

c

 

Figure 6.7: Schematic of the Lip Anchor Primitive.  S1 and S3 are distances from the center of the 
primitive to points on the mouth (center to corners – S1, center to midpoint of upper lip – S3).  S2, S4, 
and S5 are distances from the center of the primitive to control points for parametric curves representing 
the lip boundaries.  Example control points for the quadratic representing the upper right portion of the 
lip boundary are given by a, b, and c.  Similar quadratics defined by the anchor primitive attributes 
represent the upper left and lower boundaries as well. Angles O1, O2, O3, O4 and O5 (not pictured) 
corresponding to S1, S2, S3, S4 and S5 precisely locate the control points for the 3 parametric curves 
representing the lip boundaries.  I1, I2 and I3 are intensity values at the center of the mouth (I1) and a +/- 
offset from the center of the mouth that is proportional to S1 (I2 and I3). 

 
6.2.2.  Lip’s Statistical Features Implied by the Anchor Primitive Model 

Because it was assumed that lip image sequence classification should be independent 

of the translation and global rotations of the mouth during speech, the position and angle 

attributes of the lip anchor primitive were not used as features for classification.  Instead it 

was felt that the control point distances from the center of the anchor primitive and intensity 

values around the center of the mouth would be most useful for classification.  Inter-frame 

changes in these values were used as features for statistical classification as well.  A list of 

the features used for classification is given in Table 6.6. 
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Feature S1 S2 S3 S4 S5 I1 I2 I3 dS1 dS3 dS5 dI1 dI2 dI3 

Table 6.6: Features used for lip image sequence classification.  SX denotes distance to a parametric curve 
control point as indicated in Figure 6.7 above.  dx is  the inter-frame change in x.  I1, I2, and I3 are 
intensity values collected based on the anchor primitive location, as illustrated in the figure above. 

 
6.2.3.  Lip Image Data 

The Tulips 1 database of isolated digits2 was used for all computer lipreading 

experiments.  It is composed of image sequences from 12 speakers speaking each of the first 

four English digits (“one,” “two,” “three,” “four”) twice, for a total of 96 sequences.  Speaker 

independent recognition experiments were performed using a cross-validated, “leave-one-

speaker-out,” procedure.  From Luettin’s description of the database:3

The subjects were asked to talk into a video camera and to position 
themselves so that their lips were roughly centered in a feed-back display.  
The gray-scale images were digitized at 30 frames/s, 100x75 pixels, 8 bits 
per pixel.  The database contains a total of 934 images and consists of 
speakers with different ethnic origins, [9 males and 3 females], some with 
makeup or facial hair and different illumination. 
 
An example of a sequence from the database is shown in Figure 6.8.  The low 

contrast between the lower lip boundary and the face is typical of images in the database.  

This database was of interest because other researchers have published classification 

performance results on it. 
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Figure 6.8: An example of a sequence from the Tulips 1 lip image sequence database.  The low contrast 
between the lower lip boundary and the face is typical of image sequences from the database.  Time 0 is 
at the upper left corner of the figure.  Time increases from left to right and from top to bottom. 

 
6.2.4.  Semi-Automatic Segmentation of Lip Image Sequences 

Semi-automatic segmentation of the lip image sequences using anchor primitives was 

attempted.  The procedure was to find initial segmentations of the first and last frame of each 

sequence manually by adjusting the anchor primitive parameters (there are 12 parameters-2 

positional parameters, 5 scales and 5 orientations).  Optimization of an objective function 

consisting of geometric typicality and image match components proceeded according to the 

method outlined in Chapter 5.  After initial manual adjustment of all anchor primitive 

parameters, optimization was run only over distances between the anchor primitive center 
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point and control points.  The final anchor primitive configuration in frame t was used as the 

initial configuration in frame t+1.  Segmentation was also run backwards so that the optimal 

anchor primitive configuration in frame t was the initial anchor primitive configuration in 

frame t-1, using the manual segmentation of the last frame as the starting point for the 

backwards sequence segmentation.  For each frame, the forward or backwards segmentation 

was selected according to the algorithm given in Chapter 5.  An example of semi-automatic 

segmentation achieved when using this method is given in Figure 6.9. 

