Self-Assembled Computer Architecture: Design and

Fabrication Theory

by
Christopher L. Dwyer

A dissertation submitted to the faculty of the University of North Caralir@hapel Hill in partial
fulfillment of the requirements for the degree of Doctor of PhilosophyeDgpartment of Computer
Science

Chapel Hill

2003
Approved by:

Advisor: Russell Taylor

Reader: Dorothy Erie

Reader: John Poulton

Reader: Leandra Vicci

Reader: Sean Washburn

© 2003
Christopher Leonard Dwyer
ALL RIGHTS RESERVED

ABSTRACT

CHRISTOPHER L. DWYER: Self-Assembled Computer Architecture:

Design and Fabrication Theory

(under the direction of Russell M. Taylor)

This dissertation explores the design and fabrication of massively-pamtipluters
using self-assembling electronic circuitry. A DNA-guided se#feasbly method, inspired by
discoveries in chemistry, materials science, and physics, is used to developra@rarfgr
the feasibility of constructing complex circuitry. The fabricationdya such a process is
calculated. Together, these form the foundation for a discussion of the computer

architectures and implementations that this self-assembling prozdss®

Simulations estimate the electrical performance of the components usedetithe
assembly process. Traditional drift-diffusion simulations were used to evaluiaig-gated
field effect transistor and the results were applied to a circuit lewealation to evaluate
specific circuit topologies. These circuits were then grouped into impletoentavel
components (logic gates, memory elements, etc.) and used in an archleatlUbehavior

simulator.

The electrical performance results enable an informed evaluation of hayleér-|
computer designs that could be built using self-assembly. Estimates of thenpedey
including power consumption, of two architectures are presented. These architgubeas
to be impractical without a self-assembling fabrication process anti@s $o have
remarkable advantages over conventional computing machines. These machines are
estimated to be nearly three orders of magnitude faster than the fastegtmerstion
supercomputer (IBM BlueGene /L) on certain classes of problems.

Vi

ACKNOWLEDGEMENTS

Thanks to

My committee members: Dorothy Erie, John Poulton, Richard Superfine, Russell

Taylor, Leandra Vicci, and Sean Washburn for their guidance and support.

Mike Falvo, Martin Guthold, Garrett Matthews, Neal Snider, Phillip Williams, #ind a
the nano-scientists for their help, experience, and charity.

The Nanoscale Science Research group.
Mark Kellam for his guidance with the PISCES-IIb simulations.

Catherine Perry, Andrea Bunn, Donna Boggs, Sandra Neely, Tammy Pike, Janet
Jones, and all the othgreatstaff members in the Computer Science department for making
the wheels turn.

My cohort (and others) for many truly entertaining moments.

(in alphabetical orderAlexandra, Angela, Bamboo Stick, BrendOn, Caroline, Chris,
Dave, Hedge & Ivy Patch, Kelly, Ketan, Mark, Matt, Michele, Mike, Montelkshéd Nick,
Paul, Sharif, Shelby, Stefan, Steve, Tracy, Yoni, and Zac.

and most importantly,
My mother and father for their caring and enthusiastic support, and

Owen, Susan, Katie, Manuel, Alison, and Andrea for helping to remind me how

precious it all can be.

Vi

viii

TABLE OF CONTENTS

LIST OF TABLES ...ttt sttt sttt aentesnennennens Xiii

LIST OF FIGURESttt sttt sne e nenne e e e XV

LIST OF ABBREVIATIONSottt st XXiii

(@ gF=To 1 (= I I 1 0o [T o o R 1
I @ YT o TR 1
1.2 Thesis statement and CONHDULIONS...........ooeiiiiiiiiiie e 1
HIRRC I [70 To [Tt i o o PRSPPI 3
IR Y = 1 o o PP PPPPPRRRPR 4

Chapter 2. REALEA WOIKc.ooieei e 9
2.1 Massively-parallel computer deSigNoooiiiiiiiiiiie e 9
2.2 DNA COMPULALION.ccie it e e e e e et e e e e e e e e e e e e e e e eeseaessaaa s 9
2.3 Self-assembled circuitry & molecular electroniCS.........ccccoeivieeeeeeiiiiiiieee e, 10
2.4 Fault-tolerant COMPULINGeveiiiiiiieeee et e e e e e e e e e e 11
2.5 Quantum-dot cellular automata (QCA)uuuiiriiiiiiiie e 11
2.6 QUANTUM COMPULING ..eevvtttiiiiiee e e e e e e e e e e e e e et e e e e e e e e e e e e e e eeaeeeesaaa s e e eaaeaeaaeeeees 12

Chapter 3. 3D Nanoscale circuit fabricationccccoveeveeieiiesi e 15
G 200 1 0 T U Tox 1 o o 1RSSR 15
I T Yol (o | (o 10| o o FO TP TP PP PPPPPPPPPPPPPP 16
3.3 Nanowire synthesis & self-assembly..............iiiiiiiii e 22
3.4 Cubic unit Cell aSSEMDIYccooiiiieeee e e e e e e 23
3.5 ASSEMDBIY MELNOM ...t 28

3.6 FIUIdIC SeIf-aSSEMDBIY ..o 31

3.7 DNA strand design & assembly tOlEranCesuuvvuiiiiiiiiiiiee e 32

3.8 ASSEMDBIY YIEId ... e 38
Chapter 4. Structural stability @and Yield ... 41
4.1 Structural StabIlity.......cccooii i e a e e e e e 41
4.2 DNA COUPIING YIEIA.ot e e e e e e e e e e e e e eeeeaananes 43
G B e U 1o (o] o SO 44
Chapter 5. CuStom deSigN tOO0IS........c.oiiiiiiiriiriee e 47
5.1 3D rod deSign tOO]ccoiiiieieeeee e —————— 47
5.2 ASSEMDBIY-0rder t00]ceeeiiiiiiiiee e 48
Chapter 6. Power and iNtEr CONNECT..........ooiiiririeieree e 51
6.1 Modular 8SSEMBIY..........o i 51
6.2 MONOIItNIC @SSEMDIY......eiiiiiiiie e eaaa e 53
6.3 OULPUL METNOUS.ot e e e e e e e e e e e e e e eeeeeearanaaas 57
Chapter 7. Theoracle ar CHitECIUN €ooeiiiieeeee e 61
7.1 ASSEMDIY-tiIME COMPULALIONuiiiiiiiiiiiiei ittt e e e e e e e e e e 61
A Yo [0 11 1[o] g o] =Tl [TP PPPPPPPPR 63
7.3 Hamiltonian path OracCle............cooo i 71
Chapter 8. The decoupled array multi-processor (DAMP) ..., 79
8.1 Architectural description of the machine.............ccccciii e, 80
8.2 One implementation of the DAMPouuiiiiiiii e 96
8.2.1 Regqister file, register control unit (RCU), and arithmetic-logic unit (ALU)...... 97
8.2.2 Control state Maching (CSM)cooiiiiiiiiiiiii e 99
8.2.3 CONIIOl FEOISTEIS ..ttt e e e e eeeeeaeeas 101
8.2.4 Wait & trigger controller (WTC)ccoo i 103
L TRC I V=T o (oo N F= 1Yo U | AR 108
8.4 Design & yield tradeoffs. ... 115
Chapter 9. Simulation methods and results ... 121
9.1 PISCES-IIb simulation of NANOIOASccooeiiiiiiiiiiiiiiiie e 121

9.2 COULOMB simulation Of CApaCItanCeuuuiiiiiiiiiieeeeeeeeeeeeeecee e e e 126

9.3 SPICE simulation of NANOrod CirCUITIY...........ooieiuiiiiiiiiiiii e e e 127
LS IR 70t R @0 o Tod 1157 [0 o - P 138
9.4 Custom behavioral SIMUIALIONcooiiiiiiiiii e 142
9.4.1 Behavioral MOGEL...........ccooiiiiiiiiiee e 143
0.4.2 RESUILS .ttt e e e e ettt e e e e e e e e e e e e eeaaaarnne 146
9.4.3 INSLrUCLION ASSEMDIETiiieeeeeiieeee e e e e e e e e e e e e eeeeeeennnes 150
Chapter 10. Thermal evaluation.............ccceiieiieieiiesie e 151
10.1 Steady-state diSSIPALIONuvviiiiiiiiiiie e eee e e e e e e e e e e e e e ———- 152
10.2 Burst-mode COMPULATIONeviiiiiiieeeeeeeeii ittt e e e e e e e e e e e e eeeeneeees 156
Chapter 11. Applicationsand PerforManCecccooeiererirenerieeeeee s 161
12,0 TRE DAMP. ...ttt ettt e e e e e e e e e e e e e e e e s s a et bbb e e e e e ee s 161
11.2 Blind decryption of the Data Encryption Standard (DES)ccceevvvvvvvviininnnnns 167
11.3 Global OPtIMIZALIONccoeiiiieie s 170
Appendix A. DNA-functionalized single-walled carbon nanotubes.............c.ccoceeeennees 183
A.1 Materials and MethOdS. ... 184
A2 RESUILS ...ttt e e e e e e e e e e e e e e bbbttt e e e e e e e e e e e e e e e e e e e aanas 187
N X @0 o o] 101 [0 o 1 PSR 189
APPENdiX B. SOUICE COUE.......c.eiiieiiiieriest et b e 191
Appendix C. DAMP instruction set implementation...........ccccccvveveiieeiiccce v 193
BIBLIOGRAPHY .ottt sttt sttt sbe e e e 203

xi

Xii

LIST OF TABLES

Table 1.1. Design shifts between VLS| and self-assembly. ..., 5

Table 3.1. Assembly statistics for several logic circuits. * The number of &#gfences
needed if the conserving allocation method is not used. The conserving allocation

method Needs 15 UNIQUE SEQUENCES.cccoiiiiiiieeeiiiiiiees e e e e e e e e e e e e e e e e et e e e e aaaaaaas 28
Table 7.1. Full-adder truth table ... 63
Table 8.1. Description of the Status DitS.............uuiiiiiiiii e 83
Table 8.2. Multiplexer selections. * - the LC1 multiplexer is used to signal @ thiet

controller. See chapter 6 for detailS...........ceiiiiiii e 101
Table 9.1. Gate and circuit delays, power, and energy CoNnsSumption.cccccceeeeeeeieiiiininne 129
Table 9.2. Primitive circuit counts for each behavioral module.cccccciiiii e, 145
Table 10.3. Thermal and physical properties of SU-8 photoresist.ccoevvveiiiiiiicinnnnnnn. 154

Table 11.1. Basic instructions and cycle counts, execution time at 400 MHz, energy
consumed, and estimated maximum sustainable clock rate'fqerb@essors operating

with a power budget 0f 3.5 MW.ooiiiiiiei e e e e 162
Table 11.2. Comparison of several machines with respect to integer operatiorerateym

size, power consumption, volume, and energy per operation.ccceeeeeevvveeeevevnnnnnnns 166
Table 11.3. Time to beat the largest computation on record, as of February 2003. 167

Table 11.4. Comparison of blind DES decryption times for various machines. * Data taken
from [Kedem, L1900, ... e e e e e 169

Table 11.5. Estimated cycle counts for evaluating the heat shield objectiverfunitt at

mostM thermal intercepts ard possible insulating materials. All instruction counts are
for 16-bit operands except for multiplications and diviSiOns.................cccceceeiiiiiiieeeeeeenn. 180

Xiii

Xiv

LIST OF FIGURES

Figure 1.1. Technological design space. lllustration of the many chedléagng a self-
assembled machine designer. In particular, the strong coupling betweew-lbgd|
fabrication and high-level design makes the space treacherous.............cccccceeeiiiieeieeeeennnn.. 4

Figure 3.1. A DNA-guided assembly of rods that form a NAND gate.ccevvvvvrrnnnnns 15

Figure 3.2. Schematic representation of the major DNA nucleotides. The dasked line
represent a backbone used to string nucleotides together.ccooovvviiiiiiiiiee e, 17

Figure 3.3. Schematic representation of two complementary single-strahthe fragments
forming a double-stranded fragment. ..o 18

Figure 3.4. The basic structure of the ring-gated field-effect-BmSI.................cceeeeinne 20

Figure 3.5. A scanning electron microscope image of AuPd rods protruding out of a poly-
methyl-methacrylate (PMMA) SUIMACE.oiiiiiiiiiiieiei e 21

Figure 3.6. RG-FET synthesis scheme. Repeated membrane etching and oed surfa
treatments can be used to form banded structures along the rod.cccocciiiiiiiinnnnne. 22

Figure 3.7. A cubic unit cell with diagonal supports (crossbars). The goldenyiayht

rods are conducting and the dark gray rods are insSulating.ccccccoiiiiinis 23
Figure 3.8. A CMOS implementation of a NAND gatecccooiiiiiiiiiiiiiiicceeee e 24
Figure 3.9. The conducting portions of the 3D structure for a NAND gate.ccccccceeeeennn. 25

Figure 3.10. The physical 3D structure of a NAND gate embedded in insulattraglmior
SEIUCTUTAl SUPPOIT. ..ttt e e et e e e e e e e e e e e e e e e e e e aanna 25

Figure 3.11. Face-serial assembly of a 3D structure. The assemblyfirsyios face 1
(partially completed in this figure), then face 2, and then face 3. The propeassre
until the Structure IS COMPIELE.ccoi i e e e e e e 26

Figure 3.12. The 3D structure of a NAND gate with each unique DNA sequence négulese
by a different color (and number). Sequence 15 is not visible here because it happens to
appear on the other SIde ONIY...........e e 27

Figure 3.13. The assembly of a triangular rod structure. Each numberesdloaorder of
operations. 1: Hybridize one end of rod A’s DNA with the solid support's DNA. 2:
Cross-link the duplex DNA. 3: Hybridize one end of the rod C’s DNA with the solid
support’s DNA 4: Again, cross-link the duplex DNA. 5: Hybridize one end of rod B’s
DNA with rod A’s free end. 6: Again, cross-link the duplex DNA. 7: Hybridize the
“coupling” DNA strand with the DNA on rod B'’s free end. The coupling strand is made

XV

to site specifically cross-link to rod B’'s DNA. 8: Hybridize the other sideef th

coupling strand with the DNA on rod C’s free end and cross-link the duplex DNA. DNA
metallization can occur after the structure is complete to form conductimg) lpetween

L1 0T L TR P T TRTPPPP 29

Figure 3.14. Fluidic self-assembly is used to stack thin structures to forgeadamposite
] L1 Lod (U] U 31

Figure 3.15. A junction sphere with eight perpendicular rods along each orthogonal.equator
A total of 18 rods can fit around a junction in this manner..............cccccoevvvvvviiiiciceee e, 34

Figure 3.16. Geometry of the rod junction along a quarter of an equgtsithe radius of
each rod andstis the radius of the junction sphere. Only three rods are shown. 35

Figure 3.17. The worst case rod-length and DNA strand placement scenariorclehe ci
represents the junction sphere aidis the length discrepancy. The variable h is the
length of the s-oligo and DNA strand that can accommodate the length discrapdncy
still join at the center of the junction sphere (marked with a star.)..........cccceeeeiiiiieennnn. 37

Figure 4.1. Structure with no more than seven rods meeting at any junction. Each unit cube
has at least three perpendicular faces with diagonal SUPPOrts.........cccccceeeeeeeiiiiiieeeeiiiiinn, 42

Figure 4.2. Spring-mass model used to test the structural stability of theenadidula

perturbing force has been applied. Only the springs are visible here. 43
Figure 5.1. Screen capture from the custom design tOO0l...........cccuuviiiiiiiiiiiiiiiie s 47
Figure 5.2. Screen capture from the custom assembly-order tool.ccceceiiiiiiiiieeeeennnn. 49

Figure 6.1. Modular-assembly unit cell mask and module. The module lands in the exposed
landing area. A new photoresist mask is constructed and the process repeats................ 52

Figure 6.2. A modular assembly of stacked structures. Photolithographic stepshereat
sidewalls that corral the asymmetriC StrUCIUIES.........cccoveeiieeiiiiiiieeeecr e, 53

Figure 6.3. Layered interconnect method. The bottom electrode serves as groungewhile t
tOp electrode SErVES @S VUuuuuiiiii i e e e e e e e e 54

Figure 6.4. The power-up circuitry used to orient a structure after it hasdreemished
between two electrodes. The circuitry tells the structure which elestrasipowered up
first and therefore which electrode will serve as a data signal. The t#bioée is the
implied ground and ClOCK SIgNal.ooevriiiiiiie e 55

Figure 6.5. This structure connects opposing sides of a cube (or rectangd)aiosbie PO
and P1 wiring inside the structure so that the structure can “land” with angasiche
and still receive electrical power and be able to communicate.cccceeeeeiiiieeeeeeeneennne. 56

XVi

Figure 6.6. Modified footprint that provides a low capacitance clock and data portwd he t
circles inside the footprint are the data and clock electrodes, the ground eléoasde
the rim of the fOOTPIINT. ... e 58

Figure 6.7. A portion of the processor H-tree. This circuitry lies beneath tbespars (and
the passivation layer) in the silicon substrate. Each processor footprint ism4b au
][0 [P PPPPPPRPPPPPRR 59

Figure 7.1. Assembly tiles for the addition oracle (with the full adder trutd.jalBl = a bit
from the £ operand, B = a bit from thd%operand, and S = the sum of the two bits.... 64

Figure 7.2. A 4-bit instance of the addition function. The carry-in and carry-out shapes
determine valid strings. This string implements the "3 + 5 = 8" instance @drbtion.

Figure 7.3. Circuit for an addition tile. Theb, ands bits are consants assembled into a
particular tile. The tile is assembled into strings that respect theinand carry-out
matching. The input query and output bits are serial shifted into and out of the circuit. 66

Figure 7.4. Problem expression solvable by an oracle..............ccocuuiiiiiiiieis 67

Figure 7.5. Addition oracle tiles for modular self-assembly. The constant @ylircar
carry-out pattern implicitly allows for the proper matching of stacked ardted tiles.
The circuitry in the tile on the right must swap sides to preserve the carcgiiry/out
pattern. The tile in the upper-left represents 9 different tiles, each with tlwe ABt
pairs shown. The tile in the lower-left represents 3 different tiles and isghéofileast
significant bit) in any string (both carry-in bits are zero.) ... 69

Figure 7.6. "5 + 6 = 11" example using the modular tile set. The circled portioasaspr
LTS U o PSR 70

Figure 7.7. The fully connected graph on the left is collapsed to a particular grdph on t
right by deleting edges that do not appear in the problem instance. The dashed lines
represent deleted edges. Conversely, the solid lines represent the reedgeisghat
have been selected for the current problem (specifying all edges in the proddmn) 2

Figure 7.8. The fully connected graph on the left is reduced to the graph on the right by
removing edges. The graph on the right represents an example graph...........cccccceeveee. 73

Figure 7.9. An example string that represents a Hamiltonian path (D-Bt#Aratigh the
example graph. This string is only one from the 4! (24) randomly assembled #tahgs
represent all paths through the example graph (some of them are Hamiltohgj. pat

Figure 7.10. Basic HAM-PATH tile SChemMaALiC.cc.uuviimiiiiiiiiiiieecee e 75

Figure 7.11. The four node tile set for the HAM-PATH oracle. A mixture of e, is
used to assemble all possible 4-tile strings randomly in 4 step<ileB are used during

XVii

the first step, 7 tiles during the next, and so forth. Inputs 1,2,3, and 4 represent node
values that are propogated through the tiles as shown in figure 7.11.cccccveeennnnn. 75

Figure 7.12. Serial control circuit that provides edge information to a strilgo$tacked

ADOVE. e 77
Figure 8.1. The node controller and processor node arrangement..............eeveveeeeeeeeeiieeeeeeeeens 81
Figure 8.2. Processor diagram. ACC, RO, and R1 can be loaded with random bits. 82
Figure 8.3. The input space of the DAMP. ... 83

Figure 8.4. Implementation of the register file, register control unit (Réhd) arithmetic &
logic unit (ALU). "R*" and "S*" are asynchronous reset and set control signals,
respectively. The AC (2-bits), RCO - RC4 (1-bit each), LC1 (2-bits), and LORYR-
multiplexers are each set by control bits from the control registers............ccccccceeeeeeeneennn. 99

Figure 8.5. The serial control diagram for the control state machine. An inpuChmha¥es
along the side-arrow while an input bit of 1 moves along the bottom-arrow. "N" is the
neutral-state, "S" is the setup-state, and "C" is the control-state.............cccccciieennnnn. 100

Figure 8.6. The control state machine (CSM) that implements the statawiagna figure
8.5. "R*"is an asynchronous reset control signal.ccccceeeiiiiiiieeeiiiccceeee, 101

Figure 8.7. The control registers. Each shift register is triggeredibgué rom the wait &
trigger control unit (WTC). The input to each register is taken from the ciseeaat

INPUL DIT (IMIM). e a e e 103
Figure 8.8. Implementation of the wait & trigger controller (WTC).........ooovvviiiiiiiiiiieeneennn. 104
Figure 8.9. Processor spacing pitch on the SubStrate.ccccvviiiiiiiiiiiiieeeeeee e 105
Figure 8.10. Processor substrate diMeNSIONS.cciiiiiii e e e e e e e e e 106

Figure 8.11. Processor node housing and cooling jacket. The housing has a stacking height,
Hs, housing height, H and a housing width, MV..............ooorr e, 107

Figure 8.12. Layout footprint with row and column indicators.cccuviviiiiiiiiiiiiiieneeen. 109

Figure 8.13. Nanorod layout of an inverter. Insulating and conducting rods are used for
support. Circuit diagram in fIgure 9.11.uuiiiiiiiiiiiiiee e 110

Figure 8.14. A view of the nanorod layout for a NAND gate. Circuit diagram in 9.12. 110
Figure 8.15. The 2-input multiplexer (MUX2). Circuit diagram in figure 9.13.................. 111

Figure 8.16. One-bit decoder. Circuit diagram in figure 9.14.ooorrriiiiiiiiiiiii e, 111

XVili

Figure 8.17. The ringer circuit. A two input multiplexer, with an inverter on its quptied
back to an input. Selecting that input will create an externally detectaillatmsr
power signature. Circuit diagram in figure 9.18. ...ttt 112

Figure 8.18. A view of the nanorod layout for a full adder. Circuit diagram in figureld.25.

Figure 8.19. View of the nanorod layout for a single bit of the six-register ©ek of the
six D-latches is clocked independently (for the accumulator) from the otledryfiusing
SA0/SAi instead of SRo/SRi. Only one of the six pairs of In and Out signals aliedab
all are present. Some GND signal labels have also been omitted. Circuitdiagra
FIGUIE 9. L7 ettt et e e e e e e et a e e e e e as 113

Figure 8.20. A thinly sliced MOAUIE...........cocoiiiiii i 115

Figure 9.1. N-type RG-FET. The rod length is 500nm and its radius is 50nm. Channel
length is 150nm. The source/drain contacts are at the top or bottom of the rod. The gate
contact is a metal band around the rod. All contacts are pallagitan5.0 eV.)...... 122

Figure 9.2. RG-FET doping profile along the 0.Q@5 radius of rod (not to scale). The gate
oxide layer (0.01@m) is on the right, the PNP or NPN layers (0.Qb% are on the left.

.. 123
Figure 9.3. N-TYPe RG-FET IV CUIVES.cccciiiiiiieeeeiie et a e e e e e e 124
Figure 9.4. P-Type RG-FET IV CUINVES. ..ottt 124

Figure 9.5. N-Type RG-FET transconductance at several source-drain voltageglitches
in the Vds=0.25 transconductance trace are a computational artifact due to tharew dra
LCO R 10 [(oT= IV 0] = Vo [P 125

Figure 9.6. P-Type RG-FET transconductance at several source-drainsoltage....... 125

Figure 9.7. -V plot of a heavily n-type doped silicon nanorod. The nearly lineanturre
responsél) indicates that the rod behaves similar to a ~253dsistor(R) over the
voltage range we use. The resistance varies by less fhaver the voltage range.. 126

Figure 9.8. Rod geometry for parasitic capacitance calculation. Pphaeitance is measured

between the center rod (shaded) and the outer shell of rods.cccceveiiiiiiiiinnnnn, 127
Figure 9.9. RG-FET capacitance Circuit MOdel.uueeiiiiiiiiiiiiiiiae e 128
Figure 9.10. Conducting rod electrical model. Each conducting rod from a cirauit lay

replaced by this MOdEL. ... 129
[T 0TI IO 5 R N g 1 V=T (=Y SRS 130
Figure 9.12. The NAND2Z QAE.......ueiiiiiiiiiiieaee ettt e e e e e e 130

XiX

Figure 9.13. The 2:1 MUX CIFCUIL.uuuieiiiiiiiiiiiiiee e ee ettt a e e e e e e e e e e e 131

Figure 9.14. The 1:2 decoder circuit used to form the 3:8 decoder circuit..................ccc...... 131
Figure 9.15. The full adder CIFCUIL. ..o 132
FIgure 9.16. The D-IatCh.oooeeeeee e e e e e e 132

Figure 9.17. The register cell circuit. This circuit is arrayed 6 timesetdecthe full register
cell simulated here. The Shiftin and ShiftOut signals are shared by 5 ofdbestens
(also called SRi and SRo.) The other register uses a dedicated Shiftin andthI&®

Called SAI QN SAD.) ..o a e e e ————— 133
Figure 9.18. TN MMNQEI CIFCUIL. ...ttt r e e e e e e e e e e e e e e e e e aaans 134
Figure 9.19. The inverter SIMulation reSUlLS.oovivieiiiiic e 134
Figure 9.20. The NAND2 Simulation reSUILS.coooiiiiiiiiiiiiii e 135
Figure 9.21. The 2:1 multiplexer simulation results. There is an inverter on the outpat of t

IMUIIDIEXET. .ttt e e e e e e e e e e e e ettt e e e e e e e e e eeee s 135
Figure 9.22. The 3:8 decoder simulation reSUltS.ccceiiiiiiiei e 136
Figure 9.23. The full adder Simulation reSuUltS. ... 136
Figure 9.24. The D-latch simulation reSUILS..........ccooiiiiiiiii i 137
Figure 9.25. The register cell (6 bits) simulation results.ccccccoeriiiiiiiiiiiiiiee 137
Figure 9.26. The ringer circuit Simulation reSUltS.uuiiiiiiiiee e 138

Figure 9.27. P-type RG-FET transconductance as a function of oxide thickness with a 150
nm channel. We used the 10 nm thick oxide RG-FET in our performance evaluations.

.. 139
Figure 9.28. P-type RG-FET transconductance as a function of channel length L8ingn

gate oxide. We used the 150 nm channel length RG-FET in our performance

LY=L = L1 0] P PPPPPPRPPPPPPPPR 140
Figure 9.29. Transient response of a p-type RG-FET during a 20ps input voltage ramp..... 141
Figure 9.30. Absolute current error between DC and transient p-type RG-Kibhses. 142
Figure 9.31. Interface for the behavioral SIMulator.ccccoooiiii 143
Figure 9.32. Basic logic module structure. Each logical unit from the artchéegas cast

INEO TS STIUCTUIE. ...t s s e e e e e e e e e e e e e e eeeeaennnnnnn e e as 144

XX

Figure 9.33. The binding and execution order used by the behavioral simulator................. 146

Figure 9.34. Energy dissipation of the ADD INStruCtion.cvvviiviiiiiiiiiiie e, 147
Figure 9.35. Energy dissipation of the ADDI INStrUCtION.oooviiiiiiiiiiiiiieeeeeeeee e 147
Figure 9.36. Energy dissipation of the ADDC iNStruCtion.................cuuvvuiiiiiiiiieieeeeeeeeeeeeeee, 148
Figure 9.37. Energy dissipation of the NOT INStruCtioN.............cevviiiiiiiiiiiiiiiiee 148
Figure 9.38. Energy dissipation of the INC inStruCtion.cccieeiiiiiiiie e 149
Figure 9.39. Energy dissipation of the DEC INStruCtioN.coooiiiiiiiiiiiiiiiieeeeeece e 149

Figure 10.1. Side view of a partial stack of processor nodes. The processotesighstra
suspended in a cooling jacket by side-mounts. Chilled coolant enters at thedeght si
and rises upward due to convective flow and pool boiling............c.oooovviiiiiiiii, 152

Figure 10.2. Worst-case flow of heat through the processor substrate to the lcol@Hmat
processor is schematically represented here by four modules, when ipfacéssor
requires nearly 250 modules. The dashed line is a thermal barrier and all energy
deposited into the processor is assumed to be largest at the center of the stackb4.........

Figure 10.3. Locally confined heat flow. The interior of each unit cell absorletetieical
SWILCNING ENEIQY. ..euiiiiei i e e et e e e e e e e e et et a e e e e e e e e eaeeaeeeeeeessanaan s 157

Figure 10.4. Plot of a cross-section of the processor cube as it cools in time (°C)..159.......
Figure 11.1. Output plot from the behavioral simulator for the ADDI instruction. 163

Figure 11.2. A difficult, constrained objective function with many local minima. Tdekbl
arrow indicates the global minimum for this region.ccoovriiiiciii e 170

Figure 11.3. Thermal intercept problem. N shields are placed between g)redTcold
(Tc) side. Each shield is padded with a slab of insulating materiak;lthick and must
maintain an interface temperature with the next shield.of. T...........cccccciiiiienn. 175

Figure 11.4. Distribution of processing elements to solve the N=8, M=8 thermakjpiter
(910 0] (=T 1 4 TSR TTTOPPPPPPP 177

Figure 11.5. Power consumption of one look-up-table iteration. This program must be
executed for each entry inthe table............. s 179

Figure 11.6. Tradeoff between library size and maximum number of heat shields. The
surface depicts the execution time on a 400/500 MHZ DAMP...........ccccciiiiiieiieeeeeeeaneeee, 180

Figure A.1. DNA/nanotube reaction scheme. Capped nanotubes are oxidatively omkned a
then reacted with amine-terminated single-stranded DNA.ccccciiiiiiiiiiiiiiiieeeeeeen 184

XXi

Figure A.3. Plot of the ratio of DNA immobilized at the top of a well to the total Bdu#d
in the well from reaction A. Reaction B appears to have little bound DNA................. 189

Figure A.4. Lambda-DNA cluster attached to defect sites and ends of a SWN#&.buh80

Figure A.5. Lambda-DNA clusters on SWNT bundles.cooovirmriiiiiiiiiiiii e 190

XXil

LIST OF ABBREVIATIONS

3D Three dimensional

3-SAT Three literals per clause satisfiability problem
AC Accumulator control multiplexer

ACC Accumulator

ALU Arithmetic & logic unit

ASIC Application specific integrated circuit

ATP Adenosine triphosphate

AuPd Gold-palladium

CAM Content addressable memory

CMOS Complementary metal oxide semiconductor
CREG Control register

CSM Control state machine

DAMP Decoupled array multi-processor

DC Direct current

DES Data encryption standard

DNA Deoxyribonucleic acid

DMF Dimethyl-formamide

DTT Dithiothreitol

EDC 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Hydrochloride
EEC Enable enable-carry-bit

EESD Enable enable-set-D-bit

EL Enable random constant load circuit

ERC Enable reset carry-bit

ES NEC Earth Simulator

ESA Enable shift accumulator

ESC Enable set carry-bit

ESR Enable shift register

FEM Finite element method

FET Field effect transistor

FIF Flip flop

XXili

fF
FLOP
FO
FPGA
FSA
GB
Gbps
GND
HAM-PATH
HP
IBM
IMM
Ids
I/O

v
LC1
LC2
LC2b
LSB
MB
Mbps
MFC
MHz
MIMD
MIN-QUERY
MSB
MUX
MUX2
MW
nF
NFET
NMR
NP

Femtofarad

Floating-point & logic operation
Fanout

Field programmable gate array
Fluidic self-assembly

Gigabyte

Gigabits per second

Electrical ground

Hamiltonian path problem
Hewlett-Packard

International Business Machines Corporation
Immediate value (external)
Current drain-to-source

Input / Output
Current / voltage

Logic control multiplexer one
Logic control multiplexer two
Least significant control bit of logic control multiplexer two (LC2)
Least significant bit

Megabyte

Megabits per second

Microsoft Foundation Classes
Megahertz
Multiple instruction multiple data
Minimization query

Most significant bit

Multiplexer

Two input multiplexer

Megawatt

Nanofarad

N-type field effect transistor
Nuclear magnetic resonance
Non-deterministic polynomial time

XXiV

oligo
P4
PAGE
PBS
PE
PFET
PMMA
PPS
QCA
RO

R1

R2

R3

R4
RCO
RC1
RC2
RC3
RC4
RCU
REGFILE
RG-FET
RX
SEM
SGT
SIMD
SPICE
SREG
SRH
SWNT
B

uv
vdd

Oligomer

Intel Pentium 4
Polyacrylamide gel electrophoresis
Phosphate buffer solution
Processing element

P-type field effect transistor

Poly-methyl-methacrylate (a photoresist)

Parallel pattern search
Quantum-dot cellular automata
Register zero
Register one
Register two
Register three
Register four
Register control multiplexer zero
Register control multiplexer one
Register control multiplexer two
Register control multiplexer three
Register control multiplexer four
Register control unit
Register file
Ring gated field effect transistor
Unspecified (any) register
Scanning electron microscope
Surrounded-gate transistor
Single instruction multiple data

Simulation Program with Integrated Circuit Emphasis

Setup register
Shockley-Read-Hall recombination
Single-walled carbon nanotubes
Terabyte

Ultraviolet

Voltage for common drains

XXV

Vds Voltage drop from drain-to-source

Vgs Voltage drop from gate-to-source

VLSI Very large scale integration

WC1 Wait control multiplexer one

WC2 Wait control multiplexer two

Win32 Microsoft's 32-bit Windows Operating System Platform

WTC Wait & trigger controller

XXVi

Chapter 1. Introduction

1.1 Overview

Computer system design will change dramatically as nanoscale science and
technology develop to the point where practical assembly mechanisms existdorgouil
systems with 18§ components. These changes will be motivated by an interest in developing
computing devices that exploit the new technology's features and avoid its.pitia¢
advent of massively parallel near molecular-scale electronic systidresable solutions to
problem spaces yet untouched by modern computing. This dissertation evaluates two such

computer architectures and their feasible fabrication by DNA-guidedssdmbly.

1.2 Thesis statement and contributions

"DNA-guided self-assembled 3D silicon nanorod assemblies with 10
components can be used to construct novel computers of theoretical and practical use.
This method overcomes hurdles in attachment chemistry, assembly coymplexit
electronic behavior, fabrication yield, power consumption, thermal effectensys

design, and performance.”

This dissertation provides a proof-of-concept argument that shows there are no
fundamental barriers to undertaking the construction of such computers. It uses publishe
science, new simulations, and preliminary chemistry laboratory work to adarésvels of
design and fabrication. Actual construction of this system would require ecoresaurces

beyond those available here.

The work outlined in the following section forms the plausibility argument that

massively parallel computing machines can be constructed in the foreskesatd, perhaps

even within the next decade, using self-assembly. The characteristics afatarssembly

require a fundamental shift in how computers are designed to harness this power.

This dissertation contributes to the field of computer engineering by skiaglia
first point of comparison showing how the design of traditional computing machines can
change to produce a new class of computing machine enabled by near motzdalael$
assembly. The following have been done to show the feasibility and usefulness of

constructing such a machine:
* Published new work on DNA - nanotube attachment.

» Published simulation results of a new type of semiconductor transistor, the ring-

gated field effect transistor, or RG-FET.
* Published simulation results on the use of RG-FETSs in logic circuitry.

» Developed a theory of fabrication using self-assembly that takes into
consideration known chemistry, thermodynamics, DNA reactions, and yield

estimates.

* Developed a face-serial assembly ordering algorithm that can ordelottetiah

of 15 unique DNA sequences for the logic structures used here.

