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SCOTT HARRISON DANFORTH. BOT: A Distributed Operating System Model of a
Tree-structured Multiprocessor {Under the direction of GYULA A. MAGO.)

Abstraect

This dissertation presents DOT, a process-oriented design and simulation
model! for a highly parallel multiprocessor, and describes a complete associated
programrming system. The design methodology includes the use of layered
~ design, abstract data types, and a process-oriented view of concurrency. Our
results demonstrate that these software engineering structuring pr.inciples can

be successfully applied to the design of highly parallel multiprocessors.

DOT is represeﬁted using an executable high-level language that provides
suppeort for discrete-event simulation. This allows verification and accurate
simulation of the complete programming system, which is composed of three

logical levels.

The top, or user level of the programming system is that of FFP (Formal
Functional Programming) languages. The middle, or system support level is
that of LFL, a low-level concurrent programming language used to define and
implement FFP operators on the DOT architecture. The DOT design represents
the lowest level of the prdgramming system, a highly parallel tree-structured
multiprocessor that directly supports the LPL and FFP languages.

During execution, user programs consisting of FFP language symbols are
enteéred into a linear arrajr of processing cells {the leaves of the binary tree of
processors represented in the DOT design), and segments of this array that
contain innermost FFP appliéatipns execute LPL programs in order to perform
the required reductions. The LPL programs for a uselul set of FFP primitives are
given.

In addition to DOT ari'd the overall programming systern, this dissertation
presents an aﬂalytic model which may be used to derive upper and lower bounds
for program execution time. Predictions of the analytic model are compared
with simulation resuits, and various design alternatives and possible extensions

ars examined.



ACKNOWLEDGEMENTS

‘I dedicate this dissertation to my mother, who always wanted a doctor in
“the family, to my father, who stood by me when I needed it most, and to Kasey.

I want to give special thanks to my advisor, Dr. Gyula Mago, who, in addition
to guiding this work with a steady hand, will always guide my understanding of

what it is to be a teacher, in the best sensé of the word

For their substantial assistance in improving the quallty of this dissertation,
I owe a spemal debt of thanks to the other members of my doctoral committee:
Dr. Fred Brooks, Who made r_ne' aware of the wider concerns of Compuler Science
education; Dr. Don Stanat, who taught my first Functional Programming course
with such enthusiasm; Dr. Rick Snodgrass who so cogently forced me to rewrite,
rewrite, rewrite; and Dr. Barat Jayaraman, whose gentle but firm attitude made
late revisions so painless.

I also wish to express my indebtedness to George Entenmann and David
Middleton for their active, creative, and invaluable participation in our meetings
with Gyula Mago. | ' ‘ '

Lastly, to the computer itself, my appreciation for the UNIX® éditing,
formating, graphiés, and typesetting tools which supporied the development and
printing of this dissertation with such ease. This project was .supported by the
National Science Foundation under grant MCS80-04208, and by a grant from

Harris Corporation,



CONTENTS

Reduction Machines ,......ccovvvvneeen
GMD Machine (Berkhng)
AMPS (Keller) ......c.oovvvivan.
MM1 {Mago) ............. e,

.........................................................

.........................................................

.........................................................

.........................................................

.........................................................

Ring-Coupled Reduction Machines {Treleaven, Mole) .................
Syntax Tree Machine (Tolle} ....ocococvviericiires e
Cooperating Reduction Machines {(Kluge) ..oococveveiviieeviivies e,

Other Related Work .......coevivnene.

.........................................................

Time and Storage Analysis (KOSLET) wvviviivecreeieereeseeeeeer e
Message Routing (Kehs, Pargas, Presnell} ......ccccioevvevviririieviennens
Virtual Memory (Frank, Siddall) ....c.oooveeeees oo

Dissertation Overview .................
Dissertation Organization ..

Selective Reading ..............

2. Topmost Architecture Levels ..........
Introduction .....oovvveiiinn i,

.........................................................

.........................................................

.........................................................

.........................................................

Architecture, Implementation, and Rea11zat10n .........................

Multi-level Systems ............
_Architectural Concurrency

........................................................

Implementing Architectural Concurrency .....ioocceeeeeericrseeeernns

User Architecture -- The FFP Language .......... et e
Backus’ Language Hierarchy ............... FE
Programming LanguUages ........c.uuvviiereueuraienorsonneeeneannenns,

Complete Languages

.........................................................

Applicative LaNngUages ..ooviveeeereeireriirierinieieeeesereneneens rrennae
Closed Applicative Languages ..o ueeeeeeeeerneserereneerenennn,

A-Red Languages .......
" FFP Languages .........
Observations and Examples

..........................................................

.........................................................

Implementation Architecture - The LPL Language e

LPL Architecture ...............

FI'P-level Text Representation .i...c.ccoovceveieecerieeininnnninn

LPi~level Representat
Message Subsystem ..

ion of FFP RA Symbols ...ooovvvvvveennn.

Replicating LPL CONtEXUS ovvereoireisveesessees oo

LPL Syntax and Semantics

47
a1
51
58

i1



program,/endpProgralll e s rsrnmnmcnnes S TN

destination/endseg

.8 1<) 0 L A

Leell Data Movement and Arithmetic ...,
Logical Comparisons and Program Control ....................

fork/forkc ............
nselect/cselect ...
send/receive/endfi
endsend/smanage
Synchronizalion of Progr

..............................................................

lter ..oovevieenens e en e e e ae i aer e arr e rateeraas

am . Segments ..o

Synchronization of Forks and Messages ....ccoceevvcvcicnenenns

Synchronization of

Completion ..o s

Remarks and FFP Operator Definilions ....i..ooriimiiees i er e e

FFP Functions .........ooeves
Tdentity ...oooeinene.
Atom ...... et eneas

Matrix Transpose ..
N-ary Add ..............
Sort .o
Matrix Multiply .....
FFP Functional .Fforr'ns
Constant ...............
Select .ovviiiiiiiann..
Composition ..........
Construction .........
Conditional ...........

............................................................
E K RN N RN NN AT I I NN I B L ENAR SR NS I NI EEN NI NI A NAR I RIECANE
-------------------------------------------------------------
P MEEr s e EANE N T REiENETE RS RO T RO A EEAEMEEEiEEAd aEldEanadnnnuy
.............................................................
.............................................................
.............................................................
.............................................................
.............................................................
..............................................................
..............................................................
.............................................................
.............................................................
.............................................................
.............................................................

Conditional -- phase 2 ...... R S

Apply-to-all ...........

Element-by-elemenf, ............ RO SRR

. Meta-composition .
3. Implementation -- The DOT Model
Introduction .....occcoeeeiiiiiinnnn. .

DL R e L L L R L LT T T I N I I PPy

. What DOT is (and whabl it 1SNn'L) .o e e e eeieees

Overall DOT Structure ...

.............................................................

A Language for Representing DOT ... e,

A Process-Oriented Desig

Communication Between
Overall BOT Operation ............

The Basic Machine Cycle

n ,.... e wen e arsa s rraarEr e e aaana e rresairaans
Processes in Different Cells .....ooveaees

............................................................

i

57

58
58
59
B0
62
64
68
66
87
68
69
72
72
74
8
78
81
82
83
85
B8
90
91
92
95
97
98
100
102
104

107

109
111
113
115
115
115
117
117
120
121
124
124



Partitioning Phase ........cc......
- Area Nodes ................
Directory Creation .......
Loading LPL Programs
Execution Phase ...occovveviennn,
Leell Message Support .
Fork Support ...l
Storage Managernent Phase .

......................................................

e jedisiasTEeswEeaNACERTEETT YRS Y AL LN AR RN AL RN

......................................................

......................................................

......................................................

......................................................

The Specification for Storage Management ...........ccceveees
Overflow and Program Entry ...,

Process Structuring of DOT Cells ..

Teell Structure .oovvevveveciennee
Leell Structure ovcvveivviinions

I0 Subsystem .......ccoiennnnn,
VM Subsystemn .oivinviinnns

Important Algorithms ....... reneemen
Partitioning ......coocciviiinninnn,

Partitioning Upsweep --
Merging Segment
Switching to Area

......................................................
......................................................
......................................................
.......................................................
......................................................
......................................................

......................................................

Locating RAS e,
Beseriplors ..o,
Channels ..o,

Partitioning Downsweep -- Pruning ...,

Message Support .ovevvnint,
Message Packets ..........
Message Handling ........
SBtopping Messages ...

Directory Creation .....cccevveuens

......................................................

P L L L N T TR R P R T T Y

......................................................

Computation of the Symbol IndeXx ..ol Carees

Upsweep .....coeeels
Downsweep ..........

......................................................

.......................................................

Computation of the Directory Tuple .ocoovvvvvviiiiin ey

Upsweep ..coovvevnns.
Downsweep ..........

Calculating the Spe'ciﬁ'cation

Upsweep .cvivvverierrvrnenanns

Downsweep ...ocovvvvnvnninns

BUMITLATY wvviirrioieiii i criiaeiina

4. Simulating DOT ..o,
Intreduction .................. errererrearens

for SBtorage Management .............

......................................................

The Place of Simulation Within the Design Cycle ..o,

The Cost of Simulation ..cocrvieeiinnen,

......................................................

Introducing Global Time into DOT Operation ...

Discovery of a Critical Path ..
Fvent-Scheduled Modeling ....
Process-Interaction Modeling

.....................................................

v

126
128
129
130
130
131
132
132
134
134
135
135
141
148
148
150
151
152
154
158
182
168
169
170
171
174
174
175
176
177
180
187
191
192
193
199
201
201
202
204
206
208
207
207



S.imulation Output oo

Tracing Machine Operation

Leell Array Snapshots ...

NOLALIOTL cuuvervncerncisnranar e veneansaeas
Area Heights .....oooieneniinns
Phases of RA Progress .......

.........................................................

.........................................................

.........................................................

.........................................................

..........................................................

.........................................................

.........................................................

.........................................................

Storage Management Phase - RA Creation .....ooeeiinnnnnns
Partitioning Phase -- RA DEtBCEION wovivirrereerereerarrimararaneeons

Execution Phase -- RA Execllion ...l e

Formulas for the Duration of RA Phases ........ [T IT SUPPPU
RA Storage Management -- {SM) T TT R UT U TR VORI PP

RA Partitioning .......cceceveenns

Partitioning 01d RA -- (PO) .coeev. Heeeres IO eeeerees
Partitioning New RA - 430 TR PP TR

RA Execution - (EX) ...

.........................................................

Predicted Execution Time for Single RA .............................................
Analysis and Simulation of ID i SO TR
Analysis and Simnulation of N-ary Add .o
Analysis and Simulation of SORT woeeeeriessieireerinrininsairre e reannes
Analysis and Simulation of ROTR .ernen: D TARCIEE
Analysis and Simulation of EEL .o

SUMITIATY .vetrernrirnrssrmnnsrssnsmcsnees '

8. Design Alternatives and Extensmns

Design Alternalives ......cccovvvviniens

B Y AR LR R R AL LR LR A

............................................................

.........................................................

..........................................................

.........................................................

FFP-level Text Representatlon ............................................ AP

LPL Message Routing .........
Non-blocking Fork ............. :

.........................................................

Completion Synchronization: ... et et eae e

Duration of Execubion PRase ... s veane
Shifting vs. Reloading LPL Code PP
Storage Management Transfer Function ... e

Design Extensions ...
Job Control Language ........

.........................................................

Pushdown Storage for Leells i

Visual Tracing ....coovvainne:

LPL Storage Management Event Indicabor ...
Storage Management with Variable Context Sizes ..ociiviainn



Increasing Phase Independence ........ feere e OO
Multiple Input Ports ..., e et

7. Conelusion ... e e

References

vi

275
276
27
281



FIGURES

" FIGURE 2.1 -- Vertically Recursive Computer Architecture ...
'FIGURE 2.2 -- DOT Implements LPL; DOT+LPL Implement FEP -.......
 FIGURE 2.3 -- DOT Compiler and Operating System Aspects ...
FIGURE 2.4 -- Inner Product of < 1 23 > with <438 > cviiiiineenen
FIGURE 2.5 - A Hierarchy of Programming Languages ..................
FIGURE 2.6 -- Semantics of FFP Languages e e
FIGURE 2.7 -- LPL Architectural View  ..ccommiinns Y
FICURE 2.8 —- Derivation Tree for e = { <CONST5>8) ...
" FIGURE 2.9 -- Parse Tree for e = { < CONST5 > 8 Yo e
FICURE, 2.10 - A Linear Representation using ALNs ...
FIGURE 2.11 — Evaluation of { + < (ID 1) 22> ) i

FIGURE 2.12 -- Directory Tuples for ( IP << 123><4586 >>)

FIGURE 2.13 -- lllustration of Directory Tuple Definition ...
FIGURE 2. 14 -- LPL ENVIronment  ..oo.ooeevverioomnniennsinnns i
FICURE 2.13 -- Forking Must Wait for Storage Management ...
FICURE 3.1 -- Overall DOT Structure e
FIGURE 3.2 -- The DOT Maching ...ciiireeimireinne i
FIGURE 3.3 -- The DOT Tree of Processing Cells ..
FIGURE 3.4 -- A DOT full Duplex Communication Channel ...,
FIGURE 3.5 -- Connecting and Disconnecting Cqueues ........... e

FIGURE 3.6 -- The DOT Cqueue Head and Tail -- pubhc entrxes

FIGURE 3.7 - A Partitioned DOT Machine .........oocviiiiennen. e eernrererare e eiaenirans
FIGURE 3.8 -- DOT Teell Processes ..., _
FIGURE 3.9 -~ Teell Qutput Process ...,
FIGURE 3.10 - The Tcell Input Process ...

FIGURE 3.11 -- Area Node Downwards Message Handler Process

FIGURE 3.12 - Tcell Manager Process i
FICURE 3.13 -- Tcell Node-Manager Process .o
FIGURE 3.14 -- DOT Leell Processes {and User Context)
FIGURE 3.15 -- Leell Input Process RS S TP
FIGURE 3.186 -- Leell Message-up Process ... e
TIGURE 3.17 -~ Leell Message-Down Process i
FIGURE 3.18 -~ Leell LPL Interpreter Process e earar e .
FIGURE 3.19 -- The Leell Manager Process - e,
FIGURE 3.20 -- The Main I0 Process .
FIGURE 3.21 -- The VM Overflow and Program F‘ntry Process .........
FIGURE 3.22 -- Finding a RA S St U
FIGURE 3.23 -- Sweeping Leell Contents Upwards Globally ...

..............

.............

..............

..............

..............

..............

--------------

..............

.............

..............

28
2
27

~ 30

31
37

Vil



FIGURE 3.24 -- The Segment Descriptor Format ....coovveviniieeiienecnennn.
FIGURE 3.25 -- An Example of a Segment Descriptor  ......oco......
FIGURE 3.26 -- The Four Segment Deseriptor Formats ..................
FIGURE 3.27 -- Analysis of the Initial Partitioning by Tcell Managers
FIGURE 3.28 -- The Start of Partiticning in the Leells  ...oocveeiieeenne
FIGURE 3.29 -- An Example of Initial Partitioning =~ ....eeoivveninnnns
FIGURE 3.30 -- After Pruning the Initial Partitioning Example .......
FIGURE 3.31 -- The Area Node Algorithm to Start Pruning ...
FIGURE 3.32 -~ Termination of Pruning in the Leells  ..ooovvveevenene.
FIGURE 3.33 -- The Four Message Packet Types' ........... e Crevees
FIGURE 3.34 -- Upwards Messages in a Tcell Node RV PRR ‘
FIGURE 3.35 -- Diagram for Symbol Index Calculation ......c....ce.....
FIGURE 3.36 -- Algorithms for Symbol Index  ....coooiveivivviineinnnn.
FIGURE 3.37 -~ Diagram for Directory Tuple Calculation ...
FIGURE 3.38 -- An Example RA Within an Active Area  .ocvveeeene..n.
FIGURE 3.39 -- Example Parse Tree and Directory Tuples ...
FIGURE 3.40 -- Before Merging Partial Parse Trees .oooccceeeereeens
FIGURE 3.41 -- After Merging Partial Parse Trees —  .ovvvevevvieenns
FIGURE 3.42 -- Directory Upsweep Computation ....coueevieeeeeoreeeesiiiereenineenas
FIGURE 3.43 -- An Example UPSWEED .oiiviiviiiiciemecice i crienne e
FIGURE 3.44 -- Directory Downsweep Computation .....cccoeernann
FIGURE 3.45 -~ An Example DOWNSWeep  .ocvvivvmviviineiereeesnnns T
FIGURF 3.46 -- Algorithms for Directory Tuple  .covuvevviveveiennnenennn,

FIGURE 3.47 -- Calculating a Specification for Storage Management

FIGURE 3.48 -- Transfer Value Solution for Storage Management

FIGURE 3.49 -- Calculation of the Transfer Function  ..coceeeeeveerivviervenrenns,
FIGURF, 3.50 -- Starting the Downsweep of Preparation for SM .......
FIGURE 3.51 -- Leell Preparation and Storage Management — ....occoeeevenn..
FIGURE 3.52 -- Teell Preparation for Storage Management  .......
FIGURE 4.1 -~ Objectives of SImulation .......ooeeeeeeeeeeeeveseeosensoerees
FIGURE 4.2 -- Properties of Simulation ....ccveveveeeeeecoeeeeee e creeeeenn,
FIGURE 4.3 -- Subsidiary Benefits of Simulation .......oceoeveeeenin. e
FIGURE 4.4 -- The DOT Event Schedulel ...ccoocevieeieieeeee e seeeeennnin s
FIGURE 4.5 -~ Qtail.put Implements Implicit Evenis  coovovevvvennn.
FIGURE 4.6 -- Filtered High-Level Trace Qutput ..ocovvcivvievvrevieeerennns
FiGURE 4.7 -- Unfiltered High-Leve!l Trace Output  .ccovvvreevvrevienieannnn,
FIGURE 4.8 -- F¥'P Expression for Reduction  ...veevevveeennn. e

FIGURE 4.9 -- Sort Time v.s. Number of Messages per Cycle ...........
FIGURE 5.1 -- RA Progress Through a Single Machine Cycle

FIGURE 5.2 -- Trees for Lower and Upper Area Height FExtremes

FIGURE 5.3 -- Bounds on Area Height {using H=21)  .....ccceoooool,

FIGURE 5.4 - Uniform Loading in the Presence of Empty Leells
FIGURE 5.5 -- RA Progress Through Successive Machine Cyecles

'FIGURE 5.6 -- Duration of Storage Management for RA .......oeeovos....

.............

.............

.............

.............

.............

.............

.............

.............

.........

.............

.............

.............

.............

.............

155
156 -
157
159
162
163
165
167
188
189
173
175
177
178
179
180
182
183
185
186
188
189
190
191

- 154

196
197
198
199
202
202
202
210
211
213
2156
215
218
225
2eT
227
228
231
232



ix

FICGURE 5.7 -- Duration for Partitioning Old BRA ..o, 233
FIGURE 5.8 -- Duration for Partitioning New RA ..o, 234
FIGURE 5.9 -~ Duration of Time to SM_Grant, t’s .......................................... 235
FIGURE 5.10 -- Duration of the Execution Phase ..........ooeeeniiiiiiininennnnn 237
FIGURE 5.11 -- Analytic/Simulation Model Result Format ..o, . 238
FIGURE 5.12 -- Analysis and Simulation of I ..o, 240
FIGURE 5.13 -- Analysis and Simulation of N-ary Add " ..cc.ccoeeee, e 241
FIGURE 5.14 -- Analysis and Simnulation of SORT .ovevoeeireeeeeceeciresseeeeseeeeas 242
FIGURE 5. 15 -- Analysis and Simulation of ROTR ........coieeivinnnn, e 243
FIGURE 5.16 -~ Analysis and Simulation of EE1  ...coceueeene, [ESUUP RIS 244
FIGURE 5.17 - A Program for Inner Product of <1 2 3> and <4 5 6> ......... 245
FIGURE 5.18 -- Execution Trace for Inner Product ....cvuieveesvnesioenoinnaen, 245
FIGURE 5.19 -- Analysis and Simulation of Inner Produet ...l . 247
FIGURE 5.20 -- Restrictions on Parallel RAs for Analyzablhty U e 248
FIGURE 6.1 - Possible Design Modlﬁcatlons e e . 253
FIGURE 8.2 -- Efficiency of Fair Operators et 261
FIGURE 6.3 -- Possible Variable Cycle Time Heuristics ....ccocoocceviiicnarennnn. 262
FIGURE 8.4 -- User Interface Facilities i v e e errreeriaaes 266
FIGURE 8.5 -- A User-defined Operators and its LPL Program BT 268
FIGURE 6.6 -- COND Coples LS Argument .o e . 269
FIGURE 6.7 -- COND with Push and POP  cevvevieeuieereeiecvrie e e e e s ereans e aen e 271

' FIGURE 6.8 -- Steps to Provide Visual TPacing  .cceoeieeieernnceesirenenines 272



DEFINITIONS

B it e e er e s tane e rnaan e et ver b Ve et e rn e e a s 1
O TSRO RURPRTOT SO 1
oTat ok of o3 I 4 o O S PSR RTRON 3
Lo o o T O R S 3
LR R b o< o S N SO PO TTPT 4
demand-driven ... et b e 4
R A S e i et — e e f e et et nna et an enanerens 9
MICTOPTOEramS .vvviievireirrneiecranneans S e 10
L USRI 20
P O OO 21
architecture ... R TR 25
implementation .......ccocooveen i, e ——— et 25
realizabtion . e e 25
representalion . e 2h
VEXLICALLY FECULSIVE .iiiriiiiiiiireiiiiiiei e eeeei et s e eeraie et s sesaan s sabr st ereseaeeeees 26
architecturally concurrent ... 28
ProgramIming LanZUaEE v s ae s s srs st s eanreec e et eans 32
complete langUage ... e e rae s 32
semantic funeclion ..o Cee b e ae e st rr e e ae e naas 33
applicative JangUAEE ... e ee e e e eees 33
representation function ... P 34
closed applicative language ........... e e et r e re e et r ey eens 34
primitive functions ...... et ——a e e e earaerera—— e oatrn e et ert e anes 37
Meta-ComPOSILION .ot e 37
innermoest reduction semantics ..o 38
evaluation mechanism ........ooceeeeen. K TIPS 38
CONEIOIINE OPEIAlOr Lo et e et ety 39
leells ciiiiiiiiiinns ST UOTOU et er e e e et r e roettaeane b banbns it ns C42
2 o PSP 44
directory tuple . e e e 48
SYIMBOL_INIAEX oiiriiiii it e e e e, 48
6 RO U PR RUPN R 48
LPL @nVITORIMENT 1iiiiiiiiiiiieieieiieie et et ettt e et e e e eae e e e e ae e s e s e e eteeeee i 51
USEI COMBEXE L e et e e 52
COUE SEEITIEIILS Lottt e e eee et e e e s e e e e 1)
IMESSAZE WAVES  teiiistiitiiiuiiiiirernast st e rtrrintas st estasssntnsrnenrnrensensesnseresssnsens 64
funetional form ... e iere i arareare st ear ey e ety arar e n—e 85
LCRILE Lot e ——————s 117



Xi

O LT G P PO TP S PP 117
process-oriented design ....iieemiiee e erre 120
PArtitioned ..o e 125
_partitioning phase ............ P P 125
execution Phase ... e ee e e et a s sarnaessaeeasreraeenrneneenees 125
storage management phase ............ et er e ere ereraraereamesnnereinrenerraons 125
specification for storage management ... .128
preparation for storage management ... 128
ACLIVE BIBAS .vivirveriiireinirrirrrrsiasrin st sarnsrancenss e eerra b re et ran .. 126
initial partitioning ............. et errera et e teaeeanaanrreteraa e rareaan e e s ASPRUTURRTOI 126
PR =15 W el o 1= 0 50 1) 5T TP PR 126
S ar=T= U0 0 Lo 1o L= PSRy P 126
cell manager Channels .......ccvveveeveeeees o ssiennenn et ra e 126
Pruning doOWHNSWEED v vireieririesiaan s inr e ssasenes PP 127
top of area ..ccceveveiriirinnins PP, [P 127
121 S PSR 127
10 ChANNELS .iiiiiieieeie e s e et e v e ree e TSRO PPTPP TP 130
ENA-0F-WEBYE . .iiviiriririii i e ast e e 131
EOW  vrvrvrrrere it sieas et reenat et rieeneearar st et iR iiriaaaare et aaraanas 131
SITL_ZrANt MBSEAZES iiiier i sttt et tr e rra st st et e ara e e s 133
stop MessSage ......ovivvveennns et eee e e e teAtnenLtEssesnrs et re et aen ettt e 133
segment desSeriplor . 154
ground State ..o 156"
executing State v e e —e e e neenaens s 156
T OO PR 157
L Prefix packet i e e 169
data packet ........ PP PP e 169
eow packel ..., T U 170
SLOP PACKEL «oier i e TP 170
discrete event simulation ... .o 206
vVent-SCHEAUIEE 1iieiiieieee e e e eeieieee et s eertr s e e e e aeaeneaererenes s 207
Process-interaclion ... e =207
PC Hepresentation ... e e e ah e e er s 254

fair OPEralors o s e e e e 260



'CHAPTER 1

Introduction

In this dissertation, we preseﬁt a highly parallel multiprocessor
implementation for a general-purpose functional language suggested bjr Backus
‘[Bac78]. We describe the implementation and its sirnulation, providé an analytic
model for p_rogr.ar'n execution time, and finally consider design alternatives and

extensions.

The first three sections of this intreductory chapter provide an overview of
related work from the perspectives of language and implementaﬁion design. The
last section of this chapter describes the objective and overall structure of the

dissertation.

1.1. Historical Overview

Historically, prqgramming language design and implementation are often
intertwined, with the irnplementation of new language r‘:oncept_s closely following
their inception. We are therefore concerned with presenting twc; sides .of the
sanie coin in this introduction, and the twin aspects of language development

and implementation relevant to this dissertation are discussed accordingly.

Backus’ first publications co.ncerning_ functional programming appeared in
the early 1970's {Bac72, Bac73]. Then, in the 1977 ACM Turing Award lecture, he
presented a new énd powerful formalization for functional programming: the /P
(Functional Programming) and FFP (F ormal Functional Programming)
languages . [Bac78]. These are general-purpose high-level programming

languages, capable of expressing parallel computations in a natural fashion. In



additidh, asscciated with the FP language class is an algebra of programs that

can be used to reason about and transform programs while preserving their

semanties. Such a facility can be exiremely useful for the verification of

programs.

The FFP language class follows TP in spirit, but employs a more restricted
syntéxﬂ—- making it suitable for direct machine execution. Unfortunately,
despite the potential of Backus' suggested approach, early implementations of
FFP on traditionally structurad'computer'architectures. ran slowly. Then, in
1979, using a lénguage-based appr'oaclﬁ, Mago gavé' an- initial descriptidn of a
tree-structured cellular network of processors oriented towards efficient
parallel execution of FFP language programs [Mag79]. Many problemé were
raised and left unsolved in this initial deseription, but the feasibility of a design

was demonstrated.

The language-based aﬁproach' to processor design is not new; over the last
decade a number of machines oriented toward direct support for high lavel
languages have been suggested. The approach has been used for implementing
sequential languages such as APL [Abr70], Symbol [Ric71], Basic [Bur78], Lisp
[SteB1], Jovial [ChuB1], and Pascal [Car81]. Nevertheless, although many
parallel computer architectures have been recently proposed [Dav?5, Des?8,
Den79, Sha82, Sto83] as a result of the increasing potential of VLSI and other
realization technelogies, few of these designs have been based on a general-
purpose high-level programming language. This is due to the low-level sequential

transformation of state and reliance on global memory embodied in most

languages, which make it difficult to express a direct mapf;ing between a

language and its implementation on a parallel architecture.



In functional programming languages {which arose from the search for an
algebra of programs [Bac81, BacB2]), sequential transformation of state and
global memory are absent because of their unsatisfactory properties with
respect to program semantics. As a serendipitoﬁs result, such langﬁages are

prorising candidates for language-based parallel support.

An important aspect of Mago's language-based proposal is the ‘use of ﬁne_
grain parallelism. This approach removes assumptions of global memory an.d
overall processor. state from the language implementation as well, and
completely realizes the parallelism allowed by FFP programs. The highly-parallel
nature of the multiprocessor suggested by Mago is especially intriguing in view
‘of the recognized difficulty of designing a general purpose machine that can

fully exploit the potential of VLSIL

1.2, Red_uction Machines

We now review various proposals. for the support of {functional languages.
Among machines for directly executing functional languages are thos:e '
suggested by Berkling [Ber?S], Keller ‘et al. [Kel79], Mago [Mag?9], Treleaven
[Tre80], Tolle [Tol81], and Kluge [KiuB2]. These machines may be characterized.

as reduction machines — i.e., they support reduction-style program execution.

In ;:onfrast_ with control-flow programs, which are built out of and execuled
as linear sequences of simple operations cal_led instructions, reduction pr.ograrns
are built from nested ekpressions. In reduction language programs, the nearest
thing to an instructién is the application of a function to an argument, bul both
functions and argumept_s may be expressions contaﬁning further function
applications nested within themselves. A reduction language pfegram is an
expression -- equivalent to the result of its execution in the same way as the

expression 3*(2+2) is equivalent to the expression 12



Treleaven has identified two basic approaches toward executing reduction
programs: string reduction and graph reduction [Tre82)]. The basis of string
reduction is that a program is manipulated in-place; each application of an
operator to an argument is textually replaced by an eguivalent expreseion, and
expr'es'sioﬁs are nol shared. Commonly used expressions must be duplicated
throughout the program where necessary. In graph re duction, implicitly shared

references to expressions are manipulated.

Thus, for example, evaluation of a+a with etring reductien Woulﬂ require t.he
definition of a to be loaded twice, replacing both of its references. Evaluation ef '
the same expreseion with graph reduction doesn't require'such replacement;

| instead, the expression referred to by o is itself evaluated (in' a similar fashion)
without mediﬂcation of the addition "expression. and the result is made available

by reference to support the addition.

The chstlnctlon between data—dm'uen and demand-d'rwen computatwn for
thlS example concerns whether the expressmn represented by a is evaluated
before it is required by a+ta (data drwen) or after 1t is reqmred (demand-

driven).

As menﬁoned- the tiesign' tp be presented in this dissertation is. Iargeiy
derived from the work of Mago. A deserlptlon of this early work is 1neluded here
for hlstorlcal contmmty, and to emphasize its place relative to the other
attempts that have been made Not lncluded in this I'EVleW are archilecture
1mp1ementat10ns that are based on Ia physical tree structure but which are
des‘igned te eiecute other than functienal languages. These inelude the designs

suggested by Despam [Des’?B] Davis [Dav'?B] Stolfo [StoBB] and Shaw [ShaBB]

For each proposed deSLgn we will be concerned with the particular

functiona! language that the architecture supports, and the eomputational



model used (string vs. graph feduction, demand vs. data-driven, etc.). Progfam
decomposition for multiprocessor architectures will be examined. This includes
distribution of data processing fasks tb their respective processors, as well as
re-integration of results. The numbér of processing units and their individual
capabilities are also important aspects of a de.sign, as well as the power of
language primitives. Limits to parallelism an(i efficiency will be scrutinized. Note
that .parallelism and efficiency are not the same thing, since the cost of creating

or maintaining parallelism can be greatef than the gain in performance.

1.2.1. GMD Machine (Berkling)

Central to the concept of reduction-style execution is the replacement of
operator applications with their results. As described, the twd basic
: computational approaches are actual textual substit:ution (i.e., string reduction)
and thé use of pointers and a global memory (i.e., graph reduction). Berkling
- was ambng the first to recognize the need for research into systems based on
- textual substitution for directly supporti_ng high level reductioﬁ languages. In
- response to Backus' early work on reduction languages, Berkling designed a
computer system implementation [Ber75] based on the 'conc.ept of string
reduction which supported direct execution of a variant of Backus’ A-Red (for

Lambda-Reduction) languages [Bac73].

Berkling recognized the potential of the substitution approach, and
envisioned the feasibility of parallel processing "in ﬁ;emory” without the use of a
central processing unit. In his implementation, however, he chosé a traditional
organization, and used a central active proéeséing- com'ponerﬁt to operate oh
data .st'o_red in passive memory {three hardware stacks)..H‘is implementation
neither supports the parallelism inherent in A-Red languages, nor malkes usé_ of

lower level parallelism within the implementation in the interest of eﬁiciency.
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Nevertheless, the machine lénguage ‘for Berkling’s computer is a high-level
functional language. This was an important contribution, and opened the way for

further work.”

1.2.2. AMPS (Keller)

_AMPS stands fcr”"Applicativ‘e Multiprocessing _Systeﬁi,” and this désign
[Kel79] features a loosely-ﬁoupled tree strﬁcﬁure t.o be compoéed of around 1050
nodes. The language supported is a compiled dialect off=LISP called FGIL
(Functional Graph Language). Streams, or infinite data structures, are

supported through the use of a demand-driven evaluation mechanism.

FGL represents a prograin as a function graph .whose nodes are data
férming functions {(possibly user-defined with an inner éub-graph structure) and
whose arcs répresént access to data formed and made available by other nodes.

. The basic data forming operétions of Lisp are primitive, and cons is the lenient
cons suggested by Friedman and Wise [Fri76]. Independent sub-graphs called
productions are supplied for user-defined functions, and these may be recursive
in nature. When- a function node requires the data produced by multii)le
"subordinate" nodes, it may send parallel demands to.each of these nodes, Thus
the FGI, language can express parallelism, anci the i.mplementation supports it.
AMPS is thus an excellent example of the language-based approach to
. multiprocessor design; creation of parallel tasks required to utilize the power of
the hardware is implicit in the language. Clever compile-time analysis of

program text is not required to detect opportunities for ‘parallelism, nor is

* Turner's S-K reduction machine [Tur?79], and the Cambridge SKIM reduction machine
[ClaB80] also use high-level functional languages as their machine languages. Although
their machine languages are interesting (expressions are built with combinators), these
designs are neot discussed further because, like Berkling’s design, they are single-
processor implementations that cannot directly support the parallelism inherent in their
machine languages.



static pre-allocation of tasks Lo processors necessary.

Each leaf node in the phyéical tree structure of AMPS contains a fairly
powerful proces‘sor {on the order of a micro-computer) and an assbciated local
memorfunit with around 64K words. The interior tree nodes are used for
;ﬁommunication and distribution of processing tasks. There is a siﬁgle unified
address space, and, due to the graph reduction mechanism, sharing of data
structures is prevalent. Local caching is used to help alleviate contention for the
primary copy of a data structure, while the applicative nature of the language

guarantees read-only access and the validity of cached data.

The execution of each graph or sub-graph is bound to a single processor, so
-computation involves relatively large-grain processing tasks. Processing tasks
are created "top-down' in response to encountering a demand for the data
object produced by a function node. Task creation is thereforé dynamic and
' t_mpredictable. Run-time binding of tasks to leaf processors often results in the‘
need to ”farfn out” processing to some .othelr leaf node, and alt.}:iough. a unified
address space simplifies this prpcedure logically, the penalty of commﬁnicétion

over the shared tree-structure is incurred.

Circuit-switching of communicatioﬁ lines is infeasible due to the possibility
of tying up long paths through the tree structure, so the interior nodes support
a packet-switching communication pg‘dtocol. The ecost of this communication
cannot be known ahead of time, making it impossible to prédict the execution
time of a program on the machine. AMPS therefore completely supports the
logical parallelism inherent in its machine language (by dynamically creatiﬁg
Vprocessing tasks as they are required) but at unknown cost and with little
additional 1ow¢r level implementation parallelism aside from that implied by the

language.



The issue of predi:ctable performance is one that plagues multiprocessor
designs, and has its roots in the degree to which separate processes are allowed
to interfere with each other. This interference normally takes the form of

contention for a shared resource.

In the case of AMPS, processes must compete for their share of processor
time, cache storage, local memory, and communication bandwi'dth. The
difficulties of analytically modeling the results arise from a lack of control over
the process interference while at the same time “allowing dynamic and
unpredictable creation of processes. To the degree that process interference
can be carefully limited, controlied or pr‘edicﬁed. an analytic model should be
able to successfully prediet performance.

1.2.3. MM1 (Mago)

This sec_tion introduces.the design pro'pose.d by Mago [Mag?gj, upon which
this dissertation irs baséd. Although various changes in orientation from his
original .concept ﬁavé been made, high-level and common aspect.s will be
stress.ed Here. As in the .othef reviews, overall étructure a_.nd implications for

language support and process interference are of primary interest.

The essential problem with string reduction is how to support it efficiently.
Berkling saw this, and envisioned processing in memory as a possible solution,

but has not suggested a suitable design. Mago has successfu_liy done so.

The Mago Machine, or MM1, as we shall call it, is essentially a binary tree of
~small-grain processors, including linear connections between adjacent leaf cells.
FFP text is stored, symbol by symbol, in the leaf cells 01;, lcells. The interior tree
.cells, called feells, are used for a Varie.ty of functions, and during reduction of
inﬁermosﬁ FFP applications they support communication routing between the

lcells. Thus the Icells act as a linear memory array, and the tcells are used when



global context must be accumulated and used. The design is expandable to any
size, and tree machines composed of a million cells (height around 20) are
envisioned.

A great deai of ingenuity is required to efficienﬂy accumulate and use
{within the overall tree struciure) global contexts discovered from individual
lc'ell cbntent\s. Initially, innermost applications (called: FAs for
.redﬁcible applications) must be discovered. This is performed in a single
upsweep and downsweep of information through the overall tree structure. In
this process, the machine is partitioned so that individual .dedicated binary
trees for communication routing are associated with eaéh RA. These small ﬁreés
are embedded in the overall tree-structured network using a circuit switching
approach. Also during partitioning, the syntactic structure of each RA is
determined, and the cbntaiﬁing lcells are given information of limited but useful

precision concerning their locations in the corresponding parse iree.

Folloiving partitioning, each innermost application has its own dedicated
multiprocessor and communication network embedded in the overlying tree
structure for support of its reduction. Thié approach may be contrasted with
AMPS, in which single leaf cells are tasked with the reduction of complete graphs_
and may interact with tasks and data in other leaf cells. In Mago's approach,
more than one processor is entrusted with a single reduction, and
communication is performed within dedicated (circuit switched) channels as
opposed to the shared packet-switched channels in AMPS. Each active partition
of MM1 is therefore able to operate on its own reduction independently of others,
and lower level parallelism (beyond that implied by the FFP language) is
available to further inerease the efﬁciéncy of reduction. Message routing is a

simple broadcast mechanism within dedicated channels.
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- After partitioning, the leells must be told how to behave in order to perform
the reduction. This is indicated by the operator of the reduction. The range and
utility of FFP operators is great, and the potential number of useful operators
for a programming system is correspondingly large. In the interest of flexibility
in the operator set, and in recognition of the limited storage space that will be
available within lcells, operator definitions are not stored in the lcells; but-are
brought m on demand at run-time. Mago ca;lled these definitions microprograms
and they consist of a short series of instructions to the lcells of én‘ RA on how to

proceed in order to achieve the desired reduction.

"Th‘.e machine operates in a major cycle composed of partitioning, execution,
and 'storag'e mranagement.- Storage management is required to allow FFP text to
expand-when the result of reducing aﬁ expression’ is- larger than the original
expression, and is performed by shifting iﬁformation within the lcell array.
During this process, ‘space made available by RAs that reduce to smaller
expressions can be used to make room for expressions that are growing. .The
shifting is performed by sending ‘FFP text symbols along the lateral shift
register connections between the-leaf cells. Microprograms are interrupted for
storage. management asynchronously, ,Without-riee_d for special preparation on
their part, and are:then automatically continued after storage manage-ment and
re-partitioning.

As mentioned earlier, process interference appears to be a primary source
of difficulties when predicting program execution time. In Mago’s design,
process interference is eonfined to the storége. management phase of. the
execution cycle. This interference may be characterized as contention for the
shared memory space in the lcell array. Surprisingly (in view of the other

designs reviewed here) the exact character of the interference is predictable
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since it is determined by the string reductions implicit in the source FFP text.

Mago's design represents a revplutionary approach to direct Suppoft for
string reduction of reduction 1énguagés. His or.iginal paper describing. this
approach [Mag?g]' proﬁdes a detailed discussion of how an impiementaﬁon
might support each of the three phases of the machine eycle, and presents a

. . ) .
"slrawman" microprogramming language.

1.2.4. Ring-Coupled Reduction Machines (Treleaven, Mole)

Treleaven and Mole have proposed an implementation for a multiprocessor
reduction machine based on string reduction [Tre80] which also incorporates

paralle]l support for functional languages.

- The FFP reduction languages of Backus exhibit linear ordering and are Well_
suited to string reduction. I we imagine an FFP program as a linear tapé
containiﬁg the successive symbols of program Itext,'innermost applications then
appear as individpal, separate, and independent areas of the tape. The
semantics of FFP languages guarantee that we can reduce these in-any order {or

even in parallel) without affecting the final answer.

Continuing the tape ana-logy., imagine a special "tape nﬁachine” able to move
the tape back and forth, collect a portion containing an innerrﬁost application,
and then splice an application result back in place of the original innermost
application text. Consider two such machines, or even more, spread apart but all
working on the same tape. To avoid boundary problems the tape could be
connected at its ends to form a Iargé circie. 'fhis is the essence of Treleaven's

approach.

* Two designs of a more complete nature have been inspired by this early work: Tolle’s
design, discussed in a following section; and my own.
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Treleaven’s tape is implemented by connecting individual reduction
machines similar to the above "tape machines” in a ring through the use of
hardwa\_re and secondary storage deque structures. The reduction r_nachines‘use
the .deque structures to shift F¥FP :text through themselves, and replace
innermost applications with their results whenever possible. Because of the
necessity for storage an.d reduction of complete RAs, the reduction machines
are relatively large-grain processors. This simple and conceptually pleasi.ng

design clearly shows the value of string reduction for multiprocessor systems..

Note, however, that the complete parallelism of FFP languages is not
supperted. If there are n reduction machines, then .only n innermost
applications can be performed concurrently, And this is the best case; when a
large number of consecutive applications are created, they could be caught
between and executed by only two reduction machines. Thus, there is limited
pau:'alleli'sm= at the language level, ;and (as in AMPS) no additional lower-level
parallelism. Another problem is that RAs may be created that are too Iarge to be

contained within an individual reduction machine.

- How about process interference? At first glance, this seems confined to
"tug-of-war’ on the "tape", which is easily handled with a priority mechanism or
a preferred direction. Once a reduction machine has an innermost application,
it will be executed without i_nterference. There is no contention for shared

communication paths, no global memory, and no caches.

Unfortunately, as hinted above, performance cannot be predicted for this
| design either, and for even more serious reasons than for AMPS, Here we don’t
know how much shifting will be necessary for an innermost application to find a
reduction machine, and any number of innermost applications could be trapped

between two processors. This last can be viewed as process interference, and it
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makes it impossible to predict the interval between the implicit crgation of a
processing task and its actual execution. Nevertheless, Treleaven’s approach is
very useful conce.ptually: it'clearly shows both the important benefits and

pr'oblems associated with string reduction.

Mago's suggested design predates Treleaven's effort, and its fruition in the
implementation we will socon describe can be viewed as an attempt to
circumvent the above problems of string reduction, while maintaining all of the
benefits. Thé extent to which we have been successful will Be examined laler, but
our approach {as suggested by Mago) can be viewed in the following way with
respect to Treleaven's: instead of moving the text symbols on shift register
deque structures between intelligent reduction machines, make the individual -
shift register components intelligent enocugh to perform their own reductions
and their own splici_ng'. Instead of requiring movement of the _"'tape” though a
sin-gle device in 6rder Lo sequeﬁtially ‘accurnulate the global context required to
identi.fy innermost applications, use an overlying tree-structure to perform this
process in parallel. The ultimate result is that innermost applications never have
to wait for processing power, which solves the scheduling problem experienced

by Treleaven's design.

1.2.5. Syntax Tree Machine (Tolle)

Tolle has proposed a design. [Tol81] inspired by and in some ways éimiiaf to
the original proposal of Mago. Tolle also uses a binary tree of processing
elements to accomplish string reduction of FFP text stored within the leaves of
the tree. Where Mago proposes strict limitations on the capabilities of the
iﬁte.rior tree cells, however, Tolle investigates the potential of giving them a

greatly increased and programmable flexibility.
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In "res',ponsé to FFP text with.in the leaf cells, seven different logical types of
nodes are embedded in the physical cells of the overall machine tree structure.
Of these nodes; those that are associated with an innermost FFP application
further differentiate and split themselves into six different node types to form
an SN-CF nefwork that is based on the syntactic structure of the underlying FFP
text. This network is quite similar in structure to the derivation tree for its
underlying FFP text expression, and is derived by effectivély parsing the text to
discover the topmost structure levels. For f,hi.s reason, the SN-CP network is also
referred to as a syntax tree.

Reduction of an innermost application is then guided and lperfo_rmed
entirely within its dedicated syntax tre¢ in response to STL (Syntax Tree
Langﬁage'). STL works by driving the syntax network top-down, to dynamically
creale processing tasks and data pipes within the SN-CP network. Processes. and
pipes are freely created, and in multiplicity, resulting in the ability to move data
out of the leaf nodes holding the FFP text into the overlying syntax tree, and to
move this dala in many directions and in support of many processing tasks

coneurrently {all in the service of a single reduction). 7

This flexibility Has both édvantages and proi)lems when. compared with
Mego’s approach. The expanded capabilities of the interior tr'_ee cells can
increase the efficiency of sbme reductions because tree cells may'be used. quite
e.ﬁectively to hold and combine data. In Mago's desig_n, during execution of a
reduetion, the tree cells are primarily used to support communication between
the leaf  cells where all non-message data is .constrained to reside.
Unfortunately, the complexity of implementing the dynamically created
processes and pipes of Tolle’s design is not immediately clear; he has left this

for further investigation. Contention for physical communication channels. and
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tree cell processing time is also an open issue.

There is a very loose coupling between any SN-CP network and the rest of
the tree. This is locally good for processing a given reduction, but when moré
lcells are needed to hold additional FFF text in order to complete a reduction,
neighboring SN-CP networks must cooperate. Executive routines running in a
more global context of the machine {called the TA-Mediator network) monitor
execution and detect molien zones whose 'cohtents_ may be shifted to create
foom when needed, but it is not possible to interrupt STL execulion
asynchronously as in Mégo's design.. This is because there is no way {and no’
plaée) to stdre the execution contez;tt of STL progfams, and then restore and
reload them following storage management and creation of newly-formed and

different SN-CP networks.

FFFP text moverment is therefore accomplishad only in multiple disjoint
{molten) areas which allow it. A need for increased -space to complete a
reduction is automatically satisfied by _the machine only if there is enough épace
in the local molten zone. Reduétions may ﬁherefore be delayed even though the
machine as a whole has ample space. This potential for process interference, in
a way similar to that encountered in Treleaven's design, makes it very difficult

to predict program execution time for this design.

1.2.6. Cooperating Reduction Machines (Kluge)

Kluge [Klu82] has proposed a multiprocessor network to be composed of
Berkling’s sequential reduction machiﬁes. As in AMPS, a number of large-grain
processors {i.e. large enough to perform reductions on their own) are used as a
processing pool to execute .tasks as fhey are dynamically created through
demands for data values. In AMPS, tasks are created by passing demands top-

down through a function graph; Kluge's system sees tasks in the unfolding
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creation of independent executable reductions in much the same marnner.

Each executable reduction may be viewed as the program and initial state
of a "virtual” reduction machine, which must then be mapped onto a physical
proéessor for execution. Processors are not time-sliced. Instead, they support
LIFO execution scheduling in an efficient and pleasing manner. A property of
Berkling's reduction mechanism is that the contents of the three system stacks
completely spec;fy the state of a reduction. When a new task is mapped to a
‘processor, the requlred context  switch is performed simply by pushing
separation symbols onto the three stacks, and then loading the new virtual
machine. This virtual rmachine will execute to completion (unleés interrupted by

additional tasks), and then continue the execution of the interrupted context.’

