
A TREE ALGORITHM FOR NEAREST NEIGHBOR

SEARCHING IN DOCUMENT RETRIEVAL SYSTEMS

By

Caroline M. Eastman
Department of Mathematics
Florida State University

Tallahassee, Florida 32306

Stephen F. Weiss
University of North Carolina
Chapel Hill, North Carolina

Abstract

The problem of finding nearest neighbors to a query in a document

collection is a special case of associative retrieval, in which searches

are performed using more than one key. A nearest neighbors associative

retrieval algorithm, suitable for document retrieval using similarity

matching, is described. The basic structure used is a binary tree,

at each node a set of keys (concepts) is tested to select the most

promising branch. Backtracking to initially rejected branches is al-

lowed and often necessary.

Under certain conditions, the search time required by this algorithm

is 0(log2N) k N is the number of documents, and k is a system-

dependent parameter. A series of experiments with a small collection

confirm the predictions made using the analytic model; k is approxi-

mately 4 in this situation.

This algorithm is compared with two other searching algorithms;

sequential search and clustered search. For large collections, the

average search time for this algorithm is less than that for a sequen-

tial search and greater than that for a clustered search. However,

the clustered search,unlike the sequential search and this algorithm,

does not guarantee that the near neighbors found are actually the

nearest neighbors.

131

i. Introduction

This paper describes a searching algorithm that can be used in

document retrieval systems and that appears to have some advantages

over currently suggested methods. It could also be used in other

similar searching problems.

The type of document retrieval system considered here is that

described by Salton (1975) and used in the SMART system. In such a

system, a set of concepts is used to classify both the documents and

the queries in order to represent them as concept vectors. A simi-

larity measure is used to compare documents and queries in concept

vector form in order to select those documents best matching the

queries; this approach may be contrasted with the use of Boolean

matching.

The searcheS involved in such a system require the use of more

than one search key; they are thus multi-attribute, or associative,

searches. Since each concept is used as a key, the search space is

of high dimension. Such a search is a nearest neighbor search~ it

looks for those documents which most closely match the query, according

to any one of a variety of similarity measures (e.g. n-dimensional

cosine, Euclidean distance). So it is a best-match search rather

than an exact-match search or a partial-match search. Several docu-

ments are generally retrieved in response to a query; the search is

thus an m nearest neighbor search rather than simply a nearest

neighbor search.

132

The standard searching methods for document retrieval systems

are sequential search and inverted file search. The sequential

search is straightforward, but in large collections it is very

time-consuming to examine the entire collection. The inverted

file search is often used to provide quick searches in systems

using Boolean matching; with somewhat more effort, it can be used

in similarity-based searching as well. Inverted file searches

become rather inefficient when requests have many concepts (Salton,

1968).

Clustered files are often suggested as a way to cut down search

time in similarity-based systems. In such an organization, similar

documents are grouped together in clusters, and only the most pro-

mising clusters are examined. Although such an approach can dras-

tically reduce the search time, the near neighbors retrieved by a

clustered file search are not always the nearest neighbors to the

query. An overview of clustering methods is given in Salton (1975).

Yu and Luk (1977) describe a model which provides an estimate of the

number of nearest neighbors missed in a cluster search.

Rivest (1974) demonstrates the opt~nality of a particular hashing

algorithm for a restricted class of best-match searches. However,

he has assumed that the attributes are binary, that the records are

randomly distributed, and that only one nearest neighbor is to be

found; none of these conditions is met here.

Various tree-based methods have been suggested for retrieving

m nearest neighbors. Quad trees (Finkle and Bentley, 1974) and

k-d trees (Friedman, Bentley, and Finkle, 1977) are fine for small

numbers of keys, but become impractical when lots of keys are in-

volved. Burkhard and Keller (1973) and Fukanaga and Narendra (1975)

133

describe tree structured algorithms similar to the one suggested

here; however, these two algorithms depend on the use of a distance

metric rather than a similarity measure for matching.

2. Description

Each document in a collection of N documents is represented

by a concept vector. Each query is also represented as a concept

vector. The m documents most similar to the query are to be

chosen. A similarity measure ranging between 0 and 1 is used to

compare documents and queries. (A similarity of 1 means that the

document and query are identical, and a similarity of 0 means that

the document and the query contain no concepts in common.) The

search algorithm described does not depend on the use of a particu-

lar similarity measure.

The document collection is organized as a binary tree. Associated

with each internal node of the tree is a set of concepts. The do-

cuments are stored in buckets at the leaves of the tree; each do-

cument resides in exactly one bucket.