* Developed th®racleand the decoupled array multi-processor (DAMP),
architectures that brackets a continuum of computer architectures thétospan
theoretically interesting to practical and are designed to take advanftinge

strengths of self-assembly.

» Simulated the large-scale behavior of RG-FET circuitry in implementabiothe

oracle and DAMP architectures.

* Evaluated the performance of the DAMP and Oracle versus conventional

supercomputers.

Each of the above is a piece of the larger contribution that is the end-to-end design of
a new useful kind of computing machine, showing that at all levels it can be feasibly

fabricated. This machine is inspired by the massive parallelism found in nature and

simulations show that it favorably compares with the fastest and most jpawadlenes

available today.

1.3 Introduction

Methods using DNA-guided self-assembly are in their infancy and have to date only
produced simple geometric structures. The complexity of these structtaefon
approaching the complexity found in the biological organisms that have inspired silich wo
However, there are considerable quantities of human effort being put into developing
technology to the point where it can be usefully employed to build complete nanoscale

structures.

Figure 1.1 illustrates the problem faced by self-assembled computer dgsighe
fundamental problem is how to make a design that starts from feasible physoesgas and
ends up being useful as a computing device. The problem can also be viewed from the other
side - how to make an architecture that provides a useful computing model andle feasi
build with self-assembling techniques. Designing a useful architectureathattually be

built requires finding and traversing the complete path.

T T T Y

| Can’tbe | __ -

3 - 3

(5~ | usedfor | 1 . r) 1 70
(R Il) [(5= |Implau51ble| (5~
[| . . [|
O8I €O n_‘[rg-/ -~ | fabrication -

w_

— — — —

Surpasses |
power |
\constraints)

Practical 2 - == Useful
Low-level \ “wasig, .- High-level
Fabrication % .. I _? Computer
Techniques P IR Designs

et ===
™7 I_Siala_ble_ J ‘3 | Infgamble 57
yields

- -—— I

N

Figure 1.1. Technological design space. lllustration of the many chedléagng a self-
assembled machine designer. In particular, the strong coupling betweew-iegd|
fabrication and high-level design makes the space treacherous.

1.4 Method

Some researchers have provided tantalizing glimpses of how DNA can seilbisse
interesting shapes but leave open how to use these to build actual computers with large
numbers of processors. This dissertation describes two computer architectutscth
and DAMP, and shows that both can be plausibly implemented and realized and that both are

useful, addressing problems of either theoretical or practical usefulness.

The question answered by the thesis above is simply how can self-assembly be used,
in its current stage, to build computing machinery that is better than what we hay® tod
Today's processors are designed according to a rule that says computatilangealysoccur

at runtime. Wide data paths, caches, branch prediction, fast multipliers all coma fr
computing heritage that emphasizes runtime execution. The inherent circuit agmplex
this design philosophy is obvious from the intricate and idiosyncratic mask-work for
contemporary processors, where large potions of the mask are custom-desigpedifior s

functions.

Toward the end of the Zentury, multiple-instruction-multiple-data (MIMD)
shared memory parallel computers became the dominant tools for solving sommosthe
complex problems faced by society. These machines were, and still ar&emassi
constructions that take thousands of design hours and hundreds of millions of dollars to
build. They are typically made of arrays of tightly coupled processors \eithany that is
either shared or distributed, and require very elaborate and clever schebaarioing the
problem load among processors and maintaining efficient communication between
processors. In contrast, regularity and loosely coupled parallelism appeahéooinéyt
feasible architecture in self-assembled machines at scales thaleivatgest distributed
computer networks. This leads to a shift in machine design to machines Witodputing

elements, each with a small amount of local memory, with no communication between

processors.
Design shifts
Feature Sdlf-assembly VLS
Fabrication scale 10" components | ~10° components
Required fault tolerance high low
Max. individual circuit size small very large
High bandwidth interconnections impractical feasible
Tightly coupled processors impractical feasible

Table 1.1. Design shifts between VLSI and self-assembly.

Table 1.1 indicates that the only advantage self-assembly has over conventiShal VL
is the fabrication scale. Every other design feature has changed dedijnédr the worse.
This is the primary motivation behind the discussion in following chapters. Sincd tife se

design features that are routinely used in conventional technologies has changsaitckhe

to a self-assembling technology, how can the design of computing machinge thanable

new useful designs?
Outline

Since the fabrication techniques used by chapters 3 and 4 may be foreign to the
typical computer designer, these readers may find it useful to referitmsgé& and
appendix A for a brief introduction to the means and methods available to self-asgembli
technologies.

Chapter 2 describes the state of the art in massively-parallel computgr, dHsA
computation, self-assembled circuitry and molecular electronics,tédeitent computing,
guantum-dot cellular automata, and quantum computing and describes how the work

presented in this dissertation differs from the prior art.

Chapter 3 discusses the circuit fabrication method with an emphasis on the physical

details encountered in the implementation.

Chapter 4 explores the tradeoffs between yield and the size of a selblssem

computer and how structural rigidity plays a role in this relationship.

Chapter 5 describes the design and assembly-ordering tools developed to create

designs of 3D nanorod structures for simulation.

Chapter 6 describes methods for supplying power to self-assembled computers and

communicating between processors and the outside world.

Chapter 7 investigates tiracle - a self-assembled computer architecture inspired
by work in DNA computing that is enabled by the self-assembling procestheédsa
chapter 2.

Chapter 8 investigates the decoupled array multi-processor (DAMP) - a self-
assembled computer architecture that is similar to conventional computersdesig

incorporates 14 processing elements.

Chapter 9 describes the electrostatic, semi-conductor, thermal, ciraljtdad
behavioral simulation of circuitry that can be used to implement the oracle ané®’DAM

architectures.

Chapter 10 investigates the thermal properties of the DAMP and cooling techniques.

Chapter 11 presents performance estimates for the DAMP on the blind data
encryption standard (DES) decryption problem and a typical global optimizatiormr.obl

The performance of the DAMP is compared against the fastest known computimgesac

Appendix A describes a method for chemically attaching DNA fragmentslhorc
nanotubes and an introduction to the terms and methods used in this field.

Appendix B includes a compact disc that contains the source code and text used
within this dissertation.

Appendix C contains a detailed description of the instruction set implemented by the

DAMP assembler described in chapter 8.

Chapter 2. Related work

2.1 Massively-parallel computer design

State-of-the-art supercomputer design has converged over the last decadiple-mult
instruction-multiple-data (MIMD) architectures. This type of machinkislle, has a high-
bandwidth inter-processor connection network, and can solve many kinds of problems. The
top 500 list of the fastest supercomputers on the planet is currently topped by the NEC
EarthSimulator [Top500, 2003]. This machine is an array of 640 processor nodes
interconnected as a hypercube, with 8 processors per node. Each processor has 16 GB of
local memory (shared with the others) and can execute 8 GFlop/sec. The agyesimte
has a peak performance of ~40 TFlop/sec with 10 TB of memory. The entire machine
occupies 13,000 hwithout including the cooling and power supply systems. The processors
in the Earth Simulator were fabricated using a 0.15 pm CMOS technology [Dmri2200].

The next generation MIMD supercomputer, the IBM BlueGene /L, is planned to boadkt a pe
performance of 360 TFlop/sec and occupy 533BtueGene, 2002]. Each consumes ~3
MW of power without considering the power consumed by cooling.

These machines use large numbers of tightly-coupled processors to solve large
problems more quickly than any machine ever has. The natural design progression is t
continue increasing the number of processors and inter-processor bandwidth to geive lar
and larger problems. However, the size and power consumption of present-day
supercomputers is already becoming a constraint on the design. The work presented i
subsequent chapters will show how a smaller and less power-hungry self-asksembl

computer can out-perform present-day supercomputers for some classes of problems.

2.2 DNA computation

The pioneering work by Adleman, et al. in establishing a role for DNA

(deoxyribonucleic acid) in the computation of large problems made the prospect of

molecular-scale computing systems appear to be within reach [Adleman, 1994]. ufioa sol
to a seven-node Hamiltonian path problem using DNA took several weeks of chemical
laboratory processing. The 3-SAT probfemas also been solved for problems with up to 20
variables using DNA [Braich, 2002]. Unfortunately, these chemical methodsmust

repeated for each new instance of the problem, so it takes about a week to solve each.

This work has been followed, and expanded, by many others to address other
problems with new methods of computation. The application of these methods to general-
purpose "wet" computer architecture marks a new turn in how DNA has been used in
computer design [Head, 2001]. This method can manipulate strings of symbols and is Turing
complete. However, this method still relies on enzymatic processes anéseasigmical
laboratory work to extract results, like all DNA computing methods, which carséaezal

weeks.

Similar investigations have developed physical representations of computation tha
use DNA to construct solutions to a problem [Seeman, 2001; Winfree, 2000]. These projects
use the self-assembling properties of DNA to solve a problem by forming ¢émrbranes of
DNA tiles that follow binding rules. The binding rules define an automaton and have been
shown to be Turing complete. The self-assembling fabrication method desaoridepter 3
uses DNA to form electrical structures rather than to solve a computatiob&mr- the
resulting computer can then solve instances of the problem at a much fasteheaigealis
to solve all instances of the program at once, then select the appropriate solution

electronically at runtime.

2.3 Self-assembled circuitry & molecular electronics

Molecular electronics has been the focus of many researchers looking at loplyto a
advances in self-assembly. There is interesting work that explores tbensewires and
molecular systems to build self-assembled computing logic [Collier, 199¢h 2691
Kovtyukhova, 2002; Melosh, 2003]. These studies have focused on simple molecular-scale

1 The 3-SAT problem involves determining iftaés some assignment of variable values that raajieen

sum-of-products Boolean equation, with three lieper clause, true. This problem is provably Nifplete.

10

memory elements in crossbar junctions and have not investigated the difficultypiadble

how to scale to more complex devices.

There is work that has simulated specific molecular electronic components in
computing circuitry that elaborate on the feasibility of certain desigresg&woldstein,
2002]. Most of this work uses wired-OR logic and requires pull-up resistors that would
consume enormous amounts of power if scaled up'focbénponents. To date this work has

not addressed the complexity scaling issues.

2.4 Fault-tolerant computing

Other work has focused on fault-tolerant circuit designs that are amenable to the
imperfect circuit yields predicted in nanotechnology [Heath, 1998]. The Teiaroae such
fault-tolerant machine made from faulty FPGAs that uses mapping rouidesetrmine
fault locations. Once a fault is detected, the silicon compiler is instructeditbthat
particular fault when allocating gates. These and similar techniques writibal to
building large, connected computers. This dissertation skirts the whole issusohplde

the processors and using content-addressed random indeeswyibed in chapters 3 and 6.

2.5 Quantum-dot cellular automata (QCA)

The application of quantum dot structures to computing has become feasible since the
advent of high-density quantum-dot fabrication methods. Through electrostatictioterac
guantum-dot cells (QCs) change state according to well defined rulés.c&ebe placed
next to each other to create a network that computes a logic function. Thedmaitzit
QCAs comes from their sensitivity to small charge fluctuations whichnejthat they be
operated at very low temperatures (< 80K.) A thorough overview of QCA methotie ca
found in [Lieberman, 2002]. The self-assembled nanorod circuitry described in cl3apters
and 9 can be operated at room temperature (and above) and is less sensitivecto electr
charges than QCA circuitry. Again, scaling QCAs up to larger problers lsazenot been

2 Content-addressed random indexing is a methatcduses random constants to index uncouplegtsaofa

processors and uses the constants to calculatea(v&. content) for the processor to store. pitoeessor can
then use the calculated value to index the originaktant like a content-addressable memory.

11

investigated - doing this in 3D might be competitive to the DAMP, but the issue of how to

build it remains an open problem.

2.6 Quantum computing

The result of a quantum computation is very similar to an exhaustive classicdl se
of the same problem space, with the exception that quantum computing has a linofed set
operators compared to classical computing (e.g. controlled-NOT, but n@spyctetc.) A
guantum bit (qubit) is represented by the physical state of a particle. Tictepantild be an
electron, or hydrogen atom, or even molecular substituents of a larger molecsile. Ba
properties such as spin or magnetic moments are used to represent the disegtef viaé
qubit because they have only two possible values (spin up and spin down, etc.) Since the
gubits are represented by quantum phenomena, a set of qubits that are entangled (i.e. wer
once in close contact) form a superposition of all possible qubit values. That is, the quantum
nature of the data representation allows an entangled set of qubits to replesemsilae
binary combinations, so long as there is coherence between the statest dfhe a
measurement typically breaks the coherence in the system and collapséesotiaepseticular
state from the coherent superposition of all possible states. There areoopéeheati can be
performed on the set of qubits that do not disrupt the coherence of the system. Thus, the
system remains entangled and the result is a new superpositioned stapessible
outcomes of the operation. A sequence of operations is used to perform useful computations
on the system, such as the Shor factorization algorithm. The grand promise of quantum
computing is that a 500-qubit system can enable an operation to work witff aihary
states of that system in parallel, at once! This is equivalent to performiagsacal search

for a solution from Z° possible input combinations.

Most of these quantum computing methods use nuclear magnetic resonance (NMR)
to operate on the entangled quantum states of molecules and have only been used to
manipulate ~7 qubit systems to date. Advances in non-NMR based quantum computing may
make it possible to manipulate larger systems of qubits with very low power gqoinum

Experiments to manipulate 5-10 qubits have been suggested [Brown, 2002].

The coherence problem of quantum computing (i.e. the inability to make entangled
systems with more than 10 qubits) is currently unsolved. The oracle architesitnibetein

12

chapter 7 can be used to assemble the solution to many problems with a 40-bit input space.
This is equivalent to a 40-qubit quantum computer. The self-assembled circuitiipetbgTr
this dissertation also enable classical architectures like the decoulgdnaltiprocessor

(DAMP.)

13

14

Chapter 3. 3D Nanoscale circuit fabrication

3.1 Introduction

We focus on the realization of a new computer architecture that is enabled by the
development of DNA-guided self-assembled systems. The enormous paralieliscate
of this kind of self-assembling process has motivated research into novel forms of
computation that use the intrinsic properties of DNA hybridization to form solubams t
problem [Roweis, 1998; Winfree, 2000]. We take a slightly different approach to developing
computing devices using DNA: instead of depending on the computability of DNA
hybridization events to do the computation, we investigate the structural use of DNA to
create electrically active nanoscale rod-lattice structures. Thather than using DNA to
assemble and to form the solution to one instance of a problem, we use it to assemble a
computer that contains ¥0such solutions. The computer can then produce results every few

microseconds vs. the weeks per solution taken by DNA computing techniques.

Figure 3.1. A DNA-guided assembly of rods that form a NAND gate.

The basic approach is to design 3D computing circuitry, as illustrated in figure 3.1,

that is constructed using a series of DNA binding events to assemble nanorodsodEach

may be an insulator, conductor, or a novel type of transistor described in section 3.2 and
chapter 9. These basic 3D blocks are themselves assembled into largeesttadtrm
computing elements. These elements can be connected to power and signal leads using
massively-parallel self-assembly to produce a computer consisting b8'6 processors, of

which an estimated 10will be functional.

Our method of constructing computing circuitry from nanoscale self-assstmble
components requires several capabilities described here. These cepabditide the
functionalization of rod-like nanowires with DNA, DNA metallization, DNA-guddse|f-
assembly, and a novel nanoscale transistor. We provide an overview of the capileitii

and point to more complete discussions elsewhere in the document.

Section 3.2 outlines the fabrication and methods of low-level assembly. Section 3.3
describes the nanorod synthesis and section 3.4 describes the structures thébnwikde
Section 3.5 and 3.6 develop the assembly method further. Section 3.7 discusses the design of
DNA strands and the assembly tolerances, and section 3.8 outlines the yneddesstor
each DNA junction.

The components fabricated from the low-level assembly described heredie ase
fluidic self-assembly method to create larger circuits as descrilwddpter 6. This method
overcomes the low yield predicted in the DNA-guided self-assembly procese each
estimate made here, and throughout this work, chooses the worst-case assuniptions it
expected that these values (e.g. for yield, performance, power consumptiane steictly
lower bounds and that optimization in the manufacturing process can dramatigatyem

the overall performance of the technology.

3.2 Background

The following section is a brief primer on the use of nanotechnology in building
electronic circuitry. The topics discussed here relate the basic pregnianorods, DNA,
attachment chemistry, conductivity, and transistors to self-assembly. rRae&adady well
versed in such topics will likely find this section to be tedious and may wish to skip it
entirely. A basic text on the biochemistry of DNA may be useful for other efid®rin,
1997].

16

Nanorods

Controlled self-assembly of nanoscale circuitry requires the abilityrtval the
properties of individual components of the structure. Recent advances in silicon hanowire
doping have proven that small nanoscale rods (> 50 nm diameters) can be doped controllably

and can be made to behave like bulk semiconducting materials [Cui, 2000].
DNA

As mentioned in chapter 2, DNA can be used for more than just storing genetic
information within biological organisms. The two forms of DNA that are importaihigo t
discussion of self-assembly are single-stranded and double-stranded DNAn \&/&tsick
proposed the structure and means by which single-stranded DNA forms double-stranded
DNA on April 2, 1953. Single-stranded DNA is a stringhatleotideqor chemical bases)
that are attached to a sugar-phosphate backbone. Figure 3.2 illustrates thriohegoides
found in DNA.

Adenine Guanine

Thymine Cytosine

Figure 3.2. Schematic representation of the major DNA nucleotides. The dasked line
represent a backbone used to string nucleotides together.

Any of the nucleotides in figure 3.2 can be used in the sequence of a single-stranded
piece of DNA. The mechanism that single-stranded DNA uses to form double-dtrande
DNA (in the shape of a double helix) is callegbridization DNA hybridization is the

17

"coming together" of two single-stranded DNA fragments. However, treraules about

which single-stranded DNA fragments hybridize with each other.

The adenine and thymine nucleotides happen to prefer sticking to each other rather
than to either guanine or cytosine. This is catleshplementarity That is, adenine (A) and
thymine (T) are complements. The same applies to guanine (G) and cy@sir&r(gle-
stranded DNA sequences can therefore be complements if for every occurr@raresoh
one strand there isTaor C, respectively, in the complementary strand, and vice-versa. Only
complementary single-stranded DNA fragments hybridize to form doubledstteDNA.

Complementarity is shown here through the use of single and double notches.

Figure 3.3. Schematic representation of two complementary single-strahthe fragments
forming a double-stranded fragment.

The ability of complementary single-stranded DNA to form only the codmaible-
stranded DNA is also known apecificity That is, DNA fragments that are not
complements will not hybridize. The degree of specificity is dependent on gtk tdrthe
DNA fragment, with 8 - 12 base fragments being optimal. Very long fragmebis Af

hybridize with less specificity than shorter fragments.

The hybridization of single-stranded DNA into double-stranded DNA is temperatur
dependent. A mixture of double-stranded DNA can undergo a sharp transition to a mixture
of single-stranded DNA (i.e. separate complementary strands) by rdisitgmperature of
the mixture above thmeltingtemperature of the DNA sequence. That is, above the melting
temperature of a given fragment of DNA the fragment will not hybridizle i

complement. The transition from single-stranded to double-stranded DNA isltvbys

18

lowering the mixture's temperature below the melting temperaturein@yice mixture's
temperature above and below the melting temperature is commonly used to improve
hybridization specificity because only the most stable (i.e. complementtrgctions
between strands are likely at these temperatures. Again, please eefénttoductory

biochemistry text for a complete discussion of this topic.
DNA attachment

Nanowire-DNAfunctionalization or chemical attachment, is the first step in
implementing a DNA-guided self-assembly process. Our method requires tligerod-|
nanowires to have uniqgue DNA sequences attached to each end. Section 3.5 discusses how
to design the DNA and nanowire properties to assemble computing circuitry. e DN
directed formation of nanowire-patterned surfaces has been reported and prorgles i

into how such nanowires can be functionalized [Mbindyo, 2001].

Our own work functionalizing carbon nanotubes with DNA [Dwyer, 2002], described
in appendix A, also provides insight into the available attachment mechanisms. The most
promising schemes employ nanorods formed in membranes or structures thateeope
end of the rods from reactions occurring at the other end. Such asymmetry intibe ofac

the rods is important in controlling the sequence of the DNA strand on each end.

An important quality of DNA that makes it most suitable for self-assembly is i
ability to hybridize with its complement with very high specificity. Consttier4 different
8-base DNA sequences, for which there are 65,536 nearly orthogonal reactiiies ar
vast improvement over the handful of specific covalent chemical reaction sctiemnase

readily accessible using present-day organic chemistry.

Remarkable work has been undertaken in the effort to produce DNA assembled
structures. Many of these efforts have focused on the structures creakexkbylesigns of
DNA sequences undergoing interesting thermodynamic transitions [Yan, 20@2a15ee
2001]. Still others have focused on the formation of ordered superlattices made from
nanorods [Mbindyo, 2001; Dujardin, 2001]. The experimental demonstration of mesoscopic
DNA-guided assembilies is also of interest [Soto, 2002]. These results implydiets

considerable promise in the DNA-guided self-assembly of large-scale nawlstrulctures.

19

Conductivity

The ability to convert double-stranded DNA into a highly conductive ohmic contacts
(by a process known asetallizatior) makes the use of DNA in hanoscale circuitry
extremely attractive. This work has shown that DNA can be used as a backbwee for t
formation of highly conductive nanowires with conductances greater than 14 fb®
micron long nanowires [Braun, 1998; Richter, 2001]. These techniques form a coating of
metal by allowing positively charged metallic ions to coalesce around glagivedy charged
double stranded DNA. Such metallization techniques are suitable for eitheeswtaw or
suspended DNA strands. We anticipate that the DNA used to form our 3D self-agsemble

structures will exist in a suspended form similar to what is reported in [Braun, 1998].
Transistors

We have invented and evaluated a new kind of transistor that we call a ring-gated
field effect transistor (RG-FET) for use in the context of self-assehdhtectures. Figure

3.4 illustrates the basic structure of the RG-FET.

B N-type
I:I P-type

Gate

S10, layer
(10nm)

Figure 3.4. The basic structure of the ring-gated field-effect-stmmsi

20

We have simulated the behavior of this kind of transistor in complementary metal-
oxide-semiconductor (CMOS) logic circuits [Dwyer, 2002]. The details of thesgadions
are found in chapter 9.

We have also briefly explored the plausibility of fabricating such a s@amdiy using
an electron beam lithography technique to form a nanoporous polymer surface.3Fgare
a scanning electron microscope image of AuPd rods that we formed projectingaqualgf
methyl-methacrylate (PMMA) surface. Similar work in vapor-liquidesphase nanowire
growth has uncovered promising synthesis methods [Lew, 2002]. The route that we expect

will most likely lead to successful patterning of the rods is illustratdigjure 3.6.

1 micron

Figure 3.5. A scanning electron microscope image of AuPd rods protruding out of a poly-
methyl-methacrylate (PMMA) surface.

21

Silane / resist treatment

Templated Rod
Svynthesis

embrane
Fich

Porous alumina / polymer membrane

Figure 3.6. RG-FET synthesis scheme. Repeated membrane etching and oed surfa
treatments can be used to form banded structures along the rod.

The process begins by forming rods in a membrane (either ceramic or payrer)
using a selective etch to expose a portion of the rods. Using silane, polymer, orsisker re
the top portion of the rods would be modified and protected from subsequent etching steps.
A negatively charged silane monolayer could then be used to form a band around the rod tha
could be processed to create a metallic ring as reported by RichteefR&30Q1]. Ring-
gated structures similar to these have been formed on surfaces and th@tagfoperties
have been measured [Lauhon, 2002; Gudiksen, 2002].

3.3 Nanowire synthesis & self-assembly

The synthesis of nanorods and nanowires is the first step in our process of fabrication
for complex computing circuitry. The template directed synthesis of nanawiés
particular interest because such templates permit the asymmetriotfiatization of the
nanowire [Lew, 2002; Martin, 1996]. Such asymmetry is important in the control of how the
nanowires attach to other objects, including surfaces and other nanowires. Our own work in
the functionalization of carbon nanotubes underscores the difficulty in asymithetrica

functionalizing rod-like nanoparticles without templates [Dwyer, 2002b]. Rédseuathe

22

area of nanowire / surface interactions has produced valuable mobility inforrtett

makes it possible to estimate the yield of more complex structures [Martin, 2002]

The DNA-guided self-assembly of nanopatrticles into complex structures bé&pan w
pioneering studies into the formation of artificial geometric structmase from DNA [Yan,
2002]. The more interesting applications of DNA-guided self-assembly to conaesign
came in the form of the DNA-guided assembly of nanowires. Several landmark stdkes
shown that it is possible to assemble nanowires (and other nanoparticles) using DNA
[Dujardin, 2001; Mbindyo, 2001; Soto, 2002]. These structures are rudimentary compared to
what is needed by the designs presented in chapters 3 - 7, but demonstrate promisisag succe

in controlling self-assembly.

3.4 Cubic unit cell assembly

Figure 3.7 illustrates a simple cubic unit cell with diagonal supports. Theypartic
function of any unit cell is determined by the electrical properties ¢f et By using the
RG-FETs and rods described earlier, a cell can be combined with others to flarm log

circuitry.

Figure 3.7. A cubic unit cell with diagonal supports (crossbars). The goldenyiayht
rods are conducting and the dark gray rods are insulating.

23

The logic circuitry is first specified using a standard complementatglroxide-
semiconductor (CMOS) logic style, as in figure 3.8. The NAND gate shown in figire
takes its two inputs, A and B, and produces an output of zero if and only if the two are both
one (Myg). This gate represents one of many complete logic sets because setsibiyiiehl

can be used to implement any Boolean logic function.

Aw{ B%D‘

-
=

Figure 3.8. A CMOS implementation of a NAND gate

The circuitry of the NAND gate can be converted into a 3D structure suitatdelf-
assembly, illustrated in figures 3.9 and 3.10. The procedure described in section 3.5 for the
formation of a triangular structure can be extended to form such a rectaswidars this
logic gate. One challenge is that the number of unique DNA sequences thaparailigl
self-assembly method requires scales with the surface area of therstruk fully-parallel
method would require a set of unigue complementary strands for each junction; #e entir
structure could then be formed at once by mixing all of the functionalized rods.

This will only work if there are few internal rods that can be shielded from their
assembly points by external rods that assemble prematurely. That is, ifdide ofia 3D
structure assembles before its inside, the rods will be unable to reach #reethpositions
and the core will not assemble correctly. This leaves the structure empty ifisid&oid
this problem, rods must be assembled (inserted into the mixture) from the inside to the

outside by sequential ordering.

24

Ground 1

Figure 3.10. The physical 3D structure of a NAND gate embedded in insulatiregelsior
structural support.

With a fully parallel approach, the number of unique DNA sequences needed by even
a simple memory element (256 bits) could easily reach tens of thousands. Etytunat
possible to reduce the number of unique DNA sequences required to assemble a byructure

using a face-serial approach. In this approach, each face of the struaggensled in a

25

serial fashion. Since each face is assembled independently, differertdactsare a
common set of "active” DNA sequences. Within a face, the assembly movesftrton le
right, top-to-bottom. Figure 3.11 illustrates the assembly sequence.

Figure 3.11. Face-serial assembly of a 3D structure. The assemblyfirsgms face 1
(partially completed in this figure), then face 2, and then face 3. The propeatsrantil the
structure is complete.

An implementation of the assembly algorithm can be found in appendix B in the file
AssemblyProgDlg.cpp in the functi®id CAssemblyProcD1g::AssemblyPattern2().
Each face is assembled using an alternating set of DNA sequences. A mdynakssemble
between two other rods if it has DNA sequences on its ends that are complementdry to bot
The choice and size of the number of unique DNA sequences is related to graph coloring

because adjacent rods must have different DNA sequences (or colors in this case

Since a common set of DNA sequences is shared among faces as well asi@song s
within a face, the total number of unique DNA sequences is fixed and independent of the
surface area or volume of the structure. Our designs use 15 unique DNA sequemhies for t
face-serial method. Table 3.1 contains the counts of our assembly method for egieral |
circuits. Figure 3.12 illustrates the NAND structure as viewed when eagieuDNA
strand is given its own index. The repetition among rows on each face is apparent and
indicates that the total number of unique DNA strands is fixed. The trade-oféftac:

26

serial method versus full self-assembly is the increased number of stepaanetjuired by
the processing steps. Many structures can be constructed in paralletrésedes section
3.4, so this method still enables massively parallel self-assembly.

Since this method assembles the structure serially, the time required to build a
structure is linearly proportional to the number of rods in the structure. Iticuttitb
predict the amount of time that each rod will require to assemble properly. Tleegpoan
likely be automated to a high degree and optimized to improve the ~10 minute assembly
times from [Dujardin, 2001]. If the per-rod assembly time can be optimized tinéesd
minute, the modular designs presented in section 3.6 and chapter 6 with ~800 rods per

module would take ~13 hours to assemble.

Figure 3.12. The 3D structure of a NAND gate with each unique DNA sequence négulese
by a different color (and number). Sequence 15 is not visible here because it happens to
appear on the other side only.

27

léoa%'g Total Rods | Metallic | Insulating D‘IS??SPsal ISE('BI'-S SquSnA(\: -
NOT 90 5 47 34 2 26
NOR 252 18 122 104 4 55
NAND 328 18 164 138 4 63
XOR 522 86 190 214 16 77
Full Adder 1722 273 641 732 38 158

Table 3.1. Assembly statistics for several logic circuits. * The number éf §8gquences
needed if the conserving allocation method is not used. The conserving allocation method
needs 15 unique sequences.

The values for table 3.1 came from a custom assembly tool (described in chapter 5)
we developed for converting 3D circuit specifications into rod-DNA allocatidssthe
logic circuitry becomes more complex, the number of required unique DNA sequences
increases. This underscores the importance of the DNA conserving, fatesssmably

method described above.

3.5 Assembly method

Our proposed method for constructing computing devices employs the assembly of
simple cubic unit cells (with diagonal supports) using DNA-guided sedfralsly. Control
over the electrical properties of the assembled structure comes fraimoibe of the
electrical properties of the individual rods in the structure. For this purpose we hav
developed custom software for designing the 3D circuit layout of logic gakessoftware
automatically generates a list of rod types and the DNA sequences requireth eme o
form the 3D structure. First, it is important to understand our proposed assembly process
before examining the algorithms used in the design software. As an examplasdgeahely

process, let us consider the assembly of a simple three-rod, triangulasrstruct

Figure 3.13 illustrates the steps involved in the process. The process begins by
hybridizing a rod with the solid support (or anchor). The solid support is used to anchor the
intermediate structures during the cycling of reactants and rods. Ttheditsas DNA on
one end that is complementary to a region of DNA on the solid support. The DNA sequences

28

attached to the solid support are extended away from the surface by a polymet aas tha

sufficiently negative linear charge to metallize DNA [Richter, 2001].

Rod B

Solid-support
(anchor)

Figure 3.13. The assembly of a triangular rod structure. Each numberesdloaorder of
operations. 1: Hybridize one end of rod A’s DNA with the solid support's DNA. 2: Cross-
link the duplex DNA. 3: Hybridize one end of the rod C’s DNA with the solid support’s
DNA 4: Again, cross-link the duplex DNA. 5: Hybridize one end of rod B’'s DNA with rod
A’s free end. 6: Again, cross-link the duplex DNA. 7: Hybridize the “coupling” DNA strand

with the DNA on rod B’s free end. The coupling strand is made to site specitioadiy-link

to rod B’s DNA. 8: Hybridize the other side of the coupling strand with the DNA on rod C’s

free end and cross-link the duplex DNA. DNA metallization can occur aftstrilneture is
complete to form conducting paths between the rods.

The hybridization event between the first rod and the solid support is carefully
controlled to maximize the specificity of the interaction. By raisinge¢heperature of the
system above the temperature at which DNA strands separate froothglements (i.e.
the melting temperature) of the DNA and then slowly cooling it back to room tetuera
we can ensure a high degree of specificity between the DNA strandsifigementary

strands hybridizing with each other, and each other only).

Non-specific rod-rod interactions (rods sticking to each other when they should not)
may interfere with this intended interaction but similar silicon particdéesys have been

developed that minimize this interaction [Martin, 2002]. Section 3.8 discusses thés .furt

After the hybridization event, the duplex DNA is cross-linked using cisplatin o som
other cross-linking agent to "cement" the connections (forming covalent boniths)t $shey

stay connected during later processing steps. As the process proceletiybeaization

29

event is carried out under these same conditions to maximize specificityis Trhgortant
for correctly assembling structures with high yield. Assembly yieldssugdsed in section
3.8 and chapter 4.

A fluid containing a concentration of the second rod, which has DNA on one end that
is complementary to a second region of DNA on the solid support, is flushed past the solid
support. Under the same stringent conditions, it is allowed to hybridize with the solid
support. Again, the duplex DNA is cross-linked to form a stable and covalently bound

intermediate structure.

Unfortunately, the addition of the third rod is not as simple as the previous two. If we
were to add a solution containing the third rod type with DNA on each end that was
complementary to the first and second rod respectively, a triangular straotud form.

But an open four-rod structure would also form with relatively high probability. $his i
because two rods of type 3 could hybridize independently with both the first and second rods,

one on each. To avoid this ambiguity we need to introduce a "coupling” DNA strand.

The third rod is made so that it is complementary on one end to the first rod. The
other end of the third rod is made to complement one side of a coupling strand. The third rod
is hybridized with the first rod as described earlier. The coupling strandies tma
complement the free end of the third rod and the free end of the second rod, with one
modification: the portion of the coupling strand that hybridizes with the third rod has a
psoralen-modified nucleotide, or some other site-specific mutagen. This ntoatifica
ensures that the coupling strand irreversibly by to the free end of the third rod
[Qiagen, 2003].

The coupling strand is hybridized with the third rod, as before. After the coupling
strand has been cross-linked to the third rod irreversibly, the system's temgeraaised
above the melting temperature of the coupling strand and the site is rinsdaliffét®.
Upon cooling, the coupling strand that was bound to the third rod will hybridize with the
second rod. This unambiguously closes the gap and forms the triangular structure. Cross-

3 Abuffer is an aqueous solution of salts thatntain a constant pH (acid or base) in the &niuas other

chemical reactions take place (that might othenefsnge the pH.)

30

linking the duplex DNA again forms a covalently bound and stable structure. Matafiz

of the DNA can occur anytime after the structure has been formed.

3.6 Fluidic self-assembly

For reasons explained in chapter 4 and 6, simple DNA-guided self-assembly is not
likely to have sufficiently high yield (in the near term) to form strucuaege enough to
perform useful computations. As the processing techniques mature this yieldcneagen
making it possible to assemble larger structures. In the meantime, it isargdesalso use

an intermediate form of self-assembly known as fluidic self-assembly.

Thin structures made using the DNA-guided self-assembly method descriliexd ear
can be used to form larger composite structures by stacking. Figure 3.14tékisitie
stacking of thin structures. Any circuit design that is too large to assanthlBNA-guided
self-assembly can be divided into portions, or slices. DNA-guided self-assisnalslyd to
fabricate each unique slice and the slices are then stacked on top of each ajtferidisin

self-assembly to form the circuit.

Photomask
patterned cavity

Self-assembled A * /

structures

Photoresist

—>
layers]

Metallic Substrate

Figure 3.14. Fluidic self-assembly is used to stack thin structures to forgeadamposite
structure.

Fluidic self-assembly is simpler to understand than DNA-guided self-agsembl

because it relies on physical phenomena that are observable at the macroscamg (hum

31

scale. The application of a shear force in a fluid flow is what drives fluatfiassembly.