The task scheduling mechanism and a means of controlling the migration of
tasks between processors are 1mportant aspects of Kluge’'s design. Migration -
and the resulling creation of parallelism is controlled through the use of local
ticketing operations that are independent of network topology. Because of the
local character of this load balancing, and other restrictions plaéed o process
migration, it is pessible that overall multiprocessor utilization might be poor.
The price of increased flexibility in processor échedul'mg would be increased
potential for contention within shared communication rescurces. Because Kluge
1821‘-?85 network topoelogy an open question, little rﬁore can be sald concerning

this tradeoff.

The use of an arbitrary number of processdrs in this design helps support
the architectural concurrency exhibited by reduction languages, but with
parallelism limited by the number of available processors. This is analogous to
the situation for AMPS, but communication costs seem potentially werse here.

This is because complete copies of executable reductions must be passed
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between machines, and arbitrarily largé‘ results  returned to their enclosing
reductions. AMPS experiences a corresponding problem related to graph
reduction and contention for shared data structures between processors.
However, the iocal cache mechanism used to allewate this problem in AMPS has
. .no counterpart in the string reduction design suggested by Kluge. As in the case
of AMPS, there is no clear way of deriving good estimates of program execution

time.

1.3. Other Related Work

We now briefly review work performed here at UNC that is closely related to

the MM1 proposal of Mago, upon which this dissertation is based.

1.3.1. Time and Storage Analysis (Koster)

Alexis Koster developed a methodology for analyziﬁg time and space
re‘iluirements of FFP programs on a machine organized around the principles-
suggested by Mago for MMi. In Koster's dissertation [Kos77], generic
performance -characteristics loosely representative of MM1 are assumed, and
the times reqﬁir_ed to execute primitive operations are expressed in-terms of &
clock cycle time {essentially, the _tirn.er réquired' to pass information from one
cell to a neighbor). Execution times and storage requirements for general
expressions (in FFP lénguages, even programs are expressions) are then derived

and appiied to a variety of program segmen’és.

In order to simplify the analysis, Koster assumes that the stdrége
management phase of the machine cycle takes no time. As mentioned, this is
the phase of ihe machine éycle most sensitive to process interfere.nce, so
Koster’s resul.ts give lower-bounds. With his approach, useful and interesting

results are made available with a minimum of difficulty, and he was able to
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successfully analyze a variety of matrix multiplication programs (showing clear

tradeoffs between time and space requirements}, and a tree traversal program.

The work described by Koster in his dissertation has subseguently been
extended in a joint effort [Sta81, Mag62], to include upper bounds analysis as
well.”  The analytic model of execution time to be presented in this dissertation

is based on this work. .

1.3.2. Message Routing {Kehs, Pargas, Presnell)

David Kehs has investigated the idea of using connections between
horizontally adjacent tcells in a tree of proéessors similar to MM1 to route data
between and among leaf cells of the tree [Keh7B]. Theoretical resulis are

presented to indicate the potential for increased efficiency of data movement.

Roy Pargas has investigated the use of a tree machine similar to MM1 for
the solution of partial differential equations {ParB82]. He presents an interestiné
and powerful high-level mechanism for communication routing within the tree
called GDCA (Generalized Distributed Communication Algorithm). GDCA requirés
programmable implemeniation support within the tree cells on a per—fne_ssage
basis, but Pargaé does not suggest'a means of implementing this facility; his
analysis of algorithms for the solution of partial differential equations assumes
that the teells have already been programmed Lo behave as necessary in
support, of & message routing. While this _ absence of concern for an
implementation for GDCA is unfortunate, his results show the power and Vélue of

generalized routing within a tree structure.

* Also of interest in this regard is the analysis by Williams [Wil81] of algorithms for paral-
lel asscciative searching algorithms on tree machines.
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1.8.3. Virtual Memory (Frank, Siddall)

Ceoffrey Frank's dissertation [Fra79] takes a formal mathematical
épproach in exploring the idea of a virtual memory for a machine organized
around the principles of MM1., Data is to be kepl in a second level store until_
needed by an innermost application, at which time room i made for it in the
leaf é.rray and it is brought iﬁ for reduction..Advantages of such a scheme
include fewer symbols to be shifted about during storage management, and th¢
ability to execute programs that are larger than the capacity of the leal cell
array. The two-level memofy hierarchy is hidden from FFP user programs by a

virtual memoTty inlerprefer,

Frank’s dissertation considers aspects relating to correctness and
implementation of the interpreter, and investigates the time and space
efficiency of programs under such an execution regime. Improved execution

tirne and space reguirements are shown for some FFP programs,

William Siddall has continued inVestigationﬁ_:along this line [Sid83] by
examining a variety of different virtual memory schemes for FFP interpreters.
He developed a simulator for storage 'manag'ement that allows the performance
o'fr' thése schemes to be evaluated. Our present design incorporates one of his
suggested approaches, which allows FFP texi movement into_‘and out of the

machine through the leftmost lcell. This allows both program entry and overflow.

1.4. Dissertation Overview

The objective of the research described in this dissertation is the design of
a computing system for maximally pafallel and efficient execution of FFP
language programs. The system design we present is an outgrowth of the ‘tre‘e-
structured architecture implementation suggested by Mago [Mage79], and is

specific and concretely verifiable; it is, in faet, execuitable. It completely
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supports all parallelism architecturally implicit in FFP languages, and its
efficiency is the result of a very high degree of lower-level implementation

parallelism,

The primary constituent of this design, a complete and detailed model for
implementation of the architecture, is called DOT (Distributed Opermting system
model of o Tree'-stmcf@red maeltiprocessor). DOT is represented using active
and passive abstract data types {tasks and c_lasses) in the C programming
language. This allows simulation of the aréhitectur_e implementation during
.ex'ecutinn of actual FIF'P pr.ograms, and is invaluable for the verification of what
is a highly complex and concurrent system. In addition to the DOT
implementation model, this dissertation presents an accurate analytic model of
program execution time based on the algorithms and communication protocols

used.

The name DOT was chosen to emphasize the fact that the implementation
model it represents may be viewed as a distributed operating systeni embedded
in hardware and ﬂrmwﬁre.* In this dissertation, the term "DOT machine" will
often be used to denote a multiprocessor organized and operating as indicated

by the DOT design.

Although the overall computing system is designed to support FFP in a
"direct execution” sense, the individual processing units from which it is
constructed {whose implementations are represented in DOT) do nol execute
FFP. Instead, these individual processing units cooperate in order to collectively
parse TFP text, and then load and execute "microprograms” that implement .the

required FFP operators through cooperative and highly parallel action.

* An operating systém typically performs memory management, process control, input-
output operations, and runtime support for interprocess communication. DOT performs
all of these functions.
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The intermediate level programs that determine this cooperative action are
therefore the other half of the story. They are expressed in LPL, a low-level
concurrent programming "assembly” language with specialized message passing
and process creation features. All computation on t;he architecture is guided
and determined by LPL programs, which can implement powerful functions as

low-level highly parallel manipulations of FFP program text.

The DOT implementation defines the LPL architecture, whose purpoée is to
fit between the arbitrarily powerful and high-level FFP view, z'a.nd.a 1ow.er level
composed of simple anci restricted operations made available ‘directly by
hardware and firmware. LPL represents a major component of the désign. The
anaiyi:ic model of program execution includes parameters based on LPL
definitions of the FFP operators as well as paramete.rs_determined by DOT. This
dissertation therefore preseﬁts a complete programming system, including LPL

programs for a powerful set of FF'P operators.

1.4.1. Dissertation Organization

The programming system we present is composed of three logical levels.
The top (user) lével is t.hat of FFP languages, and the middle {system support).
level is that of LPL, the concurrent programming language used to define and
implement arbitrary FFP operators. These two Ie{fels_ are supported by DOT, and

are described in Chapter 2.

DOT is both a design and an implémentation model for the desired parallel
architecture. It is the lowest level of the programming system, as we examine it

here, and is described in Ci’lapter 3.

In Chapter 4, we describe the simulation approach taken, and present
results of various simulation studies. Chapter 5 then presents an analytic model

of program execution time (for a restricted set of programs), and verifies its
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- agreement with the results of simulation studies.

In Chapter 6, design alternatives referred to throughout the presentation of
the architectiire and programming system are collected and reviewed. Chapter
7 concludes the dissertation with remarks conecerning the the DOT model and

' implications for hardware.

©1.4.2. Selective Reading

Because we are concerned with presentation of a highly complex and
parallel implementation model, certain sections of this dissertation may not be
appropriate for the casual reader. To allow selective reading, an overall guide to

levels of detail is provided here.

The first section of Chapter 2 is important; it provides a basis for
terminology used throughout the dissertation, and includes a simple example of
FFP languages. The formal definition of FFP languages may be skipped over if
desired, though this leads naturally into the explanation of LPL that follows,
.which is central to the dissertation. Detéils of actual LPL pro.grams may then be

skipped, by proceeding directly to Chapter 3.

Chapter 3 is 6rganized into four main sections. The first two provide an
over.view of DOT, and describe the basic machine cycle. These sections should
be read. The third section provides detailed descriptions for the processes and
objects of the DOT model, and is not essential for & high-level understanding of
the programming system. Finally, the last section provides a detailed analysis
of the most important algoﬁthms used by the ﬁmdei processes. This is the most
formidable part of the dissertation. Though it may be skipped by turning to
Chapter 4, this section contains the essence of maﬁy difficult problems thatl had
_ to be faced in order to efliciently utilize the treé-structure’d cormmunication

topology. Formal verification of algorithms via mathematical induction is
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performed when possible.

Chapter 4 discusses how the DOT implementation is simulated, and.is easy
reading. The analytic model of program execution .time is then presented in
Chapter 5. This chapter contains the implications for performance of the
algorithms that were analyzed in the last section of Chapter 3, and concludes
with a discussion of the degree to which DQT decouples paréllel function
evaluations -- an important aspect of'.the design. The introduction and
conclusion of Chapter 5 are thereforé recbmmended. while the details of the

performance model may be skipped if desired.

Both Chapter 6 and 7 should be read. Chapter 6 is_ fairly conversational,
and provides a feeling for the type of design decisions that were needed to
create DOT. The alternative approaches and extensions .are motivated by
_ hindsight, so these provide a helpful review. Chapter 7 reviews the dissertation

and discusses hardware considerations for further work.

If the chapters are read in their entifei_:y. a raﬁking of their diﬁicuify in
| decreasing order would be as follows: 3, 2, 5, 4, 8, 1, 7. Selective reading in
order to avoid low-level detailé should only be_requireﬂ for Chapters 2, 3, and 5.
These Chaptérs therefore contain appropriate pointers to _aid readers in avoiding

the more difficult seclions, should this be desired.



CHAPTER 2

Topmost Architecture Levels

2.1. Intrbduction

All comrhunication begins with agreement. In order that ideas, a design, or
structure be explicated, a common understandiﬁg of the task at hand and the
 terms used to describe it are necessary. Within the context of this dissertation,
the terms architecture, implementation, and realization are of utmost
iﬁlportance, and. are best used only after agreement on their meaning has been
reached. This is especially true because these terms are used in everyday
conversation, with little concern for an exact denotation. The term computer
archifecture, for instance, clearly has sorﬂething to do with logical structure,
and such a vague perceplion is.often good enough for informal communication.
But implicit faith in commonly perceived meanings can be a stumbling block
- when exact ideas of fairly technical nature must be communicated. In
particular, the difference between architecture_ and imp‘lemeﬁtation can be
quite confusing in the absence of p.rior agréemenﬁ. This has been not.ed by other

authores including Delesalle:

"Classification is fundumental to human thinking. It is performed in
various fields... In computer science, several clossificutions hove been
suggested.., Authors have eddressed, somelimes in passing, the
clossification of computer hardware. Their taxonomies, however, only
address o few incidental concepts, which are not Jormelly specified.
Also, the subject matter often mixes architecture with implementa-
tion.” [ DelB3]* :

* emphasis added

24
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2.1.1. Architecture, Implementation, and Realization

This dissertation bresents a programming system composed of numerous
levels, and in order to clearly p'resent a cohesive view of the overall design these
“levels must be correctly placed and described with respect to each other. For
this pui'pose,' the terms archifeclwre, implemeniation, and malizﬁtion- are
invaluable.. These terms and their use are deScribed by Blaauw and Brooks

[Bla83], whose approach I shall use.

"The architecture of ¢ computer system we define as the functional ap-
pearance of the system to its immediate user, that is, its conceptual
structure and funclional behavior os seen by onyone who programs in
machine language. A compuler’s architecture is by this definition dis-
tinguished from other domains of compuler design: the logical organiza-
tion of ifs data flow and controls, called the implementation; end the
physical structure embodying the implemeniclion, called the realiza-

tion." [ Bla83]

Given the concepts :of virtual machines and micro-c.oc;le implementations,
identification of the single machine language of a computer system may be
problematic. Although guestions of architecture and implementation may be
relative, for a particular computer system the question of "what is ﬁhe
realization" has a direct and existentially unambiguous aﬁswer. One mefely
points to the actual hardware as it sits before one. In the absence of an actual
machine, the manufactufing specifications serve as a 'rep're_sentation of the
realization.

Moving up from the realizati_on level, we entér the domain of aréhitecture

and implemehtation. While the realization level has a comforting and cohcrete

nature to it, the higher levels do not. They are abstractions to be embodied in a

realization.
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2.1.2. Multidevel Systems .

The relafivity of architecture and implementation levels is shown in the
system of Figure 2.1, in which one architecture is implemented in another.
-Blaauw and Brooks call such architectures vertically recursive [BlaB3)]. Fach
upper level of this system may be called an architecture because of its
correspondence to a virtual machine language. In additional, all levels but the

topmost are used to implement the next highest level.

FIGURE 2.1 — Vertically Recursive Campufe'r Architecture
Application Language (Axch)
Compiled Language (Imp/Arch)

Assembly Language (Imp/Arch}

{

Machine Language (Imp/Arch)

Micro-code Language (Imp/Arch)

Computer Hardware (Realization)

Reality is more complex than indicated by Figure 2.1. Omitted {or
disguised) is an important aspect of archi’_cecturé implementations: more than
‘one éﬁfstem component' and. level fnay be used to implement additional
architecture levels. For instance, it is true thal assembly language implements
a .compiled language, but so do the language compiler (which is more usually
_thought as the imple'merntation'of a compiled language), and the operaling

system (which implements I0 and under whose control compiled programs run).
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Within DOT, such compiler and operating system aspects are explicitly merged
into a single implementati'on model for the LPL and FFP architectures, and the
resulting system si:ructure is depicted in Figure 2.2. DOT implements LPL, and
the combination of DOT and LPL implements FFP. Authors dealing with
language-driven architectures sometimes speak of embedding the operating
system and compiler in hardware. The compiler and éperating system aspects

taken over by DOT are shown in Figure 2.3.

FIGURE 2.2 - DOT Implements LPL; DOT+LPL Implement FFFP

FFP -- User Level

LPL -
Operator Support DOT --

LPL & FFP Support

FIGURE 2.3 - DOT Compiler and Operating System Aspects

(Compiler) o Locate/Parse Innermost Applications

o

(0S) Multiprocessor Scheduling
o Virtual Memory
| o Input/Output Services

o Storage Management
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2.1.3. Architectural Concurrency

Another important point concerning architecture -- one of great
importance here -- is that languages can be architecturally concurrent, Tor
example, even an aséendbly language with a no-wait start-io instruction is
archi'tect'ura'lly econcurrent. Architectural concur'rex'}cy' may be seen in terms of
fhe absence of a guarantee (on the part of the language semantics) of stric£
sequentiality., In the caée 6f the above example, no guarantee is made that an
instructiéﬁ which textually follows a start-io will execute béfore or after io

activities complete.

On the other hand, architectural concurrency may involve more expliecit
control of multiple processes, as in Concurrent Pascal [Bri?7] or Ada [Ich?8]. In
the absence of a betler deﬁnit'ion, we will say that a language is
architecturally concurrent if it admits to parallel inte rpretation.* FFP and LPL

are both architecturally concurrent.

Architectural concurrency can be quite useful. It enables a straightfbrward
expression of many algorithms that afe most naturally represented in terms of
_mi;lltiple processes and éoncurrent behavio.r. In addition, an implementation is
freed from the necessity of strictly sequential support, which may allow valuable
gains in run-time efficiency. Per Brinch Hansen has coﬁvincingly demonstrated
the gains in system throughput that are possible when multiple concurrent
processes at the level of Pascal code are used to increase a syétem's freedom of
action (even when the processes are implemented through time-slicing on a

single processor) [Bri77].

‘A processihg unit is a sequential interpre{er of its machine language. Parallel interpre-
tation thus invelves more than cne processor.
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2.1.4. Implementing Architectural Concurrency

Given architectural concurrency in a language, an implemen’ber has a
variety of options. These. include direct parallel support | for 1ang'uége
concurrency in é.n implementing architecture, parallel impl_ementa’tion in some
way that doés not exactly mirror the supported language {perhaps by ﬁsing
limitéd languag.e—levei. pérallelism as in Treleaven’s design in Section 1.2.4, or by
using additional lower-level implernent'ation parallélism), and enforecing
seguentiality at the implementation level throqgh -a process scheduling

mechanism such as time-slicing.

In DOT, all concurrent aspects of the FFP and LPL archi.tecture levels have
been supported through the use of an even greater degree of parallelism (and at
a much finer grain) within their impiementation. Moreover, the DOT
representation is designe& to suggest realization as a highly parallel
multiprocessor, in a way that provides'_ diréc’:_t .parallel support within the
. realization for implementatiﬁn parallelism.*

| We now present FFP, the toprost architecture level of the programming
system pi'esented in this dissertation, and LPL, the architecture level that

implements FFP operatofs.

22  User Architecture — The FFP Language

Informally, an FFP language program ig a linear seciuen‘ce of symbols, of
which four types of symbol are specially distinguished for the purpose of

providing syntactic structure: cpening and closing application-forming symbols

* The DOT implementation model cperates in three modes: it represents a parallel imple-
mentation for FFP and LPL; its representaticn is executable, so it supports simulation of
the implementation via writing LPL programs to implement FFP operators, and then ac-
- tually running FFP programs on ii; and lastly, DOT suggests a realization as a tree-
structured cellular network of fine-grained processors suited to VL3I fabrication technal-

ogy.
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for applications, and similarly balanced list-forming symbols. An application_ is
composed of an operator and exactly one operand. Both operator and operand
may be lists and may contain further {(i.e., nested) applications. A npn—_trivial
FFP program is an application, and execution proceeds by succeésively reducing
innermost applications according to the semantics of their respective operators
until there are no further applications. The ultimate result is a constant (i.e.,

non-reducible) expression.

The applicé’tion stl.:)ol.'m our representation is a parenthesis "(", and the
list'-forn'ling" symbol is an angle bracket "<'. Within DOT, all program symbois
have an associated FFP text nesting level, which removes the need for storage of
the balaneing symbols "Y' and ">". Figure 2.4 gives an execution trace for an

FFP program that calculates the inner product of two vectors.

FIGURE 2.4 — Inner Product 6f < 1 23> with< 456>

~ The original FFP prograom is:
(+(<a*>(1‘<<133><456>>)))

—~ 7 (maotriz transpose) is innermost, so il is 'reduced yielding:
(+(<a*><<14><25><36>>))

— <o * > (apply-to-ail multiply) is innermost, and yields:
(+<(*<14>)(*<25>)(*<36>)>)

— three multiplications are innermost; parellel reduc tion yields:
(+<41018>)

— + (n-gry add) is innermost, so it is reduced yielding:
32

— which is the answer (no further applications to be performed)

FFP reductions are completely Iocal in nature and are tightly encapsulated
with respect to tine rest of the program. This fact allows immediate, completely
parallel. and non-interfering execution of all innermost applications (herea.fter ‘
referred to as reducible applicalions, or KFAs), and it is this property of I'FP
languages that makes them so attractive for multiprocessor support. User

programs are actually written in P, a human-engineeréd vergion of FFP
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described by Backus that allows programs to be written in a more structured
and understandable fashion [Bac78]. A pre-processor based on macro expansion
is used to convert FP programs to the equivalent FFP representation. The FP
‘program corresponding to the inner'product exémple in Figure 2.4 is:

[P==+ @ a* © T,

where @ is used to represent functional composition.

2.2.1. Backus' Language Ilierarchy

FIGURE 2.6 — A Hierarchy of Programming Languages

" Programming Languages

Complete Languages

Applicative Languages

Closed Appﬁcative Languages

Red | A-Red | FFP
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éklthough FFP is the user-level architecture whose implementation is the
object of this dissertation, FFP is part of a larger hierarchy of languages
suggested by. Backus [Bac73]. A brief review of this hierarchy, based on
terrhinology suggested by Backus [Bac7?3], is now given. This will enable us to
refer to some r. of the more formal aspects of FFP semantics in follc;wing

. *
sections,

2.2.1.1. Programming Languages

A progromming language, I,, comprises:

L1) A set of expressions, £
1L2) Adomain of discourse, D
L3) A semantic relation, o C EX D -

Thus, a programming language is a triple, L = (E,D,0), and when (e,d) € ¢, we say

that deb is a consegquent of the expression ecE,

2.2.1.2. Complete Languages

In a complete longuage, the semantic relatién is constrained to be a
function. called 4. The domain of discourse, now called C, is constrained to lié
Within the set of 1angﬁage expressions, and is the set of fixedpoints 61" ,u,." 1t
u(e) = e, then we say that c is the meaning or value of e. Thus, for instance,
w#{2+2) = 4. The function u need not be defined for all expressions; #{1/0) might
be undefined, for example. Formally, then, a language L = (B,C,u) is complete iff

CLI)CC E

CL&2) 1 is u purtial function from E anto C
CL3) Cis the set of fixzedpoints of 1

' Readers uninterested in these details may skip to Section 2.2.2, which coneludes the
discussion of FFP, and leads into Section 2.3, on the LPL leell programming language.

** A fixedpoint, x, of a function, f, satisfies the equation f(x)=x. Chapter 5 of Manna
[Man?74] provides a good introduction to the fixpoint theary of programs.
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Elements of C are called constonts since u(c) = c, and u is called the

semantic funclion since it determines the meaning of expressions.

- 2.2.1.3. Applicative Languages

In an opplicative language, a constructor syntax is employéd to create
expressions, .so.i'ne éf which are called applications, and the semantic function,
i, is then tailored to handle such e*'xpressions.. The use of a constructor syntax
: partitioﬁs a set of expressions into atomic and non-atomic expressions {(a
familiar constructor syntax is that used for listsj, and is a.natural'way Lo speeifly
a simple and regular synf.ax. Given a sef' of atoms, A, the pair (A,K) is called a
constructor syntax for E iff

CS1)ACE o

C52) Bach k,, < Kis o function: B » E, n=0
CS3)if e £ A then there is o unique k, and ¢,...e, such that kple,. e ]=¢

Thus, if £ has a constructor syntax, every valid expression e € E is either atomic
{(in which case, e € A), or has a unique.representation kn[ei'“en] built by a
constructor. '

We can now define an applicative language as a complete language, L =

(E.C.u) with an associated constructor syntax (4,X) such that

ALI)Ac C
ALZ) There is a binary op € K such that u(aple ;e o)) = plapiple ), pleg)l)
AL3) Yk, € K-lopi, plk,le e ) =k,lue . ue,l

Clause ALl indicates that atoms are their own meanings. Clause ALS3 indicates
that the meaning of an expression that is constructed by constructors other
than the ap constructor is simply the construction of the meanings of the
expression components. Expressions built using the ap éonstructor are called

appzications, and clause ALZ indicates that.the meaning of an application must
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be found by first computing the meaning of its components. In addition, clause
ALZ shows that the ap constructor is special since it affects the the meaning of

the expression it construets -- thus the outermost # on the right hand side of

ALZ,

2.2.1.4. Closed Applicative Languages

The above definition of applicative languages doesn't restrict the way u, the
meaniﬁg function, acts on applications, In what Backus has called
closed applicative languages , p is restricted by requiring it to operate on
applications of the form ap[el,ez] as if ey Is a function and e, is its argument.
To take this step, however, ‘there must be a mapping from an expression (in this
case, the expression el) to the function which it represents. This can be

acecomplished through the use of a representdtion Junction calLed.p.

In 1973, Backus defined p as mapping constant expressions to functions
which map constants to expressioﬁs. This yields the class of closed applicative
languages. Using different constructor syntak and constraining p and g in
different ways then yields the Red and A-Red language classes [Bae73]. (Actually,
as Backus later realized [Bac78], p and its range of functions can be extended so

they are defined for all expressions -- not just constants.)

A closed opplicative lunguage is therefore an applicative language L =
(E,C,U) with constructor syntax (A.K). and an associated representation
function, p € [C-+[C->E]] such that

CAL1) p is total over C

CALZ) Y c€C, p(c) = f<[C- ] is total over C
CALS) Yo e M(ap[cj,ce} = ,u,(:f(cg)) f=p(cl)

- Clause CAL3 specifies the computation of the meaning of ap[ci,cz]: the function

p_(cl) is applied to ¢,. If the result is a constant, we are done. Otherwise, we
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apply to this result the appropriate axiom among ALZ, AL3, and CAL3.

The definition of closed applicative languages tells us how to evaluate
applications whose components are constants. The differences between FFP,
Red, and A-Red languages (all_ of which are closed applicative 1ang1_1ages) arise
from differences in p, and the manner in which applications involving non-
constant expressions are evaluated. In both of .these‘ respects, FFP and Red
languages are quite simiiaf‘. TP languages amount to a late_r. aﬁd conceptually
simpliffed version of Red languagés. For this reason, a deséi‘iptio’n. of Red

languages will be omitted here.

A-Red languages, on the other hand, are quite different fr‘dm FFP languages;
they resemble the A-calculus. A-Red languages differ from A-calculus in the
following aspects: no bound variables need be con{rerted as by I- and «-
convle'rsion in the A-calculus, and innermost applications van be immediately
evaluated. These are bdth important factors which make A-Red languages easier

to implement than A-calculus based programming 1anguages.*

3;3.1.5. A-Red Languager;- _

In A-Red languages, the set of atomic constants, A ¢ C, is the union'o.f two
disjoint sets: variables, V, and objects, Q. Five different constructors are used:
. pair, lumbda, application, formal opplication (all of which are two-place
construetors); and bottom (a zero-place constructor). A typical set of textual
representations for these constructors is:

pa’ér(ej,eg) = <e, >
lambdofe ;. e5) = <?\e},eg>'

application(ez,eg) = (ei.'eg)
Jormal application(e e ;) = (e,.e5)

* The following section on A-Red languages, included for completeness, may be skipped by
the casual reader. : :
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bottom() = |
The difference betwee_h application and formal apﬁlication is that (el:eé) is a
valid .expression ift ey énd eé have no free variables, while (el.eg) is well-formed
only otherwise. Forméi applicationé canneot be reduced until one or more A-

substitutions transform them into applications eliminating all free variables. .

As closed applicative languages, A-Red languages satisfy axioms AL1, ALZ,

and CAL3. Thelr semantics are as follows.

pfe)=a acA=0u V¥V

,u,(<el,32>).= <pe y.pe o> | o
k<A, e>) = <A{uu)ue> = <A ue> ve vV

ple e g) = u(f(ue ). f = plue ;)
ule e ) = (ue . uey)

Recall that p maps elements of C into functions [C-E]. The set C, here, is
composed of aiI'expression_s containing no applications oflthe form (el:ez.)..As
above, let v € V, and let c.¢q.tp € C. Then p is defined for A-Red languages so that
p<e e > = flulp(cg))) £ =plc,)
p<AY,e> = Nu,c)
where for every variable veV, and évery constant eeC, A{v.c), an auxiliary
function, is a function from C into E defined in such a way as to express lambda-
abstraction in the presence of free and bound variéb‘les. The first of the above
rules. for p thus expresses regﬁlar fuﬁctioﬁal composition, and the second,

lambda-abstraction.

2.2.1.6. FFP Languages

In FFP languages {and Red languages), a very simple constructor syntax is
used, and there are no variables: Members of the set of atomic const_ants. AcC,

are called objects. Bottom, |, is a special object used to indicate "undefined”.
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The.re are only two co'nstructor_s:. sequence {(an ri-ary constructor for
- constructing -Hsts). and epplication {a binary constructor'). Expressions are thus
either atoms, lists of the form <e,....e >, or applications of the form (el-:e_:z). As
with the A-Red languages, the constants are those expressions containing no
applications. The représentat;on function, p, mapé atoms to functions [C»E],'
i.e., p!A-»[C-E], and the set of atoms ‘for which p(a) is defined represents the

primitive functions of the language.

Note that the domain of the representation function does not include non-
atomic constant expressicns. The semantic'. func'tion,'howevef. deals with such
' cases by providing a way of reducing such expressions to the api}lication of a
primitive function. This mechanism is called mela-composition, .The sémantic

function obeys the following rules.

FIGURE 2.6 -~ Semantics of FFP Languages
o) ufe)=a, e i
b) g(<el,..,_,en>') = <pley ). ule,)>
¢} plepes) =
c1) ey = -1 , E '
c2) e €A ulflule ) £ =ple,)
c.3) < QJQCangiej='<y1,..-..yn>ép(yi:(\ei,ey}
c4) e, 2C - plufe)ey)

Clauses a and b are as expectéd in closed app_licati\fe }anguages{ Clause ¢
rep_résents a further re_str'iction of CALB'.. Clause cl says that the special object
b_ott.orn. r.epresents. the function that élways retu%n‘s bottom (i.e., undefined).
Clause c? indicates that ey must be évaluateci before p(ei) is applied.t.o it. Thus,
function arguments are always evéluated before funection application -- this
shows the data-driven character of FFP, If p(el)=_l__(i.e., the étbm e, does not

represent a primitive. function of the language), then clause ¢l shows that
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meaning of the application is |, independeﬁt of the function arguments. Clause
c3 represents l:he.rule for meta-composition (to be élaborated on beiow),.and
indicates how to reduce an application ‘involving a function re;ﬁresented by a
non-atomic constant. Ciaus_e cd 'says that if él is no{; a c.onsta'nt ‘expression,
innermost appﬁcatioﬁé must be performed first in order to reduce ey to a
constant. Clause c2 an“d c4 together show that FFP ianguag'es have what is called

innermost reduciion semantics

Meta-composition is a clever formal device that not cnlj handles evaluation
of applications ir:woi_ving non—é‘tomic fu'nct;lon expressions (thus allowing user-
-defined functions to be represeﬁted as _expfessiohs iﬁvolving the primitive
- functions of the language), but also permits definition within the framework of
FFP languages of rgcursive and iterative functions as well as more general
functional forms (i.e., functions that are parametrized). Its use' will be explained
further in the followir;g_ section.r as we clarify some of the issues raised by the

above definition of FFP Iaﬁguageé.

2.2.2. Observations and E:‘{émples‘

- In an FFP languagé, as explained 'ab.ové, atoms‘repre.sent the primitive
functional operatiﬁns of the lénguage. The semantics of FFP languages indicate
that when suc.h an atom ‘is encountered in thé operator position of an
application, the ap.plzic'étion should be replaced by the result of _evaluating the
represented fhnctibn on its argument. To do this, we must either know what
function is represented (analytically), or have an algorithm for computiné the
. represented function. Méthema’gicians often take the first approach; a function
is defined analyticallj iﬁ terms ofr other known'fUnctions. Thus we might agree

on certain functions known to 7, an eveluation mechanism corresponding to u,
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~and then define p and its range accordingly.. Backus uses this approach to give
an example of the use of meta—compcsitidn [Bac78]. He defines t‘:he functional
form associated with constant functions, _Wﬁich is repres.'ented in FFP by the
sequencer < CONSTn > .When p{CONS’I") is defined appropriately. Backus

therefore gives

Def
p(CONST) =2 ® 1

where T (an evaluation mechanism corresponding to u) is assumed to

"understand” FP. He could have also given

Def , _ :
p{CONST) = the second element of the first element of the argument list

where T is assumed to understand English. In either case, evaluation of the
following expression {in which the constant function whose value is always D is

applied to its argument, 8) would take place as follows:
(< CONST5>:8) » (CONST: < < CONST5>8>) > 5.

The first step in the above evaluation is indicated by the FFP meta—composi_tion_
rule, ¢3; thé second, by rule c2 and tile deflnition -of p(GONST}._ Note that
~ following use of the rule for meta-composition, the first 'elem.ent of the function
expression, called the controlling operator of the functioﬁal form {CONST is the
controlling operator here), always has‘aé its operand a pair whose first element
is the original function expression. This.is what allows recursive and iteré.tivé

operators to be deﬁned so easily within the simple framework of FFP languages.

* The distinction between the evaluation mechanism represented here by T, and the se-.
mantic function represented by u is primarily one of implementation. The above
definition for FFP languages gives equivalences between the meanings of expressions; an
evaluation mechanism makes use of these equivalences to produce an actual result.
][Backus] has formalized this distinction using the concept of strict langunge realization
Bac73]. :
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An exampie of p without the use of meta-composition is the following:

Def
p(IP) = the inner produet of the two argument vectors .

Evaluation of the following expression would then take place as follows:

(IP:<<123><4566>>) - 32,

The semantics of FFP languages lets us use p to define whatever primitive
functions are appropriate to our needs. The question to be asked, then, if we are
to produce a realistic implerﬁentation for FFP, is "how much should 7 know"? Or,
equivalently, "how do we define the functions of p"? Our answer is the
combina_tion of LPL, through which the functions of p are defined
algérithmically, and DOT, which incorporates an evaluation mechanism 7 that
understands (among other things required by the semantics of FFP) how to

evaluate applications of primitive operators defined in LPL.

Backus presented FFP languages in his 1977 Turing Awar& Lecture, which
was primarily devoted to describing FP (Functional Programming) languages
and their associated algebra of programs [Béc-’r’B]. TP languages are an
immportant step in programming language evolution. They are higher-level and
less constricted in their syntax than FFP languages, and are designed for ease of
use by human programmers. ‘They are capable of expressing parallelism in a
natural and functionaiiy powerful fashion, and are amenable to manipulation,

transformation, and verification through use of their associated algebra.

In his original presentation, Backus motivated FFP by its similarity to the
FP languages, and noted the feasibility of éimple and direct translation from FP
to FFP. As shown above, the FFP language class can be given a very succinct
definition; both thé syntax and semantics of FTP lailguages are extremely

simple. This doesn’t mean that FFP languages are in any way limited in their
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expressive power, though. The 'representation function p allows use of
arbitrarily powerful primitive operators, and meta-composition provides an high
degree of extensibility.

FFP languages can be easily augmented with a definitional facility: if an
atom in the operator position of an application represents a ﬁser-“de.ﬁned
function, then it is replaced by an expression represe.nting. its FF‘P: deﬁnitiéﬁ,
yielding a new'.application w.hose meaning is the same as that of the original
application. *

Backus has pointéd ocut. the importance of distinguishing..between the
framework and - the ché.ngeable parts of a programfning language. _In
conventional p.rogramming languages, the framework tends to be elaborate énd
' complex, while the changeable parts Iack expressive power. In an FFP lénguage,
the framework is small and simple, yet able to accom_modaté a powerful and

wide variety of changeable parts.

2.3. Implementation Architecture — The LPL Language

LPL allows the definition of powerful FFP primitive operators. Inner product,
matrix transposition, and matrix and multiplication are feasible, as are all of the

primitives suggested by Backus in his Turing.A.ward Lecture.,” The rest of this

* Backus used a mechanism to support such user-defined operaters that was based on'a
special backing store to hold the definitions. This is actually unnecessary since g can be
extended to handle such definitions. The function represented by p{u), for a user-defined
operator, u, can simply be the function that produces a new expression that is the
desired application. The difference between the two approaches is that in the first ap-
proach, no reduction is performed -- the overator is replaced by its definition (and the
argument is left alone) -- while in the second appreach, the applicatien is actually re-
duced, producing the same resuli: an application of the desired user-defined operator ex-
pression to the original argument. In DOT, we use the second approach because of its re-
gularity within the implementation. The difference between these {wo appreaches is en-
tirely transparent to the user, therefore this decision does not effect the FFP architec-
ture,
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chapter is devoted to presenting LPL and its architecture model."

2.3.1. LPL Architecture

LPL deﬁﬁés an I'TP primitive as a program specifying' low-level and
a.rchite'cturally éoncurrent ﬁanipulations on the reﬁresentation of. an FFP RA.
The LPL-level répresentation fbr an RA (no.t to be confused With. .the
represent.ation function, p) is an irﬁpbrtarit aspéct of the LPL. érchitecture, and
is desi.gned tb assist locality of execﬁﬂidn wit'hin-th.e implementation. |

As shown in Figure 2._'?,_ the__LPL architecturé cc-:-_rresponds to é. single KA
contained in.a; linear array of cells,.eaclr.i one_of which is a small grain pfocessof
#Sed to hold a Symbol of the application plus. other.'rlocal state information.
Thesé cells, called {cells, operate independently and are able to cpmmunicate
through a globally shared message siﬁ::sysl;enmH The linear connections
between lcells are not available for comrﬁuriic ation in LPL, but .allow croation of
new symbols in the leell array through an operation called forking. Horizontal
communication is not allowed because, at the DOT implementation level, any
number of emply lcells may actually be distributed among those holding the

text of an RA visible to L,PL.

' For the casual reader, Section 2.3.1 provides sufficient overview of the LPL architecture.
Section 2.3.2 gives LPL syntax and semantics, and Section 2.3.3 discusses low-level syn-
chronization issues of use to the LPL programmer. Both these sections may be skipped if
desired. Finally, Section 2.4 presents actual LPL programs. Although of primary interest
to the LPL programmer, these programs are annolated to clarify important aspects of
LPL, and may be glanced over to provide a feeling for the size of LPL programs regquired
to implement FFP cperators. : _ :

** As elements of an architecture, leells are logical abstractions. In fact, they correspond
to what are also called lcells in the DOT implementation, and it is projected that the DOT
lcells ‘will be realized as small grain processors. The message subsystem, on the other
hand, is implemented within DOT using circuit switched communication channels between
entities called teells (for tree cells). The LPL architecture we present does not reguire
knowledge of the tree structure that implements it. A different LPL architecture might
incorporate messages that specify routing through this tree structure, in which case
such knowledge would be necessary at the LPL level.
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FIGURE 2.7 — LPL Architectural View -
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LPL REPRESENTATION OF REDUCIBLE APPiICATION

As can be seen, LPL corresponds to a powerful multiprocessor architecture.
- Hence, we can expect fairly efficient definitions for a wide variety of FIFP
~ primitive operatdrs. Before the actual capabilities of LPL are discussed,
however, let us investigate and motivate this architecture by giving informal
definitions for some FFP i)rimitives in English. To do this, a representation for
applications must be agreed upon. As a first step towards a representation for
the symbols of an RA seen by LPL, we will try to use information appropriate at

the I'T'P architectural level.

2.3.1.1. FFPdavel Text 'Répresentation

So far, we have used the notation (el : ez) to represent use of the
application c.onstructor. We will now make two changes in this representation.
First, we make "(" and )" special reserved symbols for denoting application.
| With this change. the colon denoting application is redundant, so we can now

write (e1 ez) to represent an application. This corresponds nicely with
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< ey .. e > which represents a list.

A 'second change in representation is also made in the interest of
ar’t:lﬁitectural economy of representation, Correspond‘mg to the constructor
syntax of FFP is a: unigue derivatio’n tree for every valid FFP expression. Figure
2.8 showsl an exam.ple.. The derivation tree shown in Figure 2._8.7 in which
cohstructors are represented by labeled arcs between expressions, can also be
expressed as a parse -trée in which constructors appear as non-leaf nodes.
Figure 2.9 shows the parse tree corresponding to Figure?;ﬂ."The parse tfee can
in turn be represented in an ordered linear notation appropriate to the lcell
array through the use of level numbers, called ains (for absolute level number)

as shown in Figure 2.10.

FIGURE 2.8 -- Derivation Tree fore = (< CONST 5> 8 )

| application contructor
( € 8 )
list constructor

< CONST 5 >




FIGURE 2.8 - Parse Tree fore = (< CONST 5> 8)
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FIGURE 2.10— A linear Representotion using ALNs
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LPL REPRESENTATION OF REDUCIBLE APPLICATION

The represéntation oleigure 2.10 amounts to a record of a pre-order
traversal of the parse tree of Figure 2.9, and can be easily generated from the
| FFP text in O(n) time and constant space by a pre-processor.
representation we choose to use in the FFP architecture. Its adv.antages include

the use of fewer Icells than would be required by thc more stralghtforward

approach of using balanced constructor symbols.

This is the
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We now define a simple FFP operator, the identity function.

Dey -
p(ID) =
o) The application symbol is delefed by ifs containing lcell.
b) The operator, ID, is deleted by ifs containing lcell.
¢) Symbols of the argument are kept by their containing lcells, but
their aln values are decremented by 1.

The level numbers of the argument symbols are decremented so that
replacing the application with its result (which is the objective of éxecuting an
LPL program) will not change the structure of the containing FFP expression.
| Assuming for the moment a definition for o{+), evaluation of an expression

involving ID (which shows how level numbers are modified) is illustrated in

Figure 2.11.
FIGURE 2 11 — Fualuationof (+ < (ID1)2>)
reduction reduction
_— _—
( | 3
4 / \ < + / \. <
N\ N

In multiprocessor architectures neon-local interactions should be kept to a

minimum in order to realize the potential of separate processors. The above
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déﬁnitiﬁn of p(ID) requires different behavior By the various lcells bhased on
whether they contain applicalion, operai_tor. or argument symbols. Tﬁus, tp avoid
non-local interactions, each lcell invelved in the reduction of an applivation of
th.e ID cperator should be able to locally discover what pért of the RA it contains.
Unfortunately, the FFP representation used so far contains no clue as to t.his
| information. How then, is an lcell to determine what part of the it contains?.
Messages between the lcells.might be used, but this would require non-local
interactions. If we want to efficiently utilize the p.ower of ﬁhe LPL architecture,
the LPL-level representation for symbols of an FFP RA must be augmented Wifh

additional information besides that available at thga FFP level.

2.3.1.2. LPlevel Representation of FI'P RA Symbols

In order to give each lcell information concerning its place in the RA,
information descriptive of the location of its contained symbol '11_'1 the parse tree
| of the RA is included -in the LPl-level representation of the symbol.. One

approach m.ight be to store within each lcell the parse treé for the entire
application, and indicate which node of the parse iree represents the locally
held symbol. This would give each leell complete information concerning its
place in the application, but such an approach is unfeasible because of storage
limitations. Applications can be arbitrarily large, and we assume the leell will
have a fixed amount of stofage.
Instead, in the belief that the topmost structure levels are the mbst

important, we represent the symbol location based on its pre—oi’der position in a

"truncated" version.of the associated parse tree.” This limited precision

* While this does not provide an leell with {fefel information concerning the place of its
symbeol in the RA (e.g., the last symbol of an RA cannot be locally identified), it represents
a useful compromise. Questions of implementation are left for Chapter 3, but a primary
reason for choosing this representation is that it can be efficiently caleulated using the
cverlying tree structure. :
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representation of a symbol’s position within the parse tree of its RA is called a
directory tuple. Figure 2.12 gives a parse tree for an RA and includes directory
tuples resulting from truncation at level 2. As shown by this diagram, a symbol
below. the level of truncation has the same directory as its ancestor at the

truncation level,

FIGURE 8,18 - Di?'éctory Tuplas for (IP<< 1 23>< 456 6>>)

(  level®
/ 100
P . < levell
< ' < level2

directory;_______.._[gl}_ I ¢ NI truncation
- P S RN

21 21 21 22 22 [22]

In addition to the directory tuple {(called d1..d4 in LPL)" the 1PL-level
representation for each symbol of an RA includes a symbol index (cailed
- symbol_inder in LPL) to guarantee a unique representation for each symbol of
an RA.*" Also included is a relative nesting level (called rin in LPL) which is the
nesting level of a symbol relative to that of the application .symbol for the RA.
The rin represents' the de?th of a symbol within the parse iree of its RA, and is
used to calculate the direc.tory tuple. While the 7in is only defined for a symbol
when it is contained within an RA, the ain is always defined, and represents the

depth of a symbol within the parse tree of the complete program. The

' At present, truncation for the LPL directory is performed at level 4,

* The first symbol of an RA {(from left to right) has symbal_mden: = 0, the zecond symbol
of an RA has symbol.indez = 1, etc.
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application symbol for an RA always has rin = 0, and symbol_index = 0.

A definition for directory tuples with truncation at an arbitrary level n is
. how given.

Def
Directory-Tuple =

For a symbol of an RA with directory fuple D = [dI,...,'dj,...,dn], dj is the
number of symbols with rin=j (including the symbol of interest) that are
encountered in a pre-order traversal Jrom the node with directory tuple
D'= [dl,...,dj_l.0.0,...,D]. The root of the tree has directory D.=[0..,0]

Figure 2.13 illustrates this deﬁnition ﬁsing truncation at level three. As shown
by Figure 2.13, the value of a general dj in a directory tuple indicates the left-
to-right count of level j symbols within the RA,(up to the one of interest) that are
within the scope of the last symbol with rin=j-1. For purposes of illustration, the
‘arrows in the diagram point from a level j directory entry to the last symbol with
nesting level j-1. The directory tuple for "d" in ’ghis diagram is [1,2,0] ~- d4 is 1
because it counts the operator sequénce symbol {the only level 1 symbol that
occurs before "d" and is within the scope of the application symbol at level 0):
do isr 2 because it counts the level 2 symbols {ineluding "d"") within the scope of
the operator sequence symbol {which is the last symbol with nesting level 1, and
is pointed to by an arrow); and d3 ts 0 because there are no level 3 symbols
- within tﬁe scope of the last level 2 symboi ("a itself) to be counted. As another
example, the directory tuple for "b" in this diagram is [1,1,2] -~ d, is 1 because
it counts the operator sequence symbol {the only level 1 symbol thal occurs
before "b" and is within the scope of the application symbol a’t.level'O); ds is 1
because it counts the second sequence symbol of the RA (the only level 2 symbol
that occurs before "b" and is within the scope of the operator sequence symbol
at level 1); and d3 is 2 because it counts """ and the third sequence symbol of

the RA (the only level 3 symbols that cccur before "b" and are within the scope
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of the second sequence symbol of the RA at level 2),

FIGURE 2.13 — [llustration of Directory Tuple Definition

( 10,0,0]
[1,0,0] < e [200]
/ \ # nodes with level=2 since [1,0,0]
[L10] << d [12.9 | |
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[1.1,1] a < [11,2] # nodes with level=3 since [1,1,0]

directory. _\. - - _ - _ _ _ _ 7/_ - \ ___________ truncation.

¢ [1,1,2]

# nodes with level=1 since [0,0,0]

To summarize, the LPL architecture specifies a representation for symbols

of innermost applications that comprises the followingf

= FFP symbuol

s IR level ~ aln

= Applicalion level — rin

 Application Directory Index - symbol_index

s Application Directory Tuple -- d1,d2,43, and d4.
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Another definition for p{ID) can now be made that clearly involves oniyA
actions local to each lcell:

Def |
p(ID} = if d7=2 then keep symbol and decrement ain.”

2.3.1.3. Message Subsystem

The message model employed' in the LPL architecture provides powerful
communication primitives that are efficieritly and simply implemented, and are
easily realized, as projected, in a tree-structured éellular network. In the
interest of simplicity, the architecture uses a central méssagr—_z server and a
broadcast protoéol. In the interest of power, the central message server has
added capabilities: it can sort or select messages according to keys, and it can
combiﬁe the data portion of messages according to associative arithmetic
Qper"ations sucﬁ as addition and multiplication. These additional .capabilities are
r;easonable since they have efficient implementations in a tree-structure.

Further details concerning messages are given with the LPL statements that use

them.

2.3.1.4. Replicating LPL Contexts

Other information besides the above-described symbol represeritation ig
available to LPL statements executing in an leell. The totality of this information
is referred to as the LPLenvironment (i.e., that data available to an LPL
progrém). The ClassC representation éf the LPL environment is given in Figure

2.14.

2 .

