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ABSTRACT

CHRISTOPHER L. DWYER: Self-Assembled Computer Architecture:

Design and Fabrication Theory

 (under the direction of Russell M. Taylor)

This dissertation explores the design and fabrication of massively-parallel computers

using self-assembling electronic circuitry.  A DNA-guided self-assembly method, inspired by

discoveries in chemistry, materials science, and physics, is used to develop an argument for

the feasibility of constructing complex circuitry.  The fabrication yield of such a process is

calculated.  Together, these form the foundation for a discussion of the computer

architectures and implementations that this self-assembling process enables.

Simulations estimate the electrical performance of the components used in the self-

assembly process.  Traditional drift-diffusion simulations were used to evaluate a ring-gated

field effect transistor and the results were applied to a circuit level simulation to evaluate

specific circuit topologies.  These circuits were then grouped into implementation level

components (logic gates, memory elements, etc.) and used in an architecture-level behavior

simulator.

The electrical performance results enable an informed evaluation of higher-level

computer designs that could be built using self-assembly.  Estimates of the performance,

including power consumption, of two architectures are presented.  These architectures appear

to be impractical without a self-assembling fabrication process and are shown to have

remarkable advantages over conventional computing machines.  These machines are

estimated to be nearly three orders of magnitude faster than the fastest next-generation

supercomputer (IBM BlueGene /L) on certain classes of problems.
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1

Chapter 1. Introduction

1.1 Overview

Computer system design will change dramatically as nanoscale science and

technology develop to the point where practical assembly mechanisms exist for building

systems with 1019 components.  These changes will be motivated by an interest in developing

computing devices that exploit the new technology's features and avoid its pitfalls.  The

advent of massively parallel near molecular-scale electronic systems will enable solutions to

problem spaces yet untouched by modern computing.  This dissertation evaluates two such

computer architectures and their feasible fabrication by DNA-guided self-assembly.

1.2 Thesis statement and contributions

"DNA-guided self-assembled 3D silicon nanorod assemblies with 1019

components can be used to construct novel computers of theoretical and practical use.

This method overcomes hurdles in attachment chemistry, assembly complexity,

electronic behavior, fabrication yield, power consumption, thermal effects, system

design, and performance."

This dissertation provides a proof-of-concept argument that shows there are no

fundamental barriers to undertaking the construction of such computers.  It uses published

science, new simulations, and preliminary chemistry laboratory work to address all levels of

design and fabrication.  Actual construction of this system would require economic resources

beyond those available here.

The work outlined in the following section forms the plausibility argument that

massively parallel computing machines can be constructed in the foreseeable future, perhaps
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even within the next decade, using self-assembly.  The characteristics of nanoscale assembly

require a fundamental shift in how computers are designed to harness this power.

This dissertation contributes to the field of computer engineering by establishing a

first point of comparison showing how the design of traditional computing machines can

change to produce a new class of computing machine enabled by near molecular-scale self-

assembly.  The following have been done to show the feasibility and usefulness of

constructing such a machine:

• Published new work on DNA - nanotube attachment.

• Published simulation results of a new type of semiconductor transistor, the ring-

gated field effect transistor, or RG-FET.

• Published simulation results on the use of RG-FETs in logic circuitry.

• Developed a theory of fabrication using self-assembly that takes into

consideration known chemistry, thermodynamics, DNA reactions, and yield

estimates.

• Developed a face-serial assembly ordering algorithm that can order the allocation

of 15 unique DNA sequences for the logic structures used here.

• Developed the Oracle and the decoupled array multi-processor (DAMP),

architectures that brackets a continuum of computer architectures that span from

theoretically interesting to practical and are designed to take advantage of the

strengths of self-assembly.

• Simulated the large-scale behavior of RG-FET circuitry in implementations of the

oracle and DAMP architectures.

• Evaluated the performance of the DAMP and Oracle versus conventional

supercomputers.

Each of the above is a piece of the larger contribution that is the end-to-end design of

a new useful kind of computing machine, showing that at all levels it can be feasibly

fabricated.  This machine is inspired by the massive parallelism found in nature and
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simulations show that it favorably compares with the fastest and most parallel machines

available today.

1.3 Introduction

Methods using DNA-guided self-assembly are in their infancy and have to date only

produced simple geometric structures.  The complexity of these structures is far from

approaching the complexity found in the biological organisms that have inspired such work.

However, there are considerable quantities of human effort being put into developing this

technology to the point where it can be usefully employed to build complete nanoscale

structures.

Figure 1.1 illustrates the problem faced by self-assembled computer designers.  The

fundamental problem is how to make a design that starts from feasible physical processes and

ends up being useful as a computing device.  The problem can also be viewed from the other

side - how to make an architecture that provides a useful computing model and is feasible to

build with self-assembling techniques.  Designing a useful architecture that can actually be

built requires finding and traversing the complete path.
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Figure 1.1. Technological design space.  Illustration of the many challenges facing a self-
assembled machine designer.  In particular, the strong coupling between the low-level

fabrication and high-level design makes the space treacherous.

1.4 Method

Some researchers have provided tantalizing glimpses of how DNA can self-assemble

interesting shapes but leave open how to use these to build actual computers with large

numbers of processors.   This dissertation describes two computer architectures, the Oracle

and DAMP, and shows that both can be plausibly implemented and realized and that both are

useful, addressing problems of either theoretical or practical usefulness.

The question answered by the thesis above is simply how can self-assembly be used,

in its current stage, to build computing machinery that is better than what we have today?

Today's processors are designed according to a rule that says computation must largely occur
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at runtime.  Wide data paths, caches, branch prediction, fast multipliers all come from a

computing heritage that emphasizes runtime execution.  The inherent circuit complexity in

this design philosophy is obvious from the intricate and idiosyncratic mask-work for

contemporary processors, where large potions of the mask are custom-designed for specific

functions.

Toward the end of the 20th century, multiple-instruction-multiple-data (MIMD)

shared memory parallel computers became the dominant tools for solving some of the most

complex problems faced by society.  These machines were, and still are, massive

constructions that take thousands of design hours and hundreds of millions of dollars to

build.  They are typically made of arrays of tightly coupled processors with memory that is

either shared or distributed, and require very elaborate and clever schemes for balancing the

problem load among processors and maintaining efficient communication between

processors.  In contrast, regularity and loosely coupled parallelism appear to be the only

feasible architecture in self-assembled machines at scales that rival the largest distributed

computer networks.  This leads to a shift in machine design to machines with 1012 computing

elements, each with a small amount of local memory, with no communication between

processors.

Design shifts

Feature Self-assembly VLSI
Fabrication scale 1019 components ~109 components

Required fault tolerance high low
Max. individual circuit size small very large

High bandwidth interconnections impractical feasible
Tightly coupled processors impractical feasible

Table 1.1. Design shifts between VLSI and self-assembly.

Table 1.1 indicates that the only advantage self-assembly has over conventional VLSI

is the fabrication scale.  Every other design feature has changed dramatically for the worse.

This is the primary motivation behind the discussion in following chapters.  Since the set of

design features that are routinely used in conventional technologies has changed in the switch
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to a self-assembling technology, how can the design of computing machines change to enable

new useful designs?

Outline

Since the fabrication techniques used by chapters 3 and 4 may be foreign to the

typical computer designer, these readers may find it useful to refer to section 3.2 and

appendix A for a brief introduction to the means and methods available to self-assembling

technologies.

Chapter 2 describes the state of the art in massively-parallel computer design, DNA

computation, self-assembled circuitry and molecular electronics, fault-tolerant computing,

quantum-dot cellular automata, and quantum computing and describes how the work

presented in this dissertation differs from the prior art.

Chapter 3 discusses the circuit fabrication method with an emphasis on the physical

details encountered in the implementation.

Chapter 4 explores the tradeoffs between yield and the size of a self-assembled

computer and how structural rigidity plays a role in this relationship.

Chapter 5 describes the design and assembly-ordering tools developed to create

designs of 3D nanorod structures for simulation.

Chapter 6 describes methods for supplying power to self-assembled computers and

communicating between processors and the outside world.

Chapter 7 investigates the Oracle  - a self-assembled computer architecture inspired

by work in DNA computing that is enabled by the self-assembling process described in

chapter 2.

Chapter 8 investigates the decoupled array multi-processor (DAMP) - a self-

assembled computer architecture that is similar to conventional computer designs but

incorporates 1012 processing elements.

Chapter 9 describes the electrostatic, semi-conductor, thermal, circuit-level, and

behavioral simulation of circuitry that can be used to implement the oracle and DAMP

architectures.
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Chapter 10 investigates the thermal properties of the DAMP and cooling techniques.

Chapter 11 presents performance estimates for the DAMP on the blind data

encryption standard (DES) decryption problem and a typical global optimization problem.

The performance of the DAMP is compared against the fastest known computing machines.

Appendix A describes a method for chemically attaching DNA fragments to carbon

nanotubes and an introduction to the terms and methods used in this field.

Appendix B includes a compact disc that contains the source code and text used

within this dissertation.

Appendix C contains a detailed description of the instruction set implemented by the

DAMP assembler described in chapter 8.
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Chapter 2. Related work

2.1 Massively-parallel computer design

State-of-the-art supercomputer design has converged over the last decade to multiple-

instruction-multiple-data (MIMD) architectures.  This type of machine is flexible, has a high-

bandwidth inter-processor connection network, and can solve many kinds of problems.  The

top 500 list of the fastest supercomputers on the planet is currently topped by the NEC

EarthSimulator [Top500, 2003].  This machine is an array of 640 processor nodes

interconnected as a hypercube, with 8 processors per node.  Each processor has 16 GB of

local memory (shared with the others) and can execute 8 GFlop/sec.  The aggregate machine

has a peak performance of ~40 TFlop/sec with 10 TB of memory.  The entire machine

occupies 13,000 m3 without including the cooling and power supply systems.  The processors

in the Earth Simulator were fabricated using a 0.15 µm CMOS technology  [Dongarra, 2002].

The next generation MIMD supercomputer, the IBM BlueGene /L, is planned to boast a peak

performance of 360 TFlop/sec and occupy 533 m3 [BlueGene, 2002].  Each consumes ~3

MW of power without considering the power consumed by cooling.

These machines use large numbers of tightly-coupled processors to solve large

problems more quickly than any machine ever has.  The natural design progression is to

continue increasing the number of processors and inter-processor bandwidth to solve larger

and larger problems.  However, the size and power consumption of present-day

supercomputers is already becoming a constraint on the design.  The work presented in

subsequent chapters will show how a smaller and less power-hungry self-assembled

computer can out-perform present-day supercomputers for some classes of problems.

2.2 DNA computation

The pioneering work by Adleman, et al. in establishing a role for DNA

(deoxyribonucleic acid) in the computation of large problems made the prospect of
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molecular-scale computing systems appear to be within reach [Adleman, 1994].  The solution

to a seven-node Hamiltonian path problem using DNA took several weeks of chemical

laboratory processing.  The 3-SAT problem1 has also been solved for problems with up to 20

variables using DNA [Braich, 2002].  Unfortunately, these chemical methods must be

repeated for each new instance of the problem, so it takes about a week to solve each.

This work has been followed, and expanded, by many others to address other

problems with new methods of computation.  The application of these methods to general-

purpose "wet" computer architecture marks a new turn in how DNA has been used in

computer design [Head, 2001].  This method can manipulate strings of symbols and is Turing

complete.  However, this method still relies on enzymatic processes and requires chemical

laboratory work to extract results, like all DNA computing methods, which can take several

weeks.

Similar investigations have developed physical representations of computation that

use DNA to construct solutions to a problem [Seeman, 2001; Winfree, 2000].  These projects

use the self-assembling properties of DNA to solve a problem by forming thin membranes of

DNA tiles that follow binding rules.  The binding rules define an automaton and have been

shown to be Turing complete.  The self-assembling fabrication method described in chapter 3

uses DNA to form electrical structures rather than to solve a computational problem - the

resulting computer can then solve instances of the problem at a much faster rate.  The idea is

to solve all instances of the program at once, then select the appropriate solution

electronically at runtime.

2.3 Self-assembled circuitry & molecular electronics

Molecular electronics has been the focus of many researchers looking at how to apply

advances in self-assembly. There is interesting work that explores the use of nanowires and

molecular systems to build self-assembled computing logic [Collier, 1999; Heath, 2001;

Kovtyukhova, 2002; Melosh, 2003].  These studies have focused on simple molecular-scale

                                                          
1      The 3-SAT problem involves determining if there is some assignment of variable values that make a given
sum-of-products Boolean equation, with three literals per clause, true.  This problem is provably NP-complete.
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memory elements in crossbar junctions and have not investigated the difficult problem of

how to scale to more complex devices.

There is work that has simulated specific molecular electronic components in

computing circuitry that elaborate on the feasibility of certain design spaces [Goldstein,

2002].  Most of this work uses wired-OR logic and requires pull-up resistors that would

consume enormous amounts of power if scaled up to 1012 components.  To date this work has

not addressed the complexity scaling issues.

2.4 Fault-tolerant computing

Other work has focused on fault-tolerant circuit designs that are amenable to the

imperfect circuit yields predicted in nanotechnology [Heath, 1998].  The Teramac is one such

fault-tolerant machine made from faulty FPGAs that uses mapping routines to determine

fault locations.  Once a fault is detected, the silicon compiler is instructed to avoid that

particular fault when allocating gates.  These and similar techniques will be critical to

building large, connected computers.  This dissertation skirts the whole issue by decoupling

the processors and using content-addressed random indexing2 described in chapters 3 and 6.

2.5 Quantum-dot cellular automata (QCA)

The application of quantum dot structures to computing has become feasible since the

advent of high-density quantum-dot fabrication methods.  Through electrostatic interactions

quantum-dot cells (QCs) change state according to well defined rules.  Cells can be placed

next to each other to create a network that computes a logic function.  The limitations of

QCAs comes from their sensitivity to small charge fluctuations which requires that they be

operated at very low temperatures (< 80K.)  A thorough overview of QCA methods can be

found in [Lieberman, 2002].  The self-assembled nanorod circuitry described in chapters 3

and 9 can be operated at room temperature (and above) and is less sensitive to electric

charges than QCA circuitry.  Again, scaling QCAs up to larger problem sizes has not been

                                                          
2      Content-addressed random indexing is a method that uses random constants to index uncoupled arrays of
processors and uses the constants to calculate a value (i.e. content) for the processor to store.  The processor can
then use the calculated value to index the original constant like a content-addressable memory.
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investigated - doing this in 3D might be competitive to the DAMP, but the issue of how to

build it remains an open problem.

2.6 Quantum computing

The result of a quantum computation is very similar to an exhaustive classical search

of the same problem space, with the exception that quantum computing has a limited set of

operators compared to classical computing (e.g. controlled-NOT, but no strict copy, etc.)   A

quantum bit (qubit) is represented by the physical state of a particle.  The particle could be an

electron, or hydrogen atom, or even molecular substituents of a larger molecule.  Basic

properties such as spin or magnetic moments are used to represent the discrete values of the

qubit because they have only two possible values (spin up and spin down, etc.)  Since the

qubits are represented by quantum phenomena, a set of qubits that are entangled (i.e. were

once in close contact) form a superposition of all possible qubit values.  That is, the quantum

nature of the data representation allows an entangled set of qubits to represent all possible

binary combinations, so long as there is coherence between the states.  The act of

measurement typically breaks the coherence in the system and collapses the set to a particular

state from the coherent superposition of all possible states.   There are operations that can be

performed on the set of qubits that do not disrupt the coherence of the system.  Thus, the

system remains entangled and the result is a new superpositioned state of all possible

outcomes of the operation.  A sequence of operations is used to perform useful computations

on the system, such as the Shor factorization algorithm.  The grand promise of quantum

computing is that a 500-qubit system can enable an operation to work with all 2500 binary

states of that system in parallel, at once!  This is equivalent to performing a classical search

for a solution from 2500 possible input combinations.

Most of these quantum computing methods use nuclear magnetic resonance (NMR)

to operate on the entangled quantum states of molecules and have only been used to

manipulate ~7 qubit systems to date.  Advances in non-NMR based quantum computing may

make it possible to manipulate larger systems of qubits with very low power consumption.

Experiments to manipulate 5-10 qubits have been suggested [Brown, 2002].

The coherence problem of quantum computing (i.e. the inability to make entangled

systems with more than 10 qubits) is currently unsolved.  The oracle architecture described in
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chapter 7 can be used to assemble the solution to many problems with a 40-bit input space.

This is equivalent to a 40-qubit quantum computer.  The self-assembled circuitry described in

this dissertation also enable classical architectures like the decoupled array multiprocessor

(DAMP.)
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Chapter 3. 3D Nanoscale circuit fabrication

3.1 Introduction

We focus on the realization of a new computer architecture that is enabled by the

development of DNA-guided self-assembled systems.  The enormous parallelism and scale

of this kind of self-assembling process has motivated research into novel forms of

computation that use the intrinsic properties of DNA hybridization to form solutions to a

problem [Roweis, 1998; Winfree, 2000].  We take a slightly different approach to developing

computing devices using DNA: instead of depending on the computability of DNA

hybridization events to do the computation, we investigate the structural use of DNA to

create electrically active nanoscale rod-lattice structures.  That is, rather than using DNA to

assemble and to form the solution to one instance of a problem, we use it to assemble a

computer that contains 1012 such solutions.  The computer can then produce results every few

microseconds vs. the weeks per solution taken by DNA computing techniques.

Figure 3.1. A DNA-guided assembly of rods that form a NAND gate.

The basic approach is to design 3D computing circuitry, as illustrated in figure 3.1,

that is constructed using a series of DNA binding events to assemble nanorods.  Each rod
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may be an insulator, conductor, or a novel type of transistor described in section 3.2 and

chapter 9.  These basic 3D blocks are themselves assembled into larger structures to form

computing elements.  These elements can be connected to power and signal leads using

massively-parallel self-assembly to produce a computer consisting of 6 x 1012 processors, of

which an estimated 1012 will be functional.

Our method of constructing computing circuitry from nanoscale self-assembled

components requires several capabilities described here.  These capabilities include the

functionalization of rod-like nanowires with DNA, DNA metallization, DNA-guided self-

assembly, and a novel nanoscale transistor.  We provide an overview of the capabilities here

and point to more complete discussions elsewhere in the document.

Section 3.2 outlines the fabrication and methods of low-level assembly.  Section 3.3

describes the nanorod synthesis and section 3.4 describes the structures that will be formed.

Section 3.5 and 3.6 develop the assembly method further.  Section 3.7 discusses the design of

DNA strands and the assembly tolerances, and section 3.8 outlines the yield estimates for

each DNA junction.

The components fabricated from the low-level assembly described here are used in a

fluidic self-assembly method to create larger circuits as described in chapter 6.  This method

overcomes the low yield predicted in the DNA-guided self-assembly process.  Since each

estimate made here, and throughout this work, chooses the worst-case assumptions it is

expected that these values (e.g. for yield, performance, power consumption, etc) are strictly

lower bounds and that optimization in the manufacturing process can dramatically improve

the overall performance of the technology.

3.2 Background

The following section is a brief primer on the use of nanotechnology in building

electronic circuitry.  The topics discussed here relate the basic properties of nanorods, DNA,

attachment chemistry, conductivity, and transistors to self-assembly.  Readers already well

versed in such topics will likely find this section to be tedious and may wish to skip it

entirely.  A basic text on the biochemistry of DNA may be useful for other readers [Lewin,

1997].
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Nanorods

Controlled self-assembly of nanoscale circuitry requires the ability to control the

properties of individual components of the structure.  Recent advances in silicon nanowire

doping have proven that small nanoscale rods (> 50 nm diameters) can be doped controllably

and can be made to behave like bulk semiconducting materials [Cui, 2000].

DNA

As mentioned in chapter 2, DNA can be used for more than just storing genetic

information within biological organisms.  The two forms of DNA that are important to this

discussion of self-assembly are single-stranded and double-stranded DNA. Watson & Crick

proposed the structure and means by which single-stranded DNA forms double-stranded

DNA on April 2, 1953.  Single-stranded DNA is a string of nucleotides (or chemical bases)

that are attached to a sugar-phosphate backbone.  Figure 3.2 illustrates the major nucleotides

found in DNA.

Figure 3.2.  Schematic representation of the major DNA nucleotides.  The dashed lines
represent a backbone used to string nucleotides together.

Any of the nucleotides in figure 3.2 can be used in the sequence of a single-stranded

piece of DNA.  The mechanism that single-stranded DNA uses to form double-stranded

DNA (in the shape of a double helix) is called hybridization.  DNA hybridization is the
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"coming together" of two single-stranded DNA fragments.  However, there are rules about

which single-stranded DNA fragments hybridize with each other.

The adenine and thymine nucleotides happen to prefer sticking to each other rather

than to either guanine or cytosine.  This is called complementarity.   That is, adenine (A) and

thymine (T) are complements.  The same applies to guanine (G) and cytosine (C).  Single-

stranded DNA sequences can therefore be complements if for every occurrence of A or G in

one strand there is a T or C, respectively, in the complementary strand, and vice-versa.  Only

complementary single-stranded DNA fragments hybridize to form double-stranded DNA.

Complementarity is shown here through the use of single and double notches.

Figure 3.3. Schematic representation of two complementary single-stranded DNA fragments
forming a double-stranded fragment.

The ability of complementary single-stranded DNA to form only the correct double-

stranded DNA is also known as specificity.  That is, DNA fragments that are not

complements will not hybridize.  The degree of specificity is dependent on the length of the

DNA fragment, with 8 - 12 base fragments being optimal.  Very long fragments of DNA

hybridize with less specificity than shorter fragments.

The hybridization of single-stranded DNA into double-stranded DNA is temperature

dependent.  A mixture of double-stranded DNA can undergo a sharp transition to a mixture

of single-stranded DNA (i.e. separate complementary strands) by raising the temperature of

the mixture above the melting temperature of the DNA sequence.  That is, above the melting

temperature of a given fragment of DNA the fragment will not hybridize with its

complement.  The transition from single-stranded to double-stranded DNA is reversible by
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lowering the mixture's temperature below the melting temperature.  Cycling the mixture's

temperature above and below the melting temperature is commonly used to improve

hybridization specificity because only the most stable (i.e. complementary) interactions

between strands are likely at these temperatures.  Again, please refer to an introductory

biochemistry text for a complete discussion of this topic.

DNA attachment

Nanowire-DNA functionalization, or chemical attachment, is the first step in

implementing a DNA-guided self-assembly process.  Our method requires the rod-like

nanowires to have unique DNA sequences attached to each end.  Section 3.5 discusses how

to design the DNA and nanowire properties to assemble computing circuitry.  The DNA-

directed formation of nanowire-patterned surfaces has been reported and provides insight

into how such nanowires can be functionalized [Mbindyo, 2001].

Our own work functionalizing carbon nanotubes with DNA [Dwyer, 2002], described

in appendix A, also provides insight into the available attachment mechanisms.  The most

promising schemes employ nanorods formed in membranes or structures that can protect one

end of the rods from reactions occurring at the other end.  Such asymmetry in the reaction of

the rods is important in controlling the sequence of the DNA strand on each end.

An important quality of DNA that makes it most suitable for self-assembly is its

ability to hybridize with its complement with very high specificity.  Consider the 48 different

8-base DNA sequences, for which there are 65,536 nearly orthogonal reactivities.  This is a

vast improvement over the handful of specific covalent chemical reaction schemes that are

readily accessible using present-day organic chemistry.

Remarkable work has been undertaken in the effort to produce DNA assembled

structures.  Many of these efforts have focused on the structures created by clever designs of

DNA sequences undergoing interesting thermodynamic transitions [Yan, 2002; Seeman,

2001].  Still others have focused on the formation of ordered superlattices made from

nanorods [Mbindyo, 2001; Dujardin, 2001].  The experimental demonstration of mesoscopic

DNA-guided assemblies is also of interest [Soto, 2002].  These results imply that there is

considerable promise in the DNA-guided self-assembly of large-scale molecular structures.



20

Conductivity

The ability to convert double-stranded DNA into a highly conductive ohmic contacts

(by a process known as metallization) makes the use of DNA in nanoscale circuitry

extremely attractive.  This work has shown that DNA can be used as a backbone for the

formation of highly conductive nanowires with conductances greater than 1.4 x 10-3 S for

micron long nanowires [Braun, 1998; Richter, 2001].  These techniques form a coating of

metal by allowing positively charged metallic ions to coalesce around the negatively charged

double stranded DNA.  Such metallization techniques are suitable for either surface bound or

suspended DNA strands.  We anticipate that the DNA used to form our 3D self-assembled

structures will exist in a suspended form similar to what is reported in [Braun, 1998].

Transistors

We have invented and evaluated a new kind of transistor that we call a ring-gated

field effect transistor (RG-FET) for use in the context of self-assembled structures.  Figure

3.4 illustrates the basic structure of the RG-FET.

Figure 3.4. The basic structure of the ring-gated field-effect-transistor.
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We have simulated the behavior of this kind of transistor in complementary metal-

oxide-semiconductor (CMOS) logic circuits [Dwyer, 2002].  The details of these simulations

are found in chapter 9.

We have also briefly explored the plausibility of fabricating such a transistor by using

an electron beam lithography technique to form a nanoporous polymer surface.  Figure 3.5 is

a scanning electron microscope image of AuPd rods that we formed projecting out of a poly-

methyl-methacrylate (PMMA) surface.  Similar work in vapor-liquid-solid phase nanowire

growth has uncovered promising synthesis methods [Lew, 2002].  The route that we expect

will most likely lead to successful patterning of the rods is illustrated in figure 3.6.

Figure 3.5. A scanning electron microscope image of AuPd rods protruding out of a poly-
methyl-methacrylate (PMMA) surface.
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Figure 3.6. RG-FET synthesis scheme.  Repeated membrane etching and rod surface
treatments can be used to form banded structures along the rod.

The process begins by forming rods in a membrane (either ceramic or polymer) and

using a selective etch to expose a portion of the rods.  Using silane, polymer, or other resists,

the top portion of the rods would be modified and protected from subsequent etching steps.