Each component is shaped so that it can only minimize the force acting on it fromdhe flui
when it is tucked snugly into the proper hole. The flow must be weak enough so that it does
not pull components from their holes, yet strong enough to drive each one into a hole. An
example of this can be found in an industrial process where pyramidal solidsemdbked

into pyramidal "divots" in a silicon surface [Alien, 2003]. This scheme works in the sa

way that a traveler might use a doorway to take cover from the wind of a stornuseéair

fluidic self-assembly is described in section 6.1.

Similar work studying the effects of capillary foresm the self-assembly of particles
has illuminated many of the interesting properties of self-assembhn&an, 2001].
Among these properties is the influence rotational asymmetry has on thedliparticle
to assemble. While any child with a set of blocks and a peg board can tell you it is more
difficult to place a square into the board than a circle, these studies have prbeifiest t
glimpse of why this is so at the mesoscopic-scale (between the macroswbpanascopic
worlds.) Further, rotational asymmetry can be used to control the placemenopériiles

using a key and hole approach.

Other work has shown how capillary forces between metallic alloys can beoused t
assemble millimeter-scale particles [Clark, 2001; Clark, 2002; Gracias,. 20b8]particles
are driven to assemble due to the same surface free energy minimiph#apmenon that
creates a water meniscus in glass. The particles can reduce therstitaeir surfaces by

maximizing their interfacial contact areas, thus aligning themselves.

3.7 DNA strand design & assembly tolerances

The geometry of the assembled structure, and the tolerances allowed during tha

assembly, affect the design of the individual DNA strands attached to each rod end. The

4 Capillary forces are what create menisci@med droplets on flat surfaces. Surface freegne

minimization drives these forces to maximize thetaot area between the two materials.
® Surface free energy minimization is a phenuonethat helps to describe the behavior of surfates
contact. Dangling bonds at the surface of a naltereate strain that can be reduced when thegratght
into contact with a lower energy surface.

32

shape of the rods used also affects the DNA strand design. These issues aiieulbtaiff

analyze but are important to consider.

The basic rod used in the assembly process is a 50 nm diameter rod with a length of
approximately 500 nm. (Typically, rod diameters deviate by only 1% to 10%, depending on
template material, which implies that for a 50 nm diameter rod the deviatiogligilole and
can be ignored.) Tolerances in the synthesis of each rod will cause a non-negligible
deviation from the average length. If we consider the distribution of lengthsyfor an
particular rod to be Gaussian, then to use 99% of the starting material, rods within 3-
either side of the mean must be accommodated by taking slack from the DNA sting T
the only way a cubic cell can be formed from rods of uneven length. That is, the joints of a
cube (with diagonals) made from rods with non-uniform lengths must somehow
accommodate shorter or longer than average rods and remain closed. Thty elbsie
joints determines how far from the average lengths an edge or diagonal rod cantle and s
form a closed cube. Therefore, the length of the DNA strands must accommodate the
distribution of rod lengths and still form highly specific hybridization bonds with

complementary strands.

If the DNA strand is simply made longer, these two requirements become mutually
exclusive because longer DNA strands hybridize less specifically.ndéicessary to reduce
the length of the hybridizing portion of the DNA strand to about 12 bases to maintain high
specificity [Mbindyo, 2001]. Unfortunately, 12 base pairs of DNA only stretch to 4 - 8 nm
— far shorter than the +10% (100 nm for a 500 nm long rod) seen in typical distributions of
rod lengths [Mbindyo, 2002; Martin, 1996].

The use of a phosphorothioate oligomer (a so-called s-oligo) of universal bases (3-
nitropyrrole 2'-deoxynucleoside) as a spacer is attractive. Trerdsa other polymers that
can be used to extend the DNA oligo without reducing its specificity, e.g. carbongsl
The s-oligo will not hybridize with any other DNA strand because of the propeftie
universal bases but will retain the electrostatic and solution-phase propérgtural DNA
[Loakes, 2001]. This property is important during the post-processing meiatiizégp to

fully metallize the DNA junctions.

33

The s-oligo is attached to the rod end and the 12 base pair DNA strand attached to the
free end of the s-oligo. This synthesis can take place during the manufactunadNA
strand and is likely to be an easily-purified product [Loakes, 2001].

The extension, either an s-oligo or another polymer, accommodates uneven rod-
length distributions by allowing the DNA junction to stretch. Single-strandefi BN
flexible and will allow rods to rotate relatively freely about a junction. IrfdHewing
section, the specific geometry of a rod junction will be discussed in detail. Weonsgder

some basic geometric properties to design the DNA and s-oligo strands.

Figure 3.15. A junction sphere with eight perpendicular rods along each orthogonal.equator
A total of 18 rods can fit around a junction in this manner.

The number of rods that can join at a junction is illustrated in figure 3.15. Each of the
18 rods that could join at a junction must be able to physically fit around the junction. Itis
helpful then to think of the junction as a sphere having some radius that defines the closest

34

approach of any surrounding rod. Figure 3.16 illustrates the constraint on the junction

sphere's radius along a quarter of one of the orthogonal equators.

Figure 3.16. Geometry of the rod junction along a quarter of an equatsithe radius of
each rod andsiis the radius of the junction sphere. Only three rods are shown.

We need to know the minimum junction sphere radius to estimate how long the s-
oligo extension must be to make a junction feasible. A simple way to find the minimum
junction sphere radiuss,ris to consider a junction sphere larger than it needs to be to fit all
the rods, as represented by the outer quarter-circle in figure 3.16. While keepiadsh
fixed to the circle, collapse the outer circle until the rods begin to bump each other. The
radius of the inner circle is the smallest that still allows the threetoagsnain fixed to the

circle from the center of each rod end and perpendicular to the arc.

The anglé in figure 3.16 is the angle between the colliding edges of two neighboring
rods. Symmetry requires these angles to be the same. When the junction sphélesis sma

the sum of these angles for one quadrant is 90°, so:

71
4B <=
5 (3.1)

35

That is,0 can be no greater than 8 when all the rods fit around the junction. Using
this we can calculate the relationship betw&eap, and g. The right triangle CME in figure
3.16 gives us the relationship:

tand = r—o (3.2)

I's
Substituting (3.1) into (3.2) and rearranging the result we have:

r
| 0
s tan% (3.3)

That is, equation (3.3) states that the junction sphere radius must be approximately
2.4 times the common radius of the rods that join at that junction. For the rod dimensions
considered here, 25 nm radius by 500 nm length, the junction sphere must have a radius of no
less than 60 nm. Since s-oligo lengths are 0.34 - 0.7 nm per base (each base can stretch), we

need a s-oligo with no fewer than 85 - 176 bases (poly-universal.)

This puts a lower limit on the length of the s-oligo extension. It must be at least 85 -
176 bases just for the junctions to be feasible for 25 nm radius rods. However, for any larger
structure to be feasible, the extension must be able to give slack to rods of ungtren len
That means the s-oligo must be long enough to connect the shortest rods to a junction.

Figure 3.17 illustrates the worst-case situation.

36

Figure 3.17. The worst case rod-length and DNA strand placement scenariorclehe ci
represents the junction sphere aidis the length discrepancy. The variable h is the length
of the s-oligo and DNA strand that can accommodate the length discrepancyl goid stil

the center of the junction sphere (marked with a star.)

The triangle made from the line segmensts AL, ro, and h leads to the following:

h=\/rZ +r2 +2[DL [+AL2 (3.4)

The earlier discussion has fixed the value of h (from figure 3.17) to be larger than 60
nm since it must be at least that large to make the junction feasiblenié atids touch the
junction. The additional length (beyond 60 nm) will depend on the length distribution of the
rods. For example, if we assume that a 10% (or £5%) variation in length covers 99% of a
the rods in a particular distribution, thah = 50 nm for a 500 nm rod. This length
distribution is common for template-directed nanorod growth [Dujardin, 2001]. Using the
previously established = 60 nm andg= 25 nm, the total s-oligo and DNA strand length, h,
must be about 113 nm, or 161 - 332 bases in this case.

The compounding of this error, junction after junction can eventually lead to an
infeasible geometry. In fact, two worst-case junctions next to each othereaile an
infeasible third junction because the adjacent rod would need to be 20% longer than average,
which is outside of the range of rod-lengths we have assumed. Since we défiodoke the

length discrepancy that covers 99% of all rods, we have approximately a 1 in €L/ 1%)

37

chance that such a situation will arise per junction. This means that no more than 99.99% of

all junctions will be feasible.

The junction yield may be improved by grouping rods of similar length together
before assembly. Such "binning" of rods based on length will reducd.ttieat covers 99%

of the rods in a bin and therefore increase the per junction feasibility yield.

3.8 Assembly yield

The hybridization efficiency of the DNA strands and the effect of non-specd-
rod interactions will attenuate the actual junction yield. One particuldy gtiaces the DNA
hybridization efficiency of a 12-mer at around 98% [Pena, 2002]. Since the number of DNA
hybridization events per junction is anywhere from 7 to 12 (discussed in detdjlMatean
estimate the DNA hybridization yield per junction to be in the range of (3866{98%), or
[78.5%, 86.8%].

One way to keep non-specific rod-rod interactions to a minimum is by using a
hydrophilic silane monolayer to coat the outside of the silicon rods. A relatechsysgeld
nanorods interacting with derivatized surfaces has shown that hydrophilicesinefaitnents
greatly reduce the non-specific interaction [Martin, 2002]. This study showegr&aer
than 99% of all nanorod material remained free from non-specific interactions. The
application of this method to a silicon rod system appears straightforward. & sanw
ignore the non-specific interactions and say that the total yield of strsiftane raw rods is

as follows:

Yr = (Yona Yauncrion) " (3.5)

where Yona is the DNA hybridization efficiency, Yonction IS the junction yield, and N is the

number of junctions per structure.

Each of the structures described later can be divided into a number of "slites" wi
approximately 108 junctions per slice. We can expect no more than (86.8% * 9§°96p4)
2.267 x 10%, of the total number of possible structures (slices in this case) to have formed
properly. This means that about 2 X*@w rods will be required to produce 7 xX4final
structures (or ~6 x”9). Slicing the each structure into smaller modules, as described in

38

chapter 6, is important because many of the circuits described in chapters 7, 8, andP need f
more than 108 junctions. A simple NAND gate from chapter 9 would require ~540 junctions
for a final yield of (86.8% * 99.99%1° or 6 x 10°* % if it were not sliced. Chapter 6

describes another form of self-assembly that can overcome this low yield.
Materials

Commercially available material used in fabricating rods by temdiegeted
methods have produced as many ds fdils per crhof membrane [Martin, 1996]. Each
membrane can be re-used so that multiple rods can be produced from a single pere. If w
assume that 25% of the space above and below each rod is dead space, then a typical
membrane with a 60 um thickness could support 80 x 0.5 pum long rods per pore. Using this
technique, the 2 x $®raw rod material would require 2.5 x®1€h?, or the area of about
3,500 x 12" circular wafers. This is a large amount of membrane material but when
compared to the wafer output of a silicon foundry (~12,000 12" wafers per month) the
number is comparable. It is likely that as the demand for nanoporous membrag@sescr
large volume fabrication plants will become practical.

39

40

Chapter 4. Structural stability and yield

The discussion in section 3.5 underscores the importance of reducing the number of
rods that join at each junction in a structure. Equation (3.5) shows that the finairatruct
yield decreases exponentially in the number of junctions, and depends on the per-rod DNA

hybridization efficiency.

It is clear from looking at illustrations of the unoptimized assembled strucieees
so far that they are dense. Many of the rods inside these dense structuresoavbed r
without consequence to the overall rigidity of the final structure. Removing nentiess
crossbar and insulating supports dramatically affect the final yielddogireg the average

number of rods participating in each junction.

The yield estimates from section 3.5 were obtained by taking the number of rods
participating in a fully dense structure, from chapter 7, and reducing it by 50%isEm
upper bound on the number of required rods because simply removing every other crossbar
reduces the average number of rods participating in a junction from 12 to 9. Further,
alternating levels that have crossbars reduces the average to 7 raseten, Section 4.1
describes how the stability of this method was tested.

4.1 Structural stability

The structure becomes unstable when a grouping of junctions no longer has complete
rigidity because the rods under constrain it and substructures can "slosh" artbimthe
structure. This increases the chances of signal lines shorting togetdhsinould be avoided.
Figure 4.1 illustrates one way to alternate the diagonal support rods so that nbanore t
seven rods meet at any junction. Each unit cube in this figure has at leasi¢be@liose
normals are orthogonal with diagonal supports.

Figure 4.1. Structure with no more than seven rods meeting at any junction. Eacheunit cub
has at least three perpendicular faces with diagonal supports.

Since the DNA junctions that bring the rods together are not rigid (i.e. rods are
relatively free to rotate) but can act as harmonic oscillators (the €dxdAstretch) the
evaluation of the overall rigidity of the structure involves many coupled harmoniatssi
This type of problem is difficult to solve exactly because of the number of oczcllaAs a

guide to determining the rigidity of the structure a spring-mass simuolats used.

Figure 4.2 illustrates the model used with a custom spring-mass simulagst tioet
structural stability of the module [Taylor, 2002]. Each junction in the module is reddgce
a small mass connected by stiff springs to the other junctions (the rods and®NA a
represented by the stiff spring.) Applying a force to one corner of théws&wnd then
allowing the springs to come to equilibrium tests the structure's stabflitye geometry of
the module remains intact after the perturbation, then it is likely to be salligstable. The

structure in figure 4.2 remains stable, suggesting that 7 rods per junction aniersuffi

42

Figure 4.2. Spring-mass model used to test the structural stability of theenaditgula
perturbing force has been applied. Only the springs are visible here.

4.2 DNA coupling yield

The face-serial assembly method described in chapter 3 reduces the total @iumber
unique DNA sequences to 15. This section discusses the amount of raw DNA that is
required to assemble the structures described so far. Whenever an estimatelhe use
worst-case is used, making all yield estimates pessimistic.efftafs evaluation the cost
appears manageable, the actual cost is likely to be lower.

It is straightforward to calculate the total amount of DNA (with s-olixfersion)
required to assemble a typical structure. There are seven types of radkc, nretulating,
strut, metallic-strut, p-type RG-FET, n-type RG-FET, and gate. An upper bound on the
guantity of DNA needed can be obtained by assuming that all rods in the structureeneed t

same type of DNA strand and that there are 15 such cases, one for each uniqueaBdiNA st

This estimate must be inflated because not all raw DNA-s-oligo strandeagti
with a rod end. Similar DNA-surface reactions have seen reactions grt@iE3% of the
saturated monolayer in 4 hours [Mbindyo, 2001]. The saturated DNA monolayer density
was taken as 1 x 1bstrands / crhand the starting stock concentration was 10pM. That is,

about 1.6 x 19 % of the stock material reacted with the surface in 4 hours. Therefore, to

43

correct the total amount for reaction efficiency, the original figure mustuiplied by 1 /
1.6 x 10" %, or 6.25 x 18

The earlier discussion of DNA strand design used 1*%rb@s as the starting point
for the assembly. Using this same number of rods and accounting for the redicliemcgf
of the DNA with the surface (of each rod end) yields a total amount of DNA (ingltiakn
15 types) of ~2 x 10 strands. This number of strands at a typical concentration for DNA,
~10 uM (or 10 x 16 moles / liter), would occupy ~330 liters.

The cost of this quantity of DNA can be estimated using current priceataediiom
vendors. One vendor, Qiagen, sells highly purified custom DNA strands in bulk for ~$25
USD that can be re-suspended into 1 mL of buffer (water plus some salts) to hiau&la
DNA solution. The 330 liters of DNA solution required for the assembly process would cost
~$8M USD. Since only 1.6 x T0% of this material is used during construction due to
reaction efficiencies, recycling the waste material may draaibtireduce the cost for a

second construction.

4.3 Purification

Non-functional instances of modules can probably be separated from correctly
assembled ones by centrifugafioiTherefore, calculations of the modular assembly yield of
a machine in chapter 8 will assume 100% purified modules. We can trade bulk material f
higher purity product. That is, if the final yield for a module is lower than we weeazhn
purify the module and repeat the assembly method. The individual pieces, or modules, of a
circuit can likely be purified because properly formed structures will baliferent density
and drag profile than structures which did not form properly. The combination of a unique
mass and drag profile makes a centrifugation purification method aniaénaety to
separate good structures from bad ones as long as it does not damage the moduld® Since t
DNA-conserving assembly method assembles structures in a faceasdriahf if at any
point a structure's face is not properly assembled, that structure willliaidbe the

® Centrifugation is a process that can sepaaticles (and molecules) based primarily on theimsity. A

centrifugeapplies a high acceleration (~10,000 x G) to aamnd over time low-density particles migrate
toward the top and high-density particles migrateard the bottom. The two can be separated byutlre
decanting the top-most layers.

44

assembly. Even if the structure loses only one face due to an aborted assemblygland cau
up on the next face) it will have a noticeably different mass. For example, infendt

module assembly will on average reduce the mass of the module by ~20% (onghfade w
junctions) if a single face is missing. Ultracentrifugation is routinely tsésolate

biomolecules with mass differences of ~5% [Lebowitz, 2002].

45

46

Chapter 5. Custom design tools

5.1 3D rod design tool

The 3D rod design tool is a program that facilitates the creation of 3D rod stguctur
for use in self-assembled circuitry. The user has interactive control of thefibe
structure and distracting rods can be temporarily hidden from view. Figure Streea

capture from the design tool.

=

[SRPYI Fm—yr ﬁl’whﬂw - BTSNy I — Clonir ’
Pt | P | Wot] ot | s Pl Mo | Ubuie] P LGl iaiy T emape T e I e

Figure 5.1. Screen capture from the custom design tool.

A user can use the design tool to load existing structures or create new cadestru
There are no design rules enforced other than the fact that rods must e @hgrgeone of
the 12 allowed orientations, or be used as a gate electrode. The design tdmvedsina
user to label metallic rods that will be attached to that node in an extrac@# 8&dk. This

facilitates naming signal lines for electrical simulations later

The following is an example design process:

1. Create a large cube of insulating rods with the "New cube" button. If théus&ruc

is not cubic, use the '1', '2', or '3' keys to add additional layers along each axis

2. Select a rod by clicking on it with the mouse and change it to either a conductor
(‘'m", NFET ('n"), PFET ('p"), gate ('g"), conducting cross-bay ¢icinsulating
cross-bar ('s'). The rod type and orientation can alternatively be changed by
double-clicking with the right mouse button on the rod. This constrains the

properties of the rods to those properties supported by the fabrication technology.

3. Double click with the left mouse button on a rod to center the current view on that

rod. This feature is used to navigate large and complex structures.

4. Pan with the left- or right- mouse button depressed to rotate the view. As with the

centering command, this feature is used for navigation.

5. Control+S toggles between fully visible insulating crossbar (struts) andrhidde
struts. Control+T hides/unhides all insulators. Large and complex structures are
dense and can become difficult to understand. Hiding insulating rods, which are
only for support, helps reduce the visual complexity of the scene and emphasizes

the structure of the electrical circuitry.
6. Repeat from step 2 until the circuit is complete.

The circuit can be saved and then opened with the assembly tool to create a SPICE

deck for simulation and to gather assembly statistics.
Software platform

The custom design tools were created using the Microsoft Visual Studio in
MFC/C++. The rods are rendered using a Win32 version of the OpenGL standard. The

source code for this tool can be found in appendix B.

5.2 Assembly-order tool

The assembly-order tool takes an element structure from the design toolated are
DNA conserving assembly order. The characteristics of this algorithmalhaaely been

described in chapter 3. The implementation of the algorithm can be found in appendix B.

48

Figure 5.2 is a screen capture from the assembly tool. The end of the each rod is

colored to indicate the sequence of DNA that has been allocated for that rod-end.

=
(S proswry EI“"[T v T odeimy T fiee B odghws [Bk B Fale] u—[

Figure 5.2. Screen capture from the custom assembly-order tool.

The assembly tool also extracts a SPICE deck, or input file, from the element
structure. The final deck can be included in a test circuit to verify that thetustr works

properly and to estimate power consumption.

The assembly tool can also be used to create animations of the circuitotadtet r
and step through the assembly process. This can display the structure @libé&delp

understand how the circuit must be connected to other modules.
Software platform

The assembly-order tool was created using the Microsoft Visual Studio inQAFC/
The rods are rendered using a Win32 version of the OpenGL standard. The source code for

this tool can be found in appendix B.

49

50

Chapter 6. Power and interconnect

Connecting self-assembled structures to power and I/O electrodes colyideasi
manufacturing bottleneck given the vast number of structures that can be ass#robked
time. This chapter describes two interconnection methods féd&0ices that can be

implemented in parallel.

6.1 Modular assembly

Section 8.4 analyzes the tradeoff that helps determine the optimal fabrigatébaf
a machine given various design parameters. Section 3.8 shows how the low yield Ibf a sma
logic circuit is impractical and therefore why a monolithic, fully adslechcomputing
machine is not feasible without improvements in current fabrication yields. Thasdbe
mean that modular self-assembly is infeasible. The design-yield traddpft$ehermine the
level of modularity needed to achieve a given final yield by trading largebensnof unique

modules for higher raw (module) fabrication yields.

The placement of each self-assembled module must proceed unambiguously as did
the rod assembly described in the earlier portions of this chapter. One simpte way
assemble mesoscopic-scale objects unambiguously is to rely on geomeiresfeat]
surface free-energy minimization [Clark, 2001; Clark, 2002]. This method of selfry
works by creating modules with a particular geometric shape that ¢atofét hole on the
surface like a key. Materials coated on the sides of the module act like gkeptthk
module in place. The module shape, or footprint, should be rotationally and reflectionally
asymmetric so that a well-defined orientation for the modules on the surfabe ca

maintained.

Adopting a standard footprint among modules facilitates the mesoscopic-scale

assembly if that footprint allows only a single final resting-oriéoat This technique is

used in fluidic self-assembly where an object minimizes the sheareiveced on it by the

fluid when it lands on the substrate in a strictly unambiguous fashion [Alien, 2003].

Lithographically patterned planar substrates, as illustrated in figure 6.4, m®ulsed
as landing areas for the modules if the exposed and developed portions of the egsist lay
create recesses that fit the outlined shape of the self-assembled modufeainivg a
registered substrate-to-mask alignment will allow multiple seléarbled modules to be
stacked on top of each other [Srinivasan, 2001]. The tolerances for the lithographg proces
need to be in the range of half a rod length, or 0.25 um in this case. This is well within the

capabilities of present day photolithography.

Self-assembled module

Top-down view of
the unit cell mask

%%
bt
<]
o
<]

Jite? e aecss
ISR I

by!
o5

k!
00":’00‘

o

%

XX
o
K
ity
oA,
Taretete?

<2
Tarete

&
4

e

Beteteloletetetoletatoteletetotelets!
e T et ettt
DA ettets. Sttt
ettt et
ot
S

e
totatele!
250
e
pTatstetetatels
05

Seetetats
o

oy
L

=
Setettetes
o
2
e
o D
R
Fateteetets

2
b
=

o0
el

S

b
o

5
=

e
e
b

b

Y

L

]
eleTeetetetetets

: %
Exposed landing area s

Figure 6.1. Modular-assembly unit cell mask and module. The module lands in the exposed
landing area. A new photoresist mask is constructed and the process repeats.

Modular-assembly simplifies the interconnection problem by disambiguating the
orientation of structures as they land on the substrate. Since the lithography pattentspr
improperly oriented modules from landing, the final structure will have adeéled shape
and orientation, as illustrated in figure 6.2. The particular photoresist chosen tbdéorm t

cavities must support high aspect ratio features and have a low surfacesfgge @rhe

52

commonly used SU-8 photoresist has high aspect ratio features but needs to be doped to
reduce its surface free energy. Research in this area has shown that ible pmsrmulate
epoxy-based photoresists and that the siloxane nature of the polymers makesesabied

monolayer treatments feasible [Schmid, 1996; Martin, 2002].

Photomask
patterned cavity

Self-assembled o~ * /

structures
4

Photoresist
layers

Metallic Substrate

Figure 6.2. A modular assembly of stacked structures. Photolithographic stepshmea
sidewalls that corral the asymmetric structures.

The asymmetry in the footprint of each structure makes it possible to enfalee a
for the substrate electrode and the top electrode (deposited during post-pgocas&n
know exactly how the final circuit will be connected if the method described insé&ct is

used for power and 1/O.

Using a lithographically prepared silicon substrate instead of a mestaltigtrate we
can employ conventional VLSI techniques in making a footprint that can communittate w
the processing elements. The circuitry that controls the communication to teegusccan
lie beneath the footprints and be shared by several "stacks". This is desctiedifiur

section 6.3.

6.2 Monolithic assembly

Another solution to the I/O problem is to use fully self-assembled structures

sandwiched between two power electrodes. This method is applicable to sértizhtigre

53

fully assembled before finishing the interconnection method. Such monolithickdgsem
methods require higher yields as discussed in chapter 8. The most serious ldcdilinac
method is the large capacitance of the sandwich. The DAMP design in chapter 8 would
require the control circuitry to oscillate a 9 nF load at greater than 400 Whiizh is energy

intensive. The alternatives to this method are presented in section 6.3.

P1 (metallic top electrode)

Polymer msulator

Self-assembled
structures T

Figure 6.3. Layered interconnect method. The bottom electrode serves as grounidewhile
top electrode serves as Vdd.

Figure 6.3 illustrates the layered interconnect method. Each electrodeasdnads
purpose. The bottom electrode (PO0) is used to electrically ground the circultiy @so
used as a clock signal. The top electrode (P1) is used to supply a positive voltage to the

circuitry and is also used as a data signal.

This arrangement requires special "power-up"” circuitry to be embedded thi¢hi
structures. This circuitry serves to orient the structure as to which diréstlup” (the
positive voltage electrode.) This same circuitry, through the use of a braddfierecan
supply power and provide a reference for how to use each electrode. By alternatéenbet
power and signaling phases, the electrodes can be used for both purposes. Theiomtializat

routine for this system is as follows.

54

Fl

FO Fl1
Coro
Pl 4’<]—{ }__’<}—{><} po__|><}_
1 P }DATA
: P
FO FO
FO Fl
CORI
PO] < Pl < H
= Pl - }CLOCK
B
Fl

Figure 6.4. The power-up circuitry used to orient a structure after it hasdrebmished

between two electrodes. The circuitry tells the structure which elestrasipowered up

first and therefore which electrode will serve as a data signal. The tEbioeée is the
implied ground and clock signal.

The positive electrode (P1 in figure 6.4) is slowly rampeddo(IWV in the circuits
we have considered) while the ground electrode (PO in figure 6.4) is connected to the syste
ground (OV).

After some time, the orientation capacitorg.d@nd G;1) will have fully charged or
failed to charge depending on which electrode was powered-up and which was grounded. At
this point the power-up circuit knows which electrode (PO or P1) is the positive (and data)
electrode and which is the ground (and clock) electrode. The signals FO andrefleei
this orientation and select the proper electrode to be connected to the internabDATA
CLOCK wiring.

To signal a “1”, the positive electrode and ground electrodes are tempoeddily h
high. The ground electrode is returned to ground potential after the circuitrptestbie
input bit. To signal a “0”, first the positive electrode is grounded and then the ground
electrode is raised togy. Again, this condition is maintained for a sufficient time to allow
the circuitry to latch the input bit before returning to the power phase (P1 high and PO
grounded).

55

The bridge rectifier in the power circuitry charges a capacitor (aneshef the
power-up circuitry) regardless of which electrode is positive. The tiyauill function
properly as long as the data and clock steps (step 3 above) are short compared tarthe powe

up time constant (i.e. the time required to charge the power circuitry).

This circuitry is useful because it works without regard to which electrodeits/pos
and which is grounded. If the assembled structures are to be deposited from suspeysion, t

should be encased in a way similar to that illustrated in figure 6.5.

Figure 6.5. This structure connects opposing sides of a cube (or rectangd)angbke PO
and P1 wiring inside the structure so that the structure can “land” with angosicheand
still receive electrical power and be able to communicate.

This structure connects opposing sides of a cube (or rectangular solid) to the PO and
P1 wiring inside the structure. Since opposite sides of the cube are connected &ither
P1, the structure can land on a metallic surface (the bottom electrode) withitsnsideds.
A layer of insulating material (e.g. a polymer) could be deposited onto theesarid etched
back to expose the top side of each cube. Another layer of metal could then be deposited on

top and used as the positive electrode (see figure 6.2.) This method can be used refardless

56

how the cube lands as long as it makes (or can be made to make) good ohmic cdntact wit

the bottom and top electrodes.

6.3 Output methods

Regardless of which interconnection method is used there must be a way for each
processing element to communicate with the outside world or each other. lerpagdible
using future versions of self-assembling technology that have higher tpettske a single
monolithic device with many connections between elements. In the near-terenangingle
large monolithic device is not feasible and connections are restricted, we musa adopt

modular approach like the one described above.

With no connection other than a common power supply, each processing element
appears to be without any way to communicate. Aside from receiving commandsytisere
be a method for communicating calculation results to the outside. One potentiahstmuti
this problem is to use a switching noise detection circuit in the power supply. If tuned to
detect a unique electrical oscillation made by the processing elemeats communicate at
least a single bit of information. The nature of this method makes the resultakeln
the superposition of all bits being transmitted, which complicates the commanicatily
one processing element can communicate at a time. This can be used in ailaaodrow
auctioneers talk to an audience. A question is posed ("will anyone buy this vase for $107?")
and any eligible members of the audience respond. The circuit that can impeisient
output method is described in the architectural description of the decoupled array multi

processor in chapter 8, and simulated in chapter 9.

The drawback with this method is the large capacitive load between the power
electrodes and the frequency with which the voltage must change. That ide gpgiogssor
will have trouble overcoming the large capacitance of the power electrodesltceia
signal large enough to detect. A simple way around this problem is to use conver@onal I/
methods to clock data into the processors.

Figure 6.6 illustrates a modified footprint that has ports for clock and datassigasl
are shared in parallel by several processors. The ports are signdidingotrude upward

from the silicon substrate and through the passivation layer (e.g. glass.jediires the

57

ey
o L K K K
e
R RR R
BRI
T S R I
R
Sl e

assembled circuits is comparable to the minimum feature size of the photoptinpgsed to
make the substrate. However, as the components used in self-assembling ting stirdolk

multiple routing layers and some control logic. This is possible when the size effthe s
electrode interconnection method described in section 6.2 will become an atsakitian.

substrate to be more complex than a simple metallic substrate because it reses
in size and it becomes impossible to interconnect multiple signals per protiessao

Clock

DD S S S0 8 S S

R 0 W
o
B
et Nt e ey
s
s
R et
R S S N S

o 0
T R et
B S S RIS A
S S
o P LK I T I IR KK IR I

GND

Data

Figure 6.6. Modified footprint that provides a low capacitance clock and data portwd he t
circles inside the footprint are the data and clock electrodes, the ground eléotasdee

rim of the footprint.

A processor can directly sense the data line (or port) by wiring it to ghaxér

If the photolithographic process can place multipletsiaduc

input (see LC1 in section 8.2.)

to the substrate, the data channel can be expanded to multi-bit and/or full duplex. The
external clock line can be driven by external amplifiers and connectedydicettte internal

processor clock line.

For output, external circuitry pre-charges the shared data line and any prazess

FET (~1.6 pA) means that pulling the data line to ground could take a long time if the data
58

pull the line to ground with pull-down logic. The extremely low drive current of the RG-
line capacitance is large. The capacitance of the data line can be reduced) @ uditree

arrangement, illustrated in figure 6.7, with buffers placed at vertices. The oothes H-

tree sit below the modified footprints from figure 6.6 and contain pre-charge control
circuitry. The buffers pass the result of the pull-down to higher levels in theeHaind
ultimately to the top of the H-tree.

OO0 OO0 OO OO

ool oto oo oo

00| o000l oo

0o olo|lolo oo)tohigher

OO0 O—-0O|o0—0O OO level

0o | oo | oo oo

OO | OO0 OO0/ O« processor
footprint

-0 oo oo oo

Figure 6.7. A portion of the processor H-tree. This circuitry lies beneath tbespors (and
the passivation layer) in the silicon substrate. Each processor footprint is ~érbauside.

Since the data line may take a long time to pull to ground with the low drive current
of the RG-FETSs it is necessary to keep the data line capacitance balticehvalue. Using
the decay constant=R - C and assuming the line to be can be sensed afte(d after >
90% of the charge has dissipated), the maximum data line capac€itanoebe calculated.

The drive current of 1.6 gA means that the RG-FET (operating at 1V) has aneon-stat
resistance of 625, which we can use &in the decay constant. Solving for the
capacitance we g€ =7/ R To operate at 400 MHz, the total decay time 3 2.5 ns, ot
=0.83 ns. Using the on-state RG-FET resistance we get a maximum dasgpéogance of
1.3 fF which is practical for standard CMOS technology. (A 0.25 um x 30 um plate
capacitor with a 0.25 um separation &nd 5 -y also has a 1.3 fF capacitance.) As with the

ring oscillator, the output is the logical "OR" of all element outputs.

59

60

Chapter 7. The oracle architecture

The oracle is a new architecture that uses brute force to solve instaifes of
complete problems. Inspired by the broad parallelism of DNA computing, the stacs
all instances of a problem at the time of its assembly. Whereas the methibads Disik&
computing that require weeks of laboratory work per problem instance, the oracle use
electrical circuitry in conjunction with self-assembly to enable it to solstances of the
problem rapidly.

7.1 Assembly-time computation

All computers require some degree of assembly-time complexity durimg thei
construction. Traditional computers require photolithographic masks to be fetyracat
materials to be deposited and patterned in complex ways. This assemixdpitiplexity
usually generates very little assembly-time computation. Incorpgratirtions of a
computation into the design of a machine (e.g. ROMs, micro-code, etc.) has otdg limi
application when compared against the vast set of problems traditional genpaaepur
machines are designed to solve.

The tradeoff between assembly-time and runtime complexity, however,nzier re
gigantic improvements in performance. The advantage that applicationcspeeirated
circuits (ASICs) have over general-purpose circuitry is one examplesdfadieoff. An
ASIC design usea priori understanding of a class of problems to build in assembly-time
complexity that reduces the execution time of the circuit. For examplayasesect adder
uses redundant full adders to compute the sum of two operands speculatively. Only at
runtime will the circuit choose the correct sum. ASICs are inherentbyr fdstn general
purpose circuitry at solving problems because the problem has already bedy paltied
by design That is, an ASIC solves a portion of the problem before runtime but still

continues to employ a significant runtime component.

The type of machine described in this chapter is enabled by the extraordinarily
parallel nature of self-assembly. The scale of this form of fabricatiazyssied in chapter 3,
makes it possible to cover an input spabat is much larger than what traditional ASIC
designs can cover. Therefore, the advancement of near molecular-scagifatoric
technology makes it possible to build ASIC-like computing machines that shift joatyna
of a computation so that it occurs during assembly of the circuit rather than ilsiring

runtime.
Oracles

An oracle is a class of machines that has within it a large number of question and
answer pairs. Questions are posed to the machine. A response is generatedsfitreigue
contained in any of the oracle's question/answer pairs. In this fashion, the ©olikelai
large content-addressable memory (CAM) that has been preloaded with the aoswers
certain problem. An oracle differs from a CAM by the method the question and angwer pa
are entered into the machine. The CAM requires)Gf2ps to load the answers (each of
which have been computed) where k is the number of index bits that serve as an address.
Each address is a question represented by up to k bits with its associated ahsveeacle
requires O(k) steps to assemble and no runtime loading steps. The answeesrainatet
by the manner in which the oracle is assembled. The self-assembly of ed@naures
answer pair provides the oracle with the answers (with a high probability but enxbaiaty
that a given question and answer pair will exist within the oracle.) If @ydartquestion
and answer pair did not form during the oracle's assembly then the oracle cannibtagolve

instance of the problem.

In the same manner that an ASIC is designed to solve a problem more quickly than a
general-purpose machine by incorporating portions of the problem, the oraclgisedédsi

solve huge portions of a problem space during its assembly.