In LPL, the FFP symbols to result from reduction must be explicitly placed or kept {as
in the exXample) within leels. Thus, there is no need to delele symbols of an RA that will
not appear in the reduced resull.
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FIGURE 2. 14 - LPL Fnvironment

7*** Symbol Representa;tmn rE/

char symbol, 7* FFP-level symbol */
aln, s FrP-level aln */
rin, : - /% relative level within B4 */
¥ [Hrectory ***/
symbolindex,
directory[DLEVELS],
/¥%% Next Symbol Representation %,/
nsymbol ent, 7% validity ﬁa,g for nezt symbai */
nsymbel, e S* neat FFP-level symbol */
naln, C /* next FRP-level gin */

SR Message Support e/
margs[MARGSIZE], /* hold message afrgs for transmission */ -
mtmp[MTMPSIZE], /* holds recetved messages */
temps[TMPSIZE]; /* tempora.ry registers for general use */

SR Fork Support ***/

_ fork_id, /*.enm?'onment variable set by fork */
7*** Condition Code ***/ o _
cc; A condition code set by emp */

- The portions of the LPL environment that describe the RA symbol have been
explained. Th-e contents and LPL names for the other portions are explained with
the statements that use them. The LPL environment is part of a larger context,
called the execution context, or user context of_t‘hé LPL program.* The u.ser'
context includes (in addition to the LPL environment) LPL code in a compiled
form appropriate for executioﬁ, and other information such as program and :

message counters.

We have presented some essential aspects of LPL execution in the lcells by
investigating p(ID); One more element of the LPL architecture remains to be
mentioned before giving actual LPL statements. To this end, we give a definition

for the FFP primitive, DBL.

* The term "user" is pérhéps a poor choice, but refers to the LPL pfogram’s huse” of lcell
processing power. At the LPL architecture level, LPL programs are user programs.
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Def : :
p(DBL} = the pair whose two elements equal the original argument

Thus, for example, the following reductions are indicated:

(DBLx) » <zz> and
(DBL<z, ..z >) » K<y x, >, 2, > >

As can be seen, DBL is different in its operation from ID in that new FFP-
| level symbols must be created, and the expression can grow in size, How does
the LPL érchitecture handle such activity? Copying is required, and the LPL
message subsystem can support this. Before this is done, however, LPL

environments must be created to act as recipients of these messages.

To accomplish this, we let an LPL eﬁvironment replicate itself "sideways" in
a manner conceptually similar to a "fork” opération, in which a single process is
split into two or more parallel execution paths. Within DOT, a process performs
execution of LPL code in an lcell of the LPL architecture. Forking this process
piaces copies (called children) of the parent process’s user context into
adjacent lcells, shifting the conteits associated with the other symbols of the RA
to make room. This is therréason for the horizontal coﬁnections between leells of
the LPL architecture. With this ability; much more flexibility in the creation of
FFP-level symbols resulting from a reduction is possible. The replicated
contexts differ from each other in é single respect: the fork_ id environment
variable is sel to 1 for the parent {which is placed Ieftrnqst)' and increased by
one for each child, in left-to-right order. This allows forked processes to

condition their behavior in order to perform differently.

The idea used in the LPL program for DBL is to count the number of
symbols. in the argument' uging messages. Since the message subsysteﬂi
supports broadeast routing, this number can be received by an leell located

where the duplicate argument copy is desired. This leell forks off enough LPL
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user environments to receive the symbols of the argument, which are sent using
additional messages. Each newly-created receptive environment can select the
appropriate symbol from the many that are received by matching its fork_id
with the order of arrival éf the symbols, in order to reproduce the argument

symbols in the correct order.

Up to now, all aspects of the LPL architecture have been localized to a
single RA., The fork operation requires us to admit that there may be FFP—Ievel
symbols within the machine other than those seen by a single reduction. To show
why this is so, Figure 2.13 depicts a situation involving the use of DBL, and leads

to the question of when the fork operation should be allowed to proceed;

FIGURE 2.13 ~ Forking Hust Wait for Storoge Management
RA
E e e e b |
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] f
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DOT supports the fork operation during a period of time called storage
managemént, when all LPL programs are held in a quiescent state and execution
contexts can be shifted about on the horizontal ‘connections belween lcells, A

variety of mechanisms for the scheduling of this period are possible. Chapter 8,
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on design alternatives, will review some of these. The approach we take allows

LPL programs themselves to exert a measure of control over this scheduling.

The initiation of the storage management phase is performed.in a manner
similar to an interrupt on conventional machines. The executing context is saved
an.d the appropriate service routine is initiated. As is the case for conventional
assembly languages, we give the ‘LPL architecture the ability to mask out
interrupts. LPL programs always begin an execution period with the storage
management interrupt masked out. Execution of a fork statement (or other .
statements to be .described below) then removes the mask locally. When all
executing LPL contexts have "allowed" the storage management interrupt in this

way, storage managerrient and fork operations may take place.

- 2.3.2 LPL Syntax and Semantics

.We ﬁow presént the sy.ntax and semanties of LPL étatements.* LPL s
essentially an assembly Ianguag-e appropriate for execﬁtion by thg fine-grained
processors that are expecﬁed to realize the lcells. The language is designed to
provide simple yet powerful 1§w~level control of the leells of an RA.

An LPL prograrm defines an FFP primitive by Spécifying appropriate actions
for each Icell of an application. LPL is therefore designed to manipula‘té local
leell registers containing the LPL environment, and possibly invoke global
message operations with which LPL statemnents _in other lecells of the same RA
may interact. Various grot_lps of leells within the RA are given the same
instructions {e.g., all eleménts of a sequence), so an LPL program consists of

code segments -- one for each such group. The advantage  of this approach is

* Readers uninterested in details of LPL, found within the remainder of Section 2.3, may
still wish o skim over Section 2.4, which provides examples of useful FFP primitives,
Their names, which appear as subsection titles, are generally descriptive of their func-
tions. The introduction to FFP functional forms, in Section 2.4.2, may also be of interest.
. For the reader primarily interested in implementation details, Chapter 3 may be begun.
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that less conditional execution need be specified within LPL segments. This will

be made clear in the program examples that follow presentation of LPL.

The most interesting aspects of LPL are the message interactions between

the lcells of an RA (controlled with the send, receive; and endfilter staterents)
- and the way LPL contexts may spawn copies of themselves (controlled with the
fork and forke statements) in order Lo create additional FFP text symbols
within the lcell array. With these capabilities, LPL programs can implement
powerful FFP operators, and parallelism within the tree structure can be used
veryj .éf‘fe c'tiv.élj. | -

There are no stack-based variables in LPL as in procedure-oriented
languages. Instead, the LPL environment -V_ariabiés within local lcell registers
are referred to. Some of these environment Variébles are set up by DOT before
LPL statements are allowed to execute. These are symbol, uin, _rln,.and. the
directory, composed of symbol_index, and d7,d2,d3,d4 (the directory tuple). In
addition to its use by LPL statements, the directory 4-tuple is also used by DOT
to choose which code segment of an LPL program should be executed within an
individual leell. This will be explained in conjunction with the LPL destination

statement:

Upon completion, the reduction is "stepped forward” to its result. This is
done by DOT with the aid of the environment \}ariables nsymboi_cmt, nsymbol,
énd naln. The "n" prefix stands for "next," and these variables are set up in
each lcell of an RA by the LPL program. If nsymbol_cnt is zero when the RA is
stepped forward (this is the default}, the containing leell becbmes empty. {i.e.,
there is no FFP-level symbol in the icell following completion of the reduction).
If nsymbol_cnt is 1 (or non-zero) nsymbol is moved to symbol, and naln is moved

to aln.
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Thus, the LPL programmer is primarily concerned with creating code which
(for each lcell of the RA) will load nsymbol and naln with the_' symbol and alp
values which should next appear within the Icells of the RA in order to
. implement the. required reduction. All code segments of an LPL program must
con"lpl.ete {(by executing an endsegment statement) in the sarne machine
cy‘t':l.e.*

We now give an informal presentation of the LPL statements, expléining
their use and purpose. Statements that are closely related are given together in

the same section.

2.3.2.1. program/endprogram A program statement is the first statement of

an LPL program. Its form is

- program T . ' |

where = is the (integer Qp-code) identifier of the F'FP operator the LPL program
implements. The LPL assembler creates a 1ibfary object file for subsequent use
whose name is based on thié identifier. The end of an LPL program is signaled

with an endprogram statement. lts form is

endprogram:

*The machine cyele will be discussed in the following chapter. It arises from the necessi-
ty for successive storage management operations during the on-geing operation of the
machine. Symbels of an RA must be replaced by their reduced result in & single atornic
operation bétween cycles, and DOT presently assumes that if an lcell has completed exe-
cution of its code segment, then all icells of the RA have done s¢, and the reduction may
therefore by stepped forward within the lecell as indicated by the local values of
nsymbol.ent, nsymbol, and naln. It is possible for DOT to guarantee that reductions are
correctly stepped forward in the absence of this restriction on LPL segment completion,
but at the cost of execution efficiency, The tradeofis involved are discussed in Chapter 8.



58

2.3.2.2. destination/ endsegment‘ The same sequence of LPL statements is not
_executed in each lcell of an RA. Instead, an LPL program consis.trs of a collection
code segments, each of which begins with a destination statement that indicates
its the leells in which it should be executed. The first segment of an LPL
program whose destination matches an icell’s directory 4-tuple is the segrﬁent
that the leell will execute, and all following segments are ignored.* The form of

the destination statement is

destination adfde d3 a4

where each of d1 through d4 is either an integer, or an integer followed by "*".
A match, as referred to above, occurs if each of the lcell 4-tuple directory
entries is either equal-to (no "*” used) or equal-to—or-greater~£han ("*" used) the
respective destination value. The LPL program for 1D given in Section 2.4.1.1.

illustrates the importance of the textual ordering of destination statements.

The end of a program s.egment is signaled with an endsegment statement of

the form

endsegment

Execution of this stalement allows storage management for its leell.

2.3.2.3. Leell Data Movement and Arithmetic Presently, FFP symbols and
other data are bytes. Real, complex, and even vector data of limited size would
also be supportéd in a more realistic implementation. Data movement within

the leell is accomplished with the mov statement. It has the form

_° LPL program code segments are loaded in order of their textual definition within the
LPL program. The word "first”" therefore corresponds to textual appearance within the
program, as well as temporal appearance of the object code as it is received by an leell.
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mov sgurce destination ' _ l

where destinafion is one of the named environment variables, and source can be
either an environment variable, or an immediate value. There are two types of
immediate values: numeric, in which a numeric string is prefaced with #: and
character, in which a single character is prefaced with ”. The usual arithmetic
operations are also supported. These stalements are named add, su.b. mui. div..
and their forms are the same as for the mov statement. They behave as usual

for arithmetic statements in two-address assembly language architectures. -

Another data movement statement is keep. It has the form

keep

“It'is not primitive since mov could be used to achieve the sarme resﬁlts. but its
' use saves space in the LPL object code, Its effect is to move symbol to
nsymbol, aln to nein, and 1 to nsymbol_cnt. The dual of keep is erase, whose

effect is to mhove 0 to nsymbol_cnt. This statement has the form:.

erase

2.3.2.4. Logical Comparisons and Program Control One of the environment
variables is called cc, and its pur.pose is to act as a memory to hold the boolean
result of past comparisons. Condi£iona1 branches refer to it, and it may be
manipulated by name as a variable. The emp stétement im;ﬁlicitly manipulates

it. The form of this statement is

L cmp value , value o test cc-op
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- where value, and value, are either immediate values or named variables, and
test is one of the logical comparison operations: """, "<=", "=", ">=", ">", and
"<»", The ce-op argument is one of ".", "+", and "*', which mean respectively
that cc should be loaded, logically "or'-ed, or logically "and"-ed with the result
of the comparison. The LPL program for EQUALS given in Section 2.4.1.3 uses
two successive emp statements to check for equality of respective symbal and
aln values.

There are no structured program control statements such as "while" or "if-
then-else". Conditional branch-ing is provided by the br statement. The form of

this statement is

br ce-test s—lmbei

where ce-fest is one of ".", "+", and "-", which mean respectively that the branch
should be executed always, if cc is true, or if cec is false. S-Imbel is the label of
t:he statement that should be next executed if the branch is taken. A label
statement is used in conjunction with br to indicate that an identifier should ber

associated with the statement that Iollows the identifier. Its form is

label id

where id {a positive integer) is the s-label to be used in a br statement.

2.3.2.5. fﬁrkffo'rkc Forking is the means by which additional lcells ‘are
allocated t"o'hold-exp'anding FEP text. The word "fork” is used because each leell
may be thought of as & single process that executes & sequential LPL program
segment. A fork spawns copies of its program segment and its execulion context

to-create new processes in the requested number of adjacent lcells. Execution
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continues after allocation and loading of these lcells by DOT (during storage
management). A forke spawns completed resulls in the form of FFP symbols and
alns in the requested number of adjacent leells. Execution does not continue in

this case, since the RA is assumed to have completed. The form of the fork

 statement is

fork forksize

where jforksize is the (non negative) number of lecells desired. The fork id
enviroﬁment variable is set by DOT during support for this operation. The
parent of the fork operation is always given fork id = 1, while the children are
given fd'rk _id = 2 through forksize in left-to-right ordering. This fact can be

used in subsequent LPL statements to condition execution.

Fork is often followed by nselect {explained below), which can use fork_id as
a selector for the next FFP syn-ibol to be placed in the leell. Copying or moving
groups of FFP symbols into new locations is done by forking LPL environments
into the reguired number of lcells, and then using receive (explained below) to
selectively accept the desired symbols basgd oﬁ order of receipt and the local
Jork_id. The for.ked leell with fork did = .1 accepts the ﬁr.st_symbo.l to arrive, the
forked lcell with fork id = 2 accepts ‘the second symbol to arrive, anci S0 o1
Temporary registérs. t1 .. tg are available .for.use as message counters and

other purposes.

The statement fork #1 can be considered a no-op that delays execution
until after the next storage mianagement is 'performed,' Its use can help code
segments maintain synchronization over multiple machine cycles, so they all

complete during the same cycle. The statement fork #0 allows an lcell to "drop

* Recall # signals an immediate value as opposed to a variable name.
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out" of an RA during the riddle of a multi-eycle reduction.” This is a way of
freeing up lcells within a reduction as soon as possible, and can allow more
efficient storage management. The LPL program for DBL given in Section 2.4.1.4
uses fork #1 for synchronization, and also uses the temporary variable ! to fork

an LPL environment into a variable number of leells with the statement fork ti.

Forke is similar to fork. Its form is

forke forksize

Forke should be preceded by cseléct (explai.ned below) in order to fill a
temporary register array with the FIP symbols‘and aln values that will be
shifted out during the next storage management as a result of its execution.
Use of forke can enable improvements in the execution efficiency of LPL
programs that are able to complete by {orking off FFP-level symbols requiring
no further execution. The LPL program for EE1l given in Section 2.4.1.8 uses
forke in this way. Both fork and forke allow storage management for the leell in

which they are executed.

2.3.2.6. nselect/cselect The nselect statement is used to select and load one
element of a literal string from an LPL program into nsymboi and noln while also
'setting nsymbol_ent = 1. A list of nsymbol/ain-offsel pairs is given and the
effect of the statement is to load the appropriate pair based on a selector.

Nselect is thus analogous te a case statement in which the objective is always

: Following a fork #0, LPL execution halls in the conlaining lcell {as usual for fork opera-
ticns), and during the following storage management phase no descendants (not even a
parent process) for the executing LPL environment are created. Thus the executing LPL -
enviranment literally disappears between cyeles. Care must be taken that re-
partitioning will correctly detect and connect the RA in the absence of symbols that
disappear in this way (thus, an application symbel should never execute this statement).
The LPL directory is only created during the first partitioning of an RA, so dizappearing
symbols don’t change the directory.
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the loading of nsymbol and naln. Its form is

17 ~ nselect seleclor nsym , oset ; nSYm o oset,... nsymn oset, .

Once a particular nsymbol /oln-offset pair has Eeen chosen (based on the value
of the selector), nsymbal is loaded appfopriately.,_ and noln is loaded with the
present aln plus the chosen offset (which may be negative). Nseleel is often
used with #1 as a selector, which allows a single symbol and aln-offset to be

selected, and nsymbol_cnt to be set, ina single statement.

Nsélect can be useful after a fork operation. It allows setting up the next
FFP symbols to appear within a group of forked lcells by using fork_id as &
selector. Cselect is designed for use before a fork operatioh *&heri the LPL
'program reqﬁires no further execution and can éomplete by performing an

'appropriate storage management. Its form is as follows.

cseleck nsym 7 oset 1 nsym 2 osel 2. MSYM oset, .

The cselect statement is thus identical to the nselect statement, with the
exception that a selector is not used. Its function is to load a ternporary register
array with ’_che_ resulting values, so that the desired FFP symbols and alns will be
shifted out following forke.” The LPL program for EEl given in Section 2.4.1.8

shows the use of cselect.

® The size of the temparary register array within the Ieell will be ultimately determined
by space considerations related to the leell realizations. Ferke and eselect are both im-
portant béecause of the efficiency they allow when compared to fork and nselect, so the
area set aside to support cselect should be as large as possible. Presently, this array can
kold 20 symbaels.
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2.3.2.7. send/receive/endfilier

Thess_: statements are used for giobal communication within an RA.
Messages are sent and received during glebally sequénced activities céﬂed
message wawves, and all the leells of an RA have the option of participating in .any
. of them. A limited amount of processing can teke place within the message
subsystem of an RA during transmission of a message wave, and appropriate
instructions for this purpose are automatically sent up by the leells to introduce
- each new message wave. The information necessary for this is supplied in the

send statement.

The LPL messages within a message wave travel from the lcells into the LPL
message subsystem. Here, messages are sorted, combined or passed
selectively, and are then broadcast to all'leells in the RA. Those lcells doing
either a send or a receive for that particular message wave then ''see’ all
retufning messages for the wave. Send and receive have a filter portion that
describes the actions to be taken for each incoming message, and a DOT leell
més_sage process invokes this filter for each message arrival after first moving
the message inf;o a rec.éption area within the LPL environment. The difference
between send and receive is that the former sends a message then filters
incoming messages, including its own, while the latter merely filters incoming

messages, Their forms are as follows:

’ send mwave order combing-op keyl keyl maize
: filter-statements
’ endfiiter
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receive mwave
filter-statements
endfilter

Mwave is the (éos_itive integer) index of the message wave desired, and ord_er
indicates the order in which two messages of differing key va_lues should be
returned when broadeast to the lcells of the RA." The possible values for order
are '"+", and "-", which indicate respectively larger first, and smaller first. When
two rﬁessage’s arriving at a tcell have identical key values, the respective
messages are combined according to combine-sp. The possible combine
operations are addition, multiplication, selection of the message with the largest |
data value, or selection of the message with the smallest data valﬁe.
Additionally, a null combine operation is included to prevent combination even i_f
the key values for two messages a_re the same. These possibilities are
respectiveljr‘ indicated by "+, "*', ">", "<", and ".". Msize is the number of
message arguments {(in addition to the key values) that are to be sent.
Additional message arguments as reguired by a positiﬁe mgize are taken from
leell registers referred to in LPL ds m_grgl? ... m_org5. When messages are
combined arithmetically, it is m_grgi that is actually combined. The lcell
registers referred to in LPL as r_key!, r_key?2 r_org! ... r_argb are the ones into
which the arguments of a message are placed by DOT prior o executing a filter.
The LPL program for ATOM given in Section 2.4.1.2 uses messages to send ail

. argument symbols to the application symbol, where they are counted.

Restrictions must be placed on the statements within a filter: nested
message requests (i.e., send or receive staternents) are not allowéd, and forks

are not allowed. Branches may be executed, but only if the branch destination is

' Keyl is given precedence over key2.
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within the same filter or another filter for the same message wave,

2.3.2.8. endsend/smanage FEndsend tells the message subsystem that no more
sends will be performed (receives are still allowed) by the signaling leell. Its use
will be discussed in the following section where synchronization between

program segments is treated. Its form is:

endsend

Smanage indicates that the containing leell is willing to be interrupted for the

purpose of storage management. Its form is:

smanage

Smanage is different from the other three staternents that allow storage
‘management within the executing leell (the fork, forke, and endsegment
statements) since execution continues following its use. All lcells of an RA must
allow storage management before an execution ¢ycle can come to an end, thus
one of tﬁese four statements must be executed by each lcell .of gach RA dﬁrin’g
every cycle. This is anaiogous to enabling interrupf,s on a conventional machine.
Fallure to execute such a statement in one RA Icell will ultimately deadlock the

entire machine.

2.3.3. Synchronization of Program Segments

The issue of synchronization for program segments arises in two ways. First,
there is the overall synchronization of completion required of all segments in an

LPL program. Second, there is the synchronization reguired for transfer of

‘ Branching into another filter can be done to reduce code size in a case where a code
segment performs either a send or a receive, both of which reguire the same message
filter. The LPL program for MM (tmatrix multiply) given in Section 2.4.1.12 does this.
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information to forked leells during a me ssage wave (e.g., when copying FFP-level
symbols from one place to another). The LPL programmer must explicitly
provide completion synchronization, while synchronization of forks with

messages is essentially automatic.

In this section, we show how the fork, endsend and smanagé statements
‘allow control of both types of synchronization. Synchronization of forks wit-h
messages 1s discussed ﬁrst, since information on message handling is useful for
the discussion of segment completion. The LPL program for DBL given in Section

c.4.1.4 provides examples of both types of synchronization.

2.3.3.1. Synchronization of Forks and Messages

Copying FFP text from one location to another requires the coordinated use
of the fork, send, and receive statements in the following w&y. Destin_ation Iéel'ls
are prepared by forking the reguired number of LPL processes, each of which
subsequently executes a receive stalement on {say) wave n. The source lcells

are reguired to execute a send on message wave n.

But how can we guarantee that the sent information will not be delivered
before the fork completes? After all, a fork requires storage management, and

this is invisible to LPL program segments.

The answer is that the message subsystem requires, for each messége wave,
at least implicit acknowledgement from each lcell process of its opp.ortunity for
participation in the message wave. When a process executes a send or a receive
for message wave n, it is interpreted by the message subsystern as
acknowledgement and rejection of participation in all lower-numbered message
waves. Only after all processes have either completed or reque"ste-d message
service for the present {or possibly future) meséage wave will messages for the

present wave be delivered. If an leell forks to receive messages sent oh a
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particular wave, then, only after the fork completes and receive staternents are
execuled by the destination lcells will the message wave containing the

information to be copied actually be delivered. -

Thus, as long as the same message wave is used by receiving and sending
leells, all necessary synchronizﬁtio‘n is automatically provided by the message
subsystem, even in the presence .of.forking.' The use of endsend can now be
clarified. It turns off the automatic message synchronization for the executing
lcell by telling the message subsystem that the lcell will send no more messages.
This allows the lcell process to fork without holdiﬁg up .r.nes.sage Wavés. Although
its use does not preclude subsequent execution of a receive statement Within
the Icell or its descendants, it does remove the above synchronization of serids
and receives in the presence of forks {but only for the executing lcell and its

descendants).

2.3.8.2. Synchronization of Completion

All LPL program segments must complete by exe cutin.g. endsegment during
the same machine cycle. For single-cycle LPL programs, this is no problem, For
multiple-evele 'programs.. there are two ways of using LPL statements to
synchfonize completion.

When the number. of cycles is a small constant value (this is the usual
éituation -.- no ILPL program given here requires more than 2 ecycles) using
fork #1 to allow storage management and delay completion in segments that
would otherwise complete too early is often the simplest approach. This
app‘roach must be ﬁseci carefully if messages are also involved, however. If
messages are being sent during the samme cycle in which a fork is executed, they
will not be delivered (for the reasons explained above) unless an endsend is

executed before the fork Stateme'nt.
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Another way to synchronize completion of programs that use messages
during their last cycle is to add a receive statement (for the last frlessage wave).
to segments that woulci otherwise complete too early. In this case; messages will
be handled as otherwise desired (i.e., adding a final receive statement doesn’t
effect messagé synchronization in the same way as fork does), but now the LPL
programmer must be concerned with the pfogress of the machine cyclé, and
must allow storage management when appropriate. This may be done by; using

the smanage statement.

As will be seen in the following LPL program examples, either of the two
alternatives described above is usually possible. The decision as teo which
approach is best in a given situation is generally a question of style, although

guestions of code size tip the balance in favor of using fork #1 when possible.'

2.4. Remarks and FFP Operator Definitions

We ﬁow present LPL definitions for a variety of FFP primitive f}perators. FFP
funections are given first, followed by FFP functional fofms. For each _opex;ator,
we provide.a description of behavior, and point out interesting aspects of the
LPL code. Where appropriate, the definition of the corresponding FP operator
.suggesf',éd by Backué [Bac78] is also given." The programs have all been
tested, and run correctly on the simulation described in Chapter 4. They
provi.de the basis for many pafameters employed in the analytic modél of

Chapter o.

' A fork statement uses 2 bytes of object code. A reeceive statement (including the
endfilier statement, and an smanage statement) requires 4 bytes,

** Backus' definitions include concern for undefined results, and produce betiom when
appropriate. The LPL programs we give assume that the restrictions stated in their
header are satisfied. Operators could easily check their arguments for appropriate form,
but error handling in FFP langueges is a current area of research by Don Stanat and oth-
ers here at UNC. We have therefore left open the question of implementation support for
errar reporting.
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Each LPL-program is prefaced by a header of the followiﬁg form:

FFP OPERATOR -- description of application result
Restrictions:

Summary of Analytic Model Parameters:
program slze: X :
cyeles required: X
cyclel: messages: x {wave=x; msize=x)
' forks: x {campleted/executing)

S yIm: { op arg

aln: 01 1

dir: 01 2
00 O
0o 0
00 O

nsym:

naln:

FFP OPERATOR is the name of the operator the following LPL program
‘implements. Progfam_s.ize is the total size (in bytes) of the objecl code which
must be loaded in through [0 subsystem when the éompiled .operator definition
s required. Also included are the number of machine cyeles required, and a
breakdown of the communication and fork requirements for each cycle. The
communication breakdown includes the number of returning messages for each
message wave. Also included is the message size.” The fork breakdown includes
the number of new cells required, and whether the symﬁbls forked are
completed or executing. The distinction is important to the analytic model

because of the difference in coniext sizes.

The messzage size given in the header is the msize velue coded in the corresponding
send statement. The number of returning messages and the corresponding message sizes
are used in the analytic model. . s
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Also within the header is an example reduction, including the directory for
the example. The nsym and nﬁln values show the result of the reduction.
Although a single example may not cbmpletely describe the desired behavior of
an operator, it is often convenient to refer to the example directory when
reading destination statements in the follbwing LPL code. When the symbols of
an RA are shifted by forking to make room for information that is to be copied
or moved, blanks are used in the header description of the.original RA to show
where this additional space is made available. The__header of the LPL.program for

DBIL given in Section 2.4.1.4 provides the first example of this.

Recall that a d.estination statement describes, in te.rms of the four-level
leell directory, the destination(s) that should ‘execute the following Segmeﬁt -
provided that no earlier segment is accepted. An asterisk "*" is used to encode a
wild card directory match for the level on which is appeé.rs; it malches all
direcltory entries {on it's level) that are equal to or greater than the given value.
Thus, for instance, destination 2 0% 0* 0* addresses all symbols of the argumeﬁt,
and destination 0* 0* 0* 0* addresses all symbols of the RA. Comments are
supplied with a de_stination statement to make it clear which symbols of the RA
are being addressed. These éo’mments often use abbreviations to save space.
The application symboi for an RA is referred to as "app sym', the seguence
symbol that encloses the elements of an argument 1is£ is referred to as "arg

seq”, and storage management is referred to as s
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2.4.1. FFP Functions

2.4.1.1. Identity
- Using colon to denote applié ation of an FP function to its argument, Backus
defines the result of applying the ¥P id operator to an argument, x, as shown.

The LPL definition of the corresponding FFP operator then follows.

Dey
id x=x
ID -- result is the af‘gmﬁaht

Restrietions: none

Sumary of Analytic Model Parameters:
program size: 29 -
cycles required: 1
cyclel: U messages, 0 forks

8 yITL: { 23 x

aln: 01 1

dir: 01 2

00 O

00 0O

00 0

- nsym: X
naln: 8]

Method: All symbols of the argurent remin, but with adjusted nesting.
The applicalion syrbol and the operator erase themselves,

program (23 :
destination 2 0% 0* Q% /* The argument symbols
nseleet #1 symbol #-1 . /* ndjust their nesting,
endsegment
destination 0% 0% 0% O* #% Buerybody else
endsegment /% goes cway.

endprogram




73

This simple LPL program illustrates the value of a clever téxtual ordering of
destination statements. Symbols of the argument receive their 1.PL: program
first, after which the destination 0* 0* 0* 0* is used to address all of the
remaining symbols of the RA. In addition to placing themselves in the resﬁit of
the reduction, the argument symbols must adjust their level numbers, and
nselect allows this to be done with a single statement. Note that symbels other
than those of the argument simply execute an eﬁdsegment statemént without
placing successors in nsymbol and nain. These symbols therefore do not appe.ax'-

in the reduced resuilt.
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2.4.1.2. Atom
Backus defines the result of applying the FP atom operator to an argument,

z, as shown. The LPL program for the corresponding FFP operator follows.

Def
atom :z=zis enatom -» Ty z#] » F, |

ATOM -~ true (=1) if the arg is an atom, else false (= 0)
Restrictions: none .

Sumary of Analytic Model Paramelers:
program size: 68
cycles required: 1
cyclel: messages: 1 (wave=1; s i ze=0)
forks: none

sym: {
aln: 01 1
dir: 01 2
' 00 O
0o 0O
0D 0O

nsyin: 1

naln: O

Method: The argument symbols send themselves. If the argurent is
an atan, then only one message is received. The
application symbol checks this and places the result.
All other sywbols go away.

program 018
destination 0 0 0 O /% The opp symbol
mov #0 t1 /% counts messages
receive #1
add #1 t1
endfil ter :
ap #1 t1 = . /% one argument symbol?
nselect #1 cc #0 . /* place the resull
endsegment _
dest ination 1 0 0 0 /% The operator
endsegment /% goes oy

"destination 0% G* 0* 0O*

/% Symbols of the argument

send #1 + . symbol #0 0 /* send themselves
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endfilter , .
endsegrent - /* then go oway
endprogram : : :

In this LPL program, all argument symbols send themselves. The
application syfnb'ol receives these, and counts them, If there is but a singie.
argument symbol then the result is true. The resuilt is found in cc after
comparing the number of messages received with 1, and the apphcatlon symbol

uses nselect Lo place the answer in the reduction result.
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2.4.1.3. Equals
Backus defines the result of applying the FP eguals operator. io an

argument, z, as shown. The LPL program follows.

Def : _
equals : 2 = (x=<y 2> &y=z) » T: (z=<y 2> & y#z) » F' |

EQUALS -~ result is true iff the argurent elevents are equal
Restrictions: the argument is a pair

Summary of Analytic Model Parameters:
n = # synbols in second:argument element
program size: 134
cycles reguired: 1
cyclel: messages: 1 {wave=1; msize=0)
n {wave=2; msize=1)
1 (wave=3; msize=1)
forks: ncne

sy {19<<ac<a

aln: 0 112323

dir: 61 22222
000 01122
00 00101
00 C00O0O0

n'synq: 1

naln: 0

Method: The nurber of symbols of the first argurent element are.
determined. Symwbols of this element check themselves against
the corresponding values of the second arg element, and also
check equal elewent sizes. The results are cambined using
logical rmltiplication.

progran 019
destination 0 0 0 © A% The app symbol receives the result
receive #3
nselect #1 r_argl #0 .
ends egment _
destination 0% 0 0 O /% Uperclor and arg seq go away
endsegment

destination 2 1 0* 0% <% First elemeni
nmov #l margl /% Counts itseif
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send #1 + + #0 #0 1
mov r_argl t1 /* t}zssymbol count

endfilter
mov #2 t2 /% msg counter (offset for cmp index)
recelve 42 /% recetve symbols of second elem
“add #1 t2
arp t2 syobol_index = . /* emp this symbol?
br - 1 '
arp symbol r_key2 = . S yes
arp aln r_argl = * /% aln must alse maich
mov cc t3 /* sgve result for loter
iabel 1
endfilter :
add #2 t1 /® counteract msg cni offset
mov t3 cec /% get boek cmp resuil

amp t1 t2 = *  /* symbol ent must also match

mov cc m argl
send #3 + * #0 #0 1 /* and oll results for app sym

_ endfil ter
endsegment
destination O* 0* O* O* /% The second arg elemeant
mov aln m argl /% sends ils symbols to the first
send #R - . symbols_index syrbol 1
endsegment

endprogram

The LPL program for EQUALS works in the following fashion. The symbols of
first argument element (hereafter referred to as Al) count themselves in the
first message wave by using an add dofnbine-op. During the second message
wave, the second argument element (hereafter referred to as AR) sends its
_symbols (ordered by symbol index) so the symhbols of Al can .compare
thémSelves with the corresponding s.yrnbols of&AE. After this, each symbol of Al
uses multiplication for the combine-op of a third message wave to send a.
boolean value representing whether the symbol is matched by A2 {and Al and A2
contain the same number of symbols). The application symbol receives this last

result, and uses nselect to place the correct reduced result.
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2.4.1.4. Double
The result of applying the FP dbl operator to an argument, x, may be

defined as shown. The LPL program follows.

Def
dbl iz =zx#[ > <z x> |

DBL -- result is a pair whose elarents équal the original argurent
Restrictions: none

Sumary of Analytic Model Parameters:
n = # synbols in the argument
program size: 121
cyveles required: 2
cyclel: messages: 1 (wave=1; msize=1)
forks: 1 sym forks n contexts (executing)
cycle?2: messages: n {wave=2; msize=1)
forks: none

Sy ( B <ab
aln: 01 122
dir: 01 222
00 012
00 000
00 000
nsym: << ab<ab
naln: gi122122

Method: Count argument, fork the operator, and receive the argument symbols.

program 006
destination 0 0 0 O /% The app sym becornes o seg sym
keep . '
mov "< nsymbol
endsend /* allow wave 1 to complele
fork #1 A% allow sterage management, and
endsegment /% synchronize completion
destination 1 0 0 0 - /* The operator forks
keep
receive #1 /% Fipgl, gel forksize
mov r_argl t1
endfilter

fork t1 /% Then fork
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mov #1 t1 /% t1 counts symbols as they arrive -
receive #2 : '
amp tl1 fork_id = . /* Iz this symboal for me?
br - 1

mov r_Key2 nsymbol /*if so, then load it
mov r_argl naln

label 1 '
add #1 t1 /* bump the counter
endfil ter
endsegment
destination 0* 0* 0* O* /% The argument
keep , /% remains,
mov #1 m argl /% and counis itself
send #1 + + #0 #0 1 :
endfil ter
STBRNAge /% allow cperator to fork
mov aln m argl
send #2 - . symbol_index symbol 1 /* and send copy .
endfil ter
endsegment

endprogram

This is the first LPL program we show that requires forking. Since _the
argument to be copied is not restricted in size, we use the general fork
~ statement, as opposed to forke. The approach téken'is to count the symbols of -
the argument during the first message wave, and then fork the operator symbol
. to receive symbols of the argument sent on a second message wave. The
application symbol is replaced with a sequence symbol of the same nesting level

in order to encapsulate thé resulting duplicate elements.

‘Note the use of endsend and fork #1 by the application symbol, and of
smanage by the argument -~ these statements allow storage management to
proceed so that the fork executed by the operator symbol can complete.
Without these Statements, this program will deadlock, effectively halling the
entire machine by preventing siorage management. The smanage statement in
the argument segment could be replaced v.-rith a fork #1 statement without

changing the behavior of the program. If the application symbol were to use
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smanage to allow storage management, however, its execution would continue to
the next statement, and WouI& then complete in the first machine cycle. This is
not allowed. All icells must complete their LPL programs in the same cycle. The
application symbol could prevent this from happening by performing a receivg
on the second message wave {which occurs in the second cycle) after executing

the smanage, but the use of fork #1 is simpler and requires less code space.
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Baeckus defines the result of applying the FP length operator to an

argument, z, as shown. The LPL program follows.

Def | _
length @z = (z=<x,, ..., £, >)on; 2=¢-0; |

LENGTH -- result is the nurber of elements of the arguﬁent
Restrictions: argurent is a sequence

Sumary of Analytic Model Parameters:
program size: 42 '
cycles reguired: 1
cyclel: messages: 1 (wave=1; msize=0)

forks: 0

sym: {(1<12<34

aln: 01122233

dir: 1222222
00012333
ococoo0o012
00000C0O0OD

8 yrrs 3

aln D

Method: Argurent synbols send d2 using select max as the cambihe-op.
The winning message holds the length of the argurent, and
this result is placed by the application symbol.

program 001 :
destination 0 0 0 O #* Hold the resull
keep '
receive #1
mov r_argl nsymbol
endfilter
endsegment
destination O* 0* 0O* Q% /% find mazx column index
mov d2 m argl
send #1 + > #0 #0 1 % ag the marimum d2 value
endfllter
endsegment
gendprogran
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Backus defines the result of applying the FP {gil cperator to an argument,

z, as shown. The LPL program follows.

tail 'z = (=<2, > )y (T=<zy, L, T &nz2)o<ts .., 2, >0 |

TAIL -- result is the tail of Lhe argument list
Restrictions: the argument is a non-ewpty list

Summary of Analytic Model Parameters:
total prog size: 38 '
cycles required: 1
cyclel: messages: none
forks: none

sy (P4 <abe
aln: 1 1222
dir: 01 2222
00 0123
00 DO0ODO
00 0000
sym: < be
aln 11

Method: The tail and sequence symbol of the argument 1ift themselves

one level. All other symbels go away.

program 024
destination 2% 0* D* (0% /% The argumendt list

mp #1 d2 = .
br + 1

nselect #1 sywbol #-1 . /% remain if nof first element

label 1
endsegment

destination 0% 0* 0¥ 0O* 7% Buerybody else goes away,

endsegment
endprogram
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2.4.1.7. Rotr
Backus defines the result of applying .i'.he FP rotr operator to an argument,

x, s shown. The LPL program follows.

Def
rolr ;@ = 1= ;p—a;a =<z >—:<x >; _
(z= <z, 1> &-nzg)—m;c g zﬁ_1>;_1_

ROTR -~ move rlghtmost argurent element ‘to leftmost position
Restrictions: arglm,ent is a list

Sumnary of Analytic Model Parameters
n=# list elements
m = size of rightimost element {to be moved)
total prog size: 143
cycles required: 2- _
cyclel: messages: n (wave=1; msize=1)
forks: one symbol forks mt1 (executing)
‘cycled: nmessages: m {wave=2; msize=1)
forks: nene

sym: { 26 < abecd
aln: 01 1 22223
dir: 01 2 22222
00 0O 12344
00 O 0CcO0O01
00 0 0C00CO0OD0
nsym: <<dabec
naln 012111

Method: wave 1: find rightmost argurent element, and its size. Then
the argurent sequence symbol forks to receive it. wave 2:
the rightmost argument element sends itself and erases itself.

program 026 /* roiate right

destination 2 1* (% 0% . A% eaeh arg list element
nselect #1 symbol #-1 . /* assume not rightmost Jor now
mov #1 m argl /% each element counts ilself
send #1 - + d2 #0 1 7% and vightmost arrives [ost
mov r_keyl ti
endfilter
sTEnage

amp d2 t1 =, s am [ on the right?
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receive #2
endfilter

br . 2

label 1 erase
mov naln m argl
send #2 -
endfilter
label 2 endsegment
destination 2 0 0 O

nselect #1 symbol #-1 .

receive #1 _
trov r_argl tl
~endfilter .

add #1 ti

fork t1

crp #1 fork_id = .

br + 1

mov #2 t1

receive #2

amp fork id ti1

br - 3
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o if =0, need to erase ond send
/* otherwise, sync and completle

~* come here iff rightmost

syrbel_index nsywbol 1

/¥ the arg seq sym
/% finds out size of rightmost
/% list glement

/% must include self as well
/* and then forks to recetve it

7% on wave 2

mov r__keer nsyrrbol

mov r_argl naln

label 3 add #1 t1

endfil ter
iabel 1 endsegment
destination G* 0% (* (O*
endsend
fork #1
endsegment
endprogram

/% everybody eise

/% syne and go qway

To do RO_TR, we first need to locate the rightmost argument element and

count it, so that it may be sent over to the left of the sequence, where the

argument sequence symbol will fork and regeive it. Although the LPL symbol

representation does not indicate when a symbol is the rightmost element of a

list, the argument symbols make effective use of their first send statement io

both discover the rightmost element, and count it. Using d@2 as a sort key,

message wave 1 returns messages sent by the rightmost elerment last, and this

information is the desired count since addition is used for a combine operation.

After this, executbion is similar to that for DBL.
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2.4.1.8. Distl

Backus defines the result of applying the FP distl operator to an argument,

x, as shown. The LPL progré.m follows.

Def
distl : z = 2=K2,;,0>p; =KL, <Yy, .0, Y PO3KLY >, L, <BY DL

DISTL -- distribute left elamnt to all right elements
Restrictions: argument is a pair
whose second element is a sequence

Summry of Analytic Model Parameters:
n = # elements of inner list
m = size of elanent to be distributed .
total prog size: 120
vycles required: 2
cyclel: messages: 1 {wave=1; msize=1)
forks mm+ 1 {executing)
cycle2: messages: m {wave=2; nsize=1)

forks: O

S v (25 < ac<hbe
aln: 01 1 2 3
dir: 01 2 2222

00 O 1222

00 0O 0012

00 O 0000
nswmn: << a b<ac
naln: 012 2122

Method: The argxseq forks to "< <", the inner list seg goes away. The
leftmost arg element counts itself, and all but leftmost inner
elaerents fork and receive it. :

program 025 /* distribute left

destination 2 0 0 O /% the ary seq forks to "< <"
endsend /% allow message wove [ to complete
fork #2 7% muintain syne, and allow sm
nselect fork id "< #-1 "< #0 .
endsegrent

destination 2 1 0* 0% /*leftmost arg counts and sends itself

keep A% keep to go with lefirmost elem of inner list
mov #1 m argl o
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send #1 + + #0 #0 1 /* count self

endfilter
smanage /* nliow sm
mov naln m argl -
send #2 - . symbol_index nsymbol 1 /* send self
-  endfilter :
endsegment
destination 2 2 2* 0 7% all but lgfimost elem of inner list
keep
receive #1 /% get count for new elem
mov r_argl ti
endfil ter
add #2 t1 /" must also include self and seq sym
fork t1 - /* create necessary space
arp fork id t1 < . A am {old or new symbol?
br + 1 /% if new, go get looded
nselect #1 symbol #-1 . /* otherwise keep old
br . 2 :
label 1 arp #1 fork_id < . /*am Irightof ség?
br + 3 . /¥ if 8o, go get loaded
nselect #I "< #-2 . /* otherwise become seq
br . 4 '

label 3 mov #2 t1 /* msg counter (offset for emp forkid)
receive #2 :
. amp fork_id t1 = . /* should | receive this?
br - 5
mov r_key2 nsyrbol /*4if so, load it
mov r_argl naln &
label 5 add #1 t1 - - /* count msg
endfilter
label 2 label 4 endsegment
"~ destination 2 2 0 O /* Lhe separator seg goes gwoy
endsend /% allow wave I {o complete
fork #1 A% maintain syne, allow sm
_ endsegment ' '
destination 2 0% O* 0* /* the rest of the arg symbols
endsend - /% allow wave 1 to complete
nselect #1 symbol #-1 .
fork #1 /* maintain syne, allow sm
endsegment ‘
destination O* 0% O* 0* /* guerybody eise goes away
endsend A% allow waye 1
fork #1 -/ maintain syne, ellow sm
endsegment '
endprogram

In this program, the first cycle is used to determine the size of the leftmost
argument element, and to fork the leftmost symbol of all but the first element of

the second element of the argument. Many of the segments use fork #1 to
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maintain synchronization and complete in the second cycle. These segments
must also use endsend to allow the first message wave to complete., The first

segment could have used a eselect and forke #2 in the second cycle.
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2.4.1.9. Hatrix Trans_pose

Backus defines the result of applying the FP 7 opérator (i.e., transpose) Lo

an argument, z, as shown. The LPL program follows.

Def
ToZ=x=<y, ., @>g D=y, ., Zp> <Y g0y Y >0 L

where x,i=<x“, e T >, and yj: <z
with [<i=n, and Igj=m,

o

TRANS -- Transpose 2-D Rectangular Matrix
Restrictions: matrix elements are atomic

Sumnary of Analytic Model Parameters:
m = #rows
n = f#colums
h = log{m{n+1)+3)
program size: 195
cycles required: 2
cyclel: messages: 1 {wave=1; msize=1)
forks: n(mt1)
cycleZ: messages: m(n-1) (wave=2; msize=1)
forks: 0

s yruw {11 << 1 2 3 <587

aln: 01 12 3 3 2333

dir: 01 222 2 2 2222
00 011 1 1 2222
00 001 2 3 0123
D0 00O 0 0 CoooO

nsyn < <15<«<26<37

naln: 0 122122122

Method: each element of the first row forms a new row with the required
nutber of colums (by forking the reguired nurber of syrthols).

. progran 011
destination 0 0 0 0 /% the upp symboi goes nway
endsend /% allow wave 1 to complete
fork #1 7% allow sm and synch

endsegment
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destination 1 0 0 0 /% the operutor can free space at
fork #0 ~ /* the end of the first cycle
endsegment

destination 2 0 0 O /* the matriz arg seq symbol
keep
add #-1 naln 7% adjust nesting -
endsend /% let wave 1 go
fork #1 /% allow sm and synch
ends egment

destination 2 1* O O /* the seq sym for each row

mov #1 m argl /% gssists in o row count
send #1 + + #0 #0 1

endfilter
fork #0 /% and then vonishes
endsegrent

destination 2 1 1* 0. /* each element of first row

keep ' 7
mov #1 t1 - /% forks a sequence symbol
receive #1 /* plus the received §# cols

add r_argl ti '

endfilter
fork t1 /% fork out required space
arp #! fork_id = . /* for complefe row
br - 1 /* of the result,
nselect fork_id "< #-2 . /* the seq thal starts
br . 5 /% @ row is now done
label 1 add #-1 naln/* other cells modify their nesting
arp #2 fork _id = . /*first element of row is
br + 6 o /* ig the original symbol

mov #1 £3 - /* result row counter
mov #3 t5 /* result column counter (offset)
receive ¢

amp d3 t3 = . A% is this row for me?

br - 2 :

anp fork_id t5 = . /*is fthis column for me?
br - 3 '

mov r_argl nsymbol /* yes, so place if
label 2 label 3 add #1 t5 /*increment column
ap t5 tl1 > . /7 time Lo siorl new row?
br - 4 ‘
mov #3 tH
add #1 t3
label 4 endfilter
label 5 label B endsegment

destination 0% 0% 0* 0* /% glements of all other rows
mov symbol m argl
smEnage . _ 7% allow sm
send #2 - . d3 d2 1 #* send themselves
endfll ter
endsegment

endprogram
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N-ARY ADD -- result is sum of the argurent elements
Restrictions: argument is a sequence whose elements are atomic

Surmary of Analytic Model Parameters:
program size: 53
cycles required: 1
cyclel: messages: 1 (wave=l; msize=1)

forks: O
sy {4<abec
aln: 11222
dir: n 12222
000D1R3
000DOO0CO
00D0D0OO0O
sy at+bte
naln: 0

~ Method: Fach element of the list sends itself, and is added on
the way up the tree. The sum is returned to the lcells,
and is placed by the application syirbol .

program 004 : '
destination 00 0 O /% opp symbol holds resull
keep
receive #1
mov r_argl nsymbol
endfilter
endsegrent
destination 1¥ 0 0 O /* Op and ury seq go oway
endsegnent . :
destination 0% O* 0% 0O* /% The arg elemenits
mov  syrbol moargl
send #1 + + #0 #0 1 /% Send themselves with add op
endfll ter '
endsegmrent

endprogr amn




2.4.1.11. Sort

91

SORT -- elerents of argu'nent are sorted in ascending order
Restrictions: argunent is a sequence whose elements are atomic

Summary of Analytic Model Parameters:
n = Jelaments to be sorted -
program size: 59
cycles reguired: 1
cyclel: messages: n (wave=1l; msize=0)

forks: O
S yIIL {5<241563
aln: D11222822¢
dir: g122222:2
000123 45
O0000D0C0CC0
000000000
NSy 1 4 5
naln: c11111

Method: The argument sequence syrbol is kept in place. The

application symbol and the operator erase themselves,

The argurent elements send themselves, with ordering
so that the smallest values are passed through first.

programn 005
destination 2 0 0 O _ /%< stays in front
keep
endsegment.
destination 0* 0 0 O /* The opp and op sSyms
endsegment /* go groay
destination O0* 0* O* O* " /* The argument sorits 'Ltself
keep ' 7% in place,
mov #3 t1  /* msg counter (with offset for cmp index)
send #1 - . symbol #0 O /% symbol is the key
amp tl symbol_index = . /* so they are received
br - 1
nselect #1 r_keyl #-1 . /*inorder
label 1
add #1 t1
endfilter
end“egment

endprograrn
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2.4.1.12. Matrix Multiply

MM -~ In-place rmltiplication of matrices A x B - C.
Restrictions: argurment is a pair of sguare matrices

Sumary of Analytic Model Parameters:
n = # of rows and colums of A,B, and C.
total prog size: 246
cycles required: 1
eyelel: messages: 1_(wave=1; msize=1)
n~ {wave=2; msize=2)

n? {(wave=j+1; msize=1)
forks: none ‘

Sy (BB<cgllc22cclrggl?

aln: 01 1234434423443 44

dir: 01 222222222222 z222%2
00 011111112222222
00 001112220111222
00 0001201200120 12

sym: << 2448

aln: 0122122

Method: The application symbol and the operator go away. The result
is held in A, the first argurent matrix. The second argurent
matrix, B, pgoes away after assisting the rmitiplication. The
outer-product algoritim is used, which operates as follows:
C(ivi) = 5 ( A(i.k) * Bk, j) ).