A negatively charged silane monolayer could then be used to form a band around the rod that

could be processed to create a metallic ring as reported by Richter [Richter, 2001].  Ring-

gated structures similar to these have been formed on surfaces and their electrical properties

have been measured [Lauhon, 2002; Gudiksen, 2002].

3.3 Nanowire synthesis & self-assembly

The synthesis of nanorods and nanowires is the first step in our process of fabrication

for complex computing circuitry.  The template directed synthesis of nanowires is of

particular interest because such templates permit the asymmetric functionalization of the

nanowire [Lew, 2002; Martin, 1996].  Such asymmetry is important in the control of how the

nanowires attach to other objects, including surfaces and other nanowires.  Our own work in

the functionalization of carbon nanotubes underscores the difficulty in asymmetrically

functionalizing rod-like nanoparticles without templates [Dwyer, 2002b].  Research in the
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area of nanowire / surface interactions has produced valuable mobility information that

makes it possible to estimate the yield of more complex structures [Martin, 2002].

The DNA-guided self-assembly of nanoparticles into complex structures began with

pioneering studies into the formation of artificial geometric structures made from DNA [Yan,

2002].  The more interesting applications of DNA-guided self-assembly to computer design

came in the form of the DNA-guided assembly of nanowires.  Several landmark studies have

shown that it is possible to assemble nanowires (and other nanoparticles) using DNA

[Dujardin, 2001; Mbindyo, 2001; Soto, 2002].  These structures are rudimentary compared to

what is needed by the designs presented in chapters 3 - 7, but demonstrate promising success

in controlling self-assembly.

3.4 Cubic unit cell assembly

Figure 3.7 illustrates a simple cubic unit cell with diagonal supports.  The particular

function of any unit cell is determined by the electrical properties of each rod.  By using the

RG-FETs and rods described earlier, a cell can be combined with others to form logic

circuitry.

Figure 3.7.  A cubic unit cell with diagonal supports (crossbars).  The golden (light gray)
rods are conducting and the dark gray rods are insulating.
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The logic circuitry is first specified using a standard complementary metal-oxide-

semiconductor (CMOS) logic style, as in figure 3.8.  The NAND gate shown in figure 3.8

takes its two inputs, A and B, and produces an output of zero if and only if the two are both

one (Vdd).  This gate represents one of many complete logic sets because sets of NAND gates

can be used to implement any Boolean logic function.

Figure 3.8.  A CMOS implementation of a NAND gate

The circuitry of the NAND gate can be converted into a 3D structure suitable for self-

assembly, illustrated in figures 3.9 and 3.10.  The procedure described in section 3.5 for the

formation of a triangular structure can be extended to form such a rectangular solid as this

logic gate.  One challenge is that the number of unique DNA sequences that a fully parallel

self-assembly method requires scales with the surface area of the structure.  A fully-parallel

method would require a set of unique complementary strands for each junction; the entire

structure could then be formed at once by mixing all of the functionalized rods.

This will only work if there are few internal rods that can be shielded from their

assembly points by external rods that assemble prematurely.  That is, if the outside of a 3D

structure assembles before its inside, the rods will be unable to reach their intended positions

and the core will not assemble correctly.  This leaves the structure empty inside.  To avoid

this problem, rods must be assembled (inserted into the mixture) from the inside to the

outside by sequential ordering.
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Figure 3.9. The conducting portions of the 3D structure for a NAND gate.

Figure 3.10. The physical 3D structure of a NAND gate embedded in insulating unit cells for
structural support.

With a fully parallel approach, the number of unique DNA sequences needed by even

a simple memory element (256 bits) could easily reach tens of thousands.  Fortunately, it is

possible to reduce the number of unique DNA sequences required to assemble a structure by

using a face-serial approach.  In this approach, each face of the structure is assembled in a
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serial fashion.  Since each face is assembled independently, different faces can share a

common set of "active" DNA sequences.  Within a face, the assembly moves from left-to-

right, top-to-bottom.  Figure 3.11 illustrates the assembly sequence.

Figure 3.11. Face-serial assembly of a 3D structure.  The assembly begins first on face 1
(partially completed in this figure), then face 2, and then face 3.  The process repeats until the

structure is complete.

An implementation of the assembly algorithm can be found in appendix B in the file

AssemblyProgDlg.cpp in the function ���������	
��������������	
������	�����.

Each face is assembled using an alternating set of DNA sequences.  A rod will only assemble

between two other rods if it has DNA sequences on its ends that are complementary to both.

The choice and size of the number of unique DNA sequences is related to graph coloring

because adjacent rods must have different DNA sequences (or colors in this case.)

Since a common set of DNA sequences is shared among faces as well as among sites

within a face, the total number of unique DNA sequences is fixed and independent of the

surface area or volume of the structure.  Our designs use 15 unique DNA sequences for this

face-serial method.  Table 3.1 contains the counts of our assembly method for several logic

circuits.  Figure 3.12 illustrates the NAND structure as viewed when each unique DNA

strand is given its own index.  The repetition among rows on each face is apparent and

indicates that the total number of unique DNA strands is fixed.   The trade-off for the face-
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serial method versus full self-assembly is the increased number of steps and time required by

the processing steps.  Many structures can be constructed in parallel, as described in section

3.4, so this method still enables massively parallel self-assembly.

Since this method assembles the structure serially, the time required to build a

structure is linearly proportional to the number of rods in the structure.  It is difficult to

predict the amount of time that each rod will require to assemble properly.  The process can

likely be automated to a high degree and optimized to improve the ~10 minute assembly

times from [Dujardin, 2001].   If the per-rod assembly time can be optimized to less than 1

minute, the modular designs presented in section 3.6 and chapter 6 with ~800 rods per

module would take ~13 hours to assemble.

Figure 3.12. The 3D structure of a NAND gate with each unique DNA sequence represented
by a different color (and number).  Sequence 15 is not visible here because it happens to

appear on the other side only.
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Logic
Gate

Total Rods Metallic Insulating Diagonal
Struts

RG-
FETs

DNA
Sequences*

NOT 90 5 47 34 2 26
NOR 252 18 122 104 4 55

NAND 328 18 164 138 4 63
XOR 522 86 190 214 16 77

Full Adder 1722 273 641 732 38 158
Table 3.1. Assembly statistics for several logic circuits.  * The number of DNA sequences
needed if the conserving allocation method is not used.  The conserving allocation method

needs 15 unique sequences.

The values for table 3.1 came from a custom assembly tool (described in chapter 5)

we developed for converting 3D circuit specifications into rod-DNA allocations.  As the

logic circuitry becomes more complex, the number of required unique DNA sequences

increases.  This underscores the importance of the DNA conserving, face-serial assembly

method described above.

3.5 Assembly method

Our proposed method for constructing computing devices employs the assembly of

simple cubic unit cells (with diagonal supports) using DNA-guided self-assembly.  Control

over the electrical properties of the assembled structure comes from the choice of the

electrical properties of the individual rods in the structure.  For this purpose we have

developed custom software for designing the 3D circuit layout of logic gates.  The software

automatically generates a list of rod types and the DNA sequences required on each end to

form the 3D structure.  First, it is important to understand our proposed assembly process

before examining the algorithms used in the design software.  As an example of the assembly

process, let us consider the assembly of a simple three-rod, triangular structure.

Figure 3.13 illustrates the steps involved in the process.  The process begins by

hybridizing a rod with the solid support (or anchor). The solid support is used to anchor the

intermediate structures during the cycling of reactants and rods.  The first rod has DNA on

one end that is complementary to a region of DNA on the solid support.  The DNA sequences
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attached to the solid support are extended away from the surface by a polymer arm that has a

sufficiently negative linear charge to metallize DNA [Richter, 2001].

Figure 3.13. The assembly of a triangular rod structure.  Each number indicates the order of
operations.  1: Hybridize one end of rod A’s DNA with the solid support’s DNA.  2: Cross-

link the duplex DNA.  3: Hybridize one end of the rod C’s DNA with the solid support’s
DNA 4: Again, cross-link the duplex DNA.  5: Hybridize one end of rod B’s DNA with rod

A’s free end.  6: Again, cross-link the duplex DNA.  7: Hybridize the “coupling” DNA strand
with the DNA on rod B’s free end.  The coupling strand is made to site specifically cross-link
to rod B’s DNA.  8: Hybridize the other side of the coupling strand with the DNA on rod C’s
free end and cross-link the duplex DNA.  DNA metallization can occur after the structure is

complete to form conducting paths between the rods.

The hybridization event between the first rod and the solid support is carefully

controlled to maximize the specificity of the interaction.  By raising the temperature of the

system above the temperature at which DNA strands separate from their complements (i.e.

the melting temperature) of the DNA and then slowly cooling it back to room temperature,

we can ensure a high degree of specificity between the DNA strands (i.e. complementary

strands hybridizing with each other, and each other only).

Non-specific rod-rod interactions (rods sticking to each other when they should not)

may interfere with this intended interaction but similar silicon particle systems have been

developed that minimize this interaction [Martin, 2002].  Section 3.8 discusses this further.

After the hybridization event, the duplex DNA is cross-linked using cisplatin or some

other cross-linking agent to "cement" the connections (forming covalent bonds) so that they

stay connected during later processing steps.  As the process proceeds, each hybridization
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event is carried out under these same conditions to maximize specificity.  This is important

for correctly assembling structures with high yield.  Assembly yield is discussed in section

3.8 and chapter 4.

A fluid containing a concentration of the second rod, which has DNA on one end that

is complementary to a second region of DNA on the solid support, is flushed past the solid

support.  Under the same stringent conditions, it is allowed to hybridize with the solid

support.  Again, the duplex DNA is cross-linked to form a stable and covalently bound

intermediate structure.

Unfortunately, the addition of the third rod is not as simple as the previous two.  If we

were to add a solution containing the third rod type with DNA on each end that was

complementary to the first and second rod respectively, a triangular structure could form.

But an open four-rod structure would also form with relatively high probability.  This is

because two rods of type 3 could hybridize independently with both the first and second rods,

one on each.  To avoid this ambiguity we need to introduce a "coupling" DNA strand.

The third rod is made so that it is complementary on one end to the first rod.  The

other end of the third rod is made to complement one side of a coupling strand.  The third rod

is hybridized with the first rod as described earlier.  The coupling strand is made to

complement the free end of the third rod and the free end of the second rod, with one

modification: the portion of the coupling strand that hybridizes with the third rod has a

psoralen-modified nucleotide, or some other site-specific mutagen.  This modification

ensures that the coupling strand irreversibly binds only to the free end of the third rod

[Qiagen, 2003].

The coupling strand is hybridized with the third rod, as before.  After the coupling

strand has been cross-linked to the third rod irreversibly, the system's temperature is raised

above the melting temperature of the coupling strand and the site is rinsed with buffer3.

Upon cooling, the coupling strand that was bound to the third rod will hybridize with the

second rod.  This unambiguously closes the gap and forms the triangular structure.  Cross-

                                                          
3      A buffer is an aqueous solution of salts that maintain a constant pH (acid or base) in the solution as other
chemical reactions take place (that might otherwise change the pH.)
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linking the duplex DNA again forms a covalently bound and stable structure.  Metallization

of the DNA can occur anytime after the structure has been formed.

3.6 Fluidic self-assembly

For reasons explained in chapter 4 and 6, simple DNA-guided self-assembly is not

likely to have sufficiently high yield (in the near term) to form structures large enough to

perform useful computations.  As the processing techniques mature this yield may increase,

making it possible to assemble larger structures.  In the meantime, it is necessary to also use

an intermediate form of self-assembly known as fluidic self-assembly.

Thin structures made using the DNA-guided self-assembly method described earlier

can be used to form larger composite structures by stacking.  Figure 3.14 illustrates the

stacking of thin structures.  Any circuit design that is too large to assemble with DNA-guided

self-assembly can be divided into portions, or slices.  DNA-guided self-assembly is used to

fabricate each unique slice and the slices are then stacked on top of each other using fluidic

self-assembly to form the circuit.

Figure 3.14. Fluidic self-assembly is used to stack thin structures to form a larger composite
structure.

Fluidic self-assembly is simpler to understand than DNA-guided self-assembly

because it relies on physical phenomena that are observable at the macroscopic (human)
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scale.  The application of a shear force in a fluid flow is what drives fluidic self-assembly.

Each component is shaped so that it can only minimize the force acting on it from the fluid

when it is tucked snugly into the proper hole.  The flow must be weak enough so that it does

not pull components from their holes, yet strong enough to drive each one into a hole.  An

example of this can be found in an industrial process where pyramidal solids are assembled

into pyramidal "divots" in a silicon surface [Alien, 2003].  This scheme works in the same

way that a traveler might use a doorway to take cover from the wind of a storm.  Our use of

fluidic self-assembly is described in section 6.1.

Similar work studying the effects of capillary forces4 on the self-assembly of particles

has illuminated many of the interesting properties of self-assembly [Srinivasan, 2001].

Among these properties is the influence rotational asymmetry has on the ability of a particle

to assemble.  While any child with a set of blocks and a peg board can tell you it is more

difficult to place a square into the board than a circle, these studies have provided the first

glimpse of why this is so at the mesoscopic-scale (between the macroscopic and nanoscopic

worlds.)  Further, rotational asymmetry can be used to control the placement of nanoparticles

using a key and hole approach.

Other work has shown how capillary forces between metallic alloys can be used to

assemble millimeter-scale particles [Clark, 2001; Clark, 2002; Gracias, 2000].  The particles

are driven to assemble due to the same surface free energy minimization5 phenomenon that

creates a water meniscus in glass.  The particles can reduce the strain on their surfaces by

maximizing their interfacial contact areas, thus aligning themselves.

3.7 DNA strand design & assembly tolerances

The geometry of the assembled structure, and the tolerances allowed during that

assembly, affect the design of the individual DNA strands attached to each rod end.  The

                                                          
4      Capillary forces are what create menisci and curved droplets on flat surfaces.  Surface free energy
minimization drives these forces to maximize the contact area between the two materials.

5      Surface free energy minimization is a phenomenon that helps to describe the behavior of surfaces in
contact.  Dangling bonds at the surface of a material create strain that can be reduced when they are brought
into contact with a lower energy surface.
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shape of the rods used also affects the DNA strand design.  These issues are not difficult to

analyze but are important to consider.

The basic rod used in the assembly process is a 50 nm diameter rod with a length of

approximately 500 nm. (Typically, rod diameters deviate by only 1% to 10%, depending on

template material, which implies that for a 50 nm diameter rod the deviation is negligible and

can be ignored.)  Tolerances in the synthesis of each rod will cause a non-negligible

deviation from the average length.  If we consider the distribution of lengths for any

particular rod to be Gaussian, then to use 99% of the starting material, rods within 3·� on

either side of the mean must be accommodated by taking slack from the DNA strand.  This is

the only way a cubic cell can be formed from rods of uneven length.  That is, the joints of a

cube (with diagonals) made from rods with non-uniform lengths must somehow

accommodate shorter or longer than average rods and remain closed.  The elasticity of the

joints determines how far from the average lengths an edge or diagonal rod can be and still

form a closed cube.  Therefore, the length of the DNA strands must accommodate the

distribution of rod lengths and still form highly specific hybridization bonds with

complementary strands.

If the DNA strand is simply made longer, these two requirements become mutually

exclusive because longer DNA strands hybridize less specifically.  It is necessary to reduce

the length of the hybridizing portion of the DNA strand to about 12 bases to maintain high

specificity [Mbindyo, 2001].  Unfortunately, 12 base pairs of DNA only stretch to 4 - 8 nm

— far shorter than the ±10% (100 nm for a 500 nm long rod) seen in typical distributions of

rod lengths [Mbindyo, 2002; Martin, 1996].

The use of a phosphorothioate oligomer (a so-called s-oligo) of universal bases (3-

nitropyrrole 2'-deoxynucleoside) as a spacer is attractive.  There are also other polymers that

can be used to extend the DNA oligo without reducing its specificity, e.g. carbon polymers.

The s-oligo will not hybridize with any other DNA strand because of the properties of

universal bases but will retain the electrostatic and solution-phase properties of natural DNA

[Loakes, 2001].  This property is important during the post-processing metallization step to

fully metallize the DNA junctions.
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The s-oligo is attached to the rod end and the 12 base pair DNA strand attached to the

free end of the s-oligo.  This synthesis can take place during the manufacturing of the DNA

strand and is likely to be an easily-purified product [Loakes, 2001].

The extension, either an s-oligo or another polymer, accommodates uneven rod-

length distributions by allowing the DNA junction to stretch.  Single-stranded DNA is

flexible and will allow rods to rotate relatively freely about a junction.  In the following

section, the specific geometry of a rod junction will be discussed in detail.  We must consider

some basic geometric properties to design the DNA and s-oligo strands.

Figure 3.15. A junction sphere with eight perpendicular rods along each orthogonal equator.
A total of 18 rods can fit around a junction in this manner.

The number of rods that can join at a junction is illustrated in figure 3.15.  Each of the

18 rods that could join at a junction must be able to physically fit around the junction.  It is

helpful then to think of the junction as a sphere having some radius that defines the closest
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approach of any surrounding rod.  Figure 3.16 illustrates the constraint on the junction

sphere's radius along a quarter of one of the orthogonal equators.

Figure 3.16. Geometry of the rod junction along a quarter of an equator.  r0 is the radius of
each rod and rS is the radius of the junction sphere.  Only three rods are shown.

We need to know the minimum junction sphere radius to estimate how long the s-

oligo extension must be to make a junction feasible.  A simple way to find the minimum

junction sphere radius, rS, is to consider a junction sphere larger than it needs to be to fit all

the rods, as represented by the outer quarter-circle in figure 3.16.  While keeping the rods

fixed to the circle, collapse the outer circle until the rods begin to bump each other.  The

radius of the inner circle is the smallest that still allows the three rods to remain fixed to the

circle from the center of each rod end and perpendicular to the arc.

The angle � in figure 3.16 is the angle between the colliding edges of two neighboring

rods. Symmetry requires these angles to be the same.  When the junction sphere is smallest

the sum of these angles for one quadrant is 90˚, so:

2
4

πθ ≤⋅ (3.1)
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That is, � can be no greater than � / 8 when all the rods fit around the junction.  Using

this we can calculate the relationship between �, r0, and rS.  The right triangle CME in figure

3.16 gives us the relationship:

Sr

r0tan =θ (3.2)

Substituting (3.1) into (3.2) and rearranging the result we have:

8tan
0

π
r

rS ≥ (3.3)

That is, equation (3.3) states that the junction sphere radius must be approximately

2.4 times the common radius of the rods that join at that junction.  For the rod dimensions

considered here, 25 nm radius by 500 nm length, the junction sphere must have a radius of no

less than 60 nm.  Since s-oligo lengths are 0.34 - 0.7 nm per base (each base can stretch), we

need a s-oligo with no fewer than 85 - 176 bases (poly-universal.)

This puts a lower limit on the length of the s-oligo extension.  It must be at least 85 -

176 bases just for the junctions to be feasible for 25 nm radius rods.  However, for any larger

structure to be feasible, the extension must be able to give slack to rods of uneven lengths.

That means the s-oligo must be long enough to connect the shortest rods to a junction.

Figure 3.17 illustrates the worst-case situation.
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Figure 3.17. The worst case rod-length and DNA strand placement scenario.  The circle
represents the junction sphere and �L is the length discrepancy.  The variable h is the length
of the s-oligo and DNA strand that can accommodate the length discrepancy and still join at

the center of the junction sphere (marked with a star.)

The triangle made from the line segments rS + �L, r0, and h leads to the following:

222
0 2 LrLrrh SS ∆+⋅∆⋅++= (3.4)

The earlier discussion has fixed the value of h (from figure 3.17) to be larger than 60

nm since it must be at least that large to make the junction feasible if all the rods touch the

junction.  The additional length (beyond 60 nm) will depend on the length distribution of the

rods.  For example, if we assume that a 10% (or ±5%) variation in length covers 99% of all

the rods in a particular distribution, then �L = 50 nm for a 500 nm rod.  This length

distribution is common for template-directed nanorod growth [Dujardin, 2001].  Using the

previously established rS = 60 nm and r0 = 25 nm, the total s-oligo and DNA strand length, h,

must be about 113 nm, or 161 - 332 bases in this case.

The compounding of this error, junction after junction can eventually lead to an

infeasible geometry.  In fact, two worst-case junctions next to each other will create an

infeasible third junction because the adjacent rod would need to be 20% longer than average,

which is outside of the range of rod-lengths we have assumed.  Since we defined �L to be the

length discrepancy that covers 99% of all rods, we have approximately a 1 in (1 / 1%)2
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chance that such a situation will arise per junction.  This means that no more than 99.99% of

all junctions will be feasible.

The junction yield may be improved by grouping rods of similar length together

before assembly.  Such "binning" of rods based on length will reduce the �L that covers 99%

of the rods in a bin and therefore increase the per junction feasibility yield.

3.8 Assembly yield

The hybridization efficiency of the DNA strands and the effect of non-specific rod-

rod interactions will attenuate the actual junction yield.  One particular study places the DNA

hybridization efficiency of a 12-mer at around 98% [Pena, 2002].  Since the number of DNA

hybridization events per junction is anywhere from 7 to 12 (discussed in detail later), we can

estimate the DNA hybridization yield per junction to be in the range of (98%)12 to (98%)7, or

[78.5%, 86.8%].

One way to keep non-specific rod-rod interactions to a minimum is by using a

hydrophilic silane monolayer to coat the outside of the silicon rods.  A related system of gold

nanorods interacting with derivatized surfaces has shown that hydrophilic surface treatments

greatly reduce the non-specific interaction [Martin, 2002].  This study showed that greater

than 99% of all nanorod material remained free from non-specific interactions.  The

application of this method to a silicon rod system appears straightforward.  If so, we can

ignore the non-specific interactions and say that the total yield of structures from raw rods is

as follows:

N
JUNCTIONDNAT YYY )( ⋅=  (3.5)

where YDNA is the DNA hybridization efficiency, YJUNCTION is the junction yield, and N is the

number of junctions per structure.

Each of the structures described later can be divided into a number of "slices" with

approximately 108 junctions per slice.   We can expect no more than (86.8% * 99.99%)108, or

2.267 x 10-5%, of the total number of possible structures (slices in this case) to have formed

properly.  This means that about 2 x 1019 raw rods will be required to produce 7 x 1012 final

structures (or ~6 x 240).  Slicing the each structure into smaller modules, as described in
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chapter 6, is important because many of the circuits described in chapters 7, 8, and 9 need far

more than 108 junctions.  A simple NAND gate from chapter 9 would require ~540 junctions

for a final yield of (86.8% * 99.99%)540, or 6 x 10-32 % if it were not sliced.  Chapter 6

describes another form of self-assembly that can overcome this low yield.

Materials

Commercially available material used in fabricating rods by template-directed

methods have produced as many as 1011 rods per cm2 of membrane [Martin, 1996].  Each

membrane can be re-used so that multiple rods can be produced from a single pore.  If we

assume that 25% of the space above and below each rod is dead space, then a typical

membrane with a 60 µm thickness could support 80 x 0.5 µm long rods per pore.  Using this

technique, the 2 x 1019 raw rod material would require 2.5 x 106 cm2, or the area of about

3,500 x 12" circular wafers.  This is a large amount of membrane material but when

compared to the wafer output of a silicon foundry (~12,000 12" wafers per month) the

number is comparable.  It is likely that as the demand for nanoporous membranes increases,

large volume fabrication plants will become practical.
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Chapter 4. Structural stability and yield

The discussion in section 3.5 underscores the importance of reducing the number of

rods that join at each junction in a structure.  Equation (3.5) shows that the final structural

yield decreases exponentially in the number of junctions, and depends on the per-rod DNA

hybridization efficiency.

It is clear from looking at illustrations of the unoptimized assembled structures seen

so far that they are dense.  Many of the rods inside these dense structures can be removed

without consequence to the overall rigidity of the final structure.  Removing non-essential

crossbar and insulating supports dramatically affect the final yield by reducing the average

number of rods participating in each junction.

The yield estimates from section 3.5 were obtained by taking the number of rods

participating in a fully dense structure, from chapter 7, and reducing it by 50%.  This is an

upper bound on the number of required rods because simply removing every other crossbar

reduces the average number of rods participating in a junction from 12 to 9.  Further,

alternating levels that have crossbars reduces the average to 7 rods per junction.  Section 4.1

describes how the stability of this method was tested.

4.1 Structural stability

The structure becomes unstable when a grouping of junctions no longer has complete

rigidity because the rods under constrain it and substructures can "slosh" around within the

structure.  This increases the chances of signal lines shorting together and should be avoided.

Figure 4.1 illustrates one way to alternate the diagonal support rods so that no more than

seven rods meet at any junction.  Each unit cube in this figure has at least three faces whose

normals are orthogonal with diagonal supports.
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Figure 4.1. Structure with no more than seven rods meeting at any junction.  Each unit cube
has at least three perpendicular faces with diagonal supports.

Since the DNA junctions that bring the rods together are not rigid (i.e. rods are

relatively free to rotate) but can act as harmonic oscillators (the DNA can stretch) the

evaluation of the overall rigidity of the structure involves many coupled harmonic oscillators.

This type of problem is difficult to solve exactly because of the number of oscillators.  As a

guide to determining the rigidity of the structure a spring-mass simulation was used.

Figure 4.2 illustrates the model used with a custom spring-mass simulator to test the

structural stability of the module [Taylor, 2002].  Each junction in the module is replaced by

a small mass connected by stiff springs to the other junctions (the rods and DNA are

represented by the stiff spring.)  Applying a force to one corner of the structure and then

allowing the springs to come to equilibrium tests the structure's stability.  If the geometry of

the module remains intact after the perturbation, then it is likely to be structurally stable.  The

structure in figure 4.2 remains stable, suggesting that 7 rods per junction are sufficient.
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Figure 4.2. Spring-mass model used to test the structural stability of the module after a
perturbing force has been applied.  Only the springs are visible here.

4.2 DNA coupling yield

The face-serial assembly method described in chapter 3 reduces the total number of

unique DNA sequences to 15.  This section discusses the amount of raw DNA that is

required to assemble the structures described so far.  Whenever an estimate is used, the

worst-case is used, making all yield estimates pessimistic.  If after this evaluation the cost

appears manageable, the actual cost is likely to be lower.