" Aninput space is the set of all possibleabjrcombinations (of some number of bits) thatwaithin the

range of meaningful inputs for a given problem.

62

7.2 Addition oracle
Architecture

A simple example of an oracle is the addition oracle (not useful in itself, but
illustrative.) The addition oracle has a simply defined problem and a briefduoalcti

description, and performs all calculations at assembly time.

A|IBICIS G
0j0|0JoO] O
0[0| 11| 0
oj1|/0}1] 0
0[1|1}]J0] 1
11001 O
110 1J0 1
11100 1
111111 1
Table 7.1. Full-adder truth table

Table 7.1 lists the entries in the truth table for a full-adder. The addition wari¢icle
be assembled so that it incorporates many of the possible combinations of the teuth tabl
entries. Each single line from the truth table represents an instance of angudivlem.

A ripple-carry adder solves addition problems by chaining the carry-out frorfulbaeder
to the carry-in of the next full-adder. In a similar way the addition oradlehein carry-

outs to carry-ins, but at assembly time rather than at runtime.

The oracle is queried for the answer to a problem (in this case an addition problem)
by serially shifting in the operand bits. If the oracle contains the sum of thepsvands, it

responds with the answer by serially shifting out the sum.
I mplementation

Each line in the truth table is converted to a "tile" that represents eytarinput
and output combination. This is similar to the way a carry-select adder spetylpie-
computes a carry pattern and at runtime selects the proper carry path, witbepgon that
the oracle pre-computes the entire carry path. The tiles that correspond &tk

shown in figure 7.1. Each tile has on its left side a carry input and an output. In this case, the

63

top portion of the tile is the carry-in and the bottom portion the carry-out. The Gagies

depicted in such a way that they fit together like the pieces of a jigsaw puzzle.

$3

-

ci

Cco

2000
2000

20600

2000

.

I—ll—ll—ll—lC:JC}C:C::D
— = SO == S| S T
=1 =1 =1 =] I

[l Rl RanR i RN di k=] £¥)

|k | et | D |t | |

Figure 7.1. Assembly tiles for the addition oracle (with the full adder trbtd.jaA = a bit
from the £ operand, B = a bit from thd%operand, and S = the sum of the two bits.

The iterative nature of the function (e.g. output from step i produces input for step
i+1) allows strings of these tiles to implement an instance of the funaticaligation. For
example, figure 7.2 illustrates a simple 4-bit string made from the tilgguref7.1. This
particular example is an instance of the addition function for "3 + 5 = 8". The dhidyge o
carries on each tile dictates how the string is formed. Valid strings natisi each carry-
out with the corresponding carry-in. In this fashion, the tiles perform an assgémély
computation as they form valid strings. They assemble only into valid solutions foomddi
because the carries must match at each stage.

64

N =000 A=0011
B=0101
1000

Sum =
n000
n000
MSB (1) oeo Y,

3+5=8

Figure 7.2. A 4-bit instance of the addition function. The carry-in and carry-out shapes
determine valid strings. This string implements the "3 + 5 = 8" instance &drbtion.

A complete addition oracle is the collection of all possible N-bit stringsest tiEach
string represents one particular input and output combination, for example the "3 +5 = 8"
string shown in figure 7.2. In this case, the string will respond with "8" to the quéstian
is 3 +5". For all other questions the string will be silent.

The yield discussion in chapter 3, and later in chapter 8, indicates that iflieféas
have on the order of 1 x dndividual processing elements, or strings in this case. This
means that it is feasible to implement all 40-bit input strings (N = 40), or in $keotan
addition oracle all two 20-bit operand sums.

Again, the addition oracle is simply an illustration of an oracle rather than an
exemplar of its usefulness. The circuit complexity of each string isxietst by the
circuitry needed to read the string and respond to queries. A possible circuitddditien

oracle is shown in figure 7.3.

65

S OE; IE; A B

1o

Figure 7.3. Circuit for an addition tile. Tleb, ands bits are consants assembled into a
particular tile. The tile is assembled into strings that respect theinand carry-out
matching. The input query and output bits are serial shifted into and out of the circuit.

TheA, B, andS signals illustrated in figure 7.3 carry the input query and response
bits, respectively, for each tile. TkHg andlE; signals are the output and input enable
signals, respectively, that coordinate the individual tiles in a string so thettitigeresponds
to a query if and only il tiles in the string match the input query. The input enable signal
is passed downward along the string and at the very last tile reflectecdugsitie output
enable signal. Each tile can interrupt the input enable signal depending on the Vadue of t
current query, or the latchég andB; input signals. Input queries are serially shifted into all
strings (i.e. the circuits that implement each string) simultaneously. WhératiaB values
match the particular inputs of a string, all the tiles latch their sum valwethef; latches.

The only strings that respond to the query are those that have successadtgdethe input
enable signal to their output enable line. The output enable signal could be used to trigger a
ringer circuit, described in chapter 6 and 9, that creates an oscillatirad thighcan be

detected by an external receiver. This method is useful for problems that cedyiee

single bit of output (e.g. NP-complete problems). Alternatively, the output enaiét cam

be used, as shown in figure 7.3, to load the sum bit into a D-latch that can be shifted

downward along the string to a ringer at the bottom that responds to the shitiroulé

66

string. An analysis of the power consumption and performance of this kind of circuitry is

presented in chapters 8 and 9.
Generalization of the oracle

An oracle can solve any problem that is expressible as the form illdsimetgure
7.4. The function§; andG; take thefi.; andX; inputs and generate theandg; outputs,
respectively.

Ji=F(J X) £
g8=G(f., X) vl
fi=a

Figure 7.4. Problem expression solvable by an oracle.

Each inputf.; andX;) and outputf(andg;) are bit vectors. To aid in initializing the

systemf.; is assumed to ke, which is a constant defined at assembly-time.

Equation (7.1) through (7.3) describe the addition oracle using the form illustrated in
figure 7.4. These equations are derived from the truth table for addition, shown in table 7.1.
The input vectoX has two element#, andB, that represent the input operands. Equation
(7.1) is the carry-out bit, and equation (7.2) is the sum bit.

F (fi—l’ X,) =f. |:Gxi[A] + Xi[B])+ (Xi[A] D<i[B]) (7.1)
G (i, X,) = T XA DX [B] + X,[A X, [B])+ f,_, X, [A] DX [B] + X,[Al X,[B]) (7.2)

a=0 (7.3)

67

Realization

The monolithic fabrication techniques described in chapter 3 can be straightfgrward|
applied to realize each tile and string. The DNA strands used to form each junothmn ca
selected so that when a new tile is being added to the string the assembhgtd arsthor
rod/DNA type determines the tile choice and also respects the carry-owt-incaratching
rule. Then, each tile type is assembled in parallel using the face sehadndescribed in
chapter 3. Since each tile will only assemble to the proper anchor, the rewatifg-in will

necessarily match the previous tile's carry-out.

However, the near-term self-assembly processes that appear to be nilast feths
require each string of tiles to be divided into thin modular slices. The individues slit
not undergo DNA-guided self-assembly but rather fluidic self-assembly.nMiéass that the
DNA specificity that allowed each tile to respect the carry-out / géarnyatching rule no
longer exists. Instead, thin modular slices must be stacked on top of each otherilzesddesc
in chapter 6. Each module has no preference for which stack it lands on but lands in the
proper orientation on any stack due to its rotational asymmetry. This reqeitéds get

from above to be modified since the carry-out / carry-in matching rules mustdreesl.

Rather than using a single tile for each entry in the full-adder's thithda before,
the entries are grouped according to a carry-in and carry-out patterne Figulfustrates
the new tile design. The entire set of tiles will consist of the nine tile tjg@ethe one in the
upper left-side of figure 7.5, one tile type like the one on the right side of the, fagut¢hree
tiles like the one in the lower left. Just as before, the tiles are stacked hardaiid
because the carries necessarily match between tiles) to form @bl@sssngs of tiles. The
"LSB" (least significant bit) tile from figure 7.5 is the last tile inleatring (at the top) -

since all sums start with a carry-in of zero.

68

/G=0,+G=1

ABS ABS

00=0 010 AB ¥ AB

g e | R

e=0tcm1 | c=0: c=11"
LSB

Figure 7.5. Addition oracle tiles for modular self-assembly. The constanti@ylirca
carry-out pattern implicitly allows for the proper matching of stacked ardted tiles. The
circuitry in the tile on the right must swap sides to preserve the carry4iry/ad pattern.
The tile in the upper-left represents 9 different tiles, each with two of theak8 ghown.
The tile in the lower-left represents 3 different tiles and is the firde&st significant bit) in

any string (both carry-in bits are zero.)

For example, the sum "5 + 6 = 11" in binary is "0101 + 0110 = 1011" with carry-in
values of "1000", and the carry-out values of "0100" is illustrated in figure 7.6.

69

aBs | aBs I1.SB

MSB

Figure 7.6. "5 + 6 = 11" example using the modular tile set. The circled portioasaepr
the sum.

The methods used to orient modules in chapter 6 will need to be applied to the tiles
described here. The rotational asymmetry of the tile shapes in figure &birede but has
been omitted from the diagram here for the sake of clarity. As with the ¢ideliset, the
new tile set stacks to form N-bit strings representing the sum of two N-bit nsumbiee
circuitry of both tile sets (from figures 7.1 and 7.5) is identical with the excefhtat each
tile in figure 7.5 has two copies of the circuit. The tile on the right-side of fig&renust
swap sides to maintain the carry pattern from the bottom of the tile since both thé ,AB=
Ci=0 and AB=00, &1 truth table entries produce €!C.

70

7.3 Hamiltonian path oracle

The Hamiltonian path (HAM-PATH) problem is in a complexity class known as NP-
complete and represents what is considered to be an intractable problem. The problem
consists of finding a path through a given graph of nodes connected by arcs thaheisits

node exactly once.

The HAM-PATH oracle computes all paths through a fully-connected graph at
assembly-time in a manner very similar to the way Adleman solved the HXNHP
problem using DNA [Adleman, 1994]. The difference is that Adleman's approach solves the
problem for one particular graph while the HAM-PATH oracle can solves infpimstance
of the problem with a fixed number of nodes.

Adleman's solution encodes each edge in a graph as a DNA fragment that has two
"sticky" ends representing the starting and ending nodes of the edge. Eaahthedgraph
is allocated a sequence of DNA and any edge that starts at that node whisusequence on
one end. The other sticky end of the DNA fragment uses the complement of the DNA
sequence assigned to the ending node. All of the fragments are mixed togetbemand f
strings of edges (in the form of DNA fragments) that represent fegsitiie through the
graph. Since Hamiltonian paths visit each node once, only strings with as masyagdge
there are nodes in the graph are feasible Hamiltonian paths. All other stridgscarded.
Cycles in the graph need special treatment [Adleman, 1994]. The entire preessatthe

order of weeks.

The way the HAM-PATH oracle solves all instance of the problem is by salveng
problem for a fully connected graph and then discarding solutions at runtime based upon a
particular input graph. Paths from the fully connected graph that do not appear in the

problem instance are deleted. This idea is illustrated in figure 7.7.

71

Figure 7.7. The fully connected graph on the left is collapsed to a particular grdph on t
right by deleting edges that do not appear in the problem instance. The dashed lines
represent deleted edges. Conversely, the solid lines represent the reedgesghat have
been selected for the current problem (specifying all edges in the prolalpm)gr

Like the addition oracle, the HAM-PATH oracle uses random strings ofailes t
perform an assembly-time computation. The addition oracle formed all N-bitssums
assembly time. The HAM-PATH oracle forms all paths through the fully atederaph.
At runtime the HAM-PATH oracle selects the edges that exist in thentymmeblem
instance. After selecting the edges in the problem instance one or moreingrefarhents
within the HAM-PATH oracle responds (electrically) to indicate that miHanian path

exists through the graph if it has a solution.

The design of each HAM-PATH tile is somewhat more complicated than the tile
designs for the addition oracle because the tiles need to support removing nodesfrom a s
and responding to selected graph edges. Strings of tiles (computing shewitdmiut the
proper edges must disable themselves. For brevity, only the modular self-assembly

technique is considered here.
Algorithm

Details of how the tiles solve Hamiltonian graph problems are given latesin thi
section. The basic idea is that each tile randomly chooses a node from the fullyembnnect
graph and tests for the edge between that node and the node chosen by the next tile (above) in
the string at runtime. If the edge is in the current problem instance (a @ergjcaph less
connected than the fully-connected graph), the SR-latch is set and the output@Bable (
signal is passed upward. If a string has edges that are in the problem jrib&mdeat
string represents a valid Hamiltonian path since each node occurs only oncennghaf st

tiles. Each tile selects randomly from the remaining set of nodes aftiee @érlier tiles

72

have chosen their nodes. This means there cannot be any repeated nodes in the path chose

by a string.

The following example illustrates how a particular path is assembled bsih¢AM-

PATH tiles for a 4 node graph.

o
oN

Fully connected Less connected
4 node graph 4 node graph

Figure 7.8. The fully connected graph on the left is reduced to the graph on the right by
removing edges. The graph on the right represents an example graph.

Since a fully connected graph has all possible paths there is no question that it will
have a Hamiltonian path. The real question is if a graph that fally connected has a
Hamiltonian path. Therefore, the fully connected graph (represented by atllpsssngs
of the HAM-PATH tiles) must be reduced to a graph of interest. Edges that do not appear i
the instance graph (but that necessarily do appear in the fully connectednguasphbe
removed. This means that any path that uses an edge that has been removed from the fully

connected graph cannot be a valid path through the instance graph.

73

T 0:0:0:0

M s, C
C

- [OT070

3 | —F—— »S; A
A C

T [T 0 0

sl B I o »S, B
A B C

|] s oD
A B C D

Start

(All nodes)

Figure 7.9. An example string that represents a Hamiltonian path (D-Btiratigh the
example graph. This string is only one from the 4! (24) randomly assembled 8tehgs
represent all paths through the example graph (some of them are Hamiltohgah pat

Figure 7.9 illustrates a string pulled from the soup of all randomly assembled 4-t
strings in the oracle. Since all the edges represented by the string3dd;B\-C) are in the

example graph this string represents a Hamiltonian path. Figure 7.10tdsi$tra basic tile
schematic.

74

Input to step 1+1 OF;

4 4 # 4 S

Zy 2y, L, Ly, _ S

X X3 X)Xy S R Q

¢ 4+ 3 4

Output from step 1-1 reset OE,

Figure 7.10. Basic HAM-PATH tile schematic.

0:0 0: 0
T
* I > S,
A
B A
T;, '\\(‘) 070 T;, 000
T =y »s;, Ts, I > S,
A B A B
T B (% A | o
20NN 00 T 0 0
T2,4 [\I \1 > S, 22 [\1 > S,
A B C A B C
A B
0 0
T
2.3 I > S,
A B C
B C D A L\ u\
. 0 0
T” l\l\l\l ’SlTl’z 1\1\1 > S
A B c D A B C D
A B D A B ¢
K0 0
T T
13 [\l »S, L4 — S
A B C D A B (5] D

Figure 7.11. The four node tile set for the HAM-PATH oracle. A mixture of ek, is
used to assemble all possible 4-tile strings randomly in 4 stepgileB are used during the
first step, B+ tiles during the next, and so forth. Inputs 1,2,3, and 4 represent node values
that are propogated through the tiles as shown in figure 7.11.

Notice that the T1,4 tile at the bottom of the string in figure 7.9 could have been any
of the Ty« tiles. The string would be valid (with other tiles) so long as the respecties ed

75

exist in the example instance graph. The file could have also been any of the Tiles in

the same way, and so forth.

The relationship between the input vector X and output vector Z in figure 7.10
depends on the position of the tile in the path string because each tile must remove the node i
chooses from the set of nodes that can be chosen by subsequent tiles. Equation (7.4) defines

the relationship between a tile's input and its output and figure 7.11 illustrates goleetam

node tile set.
0,j<N-—i
n—i
| X, J<|—
Z,(i,n)= i j=N-i (7.4)
. n—i
X,,.Jz —

whereN is the number of nodes in the fully connected graph, the output and input
ordinal (from figure 7.8) 00 {0 ... N-1}, the tile position (or ste@)d {1 ... N}, and the tile
typen O {1 ... N}.

The S signal from figure 7.10 is the node selection signal that tells a tile that its
randomly chosen node is the end point of an edge in the problem instance. The logical AND
of this signal and the one from the tile aboS8e; | is used to store a bit that reflects the
existence of the edge in the graph. This bit allows the output enable signal to mropagat
upward through the string so that if all the tiles have valid edges, an output citbeitap
of the string (of circuitry) may indicate to the controller that a Ham#tompiath exists in the

graph.
Selecting edges in the instance graph

A circuit at the bottom of the stack of tiles provides graph edges to the aitiifes
above. This circuit, illustrated in figure 7.12, uses a serial ibfand a clock signal to shift
bits into an N-bit shift register, where N is the number of nodes in the fully codrgeieh.

The N-bit word shifted into the register must have a one as its left-most bigertthe

76

input to be connected (through pass-gates) to the bottom tile and later a cleapsigget! t

the register for the next edge.

Vi — L > reset
Input to step 1 “"| Shot
A A A
B

xﬁNNNN DDA

Clock tt t 1 ? clear

Figure 7.12. Serial control circuit that provides edge information to a strilg§tacked

above.

Theresetsignal is asserted at power-up long enough to reset all the RS-latches in the

string of tiles. This allows a sequential list of edges to be clocked intortakecsmtrol

circuit that selects each pair of tiles.

The circuits described above can be run at a clock rate of at least 400 MHz, as

discussed in chapter 9, which means that a single edge can be selected futiy the f

connected graph in less than 30 ns. (10-bit edge identifiers clocked in serially/ @&ge3 +

5 ns of propagation time per edge = 30 ns / edge.) Therefore, the time requirethBivthe

PATH oracle to solve any 15 node graph problem (with*eties) is less than 6.jS. The

material limitations described in chapter 3, and later in chapter 9, prevent thePAAM

oracle from being able to handle graphs with more than 15 nodes. An Intel Pentium 4, wit

an estimated sustained path evaluation rate of 5.378 patlds / second, can solve the worst-

case 15 node Hamiltonian path problem in about 40 minutes. That is, the HAM-PATH
oracle is 3.5 x 19(350,000,000) times faster than the Intel Pentium 4 with worst-case 15

node Hamiltonian path problems.

Comparing the performance of the HAM-PATH oracle to a comparable

supercomputer, the NEC Earth Simulator (ES), we find that the ES can penfestirmated

6.56 x 107 paths / second or a complete problem in ~200 ms. This means that the HAM-

77

PATH oracle is ~40,000 times faster than the NEC Earth Simulator with vemsti® node

Hamiltonian path problems.

The HAM-PATH oracle performance can be degraded by a factor of 40,000 and still
match the ES performance. Since the power consumed by CMOS circuitry ipealdy |
with clock frequency the slower DAMP clock rate of 10 kHz would consume only 88 W of
power compared to 12.8 MW for the ES. (The HAM-PATH oracle consumes ~15 mW while
idle.)

78

Chapter 8. The decoupled array multi-processor (DAMP)

Architecture of practical value

En masse, simple processing elements can perform incredible computaatsal fe
Consider multi-bit distributed computing projects like "SETI @ home" and theétUnit
Devices Cancer Project” that use massive parallelism to accomplishcenpeuter scale
tasks with idle desktop computer processing cycles. The early limitatiorsetf a
assembling realization technology will require small circuitry. Sibgleserial processing
elements are well suited to such limitations. They require less ciranidiyave simple

interfacing requirements.

The tradeoff between assembly-time and runtime complexity has at one end the
oracle, described in chapter 4, and at the other end traditional sequential and parallel
machines. The oracle has nearly no runtime complexity because its computation is
performed during the assembly process. This limits the oracle to solve aoel@aclass of
problem. Greater flexibility comes by introducing more runtime capiaiilibto the
machine design. The topic of this chapter is a particular machine desigrotiteahend of
the spectrum from the oracle. The decoupled array multi-processor (DAMR)ysmpulich
greater runtime computation to achieve greater problem flexibility tteoracle. In this
sense, the DAMP is more practical because it has broader applicabilitathaffset the

cost of developing the self-assembly techniques required to build the machine.

The DAMP is similar to traditional single-instruction multiple-data (B)lMnachines
with two important differences: no inter-processor communication, and many more
processors. The most significant difference is the lack of any communicatibwvaina
between processors. The large machines found in supercomputing centers todaghhave hi
bandwidth interconnections between processors. Unlike these modern machines, the

processors in the decoupled array multi-processor have no way to communicatectvith e

other except through a shared control unit. This limits the decoupled array mulgsmote

"embarrassingly parallel” problems.

The magnitude of the number of processors in each machine type is also dramatically
different. Whereas most machines typically have less than 100,000 processors, the
decoupled array multi-processor has on the orderGfit6cessors (at least seven orders of
magnitude larger than in conventional SIMD designs.) The complexity of any individua
processor is greatly diminished with respect to the processors used in Sidhihesa

For comparison, an Intel Pentium 4 (P4) has ~55¢raBsistors while a single
DAMP processor has ~1600 transistors. That is, the P4 has the equivalent of 34,375 DAMP
processors worth of transistors. The entire DAMP has ~1.7%tra@sistors, or the
equivalent of ~32,000,000 Intel Pentium 4 processors. If a single P4 (and its accompanyin
hardware) occupies a 0.08 rolume, the number of P4s that are equivalent to the entire
DAMP (12 n? volume) would completely occupy 2.5 x°1@° or a square room ~3,300 feet

on a side with a 6-foot high ceiling.

The following sections describe in detail the architecture, implementation, and the
first-level realization of the decoupled array multi-processor. Thedagbs of this chapter
deals with design / yield tradeoffs that are important to consider in lightitef fhaterial

budgets.

8.1 Architectural description of the machine

The basic structure of the DAMP is illustrated in figure 8.1. A node controller sends
control signals to each processor node. The processor node transmits thes¢osegcdl
processor under its control through two signaling electrodes.

80

Node 228 processors / node

Controller

\

Control
network

2

=
et

Y o s " L —— C—

Ln—'r‘\—‘r‘n—‘\—-‘\—'
L,‘_.,‘_.,‘_.,‘_.,‘_.‘_..‘_.
L,!_.,‘_.,‘_.,‘_.,‘_.‘_..‘_.

4

-

96 nodes

E

Figure 8.1. The node controller and processor node arrangement.

A single instruction stream is broadcast to all processors in a node and easkgroce
conditionally executes the instructions depending on the value of the wait-statuBigure
8.2 illustrates the basic programming model for a DAMP processor. The moisesdit
serial machine with a 16-bit accumulator and five 16-bit general-purpose registee
accumulator, RO, and R1 have the unique ability to load a random constant that is unique to
each processor. The random constant is determined at assembly time asddesttrée
realization. Itis used as an index or a random seed for placement in the problem spac
Otherwise, there is no way to differentiate between processors.

81

! ! ! v v !
ACC* RO* R1*° R2 R3 R4
;ﬁ /4 ;%:: % ///_j ;//:

Status bits

- BJ[c|IpJR]s]w]

Figure 8.2. Processor diagram. ACC, RO, and R1 can be loaded with random bits.

In this bit-serial design, the least significant bit is the first bit tti@pate in each
operation; the bit at the bottom of a register in figure 8.2. The accumulator can shift
independently from the RO to R4 registers because of separate shift controlagenabl
relative data shifts. The operational unit is a full-adder that can provide thighearry out
or sum signal to the accumulator input. Each register RO through R4 can receiviheithe
own lowest significant bit or the accumulator output as input during a shift.

The six status bits can be used to implement a wide range of operations &edescri
in the later portion of this section. The definition and operation of each status b#dsris
table 8.1.

82

Status Bit Description
Loads the current operand bit from RO - R4
Loads the current carry out from the current operation
Detects a one on the output of the current operation
"Ringer" control set or cleared by special instruction. The control
transceiver on the processor node can detect when any ofjthe
processors within the node have setR =1
Loads with the output from the current operation
Set according to the value of another status bit (B, C, D, or S), or
cleared. The machine ignores instructions when W = 1 with|the
exception that the RESUME instruction can clear W (W = 0) and
start normal instruction execution.
Table 8.1. Description of the status bits.

)00 W@

Slwn

The random constants mentioned earlier are a peculiar feature of thiscauchiteat
enables it to tackle large combinatorial problems. The constant replacescéssprandex
commonly used by SIMD machines. In a manner similar to DNA-computing [Adleman,
1994] the random constants can be cast as instances of problem variables. The input space
for the DAMP considered here is illustrated in figure 8.3.

Assembly-time . Runtime

Figure 8.3. The input space of the DAMP.

The Z° processors in the DAMP suffice to evaluate any 40 bit input space with only
one run of a program. A program instructs each processor to manipulatartdemrinputs
to produce an answer to a problem. If the answer is satisfactory, e.g. a minimdawor be
some threshold, the processor can alert the node controller and a binary seatttdit over
node's input space can begin. The search is complete when all bits of the random input used
by the winning processor are determined by reading them one bit at a tinseisediin
chapter 6 and section 11.1.

83

If the input space of a problem cannot be fit into 40 bits, additional bits computed at
runtime may be used to augment them. By using a counter as the least sigpitiscaf the
input space, the 40 random bits can be treated as the most significant bits of the input space
Each time the program that calculates an answer from the input paraswaterthe counter
is incremented. This will allow the DAMP to uniformly cover the larger input space

provided that the assembly-time random bits uniformly cover the 40-bit input space.

The low per-element yield of the fabrication technology used to build the DAMP
demands that each processor be simple. This drives the use of bit serial precesaors
simple controller. There is simply not enough room to devote circuitry to storarg-mi
code. As a consequence, all instructions are software encoded that is, zgdthgsin
assembler. This makes the DAMP rely heavily on assembler design.

Since there are only three defined low-level instructions (SETCREG, SE3 Sid
CYCLE), the assembler can arbitrarily choose to implement high-levaldtisns that
appear to be useful. The remainder of this section is devoted to the instructiohiset tha
implemented by the assembler described in chapter 9. These instructierchasen
because they have been useful in diagnosing the logic implementation of the DAMP and
have use in the programs described in chapter 11. In each of the instruction descriptions
below, RX represents any register RO to R4. In general, C/C++ style @mpeeare used to

describe the operation of each instruction.

ADD(RX)
Cycles 159
Operation| ACC =ACC + RX

Description: This instruction adds the 16-bit value in the accumulator to the 16-bit
value stored in a register and replaces the accumulator value with the Tésuttarry status
bit contains the value of the carry out from the operation. The carry status ket isefege

the operation begins.

84

ADDC(RX)

Cycles 131
Operation| ACC = ACC + RX +(C

Description: ADDC behaves similarly to ADD with the exception that the current

carry bit is also included in the sum. This can be used to implement 2's complement
subtraction as follows:

// Implement ACC = RX - ACC
NOT

SETC

ADDC (RX)

The ADDC instruction can also be used to implement multi-word arithmetic beyond
16 bits.

ADDI(constant)

Cycles 170
Operation ACC = ACC + 16-hit constant

Description:ADDI simply adds a 16-bit literal to the accumulator. The carry bit is

cleared before the operation begins.

ANDI(constant)

Cycles 136
Operation| ACC = ACC & 16-bit constant

Description: This instruction performs a bit-wise AND operation between the 16-bit

literal and the contents of the accumulator. The result is stored back intouhsu&tor.

85

ASR(N)
Cycles 116 + N
Operation| ACC =ACC +?

Description: ASR implements an arithmetic shift right. That is, the accumulator is
shifted to the right (toward the least significant end) and the current sigrusid to pad the

upper portion.

CLEARB
Cycles 77
Operation B=0

Description: Clears the 'B' status bit. Thatis, 'B'= 0.

CLEARC
Cycles 55
Operation C=0

Description: Clears the 'C' status bit. That is, 'C' = 0.

CLEARD
Cycles 77
Operation D=0

Description: Clears the 'D' status bit. Thatis, 'D' = 0.

86

CMP

Cycles 131
Operation D =!(ACC ==0)

Description: This instruction compares the accumulator with zero and if they are the
same clears the 'D’' status bit (D = 0). If the accumulator is not equabidhee'D’ status bit
is set (D =1).

CMPI(constant)

Cycles 307
Operation| D =!(ACC == 16-bit constant

Description: Similar to the CMP instruction, CMPI clears the 'D' status bit if the
accumulator is equal to the 16-bit literal. If the accumulator is not equal to thielitéral,
the 'D’ status bit is set (D = 1).

CMPI8(constant)

Cycles 211
Operation D = !(OxFF & ACC == 8-bit constant); CSR(8)

Description: This instruction compares the lower 8-bits of the accumulator with an
8-bit literal and clears the 'D’ status bit if they are equal. If the [&dydl and the lower 8-
bits of the accumulator are not equal, the 'D' status bit is set (D = 1). Thistios has the

side-effect of circularly shifting the accumulator by 8-bits (SB&M)).

87

COPY(RX)

Cycles 92
Operation ACC = RX

Description: The COPY instruction is used to copy the contents of a register into the

accumulator.

COPYH(RX)
Cycles 215
Operation| ACC = (0xFF00 & RX) + 256

Description: COPYH will copy the upper 8-bits of the specified register into the
lower 8-bits of the accumulator padding the upper 8-bits of the accumulator with the

register's sign bit.

COPYL(RX)
Cycles 154
Operation ACC = RX + 256

Description: Similar to the COPYH instruction, COPYL copies the lower 8-bits from
a register into the accumulator. The upper 8-bits of the accumulator receiggigter's

sign bit.

COST(RX1, RX2)

Cycles 120
Operation| RX2 = ACC; ACC = RX1

Description: The COST ("Copy and Store") instruction merges two common

instructions into one because each can be made more efficient by using theotitests

88

signals. First, COST stores (see STORE) the contents of the accummia®KXR.
Secondly, COST copies (see COPY) the contents of RX1 into the accumulator.

CSR(N)
Cycles 88 +N

Operation S = ACC[O]
P ACC = (ACC >> N) | (ACC << (16 - N))

Description: CSR implements a circular right-shift of the accumulator by N bits.

CYCLE(N)

Cycles N
Operation -

Description: CYCLE is used to shift bits and execute operations setup by the
SETCREG and SETSREG instructions. This instruction can be used to synthesize
instructions not previously defined by the assembler. See the implementatitmileta

section 8.2 for more information.

DEC
Cycles 159
Operation ACC=ACC-1

Description: The DEC instruction decrements the accumulator by 1. If the contents
of the accumulator decrement past zero, the carry bit will be set and the atourfili¢d
with 1s.

89

GRAB(N)
Cycles 157
Operation S = ACC[N]

Description: This instruction is used to copy th& Kit from the accumulator into the

'S’ status-bit. This is useful in interpreting a value as a bit mask.

INC

Cycles 159
Operation ACC=ACC+1

Description: This instruction increments the accumulator. If the value of the

accumulator increments to zero (overflow), the carry bit will be set.

LOAD(constant)
Cycles 280
Operation| ACC = 16-bit constant

Description: The LOAD instruction is used to load a 16-bit constant into the

accumulator.

LSR(N)
Cycles 88+ N
. S =ACC|0
Operation ACC = ACC[>]> N

Description: LSR implements a logical right-shift of the accumulator by N bits. That
is, the contents of the accumulator are shifted toward the least significant Nraitby

Zeros are shifted into the upper N bits of the accumulator.

90

LSRC(N)
Cycles 66 + N
Operation| ACC = (ACC >>N) | (C' & (2" - 1))

Description: LSRC is similar to LSR with the exception that the logical right-shift
pulls the current carry bit into the upper N bits of the accumulator.

MCOPY (constant, RX)

Cycles 103
Operation| ACC = (ACC & !(16-bit constant)) | (16-bit constant & RX)

Description: The masked-copy instruction, MCOPY, uses a 16-bit literal to select
bits from a register to be copied into the accumulator. For example, MCOPY (0xGHFO, R
copies bits 4 - 11 from register R4 into bits 4 - 11 of the accumulator. The remaining bits in
the accumulator are left unchanged.

NOT
Cycles 171
Operation ACC = IACC

Description: This instruction stores the logical complement of the accumulator back

into the accumulator.

ORI(constant)

Cycles 202
Operation| ACC = ACC | 16-bit constar

4
—+

Description: ORI stores the bit-wise logical OR of a 16-bit literal and the

accumulator back into the accumulator.

91

RANDOM

Cycles 55
Operation| ACC =rand; RO =rand; R1 = rand,

Description: RANDOM loads three processor dependent 16-bit random values into
the accumulator, RO, and R1 registers. The number for each processor is detdrmined a

assembly time as described in chapter 9.

RESUME

Cycles 6
Operation ‘W' =0

Description: This instruction clears the "W’ status bit on all processors. RESUME

instructs any previously waiting processor to begin executing instructions.

RINGOFF
Cycles 11
Operation 'R'=0

Description:RINGOFF is used to turn off the output circuitry of the processor. Each
processor node can detect when the output circuitry of a processor is on, that iR'vwhe.
This instruction is used to turn that circuitry off, or to clear the 'R’ stat(R bit0). See

section 6.3 for further details.

92

RINGON

Cycles 11
Operation 'R'=1

Description: The RINGON instruction sets the 'R’ status bit (R = 1). This creates an
electrical condition that the node controller can detect, as described ansg8ti See
RINGOFF for more information.

SETGE, SETLT, SETNGE,

SETNLT

Cycles 55

Sets 'C' to the appropriate value so that
Operation| the corresponding WAIT instruction
will set'W' = 1.

Description: These instructions are helpful in restoring the wait status bit just before
a RESUME instruction. The suffix indicates which status bit is consulted beftng e
not setting the 'W' status bit. The GE, LT, NGE, and NLT suffixes meategtban-or-

equal, less-than, not greater-than-or-equal, and not less-than respectively.

A simple IF-THEN-ELSE clause can be implemented as follows:

// Implement IF-THEN-ELSE statement
CMPI(constant) // if(ACC >= constant) {
WAITNGE // A1l processors failing the condition WAIT...

...THEN-clause instructions...

SETGE // restore the status bit
RESUME // A1l processors RESUME execution...
WAITGE // A1l processors that had previously executed

// the THEN-clause WAIT...
// } else {

...ELSE-clause 1instructions...

RESUME // } // A1l processors RESUME execution...

93

Nested IF-THEN-ELSE statements can be implement in a similar maniergas
the corresponding SET* and WAIT* instructions are executed before and aftedaasd c
(or closing bracket.)

SETB
Cycles 77
Operation B'=1

Description: This instruction sets the 'B' status bit. Thatis, B = 1.

SETCREG(constant)
Cycles 6
Operation -

Description: This instruction is used to set the target control register that SETSREG
will eventually be used to fill. SETCREG, in conjunction with SETSREG and CYCGAIE, ¢

be used to implement instructions that have not been previously defined by the assemble

SETC
Cycles 55
Operation C'=1

Description: This instruction sets the 'C' status bit. That is, C = 1.

94

SETSREG(constant)

Cycles 5
Operation -

Description: SETSREG loads a constant into the control register pointed to by a
previous SETCREG instruction. See SETCREG and CYCLE for more information. See
also, section 8.2 and chapter 3.

STORE(RX)
Cycles 109
Operation RX =ACC

Description: The STORE instruction stores the contents of the accumulator in the

specified register.

STOREH(RX)
Cycles 171
Operation| RX = (RX & OxFF) | ((ACC & OxFF) << 8

Description: Similar to the COPYL and COPYH instructions, STOREH stores the
lower 8-bits of the accumulator in the upper 8-bits of the specified registedowaes-bits

of the register are preserved.