 

Figure 6.9: Anchor primitive based semi-automatic segmentation of a lip image sequence “four” from 
talker “Anthony.”  The discontinuity observed between frames 3 and 4 above (upper right corner) is 
typical of the digit “four” for many speakers, because the lower lip accelerates rapidly following release 
of the plosive. 
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 For the classification experiments discussed below, 74 semi-automatic segmentations 

were used and 22 manual segmentations were used, where the anchor primitives were 

manually placed in each frame of 22 image sequences.  Semi-automatic segmentation was 

hindered by the facts that shadows severely limited contrast between the lower lip and the 

face in many images and that the lower lip boundary extended beyond the image boundary in 

some cases. 

6.2.5.  Feature Selection and Hidden Markov Models for Computer Lipreading 

All classification experiments described below were speaker independent, leave-one-

speaker-out experiments, which were the same as those conducted by Luettin.  To select 

features for recognition, classification experiments were run on each feature in isolation (a 

single feature extracted per frame).  Results for the single feature experiments are presented 

in Table 6.7.  Then a greedy approach to combining individual features into feature vectors 

was taken.  The features with the minimal number of classification errors were combined 

(ignoring S2 and S4), according to Table 6.8.  Classification results for various feature 

vectors are presented in Table 6.8.  The best result of 10 out of 96 errors was achieved using 

(S1, dS1, S3, dS3, S5, dS5, I1) from each frame.  The selected set of features correspond well 

to intuition that says normalized distances from the center of the mouth to the middle of the 

upper lip, middle of the lower lip, and corners of the mouth and inter-frame changes in those 

values describe lip movement during speaking.  In addition, normalized intensity feature I1 

from the anchor primitive center location was an important feature as well, as was expected 

based on the literature that showed the importance of the visibility of the teeth and tongue to 

lipreading. 
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Feature S1 S2 S3 S4 S5 I1 I2 I3 dS1 dS3 dS5 dI1 dI2 dI3 
Errors 45 49 52 47 42 42 53 56 50 51 50 57 57 53 

Table 6.7: Number of classification errors for each individual lip anchor primitive feature.  Leave-one-
speaker-out classification experiments were run using a single feature extracted from each frame of each 
image sequence.  Number of States = 4, Number of Gaussians per State = 2. 

 
Features Errors 

(4 States) 
Errors 

(3 States) 
Errors 

(5 States) 
S5, I1 28 
S5, I1, S1 16 
S5, I1, S1, dS1 14 
S5, I1, S1, dS1, dS5 13 
S5, I1, S1, dS1, dS5, dS3 12 

 

S5, I1, S1, dS1, dS5, dS3, S3 10 16 16 
S5, I1, S1, dS1, dS5, dS3, S3, dI3 14 
S5, I1, S1, dS1, dS5, dS3, S3, dI3, I2 15 

 

Table 6.8: Number of classification errors using a greedy selection of features based on Table 6.7 without 
considering S2 and S4.  Number of Gaussians per State = 2. 

 
6.2.6.  Comparison of Lip Image Sequence Classification Results to Other Work 

The 10 out of 96 errors result is not very different from the 9 out of 96 errors 

achieved as their best-reported result by Luettin and Thacker on the same database using the 

same leave-one-speaker-out analysis technique.2  The result using the lip anchor primitive 

based approach was achieved using 7 features including shape and intensity features and 

inter-frame changes in shape features.  Luettin’s best-reported result was achieved using 10 

features including shape and intensity features and their inter-frame changes.  The number of 

errors of the two approaches with 95% confidence intervals are shown in Figure 6.10.  It 

should also be noted that Luettin and Thacker were able to achieve 10 errors on the task 

using 3 intensity features only using an approach based on the work of Taylor and Cootes.  