It is straightforward to calculate the total amount of DNA (with s-oligo extension)

required to assemble a typical structure.  There are seven types of rods: metallic, insulating,

strut, metallic-strut, p-type RG-FET, n-type RG-FET, and gate.  An upper bound on the

quantity of DNA needed can be obtained by assuming that all rods in the structure need the

same type of DNA strand and that there are 15 such cases, one for each unique DNA strand.

This estimate must be inflated because not all raw DNA-s-oligo strands will react

with a rod end.  Similar DNA-surface reactions have seen reactions progress to 10% of the

saturated monolayer in 4 hours [Mbindyo, 2001].  The saturated DNA monolayer density

was taken as 1 x 1014 strands / cm2 and the starting stock concentration was 10µM.  That is,

about 1.6 x 10-4 % of the stock material reacted with the surface in 4 hours.  Therefore, to
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correct the total amount for reaction efficiency, the original figure must be multiplied by 1 /

1.6 x 10-4 %, or 6.25 x 105.

The earlier discussion of DNA strand design used 1 x 1014 rods as the starting point

for the assembly.  Using this same number of rods and accounting for the reaction efficiency

of the DNA with the surface (of each rod end) yields a total amount of DNA (including the

15 types) of ~2 x 1021 strands.  This number of strands at a typical concentration for DNA,

~10 µM (or 10 x 10-6 moles / liter), would occupy ~330 liters.

The cost of this quantity of DNA can be estimated using current prices available from

vendors.  One vendor, Qiagen, sells highly purified custom DNA strands in bulk for ~$25

USD that can be re-suspended into 1 mL of buffer (water plus some salts) to make a 10 µM

DNA solution.  The 330 liters of DNA solution required for the assembly process would cost

~$8M USD.  Since only 1.6 x 10-4 % of this material is used during construction due to

reaction efficiencies, recycling the waste material may dramatically reduce the cost for a

second construction.

4.3 Purification

Non-functional instances of modules can probably be separated from correctly

assembled ones by centrifugation6.  Therefore, calculations of the modular assembly yield of

a machine in chapter 8 will assume 100% purified modules.  We can trade bulk material for a

higher purity product.  That is, if the final yield for a module is lower than we need we can

purify the module and repeat the assembly method.  The individual pieces, or modules, of a

circuit can likely be purified because properly formed structures will have a different density

and drag profile than structures which did not form properly.  The combination of a unique

mass and drag profile makes a centrifugation purification method an attractive way to

separate good structures from bad ones as long as it does not damage the modules.  Since the

DNA-conserving assembly method assembles structures in a face serial fashion, if at any

point a structure's face is not properly assembled, that structure will fall behind in the

                                                          
6      Centrifugation is a process that can separate particles (and molecules) based primarily on their density.  A
centrifuge applies a high acceleration (~10,000 x G) to a sample and over time low-density particles migrate
toward the top and high-density particles migrate toward the bottom.  The two can be separated by carefully
decanting the top-most layers.
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assembly.  Even if the structure loses only one face due to an aborted assembly (and caught

up on the next face) it will have a noticeably different mass.  For example, a fault in the

module assembly will on average reduce the mass of the module by ~20% (one face with 10

junctions) if a single face is missing.  Ultracentrifugation is routinely used to isolate

biomolecules with mass differences of ~5% [Lebowitz, 2002].
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Chapter 5. Custom design tools

5.1 3D rod design tool

The 3D rod design tool is a program that facilitates the creation of 3D rod structures

for use in self-assembled circuitry.  The user has interactive control of the view of the

structure and distracting rods can be temporarily hidden from view.  Figure 5.1 is a screen

capture from the design tool.

Figure 5.1. Screen capture from the custom design tool.

A user can use the design tool to load existing structures or create new rod structures.

There are no design rules enforced other than the fact that rods must be aligned along one of

the 12 allowed orientations, or be used as a gate electrode.  The design tool also allows the

user to label metallic rods that will be attached to that node in an extracted SPICE deck.  This

facilitates naming signal lines for electrical simulations later.
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The following is an example design process:

1. Create a large cube of insulating rods with the "New cube" button.  If the structure

is not cubic, use the '1', '2', or '3' keys to add additional layers along each axis.

2. Select a rod by clicking on it with the mouse and change it to either a conductor

('m'), NFET ('n'), PFET ('p'), gate ('g'), conducting cross-bar ('c'), or insulating

cross-bar ('s').  The rod type and orientation can alternatively be changed by

double-clicking with the right mouse button on the rod.  This constrains the

properties of the rods to those properties supported by the fabrication technology.

3. Double click with the left mouse button on a rod to center the current view on that

rod.  This feature is used to navigate large and complex structures.

4. Pan with the left- or right- mouse button depressed to rotate the view.  As with the

centering command, this feature is used for navigation.

5. Control+S toggles between fully visible insulating crossbar (struts) and hidden

struts.  Control+T hides/unhides all insulators.  Large and complex structures are

dense and can become difficult to understand.  Hiding insulating rods, which are

only for support, helps reduce the visual complexity of the scene and emphasizes

the structure of the electrical circuitry.

6. Repeat from step 2 until the circuit is complete.

The circuit can be saved and then opened with the assembly tool to create a SPICE

deck for simulation and to gather assembly statistics.

Software platform

The custom design tools were created using the Microsoft Visual Studio in

MFC/C++.  The rods are rendered using a Win32 version of the OpenGL standard.  The

source code for this tool can be found in appendix B.

5.2 Assembly-order tool

The assembly-order tool takes an element structure from the design tool and creates a

DNA conserving assembly order.  The characteristics of this algorithm have already been

described in chapter 3.  The implementation of the algorithm can be found in appendix B.
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Figure 5.2 is a screen capture from the assembly tool.  The end of the each rod is

colored to indicate the sequence of DNA that has been allocated for that rod-end.

Figure 5.2. Screen capture from the custom assembly-order tool.

The assembly tool also extracts a SPICE deck, or input file, from the element

structure.  The final deck can be included in a test circuit to verify that the structure works

properly and to estimate power consumption.

The assembly tool can also be used to create animations of the circuitry that rotate

and step through the assembly process.  This can display the structure of the circuit to help

understand how the circuit must be connected to other modules.

Software platform

The assembly-order tool was created using the Microsoft Visual Studio in MFC/C++.

The rods are rendered using a Win32 version of the OpenGL standard.  The source code for

this tool can be found in appendix B.
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Chapter 6. Power and interconnect

Connecting self-assembled structures to power and I/O electrodes could easily be a

manufacturing bottleneck given the vast number of structures that can be assembled at one

time.  This chapter describes two interconnection methods for 1012 devices that can be

implemented in parallel.

6.1  Modular assembly

Section 8.4 analyzes the tradeoff that helps determine the optimal fabrication yield of

a machine given various design parameters.  Section 3.8 shows how the low yield of a small

logic circuit is impractical and therefore why a monolithic, fully assembled computing

machine is not feasible without improvements in current fabrication yields.  This does not

mean that modular self-assembly is infeasible.  The design-yield tradeoffs help determine the

level of modularity needed to achieve a given final yield by trading larger numbers of unique

modules for higher raw (module) fabrication yields.

The placement of each self-assembled module must proceed unambiguously as did

the rod assembly described in the earlier portions of this chapter.  One simple way to

assemble mesoscopic-scale objects unambiguously is to rely on geometric features and

surface free-energy minimization [Clark, 2001; Clark, 2002].   This method of self-assembly

works by creating modules with a particular geometric shape that can fit into a hole on the

surface like a key.  Materials coated on the sides of the module act like glue to keep the

module in place.  The module shape, or footprint, should be rotationally and reflectionally

asymmetric so that a well-defined orientation for the modules on the surface can be

maintained.

Adopting a standard footprint among modules facilitates the mesoscopic-scale

assembly if that footprint allows only a single final resting-orientation.  This technique is
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used in fluidic self-assembly where an object minimizes the shear force exerted on it by the

fluid when it lands on the substrate in a strictly unambiguous fashion [Alien, 2003].

Lithographically patterned planar substrates, as illustrated in figure 6.1, could be used

as landing areas for the modules if the exposed and developed portions of the resist layer

create recesses that fit the outlined shape of the self-assembled modules.  Maintaining a

registered substrate-to-mask alignment will allow multiple self-assembled modules to be

stacked on top of each other [Srinivasan, 2001].  The tolerances for the lithography process

need to be in the range of half a rod length, or 0.25 µm in this case.  This is well within the

capabilities of present day photolithography.

Figure 6.1. Modular-assembly unit cell mask and module.  The module lands in the exposed
landing area.  A new photoresist mask is constructed and the process repeats.

Modular-assembly simplifies the interconnection problem by disambiguating the

orientation of structures as they land on the substrate.  Since the lithography pattern prevents

improperly oriented modules from landing, the final structure will have a well-defined shape

and orientation, as illustrated in figure 6.2.  The particular photoresist chosen to form the

cavities must support high aspect ratio features and have a low surface free energy.  The



53

commonly used SU-8 photoresist has high aspect ratio features but needs to be doped to

reduce its surface free energy.  Research in this area has shown that it is possible to formulate

epoxy-based photoresists and that the siloxane nature of the polymers makes self-assembled

monolayer treatments feasible [Schmid, 1996; Martin, 2002].

Figure 6.2. A modular assembly of stacked structures.  Photolithographic steps create the
sidewalls that corral the asymmetric structures.

The asymmetry in the footprint of each structure makes it possible to enforce a role

for the substrate electrode and the top electrode (deposited during post-processing.)  We

know exactly how the final circuit will be connected if the method described in section 6.2 is

used for power and I/O.

Using a lithographically prepared silicon substrate instead of a metallic substrate we

can employ conventional VLSI techniques in making a footprint that can communicate with

the processing elements.  The circuitry that controls the communication to the processors can

lie beneath the footprints and be shared by several "stacks".  This is described further in

section 6.3.

6.2  Monolithic assembly

Another solution to the I/O problem is to use fully self-assembled structures

sandwiched between two power electrodes.  This method is applicable to structures that are
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fully assembled before finishing the interconnection method.  Such monolithic assembly

methods require higher yields as discussed in chapter 8.  The most serious drawback of this

method is the large capacitance of the sandwich.  The DAMP design in chapter 8 would

require the control circuitry to oscillate a 9 nF load at greater than 400 MHz, which is energy

intensive.  The alternatives to this method are presented in section 6.3.

Figure 6.3. Layered interconnect method.  The bottom electrode serves as ground while the
top electrode serves as Vdd.

Figure 6.3 illustrates the layered interconnect method.  Each electrode serves a dual

purpose.  The bottom electrode (P0) is used to electrically ground the circuitry and is also

used as a clock signal.  The top electrode (P1) is used to supply a positive voltage to the

circuitry and is also used as a data signal.

This arrangement requires special "power-up" circuitry to be embedded within the

structures.  This circuitry serves to orient the structure as to which direction is "up" (the

positive voltage electrode.)  This same circuitry, through the use of a bridge rectifier, can

supply power and provide a reference for how to use each electrode.  By alternating between

power and signaling phases, the electrodes can be used for both purposes.  The initialization

routine for this system is as follows.
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Figure 6.4. The power-up circuitry used to orient a structure after it has been sandwiched
between two electrodes.  The circuitry tells the structure which electrode was powered up
first and therefore which electrode will serve as a data signal.  The other electrode is the

implied ground and clock signal.

The positive electrode (P1 in figure 6.4) is slowly ramped to Vdd (1V in the circuits

we have considered) while the ground electrode (P0 in figure 6.4) is connected to the system

ground (0V).

After some time, the orientation capacitors (Cor0 and Cor1) will have fully charged or

failed to charge depending on which electrode was powered-up and which was grounded.  At

this point the power-up circuit knows which electrode (P0 or P1) is the positive (and data)

electrode and which is the ground (and clock) electrode.  The signals F0 and F1 will reflect

this orientation and select the proper electrode to be connected to the internal DATA and

CLOCK wiring.

To signal a “1”, the positive electrode and ground electrodes are temporarily held

high.  The ground electrode is returned to ground potential after the circuitry has stored the

input bit.  To signal a “0”, first the positive electrode is grounded and then the ground

electrode is raised to Vdd.  Again, this condition is maintained for a sufficient time to allow

the circuitry to latch the input bit before returning to the power phase (P1 high and P0

grounded).
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The bridge rectifier in the power circuitry charges a capacitor (and the rest of the

power-up circuitry) regardless of which electrode is positive.   The circuitry will function

properly as long as the data and clock steps (step 3 above) are short compared to the power-

up time constant (i.e. the time required to charge the power circuitry).

This circuitry is useful because it works without regard to which electrode is positive

and which is grounded.  If the assembled structures are to be deposited from suspension, they

should be encased in a way similar to that illustrated in figure 6.5.

Figure 6.5. This structure connects opposing sides of a cube (or rectangular solid) to the P0
and P1 wiring inside the structure so that the structure can “land” with any side down and

still receive electrical power and be able to communicate.

This structure connects opposing sides of a cube (or rectangular solid) to the P0 and

P1 wiring inside the structure.  Since opposite sides of the cube are connected either to P0 or

P1, the structure can land on a metallic surface (the bottom electrode) with any of its sides.

A layer of insulating material (e.g. a polymer) could be deposited onto the surface and etched

back to expose the top side of each cube.  Another layer of metal could then be deposited on

top and used as the positive electrode (see figure 6.2.)  This method can be used regardless of
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how the cube lands as long as it makes (or can be made to make) good ohmic contact with

the bottom and top electrodes.

6.3  Output methods

Regardless of which interconnection method is used there must be a way for each

processing element to communicate with the outside world or each other.  It may be possible

using future versions of self-assembling technology that have higher yields to make a single

monolithic device with many connections between elements.  In the near-term where a single

large monolithic device is not feasible and connections are restricted, we must adopt a

modular approach like the one described above.

With no connection other than a common power supply, each processing element

appears to be without any way to communicate.  Aside from receiving commands, there must

be a method for communicating calculation results to the outside.  One potential solution to

this problem is to use a switching noise detection circuit in the power supply.  If tuned to

detect a unique electrical oscillation made by the processing elements, it can communicate at

least a single bit of information.  The nature of this method makes the resultant bit take on

the superposition of all bits being transmitted, which complicates the communication - only

one processing element can communicate at a time.  This can be used in a way similar to how

auctioneers talk to an audience.  A question is posed ("will anyone buy this vase for $10?")

and any eligible members of the audience respond.  The circuit that can implement this

output method is described in the architectural description of the decoupled array multi-

processor in chapter 8, and simulated in chapter 9.

The drawback with this method is the large capacitive load between the power

electrodes and the frequency with which the voltage must change.  That is, a single processor

will have trouble overcoming the large capacitance of the power electrodes to produce a

signal large enough to detect.  A simple way around this problem is to use conventional I/O

methods to clock data into the processors.

Figure 6.6 illustrates a modified footprint that has ports for clock and data signals that

are shared in parallel by several processors.  The ports are signal lines that protrude upward

from the silicon substrate and through the passivation layer (e.g. glass.)  This requires the
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substrate to be more complex than a simple metallic substrate because it needs to have

multiple routing layers and some control logic.  This is possible when the size of the self-

assembled circuits is comparable to the minimum feature size of the photolithography used to

make the substrate.  However, as the components used in self-assembling the circuitry shrink

in size and it becomes impossible to interconnect multiple signals per processor, the two

electrode interconnection method described in section 6.2 will become an attractive solution.

Figure 6.6. Modified footprint that provides a low capacitance clock and data port.  The two
circles inside the footprint are the data and clock electrodes, the ground electrode lines the

rim of the footprint.

A processor can directly sense the data line (or port) by wiring it to a multiplexer

input (see LC1 in section 8.2.)  If the photolithographic process can place multiple viaducts

to the substrate, the data channel can be expanded to multi-bit and/or full duplex.  The

external clock line can be driven by external amplifiers and connected directly to the internal

processor clock line.

For output, external circuitry pre-charges the shared data line and any processor can

pull the line to ground with pull-down logic.  The extremely low drive current of the RG-

FET (~1.6 µA) means that pulling the data line to ground could take a long time if the data

line capacitance is large.  The capacitance of the data line can be reduced by using an H-tree

arrangement, illustrated in figure 6.7, with buffers placed at vertices.  The nodes on the H-
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tree sit below the modified footprints from figure 6.6 and contain pre-charge control

circuitry.   The buffers pass the result of the pull-down to higher levels in the H-tree, and

ultimately to the top of the H-tree.

Figure 6.7. A portion of the processor H-tree.  This circuitry lies beneath the processors (and
the passivation layer) in the silicon substrate.  Each processor footprint is ~4.5 µm on a side.

Since the data line may take a long time to pull to ground with the low drive current

of the RG-FETs it is necessary to keep the data line capacitance below a critical value.  Using

the decay constant 	 = R · C and assuming the line to be can be sensed after 3 · 	 (or after >

90% of the charge has dissipated), the maximum data line capacitance C can be calculated.

The drive current of 1.6 µA means that the RG-FET (operating at 1V) has an on-state

resistance of 625 k�, which we can use as R in the decay constant.  Solving for the

capacitance we get C = � / R.  To operate at 400 MHz, the total decay time 3 · 	 = 2.5 ns, or 	

= 0.83 ns.  Using the on-state RG-FET resistance we get a maximum data line capacitance of

1.3 fF which is practical for standard CMOS technology.  (A 0.25 µm x 30 µm plate

capacitor with a 0.25 µm separation and 
 = 5 · �0 also has a 1.3 fF capacitance.)  As with the

ring oscillator, the output is the logical "OR" of all element outputs.
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Chapter 7. The oracle architecture

The oracle is a new architecture that uses brute force to solve instances of NP-

complete problems.  Inspired by the broad parallelism of DNA computing, the oracle stores

all instances of a problem at the time of its assembly.  Whereas the methods used in DNA

computing that require weeks of laboratory work per problem instance, the oracle uses

electrical circuitry in conjunction with self-assembly to enable it to solve instances of the

problem rapidly.

7.1 Assembly-time computation

All computers require some degree of assembly-time complexity during their

construction.  Traditional computers require photolithographic masks to be fabricated and

materials to be deposited and patterned in complex ways.  This assembly-time complexity

usually generates very little assembly-time computation.  Incorporating portions of a

computation into the design of a machine (e.g. ROMs, micro-code, etc.) has only limited

application when compared against the vast set of problems traditional general-purpose

machines are designed to solve.

The tradeoff between assembly-time and runtime complexity, however, can render

gigantic improvements in performance.  The advantage that application specific integrated

circuits (ASICs) have over general-purpose circuitry is one example of this tradeoff.  An

ASIC design uses a priori understanding of a class of problems to build in assembly-time

complexity that reduces the execution time of the circuit.  For example, a carry-select adder

uses redundant full adders to compute the sum of two operands speculatively.  Only at

runtime will the circuit choose the correct sum.  ASICs are inherently faster than general

purpose circuitry at solving problems because the problem has already been partially solved

by design.  That is, an ASIC solves a portion of the problem before runtime but still

continues to employ a significant runtime component.



62

The type of machine described in this chapter is enabled by the extraordinarily

parallel nature of self-assembly.  The scale of this form of fabrication, discussed in chapter 3,

makes it possible to cover an input space7 that is much larger than what traditional ASIC

designs can cover.  Therefore, the advancement of near molecular-scale fabrication

technology makes it possible to build ASIC-like computing machines that shift the majority

of a computation so that it occurs during assembly of the circuit rather than during its

runtime.

Oracles

An oracle is a class of machines that has within it a large number of question and

answer pairs.  Questions are posed to the machine.  A response is generated if the question is

contained in any of the oracle's question/answer pairs.  In this fashion, the oracle is like a

large content-addressable memory (CAM) that has been preloaded with the answers to a

certain problem.  An oracle differs from a CAM by the method the question and answer pairs

are entered into the machine.  The CAM requires O(2k) steps to load the answers (each of

which have been computed) where k is the number of index bits that serve as an address.

Each address is a question represented by up to k bits with its associated answer.  The oracle

requires O(k) steps to assemble and no runtime loading steps.  The answers are determined

by the manner in which the oracle is assembled.  The self-assembly of each question and

answer pair provides the oracle with the answers (with a high probability but not a certainty

that a given question and answer pair will exist within the oracle.)  If a particular question

and answer pair did not form during the oracle's assembly then the oracle cannot solve that

instance of the problem.

In the same manner that an ASIC is designed to solve a problem more quickly than a

general-purpose machine by incorporating portions of the problem, the oracle is designed to

solve huge portions of a problem space during its assembly.

                                                          
7      An input space is the set of all possible binary combinations (of some number of bits) that are within the
range of meaningful inputs for a given problem.
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7.2 Addition oracle

Architecture

A simple example of an oracle is the addition oracle (not useful in itself, but

illustrative.)  The addition oracle has a simply defined problem and a brief functional

description, and performs all calculations at assembly time.

A B Ci S Co

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Table 7.1. Full-adder truth table

Table 7.1 lists the entries in the truth table for a full-adder.  The addition oracle will

be assembled so that it incorporates many of the possible combinations of the truth table

entries.  Each single line from the truth table represents an instance of an addition problem.

A ripple-carry adder solves addition problems by chaining the carry-out from one full-adder

to the carry-in of the next full-adder.  In a similar way the addition oracle will chain carry-

outs to carry-ins, but at assembly time rather than at runtime.

The oracle is queried for the answer to a problem (in this case an addition problem)

by serially shifting in the operand bits.  If the oracle contains the sum of the two operands, it

responds with the answer by serially shifting out the sum.

Implementation

Each line in the truth table is converted to a "tile" that represents a particular input

and output combination.  This is similar to the way a carry-select adder speculatively pre-

computes a carry pattern and at runtime selects the proper carry path, with the exception that

the oracle pre-computes the entire carry path.  The tiles that correspond to table 7.1 are

shown in figure 7.1.  Each tile has on its left side a carry input and an output.  In this case, the
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top portion of the tile is the carry-in and the bottom portion the carry-out.  The carries are

depicted in such a way that they fit together like the pieces of a jigsaw puzzle.

Figure 7.1. Assembly tiles for the addition oracle (with the full adder truth table.)  A = a bit
from the 1st operand, B = a bit from the 2nd operand, and S = the sum of the two bits.

The iterative nature of the function (e.g. output from step i produces input for step

i+1) allows strings of these tiles to implement an instance of the function's evaluation.  For

example, figure 7.2 illustrates a simple 4-bit string made from the tiles in figure 7.1.  This

particular example is an instance of the addition function for "3 + 5 = 8".  The shape of the

carries on each tile dictates how the string is formed.  Valid strings must match each carry-

out with the corresponding carry-in.  In this fashion, the tiles perform an assembly-time

computation as they form valid strings.  They assemble only into valid solutions for addition

because the carries must match at each stage.
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Figure 7.2. A 4-bit instance of the addition function.  The carry-in and carry-out shapes
determine valid strings.  This string implements the "3 + 5 = 8" instance of the function.

A complete addition oracle is the collection of all possible N-bit strings of tiles.  Each

string represents one particular input and output combination, for example the "3 +5 = 8"

string shown in figure 7.2. In this case, the string will respond with "8" to the question "what

is 3 + 5".  For all other questions the string will be silent.

The yield discussion in chapter 3, and later in chapter 8, indicates that it is feasible to

have on the order of 1 x 1012 individual processing elements, or strings in this case.  This

means that it is feasible to implement all 40-bit input strings (N = 40), or in the case of an

addition oracle all two 20-bit operand sums.

Again, the addition oracle is simply an illustration of an oracle rather than an

exemplar of its usefulness.  The circuit complexity of each string is determined by the

circuitry needed to read the string and respond to queries.  A possible circuit for the addition

oracle is shown in figure 7.3.
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Figure 7.3. Circuit for an addition tile.  The a, b, and s bits are consants assembled into a
particular tile.  The tile is assembled into strings that respect the carry-in and carry-out
matching.  The input query and output bits are serial shifted into and out of the circuit.

The A, B, and S signals illustrated in figure 7.3 carry the input query and response

bits, respectively, for each tile.  The OEi and IEi signals are the output and input enable

signals, respectively, that coordinate the individual tiles in a string so that the string responds

to a query if and only if all tiles in the string match the input query.  The input enable signal

is passed downward along the string and at the very last tile reflected upward as the output

enable signal.  Each tile can interrupt the input enable signal depending on the value of the

current query, or the latched Ai and Bi input signals.  Input queries are serially shifted into all

strings (i.e. the circuits that implement each string) simultaneously.  When the A and B values

match the particular inputs of a string, all the tiles latch their sum values into the Si latches.

The only strings that respond to the query are those that have successfully reflected the input

enable signal to their output enable line.  The output enable signal could be used to trigger a

ringer circuit, described in chapter 6 and 9, that creates an oscillating signal that can be

detected by an external receiver.  This method is useful for problems that require only a

single bit of output (e.g. NP-complete problems).  Alternatively, the output enable signal can

be used, as shown in figure 7.3, to load the sum bit into a D-latch that can be shifted

downward along the string to a ringer at the bottom that responds to the shift-out from the
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string.  An analysis of the power consumption and performance of this kind of circuitry is

presented in chapters 8 and 9.

Generalization of the oracle

An oracle can solve any problem that is expressible as the form illustrated in figure

7.4.  The functions Fi and Gi take the fi-1 and Xi inputs and generate the fi and gi outputs,

respectively.

Figure 7.4. Problem expression solvable by an oracle.

Each input (fi-1 and Xi) and output (fi and gi) are bit vectors.  To aid in initializing the

system, f-1 is assumed to be α, which is a constant defined at assembly-time.

Equation (7.1) through (7.3) describe the addition oracle using the form illustrated in

figure 7.4.  These equations are derived from the truth table for addition, shown in table 7.1.

The input vector X has two elements, A and B, that represent the input operands.  Equation

(7.1) is the carry-out bit, and equation (7.2) is the sum bit.

