HIERARCHICAL LEVELSOF DETAIL TO ACCELERATE THE
RENDERING OF LARGE STATIC AND DYNAMIC POLYGONAL
ENVIRONMENTS

by
Carl M. Erikson

A dissertation submitted to the faculty of the University of North Carolinaat Chapel Hill in
partial fulfillment of the requirements for the degree of Doctor of Philosophy in the
Department of Computer Science.

Chapel Hill
2000

Approved by

Advisor: Professor Dinesh Manocha

Reader: Professor Anselmo Lastra

Reader: Professor Ming Lin

J 2000

Carl M. Erikson

ALL RIGHTS RESERVED

ABSTRACT

Carl M. Erikson. Hierarchical Levels of Detail to Accelerate the Rendering of Large Static
and Dynamic Polygona Environments

(Under the direction of Dinesh Manocha)

Interactive visualization of large three-dimensional polygonal datasets is an important
topic in the field of computer graphics and scientific visualization. These datasets can be
static, such as many walkthrough applications, or dynamic, such as CAD scenarios where a
designer moves, adds, or deletes parts. 1n many cases, the number of primitivesin these
models overwhelms the rendering performance of current graphics systems. In order to view
these environments in real-time, approximation techniques must augment the capabilities of
the hardware.

One method for accelerating the rendering of these environments is polygonal
simplification. This dissertation describes the creation and application of levels of detail, or
LODs, and hierarchical levels of detail, or HLODs, to accelerate the rendering of large static
and dynamic polygonal environments. The principal idea of thiswork is that smplification
methods should not always treat objects, or collections of polygons, in a scene independently.
Instead, they may be able to produce better and drastic approximations by simplifying disoint
regions of a scene together. Thisideais applicable for creating LODs for individual objects
that consist of unconnected polygons, and for constructing HLODs, or approximations

representing groups of static or dynamic objects.

We demonstrate a polygona simplification algorithm called General and Automatic
Polygonal Smplification, or GAPS that excels at merging digoint polygons through the use
of an adaptive distance threshold and surface area preservation. We use GAPS to create
LODs and HLODs for nodes in the scene graphs of large polygonal environments. These
approximations are used to enable two rendering modes, one that allows the user to specify

pixels of error and another that targets a frame rate. When objects in the scene move, our

algorithm updates HLODs that have become inaccurate or invalid using asynchronous
simplification processes. Our algorithm currently handles scenes with limited dynamic

movement.

ACKNOWLEDGMENTS

Without pre-existing three-dimensional datasets to test our algorithms on, this thesis
would have never come into existence. Model creation and management is a painstaking
process, so we wish to thank all of the people and organizations who provided us with such
excellent polygonal geometry. The Rotor object is courtesy of the Alpha_1 Project at the
University of Utah. The Head model is courtesy of Hans Weber, my officemate, and was
created using InSpeck Inc. software. The Chamber model was created by Mike Goslin and
David Luebke, both UNC-CH alumni. The Econ and ShDivWest objects and the massive
Power Plant environment that they came from are courtesy of James Close and Combustion
Engineering, Inc. The scanned Bunny object is courtesy of the Stanford 3D Scanning
Repository (http://graphics.stanford.edu/data/3Dscanrep/) created by the Stanford University

Computer Graphics Laboratory. The Sierraterrain model is courtesy of Herman Towles and

Sun Microsystems. Viewpoint and Division, Inc. alowed usto use the Ford Bronco dataset.

The Cassini spacecraft model is courtesy of Stephen Wall, Gary Clough, Don Jacob, and JPL.
The Torpedo Room model is courtesy of Greg Angelini, Jim Boudreaux, Ken Fast, and

Electric Boat, a subsidiary of General Dynamics.

We would like to thank the groups that have provided either software, hardware, or free
exchange of ideas necessary to conduct research. The UNC-CH computer science department
offers vast resources with excellent support staff to every student eager to take advantage of
it. The UNC Walkthrough group challenges us with massive environments to render at
interactive rates as well as providing a melting pot of research ideas. The now-defunct UNC
Simplification group promoted very useful discussion on avenues for potential research in the
field of polygonal smplification. Finally, the graphics groups at UNC provide an incredible

research environment, complete with an extraordinary graphics lab.