A document is inserted into the subtree rooted at a particular

node as follows. The document is compared to the concept set asso-

ciated with the node. If the intersection between the two is empty,

then the document is inseted recursively in the tree whose root is

the left child of the original node. If the intersection is non~-

empty, then the document is inserted in the right subtree. This

intersect and descend process continues until a leaf node is reached;

the document is then placed in the bucket associated with that leaf

node. Thus, for each node, all documents that are in the right

134

subtree contain at least one concept in common with that node's

concept set. All left-descendent documents contain none of the

concepts.

The time required to insertone document into a tree of height

L is O(L). The maximum reasonable value of L for a collection

of size N is log2N . Such a tree would have an average bucket

size of one. Any higher tree would guarantee empty buckets. Thus,

in general, L ~ log2N and hence putting N documents into the

tree is at worst 0(N log2N)

The search is a similar process. The query is compared with

the concept set of the root of a tree. If the intersection is em-

pty then the left subtree is more likely to contain near neighbors

of the query. If the query and the concept set have concepts in

common, then the right subtree is more promising. In either case,

the search descends to the appropriate subtree.

A bound can be put on the similarity between the query and the

documents in a particular subtree. The nearest possible neighbor

that could be found in a subtree can be determined by considering

the concept sets to be found on the path to that subtree. This

nearest neighbor need not actually be present in a particular tree;

it is a theoretical bound. The similarity between the query and

its nearest possible bound will be referred to as the similarity

bound for that subtree. Of course, the calculation of the simi-

larity bound will depend on the particular similarity measure

used.

The similarity bound for the entire tree is 1 since the nearest

possible neighbor is one which exactly matches the query. After

135

the query is compared to the concept set at the root, a similarity

bound for both subtrees can be calculated.

Suppose the query and the concept set have c concepts in

common. Then all documents in the left subtree are missing at

least c of the concepts in the query. The nearest possible

neighbor along the left path is thus a document that matches all

but those c query concepts. The nearest possible neighbor for

the right subtree is still an exact match to the query; the simi-

larity bound for the subtree remains equal to i.

If the query and the concept set have no concepts in common,

all documents in the right subtree have at least one concept that

was not requested. The nearest possible neighbor in the right

subtree is thus a document that has all the query concepts plus

one extra. The nearest possible neighbor for the left subtree

is an exact match to the query.

Whether or not the query matches any of the concepts at the

root node, the similarity bound for the less promising subtree

can be calculated by determining the similarity between the query

and its nearest possible neighbor in that subtree. The similarity

bound for the more promising subtree remains i.

Similarity bounds for subtrees of nodes below the root can be

determined in much the same way. When a concept set is matched,

the nearest possible neighbor and similarity bound remain the same

for the right subtree. The matched concepts are not present in

documents in the left subtree. So the nearest possible neighbor

for the left subtree is the previous nearest possible neighbor

136

without the matched concepts. The similarity bound for this sub-

tree is the similarity of the query with this nearest possible

neighbor.

When a concept set is not matched, the nearest possible neigh-

bor and similarity bound for the left subtree remain the same.

An extra concept is added to the nearest possible neighbor for that

tree to obtain the nearest possible neighbor for its right subtree.

The similarity bound can then be determined from this nearest pos-

sible neighbor.

The search process descends the tree until a leaf is reached.

All documents in the associated bucket are compared with the query.

If m nearest neighbors have been requested, the best m are

saved. As before, the process of descending from the root to a

bucket requires 0 (L) time.

Backtracking now occurs. If the similarity bound of any sub-

tree encountered is greater than the similarity with the mth

nearest neighbor so far encountered, that subtree is examined.

There may be documents associated with it which are better than

those already found. The search is over when the root of the

tree is reached.

The search algorithm is summarized in Figure i. The search

is set in motion by calling SEARCH(Query, number of nearest niegh-

bors, root of entire tree).

137

Figure i: Search Algorithm

SEARCH(QUERY,M,ROOT)

IF (the ROOT is a leaf) THEN

Compare each document in the associated bucket with the

QUERY. Merge the results with the m best documents

seen so far; keep the best m .

IF (ROOT concept set N QUERY ~ @) THEN

Calculate the similarity bound for the left branch.

CALL SEARCH(right child of ROOT).

IF (the similarity bound for the left child is greater

than the similarity of the mth best document found

so far) THEN CALL SEARCH(left child of ROOT).

IF (ROOT concept set N QUERY = ~) THEN

Calculate the similarity bound for the right branch.

CALL SEARCH(left child of ROOT).