( ) ( ) ( )][][][][, 11 BXAXBXAXfXfF iiiiiiii ⋅++⋅= −−    (7.1)

( ) ( ) ( )][][][][][][][][, 111 BXAXBXAXfBXAXBXAXfXfG iiiiiiiiiiiii ⋅+⋅⋅+⋅+⋅⋅= −−−   (7.2)

0=α    (7.3)
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Realization

The monolithic fabrication techniques described in chapter 3 can be straightforwardly

applied to realize each tile and string.  The DNA strands used to form each junction can be

selected so that when a new tile is being added to the string the assembly of a single anchor

rod/DNA type determines the tile choice and also respects the carry-out / carry-in matching

rule.  Then, each tile type is assembled in parallel using the face serial method described in

chapter 3.  Since each tile will only assemble to the proper anchor, the new tile's carry-in will

necessarily match the previous tile's carry-out.

However, the near-term self-assembly processes that appear to be most feasible will

require each string of tiles to be divided into thin modular slices.  The individual slices will

not undergo DNA-guided self-assembly but rather fluidic self-assembly.  This means that the

DNA specificity that allowed each tile to respect the carry-out / carry-in matching rule no

longer exists.  Instead, thin modular slices must be stacked on top of each other as described

in chapter 6.  Each module has no preference for which stack it lands on but lands in the

proper orientation on any stack due to its rotational asymmetry.  This requires the tile set

from above to be modified since the carry-out / carry-in matching rules must be enforced.

Rather than using a single tile for each entry in the full-adder's truth table as before,

the entries are grouped according to a carry-in and carry-out pattern.  Figure 7.5 illustrates

the new tile design.  The entire set of tiles will consist of the nine tile types like the one in the

upper left-side of figure 7.5, one tile type like the one on the right side of the figure, and three

tiles like the one in the lower left.  Just as before, the tiles are stacked randomly (valid

because the carries necessarily match between tiles) to form all possible strings of tiles.  The

"LSB" (least significant bit) tile from figure 7.5 is the last tile in each string (at the top) -

since all sums start with a carry-in of zero.
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Figure 7.5. Addition oracle tiles for modular self-assembly.  The constant 0-1 carry-in /
carry-out pattern implicitly allows for the proper matching of stacked and oriented tiles.  The
circuitry in the tile on the right must swap sides to preserve the carry-in / carry-out pattern.
The tile in the upper-left represents 9 different tiles, each with two of the AB pairs shown.

The tile in the lower-left represents 3 different tiles and is the first (or least significant bit) in
any string (both carry-in bits are zero.)

For example, the sum "5 + 6 = 11" in binary is "0101 + 0110 = 1011" with carry-in

values of "1000", and the carry-out values of "0100" is illustrated in figure 7.6.
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 Figure 7.6. "5 + 6 = 11" example using the modular tile set.  The circled portions represent
the sum.

The methods used to orient modules in chapter 6 will need to be applied to the tiles

described here.  The rotational asymmetry of the tile shapes in figure 7.5 is required, but has

been omitted from the diagram here for the sake of clarity.  As with the earlier tile set, the

new tile set stacks to form N-bit strings representing the sum of two N-bit numbers.  The

circuitry of both tile sets (from figures 7.1 and 7.5) is identical with the exception that each

tile in figure 7.5 has two copies of the circuit.  The tile on the right-side of figure 7.5 must

swap sides to maintain the carry pattern from the bottom of the tile since both the AB=11,

Ci=0 and AB=00, Ci=1 truth table entries produce Co = !Ci.
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7.3 Hamiltonian path oracle

The Hamiltonian path (HAM-PATH) problem is in a complexity class known as NP-

complete  and represents what is considered to be an intractable problem.  The problem

consists of finding a path through a given graph of nodes connected by arcs that visits each

node exactly once.

The HAM-PATH oracle computes all paths through a fully-connected graph at

assembly-time in a manner very similar to the way Adleman solved the HAM-PATH

problem using DNA [Adleman, 1994].  The difference is that Adleman's approach solves the

problem for one particular graph while the HAM-PATH oracle can solves it for any instance

of the problem with a fixed number of nodes.

Adleman's solution encodes each edge in a graph as a DNA fragment that has two

"sticky" ends representing the starting and ending nodes of the edge.  Each node in the graph

is allocated a sequence of DNA and any edge that starts at that node will use this sequence on

one end.  The other sticky end of the DNA fragment uses the complement of the DNA

sequence assigned to the ending node.  All of the fragments are mixed together and form

strings of edges (in the form of DNA fragments) that represent feasible paths through the

graph.  Since Hamiltonian paths visit each node once, only strings with as many edges as

there are nodes in the graph are feasible Hamiltonian paths.  All other strings are discarded.

Cycles in the graph need special treatment [Adleman, 1994].  The entire process takes on the

order of weeks.

The way the HAM-PATH oracle solves all instance of the problem is by solving the

problem for a fully connected graph and then discarding solutions at runtime based upon a

particular input graph.  Paths from the fully connected graph that do not appear in the

problem instance are deleted.  This idea is illustrated in figure 7.7.
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Figure 7.7. The fully connected graph on the left is collapsed to a particular graph on the
right by deleting edges that do not appear in the problem instance.  The dashed lines

represent deleted edges.  Conversely, the solid lines represent the remaining edges that have
been selected for the current problem (specifying all edges in the problem graph.)

Like the addition oracle, the HAM-PATH oracle uses random strings of tiles to

perform an assembly-time computation.  The addition oracle formed all N-bit sums at

assembly time.  The HAM-PATH oracle forms all paths through the fully connected graph.

At runtime the HAM-PATH oracle selects the edges that exist in the current problem

instance.  After selecting the edges in the problem instance one or more computing elements

within the HAM-PATH oracle responds (electrically) to indicate that a Hamiltonian path

exists through the graph if it has a solution.

The design of each HAM-PATH tile is somewhat more complicated than the tile

designs for the addition oracle because the tiles need to support removing nodes from a set

and responding to selected graph edges.  Strings of tiles (computing elements) without the

proper edges must disable themselves.  For brevity, only the modular self-assembly

technique is considered here.

Algorithm

Details of how the tiles solve Hamiltonian graph problems are given later in this

section.  The basic idea is that each tile randomly chooses a node from the fully connected

graph and tests for the edge between that node and the node chosen by the next tile (above) in

the string at runtime.  If the edge is in the current problem instance (a particular graph less

connected than the fully-connected graph), the SR-latch is set and the output enable (OE)

signal is passed upward.  If a string has edges that are in the problem instance, then that

string represents a valid Hamiltonian path since each node occurs only once in the string of

tiles.  Each tile selects randomly from the remaining set of nodes after all the earlier tiles
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have chosen their nodes.  This means there cannot be any repeated nodes in the path chosen

by a string.

The following example illustrates how a particular path is assembled using the HAM-

PATH tiles for a 4 node graph.

Figure 7.8. The fully connected graph on the left is reduced to the graph on the right by
removing edges.  The graph on the right represents an example graph.

Since a fully connected graph has all possible paths there is no question that it will

have a Hamiltonian path.  The real question is if a graph that is not fully connected has a

Hamiltonian path.  Therefore, the fully connected graph (represented by all possible strings

of the HAM-PATH tiles) must be reduced to a graph of interest.  Edges that do not appear in

the instance graph (but that necessarily do appear in the fully connected graph) must be

removed.  This means that any path that uses an edge that has been removed from the fully

connected graph cannot be a valid path through the instance graph.
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Figure 7.9. An example string that represents a Hamiltonian path (D-B-A-C) through the
example graph.  This string is only one from the 4! (24) randomly assembled strings that

represent all paths through the example graph (some of them are Hamiltonian paths.)

Figure 7.9 illustrates a string pulled from the soup of all randomly assembled 4-tile

strings in the oracle.  Since all the edges represented by the string (D-B, B-A, A-C) are in the

example graph this string represents a Hamiltonian path.  Figure 7.10 illustrates the basic tile

schematic.
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Figure 7.10.  Basic HAM-PATH tile schematic.

Figure 7.11. The four node tile set for the HAM-PATH oracle.  A mixture of each tile, Ti,j, is
used to assemble all possible 4-tile strings randomly in 4 steps.  T1,* tiles are used during the
first step, T2,* tiles during the next, and so forth.  Inputs 1,2,3, and 4 represent node values

that are propogated through the tiles as shown in figure 7.11.

Notice that the T1,4 tile at the bottom of the string in figure 7.9 could have been any

of the T1,* tiles.  The string would be valid (with other tiles) so long as the respective edges
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exist in the example instance graph. The T2,2 tile could have also been any of the T2,* tiles in

the same way, and so forth.

The relationship between the input vector X and output vector Z in figure 7.10

depends on the position of the tile in the path string because each tile must remove the node it

chooses from the set of nodes that can be chosen by subsequent tiles.  Equation  (7.4) defines

the relationship between a tile's input and its output and figure 7.11 illustrates an example 4

node tile set.

(7.4)

where N is the number of nodes in the fully connected graph, the output and input

ordinal (from figure 7.8) j ∈ {0 … N-1}, the tile position (or step) i ∈ {1 … N}, and the tile

type n ∈ {1 … N}.

The Si signal from figure 7.10 is the node selection signal that tells a tile that its

randomly chosen node is the end point of an edge in the problem instance.  The logical AND

of this signal and the one from the tile above (Si+1) is used to store a bit that reflects the

existence of the edge in the graph.  This bit allows the output enable signal to propagate

upward through the string so that if all the tiles have valid edges, an output circuit at the top

of the string (of circuitry) may indicate to the controller that a Hamiltonian path exists in the

graph.

Selecting edges in the instance graph

A circuit at the bottom of the stack of tiles provides graph edges to the string of tiles

above.  This circuit, illustrated in figure 7.12, uses a serial input, X, and a clock signal to shift

bits into an N-bit shift register, where N is the number of nodes in the fully connected graph.

The N-bit word shifted into the register must have a one as its left-most bit to trigger the
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input to be connected (through pass-gates) to the bottom tile and later a clear signal to reset

the register for the next edge.

Figure 7.12. Serial control circuit that provides edge information to a string of tiles stacked
above.

The reset signal is asserted at power-up long enough to reset all the RS-latches in the

string of tiles.  This allows a sequential list of edges to be clocked into the serial control

circuit that selects each pair of tiles.

The circuits described above can be run at a clock rate of at least 400 MHz, as

discussed in chapter 9, which means that a single edge can be selected from the fully

connected graph in less than 30 ns. (10-bit edge identifiers clocked in serially (25 ns / edge) +

5 ns of propagation time per edge = 30 ns / edge.)  Therefore, the time required by the HAM-

PATH oracle to solve any 15 node graph problem (with < 152 edges) is less than 6.75 µs. The

material limitations described in chapter 3, and later in chapter 9, prevent the HAM-PATH

oracle from being able to handle graphs with more than 15 nodes.  An Intel Pentium 4, with

an estimated sustained path evaluation rate of 5.375 x 108 paths / second, can solve the worst-

case 15 node Hamiltonian path problem in about 40 minutes.  That is, the HAM-PATH

oracle is 3.5 x 108 (350,000,000) times faster than the Intel Pentium 4 with worst-case 15

node Hamiltonian path problems.

Comparing the performance of the HAM-PATH oracle to a comparable

supercomputer, the NEC Earth Simulator (ES), we find that the ES can perform an estimated

6.56 x 1012 paths / second or a complete problem in ~200 ms.  This means that the HAM-
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PATH oracle is ~40,000 times faster than the NEC Earth Simulator with worst-case 15 node

Hamiltonian path problems.

The HAM-PATH oracle performance can be degraded by a factor of 40,000 and still

match the ES performance.  Since the power consumed by CMOS circuitry scales linearly

with clock frequency the slower DAMP clock rate of 10 kHz would consume only 88 W of

power compared to 12.8 MW for the ES.  (The HAM-PATH oracle consumes ~15 mW while

idle.)
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Chapter 8. The decoupled array multi-processor (DAMP)

Architecture of practical value

En masse, simple processing elements can perform incredible computational feats.

Consider multi-bit distributed computing projects like "SETI @ home" and the "United

Devices Cancer Project" that use massive parallelism to accomplish super-computer scale

tasks with idle desktop computer processing cycles.  The early limitations of a self-

assembling realization technology will require small circuitry.  Single bit, serial processing

elements are well suited to such limitations.  They require less circuitry and have simple

interfacing requirements.

The tradeoff between assembly-time and runtime complexity has at one end the

oracle, described in chapter 4, and at the other end traditional sequential and parallel

machines.  The oracle has nearly no runtime complexity because its computation is

performed during the assembly process.  This limits the oracle to solve one particular class of

problem.  Greater flexibility comes by introducing more runtime capabilities into the

machine design.  The topic of this chapter is a particular machine design at the other end of

the spectrum from the oracle.  The decoupled array multi-processor  (DAMP) employs much

greater runtime computation to achieve greater problem flexibility than the oracle.  In this

sense, the DAMP is more practical because it has broader applicability that can offset the

cost of developing the self-assembly techniques required to build the machine.

The DAMP is similar to traditional single-instruction multiple-data (SIMD) machines

with two important differences: no inter-processor communication, and many more

processors.  The most significant difference is the lack of any communication hardware

between processors.  The large machines found in supercomputing centers today have high-

bandwidth interconnections between processors.  Unlike these modern machines, the

processors in the decoupled array multi-processor have no way to communicate with each
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other except through a shared control unit.  This limits the decoupled array multi-processor to

"embarrassingly parallel" problems.

The magnitude of the number of processors in each machine type is also dramatically

different.  Whereas most machines typically have less than 100,000 processors, the

decoupled array multi-processor has on the order of 1012 processors (at least seven orders of

magnitude larger than in conventional SIMD designs.)  The complexity of any individual

processor is greatly diminished with respect to the processors used in SIMD machines.

For comparison, an Intel Pentium 4 (P4) has ~55 x 106 transistors while a single

DAMP processor has ~1600 transistors.  That is, the P4 has the equivalent of 34,375 DAMP

processors worth of transistors.  The entire DAMP has ~1.75 x 1015 transistors, or the

equivalent of ~32,000,000 Intel Pentium 4 processors.  If a single P4 (and its accompanying

hardware) occupies a 0.08 m3 volume, the number of P4s that are equivalent to the entire

DAMP (12 m3 volume) would completely occupy 2.5 x 106 m3 or a square room ~3,300 feet

on a side with a 6-foot high ceiling.

The following sections describe in detail the architecture, implementation, and the

first-level realization of the decoupled array multi-processor.  The last section of this chapter

deals with design / yield tradeoffs that are important to consider in light of finite material

budgets.

8.1 Architectural description of the machine

The basic structure of the DAMP is illustrated in figure 8.1.  A node controller sends

control signals to each processor node.  The processor node transmits these signals to each

processor under its control through two signaling electrodes.
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Figure 8.1. The node controller and processor node arrangement.

A single instruction stream is broadcast to all processors in a node and each processor

conditionally executes the instructions depending on the value of the wait-status bits.  Figure

8.2 illustrates the basic programming model for a DAMP processor.  The processor is a bit

serial machine with a 16-bit accumulator and five 16-bit general-purpose registers.  The

accumulator, R0, and R1 have the unique ability to load a random constant that is unique to

each processor.  The random constant is determined at assembly time as described in the

realization.  It is used as an index or a random seed for placement in the problem space.

Otherwise, there is no way to differentiate between processors.
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Figure 8.2. Processor diagram.  ACC, R0, and R1 can be loaded with random bits.

In this bit-serial design, the least significant bit is the first bit to participate in each

operation; the bit at the bottom of a register in figure 8.2.  The accumulator can shift

independently from the R0 to R4 registers because of separate shift controls, enabling

relative data shifts.  The operational unit is a full-adder that can provide either the carry out

or sum signal to the accumulator input.  Each register R0 through R4 can receive either their

own lowest significant bit or the accumulator output as input during a shift.

The six status bits can be used to implement a wide range of operations as described

in the later portion of this section.  The definition and operation of each status bit is listed in

table 8.1.
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Status Bit Description
B Loads the current operand bit from R0 - R4
C Loads the current carry out from the current operation
D Detects a one on the output of the current operation
R "Ringer" control set or cleared by special instruction.  The control

transceiver on the processor node can detect when any of the
processors within the node have set R = 1

S Loads with the output from the current operation
W Set according to the value of another status bit (B, C, D, or S), or

cleared.  The machine ignores instructions when W = 1 with the
exception that the RESUME instruction can clear W (W = 0) and

start normal instruction execution.
Table 8.1. Description of the status bits.

The random constants mentioned earlier are a peculiar feature of this architecture that

enables it to tackle large combinatorial problems.  The constant replaces the processor index

commonly used by SIMD machines.  In a manner similar to DNA-computing [Adleman,

1994] the random constants can be cast as instances of problem variables.  The input space

for the DAMP considered here is illustrated in figure 8.3.

Figure 8.3. The input space of the DAMP.

The 240 processors in the DAMP suffice to evaluate any 40 bit input space with only

one run of a program.  A program instructs each processor to manipulate their random inputs

to produce an answer to a problem.  If the answer is satisfactory, e.g. a minimum or below

some threshold, the processor can alert the node controller and a binary search over that

node's input space can begin.  The search is complete when all bits of the random input used

by the winning processor are determined by reading them one bit at a time as described in

chapter 6 and section 11.1.
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If the input space of a problem cannot be fit into 40 bits, additional bits computed at

runtime may be used to augment them.  By using a counter as the least significant bits of the

input space, the 40 random bits can be treated as the most significant bits of the input space.

Each time the program that calculates an answer from the input parameter is run, the counter

is incremented.  This will allow the DAMP to uniformly cover the larger input space,

provided that the assembly-time random bits uniformly cover the 40-bit input space.

The low per-element yield of the fabrication technology used to build the DAMP

demands that each processor be simple.  This drives the use of bit serial processors and a

simple controller.  There is simply not enough room to devote circuitry to storing micro-

code.  As a consequence, all instructions are software encoded that is, synthesized by an

assembler.  This makes the DAMP rely heavily on assembler design.

Since there are only three defined low-level instructions (SETCREG, SETSREG, and

CYCLE), the assembler can arbitrarily choose to implement high-level instructions that

appear to be useful.  The remainder of this section is devoted to the instruction set that is

implemented by the assembler described in chapter 9.  These instructions were chosen

because they have been useful in diagnosing the logic implementation of the DAMP and

have use in the programs described in chapter 11.  In each of the instruction descriptions

below, RX represents any register R0 to R4.  In general, C/C++ style expressions are used to

describe the operation of each instruction.

ADD(RX)
Cycles 159

Operation ACC = ACC + RX

Description:  This instruction adds the 16-bit value in the accumulator to the 16-bit

value stored in a register and replaces the accumulator value with the result.  The carry status

bit contains the value of the carry out from the operation.  The carry status bit is reset before

the operation begins.
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ADDC(RX)
Cycles 131

Operation ACC = ACC + RX +C

Description:  ADDC behaves similarly to ADD with the exception that the current

carry bit is also included in the sum.  This can be used to implement 2's complement

subtraction as follows:
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The ADDC instruction can also be used to implement multi-word arithmetic beyond

16 bits.

ADDI(constant)
Cycles 170

Operation ACC = ACC + 16-bit constant

Description: ADDI simply adds a 16-bit literal to the accumulator.  The carry bit is

cleared before the operation begins.

ANDI(constant)
Cycles 136

Operation ACC = ACC & 16-bit constant

Description:  This instruction performs a bit-wise AND operation between the 16-bit

literal and the contents of the accumulator.  The result is stored back into the accumulator.
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ASR(N)
Cycles 116 + N

Operation ACC = ACC ÷ 2N

Description:  ASR implements an arithmetic shift right.  That is, the accumulator is

shifted to the right (toward the least significant end) and the current sign bit is used to pad the

upper portion.

CLEARB
Cycles 77

Operation B = 0

Description:  Clears the 'B' status bit.  That is, 'B' = 0.

CLEARC
Cycles 55

Operation C = 0

Description:  Clears the 'C' status bit.  That is, 'C' = 0.

CLEARD
Cycles 77

Operation D = 0

Description:  Clears the 'D' status bit.  That is, 'D' = 0.
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CMP
Cycles 131

Operation D = !(ACC == 0)

Description:  This instruction compares the accumulator with zero and if they are the

same clears the 'D' status bit (D = 0).  If the accumulator is not equal to zero, the 'D' status bit

is set (D = 1).

CMPI(constant)
Cycles 307

Operation D = !(ACC == 16-bit constant)

Description:  Similar to the CMP instruction, CMPI clears the 'D' status bit if the

accumulator is equal to the 16-bit literal.  If the accumulator is not equal to the 16-bit literal,

the 'D' status bit is set (D = 1).

CMPI8(constant)
Cycles 211

Operation D = !(0xFF & ACC == 8-bit constant); CSR(8)

Description:  This instruction compares the lower 8-bits of the accumulator with an

8-bit literal and clears the 'D' status bit if they are equal.  If the 8-bit literal and the lower 8-

bits of the accumulator are not equal, the 'D' status bit is set (D = 1).  This instruction has the

side-effect of circularly shifting the accumulator by 8-bits (see CSR(N)).
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COPY(RX)
Cycles 92

Operation ACC = RX

Description:  The COPY instruction is used to copy the contents of a register into the

accumulator.

COPYH(RX)
Cycles 215

Operation ACC = (0xFF00 & RX) ÷ 256

Description:  COPYH will copy the upper 8-bits of the specified register into the

lower 8-bits of the accumulator padding the upper 8-bits of the accumulator with the

register's sign bit.

COPYL(RX)
Cycles 154

Operation ACC = RX ÷ 256

Description:  Similar to the COPYH instruction, COPYL copies the lower 8-bits from

a register into the accumulator.  The upper 8-bits of the accumulator receive the register's

sign bit.

COST(RX1, RX2)
Cycles 120

Operation RX2 = ACC; ACC = RX1

Description:  The COST ("Copy and Store") instruction merges two common

instructions into one because each can be made more efficient by using the other's control
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signals.  First, COST stores (see STORE) the contents of the accumulator into RX2.

Secondly, COST copies (see COPY) the contents of RX1 into the accumulator.

CSR(N)
Cycles 88 + N

Operation
S = ACC[0]

ACC = (ACC >> N) | (ACC << (16 - N))

Description:  CSR implements a circular right-shift of the accumulator by N bits.

CYCLE(N)
Cycles N

Operation -

Description:  CYCLE is used to shift bits and execute operations setup by the

SETCREG and SETSREG instructions.  This instruction can be used to synthesize

instructions not previously defined by the assembler.  See the implementation details in

section 8.2 for more information.

DEC
Cycles 159

Operation ACC = ACC - 1

Description:  The DEC instruction decrements the accumulator by 1.  If the contents

of the accumulator decrement past zero, the carry bit will be set and the accumulator filled

with 1s.
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GRAB(N)
Cycles 157

Operation S = ACC[N]

Description:  This instruction is used to copy the Nth bit from the accumulator into the

'S' status-bit.  This is useful in interpreting a value as a bit mask.

INC
Cycles 159

Operation ACC = ACC + 1

Description:  This instruction increments the accumulator.  If the value of the

accumulator increments to zero (overflow), the carry bit will be set.

LOAD(constant)
Cycles 280

Operation ACC = 16-bit constant

Description:  The LOAD instruction is used to load a 16-bit constant into the

accumulator.

LSR(N)
Cycles 88 + N

Operation
S = ACC[0]

ACC = ACC >> N

Description:  LSR implements a logical right-shift of the accumulator by N bits.  That

is, the contents of the accumulator are shifted toward the least significant end by N bits.

Zeros are shifted into the upper N bits of the accumulator.
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LSRC(N)
Cycles 66 + N

Operation ACC = (ACC >> N) | ('C' & (216-N - 1))

Description:  LSRC is similar to LSR with the exception that the logical right-shift

pulls the current carry bit into the upper N bits of the accumulator.

MCOPY(constant, RX)
Cycles 103

Operation ACC = (ACC & !(16-bit constant)) | (16-bit constant & RX)

Description:  The masked-copy instruction, MCOPY, uses a 16-bit literal to select

bits from a register to be copied into the accumulator.  For example, MCOPY(0x0FF0, R4)

copies bits 4 - 11 from register R4 into bits 4 - 11 of the accumulator.  The remaining bits in

the accumulator are left unchanged.

NOT
Cycles 171

Operation ACC = !ACC

Description:  This instruction stores the logical complement of the accumulator back

into the accumulator.

ORI(constant)
Cycles 202

Operation ACC = ACC | 16-bit constant

Description:  ORI stores the bit-wise logical OR of a 16-bit literal and the

accumulator back into the accumulator.
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RANDOM
Cycles 55

Operation ACC = rand; R0 = rand; R1 = rand;

Description:  RANDOM loads three processor dependent 16-bit random values into

the accumulator, R0, and R1 registers.  The number for each processor is determined at

assembly time as described in chapter 9.

RESUME
Cycles 6

Operation 'W' = 0

Description:  This instruction clears the 'W' status bit on all processors.  RESUME

instructs any previously waiting processor to begin executing instructions.

RINGOFF
Cycles 11

Operation 'R' = 0

Description: RINGOFF is used to turn off the output circuitry of the processor.  Each

processor node can detect when the output circuitry of a processor is on, that is when 'R' = 1.

This instruction is used to turn that circuitry off, or to clear the 'R' status bit (R = 0).  See

section 6.3 for further details.
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RINGON
Cycles 11

Operation 'R' = 1

Description:  The RINGON instruction sets the 'R' status bit (R = 1).  This creates an

electrical condition that the node controller can detect, as described in section 6.3. See

RINGOFF for more information.

SETGE, SETLT, SETNGE,
SETNLT

Cycles 55

Operation
Sets 'C' to the appropriate value so that
the corresponding WAIT instruction

will set 'W' = 1.

Description:  These instructions are helpful in restoring the wait status bit just before

a RESUME instruction. The suffix indicates which status bit is consulted before setting or

not setting the 'W' status bit.  The GE, LT, NGE, and NLT suffixes mean greater-than-or-

equal, less-than, not greater-than-or-equal, and not less-than respectively.