Matrix B finds max k in wave 1,
: sends row k in wave 1 + k.
Matrix A gets max k in wave 1,
sends colum k in wave 1 + k.
During each wave, A{i,j) rultiplies and accurulates
a result based on a msg fran A (keyl=d3; key2=0) and
a msg fron B (keyl=d4; key2=1).

program 028
destination 2 2 1* 1* /% --glements of B -
mov d3 m argl /% mov row index fo message
send #1 + > #0 #0 1 /% send with select mazx
mov r_argi t9 /% tost msg is the row count
endfilter
mov #1 t8 A% inil current row

mov #2 L7 S*init current wove



label 1 amp d3 t8 = .

br - 2

mov symbol m argl

send t7 + . d4 #1 1
endfil ter

br . 3

label 2 receive t7
endfil ter

label 3 add #1 t7

add #1 t8

amp tB 19 <= |

br + 1

endsegment.

destination 2 1 1% 1*
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/% am I right row fo send?

A if not, go recetve

/% move symdbol lo message
7* include col index and B flog

./* if not send, keep slep

¥ new wave

¥ new row

/* more sends?

/* yes if more rows

/% go cway when finished
/% —glements of A->C—

receive {1 s get
- mov r_argl 9 /Fmax k
endfil ter
mov #1 t8 A% il column counter
mov #2 t7 /% inil wave counfer
mov #0 t6 7 inil accumulator
label 1 mov #0 {4 AAdndd L4 and 15 o
npv #0 t5 /* hold values to mulliply
amp d4 t8 = . 7% am [ right column to send?
br - 2 /% if not go receive
mov symbol m argl /* move symbaol lo message
send t7 + . d3 #0 1 7* include row index and A flog
label 9 crp #0 r_keyl = ./* Which mualriz?
br + 4 /% A —go to handle
arp r_keyl d4 = . /* B - check for keyi=d<
br - 5 /% no
mov r_argl t5 /* hold B volue
br . 8 ' :
label 4 arp r_keyl d3 = . /* A-check for keyi=d3
br - 7 SAne
mov r_argl t4 /% hold A value
label 5 label 6 label 7 endfilter
br . 8
label & receive 17 /* either send or receive
br . 9 /* both are handled aboue
endfilter
label 8 rml t4 t5 7 woue £ 718 now over
add t5 t6 /* odd B contribulion o ccoum
add #1 t7 /% count message wave
add #1 t8 /% and increment column
mp t8 t8 <= . /% is there more work?
br + 1 /% if so0, get next wave
nselect #1 t6 #-2 . /% otherwise place accumulolor
endsegment :
destination O* Q0% 0% Q% /% guerybody else - includes
amp #2 di = . 7 enclosing seq syms of 4, B
amp #1 d2 = * /% do Fenclose A?
br - 1 /% 4f not, go owoy

nselect #1 symbo-l #-2 .

/* otherwise modify nesting



tabel 1 endsegment
endprogram
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2.4 2. FFP FMunctional Forms '

A fﬁnbtional form is a pafametrized function. For example, <CONST n> is
| the functional form used in FFP to represent the function whose applieation
always reduces to n, regardless of its argument. As the exa_mple definitions fb.r
p(CONST) given in Section 2.2.2 showed, evaluation of the application §f a

functional form within FFP uses meta-composition.

Backus's deﬁnitipn of FFP in this way was motivatedlby the desire for a
concise, uniform representation of self-referential functions. Within the
operational context of the DOT implementation, however, there is no need for
meta-composition {whose purpose is to provide an operator with access to it-self
| as well as the original argument). This is because LPL definitions for FPP:
operators glways have access to an entire RA, and this 'includeé the operator
expression. Functional forms are therefore implemented directly within LPL
without the intermediate step {and extra reduction cycle) implied by meta-
composition. This is done er. all the usual functional forms which occur in the

form "< ff ... >

Within Backus’ .f_or.'rnal semantics for IFP an operalor can mean'mgfuily
peeur in the form "<< I ... > ... >" or with even deeper "leftmost" nesting. Such
operator expressions can be created within FFP, and a complete semantics must
provide a definition of their meaning. The result of application of such an
operator could be defined as bottom without sacrifice of computational power,
but the meta-composition rule instead handles such an application by
unraveling. the operator as usual. For this reason, the DOT implementation
knows aboul meta-compesition, and, upon encountering an operator with at
least two leading sequence symbols, brings in an LPL progra.m that implements

Backus' meta-composition rule. The LPL program for meta-composition is
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therefore given in this section for completeness.

One of the main differences between FP and FFP is thé treatment of
functional forms. In FFP, each functional form is uniforml& represented as a
sequence with a qontrolling cperator. In FP, on the other hand, functional forms
represént operalions of an associated algebra of program.s, and their

representaltion varies in the interest of clarity and notaticnal convenience. .
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2.4.2.1. Constant
Using z to represent the FP function whose value is always the object, =,
Backus gives

Def
ziy=yslon |

< CONST n > -- result is the object, n
Restrictions: none

Summary of Analytic Model Parameters:
program sige: 27
cycles required: 1
eyclel: messages: 0O
forks: O

Sy { <21nx
aln: 012 21
dir: 011 12
Do0o1 290
000 00
000 0O
118 VI n
naln: 0

Method: Frase everything but the object parameter of CONST

program 021
destination 1 2 0 0
nselect #1 syrbol #-2 .
endsegment
destination 0% 0% 0% 0%
endsegment
endprogramn
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2.4.2.2. Select
Backus considers selectors to be special FP functions {Bac78], but we.
prefer to treat select as a functional form. Using S to represent the FP function

that selects the st element of an argument sequence, we give

Def
sru=E(z=<,, L, B> & 1=s=n)oz ;|

<SELECT n> -- result is the nth elevent of the argurent sequence
Restrictions: argunent is a sequence

Summary of Analytic Model Parameters:
total prog size: 81
cycles required: 1
cyclel: nessages: 1 (wave=1l; size=0)
forks: none

5 VI (<27 2<ac<hbe
aln: 12 212232
dir: 011 122222
001 RO0O1RgE2S3
000 0O0O0D10D0
Do 00OO0OO0OOQD
nsym: < b
nain: 01

Method: The selector value is sent in a message, and each argurent
symbol carpares its d2 directory value with the selector.
Al} sybols that are not part of the argurment. or whose
d2 value does not egual the selector value are erased. Those
syrbols that remain adjust their nesting by raising
thenselves two levels. o

program 027 /* Select

destination 1 2 0 O /% the selecior value
send #1 + . syrbol #0 0 * sends ifssif.
endfil ter ’
‘ endsegrment
destination 2 0% 0* 0% /% The argument recetues
recelve #1 /% the selector value

amp r_keyl dZ = .
endfil ter



br - 1

nselect #1 symbol #-2 .

iabel 1 endsegment
destination 0¥ 0* 0O* O*

endsegment
endprogram

/% and keeps ilself if selected’

/* Bverybody else goes away.

o9
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2.4.2.3. Composition
Within TP, functionél composition is represented using @ as an infix

operator. Thus Backus gives

Def
feg:z=f:(g:xz)
We give an n-ary FFP functional form for composition, for which an appropriate

FP form might be defined as follows.

Oy i F) i2= 1y (Fgi (o (o))

<COMP £ fo f,> -~ result is the desired corposition of f's
Restric%ions: none

Summary of Analytic Model Parameters:
n=4# of fns to be carposed
program size: 103
cycles reguired: 1
cyclel: messages: 1 (wave=1; msize=1)
forks: 2n {completed)

Sy { <20 ¢ < gh x
aln: gc12 2 2 32 1
dir: 011 1 1 11 2
601 2 3 3 4 0
o0 0 0 10 0
000 O §] C O 0
NSym; {f{(<g{hx
naln: 01123233

Method: Cselect is used to let the first symbol of each function
create an application. The functions count themselves by
sending d2 up with select maximim as the corbine-op. This
result counts the COMP controlling operator (which is not
wanted) so for what follows, cnt=result-1.

Fach arg gets naln=aln+cnt-1
The app symbols get naln=aln-4+d2
The fen syirbols get naln=aln-3+d2

program 020
destination 2* (0* 0% 0% /* the aryg fext



keep
receive #1
add r_argl naln
endfilter
sub #2 naln
endsegment
destination 1 2% 0 O
' nov d2 m argl
send #1 + > #0 §0 1
endfilter
mov d2 tl
sub #4 t1
mov t1 t2
add #1 t2

eselect "{ t1 symbol t2 .

forke #2
endsegment
destination 1 2% 0% 0%
' nov d2 tl
sub #3 t1
nseleect #1 syrbol t1 .
endsegnent
destination O0* 0* O* 0*
endsegmnent
endprogram '

/* the argument remains

/% but with modified nesting
/* first part of each fen

/* determine # of funetions

/% determine nesting for
/® the new opplication
/* and this symbol

/* cselect

/* ond forke to result

/% rest of each fon
/* remains :
/% but with modified nesting

7* (< comp
/% these go ocway

101
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2.4.2.4. Construction
In FP, construction is an important way of using parallelism to create a list.
Each element of the list that is constructed by this functional form is created by

application of a separate function. Backus gives the following FP definition.

Def :
[fi’ iz = <fypimfoomoufpox>

<CONS f fo ... £ > -- result is the list constructed by the f’'s
Restricltions: nohe

Summary of Analytic Model Parameters:
n = # functions
m = argsize
program size: 175
cycles required: 2
cyclel: messages: 1 {(wave=1; msize=1)
forks: 3n + m{n-1) executing
cycle?: messages: m {wave=2; msize=1)

forks: O
sym: ( <ee < f g X
aln: 012 2 32 1
dir: 011 1 11 2
co1 2 23 0
D00 O 10 0
0o 0O 00 0
NS ym: <{<fx{gx
naln: 01232122

Method: cyclel: wave 1: find arg size
each fen but the first forks to "arg { £"
the first fen forks to "< { [
cycled: wave 2: the argurent sends itself

program (022 /* Construciion , -
' destination 2 0* 0% 0O /% The argument

nselect #l1 symbol #1 . /*remuoins with nesting increased,

mov #1 m argl /% counts ifself

send #1 + + #0 #0 1 /* during message wove I,
endfilter

srenage /* permits others to fork,



mov naln m argl /* then sends itself on wave &
send #2 - . symbol_index symbol 1
endfilter
‘endsegment,
destination 1 2 0 O/* First sym of first fc'n. forks to "< ("
endsend /* allow messoges to proceed
fork #3 /* then fork '
nselect fork id "< #-2 "{ #-1 symbol #0 .
endsegmsnt
“destination 1 3* 0 0/* First sym of other fens fork to "arg ( f
keep :
mov #2 ti - /* offset fo include "{" and f
receive #1 _
add r_argl t1  /*in forksize

endfilter
fork t1 /* then fork.
arp fork id t1 < . /% if rightmost, then
br - 1 /* go place original f symbol
sub #1 t1 /* otherwise
orp fork_jd t1 < . /% if need to receive grg copy
br + 2 /% go do that.
nselect #1 "{ #-1 . 7* atherwise place " ("
br . 3
label 2 mov #1 t1 . /% init symbol counler
rreceive #2 :
anp fork_id t1 = . /*dis this symbol for me?
br - 5

rov r_key2 nsymbol /*if so, place it
mov r_argl naln .
label 5 add #1 t1 *increment counifer
endfilter '
label 1 label 3 endsegment :
destination 1 2% 0* 0* /% fon bodies (all but leftmost symbol)

endsend - /* allow wave !
fork #1 /* gllow sm and sync
keep ' /% remain
endsegment, _

destination 0* 0* 0% O0* /* geverybody else.
endsend /% gllow wave 1
fork #1 /% allow sm ond syns
endsegment /% go away

endprogram
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2.4.1.5. Conditional

Conditional in FP is defined by Backus in the {ollowing way.

| (ror) 2 = ()= Tafiz: (fpz)=Fogiz: |
Thus, the result of reducing an application of such a functional form depends on
whether the predicate, p, reduces to true or false when applied to the argument,
x. If the predicate reduces io true, then the result is an application of the
function f to the argument (i.e., f : x}, otherwise, if the predicate reduces to
~ false, the result is application of the function g to the argument {i.e., g : x). If

the predicate reduces to an undefined result, the result is undefined.

Reducing an RA with string reduction destroys the original expression.
Conditional is thus implemented in two steps. In tﬁe first step, the argument is
copied, and the original expression is restfgctured so a newly created
application of the predicate is innermost to an application .of the second phase
conditional operator, CONDZ. Updn reduction of the predicate on its argument
copy, the second phase operator checks. the result éf the predicate evaluation

and then creates an application of the appropriate function, f or g.

We take the liberty of representing the FFP functional form with the

Ipredicate on the right. This make it easier to apply the predicaté.
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<COND f g p> -- result is CONDZ2 with immer application of P
Restrictions: none

Sumery of Analytic Model Parameters:
n = argsize : -
m = predicate size
program size: 221
cycles required: 2
cyclel: messages: m (wave=1; msize=0)
1 {wave=2; msize=1)
forks: 1 symbol forks nt+l {executing)
cycle?2: messages: n (wave=3; msize=1)
forks: 1 symbeol forks 3 {campleted)

Sy (<9 fgp X
aln: 12 222 1
dir: 011 111 2
001 234 0
o000 00O 0
000G 00O 0]
- sym: (<10fg<{pxx
aln 012 212332

Method: COND works in two phases with an intermmediate operator, CONDZ.
In the first phase ( < COND2 f g > < {p x) x > )} is produced.
COND2 then applies f or g depending on the value of (p x).
To do phase 1, we first count the argurent size, then fork and
create the inner application of the predicate during cycle 2.

programn 009
' destination 2% 0¥ 0% 0% /* argument symbolis

keep 7 remain for later use
mov #1 m argl :
send #2 + + #0 $0 1 /% count the urgument symbols
sranage . : /% allow sm for forking
add #1 paln /% increase nesting by ?
mov nalnm argl /* all arg symbols
send #3 - . syrbol_index symbol 1 /* send fhemselves
endsegment

destination 0% 0 O 0O /* the opp ond and org seq symbols
keep A ravngin
endsend /% allow message waves | and 2
fork #1 A% allow sm
endsegment.

destination 1 1 0 0 /* the aperator symbol (COND)
keep

endsend 7% allow message woves [ and 2
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fork #1 /% allow sm

mov #10 nsymbol /* change operator to CONDZ

endsegnent

destination 1 4 0* 0*  /* lhe symbols of the predicaie

send #1 - . symbol_index #0 0 /* find rightmeoest symbol
mov r_keyl t1  /*lusi v _keyl through is from
endfil ter /* righlmost predicele symbol

receive #2 /* find out number of leells for rightmost
mov r_argl t2 /% predicale symbol fo fork
endfilter /* to hold the argument

arp synbel_index t1 = . 2 am [ rightmost?

br - 4 -/ 4f nol, go around ergument copying

keep /% signals that these symbols are sef up

add #1 t2 /* must hold self aswell s argument

fork t2 /* fork to receive argument

ep #1 fork_id = . - /*true for parent _

br - 1 s if nol purent, go receive nsymbols

add #1 naln 7* pavent merely modifies nesling

br . 3 /* and goes around argument copying

label 1 /% come here fo get nsymbols from wave 3

mov #2 t1 - /* symbol counter (offzet for cmp forkid)

recelve #3
amp tl fork_id = . /*is this nsymbol for me?
br - 2 /*if not, loop

mov r_key2 nsymbol /* oftherwise load it
mov r_argl naln
add #1 naln
label 2 add #1 t1 A increment symbol qcounter
endfilter
‘br . 5
label 4 fork #1 /*if nof righimost, then allow sm for fork
label 3 label 5 /* need fo handle left part of predicate

crp #0 d3 = . /% am [ lefimost predicate symbol?

ap #1 fork_id = * * with fork_id=1?

br - B /% if not, go adjust nesting and complete

cselect "< #-1 "{ #0 sunbol #1 . /* otherwise, create

forke #3 /% innermost predicate application

label 6 cop #1 nsymbol_cnt = . /*ds nsymbol set up?

br + 7 7% if 50, go complate

nselect #1 symbol #1 . /* otherwise, adjust nesting for

label 7 endsegment /* innermost symbols of predicale
destination 1 2% 0% O* /* all symbols of the functions f and g

keep - /* remain

endsend /* allow waves | and @

fork #1 7% allow sm for forks

endsegment. /% complate

endprogram
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Restrictions: argument is a pair

Sumary of Analytic Model Parameters:
program size: 121
cycles required: 1

"<COND2 f g » -- result is application of f or g to second elerent
of the argurent, depending on the first elament

whose first elerent is true or false

cyclei: messages: 1 {wave=1; msize=0)

forks: O
s yrvn: (<10 fg<tx
aln: 012 22122¢2
dir: 011 11222
0c1 23012
0COC 0D0GODD
000 00O0CO
sy { £ X
aln 0 1 1

Method: Check t, and apply f or g as appropriate.

program 010 .

destination 6 0 0 O /% app sym stoys
keep
endsegment

destination 2 2* 0* 0%  /* grg stoys
keep
add #-1 naln
endsegment

destination 2 1 0 0 /* t sends itself and is erased

grase
send #1 + . sywbol #0 0O
endsegment '

destination 1 2 0% 0% -/*fke-epsitself'i.ftistme

receive #1
ap #1 r_keyl = ..
br + 1
erase
br . 2
label 1
keep
add #-1 naln
label 2



endfilter

endsegment

destination 1 3 0* 0%

receive

/* g keeps ifself if t is felse
#1 -

mp #1 r_keyl = .
br - 1 :
erase

br . 2

label 1

keep

add #-1 naln
label 2

endfilter

endsegment
destination 0% 0% 0% 0%

grase

endsegment

endprogram
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| 2-4.1.7. Apply-toall

In FP, apply-fo-all provides a powerful means of creating parallelism.

Backus defines it as follows.

Lef

of 1x=x=g-e,

E=LL . B> <f1:x, e fn.'x>,'L

<AA f> -- result is a Sequence of applications of the

Restrictions: argument is a sequence

function, f, to the argument eleaments

Su'rmar‘y of Analytic Model Parameters
= # of list elements
m = size of operator
' program size: 174
cycles required: 2
cyclel: messages: 1 (wave=1; rnmzeul)
forks: (n-1) symbols fork {m+l1l) contexts
cycle?: messages: m (wave=2; msize=1)
forks: none

s ym: { <29 op<ab .
aln: 1 22 122 2 -
dir: 01 11 222 2
00 12 012 3
00 00 00O 0
CC 00 00O o
Sy < { op a{opb (opc
aln 01 2 212 212 2
Method: In the first cycle, the operator counts itself, and the first

symbol of each argument elevent (except the first elerent, which
can use the original operator) uses this count to fork off

enough symbols to hold the operator. To camplete in the second
cycle, the application syrbol becanes a sequence symbol, the
first seq. symbol becores an app. symbol. The AA swnbol erases
itself, as does the arg seq. The operator to be applied stays
where it is, and also sends itself to the argument list. The
maxbers of Lhe argument list receive the operator, and load

its symbols in order of reception to create the new applications.

program 028

destination 0 0 0 O #* the applicalion symbol
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endsend 7% does not send

fork #1 /% maintain sync
nselect #1 "< #0 . /* become o seq symbol
endsegrent
destination 1. 0 0 O /% the op seq
endsend /* does not send
fork #1 A* mointain sync
nsclect #1 "{ #0 . /* became lefimost opp symbol
endsegment
destination 1 1 0 O ~/* the oo opoode can go aqway
endsend /% immediately
fork #0O /% by vanishing betlween cycles
endsegment
destination-1 2 O* 0%  /* the operalor {o be upplied
keep /* keeps itself ’

nov #lm argl  /* and counts itself for the arg elems
send #1 + + #0 #0 1
' endfilier
mov aln margl :
smanage /* allow org elems Lo fork
send #2 - . symbol_index symbeol 1
endfilter
endsegment
destination 2 0 0 0 /% The arg seq can vanish
endsend :
fork #0
endsegment
destination 2 2% 0 O /% first symbol of each arg elem
keep /% (except the first arg elem)
receive #1 /¥ gel op size
nmov r_argl tl
endfilter
add #2 t1
fork t1 /* fork o include app sym., op, ond self
mov #2 t1 '
receive #2 /% receive operator
mp t1 fork id = .
br - 1
mov r_key2 nswirbol
mov r_argl naln
label 1 add #1 t1
endfilter
crp #1 fork id = .
br - 2 -
nselect #1 "{ #-1
label 2 endsegrent
destination 0¥ D* 0% O*
keep /% all other symbols keep themselues
endsend /* don i need to send
fork #1 /% mainloin sync
. endsegment :
endprogram.
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2.4,1.8. Element-by-element

In FP, elemeni-by-element creates parallelism in a way similar to apply-to-
all, but automatically brings together corresponding elements of two lists to
create arguments for a binary operator. It may be defined as follows.

Def

Bf iz = m='<<y1, e Y2 KZ g 2D
<f:<y1,zi>, o <Yz, > > L

<FE1 > -- result is a sequence of applications of f to

: paired elements fram the two argument sequences

Restrictions: argument is a pair of sequences of equal length
whose elearents are atoamic

Summary of Analytic Model Parameters:
n = nurber of applications to be created
h = log{2n+d) + 1
program size: 1286
cycles required: 1
cyclel: messages: mtl {wave=1; msize=1)
forks: n forking 5 (cumpleted)

s ym: (<74<<1 2 3<458
aln: 122123 3 32333
dir: 01112822 2 22222
0012011 1 12222
D00000 1 2 30123
000000 DO 0 000DOO
S yaTL: < (4<14{4<25(4<38
aln 0 122331223312233

Method: The operator to be applied is sent to the first arg list,
and the second arg list sends itself to the first arg list

mamnbers. -
program 007
destination 1 2 ©0 © /* The alomic binary function
send #1 - . #0 symbol 0 /* sends itself with keyl=0
endfilter 7% to the first list of the urg
endsesgment _
destination 2 2 1* 0 /% The second list of the aryg

mov symbol m argl /* olso sends iiself
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send #1 - . #1 d3 1 /% to the first list with keyI=1

endfilter
: endsegment
destination 2 1 1* O 7* The first list of the ary

receive #1 o gets fen and list elems
amp #1 r_keyl = . /*is this o list elem?
br + 1 /* if s0, go check
mov r_KeyR t1 /*otherwise hold the fen for later
br . 2
label 1 arp r_key2 d3 = . /* is this elem 'm.y pEir?
br - 3 _ /% if not goto {oop

mov r_argl t2 /% gtheruise hold symbal fo'r later
label 2 label 3 endfilter
cselect "{ #-2 t1 #-1 "< #-1 symbol #0 t2 #0 .
forke #5 /* fork to create application
endsegment
destination 0 0 O O : /* The app symbol becames seq
nselect #1 "< #0 .
endsegment
destination 0% 0% 0* 0% A% Fuerybody else goes away,
endsegment '
endprogran
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2.4.1.9. Meta-composition |

This

is the functional form corfesponding to FFFP meta-composition. There

is no corresponding FP definition. The following LPL prograin correctly

implements metacomposition for all FFP functional forms, but is only used when

. the controlling operator is a sequence.

<.

Restrictions: mnone (but only used when f is a sequence)

. > ~-- result is a new application as defined by the
FFP rule for meta-camposition

Summary of Analytic Model Parameters:
n = size of operator
program size: 120
cycles required: 2
cyclel: messages: 1 (wave=1; msize=1)
forks: n (executing)
cyclel: messages: n (wave=R; msize=1)

forks: O
sym: { <<<abcdx
aln: 0 12344321
dir: ] 11111112
0 01111120
0 00111200
0 00012000
nsym: (<<abc<<<<abecdx
naln: 01 2332123455432
Method: In the first cyecle, the nurber of symbols of the conirolling

program

operator are counted. The application sywbol forks off
enough leells {0 hold itself, the controlling operator, and
a sequence symbol {in left-right order). This sequence symbol
is used to enclose the application operator (i.e., the
functional form) and the application argurent as required by
the rule for meta-camposition. In the second cyele, the
controlling operator sends itself to the forked appliication
symbols, where it is received and placed. Original operator
and argument symbels increase their nesting level by 1.

060

destination 0 0 0 0 ' /* the application symbol
keep 7* remains
receive #1 /% get size of controlling
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mov r_argl t1  /* operator of the functional

endfilter ' 7% form
add #2 t1 /* must include self and seqg sym
- fork t1 /* make room for ((op < :
armp fork_id t1 = . /* should [ be the seg sym?
br - 1 /*if nal, go receive op
nselect #1 "< #1 . /* glse ploce seq sym.
label 1 :
receive #2 /% recetve controlling operatfor
arp fork_id r_keyl = . /*this symbol for me?
br - 2 /% go around unless need this symbol
mov r_key2 nsyimbol /* load symbol
mov r_argl naln /% ond aln
-label 2
endfil ter
endsegrent '
destination 1 1 O* 0% /% the controlling operutor
keep /* remains
mov #im argl 7% counts itself
send #1 + + #0 #0 1
endfilter
sranage /% allow opp sym fo fork
mov aln margl /% the controlling operatfor
sub #l1 m argl /% ig lifted ome level
send #2 + . syrbol_index swrbol 1 /* for sending
endfilter
add #1 naln /* and is nested an odditional
endsegment /% level locally '
destination 0% 0* 0* O0* /* rest of operator, and argument
keep /% remain
endsend 7% lel messoge wove 1 go
fork #1 % allow g for forking
add #1 naln 7 inergase nesting level
endsegment

endprogram




CHAPTER 3

Implementation — The DOT Model

3.1. Introduction

3.1.1. What DOT is (and what it isn't)

In the preceding chapter, the FFP and LPL languages were defined and LPL
was used in the capacity of p, the FFP representation fﬁnction, to define a
ﬁariety of FI'P primitive operators. As indical;,_ed at that tiﬁe. the purpose of DOT |
is to:

(1) locate innermost opplicetions of FFP operators and reduce them us-
" ing the appropriote LPL operator definition, and '

(2) provide a maodel informally suggestive 6f an actual realization for
DOT as a tree-struciured nelwork of cellular processors,

DOT is not an architecturs; therle is no machine languége associated with
detailed control of its operation. DOT is an implementation in exactly the sense
Blaauw and Brooks [Bla83] suggest -- it is a descriptién of the logical
organization of data flow and control utilized to support the‘LPL and FFP
architectures. The reason why i)OT is able to-additionally suggest a realization is
that DOT objectifies the means of data flow Iand control through the use of

abstract data types that correspond to realizable entities.

Objects of the DOT implementation model include lcell and teell classeé.
’These contain processes and represent the cells of an anticipated
multii)rocessor realization, Ilo and virtual memory ciasses represent the
"outside” world, and communication channel classes represent the means of

communication between cells. Thus, DOT uses communication channels to
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specify the tree-structured linkage of its cellular objects, and in addition to its
overall cooperative function as an implementation, this interconnection of
objects naturally suggests high-level aspects pertaining; to realization. Although
descriptive of a realization in this way, DOT is not a realization; it does not

specily detailed hardware design.

DOT Was. originally conceived as an attempt to represent a design concept
whose scope includes a spectrum of eoncerns from architecture to realization
[Mag72]. I’ndéed, dividing this spectrum up into separate pi'ef:es (architecture-
implementation-realization) is an abstraction only vindicated historically by the
successes and flexibility in computer system design that it has enabled. In this
case, however, an original and revolutionary design concept was made possible
by an all-embracing concern for the complete spectrum -- from a highiy-parallel
realization able to make effective use of the replication-based technology of
VI.SI, to a general-purpose architecturally-concurrent programming language
whose implementation would make effective use of the realization. It therefore
gseemed desirable to encompasé as much of this ovérall concept as possible in

" one unified framework.

DOT is moderately successful in encompassing a complete design concept.
LPL, although only in its compiled form, is implied by the LPL interpreter
process. FFP is implied by DOT’s embodiment of an evaluation function for wu,
and, as already indicated, DBOT suggests high-level aspects of a paraliel
realization. For these reasons, we feel justified in using the term "DOT" to refer
to the complete programming system, and in speaking of a "DOT machine"”. But
regardless of this larger and implicit function, DOT is formally only an

implementation model.
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As mentioned earlier, the DOT representation is executable. This fact will

not eoncern us in this chapter; aspects relating to execution are left for Chapter

4 pn simulation.

3.1.2. Overall DOT Structure

Figure 3.1 shows the overall structure of the DOT model. Links between cells
represent point-to-point communication buses. The io and vm nodes represent
the "world" external to the main tree of processors. Within the main tree
structure, leaf nodes represent the Icell processors that appear in the LPL
archite_ctﬁre, and the internal nodes represent processing ceils called tcélls (for
tree cellé) that are used to implement the LPL message subsystem, and perfofm

functions related to w.

FIGURF 3.1 — Overall DOT Structure

3.1.3. A Language for Representing DOT

Corresponding to Figure 3.1 is a textual description of DOT in the language
we have chosen as a representatioh 1angué.ge. This language is C augmented with
abstract data ﬁypes [Str83], or ClassC as we will refer to it. Figure 3.2 shows an
abbreviated top-level ClassC representation for the DOT machine, In this and
following flgures that display DOT code, a rudimentary familiarity with the C

programming language [Ker78] and the concept of classes or abstract data
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types [Fra77, Han?7, Str82] is assumed.

As seen fr.or'n Figure 3.2, a ClassC class definition can be viewed as a list of
objects, a way of putting these components together into a new object, and
{optionally) a specification of operations that are appropriate to the new object.
The new entry point for a class describes _how a ne.w object of the type being
defined is created, and other public entry points.(not used in the DOT_machine
class) describe the allowable operations on the new object.v At lower levels 6f
. detail than.c.lepicted so far, .the processes that actuallj move data around in the
machine become visible. The t{ree of processing cells referred to in Figure 3.2. is

represented in ClassC as shown in PFigure 3.3.

FIGURE 3.2 - The DOT Machine

class DOT_machine

t
/* declare the vbjecls that make up a DOT machine ¢/

class ic *io;

class vm *vm;

class tree *iree;

class e-bus *o.ym_comm;
class tbus  *ioiree.comm;
class " Lbus *vym_iree_comm;

/% say how o new DOT_machine is butlt */
DOT.machine. new(iree_height)
int tree-height; /% the height of the processor free */
{
7% build the communication buses */
ic_tree_comm = new class t_bus();
vm tree comm = new class Lbus{);
io.ym.comm = new class e.bus();

A% build and connect the machine */
io = new class io{ioiree_comm, io_vm_comm);
vin = new class vm{vm_tree.comm, icvm.comm);
tree = new class tree
{tree_height, io_tree_comm, vim.iree_comm);
} 7% end new DOT_machine */
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FIGURE 3.3 — The DOT Tree of Processing Celis

class tree

{

/* declare the objecfs that make up o tree */

class tcell *root;
class tree *l_subtree, *r_subtree;
class lcell *L 1cell, *r lcell:

class t_bus - Mo left, *toright;
class Lbus *conn | with r;

7* say how a tree s budll */
tree.new(level,to_parent,on_left,on _right)
int level; _ _ 7% level of this tree root */
class tbus *to_parent; : /* connection to parent */
class LLbus "‘on__left *orright; /* connections fo /v lcell */
] /* boundaries af tree base */
' /* butld communication links */

toleft = new class t_bus();

to_right = new class t_bus();

conn.lwith.r = pew class Lbhus();

/* build tree root, and s children */
reot = new class teell(to_parent, to left, to_.rlght)
if (level==1)
i /* use leells for children "/
Lleell = riew class leell .
{to_left, onuleft, conn.lwith.r);
r.leell = new class leell
{to_right, conn Lwith r, on...rlght);

else
§ /* use trees for children */
l_subtree = newclass tree
(level-1, toleft, onleft, conn.lwith.r);
r.subiree = new class tree
(level-1, to.right, conn Lwith.r, on_right);
)

1 /% end new tree */

So far, we have shown how the DOT design is decomposed into the following

major components:
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(1) Processing Cells
v ip
e um
» lpell
s frell
- {R) Communication Buses
e external bus {e_bus used for comm between io and vm,)
¢ tree bus (t_bus — any comm involving fcell)
o lcell bus (i_bus -- any comm at lcell level only)

{3) Explicit Connections between (1} and {2)
» represenied aos parometers of processing ceil classes

In the remainder of this chapter, we will show how the above components

function together as an implementation of the LPL and FFP architectures.

 3.1.4. A Process-Oriented Design

Recall that an implementation should specify the control and flow of data.
To this end, DOT uses multiple processes wilhin each precessing cell to control
the flow of data on communication buses. By using multiple processes within
each cell, DOT avoids overly constraining a VLSI realization, and succeeds in
stating, in a concise and intellectually manageable manner, just what control
and date flow is necessary in an efficient implemeﬁtation. Hepresenting an
efficient implementation involves a great deal of complexity. In efficient support
of both FFP and LPL, DOT must do a great many things (many of'.which are only

peripherally related) at the same time.

To describe the behavior of the implementation, DOT takes a process-
oriented design approach. By th.is, we mean that undeflying all data movemeﬁt
and manipulation are individual, relatively simple processes, each one of which
is designed to perform a specific and easily grasped seque'n.tm.l task exhibiting
conceptual integrity within its limited scope of concern. The processes of Lhe
DOT model exist statically; they are not created dynamically except as the
machine is brought into existence initially, and they exhibit cyclic behavior.

Processes within DOT never wait on non-deterministic events, and a wait for
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. communication is never interrupted.' There is no global elock in DOT, and

processing cells operate asynchronously with respect to each other.

Approach.i.ng the design in this way, using relatively simple sequen{_:ial
processes that operat.e fairly.independently, is appropriate in a VLSI context.
Also realistic are the use of static proéess.es and the separatio.n of control
activities located in different cells from each other {so they must communicate
via messages), Within each cell of the DOT model, the multiple processes
resident therein are.ailowed to communicate in whatever way seems mbst

natural - using shared memory or condition monitors, as appropriate.

3.1.5. Communication Between Processes in Different Cells

Generally, multiple processes within a given procéssing cell of DOT will be
communicating with their counterparts in other cells at the same time. To
enable this, the DOT communication buses are composed of logical channels that
are ful.l—du'ple'x in nature -- that is, the end of each channel has separate send
and receive ports, both of which may be i_n use {by separate processes)
concur_rently.“ An actual realization might iﬁsh to multiplex these channels,
but DOT simply assumes the existence of the required logical channels. 'Certain.' '
channels -- those associated with support for the message subsystem of the LPL
architecfure -- are circuit-switched in the course of the machine’s operation to
provide dedicated support for FFP RAS._ ‘As shown in Figure 3.4, DOT channels are
built from two single-direction message pipes called cgueues. Each cqueue has

a gtail {for sending) and a ghead (for receiving) as shown in the diagram. When a

process wants to send a message through a cqueue, it deposits the data (a siﬁgle:

] . . ‘

If one process waits for the arrival of a message from ancther process, a message is
guaranteed to arrive; processes are never interrupted from attempting to efiect a mes-
sage transfer.

** Sending and receiving ports are not restricted by the model te be located in separate
cells; this is simply the more general case.
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byte’) into the associated gtail. When a process want to receive a message from a

cqueue, it picks up the data from the associated ghead.

FIGURE 3.4 = A DOT Full Duplex Communicalion Channel
Full Duplex Channel
qtail P i i e e = 1 ghead
! cquene !
I ) s
| |
i {
! i
: cquete :
i |
' |
ghead b e e e o 3 (tail

A cqueue has a variety of interesting properties. Most importantly, a cqueue
implements é "safe" meséage transmiss.ion mechanism. Both sender and
receiver are synchronized .by a message transfer; a sender is delayed until a .
receiver requests data, and vice-versa. This borresponds to the synchronization
that is necessary betwéen hardware processes that operate from different
clecks. DOT thus encapsulates concern for the synchronization that must be

present in the realization at this level.

Cqueues may be connected and disconnected in a manner that corresponds
to circuit-switching. .Figure 3.5 depicts such a procedure. A successioﬁ of
cqﬁeues may be connected to form a "long distance” connection through the
t?ee, and then be disconnected in any order. This allows DOT to perform circuit-

switching of communication channels.
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FIGURE 3.5 - Connecling and Disconnecting Cqueues
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The ClassC entry templates for the cqueue ghead and qtail objects {which

summarize the opera’ciohs of which a cqueue is vapable) are shown in Figure 2.6.
The cemmectw operation connects two cqueues as discussed above, and delays
the connecting process until an eot_alert {for end-of-transmission) is performed

by a sending process on the cqueue gtail
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FIGURE 8.6 ~ The DOT Cqueue Head und Tail - public entries
class ghead
{
public:
/* allowed operations on the ghead of o cgueue */
char get{*char);
void connect(class qtail *);
veid connectw(class gtail *};
void disconnect{class gtail *);
5
class gtail
¢
publie:
7* allowed operations on the giail of o cqueue */
void put{char); _
void connect{class ghead *);
void connectw(class ghead *);
void discennect(class ghead *);
void eot.alert();
;

3.2. Overall DOT Operation

Having introduced the top-level constituents of DOT, including the
mechanism used for communication be.tween cells, we can now establish the
relationship of processes within DOT to the activities that must be performed in
support of FFP and LPL. As a first step, we present an overview of the combined
effects of the cocperative behavior of these processes. This will introduce
important terminology, informélly mention the different process iypes and
describe their eésential functions. Once this has been done, the internal process
structuring of the lcell and tcell classes will be given, and important algorithms

_ used by the processes will be discussed.

3.2.1. The Basic Machine Cycle

A DOT machine cycle starts with looking at the lcell array to see what is in

it. During this phase of the machine’s operation, RAS are discovered, and the
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machine is portitioned to correctly allocate circuit-switched communication
chaﬁnels and tcell processing power to the ‘discovered RAs. This
partilioning phase involves all operations necessary to prepare for LPL '
execution within RAs. The first time a particular RA is encountered (RAs may
exist over a per’md of many machine cyéles), DOT processes within the tce._lls and
lcelis build the LPL environment directories, and LPL code segments are loaded
ﬁsing the io subsystem. Partitioning completes separately for each RA, so the :
duration of this phase is shorter for RAs that are restarted {their containing
lc’ellé already have environment directories and code segments). Immediately
following completion of the partitioning phase within each RA, execution of LPL

code segmenls begins.

Al this point, the notion of a single machine is misleading; each RA has its
owWnl dedic.atéd multiproéessor hardware and is completely independent of the
others. Nevertheless, after the RAs arg started (or restarted), the overall
machine may be thought of as being in an ezecution phase. The LPL pro-gr.ams
run, with the aid of DOT-provided services, until they become blocked awaiting
additional lcells to hold expanding FFP text, or are preempted by DOT for the

purpose of storage management.

The storage manogement phuse includes stepping forward RAs whose code
éegments have .completed, determining the new storage reguirements of the FFP.
programs vﬁthin the lcell array (due to LPL fork statements that have been
executéd), and shifting .LPL program segments and their contexts within the
lcell array Lo make room for newly required symbols. The shifting process is

performed using the lateral lcell conne ctions and may result in:
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s overflow of contexts into the virtual memory subsystem if enough lcells
are not available;

» reentry of previously overflowed leell contexts back into the lcell array if
there is room;

« or entry of new FFP programs if there is room after previous overflow has
been taken care of.

The prescription for exactly how the lecell contents are to be shifted about is
,célled the specification for storage management. Calculation of this information

is valled preporoiion for sforage management

The basic machine cycle is thus partitioning, execution, and storage

management. Each phase will now be described in more detail.

3.2.2. Pértitioning Phase

Partitioning creates aclive aregs, each of which is composed of the
communicaﬁiﬁn channels and the lcell and tcell hardware required to support
computation in an individual RA. Anlactive area is essentially a small dedicated
multi?rocessor, which is structﬁred as a binary tree and dynamically embedded

within the overall tree-structured multiprocessor.

Part_itioning begins in the lcells, with information being sent upwards into.
the tcells. Fach tcell receives {from its two children) and sends {to its parent) a
code containing the information necessary for an initial parfifioning of the
tcells. The initial partitioning {a pipelined upsweep of information starting at the
lcells, and terminating in the io subsystem) allocates and connects dedicated
area communication channels (calléd area chonnels ) and dedicated tcell
processing pewer {called area nodes) to each underlying group of leells that may
contain a different RA. While area chénnel connections are modified {to Simulate.
circuit-switching) with each partitioning, the infofmation reguired for the initial

partitioning travels upwards on cell monager channels whose connections are
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never modified.

The initial paftifioning is terminated within the io subsystem, which may be
thought of as the parent of the root of the tree.” RAs are ﬁhally located and
théir corresponding active areas created with the aid of concurrent downsweeps
of information within each of the candidate areas created by the initial _

.partitioning. This downsweep is called the pruning dounsweep of partitioning.
During this downsweep, informaeation sent downwards on area channels connected
in the par‘titidning upsweep is used to disconnect any channels that lead to 1§ells
not contained in an RA. In each af:tive area that remains, the lowest tcell area
norié above all lcells of the RA (the least common ancestor) is located and
configured as the fop of area (or toa) where rising LPL messages turn around for

broadcast back down to the leells.

Figure 3.7 shows the area channels and nodes for a partitioned DOT
machine. The circles in this figure represent tcells, and interior tria;ngles
represent the area nodes. Solid lines between area nodes represent connected
- full-duplex area channels_, and the dotted liﬁes represent unused area channels.
There are two active areas in the figure, each supporting an RA whose operé'tbf
is multiplication. The two top of area nodes are shown by circling the
appropriate triangular node representations. Note that empty lc:ells,

interspersed among the FFP text, are not included in the active areas.

* In addition to its ic-related activities, the io subsystem offlcads special iﬂrmlnahon pro-
cessing from the tree root.
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FIGURE 8.7 — A Partitioned DOT Machine
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3.2.2.1. Area Nodes

As suggested by Figure 3.7, a tcell need only provide processing power for
one active area. Even though area channels for more than one active area may
pass through a given teell, it is always possible to route (via circuit-switching) all
‘bul one set of area channels directly thrbugh the.tcell. Only channels that leéd
to two children in thé same RA are connected to aﬁ area node, whose purpose is

to support aii subsequent area-related processing within the tcell.

This support begins with a pruning downsweep to help complete the
partitioning phase. Pruning is performed entirely within down-going area

channels, and encompasses the following activities:
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» discovery of whether underlying FFP text is truly part of an RA (ie., -
whether the connected area channels and nodes are to be active during
the coming execution phase) -- if not, area channels connected on the
upsweep are disconnected;

e disconnecting channels that are within an active area but are not re-
quired for area processing because they lead to empty lcells;

-» discovery of the 'FP operator if the area is active;

« creation of the top of area node where LPL messages turn around.

In an active area, partitioning is then followed by support for the LPL
message subsystem send and receive statements until the execution phase
comes to an end. This is followed by correctly shutting down area operation
prior to the storage management phase of the machine cycle. This shutdowﬁ
must disconnect area channels (that were createdlduring partitioning), but only
after stopping messages in such a way as to guarantee' that all icells in the area
will have seen ekactly the same messages during the execution i)hase. This must
be done in order to guarantee a consistent restart following. storage

mané.g ement and re-partitioning.

3.2.2.2. Directory Creation

During the pruning downéweep, each top of area node returns to its
descendent leells notification of their active status and the LPL program to be
_used if one is necessary. Given this information, an lcell will decide to create a
directory if it is containéd in a new RA. This requires an upsweep and'a.
doWnsweep of infermation within area chann'els; and 'the resull is to load.
symbol_index, and the 4-tuple directory, d1..,d4, in the RA icells with the
correct values. If the RA is not new, the old'directdry is still valid and execution

may begin immediately without this step.
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3.2.2.3. Loading LPL Programs

The LPL programs are delivered from the io subsystem on io channels that
follow the hardware tree structure. Within a teell, each parent io channel splits
into two child io channels and data movement is as follows: input to the lcell
array éomes from "above" and is broadcast to all leells by successively splitting
data so What comes in from a pai‘ent input channel is sent down both child input
channels; outpul comseés from “below”, and is seguenced by handling the child
output channels iﬁ eyelie left-to-right order. There are two very simple
processes in the tcell that perform these functions. At present, the input
channels are used to deliver LPL programs from the library, and output

channels are used io return execution results and trace information to the

outside world.

3.2.3. Execution Phase

The leell LPL interpreter is a process that receives starting addresses from
a gqueue. It begins execution at a fequested address, perfo.rms local data
movement and manipulation as indicated by the loaded LPL object code, and
continues until encountering one of the following DOT service requests that

require special handling: send, receive, endfilier, fork, and endsegment.

These special services are initiated by setting up an LPL context area
associated with the particular service required. These areas are checked by the
DOT processes whose job it is to provide the services. Having set up the service

.request area, the interpreter then cycles back {or another start address. The
reason for this approach will be seen in the following discussion of message

support.
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3.2.3.1. Lcell Message Support

When a message resulting from a send or receive for the present message
Wa‘.re arrives, it should be filtered. A DOT lcell message input process first puts
the newly received message into a receive area (accessible to filter statements
using environment variables such as 7_grgl), and then uses i_nformatifon
deposited earlier (by the interpreter) in the LPL program context to insert the
be_ginning address of the message filter statements into the interpreter start
addreés gueue. The interpretér exécutes the message filter for the message
instance, and then encounters the endfilter statement, which then halts the
interpreter as described above in Section 3.2.3. This is done for each message
that arrives on the present message wave. When the wave has completed, the
lcell message input process places the continue address (i.e., the address of the
first statement following the endfilter statement) into the interpreter start

address queue, land- LPL execution then continues.

Message ﬁraves are sequenced activities whose completion requires
agreement among all of the lcells of an RA. The basis of this agreement is an
end-of-wa‘bé or eow that is sent for each ﬁtessage wave by all lcells of an RA,
merged into a single message by the time it reaches the top of area, and then
returned to the lcells.in the RA. Leells keep a counter that contains the present

message wave number.

- When the message wave counter is incremented, the LPL program context
is checked for a send or receive request for the -new wave number, If there is
such a request, an eow is sent {(after message transmission if the request wasg
send). If the request is for a a higher numbered wave, eam is also srent. This

.indicates that no sending is desired for the current message wave by the LPL

segment execuling locally. If, however, the last message réquest handled by the
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lcell is for a lower numbered message wave (and. the segment has not
completed), a fork has been executed. In this case, eow is not sent. Instead, the
lcell waits for storage manégenient to complete the fork operation. The result is
that the new message wave cannot pass through the top of area node until after

storage management (and completion of the fork operation).