STOREL(RX)
Cycles 109
Operation| RX = (RX & OxFF00) | (ACC & OxFF

Description: The STOREL instruction stores the lower 8-bits of the accumulator in

the lower 8-bits of the specified register. The upper 8-bits of the registpreserved.

95

WAITB, WAITNB, WAITC,
WAITNC, WAITD, WAITND,
WAITS, WAITNS, WAITGE,

WAITNGE, WAITLT, WAITNLT

Cycles 12
Operation| Set'W' =1 if the status bit condition is true.

Description: These instructions set the 'W' status bit (W = 1) if the corresponding
status bit is set. The suffix indicates which status bit is consulted befang sethot setting
the 'W' status bit. The GE, LT, NGE, and NLT suffixes mean greater-thequai, less-
than, not greater-than-or-equal, and not less-than respectively. Thesesswifixcause the
'W' status bit to be set if a previous CMP or subtraction (see ADDC) gendrateahiition
implied by the suffix.

XOR(RX)
Cycles 148
Operation| ACC =ACC"RX

Description: This instruction stores the bit-wise exclusive-OR of the accumulator

and specified register back into the accumulator.

8.2 One implementation of the DAMP

The 2° processors in the DAMP are spread out evenly across 4,096 processor nodes,
2?8 processors per node. As described in chapter 6, the processors at each node am containe
within a processor substrate that is a thin wafer of processors either eshoietioth sides
to metallic electrodes or through a patterned silicon substrate. The outpittvailide
described in more detail and is simulated in chapter 9. As described below, eacloprocess

node is connected to a high-speed control network that is capable of distributimad contr

96

words at a rate high enough to keep up with the maximum processor clock rate. The
processor node requires sufficient packet buffering capability to deal avittotnetwork

traffic.

A central node controller distributes signaling commands to the array of ooces
nodes. The node controller is responsible for splitting up a problem space among the
processor nodes and collecting the results. Chapter 9 discusses the simulb&arrotbitry
for this and estimates of the maximum clock rate. At a clock rate of 400 MHz and an
average of 158 bits per integer instruction, the node controller must be able to distribute
about 3 Mbps to each processor node. The specific topology of the control network will
determine how fast the network interface on the node controller needs to be. Evhn if eac
processor node is connected to a single interface on the node controller the tothptiiroug

requirement will be less than 4,096 x 3 Mbps, or about 12 Gbps to the processor nodes.

The DAMP processors are implemented using complementary metal-oxide
semiconductor (CMOS) logic circuitry as described in chapter 6. This crba@baves
similarly to conventional CMOS circuitry and can be treated as such in thisnraptation.
The performance of the DAMP will be evaluated using a power budget similat tuf tha
NEC Earth Simulator and IBM BlueGene /L, or ~3.5 MW. This makes the powertalloca

about 850 W per processor node.

Each DAMP processor element has a register file of five 16-bit eegist register
control unit (RCU), an arithmetic-logic unit (ALU), a control state macf@®M), control
registers, and a wait & trigger controller (WTC). The four-gate path fhencontrol register
to the reset signal in the WTC is the longest logic path through the processariterdfore
the critical timing path. The following describes each of these units and thértmgi which

they are built.

8.2.1 Register file, register control unit (RCU), and arithmetic-logic unit (ALU)

Figure 8.4 illustrates the logic and arrangement of the register @lg, Rnd ALU.
The register file is composed of six 17-bit shift registers. Even thoughegister has 17
bits, the last bit is consumed during a shift operation leaving an effective 16 bitgjigezrt

One of the six shift registers is controlled independently from the other fivefiv€he

97

dependent registers are numbered RO through R4. The one independent registerliecalled t
accumulator (ACC). The accumulator, RO, and R1 can each be loaded with a random number
that was encoded into their circuitry during assembly. This circuitryrideddn chapter 9,

requires the register values to be zero before the random bits can be loaded.

The number of bits per register can be easily increased as the progesiging
improved since the entire machine is serial. In particular, the fluidiassémbly yield
must be improved so that more modules, as described in chapter 3 and later in section 6.3,
can be used per processor. The extra modules can then be devoted to register bits without
redesigning the remainder of the processor. This will, however, increase thre powe

consumed per instruction and the simulations in chapter 9 will need to be re-done.

The RCU is used to control the source and destination of bits for the RO-R4 registers
and the accumulator. The multiplexers of the RCU coordinates swaps, copies, and bit
interleaving between registers. Additionally, the RCU selects operantiefat.ty and

controls what signals the accumulator will use as input.

98

v v v v v)
A : RO R1 R2 R3 R4
s Register s o e B
— File — — — — 1 | ~
LDAD™
SA SR
— AS —+R0O.8 *R1.8 R2.S R3.8 :R4.8

RCU,

ALU) Q
D F/F ? FF
A J Clk g5 Clk
s Full |
) —»
t - c, Adder ¢, [
D F/F ge g Clk
Clk - _|
] l = Py '
EB B RC &C ECESD 3 C FD D

Figure 8.4. Implementation of the register file, register control unit (Retdl arithmetic &
logic unit (ALU). "R*" and "S*" are asynchronous reset and set control sigesisectively.
The AC (2-bits), RCO - RC4 (1-bit each), LC1 (2-bits), and LC2 (2-bits) mutepseare

each set by control bits from the control registers.

8.2.2 Control state machine (CSM)

Figures 8.5 and 8.6 illustrate the control flow and logic of the CSM. The inputs to the
CSM are the immediate bit (X) and clock signal (CLK) taken from the conticleties that
sandwich the processor. The CSM is the starting point for all asynchronous anadisgushr

signals in the processor.

99

| ETm ETc ETs

start (100) L' | 'J
State (Z1 7273)| Key
1, 0

N (000)

1

\ 4 \
—> S (001) 0 —> C(010) 0

1 1

Figure 8.5. The serial control diagram for the control state machine. An inpuOhma¥yes
along the side-arrow while an input bit of 1 moves along the bottom-arrow. "N" is the
neutral-state, "S" is the setup-state, and "C" is the control-state.

The state machine will be in the 'start' state upon reset. An input sequenceuis'11'
the machine into the 'S’, or setup state, and a sequence of '10' puts the maxcthieétor
control state. The 'S' and 'C' states are sinks that can only be moved fromeséh a
(RESET_SO0S1.) The four states of the CSM can be encoded with two bits (SO and S1.) The
reset signal is generated after a setup register or control regsteedrafilled with data.
This is described in more detail below.

100

LD Qb s0 |
" F/’F - ETm
! R*/\ —_ | —
— l_‘_Do— ETs
D Qf— s1 —

F/F AI—_DD_ ETc
: R*/l\ - 1s1 |
qn_l

X RESET S081 CLK

Figure 8.6. The control state machine (CSM) that implements the statendiagna figure
8.5. "R*"is an asynchronous reset control signal.

8.2.3 Control registers

Figure 8.7 illustrates the structure and logic used by the control regiStezse
registers control the multiplexers and decoders found throughout the processexarfple,
LC1la, and LC1b are the two control bits that set the LC1 multiplexer. When the word
(LC1a, LC1b) is 00, LC1 selects its top-most input, RO. Table 8.2 lists the various

multiplexer control words and input selections.

Multiplexer | Control Signal Word | nputs Selected by Control Word
AC ACa, ACb 00: ACC, 01: LC1, 10: Co, 11: S
LC1 LCla, LC1b 00: RO, 01: LC2, 10: LC2b, 11: ILC1
LC2 LC2a, LC2b 00: R1, 01: R2, 10: R3, 11: R4
WC1 WC1la, WC1b 00: B, 01: C,10: D, 11: S
WC2 WC2 0: WC1, 1: 'WC1

RCO - RC4 RCx 0: Rx, 1: ACC

Table 8.2. Multiplexer selections. * - the LC1 multiplexer is used to signal @ thiet
controller. See chapter 6 for details.

Each control signal has been grouped into a control register by function. For
example, control register S1 selects the input bit for the accumulator. @htemsmon

operation and should be efficient, therefore no other signals are grouped into the S1 control

101

register. In order to minimize circuitry, each control register haseatitet circuit attached
to its right-most bit. This detection circuitry, found in the WTC, triggers a ceselition
after the contents of the control register have been loaded. For example albedoteol
register is written to a clear signal is generated by the WTC. Tassignal
asynchronously sets the contents of the target control register to zero. Neahttbkeveord
for the register is serially clocked into the register with a one as=ifig.pThe prefix bit
signals to the detection circuit that the word has been clocked in succesgihigting out
at the right end of the register. This simple scheme replaces the needdotex or other

state machine to keep track of the progress of control word loading.

102

MM ACa AChH 51
—i QP Q O QD QD QD QD Q
F;’FTF#F—‘ (FETF;‘FTFETFETFE—‘
Fal P s
T)|)|)| i
¥ £7 | ¥ ¥ ¥ ¥ £7 |
MM LCla LClb &2 VI ESA ESR EESD EEB EEC s7
D QD @ —P Qi QD Q
|7F;’FTF3F—‘ FETFFTF;‘F—‘
4 1 1
v v | v v v |
MM LCZa LCZ 83 INMM cl c2 C3 Tc
—P QP O QP QD Q
FJFTFE TF;‘FTFJ’FTFE—‘
Fay FaX
T T 1 1 1
¥y Yy Ty Y Ty |
MM RCO RCI RC2 RC3 RC4 54
—P Q¢ oD QD Q
FJFTFJ'F TF;‘FTFJ‘F—‘
rat Fat
1 1 1
¥y oy T w7 |
MM ERC ESC ERD EL S5
—P QP Qb Q
FF T FF T FF —‘
ay
1 1
¥ ¥ £7 I
MM WCla WClh WC2 S6

Figure 8.7. The control registers. Each shift register is triggeredibgué rom the wait &
trigger control unit (WTC). The input to each register is taken from the csedat input
bit (IMM).

8.2.4 Wait & trigger controller (WTC)

Figure 8.8 illustrates the logic and structure of the WTC. The WTC is jigmar
responsible for generating control register shift signals, regisestfift signals, the reset
signal, and the wait signal. The WTC also takes input from the CSM to indicatelvehen t
selected control register should be cleared.

103

Decoder (ETc & IMM & i}
sl TESIPE IC1&IC2&C3 R Q> W
T Z——— g &RESET_SOSI)
72 52 W
s hzn Ip————— 353 W2 I—O(i
5 i i RESET 5081
Zs—— 55 T)
e a6 :
Bf——3 l‘l
’_SJUS|1 SIZ_‘
cl C1 ©3 %
B C D &
IESA
ETm & RESET !Tm1D°~ SA DF;’FQ+ VM
|
CLK & W D 1

X —
[ACH RESET_SO0SI —_jpu
IESR. 51
— ETc | !Tml_DO* =R ok —
ITe LCib
CLK !EESD% 52
i ESD
i LCZb
1.8 IEEB 53
TRG : EB
m RC4
- IFEC >4 —{ »——— RESET $0§1
ITs ITm EC
CLK '
IERC
Lt o ITm

EL
85
RC WC2
TRG =6
sC EEC
s7
ED 3
Te

Figure 8.8. Implementation of the wait & trigger controller (WTC).

IESC
ITm

IEL IERD
!me LOAD 1

YYY VY

The instructions implemented by the assembler described in section 8.1 require
specific bit-serial signals to instruct the processor to perform tlem gigeration. The

implementation details for these instructions can be found in appendix C.
Physical housing

The size of the physical enclosure for a processor node depends on the yigltbgestim
made in chapter 3 and further expanded in section 8.4. These yield estimates thdicae
can expect 16% of the total number of processors in a node, or &bprac&ssors, to work
properly (7 x 167 processors / 4096 nodes = 1.7 X fifbcessors per node.) Since the non-
functional processors take up space on the substrate, the number of processors alibeng the si

104

of a square substrate is the square root of the total number of processors per node, or about

41,231 processors.

s .oooonou
R R R [l R
etetetetatatetst ettt

o

kot o0
E 2
N
oo
e

AR
e
e

o

2=
B,

Gk
(s

e
e
WL

ez
o
b9
5
i
o

B
R
%
S
o8
fo
o
% X
o3
et

"
<
%
S

M IO
o)

k-

S
te et
K
I
L
e
oo

e
o
5

.
o
A, B i ol

o
25
ot
o
35

fone
o5
o
o
o5
%
ot

b
o*s
&
%%
%
biss
0%

If a 0.5 um thick

metallic electrode is used as the top electrode and the substrate is 5 mrhéhiotglt
is about 5.125 mm.

.10,
105

P

X

Figure 8.9. Processor spacing pitch on the substrate.
inlfigure 8

The processor pitchpand Y, is equal to 5 um, illustrated in figure 8.9, yielding a
processor substrate width,\vin figure 8.10, of approximately 205 mm square (7.4” x 7.4".)

This pitch can be taken from the nanorod layout described in section 8.3.

processor substrate thickness,

$ o,

< >
W

n

Figure 8.10. Processor substrate dimensions.

The dimensions of the processor substrate directly impact the size of the processor
node housing, illustrated in figure 8.11. If we use a 20% margin on each side of the
processor substrate ¥ 246 mm, or about 9". The space above the processor substrate will
need to be large enough to accommodate the bubbles created by a boiling pool of coolant.
Without experimental data on the size of pool boiling bubble sizes, it is difficult to know how
large this space should be. However, this spacing must be determined to estisiaezdhe
the DAMP. As a conservative estimate, the spacing will be taken as 5 timeglkheds of

the processor substrate, or about 25 mm (~1").

106

Heated coolant
Control

Network

+4 Control lines
2 Control ‘\\
Transceiver \\
| LY

Hg £ Processor substrate

% Coolant
% Bypass \ . .

v H . Electrical & physical
= \\ .

: |4 side-mounts
Transceiver
Chilled
£ coolant
h 4

A

Figure 8.11. Processor node housing and cooling jacket. The housing has a stacking height
Hs, housing height, H and a housing width, W

The stacking height, &from figure 8.11, can be estimated by calculating the distance
between processor node housings. Since the housing is 25 mm thick, the minimum pitch is
also 25 mm, or about 1". Again, adding a 20% margin on the spacing makes for a
pessimistic housing pitch of 30 mm, or about 1.1". The housing is held at a 45° angle to
allow convection and pool boiling to remove heat. The housing heighis kherefore W+
sin(45°) = 174 mm, or about 6.3".

The final dimension to be determined for the housing jis ®the housing width.
This parameter is needed to determine how closely each node stack can be packed. To
determine this parameter, the size of the control transceiver must bet@stimbe control
circuitry can extend along the 9" width of the node housing (into the paper in figure 8.11)

107

and be at least as deep as the node stacking height, or 1". A conservative et8infate
the control circuitry extension makes the housing width parameieabdut 3" longer than
Hu, or 7.3", given the 45° angle of the housing.

The volume of a DAMP rack is the volume of a single stacked-processor node
multiplied by the number of nodes per rack. If a rack is 6' tall, then it can house about 72
nodes. Each rack has a footprint of about 8" x 9" without considering the coolant delivery
and return lines. Since each processor nodefigsdtessors and each rack has 72 nodes, a
full DAMP (2*° processors), requires about 57 racks. These racks can fit into a 6' x 6'
footprint. Again, these estimates do not take into account the coolant delivery and return

lines.

8.3 Nanorod layout

This section examines the 3D layout of several commonly occurring ciragtses
in the DAMP. The complete layout of the DAMP is left as future work but would include
each of these component circuit structures. The circuit schematics anati@mrdsults for
these structures can be found in chapter 9. The most important goal of producing these
layouts was to determine a first draft footprint and size for each circuittdatirayield
estimates could be based on actual designs ratheeshiaratef circuit designs. As with
conventional VLSI, signal routing was the biggest challenge to fitting aicwahin the
standard footprint. This footprint was chosen because each required circuit couddtfiata
it was small enough to be plausibly fabricated. The footprint shape was also chosen to hav
neither rotational nor reflectional symmetry, thus ensuring proper unambiguktenibdkey
self-assembly.

The illustration in figure 8.12 is the layout footprint. Each circuit was designed t
have a projection that fits within the layout footprint. The two full sides of the footprint

measure approximately 4 um and 3.5 pm.

108

0 NN IN

NN
CNGN

'ih
0N

‘e

[}

=1 —

Figure 8.12. Layout footprint with row and column indicators.

Some of the layouts illustrated later in this section does not have the exactaiutline
the footprint. This is because many of the basic circuits do not occupy the @otjment
and can be put side-by-side with other circuitry. These primitive cirautde pieced
together to fit into the full DAMP layout footprint. All layout designs, except églid3, do

not show the insulating rods.

109

Insulating Rod

Conducting Rod

GND

Output

P-type FET N-type FET

Figure 8.13. Nanorod layout of an inverter. Insulating and conducting rods are used for
support. Circuit diagram in figure 9.11.

Figure 8.14. A view of the nanorod layout for a NAND gate. Circuit diagram in 9.12.

110

Figure 8.16. One-bit decoder. Circuit diagram in figure 9.14.

111

Figure 8.17. The ringer circuit. A two input multiplexer, with an inverter on its quiptied
back to an input. Selecting that input will create an externally detectaillatmgrpower
signature. Circuit diagram in figure 9.18.

Figure 8.18. A view of the nanorod layout for a full adder. Circuit diagram in f@ydfe

112

Figure 8.19. View of the nanorod layout for a single bit of the six-register©@ak of the
six D-latches is clocked independently (for the accumulator) from the otkdryfiusing
SAO0/SAi instead of SRo/SRi. Only one of the six pairs of In and Out signals eliedalall
are present. Some GND signal labels have also been omitted. Circuit diadigumne 9.17.

The register cell from figure 8.19 uses randomized rod assembly eventsécacrea
random constant that can be loaded into three of the six registers. The 'Load’ siggh&bis
a load circuit by a single rod for each of the three random-enabled registaesrod is
conducting, the particular bit will be raised to a one. If the rod is insulating, tih@ifzarbit
will remain unchanged. A mixture of insulating rods and conducting rods can be used during
that step in the assembly to uniformly distribute random bits since each rod hacha&@%
of being either insulating or conducting. The load procedure requires the imitiahts of

the register to be zero since the load circuitry cannot set bits to zero.

This mechanism of introducing random bits into the register file should produce a
uniform distribution of numbers since each bit has a 50% chance of being either aone or
zero. Since three of the six registers (each with 16 bits) can be loaded rand®mly, 2
processors are required to cover the entire 48-bit input space. The DAMP ha€only 2
processors, which means that the 48 random bits must be mapped to 40 bits for the input

space to be fully covered.

113

If the distribution of bits within the registers is uniform, then the probabilitysha
given log(M)-bit value does not occur in any processor is (M-1/ M). For example, if M=4
and we pick a value randomly and compare it against any other value it is deletbas a
3/4, or 75%, chance that the two witht be the same. The probabilityradt choosing a
particular value after two trials is (3/4)r 56%. This can be generalized as follows. The
probability of not choosing a given value from M distinct values after N taglglil / M)".
In the case of M=% (28-bit values and N=2.68 x 4,ahe processor count per node from
chapter 8), the probability of not choosing a given 28-bit value is 36.7%. That is, roughly 1
in 3 processor nodes will have at least one missing 28-bit value. However, since the
processors have 48-bit random values, the smaller 28-bit szad®e covered if an
appropriate hash function is used to convert the 48-bit number to a 28-bit number. This may
be as simple as incrementing each random number and repeating the calar@tamh f
known "gap" in the input space. The determination of the hash function and procedure to

guarantee coverage is a topic for future work.

Each of the circuits illustrated in figures 8.13 to 8.19 can fit into the layout footprint
illustrated in figure 8.12. The yield and tolerance analyses provided in chaptemtiaad i
next section make it clear that feasible device structures must haveHawabbut 108
junctions. This is possible if the full DAMP circuit layout is "sliced" into moslwgh the
shape of the layout footprint and are only one rod "thick". Such modules will have 108

junctions arrayed in a fashion similar to the illustration in figure 8.20.

114

Figure 8.20. A thinly sliced module.

The estimated number of sliced modules required to form a full DAMP processor is
250. This comes from the following calculations that are derived from the layavibees
earlier: 17 x 5 register cell slices, 8 x 6 D-latch slices, 6 x 4 MUX2 slice$, @ecoder
slices, 1 x 5 full adder slices, 5 x 5 control state machine slices, and an ekg20f4téor

routing slices (48) = 250 slices.

8.4 Design & yield tradeoffs

Research has shown that an 89% to 100% yield can be achieved by the fluidic self-
assembly of micron-scale plate structures onto patterned surfaces withiesrjClark,
2002; Srinivasan, 2001]. The possibility of re-flow chambers capable of recyditegiah

that is not properly assembled makes this method of surface assembly saii@ative.

A re-flow step is a fluidic "flushing” of a surface in the hopes of recoveringriah
that did not properly assemble. Multiple re-flow steps can be used to increasestnéaoe
assembly yield as long as material is successfully removed fromrfaeesand placed back
into suspension. The re-flow procedure is only productive if properly assembledrssuc

remain untouched. The new re-cycled suspension is then either augmented with new

115

material or simply re-applied to the surface for self-assembly. Hydiophifacé
treatments have been successful in making the surface nibbilitpnoscale particles very
high [Martin, 2002]. This raises the prospect of the possible development of high efficienc

re-flow methods.

The relationship between the net yield of the surface assembly and the number of re

flow steps required can be derived as follows:
B, =Q [(1_YFSA) (8.1)

Gy, = Q[Yesa (8.2)

Where G is the number of modules which successfully assemble onto the surface
initially, B is the number of modules which fail to assemble initialhsaYs the fluidic self-
assembly yield, or the fraction of modules that assemble onto the surfacdyp@mtQ is

the starting quantity of modules (an integer).

Let Ygre be the re-flow yield, or the fraction of unsucessfully assembled modules that
can be recovered. After the initial step, a re-flow step can be used to recoeeof the
modules counted ingand re-apply it to the surface such that we have:

B, = By [Yge [(1_YFSA) (8.3)
G, = Yre Yesa [By + Gy (8.4)

Equation (8.3) holds because we have defined the re-flow step as the step tleat takes
fraction, Yrg, Of all previously mis-assembled material and attempts to reassembletshe pa
in it onto the surface with yieldpéa. Equation (8.4) is the accumulation of the "good"

modules from the initial step,ozand the newly assembled modules from the re-flow step.

8 A hydrophilic surface is one that "likes"énactions with water. The contact angle betweeretlge of a

water droplet and the surface is used to measardedgree of this interaction. Small contact anggesesent a
hydrophilic interaction, large contact angles repre hydrphobicinteractions. For example, a water droplet
on clean glass will make a small contact angle igphilic), while a droplet on common plastics wilbke a
large contact angle (hydrophobic.)

® surface mobility is the ability of a parti¢teslide along a surface without sticking. THetthe particle
does not bind easily to the surface even thouglwvtbeare close together.

116

This can continue as long as Bi, where i indicates the current step, is thraatg
module. Accordingly we have equations (8.5) and (8.6), and their generalizations in
equations (8.7) and (8.8).

B, =B, [Yge [(1_YFSA) (8.5)
G, =Yg [Yesu[B, + G (8.6)
B =By [Yee [(1_YFSA) (8.7)
G =Yee esa (B + G (8.8)

The generalized equations (8.7) and (8.8) are recurrence relations that cdurckd re
to equations (8.9) and (8.10), respectively.

B =Q wléF [ql_YFSA)Hl (8.9)

i
— ' j
G =QNesa DZYRJF [Ql_YFSA) (8.10)
j=0
Noting that the summation,
i
S=> a' b’
j=0
can be written in closed-form as,

_ ai+1 [ﬂ)i+l -1
alb-1

we can let a=¥r and b=(1-¥sa) and reduce equation (8.10) to the following:

G = Q wFSA Fiz;l |:q:l-_YFSA)iJrl _1)
| Yre [Ql - YFSA) -1 (811

117

If we let Q = 1.0, then (becomes the total surface assembled yield after i re-flow
steps, or ¥;. Rearranging (8.11) to solve for i, or the number of re-flow steps needed to
obtain a given ¥, produces (8.12).

Y.
log YTI |:qYRF [ﬂl— YFSA) - 1) +1

i = FSA
|09(YRF [Ql - YFSA)) (6.12)
Equation (8.12) is constrained by the following inequality:
Y,
l EGYRF [Ql— YFSA) - 1) +1>0 (8.13)
FSA

Rearranging (8.13) we find,

< Yesa
1= Yee [Ql - YFSA) (8.19)

YT

Equation (8.14) states that regardless of how many re-flow steps, thereitg@ lim
the final surface assembly yield. This is, of course, a reasonable resnltitat Yzris less
than 1.0, or that the re-flow efficiency is less than perfect, and that the flefdassembly

yield is also less than 1.0, also imperfect.

The hydrophilic surface treatments mentioned earlier have shown that ¢neate
99% of all deposited nanoparticle material can be kept from adsorbing to a tikadad s
surface, with each patrticle free to move on the surface [Martin, 2002]. If the klesg a
re-flow system are kept to less than 5%, then we can safely use anashtfat 0.94. The
previously mentioned fluidic self-assembly yield was between 89% and 100%, wtkek ma
for a conservative psa = 0.89. Using (8.14) and (8.12) we can calculate a maximum re-flow
yield, Y+, of 99.26% achievable in 5 re-flow steps.

The lithographic step involved in preparing the substrate, between module assembly
steps, may introduce an imperfect processing step, but since conventional photolithograph

can routinely align features on the scale of the nanorods considered here, it iy timdikel

118

this will reduce the yield. The annealing of metallized DNA junctions nsyraduce the
final yield. However, the ability to continue the metallization process themodular
assembly is finished and electrochemically "welding" the junctions togeidlezs this also

appear to be a negligible reduction in yield [Richter, 2001].

The designs from section 8.3 and chapter 6 can be implemented by stacking the
approximately 250 modules (each one is a slice of the total processor cirt@tpeistep
yield estimate derived earlier can be used to estimate the finalldgsgeld after 250 steps.
That is, approximately (0.99289, or 16% final yield. In order to maintain the number of
functioning processors in the final machin&’2rom the 7 x 1& possible processors (see
chapter 3), this yield requires about 0.99 times as much starting materiahatidnour

estimates.

119

120

Chapter 9. Simulation methods and results

The ring-gated field effect transistor (RG-FET) simulated henenigas in structure
to the surrounding-gate transistors (SGTs) that have been studied for more thateaadeca
high-density alternatives to planar transistors [Takato, 1988; Takato, 1992; Miyano, 1992;
Jang, 1998]. The RG-FET is novel because of the nature of its fabrication and placement
within a self-assembling device structure. The RG-FET can plausibly beanated into a
DNA-guided self-assembly process by chemically attaching differbidt irands to each

end of the rod and to the gate during the rod's formation.

The importance of low power digital circuitry to conventional devices is well known
and will become even greater as both transistor density and clock ragasecMolecular
scale electronic devices have orders of magnitude more gates and widrdheeguire either
ultra low power consumption gates or slow clock rates, and perhaps both. Thus, the need for

low power logic circuitry becomes an important issue to molecular scaleediasgn.

This chapter is devoted to the simulation and estimation of the power consumption of

the components used by the decoupled array multi-processor.

9.1 PISCES-IIb simulation of nanorods

The size of the RG-FET silicon rod we have considered (50 nm diameter, 500 nm
length) has been shown to be large enough to use classical drift-diffusion singflati
[Sano, 2002]. This makes the type of mixed-mode simulation (drift-diffusion withstansi
level simulation) less computationally intensive than more sophisticated metivetspeael
to handle smaller sized junctions accurately. Drift-diffusion simulatione penformed
using a Win32 port of PISCES-IIb [Pinto, 1988].

10 Drift-diffusion simulations model the motiaf electrons and holes through a semiconductdren t

presence of electric fields.

The geometry of the RG-FET is depicted in figure 9.1. Using cylindrical syipmet
PISCES-IIb was able to simulate the structure in 3D.

B N-type

I:| P-type

Gate

S10, layer
(10nm)

Figure 9.1. N-type RG-FET. The rod length is 500nm and its radius is 50nm. Channel
length is 150nm. The source/drain contacts are at the top or bottom of the rod. The gate
contact is a metal band around the rod. All contacts are pallagiyamS.0 eV.)

The doping profile used by PISCES-IIb is shown in figure 9.2. The substrate (a
silicon rod in this case) was doped to 1¥I®type (boron) atoms/chwith the ends doped
to 1x1G* n-type (phosphorous) atoms/tfor the n-type RG-FET. The p-type RG-FET was
doped to 1x1# n-type atoms/ciwith the ends doped to 1x%(-type atoms/cth Each
FET was doped using a Gaussian profile with n-type and p-type characternigths of
0.0475um and 0.061um respectively. Figure 9.2 is a plot of the dopant concentrations

inside a radial slice of the rod. The plot is revolved around the Y-axis to form the 3D rod.

122

0.5

0.4

0.3

Length (microns)

02

0.1

0 0.01 0.02
Radius (microns)

Figure 9.2. RG-FET doping profile along the 0.Q@5 radius of rod (not to scale). The gate
oxide layer (0.01@um) is on the right, the PNP or NPN layers (0.Qi% are on the left.

We performed a time independent simulation by applyingsdids across the device
(top to bottom) and a g¢/bias between the oxide side (right) and the bottom electrode. The
simulation model included Shockley-Read-Hall (SRH) recombination with contientra
dependent lifetimes as well as concentration and lateral field-dependentyndbditzmann
statistics were used throughout with an operating temperature of 300K. To captunethe
independent behavior of the RG-FET we swegtavid \js from 0.0v to +1.0v (-1.0v for the
PFET and 1.0v for the NFET). Each step was 0.5mV and 1mV steps glosmgo\s,
respectively, andyd recorded (current from top to bottom) to form the IV-curves in figures
9.3 and 9.4. The simulated transconductances of the n-type and p-type RG-FETseate plott

in figures 9.5 and 9.6 respectively.

123

Drain-to-source Current

Drain-to-source Current

2.5x10°°

T T T
— Ids(Vgs=1.00) e
——————— Ids(Vgs=0.90) —
——————— Ids(Vgs=0.80)
1ds(Vgs=0.75)
2.0x10°®
1.5x10°8 -
1.0x10°®
5.0x107
0.0x10°
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Drain-to-source Voltage
Figure 9.3. N-Type RG-FET IV curves.
0.0x10°
-2.0x10”
-4.0x107
-6.0x10°7 g
//
-8.0x1077 o et
-1.0x10°® Rt S -
-1.2x10°®
/
-1.4x10 Ids(Vgs= 0.00)
. 1ds(Vgs=-0.05) -------
lds(Vgs=-0.10) --------
L6x10° . Ids(VgsI=—0.25) P
-1.0X
-1 09 08 -07 -06 05 -04 -03 02 -01

Drain-to-source Voltage

Figure 9.4. P-Type RG-FET IV curves.

124

9.0x10°®

. gm(Vgs', Vds=1.(50)
,,,,,,, 9m(Vgs, Vds=0.75)
-3 Im(Vos, Vds=0.50)
8.0x107 = T glivgs, Vds=0.25)
7.0x10°8
_ 6.0x10°® b
<
6 :
E 5.0x10 .
(]
Q
= 6
£ 4.0x10
>
e}
c
g 3.0x10°8
c
o
a 2.0x10°
1.0x108
0.0x10°
-1.0x10°®
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Gate-to-source Voltage

Figure 9.5. N-Type RG-FET transconductance at several source-drain voltageglitches
in the Vds=0.25 transconductance trace are a computational artifact due to tharew-dra
source voltage.

8.0x10°® | | |
9gm(Vgs, Vds=-1.00)
Om(Vgs, Vds=-0.75)
9m(VOs, Vds=-0.50) --------

7.0x10°®

6.0x10°®

5.0x10°®

4.0x10°®

3.0x10°®

Transconductance g, (A/V)

2.0x10°

1.0x108

0.0x10°
-1 09 -08 07 06 05 -04 03 02 -01 0

Gate-to-source Voltage

Figure 9.6. P-Type RG-FET transconductance at several source-drainsoltage

125

The data illustrated in figures 9.3 and 9.4 were stored on disk for later use by our
modified SPICE 3f5 kernel. Our method of mixed-mode simulator coupling is similaatto t
used in [Rollins, 1988]. Instead of using an inner Newton iteration we simply preptioeess

analog response of the RG-FET for later use by SPICE.

In addition to the RG-FET, a simple, heavily n-type doped nanorod of the same
dimensions as the RG-FET (without a gate), was simulated to estimate thetanoeluc
properties of a conducting nanorod. The electrical properties, illustratedre gy
indicate that the rod has a bias-independent resistance of approximately 2I&ik value is

used in the SPICE models described in later sections.

0.0005 T 2483
L —
0.0004 |- y
7 4 2482.8
0.0003
-1 2482.6
0.0002
- 2482.4
0.0001
< 8
= \ ; g
& 0 N / - 24822 3
5 ’ / 3
(8] v
-0.0001
- 2482
-0.0002
— 2481.8
-0.0003
— 2481.6
-0.0004
-0.0005 2481.4
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
Voltage

Figure 9.7. 1-V plot of a heavily n-type doped silicon nanorod. The nearly lineanturre
responsé€l) indicates that the rod behaves similar to a ~25dsistor(R) over the voltage
range we use. The resistance varies by less tkaav2r the voltage range.

9.2 COULOMB simulation of capacitance

The values for the parasitic capacitances for the RG-FET were devea fr
boundary element method solution to the electrostatic field problem (COULOMB) for
conducting rod surrounded by grounded rods as shown in figure 9.8 [IES, 2001].

126

il

Figure 9.8. Rod geometry for parasitic capacitance calculation. Ppheitance is measured
between the center rod (shaded) and the outer shell of rods.

The COULOMB simulation results reported a capacitance of 1.71*%FLBetween
the center rod in figure 9.8 and the surrounding shell of rods. This structure resibmbles
geometry of the self-assembled circuitry discussed in chapter 8. COULGW!Beported
the capacitance between two parallel and adjacent rods to be'{ kK.1The values of &
and Rq were estimated using the calculated resistance of a 10 nm thick silicosheditisdk.
The simulated "caged" capacitance value was usedyfpC¢, and Gy and the adjacent rod
capacitance for g Cyq, and Gs (Cgp is the gate-to-bulk capacitance, @ the source-to-
bulk capacitance, &is the drain-to-bulk capacitance;s@ the gate-to-source capacitance,

Cya is the gate-to-drain capacitance, ardi€the drain-to-source capacitance.)

The small inter-rod capacitance implies that cross-talk between siggsiill not
be worse than in conventional technologies. The reactance between two segaith
1.71 x 10" F capacitive coupling at 400 MHz is greater than 23 (i / C.)

9.3 SPICE simulation of nanorod circuitry

A modified SPICE 3f5 [Quarles, 1991] circuit simulation kernel was used to simulate
the behavior of several RG-FET based logic devices. The kernel was modifietitzia

simple file-based table lookup feature for the arbitrary current or voltage stavice. The

127

file-based table lookup was used to read current data from the PISCES-IIb detpuTfie

data is loaded into a memory table by the SPICE kernel and current valuae(linearly
interpolated betweengyand Vs data points [Dwyer, 2002b; Dwyer, 2003]. The source for
this modified kernel can be found on the compact disc included with appendix B, and on the

dissemination page at www.cs.unc.edu/nano.

The behavioral simulations described in the next section estimate the total power
budget for the machine given an instruction stream, and accurate poweresstifthe
component circuits. The parasitic capacitance values described in the pregimmsase
used in the circuit simulations that model power consumption. Where appropriate,teach ga
or circuit was loaded with age= 3-Gyp (FO-3) capacitance on its outputs to simulate a
plausible fan-out. Each circuit was extracted from the nanorod layout describetidn se

8.3 by using the element models illustrated in figures 9.9 and 9.10.

C gd Rgd Cdb

Figure 9.9. RG-FET capacitance circuit model.