We have received financial support from a variety of sources for which we are grateful.
Our work was supported in part by an Alfred P. Sloan Foundation Fellowship, ARO Contract
DAAH04-96-1-0257, Honda, Intel Corp., NIH, National Center for Research Resources
Award 2P41RR02170-13 on Interactive Graphics for Molecular Studies and Microscopy,
NSF grant CCR-9319957 and Career Award, an ONR Y oung Investigator Award, the
NSF/ARPA Center for Computer Graphics and Scientific Visualization, and NCAA Graduate,
NSF Graduate, and Intel Fellowships.

| would like to thank my dissertation committee — Fred Brooks, Anselmo Lastra, Ming
Lin, and Mary Whitton — for guiding me on this journey and my advisor, Dinesh Manocha, for

motivating me to pursue excellence relentlessly in this work.

| would especially like to thank my friends, housemates, officemates, teammates, and
fellow students who have made this experience enjoyable. Gentaro Hirota helped me in my
earlier years as a graduate student, especially in COMP205. Kenny Hoff inspired and
entertained me with his energetic ideas. Jon McAllister showed me what North Carolina
barbeque is all about. Thanks to Marco Jacobs for offering me a place to stay in the
Netherlands. Hans Weber and Mark Mine were always eager to help me with any problems |
encountered. Catherine Moga showed me what hard work really means by performing eight
jobs simultaneously. Dave Luebke and Bill Mark convinced me to live with them, changing
my life in unexpected and fortunate ways. Dave Luebke also introduced me to the sport of
Ultimate and graciously allowed me to be part of his SIGGRAPH '97 paper. The members of
UNC Darkside gave me a sense of accomplishment rivaling this dissertation. My love and
thanks to Sarah Danninger who amazes me with higy &b sacrifice and persevere in other
countries in the world. Finally, I would like to thank my family for all of thaport and

generosity throughout this period of my life.

vi

TABLE OF CONTENTS

LIST OF TABLESt e e XVii
LIST OF FIGURES........oooii ittt ettt e s e e e s snnreeeeeans Xix
1 INTRODUGCTION. .. .ottt ettt e e esbe e e e e s asbe e e e e eassee e e s sennneeeeennees 1
1.1 Visudization of Large Polygonal MOGEIS.cociiiiiiiieiiieiee e 1
1.2 DEFINITIONS. ...coteiitieiee ettt ettt sie e b e e e sne e b nare e 5
121 HIigN QUAEITY ..ooeeieiiiiiee et 5

122 DIFASIC. . ueeiiitii ettt 7

1.3 IMOTIVBLION. ...ttt ettt ettt et e s b e e sne e ebeennreens 8
1.3.1 Simplification of Static Polygonal ODJECES...........coceeiiiiiiiiiee e 8

1.3.2 Simplification of Static Polygonal Environments...........cccceeeeiieiieciieeneene 11

1.3.3 Simplification of Dynamic Polygonal Environments..........c.ccceveveieciveesieene 13

14 ASSUMPLIONS.eiiiiieitie ittt ettt he et e e sae e be e snb e e nnn e e b e enne 14
15 TheSIS SEAEMENLcoiiiiiieiee et 15
1.6 NEW RESUITS ... oo 15

1.6.1 Simplification of Static Polygonal ODJECES..........ccocveeiiiiiieiieeee e 15

1.6.2 Simplification of Static Polygonal Environments...........ccccoveeerieineciieeneeene 17
1.6.3 Simplification of Dynamic Polygonal Environments..........ccccceveveieeiieenieene 19
1.7 DiSSertation OVEIVIEWccceieiieeiiieiiie ettt ettt sbe e san e sne e b e e sne e 20
2 PREVIOUSWORKooiiiitiiiiiiiiie ettt s e e s ssbne e e e s ssnee e e e eennneeaeanns 22
2.1 Simplification of Static Polygonal ODJECES..........cccviiiiiiiiiiiee e 22
211 Refinement AlQOrtNMS........ociiiiiiiiiei e 22
2111 Multiresolution Analysis of Arbitrary Meshes[Eck et al. 95]................. 23

212 Sampling AlQOrtNMS......cceiiiii it 23
2121 ReTiling Polygonal Surfaces [Turk 92]........cccccooeeiiiiiiniiciieeiee e 23
2122 Mesh Optimization [Hoppe et al. 93]ccoeiiiiiiiiiciie e 24
2.1.2.3 Multi-resolution 3D Approximations for Rendering Complex
Scenes [Rossignac and Borrel 93]coveeiiieiiiiiieeee e 25