IF (the similarity bound for the right child is greater

than the similarity of the mth best document found

so far) THEN CALL SEARCH(right child of ROOT).

END SEARCH

138

3. Analysis

If some restrictive but reasonable assumptions are made, the

average time complexity of this algorithm can be determined. These

assumptions are:

(i) The document collection is organized into a full binary

tree of height L .

N
(2) Each bucket contains -- documents.

2 L

(3) The cutoff similarity, s , for the m nearest neigh-

bors is the same for all queries. In other words, the

m nearest neighbors to a query have similarities greater

than or equal to s ; all other documents have similari-

ties less than or equal to s . (In a real situation,

the value of s would almost certainly not be the same

for all queries.)

(4) At any node, the reduction in the similarity bound for

the subtree not initially chosen is r . (This assump-

tion is clearly only a rough approximation to the ac-

tual situation.)

(5) Backtracking through the tree occurs in similarity bound

order. That is, if the subtrees yet to be examined have

similarity bounds, Sl, s2,...s j , then the subtree exa-

mined nest is the one with bound equal to MAX(sl,s2,,,sj).

If these assumptions are made, then the number of buckets to
k

1-s
be examined in a search is ill () , where k is equal to [--~-I

If k is less than L/2 , then this quantity can be shown to be

0(log2N)k and may be taken as the average time complexity.

139

(Details of this derivation are given in Eastman (1977).) Clearly

this algorithm will be of practical interest only when k is small.

Large values of s (near i) will result in small values of k .

Such large values of s mean simply that the nearest neighbors to

be found are very similar to the query. It should be noted that the

value of s depends in no way on the tree.

Large values of r (near i) will also result in small values

of k . Large values of r mean that the similarity bounds for

the branches not chosen are rapidly reduced. It is quite reasonable

that a rapid tightening of the bounds would result in shorter searches

by eliminating entire subtrees from further consideration. The value

of r , unlike that of s , does depend on the particular tree used.

The behavior of this algorithm is intermediate between that of

an 0(N) algorithm and that of an 0(log2N) algorithm. For any

given k , N grows faster than (log2N)k as N approaches

k
If k is large, however, the values of N for which (log2N)

is smaller than N may be so enormous that they are much larger

than any that would arise in a practical situation.

Figure 2 shows a comparison of N and (log2N) 4 (The value

of k = 4 was used because that was the value found in the experi-

mental situation described in the next section). This graph illur

strates the general shape of the two curves.

A more precise estimate of the expected search length can be ob-
k

T

by dividing the number of buckets to be searched, i~l(~) , tained

by the total number of buckets, 2 L Figure 3 shows the predicted

fraction of documents examined for several values of N . (These

figures do not include time spent searching through the tree; this

140

time should be roughly proportional to the scan fraction). Although

the algorithm performs poorly in small collections, it should do well

in large ones.

I(~ Figure 2: Growth of N and (log2N)4 / N

(log 2 N) 4

4
lOgl0 (log2N)

Figure 3:

N

128

1,024

1,048,576

2 3 4. 5 6
lOgl0N

Some predicted scan fractions

(bucket size = i)

k=3

0.50

Scan Fraction

0.17

0.0013

7

k= 5

0.94

0.72

0.021

8 9 10

141

4. Experimental Results

Several experiments using this search algorithm were performed.

These experiments were directed towards three related questions.

First, how should the concept sets be chosen? Second, how useful

is the rough analysis described in the previous section? Third,

what value of k would be found in the actual situation?

The experiments described here used the American Documentation

Institute (ADI) collection (Keen, 1971). The ADI collection con-

tains 83 documents and 35 queries in concept vector form. It has

been used in many document retrieval experiments based on the con-

cept vector model of document retrieval.

As is generally true when there are a large number of factors

influencing an outcome, it is infeasible to try all combinations of

possible values for these variables. So a reasonable (but arbitrary)

set of base conditions was chosen. These conditions are described

in the next paragraph.

The 5 nearest neighbors are retrieved for each of the queries;

this number was chosen because there are an average of 5 relevant

documents per query for this collection. (In general, the fraction

of the collection that is retrieved will be much smaller than the

6.1% retrieved here.) The concept tree used is a full binary tree

of height 6; this height gives the average bucket size closest to

1 for a collection of 82 documents. Concept sets at the same level

in a tree are identical; with a small number of concepts, it is

easier to allow some duplication of concept sets. The nodes are

searched in similarity bound order. The similarity measure used

is the cosine.