Following storage mana_gement and re-partitioning, an interrupted message
wave is continued by re-sending any messages that were sent up but not
received during the preceding execution phase. Everything is restarted
correctly so that the message wave interrupted by storage management éan :
complete and the next one can begin (all transparent to the LPL program). As
explained in Section 2.3.3.1, this allows implicit synchronization of a fo_rk

operation with a corresponding send designed to copy information.

3.2.3.2. Tork Support

A fork statement halts éxecutiori within the requesting leell until the
operétion can complete during storage management (when LPL program
contexts are shift.ed in the leell array). Execution then resumes in child LPL
contexts (i.e. those created by a fork operation) as well as the parent. LPL
program contexts begin each execution phase actiné as if they had requested a
forksize of one. | The fork.staternent merely modifies the forkn LPL context
register (not directly available by name to an LPL progfam) in which the
forksize is stored -- so that multiple copies of an LPL progra.m context are

shifted during the next storage management.'

3.2.4. Storage Management Phase

This phase is necessary to accommodate growth and compaction of the FFP

text while retaining the necessary ordering of FFP symbeols. It is unfortunate
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that eXecﬁtion of LPL pfograﬁns should in general require ‘mterruptio.n. in order
to implement this phase of the machine cycle. One alternative is to let all LPL
programs complete (or becc;me blocked as in a fofk bperation).b'efore storage
management is performed, but this could put RAs with quickly executing LPL
programs at a disadvantage, and would likely fesult in in-fer‘iof utilization of the

available processing power in a large machine.

| Attempts have beenrmade to do storage management in locally restricted
segménts of the 1éeli array (as computatibn proceeds elsewhere) by Tolle
[Tol81], but t_hé conipiexity of the overall solution is considerable, and the
resulting performance is no£ always superior to .the preeﬁiptive appx;oaf:h that

wWe use.

" In the present design, lcells send pefmission to start storage management
upwards on the cell manager channels to _the io subsystem. Lcells that are not_
active do Jc..his following partitioning. Active lcells wait for the LPL progrém to
complete, fork, or exeéute an smanage staterﬁent before sending permission.
The resulting sm_gront messoges are merged on their way up the tree, and,
upon reaching the io_subsyStem. they result in a sfop message which then

travels down the tree and shuts down message activif,y.'

This approach places control of the processing cycle explicitly within LPL,
and allows a system manager to tailor FFP operators for large operands if this is
desired. Another possibility would be to allow the io subsystem to use heuristics

based on leell contents (discovered during partitioning) to determine an

* Due to the variety of messages that are sent between multiprocessor cells, it is useful
to give them names correspending to their purpose. In the case of the stop message, spe-
cial emphasis may be appropriate since a “'stop packet" will be referred to later in the
context of LPL messages. The stop message, as explained above, originates in the io sub-
- system and travels down to the lcells an cell manager channels. The stop packet, to be
discussed in Section 1.4.2.1, travels on area channels.
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appropriate cyele time.”

3.2.4.1. The Specification for Storage Management

Once the LPL programs are shut down, a specification for storage.
management must be computed. This is done by sending and merging forksize
information ui) the cell manager channels until it arrives at the io subsystem,
where, as in partitioning, the upsweep is terminated. There, a specification for
storé.ge management is computed, and sent back down the tree in such a way as
to distribute the necessary iﬁformation to each lcell. A variation on the scheme
suggested by Mago [Mag79]} is used, so that total compaction will be performed

only when necessary.

3.2.4.2. Overflow and Program Entry

The virtual memory concept used in the model is based on the work of
Siddall [Sid83] and Frank [Fra79], who have examined various ways to
accomrnodate overﬂoﬁ from the lc-ell array. The approach used in DOT is to allow
movement of lcell contents into and out of the left lcell tree boundary. To the
left of this boundary is a deque structure (interfaced with a file system), which
receives from its right any leell contents that overflow from the tree, and from
its left new programs for execution in the tree. The state of the overflow and
program entry subsystem (e.g., whether there is presently overflow in virtual
mefnory, if so how much, how large the next FFP program to be entered is, ete.)
is used by the io subsystem in its determination of the actual storage

management specification.

* The simplest of such heuristics, a fixed ecyele time, was originally used. For initial per-
formance studies, however, it was desired that the machine execute FFP text as rapidly
as possible, s¢ the LPL architecture was modified to allow LPL programs to help schedule
storage management.
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3.3. Process Structuring of DOT Celis

We have described the overall operation of the DOT implementation as the
combined result of processes within the cells of DOT. These cells and their
resident processes will now be examined. Séctions 8.3.1 - 3.3:4 detail the teeli,

lcell, io subsystem, and vm subsystem classes, r‘espectively.*

3.3.1. Tcell Structure
Teells of the DOT model contain five different processes, as shown in Figure

3.8,

FIGURE 3.8 - DOT Teell Processes

The rationaie behind this choice cf processes is proﬁded by the process-
oriented design methodology. Each teell process performs duties that are best

viewed separately from the others, and for which there is a simple sequential

{cyelic) description.

* For readers uninterested in the top-level structure of the contained processes, Figures
3.8 and 3.14 show the basic compesition of the teells and leells. After glancing at these
figures, the reader may skip to Section 3.4, which presents the detailed algorithms used
by these processes, or turn to Chapter 4, on simulation.
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The tcell_input and tcell output processes bring input (presently in the
form of compiled .LPL programs) down to the lcells, and send output (trace
information and compléted programs)} back up through the tree—structure.to
the outside worid. Both of these processes run forever, awaiting the arrival of
data and then re-sending it with a broadcast protocol {in the case of input), or a

sequenecing protocol {in the case of output).

Qutput originates within the Icells. With the completion of the execution
phase, before the specification for storage management is computed, RAs that
have completed are stepped forward. At tﬁis time, each lcell does optional
output followed by an eot_alert {(to signal end—of—trénsmi.ssion} on its output
channel.” This output is relayed up and out of the tree by V‘the teell_output
processes, which loop forever (alternately accepting cutput from left and right

ch.ild.ren'). Figure 3.9 shows the ClassC representation of the tcell output

FIGURE 3.8 — Teell Oulput Process

/t
Teell output is done by alternately switching
output to parent from left and right child channels

2/
teell.output.new(top,p.lr)
short top; 7 true if af fop of machine */
class gtail *p; /* connection o parent */
class ghead *1,*r; 7% connections to children */
¢

eycle §

I->connectw(p); I->disconnect(p); /* relay lefi =~
r-»connectw(p); r->disconnect(p); /* relay right */

if {{top) p->ect.alert(); /* signal parent cell */

else p->put(Q); 7% or stgnal to subsystem */

i

At present, output includes a snapshot of important leell registers in all non-empty
leells.
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process.

Input originates from the io sub-sysﬁem in response to requests for LPL
programs during partitioning. A tcell_input process supports delivery of all
arriving information by relaying it to both child subtrees. The combined effect is
to broadeast all LPL pr.ograms to all leells. The tcell input process is shown in

Figure 3.10.

The message-down p'roceSs component of an area node (called node_dmh
within DOT -- for downwards message handler) operates in a similar faéhion to
the tecell_input process, and is used to support the LPL messdge broadcast
protocol. However, since only active areas support messages, and since area
channel connections are changed with partitioning. Ithe message-dov}n Process
must be started and stopped. The node manager pfocess {(to be described belﬁw)
uses a cendition monitor to signal it; message-down process that area channels
are connected and messages should be relayed downwards. Arrival of a Special'

stop packel for broadcast to the leells tells the message-down process to stop

handling messages for the current cycle. The down-message process is shown in

FIGURE 3.10 -~ The Tcell Input FProcess

Ve : ‘

Input of lcell programs to the tree is done vig broadeast o
both children,

*/ .

teelldnput.new(p,l,r)

class ghead *p;

class gtail *1,*r;

¢

. eycle {

p->get{&e);
I->put{e); r->put(e);
i




Figure 3.11.
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FIGURE 3.11 — Area Node Doumwards Message Handler Process
/* | , _
Downwards Message Handler for area node within g fcell. 4 cnt of

STOPCNT indicates that no more messages should be broadoast.
*/ ’

node_dmh.new(messages_starfed,phead,ltail,rtail)
class condition *messages_started; /* condition sigrialed by node mgr ¥/

class ghead *phead; ~/* comnection fo parent */
class qtail *1iail, *rtail; /% connections to children */

{

char ¢, ent;

cycle {
/% wait for messages to be staried on the area channels */

messages.started->await{TRUE);

/* relay messeges downward unitil the stop packet arrives */
while {{ent=phead->msg()} != STOPCNT) {
Itail->put{ent); rtail->put(ent);
while {ent--} §
¢ = phead->msg(); .
Itail->put{c); rtail->put{e);
i
{

/% output stopent, reset condition, and cycle back */
ltail-»put{STOPCNT); rtail->put{STOPCNT);
messages_started->agssert(FALSE);

!

The remaining two processes are the work-horses of a tcell. These are the

tcell manager and the node manager processes. The tcell manager is

responsible for correctly overseeing and implementing the overall machine

cycle {partitioning, execution, and storage management}). The node managef is

responsible for all processing that takes place on area channels. The top-level of

the tcell manager ig shown in Figure 3.12, and the top-leirel for the node

manager is given in Figure 3.13.
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FIGURE 3.12 - Tcell Manager Process

7%

The icell manager does initial partitioning, and other activities not
directly associated with area ezecution, such as relaying LPI program
regquests upward to the io subsystem. The parameters of ¢ tcell manager
tnclude whether it is at the top of the tree, and the communication
channels (gheads and gluils) which enter and leave its toell.

*/

teellmgr.new(at.top_of tree,
em_dn_head, al_dn_head, a2_dn_head,
cm-up-tail, al np_tail, a2 ap. tail,
lem.up_head, lal.up_head, la2_up_head,
lem_dn_tail, lal_dn tail, la2 dn tail,
rem up.head, ralup_head, ra2 np._head,
rem-dn tail, ral_dn_fail, ra2_dn_tail,
npheads, nptails)

/* initialize class objects */

Ispf=rspf=0;

rode.pgm. ready = new class condition(FALSE);
nede.task ready = new class condition{(FALSE);
tcell som = new class condition(FALSE);

S MAIN EXFCUTION LOOP %+

cycle
nede_eom = FALSE;
teell eom->assert(FALSE);
node_pgm ready->assert{FALSE);
if (Ispf || rspf) disconnect_partitioning();
initial partitioning_np(); '
relay. area pgms_requests_up();
await_stopsignal_dn(};
compute_sm._specification. zp_dn{);

f
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FIGURE 3.13 — Teell Node-Hanager Process

/#

This class homdles all area-related processing in o tceil when two

children of the tcell are involved in the sume area. The parameters

of & node manager include whether the tcell is at the ftop of the tree,
access to memory shared with the tcell manager, and the areg channels
(gheads and gtails) to which it has been temporarily connected by the
teell manager. The node manager uses un upwards-message-handler
class, (node_umh) to handle the details of message processing.

The downwards message handler process for the node is also cregied here.

*/

node_mgr.new(top_of tree, cel mgr,
np-uap_head, np-do_tail,
np—dn_head, np_up_iail,
lnp_up_head, Inp_dn_iail,
rop-up-head, rnp_dn_1ail)

/% init the upward message handler class */

upm = new class nede_nmh{cell.mgr,np_tail,Inp_head, rnp-bead);

/* startup the downward message handler task */

messages = new class condition(FALSE);

down_messages = new class node.dmh
(messages,np_head,Inp_tail,rap_tail);

/e MAIN EXECUTION LOOP %%/

eycle {
/% wedt for areq asstgnment */
(celLmgr->node.task ready)->await(TRUE);
(celLmgr->node_task ready)->assert(FALSE); /* resei */
top_oiarea = finlshed = FALSE; /* inifial guess */

finish_partitioning{);
if (finished && (state==GROUND)) bmld.,dlrectory()

if (finished) }
messages->assert(TRUE); /* dmh has work */

upm->up_messages{top_of_area);
messages->await{FALSE); /* dmbh is finished */
; ‘

else (cellLmgr->tcell_eom)->await{TRUE);

disconnect_partitioning();

{ 7*énd of cycle */
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3.3.2. Leell Structure

The DOT 1cell éontains six processes. These include two io processes -- one
for LPL code input, and one for program output -- that are connected via io
channels to the teell io processes. There are two processes associated with
handling messages, and an lcell manager process. The last prﬁcess is the LPL
.interpreter which execut_es compiled LPL code. Figure 3.14 shows the overall
lcell structure, including the (passive) LPL user context area in which the LPL

code and environment is located.

FIGURE 8. 14 — DOT Leell Processes (and User Context)

leell
LPL Context mer

MSG
= @
T.ASS

The leell_input process is connected to the end of an io channel through

which all LPL programs required by any RA in the machine arrive, and it filters
this fiow of information to select and load only the LFL code segment that is
locally required (if any). Everything else is thrown away. As soon as the correct
code ségrﬁent iz loaded, the input process start.s the LPL interpreter by sending

it a beginning code address. Figure 3.15 shows the lcell input process.

Onece the LPL program begins execution, it may request message services.

The lcell message-up process (called lcell msend within DOT) sends an LPL
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FIGURE 3.15 - Leell Input Process

/t

The loell 'mput process accepts and loads LPL programs. When o segment
is louaded, the interpreter is started up. The input process must wait
until the LPIL directory has been created {during partitioning) in order .
to filter input and select the correct code segment.

urd

leellinp.new(input_head, area tail, user, input_possible, interpreter)
class ghead *input_head; class qtail *area.tail; class lcell.usr *user;
class condition *imput-possible; class stail *interpreter;
{
char pgm, garbage, found, loaded;
shert ient;
cycle | _
" input.possible->await{TRUE); /* waif for d@rectory ready */
/* filter lcell programs */
loaded = user->state!=GROUND; /*i.e., execuling, or completed */
while {(pgm = in_head->msg()) |
if(user->leell pgm==pgm && user- >act1ve)
found = TRUE;
else found = FALSE;
for (i=0; i<DLEVELS; i++)
found &= match(user->directory[i],in-head->msg());
ent = in_head->msg(); '
ent = 256%*cnt + in_head->msg();
if (found &é !lcaded} §

if (ent>CODESIZE) fprintf(stderr,

"leellinp(%d):f!! segment too large",this);

else |
for(i=0; i<cnt; i++) user->code[i] = in_head->msg(};
loaded = TRUE; user->state = EXECUTING;
user->nsymbolent=0;

. user->mwave=user->mfili=user->msend=0;
user->meomplete=user->endsend=FALSE;
interpreter->put(0); /* start program */
input_possible->assert{FALSE); /* reset and signal msgs*/
!

]

else while (ent--) in_head->get(&garbage);
]
input_possible->assert(FALSE);
if {loaded && user->active 8&& {user- ->state==GROUND))
fprintf{stderr, "leellinp(%d)!!! no cell_pgm %d");
| /*end cycle */

message up into the tree when notified to do so by the message-down process. It
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either sends an eow (end-of-wave) for the current message wave, or sends a

. message followed by eow, depending on the contents of the lcell user context.

" The message-up process is shown in Figure 3.186.

FIGURE 3.16 - Icell Message-up Process

A* :

This process takes care of the details involved in actually sending
messoages, and is the one who waits when message byles are handed off
to the parent teell. The upward-going message channel used by this
process is of class piail. 4 ptail is ltke a qlail, buf uses o

locking mechanism to prevent inferference during transmission of

a sequence of message bytes. The lock is set by o piail.put first, and
released by ptail. put Jast. This lock is necessary because the lcell
manager signals eom (end of messages) asynchronously by sending o stop
packet wp through area channels at the end of an execution phase.

*/

leell_msend.new{user,msg.Lail,msg ready)
class leell_usr *user;

class ptail *msg_tail;

class condition *msg.ready;

f

short i;

cycle |
msg_ready->await{TRUE);
msg_ready->assert(FALSE); /% reset */
if ((user->mwave == user->msend) &&
(fuser->meomplete) &&
{luser->endsend) &&
{user->forkdd) && .
(user->state==EXECUTING)) |
msg-tail->put_first(2);
msg_tail->put{user->mspec[MORD]);
msg_tail->put_last{user->mspec[MCOP]);
msg_tail->put_first{user->mspec[MARGC]+2};
msg_tail->put{user->mspec[MKEY1]);
msg-tail->put{user->mspec[MKEYZ]); -
for {i=0; i<user->mspec[MARGC]; i++)
msg-tail->put{user->margs[i});
§

msg.tail->put.last(0);
} #* cycle */
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The message-down process (called Icell_msg within DOT) is the main
message handler in the Vlcell. It must delay an LPL program thal requests
message handling until the service is complete, interact with the interpreter to
start up a messagé filter when appropriate, and then continue execution
following completion ch the message operation. It is this process that sees the
eow thal signals the end of one message wave and the beginning of the next, and
it rust tell the message-up process when to send messages. Figure 3.17 shows

this process.

The leell interpreter is organized as usual -- with an interpretive loop. It
receives start addresses from a queue, and executes local operations until it
encounters a request for a épecial service {such as sendj which is supported by
other DQT processes. All special service requests are .distinguished by not
loading the code pointer with the next instruction to execute. In these cases, the
next instruction to execute will be indicated by an arri'..ral on the start address
gqueue. The subroutine ezecute_seg is used to execute a code segment until a
special serﬁce request is encountered. Figure 3.18 shows the top level of the
leell interpreter process‘. Details concerning support for the special services

are hidden at this level {they involve setting register values in the user-context).

In a way similar to the tcell manager, the lcell manager supports the basic
machine cycle and coordinates the behavior of the other processes in the lcell.
After storage management, an executing Ll context may have to be restarted,
and the lcell manager takes care of this. The top level for the lecell manager is

shown in Figure 3.18.
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FIGURE 3.17 — Leell Message-Down Process

lcell msg.new(msg. ready,directory_ready, msg.head,user,
interp_start,interp.idle,shutdown)
class condition *msg_ready,*directory_ready,*interp.idle, *shutdown;
class ghead *msg head; class lcellusr *user; class stail *interp_start;
{ char finished,garbage,ent, *msg; short i;
cycle § /*** MAIN EXECUTION LOOP *+%
do | 7* first, wait for a valid active directory */
directory_ready->await{TRUE);
if (tuser->active) directory_ready->awail(FALSE);
{ while(luser->active);
directory_ready->»await(FALSE); /* signals LPL sey loaded */
 while ({ent=msg_head->msg()} != STOPCNT) | /* service msys */
if {cnt) | /* get msg, check origin, filter if necessary */
msg = user->mtmp; while (cnt--} *msg++ = msg-head->msg{};
if ((user->mimp[RKEY 1] == user->mspec[MKEY1]} &&
(user->mtmp[REKEYZ] == user->mspec[MKEY?2]) &&

{user->mwave == user->msend)&&(user->state==EXECUTING))

user->mecomplete = TRUE;
if ((user->mwave > user->mfilt)&&(user->state==EXECUTING))
interp_idle->await{TRUE);

if ((user->mwave == user->miilt)&&(user- >state=-EXECUTING))§

interp_idle->assert(FALSE);
interp_start->put{user->flt_addr);
interp.idle->await{TRUE); |
} /* end hondling msg */
else /* end-of-wave, so starf next wove */ 4
user->mwave~+-+; interp_idle->await{TRUE);
if (tuser->fork id || (user->state!=EXECUTING))
msg-ready->assert{TRUE); /* need to send cow ‘/
else | /* handle execuiing user */
if ((user->mfilt) && (user->mwave > user->mfit)) {
7% continue user following msg services */
interp_idle->assert(FALSE);
interp_start-»put{user->cont.addr);
interp_idle->await(TRUE); | :
if {user->endsend || (user->mwave<=user->mfilt))
msg-ready->assert(TRUE);
| /* end handling executing user */
{ /* end hondling start of new wave */
| 7* end while message activity */
/% ent == STOPCNT, so time to do shutdouwn */
user->shutdown(); shutdown- >assert(TRUE)
} /* end main cyele */
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FIGURE 3. 18 - Leell LPL Interpreter Process

icell int.new(start,user,idle, smgrant)
class shead *start;

class leellbsr *user;

class condition *idle, *smgrant;

{

char *code = user->code;

cycle | /*** MAIN EXECUTION LOOP #%*/
idle->assert(TRUE);
addr = start->msg{)};
if (user->active && {user->state==EXECUTING)} {
addr = execute.seg{addr,user);
switch (*(code+addr)) {| /* handle special regquest */
case SEND:
user->filt_addr = user->setup_send{addr);
. break; '
case RECV:
user->filt_addr = user->setup_recv(addr);
break;
case FORK:
user->cont_addr = user->setup.fork{addr);
sm_grant->assert(TRUE);
break;
case FORKC: _
user->cont_addr = user->setup_forke(addr);
sm.grant->assert(TRUE);
user->endsend = TRUE;
break;
case ENDFILT:
break;
case ENDPROG: '
sm_grant->asseri(TRUE);
user->state = COMPLETED;
uzer->endsend = TRUE;
break;
default: '
printf("lcellint(%d):%4d is no request’,
this, *(code+addr});
! /% end switch */
| 7# end cycle */
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FIGURE 3. 18 - The Lcell Henager Process

/i

This class is the leell manager. [t performs partitioning, directory
creation, restarting execution afier storage mana.gement preparation for
storage mangagement, and storage management,

v/

Icell.new(io-_dn_head,cm._dn_head,area__dn_head,
io.up.tail,em_np_tail,area.up.-tail,
Ib_rs. head,lb_1s_tail,rb_ls_head,rb_rs.iail)

/% init icell objects */
user = new class lcellusr();
interp_idle = new class condition(FALSE); /* (S‘mce last use) */
input. possible = new class conditien(FALSE);
sm_grant = new class condition(FALSE);
shutdown = new class condition{FALSE);
interp_start=new class shead(); /* start address queue */
input = new class lcellinp({io_head, area.tail, user, .

_ input_possible, interp_start->tail(}});
interpreter = new class lcellint{interp.start, user, interp_idle,

. sm_grant);
msg.tail = new class ptail{area_tail);
msg_ready = new class condition(FALSE);
msg.service = new class leell.msend(user,msg tail,msg _ready);
messages = new class leell.msg(msg ready,input_possible,
area_head,user,interp_start->tail(),interp.idle,shutdown});

7 HAIN EXECUTION LOOFP *~

eyele |
do_partitioning():
if (user->active&&(user->app_state==GROUND))

build_directory();

input_possible->assert{TRUE);
sm-_grant-rassert{FALSE);
shutdown->assert{FALSE};
msg.lail->clear_priority();
if (user->active) restart.execution();
terminate_cyele(};
preparefor.storage.management();
do_storage_management();




148

3.3.3. 10 Subsystem

The io subsystem, located "above" the processing tree composed of teells
.and lcells, comprises three processes. Among these is a main process that
terminates the initial partitioning, interfaces with requests for LPL programs,
and cormputes the specification for storage management. Additionally, there is a
tree-input process that sends LPL programs down into the tree to the lcells, and
a tree-output process that accepts output. from the tree. The main io process is

shown in Figure 3.20.

FIGURE 3 20— The Main IO Process

7 . -

This is the main io processes. fis duties are io terminaie inifial
partittoning, filter and hand off LEL program reguests fo the tree-input
process, and compute the global sm-specification.

*/

io.new(ioup_head,cm.up.head,al.up head,ag_up-head,
io_dn_tail,cm_dn_tail,a 1 dn. tail,a2_dn tail,
ov.np-head,ov.dn._tail)

7% init class objecis */

in_req_head = new class ghead();

in.req-tail = in_req-head->tail(});

output= new class io_output{ic_up_head);

input = new class io_input{in_req head,io_dn_tail);

cycle §
terminate_partitioning_npsweep();
accept.operator.requests();
prepare_for storage_management();

!

: 3.3.4. VH Subsystem

The virtual memory subsystem {also called the program overflow and entry
subsystemn) is implemented with a singie process, as shown in Figure 3.21.

The vm subsystem serves two purposes. It accommodates overflow out of the
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FIGURE 8.21 — The VM Cuverflow and Program Entry Process .

overflow.new(lb_head,lh_tail,ic.head,io_tail)
class ghead *lb_head, *io_head; class gtail *1b_tail, *io_tail;
§ /v Main Ezecubion Loop ***/
cyclel /* Tell 10 subsystem what the situation is */
io_tail->put{ovr_cells); io_tail- >put(pgm_cells)
7* Get amount to shift from [0 */
beond = jo head->msg();
if {beond<0) /* then handle overflow */ |
Iseek({ovr_id,cvr_next,0);
while (beond<(Q) {
Ib_head->get{&s); write{ovr.fd,&s,1);
-1b_head->get(&tmp); write{ovr_fd,&tmp,1);
Ib.head->get{&tmp); write(ovr_fd,&tmp,1);
1b_head->get(&imp); erte(cvr__fd &tmp,l)
ovr_next += (i=4);
if ((s==EXECUTING) || (s==COMPLETED))
for (; i<SM_USERSIZE; i++) | .
Ib_head->get{&tmp);
write(ovr_{d,&tmp,1);
ovr_next++; |
write{ovr{d &i,1); /* num chars written */ -
‘ovr.next++; beond++; ovr_cells++; § } :
else if (becond>0) /* then handle symbol entry into lray */ |
/* first re-enter from overflow */
while (bcond && ovr_cells) |
Iseek(ovr_fd,~-ovr_next,0); _
read{ovr_£d,&i,1); /* get last context size */
ovr.next -=1i; /* start of last contezi *~/
lseék(ovrid,ovr.next,0);
for (ti=0; ti<i; ti++) §
read{ovr_fd,&tmp,1);
lb_fail->put(tmp); |
beond--; ovr.cells--; |
~* then new program */
while {(beend && pgm_cells) §
pegmcell enter{pgm.fd,lb_tail);
pgm_cells-; beond--; |
if ({(pgm_cells==0) && (pgms.left)) {
Iseek({pgm {d,next.ptr,0);
pgms.left = read(pgm_{fd,&pgm,1);
if (pgms.left)
read{pgm_fd,&pgm.cells,1);
next.ptr=lseek{pgm._fd,2*pgm.cells-2,1)+2; {-
§
| 7*end overflow */
1 7% end cyele */
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tree at its left boundary when there are more requested lcells than are
available, and when there are more available cells than requested, previous
overflow and then new programs are shifted to the right back into the tree. At
present, for the purpose of simulation support, the vim subsystem is initially
loaded with the FFP programs that are to be entered intc the tree. The vin
subsystemn interacts with the io subsystem in order to determine Whether
overflow or program entry should be performed, and operates in the followiﬁg
way. It tells the io subsystem how many cells are in overflow, and how many are
in the next program. The io subsystgm ithen réplies with the storage
management boundary conditioﬁ (i.e., how many cells to shift, and in which
direction). Once the cells have been successfully shifted, the vm subsystem

process cyeles back to begin the above procedure once again.

3.4. Important Algorithms

In the last section, the overall process structuring .of the DOT model was
described. Partitioning, directory creation, message handling, and preparation
for storage management deserve a more detailed treatment than given above
t;ecause of their central importance to the working of the implementation, and
also because their implementation is important to the analytic model given in
Chapter 5. Sections 3.4.1 - 3.4.4 detail the algorithms used within the lcells and:

tcells to perform these functions.”

Of these operations, partitioning is the most complex, followed by message
handling. The algorithm used for creation of the LPL directory correspends in a
direct manner to its definition given in Chapter 2, and the algorithm used for

calculating the specification for storage management is also straightforward. In

* Readers uninterested in the fine structure of these algorithms may turn to Chapter 4,
on simulation.
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all of these operations, the main issue is efficient use of the tree-structure to

perform global operations.

3.4.1. Partitioning’

~Partitioning is centered around the detection of RAs. It is the RAs, or lcells
contai_ning innermost applications, that are allowed to execute LPL withiﬁ the
active areas created during partitioning. Once RAs are found, their containing
lcells must be told that they are active and fhat they should participate in the
executjon phase of the machine cycle. All other lcells must be told that they are
not active. Thus, the partitioning prbcess involves an upsweep of information
through the tree to locate RAs, and a doWnsweep of information to notify leells of
their status. As this is done, area channels within the tree-structure are circuit-
switched between area nodes (implemented by the node manager ﬁnd message-
down processes) té form individual tree—strucﬁured mliltiproc'e'ss'ors for suppért

of subseguent execution within the detected RAs.

How are innermost applications found? Orie way of ﬁndihg RAs, shown in
Figure 3.22, might be to examine symbols in the leell array from left to fight,
and assume that a new RA has beeﬁ found every time a left application symbol is
encountered. Oﬁ reaching the next application syrﬁbol to its right, we discover
whether or not our assumption was correct; if the next application symbol is a

balaneing symbol, then we have found an RA, otherwise not.
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4

FIGURE 3.22 - Finding a RA
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Since our FFP-level representation does not store balancing symbols {in the

interest of conserving leells), we must go on to the next symbol past where a

balancing application symbol would be to decide whether we have discovered an

RA, and the decision is then based on the aln value stored there as part of the

FFP-level representation. The procedure in this case is the following:

After encouniering an application symbol, [ 7 we sequentiolly examine

symbois to ifs right until we find:
(1) another application symbol (8 at a deeper level
Gi.e., zz.l'nj < a,lng), or
(2) a symbol af Lhe same or higher level
(or run out of symbals),

s In the first case, Lhe application beginning with 1 iz nol an KA.

o 'n the second case, it is.

3.4.1.1. Partitioning Upsweep — Locating RAs

In the above discussion, we implicitly assumed a single agency, or process,

capable of examining the FFP-level text representation from left to right, one

cell at a time. This is equivalent to letting the leells send this information into a
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"global examiner" by sweeping the synibol and aln information up from left to

right, as shown in Figure 3.23.

FIGURE 3.23 - Sweeping Leell Contents Upwards Globally

Of course, we need to accomplish the same thing usir_}g’ a .binary tree-
structure iﬁ place of the n-ary tree-structure of Figure 3.23. The n-ary .tree
method is easy to understand because one process with unlimited 'acc.ess.'l;o
infomiation is used within the single parent node. When using a binary tree
structure, on the other hand, we inust contend with a number of teell processes,
each of which has access only to the limited amount of information availabls

from ita two children.

Within the binary tree structure of DOT, in order to detéct innerfnnst
applications and connect area channels to support them. information is swept
up into the tree and each tecell accepts information from its two children
descriptive of their respective underlying FTP text gsegments, Not all the
information in a segment of leells is needed by all of its teell aricestors, however.

This limits the amount of information that must be sent from any one level to
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t_he next.

3.4.1.1.1. Merging Segment Descriptors

During the initial partitioning upsweep, beginning with the lcells, each level
of the tree-structure organizes information required by the next higher level
into a segment descripfor and passes it upwards. When a fcell receives a
segment déscriptor frém each of its children, this information is selectively
merged into a new segment descriptor which is relayed upwards. When this
information indicates an appliéation {possibly an RA) entirely contained within
the underlying lcell segment, the receivir;g teell takes apprépriate actioﬁ
locally, and elides information required solely by the.discovered application
(should it be innermost) from the segment descripfor which is sent upwards.
Thus, area creation and denial is done as early as possible, and information not

required at higher levels drops outl of the upsweep.

One way to describe the partitioning upsweep is as follows: the segment
descriptor for each application symbol in the lcell array moves upwards in the
tree structure, accumulating its left and right symbol contexts (whose’
descriptors are sent up to support this procéss, and are merged with application
symbol descriptors whenever possible) until it meets the segment descriptors
belonging to the application symbols on its left and right. On the way up, until an
application descriptor meets its right neighbor, area channels necessary to
support the application (if it should turn out to be innermost) are connected.
When the application descriplor finally sees its rightmost application neighbor,
it has the information necessary to determine whether it is indeed part of an RA.
If this is not the case, the channels just connected will be disconnected on the
pruning d.ownsweep. Although an application symbol meeting its right neighbor

application symbol in this way has all the information it needs to make this



155

_ decision, an appropriately rnodifiéd descriptor must still be sent up further to
_eﬁable an application symbol to its left to make a similar decision. When
application symbols to the right and left of the given application have both
encountered their "middle” applicétion descriptor, this middle deseriptor is no

longer needed and drops out.

The segment descriptor has the basic format shown in Figure 3.24, and is
composed of four logical fields. Within a segment descriptor {corresponding -tor a
given segment of the leell array) the leftmost symbol fleld, S represents non-
application symbols located to the left of the leftmost application symbol within
the segment. The leftmost application symbol is represented by the (5'
application field. The rightmost field, S,r , represents. the non-application
symbols to the right of the rightmost application symbol within the se.gr.n.'e.nt,
ﬁrhic%h in turn is$ represented by the (r application field. As shown in Figure 3.24,
the symbol and application fields of a segment descriptor are composed of

different subﬁelds;‘_

FIGURE 3.24 - The Segment Descriptor Format

S = symbol_ent : min : lUn : symbols

= aln @ stote

S; and 5, don’t actually contain all symbols of their appropriate
subsegment. Only the two leftmost symbols of the represented subsegment are
required in an S field {to guarantee finding the FFP operator for an RA), so

symbol_cnt always has the value 0,1, or 2.° The min value in an S field is the

* If an FFP operator is primitive, the first symbol to the right of the application symbol
for its RA will be the LPL program op-code. If this symbel is a sequence symbol, however,
the operator is a functional form. In this case, the second symbol to the right of the ap-
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minimum aln within the entire subsegment described by 5. The lIn is the aln of
the leftmost symbol of S's subsegment, and symbols are the leftmost symbols of
the subsegment (if theyr exist). The min and Ilin are used by the‘ area nodes
during the pruning downsweep portion of partitioning. If there are no symbols in
a subsegment {(empty lcells must participate in partitioning too), only a
symbol ent of zero is sent, and the other S flelds are not used. An application
field always represents a single application symbol -~ aln is its aln value, and
stote describes whether the application is in the ground state {the RA is new, so
it will require an LPL progrém) or the ezecuting state (the application is an RA
that was erxecuting last cycle and was interrupted for storage management.' go it
will not regquire an LPIL i)rogram). Figure 3.25 shows an example (arssuming

ground state for applications) of a segment descriptor.

FIGURE 3.25 - An Exumple of o Segment Descriptor

! | o
R F IO FE ul
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I
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[P - - b —
Sl - cnt=1; min=1; In=1; symbols=< (r - aln=2; state=0;
(1 - aln=2; state=0; Sr - cnt=0;

The example in Figure 3.25 shows that all the information required by

neighboring application symbols on either side of the example segment is

plication symbol contains either the op-code for the controlling operator of the function-
al form, or ancther sequence symbol. If it is a sequence symbol, the LPL program for
meta-composition is requested. Otherwise the LPL program for the controlling operator
is used. '
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'repfeseﬁted in its segment descriptor, while information concerning. {:he :
)symbbls between {l and (r .is-not included {it has dropped out earlier in the
upsweep). The information in Sl and Sr is needed because of the absence.of
balancing application symbols, and b.ecause this information will contain ﬁhe
cperator for an RA wheﬁ it is detected. The teell w'h;mh détects_ an RA, therefore, _
can both request the appropriate LPL program te be brought in, and notify

descendant lcells which LPL program to accept and use.

Description of a given segment of the lcell array may not warrant use of all
of tﬁe fields of a segment. déscriptor.‘This is certainly the case at the first (lcell)
level, where a segment descriptor will describe only a é_in_gle symbol (application,
or otherwise}). For this reason, four different formats are ‘used to express
increasingly complex segment types. A segment descriptor is the_refor’e
preceded by a format code, or SPF (for segment pattern format) to indicate
what format follows.” The four segment descriptor formats and théir

corresponding SPF codes are shown in Figure 3.26.

FIGURFE 3.26 -- The Fom' S‘e gment Descriptor Formals

_FORMAT_ . spF
Sr 1
( S, 2
GqGS 3
S (1 (1' Sr 4

* This was suggested by Peter Chen duririg early woerk on partitioning. The value of this
approach is that the SPF code, alone, contains useful information that allows the parti-
tioning upsweep to be pipelined. '
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3.4.1.1.2. Switching to Area Channels

While the segment descriptor represents the information that is used by the
processes of a teell in support of partitioning, this information is not sent up on
a single communication channel, nor is it handled by a single process within

each tecell.

One of the most difficult issues confronting the design of the partitioning
algorithm was performing a smooth changeover from cell manager channels,
which must start partitioning, to the area channels, which support area-rélated
processing. The . process-oriented design approach we tock suggeéted that it
would be a mistake to allow the tcell managers to complete partitioning. This is
hecause more than one potential area may pass through a tcell. Requiring the
tecell manager to completely handle all details of partitioning (including the
pruning of area channels that should be disconnected) would involve non-
deterministic actions on its part to support concurrent progress of partitioning

on area channels of logically unrelated areas.

For this reason, support for partitioning is divided among the tcell manager |
processes and the node manager processes in a way that guarantees well
balanced, eflicient, and. completely séquential processing by all involved
processes. The SPF and the information associated with (l and (. is sent
upwards and received by tcell manager processes from both left and right teell
manager children. The information associated with S5y and S, is sent upwards
and received by the area node manager processes from left and right node

manager children, respectively.
When a tcell manager receives SPFs from both of its children, it has enough

information, even before receiving the (l and {:r which may follow, to send the

required SPF to its parent, and perform an initial partitioning of the tcell by
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circuit-switching aréa channels. In general, some area. channels will bé switcheci
Lo provide a direct routihg through the tceH, and some will be connected to the
input and putput éhannels of the local area—héndling nede. This is the inikial
partitioning referred to earlier in the overall discussioh of the DOT machine
cycle. When the tcell manager receives left and right values of (l and (r as
" indicated by the left é.nd right SPFs, it then has enough information to create
and send merged (z‘, and (?, vaiues-to its parent {as required by the SPF it just
sent -up), and to signal its node manager process (if an area-node was just

connected to area channels) to begin one of five possible tasks.

Once a node manager process is given the go-ahead by its cell marnager, it
processes the S and Sr fromn its left and right children, respectively. Depe’nding
on the task given to it by the tcell manager it will either start a pruning
downsweep, because it now has access through the area channels to all
necessary leells below it, or send up an-.appropriately merged S value to its
parent {which will be received either as Sy or S?" depending on which side of its
parent the area-node is located) and then await the pruning downsweep thal will

be started by an bve‘rlying node manager.

Figuré 3.27 shows how the initial partitioning is done within an arbitrary
teell, and details the upwards moving flow of information on area and cell
manager channels as well as the circuit-switched connections that are made by
the cell' manager. This figure completely specifies the algorithm used for
merging segrﬁent deséript.ors. There are 4 SP.Fs, so there are 16 different
poséibilities for left and right SPT" arrivals from. child tcell managers. The area
node within a teell is depicted as a small circle. The tcell manager is not shown.
Node managers with a double circle are those that are tasked to start pruning.

‘Whether they will be active or not depends on the actu.ai. segment descriptor
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FIGURE 8.27 Analysis of the Initial Partitioning by Teell Managers
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field values that are received.

Subscripts for 5; and (L' ste., are 'dropped since the SPF makes these
redundant. In Figure 3.27, child area channels are shown entering from the left

and right sides of the tcells (which are represented by iriangles), and channels
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to support communication with a parent leave from the top of the tcells. Cell

manager channels are dotted, and the area channels are solid.

 As indicated in Chapter 2, two dis’cin;:t area channels are provided to handle
a situation where two areas pass through the same tceil. These area channels --
for convenience call them areay and area, - must be correctly distinguished
from each other during partitioning. For tcells_ in Figure 3.27, the top channel
cntering from a left child is always the area; channel and the bottom left
channel is areag. The top channel entering from a right child is always area, and
the bottom left chanﬁél is area,. The left channel leaving for a parent is always
area;, and the right top channel is areas. This arranggment allows teells to be
connected together so that an ar_‘e.al channel le_av_i_ﬁg a éhﬂd tceil will alv;rays be

connected with an area, channel entering its parent.

The DOT specification for beginning'the partitioning upsweep within an leell

1= shown in Figure 3.28.
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FIGURE 3.28 — The Start of Porlitioning in the Leells

s : '
This 1s the lcell partilioning algorithm. leells start pamt‘éﬁgmlng _
by sending up the appropriate segment descriptor information on
the cell manager and area channels.

+/

void leell.partition{)

¢ : ‘
/* indtiate portitioning upsweep */
if (user->state==EMPTY) |

em_tail->put(1}; stspf= 1%/
cm_tail->eot_alert(}; /% no pgm regquesits ¥/
area.tail->put(0); /* symbol-ent = 0*/
}

else if ({user->symbcl == APPSYMBOL) &&
(user->fork.id == 1)) { /* handle aop. symbol */
em_tail->put(2); sr¥spf= 2%/
cm.tail->put{user->aln); 7* opplication gin */
cm.tail-»put{user->state); /% application state */
cm.lail->ect_alert(); 7* no pgm requests */

areatail->put{0); /*symbolent= 0*/
i .

else § /* handie regular or forked application symhél */

cm_tail->put(1}); srspf= 1%/
em_tail->eot. alert(); /% no pgm reguests ¥/
area_tail->pui(1); /% symbol-cnt = 1 */

area tail->put{aln); /* min = ain *~
area_tail->put{aln); /*lin-qaln */
areatail->put{user->symbol);

§
’* terminate pruning downsweep */

... shown in Figure 3.32

3.4.1.2. Partitioning Downsweep — Pruning

The initial parﬁitioning upsweep must be complementéd with a pruning
downsweep to complete the construction of active areas, and disconnect
unnecessary channels. To motivate this, let's use the information provided in
Figure 3.27 to do the initial partitioning upsweep for the small segment of FF'P

text shown in Figure 3.29.
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FIGURE 3.29 - An Fzample of Initial Partitioning
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Besides connecting area channels for applications that.will not be active,
the initial partitioning may extend aree connections for what will become an RA
- past the RA's rightmost leell, thus incorrectly including symbols that are not
part of tﬁe RA.” This is because FF‘P text symbols and aln 'values that oceur
between application symbolls are not available to the tcell managers during the
initial partitioning upsweep. This information is given to the node managers,

however, and is used during the pruning downsweep to correctly prune off

*In the example, this is done for the rightmoest symbol of the leell array, "5” at level 2,
which is part of the outermost application -- not the rightmost RA as the initial partition-
ing guesses, '
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rightmost portions of active areas created during the initial partitioning.

Fach potential area created during the initial partitioning upsweep
{composed of a separate set of connected area channels and area nodes) has a
topmost or root nede whi(-:h initiates the pruning ‘downsweep en command from
its teell manager. The pruning downsweep disconnects all nodes and area
channels that do. not lead to an leell containing a symbol within an RA, and in
additipﬁ, locates and creates the top-of-area node where LPL messages turn
around within each active area overlying an RA. The informatioﬁ flow in the
pruning downsweep is contained entirely within area channels connecled during
the upsweep, and is manipulated entirely by the node manager precesses. Teell
managers are finished with all area-related duties as soon as they complete the
initial partitioning within tﬁeir tecell, and then become involved in relayiﬁg
requests for LPL programs (these are signaled by the root node managers for

active areas before they start pruning) up to the ic subsystem.

The pruning information sent down within each set of connected area -
channels indicates whether or not these channels are required for supporting an
RA. This decision is initially made by the node manager that starts pruning, and
is subsequently used by iower level node managers to disconnect area channels
and node managers that are nol needed for the upcoming execution phase.
Often during pruning of an active area, only the left or right child of a node is
discovered to be part of the associated RA. In such a case, the node manager
signals and then disconnects the unnecessary child, and circuit-switches the

remaining child to the overlying parent node.”

The top of area node is usually lower than where pruning starts. It is always

located in the least common tcell ancestor of the leells which comprise an RA,

' A node is required only if two children are present.
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and always has two children.: When the root of a newly discovered active area
begins pruning, therefore, it checks to see if it has two active children, and if
not, it disconnects itéelf after signaling bpth children appropriately. The first
active node on the way down with two children becomes the top of area, and
circuit-switches its up-going output channel tb the input of the down-message

process in the area node to implement message turn-around.

Th.e result of.p'runing the example of Figti-re 3.29 is shown in Figure 3.30.
Note how the top of area for the rightmost of the two active areas has m.ove_d _
down from where pruning starts in the io sﬁbsyétem, and how the other area for._
which pruning starts in the io subsystemn has been completely diéconnected.

Also, empty and non-active lcells have been correctly pruned from both RAs and

FIGURE 3.30 -- After Pruning the Mnitiel Partitioning Example

Final Partitioningfor (+<(*<13>)("<24>)}5>)
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area channels re-routed appropriately. The final position of the two top of area

nodes is shown by circling their nodes.

In an active area channel, the pruning’ information contains the FFP
operator, the aln of its applicatiﬁn symbol, and whether the RA iz new. When
received in the lcells of an RA, this information indicates which LPL program the
leell-input process should look for if the RA is a new one, and if so, each lcell can
use the application symbol aln to compute the local rin value and start an
‘upsweep to compute the LPL environment directory. Figure 3.31 shows the
specification for the start of pruning in an area node. Figure 3.32 shows the

termination of pruning as it occurs in the leells.
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FIGURE 3.31 — The Area Node Algorithm to Start Pruning

/*

This is the aigorithm for starting pruning. Aciive is only the
tcell.mor's guess, and will be wrongly false when on intermediate
symbol between two app symbals causes an B4 Such o situation is
checked for and taken care of here. Lont and rent are the left and
right symbol-cnils received in the partitioning upsweep.

*/

node_mgr.start_pruning{active,rehild)
short active,rchild; /* both boolean */

if {active || ((lent||lrent}&&(mln<=aln))} /* we ‘re reclly active */ |

if ((lent && (Imln<=aln)) }} trent || (rcnt && (rlln<=aln}))) |
7% cut off in left child */
top_of area = FALSE;
Inp_tail- >put(pck(PARTLY_ACTWEJ'DA aln));
if (rehild) rop_tail->put{pek(NOT_ACTIVE, aln});
lop_tail->put(pgm);
Inp_tail->put{state); |

elze /* cul off in right subtree */ |
top.of.area = TRUE;
Inp_tail->put{pcek(ALL_ACTIVE, aln))
rop_lail->put{pck{PARTLY._ACTIVE,aln));
Inp.tail-»put{pgm); rnp-tail->put{pgm);
Inp.tail->put(state); rnp_tail->put(state); J

if (top_of.area) wrap-head->connect{wrap_tail);

finished = Itop_of area; |

else /*we re not-aclive */ |

pgm = 0;

top_of_area = FALSE;

finished = TRUE;

Inp_tail->put{pck(NOT ACTIVE,Q));

if {rehild) rop_tail->put{pck(NOT_ACTIVE,Q)): }

i 7* end of pruning initiation */
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FIGURE 3.32 - Terminatlion of Pruning in the Lcells

/* :
This is the leell partilioning algorithm. Leells start pariitioning
by sending wp the appropricie segment descriptor information on
the cell manager and arew channels.

*/

veid leell.partition()
§

/% initiale partitioning upsweep */
. shown above in Figure 3.28

/* terminate pruning downsweep */
unpck{area_head->msg{).&pflag.&aln);
switch (pflag) §

case NOTACTIVE:
user->active = FALSE;
break;

case PARTLY_ACTIVE:

case ALL_ACTIVE:
user->active = TRUE;

- user->rin = user->aln - aln; _
user->lcell.pgm = area.head->msg(};
user->app.-state = area.head->msg(});

{ 7*end swilch */
{ 7* end partitioning */

3.4.2. ¥Wessage Support

Next to partitioning, the most complex operations in DOT involve message
handling. Many details associated with messages have already been covered in
‘the discussion of the lcell message-input and message-output processes. What
remains is to éhow hov} méssages are handled within the overlying tree structure
of an active area. The details of this operation are contained in the upwards-
message class {called node_umh within DOT) used by the node-manager process.
The up_messages entry of this class handles all message activity (in particular
the sorting and merging of messages required by the LPL send statement) for an

area node during a single execulion phase.
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All information that flows on area channels duﬁng the execution phase is
broken up into individual packets. Each packet is introduced by a byte count,
and packet data then follows immediately. Although a realistic implementation -
would deal with checksums and error recovery, this has not been done heré. A

reliable transmission mechanism is assumed.