2.1.24 Mode Simplification Using Vertex-Clustering [Low and Tan 97] 25
2125 Voxe-Based Object Simplification [He et al. 95]cccceeveiivieiiniienne 26

2.1.3 Decimation AlgOrithmsS........oouiiiiiiee e 26
2131 Decimation of Triangle Meshes[Schroeder et al. 92]cccccveiviennnn 27

viii

2.1.3.2 A Topology Modifying Progressive Decimation
Algorithm [Schroeder 7]covveiii i 28
2.1.3.3 Progressive Meshes [HOPPE 96]coerveeriieiiieieeiieeree e 28
2134 Progressive Simplicial Complexes [Popovic and Hoppe 97] 29
2135 Simplification Envelopes[Cohen et al. 96]ccevvveiiiiiiciiiciiceenne 30
2.1.3.6 Simplifying Polygonal Models Using Successive Mappings
[Cohen et al. O7] ... e 30
2.1.3.7 Appearance-Preserving Simplification [Cohen et a. 98]cccccceeeeeeee 31
2.1.3.8 Full-range Approximation of Triangulated Polyhedra
[Ronfard and ROSSIGNAC 96].........eeiveeriiiiiie e 31
2.1.39 Surface Simplification Using Quadric Error Metrics
[Garland and HECKDEt 97ooveeiiieieee e 32
2.1.3.10 Simplifying Surfaces with Color and Texture Using
Quadric Error Metrics [Garland and Heckbert 98]cccceveiiienenne 34
2.1.3.11 Fast and Memory Efficient Polygonal Simplification
[Lindstromand TUrk 98]cooiiiiiiiieee e 34
2.1.3.12 Controlled Simplification of Genus for Polygonal
Models [El-Sanaand Varshney 97]cocoeeiieiieiee e 35
214 Summary of AlQOrthmS.......ccooiiiiii e 36
2.2 Simplification of Static Polygonal ENVIrONmMeNts............ccooveereriieesieeniee e 37

221 IRIS Performer: A High Performance Multiprocessing
Toolkit for Real-Time 3D Graphics [Rohlf and Helman 94]ccceeee. 38

222

Adaptive Real-Time Level-of-Detail-Based-Rendering

for Polygonal Models [Xiaet al. 97]ccoeoiieiiiiiiee e 38
2.2.3 View-Dependent Simplification of Arbitrary Polygonal
Environments [Luebke and ErkSon 97] ... 39
2.24 View-Dependent Refinement of Progressive Meshes [Hoppe 97]c....... 39
2.25 Adaptive Display Algorithm for Interactive Frame Rates
During Visualization of Complex Virtua Environments
[Funkhouser and SEqUIN 93]oooieiiiiiiiiiieiee e 40
2.2.6 Visual Navigation of Large Environments Using Textured Clusters
[Maciel and Shirley 95]........ccooii e 41
2.3 Simplification of Dynamic Polygonal ENVIrONMENtsSccoevvvviinieiiiiiiiiineeeeeens 41
2.3.1 Optimization of the Binary Space Partitioning Algorithm
(BSP) for the Visualization of Dynamic Scenes [Torres 90].........ccccvvvvnrnnn. 42
2.3.2 Computing Dynamic Changes to BSP Trees [Chrysanthou and Slater 92].....42
2.3.3 Output-Sensitive Visibility Algorithms for Dynamic Scenes
with Applications to Virtual Reality [Sudarsky and Gotsman 96] 43
3 SIMPLIFICATION OF STATIC POLYGONAL OBJECTS......ccoiiiiiiiiiiiiiiiiee e 44
3.1 OVBIVIEBW ...ttt oottt ettt e e e et et e e e e e e 44
3.2 SYMDOIOGY e 45
3.3 General and Automatic Polygonal Simplification..................ccooiiiiiiiiiiiiieees 45
3.3.1 Automatic and Adaptive Selection of Distance Threshold 46
3.3.2 Surface Area PreServatiOn...........couuuuuui it e et e e 52

X

3.3.3 Attribute Handling and a Unified Error MetriC..........cccccevevvieiiienenieeeseenene 56

3.3.3.1 Interpolating AtIrDULEScoiiiiiiie e 56
3.3.3.2 GEOMELIIC EITON ...ttt 58
3.3.3.3 Attribute Error ViaPoint CloUdS..........cccveiiiiiieiiieie e 59
33331 NOIMBl EITON ... 61
3.3.332 (O00] o] gl = 1 (o] OO PRSPPSO 63
3.3.3.33 Texture-Coordinate ErrOr.........ccceiieeiiieiieeiee e 64