However, on a more difficult task, an intensity-only approach might not yield good 

performance. 
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Figure 6.10:  Comparison between numbers of classification errors on the Tulips 1 database (with 95% 
confidence intervals) and numbers of features for Luettin’s shape and intensity based approach and 
Clary’s anchor primitive based approach. 

 
The lip anchor primitive result is also similar to the 89.93% classification accuracy 

achieved by humans with no lipreading knowledge who were asked to classify the same 

sequences.  Hearing impaired humans with lipreading knowledge achieved 95.49% accuracy 

on this database.1,2   

The approach of Luettin and Thacker includes a more automated lip segmentation 

solution.  The purpose of this work was to evaluate the anchor primitive model itself as a 

basis for feature extraction, rather than any particular combination of model to image match 

and geometric typicality.  To produce an automated segmentation and classification method, 

aspects of Luettin’s segmentation approach could be combined with the anchor primitive 

model, including the use of a more robust statistical model of boundary intensities for model 

to image match measurement, following the work of Taylor and Cootes.  More will be said 

about this in Chapter 7, Future Work.  The limitations discussed previously of leave-one-out 
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analysis regarding conclusions about generalization capability also apply to the computer 

lipreading results. 

6.3.  Conclusions Regarding Anchor Primitives 
 

Anchor primitive attributes can be used as intuitive and easy to compute geometric 

features for statistical classification of image object evolution in image sequences.  The 

features are intuitive because they are based directly on geometric aspects of the anchor 

primitive model.  The features are easy to compute after image segmentation because they 

are obtained directly from anchor primitive attributes or differences in those attributes over 

time.  These features are more intuitive and easier to compute than pixel based features like, 

for example, those based on filtering (derivative of Gaussian, etc.), optic flow features, other 

functions of pixel time activity, or principal components analysis on functions of intensity 

values. 

The anchor primitive model provides a global representation of an object by modeling 

its landmarks and by providing local representations of object parts via the use of analytic 

boundary representations.  Anchor primitives are designed to be used to establish 

correspondence at large spatial scale.  As was explained, using naturally occurring 

symmetries between corresponding locations allows anchor primitives to be consistently 

placed across a population of image objects.   

While global, anchor primitives can allow consistent placement of associated sub-

models that model an image object in a more detailed way.  For example, if anchor primitives 

are used in conjunction with m-reps, it may be useful to constrain a medial atom to have the 

same location as the anchor primitive center point location (the “anchor primitive medial 

atom”).  If an m-rep is used to model an image object in more detail in the direction of one of 
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the anchor primitive’s corresponding locations, it may be useful to place a constant number 

of equally spaced medial atoms between the anchor primitive medial atom and the anchor 

primitive corresponding location along the distance and direction to the corresponding 

location.  (Assume the distance and direction of each of the anchor primitive’s corresponding 

locations is given by the anchor primitive model.)  This constraint during m-rep placement 

would provide useful correspondence between medial atoms if the important 

correspondences are captured by the anchor primitive. 

Because anchor primitives take advantage of object symmetry to define a center point 

location, if a reference direction is defined, then an object-centric coordinate system can be 

defined for 2D image objects.  The object-centric coordinate system is useful for making 

shape comparisons among image objects segmented via anchor primitives.  The reference 

direction could be defined based on the location of the most stable corresponding place based 

on a training population for the image object under consideration.  Defining the most stable 

corresponding place is discussed further in Chapter 7.   