128

2.5kQ

0.017 aF _

Figure 9.10. Conducting rod electrical model. Each conducting rod from a cirauit lay
replaced by this model.

Despite the seemingly large resistance in figure 9.10, the small eaquacineans
that only a small amount of charge must move through the circuitry for it to workjmgsult

in lower power consumption.

Table 9.1 summarizes the gate delays, power consumption, and power-delay products
(PT) for each circuit. The specific implementation details for each tawaillustrated in

figures 9.11 through 9.18. Figures 9.19 through 9.26 depict the results of the simulations.

Gate Delay (ns)] Power (nW) PT-product (J)
NOT 0.125 15 1.875 x 18
NAND2 0.625 40 2.75 x 18
2:1 MUX 0.3 300 9.0 x 10’
3:8 Decoder 1.0 10 1.0 x 10-17
Full adder 0.625 1600 1.0 x 10
D-latch 0.3125 200 6.25 x 10
Register cell (per bit) 1.25 245 3 x10
Ringer circuit (full on) - 30 -

Table 9.1. Gate and circuit delays, power, and energy consumption.

The ringer circuit is formed by a feedback loop between the output of the LC1
multiplexer and one of its inputs, as illustrated in figure 8.4 of chapter 8. When the
multiplexer selects this input an oscillation begins that produces a chistactewer
signature. Figure 9.26 illustrates the oscillatory signature of the rirrgait @ower

consumption. Chapter 6 describes alternative output methods to the ringer circuit.

129

The average power consumption of this circuit while it is oscillating is appetgly
30 nW. The DAMP with 6 x 18 processors would consume 180 kW if all ringers were full
on. Given a target power budget of 3.5 MW, the ringer circuit could consume as much as
580 nW, or almost 20 times as much power as it does now. Increasing the drive strength of

the ringer would simplify the detection of the oscillatory power signal by rgakmsignal
larger.

Figure 9.11. An inverter.

Figure 9.12. The NAND?2 gate.

130

Ll
| O

Figure 9.13. The 2:1 MUX circuit.

Three 2:1 MUX circuits are used to build the 4:1 MUX circuit needed by the DAMP.

T,
TR T Mg
. Le

Enable

Figure 9.14. The 1:2 decoder circuit used to form the 3:8 decoder circuit.

Seven of the 1:2 decoder circuits were used to create the full 3:8 decoder citcuit tha
was simulated. Parasitic capacitances of,3v€re attached to each 2:1 decoder output to

simulate a worst-case environment.

131

A
C -

CH
A

A
Bd4[AL A BﬂI%CﬂIE:ABq
B C

4

B—HC

B[|AHC A4 B—|§C—|%B—|
. L L L LA
—{>o0- g

4>°“—C0

Figure 9.15. The full adder circuit.

Enable j
D Q

Hold j

Figure 9.16. The D-latch.

1

il

132

ShiftOut
Shiftln

In — Out
AT
Load —| |:|_1\

Figure 9.17. The register cell circuit. This circuit is arrayed 6 timesstdecthe full register
cell simulated here. The Shiftin and ShiftOut signals are shared by 5 ofdpesténs (also
called SRi and SRo.) The other register uses a dedicated Shiftin and Shik@uallad
SAi and SAo.)

The full register file is composed of 17 register cells connected in sehes. T
“ShiftOut” signal from one cell is coupled to the “Shiftin” of the next stage thr@small
delay line circuit of several inverters. Two such serial shift controls aceinghe full
register file, one controlling five of the six bits and the other controllingeimaining sixth
bit. The simulation results that are plotted in figure 9.25 are for a regidtef sed bits,
each of them shifting the same data at the same time (both shift line3.active

The full register file also has a random number loading ability controllékdeby
“Load” signal. Only three of the six bits in each register cell can be randarséd to a
logical one, or true, value this way. The randomness of the loaded number is derived from
the distribution of conducting and insulating rods used at a particular step in tmélgssie

the register cell as described in section 8.3.

133

’—0<lf
I—QEZH»LEZIIM——S
WOU‘[

Figure 9.18. The ringer circuit.

T T T T T T
1v
Input A
Oov
T T T T T T 45
r —
b Power ------- 440
1 :
] 435
0.75 : 30
S -4 25
% 05
3 ! = 20
> i
0.25 { ! 15
| J 1
0 } | i
¥ 45
! f 0
0s 5ns 10 ns 15ns 20 ns 25ns 30ns 35ns

Time

Figure 9.19. The inverter simulation results.

134

Power (nW)

2 /
. /

1v /
Input B /
ov

~
S

; 100
4 90
Power -------
1 480
470
—~ 075 —
s {60 2
(4] =
E 0.5 50 %
s 440 3
> 025 430 &
. ‘, 420
f i 110
i ' 0
0s 5ns 10 ns 15ns 20 ns 25ns 30ns 35ns 40 ns
Time
Figure 9.20. The NAND2 simulation results.
v
Input A
Ov
1v
Input B
Ov
1v
Input S
Ov
T T T T T T T T T T T T T T T T T T T 04
Out
1 Power -1 0.35
403
s 075 {0258
(4] =
g 05 0.2 g
S s 10155
401
0 1 0.05

t 0
0 s1ns2ns3ns4ns5ns6ns7ns8ns9nslOndl nd2 nd3 nd4 nd5 nd6 nd7 n48 n49 n20 ns
Time

Figure 9.21. The 2:1 multiplexer simulation results. There is an inverter on the outpat of t
multiplexer.

135

1lv 1v
Z0 Z4
Ov Ov
1v 1lv
Z1 /' Z5 [
Oov Oov
1v 1v
z2 [Z6 [
Ov Ov
1v 1lv
Z3 [z7 [
Oov Oov

0 2 4 6 8 10 12 14 16 18 20ns 0 2 4 6 8 10 12 14 16 18 20ns

I a T T ey

Co.. b=

| : H H : ‘En

Voltage (V)
o
[$;]

| AA 1A pA A

01 | 1] L] 1) UL
0.05 L UM \ \f RTAVATIN YAV ARV JATAYM!
R NARRIRRANWERA VU VO PV VAL VY OO VYTV YT
0 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns

Time

Power (UuW)
o
N
(53]

Iy
[i I\

Figure 9.22. The 3:8 decoder simulation results.

[) [
N J \ J \

" / / /

N \) \ J \ J \

" / 5

Input C; /
Ov

Input B

- 1 , ‘ ; ; — —
€ o1 e e | o
g o | | ! i | | !
g o R R S a

1
S 140 | ‘
3 120
T 100 t |
[0.80 1 H J H
z 08 1 i i
a 040 7\ \\ i i\ M i I

820 /[JU [\ JU [U L I

0s 5ns 10 ns 15ns 20 ns 25ns 30 ns 35ns 40 ns

Time

Figure 9.23. The full adder simulation results.

136

Enable

Hold

Voltage (V)

Shift

Voltage (V)

NN\
/SN

S T

I e
| \ W 1o
; [\ o

T 800

3]

Q ------- - 700
Power -------- 600

o
(4]

7777777777777777777777777 R S e N 0
-100
0s 5ns 10 ns 15ns 20 ns 25 ns 30 ns 35ns 40 ns
Time
Figure 9.24. The D-latch simulation results.
lv / \ / \
Ov
1v [-\ f\
Ov J
T T T T T T T T T [N T T 3
i ! Out
ShiftOut --+----
Power -------- 125
1 3 N ’\“ Y
; A a ot 42
0.75 i S SE R
0.5 i b 18
e ik
0 o o =t 108

O0s 2ns 4ns 6ns 8ns 10ns 12ns 14ns 16ns 18ns 20ns 22ns 24ns 26ns
Time

Figure 9.25. The register cell (6 bits) simulation results.

137

Power (nW)

Power (UW)

1v —
Ov

= [N

200 T T T T T T T T T T T T T
180
160
140
120
100

Power (nW)

(MRS | | |
10 I8N (I, |
AL Inin L) |
WL I
LG UL UiV eiviiivisivie

|
|
|
|
|

N B O
o O O O O

Figure 9.26. The ringer circuit simulation results.

9.3.1 Conclusions

The evaluation of the RG-FET, nanorods, and capacitance has led to the development
of a set of power and performance estimates that will be used in chapter 1@edhgau
performance of the DAMP on various problems. The particular design decisions made
before simulating the RG-FET logic gates were inspired from gemnaeinl processing
plausibility arguments starting from a 1V process with 500 nm long rods that areiBO nm
diameter. As figure 9.1 illustrates, the RG-FET cannot accommodate oxide theknes
much greater than about 20 nm. Similarly, oxides thicker than 20 nm will reduce the channel
diameter below the limit of continuum transport mechanisms [Sano, 2002]. Oxidémless t
5 nm thick will require extremely precise control of the oxide growth to ensughby hi
uniform and strong crystal. The quality of the oxide is important in preventing breakdow
the film at gate voltages of approximately 1V. Therefore, we chose an oxide Hsakri
nm because it can withstand the electric fields developed at a gate voltageifjlixé 9.27

illustrates the change in transconductance as oxide thickness is varied froto 2thnm.

138

1.0x10°8

0.0x10°

-1.0x10°® e T Clonm

-2.0x10°8

-3.0x10°®

-4.0x10°8 [

-5.0x10°8

-6.0x108

Transconductance g, (A/V)

-7.0x10°8

-8.0x10®

-9.0x10°®

-1.0x107
-1 09 08 -07 -06 05 -04 -03 -02 -01 0

Gate-to-source Voltage

Figure 9.27. P-type RG-FET transconductance as a function of oxide thicknesd &@th a
nm channel. We used the 10 nm thick oxide RG-FET in our performance evaluations.

Expected processing limitations in the fabrication of an RG-FET motivated our
choice of a 150 nm long channel. The lengthwise etch of the RG-FETs channel region may
not be precisely controllable. Therefore, a sufficiently large margimeh&xtension) must
be left on either side of the channel. Channel lengths greater than 200 nm leave only 150 nm
of rod on either side of a 500 nm long rod. Channel lengths below 75 nm will experience
poor off-state leakage currents [Thompson, 1998] and may not be properly simulated by
PISCES-IIb. Figure 9.28 illustrates the change in transconductance aarnineldength is
varied.

139

1.0x10°8

0.0x10°

-1.0x10® e L=150nm -

-2.0x10°8

-3.0x10°8

-4.0x10°8 |-

Transconductance g, (A/V)

5.0x10°® -

-6.0x10°8

-7.0x10°8
-1 09 08 -07 -06 05 -04 -03 -02 -01 0

Gate-to-source Voltage

Figure 9.28. P-type RG-FET transconductance as a function of channel lengta L8ing
gate oxide. We used the 150 nm channel length RG-FET in our performance evaluations.

The input slew rates used in our simulations (0.2 V/ns) lead to conservative power
estimates because they prolong the overlapping n-type and p-type RGaR&ifidn period
with respect to the output transition, time thus increasing the switchingyesstngnate. The
output transition times are consistent with the turn-on time observed in a time-elefpend
PISCES-IIb simulation of a p-type RG-FET. The time dependent simulatianshadgs that
the gate charging current due to the voltage-dependent channel capacitanasteni@esusly

never greater than 1 nA for 0.2 V/ns input slew rates (it drops to zero as thetslgaazmto
zero).

We have performed additional transient-response simulations to clarify théhatror
we incur by using a DC approximation to the RG-FETSs transfer function. We reedlsa
time varying current responsesVs. time) using several different slew rates (1 V/ms, 0.4
V/us, 0.8 V[is, 1.5 V/ns, 3 V/ns, 6 VIns, 12.5 V/ns, 25 V/ns, and 50 V/ns). Figure 9.29is a
representative result from the transient simulations. The positive source ancLidrants

counter the displacement current seen in the gate. This is presumably due to themhovem

140

of charges as the channel forms underneath the gate. To compare the DC respdhse wit
different transient responses we plot the log of the absolute difference beteeemrents
versus time. Figure 9.30 illustrates several of these error curves. Tiseverrobserve
during the 3V/ns slew rate simulation can be as low as a few hundred electmpérole
second. This current is smaller than what can typically be simulated by tBE &%
simulator. This implies that our DC method is as accurate as a transiermtgimusing
PISCES-IIb for input slew rates less than 3 V/ns.

3.0x10°8 T

2.5x10°° o 40

2.0x10® : \\

1.5x108

4 -0.25

1.0x10°®

5.0x107"

Current
1
o
(6]
Voltage

0.0x10°

-5.0x1077

4 -0.75

-1.0x10°®

-1.5x10°®

-2.0x10° e 1

-2.5x10°®
0s 10 ps 20 ps 30 ps 40 ps 50 ps 60 ps

Time

Figure 9.29. Transient response of a p-type RG-FET during a 20ps input voltage ramp.

141

T -10

T
0.0x10° e L
3Vins --------
0.4 Vips
I 1Vims ———— |
-2.0x107 et o718
L 2 o O
-4.0x107 s
- S 420
GE) T
3 -6.0x10°7 2
8 o
(] =
3 7 123
3 -8.0x10° >
I 3
% .
[a} -1.0x10 1 30
-1.2x10°° s SERR—
1-35
-1.4x10°
-1.6x10° -40
4 -09 -08 -07 -06 05 04 03 02 -01 0

Gate-to-source Voltage

Figure 9.30. Absolute current error between DC and transient p-type RG-Kiohses

9.4 Custom behavioral simulation

The SPICE simulation described earlier use a common technique to produce solutions
to the various problems they are each suited to answer. That is, they each @sa®e ma
systems of simultaneous equations that need to be solved for each time step afl#ti®sim
This imposes a limit on the size of problems because of memory and patience rasrib@ai

make solving such large systems of equations difficult or impossible.

The common solution to this is to simulate larger components at a higher level of
abstraction. Just as the PISCES simulation results were used in a maet &osm
PISCES's perspective) simulation in SPICE, the SPICE simulation reguitsed in a more

abstract behavioral simulation.

Behavioral simulation is a way of evaluating complex logic circuitripewit having
to resort to the complex physically based simulations of electronic cir¢Bit8 CES and
SPICE). Besides evaluating logic circuitry, behavioral simulation lsanb@ used to

142

estimate timing requirements and power dissipation. These estimates tieg|uietailed

simulation results from the physical simulations (PISCES and SPICE).

The behavioral simulation described here was used predominantly to estimate the
amount of power dissipated by the logic circuitry of a single processor inARE’D The
timing issues are relatively less difficult to analyze because of tia¢ 1sature of the
processor, and the limit the power budget places on the clock rate. Compared to how fast
and how deep the typical logic circuits are in the DAMP (see sections 9.3, and 8.2) the

reduced power-conscience clock rate will be far below the maximum operatijgificy.

9.4.1 Behavioral Model

The behavioral simulator was programmed using the Microsoft Visual Studio in
MFC/C++. The interface for the tool is shown in figure 9.31.

ﬂBehaviural Simulator x|
Pragrarn: Load Program I Feset Program | Close |
Mew Signal
Reset Step Start Single I Add Signal

Mew Instuction: _3tep (0]] Step (1]

Tinestep: 163 View Flat | [eoDiFRo] [acdinst |
~ Machine Parameters

Clk period, |2 Fe-D03 | 360

Output;

Step 149 oo ee
Program: END-0F-PROGRAM
Fegister File:
&, = 00000000000071000 0 (8:8) (00, 8:6]

RO = 0000000000000007 O (1:17 (00, 1:1)

A1 = 0000000000000000 0 [0:0) (0:0, 0:0]

A2 = 0000000000000000 0 (0:0) (0:0, 0:0]

A3 = 0000000000000000 0 (0:0) (0:0. 0:0)

R4 = 0000000000000000 0 (0:0) [0:0, 0:0)
“Contral Registers: AC=11 (3), LC1=00 [0), LC2=00 (0), RCO-4=00000, WC1 =0, WC2=0,
C1-3=111+1 [7). ERC=0, ESC=0, ERD=0, EL=0, ES&=0, ESR=0, EESD=0, EEB=0, EEC=0
*ACU: RO« RO.R1 <A1, AZ2<R2R3<-RILR4<-R4. AC <5 B < ROA<AC
"C5M: curent state = start, next state = start, 9=0, ETc=0 ETs=0ETm=1
“WTC: w=0, RESET_5051=0, IMM=0,5_TRIG=57. Tc=0, ClearC=0, ClearS=0
ALl A=0B=0Bout=0 Co=0 C=05=0Sout=0 D=1 EB=0 EC=0 ESD=0 AC=0 SC=0
RD=0

-]

Figure 9.31. Interface for the behavioral simulator.

143

Figure 9.32 illustrates the model used for each architectural unit descriliepterc
8. The register file, RCU, ALU, control registers, CSM, and WTC were aleimghted as

modules following the structure of figure 9.32.

ooo
.

" Logic Module

/ # Function Execution / i

Inputs f(x) Outputs

Internal

oo

Figure 9.32. Basic logic module structure. Each logical unit from the arcingegas cast
into this structure.

The interconnectivity of each module has already been described in the
implementation details of chapter 8. To implement the connections between units, the
behavioral simulator "binds" outputs from one unit to the inputs of another. Binding, in this
context, is simply a copying of the various bit values produced and consumed by &ach uni

For every time step, the behavioral simulator binds the units together and then
executes each unit. The results of each execution are stored in the output varigddbs of
module. During the next time step, the output variables will be bound to the input variables

of the next module.

A time step is defined as the time period over which the clock signal transiboms fr
a steady-state zero through a steady-state one and ends just as the sdredlgdewn to

zero. The total power dissipation during a time step is calculated by summimgrttecase

144

power-delay product for each logic circuit that underwent a transition durinigrthetep, as
described in section 8.3, and dividing it by the clock period. A running total of the energy

consumption (power-delay product) is also kept so that a running average poweriainssipat
can be calculated per time step.

Each module has a "CPowerConsumer" object that records how much energy it
consumes per time step. The CPowerConsumer class is initially told how maay of th
primitive logic circuits, outlined in section 8.3, each module uses and subsequently told to

increment counters for each time step. The particular numbers of eachvproirituit in
each module are given in table 9.2.

Module | NOT | NAND| D-Latch| Mux2| Muxa4| 38 | Redister Ful
Decoder| bit adder
e | 88 | o 0 0 0 0 102
RCU 1 0 0 5 3 0 0 0
ALU 0 0 4 0 0 5 5 1
Control 0 0 0 0 0 0 o .
registers
CSM 2 7 2 0 0 0 0 0
WTC 4 | a7 4 1 1 1 0 0

Table 9.2. Primitive circuit counts for each behavioral module.

The order in which modules are bound to each other is important to consider because
it captures the asynchronous behavior of the circuitry. In the case of therréigiand
RCU, the values of the inputs to the multiplexers in the RCU are determined by treofalue
the output from the register file. A topological sorting must be followed to getdpermpr

inputs to the proper outputs before execution. Figure 9.33 illustrates the binding and
execution order used by the behavioral simulator.

145

Y s—
Clock = 0 — ALU

S

CSM

h 4
Control
Registers

Clock =1

Register File
I

Figure 9.33. The binding and execution order used by the behavioral simulator.

9.4.2 Results

The behavioral simulator takes a series of one or more instructions and (using the
assembler described later) converts these instructions into a seaah sif bits that control
the DAMP. Since the DAMP has identical processors, it is sufficient to semuksingle
processor. The state of the processor is reported after every clockrny@eunning plot of
energy dissipation can be viewed. Figures 9.34 to 9.39 illustrate the energyidis$qrat
the integer operations ADD, ADDI, ADDC, NOT, INC, and DEC running at a clock period
of 2.5 ns, or 400 MHz. A more detailed description of instruction energy dissipation is given
in chapter 11.

146

ABiaug ABiaug

1.2e-12

T
Mean Power

q le-12
- 8e-13
- 6e-13
- 4e-13
1.6e-12
1 1.4e-12
4 1.2e-12
- le-12
- 8e-13
- 6e-13

400 ns

600 ns

A,Yll -
| %) e -
- < L
L > e - - o
= N 3 e) i
5 2 g 52 e
5s L s 28 .
- i a & - ===sg=====sIzosTooizyooooToC
— il - w L
£ N 3 It =T
° e ° I
= ===gEIITIEITIEITOORT = [3

T
300 ns

500 ns

250 ns

400 ns

200 ns
Time

Time
147

300 ns

S) D AN =
< c U
o & [—
A/\,‘vv i1 S
i
<+ | a T
I < \
.15 N .
S £
8 N
/,, [—
- = ==

200 ns

50 ns

Figure 9.34. Energy dissipation of the ADD instruction.

100 ns

Figure 9.35. Energy dissipation of the ADDI instruction.

S

PN ™M@ © YN
™ aaaa N

(mn) 1amod (Mn) Jamod

To)
N ~MaCARNTNNNN 16
N N N N NN

0 < . o
[Te) N

™

35
4.5

0 0
© <

(An) 1omod (mn) Jamod

Power (UW)

Power (UW)

Power (uW)

Power (UW)

T
3.4 Mean Power -
\\
3.2
3
2.8
2.6 —
2.4
2.2
7.5 T le-12
Total Energy ———
7 4 Power -——=—=- 4 9e-13
6.5 . ‘ - 8e-13
6 ! 1 7e-13
55 j :
: // - 6e-13
5 | i f
f | | 4 5e-13
4.5 ! | i
4 i ! i - 4e-13
et ? ! - 3e-13
35 ! \ i
3 \ / : .o 2013
B P N o Yot Ve (Y LA T e AT es
F A B Voo oo v U / Voo
2 0
0s 50 ns 100 ns 150 ns 200 ns 250 ns 300 ns
Time
Figure 9.36. Energy dissipation of the ADDC instruction.
2.9 T T
2.8 T MeanPower ———
2.7
2.6 ————
2.5 e
2.4
2.3
2.2
5.5 . . 1.4e-12
Total Energy ———
Power -------
5 | ‘ ‘ 1.2e-12
45 i 1e-12
4 ; \ 8e-13
35 i ; 6e-13
3 ,\ | . o 4e-13
S I R B R S
A AT AT A T
2.5 [t Al Al ST AL AL L e T I 2e-13
N S T T T N TR U A T N U A
2 0
0s 50ns 100ns 150ns 200ns 250ns 300ns 350ns 400ns 450ns
Time

Figure 9.37. Energy dissipation of the NOT instruction.

148

Energy

Energy

ABisug ABiau3z

400 ns

350 ns

300 ns

250 ns

200 ns
Time
149

150 ns

100 ns

50 ns

Figure 9.39. Energy dissipation of the DEC instruction.

N o~
s o~ ™ ™)) - N ™ ™ ™ ™
L i\ i - - o @ i < i i i
N o} o)) o) o) 17 . N o) o) o) o) o)
i — @ © < Y o2 c i — o © < I\
T T T T << T m o T T T T T, T
. Lo < = ' L
W e [&) ! <
| _ > | i
i <R o) = ” I
53 ” : 7 - |
r Z¥Zor o r - (TR -
o2 5 c o2 =
3 [(3] — X< [
C [« W N A N SN S oo C [YR U N RS S S SO
TR N Al sttt == [T e N s e Rttt =,
T | C = !
g s Z 3
= [8 - I u .
= & Q =
[S < [
T +— ST
| |
Tiz= [4) h— [
e N S S R < (@] [N
_W 3 c m
N i
m = W
i P N A T T S A |
[et W St - [70 N T S I S e i Wt St e
| %] |
[c o o [
o] o E =
i QF 2 [
o §%) —
i © o
A,,\u..,\n 2 > JHM
= o (@) =
L _iT== 0 P —
. © o .
JIE==- c <
e, L
L < . L
= 8 00} <c N\~
A= ™ |
0 . [S W
S ¥ (@)} =3
L\ e o
E 3
- C o
= =
[» L
YO~ O Y M W0 0 0 ~ 0 ™ 0 ~©e DO~ O©IT NN W0 0 0 ~ 0 ™ 0
aAaaaNaNa w6 < ™ o~ aAaacNaNaN W6 < ™ o
(mn) 1amod (Mn) Jamod (Mmn) Jamod (mn) Jamod

0s

9.4.3 Instruction assembler

As mentioned earlier, the assembler used by the behavioral simulator takes
instructions and turns them into a serial stream of control signals for the DAN#3e
control signals are the signals that would be directly applied to the PO and Ridetecff
the DAMP's processor nodes, as described in chapter 6. Since each of the [grocéssor
DAMP is a serial machine that has no micro-code there is no complete setuwtioss
except all bit strings. It is unproductive to enumerate all possible instrydmiise
assembler has support for instructions needed for the present evaluation and arfew othe
The complete list of instructions can be found in chapter 8. Since the control of aqrocess
is fully exposed to the assembiler, it is possible to implement new instructidres reeet!
arises. Such will be the case if integer multiplication and division are requiniédnor

application program needs floating-point arithmetic.

The assembler included with the behavioral simulator described earlier usgdea s
instruction prefix search and argument parsing algorithm to translatectimtis. It was
written in C++ and uses no optimization techniques to reduce the size of the final control

signal stream.

150

Chapter 10. Thermal evaluation

The large numbers of transistors in the DAMP makes it important to evaluate the
thermal effects of electrical transitions on each processor and the ltheimasgior of the
larger machine they compose. The SPICE and behavioral simulations describedenThapt
produce power and energy dissipation estimates based on the drift-diffusioniemaflat
electrons and holes through the silicon nanorods. We can apply these results to a
hypothetical processor housing and evaluate the thermal situation during th®ope#rdne
DAMP. Figure 10.1 illustrates a partial stack of processor nodes. Each noderidedeas
chapter 8, has?2functioning processors that are assumed to be uniformly distributed across

the processor substrate among the processors that did not form properly.

Heated coolant

L4 % Control lines
5 Control !(
Transceiver 7. < :
Hg Processor substrate
N
Coolant \\
Bypass \\3 . .
v Electrical & physical
{ Control %; side-mounts
Transceiver
Hy :
& _ Chilled
% coolant
v
R |
Wy

Figure 10.1. Side view of a partial stack of processor nodes. The processotesigstra
suspended in a cooling jacket by side-mounts. Chilled coolant enters at thedegindi
rises upward due to convective flow and pool boiling.

Research into microelectronic energy removal and cooling techniques has Babwn t
a quiescent perfluorinated liqdfccan remove as much as 45 W#dmhorizontal pool
boiling configurations up to 80°C [Watwe, 1997]. The passive nature of this technique is
attractive because of its simplicity, as illustrated in figure 10.1. rGivat convective flows
will also be circulating in the housing, 45 W/cis likely to be a lower bound on the heat

removal rate.

10.1 Steady-state dissipation

The steady-state heat removal from a processor on the substrate mustdrelgreat

the amount of heat being deposited into the substrate by the electrical swatctinity of

1 The term 'quiescent perfluorinated liquidérs to a class of fluorine containing liquids agtas a coolant

that is not pumped or forced to flow around an cbje

152

the processor for the substrate temperature to be stable. The treatmenteafdsisite

power dissipation presented here is crude at best because the materials ngatelsalf-
assembling process (see chapter 3) are not crystalline but amorphous. Amorgieoatsma
can require much longer times to cool than pure crystalline materials sinettined
exponentiaktooling. For example, polycrystalline silicon has a thermal conductivity of ~14
W/m-K or about an order of magnitude less than single-crystal silicon (149 W/m-lg) [Um
2000]. This means that the following evaluation is an approximation of the lower bound for

the heat transfer rate.

The equation for heat transfer by thermal conduction through a slab of material i

shown in equation (10.1).

Q _ KLAIAT

. g (10.1)

WhereQ is the energy transferred through the materiakigcondsg is the thermal
conductivity of the material is the cross-sectional contact area between the hot and cold
sides AT is the temperature difference between the two sideg] anithe thickness of the

material.

Heat can be dissipated either through the material in between the rods or through the
rods themselves. It is likely that the high thermal conductivity of the siliconwitids
dominate the heat transfer process. Since the material in-between tlreeadldsrmoplastic
(amorphous) any estimates of the heat transfer through it will only be usefahade
guideline for the reasons mentioned above. The heat transfer through the siliagsmrocs

ideal since the rods are crystalline, making the estimates shown heracunarate.
Heat transfer through SU-8

The material that is most prevalent in the space between the nanorods in each
processor is the photoresist material used during the modular assembly. Soate typic

physical and thermal properties for a thermoplastic photoresist (Slg-B3tad in table 10.3.

153

Property Symbol Value
Thermal conductivity K 0.2 W/mK
Specific heat S 1.3 kJ/kgK
Density D 1300 kg/ni

Table 10.3. Thermal and physical properties of SU-8 photoresist.

There are several assumptions we can make to estimate a lower bound on the steady-
state heat flow out of this system. These assumptions will be discussed wlitrstregion
from figure 10.2 in mind. The dashed line in the figure represents a thermabrefbect
insulator, and is a simplification that limits the direction of heat flow fromybtes. In
reality, this constraint is overly restrictive because, as illustratédure 10.1, both sides of
the processor substrate are in thermal contact with the cold bath. It sasomsalde to
assume that all the energy being deposited into the processor is largestatéhef the
structure. This simply averages the length of the thermal path and giverlgbgngf

thermal barrier, appears to be a safe assumption.

T

cool

5500580000000 000 S8 8888002000000

Figure 10.2. Worst-case flow of heat through the processor substrate to thetlcold@hea
processor is schematically represented here by four modules, when ipfacéssor
requires nearly 250 modules. The dashed line is a thermal barrier and all energgdiepos
into the processor is assumed to be largest at the center of the stack.

The cross-sectional thermal contact area of the processor to the cold bagh can b

approximated by taking the area of the smallest processor spacing [gasaet Y ,, or

154

(4.5 um¥. This will undoubtedly lead to a conservative estimate of the total heat flow
because it ignores lateral heat flow within the substrate through aregstivre are no

active processors. The thickness of the material slab is approximately the wdmbe
modules (250) times the thickness of each module (~0.5 um) divided by two, or 62.5 um.
The operating temperature range of the processor can be safelyastna0°C to 80°C, or
the operating range of the perfluorinated coolant [Watwe, 1997]. Using thesepéisss

and evaluating (10.1) f@/t, we get 3.8 x 18 J/s.

That is, using the assumptions described above, the processor substrate will support a
maximum heat flow of 3.8 x 10J/s. The average energy consumption of an integer
instruction, as estimated in chapter 7 to be 1.1% I0can be used to determine the
maximum integer instruction rate that the processor substrate will supsang tbhese
figures, the rate is 3.45 x Astructions per second or a clock rate of 545 MHz for integer

instructions.

This clock rate is the not-to-be-exceeded speed limit for the processor due to the
material properties of the substrate. For this to a be a useful bound, however, the heat
extraction due to pool boiling must meet or exceed the 3.8xX/k0heat flow that the
substrate can support. Otherwise, heat will build up inside the processor and thattempe

will exceed the operating temperature range.

The previous estimate for the extractable heat flow from pool boiling, ~30%\&em
be used to estimate the extractable heat flow from pool boiling over the processor. T
minimum X, and Y, processor area, (4.5 wmpermits the pool boiling heat flow to be 6.075
x 10° W. This estimate is ~1.5 times the maximum heat flow supported by the matterial
the substrate, indicating that pool boiling of this type can extract as much lceatzes

conducted away from the processor.
Heat transfer through silicon rods

The heat transfer rate through the silicon rods can be calculated in the ag@e w
the SU-8 calculation. Since each rod has a diameter of 50 nm and there are 54 rods per
footprint (see chapter 8) the total surface area of the silicon rods in coittatiievcold bath

is 1.05 x 1d* m?. The thermal conductivity of crystalline silicon is ~140 W/m-K and using

155

the same distance and temperature difference as bdferé2.5um, AT = 60 °C) the

maximum heat transfer rate is 14 x®10s, or 3.6 times greater than through SU-8.
Conclusion

Since the method used here to estimate the heat transfer through the SU-8 does not
accurately model the stretched exponential cooling seen in amorphous matésialslyit
useful as a crude guideline. Although the estimate for the heat tranteféroaugh the
silicon rods may be more accurate, it is difficult to be certain about which method wi
dominate the transfer process. Since the estimates for both materials aupgairtransfer
rate within an order of magnitude of each other, an approximate lower bound of £8/s 10
will be used as the pessimistic estimate. This will limit the DAMP andl®©ra

implementations to a clock rate of ~400 MHz.

10.2 Burst-mode computation

A class of applications exists where exceedingly high performance ise@doi a
brief period in a small package. For example, an on-board computer of an anti-missile
weapon or other munitions. For such applications a much denser packaging of a DAMP like
computer is possible, as well as a far higher clock speed limited onlydbyrosle

considerations. This section explores the limits of this usage mode.

The heat that can be extracted by pool boiling scales linearly with the tremmatt
area between the substrate and the coolant. That is, only the surface of th@pcacess
cooled. This is an especially important issue if the processor has littleesarés compared
to its volume. The processor substrate designed here has a relatively face awa to
volume ratio. If there were more processors stacked on top of each other fooegufintf
on the substrate, this would not be the case. Even though the total extractable heat flow
would be the same, the amount of energy being deposited into the substrate indtkases w

increasing number of processors.

Under these circumstances, the heat builds up more quickly than it can be &dnsferr
to the coolant. Therefore, heat flow in the system is confined to small local ragoumsl
where the electrical switching energy is being deposited into the sabdfigure 10.3

illustrates this idea.

156

‘/
M ¥
TC
* .\
T, - « T,

Figure 10.3. Locally confined heat flow. The interior of each unit cell absorledetieical
switching energy.

Burst-mode computation is a way of running the processors such that even though
heat is building up and would eventually push the processor's temperature beyond the
operational temperature range, computation is paused before the upper limit of the
temperature range is reached. Since the substrate will only support d hestteflow to
cool the processors, the cool-down period may be very long compared to the aabige peri
but if the active period was long enough to solve an important problem, the ratio did not

matter.

The relationship between the number of executed instructions and processor

temperature can be derived by starting with the simple heat capacitipaquat
Q= Cp [MIAT , (10.2)

whereC, is the specific heat of the heat conducting medis, the mass of the media, and

AT is the difference in temperature across the media.

SinceQ is the amount of energy deposited into the system, we can use this to model
the execution of instructions. Earlier estimates say that the averaggr ioperation takes
Eop, Or 1.1 X 10 J. We assume that the time scale for the instruction execution is much
smaller than the heat diffusion time scale, so@atn - Eqp, wheren is the number of
instructions to be executed. If we also assume that the entire processdedst tie
portions of it that can absorb heat) is the structural photoresist then we can saythat

157

P Voroc andC, =1.3 kJ/kgK, wherep is the density of the photoresist (1300 kimthis

case), anWpoc is the processor volume which is approximately (4.5 pm x 4.5 pm x 125 pum),

or 2.53 x 10° m®. Using these assumptions we can rewrite equation (10.2) as the following:
Eop [N=C, [0 Vppoe [AT (10.3)
and solving (10.3) foAT,

— EOP)
- 10.4
Cp [p WPROC ()

Evaluating (10.4) yieldaT = n- 2.57 x 10 °Clinstruction. Adopting a 60°C
operating range and assuming the processor temperature starts atehd wthe range, as
many as 233 x fdnstructions (~90 ms @ 400 MHz) can be executed before the processors
reach the upper temperature limit. This instruction count has the interestingytbatis
does not change with the total number of processors in the DAMP. The cool-down period

will increase with increasing numbers of processors.

It is interesting to note that the ratid V¢ is a constant that depends, almost
entirely, on the material properties of the DAMP processors. [If wehaayhie minimum
that can be productively used is about 1000 (DES decryption, chapter 11) then we have a
lower bound on the volume of the processor of about 1% 18. This bound is only true if
the specific heat and thermal conductivity of the photoresist material is nesised. If this
volume is divided over the 27 x 30nit cells found in a DAMP processor, and each unit cell
is considered to be a cube, the cell will have a minimum edge length of about 74 nm (the
entire DAMP cube would have an edge length of 0.15 m). The designs presented here and in
chapter 8 use a cubic unit cell edge length of 500 nm, or about 7 times larger than the

minimum under the burst-mode computation model.