3.3.34 Unified Error MEIIC.....cocviiiieieeiee e 65

34 IMPIEMENEELION.eeiiiieiii e e 66
341 GENEIAIITY....eeiieietee et nre e 66
4.2 DISCONMINUITIES.eeiiitieieie ettt neesane e 66
3.4.3 Preventing MeSh INVEISION.......ccocuiiiiieiieiiiesiee ettt 67
344 Candidate MErge PailS.........cccuiiiiiiiiieiiiesiee ettt 67
345 MAINLOOP ..ttt ettt nre e 68
3.5 RESUIES .. e nre e 68
351 EXECULION SPEEM.......eiiiii ittt 69
352 MEMOIY USAQE......coiiiiieiiiieiiiee et 69

Xi

353 Geometric Error Versus QSliM........coiiuiriiiieeiiieesiee e 71

354 Geometric Error APProXimationccoocueereeerueerieeeseeeniee e esieeseeeseeenneens 72

355 VisUal COMPAIISONccoueiiiieiiieiiei ettt neesne e 75

38 AN SIS, bbb r e eenare e 82
3.7 COMPAIISON ...ttt ettt ettt ettt et she e be e st e e sae e e b e e eabe e she e e nbeesabeesnneenbeeanreens 84
3.8 SUMIMAIY ...ttt e e sne e nnee e 85

4 SIMPLIFICATION OF STATIC POLY GONAL ENVIRONMENTS.........cociieiee 86
A1 OVEIVIEW ...ttt ettt b et e e s ae e e b e et e eeat e e b e e e be e naneeabe e e nbeesnreenneas 86
411 Levelsof Detail Versus View-Dependent Techniques............cccoovveiiiiieeen. 89

4.2 Hierarchical Levels of Detail to Accelerate the Rendering of Static Environments.91

4.2.1 Hierarchical Levels Of Detail.........ccociiiiiiiiiiiicec e 92
4.2.2 NOOE ASSOCIBLION ...ttt ettt ettt ne e naneenneas 96
4.2.3 Partitioning Spatially Large ODJECES........cooouiriiiiiieiiieiee e 102
424 Targeting a Frame Rate With HLODS...........cocoeiiiiiiiieic e 106
425 DigPlay LISIS. .. eeeieiiiieiiieiee ettt e 113
G B 1 0070][= .01 0 1K= 1 0] o TSR U PP 114
431 GENEIAILYeee ettt 114

Xii

4.3.2 LOD and HLOD GENEIGION.u.eeeeeeee e e eeeee e e eeee e e e eeaeeeeeeaaaeaees 114

433 Targeting aFrame REEcccuiiiiiiiie e 115
434 MEINLOOP ..eiiiiiiiieiiee ettt nae e 116
O < U L SRR 117
441 PreproCeSSING TIiMEooi ittt 117
442 Rendering SPEEUceoiiieiiei ittt 118
4421 Immediate Mode Versus Display ListS........ccocevieereieieeiiieenieeneeniens 119
4422 NOLODSVESUSLODS......cccoviiiiiieiiiie et 121
4423 LODSVErSUSHLODS.......coiiiiieiiieciiee e 123
4424 Targeting @aFrameRae..........c.oociiiiieiieeee e 124

443 MEMOrY USAJE.......oeiiiiiieiiiie ittt 126
4.4.4 Visual COMPAITSONeeiuriiteiiieesieeestie st e sttt sar e e b e e e e e nnee e 126
445 SWeeteniNg MOGE........ccuiiiiiiieiee e 134
A5 ANAIYSIS. .t ne e 134
4.6 COMPAIISONeeiitieteeetee et e sttt et be et erae e s be e et e e sae e e abe e et e e saneeabeeaareesaneesaneeaes 135
A7 SUIMIMEAIY .ottt ettt as e s e s b e e s e e aab e e e s b e e e sab e e e abe e e nne e e sneeennee s 136
5 SIMPLIFICATION OF DYNAMIC POLY GONAL ENVIRONMENTS.c.... 137

Xiii

5.2 Dynamically Updating HLODS...........cccoiiiiiieiiieiee e 139
5.2.1 Updating the Scene Graph Due to Object Movementccocceeevcveeeiiieeenne 140
5211 Modification of Transformations............cccoveeveieeriieeneeenie e 140
52111 Updating Error Bounds of HLODS............cccoeiiienieeiieeieene 140
52112 NOJE RE-ASSOCIALION.veeieeeiie ettt 143
52113 Updating the Bounding Volume Hierarchycccocoeevieennene 148