Given accurate image segmentations, a small number of anchor primitive implied 

features—a concise feature set—can provide accurate hidden Markov model based 

classification of image sequences in leave-one-out analysis.  A small number of features 

means that a smaller training set can potentially yield accurately estimated models that have 

good generalization performance.  Also, the computational complexity of estimating 

Gaussian distributions with full covariance matrices is quadratic in the dimensionality of the 

feature space.  Thus, the fact that anchor primitives can yield useful features in a feature 

space of low dimensionality means more computationally efficient training and potentially 

more accurate statistical classification using hidden Markov models. 
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Using hidden Markov models for time series modeling has implications for time scale 

selection.  With a constant number of Gaussians per state, if a representation with a large 

number of states gives good classification performance, it is suggested that fine temporal 

scale details are important to classification.  However, care must be taken to ensure that all 

states are truly useful to the representation by examining the sequence of visited states using 

standard techniques.  It may be necessary to interpolate the training data to produce a larger 

number of frames to ensure that an adequate amount of training data is available for a 

representation with a large number of states.  If a representation with a smaller number of 

states gives good classification performance, then fine temporal scale details may not be 

relevant for classification.  In this case, one might consider windowing the data across time 

to yield a smaller number of input frames. 

Because a segment-then-recognize approach was taken to classification in this work, 

with segmentation considered separately from classification, semi-automatic segmentation 

results presented in this chapter have implications for segmentation using anchor primitives 

of static images, not only time sequences of images.  The studied blood pool images are quite 

noisy, and anchor primitive based segmentation of them was largely successful.  Because 

image measurements are made at places where intensity information is likely to be consistent 

with a training set, model to image match is likely to be maximal where expected.  Because 

geometric typicality involves relationships between corresponding places that are likely to be 

consistent across different image objects and because anchor primitives use analytic 

representations of curvilinear segments, deformable model based segmentation is adequately 

constrained.   



95 

It has been shown that anchor primitives can provide an efficient image object 

representation for deformable model based image segmentation.  Anchor primitives make it 

possible to compute model to image match function values only in corresponding locations 

rather than around the entire boundary of an image object as is the case for many b-rep 

deformable models.  The left ventricle anchor primitive of this work required image 

measurements in four key locations only.  In addition, anchor primitives via the use of 

symmetries can provide a search space of lower dimensionality for deformable model 

placement than other representations.  The best performing b-rep in terms of classification 

accuracy used by Luettin and Thacker to model the lips required a search space of 14 

dimensions for model placement.  The anchor primitive for the lips evaluated in this work 

has 12 parameters.  However, Luettin’s best b-rep modeled both the inner and outer contour 

of the lips.   

What has been shown is that carefully designed anchor primitives where center 

locations and corresponding locations are hand selected can provide useful features for 

statistical classification.  Methods for computer aided anchor primitive design should be 

developed and evaluated.  This subject will be addressed more fully in Chapter 7. 

In summary, it has been shown that anchor primitives can provide concise and 

accurate statistical features for image sequence classification, producing reasonable 

classification accuracy in leave-one-out analysis and computationally efficient statistical 

classification.  Anchor primitives could be useful for image segmentation and image object 

comparison in general, a statement that can be more thoroughly studied in future research. 
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6.4.  Contributions 
 

A summary of how the contributions of the dissertation outlined in Chapter 1 are 

supported by the experimental results is given here. 

• A novel medial primitive called an anchor primitive has been introduced.  The 

anchor primitive is a correspondence maintaining primitive placed in each 

frame of an image sequence using the continuity of the sequence.   Semi-

automatic segmentation of image sequences using anchor primitives was 

successful in the majority of cases considered in this work.  It was shown that 

given accurate image segmentations, classification performance using anchor 

primitives as a basis for statistical features was similar to that found in the 

literature for the computer lipreading task.  Anchor primitives in image 

sequences effectively generate shape parameter sequences.  Thus, accurately 

placed anchor primitives provide consistent model to image object feature 

correspondence needed for the analysis of the shapes found in the example 

image sequences and classification of their evolution.  There are obvious 

segmentation techniques for model to image match and geometric typicality 

measurement that should be incorporated into the anchor primitive framework 

to yield automatic segmentation.  Some of these are discussed in Chapter 7.  

• Because statistical features for classification can come directly from anchor 

primitive attributes or inter-frame changes in attributes, anchor primitives 

supply features for statistical classification that are easy to compute.  Because 

anchor primitives capture the geometry of the modeled shape in a holistic and 

natural way in a few parameters, anchor primitive attributes are intuitive.  
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Intuitive geometric features enable discussion of classification results in 

medically relevant terms. 