3.4.2.1. Message Packets

As shown in Figure 3.33, there are four basic packet types. Three are used
for LPL messages, and the fourth is used te sighal the end of the execution

phase and message activity.

. FIGURE 3.33 ~ The Four Message Packef Types

It

Prefiz Pocket ;& order : combine-op :
Data Packet = cbyte-ent - dota :
Fow Packet 10

Stop Packet N

il

LPL messages sent up fré:fn the lcells are composed of three packets. The
first. packet, a message introduction or prefixz packef, _speciﬁe’s the type of
handlir/lg that is desired. This information is provided in the LPL send
statefnent, and is composed of the sort-order and combine-gperation
information. The message prefix packet always has a byte count of two, and is
merged in a single pipelined upsweep through the area. It is not returned to Lhe
lcells. Iollowing the message prefix out of an leell is the main message or

dola packel.

Each data packet has a byte count of at least two, since the keyl and keyl
values in a send statement are always sent. Additionally, each requested

message argument accounts for an additional byte. Thus the byte count for the
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message packet will be 2 + msize as specified in the send statement. Message

bytes follow immediately to complete the packet.

Finally, each message out of an lcell is terminated with an end-of-wave, or
en'wrpczcket. This packet contains no information-, and has a zero byte count.
When received by a node manager, it indicates that no further message packets
for the current wave will be received on that channel. When an eow has been
received by a node manager from both of its children, an. eow is seni up to its
- parent. When the top of area node relays the eow, it is broadecast to all
underlying leells, the current message wave comes o an end, and the next one
| is started. An lcell thalt does not wish to send a message for a particﬁlar

message wave sends just the eow packet for that wave.

The fourth packet type is a sfop packet. Since processes in the DOT model
are never interrupted, thére musﬁ be some way to free up a node manager that
is waiting for the next packet arrival from a child area channel after execution
phase message processing in the lcells has come to an end. The stop packet 1s
thus sent up on area channels by the lcell manager when the execution phase
ends, and this guarantees correct flushing of area channels before they are
disconnected. A stop packét has a byte count of one, and is special in that there

is no following data.

3.4.2.2. Message Handling

The top-level for area node message handling is given in Figure 3.34. The
appreach ié organized to allow pipeliﬁed operatién. Initially, the prefix must be
merged and sent up. This i1s handled in the start-new-wave entry, which reads
and passes up the sort and combine selectors cecded in the send statement.
Besides passing it up, start-new-wave also loads this iﬂfofrﬁation into a data

structure called mspec. Once this is done, message packets from the children



171

of the node can be handled.

The general approach {(assuming that eow has not been received {rom either
child) is to read child messége counts and pé.ss a message count.up to the node
parent. Then keyl values from bc.)th children are read. The épﬁropriat"e keyl-is
the_n. sent up (based on the sort order) and the other saved in a buffer. Then
key? is handled, and the correct {selected) key? is sent up, and the other saved
in the appropriate buffer. This buffer holds keyl and key?2 values for the "losing”
message (i.e., the message that is not selected for immediate relay upwards).
The rest of the message pé.cket for the winning message is relayed up. Looping
bé.c’:k to handle the next message, the key values for the message that lost out
last time are already available, so tﬁe.byte count for the next prefix following
the successful message is read. ProCeésing continues as before, but only one

channel needs to be read to get key values this time.

If the key valﬁes for two messages entering a node are the same, the
messages should be combined. The aorrect keys will already have been éent up,
and the primary difference between sorting as explained above and combining is
that a combined message is then created from the two entering rmessages, and
the eﬁtering messages are thrown away. Following this, there will be no buﬁered
key values (since the message packels from botﬁ children were used up), so

processing continues as initially explained.

3.4.2.3. Stopping Messages

Besides pipelining messages as described above, the primary complication
invelved in message processing is knowing when to stop. There are two
possibilities. First, the node maneager has access to a memory location shared
with the tcell manager which is set when the stop message comes down through

cell manager channels to signal the end of the execution phase. This location is
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checked by the node manager before it attempts to read a new message packet,
and, if the stop message has come through the tcell, the node manager
immediately relays a stop packet to its parent, stops. processing messages, and |

starts flushing them. Nothing further is sent to the parent. -

It is also possible that the stop message may go through a tcell just after
the nede manager checks for it, so the ﬁode manager misses it and goes on to
at;\rait the next message packet arrival. This is the reason for using a special étop
| packel., Bven if node managers miss the stop mesSag_e on its way down, they.
must see the stop pa.cke_t as it rises from the lcells. In any case, messages are
flushed until a rising stop packet is seen from both children. Nothing eve;r :
. follows the stop packet up area channels,

When the stop packet is relayed through the toa, and is detécted-back at

ithe lcells, the lcells know that all LPL messages for the current execution phase

have been received and that they can shut down and save their LPL programs.
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FIGURE 3.34 — Upwards Hessages in a Tcell Node

node_umh.up_messages() /* hand up messages for one machine cycle */
{ mspec.valid = FALSE; /% dont know how to handle message wave yet */
while (lcelLmgr->node_com) § /* stop message hasn’t come down yet */

if ('mspec.valid) start_new_wave(); /* get handling instructions */
if ((Ibuf.msize!=3STOPCNT) && (rbuf.msize!=STOPCNT)) {
/* handle next message or eow for present wave */
if (buf.full && lbuf.msize>E0W) Ibuf msize=lhead->msg(});
if (trbuf.full && rbuf.msize>EQW) rbuf. msize=rhead->msg(};
if ({Ibuf.msize!=STOPCNT) && (rbuf.msize!=STOPCNT) &&
(Ibuf.msize>EOW || rbuf.msize>EOW)) |
/* handle message. start with message stze */
msize = (lbuf.msize>rbuf msize)?lbuf. msize:rbuf.msize;
handup(msize); o
mselect=2; /* assume equal keys initially */
/* aceept keyl values and see if ordered yet */
if (buf.full && lbuf.msize>EOW) lbuf key 1=lhead->msg();
if (‘rbuf.full && rbuf. msize>EOW) rbuf. keyl=rhead->msg(});
mselect=gselect(1buf.keyl,rbuf.keyl);
switch (mselect) § ‘
case 0: handup(lbuf.key1); break;
case 1: case 2: handup(rbuf.keyl); }
/* accept keyZ values and see if ordered if not already */
if (Nbuf.full && Ibuf.msize>EOW) lbuf key2=lhead->msg();
if (frbuf.full && rbuf. msize>E0W) rbuf key2=rhead->msg();
1buf.full = rbuf.full = TRUE;
if (mselect==2) mselect=select(lbuf key2,rbuf key2);
switch (mselect) § _
case 0: handup(lbuf.key2); break;
case 1: case 2: handup(rbuf.key2); {
/* relay or merge to produce resull message */
switeh {mselect) | '
case 0: up_remaining(liead,lbuf. msize-2); break;
case 1: up_remaining(rhead, rbuf msize-2); break;
case 2: combine(); }
| /* end handing up one message */
else | /* either end of wave from both children, or eom */
mspec.valid = FALSE;
if (Ibuf. msize!=STOPCNT && rbuf.msize!=STOPCNT)
handup(EOW); /* ¢ was an end of wave */
} /% end handling eow or eom */
| 7* end handling message or eow/gom */
1 /% end execuiton phase */
handup{STOPCNTY;
flush.messages(lhead, &lbuf); flush.messages{rhead,&rbuf);

!
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3.4.3. Directory Creation

‘As described in Chaptér 2, the LPL directory is composed of a symbol index -
and a directory tuple. We now present the algorithms used within the lcells and
the tcell area nodes to compute and initialize these values. for the LPL code
segments that execute within RAs. The correctness of the algorithms for
directory creation is established wusing the principle of mathematical

. . . *
induction.

3.4.3.1. Computation of the Symbol Index

Computation of the LPL environment variable symbol _j'n,de‘:r is performed
using an upsweep to accumulate information into the area nodes, and a
downsweep to distribute the correct information to the lcells. Figure 3.35
summarizes the information flow. Note that a merge operation {addition) is
performea by .area nodes during both the upsweep and downsweep. During the
upswéep, a result based on two incoming values is sent to the parent; during fhe
downsweep, a result based on the incoming value and a value remembered from

the upsweep is sent to the right child.

' Mathematical induction is based on the idea of inheritance -- the idea that if P(%) iz true,
then so ig P{i+1). This is called an inductive hypothesis, and establishment of P(%) for a
particular 1 is called an inductive base. An inductive proof must show that the inductive
hypothesis is true for all © of interest and give an inductive base in order to establish P(?)
for all ¢ that are successors to the base.
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FIGURE 3.35 — Diagram for Symbol Indez Calculation

cnti = Icnti+rc:nti !x

Downswesp

Upsweep

lent,

 rent; left_Ix; = Ix, right_lx;" = Ix,+lent;

3.4.3.1.1. Upsweep

For the upsweep, let Pu(j) mean that the number sent up from each area
node at level j correctly represents the count of all the leaf cells in its subtree.
Call this number cntj. Now, if P (j) is true, and each node a£ level i=j+1 receives
the resulting cntj values passed up by ité left and right children as £c'nti and

'rcnti respectively, and then sends up

c*n.t,i = lcntq.’ + 'rc'n,ti

then clearly Pu(i=j+ 1) holds as well. This establishes an inductive hypothesis _fo_r
the upsweep. An inductive base is provided by the lcells of an area, which send
up 1. Because Pu(O) is therefore true (the correct symbol count within an active
lcell is always 1), Pu(toa—l) also helds by induction. At the toa, then; following
such an upsweep, we know that the symbol index of the leftmost symbol of thé

left area subtree is 0, and the symbol index of the leftmost symbol of the right
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area subtree is lcnttoa {because this is the count of the number of symbols in

the left area subtree). These values provide an inductive base for the

downsweep.

3.4.3.1.2. Downsweep

For the downsweép, assume the lent values have been saved by the nodes
during the preceding upsweep, and let P4(k) mean that the numbers sent down
.i.:o the lleft and right éhildren of level k nedes correctly represent, respectively,
the true symbol index of the leftmost symbol in the left child’s area subiree, and
the true symbol index of the leftmost symbol in ithe right child's area subtree.
Call these numbers left_gzk and 'right__lxk respec.tively. If Pd(k) is true, and each
node at level i=k-1 receives the resulting value passed down by its parent as la:i,

and then sends to its left and right children the values

left MRS lz'i, and
right_lz, = (lx, + lent,)

then Pd(i) also holds.” This establishes an inductive hypothesis for the
downsweep. An inductive base is provided by the toa which sends down left__@xtoa
=0 and fr’ight_jmtoa = lont, .. Because Pd(toa) is therefore true {as noted at the
end of the upsweep discussion), Pd(O) also holds by induction. Since at level O
{the lcell level) the leftmost symbbl is the only symbol, the value received there
as i.xo is the desired symbol index. Figure 3.36 gives the portions of the leell and
area node directory creation algorithms responsible for creating the symbol
index. As can be seen, there is a close correspondence with the above inductive

reasoning.

¢ Clearly, if iz, is the beginning symbol index of the left subtree, the beginning symbol in-
~ dex for the right subtree is sz. plus the count of symbols in the left subtree.
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FIGURE 3.36 — Algorithms for Symbol Index

leell.build.directory() /* symbol index portion */

i

S upsweep - establish inductive bose */
area_tail->pui(l); /* send up symbol count for this level */

/% douwnsweep — terminate using inductive hypothesis */
user->symbol index=area_head->msg(); /* receive symbolindez ¢/

J

node.mgr.build_directory() /* symbol indez portion */
¢
/¥ upsweep -- preserye inductive hypothesis */
lent = Inp_head->msg(); rent = rnp_head->msg();
if (1top_of_area) np_ta11->put(1cnt+rcnt) /* send up total count ¥/

7* downsweep to place symbolindex and addresses inio leques */

it (top.of.area) § .
/* start downsweep ~ establish inductive base ¥/

Inp_tail-»put{0); /% laft-lx for tog */
rnp-tail->put{lent);] /* right-lz for toa * 7/

else | 7% continue downsweep — preserve inductive hypothesis ¥/
Ix = np_head->msg(); sxgetls */
Inp_tail->put(lx); 7* send left-lx */

rnp_tail->put{lx+icnt);l /* send right-lz */

3.4.3.2. Computation of the Directory Tuple

Computaﬁon of the directory tuple also involves an upsweep to accumulate
information into the area nodes, and a downsweep to distribute the desired -
information to the leells. While the symbol indéx computation uses a simple
merge function {(addition) and Pu and Pd predicates based on the values of
single numbers passed betlween the leells and nodes, the directory tuple
Computation involves a more comple;c merge functicn and Pu and Pd predicates
based on tuple values. Figure 3.37 summarizes the information flow. A merge
‘operation {0, to be de.scribed bélow’) is performed by area nodes during both the
upsweep and downsweep. During the upsweep, a resulf based on two incoming

values is sent to the parent; during the downsweep, a result based on the
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incoming value and a value remembered from the upsweep is seni to the right

child.

FIGURE 3.37 - Diagram for Directory Tuple Calculation

ursi = lclrsi 0 rdrsi ' tdrli

Downsweep

Upsweep

drs rdrs;  left_tdr, = tdrl,  right_tdrl, = tdrl, O Idrs,

The definition of the LPL environment directory tuple, D:[dl dn], was
given in Chapler 2. As explained in Section 2.3.1.2 with the help of Figures. 2.12
and 2.13, the directory tuple for an FFP text symbol is directly related to thé
parse tree of its RA, and the value of a general dj represents the left-to-right
count of RA symbols at level j {up to the symbol whese directory is of interest)
that are within the scope of the last constructor (seguence or application
symbol) with nesting level j~1.* To provide a frame of reference- for the
following discussion, Figure 3.38 contains an example RA located within an active
partition of a DOT machine. .This figure represents a typical active area; area
channels have been pruned during partitioning, and as a result the area is not

height balanced.

* The level of a gymbel in the parse tree for its RA is ’_Lhé rin value that is locally comput-
ed by lcells upon learning the ain of the RA application symbol.
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FIGURE 3.38 — An Fzample RA Within an Active Area

<<

INCRERENCGRE

Figure 3.39 shows the parse trece corrésponding to the RA of TFigure 3.38, -
and gives directory tuples with truncation at level 3. The directory tuple for "b"
'_ is [2.1,2] - dl is 2 because there are two' level 1 symbols {the operator and the
argument seguence symbol) within the scope of the last level 0 symbol (tha .
application symbol) before "b"; d, is 1 b_ecause_ there is 1 level 2 symbol {(the
second séquence symbol) within the scope of the last level 1 symbol (the
argument sequence symbol} before "b"; dg is 2 because there are 2 level 3

symbols {"a” and "b") within the scope of the last level 2 symbol before "b".
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FIGURE 8.39 - Exomple Parse Treé and Directory Tuples

o (, level O (rin=0}
/1 50\/ \[230] Ievél 1 (rin=1)
[1,)1(,0} {1,3?’,0] gio\/ EEE,G] leve! 2 (rin=23)
2,1.1] I2,l1),2] [2,5”1] leval 3 (rin=3)

-We now consider the tuple values that are passed in the upsweep and
downsweep to compute the directories for the symbols of an RA. We make no
assumptions here concerning the level of truncation. DOT presently provides LPL
programs vﬁth a four-level directory, but the following élgorithms work with
truncation at ény' level. All examples will perform truncation at level 3, as in

Figure 3.38.

3.4.3.2.1. Upsweep

For the upsweep, let Pu(j) mean that the tuple value sent up by each node
at level j correctly represents the directory of the rightmost symbol within its
subtree (i.e., correct relative to only those symbols in the subtree), Call this

tuple dfrsj {for relative directory of the rightmbst symbol),

In order to establish an inductive hypecthesis for the upsweep, we must
determine an operation () such that if each node at level i=j+1 receives the drs
i:uple values passed up by its left and right children as ld?“s,i and Td,'rsi

respectively, and sends up
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d'rsi = ld'rs,i 0 'rdrs_i

then Pu(i=j+1} also holds. The appropriate operation for the symbol_index
calculation was addition; here we must refer to the definition of the directdry'
tuple for guidance. The trick is to realize that we are merging truncated

representations of partial parse trees.:

A directory tuple containsg certain information aboul the parse tree from
which it is derived. It doesn’t contain all information about the parse tree
because the di values of é directpry tuple only represent tfhe count of symbols
within limited scopes, as indicated by the definition of the directory tuple. Each
drs tuple sent on the upsweep therefore represents a class of parse trees which
‘conform to the structure implied by that tuple. The merge operation which .Q
_'rx_1_ust. reflect is the joining of two such_parse tree classe.s into a new one, and the
_representation of the result with a new directory tuple {i.e., drs value). Figure
3.40 shows the two drs tuples that are recei{red by the top area node of Figure
3..38, and porirays the partial parse trees that are implied by these tup_les. Tﬁe_ |
1drs tuple is the relative directory of '"b", é.nd the rdrs tuple is the relative

directory of "¢"."

¥ These values are easily calculated using the definitien of the directory tuple (within the
confines of the respective subtrees). What we must discover is how to define {I so that
these values are actually sent during the upsweep.
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FIGURE 3.40 — Before Merging Portial Parse Trees
n0 . (
1 < <
2 - < T <
3 a b C
ldrs=[2,1,2] rdrs=[0,1,1}

Note that the parse tree class implied by idrs in Figure 3.40 'does not
include nodes for all the operator symbols of the actual RA. This is a result of
the limited precision of idrs, the re lative dire ctory of “"b". Truncation eflects are

absent because no symbol' of the RA is nested deeper than three levels.

During the upsweep, partial parse treés representéd by ldfs and rdrs are
merged in the obvicus way -- by connéct‘mg theml according to their implied
leveg. The dotted line in Figure 3.40 illustrates this, and Figure 3.41 shows the
result of merging the partial parse trees of Figure 3.40. The rightmoest symbol in
the result is "¢, and from the definition of the directory tuple we know that its
relative directory is {2,2,1]. For completeness, the partial parse tree implied by

a directory tuple of [2,2,1] is shown on the right in Figure 3.4 1.
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FIGURE 3.41 — After Merging Puorticl Porse Trees

merged partial parse trecs résulﬁng drs tuple - | partial parse tree
(relative directory for c) represented by drs tuple

( : (
</ \ | drs={2,2,1] -</ \<

VAN N\
N

We now give a procedure to calculate the result of the merge operation Q on

two directory tuples D1 and Dr.

7o geif result tuple values, from left to right add Ly und D, directory
values (dlj +d, ) te produce ca’rrespondmg result values, wvth the fol-
lowing emceptwn after the first non-zero d value has been encouniered,
Jollowing d'r values are the correct correspond@ng resull values.

This procedure produces the correct result of [2,2,1} for the example in
Figures 3.40. That it will always produce the correct result may be seen from the
following reascning. The objective of (? is to produce the directory tuple of the
rightmost symbol of two merged partial parse trees, and an rdrs value is aiready
the correct directory for this symbol within the context of its containing
subtree. The dj values following the ﬁrst.non-zero 7drs directory entry therefore
require no modification when the left context implied by Idrs is also considered.
This is because the definition of the directory tuple requires that d. values

i
fepresent a count of level j symbols only within the scope of the last symbol at
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level j-1. Leading zero directory values preceding the first non-zero rdrs
directory entry indicate that the c.orresponding parti_al parse iree has no
symbols at these levels. In this case, therefore, left context symbol counts
represented by the ldrs directt_)ry tuple should be included in the resulting drs
tuple because the symbols repr'esented- by the rdrs tuple must-ﬁe within the
scope of sequence symbols located in the left context.” The result
_ corresponding to the first. non-zero rdrs value requires addition since, as shown
in Figure 3.40, this symbol should be counted along with others at the same level
that are within the scope of the last symbol with less nesting {which symibol, if it

exists, is in the left context implied by Idrs).

Thus, on the upsweep, in order to always send up the relative directory of

the rightmost underlying symbol, a general node i should send

a'.'rsi = I.af'.\"s,i 9] 'rdfrsi

with 0 computed as described in the above procedure. Figure 3.42 shows how
the ldrs and rdrs relative directories for two subtrees are used by their parent
to determine a drs relative directory. This figure also portrays the scope of the

relative directories involved.

_' In the procedure for calculating {1, eddition of leading zero rdrs directeory values to the
corresponding ldrs values to preduce a resull is equivalent to simply using the Idrs
values. :
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FIGURE 38,42 — Directory Upsweep Compulntion

Idrs I : 1drs

A

e
| N

drs = Idrs ) rdrs

With the merge operation taken care of, and thus our inductive hypothesis,

all that is left for the upsweep is a basis step. The definition for the directory

tuple indicates that-the correct directory tuple, d'rsa, for an lcell symbol is

7 dn},'whe're

dj=0f07'j 7 rin
deI Jorji=rin
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Figure 3.43 shows the example of Figure 3.38, and includes the drs fuples

“that are calculated within each area node during the upsweep.

FIGURFE 3.43 — An Example Upsweep

- 12,2,1]

| [2,1,2]

[1,2,0]

1,0,0] [0,2,0] - | [1,1,0] [0,0,2] [031,1]

[0,0,0] [1,0,0] [0,1,0] [0,1,0] [1,0,0] [0,1,0] [0.0,1} {0,0,1] [0,1,0] [0,0,1]

(] |< X yli | < < a bl I<| |¢.

0 1 2 21 |1 2 3 3 2 3

With lcells and area nodes behaving as described above, P (0} is true (the

i) n tuple sent up by an lcell is the correct relative directory of a contained

rl
s.yrnbol), therefore, by induction, Pu(toa-l) holds as well. At the toa, then,
following such an upsweep, we know the cofrect directory for the rightmost
symbol of the left area subtree (it is ld'rstoa since there are no RA symbols to
the left of the left area subtree to change this value}. Since this directory tuple
is correct with respect to the entire RA we call it the true directory for the
symbol of iﬁterest. Alse, since there are no symbols to the left of the left area

subtree, we know the true directory for the rightmost of these symbois (there

are none, so it is [0 ... 0], vacuously).
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3.4.3.2.2. Downsweep

For the dowﬁsweep, assume the ldrs values have been saved by the nodes
during the preceding upsweep, and let P4(k) mean that the tuples sent to left |
and right children of levél k nodes correctly represent the true directory of the
rightmost symhbol to the 1_e'ft of their subtree. Call these tuplés ieft__tdrli and
'right_;drli {where tdrl stands for "true directory of the rightmost symbol to the
left"). If Pd(k) is true, and each node at level i=k-1 receives the resulting tuple
passed down by its parent'és tdﬂi, and then sends to its left and right children

the values

left_tdrl, = fdri,
right_tdri, = tdrl, 0 ldfrsi

_then Pd(i=k~1) also holds.” This establishes an inductive hypothesis for the

downsweep. Figure 3.44 shows how the idrl tuple passed down by' a parent. and
the saved Idrs tuple are used to determine the values to be passed to subtrees.

Also included in this figure are the scopes of the relative directories involved.

* The reasoning is similar to that used for the upsweep. The received #drl tuple indicates
the directary of the rightmost symbol to the left of the subiree of the receiving node, and
the righi_tdrl (tc be sent to the node’s right child) must indicate the directory of the
rightmost symbol of the left child subtree. Therefore the partial parse trees represented
by tdrl and the saved Idrs tuple are merged to produce this result.
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FIGURE 3.44 -- Directory Downsweep Computation

tdr]

tdr] O ldrs

An inductive base is provided by the tea, which sends down left_tdrltm =
[0... 0} and é'ight_td,rltbm = Idrs,, .. Since Pd(toa) is true {as noted at the end of
the upsweep discussion), Pd(O) also holds by induction. Since at level 0 {the lcell
level) the value that would be sent down as righf_tdrl 0 is the true directory of |
the symbol stored therein, this tuple is the desired LPL environment directory
tuple."k Qf eourse this directlory tuple is not passed down [urther, but is kept as

the local LFL environment directory tuple.

* The leells use & 1y, for the ldrs value to merge with the received #drl value. This is
correct, because a{ {]he lcell level there is but one symbol to consider.
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FIGURE 3.45 - An FEzampla Downsweep

10,0,0]

B
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[0,00] [1,00] [1,1,0] [1,2,0] {2,00] [2,1,0] [21,1] [212] [2.2,0] [2,2,1]

Figure 3.45 continues the example of Figl’lre 3.43 by showing the lejt __zfdrl
and right_tdrl tuples that are sent during the downsweep. Tuples in this figure
ére displayed above the area nodes to which they are sent. Tuples beneath the
leell array are the correctly comﬁuted directory values  for the LPL
environments. While examining this figure, recall that the tuple value received
by a node represents the context to the left of its complete subtree, and the Idrs
fuple that is held within the node (shown using a compressed format with no
brackets or commas) represents the left child context. The Idrs values used by
thé lcells to finally determine the directories are not shown, but are implied by

the rin values locally stored.

Figure 3.46 gives the portions of the lcell and area node directory creation

algorithms responsible for creating the directory tuple. As can be seen, there is
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FIGURE 3.46 — Algorithms for Direclory Tuple

lcell.build-directory() /* the directory tuple portion */
t

char *dir = user->directory; shert i;

/% wpsweep - establish inductive base */
for(i=0; i<DLEVELS; i++) /* send up correct drs tuple */
area tail->put({*(dir+i) = (user->rin==i+1)?1:0));

/* downsweep — use inductive hypothesis to terminate */
for (i=0; i<DLEVELS; i++) /* recetve tdrl and merge */
if (i<user->rln) ¥(dir+i) += area_head->msg();
glse area_head->get{&garbage);

}

nbde_.rrlgr.build..director'y() /* the directory tuple portion */

¢
char tdrl, rdrs, 1drs[DLEVELS], zeros, i;

7* upsweep - get ldrs and rdrs tuples and merge */
zeros = TRUE; /* ¢ll rdrs d have been zero so for */
for (i=0; i<DLEVELS; i++) { }
ldrs[i} = lnp.head->msg(); rdrs = rnp.head->msg();
if {top_of_area) np_tail->put
({zeros)?rdrs+ldrs[i]:rdrs);
zeros &= (rdrs == Q};

!

7 downsweep — get tdrl and send left- and right-tdrl */
if (top_of_area) for (i=0; I<DLEVELS; i++} |
% must start downsweep ¥/
Inp_tail->put(0); /% left-tdrl for toa */
rnp-tail->put(ldrsfil); /* righé-tdrl for toa */
{ ‘

7 st condinue downsweep */

zeros = TRUE; /* all ldrs d have been zero so far #/

for (i=0; i<DLEVELS; i++) |
tdrl = np_head->msg();
Inp_tail->put{tdrl); /* lefi-tdri */
rnp_tail->put( S right-tdrl *~

: - {zeros)?ldrs[i]+tdrlidrs[i]);
zeros &= {ldre[il==0); |

else |




121

3.4.4. Calculating the Specification for Storage Management

The algorithms uééd_ dor calculating the specification for " storage
management involve support by lcell managers and tcell managers, as oppos_ed.
to the use of node managers for directory creation. The method, uséd involves an
upsweep and downsweep of information th.rough the entire tree, and can. be
analyzed in the same way as dire.ctory‘creation. Figure 3.47 summarizes the

" information flow.

FIGURE 3.47 - Colculating a Specification for Storege Management

Downsweep

Both upsweep and downsweep use information tuples composed of two

| \_rah_les'. On the way up, the information_sent is the capacity of a subtree {i.e., how
many leells are in the subtree), and the storage requests of a subtree (i.e., how

many lcells are required by the local FTP text and executing LPL contexts for

the next exec.ution eycle). In the downsweep, shift values are sent to describe

the number of lcell user contexts that should be shifted into a subtree through

its left leell boundary, and the number to be shifted cut through its right lcell

boundary. These shift values are signed; positive values indicate right shifting,
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and negative values indicate left shifting. When the shift values reach the lcell

level, they form the specification for storage management for each lcell.

3.4.4.1. Upsweep

For the upsweep let Pu(j) mean that each node at level j of the tree of
processors sends up to its parent the correct capacity of its subtree, and the
corre.ct request total from its underlying lcells, Call th.ese values capj._ and reqj.
and their combination into a tuple c'rj. Now, if Pu(j) is true, and every node at
level i=j+1 receives the resulting values passed by its left and right children as

lcri and reT, respe ctively, and then sends up

cap, = loup, + reap,
req, = lreq, + rreg,

- then clearly Pu(i:ﬁ 1) holds as well. This establishes an inductive hypothesis for
the upsweep. An inductive base is provided by the lcells of the machine, which

send up values as foiiows:

cap, = 1
req =
(leell empty) - 0
{otherwise) - usercontext, forkn*

Since Pu(o) is therefore true, Pu(io-l) is also true by induction. At the io node,
then, fellowing such an ups;»veep, we know the capacity of the entire tree, and

the total number of leells requested for the next cycle,

* As stated earlier, execution of an LPL fork statement modifies the forkn context vari-
able which starts every active execution phase with a value of one. Non-active leells al-
ways send one.
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3.4.4.2. Doﬁnswaep

For the downsweep, assume that the ler and rer tuples have been saved by
the tcells during the preceding upsweep. and let Py(i) mean that the numbers
sent down to left and right children of level i nodes represent boundary
conditions that allow feasible solutions to the storage management problem
within their respective subtrees. Call these boundary conditions left__bci aﬁd
?"ight_bcli respectively, where a boundary condition is a tuple composed of a

lefl_entry and a ﬁght'_departure value.

‘By feasible solution, we mean that there exis‘ts a solution to the.storage
management problem locally within a child subtree that is consistent with the
left and right boundary conditions which the subtree tcell root receives from a
parent at level i+1 ae bc Figure 3.48 shows that a solution to the storage ‘
management problem For a subtree rooted at level iis represented by a single
-transfer’ value, t, that describes the direction and amount of context flow that
should take place on the leell shift register that joins the two child subtrees

~ rooted at level i-1,
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FIGURE 3.48 - Tﬂm.sfer Value Solution for Storage Management
bci

entries  departures

entries departures
4‘]%165 tl'\ :
leftbe, T FHE T Tightbe,

As shown in Figure 3.48, once ti.’ a solution for storage -management, is
computed by the tecell at level i, it can send off left_be and right_be tuples to its

left and right children as follows:

teft be, =
lefi_entries = bo 4 left_entries
right_depariures = i,
right_bc, =
left_entries =t
right_deparfures = be ?:.Mght__dep ariures

Calculation of t.l is analogous to the downward merge functions of directory

creation. Let us therefore define the fransfer function {call it T) as a function
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that takes three tuples (lrc:i and rre; from the upsweep, and bci from the
downsweep) and produces a t; that specifles the transfer of contexts between
the two subtrees of a tcell. This function is not unique; a variety of approaches

toward allocation of lcells to user contexts is possible.

Our approach is that suggested originally by Mago [Mag78] -- contexts are
moved between left and right surbtrees of a teell only if absolutely n-eceésary,
and then the minimum possible number of contexts are shifted. This heuristic
reduces information shifting betw_een subtrees. It therefore avoids total
.compactidn of contexts within adjacent lcells, which is important to an effic:i_en£
storage management phase. As. will be d.isc:tissed in Chapter 6, the method is not
optimal in minimizing the maximum distance for symbols to be shifted, but it is
efficiently implemented with a ‘minimumraf information ﬂo.w within the tree. In
any case, it is not clear that. a locally optimal storage management during one
phase will necessarily produce'the best long-term performance bvér a number

of cycles. More study of this tradeoff is required.

Figure 3.49 presents the procedure presently used to calculate the transfer

funetion.



196

FIGURE 3.49 — Calculation of the Transfer Funciion

I'(ire,rre,be)

if Irc.capacity »= (Ire.requests + be.leftentries)

/* no need to shift right between subtrees */
if rre.capacity >= {rrc.requests - be.rightdepartures) .

/* no need to shift betweeén subtrees */
[=0; ‘

else 7* need to shift left between subirees */
I' = rrc.capacity -
(rre.requests - be.rightdepartures)

else /* need to shift right between sublrees */
I' = (Irc.requests + be.leftentries) - Irc.capacity

With the merge operation taken care of (ie., calculation of the
b= P(lrci,rrci,bci)), and with the resulting left be; and right be; thus
determined as shown in Figure 3.49, the inductive hypothesis for the downsweep

is established, and all that is left is establishment of an inductive base.

The 1eft____bcio tuple goes to the vm subsystem, and ri‘gh’c__-bc.10 tuple goes to
the processor tree. Calculation of the transfer function at this level is done with

be.left_entries and be.right_departures both implicitly zero.’

A heuristic used to determine a tio value (required to stari the downsweep)
need only generate feasible boundary conditions for the v subsystem and the
processing tree, and our approach is as follows. Overflow from the pr‘oéessing
tree must be accommeodated by the vin subsysterﬁ, so if.there is overflow, b, 18
set to the amount of overflow required (actually its negative, to indica{:e left

shifting into the vm subsystem). If overflow is not reguired, as much previous

* This is another way of saying that the vm subsystem is self-contained so no symbols
enter it from the left, and there is no shifting out of the right boundary of the processor
tree. i
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overflow as possible is.returned to the prccessdr tree by shifting r.ight from the
vm subsystem. If there is enough further room in the processor tree to hold the
next program, it is also shifted in. To perform this calculation, the io subsysterﬁ_
needs the T, tuple received from the root of the processmg tree, and the
number of overflowed contexts and size of the-next program held by the vm
subsystem.=t Figure 3.50 shows the resulting preparation for storage

management downsweep as seen within the io subsystem

FIGURFE 3.60 — Starting the Douwnsweep of Preparation for SM

io.prep_for.sm{)

/* pick up copactty end requests from Mago tree */
capacity = em_head->msg();

requests = cm_head->msg();

available = capacity - requests;

#* pick up overflow and next program size from Vi */
" overflow = vm.head->msg(};
‘nextsize = vm.head->msg();

/* calculate o feasible transfer solution */
if (available <= Q) /* forced overflow */
transfer = available; _
else /*we have room for right shifting */
if (overfiow+nextsize <= available)
transfer = overflow+nextsize;
else
if {overflow <= available)
transfer = overflow;
‘else transfer = available;

/% tell the tree and Vi about it */

emtail->put(transfer); /% left entries info processor tree */
em_tail->put(0); /% no right departures from tree ¥/
vm_tail-»put{transfer); /* right departures from vm */

* This approach aveoids total compaction of FFP symbols within the lcell array, and is sa-
tisfactory for simulation of single programs. An effective heuristic for handhng multiple
user programs would be more flexible in the entry of new programs.
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The start of the downsweep of preparation for s_t-brage management  --
described above, and shown in Figure 3.50 -- is clearly a feasible solution, so
Pd(io) is true. Thus, by the inductive hypothesis established above, Pd(l) holds
as well. Thus the values received at level 0 (by the lcells) are the desired local
specifications . for storage management; lcells shift bco.left_entries in t.hrough_
tﬁeif left boundaries, and bco.right_departures out  through their right
boundaries. TFigure 3.50 showed the io subsystem algorithm. The lcell algorithm
for preparation for storage management {followed by the top-level of the
ensuing étorage management phase) is éiven. in Figure 3.51. The tcell algorithm

used in preparation for storage management is given in Figure 3.52,

FIGURE 3.51 -- Leell Preparation and Storage Management

lcell.sm_prep()

t
7* upsweep */
/* first the available lcells --1t.e., capucity */
em-tail->put(1);
/* then the number requested */
em_tail->put((user->state==EMPTY)?0:user->fork.n);

7* downsweep */
left_entries = cmm.head->msg{);
: right_departures = cm_head->msg();
; ‘
lcell.storage.management()
¢
while (left_entries<0) { emit{0); left_entries++; }
while {right_departures>0) { emit(1); right_departures--; |
loaddocal();
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FIGURE 3.62 — Teell Preparation for Storage Monogement

teell_mgr.prepare_sm_up_dn{)

E .
7 upsweep */
lem_head->get{&l cap); rem_head->get{&r.cap);
cm_tail->put(lecap + r—cap); :
lem_head->get{&lreq); rem-head->get(&r_req);
em.-tail->put{ireq + r_req);

7t downsweep */
cm_head->get{&l_entries); em_head->get(&r_departures);

lem_tail->put{l_entries); /* left entries for left child */

if {Lavailable>=(l_requested+l_entries)) /* no right shift */
if (r_available>=(r_requested-r_departures})
i 7* no left shift either */
rem-tail->put{0); /* right dep left child */
lem tail->put(0); /*left ent right child */
]
else | /* no right shift, but must shift left */
rem-tail->put
{r.available-{r_requested-r_departures)};
lem.tail->put
{r_available-{r_requested-r_departures)};
]

else | /* must shift right */
rem_tail->put{lreguested + Lentries - l.available);
lem_tail->put{l requested + Lentries - Lavailable); -

]

/* right departures for right child */
rem-tail->put(r-departures);

3.b. Summary

This completes the discussion of the DOT implementation. The overall
sfrategjr and operation of the different phases of the machine cycle was.
introduced, .. and the process strﬁctur'ing of the multiprocessor cells was
' detailed-. In addition, the most important algorithrns used by these processes to

cooperatively implement the phases of the machine cycle were described,
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Of these algorithms, partitioning is the most.complex in terms of its ClassC
representation, and numerous examples were givén to illustrate our solution to
this difficult design problem. LPL message handling was detailed, and the
different types of message packsts were presented. Finally, the algorithms for
directory creation and preparation for storage management were examined, and
shown to. be fairly sifnple. These algorithms require only small amounts of CllassC
code for their representations, and correspbnd directly to the inductive

reasoning used to establish their correctness.



CHAPTER 4

Sirnulating DOT

4.1. Introduction

Chapter 3 pres_t’anted lan implementation model made up of relatively
ihdependent. asynchronous cellular processors connected via point-to-point bus
links to form a binary tree. The primary role of the DOT representation is to
provide a formal and unambiguous description of this model. An important and |
beneficial result of such a reﬁresentqtion is the aid it provides in reasoning
about design decisions and the operational 'characteristic-s they imply.
Expressing ideas in a precise and unambiguous form often highlights errors and
points out areas for which concern has been lax or.omitted. This has certainly
been confirmed by our experience with DOT. Repre_sénting DOT thus provided a

Irase for the early stages of an iterative design process.

Since the language used to represent DOT is executable, the above benefits
are extended to provide even further assistance to the design proceés - d-ﬁring
later phases of the design cyecle - through sitnulation of the‘impleme'ntation,
and, in fact, emulation of the complete programming system which it
supports.‘ Architecture emulation, in turn, allows further iterations of the
overall design cycle. The LPL architecture is the result of such design

iteratiomns.

¥ This requires the construction of two ancillary programs: assm, an assembler for LPL
source programs; and mkusr, a program to collect FFP user programs inte a form ap-
propriate for loading inte the vin subsystem.

201
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4.2. The Place of Simulation Within the Design Cycle
Shannon gives the following definition for simulation [Sha75]:

" Simulation is the process of designing o model of e system aend conducling
experiments with this model for the purpose of either undersianding the
behavior of the system, or evaluating various sirategies for the operalion
of the sysiem.” :

Thus, in addition to representing a design, the use of a simulation language can

assist understanding and supply a means for evaluation,

Shute describes the role of simulation in the deéign and study of
multiprocessor systems [Shu83]. He identifies major objectives of simulation,
and lists the important properties of simulation that can be used in meeting
these objectives. Figﬁres 4.1 and 4.2 summarize these important aspects of
simulation. Subsidiafy benefits of sirmulation given by Shute are listed in Figure
.4.3. |

In an initial design, attention to specificity and clarity of expression is.

paramount. If a simulation model is expressed at the chosen level of delail

FIGURE 4. 1 - Objectives of Simulation

= Specifying the Operation of the Sysiem

s Understanding the Operation of the System
« Validating the Design

« Calculating Performance

« Optimizing Performance

FIGURE 4.2 -- Properties of Simulatfion

« nembiguous Description of the Design

e Discipline of Designing in o Rigorous Fashion

o Ability to Test the Design

« Abitity to Emulafe the Machine

« Pradictable, Repeotable Nature of Digital Processing
» Fose of Duplicating and Modifying Compuier Data
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FIGURE 4.3 - Subsidiary Benefits of Simulation

« Documentolion

» Kncouragement to try out Alternalive fdeas

s A Cushion ngainst Production Errors

« Provision of a Software Substitute for Hm-dwmre

during this stage, .the design can undergo several modifications simply because
syntaetic errors are reliaialy captured through the use of a language compiler.
Once the simulation is running, insight into the actual working of thé desigﬁ
_becomes available, and semantic checks may bé ﬁsed to discover operational

errors or further confirm the validity of the design,

Given semantically correct operation, the simulation can be used in concert
- with formal or informal analytic performance models to further iterate on the
design process. This phase may involve modifying of the design to achieve
ﬁer_formance in accordance with expectations (e.g., errors in pipelining may be
discovered in the design), or it may involve modifying the ‘analytic model to
mbre realistically express the restrictiohs imposed by the design and reflected
in its simuiation {e.g., perhaps a pipe cannot alwayé be kept full). Finally, é
cornplete and operational system can be emt_llated, allowiﬁg programming and
user evaluation, leading to architectural modifications and reentry into the

overall design eycle.

The progress of a design performed in this way moves iteratively from the

initial design concept through the following stages:

1) unambiguous design representation,
2) valid design, o

3) efficient design, and finally

4} overall architectural modification.
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4.3, The Cost of Simulation

From the above, it is clear that simulation has a great deal to offer over the
hardware oriented approach of "let’s build it and see”. As processors become
more and more complex, and the importance of multiprocessor designs is
enhénced by VLSI and wafer~sca1é integration, it will rapidly become
eco.nomically unfeasible to approach the design process without the aid of
simnulation. Simulation Iaids the “design process, making it an accountable and
veriﬁablé p‘rpcedure. What are the disadvantages of simulation? These may be

characterized in terms of cost,

First, thére is the initial cost of the simulation package that is used.
Simulation may bé éerformed at a variety of levels: from top-level
implementatibn'simulation, as we have done here, to register-transfer-level
(low-level implementation) simulation, to circuit-level (realization) simulation.
While we use a general purpoée language for our simulation, and thus amortize
the cost of the compiler product over many users, the specialized concerns of
register-transfer-level and circuit-level sim.ullations “are of Iuse to a rﬁore
restricted set of users. Nevertheless, the alternative cost of hardware
fabrication may make these specialized packages attractive in price. In
raddition, the existence of satisfactory simulation languages for each of these
levels seems to. preclude the necessity for prototyping until a late stage of

system development.*

Additionally, there is the cost of writing and debugging the simulation, the

cost of using the package to generate results, and the cost of analyzing results.

* Shute mentions the lack of a means.of easily moving from one level of simulation to
another. This would be desirable from the standpsint of stepwise refinement of design,
but wonld require either a simulation language of extremely wide scope, or automated
translation mechanisms. At present, the only feasible approach would seem io be offline
development of analytic models for lower level systems to be used within the simulation
model of the next higher level
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Althou-gh it is reassuring to observe the design of a system actually working,
simulaticn can be very costly in terms of execution time -- especially fof
extensive lower-level simulations in which large amounts of detail must be
explicitly handled. Even for iop-leﬁel implementation simulations such as we
use, massively parallel multiprocessor architectures can be very .costly to
simulate because of the large number of individual components that are present
in the model.” |

Validity of design may be established fairly inexpren'sively, even granting é
large nurﬁber of offline design iterﬁtions-t_o elimiﬁate semantic errors. This is
because sﬁch .errors are quickly discovered and at relaﬂvely low cost.
Optimization of performance, on the other hand, may require more detailed and
extensive simulation runs, employing a wide variety of data and runtime

configurations.

Shute pointé,out another disadvantage of simulation: the suspicion of users
in general, and compt’;ter scientists in particular, concerning the correctness of
cutput from a computer'. Doubts as to ﬁhe correctness of simulation resulls
must be answered with a scrupulous concern for the scope of the simulation
(thus clearly delimiting the area of applicability of the simulation), and when
possible, with an analytic model based on the overall design concept that
vcorroborates the results of the simulétion. In our case, use of an analytic model
was feasible, and cormparison of initial simulation results Wit‘fh predictions of the
analytic model pointed out errors in the design that were performance oriented

rather than semantic in nature.

¥ Lower-level implementation or circuit-level simulations for large multiprocessors can be
prohibitively exzpensive. Leung, et. al. [Leu?8] have noted this preblem in cornjunction
with packet-switched ecommunication architectures to support datafiow languages, and
suggest the use of multiple microprocessor modules to emulate the behavior of groups of
system units.
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The scope of the DOT simulation is the topic of the remaining portion of this
chapter. The analytic model that supports and is in turn supported by the

simulation will be described in Chapter 5.

4.4, Introducing Global Time into DOT Operation

* Within DOT, there is no a-priori concept of a global tirﬁe because of the
asynchronous -nafure F’f, the processing cells. How,. .then, is .the ongoing
operation of the model during its execution communicated'to the designer in
useful terms? Building in a knowledge of global time must be approached with
cére; since this is not part of the implementation and DOT is, first and foremost,
an implementation model. It is therefore necessary to create a "meta-level"l for

the DOT simulation in which the concept of global time is recognized.

4.4.1. Discovery of a Critical Path

One é.ppfoach might be to seek the critical path within each machine cycle.
Each ecycle may be considered to begin and end with the calculation of the
specification for storage management within the io subsystem. For each such
cycle there is a critical path associated with the return of information required
for the next storage management calculation. The time associated with the

critical path is the cycle time for that particulaﬁ- cycle.

Unfortunately, because of the asynchronous and data-driven character of
the machine, this critical path will move with data from procéss to process, and
migrate up and down between cells of the machine. Tracing machine execution
in this way to obtain the required informa*_tion. perhaps through the use of

timestamps associated with déta, would be a difficult task.

To achieve the desired simulation accuracy, we use a technique based on

discrefe event simulation. Current approaches to discrete event simulation may
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be divided into two classes: eveni-scheduled and process<interaction modeling
[Law82]. The approach we use involves a.combination of these two common

simulation techniques.

4.4.2. Event-Scheduled Modeling

In the event-scheduled app'foach, a system is modeled by identifying its
characteristic events, and routines are %ritten that iniplem_ent the appropriate
state changes éssociate.d with each event [MarB0]. A simulation then évolves
over time .by executing events in increasing order of their time of occurrence.
Thus the passage of global time "drives' events, which in turn "drive" the model.
Withiﬁ | our model, the highly parallel and asynchronous _nature of the
components prevents an a-priori knowledge of state change‘s as a function of

events ordered in tirrte, so this approach is not directly applicable. -

~ 4.4.3. Process-Interaction Modeling

in thé proc_ess—interaction approach a system is modeled by explicitly
representing the entities that drive state cﬁanges (ie., 'prqce'sses), and
‘providing a mechanism for these entities to communicate the progress of glebal
time (and the enabling of other processes) to a scheduler [Laﬁaz, Fra?7]. In
this case, medel processes drive events and explicitly define the passage of
global time. This requires a mapping between individual process activities and
the progress of global time.' Our desire to separate £he processes of the
implementation model from concern for global time prevénts direct use of this
approach as Well.. Since processes of the DOT model are not aware of time, there
is no direct way for processes of the DOT model to schedule other .processes with

respect to a global time.
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4.4.4. Process-lnteracﬁbn with Implieit Events

With appropriate assumptions, an apprqach based on a mixture of process-
interaction and event-scheduled simulation is possible. This approach has been
receﬁtly used to support simulation of a packet switc_hing nétwork by _Aggarwa_l
[Aggaz]. In -our case, the process-oriented view corresponds well to the way in
which the 'executable_ model is represer}ted, and event-scheduled simulation

provides an attractive alternative to discovery of critical paths.

We therefore incorporate implicit event-scheduling on top of the data-
driven process scheduling already present. First, a set of events that may be
sequentiélly ordered in glob‘alrtime must be identified. Within our muodel, the
natural events to focus upon are those involving communication of information
between cells of the architecture. This is because, as a first approximation, the
primary overhead associated with processing on this machine is the time

required for communication between cells.