5212 Insertion and DEIEiONcccooeiiieiiiiie i 149

522 Asynchronous SIMplifiCatioN...........ccoveeiiiiiiiiiie e 149
5.3 IMPIEMENTEIION.eiiiieiieeee e 151
5.3 1 GENENAILY...coiiieieiiiee it 151
532 NOUE SEALUS.....coueiiiieiitieiiie ettt 152
5.3.3 Asynchronous SIMPlifiCation...........c.cooeeiiiiiiiiiie e 152
534 Targeting aFrame RaE...........cooiiiii s 154
535 MaAINLOOP «eieieiiieiee ettt 154
5.4 RESUIES ..ottt nbe e aneeeens 155
54.1 Asynchronous SIMPlifiCatioN...........ccoieiiiiiiiiiiie e 155

Xiv

5.4.2 Updating the Scene Graph Due to Object Movementccccceeeveeeeiiieeenns 160

5.4.3 MEMOIY USBOE.....coiiiiiiiiiii ittt sttt 161

544 HLOD Recalculation Visual RESUILSccceiiiiiiiiiiieeie e 162

545 Using LODs In Place of Invalid HLODS...........cccooieiiiiiie e 166

5.5 ANBIYSIS. ..o e r e 166
5.6 COMPAISON ...ttt ettt ettt ettt b et esae e sbe e et e e ssneeane e e b e e saneenneas 170
S.7 SUMIMEIY ...ttt e as e s e s e e e nb e e e nne e e nnneena 170

B CONCLUSION ...ttt ettt e et e e e e s asbe e e e s e anbee e e e annneeasennnreeens 172
6.1 NEW RESUIES ... 172
6.1.1 Simplification of Static Polygonal ObJeCtS...........ccoceeiieiiieiiieie e 172

6.1.2 Simplification of Static Polygonal Environments...........ccooevvceereeeneenieeennne. 173

6.1.3 Simplification of Dynamic Polygonal Environments.............ccceveveeneerieennne. 173

6.2 FULUTE WOIK ... e 173
6.21 Simplification of Static Polygonal ObJeCtS...........ccoceeiiiiiieiiieieccee e 174

6.2.2 Simplification of Static Polygonal Environments..........cccocvvceeveeeneenieeenne. 175

6.2.3 Simplification of Dynamic Polygonal Environments.............cccovvveneeieeennne. 175
APPENDIX .. e e e e e e e e e e e a e e e e e e as 177

XV

REFERENCES

XVi

Table 2.1:

Table 3.1:

Table 3.2:

Table 4.1:

Table 5.1:

Table 5.2:

Table 5.3:

LIST OF TABLES

Properties of previous simplification algorithms. A “-* equals low marks, an
“="means average marks, and a “+” indicates high marks. Due to lack of
information from the description of an algorithm, some entries are unknown,
designated DY @ "7 .. 37

Brief descriptions of symbols used in this chapter.cccccoooii 45

Simplification timings for various models running on an SGI Infinite Reality2 with a
195 MHz R10000 processor and 2 gigabytes of main memory. The default
settings used for QSIlim were to preserve mesh quality, area weight quadrics, and
penalize boundary edges. To choader QSlim, we used 1% of the maximum
bounding box dimension of the object being simplified. The “GAPS not @&ing
column signifies that attribute error was handled, but that no virtual edges were
considered and no surface area preservation was performed.................. 70

Preprocessing times for several polygonal environments. ... 118

Performance results in seconds of multiple simplification processes on scenes of
varying dynamic complexity. Adding simplification processes causes the
recalculation of HLODs to be slower on simple scenes. This behavior is the
result of overhead incurred by adding more processes. As the scenes grow
larger, using more simplification processes is justified. The only time 31
simplification processes accelerate the recomputation of HLODs, as compared
to 16 processes, is when there are 1,331 cubes.ccoooeviiiiiiiiiiiieiiiees 158

The amount of time that our current implementation takes to update the scene
graph for scenes of varying dynamic complexity. The top row is the number of
cubes in the scene and the bottom row is the time in seconds. Our system
updates the scene graph at interactive frame rates only for scenes with less than
a hundred moVviNg ODJECTS.........ooiiiii e 161