• A method was described that uses anchor primitive based features as inputs to 

hidden Markov models for statistical classification. 

• For 25 example cases, anchor primitive based features and hidden Markov 

models provided left ventricular regional wall motion classification accuracy 

in leave-one-out analysis suggestive of similarity to that of human experts.  

The human experts agreed with one another 70% of the time, and the semi-

automatic classification method agreed with the experts on 80% of cases 

where the human experts agreed.  It should be noted, however, that the 

analysis of the human experts was more challenging than the semi-automatic 

analysis because the experts considered more “classes”—more wall regions 

and types and degrees of abnormality. 

• For 96 example image sequences, and given accurate image sequence 

segmentations, anchor primitive based features and hidden Markov models 

provided computer lipreading accuracy similar to that found in the literature 

using leave-one-speaker-out analysis. 

• Distances from the anchor primitive center point location and anchor primitive 

model point locations and changes in those distances were useful features for 

statistical classification via leave-one-out analysis of image object shape 

evolution. 

Through empirical studies of anchor primitive based segmentation and statistical 

classification using anchor primitive implied features, the contributions of the dissertation 
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outlined in Chapter 1 have been supported.  The following chapter makes suggestions for 

interesting future research directions.
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Chapter 7 

Future Work 
 
 

There are many promising directions based on this work that can be explored.  The 

directions fall into two major categories: 1) improving the current implementations of anchor 

primitives including by extension of the theory of anchor primitives and 2) further 

applications of anchor primitives.  Both categories apply to static image segmentation and 

statistical feature extraction as well as image sequence segmentation and feature extraction 

using anchor primitives. 

Because a segment-then-recognize approach was taken to classification in this work, 

with segmentation considered separately from classification, semi-automatic segmentation 

results presented in Chapter 6 are suggestive of capability for segmentation of static images 

in general using anchor primitives.  As was stated in Chapter 6, because image measurements 

are made at places where intensity information is likely to be consistent with a training set, 

model to image match is likely to be maximal where expected.  Because geometric typicality 

involves relationships between corresponding places that are likely to be consistent across 

different image objects, segmentation is adequately constrained.  Research on improved 

segmentation methods based on this idea might incorporate the aspects discussed in this 

chapter. 
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Image segmentation in many cases in this work involved manual steps, including 

initializing the object tracking algorithms.  The purpose of the work was to prove that anchor 

primitives could produce useful statistical features for classification of shape evolution in 

time sequences of images, rather than to prove that automatic anchor primitive based image 

segmentation could be accomplished.  Some, if not all, of the manual steps could be 

eliminated by using more robust model to image match measures.  Following the active 

appearance model approach of Cootes and Taylor to computing model to image match would 

be useful.  An alternative, and perhaps more effective, approach is the multiscale boundary 

profile approach of Ho and Gerig.1  The first place this author saw multiscale model to image 

match measurement was in the work of Coggins, and it was inspirational in this regard. 

Anchor primitives were defined in Chapter 5.  They consist of a center point location, 

deformable models of corresponding locations, and relationships between the models of 

corresponding locations.  An interesting future study is to identify ways to build anchor 

primitive models.  Two issues are critical.  One is identifying the anchor primitive center 

point location.  The other is identifying corresponding places across training populations of 

image objects.  Anchor primitives model corresponding places using parametric curves or 

deformable m-reps and use the geometric relationships between the corresponding places to 

measure geometric typicality. 

Identifying a center point location can be performed manually by the model builder.  

The model builder can choose to examine the largest scale medial tracks of a representative 

image object or mean object representing a training population.  The center point location 

can be specified as the spatial intersection point of the largest scale medial tracks.  

Alternatively, the model builder may examine extremal boundary points of a representative 
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image object or mean object representing a training population and specify the center point as 

the centroid of the extremal points. 