The experimental conditions approximated the analytic assumption

142

described in the previous section. The tree used was a full binary

tree, but the number of documents per bucket varied. The subtrees

were searched in similarity ceiling order. The average value of s ,

the cutoff similarity for 5 documents, was 0.34. The reduction in

similarity bound, r , varied with the direction chosen and the

level of the node.

The measure used to compare the different searches is the aver-

age scan fraction, the fraction of documents searched in response

to a query. Although the total work involved, including the tree

traversal, is important, it should be roughly proportional to the

scan fraction for trees of equal height.

Even though it is not clear what the optimal tree for a par-

ticular collection is, it is obvious that the selection of concept

sets is critical to the performance of this algorithm. A greater

chance of a match between a query and a concept set should increase

the average r and thus decrease the average search time. Unfor-

tunately, more sophisticated choice methods designed to increase

the probability of such matches involve correspondingly greater

effort.

Several methods of increasing sohpistication and overhead were

used to construct concept trees. For each method, trees with con-

cept sets of different sizes were constructed) the size giving the

best performance for each method was used in the final comparison.

In each case, the concepts used in the ADI queries were used as a

source. (The same queries were used for constructing the tree and

for searching. Of course, a production implementation would have

to use some sample of queries.)

The simplest method of concept choice is random selection. A

143

somewhat more sophisticated method uses concept frequencies; the

concept that occur most often in the sample of queries are chosen

to form the concept sets. Since the most common concepts are used,

there should be more matches.

Use of concepts highly correlated with each other should in-

crease the probability of multiple matches with concept sets and

decrease the search length. Two possible algorithms using correla-

tions were used. The first forms the sets one at a time by taking

the most common unused concept to start a set and then selecting

those unused concepts most highly correlated with it. By adding

one element to each set in turn, the second selection algorithm

avoids the possibility that the very highest frequency concepts

will all be in the same set.

A more sophisticated way of using the correlation information

is to cluster the concepts and then choose concept sets from those

clusters. Three of the many possible algorithm using clustering

were tried. Two cluster the concepts using the single-link cri-

terion until a cutoff similarity is reached. One algorithm, re-

ferred to as frequency-ordered clustering, then selected those

clusters containing the most common concepts for concept sets.

A second algorithm,referred to as size-ordered clustering, se-

lected those clusters containing the most concepts.

The third clustering algorithm uses the most common concepts

as seeds to start the clusters. If any two of the potential seed

concepts are highly correlated with each other, they are put in the

same cluster. Then single-link clustering is used to bring the

clusters up to the desired size.

The results from searches using each of these methods are shown

below in Figure 4.
144

Figure 4: Scan Fraction Using Different Methods of Concept Choise

Method

Random 0.97

Most Common 0.92

Correlated (version l) 0.89

Correlated (version 2) 0.89

Size-Ordered Clustered 0.94

Frequency-Ordered
Clustered 0.94

Most Common Clustered 0.89

Scan Fraction Relevant Parameter

8 concepts/set

4 concepts/set

8 concepts/set

8 concepts/set

Cutoff similarity = 0.55

CutQff similarity = 0.55

8 concepts/set

Figure 5: Increase In Scan Fraction with Number of Nearest Neighbors
Retrieved

m Average s Scan Fraction

1 0.52 0.80

2 0.43 0.83

3 0.39 0.86

4 0.37 0.87

5 0.34 0.89

i0 0.27 0.93

30 0.14 0.94

82 0.00 0.94

145

A Friedman analysis of variance was performed to test the null

hypothesis that the concept selection method does not effect the scan

fraction. The 35 scan fractions (one for each query) for the 7 dif-

methods was used. The test statistic (Xr 2) calculated is ferent

20.7; the level of significance for this value is 0.002. So it is

reasonable to conclude that the various methods of concept set for-

mation differ significantly. Probably any method which uses the

most common concepts to start the sets and then fills them out with

additional concepts highly correlated with those already chosen would

be a reasonable choice in practice. The three methods taking this

approach had the lowest best scan fraction, 0.89 in each case.

The results from this experiment are in accord with the predic-

tion, based on the analytic model, that those methods incorporating

information about frequencies and clustering would give the best

results. These methods should decrease the value of k by in-

creasing the value of r .

The influence of the value of s upon the search length can

be seen by looking at the scan fraction when different numbers of

nearest neighbors are retrieved. A series of searches, retrieving

different numbers of nearest neighbors, was performed using the

Most Common Clustered tree with 8 concepts per set. The results

are shown in Figure 5. The number of nearest neighbors actually

retrieved was less than m if there were fewer than m documents

with similarity greater than 0 to the query.