A simple IF-THEN-ELSE clause can be implemented as follows:
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Nested IF-THEN-ELSE statements can be implement in a similar manner as long as

the corresponding SET* and WAIT* instructions are executed before and after each clause

(or closing bracket.)

SETB
Cycles 77

Operation 'B' = 1

Description:  This instruction sets the 'B' status bit.  That is, B = 1.

SETCREG(constant)
Cycles 6

Operation -

Description:  This instruction is used to set the target control register that SETSREG

will eventually be used to fill.  SETCREG, in conjunction with SETSREG and CYCLE, can

be used to implement instructions that have not been previously defined by the assembler.

SETC
Cycles 55

Operation 'C' = 1

Description:  This instruction sets the 'C' status bit.  That is, C = 1.
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SETSREG(constant)
Cycles 5

Operation -

Description:  SETSREG loads a constant into the control register pointed to by a

previous SETCREG instruction.  See SETCREG and CYCLE for more information.  See

also, section 8.2 and chapter 3.

STORE(RX)
Cycles 109

Operation RX = ACC

Description:  The STORE instruction stores the contents of the accumulator in the

specified register.

STOREH(RX)
Cycles 171

Operation RX = (RX & 0xFF) | ((ACC & 0xFF) << 8)

Description:  Similar to the COPYL and COPYH instructions, STOREH stores the

lower 8-bits of the accumulator in the upper 8-bits of the specified register.  The lower 8-bits

of the register are preserved.

STOREL(RX)
Cycles 109

Operation RX = (RX & 0xFF00) | (ACC & 0xFF)

Description:  The STOREL instruction stores the lower 8-bits of the accumulator in

the lower 8-bits of the specified register.  The upper 8-bits of the register are preserved.
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WAITB, WAITNB, WAITC,
WAITNC, WAITD, WAITND,
WAITS, WAITNS, WAITGE,
WAITNGE, WAITLT, WAITNLT

Cycles 12
Operation Set 'W' = 1 if the status bit condition is true.

Description:  These instructions set the 'W' status bit (W = 1) if the corresponding

status bit is set.  The suffix indicates which status bit is consulted before setting or not setting

the 'W' status bit.  The GE, LT, NGE, and NLT suffixes mean greater-than-or-equal, less-

than, not greater-than-or-equal, and not less-than respectively.  These suffixes will cause the

'W' status bit to be set if a previous CMP or subtraction (see ADDC) generated the condition

implied by the suffix.

XOR(RX)
Cycles 148

Operation ACC = ACC ^ RX

Description:  This instruction stores the bit-wise exclusive-OR of the accumulator

and specified register back into the accumulator.

8.2 One implementation of the DAMP

The 240 processors in the DAMP are spread out evenly across 4,096 processor nodes,

228 processors per node. As described in chapter 6, the processors at each node are contained

within a processor substrate that is a thin wafer of processors either connected on both sides

to metallic electrodes or through a patterned silicon substrate.  The output circuit will be

described in more detail and is simulated in chapter 9.  As described below, each processor

node is connected to a high-speed control network that is capable of distributing control
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words at a rate high enough to keep up with the maximum processor clock rate.  The

processor node requires sufficient packet buffering capability to deal with control network

traffic.

A central node controller distributes signaling commands to the array of processor

nodes.  The node controller is responsible for splitting up a problem space among the

processor nodes and collecting the results.  Chapter 9 discusses the simulation of the circuitry

for this and estimates of the maximum clock rate.  At a clock rate of 400 MHz and an

average of 158 bits per integer instruction, the node controller must be able to distribute

about 3 Mbps to each processor node.  The specific topology of the control network will

determine how fast the network interface on the node controller needs to be.  Even if each

processor node is connected to a single interface on the node controller the total throughput

requirement will be less than 4,096 x 3 Mbps, or about 12 Gbps to the processor nodes.

The DAMP processors are implemented using complementary metal-oxide

semiconductor (CMOS) logic circuitry as described in chapter 6.  This circuitry behaves

similarly to conventional CMOS circuitry and can be treated as such in this implementation.

The performance of the DAMP will be evaluated using a power budget similar to that of the

NEC Earth Simulator and IBM BlueGene /L, or ~3.5 MW.  This makes the power allocation

about 850 W per processor node.

Each DAMP processor element has a register file of five 16-bit registers, a register

control unit (RCU), an arithmetic-logic unit (ALU), a control state machine (CSM), control

registers, and a wait & trigger controller (WTC).  The four-gate path from the control register

to the reset signal in the WTC is the longest logic path through the processor, and is therefore

the critical timing path.  The following describes each of these units and the logic from which

they are built.

8.2.1 Register file, register control unit (RCU), and arithmetic-logic unit (ALU)

Figure 8.4 illustrates the logic and arrangement of the register file, RCU, and ALU.

The register file is composed of six 17-bit shift registers. Even though each register has 17

bits, the last bit is consumed during a shift operation leaving an effective 16 bits per register.

One of the six shift registers is controlled independently from the other five.  The five
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dependent registers are numbered R0 through R4.  The one independent register is called the

accumulator (ACC). The accumulator, R0, and R1 can each be loaded with a random number

that was encoded into their circuitry during assembly.  This circuitry, described in chapter 9,

requires the register values to be zero before the random bits can be loaded.

The number of bits per register can be easily increased as the processing yield is

improved since the entire machine is serial.  In particular, the fluidic self-assembly yield

must be improved so that more modules, as described in chapter 3 and later in section 6.3,

can be used per processor.  The extra modules can then be devoted to register bits without

redesigning the remainder of the processor.  This will, however, increase the power

consumed per instruction and the simulations in chapter 9 will need to be re-done.

The RCU is used to control the source and destination of bits for the R0-R4 registers

and the accumulator.  The multiplexers of the RCU coordinates swaps, copies, and bit

interleaving between registers.  Additionally, the RCU selects operands for the ALU and

controls what signals the accumulator will use as input.
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Figure 8.4. Implementation of the register file, register control unit (RCU), and arithmetic &
logic unit (ALU). "R*" and "S*" are asynchronous reset and set control signals, respectively.

The AC (2-bits), RC0 - RC4 (1-bit each), LC1 (2-bits), and LC2 (2-bits) multiplexers are
each set by control bits from the control registers.

8.2.2 Control state machine (CSM)

Figures 8.5 and 8.6 illustrate the control flow and logic of the CSM.  The inputs to the

CSM are the immediate bit (X) and clock signal (CLK) taken from the control electrodes that

sandwich the processor.  The CSM is the starting point for all asynchronous and synchronous

signals in the processor.



100

Figure 8.5. The serial control diagram for the control state machine.  An input bit of 0 moves
along the side-arrow while an input bit of 1 moves along the bottom-arrow. "N" is the

neutral-state, "S" is the setup-state, and "C" is the control-state.

The state machine will be in the 'start' state upon reset.  An input sequence of '11' puts

the machine into the 'S', or setup state, and a sequence of '10' puts the machine into the 'C', or

control state.  The 'S' and 'C' states are sinks that can only be moved from with a reset

(RESET_S0S1.)  The four states of the CSM can be encoded with two bits (S0 and S1.)  The

reset signal is generated after a setup register or control register has been filled with data.

This is described in more detail below.
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Figure 8.6. The control state machine (CSM) that implements the state diagram from figure
8.5.  "R*" is an asynchronous reset control signal.

8.2.3 Control registers

Figure 8.7 illustrates the structure and logic used by the control registers.  These

registers control the multiplexers and decoders found throughout the processor.  For example,

LC1a, and LC1b are the two control bits that set the LC1 multiplexer.  When the word

(LC1a, LC1b) is 00, LC1 selects its top-most input, R0.  Table 8.2 lists the various

multiplexer control words and input selections.

Multiplexer Control Signal Word Inputs Selected by Control Word
AC ACa, ACb 00: ACC, 01: LC1, 10: Co, 11: S
LC1 LC1a, LC1b 00: R0, 01: LC2, 10: LC2b, 11: !LC1*

LC2 LC2a, LC2b 00: R1, 01: R2, 10: R3, 11: R4
WC1 WC1a, WC1b 00: B, 01: C, 10: D, 11: S
WC2 WC2 0: WC1, 1: !WC1

RC0 - RC4 RCx 0: Rx, 1: ACC
Table 8.2. Multiplexer selections. * - the LC1 multiplexer is used to signal a bit to the

controller.  See chapter 6 for details.

Each control signal has been grouped into a control register by function.  For

example, control register S1 selects the input bit for the accumulator.  This is a common

operation and should be efficient, therefore no other signals are grouped into the S1 control
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register.  In order to minimize circuitry, each control register has a detection circuit attached

to its right-most bit.  This detection circuitry, found in the WTC, triggers a reset condition

after the contents of the control register have been loaded.  For example, before a control

register is written to a clear signal is generated by the WTC.  This clear signal

asynchronously sets the contents of the target control register to zero.  Next, the control word

for the register is serially clocked into the register with a one as its prefix.  The prefix bit

signals to the detection circuit that the word has been clocked in successfully by shifting out

at the right end of the register.  This simple scheme replaces the need for a counter or other

state machine to keep track of the progress of control word loading.
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Figure 8.7. The control registers.  Each shift register is triggered by a circuit from the wait &
trigger control unit (WTC).  The input to each register is taken from the current serial input

bit (IMM).

8.2.4 Wait & trigger controller (WTC)

Figure 8.8 illustrates the logic and structure of the WTC.  The WTC is primarily

responsible for generating control register shift signals, register file shift signals, the reset

signal, and the wait signal.  The WTC also takes input from the CSM to indicate when the

selected control register should be cleared.
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Figure 8.8. Implementation of the wait & trigger controller (WTC).

The instructions implemented by the assembler described in section 8.1 require

specific bit-serial signals to instruct the processor to perform the given operation.  The

implementation details for these instructions can be found in appendix C.

Physical housing

The size of the physical enclosure for a processor node depends on the yield estimates

made in chapter 3 and further expanded in section 8.4. These yield estimates indicate that we

can expect 16% of the total number of processors in a node, or about 228 processors, to work

properly (7 x 1012 processors / 4096 nodes = 1.7 x 109 processors per node.)  Since the non-

functional processors take up space on the substrate, the number of processors along the side
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of a square substrate is the square root of the total number of processors per node, or about

41,231 processors.

Figure 8.9. Processor spacing pitch on the substrate.

The processor pitch Xp and Yp is equal to 5 µm, illustrated in figure 8.9, yielding a

processor substrate width, WN in figure 8.10, of approximately 205 mm square (7.4” x 7.4”.)

This pitch can be taken from the nanorod layout described in section 8.3.  If a 0.5 µm thick

metallic electrode is used as the top electrode and the substrate is 5 mm thick, the total

processor substrate thickness, HN in figure 8.10, is about 5.125 mm.
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Figure 8.10. Processor substrate dimensions.

The dimensions of the processor substrate directly impact the size of the processor

node housing, illustrated in figure 8.11.  If we use a 20% margin on each side of the

processor substrate WN = 246 mm, or about 9".  The space above the processor substrate will

need to be large enough to accommodate the bubbles created by a boiling pool of coolant.

Without experimental data on the size of pool boiling bubble sizes, it is difficult to know how

large this space should be.  However, this spacing must be determined to estimate the size of

the DAMP.  As a conservative estimate, the spacing will be taken as 5 times the thickness of

the processor substrate, or about 25 mm (~1").
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Figure 8.11. Processor node housing and cooling jacket.  The housing has a stacking height,
HS, housing height, HH, and a housing width, WH.

The stacking height, HS from figure 8.11, can be estimated by calculating the distance

between processor node housings.  Since the housing is 25 mm thick, the minimum pitch is

also 25 mm, or about 1".  Again, adding a 20% margin on the spacing makes for a

pessimistic housing pitch of 30 mm, or about 1.1".  The housing is held at a 45˚ angle to

allow convection and pool boiling to remove heat.  The housing height, HH, is therefore WN �

sin(45˚) = 174 mm, or about 6.3".

The final dimension to be determined for the housing is WH, or the housing width.

This parameter is needed to determine how closely each node stack can be packed.  To

determine this parameter, the size of the control transceiver must be estimated.  The control

circuitry can extend along the 9" width of the node housing (into the paper in figure 8.11)



108

and be at least as deep as the node stacking height, or 1".  A conservative estimate of 3" for

the control circuitry extension makes the housing width parameter WH about 3" longer than

HH, or 7.3", given the 45˚ angle of the housing.

The volume of a DAMP rack is the volume of a single stacked-processor node

multiplied by the number of nodes per rack.  If a rack is 6' tall, then it can house about 72

nodes.  Each rack has a footprint of about 8" x 9" without considering the coolant delivery

and return lines.  Since each processor node has 228 processors and each rack has 72 nodes, a

full DAMP (240 processors), requires about 57 racks.  These racks can fit into a 6' x 6'

footprint.  Again, these estimates do not take into account the coolant delivery and return

lines.

8.3 Nanorod layout

This section examines the 3D layout of several commonly occurring circuit structures

in the DAMP.  The complete layout of the DAMP is left as future work but would include

each of these component circuit structures.  The circuit schematics and simulation results for

these structures can be found in chapter 9.  The most important goal of producing these

layouts was to determine a first draft footprint and size for each circuit so that later yield

estimates could be based on actual designs rather than estimates of circuit designs.  As with

conventional VLSI, signal routing was the biggest challenge to fitting a circuit within the

standard footprint.  This footprint was chosen because each required circuit could fit and that

it was small enough to be plausibly fabricated.  The footprint shape was also chosen to have

neither rotational nor reflectional symmetry, thus ensuring proper unambiguous lock-and-key

self-assembly.

The illustration in figure 8.12 is the layout footprint.  Each circuit was designed to

have a projection that fits within the layout footprint.  The two full sides of the footprint

measure approximately 4 µm and 3.5 µm.
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Figure 8.12. Layout footprint with row and column indicators.

Some of the layouts illustrated later in this section does not have the exact outline of

the footprint.  This is because many of the basic circuits do not occupy the entire footprint

and can be put side-by-side with other circuitry.  These primitive circuits can be pieced

together to fit into the full DAMP layout footprint.  All layout designs, except figure 8.13, do

not show the insulating rods.
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Figure 8.13. Nanorod layout of an inverter.  Insulating and conducting rods are used for
support.  Circuit diagram in figure 9.11.

Figure 8.14. A view of the nanorod layout for a NAND gate. Circuit diagram in 9.12.
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Figure 8.15. The 2-input multiplexer (MUX2).  Circuit diagram in figure 9.13.

Figure 8.16. One-bit decoder.  Circuit diagram in figure 9.14.
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Figure 8.17. The ringer circuit.  A two input multiplexer, with an inverter on its output, is tied
back to an input.  Selecting that input will create an externally detectable oscillating power

signature. Circuit diagram in figure 9.18.

Figure 8.18. A view of the nanorod layout for a full adder. Circuit diagram in figure 9.15.
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Figure 8.19. View of the nanorod layout for a single bit of the six-register cell.  One of the
six D-latches is clocked independently (for the accumulator) from the other five by using

SAo/SAi instead of SRo/SRi. Only one of the six pairs of In and Out signals are labelled, all
are present.  Some GND signal labels have also been omitted.  Circuit diagram in figure 9.17.

The register cell from figure 8.19 uses randomized rod assembly events to create a

random constant that can be loaded into three of the six registers.  The 'Load' signal is tied to

a load circuit by a single rod for each of the three random-enabled registers.  If the rod is

conducting, the particular bit will be raised to a one.  If the rod is insulating, the particular bit

will remain unchanged.  A mixture of insulating rods and conducting rods can be used during

that step in the assembly to uniformly distribute random bits since each rod has a 50% chance

of being either insulating or conducting.  The load procedure requires the initial contents of

the register to be zero since the load circuitry cannot set bits to zero.

This mechanism of introducing random bits into the register file should produce a

uniform distribution of numbers since each bit has a 50% chance of being either a one or a

zero.  Since three of the six registers (each with 16 bits) can be loaded randomly, 248

processors are required to cover the entire 48-bit input space.  The DAMP has only 240

processors, which means that the 48 random bits must be mapped to 40 bits for the input

space to be fully covered.
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If the distribution of bits within the registers is uniform, then the probability that a

given log2(M)-bit value does not occur in any processor is (M-1 / M).  For example, if M=4

and we pick a value randomly and compare it against any other value it is clear that there is a

3/4, or 75%, chance that the two will not be the same.  The probability of not choosing a

particular value after two trials is (3/4)2 or 56%.  This can be generalized as follows.  The

probability of not choosing a given value from M distinct values after N trials is (M-1 / M)N.

In the case of M=228 (28-bit values and N=2.68 x 108, the processor count per node from

chapter 8), the probability of not choosing a given 28-bit value is 36.7%.  That is, roughly 1

in 3 processor nodes will have at least one missing 28-bit value.  However, since the

processors have 48-bit random values, the smaller 28-bit space may be covered if an

appropriate hash function is used to convert the 48-bit number to a 28-bit number.  This may

be as simple as incrementing each random number and repeating the calculation for each

known "gap" in the input space.  The determination of the hash function and procedure to

guarantee coverage is a topic for future work.

Each of the circuits illustrated in figures 8.13 to 8.19 can fit into the layout footprint

illustrated in figure 8.12.  The yield and tolerance analyses provided in chapter 3 and in the

next section make it clear that feasible device structures must have fewer than about 108

junctions.  This is possible if the full DAMP circuit layout is "sliced" into modules with the

shape of the layout footprint and are only one rod "thick".  Such modules will have 108

junctions arrayed in a fashion similar to the illustration in figure 8.20.
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Figure 8.20.  A thinly sliced module.

The estimated number of sliced modules required to form a full DAMP processor is

250.  This comes from the following calculations that are derived from the layout described

earlier: 17 x 5 register cell slices, 8 x 6 D-latch slices, 6 x 4 MUX2 slices, 3 x 5 decoder

slices, 1 x 5 full adder slices, 5 x 5 control state machine slices, and an estimated 20% for

routing slices (48) = 250 slices.

8.4 Design & yield tradeoffs

Research has shown that an 89% to 100% yield can be achieved by the fluidic self-

assembly of micron-scale plate structures onto patterned surfaces within minutes [Clark,

2002; Srinivasan, 2001].  The possibility of re-flow chambers capable of recycling material

that is not properly assembled makes this method of surface assembly especially attractive.

A re-flow step is a fluidic "flushing" of a surface in the hopes of recovering material

that did not properly assemble.  Multiple re-flow steps can be used to increase the net surface

assembly yield as long as material is successfully removed from the surface and placed back

into suspension.  The re-flow procedure is only productive if properly assembled structures

remain untouched.  The new re-cycled suspension is then either augmented with new
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material or simply re-applied to the surface for self-assembly.  Hydrophilic surface8

treatments have been successful in making the surface mobility9 of nanoscale particles very

high [Martin, 2002].  This raises the prospect of the possible development of high efficiency

re-flow methods.

The relationship between the net yield of the surface assembly and the number of re-

flow steps required can be derived as follows:

( )FSAYQB −⋅= 10 (8.1)

FSAYQG ⋅=0 (8.2)

Where G0 is the number of modules which successfully assemble onto the surface

initially, B0 is the number of modules which fail to assemble initially, YFSA is the fluidic self-

assembly yield, or the fraction of modules that assemble onto the surface properly, and Q is

the starting quantity of modules (an integer).

Let YRF be the re-flow yield, or the fraction of unsucessfully assembled modules that

can be recovered.  After the initial step, a re-flow step can be used to recover some of the

modules counted in B0 and re-apply it to the surface such that we have:

( )FSARF YYBB −⋅⋅= 101 (8.3)

001 GBYYG FSARF +⋅⋅= (8.4)

Equation (8.3) holds because we have defined the re-flow step as the step that takes a

fraction, YRF, of all previously mis-assembled material and attempts to reassemble the parts

in it onto the surface with yield YFSA.  Equation (8.4) is the accumulation of the "good"

modules from the initial step, G0, and the newly assembled modules from the re-flow step.

                                                          
8      A hydrophilic surface is one that "likes" interactions with water.  The contact angle between the edge of a
water droplet and the surface is used to measure the degree of this interaction.  Small contact angles represent a
hydrophilic interaction, large contact angles represent hydrophobic interactions.  For example, a water droplet
on clean glass will make a small contact angle (hydrophilic), while a droplet on common plastics will make a
large contact angle (hydrophobic.)

9      Surface mobility is the ability of a particle to slide along a surface without sticking.  That is, the particle
does not bind easily to the surface even though the two are close together.
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This can continue as long as Bi, where i indicates the current step, is greater than 1

module.  Accordingly we have equations (8.5) and (8.6), and their generalizations in

equations (8.7) and (8.8).

( )FSARF YYBB −⋅⋅= 112 (8.5)

112 GBYYG FSARF +⋅⋅= (8.6)

( )FSARFii YYBB −⋅⋅= − 11 (8.7)

01 GBYYG iFSARFi +⋅⋅= − (8.8)

The generalized equations (8.7) and (8.8) are recurrence relations that can be reduced

to equations (8.9) and (8.10), respectively.

( ) 11 +−⋅⋅= i
FSA

i
RFi YYQB (8.9)

( )�
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j
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we can let a=YRF and b=(1-YFSA) and reduce equation (8.10) to the following:
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If we let Q = 1.0, then Gi becomes the total surface assembled yield after i re-flow

steps, or YTi.  Rearranging (8.11) to solve for i, or the number of re-flow steps needed to

obtain a given YTi, produces (8.12).

( )( )

( )( )FSARF

FSARF
FSA

Ti

YY

YY
Y

Y

i
−⋅

��
�

�
��
�

�
+−−⋅⋅

=
1log

111log

(8.12)

Equation (8.12) is constrained by the following inequality:

( )( ) 0111 >+−−⋅⋅ FSARF
FSA

Ti YY
Y

Y
(8.13)

Rearranging (8.13) we find,

( )FSARF

FSA
Ti YY

Y
Y

−⋅−
<

11 (8.14)

Equation (8.14) states that regardless of how many re-flow steps, there is a limit to

the final surface assembly yield.  This is, of course, a reasonable result given that YRF is less

than 1.0, or that the re-flow efficiency is less than perfect, and that the fluidic self-assembly

yield is also less than 1.0, also imperfect.

The hydrophilic surface treatments mentioned earlier have shown that greater than

99% of all deposited nanoparticle material can be kept from adsorbing to a treated silicon

surface, with each particle free to move on the surface [Martin, 2002].  If the losses along a

re-flow system are kept to less than 5%, then we can safely use an estimated YRF = 0.94.  The

previously mentioned fluidic self-assembly yield was between 89% and 100%, which makes

for a conservative YFSA = 0.89.  Using (8.14) and (8.12) we can calculate a maximum re-flow

yield, YTi, of 99.26% achievable in 5 re-flow steps.

The lithographic step involved in preparing the substrate, between module assembly

steps, may introduce an imperfect processing step, but since conventional photolithography

can routinely align features on the scale of the nanorods considered here, it is unlikely that
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this will reduce the yield.  The annealing of metallized DNA junctions may also reduce the

final yield.  However, the ability to continue the metallization process after the modular

assembly is finished and electrochemically "welding" the junctions together makes this also

appear to be a negligible reduction in yield [Richter, 2001].

The designs from section 8.3 and chapter 6 can be implemented by stacking the

approximately 250 modules (each one is a slice of the total processor circuit.)  The per step

yield estimate derived earlier can be used to estimate the final assembly yield after 250 steps.

That is, approximately (0.9926)250, or  16% final yield.  In order to maintain the number of

functioning processors in the final machine (240) from the 7 x 1012 possible processors (see

chapter 3), this yield requires about 0.99 times as much starting material and is within our

estimates.
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Chapter 9. Simulation methods and results

The ring-gated field effect transistor (RG-FET) simulated here is similar in structure

to the surrounding-gate transistors (SGTs) that have been studied for more than a decade as

high-density alternatives to planar transistors [Takato, 1988; Takato, 1992; Miyano, 1992;

Jang, 1998].  The RG-FET is novel because of the nature of its fabrication and placement

within a self-assembling device structure.  The RG-FET can plausibly be incorporated into a

DNA-guided self-assembly process by chemically attaching different DNA strands to each

end of the rod and to the gate during the rod's formation.

The importance of low power digital circuitry to conventional devices is well known

and will become even greater as both transistor density and clock rates increase.  Molecular

scale electronic devices have orders of magnitude more gates and will therefore require either

ultra low power consumption gates or slow clock rates, and perhaps both.  Thus, the need for

low power logic circuitry becomes an important issue to molecular scale device design.

This chapter is devoted to the simulation and estimation of the power consumption of

the components used by the decoupled array multi-processor.

9.1 PISCES-IIb simulation of nanorods

The size of the RG-FET silicon rod we have considered (50 nm diameter, 500 nm

length) has been shown to be large enough to use classical drift-diffusion simulations10

[Sano, 2002].  This makes the type of mixed-mode simulation (drift-diffusion with transistor-

level simulation) less computationally intensive than more sophisticated methods developed

to handle smaller sized junctions accurately.  Drift-diffusion simulations were performed

using a Win32 port of PISCES-IIb [Pinto, 1988].

                                                          
10      Drift-diffusion simulations model the motion of electrons and holes through a semiconductor in the
presence of electric fields.
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The geometry of the RG-FET is depicted in figure 9.1.  Using cylindrical symmetry

PISCES-IIb was able to simulate the structure in 3D.

Figure 9.1. N-type RG-FET.  The rod length is 500nm and its radius is 50nm.  Channel
length is 150nm.  The source/drain contacts are at the top or bottom of the rod.  The gate

contact is a metal band around the rod.  All contacts are palladium (φm � 5.0 eV.)

The doping profile used by PISCES-IIb is shown in figure 9.2.  The substrate (a

silicon rod in this case) was doped to 1x1015 p-type (boron) atoms/cm3 with the ends doped

to 1x1021 n-type (phosphorous) atoms/cm3 for the n-type RG-FET.  The p-type RG-FET was

doped to 1x1018 n-type atoms/cm3 with the ends doped to 1x1022 p-type atoms/cm3.  Each

FET was doped using a Gaussian profile with n-type and p-type characteristic lengths of

0.0475 �m and 0.061 �m respectively.  Figure 9.2 is a plot of the dopant concentrations

inside a radial slice of the rod.  The plot is revolved around the Y-axis to form the 3D rod.
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Figure 9.2. RG-FET doping profile along the 0.025 �m radius of rod (not to scale).  The gate
oxide layer (0.010 �m) is on the right, the PNP or NPN layers (0.015 �m) are on the left.