Identifying corresponding places across training populations is a significant area for 

further research that has implications not only for anchor primitive model building but also 

for deformable model based segmentation in general.  By definition, places that are said to 

exhibit correspondence have unique but consistent intensity and shape properties across 

populations of image objects.  To find corresponding places, I recommend that an 

unsupervised statistical technique such as K-Means clustering be performed on shape and 

intensity features and neighboring primitive (boundary or medial) relationships of a training 

population of image objects.  The most compact clusters represent the corresponding places.  

An algorithm could proceed as follows: 

• Perform deformable m-rep segmentation using a dense sampling of the medial 

manifold(s) of a training population. 

• Run k-means clustering (or another statistical clustering technique) on the 

medial atom attributes together with intensity features that correspond to the 

medial atoms and neighboring medial atom relationships.  The k-means 

algorithm will need to be modified to incorporate the Lie group geodesic 

distance metric and Lie group based Gaussian distribution definitions for m-

reps. 

• Scatter plot medial atom locations corresponding to the most compact clusters 

on a representative object of the training population.  Use the cluster labels as 

labels on the scatter plot.  Viewing the scatter plot is to account for cases 

where multiple corresponding locations have shape, intensity and neighbor 
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relationship properties similar enough to cause them to belong to the same 

cluster. 

• If the scatter plot of the medial atom locations from the training population 

corresponding to the most compact clusters produces a reasonable number of 

corresponding places, select those places to model with anchor primitive 

parametric curves or deformable m-reps. 

• In a place where the neighboring corresponding locations are relatively far 

apart, use parametric curves to model the corresponding location, because 

immediately neighboring locations do not exhibit correspondence by the 

cluster analysis implying that boundary information is potentially more 

consistent in the area versus medial information. 

• In a place where there is a dense collection of neighboring corresponding 

locations, use a deformable m-rep to model the corresponding location 

because the dense collection of neighboring corresponding locations 

represents a stable figure. 

• In addition, if the trace of the covariance matrix of the intensity features from 

a particular corresponding location is smaller than the trace of the covariance 

matrix of the m-rep features, consider using a curve to model the 

corresponding place.  If covariance matrices from the intensity features of the 

two boundary places corresponding to the medial atom at the corresponding 

location are considered separately, it could be decided to use a curve to 

represent one boundary place but not the other based on the traces of the 

covariance matrices. 
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• If the trace of the covariance matrix of the m-rep features is smaller than the 

trace of the covariance matrix of the intensity features, consider using an m-

rep to model the corresponding place. 

Correspondence of modeled locations across image objects is critical to consistent 

statistical feature extraction.  Pizer et al. have made a major contribution by referring to any 

location in a 3D image in object medial manifold relative (u,v,t) coordinates.  (u,v,t) are 

consistently defined across image objects based on a medial surface.  A similar formalism 

can be developed for anchor primitives.  A reference direction can be defined (?=0) based on 

the most stable corresponding place given by the cluster analysis above. Any place in a 2D 

image with an object defined by an anchor primitive can then be described in terms of an 

object-centric angle ?.  Because there may not be a 1-to-1 correspondence between ? and the 

boundary of an image object, a multi-scale approach to using the anchor primitive based 

coordinate system for object comparisons could be taken.  For example, ? could be used to 

make global comparisons between corresponding figures (corresponding places) in an anchor 

primitive model (i.e., comparison of figure locations), and m-rep (u,t) coordinates could then 

be used to make figure-to-figure boundary comparisons between corresponding features. 