Again, these arguments hold true if there is only local heat flow from the protessor
the substrate material. The limits calculated above can be overcome ithioa is lifted
and a volume-scaleable heat extraction method is employed, such as flowing a non-

conductive fluid thorough the processors themselves.

158

The calculation of the cool down period under this mode of computation depends on
the processor arrangement. If we assume, as in section 6.2, a monolithic achicesand
that the cooling takes place from only one side, the simulation of the cool down period is
straightforward using the finite element method. First, as an approaimatjuation (10.1)
can be used to estimate the maximum heat floyy)Ehat the substrate can support through
one face of the processor cube, or 1.8 J/s. Taking equation (10.2) as the total amount of heat
that must be extracted from the cube,

Q, =C, [Ny [0 [Vpgoc [AT (10.5)

where N is the total number of processors in the DAMP,“8r The 60°C temperature range
(AT) yields Q = 348.4 x 18J. An approximate cooling time can be calculated by dividing
Q: by Pnax or 53 hours. This approximation can be tested against a FEM simulation of a
0.15 m cube being cooled by one face [FEMLAB, 2003]. The cube is initially at 80°C and
the cooling face is kept at a constant temperature of 20°C. Figure 10.4 is the plot of
temperature of a cross-section through the middle of the cube in time.

r—

70

]

F -
005 o0

w0
005) /0 08
NG 006
004
0 \ //(D 02
0
002

0.06
01 008

Figure 10.4. Plot of a cross-section of the processor cube as it cools in time (°C).

The X and Y-axes are the position along the cross-section and Z is the time step

(seconds.)The highest temperature spot in the cube (the far edge from thefeceling

159

within 10% of the cool side after about 53 hours. Therefore, the cube will requirergreat
than 53 hours to completely cool. After this cool down period is over, the machine can be
run again. Again, this estimate is pessimistic since the silicon rods of thersrcan

transfer ten times as much heat as the thermoplastic support used here.

160

Chapter 11. Applications and performance

11.1 The DAMP

The details of the basic instruction set can be found in chapter 8. This section
provides a detailed accounting of the cycles, execution time, total energy cdnsimshe
maximum sustainable clock rate (for the DAMP with*frocessor and a 3.5 MW power
budget) for several example instructions that can be found in table 11.1.

Instruction Cycles Execution time Total energy Max. clock rate
@ 400 MHz (us) consumption (J) (MHz)
ADD 159 0.3975 1.2e-12 464
ADDC 131 0.3275 le-12 459
ADDI 170 0.425 1.2e-12 496
ANDI 136 0.34 9.75e-13 488
ASR 116+N | 0.29 + N * 0.0025 8e-13 + N * 7.5e-15 502 (16 bits)
CLEARB 77 0.1925 6e-13 449
CLEARC | D 55 0.1375 3.75e-13 513
CMP 131 0.3275 9.5e-13 483
CMPI 307 0.7675 2e-12 537
CMPI8 211 0.5275 1.4e-12 528
COPY 92 0.23 7.5e-13 429
COPYH 215 0.5375 1.6e-12 470
COPYL 154 0.385 1.2e-12 449
COST 120 0.3 9.5e-13 442
CSR(N) 88+N | 0.22+N*0.0025 6e-13 + N * 9.375e-15 485 (16 bits)
CYCLE(N) N N * 0.0025 ~N *1.125e-14 311 (16 bits
DEC 159 0.3975 1.1e-12 506
GRAB(N) 157 0.3925 1.1e-12 500
INC 159 0.3975 1.1e-12 506
LOAD 280 0.7 1.9e-12 516
LSR 88+N | 0.22+N *0.0025 6e-13 + N * 9.375e-15 485 (16 bits)
LSRC 66+N | 0.165+ N *0.0025 4.5e-13 + N *9.375e{15 478 (16 bits)
MCOPY 103 0.2575 8.5e-13 424
NOT 171 0.4275 1.2e-12 499
ORI 202 0.505 1.4e-12 505
RANDOM 55 0.1375 4e-13 481
RESUME 6 0.015 4.5e-14 467
RINGOFF 11 0.0275 7.2e-14 535
RINGON 11 0.0275 7.5e-14 513
SET* 55 0.1375 3.75e-13 513
SETB 77 0.1925 5e-13 539
SETCREG 6 0.015 4.5e-14 467
SETC 55 0.1375 3.75e-13 513
SETSREG 5 0.013 4.2e-14 417
STORE 109 0.2725 9e-13 424
STOREH 171 0.4275 1.3e-12 460
STOREL 109 0.2725 9e-13 424
WAIT* 12 0.03 8e-14 525
XOR 148 0.37 9.25e-13 560

Table 11.1. Basic instructions and cycle counts, execution time at 400 MHz, energy
consumed, and estimated maximum sustainable clock rate'fqurb@essors operating with
a power budget of 3.5 MW.

162

The data for table 11.1 were derived from simulation runs for each instruction using
the behavioral simulation described in chapter 9. Figure 11.2 illustrates a typjeal mat
from the simulator. (The list of instructions in table 11.1 is not comprehensive. Other
instructions are possible by using SETSREG and SETCREG as described in 8hapter
Each operation, if it is not a variable bit-length operator, operates on the 16upitudator
with or without a single 16-bit register input. Instructions ending with the léttedicate
that an immediate value is used. The suffix letters "GE", "NGE", "Lid,"&lLT" signify
greater-than, not greater-than, less-than, and not less-than, respective§yETPh
instruction must have a suffix of one of the inequality operators. The WAIT instmuuotiist
have a suffix from the following list: B, NB, C, NC, D, ND, S, NS, GE, NGE, LT, or NLT.
The semantics for this instruction are described in chapter 8.

Power (UW)

T T 1.2e-12
Total Energ
M ——————
| B
5 : : 1 1e-12
] |
45 \ i e

) i
j‘» fffff g “3 - 8e-13
rg\ I | il
4 >
2 2
5 - 6e-13 9]
; C
2 35 18]
o
- 4e-13
3 i e
4
A np i 2e-13
[A - 2e-
25 [T A u I A N TV AR [ST T i o
LR U5 £ O S U 1 A O A A g Ll

2 0
0s 50 ns 100ns 150ns 200ns 250ns 300ns 350ns 400ns 450ns
Time

Figure 11.1. Output plot from the behavioral simulator for the ADDI instruction.

The average number of cycles in a DAMP integer operation was obtained by
averaging the number of cycles used by the ADD, ADDI, ADDC, NOT, INC, and DE@
average obtained using this instruction distribution is 158 cycles, or 0.395 us per integer

operation at a clock rate of 400 MHz. This instruction distribution consumes an average of

163

1.1 x 10" J per instruction. Therefore, the maximum clock rate for integer operations under
a 3.5 MW power budget is 502 MHz. This is well above the conservative 400 MHz clock

rate used throughout.

The results of many computations with in the DAMP need to be communicated to the
node controller. A simple binary search can be used to find the identity (i.e. the random
constant) of a processor that has calculated a value of interest (e.geamaexiThe
following code implements a binary search for the identity of the process$otheitargest
value in its 16-bit accumulator.

32768
2

.i

n
do {

1: cMPI1(i) // Compare the ACC value to i (the current pivot)
2: WAITLT // Any processor less than the pivot should wait
3: RINGON // Used to detect the presence of processors
// with ACC values greater than i
4: RINGOFF
If the RINGER signal was detected during step 3
i=1+ (32768 / n), n =n * 2
Else (no RINGER signal detected during step 3)
5: RESUME // Need to wake all the processors (i is too big)
i=1- (032768 / n), n =n * 2
} while n < 32768 && 0 < i < 65536
// At this point, i-1 is the largest ACC value in the DAMP
6: RESUME
7: CMPI(i - D)

8: WAITLT // only the largest ACC holder(s) remain active
// Time to determine the constant... (destroys ACC, RO, R1l value)
9: CLEARB // The B-bit will be used later to single out PEs
10: LOAD // Load the constant

11: csr(D) // Copy the first bit into the S-bit

12: WAITNS // If the bit is a 0, wait.

13: RINGON

164

14: RINGOFF
// If RINGER signal detected during step 13

// Record possible 1 in current bit position

15: RESUME
16: WAITS // If the bit is a 1, wait.
17: RINGON

18: RINGOFF
// If RINGER signal detected during step 17

// Record possible 0 in current bit position

// Multiple unique processors with the same ACC value
// may respond and make both a 0 and a 1 the Tlikely
// current bit. That is, the RINGER signal will be
// detected both times. Just pick one (0 or 1) if both are likely.

19: RESUME

// If the 0 is the current bit value (step 17's signal > step 13's)
20: WAITNS // The 0 bit PEs wait

21: SETB // The B-bit represents "do not participate"

22: RESUME
// If the 1 is the current bit value (step 13's signal > step 17's)
23: WAITS // The 1 bit PEs wait

24: SETB // The "do not participate"” flag

25: RESUME
26: WAITB // Any PE with the B-bit set will wait

// Append the current bit (whichever value was chosen) to

// the accumulated "inferred" constant

// Repeat from step 11 for the remaining 15 bits
//

// Repeat this entire procedure twice more for RO and R1

165

Steps 1 through 5 of the search for the largest ACC value require (in the veast-ca
260 cycles per loop. The loop is executed 16 times for a total of 4,160 cycles. Steps 11
through 26 require 355 cycles per loop. Since this loop must be executed once for each
random bit (48 times in total) the total number of cycles for just this loop is 17,040. The
entire procedure requires 21,200 cycles, or 42.dsing a 400 MHz DAMP.

Machine comparisons

The number of integer operations per second, memory size, power consumption, and
volume of each machine can be used to draw a simple comparison among machines. Such a
comparison gives a qualitative feel for how the machine may perform on sinkse Table

11.2 lists several simple metrics for some comparison machines and the DANE w

10" processors.)

16-bit Norm. Memory Power Volume Energy /
Machine integer integer size budget (W) (m®) op. (J/op)
op./sec op./sec| (bytes)
DAMP 2.53 x 16° 1.00 1.0x16 | 35x16 12 1.3 x 10
IBM BlueGene /L 288x10 | 1x10°| 70x16° | ~3x10 533 1.04 x 10
NEC Earth Simulator| 3.28x1b | 1x10* | 1.0x16° | 12.8x16 | 13000 | 3.9x18
SETI@home 24x 10 | 9x10° | >1.4x16°| 508.3x16 | 312800| 2.1x18
HP ASCIQ 6.2x18 | 2x10° | 1.3x16° 3x 10 11300 | 4.8x18
IBM ASCI White 56x16° | 2x10°| 26x16° | 1.2x106 6 600 2.1 x 10
Th'”k(':”,\%_g"g‘gh'”es 45x18° | 1x10° | 859x16 | 28x 16 416 | 6.2x10
Intel Pentium 4 344x 10 | 1x10° | <2x10 ~150 0.08 4.36 x 10
MasPar MP-1 1x18 | 3x10°| 268x18 | 3.7x10 0.95 3.7x10

Table 11.2. Comparison of several machines with respect to integer operatiorerateym
size, power consumption, volume, and energy per operation.

The data for table 11.2 were taken, and in some cases extrapolated, from several

architectural overviews and surveys, chiefly [BlueGene, 2002], [Dongarra, 2002l [I
2003], [MacDonald, 1992], [SETI@home, 2003], [Top500, 2003], and [Warren, 2002]. The

166

16-bit integer performance for the Intel Pentium 4 was calculated usingitsrable

memory to processor transfer rate of 4.3 GB/s [Intel, 2003].

Another interesting way to look at the gap between the DAMP and other machines is
to consider that, on the embarrassingly parallel problems to which the DAMR-sted ,
it is about 15 years ahead of the nearest (yet to be completed) supercomputéd, the 1B
BlueGene /L with a similar power budget. This trend of performance doubling Ber
months is common in other areas of computing and has been shown to hold, on average in

the past, in supercomputing performance trends [BlueGene, 2002].

The ACM has the SETI@home project on record as the owner of the largest
computation ever (being) performed with approximately 5.16°k @8bit integer operations
[SETI@home, 2003]. That number translated into the equivalent number of 16-bit
operations, listed for each machine in table 11.3, puts the scale of self-assemigletingom

into perspective.

. Timeto beat largest Normalized time
Machine .
computation on record
DAMP 2 hrs, 13 min 1.0
IBM BlueGene /L 83 days 800
NEC Earth Simulator 1 year, 11 months, 28 days 7,000
SETI@home 3 years 10,000
HP ASCI Q 10 years, 6 months, 20 days 40,000
IBM ASCI White 11 years, 8 months, 7 days ~40,000
Thinking Machines 14,544 years
CM-200 50,000,000
Intel Pentium 4 19,025 years 70,000,000
MasPar MP-1 65,449 years 200,000,000

Table 11.3. Time to beat the largest computation on record, as of February 2003.

11.2 Blind decryption of the Data Encryption Standard (DES)

The data encryption standard (DES) has long been used as a secure method of
encrypting sensitive information. Recently, the growing number of computing meadhiat
can complete brute force attacks on secured data has put the strength of this form of

167

encryption into question. For this reason alternative encryption standards are being

investigated.

The purpose of this comparison is to show how the DAMP would perform on a
particular problem of interest to a wide community. The DES has been heavilygatezst
since the late 1970's and its implementation is well known [Feldmeier, 1989]. Fsaestiddit-
implementations have also been developed in an attempt to improve the throughput of DES
encryption and decryption modules and to test the security strength of the stanklanal [Bi
1997].

The particular bit-serial DES algorithm implemented in [Biham, 1997] uses
approximately 17,000 bit-wise operations per DES decryption. This count includes the
comparison operation that tests whether or not the decryption was successful. The usual
completion criterion for the algorithm is to successfully decrypt a single kkcgertext to
the proper plaintext. In this case, the algorithm is being employed to perfdinad dearch
through the entire DES key space to test the algorithm's security ttzdhguerform a
complete data stream decryption.

The DAMP can be used to perform this search by assigning each processor a key
from the 2° bit key space. On average this input space will reqdirdeZryption steps.
Since the DAMP has only 40 assembly-time bits, the remaining 15 bits must eedlztti
runtime. The instruction set described in section 8.1 includes all of the logiciopethat
are needed in the DES decryption process. The most common instructions in the algorithm
are the XOR and CSR instructions. On average, the logic instructions in the DAM requi
10 cycles per bit-wise operation. Using this estimate, a single DES decrygt require
170,000 cycles on the DAMP.

The simulations and performance estimates presented in chapter 9 used aelofck rat
400 MHz to determine the total running time for various programs and instructions. Using
this same clock rate yields a DES decryption rate of 2,352 decryptions per second per
processor. The aggregate performance of the DAMP, Witpracessors, is approximately
2.5 x 16° DES decryptions per second. At this decryption rate the DAMP can cover the
entire 55 bit input space in about 15 seconds. Table 11.4 lists the estimated performance of

several machines on the blind DES decryption problem.

168

M achine Bit-wise 0p./sec Average Dtlifrﬁgecryption Normalized time
DAMP 4 x 10° 15 sec. 1
IBM BlueGene /L 4.6 x 19 3 hours, 41 min. 870
NEC Earth Simulator 5.25 x 10 32 hours, 24 min. 7,600
SETI@home 3.84 x 18 1 day, 20 hours, 18 min. 10,400
HP ASCIQ 9.9 x 1Y 7 days, 3 hours, 51 min. ~41,000
IBM ASCI White 8.96 x 18/ 7 days, 21 hours, 53 min, ~45,000
PixelFlow (CipherFlow)* 1.04 x 1§ 1 year, 10 months, 10 days ~3,840,000
Thinking Machines CM-200 7.2x1b 26 years, 11 months, ~56,000,000
21 days.
Intel Pentium 4 5.5 x 10 35 years, 3 months. ~73,000,000
MasPar MP-1 1.6 x 10 121 years, 4 months. ~254,000,00(0
Table 11.4. Comparison of blind DES decryption times for various machines. * Data taken

from [Kedem, 1999].

169

11.3 Global optimization

The DAMP can also be applied to a much more broadly useful class of problems.
Many science and engineering problems can be posed as global optimization @roblem
which seek to find the largest or smallest value for an objective function over a donfen. T
challenge in solving these problems comes from the large number of variables|tpié m
local minima that deceive simple search algorithms. Consider the hypatludgiective
function shown in figure 11.3. This function has many local minima and the global minima,

indicated by the black arrow, has a very narrow "opening" for the searchhatgto find.

il
i o
QT T

Figure 11.2. A difficult, constrained objective function with many local minima. bldoek
arrow indicates the global minimum for this region.

Stochastic global optimization is a method of sampling an objective function at
random points in the problem space and comparing the results at each point. Since the time
required to exhaustively search the problem space at a resolution sufficient édubésiuar
too large using conventional machines, the best local minimum is chosen from locla¢sear

170

starting at a random set of starting locations. A new set of random pointsisd#hat
concentrates the search around the best-found solution. That is, the search continues but
focuses on a few of the last-best answers. Typical calculations for egule sactude the
objective function and sometimes numerical derivatives (gradients) at the pahd. |
objective function has a well-behaved and computable gradient, this can be usezhhs a lo
indicator of how to choose the next best solution to minimize the objective since the
objective is decreased along that direction. ghaglient descerapproach is very sensitive

to numerical instability because it uses the gradient to choose the next pampldt is also

very susceptible to getting trapped in local minima.

Parallel pattern search (PPS) has emerged as another technique used to optimize
difficult objective functions [Hough, 2000]. This method uses a search along each dimension
of the problem space to find the global minimum. The starting point for each iteratian of
search after the first is the optimal point from the last round of evaluationstethisque
has provable convergence to the minimum as long as certain rules are followgjdstng
the step size along each dimension and for comparing objective values are compared.

This approach to global optimization has been applied to continuous and mixed-
variable problems. The typical continuous-variable optimization problem is forahaate

follows.
minimize y = F(x)
where X = (X;, X3, X3, ., X 0O X, and
y 0y.

The formulation above can be re-stated as a minimization of a fufictiwat is
subject to input and output constraints. Thatsighsough x must belong to an allowable
set of inputsX and the outpug must belong to an allowable set of outpdtsGenerallyN is
less than fifty and several thousand iterations are required to converge to tkolnast
minimum [Audet, 2000; Hough, 2000; Zitzler, 2000; Fieldsend, 2002].

The DAMP can be used to solve continuous variable minimization problems that are
much larger in dimensionality than those solvable today. The pseudo code below can be

used with 32-bit fixed-point variable optimization problems. The vegt the best-known

171

solution after each step. The problem space is spanned by a positive spafhibigidetre
d; is a unit vector fronD along the'l' dimension of the problem space. The functiog(C
and G(y) are used to verify that the input and output vectors, respectively, satisfy the

problem constraints.

The program listed below is run at each processor node. Since thef® are 2
processors per node, the random number generated at each processor has only 28 bits of
significance. This means that to cover a 32-bit random number space each proasssor m
run the program 16 times with a new 4-bit low order value each time. The &kJus,
simply incremented between loops. Each processor tak#s @&sd uses it to compute a new
input vector. The particular dimension that the processor seatbhal®ig is specific to the
processor node. The new input vector is checked against the input constraints anard they
satisfied the functionF) is evaluated. The output from the objective function is checked
against the output constraints and if they are satisfied the processor pagicipa
minimization query, or MIN-QUERY. This query is conducted by the processor node and it
searches, bit by bit, for the smallest objective function value found by anypobasssors.
More details on the MIN-QUERY operation are given below the pseudo-code.

For each processor node j (PNj),

For each processor at node PNj, k, (k is a random 28-bit 1integer)
1: Ak = k << 4;
: evaluate and verify C(xk + dj-ak)

: evaluate y = F(xk + dj-ak);

: participate in MIN-QUERY(y, xk + dj-Ak)

2
3
4: evaluate and verify C,(y)
5
6: Ak = Ak + 1;

7

: repeat 16 times from step 2.

The firstfor statement must be executed sequentially on the DAMP. Once the
program has been run, tgsolution vector that best minimizes the objective function is

chosen for the next round.

12 A positive spanning set is a set of vectbas tan be combined using non-negative scalax o &l

possible vectors in a constrained space.

172

The secondor statement in the program can be distributed in parallel to the 4,096
processor nodes available on the DAMP. The tiorétatement can be run in parallel on all
the processors within a node because they each use thé;satt®@r in calculating a neXk
vector. This means that the DAMP can, in parallel, optimize a 4,096 dimension (M = 4096)

32-bit fixed-point problem per round of the program above.

The following discussion provides an analysis of the program’s execution time.

1: Ak = k << 4;

Step 1 first requires the random integeo be loaded. The LOAD instruction can be
used for this. The multiplication can be implemented by either performing 4lldefic
shifts, or a multi-word circular right-shift by 28 bits followed by a logicBlDAwith
OXFFFO. This step will take no more than 2,000 cycles.

2: evaluate and verify Cx(xx + dj-ak)

3: evaluate y;i = fi(xk + d;-ak);

4: evaluate and verify C,(y)

The constraint functions and objective function need to be preprocessed before being
executed on each processor within a node to fit within the memory limitations. Sthce ea
processor node is responsible for a single search dimension, it is possible tgptedben
value of all terms involving variables other thgn The other variables can be combined to
form a function of the single variabk since all the other variables will remain constant at
the f" processor node. If we consider the precomputation of the single-variable form of the
constraint and objective functions to be part of the problem description, then we need only
consider the complexity of the resulting functions to estimate the executietistep 2.

If the constraint and objective functions can be decomposed into a sum of terms that
does not exceed the number of variables in the prolerthen we can use this as an
estimate for the evaluation complexity. Each term will have a precomputaglmuthat
represents the contribution of the other variables and will only need to have thieutmmtri
of X calculated. Each processor must perform this calculation Xjieéncremented byk,
which is a processor-specific value. The calcula¥on X; + 4k will not require more than
300 cycles. If each term requires sixty-four 32-bit additions (316 cycle} &aath
multiplications (10,112 cycles each) then the entire function (4,096 terms) wilte&JaB x

173

10° cycles, or 6.8 seconds if the DAMP is run at a 400 MHz clock rate. That is, each
constraint functionC, andC,, and the objective functiof(x), has an estimated execution
time of 6.8 seconds. Therefore, steps 2 to 4 will require 3 x BBseconds on the DAMP.

5: participate in MIN-QUERY(y, xx + dj-ak)

MIN-QUERY (a, b) is a routine that first queries the processors within a [garces
node for the minimum valu@, and then collects the argumdmntthat generated the
minimum value. The DAMP has enough register memory to store boyivéiee and they
+ dj-Ak argument and participate in a 32-bit MIN-QUERY. The value being minimyzésd,
first loaded into the accumulator and RO. This pair is then used in a 32-bit value binary
search (see section 11.1) that requires ~44,000 cycles.

6: Ak = Ak + 1;

Step 6 is a simple 32-bit increment of the currdntwhich will not require more
than 340 cycles.

7: repeat 16 times from step 2.

The total program from step 2 up to step 7 requires ~2.7 gybles to execute, or
4.3 x 16° cycles after looping 16 times. Therefore, the DAMP can completely sample a
objective function with 4,096 dimensions at 32-bit resolution and return the best solution in

110 seconds.
Example problem

Solving mixed-variable optimization problems is an important application of these
optimization techniques to real engineering problems. The thermal intprogpgm is one
such application [Audet, 2000; Kokkolaras, 2000]. The brief definition of this problem,

illustrated in figure 11.3, goes as follows.

174

o % %

e e

PENSE SIS e
;‘&‘M"ﬁf“é&

-

R%S%a’.%%w%

Y EETS RN
Fa9533399a33

Figure 11.3. Thermal intercept problem. N shields are placed between g)randTcold
(Tc) side. Each shield is padded with a slab of insulating materiak;lthick and must
maintain an interface temperature with the next shield.of T

The number, thickness, composition, and refrigerated interface temperature of a set
thermal intercepts, or heat shields with insulation, put within a thermal gra@ietat Tc) is
to be determined by minimizing a set of objective functions. The objective functions are
typically power and entropy change through the stack of intercepts, with tesexd®nal
area of the shields being fixed [Kokkolaras, 2000].

The insulating material is chosen from a library of materials making timxed-
variable problem. That is, the composition of the intercept is determined by an ihtgger t
has no meaning in the problem except as an index for choosing material propedess [
2000]. Typical problems must limit the size of the material library to about 3iedater
because of the exponential growth of the problem difficulty as the librarysgrbar
example, a thermal intercept problem whitfpossible materials and upbshields has M

different configurations. For largéthis problem becomes extremely difficult to solve.

We can calculate the performance of the DAMP on this problem by considering the

power equation (11.1) used in the optimization objective function.

175

Tin

[k, @ }Ki(T)mIT

P =AT f 1 —1|pT -1
T, AX, DX, (11.1)

The summation of equation (11.1) over all heat intercepts forms the complete

objective function shown in equation (11.2).

M

f(AX,T)= 21: P (11.2)

=
This problem can be distributed over the processor nodes of the DAMP with the first

4,096 possible material configurations each handled by one node. That is, Yfpbedible

configurations, each processor node is responsible™dr4096 configurations. This can be

thought of as splitting the first IGA096) levels of the N-ary (N branches at each node)

configuration tree among all the processor nodes. The remaining levels ohtigei@tion

tree are handled by the random distribution of processors within each node. That is, each

processor must evaluate equation (11.2) for one of the4096 remaining configurations

from its processor node, or the next @™ / 4096) = M - log(4096) levels of the

configuration tree. These configurations can be chosen randomly by usifid) logM -

logn(4096)) of the 28 unique bits from each processor in the node. The ngkt)lbgs of

the remaining random bits can be used to choose one of the 2-M dimensions to search.

This leaves a remaindé®,= 28 - log(N) - (M - logy(4096)) - log(M) random bits
for use as the particular value along the dimension selected by the procedsodesired
precision,P, is greater thaR then 2* R iterations must be executed, incrementing the
variable between loops, to cover the erfiirieit dimension as was done above. Figure 11.5

illustrates the distribution of processors for N=8 and M=8.

176

.
-

- .
Processor Node ; .~ Processing Element

Choose _
lestdlovels | Chowe | Speafseah
¢ of confi ti i ! : 4+— Runtime —»
P N O (axor Ty d- Ak

<«— 12-bits —» «— 12-bits —pe4-bitspe— 12-bits —»
~

-
-~
.

Figure 11.4. Distribution of processing elements to solve the N=8, M=8 thermakjiter
problem.

If P=16, the program will need to be ruf) @r 16, times to cover the space since
there are only 12 bits dedicated to a specific search value along the dimeresiteddsy the
processor. Each processor chooses a dimension to search along by usingMhédisy(as
before) to select what variable in equations (11.1) and (11.2) to exchange for itedpecifi
search valueAk. The values for the other variables (that are not the selected variable) are
taken from the last best answer. These are lumped together and precompuatieel &0 m
unique "compressed" equation for each dimension. Thai\sgquations can be made from
equations (11.1) and (11.2) by extracting a single dependent variable and tiéatimgy s
as constants. Each processor waits until it is time to compute the value of thenfitrs
chosen by selecting a dimension to search along, so that at any time ~((2-2BAMLyf the

processors are idle during this period.

The material specific properties of the insulating materigl)kn equation (11.1),
must be broadcast to all the processors within a node because they do not have sufficient
memory to store the data locally. The integration of the table of data can bmputed in
discrete intervals and sent to the processors for accumulation. That is, if@sprowseds to
calculate the KT) integral from (11.1) because it is searching along €an use its
integration limits to control when it starts accumulating values and whap#, since all

values of the KT) integral will be broadcast. Since an interval will not necessaritysta

177

end at the same Value as the processor's integration limits, a correction needs to be made to
the accumulated sum because it will be an overestimate if the interval etef@teaf

particular upper integration limit. Since only one of the limits will be $eardy any single
processor, the other limit (a constant in this case) can be used to adjust theoptedom
integration values so that the first (or last) interval begins (or ends abhstant limit,

evenly. Considering the case where the lower limit of integration is fixed, sanchizg) that

the K values are constant within each interval we can use the corr€ction

K, (T)T

> C—y W

C=

, Where A<T; <B.
B-A !
The overestimate in the accumulated sum can be corrected by sub@afBndr),

from the accumulated sum.

The look-up-table and integration step is implemented as follows.

ACC = Si, // Current integrated sum, zero initially
RO = Ti+l, // The upper 1limit of the integration
R1 = C // Correction factor for the interval 1in

// which this processor's integration ended.

R2 =S // The integrated sum, so far. (Zero initially)

1: ADDI(Si) // Accumulate the next interval

2: STORE(R2) // Save it..

3: LOAD(C) // Load the correction factor for this interval

4: cosT(RO, R1) // save the correction, load the specific Ti value
5: ADDI(-T) // Subtract the current interval's end value (T)

6: WAITNLT // any processor that didn't end the integration at T...
7: SETB // all processors that DID end at T, set the B bit...

8: RESUME // all-aboard

9: WAITB // any processor that's done goes back to sleep...

LOOP from 1 to 9 for each entry in the table
There are a total of 1,100 cycles per entry for each integrated-tabiplasiented
above, or 281.6 x f@ycles for a 256-entry table. Figure 11.6 illustrates the power

consumption during a single loop through the program above. Since the program consumes

178

less power per instruction than the average integer instruction, the clockraie icareased
500 MHz and still remain under the 3.5 MW power budget. All other instructions will be run
with a 400 MHz clock rate. To simplify comparisons, the discrepancy in the two ctesk ra
can be accounted for by reducing the cycle count per look-up-table entry bydlod the

two clock rates, or 1.25, to yield the same execution time at the faster dimobrrad.2 ps

per entry. That gives an effective cycle count of 880 cycles per table entry, or 228728 x

cycles for a 256-entry table.

T
Mean Power

Power (UW)
NN WWWWWww
© OWRNWArUION

8e-12

T
Total Energy

Power " 1 7e-12

©

R

4 6e12

5e-12

3

- 4e-12

Energy

Power (UW)

- 3e-12

. 2e12

i 1e-12

0 5e-07 1le-06 1.5e-06 2e-06
Time

Figure 11.5. Power consumption of one look-up-table iteration. This program must be
executed for each entry in the table.

The correction step can be taken after all tables have been integrated and can be
executed in parallel. Table 11.5 lists the estimated number of cycles foatatpll.1)
and (11.2). The functions that involve the look-up-table integration, used by processor's
searching alvariable, are more complex than the simpl¥r search functions (since they
do not use integrated material data) and will be used as an upper bound on the execution

time.

179

Equation (11.1)

Instruction class Count Total DAMP cycles
additions - subtractions 2 316
multiplications - divisions 6 30336
256-entry look-up-table & integration 2 * N 450.56 X’ TN
Correction step (2 adds & multiplies) 1 61304
Total | T11.1= 450.56 x 16* N + 91956

Equation (11.2)

Instruction class Count Total DAMP cycles
equation 11.1 M M*Ti1
additions - subtractions M M * 158
Total M * (158 + Ti1.9)

Total after 2°® jterations

2P R % M * (158 + Ty)

Table 11.5. Estimated cycle counts for evaluating the heat shield objective funithi@ w
mostM thermal intercepts and possible insulating materials. All instruction counts are for
16-bit operands except for multiplications and divisions.

Execution time

5min |
30sec

lsec

L L
e

2> R Y Y oo o

e — —

L] Vo= T

e e v

s e

e 25 e~

e s A L e S s Y Vi L e L2

e <
B

B e e

No. of heat shields (M)

e ey

—
‘
Z52 2 k52
e

2T TR 225
e

’I-~ e e a Eav

...'
L7 >
Wi it W iy g L W
SN b e Ny e NN
>

.'.."'.ﬁ. 7 T2 <k
| " /" T
LT L T T] [z e

2222

]

sl

227
"'

S e e -
22T
22252

Z 2> ..'../

=

./

..'".

27 ’..,...
<%/

<=

16

No. of materials in library (N)

Figure 11.6. Tradeoff between library size and maximum number of heat shields. The
surface depicts the execution time on a 400/500 MHz DAMP.

180

The same instruction counts listed in table 11.5 can be used to determine the
performance of the nearest competitor to the DAMP, the NEC EarthSimuidia few
modifications to make the program more efficient on that machine. To simplify the
comparison, N=16 and M=8 will be used to calculate execution times. As shown in figure

11.7, the DAMP can solve this problem in ~5 minutes.

The NEC EarthSimulator (ES) has 640 nodes with 8 processors per node, 16 of the
total processors are devoted to supervisory roles leaving 5,104 processors for problem
computation. Since each processor has ample memory space to store matdfialdata,
the look-up-table and integration step can be reduced to about 10 instructions (ignoring
address calculations) per entry in the table. If we use a 256-entry tableatmeaimum
instruction count for the look-up and integration is 2,560 instructions since each entry must
be broadcast to the processors (i.e. each amglgtbe used.) This leads to 5,128
instructions to evaluate equation 11.1. The combination of objective functions in equation
11.2 requires 8-5128 + 8 = 41,032 instructions. That is, 41,032 instructions are required to
evaluate a single configuration of heat shields for a single instanceadrttieuous

variables T; andX)).

Since the heat intercept problem is a 2-M dimensional problem and M=8, or 16
dimensions, each processor can choose one dimension to search along for a total of 5104 / 16
= 319 processors devoted to a single dimension. Since theré® aenfifurations of
insulating materials (an 8-level 16-ary tree), each of the 319 processatsrsgar one
dimension must handle 13.46 x°1fhique configurations. Also, in order to cover the entire
16-bit input space along a single dimension for each configuration, every pracessoun
the program 2 times, incrementing itak value between loops.

The total instruction count is therefore 41032 instructions / configurAtibB.46 x
10° configuration - dimensions / proces¥o2*® processor - cycles / dimension =5.52 ¥10
instruction - dimensions / proces3o2'® processor - cycles / dimension = 3.62 ¥10
instruction - cycles. Since each processor of the ES can execute ~886-bid integer
instructions per second, the entire problem will take 3.62'%id6tructions + 6.8 x 18 16-
bit instructions per second = 5.32 X’ B&conds, or ~6 days. That is, the DAMP covers the

same space at the same resolution ~2,000 times more quickly.

181

182

Appendix A. DNA-functionalized single-walled carbon nanotubes

[Published as "DNA-functionalized single-walled carbon nanotubes”, Dwysdr, 2082]
Prologue

The use of carbon nanotubes in a self-assembling fabrication process apest;s, at
to be quite practical. The novel electronic properties and controllable doping of carbon
nanotubes makes this seem even more plausible. However, the single moledslérathel
make a single-walled carbon nanotube are by virtue susceptible to point defecés tha
dramatically alter the electronic behavior of the nanotube. Doping of carbonubesbias
been demonstrated but most use vapor-phase donor or acceptor ions that must adsorb to the
nanotube surface. Doped carbon nanotubes have even been used in depletion mode field-
effect-transistors but are still extremely sensitive to environmeatalitions. Any
molecules, like the donor or acceptor ions, that adsorb to the nanotube sidewall villealte
electronic behavior of the system. It is for these reasons that we ose sdinorods in place

of carbon nanotubes for use in self-assembled computer fabrication.
I ntroduction

We present here the use of amino-terminated DNA strands in functionaliziogghe
ends and defect sites of oxidatively prepared single-walled carbon nanotubes, @&animpor

first step in realizing a DNA-guided self-assembly process for carbon nasotube

The unique electrical properties of single-walled carbon nanotubes (SWidke) m
them good candidates for a self-assembling process that can controllabgtdotranic
circuitry. Control over the assembly process may be derived from the selentiuey of
complementary DNA strands as in [Mbindyo, 2001]. This work represents a step toward the
DNA-guided assembly of carbon nanotubes by demonstrating that the well-knowicalhem
pathway already discovered to attach amino-terminal compounds to carbon nanotisoes is a

compatible with DNA functionalization [Liu, 1998]. Previous work in the field of nanotube-

DNA self-assembly has focused on either non-covalent associations betweemtobes

and DNA molecule [Guo, 1998] or the self-organizational properties of a carbon nanotube /
DNA system [Buzaneva, 2002]. Other studies have explored the use of DNA selblgssem
and frayed wire systems [Batalia, 2002]. While these studies illuminate ourtandéarg of
self-organizing systems, our work focuses on developing a controllabletdgsgstem.