We performed a time independent simulation by applying a Vds bias across the device

(top to bottom) and a Vgs bias between the oxide side (right) and the bottom electrode.  The

simulation model included Shockley-Read-Hall (SRH) recombination with concentration-

dependent lifetimes as well as concentration and lateral field-dependent mobility.  Boltzmann

statistics were used throughout with an operating temperature of 300K.  To capture the time

independent behavior of the RG-FET we swept Vgs and Vds from 0.0v to ±1.0v (-1.0v for the

PFET and 1.0v for the NFET).  Each step was 0.5mV and 1mV steps along Vgs and Vds,

respectively, and Ids recorded (current from top to bottom) to form the IV-curves in figures

9.3 and 9.4.  The simulated transconductances of the n-type and p-type RG-FETs are plotted

in figures 9.5 and 9.6 respectively.
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Figure 9.6. P-Type RG-FET transconductance at several source-drain voltages.



126

The data illustrated in figures 9.3 and 9.4 were stored on disk for later use by our

modified SPICE 3f5 kernel.  Our method of mixed-mode simulator coupling is similar to that

used in [Rollins, 1988].  Instead of using an inner Newton iteration we simply preprocess the

analog response of the RG-FET for later use by SPICE.

In addition to the RG-FET, a simple, heavily n-type doped nanorod of the same

dimensions as the RG-FET (without a gate), was simulated to estimate the conductance

properties of a conducting nanorod.  The electrical properties, illustrated in figure 9.7,

indicate that the rod has a bias-independent resistance of approximately 2.5 k�.  This value is

used in the SPICE models described in later sections.
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Figure 9.7. I-V plot of a heavily n-type doped silicon nanorod.  The nearly linear current
response (I) indicates that the rod behaves similar to a ~2.5 k� resistor (R) over the voltage

range we use.  The resistance varies by less than 2 � over the voltage range.

9.2 COULOMB simulation of capacitance

The values for the parasitic capacitances for the RG-FET were derived from a

boundary element method solution to the electrostatic field problem (COULOMB) for a

conducting rod surrounded by grounded rods as shown in figure 9.8 [IES, 2001].



127

Figure 9.8. Rod geometry for parasitic capacitance calculation.  The capacitance is measured
between the center rod (shaded) and the outer shell of rods.

The COULOMB simulation results reported a capacitance of 1.71 x 10-17 F between

the center rod in figure 9.8 and the surrounding shell of rods.  This structure resembles the

geometry of the self-assembled circuitry discussed in chapter 8.  COULOMB also reported

the capacitance between two parallel and adjacent rods to be 1 x 10-19 F.  The values of Rgs

and Rgd were estimated using the calculated resistance of a 10 nm thick silicon dioxide disk.

The simulated "caged" capacitance value was used for Cgb, Csb, and Cdb and the adjacent rod

capacitance for Cgs, Cgd, and Cds.  (Cgb is the gate-to-bulk capacitance, Csb is the source-to-

bulk capacitance, Cdb is the drain-to-bulk capacitance, Cgs is the gate-to-source capacitance,

Cgd is the gate-to-drain capacitance, and Cds is the drain-to-source capacitance.)

The small inter-rod capacitance implies that cross-talk between signal lines will not

be worse than in conventional technologies.  The reactance between two signal lines with

1.71 x 10-17 F capacitive coupling at 400 MHz is greater than 23 M� (1 / C.)

9.3 SPICE simulation of nanorod circuitry

A modified SPICE 3f5 [Quarles, 1991] circuit simulation kernel was used to simulate

the behavior of several RG-FET based logic devices.  The kernel was modified to include a

simple file-based table lookup feature for the arbitrary current or voltage source device.  The
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file-based table lookup was used to read current data from the PISCES-IIb output files.  The

data is loaded into a memory table by the SPICE kernel and current values (Ids) are linearly

interpolated between Vgs and Vds data points [Dwyer, 2002b; Dwyer, 2003].  The source for

this modified kernel can be found on the compact disc included with appendix B, and on the

dissemination page at www.cs.unc.edu/nano.

The behavioral simulations described in the next section estimate the total power

budget for the machine given an instruction stream, and accurate power estimates of the

component circuits.  The parasitic capacitance values described in the previous section are

used in the circuit simulations that model power consumption.  Where appropriate, each gate

or circuit was loaded with a Cgate = 3·Cgb (FO-3) capacitance on its outputs to simulate a

plausible fan-out.  Each circuit was extracted from the nanorod layout described in section

8.3 by using the element models illustrated in figures 9.9 and 9.10.

Figure 9.9. RG-FET capacitance circuit model.
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Figure 9.10. Conducting rod electrical model.  Each conducting rod from a circuit layout is
replaced by this model.

Despite the seemingly large resistance in figure 9.10, the small capacitance means

that only a small amount of charge must move through the circuitry for it to work, resulting

in lower power consumption.

Table 9.1 summarizes the gate delays, power consumption, and power-delay products

(PT) for each circuit.  The specific implementation details for each circuit are illustrated in

figures 9.11 through 9.18.  Figures 9.19 through 9.26 depict the results of the simulations.

Gate Delay (ns) Power (nW) PT-product (J)
NOT 0.125 15 1.875 x 10-18

NAND2 0.625 40 2.75 x 10-17

2:1 MUX 0.3 300 9.0 x 10-17

3:8 Decoder 1.0 10 1.0 x 10-17
Full adder 0.625 1600 1.0 x 10-15

D-latch 0.3125 200 6.25 x 10-17

Register cell (per bit) 1.25 245 3 x 10-16

Ringer circuit (full on) - 30 -
Table 9.1. Gate and circuit delays, power, and energy consumption.

The ringer circuit is formed by a feedback loop between the output of the LC1

multiplexer and one of its inputs, as illustrated in figure 8.4 of chapter 8.  When the

multiplexer selects this input an oscillation begins that produces a characteristic power

signature.  Figure 9.26 illustrates the oscillatory signature of the ringer circuit power

consumption.  Chapter 6 describes alternative output methods to the ringer circuit.
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The average power consumption of this circuit while it is oscillating is approximately

30 nW.  The DAMP with 6 x 1012 processors would consume 180 kW if all ringers were full

on.  Given a target power budget of 3.5 MW, the ringer circuit could consume as much as

580 nW, or almost 20 times as much power as it does now.  Increasing the drive strength of

the ringer would simplify the detection of the oscillatory power signal by making the signal

larger.

Figure 9.11. An inverter.

Figure 9.12. The NAND2 gate.
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Figure 9.13. The 2:1 MUX circuit.

Three 2:1 MUX circuits are used to build the 4:1 MUX circuit needed by the DAMP.

Figure 9.14. The 1:2 decoder circuit used to form the 3:8 decoder circuit.

Seven of the 1:2 decoder circuits were used to create the full 3:8 decoder circuit that

was simulated.  Parasitic capacitances of 3·Cgb were attached to each 2:1 decoder output to

simulate a worst-case environment.
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Figure 9.15. The full adder circuit.

Figure 9.16. The D-latch.
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Figure 9.17. The register cell circuit.  This circuit is arrayed 6 times to create the full register
cell simulated here.  The ShiftIn and ShiftOut signals are shared by 5 of the 6 registers (also
called SRi and SRo.)  The other register uses a dedicated ShiftIn and ShiftOut (also called

SAi and SAo.)

The full register file is composed of 17 register cells connected in series.  The

“ShiftOut” signal from one cell is coupled to the “ShiftIn” of the next stage through a small

delay line circuit of several inverters.  Two such serial shift controls are used in the full

register file, one controlling five of the six bits and the other controlling the remaining sixth

bit.  The simulation results that are plotted in figure 9.25 are for a register cell of six bits,

each of them shifting the same data at the same time (both shift lines active).

The full register file also has a random number loading ability controlled by the

“Load” signal.  Only three of the six bits in each register cell can be randomly raised to a

logical one, or true, value this way.  The randomness of the loaded number is derived from

the distribution of conducting and insulating rods used at a particular step in the assembly of

the register cell as described in section 8.3.
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Figure 9.18. The ringer circuit.
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Figure 9.19. The inverter simulation results.
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Figure 9.20. The NAND2 simulation results.
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Figure 9.21. The 2:1 multiplexer simulation results.  There is an inverter on the output of the
multiplexer.
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Figure 9.22. The 3:8 decoder simulation results.
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Figure 9.24. The D-latch simulation results.
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Figure 9.25. The register cell (6 bits) simulation results.
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9.3.1 Conclusions

26

The evaluation of the RG-FET, nanorods, and capacitance has led to the development

of a set of power and performance estimates that will be used in chapter 11 to gauge the

performance of the DAMP on various problems.  The particular design decisions made

before simulating the RG-FET logic gates were inspired from geometric and processing

plausibility arguments starting from a 1V process with 500 nm long rods that are 50 nm in

diameter.  As figure 9.1 illustrates, the RG-FET cannot accommodate oxide thicknesses

much greater than about 20 nm.  Similarly, oxides thicker than 20 nm will reduce the channel

diameter below the limit of continuum transport mechanisms [Sano, 2002].  Oxides less than

5 nm thick will require extremely precise control of the oxide growth to ensure a highly

uniform and strong crystal.  The quality of the oxide is important in preventing breakdown of

the film at gate voltages of approximately 1V.  Therefore, we chose an oxide thickness of 10

nm because it can withstand the electric fields developed at a gate voltage of 1V.  Figure 9.27

illustrates the change in transconductance as oxide thickness is varied from 5 nm to 20 nm.
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Figure 9.27. P-type RG-FET transconductance as a function of oxide thickness with a 150
nm channel.  We used the 10 nm thick oxide RG-FET in our performance evaluations.

Expected processing limitations in the fabrication of an RG-FET motivated our

choice of a 150 nm long channel.  The lengthwise etch of the RG-FETs channel region may

not be precisely controllable.  Therefore, a sufficiently large margin (channel extension) must

be left on either side of the channel.  Channel lengths greater than 200 nm leave only 150 nm

of rod on either side of a 500 nm long rod.  Channel lengths below 75 nm will experience

poor off-state leakage currents [Thompson, 1998] and may not be properly simulated by

PISCES-IIb.  Figure 9.28 illustrates the change in transconductance as the channel length is

varied.
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Figure 9.28. P-type RG-FET transconductance as a function of channel length using a 10 nm
gate oxide.  We used the 150 nm channel length RG-FET in our performance evaluations.

The input slew rates used in our simulations (0.2 V/ns) lead to conservative power

estimates because they prolong the overlapping n-type and p-type RG-FET transition period

with respect to the output transition, time thus increasing the switching energy estimate.  The

output transition times are consistent with the turn-on time observed in a time-dependent

PISCES-IIb simulation of a p-type RG-FET.  The time dependent simulations also show that

the gate charging current due to the voltage-dependent channel capacitance is instantaneously

never greater than 1 nA for 0.2 V/ns input slew rates (it drops to zero as the slew rate goes to

zero).

We have performed additional transient-response simulations to clarify the error that

we incur by using a DC approximation to the RG-FETs transfer function.  We measured the

time varying current response (Ids vs. time) using several different slew rates (1 V/ms, 0.4

V/�s, 0.8 V/�s, 1.5 V/ns, 3 V/ns, 6 V/ns, 12.5 V/ns, 25 V/ns, and 50 V/ns).  Figure 9.29 is a

representative result from the transient simulations.  The positive source and drain currents

counter the displacement current seen in the gate.  This is presumably due to the movement
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of charges as the channel forms underneath the gate.  To compare the DC response with the

different transient responses we plot the log of the absolute difference between the currents

versus time.  Figure 9.30 illustrates several of these error curves.  The errors we observe

during the 3V/ns slew rate simulation can be as low as a few hundred electron/holes per

second.  This current is smaller than what can typically be simulated by the PISCES-IIb

simulator.  This implies that our DC method is as accurate as a transient simulation using

PISCES-IIb for input slew rates less than 3 V/ns.
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Figure 9.29. Transient response of a p-type RG-FET during a 20ps input voltage ramp.
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Figure 9.30. Absolute current error between DC and transient p-type RG-FET response.

9.4 Custom behavioral simulation

The SPICE simulation described earlier use a common technique to produce solutions

to the various problems they are each suited to answer.  That is, they each create massive

systems of simultaneous equations that need to be solved for each time step of the simulation.

This imposes a limit on the size of problems because of memory and patience constraints that

make solving such large systems of equations difficult or impossible.

The common solution to this is to simulate larger components at a higher level of

abstraction.  Just as the PISCES simulation results were used in a more abstract (from

PISCES's perspective) simulation in SPICE, the SPICE simulation results are used in a more

abstract behavioral simulation.

Behavioral simulation is a way of evaluating complex logic circuitry without having

to resort to the complex physically based simulations of electronic circuitry (PISCES and

SPICE).  Besides evaluating logic circuitry, behavioral simulation can also be used to
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estimate timing requirements and power dissipation.  These estimates require the detailed

simulation results from the physical simulations (PISCES and SPICE).

The behavioral simulation described here was used predominantly to estimate the

amount of power dissipated by the logic circuitry of a single processor in the DAMP.  The

timing issues are relatively less difficult to analyze because of the serial nature of the

processor, and the limit the power budget places on the clock rate.   Compared to how fast

and how deep the typical logic circuits are in the DAMP (see sections 9.3, and 8.2) the

reduced power-conscience clock rate will be far below the maximum operating frequency.

9.4.1 Behavioral Model

Figure count at this point = 26 (field code)

The behavioral simulator was programmed using the Microsoft Visual Studio in

MFC/C++.  The interface for the tool is shown in figure 9.31.

Figure 9.31. Interface for the behavioral simulator.
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Figure 9.32 illustrates the model used for each architectural unit described in chapter

8.  The register file, RCU, ALU, control registers, CSM, and WTC were all implemented as

modules following the structure of figure 9.32.

Figure 9.32. Basic logic module structure.  Each logical unit from the architecture was cast
into this structure.

The interconnectivity of each module has already been described in the

implementation details of chapter 8.  To implement the connections between units, the

behavioral simulator "binds" outputs from one unit to the inputs of another.  Binding, in this

context, is simply a copying of the various bit values produced and consumed by each unit.

For every time step, the behavioral simulator binds the units together and then

executes each unit. The results of each execution are stored in the output variables of each

module.  During the next time step, the output variables will be bound to the input variables

of the next module.

A time step is defined as the time period over which the clock signal transitions from

a steady-state zero through a steady-state one and ends just as the signal goes back down to

zero.  The total power dissipation during a time step is calculated by summing the worst-case
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power-delay product for each logic circuit that underwent a transition during the time step, as

described in section 8.3, and dividing it by the clock period.  A running total of the energy

consumption (power-delay product) is also kept so that a running average power dissipation

can be calculated per time step.

Each module has a "CPowerConsumer" object that records how much energy it

consumes per time step.  The CPowerConsumer class is initially told how many of the

primitive logic circuits, outlined in section 8.3, each module uses and subsequently told to

increment counters for each time step.  The particular numbers of each primitive circuit in

each module are given in table 9.2.

Module NOT NAND D-Latch MUX2 MUX4
3:8

Decoder
Register

bit
Full

adder
Register

file
68 0 0 0 0 0 102 0

RCU 1 0 0 5 3 0 0 0
ALU 0 0 4 0 0 0 0 1

Control
registers

0 0 0 0 0 0 26 0

CSM 2 7 2 0 0 0 0 0
WTC 4 37 4 1 1 1 0 0

Table 9.2. Primitive circuit counts for each behavioral module.

The order in which modules are bound to each other is important to consider because

it captures the asynchronous behavior of the circuitry.  In the case of the register file and

RCU, the values of the inputs to the multiplexers in the RCU are determined by the values of

the output from the register file.  A topological sorting must be followed to get the proper

inputs to the proper outputs before execution.  Figure 9.33 illustrates the binding and

execution order used by the behavioral simulator.
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Figure 9.33. The binding and execution order used by the behavioral simulator.

9.4.2 Results

The behavioral simulator takes a series of one or more instructions and (using the

assembler described later) converts these instructions into a serial stream of bits that control

the DAMP.  Since the DAMP has identical processors, it is sufficient to simulate a single

processor.  The state of the processor is reported after every clock cycle and a running plot of

energy dissipation can be viewed.  Figures 9.34 to 9.39 illustrate the energy dissipation for

the integer operations ADD, ADDI, ADDC, NOT, INC, and DEC running at a clock period

of 2.5 ns, or 400 MHz.  A more detailed description of instruction energy dissipation is given

in chapter 11.
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Figure 9.34. Energy dissipation of the ADD instruction.
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Figure 9.35. Energy dissipation of the ADDI instruction.



148

2.2
2.4
2.6
2.8

3
3.2
3.4
3.6

P
ow

er
 (

uW
) Mean Power

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

0  s 50 ns 100 ns 150 ns 200 ns 250 ns 300 ns
0

1e-13

2e-13

3e-13

4e-13

5e-13

6e-13

7e-13

8e-13

9e-13

1e-12

P
ow

er
 (

uW
)

E
ne

rg
y

Time

Total Energy
Power

Figure 9.36. Energy dissipation of the ADDC instruction.
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Figure 9.37. Energy dissipation of the NOT instruction.
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Figure 9.38. Energy dissipation of the INC instruction.
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Figure 9.39. Energy dissipation of the DEC instruction.
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9.4.3 Instruction assembler

As mentioned earlier, the assembler used by the behavioral simulator takes

instructions and turns them into a serial stream of control signals for the DAMP.  These

control signals are the signals that would be directly applied to the P0 and P1 electrodes of

the DAMP's processor nodes, as described in chapter 6.  Since each of the processors in the

DAMP is a serial machine that has no micro-code there is no complete set of instructions

except all bit strings.  It is unproductive to enumerate all possible instructions, so the

assembler has support for instructions needed for the present evaluation and a few others.

The complete list of instructions can be found in chapter 8.  Since the control of a processor

is fully exposed to the assembler, it is possible to implement new instructions as the need

arises.  Such will be the case if integer multiplication and division are required, or if an

application program needs floating-point arithmetic.

The assembler included with the behavioral simulator described earlier uses a simple

instruction prefix search and argument parsing algorithm to translate instructions.  It was

written in C++ and uses no optimization techniques to reduce the size of the final control

signal stream.
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Chapter 10. Thermal evaluation

The large numbers of transistors in the DAMP makes it important to evaluate the

thermal effects of electrical transitions on each processor and the thermal behavior of the

larger machine they compose.  The SPICE and behavioral simulations described in chapter 9

produce power and energy dissipation estimates based on the drift-diffusion simulation of

electrons and holes through the silicon nanorods.  We can apply these results to a

hypothetical processor housing and evaluate the thermal situation during the operation of the

DAMP.  Figure 10.1 illustrates a partial stack of processor nodes.  Each node, as described in

chapter 8, has 228 functioning processors that are assumed to be uniformly distributed across

the processor substrate among the processors that did not form properly.
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Figure 10.1. Side view of a partial stack of processor nodes.  The processor substrate is
suspended in a cooling jacket by side-mounts.  Chilled coolant enters at the right side and

rises upward due to convective flow and pool boiling.

Research into microelectronic energy removal and cooling techniques has shown that

a quiescent perfluorinated liquid11 can remove as much as 45 W/cm2 in horizontal pool

boiling configurations up to 80°C [Watwe, 1997].  The passive nature of this technique is

attractive because of its simplicity, as illustrated in figure 10.1.  Given that convective flows

will also be circulating in the housing, 45 W/cm2 is likely to be a lower bound on the heat

removal rate.

10.1  Steady-state dissipation

1

The steady-state heat removal from a processor on the substrate must be greater than

the amount of heat being deposited into the substrate by the electrical switching activity of

                                                          
11      The term 'quiescent perfluorinated liquid' refers to a class of fluorine containing liquids acting as a coolant
that is not pumped or forced to flow around an object.
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the processor for the substrate temperature to be stable.  The treatment of the steady-state

power dissipation presented here is crude at best because the materials used during the self-

assembling process (see chapter 3) are not crystalline but amorphous.  Amorphous materials

can require much longer times to cool than pure crystalline materials due to stretched

exponential cooling.  For example, polycrystalline silicon has a thermal conductivity of ~14

W/m·K or about an order of magnitude less than single-crystal silicon (149 W/m·K) [Uma,

2000].  This means that the following evaluation is an approximation of the lower bound for

the heat transfer rate.

The equation for heat transfer by thermal conduction through a slab of material is

shown in equation (10.1).

d

TA

t

Q ∆⋅⋅= κ
(10.1)

Where Q is the energy transferred through the material in t seconds, 
 is the thermal

conductivity of the material, A is the cross-sectional contact area between the hot and cold

sides, �T is the temperature difference between the two sides, and d is the thickness of the

material.

Heat can be dissipated either through the material in between the rods or through the

rods themselves.  It is likely that the high thermal conductivity of the silicon rods will

dominate the heat transfer process.  Since the material in-between the rods is a thermoplastic

(amorphous) any estimates of the heat transfer through it will only be useful as a crude

guideline for the reasons mentioned above.  The heat transfer through the silicon rods is more

ideal since the rods are crystalline, making the estimates shown here more accurate.

Heat transfer through SU-8

The material that is most prevalent in the space between the nanorods in each

processor is the photoresist material used during the modular assembly.  Some typical

physical and thermal properties for a thermoplastic photoresist (SU-8) are listed in table 10.3.
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Property Symbol Value
Thermal conductivity 
 0.2 W/m�K

Specific heat Cp 1.3 kJ/kg�K
Density � 1300 kg/m3

Table 10.3. Thermal and physical properties of SU-8 photoresist.

There are several assumptions we can make to estimate a lower bound on the steady-

state heat flow out of this system.  These assumptions will be discussed with the illustration

from figure 10.2 in mind.  The dashed line in the figure represents a thermal reflector, or

insulator, and is a simplification that limits the direction of heat flow from the system.  In

reality, this constraint is overly restrictive because, as illustrated in figure 10.1, both sides of

the processor substrate are in thermal contact with the cold bath.  It seems reasonable to

assume that all the energy being deposited into the processor is largest at the center of the

structure.  This simply averages the length of the thermal path and given the reflecting

thermal barrier, appears to be a safe assumption.

Figure 10.2. Worst-case flow of heat through the processor substrate to the cold bath.  The
processor is schematically represented here by four modules, when in fact a processor

requires nearly 250 modules.  The dashed line is a thermal barrier and all energy deposited
into the processor is assumed to be largest at the center of the stack.

The cross-sectional thermal contact area of the processor to the cold bath can be

approximated by taking the area of the smallest processor spacing parameters, Xp * Yp, or
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(4.5 µm)2.  This will undoubtedly lead to a conservative estimate of the total heat flow

because it ignores lateral heat flow within the substrate through areas where there are no

active processors.  The thickness of the material slab is approximately the number of

modules (250) times the thickness of each module (~0.5 µm) divided by two, or 62.5 µm.

The operating temperature range of the processor can be safely estimated as 20˚C to 80˚C, or

the operating range of the perfluorinated coolant [Watwe, 1997].  Using these assumptions

and evaluating (10.1) for Q/t, we get 3.8 x 10-6 J/s.

That is, using the assumptions described above, the processor substrate will support a

maximum heat flow of 3.8 x 10-6 J/s.  The average energy consumption of an integer

instruction, as estimated in chapter 7 to be 1.1 x 10-12 J, can be used to determine the

maximum integer instruction rate that the processor substrate will support.  Using these

figures, the rate is 3.45 x 106 instructions per second or a clock rate of 545 MHz for integer

instructions.

This clock rate is the not-to-be-exceeded speed limit for the processor due to the

material properties of the substrate.  For this to a be a useful bound, however, the heat

extraction due to pool boiling must meet or exceed the 3.8 x 10-6 J/s heat flow that the

substrate can support.  Otherwise, heat will build up inside the processor and the temperature

will exceed the operating temperature range.

The previous estimate for the extractable heat flow from pool boiling, ~30W/cm2, can

be used to estimate the extractable heat flow from pool boiling over the processor.  The

minimum Xp and Yp processor area, (4.5 µm)2, permits the pool boiling heat flow to be 6.075

x 10-6 W.  This estimate is ~1.5 times the maximum heat flow supported by the material of

the substrate, indicating that pool boiling of this type can extract as much heat as can be

conducted away from the processor.

Heat transfer through silicon rods

The heat transfer rate through the silicon rods can be calculated in the same way as

the SU-8 calculation.  Since each rod has a diameter of 50 nm and there are 54 rods per

footprint (see chapter 8) the total surface area of the silicon rods in contact with the cold bath

is 1.05 x 10-13 m2.  The thermal conductivity of crystalline silicon is ~140 W/m·K and using
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the same distance and temperature difference as before (d = 62.5 �m, �T = 60 ºC) the

maximum heat transfer rate is 14 x 10-6 J/s, or 3.6 times greater than through SU-8.

Conclusion

Since the method used here to estimate the heat transfer through the SU-8 does not

accurately model the stretched exponential cooling seen in amorphous materials, it is only

useful as a crude guideline.  Although the estimate for the heat transfer rate through the

silicon rods may be more accurate, it is difficult to be certain about which method will

dominate the transfer process.  Since the estimates for both materials support a heat transfer

rate within an order of magnitude of each other, an approximate lower bound of 3.8 x 10-6 J/s

will be used as the pessimistic estimate.  This will limit the DAMP and Oracle

implementations to a clock rate of ~400 MHz.

10.2  Burst-mode computation

A class of applications exists where exceedingly high performance is required for a

brief period in a small package.  For example, an on-board computer of an anti-missile

weapon or other munitions.  For such applications a much denser packaging of a DAMP like

computer is possible, as well as a far higher clock speed limited only by electrical

considerations.  This section explores the limits of this usage mode.