As was mentioned, an approach to spatio-temporal image segmentation is to consider 

an N+1 dimensional image segmentation technique for N-D image objects evolving over 

time, basically treating time as another dimension.  Another way to incorporate time 

information into the segmentation process is to make segmentation dependent on class 

membership.  That is, for each class there is a separate segmentation procedure.  This 

procedure could involve including the probability that a particular hidden Markov model 

(representing a particular class) generated an observation sequence up to the current frame in 
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the objective function for image segmentation.  The training algorithm would proceed as 

follows.  Start with a segmentation algorithm that is the same for all classes (as before)—

optimize image match and geometric typicality.  Use the segmentations produced by the 

algorithm to train initial hidden Markov models for each class.  Re-segment using class 

dependent segmentation, by including the probability that the class’s initial HMM generated 

the observation sequence up to the current frame in the objective function.  Using the new 

segmentations for every class, re-train HMM’s for each class.  Iterate until performance is 

optimized.  I call this new term in the posterior function to be maximized “evolution 

typicality.”  When a new sequence is to be classified, it is automatically segmented a number 

of times that is equal to the number of classes, because segmentation is class dependent. 

A massive amount of research is being conducted on 3D medical image analysis.  

This is because modern imaging modalities provide information over 3 spatial dimensions 

that allows accurate and more complete understanding of the imaged anatomy.  Defining 

anchor primitives for 3D image objects would provide a stable basis for measuring them and 

extracting statistical features from them.  The same principles used to define 2D anchor 

primitives in this work will apply, including defining the following: 

• A center point location 

• Salient image object feature locations 

• Curve, surface, or medial mesh model parameters 

• Constraints on the relationships between image object feature locations. 

Many computer vision problems of interest involve occlusion.  An image object’s 

parts (figures) may move in and out of the view of the imaging device.  Occlusion could be 

handled by anchor primitive based models by building explicit models of occluded and non-
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occluded figures.  During segmentation, all of the occluded and non-occluded models could 

be applied and the chosen model would be the one with the highest posterior probability.  

Handling occlusion by building anchor primitives to explicitly model situations when 

occlusion occurs is an interesting direction. 

Although the anchor primitives considered in this work modeled single figure objects, 

anchor primitives can be defined for multi-figure objects.  In fact, m-reps for each of the 

figures can be linked to an anchor primitive defined object center point location to form a 

multi-figure anchor primitive.  Building multi-figure anchor primitives would aid in time 

sequence applications like gait analysis or gesture recognition. 

Because complex motions of the heart like twisting cannot be captured in a single 

view by a 2D imaging device, left ventricular analysis is typically performed using a 3D plus 

time imaging modality.  3D anchor primitives could provide a stable basis for left ventricular 

measurement making, left ventricular wall motion quantification, and left ventricular wall 

motion classification from typical 3D plus time cardiac imaging modalities such as gated 

SPECT. 

Analyzing time sequences of images of anatomical structures to determine the effect 

of drug or radiation therapies on them is an interesting direction.  It is becoming common 

practice to image areas of the anatomy that are expected to undergo change as a result of 

therapy.  Anchor primitive based techniques can be used to measure and classify shape 

changes in these images.  Recently an entire issue of IEEE Transactions on Medical Imaging 

was devoted to image analysis in drug development.2 

Performing independent components analysis or independent geodesic analysis on 

attributes of anchor primitive models of lips in motion may have useful applications to facial 
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motion synthesis during synthetic speech.  Computer animations of “talking heads” have 

recently been used to help deaf children learn to speak and to read lips.  See 

http://abcnews.go.com/sections/primetime/2020/PRIMETIME_010315_baldi_feature.html for more 

information on this application of lip motion modeling. 

It has been shown by at least two authors that color information aids lip image 

segmentation.  Color information could easily be incorporated into anchor primitive models 

for lips to improve the model to image match function. 

Using a “non-linear principal components analysis” technique like principal geodesic 

analysis3 as a basis for statistical feature extraction will prove valuable to many image 

oriented classification problems, including image sequence classification.  Building statistical 

models of features from non-Euclidean space will be important as well.4 

This dissertation showed that m-rep inspired primitives known as anchor primitives 

provide a useful basis for statistical feature extraction for image sequence classification and 

thus suggested significant future research directions.  Directions include extensions of the 

theory of anchor primitives to interactively build anchor primitive models, handle new 

situations and incorporate more powerful statistical techniques, and empirical evaluations of 

anchor primitive methods in additional image analysis applications.
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