We define an event as the parallel transfer of information out of all cells
that wish to send at that (global) time. The interval between such events is
taken to correspond to the time it takes a cell to perform required internal
processing after receiving a message, and then send_a byte (the basic unit of
information exchange in the model) through an intercell communication
channel {i.e., a cqueue object).”

The system times available with this appreach represent a count of the

number of parallel communication transfer events that have occurred since

machine initialization. An estimate for the time between events might be 7 =

* This simplifying assumption is justified during most of the machine’'s operation. Az
shown in Chapter 3, the basic operations of DOT are pipelined. The possible exception lies
within the lcells, which may perform expensive operations within message filters, thus
slowing the rate of message movement through an active area. Without a more detailed
model of the leell realization, therefore, the assumption of uniform internal processing
time between messages is reasonable.
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100 nanoseconds.’ Times reporied in simﬁlations should be cozllsider‘ed to be
relative to such a multiplicative factor. The resulling level of simulation exactly
matches that used by the analytic model, which is also based on counting
parallel message transfers. Correspondence between the level of the analytip
_ modei and the simulation model is important when verifying the efficiency of the

design.

4.5, Implementing Imiplicit Events

Héving defined our events, it remains to guarantee that eac.h process that
should participate in an event will do so. This is done by modifying the cqueue
clﬁss (the only means .of comrmunication between cells} to provide scheduling for-
these events. All processes that wish to send information (during the next
event) accumulate on a queue. Only when the model becomes guiescent do'e_s
the event finally occur, inerementing the global simulation time and allowing .

accumulated processes to then send their information effectively in parallel.

Implementing the desired simulation facility is straightforward in ClassC.
ClassC employs a top-level process sche-duling rﬁechanism similar to that used
by SIMULA [Fra?77], and i)rovides a delay primitive that allows other processes to
catch up to a process thé.t delays itself. When all processes have caught up Lo
the delayed process, it is once again eligible for schéduling. The basic difference
between process interaction scheduling, as explained above, and our method is
that no DOT process .ever does an explicit delay within the scope of its
representalion. With this approach, the DOT process representations are cleanly

separated from aspects relating to their accurate simulation in time. Figure 4.4

* Of course, this time is dependent cn, among other factors, channel widths and the tech-
nology used to realize processing cells and intercell data channels. Aspects pertaining to
realization are not within the scepe of this dissertation, but this estimate seems reason-
able given present VLEI technology.
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shows the event scheduler that was added to support simulation, and Figure 4.5

shows the DOT cqueue gtail.put entry after its modification to provide implicit

events for communication.

FIGURE 4.4 -- The DOT Euent Scheduler

/*

This task inferfaces with the classe deloy mechanism in order to
implement the clock tick events that the gtail pui mechanism uses.
(In addition, @ message is printed every thousand ticks to oid in
recognition of deadlock situations.)

*S

evenis.newlevent)
class object *event;
{
cycle §
: delay(1); '
if ((clockZ1000) == 0) printf("events: clock=2%d" clock);
event->alert (),
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FIGURE 4.6 — glail pul Implements [mplicit Fuents

Ve |

The eniry used by a process thaf sends defo belween cells.

* s _

gtail put (m)

char m;

{ _ . .
event->remember (thistask); /* pay the price in time */
thistask->sleep();
gvent->forget (thistask);
putfree(m); . /% then transfer message */

; .

void gtoil.putfree(m)

char m,

{ .

Messgge->mess = m, /* put message info object */
(message->sig }->remember(thistask ); /* remember this task */
z_tail->put((class object *)messoge); /* initiale transfer */
thistask->sleep(); /% sleep until recaipt */
(message->sig )->forget (thistask); '

}

4.8, Simulation Output

;lfhe complete DOT model representation includes 25 classes. These includé
the process classes {or tasks) discussed in Chapter 3, énd the.above event
handler. When the model is executed, a tree height parameter is given, and the _
reqﬁired number of these .ClaSS-e.S are instantiated and connected to form a
machine of the desired size. As_'the processing cells of the resulting DOT
machine come alive, operaﬁion begins with partitioning of the machine in
response to the {initially empty) lcells. The following preparation for étorage
management then detects the avaﬂable leell array capacity and the vm
subsystem shifts in FFP progfam text as appropriate during the ensuing storage
management phase. Execution then continues with partitioning and successive

machine cyeles. DOT models for machines containing hundreds of lcells may be
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created and observed within computationally reasonable time -periods.

4.6.1. Tracing Machine Operation

The ClassC runtime support package maintains a globally available variable
called clock that contains the curren_t_simulation time, and each process within
the DOT mbdel has a unique process id maintained by the ClassC task scheduler
{known locally by each process as thistask). As the DOT design progressed, trace
st‘at.ementé for 'the. pr_oéesses were written to allow them to record their
progress and signal the simulation times of important events. These statements
serve the dual function of supporting debugging of the DOT machine’s execution,
and because of this fact they are pervasive throughout the entire ClassC model

representation.

As a result of this approach towafds tracing operation of the machine, it is
possible to literally pick apart the detailed operation of the machine from
whatever vantage point is desired. A wide range of precision is available.
Conditional assembly of trace statements allows selection of the desired
information from the huge mass of detail potentially available .during fhe

execution of a large model instantiation.

This highlights an important aspect of simulation: arbitrary precision
(within the limit of the time grain used) may be employed to zero in on design
errors once a problem is detected. Digital simulation is entirely repeatable, so
repeated runs at ever finer levels of delail are possible with reproducible
results. This flexibility would not be available in & hardware prototype, and this
points out the importance of carrying an initial simulation approach as far és

possible.

We now give examples of the information available irom process tracing.

The trace for these examples is at a fairly high level, and brings together
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information concerning the overall machine ecycle and its three phases. Two
listings are given. Both depict process activity during execution of the example'
FFP program given in Figure 4.8. The first trace listing ié ﬁltered,.and provides
brevity by omitting all but the first of a succession of messages that refér to the _
same thing. As seen from the second listing, .Wh-ich only displéys a portion of
cycle 1, such filtering is quite effective while retaining useful information. For
each trace message, the involved process identifies itself by giving its class type -
(e.g., lcell) and a unique process id (the value of thistask maintained by thé
ClassC process scheduler), and then provides informativ'e data, such as the
beginning and ending times of an activity (displéyed in brackets: [begir_l-end]),.

or the present simulation time.

FIGURE 4.6 — Fillered High-Level Trace OQutput

machine.new: starting up with clock=0

leell{372168): partitioning{0-10} duration 10

io.prep_sm: sm.grant, sending stop message for cycle 0, clock=18
lcell(427704).sm:(4:4) [37-52] duration 15

ioinput: got pgm request = 8, clock=105

leell{466988): partitioning[37-107] duration 70

leelLinp(169080): starting interpreter. clock=138

leell msg(254084): user’s message has returned, clock=242
fo.prep_sm: sm_grant, sending stop message for cycle 1, clock=248
leell(126892).sm:{40:0) [276-276] duration 0

ioinput: got pgm request = 12, clock=302

leell{471952): partitioning[276-303] duration 27

leellinp(374972): starting interpreter. clock=335
lcell.msg(359284): user’'s message has returned. clock=381
io.prep_sm: sm.grant, sending stop message for cycle 2, clock=889
leell{126992).sm:(40:0) [413-413] duration 0

io_input: got pgm request = 4, clock=427

1cell(466988): parlitioning[413-429] duration 18

leell inp{129796): starting interpreter. clock=461
leell.msg(398568): user’s message has returned. clock=507
io.prepsm: sm_grant, sending stop message for cycle 3, clock=515
-- Machine Empty -- halting execution
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FIGURE 4.7 — Unfiitered High-Level Trace Cutput

leell{427704).sm:(4:4) [37-52] duration 15
leell(377132).sm:(2:4) [ 37-55] duration 18
leell(372168).sm:(80:3) {37-58] duration 21
lcell(337848).sm:(3:4) [37-61] duration 24
leell{332884).sm:{1:4) [37-64] duration 27
leell{266060).sm:(60:3) [37-67] duration 30
leell{(261096).sm:{60:2) {37-70] duration 33
leell(226776).sm:{12:3) [37-73] duration 38
leell(221812).5m:(8:3) [37-78] duration 39
lcell(171240).sm:(60:2) [37-79] duration 42
leell(166276).sm:(40:1) [37-82] duration 45
leell(131956).sm:(4:1} {37-85] duraticn 48
leell{126992).sm:(40:0) [37-88] duration 51
leell{126992): partitioning[88-38] duraticn 10
lcell{131956): partitioning[85-98] duratien 13
to_input: got pgm request = 8, clock=105
leell{466988): partitioning[37-107] duration 70
leell{471952): partiticning[37-107] duration 70
leell{432668): partitioning[37-107] duration 70
leell{186278): partitioning|82-108] duration 26
leell{171240): partitioning[79-108] duration 29
leell(372168): partitioning[58-108] duration 51
lcell{261096): partitioning{70-108]} duration 39
leell{332884): partitioning[64-108] duration 45
leell(221812); partitioning]76-109] duration 33
leell(427704): partitioning[52-108] duration 57
1cell(377132): partitioning[556-108] duration 54
1cell(268060): partitioning[87-109] duration 42
leel}(337848): partitioning[61-109] duration 48
1cell(226776): partitioning[73-108] duraticn 36
leell(427704).build_directory: [109-123] duration 14
leeli(166276).build_directory: [108-124] duration 18
leell(171240).build_directory: [ 108-124] duration 18
leell{372168).build_directory: [109-125] duration 16
leell{281098).build_directory: [109-125] duration 16
leell{332884). build_directory: {108-125] duration 18
leell{221812).build_directory: [ 108-125] duration 18
1eell{377132).build. directory: [108-128] duration 16
leell(266060) . build_directory: [109-1258] duratiorn: 18
1eell(337848) .build_directory: [108-125] duration 18
leell(226776).build_directory: [109-125] duration 16
leell_inp(189080): starting interpreter. clock=139
leellinp{174044): starting interpreter. clock=154
leellinp(824616): stariing interpreter. clock=183
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4.6.2. Leell Array Snapshots

In addition to the above trace facility, which provides global inforfnatidn
ordered in time, the cutput channels and processes of the DOT model are ﬁsed
to présent snapsﬁets of the FFP- and LPl-level symbol representations lt-nc.ated'
within the lcells. As described in Chapter 3, output from the lcell array is piped ‘

out of the tree and into the io subsystem in left-to-right textual order. This
“information is therefore ordered in space as well as iﬁ time. There is one
snapshot per cycle, and it records the situation within each (non-empty) leell at.
the end of the execulion pha:se ,--7 after detection of c.ompleted RAs has been

performed, so results of compleied applications are available..

The io subsystem output processrpresentljy sends these resulté_ to a
terminal or a file for later examination. Empty lcells do not appear, and cells
with symbols in them are listed in left-to-right order. Column headings provided
with the output designate tﬁe user program id, lcell symbol, lcell state
(0=ground, l=execuling, 2=completed), fork_id, aln, rin, symbol_index, and the
directory 4-tuple. Columns to the right of the arrow indicate the resull of

stepping a completed reduction forward.

FIGURE 4.8 — FFP Erpression for Keduclion

{(+{(<applytoall*> < <13><24>>))

An example of the leell array snapshots is now giveﬁ. To éid und'ersténdin.'g,
comments have been placed to. the right of the snapshot output. Thé model for
this example was created with a height of four, so there were 16 leells available
for holding the program. Prior to execution of the model to generate the
following snapshots, the FFP-level text representation for the expression shown

in Figure 4.8 was loaded into the vin subsystem using the mkusr program. As
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indicated by the trace output of Figure 4.8, which corresponds to the following
execution snapshots, the total time required to execute this FFP expression

{including load time) is ~5007, or, if 7=100 nanoseconds, ~50 usecs.

PGM SYMB S FID AIN RIN NDX-DIR --> NSYM NALN -~ Bnd of Cycle 1
ooi ( O 001 00O QOO 0OO 0000 app sym not innermost

001 #004 © 001 001 OO0 QGO 0COG "4 is n-ary add op-code

001 ( 1 001 001 000 GO0 0000 app svmn innenmmost so RA
(301 < 1 001 002 001 001 1000 and state = executing

001 #008 1 001 003 002 002 1100 8 is apply-to-all op-code
001 #012 1 001 003 002 003 1200 12 is maltiply op-code

01 < 1 001 002 GO1 o04 2000 '

001 < 1 001 003 002 005 2100

001 #001 1 OC1 004 D003 0CB 2110

001 #003 1 001 004 D03 007 2120

001 < 1 001 003 002 008 2200 This sym forks to receive
001 #002 1 001 004 003 008 2210 copy of operator (mmlt)
001 #004 1 001 004 003 010 2220 as required by apply-to-all
PGM SYMB S FID ALN RLN NDX-DIR --> NSYM NALN -- End of Cycle 2
001 {( 0 001 000 00OC 000 0000

001 #004 O 001 001 00O 00C 0000 : ‘ _
001 | 2 001 001 000 000 0000 < 001 reduction camplete
001 < 2 001 002 00t 001 1000 ( 002 so stepped forward.
‘001 #008 2 001 003 002 002 1100 '

001 #012 2 001 003 002 003 1200 #012 003  result is sequence
001 < 2 001 002 001 D04 2000 of rmaltiplications
001 < 2 001 003 002 005 2100 < 003

001 #001 2 001 004 003 006 2110 #001 004

001 #003 2 001 004 003 GOY 2120 #003 004

001 < 2 001 003 002 008 2200 { 002 the fork_id tells
001 < 2 002 003 002 00B 2200 #012 003 how to place

001 < 2 003 003 002 008 2200 < 003 these swyrbols.

001 #002 2 001 004 003 009 2210 #002 004

001 #004 2 001 004 003 010 2220 #004 004
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PGM SYMB S FID AIN RLN NDX-DIR --> NSYMINALN -- End of Cycle 3
001 0 001 000 GCO GOG G000 '

001 #004 O 001 001 00O 000 -COOO

001 < 0 001 001 000 000 0000

001 2 001 002 000 000 0000 #003 002

001 #012 2 001 003 001 001 100C both multiplications

001 < 2 001 003 001 002 2000 camplete in one cycle,
001 #001 2 001 004 002 003 2100 and are stepped f[orward.
001 #003 2 001 004 002 004 2200

001 ( 2 001 002 DO 000 GoeOo #008 002

001 #012 2 001 003 001 001 1000

001 < 2 001 003 001 002 2000

Q01 #002 2 001 004 002 003 2100

001 #004 2 G01 004 002 004 2200

PCM SYMB S FID ALN RLN NDX-DIR --> NSYM NALN -- End of Cycle 4
001 2 001 000 000 600 G000 #0011 000 Add now Lnonermost
001 #004 2 001 001 001 001 1000 : and campletes in
001 < 2 001 001 001 002 2000 one cyele. 11 is
001 #003 2 001 002 002 003 2100 the answer.

001 #008 2 001 002 002 004 2200 '

4.7. Simulation Results

The most useful- result of the simulation is the way it has aided our
understanding of the operation of the implementation model. Nevertheless,
other useful results have been cbtained. Raw performance figures such as those
provided by process traces are invaluable for the éynergistic development of an
analytic model. Our Simulé.tion results for a Vér'iety of LPL programs will be
displayed in tabular fofm in the following chapter -- in cenjunction with the
-predictions of the analytic model. This will allow easy compariéon of simulation

results with analytic model predictions.

Additionaily, an initial simulation study designed to assist development of
LPL programs tailored for large operands has been performed. Recall that LPL

programs exercise a degree of control over when storage management takes
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place. Therefore, an LPL program may be written so that its execution on large
operands does not seriously affect the progress of olher reductions in the
machine. To do this, an LPL program can keep a count of messages, and execute
an smanage instruction after every m messages. The queslion, of course, is how
to choose m. Ideally this value should be large enough-to allow a reasonable
amount of work tc be domne, and. small enough that other LPL programs
performing reductions are not unduly delayed. Figure 4.9 shows the simulation
results obtained from studying the behavior of the FFP SORT operator {whose

LPL definition was given in Section 2.4.1.11) for different values of m.

This study was performed on a DOT machine of 84 lcells, and presents the

results obtained for sorting 60 numbers., As can be seen, the minimum time of

FIGURE 4.9~ Surt Time v.s. Number of Messuges per Cycle

[
6 micycle time==1041 -
10 m/cyele time=774
EXECUTION
TIME
15 m/cycle
20 m/cycle
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425, achieved by sending the 60 messages during one cycle, is quite close to the
time of 497, achieved when two cycles are used {30 messages per cycle). The:
optimum execution time is approached asymptotically, so backing off and being

"fair” to other programs in the machine is not as costly as might be expected.



CHAPTER 5

Analytic Performance Medel

This chapter represents a surnmation of the DOT design and its behavior.
Qur concern here will be to reason about the vperation of the DOT machine, and

ultimately to predict execution times for FFP language programs,

In the previcus chapter, we lisled virtues of simulation In multipreocessor
design, and discussed the approach taken for simulation of DOT. Among benefits
identified was the unambiguous description forced upon the designer by the use

of a compilable language - enabling criticism and preventing obfuscation.

.An analytic model {when cne is available) performs a sirﬁilar function with
respect to performance. It brings into clear Ifocus the ultimate result of design
decisions by represénting their intention with respect to system behavior. It is
only after a simulation {or protoiype) is running that the salisfactory
implementation of these intentions may actually be verified, however. In our
experience, a highly dynamic interplay between modifications to the design, and

modifications to the analytic model then results.

The analytic model we present began as a set of assumplions concerning
the desired operational charébteristics nf a proj-e.cted implementation (as
suggested origiﬁally by Mago.[Mag79]), and ultimately matured to reflect the
actual operation of the DOT implementation. Chapters 3 and 4 presentsd this

implementation. We now analyze ils performance.

We begin by examining the execution cycle in more detail. Upper and lower
bounds for the three phases of the machine cycle are presented and related to

execution times for RAs. The method developed .by Koster [Kos?7], Stanat and

<20
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Williams [StaB1], and Mago et. al. [Mag83), may then be used to derive data-
dependent upper and lower bounds for many FFP language programs. Examples

" are given, and corfrespondence with the results of simulation is verified.

5.1. The Execution Cycle

When meésur‘ing the duration of some activity that takes place over time,
events define the points at which a measurement may be made. In the case of
eyclic behavior, a natural event should be the beginning .of the cyq_le. What
definite and unambiguous events exist durmg DOT: operatmn’? There are really
only two that may be recogmzed Wlthm a machme-mde context: recelpt by the
io subsystem of the sm_grant message, and r‘ecmpt by the io subsystem of the
preparation for storage management upsweep. Neither of these is particularly
valuable from the standpoint of measuring execution tlmes LF‘L programs
_execute w1th1n icells, so we prefer to base our analytic model on events that
occur in leells. Luckily, with appropriate assumptions, another event more
useful for this purpose may be identifled. -This is the begmmng of Storage

management in the leells.

Although it is convenient to think of the {(i.e., single) eﬁecution_ eyele for DOT
as something descriptive of its overall behavior in time, Chapter 3 showed that
the DQT m;achine is really 8 highly dynamic and reconfigurable collection of
fine- -grain cellular processors individual processors do synchronize, or come
together 1oca11y, to exchange information in support of storage management,
partitioning, and executzon, bgt it is p0551ble for different cells of DOT to be
performing in all three of these diﬁ'érent phases simultaneoﬁsly. mach cell of

the DOT implementation goes through the sxecution cyecle we have described,

* Section 5:1 provides information 'apprcpriate for a casual reader, while Sections 5.2 - 5.6
contain the details of the analytic model. Although these sections may be skipped if
desired, the summary in Section 5.7 should be read.



222

but only according to its local needs.

From observing the behavior of the simulation model, we note that storage
management begins at the same time in all the lcells. This is because the
.speciﬁcation for storage management is computed in a parallel downsweep
through the {ree starting at the io subsystem, where the top-level transfer
function is computed and sent down. The date path length is the same from the
io subsystem to each leell, and exactly the same operations are perfofmed by

each teell along the way.

The above observation is relative to our assumption within the simulation
that the the data paths are identical in their transmission charactéristics. In a
hardware _realization', this would not be true, of course. Thus, we confine our
reasoning to the performance of the simulation, and assume that differences
betwé'en the sirnulation. énd an actual realization are negligible. With this done,
we may also speak of the beginning of storage management within the lcells as a

definite event.

Although storage management begins at the same time in the leells, it does
not finish at the same time. Storage manag'eme'nt is pipelined, with programs
and previous overflow being eéntered from the left. Programs toward the right of
the leell array may n’ot. require movement at all {unless they are forking}), and
thus may complete storage management in no time. In general, whenever
information is shifted in the lcell array,: text located at the end of shift
movement will complete first, with its neighbor finishing next, and so on, down a
chain of consecutively shifted symbols, ending at the source of the shift
movement. Thus, even symbols of the Séme RA may not complete storage

management at the same time.
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Immediately following completion of storage management within an
individual lcell, the lcell initiates partitioning. Clearly, the completiorﬁ of
partitioning can occur at widely varying times -for different RAs. In addition,
- partitioning completes at different times within the lcells of a given RA -~ not
because partitioning begins at different times over the lcells of the  machine
(aftér all, a pruning downswéep within a given active area begins in a single tcell
_fnuch as the preparation for storage management downsweep), but. because
area trees are not height balanced with respect to cormmunication delays. As
shown in Chapter 3, circuﬁ: switched area channel connections may bypass tcell

area nodes.

Execution thus begins at different times Within different active leelis. The
io subsystem detects the sm_grant message at some later time, while active
lcells continue executibn of their individual LPL program segments, and the stop
message is sent down to the lcells. This reaéhes all lcells at the same time, but
clearing out an area (to guarantee that all area messages have been received)
may require time dependent on its height.* Finally, the upsweep of the
_preparation for storage management reaches the io subsystem, and the value of
the top-level storage management transfer function is computed and sent down

into the tree.

 As far as the overall DOT machine is concerned, it would make sense to
‘measure times relative to the arrival of the upswee’pl of preparalion for storage
management {or equivalently, calculation of the topmost storage management

~ transfer function) within the io subsystem. Qur primary concern here is with

’ Normally, a top of area node manager is able Lo detect that the stop message has
passed through its teell and avoid this dependency. If, however, the stop message comes
threugh while the nede manager is waiting for an LPL message, a stop packet may have o
rise from the lcell level in respense to the stop message in order to notily the top of area
. manager to clear cut the channels.
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RAs, however, for which a logical starting point of execution is the beginning of
_the partitioning phase in which they are detected and allowed to come into
.existence, Unfortunately, the start of partitioning is not a machine-wide (or even
RA-wide) event, and our ultimate aim of predicting execution times for complete
prograras is b_est served by choosing a beginning for the machine cycle that is

common for ali RAs of the machiné.

From the above discussion, it. is clear that our first concern in developing
an analytic model is to define exactly what we should measure. With the
ultimate aim of predicﬁng the behavior of complete'FFP programs, our andly‘sis
is initially oriented around predicting execution Lirmnes for an individual,
distinguished RA, in the possible presence of others within the leell array. Since,
from the above summary of DOT operation, we know that storage management
begins at the same time for all lcells within an RA, and for all RAs within the
machine, this time will be treated as the true beginning (and end) of the

machine cyele.

-This will allow us to use the results of analyzing individual RAs to predict
execution times for complete programs containing multiple RAs during each
machine cycie. While dictated by the practical concerns of the analytic model,
this approach is nonetheless reésonable; prior to detection of RAs during the
phase we have called partitioning, their FIFP-level text representations must first

be created, and this is done during storage management.

Figure 5.1 shows a di_agr.am of the machine cycle, and depicts the progress
of individual RAs through the three phases. Note that the only rmachine-wide _
event recognized is the beginning of the cyele, with progress through the phases
being a phenomenon local to individual RAs. RAB’ for example, requires no

storage management, so begins partitioning immediately.
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FIGURE 5.1 — RA Progress Through a Single Machine Cycle
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-H.2. Notation -

We derive upper and lower bounds for the duration of the machine cycle
phases in an RA. These are &enoted by UB{phase), and LB{phase). The
particular RA of interest fo the analysis is designated as the RA, and the term
"the leells" refers to the leells of this distinguished RAI. The variable n is use.d to
re?resent thé count of the Icells, and k is used to represent the height of the RA.
" The height of the lafgest new KA Within the machine {used in analysis of
partitibning phase for a new RA) is represented .by &', The number of lcells
within the largest new RA is represented by n' The variable N represents the
total number of lcells within the machine, and H is used to 'repr.esent the total-
height of the machine (counting the io subsystem). Angle brackets, when used
to enclcs:e the .name: of an F'FP oper'ator, denote the size {in bytes) of the

corresponding LPL program.
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" During storag.e management, user contexts are shifted on the lateral lcell
channels., We therefore take the term wuser conterxt to be .sy.nonymous with
information that is shifted during storage management, and U denotes the size
of this information -- irrespective of whether the context is executing {in which
case [/ is large, since an LPL code segment and the LPL environment are
included), or the context is not executing {(in which case [/ is small, since only

the F'FP-level representation is required).

The size of an executing user context is primarily dependent on the size of
the LPL program ségment. For all examples shown in this dissertation, a code .
area of 150 bytes suffices. This, plus LPL environment registers (presently
- yequiring 54 bytes of storage), results in a user.context size of U-;- 204 bytes

within active areas. A non-active user context requires V= 4 byles.

As for the simulation, we assume a uniform T throughout the machine, and
predictions of the analytic model are implicitly in these units. In addition, we
assume that ne new programs enter the machine during the period of time

covered by the analysis.

5.2.1. Areca Heighils

The height parameters H and h given above are reléted to the size of the
underlying lcell segment. For the overall tree, H = logz(N)+1, where "1" counts
the io subsystem. For an active area, we define h as the maximum number of
nodes a message may pass through on its way to the top of area.”  This
definition results from the use of circuit-switched area channels, and assumes
that processing and communication delays inherent in sending and recei\}ing

processing cells are the predominant source of transmission delays. As shown in

* Note that we only count area nodes (i.e., places where area channels come tcgéthef and
precessing is reguired) -- not teells through which an area channel is circuit-switched.
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Figure 5.2, h can vary from flogz(n)] to n-1, depending on the distribution of RA
contexts among the available lcells.‘. Since log{(n)} is the height of.a baianced

binary tree with n leaves, log{n) is clearly a lower bound for h. This value will be
used in lower bound formulas. Since h<H, a léast upper_bound. for h is

min{n,H)-1. This value will be used in upper bound formulas.

FIGURFE 8.2 - Trees for Lower ond Upper Area Height Fxivemes
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FIGURFE 5.3 ~ Bounds on Arso Height (using H=21)
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" In the interest of notational brevity within formulas, log{n} will subsequently be under-
stood to denote the integer ceiling of the base 2 logarithm of n. Using this approach,
log(3)=2. :
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As shown in Figure 5.3 (which assumes a machine with a million lcells), the
difference between the lower and upper bounds on area height is only important
as n grows large, and even for a machine of this size, H is small enough that
lower and upper bounds don’t diverge greatly. In addition, as shown by Ehe
exarﬁple in Figure 5.4, uniform grouping of RA symbols within area subtrees
results in log(n) being a goed approximation for h, and the presence of
interspersed empty lcells makes no difference to this result. This is because
circuit-switched area channels completely avoid portions of the tree containing '

contiguous groups of empty leells.”

FIGURE 5.4 — Uniform Loading in the Presence of Empty Leells

* An interesting point is that, if desired, we could guarantee uniform loading by modifying
the calculation of the storage management transfer function. This will be discussed in
Chapter 8.
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5.2.2. Phases of RAProgress

The phases through which an RA progresses form the basis for prediction of
its_ execution time. FEach phase is now defined in a way appropriate to a clea.n.
| division of concerns in the analytic model. While this represents a review of .DOT
operation as described in Chapter 3, it is important to clarify the exact nature

of each phase within the context of the analytic model.”

5.2.2.1. Storage Management Phase — RA Creation

The storage management phase within an lcell invoives the actual
movement of user contexts within the lecell array, and nothing else. {The time
required for calculation of the specification for storage manégement is included
in the execution phase.) Storage management starts in an lcell upon receipt of a
specification for storage management, and ends upon completion of the shifting

necessary to satisfy the specification.

5.2.2.2. Partitioning Phase — RA Delection

The partitioning phase for an RA includes creation of its embedded tree of -
processing cells, and all other activities required prior to actually beginning -
execution within its teells.  Thus, there are two types of partitioning phase: one
type associated with new RAs.(for which the preparatory activities ineclude
directory creation, and loading LPL code segments), and the other associated

with old RAs {which already have their directories-and LPL code segments).

5.2.2.3. Execution Phase — RA Execution

This. phase starts in an leell with the beginning of actual 1PL program

execution. Although execution starts at different times within different leells of

* Chapter 3 gave an informal description of the overall machine eycle. Here we are con-
cerned with an exact analysis of events within the active lcells of an RA. '
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an RA (because partitioning completes at different times), the Icell that begins
execution last is oln- a critical path fof progress of this execution. If LPL
fnessages are sent, this lcell delays turnaround of the first message wave. Thus,
for all practical purposes, we .ﬁlay consider the execution phase to begin when
all the lcells of the RA have been prepared for execution. In order for the
execution phase to end, all lcells mmust send. an sm_grant message to the io
sub_syster.n. Following this, a. stop message arrives at the lcells, area channels
are cleared out, and the specification for storage management is computed.
The execution phase for an RA ends when the specification for storage

management reaches the lcells in which it is contained.

5.3. Formulas foz-'.the Duration of BRA Phases

We now examine the duration of each phase of RA progreés during
successive machine cycies. Figure 5.1 showed an example of this pro.gres.s for a
single cycle. Tﬁe_.general.muiti-cycle'”situatio_n is depicted in Figure 5.5. As
shown, the duration of each cycle may be considered separately from the last,
with new RAs coming into existence, and old RAs being reborn (if necessary) for

each new cycle.
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FIGURE 5.6 — KA Progress Through Successive Machine Cycles
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5.3.1. RA Storage Management — (SM)

Dur‘ing storage management, iceils shift user cqntexts in a pipelined
fashion. For purposes of simplicity, we assume that all lcells of J.che RA complete
storage managemeﬁt at the same time. Although this is not strictly so, it makes:
no difference to the ultimate results sinc.e the .lcell téking the longest time. is on
a critical path for subsequent execution Within the RA. The last lcell to complets
storage management within the RA allows subsequent execution, and the storage

management time correspending to this is used by the analytic medel.

Every LPL context in an RA begins its execution phase with a forkn value of
one, and only LPL forking operations can change this value.” The LPL Jorkn
context values found within the lcells that create an RA during storage

management ~therefore determine a minimum duration for the storage

* As described in Section 3.2.3.2, the forksize argument of a fork statement is loaded into
this register when the statement is executed.
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management phase of the RA. When storage management takes place, the forkn

variable is used to indicate the number of LPL contexts to be spawned from the

containing lcell.

A lower bound for the duration of storage management for the RA is

maxRA(Ui*forkni—l), where the maximum is to be taken over all the lcélls that

create the RA, and Ui is the size of the user context to be located within the ith

tcell of the RA.* This is equivalent to assuming that there are enough empty
Icells neighboring any given forking context to support its storage requirements.
An upper bound for the dura.tion of storage management is arrived at by

examining the situation for mul.ti'ple RAs, and assuming total compaction within |
the leell array with the RA at one end. The context in the lcell at the end of the

for]cni—l) lcells, where the sum

RA must then be shifted through Eméchine-lcells(

is to be taken over all lcells of the machine. The resulting lower and upper

bounds for the duration of storage management for the RA is given in Figure 5.6.

FIGURFE 5.6 — Durotion of Sto%qg_é Managemeﬁf Jor RA
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5.3.2. RA Partitioning

There are two cases to consider for partitioning; In the first case, the RA
has already been exécuting_ (during the preceding cycle), so its icells are ready
to continue execution as socn as an active area is cons’_cructed for them within
the teells. In the second case, the RA is newlv and requires a directory and LPL

code as well as creation of an aclive area.

* Recall that for our purposes, this duration is measured in units of 7.
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5.3.2.1. Partitioning Old RA — (PO}

Here just creation of the active area ié required. This process is pipelined
from thé leells ﬁo the height required to determine whether the application is
innermost, and {four valués rﬁust he ﬁnloade;l at the top and bottom of the pipe.
This gives a lower bound of 2h+8 (assuming that pruning begins at the top of |
area). During the initial pértitioning upsweep, certain partitioning
conﬁguratlons result in delays of more than 1 in nodes of the plpehne This
delay can be up to 3, giving an upper bound of 4H+8 (assuming pruning begins in
the io subsystem).” Using the bounds on h (the area height) given in Section

5.2.1, Figure 5.7 gives lower and upper bounds for partitioning an old RA.

FIGURE 5.7 — Duration for Partitioning Old KA
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5.3.2.2. Parfitioning New RA — (PN) |
Here, we must consider building the directory and loading LPL programs as
well as the initial creation of an active area. The directory is built using area
channels, and is pipelined with four values unloaded at the top and bottom of the
pipe. This process therefore always takes 2h +8. When operator definitions are
sent to the lcells, they originate in the io subsystem and are broadcast
downward to the lcells where they wait until the directories for all new RAs are

_ready.“ For a lower bound, we assume the LPL program for the RA is first in

* The additional delay is related to the ordering of information that is sent up during par-
~titioning. Treating this aspect of parlitioning requires a more detailed analyzis than is
'appropriate here. ' :

* Old RAs require no code segments, o arriving code segmenﬁts only wait on the time re-
quired to compute the directory of the largest new KA. The reason for waiting on the
largest new RA to complete building its directory iz that the LPL code segments are
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the stream of operator deflnitions which must be delivered to the lcells. The
lower bound for input time is then the length of the operator definition, denoled
by <op>. For an upper bound, assume the operator the definition is sent last.

Then, the input time is &, oW RA<OP> with the sum taken over all new _RAs.*

In order to produce useful lower and upper bounds for PN, h’, the height of
the largest new RA can be treated as follows: for a lower bound, assumé h'=h
(i.e., n'=n), and for an upper bound, use h’'=H-1. Although these estimates yield

' bounds which are less tight than possible (assumingrcomplete knowledge of the
lcell array) they depehd only on the RA of interest and are therefore easier to
use. With this approach, and use of the above result for PO, we get lower and

upper bounds as summarized in Figure 5.8.

FIGURE 5.8 — Duration for Partitioning New KA
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5.3.3. RA Execution — (EX)

The execution phase for the RA includes the time until sm_grant is sent up,

the time until the stop message is received (which may inciude further LPL

broadcast only once, and the leells of all new RAs must be able to filter code when this is
done.

* Actually, when multiple RAs require the same operator definition, the required LPL pro-
gram is only sent in once, so duplicates need not be counted. .
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execution), and the time requiréd to compute the specification for storage

management.

Lett 5 denote the durat;ion of the execution phase until the sm _grant is sent
up by the lcells of the RA. The .only contributors to t, are LPL message
operations. For each message wave, a prefix packet containing approériate
handling instructions must be sent to the area nodes. The pr.eﬁx packet
contains three bytes, se sending this information out of an lcell accounts for an
initial delay of three. The prefix packel is pipelined and followed imfﬁediately.
with the key and message data, which are also pipelined. It therefore takes time
h+3 for the first message to reach the top of area, and time h to return to the
leells (since the prefix packet is not returned). For each message that return.s
to the icelis during a pa.rticular message wave, there is an unload time of
(3+msize).” This gives

t, = Emwaves(zh +3+ ((mreturn__cnt-l)*(msizei+3))),

where for message' wave i, mreturn_l::'nti ig the number of messages that return
to the lcells on that wave, and msize; is the value coded in the corresponding

LPL send statement. Using the bounds on area height presented in Seection 5.2.1

gives:
FIGURE 5.9 - Duration of Time to SH_Grant, t_
LB(t )= Emwaues(g*log(n) + 3+ ((mrefurn_cnt }*(msize + 3))
UB(t.) =2, gves(Emin(n.H) + 2 + ((mreturn_cnt )*(msize,+3)))

In addition to ts’ there is the stopping interval from tS until preparation for

storage management begins. During this interval, the sm_grant .goes up the

* The 3, here, represents-the byté-count and the two key values that are sent with every
message.
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tree, and a stop message comes down. Assuming that the RA is executing in the
absence of other RAs (i.e., all othef lcells have allowed storage management),
this takes time 2H. In addition, upon arrival of ﬁhe stop message at the leells, a -
stop packet {as described in Section 3.4.2.1) is sent up and then down the area
channels to guarantee they are cléared_ out. Thus, if the top of area node
doesn’t see the stop message on its way down the cell manager channels (this
-caﬁ happen in the absence of LPL message activity), it can take an extra 2h+3
time units to guarantee the end of ”message_: activity (_the stop packet may have

to follow a prefix packet up into the first row of tcells).

Therefore, preparatié_n for storage management begins within a minimum
of 2H and a maximum of 2H + 2h + 3 time units. after t_. Preparation for storage
management is pipelined on the wéy up, and involves a delay of 2 per teell on the
way down.* Including the time for unload.i-ng the pipe then gives a time of 31 +
2 for preparation for storage management. |

Of course, in the presence of multiple RAs, the max t  over all RAs must be
used. The resulting bounds for the execution phase are summarized in Fi'gﬁre

5.10, using the established bounds for h and ts'

* The reason for this delay may be understood {rom the discussion on preparation for
storage management in 3Section 3.4.42. Ounly aftar both be.left_entries and
be.right.departures are received from a. parent can a teell send left_eniries and
right_departures boundary condition values to its right child.
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FIGURE 5.10 — Duration of the Frecution Ph_a..ée |
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5.4. Predicted Execution Time for Single RA

In oﬁr analysis for indiiridual RAs, we do not count the stbrage management
phase required to _produca an RA in its initial form_ since this ié not information -
that is available at this level of detail; the R.A may have been shifted in as part of
a new program, or it may have been created from the execution of previous
épplications. Laﬁe;r, when we treat cofnplete FFP'programS, this information will
be available, .and will be _uti-lized. Also, we do not consider the cost of a final
storage management in the case where an RA completes through'the use of the
forke statement. This cost is also taken into account when we analyze complete
FFP pr.'ograms,. but onIy'When.it affects the storage management tirme for  a

subsequently formed RA.

We now show how the formulas of Section 5.3 are used to predicl the

execution times for a variety of RAs. For each example, we first presént the
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analytic model results for the general RA, and then provide a tabular
comparison giving a particulaf simulation and the corresponding analytic model
predictions. The basic format for the comparative presentation is shown in

Figure 5.11.

The heading indicates the FI'P operator whose behavior is being examined,
lists the particular RA whose reduction is to be simulated, and gives appropriate
parameters for the anélytic model. The LPL program headers given in Chapter 2

provide the parameters used for different FFP operators.

Cycle 0 within the table re_presénts past histo.rjr, and is used to normalize
' the simulation times with analytic model times. Since we don't consider the
time required td ini’tialluy. create the RA at this level of the anal-ytic‘;'.fnbdel, the
time actually used in loading the. simulation is uéet_i as an oﬁset to the analytic
model. This allows us to i;s'e the actual simulatic_in times (Withqut modification)

for comparison with the predictions of the analyﬁ.ic model. The predicted and

FIGURE 5.11 - Anclytic /Simulation Hodel Result Format
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==) ==) ==) text 0: <>
o] : (op
. | <args j
- (SM) (SHM) (SH text 1: <op>=

tlew) e o) | (o T
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observed times for the three phases are displayed to .the rigfmt of their -
~ parenthesized respective phaSé. The total time for an individual cycle is shown
to the right of "(++)", and cumulative times are given to. the right .<-3f "(==)". The .
rightmost column is used to describe the progress of the FFP-level reductions.
'I'hé text given in the rightmost column is meant to be rouéhly indicative {given
the limited space available) of the FIP symbols present at the end of the cycle.
For cycle 0, the FFP segment to be loaded and used for the examplé is indicated
in this space. When a forke is executed, £he result achieved upon completion.of
storage management is shown. The size of the LPL program to be Ioaded during
partitioning, represented as usual by enclosing the operator name in éngle

brackets, is also given.

5.4.1. Analysis and Simulation of ID

The simpleét LPL programs are those.. that requi.fe no.forking and no
messages. Operators such as CONST, SELECT, HEAD, APNDL, and 1D fall into thié :
category._ Here, all the informa’_cion necessary for completing the ‘desired _
reduction is already present within the LPL environment for each 1ce.ll of the RA.

These LPL programs therefore complete in one cycle and reguire no messages.

We now analyze the LPL program for ID given in Chapter 2. The initial
storage management takes zero time {as explained previously). Partitioning the
new RA then requires time based on the LPL program size (<ID>=29), the height
of the active area, and the height of the t_ree, as shown in Figure 5.8. Since
there are no messages, t_ in Figuré 5.10 is zero. The predicpions of the analytic

model, and simulation results are given in Figure 5.12.
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FIGURE 5.12 — Analysis and Simulation of 1D
(SMJ) =
(LB)= 0
(UB}) =20
(PN,) =
(LB) = 4*logfn) + 29+ 18
, (UB) = 6H + 29+ 14
(EXJ) = .
(LB) = 5H + 2
(UB)=7?H+ 3
(ID<aobede>) » <abcde>
H=4, n=8
ANALYTIC MODEL J:SIM ULATION
lower bound | upper bound | observed | FFPtext (eoc)
(==) 61 ==) 61 ==) 61 text 0: <>
ol (id
<ewbode
(SM) g (SM)o | (SM) 0 text 1: <id»=29
1| (PN) 57 (PN) 67 (PN)59 | <abcde
(EX) 22 (EX) 31 (EX) 26
(++) 79 (++) 98 (++) 83 =
==) 140 ==) 159 ==) 148

5.4.2. Analysis and Simulation of N-ary Add

The LPL program for n-ary addition completes in one cycle, and provides an
example of message use. As shown in Chapter 2, n-ary add operates by sending
argument values up inte the message subsystem, where they are combined
using addition. The single result returns to the lcells, Wheré it is accepted and -
stored as the desired result. It may he analyzed as -foliows, with values

calculated for t, parenthesised for clarity.
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FIGURE 6. 18 ~ Analysis and Simulation of N-ary Add

(SH ) = ,
(LB) = 0
(UB)=0
(PN1)= .
(LB) = 4*log(n) + 53+ 16
{UB)= 6H + 53 + 14
{EX1)=

(LB) = (2*log(n)+3+4) + 5H + 2
(UB) = (2*min(n,H)+3+4) + 7H+ 3

(+<12348>) > 15
H=4,7n=8

] ANALYTIC MODEL | SIMULATION. | |
e e et ]

lower bound | upper bound | observed | FFPiaxl (eoc
==) 81 - ==) 61 ==) 61 text O: <>
g : (.{. ‘
R - : . <le345 |
(SM) 0 (SH) 0 (SM) 0 text 1:<+>=53
1| (PN) 81 (PN) 91 (PN) 82 5
(EX) 35 (EX) 46 (FX) 35
(++) 116 (++) 136 (++) 117

==) 177 ==) 197 ==) 178

5.4.3. Analysis and Simwlation of SORT

Sort is an'exar_nple of an LPL program that sends many messages, but still
requires no forking. It completes in one cycle, and if there atre n numbers to be

s_orted, requires @(n) time. [t is analyzed as follows.
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FIGURE 5.14 — Anolysis and Simulation of SORT

(si ) =

(LB) = 0
(UB) =0
(PN_Z) = .
(LB) = 4*ag(n) + 59+ 16
(UB)=6H+ 59+ 14
(£X,) =

(LB) = (2*log(m)+3+3(Mn-3)) + 5H+ 2
(UB) = (2*min(n,H)+2+3(n-3)) + 7H+ 3

(S5<28514>) » <12345>
H=4, n=8

ANALYTIC HODEL ST ULATION '

tower bound | upper bound | observed, | FFP text (eoc)
==) 61 ==) 61 (==) 61 text 0: <>
<235814

—TS-J-W)O (SH) 0 (SH) 0 text 1: <S>

1| (PN) &7 (PN) 97 (PN)B8 | <12345
(EX) 46 (BEX) 56 (EX) 50 : _
(++) 133 | (++) 1683 | (¥+) 138 |
==) 194 ==) 214 ==) 199

5.4.4. Analysis and Simulation of ROTR

The more general situation for FFP operators is to require forking in
conjunction with messages. Such cperators require multiple cycles to complete
: _since an intermediate storage rﬁanagérﬁenh ié required. | An example of such an
operator is ROTR. The right;rnost argument element is sent over to occupy the
leftmost position after room has been made for it by forking. As indicated by
the header for its LPL definition in Chapter 2, ROTR completes in two cycles.
Wi.th 1 denoting the number of elements of its argurnent list, and m denoting the

size of the rotated element, its behavior may be summarized as follows:
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FIGURE 5.15 -- Anulysis and Simulation of ROTR

(SMI) =
(LB)=0
(UB) =0
(PNI) =
(LB} = 4*log(n) + 143+ 18
(UB) = 6H + 143 + 14
_(EXI) = ' .
(LB) = (2*log(n)+3+4L) + 5H + 2
(UB) = (B*min(n, H)+2+41) + ?H + 3
(SMg) =
(LB) = 204*2
(UB) = 204*2
(LB) = Z*log(n) + 8
(UR) = 4H + & :
(EXg) =

(LB) = (8*log(n )+ 3+4m) + 6H + 2
(UB) = (2*min(n H)+2+4m) + 7H + 3

H=5 n=8 l=4, m=2

(rr<a<b>c<d>>) » <<d>a<b>c>

ANALYTIC MODEL =1-=SIMULATION .
lower bound | upper bound | observed | FFP text (eoc)
==) 80 ==) 80 ==) 80 | text 0:<>
0 (rr :
. <a<be<d
%::;—-—-—_—*——-—.—— frmmee————— |
(SM) 0 (SM) 0 (SM} 0 text 1: <op>
1| (PN)175 (PN} 187 (PN) 179 | (rr _
(FX) 54 (EX) 66 (EX) 62 <au<beo<gd
(++) 225 (++) 249 (++) 241 :
==) 305 ==) 329 ==) 381
(SM) 408 (SH) 408 (SM) 408 | text 2: <>
2\ (P0O) 18 (PO) 28 (PO) 20 <<daog<be
(EX) 46 (EX) 58 (EX) 52
(++) 470 (++) 494 {(++) 480
==) 775 ==) 823 - ==) 801

5.4.5. Analysis and Simulaticn of ER1

. Forke is ideal for supporting operators that requiré no further exeécution

alter an appropriate storage management. Its use in the ER1 functional avoids.
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the cost of an ext_i_-a machine cycle. Ancther interesting use of forke is found in
the COMP functiocnal. We analyze EE1l here., The summary of analytic model
parameters found in its header gives the following result, where m is the number

of applications to be created.

FIGURE 5 16 — Analysis and Simulation of EE1

.(SMI) =
(LB} =0
(UB) =0

(PN ) =

: (LB) = 4log{n) + 126 + 16
(UB)=6H + 126 + 14

(LB) = (210g(n)+3+4(ni+1)) + 8H + 2
(UB) = (2*min(n, H)+2+4(m+1)) + 7H+ 3

(CEE! +><<1 23>5<4 56>>) » < (+<1 4£) (+<28>) (+<36>) >
H=6n=13, m=3 .