The heat that can be extracted by pool boiling scales linearly with the thermal contact

area between the substrate and the coolant.  That is, only the surface of the processor can be

cooled.  This is an especially important issue if the processor has little surface area compared

to its volume.  The processor substrate designed here has a relatively large surface area to

volume ratio.  If there were more processors stacked on top of each other for each "footprint"

on the substrate, this would not be the case.  Even though the total extractable heat flow

would be the same, the amount of energy being deposited into the substrate increases with

increasing number of processors.

Under these circumstances, the heat builds up more quickly than it can be transferred

to the coolant.  Therefore, heat flow in the system is confined to small local regions around

where the electrical switching energy is being deposited into the substrate.  Figure 10.3

illustrates this idea.
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Figure 10.3. Locally confined heat flow.  The interior of each unit cell absorbs the electrical
switching energy.

Burst-mode computation is a way of running the processors such that even though

heat is building up and would eventually push the processor's temperature beyond the

operational temperature range, computation is paused before the upper limit of the

temperature range is reached.  Since the substrate will only support a limited heat flow to

cool the processors, the cool-down period may be very long compared to the active period,

but if the active period was long enough to solve an important problem, the ratio did not

matter.

The relationship between the number of executed instructions and processor

temperature can be derived by starting with the simple heat capacity equation.

TmCQ p ∆⋅⋅= , (10.2)

where Cp is the specific heat of the heat conducting media, m is the mass of the media, and

�T is the difference in temperature across the media.

Since Q is the amount of energy deposited into the system, we can use this to model

the execution of instructions.  Earlier estimates say that the average integer operation takes

Eop, or 1.1 x 10-12 J.  We assume that the time scale for the instruction execution is much

smaller than the heat diffusion time scale, so that Q = n � Eop, where n is the number of

instructions to be executed.  If we also assume that the entire processor (or at least the

portions of it that can absorb heat) is the structural photoresist then we can say that m =
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��Vproc and Cp =1.3 kJ/kg�K, where � is the density of the photoresist (1300 kg/m3 in this

case), and Vproc is the processor volume which is approximately (4.5 µm x 4.5 µm x 125 µm),

or 2.53 x 10-15 m3.  Using these assumptions we can rewrite equation (10.2) as the following:

TVCnE PROCpOP ∆⋅⋅⋅=⋅ ρ (10.3)

and solving (10.3) for �T,

PROCp

OP

VC

nE
T

⋅⋅
⋅

=∆
ρ (10.4)

Evaluating (10.4) yields �T = n � 2.57 x 10-4 ˚C/instruction.  Adopting a 60˚C

operating range and assuming the processor temperature starts at the low end of the range, as

many as 233 x 103 instructions (~90 ms @ 400 MHz) can be executed before the processors

reach the upper temperature limit.  This instruction count has the interesting property that is

does not change with the total number of processors in the DAMP.  The cool-down period

will increase with increasing numbers of processors.

It is interesting to note that the ratio n / Vproc is a constant that depends, almost

entirely, on the material properties of the DAMP processors.  If we say that the minimum n

that can be productively used is about 1000 (DES decryption, chapter 11) then we have a

lower bound on the volume of the processor of about 1 x 10-17 m3.  This bound is only true if

the specific heat and thermal conductivity of the photoresist material is not increased.  If this

volume is divided over the 27 x 103 unit cells found in a DAMP processor, and each unit cell

is considered to be a cube, the cell will have a minimum edge length of about 74 nm (the

entire DAMP cube would have an edge length of 0.15 m).  The designs presented here and in

chapter 8 use a cubic unit cell edge length of 500 nm, or about 7 times larger than the

minimum under the burst-mode computation model.

Again, these arguments hold true if there is only local heat flow from the processor to

the substrate material.  The limits calculated above can be overcome if this restriction is lifted

and a volume-scaleable heat extraction method is employed, such as flowing a non-

conductive fluid thorough the processors themselves.
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The calculation of the cool down period under this mode of computation depends on

the processor arrangement.  If we assume, as in section 6.2, a monolithic cubic structure and

that the cooling takes place from only one side, the simulation of the cool down period is

straightforward using the finite element method.  First, as an approximation, equation (10.1)

can be used to estimate the maximum heat flow (Pmax) that the substrate can support through

one face of the processor cube, or 1.8 J/s.  Taking equation (10.2) as the total amount of heat

that must be extracted from the cube,

TVNCQ PROCPpt ∆⋅⋅⋅⋅= ρ (10.5)

where Np is the total number of processors in the DAMP, or 240.  The 60˚C temperature range

(�T) yields Qt = 348.4 x 103 J.  An approximate cooling time can be calculated by dividing

Qt by Pmax, or 53 hours.  This approximation can be tested against a FEM simulation of a

0.15 m cube being cooled by one face [FEMLAB, 2003].  The cube is initially at 80˚C and

the cooling face is kept at a constant temperature of 20˚C.  Figure 10.4 is the plot of

temperature of a cross-section through the middle of the cube in time.

Figure 10.4. Plot of a cross-section of the processor cube as it cools in time (˚C).

The X and Y-axes are the position along the cross-section and Z is the time step

(seconds.)The highest temperature spot in the cube (the far edge from the cooling face) is
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within 10% of the cool side after about 53 hours.  Therefore, the cube will require greater

than 53 hours to completely cool.  After this cool down period is over, the machine can be

run again.  Again, this estimate is pessimistic since the silicon rods of the structure can

transfer ten times as much heat as the thermoplastic support used here.
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Chapter 11. Applications and performance

11.1  The DAMP

The details of the basic instruction set can be found in chapter 8.  This section

provides a detailed accounting of the cycles, execution time, total energy consumed, and

maximum sustainable clock rate (for the DAMP with 1012 processor and a 3.5 MW power

budget) for several example instructions that can be found in table 11.1.
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Instruction Cycles Execution time
@ 400 MHz (µs)

Total energy
consumption (J)

Max. clock rate
(MHz)

ADD 159 0.3975 1.2e-12 464
ADDC 131 0.3275 1e-12 459
ADDI 170 0.425 1.2e-12 496
ANDI 136 0.34 9.75e-13 488
ASR 116+N 0.29 + N * 0.0025 8e-13 + N * 7.5e-15 502 (16 bits)

CLEARB 77 0.1925 6e-13 449
CLEARC | D 55 0.1375 3.75e-13 513

CMP 131 0.3275 9.5e-13 483
CMPI 307 0.7675 2e-12 537
CMPI8 211 0.5275 1.4e-12 528
COPY 92 0.23 7.5e-13 429

COPYH 215 0.5375 1.6e-12 470
COPYL 154 0.385 1.2e-12 449
COST 120 0.3 9.5e-13 442

CSR(N) 88+N 0.22 + N * 0.0025 6e-13 + N * 9.375e-15 485 (16 bits)
CYCLE(N) N N * 0.0025 ~N * 1.125e-14 311 (16 bits)

DEC 159 0.3975 1.1e-12 506
GRAB(N) 157 0.3925 1.1e-12 500

INC 159 0.3975 1.1e-12 506
LOAD 280 0.7 1.9e-12 516
LSR 88+N 0.22 + N * 0.0025 6e-13 + N * 9.375e-15 485 (16 bits)

LSRC 66+N 0.165 + N * 0.0025 4.5e-13 + N * 9.375e-15 478 (16 bits)
MCOPY 103 0.2575 8.5e-13 424

NOT 171 0.4275 1.2e-12 499
ORI 202 0.505 1.4e-12 505

RANDOM 55 0.1375 4e-13 481
RESUME 6 0.015 4.5e-14 467
RINGOFF 11 0.0275 7.2e-14 535
RINGON 11 0.0275 7.5e-14 513

SET* 55 0.1375 3.75e-13 513
SETB 77 0.1925 5e-13 539

SETCREG 6 0.015 4.5e-14 467
SETC 55 0.1375 3.75e-13 513

SETSREG 5 0.013 4.2e-14 417
STORE 109 0.2725 9e-13 424

STOREH 171 0.4275 1.3e-12 460
STOREL 109 0.2725 9e-13 424
WAIT* 12 0.03 8e-14 525
XOR 148 0.37 9.25e-13 560
Table 11.1. Basic instructions and cycle counts, execution time at 400 MHz, energy

consumed, and estimated maximum sustainable clock rate for 1012 processors operating with
a power budget of 3.5 MW.
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The data for table 11.1 were derived from simulation runs for each instruction using

the behavioral simulation described in chapter 9.  Figure 11.2 illustrates a typical output plot

from the simulator.  (The list of instructions in table 11.1 is not comprehensive.  Other

instructions are possible by using SETSREG and SETCREG as described in chapter 8.)

Each operation, if it is not a variable bit-length operator, operates on the 16-bit accumulator

with or without a single 16-bit register input.  Instructions ending with the letter "I" indicate

that an immediate value is used.  The suffix letters "GE", "NGE", "LT", and "NLT" signify

greater-than, not greater-than, less-than, and not less-than, respectively.  The SET*

instruction must have a suffix of one of the inequality operators.  The WAIT instruction must

have a suffix from the following list: B, NB, C, NC, D, ND, S, NS, GE, NGE, LT, or NLT.

The semantics for this instruction are described in chapter 8.
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Figure 11.1. Output plot from the behavioral simulator for the ADDI instruction.

The average number of cycles in a DAMP integer operation was obtained by

averaging the number of cycles used by the ADD, ADDI, ADDC, NOT, INC, and DEC.  The

average obtained using this instruction distribution is 158 cycles, or 0.395 µs per integer

operation at a clock rate of 400 MHz.  This instruction distribution consumes an average of
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1.1 x 10-12 J per instruction.  Therefore, the maximum clock rate for integer operations under

a 3.5 MW power budget is 502 MHz.  This is well above the conservative 400 MHz clock

rate used throughout.

The results of many computations with in the DAMP need to be communicated to the

node controller.  A simple binary search can be used to find the identity (i.e. the random

constant) of a processor that has calculated a value of interest (e.g. an extrema.)  The

following code implements a binary search for the identity of the processor with the largest

value in its 16-bit accumulator.
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Steps 1 through 5 of the search for the largest ACC value require (in the worst-case)

260 cycles per loop.  The loop is executed 16 times for a total of 4,160 cycles.  Steps 11

through 26 require 355 cycles per loop.  Since this loop must be executed once for each

random bit (48 times in total) the total number of cycles for just this loop is 17,040.  The

entire procedure requires 21,200 cycles, or 42.4 �s using a 400 MHz DAMP.

Machine comparisons

The number of integer operations per second, memory size, power consumption, and

volume of each machine can be used to draw a simple comparison among machines.  Such a

comparison gives a qualitative feel for how the machine may perform on simple tasks.  Table

11.2 lists several simple metrics for some comparison machines and the DAMP (with 1 x

1012 processors.)

Machine
16-bit
integer
op./sec

Norm.
integer
op./sec

Memory
size

(bytes)

Power
budget (W)

Volume
(m3)

Energy /
op. (J/op)

DAMP 2.53 x 1018 1.00 1.0 x 1013 3.5 x 106 12 1.3 x 10-12

IBM BlueGene /L 2.88 x 1015 1 x 10-3 7.0 x 1013 ~3 x 106 533 1.04 x 10-9

NEC Earth Simulator 3.28 x 1014 1 x 10-4 1.0 x 1012 12.8 x 106 13 000 3.9 x 10-8

SETI@home 2.4 x 1014 9 x 10-5 >1.4 x 1012 508.3 x 106 312 800 2.1 x 10-6

HP ASCI Q 6.2 x 1013 2 x 10-5 1.3 x 1013 3 x 106 11 300 4.8 x 10-8

IBM ASCI White 5.6 x 1013 2 x 10-5 2.6 x 1013 1.2 x 106 6 600 2.1 x 10-8

Thinking Machines
CM-200

4.5 x 1010 1 x 10-8 8.59 x 109 28 x 103 4.16 6.2 x 10-7

Intel Pentium 4 3.44 x 1010 1 x 10-8 < 2 x 109 ~150 0.08 4.36 x 10-9

MasPar MP-1 1 x 1010 3 x 10-9 2.68 x 108 3.7 x 103 0.95 3.7 x 10-7

Table 11.2. Comparison of several machines with respect to integer operation rate, memory
size, power consumption, volume, and energy per operation.

The data for table 11.2 were taken, and in some cases extrapolated, from several

architectural overviews and surveys, chiefly [BlueGene, 2002], [Dongarra, 2002], [Intel,

2003], [MacDonald, 1992], [SETI@home, 2003], [Top500, 2003], and [Warren, 2002].  The
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16-bit integer performance for the Intel Pentium 4 was calculated using its sustainable

memory to processor transfer rate of 4.3 GB/s [Intel, 2003].

Another interesting way to look at the gap between the DAMP and other machines is

to consider that, on the embarrassingly parallel problems to which the DAMP is well-suited,

it is about 15 years ahead of the nearest (yet to be completed) supercomputer, the IBM

BlueGene /L with a similar power budget.  This trend of performance doubling every 18

months is common in other areas of computing and has been shown to hold, on average in

the past, in supercomputing performance trends [BlueGene, 2002].

The ACM has the SETI@home project on record as the owner of the largest

computation ever (being) performed with approximately 5.16 x 1021 64-bit integer operations

[SETI@home, 2003].  That number translated into the equivalent number of 16-bit

operations, listed for each machine in table 11.3, puts the scale of self-assembled computing

into perspective.

Machine Time to beat largest
computation on record

Normalized time

DAMP 2 hrs, 13 min 1.0
IBM BlueGene /L 83 days 800

NEC Earth Simulator 1 year, 11 months, 28 days 7,000
SETI@home  3 years 10,000
HP ASCI Q 10 years, 6 months, 20 days 40,000

IBM ASCI White 11 years, 8 months, 7 days ~40,000
Thinking Machines

CM-200
14,544 years

50,000,000
Intel Pentium 4 19,025 years 70,000,000
MasPar MP-1 65,449 years 200,000,000

Table 11.3. Time to beat the largest computation on record, as of February 2003.

11.2  Blind decryption of the Data Encryption Standard (DES)

The data encryption standard (DES) has long been used as a secure method of

encrypting sensitive information.  Recently, the growing number of computing machines that

can complete brute force attacks on secured data has put the strength of this form of
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encryption into question.  For this reason alternative encryption standards are being

investigated.

The purpose of this comparison is to show how the DAMP would perform on a

particular problem of interest to a wide community.  The DES has been heavily investigated

since the late 1970's and its implementation is well known [Feldmeier, 1989].  Fast bit-serial

implementations have also been developed in an attempt to improve the throughput of DES

encryption and decryption modules and to test the security strength of the standard [Biham,

1997].

The particular bit-serial DES algorithm implemented in [Biham, 1997] uses

approximately 17,000 bit-wise operations per DES decryption.  This count includes the

comparison operation that tests whether or not the decryption was successful.  The usual

completion criterion for the algorithm is to successfully decrypt a single known ciphertext to

the proper plaintext.  In this case, the algorithm is being employed to perform a blind search

through the entire DES key space to test the algorithm's security rather than perform a

complete data stream decryption.

The DAMP can be used to perform this search by assigning each processor a key

from the 256 bit key space.  On average this input space will require 255 decryption steps.

Since the DAMP has only 40 assembly-time bits, the remaining 15 bits must be obtained at

runtime.  The instruction set described in section 8.1 includes all of the logic operations that

are needed in the DES decryption process.  The most common instructions in the algorithm

are the XOR and CSR instructions.  On average, the logic instructions in the DAMP require

10 cycles per bit-wise operation.  Using this estimate, a single DES decryption will require

170,000 cycles on the DAMP.

The simulations and performance estimates presented in chapter 9 used a clock rate of

400 MHz to determine the total running time for various programs and instructions.  Using

this same clock rate yields a DES decryption rate of 2,352 decryptions per second per

processor.  The aggregate performance of the DAMP, with 240 processors, is approximately

2.5 x 1015 DES decryptions per second.  At this decryption rate the DAMP can cover the

entire 55 bit input space in about 15 seconds.  Table 11.4 lists the estimated performance of

several machines on the blind DES decryption problem.
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Machine Bit-wise op./sec Average DES decryption
time

Normalized time

DAMP 4 x 1019 15 sec. 1
IBM BlueGene /L 4.6 x 1016 3 hours, 41 min. 870

NEC Earth Simulator 5.25 x 1015 32 hours, 24 min. 7,600
SETI@home 3.84 x 1015 1 day, 20 hours, 18 min. 10,400
HP ASCI Q 9.9 x 1014 7 days, 3 hours, 51 min. ~41,000

IBM ASCI White 8.96 x 1014 7 days, 21 hours, 53 min. ~45,000
PixelFlow (CipherFlow)* 1.04 x 1013 1 year, 10 months, 10 days ~3,840,000

Thinking Machines CM-200 7.2 x 1011 26 years, 11 months,
21 days.

~56,000,000

Intel Pentium 4 5.5 x 1011 35 years, 3 months. ~73,000,000
MasPar MP-1 1.6 x 1011 121 years, 4 months. ~254,000,000

Table 11.4. Comparison of blind DES decryption times for various machines. * Data taken
from [Kedem, 1999].
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11.3  Global optimization

The DAMP can also be applied to a much more broadly useful class of problems.

Many science and engineering problems can be posed as global optimization problems,

which seek to find the largest or smallest value for an objective function over a domain.   The

challenge in solving these problems comes from the large number of variables and multiple

local minima that deceive simple search algorithms.  Consider the hypothetical objective

function shown in figure 11.3.  This function has many local minima and the global minima,

indicated by the black arrow, has a very narrow "opening" for the search algorithm to find.

Figure 11.2. A difficult, constrained objective function with many local minima.  The black
arrow indicates the global minimum for this region.

Stochastic global optimization is a method of sampling an objective function at

random points in the problem space and comparing the results at each point.  Since the time

required to exhaustively search the problem space at a resolution sufficient to be useful is far

too large using conventional machines, the best local minimum is chosen from local searches
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starting at a random set of starting locations.   A new set of random points is selected that

concentrates the search around the best-found solution.  That is, the search continues but

focuses on a few of the last-best answers.  Typical calculations for each sample include the

objective function and sometimes numerical derivatives (gradients) at the point.  If the

objective function has a well-behaved and computable gradient, this can be used as a local

indicator of how to choose the next best solution to minimize the objective since the

objective is decreased along that direction.  This gradient descent approach is very sensitive

to numerical instability because it uses the gradient to choose the next sample point.  It is also

very susceptible to getting trapped in local minima.

Parallel pattern search (PPS) has emerged as another technique used to optimize

difficult objective functions [Hough, 2000].  This method uses a search along each dimension

of the problem space to find the global minimum.  The starting point for each iteration of the

search after the first is the optimal point from the last round of evaluations.  This technique

has provable convergence to the minimum as long as certain rules are followed for adjusting

the step size along each dimension and for comparing objective values are compared.

This approach to global optimization has been applied to continuous and mixed-

variable problems.  The typical continuous-variable optimization problem is formulated as

follows.
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The formulation above can be re-stated as a minimization of a function F that is

subject to input and output constraints.  That is, x1 through xN must belong to an allowable

set of inputs X and the output y must belong to an allowable set of outputs Y.  Generally, N is

less than fifty and several thousand iterations are required to converge to the best-known

minimum [Audet, 2000; Hough, 2000; Zitzler, 2000; Fieldsend, 2002].

The DAMP can be used to solve continuous variable minimization problems that are

much larger in dimensionality than those solvable today.  The pseudo code below can be

used with 32-bit fixed-point variable optimization problems.  The vector xk is the best-known
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solution after each step.  The problem space is spanned by a positive spanning set12 D, where

di is a unit vector from D along the ith dimension of the problem space.  The functions Cx(xi)

and Cy(y) are used to verify that the input and output vectors, respectively, satisfy the

problem constraints.

The program listed below is run at each processor node.  Since there are 228

processors per node, the random number generated at each processor has only 28 bits of

significance.  This means that to cover a 32-bit random number space each processor must

run the program 16 times with a new 4-bit low order value each time.  The value, �k, is

simply incremented between loops.  Each processor takes its �k and uses it to compute a new

input vector.  The particular dimension that the processor searches (di) along is specific to the

processor node.  The new input vector is checked against the input constraints and if they are

satisfied the function (F) is evaluated.  The output from the objective function is checked

against the output constraints and if they are satisfied the processor participates in a

minimization query, or MIN-QUERY.  This query is conducted by the processor node and it

searches, bit by bit, for the smallest objective function value found by any of its processors.

More details on the MIN-QUERY operation are given below the pseudo-code.
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The first for statement must be executed sequentially on the DAMP.  Once the

program has been run, the Xk solution vector that best minimizes the objective function is

chosen for the next round.

                                                          
12      A positive spanning set is a set of vectors that can be combined using non-negative scalars to form all
possible vectors in a constrained space.
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The second for statement in the program can be distributed in parallel to the 4,096

processor nodes available on the DAMP.  The third for statement can be run in parallel on all

the processors within a node because they each use the same di vector in calculating a new Xk

vector.  This means that the DAMP can, in parallel, optimize a 4,096 dimension (M = 4096)

32-bit fixed-point problem per round of the program above.

The following discussion provides an analysis of the program’s execution time.

9��N@���@�AA�;O

Step 1 first requires the random integer k to be loaded.  The LOAD instruction can be

used for this.  The multiplication can be implemented by either performing 4 logical left-

shifts, or a multi-word circular right-shift by 28 bits followed by a logical AND with

0xFFF0.  This step will take no more than 2,000 cycles.

���	���1��	������	��*����3@�<��MPN@�

5��	���1��	�����*��3@�<��MPN@�O

;��	���1��	������	��*����

The constraint functions and objective function need to be preprocessed before being

executed on each processor within a node to fit within the memory limitations.  Since each

processor node is responsible for a single search dimension, it is possible to precompute the

value of all terms involving variables other than Xj.  The other variables can be combined to

form a function of the single variable Xj since all the other variables will remain constant at

the jth processor node.  If we consider the precomputation of the single-variable form of the

constraint and objective functions to be part of the problem description, then we need only

consider the complexity of the resulting functions to estimate the execution time of step 2.

If the constraint and objective functions can be decomposed into a sum of terms that

does not exceed the number of variables in the problem, M, then we can use this as an

estimate for the evaluation complexity.  Each term will have a precomputed multiplier that

represents the contribution of the other variables and will only need to have the contribution

of Xj calculated.  Each processor must perform this calculation since Xj is incremented by �k,

which is a processor-specific value.  The calculation Xj = Xj + �k will not require more than

300 cycles.  If each term requires sixty-four 32-bit additions (316 cycles each) and

multiplications (10,112 cycles each) then the entire function (4,096 terms) will require 2.73 x
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109 cycles, or 6.8 seconds if the DAMP is run at a 400 MHz clock rate.  That is, each

constraint function, Cx and Cy, and the objective function, F(x), has an estimated execution

time of 6.8 seconds.  Therefore, steps 2 to 4 will require 3 x 6.8 � 20 seconds on the DAMP.

?������������	����)�! Q2%�L�=�3@�<��MPN@�

MIN-QUERY (a, b) is a routine that first queries the processors within a processor

node for the minimum value, a, and then collects the argument, b, that generated the

minimum value.  The DAMP has enough register memory to store both the y value and the xk

+ dj��k argument and participate in a 32-bit MIN-QUERY.  The value being minimized, y, is

first loaded into the accumulator and R0.  This pair is then used in a 32-bit value binary

search (see section 11.1) that requires ~44,000 cycles.

7��N@���N@�<�9O

Step 6 is a simple 32-bit increment of the current �k, which will not require more

than 340 cycles.

6���	�	���97���
	��*��
���	���0

The total program from step 2 up to step 7 requires ~2.7 x 109 cycles to execute, or

4.3 x 1010 cycles after looping 16 times.  Therefore, the DAMP can completely sample an

objective function with 4,096 dimensions at 32-bit resolution and return the best solution in

110 seconds.

Example problem

Solving mixed-variable optimization problems is an important application of these

optimization techniques to real engineering problems.  The thermal intercept problem is one

such application [Audet, 2000; Kokkolaras, 2000].  The brief definition of this problem,

illustrated in figure 11.3, goes as follows.
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Figure 11.3. Thermal intercept problem.  N shields are placed between a hot (TH) and cold
(TC) side.  Each shield is padded with a slab of insulating material, Ii, �X i thick and must

maintain an interface temperature with the next shield of Ti.

The number, thickness, composition, and refrigerated interface temperature of a set of

thermal intercepts, or heat shields with insulation, put within a thermal gradient (TH to TC) is

to be determined by minimizing a set of objective functions.  The objective functions are

typically power and entropy change through the stack of intercepts, with the cross-sectional

area of the shields being fixed [Kokkolaras, 2000].

The insulating material is chosen from a library of materials making this a mixed-

variable problem.  That is, the composition of the intercept is determined by an integer that

has no meaning in the problem except as an index for choosing material properties [Audet,

2000].  Typical problems must limit the size of the material library to about 3 materials

because of the exponential growth of the problem difficulty as the library grows.  For

example, a thermal intercept problem with N possible materials and up to M shields has NM

different configurations.  For large N this problem becomes extremely difficult to solve.

We can calculate the performance of the DAMP on this problem by considering the

power equation (11.1) used in the optimization objective function.
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 (11.1)

The summation of equation (11.1) over all heat intercepts forms the complete

objective function shown in equation (11.2).

( ) �
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1

, (11.2)

This problem can be distributed over the processor nodes of the DAMP with the first

4,096 possible material configurations each handled by one node.  That is, of the NM possible

configurations, each processor node is responsible for NM / 4096 configurations.  This can be

thought of as splitting the first logN(4096) levels of the N-ary (N branches at each node)

configuration tree among all the processor nodes.  The remaining levels of the configuration

tree are handled by the random distribution of processors within each node.  That is, each

processor must evaluate equation (11.2) for one of the NM / 4096 remaining configurations

from its processor node, or the next logN(NM / 4096) = M - logN(4096) levels of the

configuration tree.  These configurations can be chosen randomly by using log2(N) · (M -

logN(4096)) of the 28 unique bits from each processor in the node.  The next log2(M) bits of

the remaining random bits can be used to choose one of the 2·M dimensions to search.