We hope that one day a high level of control will be possible by using the hybridization of

covalently bound DNA strands on carbon nanotubes.

The single-walled carbon nanotube material, as formed by a laser ablatimu mgt
first purified in nitric acid and then oxidized in a sulfuric and nitric acid mixasrdescribed
by Liu [Liu, 1998]. The product of this purification is a solution of open-ended nanotubes
with terminal carboxylic acid groups. The carboxylic acid groups candséecewith
primary amine compounds by any of several condensation reactions [Hendrickson, 1970].
The reactions couple the amine compound to the nanotube by way of an amide bond [Wong,

1998]. Figure B.1 illustrates the basic chemical pathway we have used in tkis wor
HNO
) —— Hooc(JID)-CcooH

\MNHZ EDC
\
\MHNOC—E}CONM/

Figure A.1. DNA/nanotube reaction scheme. Capped nanotubes are oxidatively omgened a
then reacted with amine-terminated single-stranded DNA.

A.1 Materials and Methods

Linking DNA strands to the nanotube requires specially prepared DNA strands.

Amino-terminated DNA strands can be purchased from commercial supplics.the first

13 Operon Technologies, Inc., Alameda, CA, http://weperon.com

184

set of experiments described here, we usedM @mino-terminated DNA"*>which had
been purified using polyacrylamide gel electrophoresis (PAGE) by tidowe Our second
experiment used 51ig/mL of lambda-DNA extracted from bactéfia

We have imaged the functionalization of the as prepared single-walled carbon
nanotube material (diluted in DMF) and the amino-terminated DNA strand oligo 1 and
carboxylic-terminated DNA strand oligo 2 B radioisotope PAGE. Oligo 2 serves as our
control to determine that the DNA does not non-specifically interact with the nanotube
material. We expect the low mobility of the SWNTSs in the polyacrylamideogeietvent
any bound DNA from migrating at its normal rate through the gel. DNA strargiateni
through a gel because their charged phospho-diester backbone interacts with ttle applie
electric field. Shielding effects limit the force that can be appliedys@and and this
means that strands will move at a rate that is inversely proportional to tigth.|€The
longer a strand is the greater the number of interactions that strand wilitlake gel,

thus slowing its progress through the pores of the gel.

The DNA strands were first labeled withP+y-ATP using a T4 kinase enzyie
Each of the following were added to a 0.5 mL microcentrifuge tuhé:df oligo 1 or oligo
2 (10puM), 10 pL **P+y-ATP (3.3uM, 3000 CifiL), 1 uL T4-polynucleotide kinase (10 units
/uL), 6 uL 5x T4 reaction buffer (as described in the enzyme specification sheet, with the
exception that no DTT (dithiothreitol) or Tris-HCI was used)ulLzhanopure HO (18.2
MQ). The replacement of the Tris-HCI with PBS (phosphate buffered saline)Heomat
kinase reaction buffer was required to prevent side reactions between theyaeyapsgeon
Tris with the carbon nanotubes. Since Tris is smaller and more mobile in solutioheghan t
DNA strands, it will dominate the competition for carboxylic acid sites on the nasotube
DTT was omitted from the reaction protocol to eliminate unnecessary additives. Th
labeling reaction was incubated at 37°C for 2 hours and then heat killed for 3 minutes at

14 0ligo 1 sequence: 5'-NH ATG GTG GAT AGG CGA CTC AAG GGC-3'
5 0ligo 2 sequence: 5-TTT TTT TTT TTT TTT TT-COOH-3
16 L ambda-DNA cl857 Sam7 isolated frdEn coli strain W3350, 48,502 bp in length, Promega CaiBA.

Y T4-polynucleotide kinase arfiéPy-ATP, Amersham Pharmacia Biotech.

185

>65°C. Following the heat kill, each DNA strand was purified from the kinaseaearsing

a phenol extraction.

The*?P labeled oligo 1 and diluted SWNT material were added to 50 mM-Eb@
incubated at room temperature for 24 hours. Eight reactions were prepared using 4, 2x, 4
8x, 16x, 32x, 64x, and 128x dilutions of &fiml of SWNT in DMF and labeled as reaction
A. Two control reactions were performed with one having no EDC ang/®s0 SWNT
(A9) and the other having no SWNT material (A10). The second set of reactions, reaction B
was identical to reaction A but used oligo 2 instead of oligo 1. Oligo 2 should have no
primary amine groups for reaction with the SWNT material due to its sequolge (

thymine has no primary amine groups.)

The products of reaction A and reaction B were loaded on to a 10% denaturing
polyacrylamide gel using a loading buffer (30% glycerol, 25 mM EDTA, and 0.01%
bromophenol blue and xylene cyanol.) In addition to the previously described reactions, a
sample of the purified oligo 1 and oligo 2 (A1l and B11) was loaded as well as the kinase
reaction product (A12 and B12) from which they were each purified. Each reaction was
heated to 100°C for 3 minutes before loading on the gel to denature any non-specific DNA
binding. The gel was pre-run for 1 hour using TBE, pH 8.9, buffer (Tris-HCI, borate,

EDTA). Following the pre-run, the gel was loaded with samples and run for 3 hours at ~900
V, 80 mA, with a closed-loop controller maintaining a constant power of 65 W by varying
the plate voltage. The gel slab was then imaged by exposure to a radioisotopig imagin

screen for 15 hours. A screen scanner was then used to acquire a digital imagelof the ge

We performed the second experiment to verify the reactivity of DNA with\MRTS
material. We reacted lambda-DNA in place of the short oligos under the sam#&osndi
described above. Lambda-DNA will react with the carboxylic acid groups onNNINTS
because of the primary amines found on the many A, G, and C nucleotides the DNA
contains. Approximately 10 mg EDC, 100 lambda-DNA, 30QuL SWNT material, and
600uL nanopure HO were mixed and left to react at room temperature for 1 hour. The
relative insolubility of the SWNT material in,® compared to the modest solubility of DNA
in pure BO reduces the chance for non-specific adsorption of the DNA to the SWNT

18 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide Hymhloride, Sigma-Aldrich.

186

material. 1QL of the reaction product was deposited on UV cleaned (6 minute exposure,
rinsed with nanopure 1@, repeated twice) silicon with a native oxide layer. The silicon
sample was then rinsed with nanopug®kand dried under a stream of dry. N'he sample
was then immediately placed into the load lock chamber of a Hitachi S-4700 SEM and
pumped down to approximately 1@orr. The sample was then imaged using typical SEM
parameters for non-conducting samples. Figures A.4 and A.5 show that the lambda-DNA
will readily form clusters with varied attachment points to the SWNTSs itidgéhat there

may be multiple carboxylic acid binding sites at the end and along the silefle

SWNTSs.

A.2 Results

As expected from the dilution series of A1-A9, we see in figure A.2 that there is a
steady decline in the amount®P-labeled DNA retained at the top of the lanes. Since we
expect the reaction to greatly, if not completely, reduce the DNA mobility in the
polyacrylamide gel we expect to see a correlation between the mobiliSAVENT
concentration. Accordingly, as we reduce the concentration of SWNT matesakwe
greater amounts of labeled DNA run down the gel lanes indicating that |esssiding
immobilized. Lane A10 demonstrates the non-specific immobilization “backgradfride
series since it has no SWNT material. Lane A1l and A12 visualize the cleanedyarad or
kinase labeling products. In particular, lane A12 indicates the importance of ngntio®i
by-products of the kinase reaction by the large degree of variation in strandynaokiliis
variation is likely due to any number of binding events between the kinase and DNdsstra

that reduces the strands mobility through the porous gel.

187

0 A12 B4 B8 B10 B12
Bl Bf l75 B7 ? Bl1

Figure A.2. Polyacrylamide gel of reactions Al-Adid B1-
B12. The material bound at the top of A1-A9 indésa
successful SWNT-DNA linking.

Because the oligo 2 used in reaction B has no primary amine groups, we do not
expect it to react with the SWNT material. Further, since oligo 2 is shioateiotigo 1 (17
nucleotides versus 24 nucleotides) we expect oligo 2 have higher mobility in theagek L
B1-B9 demonstrate this by a large amount of DNA moving through the gel withittiery |
being immobilized at the top of the lanes. Lane B10 was used to characteriaektpobnd
immobilization, near zero in this reaction, and B11 and B12 were used to demonstrate the
quality of the cleaned and original kinase products using oligo 2.

188

When the ratio of DNA bound at the top of a lane to the amount of DNA in the gel
from reaction A is plotted, we should see the exponentially decreasing diluties. sErgure
A.3 plots this ratio as calculated from the gel image in figure A.2. The e from
Al to A1l is clearly decreasing. The smeared-out background signal seen ongsidla
A9 indicates that the reaction conditions widely alter the mobility of the Didh@s. This
may be caused by unwanted reactions of primary amines on the A, G, and C nucleotides of
oligo 1 with the phospho-diester backbones of other strands. The many amino- and
phosphate groups available for this reaction could explain the wide variation in thi&ymobil

of the products.

A.3 Conclusions

DNA-SWNT Linking (Reaction series A)

Ratio of bound DNA : total DNA

Al A2 A3 A4 A5 A6 A7 A8 A9:no Al1l0:no All:no
EDC SWNT SWNT /
no EDC

Figure A.3. Plot of the ratio of DNA immobilized at the top of a well to the total DiN#d
in the well from reaction A. Reaction B appears to have little bound DNA.

We have shown that SWNT material can be functionalized with modified DNA. This

form of chemical modification is the first step toward implementing a RNKEed self-

189

assembling process capable of directing the placement of SWNTs. The vwsmktpdehere
in concert with work performed by other groups in DNA metallization [Richter, 20@i] a
self-assembly [Mbindyo, 2001; Gracias, 2000] presents the start of a compeglingeat

for the feasibility of self-assembled molecular-scale electromsieBys.

Figure A.4. Lambda-DNA cluster attached to defect sites and ends of a SWN#&.bundl

Figure A.5. Lambda-DNA clusters on SWNT bundles.

190

Appendix B. Source Code

All source code created in the support of this dissertation can be found on the

accompanying compact disc, and on the dissemination page at www.cs.unc.edu/nano.

192

Appendix C. DAMP instruction set implementation

The following tables describe the implementation of the instructions built into the
behavioral simulation described in chapter 9.

To save space, some conventions will be used to indicate how the processor is
signaled. Each instruction will have two columns, the left column will indicatevgigmals
from the control registers will be asserted. The second column will indicate hoyv ma
cycles will be clocked using these values. For example:

ERC 1
ESA, ESR, EESD, EEC 16

This means that the "enable reset carry-bit" (ERC) is set in the cargrsiars (last
bit in S7) for one clock cycle, and that the enable - "shift accumulator” (ES#), register”
(ESR), "enable set D-bit" (EESD), and "enable carry-bit" (EEC}etrén the control register
for 16 clock cycles. The "enable" signals are set in such a way that thegaaes if any
others are set. That is, the second line in the box above removes the "ERC" sigyal simpl
because it does not appear. Multiplexers, on the other hand do not to be re-specified on each
line (i.e. they retain their previous setting.)

There are several control register bits that select the output of multglekeese
values are cumbersome to read and understand without using symbols. Since each
multiplexer has only a single output, it is useful to describe each by the namedlgm in
the implementation figures above. For example, LC2 can select the output from R3B, R2, R
or R4. Therefore, the notation "LC2 = R3" signifies the bits that would be set in thel contr
register to make LC2 select the output of R3, or LC2a=1 and LC2b=0. This notation will be
used with each multiplexer including LC1, LC2, AC, RCO, RC1, RC2, RC3, RC4, WC1, and
WC2.

In the event that an argument to the instruction is needed to select the processor
signaling (e.g. choosing a register to copy into the accumulator), the notfgoguiinent-
condition, then-clause)" where the argument-condition is a Boolean condition thesfiédat
by a particular argument will cause the then-clause to be used to ggmecatesor signals.
For example, since the selection of a register output is common, "select{i®X)E used to

denote the following:

if(RX=0, LC1=R0)
if(RX=1 .. 4, LC1=LC2) (any number)
if(RX=1 .. 4, LC2=RX)

This means that the LC1 and LC2 multiplexers are set to present the output from any
of the registers, RO through R4, to one of the inputs (LC1) of the AC multiplexer. This

notation will be used frequently with register-register operations.

It is occasionally necessary to select the bits from an immediate valudqu@s an
argument to an instruction. The notation "imml[i]" will be used to indicaté"tbi from the

immediate value with the least significant bit starting at i=0.

Please refer to section 8.1 for the details about the semantics for eachiamstruct
below. Each of these instructions was implemented as shown and verified using the
behavioral simulation described in chapter 9.

ADD(RX)
ERC 1
select(RX) 16
ESA, ESR, EESD, EEC
ESA 1
ADDC(RX)
select(RX)
AC=S 16
ESA, ESR, EESD, EEC
ESA 1

194

ADDI(constant)

AC=S

ERC 1
LC1=LC2b
LC2b=imm[i]
it 16
ESA, EESD, EEC
ESA 1

ANDI(constant)

LC1=LC2b
LC2b=0

if(imm][i]=0, AC=ACC)
ifimml[i]=1, AC=LC1)

i++
ESA

16

ASR(N)

LC1=LC2b
LC2b=0 1
EESD, ERC

AC=S
ESA

CLEARB

LC1=LC2b
LC2b=0 1
EEB

CLEARC, CLEARD

CLEARC: ERC
CLEARD: ERD

1

195

CMP

ERD, ERC 1

LC1=LC2b
LC2b=0
AC=ACC

ESA, EESD

16

CMPI(constant)

AC=ACC
LC1=LC2b
LC2b=0
ESC, ERD

ifimmI[i]=1, LC2b=0)

ifimm{[i]=0, LC2b=1)
1++

ESA, ESC, EESD

16

CMPI8(constant)

AC=ACC
LC1=LC2b
LC2b=0
ESC, ERD

1

ifimm[i]=1, LC2b=0)

if(imm[i]=0, LC2b=1)
1++

ESA, ESC, EESD

COPY(RX)

AC=LC1
select(RX)| 16
ESA, ESR

196

COPYH(RX)

AC=LC1
LC1=LC2b
LC2b=0
ESA, ESR

ESA 1

select(RX)
ESA, ESR, EESD

AC=S
ESA

COPYL(RX)

AC=LC1
select(RX) 8
ESA, ESR

ESA 8
ESR 8

COST(RX1, RX2)

AC=LC1
select(RX1)
RC(X2)=ACC
ESA, ESR

16

RC(X2)=RX2 0

CSR(N)

AC=ACC

ESA N

DEC

AC=S
ERC

LC1=LC2b
LC2b=1 16
ESA, EESD, EEC

ESA 1

197

GRAB(N)

AC=ACC
LC1=LC2b
LC2b=0
ESA

ESA, EESD 1

ESA 15-N

INC

ESC

AC=S
LC1=LC2b
LC2b=0
ESA, EESD, EEC

16

ESA

LOAD(constant)

AC=LC1
LC1=LC2b
LC2b=imm[15]
ESA

LC2b=imm[i]
i++
ESA

16

LSR(N)

AC=LC1
LC1=LC2b
LC2b=0
ESA

LSRC(N)

AC=C
Esa | N

198

MCOPY (constant, RX)

select(RX)
if(imm[i]=0, AC=ACC)
if(imm[i]=1, AC=LC1)

ESA, ESR

16

NOT

AC=S
LC1=LC2b
LC2b=0
ESC

ESA, ESC, EESD| 17

ERC 1

ORI(constant)

LC1=LC2b
LC2b=1
if(imm][i]=0, AC=ACC)
ifimml[i]=1, AC=LC1)
ESA

16

RANDOM

EL 1

RESUME

C1=0, C2=0, C3=0

RINGOFF, RINGON

RINGOFF: LC1 = LC2b
RINGON: LC1 =1!LC1

W SETGE, SETLT, SSETNGE, SETN

ETNGE, SETLT: ER
)ETGE, SETNLT: ES

1

199

SETB

LC1=LC2b
LC2b=1 1
EEB

SETCREG(constant)

Cl=imm[2]
C2=imm[1]

C3=imm[0]

SETC

ESC| 1

SETSREG(constant)

SREG(C)=imm

SIGN

AC=ACC
LC1=LC2b
LC2b=0
ESA

15

ESA,EESD| 1

STORE(RX)
AC=ACC

RC(X)=ACC | 16
ESA, ESR
RC(X)=RX | 0

200

STOREH(RX)
AC=ACC g
ESR
RC(X)=ACC | 4
ESA, ESR
RC(X)=RX o
ESA
STOREL(RX)
AC=ACC
RC(X)=ACC | 8
ESA, ESR
RCO)=RX | 4
ESA, ESR
WAIT*

WAITB: WC1=B, WC2=WC1

WAITNB: WC1=B, WC2=IWC1

WAITC: WC1=C, WC2=WC1

WAITNC: WC1=C, WC2=IWC1

WAITD: WC1=D, WC2=WC1

WAITND: WC1=D, WC2=IWC1

WAITS: WC1=S, WC2=WC1

WAITNS: WC1=S, WC2=IWC1

WAITGE, WAITNLT: WC1=C, WC2=WC1
WAITNGE, WAITLT: WC1=C, WC2=IWC1

XOR(RX)
AC=S
select(RX) 1

ERC

ESA, ESR, EESD, ERC 16
ESA 1

201

202

BIBLIOGRAPHY

[Adleman, 1994] Adleman L. M., "Molecular Computation of Solutions to Combinatorial
Problems", Science, 266, 1021-1024, 1994.

[Alien, 2003] Alien Technology, Inc., Morgan Hill, CAttp://www.alientechnology.com
2003.

[Audet, 2000] Audet C., Dennis J. E., “Pattern search algorithms for mixed variable
programming"SIAM Journal on Optimizatigril (3): 573-594, November 2000.

[Batalia, 2002] Batalia M. A., Protozanova E., Macgregor R. B., Erie D. A. , “Sedfrddy
of frayed wires and frayed-wire networks: Nanoconstruction with muhidéa
DNA”, Nano Letters2 (4): 269-274, April 2002.

[Biham, 1997] Biham E., "A Fast New DES Implementation in Softwdre€hnical Report
CS0891 Technion - Israeli Institute of Technology, 1997.

[BlueGene, 2002] Adiga N. R., Almasi G., Alimasi G. S., Aridor Y., Barik R., Beece D.,
Bellofatto R., Bhanot G., Bickford R., Blumrich M., Bright A. A., Brunheroto J.,
Cascaval C., Castafios J., Chan W., Ceze L., Coteus P., Chatterjee S., Chen D., Chiu
G., Cipolla T. M., Crumley P., Desai K. M., Deutsch A., Domany T., Dombrowa M.

B., Donath W., Eleftheriou M., Erway C., Esch J., Fitch B., Gagliano J., Gara A.,
Garg R., Germain R., Giampapa M. E., Gopalsamy B., Gunnels J., Gupta M.,
Gustavson F., Hall S., Haring R. A., Heidel D., Heidelberger P., Herger L. M.,
Hoenicke D., Jackson R. D., Jamal-Eddine T., Kopcsay G. V., Krevat E., Kurhekar
M. P., Lanzetta A. P., Lieber D., Liu L. K., Lu M., Mendell M., Misra A., Moatti Y.,
Mok L., Moreira J. E., Nathanson B. J., Newton M., Ohmacht M., Oliner A., Pandit
V., Pudota R. B., Rand R., Regan R., Rubin B., Ruehli A., Rus S., Sahoo R. K.,
Sanomiya A., Schenfeld E., Sharma M., Shmueli E., Singh S., Song P., Srinivasan V.,
Steinmacher-Burow B. D., Strauss K., Surovic C., Swetz R., Takken T., Tremaine R.
B., Tsao M., Umamaheshwaran A. R., Verma P., Vranas P., Ward T. J. C.,
Wazlowski M., Barrett W., Engel C., Drehmel B., Hilgart B., Hill D., Kasemkhani F.,
Krolak D., Li C. T., Liebsch T., Marcella J., Muff A., Okomo A., Rouse M., Schram
A., Tubbs M., Ulsh G., Wait C., Wittrup J., Bae M., Dockser K., Kissel L., Seager M.
K., Vetter J. S., Yates K., "An Overview of the BlueGene/L Supercomputer”, IEEE
SC2002, 2002.

[Braich, 2002] Braich R. S., Chelyapov N., Johnson C., Rothemund P. W. K., Adleman L.,
"Solution of a 20-variable 3-SAT problem on a DNA comput8cience296 (5567):
499-502, April 2002.

[Braun, 1998] Braun E., Eichen Y., Sivan U., Ben-Yoseph G., “DNA-templated assembly
and electrode attachment of a cor ting silver wikature 391 (6669): 775-778,
February 1998.

203

[Brown, 2002] Brown K. R., Lidar D. A., Whaley K. B., "Quantum computing with quantum
dots on quantum linear supportBhysical Review 265 (1): no. 012307, January
2002.

[Buzaneva, 2002] Buzaneva E., Karlash A., Yakovkin K., Shtogun Y., Putselyk S.,
Zherebetskiy D., Gorchinskiy A., Popova G., Prilutska S., Matyshevska O.,
Prilutskyy Y., Lytvyn P., Scharff P., Eklund P., “DNA nanotechnology of carbon
nanotube cells: physico-chemical models of self-organization and properties”,
Material Science Engineering, @9, 41, 2002.

[Clark, 2001] Clark T. D., Tien J., Duffy D. C., Paul K. E., Whitesides G. M., "Self-
Assembly of 10-um-Sized Objects into Ordered Three-Dimensional Arraysthal
of the American Chemical Society, 123 (31): 7677-7682, July 2001.

[Clark, 2002] Clark T. D., Ferrigno R., Tien J., Paul K. E., Whitesides G. M., "Template-
Directed Self-Assembly of 10-um-Sized Hexagonal Plates"”, Journal of teecam
Chemical Society, 124 (19): 5419-5426, April 2002.

[Collier, 1999] Collier C. P., Wong E. W., Belohradsky M., Raymo F. M., Stoddart J. F.,
Kuekes P. J., Williams R. S., Heath J. R., “Electronically configurable motecula
based logic gatesScience285 (5426): 391-394, July 1999.

[Cui, 2000] Cui Y., Duan X. F., Hu J.T., Lieber C. M., “Doping and electrical transport in
silicon nanowires”Journal of Physical Chemistry, R04 (22): 5213-5216, June
2000.

[Dongarra, 2002] Dongarra J., "Notes on the Earth Simulator", Computer Science
Department, University of Tennessee, 2002.

[Dwyer, 2002] Dwyer C., Taylor R., Vicci L., “Transport Simulation of a NanoscaieoSi
Rod Field-Effect TransistorProceedings of the"2IEEE Conference on
NanotechnologyArlington, VA, 601-604, September 2002.

[Dwyer, 2002b] Dwyer C., Guthold M., Falvo M., Washburn S., Superfine R., Erie D.,
"DNA-functionalized single-walled carbon nanotubd$dnotechnologyl3, 601-4,
2002.

[Dwyer, 2003] Dwyer C., Taylor R., Vicci L., “Performance Simulation of Nan@s8dlcon
Rod Field-Effect Transistor LogicTEEE Transactions on Nanotechnology press,
2003.

[Dujardin, 2001] Dujardin E., Hsin L.B., Wang C.R.C., Mann S., “DNA-driven self-
assembly of gold nanorodsChemical Communicationgl4): 1264-1265, 2001.

[Feldmeier, 1989] Feldmeier D. C., "A High-Speed Software DES Implementation”
Computer Communications Research Group, 1989.

204

[Fieldsend, 2002] Fieldsend J.E., Singh S., "A Multi-Objective Algorithm based upon
Particle Swarm Optimisation, an Efficient Data Structure and Turbulence”,
Proceedings of the 2002 U.K. Workshop on Computational Intelligence, 37-44, Sept.
2002.

[FEMLAB, 2003] ComSol, Inc. http://www.femlab.com, 2003.

[Goldstein, 2002] Goldstein S.C., Rosewater D., “Digital Logic Using Molecula
Electronics”, IEEE International Solid-State Circuits Conference, 2002.

[Gracias, 2000] Gracias D. H., Tien J., Breen T. L., Hsu C., and Whitesides G. M., "Forming
electrical networks in three dimensions by self-assembly”, Science 289, 1170-1172,
2000.

[Gudiksen, 2002] Gudiksen M. S., Lauhon L. J., Wang J., Smith D. C., Lieber C. M.,
"Growth of nanowire superlattice structures for nanoscale photonics anomilety
Nature 415, 617-620.

[Guo, 1998] Guo Z. J., Sadler P. J., Tsang S. C., “Immobilization and visualization of DNA
and proteins on carbon nanotubesdyvanced MaterialslO, no. 9, pp. 701-3, June
18, 1998.

[Head, 2001] Head T., "Biomolecular Realizations of a Parallel Architeatui®diving
Combinatorial ProblemsNew Generation Computing9, 302-312, 2001.

[Heath, 1998] Heath J. R., Kuekes P. J., Snider G. S., Williams R. S., "A defect-tolerant
computer architecture: Opportunities for nanotechnologgience 280 (5370):
1716-1721, June 1998.

[Heath, 2000] Heath J. R., "Wires, switches, and wiring. A route toward a chemically
assembled electronic nanocomputé&ure and Applied Chemistry2 (1-2): 11-20,
2000.

[Hendrickson, 1970] Hendrickson J. B., Cram D. J., Hammond Ga&ganic Chemistry,
3rd edition, edited by Z. Z. Hugus (McGraw-Hill, New York, 1970), Vol. 1, Chap.
12, p.468-471.

[Hough, 2000] Hough P. D., Kolda T. G., Torczon V. J., "Asynchronous Parallel Pattern
Search for Nonlinear OptimizationSJAM Journal on Scientific Computing3 (1):
134-156, 2000.

[IES, 2001] IES Inc., COULOMB, 2001w{vw.integratedsoft.cojn

[Intel, 2003] Intel Corporationyww.intel.com 2003.

[Jang, 1998] Jang S. L., Liu S. S., “An analytical surrounding gate MOSFET m8&détf;
State Electronics42(5): 721-726, 1998.

205

[Kedem, 1999] Kedem G., Ishihara Y., "Brute Force Attack on UNIX PasswordsSWtD
Computer" Proceedings of the 8th USENIX Security Sympqsl@a99.

[Kokkolaras, 2000] Kokkolaras M., Audet C., Dennis J. E., "Mixed variable optimization of
the number and composition of heat intercepts in a thermal insulation sySR0a-,
21, Department of Computational & Applied Mathematics, Rice University, Houston,
2000.

[Kovtyukhova, 2002] Kovtyukhova N. I., Mallouk T. E., “Nanowires as building blocks for
self-assembling logic and memory circuit€hemistry-A European Journa (19):
4355-4363, October 2002.

[Lauhon, 2002] Luahon L. J., Gudiksen M. S., Wang D., Lieber C. M., "Epitaxial core—shell
and core—multishell nanowire heterostructurditure 420, 57-61, November 2002.

[Lebowitz, 2002] Lebowitz J., Lewis M. S., Schuck P., "Modern analytical
ultracentrifugation in protein science: A tutorial revieRl'ptein Sciencel (9):
2067-2079, September 2002.

[Lew, 2002] Lew K., Reuther C., Carim A. H., Redwing J. M., Martin B. R., “Template-
directed vapor-liquid—solid growth of silicon nanowirekjurnal of Vacuum Science
TechnologyB, 20(1): 389-392, 2002.

[Lewin, 1997] Lewin B.Genes VI, Oxford University Press, New York, 1997.

[Lieberman , 2002] Lieberman M., Chellamma S., Varughese B., Wang Y. L., Lent C.,
Bernstein G. H., Snider G., Peiris F. C., "Molecular Electronicalhals of the
New York Academy of Scienc860: 225-239, 2002.

[Liu, 1998] Liu J., Rinzler A. G., Dai H., Hafner J. H., Bradley R. K., Boul P. J., LU A.,
Iverson T., Shelimov K., Huffman C. B., Rodriguez-Macias F., Shon Y., Lee T. R,
Colbert D. T., and Smalley R. E., “Fullerene Pip&ience280, 1253-1256, 1998.

[Loakes, 2001] Loakes D., "The applications of universal DNA base analofluesdéic
Acids Researcgt29:2437-2447, 2001.

[MacDonald, 1992] MacDonald, Neil B., "An Overview of SIMD Parallel SystenMTA
DAP, Thinking Machines CM-200, & MasPar MP-1", Workshop on Parallel
Computing, Quaid-i-Azam University, Islamabad, Pakistan, 26th—30th April 1992.

[Martin, 1996] Martin C. R., "Membrane-based synthesis of nanomatef@sistry of
Materials 8 (8): 1739-1746, August 1996.

[Martin, 2002] Martin B. R., St. Angelo S. K., Mallouk T. E., "Interactions between
suspended nanowires and patterned surfadels’gnced Functional Materigld2
(11-12): 759-765, December 2002.

206

[Melosh, 2003] Melosh N. A., A. Boukai, Diana F., Geradot B., Badolato A., Petrof P. M.,
Heath J. R., "Ultrahigh-Density Nanowire Lattices and Circusisfence Express
Onling March 2003.

[Mbindyo, 2001] Mbindyo J. K. N., Reiss B. D., Martin B. R., Keating C. D., Natan M. J.,
Mallouk T. E., “DNA-directed assembly of gold nanowires on complementary
surfaces” Advanced Materialsl3 (4): 249-54, February 2001.

[Miyano, 1992] Miyano S., Hirose M., Masuoka F., “Numerical-Analysis of a Cyltadlri
Thin-Pillar Transistor (CYNTHIA)” IEEE Transactions on Electron Devi¢c&9(8):
1876-1881, 1992.

[Pena, 2002] Pena S. R. N., Raina S., Goodrich G. P., Fedoroff N. V., Keating C. D.,
"Hybridization and enzymatic extension of Au nanoparticle-bound oligonucleotides”,
Journal Of The American Chemical Socjeitg4 (25): 7314-7323, June 2002.

[Pinto, 1988] Pinto M. R., Rafferty C. S., Dutton R. W., Eldredge M. J., Yu Z., et al.,
PISCES-IIB 9009, Win32 port by J. Faricelli. See http://www-
tcad.stanford.edu/tcad/programs/ftpable.html

[Qiagen, 2003] Qiagen, Inc. website, www.giagen.com.

[Quarles, 1991] Quarles T., et al., SPICE3f5. See
http://bwrc.eecs.berkeley.edu/Classes/IcBook/SPICE.

[Richter, 2001] Richter J., Mertig M., Pompe W., Monch I., Schackert H. K., “Construction
of highly conductive nanowires on a DNA templat&pplied Physics Letter§g8 (4):
536-538, January 2001.

[Rollins, 1988] Rollins G. J., Choma J., “Mixed-Mode PISCES-SPICE Coupled Ciralit a
Device Solver” [EEE Transactions on Computer Aided Desigf8): 862-867, 1988.

[Roweis, 1998] Roweis S., Winfree E., Burgoyne R., Chelyapov N. V., Goodman M.F.,
Rothemund P.W.K., Adleman L.M., “A sticker-based model for DNA computation”,
Journal of Computational Biolog¥ (4): 615-629, 1998.

[Sano, 2002] Sano N., Hiroki A., Matsuzawa K., “Device Modeling and Simulations Toward
Sub-10 nm Semiconductor DeviceHE2EE Transactions on Nanotechnolodyl):
63-71, 2002.

[Schmid, 1996] Schmid A. W., Kessler T. J., Papernov S., Barone J., “Low-Surface-Energy
Photoresist as a Medium for Optical Replication”, LLE Review QuarterhoRge
University of Rochester, Laboratory for Laser Energetics, vol. 66, January h,Marc
1996.

[Seeman, 2001] Seeman N. C., Mao C. D., LaBean T., Reif J. H., “XOR operations by
algorithmic assembly of DNA tilesBiophysical Journgl80 (1): 45 Part 2, January
2001.

207

[SETI@home, 2003http://setiathome.ssl.berkeley.edu/totals.h@@I03.

[Soto, 2002] Soto C. M., Srinivasan A., Ratna B. R., “Controlled assembly of mesoscale
structures using DNA as molecular bridgekyurnal of the American Chemical
Society, 124 (29): 8508-8509, July 2002.

[Srinivasan, 2001] Srinivasan U., Liepmann D., Howe R. T., "Microstructure to substrate
self-assembly using capillary forces", JouroMicroelectromechanical Systemi®
(2): 17-24, March 2001.

[Takato, 1988] Takato H., "High-performance CMOS surrounding gate transistoj {@GT
ultra high density LSIS1TEDM Technology Digest22, 1988.

[Takato, 1992] Takato H., Sunouchi K., Okabe N., Nitayama A., Hieda K., Horiguchi F.,
Masuoka F., “Impact of Surrounding Gate Transistor (SGT) for Ultra-HighsiDy
LSIS”, IEEE Transactions on Electron Devi¢c@&8, no. 3, 573-578, 1991.

[Taylor, 2002] Taylor R., et al., MASSMESH code, UNC-CH, 2002.

[Thompson, 1998] Thompson S., Packan P., Bohr M., “MOS Scaling: Transistor Challenges
for the 2£' Centry”, Intel Technology Journal Q3'98ntel Corporation, 1998.

[Top500, 2003jvww.top500.org Top 500 supercomputer sites, 2003.

[Uma, 2000] Uma S., McConnell A. D., Asheghi M., Kurabayashi K., Goodson K. E.,
"Temperature dependent thermal conductivity of undoped polycrystalline silicon
layers",Fourteenth Symposium on Thermophysical ProperBeslder, Colorado,
June 2000.

[Warren, 2002] Warren M. S., Weigle E. H., Feng W. C., "High-Density Computing: A 240-
Processor Beowulf in One Cubic Meter", IEEE SC2002, 2002.

[Watwe, 1997] Watwe A. A., Bar-Cohen A., "Enhancement of the Pool Boiling Criteeal H
Flux Using a Binary Mixture of Dielectric Liquids,"” Proceedings of thgiieering
Foundation Conference on Convective Flow and Pool Boiling, Irsee, Germany, 1997.

[Winfree, 2000] Winfree E., “Algorithmic self-assembly of DNA: Thearatimotivations
and 2D assembly experimentsgurnal of Biomolecular Structure & Dynamj&63-
270, Sp. Iss. S2. 2000.

[Wong, 1998] Wong S. S., Woolley A. T., Joselevich E., Cheung C. L., and Lieber . M.,
Am. Chem. S0d.20, 8557-8558, 1998.

[Yan, 2002] Yan H., Zhang X. P., Shen Z. Y., Seeman N. C., “A robust DNA mechanical
device controlled by hybridization topologWature 415 (6867): 62-65, January
2002.

208

[Zimmermann, 1997] Zimmermann R., Fichtner W., “Low-Power Logic StylesOSM
Versus Pass-Transistor Logi¢EEE Journal of Solid-State Circuitgpl. 32, no. 7,
1997.

[Zitzler, 2000] Zitzler E., Deb K., Thiele L., “Comparison of Multiobjective Evolutigna
Algorithms: Empirical Results'Evolutionary Computatigr8(2): 173-195, 2000.

209