ANALYTIC MODEL SIMULATION ]
lower bound | wpper bound | observed | FFP lext (eoc)
(==) 88 ==) 88 (==) 88 | text 0: <>

0 ' (<eel +
. ' . : <<183<L 458
(SH) 0 (SH) 0 (SH) 0 lext 1: <gel>= 128
1| (PN) 158 (PN) 170 (PN) 158 | <(+<14
(EX) 54 (EX) 66 (EX) 60 (+<286
(++) 212 (++) 236 (++) 219 | (+<386
==) 300

== ) 324 ==) 307

5.5. Complete Programs

The above sections have shown how the execution times for individual RAs

may be predicted. With appropriate restrictions, this appreoach may be
extended to the analysis of programs for which multiple RAs execute

concurrently. A simmple example of this is given by a program to calculate the
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inner  product of two vectors. Such an FFP program, one that uses the EE1 -

functional form, is given in Figure 5.17.

| FIGURE 5.17 — A Program for Inner Product of <1 2 3> and <4 5 6>

(+ (KEE1*><<1R3><456>>))

Figure 5.18 shows a graphic representation for execution of this program, in
which the creation and progress of individual RAs are depicted. To predict the
execution time for this program, the same method used for individual RAs is
employed. The prbgress of each RA through the three. execulion phases is
tracked, with the primary difference being that creation time for RAs may now
" be taken into account.” Also, since multiple RAs are invoived, upper and lower :
bounds for storage management will in general differ, and the maximum ts value

among the RAs must be used to determine the duration of the execution phasé. :

Assuming that H=5, the analysis is as follows. For cycle one, there is one RA _

for EE1. We know from Figure 5.16 that this first cycle will take between

LB{eycle1)=212, and UB(cycle 1)=236 time units.

For the second cycle, we must analyze the multiplication opération;
Multiplication can be considered an n-ary operation in the same way as addition,
and the res'ulting LPL program mirrors that for addition. Thus the results of
Figure 5.13 may be used. But first, we must analyze the time required to create
the RAs. At the .beginning of cycle 2, as shown in the header for EE1 in Section
2.4.1.8, there wiil be 3 contexts, each forking off 5 completed contexts. Thus, as

required by Figure 5.6, LB(SM,)=4%4=16, and UB(SMz)zé*{SM}::i& Using H=5

° The only uncertainty now is the time required to initially load the complete program. It
seems reasonable to ignore this time in our analysis of execution time, so the first RAs to
be detected in a program are assigned zero storage management time.
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* FIGURE 5.18 — Ezecution. Trace for Inner Product
——————————— * —— — —— — — — — —— — -_—
cycle 1
v
eel
v
————— < & &8 — — — — -
cycle 2
V V4 V4
® * *
v v v
————— ° 9~ o — = - — -
cycle 3
/
+
v
—————————— * — — p— — —— e —— — . —

and n=5 in the formulas_ for n-ary add found ir;__Figure 5.13 gives results of
LB(PN2+EX2)=81+4O=121, and UB(PN2+EX2)=97+54=151, therefore

LB(cycle2)= 137 and UB(cyele2)=199.
Since the RAs during cycle 2 are all performing the same .paral.lel .compu.tations,
their by values are all the same. If this were not the case, the maximum ty
among the RAs would be_used.

In eycle 3, there is no étorage management cost to be p.aid for'crea.t.io.n of
the addition RA since the'multiplicationé of the previoué cyele require no
fork‘ing’.. Thus we have a final n-ary addition with n=6. This gives |

LB(eycle3)=121 end UB({cycle3)=151.
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The combined estimates yield LB{program)=470, and UB{program)=588."

Figure 5.19 summarizes these results, and presents the results of simulation.

FIGURE 5. 19 — Analysis and Simulation of Inner Product T
(+(<e81*><<123><458>>)) » » » 328
H=5

ANALYTIC MODEL SIMUEATI oN
lower bound | upper bound | observed | FFPtext (eoc)
==) 96 ==) 96 (==) 96 | text 0: <>
0 : (<eel*
- i S<I2I456 |
(SHM) 0 (SH) o (SM) 0 text 1: <eel>= 186
1| (PN) 158 (PN) 170 (PN) 162 | < (*< 14
(FX) 54 (EX) 66 (EX) 60 (*<25
(++) 212 (++) 236 (++) 222 (*< 386
==) 308 ==) 331 ==) 318
(SM) 16 (SM) 48 (SM) 32 | text 2: <*>=53
21 (PN) 81 (PN) 97 (PN) 90 | (+
(EX) 40 (EX) 54 (EX) 42 < 41018
(++) 137 (++) 199 {(++) 164
==) 445 (==) 531 ==) 482 |
(SM) 0 (SHM) 0 (SM) 0 | text 3: <+>=53
3 | (PN) 81 (PN) g7 (PN) 86 | 32
(EX) 40 (FX) 54 (EX) 44
(++) 121 (++) 151 (++) 130
==) 566 ==) 683 ==) 612

5.6. Restrictions

The above anaIYsis of the inner product prbgram was éasy for a number of
reasons. The multiple RAs for cyecle two all had the same t, value. In general, of
course, this will not be the case. Also, the program contained no conditional

execution paths, and was neither recursive nor iterative.

Koster [Kos79] has dealt with conditional execution and has shown how %o

~ use recurrence relations to analyze programs that perform recursion or

* Note that these bounds de not include the initial load time of 86, which is used to nor-
malize analytic model predictions for comparison with simulation results. Including this
value yields total estimates as shown in Figure 5.19.
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iteration. In addition, Mago, et. al. [MagB3] have identified a set of restrictions
for parallel RAs that serve to guarantee a determination for max;, c(tg) for
each cycle, |

The basic difficulty in determining max (ts) is that parallel execution

leells

paths may individually require numerous sequential reductions, and to predict

max iy (’ts) for each .eycle, we must know what RAs are executing. Thus we

leells
need beable to.construct a graph of the execution paths, similar to that shown
in Figure 5.18, . which at least parametrically includes this informd_tion._ if
parallel execution paths are allowed different dat_a—dépendent behav_"lor {perhaps
one path involves sorting, and another parallei.path requires 'a conditional_'

matrix transposition) then such a graph cannot be constructed. A useful set of

restrictions, suggested by Mago, et. al. [Mag83], are given in Figure 5.20..

FIGURE 5. 20 — Restrictions on Faruallel KAs for Analyzability

1) The number of parallel execution pmths Jor o prng'ro‘,m 12 known,
at least paremelrically

2) One of the following holds for parallel execution paths:
e no KA requires messgges;
« the FKAs along each path are identicol, or
o in each puth, only the last KA is allowed o send
messoges whose number is known only ot run-time,

By constraining the dissimilarity of parallel execution paths, these
restrictions define a class of_FF'P programs for which lower and upper bounds on
‘execution time are easy to derive. The situation is similar to that for von
Neumann programs; they are generally nol analyzed unless they are suitably

structured and the data characteristics are sufficiently predictable.
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0.7. Summary

This concludes our discussion of the analytic model. In our initial approach
to designing DOT, many aspe cts have been simplified in the interest of furthering
insight into {and identification of) the important problems facing an efficient
implementation. The analytic model presented is a great help in this respect.,
since it is based on the design representation and gives useful predictions for
performance. The resulting insights aid investigation of ways to irﬁprove the

* design, as the following chapter on design alternatives will show.

In the ciiscussibn of other reduction machines gi_ven in Chapter 1, We._
‘pointed out the importance of iimiting process 'interferénce. -- both for reasons
- of performance, and predictability. We can now rcharacterize. the degree to
which we have been successful in this.

In the contekt of DOT, the progress Vof an individuail RA through the phaseé .
'o.f the machine cycle may be. vieﬁred as a process, and it is therefore
interference between p'arall.el RAs that must bé exanii.ned. As shown by the
analytic model we have presented, execution of parallel RAs general_ly proceeds
with versf little inﬁerprocess interference. As much as possible, we have tried to
decouple the processing cells of DOT so that the progress of any RA through ihe
three phases of the machine cycle is relatively independent of other RAs. This is
the primary reason why a useful analytic model of program execution on DOT

. can be developed.

There are two ways that RAs may still interfere with each other. Dtiring
évery machine cycle, each RA determines a local tS and a corfesponding .lower-
bound for 'rnaxlceﬂs(ts). The greatest such lower bound, however, determines
the actual duration of the execution phase for all RAs. The pé'nalty for this

interference is that RAs that complete without messages may have to waitl on
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RAs that do require messages. As shown in the above examples, however,
messages are handled efficiently by DOT. In addition, Chapter 4 on simulation
suggested that the penalty for being "fair" (i.e., sending only a limited number '

- - »
of messages per cycle) is not serious.

The other possibility for process interference is during sto.rage
management. As shown by the analytic model, the situation here is more
serious in terms of its possible impact on performance. During storage -
management, KAs and. entering new programs must compete for space within
the lcell array. Space requirements for all RAs may be satisfied, but at the cost
of shifting sorme RAs a great distance through the lcell array. Storage
management is performed in such a way as to limit this kind of interference,
and simulation results confirm that this is generally successful. Nevertheless,
the cost of shifting complete LPL program contexts within the lcell array is the
main performance bottleneck of BOT. This cost is expected; it is the price to be
paid for the benefits of string reduction enjoyved throughout the rest of the
machine cycle. Because of this cost, however, the greatest iniprovements in
performance will most likely result from reducing the amount of information

shifted during storage management.

Possible approaches include modifications to LPL that enable an increase in
the efficiency of storage management, and modifications to DOT that allow
further de-coupling of the machine cycle phaseé within separate RAs. As an
example of the first ca’teg'ory, the forke statement drastically reduces the size
of contexts that are forked {in addition to saving an execution cycle) from 204

bytes to 4 bytes. Approaches in both categories are considered in the following

* Also, our approach for determining the duration of the execution phase can be easily
changed to remove this interdependency between RAs. The next chapter will diseuss vari-
ous alternatives.
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chapter on design alternatives.



CHAPTER 6

Design Alternatives and Extensions

‘Numerous alternatives are possible. Withih the design space of _the
programming system we have described. By discussing these alternatives now,
we clarify many of the dimensions of the design space, ideﬁtify tradeofls, and
examine the flexibility and potential of the design we have constructed. Many of
the tradeoffs do not lend themselves to a formal analysis, so an important use of
the simulation will be to portray the behavior of the programming system under

the influence of alternative approaches.

Clearly, depending on how pervasive a particular design decision is,
modification of DOT to reflect an alternative approach will requiré changes of
varying 'scope within the simulation. For each alternative identified, we will
therefore be concerned with this practical issue as well as the possibie benefits

to be realized by making changes to the design.

In addition to design alternatives, this chapter also discusses desigﬁ
extensions. Both involve changes or modifications to the present design, but
extensions do not involve tradeofls in the same sense as the alternatives;
extensions may be viewed as holding clear-cut benefits for the programming
sy.stem. They represent our suggestions for work that definitely should be done

in order to further improve the desirability of the programming system.

An overview of Lhe design alternatives and extensions that we will discuss is
shown in Figure 6.1. Each possible change is given under the topmost system

level affected, with the understanding that lower levels may also be affected.

252
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FIGURE 8.1 - Possible Design Modifications

1) ALTERNATIVES
A FFFP Level
« Text Representcztwn
B, LPL Level
s Message Fouting
« Non-blocking Fork
« Synchronizatlion of Segment Completwn
C. DOT Level
» Duration of Fzeculion FPhase
¢ Shifting vs. Relooding LFL Code
e Storoge Hanagement Transfer Funclion -

2) EXTENSIONS

A. FFP Level
« JCI, for User Progrums
« Temporary Storage (PUSH, POP Operators)
« Visual Fracing

B. LPI Level

. =« Fuenl Indicafor for Storoge Management
C. DOT Level

» Variable Contert Sizes
» Increased Fhase Independence for RAs
e Multiple LPL Program nput Poris

6.1. Design Alternatives

First, we discuss possible alternatives to the current design.

6.1.1. FFP-level Text Representation

In Chapter 2, we presented an FFP—level representé.tio'n for user programs
based on the use of nesting level numbers. This representation was suggested bj_
Magd in his original description of the tree machine [Mag79]. From this, we.
derived an LPL representation that includes information required for efficient

use of the LPL multiprocessor architecture.

Since the DOT implementation is driven by these two architecture levels,
the initial choice of the FFP-level text representation is clearly of central
importance to the whole programming system. Modification of the design to

support a different FFP-level representation within the machine would reguirs
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pervasive changes. The detailed nature of the DOT simulation (which mirrors
~and represents the design) therefore pfecludes a straightforward investigation

" of possible alternatives at this level.

This category of alternative is mentioned here to underscore its primary
importance to the overall multiprocessor design, rather than to recommend its
investigation_through_ use of the current simulation. By performing another
design in parallel with the one we have described, David Middleton, here at UNC,
is investilgating other FrP-level representations, including  the

PC Representation (for Potentiolly Compact) originally used by Tolle [Tol81].

8.1.2. LPL Message Kouting

The LPL architecture doés ﬁot include the tree structure that is used to
implement it. The primary reasﬁ.n f;:;r this is our deé_i_re for simplicity. As we have
made clear, DOT is quite complex in its operations, and simplic;ity.is thus é.
distinct virtﬁe wherever possible. But, when simpli.city is bought at the ultimate
cost of efficient performance, alternatives should be at least identiﬁed. for

investigation by future workers.

As ﬁe have shown, simple combining ami sorfzing operalions are handled
efficiently in the curx'ent DOT implementation -- Withouf the need for expliéit
mcorporatmn of message routing into the LPL architecture. However, scme
operations rmght beneﬁt by aliowmg exphclt LPL control over the routmg of
messages among the tcells of an act_lve area. For instance, Pargas |Par82] has
shown how.generalized routing may bé used for eflicient solution of partial
differential equations. In addition, Pfesnell and Pafgas [Pre81] have exarﬁined

the use of shortesi path routings in tree machines.

Presnell has suggested a simple ﬂenerahzation of the LPL message scheme

that allows shortest path routing. In this approach, the message prefix could
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differ between the messages'. of a given message wave, allowing area nodes to .
routermessages in different WEi._YS depending on prefix instructions and message
dai;a. Messages would be routed down to a left or right. ehild, or up to a parént '
as done presently. Downward-moving messages would be handied via broadcast

- as in the current implementation.

The main performance penalty to be paid for this approaeh is the use _bf
rmultiple prefix pacl{ets where, before, a single pipelined preflx sufficed. Also,
since each niessage must be handled separately, messages can no lbnger be
pipelined. In cases where an ®(n) dependence on the size of an RA may be
avoided, however, this would be a small price to pay. The_increa.s‘ed overhead for
‘message processing could be made up for by reduced traffic through the top of
area - enabling moré balanced communication loads and inereased utilization of

‘the area nodes.

Whﬂe the ram1ﬁcat10ns of the above message protocol require further
" investigation, 1mplementat10n within the current design context appears
feasible. This would allow simulation to aid analysis of the tradeofis mvolved.
Synchronization will be required within area nodes to handle non-deterministic
arrival of messages from above while locally routing messages down to a child. In

- its present form, DOT requires no such synchronization within the tcells.

6.1.3. Non-blocking Fork

Since storage management potentially represents the most 'expensive.:
phase of machine execution, it is important to consider design alternatives that
reduce the need for shifting within the lcellz array. One such possibility involves
v1rtuahz1ng the lceils of the LPL architecture, so that a single DOT Icell ‘may

support a contiguous segment of forked LPL-level (virtual) lcells.
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To see why this could be valuable, consider the following. At present, FF'P
reductions can require an expression to grow temporarily within the leell array
even though the final reduced result is no larger than the original application.
Operators that merely restructure a list {(e.g., ROTR).provide examples of this
phenomendn; forking is used to create room to receive symbols whose position
is to be changed, and whose original containing lcells are released when the
reduction completes. In such cases, there is no net increase in expression size,
and virtual lcells could be used {o temporar‘;ly c_ontain {within a single DOT leell)
multiple forked LPL contexts during the process of a reduction, 50 that no

intermediate shifting would be required.

. This would minimize the ﬁegree to which separate RAs interfere with each
other during their execution, and allow most FFP primitives to be implemented
in a single cycle machine since the LPL fork operations could proceed without
storage management within the lcell array. Shifting wouid be requifed only upon
completion of a reduction - to create the one-to-one correspondence between

_ FFP-level symbols and DOT lcells required for new partitionings.

H

The basic concept is thus similar to multipregramming on traditional
architectures, with the exception that only a single LPL code segment would be -
required. The tradeoff to be examined is the necessary increase in the size and
complexity of DOT lcells -- needed to allow an lcell Lo contain, schedule, and
execute multiple user contexts -- versus increased independence between RAs

and increased execution efficiency for many FFP operators.

Implementing non-blocking LPL fork operations appears feasible within the
DOT model. Message reception would be straightforward; copies of the message
would be placed in each LPL context, and the appropriate filter would be

executed once for each context. Allowing send statements would be more
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difficult, since combining or serting messages Wouldkhave to be doné by the
containing DOT leell, The festriction that no send-stateménts be executed
follmw.’ing a forking operation seems reasonable, however, and takes care of this
 problem. Support for fork operations that create more LPL contexts than can
be held by a single (limited size) DOT lcell must also be addressed. In.su.ch-
cases, storage management will be requiréd, but the implementation should be
able to handle this in a manner that is transparent to the LPL programmer (just

as virtual memory or multiprogramming is transparent to a Prograrmmer).

6.1.4. Completion Synchronization

Because of our pro'céss-oriented deéign methodology, and the desire for
rsimple, agynchronous an_d free-running processes wherever possible, each
.segment of an LPL program was originally allowed to simply perform its own.
local _-dutie.s and then completé {by executing an endsegment statement).
..;Although messages and forking might require multiple cycles for some of the
segments of an LPL program, other segments reéuiring fewer cycles were_.
allowed to complete Wit'hout- coﬁcern for the longer-running segments. This was
a convenience provided by DOT for the LPL programmer since, in reality,. the
: lcells of an RA must all be stepped forward tog'e.ther at the end of the same cycie
to 'prevent. partitioning anomalies.

To insure that RA lcells were not sfepped forward too soon, DOT leells within
an RA originally sent a state packet up into the area channels upon receiving the
stop meséége from the io subsystem. This packet served the same funcfion as.
the LPL stop packet now does, by clearing out area channels, but also included
the execution state (complete.d or not) of the sending Icell. Thé state
information *lav'as combined by area nodes using logical multiplication on the way

up, and upon return to the lcells indicated whether all leells of the RA had_
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completed and the.RA should be stepped f,orwai_rd.,

The original method had the advantage of insulating the LPL programmer'
from details required for: synchronizing completion of an RA, but was less
efficient than necessary. If LPL segmenl_:s are requii‘ed to synchronize their own
completion (which they can easily do by keeping track of messages, or fﬁrks
when necessary) then the state message is not required, and preparation for

storage management can begin earlier, thus shortening the execution cycle.

The approach we therefore took, as deséribed in Chapters 2 and 3, was to
require LPL programs to péerform thelir oﬁn completion synchronization. With
this done, a top of area node can detect the stop message on its way down the
~ tree, and immediately insert a corresponding stop packel into its down-going
area channels (.following the LPL message curfently in transit, if any) without
waiting for the stop message to reach the lceils an.d the state packet. to then be
sent up and return to the top of area. Doing this therefore avoids an additional

2h delay reqﬁir‘ed by the state packet approach:

- Qur experiences with the improved shutdown mechanism -whén
implemented in the simulation were surprising. In some cases, the "improved”
design actually ran slightly slower. The reason for this was the additional LPL
code required to synchronize completion. When h was small, the increa_sed code
lodding time during partitioning {due to increased cbde size) was not offset by
the 2h saving duriﬁg shutdown. With larger areas, the desired effect is achieved
and synchronized completion results in the best performance. Nevertheless the
tradeoff remains interesting. LPL programs are considerably harder to write
with a synchronization consf,raint between segments. Many of the LPL programs
rewritﬁen for the new design initially deadlocked, and new LPL programs take

longer to develop.
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In the current design, we nevertheless decided to use ti:e approach that is
potentially more eflicient at the cost of ease in writing L.PL programs. This
approach can be supported by arguing that LPL programs are essentially
microprograms, and thereforé will be written infrequently. On the other hand, it
is reasonabl-e_ to note that even on a large machine {say H=21) h will never be
prohibitively large, so the extra delay required to send a state packet may not

be terribly important when compared to realistic storage management times.

Looking at the benefits to be derived through the use of a state ?acket {in
spite of the eieéution overhead), the resulting decrease in LPL code size is not é
major factor; the increase in undefstandability is. Both factors are most
noticeable when the ‘LPIL program in guestion requires multiple cycles and

numerous code segments.

6.1.5. Duration of Execution Phase

_ Since the stop méssage which originates in the io subsystem initiates the
~ required course of events for terminating the execution phase, regulating the
duration of the execution phase reduces to deciding how soon (following delivery
of required LPL code segme.nts) the stop message should be sent. It is useful _td
note that this decision can be made without concern for correct operation of the
machine. This fact is a natural result of a process oriented design methodology;
Time is never a factor in the correctnéss of the design - only the partiai

orderings of events made explicit in the process descr.ipt'_lons. Because of this, |
we are free to -use'whatever. means we wish to determine an appropriate

duration for the execution 'phase.

A variety of alternatives for reguldting. the 'duration of the execution phase
are possible. These include fixed durations, and heuristically varied durations.

The approach we have taken for DOT allows RAs to control the cycie time, thus
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providing a degree of sensitivity to dynamiecally changing execution
requirements, while still allowing an analytic model to predict execution times.
This method can result in the shortest possible eycle times and the best possible: '
execution .effi_ciency when all RAs receive few (or no) messages before
compleiing or forking..'. | |

If ®(n) messages must be received by the lcells of an RA in order to

complete a reduction, however, allowing the RA to complete in a single execution -

phase could seriously reduce the efficiency. of other. reductiqns within _the
machine. It seems best to interrupt such an RA temporarily, so that other.. _
reductions that have completed can be stepped forward, and then continue the
" RA during the following machine cycle. In the present design, LPL programs
that allow this, by executing smanage at appropriate intervals, .are_called'

Jair operators.

As shown by .simulation, the cost 6f being fair may not be serious. This is

due to two factors: the lower bound on storage management for an RA
-interrupted for. this reason is generally zero (rﬁessages are being received, and
local forks have not been éxecuted}, and the subsequent cost for repar’titionin_g

the old RA is low (code and directories are already loaded).

As an alternative to the current approach requiring fair operators, we might
consider using a fixed duration for the execution phase. This would also prevent
a single RA from monopolizing the machine c'ycle.' The analytic model of RA

execution time can be used for guidance in choosing an appropriate duration.

With the help of the formulas derived in Chapter 5, we can investigate the

normalized efficiency, ¢ {defined as the time required to reduce an RA

* As shown by the analytic muodel, only the number of received messages is important to
-execution time; any number may be sent, but if combined and pipehned the de]ay is the
same as the tr'anszt time for a sirigle message.
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completely within one cycle divided by the cost of reducing the RA over a period

of k additional cycles), for a large ®(n) communication-bound reduction. The

" primary assumptions required are that the lower bound on storage management

time for the RA is zero (i.e., no forks are performed), and that other RAs don’t

interfere with the communication-bound RA, so that the actual storage

management time:is. zero as well. As mentioned above, these assumptions

appear reasonable in view of early simulation results.

Figure B.2 summarizes the analysis when n messages of msize=1 are

received by an RA of size n.

FIGURE 8.2 - Efficiency of Fair Operators

£ = best-time / actual-lime

message-cost e 4n,
purtitioning-cost = 4H,
total-cost < 4k + 4n, thus

£ 4n / (4n + 4kH)
> 1/(1+kHm).

If the constant cycle time is equivalent fo m messages /oyele,
k=n/m, so

£=1/(1+ H/m)
Alternatively, fo achieve a given efficiency, £, let

m = £H 7/ (1-€).

From the resulls of Figure 6.2, to achieve 50% efficiency in communicati_dn-

bound RAs, the machine cycle should be set so at least H messages may be sent

each cycle. For a machine of height H=20, to achieve 50% efficiency the

duration of the execution phase should be at least {2H + 4H + 3) = 123+. If 7 is
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100 nsec, then, the duration of the execution phase should be ~ 13,1,(,5;3(3.’=

Note that this value is fairly small in comparison with the times required to
shift contexts within the lecell array. Presently, the time reguired to receivé 20
LPL messages is less than the cost to shift an executing user contexta distance
of one lcell. In view of this result, decreased efficiency for RAs that don’t require
the whole execution phase for ’completion méy not be an important factor. This
is because the newly-formed expressions ereated by rapidly reduced RAs (during
the ongoing execution of a large communica’cion-boﬁnd RA) will often require
storage management shifting due to forks that have been executed, and then

storage management costs should predominate.

Although simulation will be required to judge whether the assumptions of
this reascning are born out by experience, the above discussion shows one
direction that a search for a constant execution phase could take. With such an
approach, execution times for complete programs could still be predicted in a
manner similar to that described in Chapter 5.

With a heuristic cycle time, it is no longer possible (in general) to predict
execution times. Nevertheless, a heuristic approach might still ke indicaled if
the observed results were good. Figure 8.3 lists some of the approaches th.a't

could be considered.

FIGURE 6.3 -- Passible Variable Cycle Time Hewuristics

1) less than 100% sm_grants required from leells (e.g. 80%)
2) set cycle times based on RA operators
3) set cycle times based on storage management shift requirements

¢ Alternatively, to achieve 90% eofficiency al least 9H messages should be received sach
cycle. With H=20, this would result in an execution phase duration of (2H + 36H + 3) =
7631, or & 77 usee,
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In the first approach, a mechanism similar to the present use of sm_grant
rﬁessages would be appropriate. Instead of waiting for all Icells to allow storage
management, however, a particular threshold would be used {e.g., the stop
message might be sent down after 80% of the lcells allow storage managemeﬁt).
The threshold could be chosen dynamically each cycle, based on lecell contents,

or fixed arbitrarily.

In the second approach, the particular LPL programs active within the leell
array (and possibly thelr corresponding RA sizes) would be used to determine an
appropriate duration of the execution phase Such information could easily be
made available to the io subsystem during partitioning. Determining a
satisfactory approach toward such an heuristic, by weighting various. LPL

program characteristics and RA sizes, would be very interesting.

In the third approach, information concerning the extent dnd distribution
of storage management shift requirements would be used. When large amoﬁnts
of shifting are required to create an RA, a longer execution phase would allow -
‘the shifting activity to coniplefe and some useful work to be performed before

termination of the execution phase.

Of course, the essence of an heuristic is that it attempts to balancé
complex and conflicting forces throﬁgh simple means. The fact that the above
examples ‘are so different merely indicates the variety of factors that influence
execution éﬁiciency within the current design. In addition, the results of Figure
8.2 indicate that duration of the execution phase, althoﬁgh important, is not the
predominant factor influencing execution eﬁicienéy -- rather, the durétion o.f
the.storage management phase appears to be the most crucial. This is a useful
result, since it indicates that a simple fixed duration for the execution phase

may turn out to be generally satisfactory.
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6.1.6. Shifting vs. Reloading LPl, Code

At present, the LPL code segment is part of the user context that is shifted
during storage rnénagement. This means that once a code segment is loaded,
succéssive partitionings complete much more rapidly, and this allows good
efficiency for fair operators. However, loading LPL cﬁde segments during each
partitioning would reduce the time presently required for storage management
by a factor of three.” This is clearly an important tradeoff, and it 'invélves the
nurnber of FFFP operators that are active during each cyecle, and the number of

machine cycles required for their reductions. -

It is likely that a small number of commonly used LPL programs could be
stored in ROM within the lcells. This would shift the balance toﬁard loading
necessary LPL programs duriﬁg each partitioning, as opposed to shifting fhem
with active environments during storage management. If non-blocking fork
operations are feasible, most reductions would complete in one cycle anyway, so

the frequency of reloading LPL code would be reduced even further.

Investigation of this tradeoff will require only moderate changes to the

wurrent design.

6.1.7. Storage Management Transfer Function

Calculation of the storage management transfer function is relatively
unconstrained as long as it results i_n a feasible solution as described in Chapter
3. In addition, storage management is the most important phase to handle
efficiently because of its great potential effect on execution efficiency. A variety
of alternatives should therefore be ide.ntiﬁed and in#esﬁigated. An important

consideration for any method is that it should pipeline effectively.

* Recall that the LPL context size is 204 bytes, of which 150 bytes are used to hold the.
LPL code segment.
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A‘Ithough we use the method originally suggested-by Mago that minimizes -
movement between subirees rooted at higher levels of the machine [Mag79],
Stanat and Mago have shown how to optimize the overall con’;e‘xt movement by
minirﬁizing the maximum distance. traveled by any context during storage
management [StaB1la].

Other possibilities include purposely distributing available empty leells
among user contexts. This could serve to insulate separate RAs from 'e-ach
others’ storage requirements, resulting in eiecﬁtion times generally close to the
 theoretical lower bounds predicted by the analytic model. If effective, such an .
approach would shift symbolsrfart.her than necessary in order to produde_
interspersed emply lcells and reduce the h_eed for shifting later. To lower the
: coét of shifting symbols further than necessary, this activity might.be restrictéd

to non-active contexts only.

In thé absence of édvance knowledge concerning future storage demands of
- executing FFP programs, however, the metho& we presently use is probably
close to optimal; it pipelines efliciently, and limits shifting during storage
management effectively. In order to provide better overall performance during
the execution of complete programs, guidance eoncerning beneficial placement
of interspersed empty leells from the FFP programmer might be useful.
Automated analysis of FTP prograrﬁ text might also provide information useful

to e_ﬁ”ective rhana.gement of the lcell array during execution, |

6.2. Design Extensions

We now give recommendations for design extensions.
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8.2.1. Job Control Language

At present, the mkusr program accepts user-supplied FFP programs and
creates a batch of user programs or-ganized as required for loading and
execution on the DOT machine. The FFP programs are presently written using
the aln FFP-level represenﬁation, and the primary j'ob of the mkusr program, is
to create a file in which user program symbols and alns oceur in pairs in reverse
" {right-to-left) order as required for loading. This flle is accessed during a
‘simulation run by the vm subsystem, which enters the batched programs into
the lcell array when indicated by the top-level storage management transfer

function.

While this approach is quite satisfactory in its support for testing the DOT
- design and simulating the execution of FFP programs for evaluation of tradeofis,

a more realistic user interface will ultimately be required.

An interface between the ouﬁside world and the DOT machine that allows
entry of jobs concurrently with machine operation is necessary. This should be
fairly easy to develop within the present simulation. More important than this,
hoWever, is development of a smarter mkusr program. Facilities thét mkusr.

could ultimately include are given in Figure 6.4.

FIGURE 6.4 — User Inferface JIacilities

« Translate user FFP to the machine’s FFP-level representation
» Translote operator names fo the appropriate machine op-codes
s Transtate FP fo FFP

» Support user-defined operafors

o Support run-ftime dole entry

The first three items simply require the development of a more
. sophisticated translation mechanism than now employed. The last two, however,

will in addition require development of a Job Control Language to allow the user
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to define and use logical identifiers for reference to desired user-defined
operators and read-only data sets. Correspohding to this JCL must be a runtime
system to allocate unique identifiers for binding to logical identifiers during

program execution.

When a program is run, its user-deﬁnéd operators and read—oﬁly data sets
will be associated with appropr_iate unique identiﬁers. and placed (at_ least
logically) within the PL program library. When the program has completed, the
associated user-defined operator definitions will be removed, and their op-code
identifiers freed to allow allocation to ‘the user-defined operators .of new
progrars. This facility will allow genefal programs to be written in a structured
fashion {data and program may be kept separate; and user-defined operators

are similar to procedures).

JCL support for usef-defined operatofs and read-only data. sets will generate
" LPL programs (with temporary op-codes assigned as described above) that
create the desired FFP text within the leell array when encountered as the
operator of an innermost reduction. Automatic generation of this restricted
Lype of LPL program should be straightforward. Figure 6.5 shows a user-deﬂhed
operator and gives the corresponding LPL program. The operator calculales the

_ Euc_lidean.distance from the origin to a point. Althpugh,FFP function names are
used in the LPL program fof clarity, the appropriate .op-codes would actually be
used. The LPL program source given in Figure 6.5 is only an intermediate step
on the way td the corresporiding object code. In practice, the required object

code would be generated directly from the user-level I'FP operator definition.
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FIGURE 6.5 — A User-defined Operators and its LPL Program

Defuserop
DIST =
<COMP + <CON3
<COMP * <CONS <SELECT 1> <SELECT 1>>

<COMP * <CONS <SELECT 2> <SELRCT 2>>
>
>

program DIST /* cailed in when innermost (DIST arg) is encountered
destination 1 O 0 0 /* replace DIST with its definition

‘eselect "< : 0 "COMP ; 1 "+ : 1 "< : 2 "CONS : 3
"¢ 3 "COMP : 4 "% : 4 "< : 5 "CONS : 6
"¢ B "SELECT : 7 #1 : 7 "< ¢ 68 "SELECT : 7 #1 :
"¢ ;3 "COMP : 4 "* 1 4 "< B "CONS 68 -
"¢ : 6 "SELECT : 7 #2 : 7 "< : 8 "SELECT : 7 #2 :
forke #27
"endsegment : :
destination 0% 0* 0% 0O* /* all other syrbols unchanged
keep -
endsegment
endprogram '

6.2.2. Pushdown Storage for Leells

From. the nature of the EO.T desizn, it is .clear that arg ument copying should
be avoided by LPL programs whenever possible because of the corresponding
necessity for forking and increased storage management time. Some LPL
programs cannot avoid this. DBL and ROTR, for instance, must copy all or parts
of their argument to produce the desired result. COND, the first phase of the
TFP conditional operator, also needs to copy its argument, but not because of
_the result it produces. Rather, a temporary copy of the argument for COND is
required so that the predicate can be evaluated -- off {o the side, as it were -- in
order to apply the correct function. To illustrate this, Figure 6.6 gives an
example reduction for an FFP text segment that uses COND to return 1 if the

ai‘gument length is less than 10, and 2 otherwise.
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FIGURE 6.6 -~ COND Copies its Argument

(<COND <CONST 1> <CONST &> <COMP <LT 10> LENGTH>> arg)
the argument is copied, and an inner evaluation of the predicate
is begun ' :

(<COND2 <CONST 1> <CONST 2>> <(<KCOMP <GT 10> LENGTH> arg) arg>)

' . within in predicate eveluotion, composition results in

(<CONDZ2 <CONST 1> <CONST 2>> <{<GT 10> (LENGTH arg)}) arg>)
which ultimuaotely reduces to, say,

(<COND2 <CONST 1> <CONST 2>> <T arg>)
cond?2 sees that the first function should be opplied to arg, so
it creates the appropriate reduction '

(<CONST 1> arg)
which reduces to

1

_the that in the first step, the size of the RA may double. This overheéd of
.argument copying required for support of COND is unfortunate since conditional
-execution is generally necessary in realistic programs. Mago has suggested a
method to avoid argument copying in such cases [Mag82]. The mechanisfn 1s
interesting sinée its implemehtation requires changes to both DOT and the LPL

architecture.

The basic idea is thét lcells are given a pushdown register capable of saving
' the FFP-level representation for a text symbol. A push operation copies a symbol
into this register, which is not affected by following reductions. A subsequent pop
then brings the symbol back into the Icell array to again participate in
.reductions. IF'or COND, then, we push the argument dowﬁ, and evaluate the
predicafe, destroying the original argument. We then pop the earlier-pushed

copy of the argument back up for use by the appropriate function.

The push operation may be implemented within FI'P or LPL. Since efficiency -
is of concern, LPL is the best place for il. An extra cycle would be required if -
pushing were done at the FFP level. In addition, including a push operation in

FFP would require modification of the ¥FFP architecture -- sorﬁething of concern



270

in a language-based design."

The pop operation, on the ‘other hand, cannot be easily implemented within
LPL. This is because only RAs execute LPL, and the pushed symbels are not
allowed to affect partitioning and the creation of RAs. Thus, there is no easy way
to guarantee that lcells holding pushed symbols will be part of an RA whose icells
might execute a pop instruction. U.nfortunately, placing the pop operation in
FFP is also unfeasible -~ for the same reasons as given above for the push

operation.

A compromise approach is to place pop in an intermediate position between
the LPL and F¥P levels. Pop can then be considered a "pseudo-operator”
possibly found at the FFP-level during partitioning, but always pruned out of the
area before reduction begins, and only placed in the 1ce11 array by LPL code as a
special non-FFP reserved symbol. Figure 8.7 shows the above example as it

. might appear during successive execuiion cycles with use of the LPL push
statement and the pop pseude-operator. The pushed symbols of the argument

are represented in curly brackets. Pop is represented by *.

. *
Currently, the FFP architecture is based on linear (one dimensicnal) expressicns. The
push operation requires that a second dimensicn be visualized.
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FIGURE 6.7 — COND with Push and Pop

(KCOND <CONST 1> <CONST &> <COMP <LT 10> LENGTH>> arg)
The COND LFPL program pushes the argument, and creatfes an
innermost KA for evaluation of the predicale :
(<CONDZ2 <CONST 1> <CONST 2>> <(<COMP <LT 10> LENGTH> arg {arg} >}
The predicale is ultimotfely reduced, yielding
(KCOND2 <CONST 1> <CONST 2>> <T fargl>) '
CONDR@ checks the resull and then creales
{1 <CONST 1> {arg} )
During part?,twn'mg, the pop pseudo-a'p is detected. Only in
this case are pushed symbols included in the RA, and they aoppear
in their popped up form. The pseudo-op is pruned from the _
active area during the downsweep, so that the BA seen by CONST is
(<CONST 1> arg)
which reduces os desired.
1

As can be seen, the above approach requires no argument copying, no extra
cycies, and no changes to user-level FFP, If is important that the ;Sop péeudo-op _
be pruned from the area so the RA will appear as expected by the functioﬁ'
selected by the predicate, In the form described, push operatlons may not be .
nested. With further extension of the push -down storage in the lcell, nesting to a

fixed depth would be possible.

Although a variety of m.odiﬁca'tions of DOT are requiréd to support push and
. pop, these changes are not complex. Storage management should never shift
contexts "over” pushed sy_rnbols; With this restriction, pushed symbols will
always' be available for inclusion in an RA created by a subsequent pop
7 0perati§n. As'iﬁdicated above, partitioning must be changed. so pushed but
emply cells are treated as empty unless a pop pseudc-op is detected, In tlﬁlis.
case, the pushed symbols are popped and included as usual FFP—level symbols in .
that RA, while the pop pseudo-dpefator is pruned and the containing lcell made

emply.
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8.2.3. Visual Tracing

At present, all simulation output is oriented towards a terminal or line
printer. Since detailed informalion concerriing computational activities and
" data transfers is available from simulation tracing, however, the possibility of

visually oriented simulation output is raised.

In addition to making visible the flow of information and the progress of FFP
reductions within the DOT machine, such a trace package could also provide
statistical assistance, and allow run-time factors such as channel utilization to
be graphically displayed. Simulation results of_ interest in evaluating design

alternatives could be accumulated and presented at the user's request.

Figrure 8.8 shows the steps necessary to provide such a facility.

FIGURE 6.8~ Steps to Provide Visual Tracing

o develop e grophical machine model
» modify the simulation to produce appropriate data
s connect simulation output o the visual model

« provide user interaction

An appropriate visual model might employ graphical representations
similar to those used within this dissertation to depiet a simulated machine, btit
flexible windowing operations would be required. The largest machine depicted
within this dissertation contained only 16 lecells, while the machines required for
‘realistic simulations will be much larger. Because of this, the ability to handle
different levels of abstraction in the visual model, by using different
representations of the cells and communication lines, would be desirable. At a
top level, visual access to windowed segments of the lcell array would allow

storage management and the ongoing progress of FFP text reductions to be
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examined. At a lower level, a more detailed visual model might include the teells
as well, highlighting active areas, and pbrtraying the fiow of information between

cells during execulion.

At present, simulation outpﬁt is keyed to process ids that are maintained
by the ClassC scheduling mechanism. Thé’correspondence between process ids
and cell locations must be ﬁlade more expl.icit if trace informatidn is to i}_e
displayed graphically. The most direct appr0a¢h would be for the geometric
location of each cell to be encoded into a Varié.ble _globaliy available to members .
.of each cell during initialization, and for revery trace messége to include this
information. Making such a modiﬁcation to the current sirmulation will be easy,.'
since this facility was envisioned during the initial design and the appropriate

hooks are in place.

Although it would be ﬁossible fo pipe simulation output directly to a visual
trace package, it seems b.ettei" to batch tﬁe simulation és done presently, and
use the simulation outpuf later -- filtering it as appropriate for the desired visual
trace. OUne reason for this is that simulation time. can progress quite slowly.
Program e:xecution ean require‘ hours of wall tiﬁe when large machines are
.simulated. By decoupling simulation from visual tracing, reasonable viewing

times are made possible.

Perfprming visual tracing separately from simulation alsc expands Lhe
possibilities for user interaction. The progress of simulation time might be a
variable to be selected by the user during tracing. Interactive windowing of the
visual model would also be very useful. The ability. to cha.nge levels of

abstraction interactively is another possibility.

In summary, visual tracing represents a useful and relati\?e].y

straightforward improvement to the current simulation environment, and it is
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highly recommended.

 6.2.4. LPL Storage Management Event Indicater

A useful {and easily accomplished) extension for LPL would be to provide a
read-and-reset register that indicates whether or not storage management has
oc.curred since the.last time the register was examined. This facility would be
oriented towards support for fair FFP operators, and would allow an exact count

of the number of messages processed since the last storage management.

At present, fair operators incorrectly assume that no messages are
received following an smanage. This assumption is made because storage
management is completely invisible to LPL code, thus a count of messages
received in the interim between the smanage and the end of the execution
phase is not possible. A read-and-reset boolean register to reflect the
occurrence of storage managemen.t wonld é.llow the correct message count to be

maintained.

6.2.5. Storage Management with Variable Context Sizes.

At present, two different sizes of user contexts are shified during storage
management: active {204 bytes) and non-active (4 bytes). Besides the 54 bytes
of LPL.environment included in an active context. a fixed size code area of 150
bytes is shifted. Since code segments are often quite small (many contain only a
one byte long endsegment op-code), a more flexible approach is'indicated.
Stoi‘age management should only shift the actual amount of code that is
resident - not the complete code area. This could result in greatly improved

performance.
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6.2.6. Increasing Phase Independence

rI’.he efficiency of the DOT implementation arises from decoupling és much
as possible the f}hases of the machine cycle in separate RAs. Un.fortunately,
| coupling.still occurs during storage management, when large user contexts aré
shifted in pipelined fashion in the lcell array. We might ask if we. can further
decouple the activities of different RAs during storage managemeﬁt as well.
Luckily, we can.

The key is to recognize that pari;itioning requires only the symbol, ain,
state, and forkid context information. This could ber shifted first, during an
initial storage mahagement phase, allowing partitioning. to begin as soon as
possible and proéeed‘ while the shifting of all other context information
{required for execution only) takes vlace. The .storage management phase'would :
~therefore take p'lac.e in two pipelined shift operatiéns. First, the in_formation_
required for partitioning would be shifted, énd then, after this was finished, all
refnaining information would be moved. For RAs that are .already activé,_ _
partitioning would be éffecti_vely free. For RAs that are new, the upper Eound‘ for
‘storage managerment would involve the non-active context size only. Both these

results would be very important for execution efficiency.

Implementation should be straightforward. A new process will be required
- to complete storage management by shifting the balance of executing contexts
within the leell array while the lcell manager proceeds with partitioning. In
addition, execution must wait until the new process signals that the compléte .
éontext required for execution has arrived. This extension can be made in

conjunctibn with modifications to support shifting variable context sizes,
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8.2.7. Multiple Input Ports

Although we have used a single port located above the tree root for LPL '
program input, there is no reason why multiple ports distributed throughout the

tree might not be used in a similar fashion.

As is done now, top of area node managers't.hat wish to request an LPL
program would have their requests sent up by tcell managers, which merge
these requests with those from underneath., Such requests could be served by
the first teell they reach that includes an io port. Requests for LPL progréms
would only reach the top of the tree if no io port exists between the top of the
tree and the node in which pruning for a newly-discovered KA starts. An io port
would act as a filter for input broadeast from above; only LPL preograms not

broadeast from the local port need be passed down.

Questions concerning the optimal placement of io ports should be
investigated. They shéuld be located high enough to catch a reasonable number
of requests (hence, locating them at height 3 is probably not a good idea), and to
provide balanced operation. Simulation seems a good way to initially investigate
this problem, and the current design would require few changes .to implemegt

the approach suggested above.

1t would be alsv possible to provide more generalized routing through the
tree, so an io port could serve areas whose top of area is located higher than the
port. This would require developmental work to determine an appropriate

routing protocol.



CHAPTER 7

Conclusion

Qur main goal in this dissertation has been the presentation 6f the LPL_
_architecture and the DOT implementatioﬁ moedel, These are tﬁe essential
components of an efficient and highly parallel programming system. tiesigned to
execule FFP languages. A complete programming system was‘ presented,

including a variely of LPL definitions for useful FI'P operétors.

To express the DOT design, we used a concufrent pfogr‘amming language
with support for process-oriented simulati'on.. The result '}s a modei of the top-
level implementation character‘isticé of a multiprocessor capable of efficiently
supporting LPL, and FFP. Aspects related ﬁo the simulation approach for
multiprot:éssor design. in general, anci for DOT.in particular, were discussed .and

initial results of simulation were given.

An analytic model for the progress of reductions on the programming
systemm was derived. This medel is based on the actual data manipulation and
message transfer protocols embodied in the DOT design, and it accurately

predicts upper and lower bounds for RAs.

Alternative approéches to the design were discussed, and in some cases
t_hese were analyzed with the help of the analytic model. In general, comparison
of alternatives will require use of different simulation models, aﬂd we have
indicated fruitful directions of approach within the context of the current DOT
model. Important extensions and directions for future development work have

also been indicated,

27
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A natural question to ask at this point is whether the DOT design
representation of the desired multiprocessor implementation can be directly
mapped into VLSL. For example, could the DOT implementation of the lcell and
teell classes be given to a silicon compiler? Unfortunately, the answer is no. For
such an approach to be effective, a lower level of implementation should
probably be used, such as the circuit level .or the register transfer level.
Attempting to map DOT processes directly into dedicated hardware is likely to

be wasteful of eircuit logic.

. Tq produce efficient realizations for the lcells and teells, the beha\.rior of
their processes in time must be carefully examined. The first thing to be noticed
is that DOT processes spend most of their time waiting for the arrival of
information that is required for a subsequent operation. The tcell manager, for
instance, is essentially idle throughout the entire execution phase of the’
machine cycle, waiting for the stop message which originates in the io
subsystem. Because of this, dedicating an entire block of VL3I circuitry to the
tcell manager, including logic for all required arithmetic manipulation, would be
wasteful. Logic required for arithmetic operations should probably be shared
between the node manager and the tcell manager. The same considerations will
apply to the lcell as well; the LPL interpreter process should share an arithmetic

unit with the lcell manager.

In addition to examining the characteristics of the cell processes with the
aim of efficient processor utiliiation, usage of logical communication channels
over time should be investigated carefully in order tc achieve eﬁ“icient.
utilization of physical intercell communication lines. An intercell
communication line might be time-division muliiplexed to provide shared use of

a single line by multiple logical channels, bui, if so, it is likely that the
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appropriate balance of communication scheduling will differ dynamically, as
cells move through the execution cycle. For instance, the communication
bandwidth available on the cell manager channels during the execution phase '

could be minimal.

In our design approach, we were motivated by the desire to borrow
technigues useful in the design of parallel software, and apply them within the
larger context of multiprocessor design. The results have been sﬁccessful. DOT
is the first complete implementation model based on Mago's design goals.
Although the overall system is quite complex in its operation, the use of small,

simple, sequential processes for its description produced an inteilectﬁally

manageable design.

Te make the transition from thé DOT implementation model to actual
.'realization, however, requires that processes and logical channels which were
carefully separated in our high-level design, for the purpose .of 'clarity, be
efficiently integrated into their respective cellular components. Our design does
not provide guidanée for this; the tasks to be performed within the tcells and
lcells have been identiﬁed, but the allocation of tasks to specific hardware and

firmware remaing an open issue.

These low-level considerations were outside the scope of this dissertation,
but they ultimately need to be addressed in order to produce a hardware
realizaltion. As indicated in Chapter 8, many design alternatives still need to be
investigated, and many improvements to the present design are possible.
Although a final decision on realization must wait for furt:,her resolution of these
higher-level alternatives, general investigation of impertant issues related to
realization, such as those mentioned above, is indicated. In dddition to

providing advance insight into problems to be expected in a realization, such
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research may indicate a more fruitful high-level design methodology than the
one we have used, when the desire for straightforward realization is taken into

account.
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