This leaves a remainder, R = 28 - log2(N) · (M - logN(4096)) - log2(M) random bits

for use as the particular value along the dimension selected by the processor.  If the desired

precision, P, is greater than R then 2(P-R) iterations must be executed, incrementing the

variable between loops, to cover the entire P-bit dimension as was done above.  Figure 11.5

illustrates the distribution of processors for N=8 and M=8.
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Figure 11.4. Distribution of processing elements to solve the N=8, M=8 thermal intercept
problem.

If P=16, the program will need to be run 24, or 16, times to cover the space since

there are only 12 bits dedicated to a specific search value along the dimension selected by the

processor.  Each processor chooses a dimension to search along by using the log2(M) bits (as

before) to select what variable in equations (11.1) and (11.2) to exchange for its specified

search value, �k.  The values for the other variables (that are not the selected variable) are

taken from the last best answer.  These are lumped together and precomputed to make a

unique "compressed" equation for each dimension.  That is, 2·M equations can be made from

equations (11.1) and (11.2) by extracting a single dependent variable and treating all others

as constants.  Each processor waits until it is time to compute the value of the function it has

chosen by selecting a dimension to search along, so that at any time ~((2·M - 1) / 2·M) of the

processors are idle during this period.

The material specific properties of the insulating material, Ki(T) in equation (11.1),

must be broadcast to all the processors within a node because they do not have sufficient

memory to store the data locally.  The integration of the table of data can be precomputed in

discrete intervals and sent to the processors for accumulation.  That is, if a processor needs to

calculate the Ki(T) integral from (11.1) because it is searching along Ti, it can use its

integration limits to control when it starts accumulating values and when it stops, since all

values of the Ki(T) integral will be broadcast.  Since an interval will not necessarily start or
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end at the same Ti value as the processor's integration limits, a correction needs to be made to

the accumulated sum because it will be an overestimate if the interval ended after the

particular upper integration limit.  Since only one of the limits will be searched by any single

processor, the other limit (a constant in this case) can be used to adjust the precomputed

integration values so that the first (or last) interval begins (or ends) at the constant limit,

evenly.  Considering the case where the lower limit of integration is fixed, and assuming that

the Ki values are constant within each interval we can use the correction C,

( )

AB

dTTK

C

B

A

i

−

⋅
=
�

, where A � Ti � B.

The overestimate in the accumulated sum can be corrected by subtracting C·(B - Ti),

from the accumulated sum.

The look-up-table and integration step is implemented as follows.
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There are a total of 1,100 cycles per entry for each integrated-table as implemented

above, or 281.6 x 103 cycles for a 256-entry table.  Figure 11.6 illustrates the power

consumption during a single loop through the program above.  Since the program consumes
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less power per instruction than the average integer instruction, the clock rate can be increased

500 MHz and still remain under the 3.5 MW power budget.  All other instructions will be run

with a 400 MHz clock rate.  To simplify comparisons, the discrepancy in the two clock rates

can be accounted for by reducing the cycle count per look-up-table entry by the ratio of the

two clock rates, or 1.25, to yield the same execution time at the faster clock rate, or 2.2 µs

per entry.  That gives an effective cycle count of 880 cycles per table entry, or 225.28 x 103

cycles for a 256-entry table.
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Figure 11.5. Power consumption of one look-up-table iteration.  This program must be
executed for each entry in the table.

The correction step can be taken after all tables have been integrated and can be

executed in parallel.  Table 11.5 lists the estimated number of cycles for calculating (11.1)

and (11.2).  The functions that involve the look-up-table integration, used by processor's

searching a Ti variable, are more complex than the simpler �X i search functions (since they

do not use integrated material data) and will be used as an upper bound on the execution

time.
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Equation (11.1)
Instruction class Count Total DAMP cycles

additions - subtractions 2 316
multiplications - divisions 6 30336

256-entry look-up-table & integration 2 * N  450.56 x 103 * N
Correction step (2 adds & multiplies) 1 61304

Total T11.1 = 450.56 x 103 * N + 91956

Equation (11.2)
Instruction class Count Total DAMP cycles

equation 11.1 M M * T11.1

additions - subtractions M M * 158
Total M * (158 + T11.1)

Total after 2(P-R) iterations 2(P-R) * M * (158 + T11.1)
Table 11.5. Estimated cycle counts for evaluating the heat shield objective function with at

most M thermal intercepts and N possible insulating materials.  All instruction counts are for
16-bit operands except for multiplications and divisions.
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Figure 11.6. Tradeoff between library size and maximum number of heat shields.  The
surface depicts the execution time on a 400/500 MHz DAMP.
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The same instruction counts listed in table 11.5 can be used to determine the

performance of the nearest competitor to the DAMP, the NEC EarthSimulator with a few

modifications to make the program more efficient on that machine.  To simplify the

comparison, N=16 and M=8 will be used to calculate execution times.  As shown in figure

11.7, the DAMP can solve this problem in ~5 minutes.

The NEC EarthSimulator (ES) has 640 nodes with 8 processors per node, 16 of the

total processors are devoted to supervisory roles leaving 5,104 processors for problem

computation.  Since each processor has ample memory space to store material specific data,

the look-up-table and integration step can be reduced to about 10 instructions (ignoring

address calculations) per entry in the table.  If we use a 256-entry table the total maximum

instruction count for the look-up and integration is 2,560 instructions since each entry must

be broadcast to the processors (i.e. each entry might be used.)  This leads to 5,128

instructions to evaluate equation 11.1.  The combination of objective functions in equation

11.2 requires 8·5128 + 8 = 41,032 instructions.  That is, 41,032 instructions are required to

evaluate a single configuration of heat shields for a single instance of the continuous

variables (Ti and Xi).

Since the heat intercept problem is a 2·M dimensional problem and M=8, or 16

dimensions, each processor can choose one dimension to search along for a total of 5104 / 16

= 319 processors devoted to a single dimension.  Since there are 168 configurations of

insulating materials (an 8-level 16-ary tree), each of the 319 processors searching in one

dimension must handle 13.46 x 106 unique configurations.  Also, in order to cover the entire

16-bit input space along a single dimension for each configuration, every processor must run

the program 216 times, incrementing its �k value between loops.

The total instruction count is therefore 41032 instructions / configuration X 13.46 x

106 configuration · dimensions / processor X 216 processor · cycles / dimension  = 5.52 x 1011

instruction · dimensions / processor X 216 processor · cycles / dimension = 3.62 x 1016

instruction · cycles.  Since each processor of the ES can execute ~6.8 x 1010 16-bit integer

instructions per second, the entire problem will take 3.62 x 1016 instructions ÷ 6.8 x 1010 16-

bit instructions per second = 5.32 x 105 seconds, or ~6 days.  That is, the DAMP covers the

same space at the same resolution ~2,000 times more quickly.
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Appendix A. DNA-functionalized single-walled carbon nanotubes

[Published as "DNA-functionalized single-walled carbon nanotubes", Dwyer, et al., 2002]

Prologue

The use of carbon nanotubes in a self-assembling fabrication process appears, at first,

to be quite practical.  The novel electronic properties and controllable doping of carbon

nanotubes makes this seem even more plausible.  However, the single molecular shells that

make a single-walled carbon nanotube are by virtue susceptible to point defects that can

dramatically alter the electronic behavior of the nanotube.  Doping of carbon nanotubes has

been demonstrated but most use vapor-phase donor or acceptor ions that must adsorb to the

nanotube surface.  Doped carbon nanotubes have even been used in depletion mode field-

effect-transistors but are still extremely sensitive to environmental conditions.  Any

molecules, like the donor or acceptor ions, that adsorb to the nanotube sidewall will alter the

electronic behavior of the system.  It is for these reasons that we use silicon nanorods in place

of carbon nanotubes for use in self-assembled computer fabrication.

Introduction

We present here the use of amino-terminated DNA strands in functionalizing the open

ends and defect sites of oxidatively prepared single-walled carbon nanotubes, an important

first step in realizing a DNA-guided self-assembly process for carbon nanotubes.

The unique electrical properties of single-walled carbon nanotubes (SWNTs) make

them good candidates for a self-assembling process that can controllably form electronic

circuitry.  Control over the assembly process may be derived from the selective binding of

complementary DNA strands as in [Mbindyo, 2001].  This work represents a step toward the

DNA-guided assembly of carbon nanotubes by demonstrating that the well-known chemical

pathway already discovered to attach amino-terminal compounds to carbon nanotubes is also

compatible with DNA functionalization [Liu, 1998].  Previous work in the field of nanotube-
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DNA self-assembly has focused on either non-covalent associations between the nanotubes

and DNA molecule [Guo, 1998] or the self-organizational properties of a carbon nanotube /

DNA system [Buzaneva, 2002].  Other studies have explored the use of DNA self-assembly

and frayed wire systems [Batalia, 2002].  While these studies illuminate our understanding of

self-organizing systems, our work focuses on developing a controllable assembly system.

We hope that one day a high level of control will be possible by using the hybridization of

covalently bound DNA strands on carbon nanotubes.

 The single-walled carbon nanotube material, as formed by a laser ablation method, is

first purified in nitric acid and then oxidized in a sulfuric and nitric acid mixture as described

by Liu [Liu, 1998].  The product of this purification is a solution of open-ended nanotubes

with terminal carboxylic acid groups.  The carboxylic acid groups can be reacted with

primary amine compounds by any of several condensation reactions [Hendrickson, 1970].

The reactions couple the amine compound to the nanotube by way of an amide bond [Wong,

1998].  Figure B.1 illustrates the basic chemical pathway we have used in this work.

HOOC COOH
HNO3

NH2 EDC

HNOC CONH

HOOC COOH
HNO3

NH2 EDC

HNOC CONH

HOOC COOH
HNO3

NH2 EDC

HNOC CONHHNOC CONH

Figure A.1. DNA/nanotube reaction scheme. Capped nanotubes are oxidatively opened and
then reacted with amine-terminated single-stranded DNA.

A.1 Materials and Methods

Linking DNA strands to the nanotube requires specially prepared DNA strands.

Amino-terminated DNA strands can be purchased from commercial suppliers.13  For the first

                                                          
13 Operon Technologies, Inc., Alameda, CA, http://www.operon.com
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set of experiments described here, we used 10 �M amino-terminated DNA14,15 which had

been purified using polyacrylamide gel electrophoresis (PAGE) by the vendor.  Our second

experiment used 51.1 �g/mL of lambda-DNA extracted from bacteria16.

We have imaged the functionalization of the as prepared single-walled carbon

nanotube material (diluted in DMF) and the amino-terminated DNA strand oligo 1 and

carboxylic-terminated DNA strand oligo 2 by 32P radioisotope PAGE.  Oligo 2 serves as our

control to determine that the DNA does not non-specifically interact with the nanotube

material.  We expect the low mobility of the SWNTs in the polyacrylamide gel to prevent

any bound DNA from migrating at its normal rate through the gel.  DNA strands migrate

through a gel because their charged phospho-diester backbone interacts with the applied

electric field.  Shielding effects limit the force that can be applied to any strand and this

means that strands will move at a rate that is inversely proportional to their length.  The

longer a strand is the greater the number of interactions that strand will have with the gel,

thus slowing its progress through the pores of the gel.

The DNA strands were first labeled with 32P-�-ATP using a T4 kinase enzyme17.

Each of the following were added to a 0.5 mL microcentrifuge tube: 1 �L of oligo 1 or oligo

2 (10 �M), 10 �L 32P-�-ATP (3.3 �M, 3000 Ci/�L), 1 �L T4-polynucleotide kinase (10 units

/ �L), 6 �L 5x T4 reaction buffer (as described in the enzyme specification sheet, with the

exception that no DTT (dithiothreitol) or Tris-HCl was used), 12 �L nanopure H2O (18.2

MΩ).  The replacement of the Tris-HCl with PBS (phosphate buffered saline) from the T4

kinase reaction buffer was required to prevent side reactions between the amine groups on

Tris with the carbon nanotubes.  Since Tris is smaller and more mobile in solution than the

DNA strands, it will dominate the competition for carboxylic acid sites on the nanotubes.

DTT was omitted from the reaction protocol to eliminate unnecessary additives.  The

labeling reaction was incubated at 37°C for 2 hours and then heat killed for 3 minutes at

                                                          
14 Oligo 1 sequence: 5’-NH2 - ATG GTG GAT AGG CGA CTC AAG GGC-3’

15 Oligo 2 sequence: 5’-TTT TTT TTT TTT TTT TT-COOH-3’

16 Lambda-DNA cl857 Sam7 isolated from E. coli strain W3350, 48,502 bp in length, Promega Corp., USA.

17 T4-polynucleotide kinase and 32P-γ-ATP, Amersham Pharmacia Biotech.



186

>65°C.  Following the heat kill, each DNA strand was purified from the kinase reaction using

a phenol extraction.

The 32P labeled oligo 1 and diluted SWNT material were added to 50 mM EDC18 and

incubated at room temperature for 24 hours.  Eight reactions were prepared using 1x, 2x, 4x,

8x, 16x, 32x, 64x, and 128x dilutions of 50�g/ml of SWNT in DMF and labeled as reaction

A.  Two control reactions were performed with one having no EDC and 50�g/ml SWNT

(A9) and the other having no SWNT material (A10).  The second set of reactions, reaction B,

was identical to reaction A but used oligo 2 instead of oligo 1.  Oligo 2 should have no

primary amine groups for reaction with the SWNT material due to its sequence (Poly-

thymine has no primary amine groups.)

The products of reaction A and reaction B were loaded on to a 10% denaturing

polyacrylamide gel using a loading buffer (30% glycerol, 25 mM EDTA, and 0.01%

bromophenol blue and xylene cyanol.)  In addition to the previously described reactions, a

sample of the purified oligo 1 and oligo 2 (A11 and B11) was loaded as well as the kinase

reaction product (A12 and B12) from which they were each purified.  Each reaction was

heated to 100ºC for 3 minutes before loading on the gel to denature any non-specific DNA

binding.  The gel was pre-run for 1 hour using TBE, pH 8.9, buffer (Tris-HCl, borate,

EDTA).  Following the pre-run, the gel was loaded with samples and run for 3 hours at ~900

V, 80 mA, with a closed-loop controller maintaining a constant power of 65 W by varying

the plate voltage.  The gel slab was then imaged by exposure to a radioisotopic imaging

screen for 15 hours.  A screen scanner was then used to acquire a digital image of the gel.

We performed the second experiment to verify the reactivity of DNA with the SWNT

material.  We reacted lambda-DNA in place of the short oligos under the same conditions

described above. Lambda-DNA will react with the carboxylic acid groups on the SWNTs

because of the primary amines found on the many A, G, and C nucleotides the DNA

contains.  Approximately 10 mg EDC, 100 �L lambda-DNA, 300 �L SWNT material, and

600 �L nanopure H2O were mixed and left to react at room temperature for 1 hour.  The

relative insolubility of the SWNT material in H2O compared to the modest solubility of DNA

in pure H2O reduces the chance for non-specific adsorption of the DNA to the SWNT

                                                          
18 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Hydrochloride, Sigma-Aldrich.
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material.  10�L of the reaction product was deposited on UV cleaned (6 minute exposure,

rinsed with nanopure H2O, repeated twice) silicon with a native oxide layer.  The silicon

sample was then rinsed with nanopure H2O and dried under a stream of dry N2.  The sample

was then immediately placed into the load lock chamber of a Hitachi S-4700 SEM and

pumped down to approximately 10-5 torr.  The sample was then imaged using typical SEM

parameters for non-conducting samples.  Figures A.4 and A.5 show that the lambda-DNA

will readily form clusters with varied attachment points to the SWNTs indicating that there

may be multiple carboxylic acid binding sites at the end and along the sidewalls of the

SWNTs.

A.2 Results

As expected from the dilution series of A1-A9, we see in figure A.2 that there is a

steady decline in the amount of 32P-labeled DNA retained at the top of the lanes.  Since we

expect the reaction to greatly, if not completely, reduce the DNA mobility in the

polyacrylamide gel we expect to see a correlation between the mobility and SWNT

concentration.  Accordingly, as we reduce the concentration of SWNT material we see

greater amounts of labeled DNA run down the gel lanes indicating that less DNA is being

immobilized.  Lane A10 demonstrates the non-specific immobilization “background” of the

series since it has no SWNT material.  Lane A11 and A12 visualize the cleaned and original

kinase labeling products.  In particular, lane A12 indicates the importance of removing the

by-products of the kinase reaction by the large degree of variation in strand mobility.  This

variation is likely due to any number of binding events between the kinase and DNA strands

that reduces the strands mobility through the porous gel.
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Because the oligo 2 used in reaction B has no primary amine groups, we do not

expect it to react with the SWNT material.  Further, since oligo 2 is shorter than oligo 1 (17

nucleotides versus 24 nucleotides) we expect oligo 2 have higher mobility in the gel.  Lanes

B1-B9 demonstrate this by a large amount of DNA moving through the gel with very little

being immobilized at the top of the lanes.  Lane B10 was used to characterize the background

immobilization, near zero in this reaction, and B11 and B12 were used to demonstrate the

quality of the cleaned and original kinase products using oligo 2.

Figure A.2.  Polyacrylamide gel of reactions A1-A12 and B1-
B12.  The material bound at the top of A1-A9 indicates

successful SWNT-DNA linking.
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When the ratio of DNA bound at the top of a lane to the amount of DNA in the gel

from reaction A is plotted, we should see the exponentially decreasing dilution series.  Figure

A.3 plots this ratio as calculated from the gel image in figure A.2.  The general trend from

A1 to A11 is clearly decreasing. The smeared-out background signal seen only in lanes A1-

A9 indicates that the reaction conditions widely alter the mobility of the DNA strands.  This

may be caused by unwanted reactions of primary amines on the A, G, and C nucleotides of

oligo 1 with the phospho-diester backbones of other strands.  The many amino- and

phosphate groups available for this reaction could explain the wide variation in the mobility

of the products.

A.3 Conclusions

DNA-SWNT Linking (Reaction series A)
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Figure A.3. Plot of the ratio of DNA immobilized at the top of a well to the total DNA found
in the well from reaction A.  Reaction B appears to have little bound DNA.

We have shown that SWNT material can be functionalized with modified DNA.  This

form of chemical modification is the first step toward implementing a DNA-guided self-
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assembling process capable of directing the placement of SWNTs.  The work presented here

in concert with work performed by other groups in DNA metallization [Richter, 2001] and

self-assembly [Mbindyo, 2001; Gracias, 2000] presents the start of a compelling argument

for the feasibility of self-assembled molecular-scale electronic systems.

Figure A.4.  Lambda-DNA cluster attached to defect sites and ends of a SWNT bundle.

Figure A.5. Lambda-DNA clusters on SWNT bundles.
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Appendix B. Source Code

All source code created in the support of this dissertation can be found on the

accompanying compact disc, and on the dissemination page at www.cs.unc.edu/nano.
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Appendix C. DAMP instruction set implementation

The following tables describe the implementation of the instructions built into the

behavioral simulation described in chapter 9.

To save space, some conventions will be used to indicate how the processor is

signaled.  Each instruction will have two columns, the left column will indicate which signals

from the control registers will be asserted.  The second column will indicate how many

cycles will be clocked using these values.  For example:

ERC 1
ESA, ESR, EESD, EEC 16

This means that the "enable reset carry-bit" (ERC) is set in the control registers (last

bit in S7) for one clock cycle, and that the enable - "shift accumulator" (ESA), "shift register"

(ESR), "enable set D-bit" (EESD), and "enable carry-bit" (EEC) are set in the control register

for 16 clock cycles.  The "enable" signals are set in such a way that they are cleared if any

others are set.  That is, the second line in the box above removes the "ERC" signal simply

because it does not appear.  Multiplexers, on the other hand do not to be re-specified on each

line (i.e. they retain their previous setting.)

There are several control register bits that select the output of multiplexers.  These

values are cumbersome to read and understand without using symbols.  Since each

multiplexer has only a single output, it is useful to describe each by the name given them in

the implementation figures above.  For example, LC2 can select the output from R1, R2, R3,

or R4.  Therefore, the notation "LC2 = R3" signifies the bits that would be set in the control

register to make LC2 select the output of R3, or LC2a=1 and LC2b=0.  This notation will be

used with each multiplexer including LC1, LC2, AC, RC0, RC1, RC2, RC3, RC4, WC1, and

WC2.
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In the event that an argument to the instruction is needed to select the processor

signaling (e.g. choosing a register to copy into the accumulator), the notation "if(argument-

condition, then-clause)" where the argument-condition is a Boolean condition that if satisfied

by a particular argument will cause the then-clause to be used to generate processor signals.

For example, since the selection of a register output is common, "select(RX)" will be used to

denote the following:

if(RX=0, LC1=R0)
if(RX=1 .. 4, LC1=LC2)
if(RX=1 .. 4, LC2=RX)

(any number)

This means that the LC1 and LC2 multiplexers are set to present the output from any

of the registers, R0 through R4, to one of the inputs (LC1) of the AC multiplexer.  This

notation will be used frequently with register-register operations.

It is occasionally necessary to select the bits from an immediate value provided as an

argument to an instruction.  The notation "imm[i]" will be used to indicate the ith bit from the

immediate value with the least significant bit starting at i=0.

Please refer to section 8.1 for the details about the semantics for each instruction

below.  Each of these instructions was implemented as shown and verified using the

behavioral simulation described in chapter 9.

ADD(RX)
ERC 1

select(RX)
ESA, ESR, EESD, EEC

16

ESA 1

ADDC(RX)
select(RX)

AC=S
ESA, ESR, EESD, EEC

16

ESA 1
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ADDI(constant)
AC=S
ERC

1

LC1=LC2b
LC2b=imm[i]

i++
ESA, EESD, EEC

16

ESA 1

ANDI(constant)
LC1=LC2b

LC2b=0
if(imm[i]=0, AC=ACC)
if(imm[i]=1, AC=LC1)

i++
ESA

16

ASR(N)
LC1=LC2b

LC2b=0
EESD, ERC

1

AC=S
ESA

N

CLEARB
LC1=LC2b

LC2b=0
EEB

1

CLEARC, CLEARD
CLEARC: ERC
CLEARD: ERD

1
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CMP
ERD, ERC 1
LC1=LC2b

LC2b=0
AC=ACC

ESA, EESD

16

CMPI(constant)
AC=ACC

LC1=LC2b
LC2b=0

ESC, ERD

1

if(imm[i]=1, LC2b=0)
if(imm[i]=0, LC2b=1)

i++
ESA, ESC, EESD

16

CMPI8(constant)
AC=ACC

LC1=LC2b
LC2b=0

ESC, ERD

1

if(imm[i]=1, LC2b=0)
if(imm[i]=0, LC2b=1)

i++
ESA, ESC, EESD

8

COPY(RX)
AC=LC1

select(RX)
ESA, ESR

16
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COPYH(RX)
AC=LC1

LC1=LC2b
LC2b=0

ESA, ESR

8

ESA 1
select(RX)

ESA, ESR, EESD
8

AC=S
ESA

8

COPYL(RX)
AC=LC1

select(RX)
ESA, ESR

8

ESA 8
ESR 8

COST(RX1, RX2)
AC=LC1

select(RX1)
RC(X2)=ACC

ESA, ESR

16

RC(X2)=RX2 0

CSR(N)
AC=ACC

ESA
N

DEC
AC=S
ERC

1

LC1=LC2b
LC2b=1

ESA, EESD, EEC
16

ESA 1
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GRAB(N)
AC=ACC

LC1=LC2b
LC2b=0

ESA

N

ESA, EESD 1
ESA 15 - N

INC
ESC 1

AC=S
LC1=LC2b

LC2b=0
ESA, EESD, EEC

16

ESA 1

LOAD(constant)
AC=LC1

LC1=LC2b
LC2b=imm[15]

ESA

1

LC2b=imm[i]
i++
ESA

16

LSR(N)
AC=LC1

LC1=LC2b
LC2b=0

ESA

N

LSRC(N)
AC=C
ESA

N
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MCOPY(constant, RX)
select(RX)

if(imm[i]=0, AC=ACC)
if(imm[i]=1, AC=LC1)

ESA, ESR

16

NOT
AC=S

LC1=LC2b
LC2b=0

ESC

1

ESA, ESC, EESD 17
ERC 1

ORI(constant)
LC1=LC2b

LC2b=1
if(imm[i]=0, AC=ACC)
if(imm[i]=1, AC=LC1)

ESA

16

RANDOM
EL 1

RESUME
C1=0, C2=0, C3=0 0

RINGOFF, RINGON
RINGOFF: LC1 = LC2b
RINGON: LC1 = !LC1

0

SSETGE, SETLT, SSETNGE, SETNLT
SETNGE, SETLT: ERC
SETGE, SETNLT: ESC

1
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SETB
LC1=LC2b

LC2b=1
EEB

1

SETCREG(constant)
C1=imm[2]
C2=imm[1]
C3=imm[0]

-

SETC
ESC 1

SETSREG(constant)
SREG(C)=imm -

SIGN
AC=ACC

LC1=LC2b
LC2b=0

ESA

15

ESA, EESD 1

STORE(RX)
AC=ACC

RC(X)=ACC
ESA, ESR

16

RC(X)=RX 0
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STOREH(RX)
AC=ACC

ESR
8

RC(X)=ACC
ESA, ESR

8

RC(X)=RX
ESA

8

STOREL(RX)
AC=ACC

RC(X)=ACC
ESA, ESR

8

RC(X)=RX
ESA, ESR

8

WAIT*
WAITB: WC1=B, WC2=WC1
WAITNB: WC1=B, WC2=!WC1
WAITC: WC1=C, WC2=WC1
WAITNC: WC1=C, WC2=!WC1
WAITD: WC1=D, WC2=WC1
WAITND: WC1=D, WC2=!WC1
WAITS: WC1=S, WC2=WC1
WAITNS: WC1=S, WC2=!WC1
WAITGE, WAITNLT: WC1=C, WC2=WC1
WAITNGE, WAITLT: WC1=C, WC2=!WC1

0

XOR(RX)
AC=S

select(RX)
ERC

1

ESA, ESR, EESD, ERC 16
ESA 1
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