The scan fraction rises sharply from 0.80, the minimum ob-

tained when 1 nearest neighbor is retrieved, to a plateau of 0.94.

When m is i0, the average scan fraction is 0.93; this value is

close to the plateau, which is reached when m is 30. The maximum

146

scan fraction is less than 1 because documents in subtrees with

similarity bounds of 0 need not be searched.

As predicted, high scan fractions occur with relatively few do-

cuments retrieved in this collection. However, the behavior of

the algorithm is such that much better results should be observed

in large collections.

The result of the two experiments described here are in ac-

cord with predictions made on the basis of the analytic model.

Several other experiments are described in Eastman (1977); the

results of these experiments also agree with predictions made on

the basis on the analysis. So it would appear that even the

rough analysis described here can be useful in examining the be-

havior of this algorithm.

A rough value of k for the ADI collection can be estimated

in two different ways. First, a value of k can be estimated

from the observed scan fractions.

be based on the estimated value of

an estimate of 4.

Second, an estimate of k can

s and r . Both methods give

The expected scan fractions for a tree of height 6 can be ob-

k
T

by dividing the estimated number of buckets searched, i~l(~) tained

by the number of buckets, 2 L The lowest scan fraction obtained

when 4 nearest neighbors were found in the ADI collection is 0.89.

This is the scan fraction predicted when k is 4.

The average value of s when 5 neighbors are retrieved in the

ADI collection is 0.52. The average query length of an ADI query

is 4. The reductions in similarity bound occurring for 1 to 4

unmatched concepts and for 1 to 6 extra concepts for a query of

147

this length were calculated. The average r when matches occur

is 0.25. The average r when matches do not occur is 0.06. Since

most searches will involve a mixture of matches and misses, these

two values were averaged to obtain an estimate for r of 0.16.

l-s
Since k is equal to [--7] , the estimate of k for this method

is also 4.

5. Conclusions

For sim±larity-based document retr±eval systems~ this algorithm

has advantages over both sequential search and clustered search. It

offers a middle ground in terms of retrieval quality and search time.

This algorithm retrieves the same items as a sequential search,

average search length is 0(log2N) k rather than 0(N) but the If

k is approximately 4 ±n a large collection, as it was in the ADI

collection, only a small fraction of the entire collection would need

to be searched.

The algorithm described here requires more search time than a

clustered search, both for the average case and for the worst case.

However, it does a better job of retrieval. The items retrieved are

actually the nearest neighbors rather than near neighbors to the

query. Also, as the document collection grows, the retrieval de-

gradation for a clustered search would occur in retrieval quality

rather than search length. The tree-structured algorithm would

still retrieve the nearest neighbors, so the speed, rather than re-

trieval quality, would suffer.

148

References

Burkhard, W.A. and Keller, R.M., 1973. "Some approaches to best-
match file searching". Communications of the ACM, Vol. 16, No.
4, April 1973, pp. 230-236.

Eastman, Caroline M. "A tree algorithm for nearest neighbor
searching in document retrieval systems". Ph.D. Dissertation,
University of North Carolina at Chapel Hill, 1977.

Finkel, R.A. and Bentley, J.L. "Quad trees: a data structure for
retrieval on composite keys". Acta informatica, Vol. 4, No. i.
1974, pp. 1-9.

Friedman, J.H., Bentley, J.L. and Finkel, R.A. "An algorithm for
finding best matches in logarithmic expected time". ACM Trans-
actions on Mathematical Software, Vol. 3, No. 3, Sept: 1977,
pp. 209-226.

Fukanaga, Keinosoke and Narendra, Patrenahalli, 1975. "A branch
and bound algorithm for computing k-nearest neighbors". IEEE
Transactions on Computers, Vol. C-24, No. 7, July, 1975, pp.
750-753.

Keen, E.M. "An Analysis of the documentation requests". In Salton,
1971.

Rivest, R.L. Analysis of associative retrieval algorithms. Stanford
Computer Science Department, Report STAN-CS-74-415, 1974.

Salton, G. Automatic Information Organization and Retrieval. Mc-Graw-
Hill Book Company, New York, New York, 1968.

Salton, G. editor, The SMART Retrieval System: Experiments in Auto-
matic Document Processing. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1971.

Salton, G. Dynamic Information and Library Processing. Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, 1975.

Yu, C.T. and Lik, W.S.
clustered files".
pp. 607-622.

"Analysis of effectiveness of retrieval in
Journal of the ACM, Vol. 24, No. 4, Oct. 1977,

149