Memory increase going from static to dynamic environments. On average, the
memory increase is roughly three times. Since static environments take up
double the memory of the original polygons, dynamic environments take up
roughly six times the memory of the original polygonal geometry................... 162

XVii

Table 5.4: HLOD recalculation execution speed for the simulations shown in the figures

Xviii

LIST OF FIGURES

Figure 1.1: A user interacts with a Ford Bronco model consisting of 74,308 polygons. On the
left isthe original model. On the right, the user has removed the body of the
BroncCo tO VIEW IESTNTEITON. ...oeiveeeiiiee ettt s 2

Figure 1.2: A view of the Power Plant model. This areais one of many that consists of a mass
of pipes. The whole model consists of 12,731,154 polygons and cannot be
rendered at interactive frame rates using an SGI Reality Monster with a 300
MHz R12000 processor, 16 GB of main memory, and an SGI Infinite Reality 2E
graphics subsystem containing 4 GEsand 2 RMOs.ccoocviienieiicinccecne 3

Figure 1.3: LODs of a bunny model. From left to right, these LODs consist of 69,451
polygons, 8,680 polygons, 1,085 polygons, and 135 polygons, respectively.......4

Figure 1.4: Switching distances for LODs of the Bunny object. From Ieft to right these LODs
consist of 17,361 faces, 8,680 faces, 4,340 faces, 2,169 faces, and 1,085 faces.
The original object consISts Of 69,451 faCES.......cccvveriiieeeiiieeiie e 5

Figure 1.5: Our definition of high quality. The vertical axis measures the quality of an
approximation using the perfect error metric. The horizontal axis shows the
number of polygons in an approximation, ranging from the original object down
to an approximation that consists of one polygon. The solid black curve denotes
the quality of approximations generated by an algorithm that is guided by the
perfect error metric. In other words, for every number of polygons, this curve
shows the quality of the best possible approximation. The lighter gray curve
denotes the quality of simplifications produced using an approximate error
metric. The goal of a simplification algorithm isto minimize the area between its
curve and the ideal curve, thus producing high quality approximations. Since a
perfect error metric has not been discovered, the dark curve is defined by our
VISUB JUAQEIMENE. ...t 7

Figure 1.6: The benefits of handling surface attributes. On the left is an overhead view of the
original radiositized Chamber model consisting of 10,423 polygons. Inthe
middle is the result of simplifying the model while ignoring surface attributes.

On the right, we use surface attributes to guide the simplification process,
retaining more of the color information of the model. Each simplified model
CONSISES Of 5,120 POIYGONS.ceeveieiiieiieeite ettt eane s 9

XiX

Figure 1.7: The benefits of topological simplification. The original Rotor model, consisting of
4,735 polygons, ison the left. 1f we do not allow topological simplification,
then we cannot eliminate the tiny holes in this object. The coarsest
approximation we can produce without topological smplification isin the
middle and consists of 480 polygons. On the right, we simplify the Rotor
model's topology to produce a 68 polygon approximation.ccccceuunnnne. 10

Figure 1.8: On the left is the Cassini spacecraft model consisting of 127 objects and 349,281
polygons. The middle image shows a drastic simplification of the Cassini model
using 226 polygons where we do not merge polygons of different objects. On
the right, we merge the polygons of different objects to produce a better drastic
simplification consisting of 217 POlYgONS.ccouuiiiiiiiiiiiiii e 11

Figure 1.9: On the left is the original Ford Bronco model consisting of 466 objects and 74,308
polygons. Next to it is a coarse approximation consisting of 580 polygons
where polygons of different objects have merged together. The next image,
consisting of 74,308 polygons, shows a user removing the Bronco’s top to view
its interior. On the right, the coarse approximation of the model has been
updated and consists 0f 552 POIYGONS.cooviiiiiiiiiieiiii e 14

Figure 1.10: On the left is the original series of pipes consisting of 23,556 polygons that come
from a power plant model. In the middle is the simplified output of an algorithm
that does not merge unconnected regions of the model. On the right, GAPS
merges unconnected regions of the pipes to produce a higher quality drastic
simplification. Both approximations consist of roughly 90 polygons. 17

Figure 1.11: Two views of the Power Plant model rendered in a 1000 by 1000 pixel window
on an SGI Reality Monster with an SGI Infinite Reality 2E graphics subsystem
containing 4 GEs and 2 RM9s, a 300 MHz R12000 processor, and 16GB of
main memory. On the left we render the original model at 0.05 frames per
second from this viewpoint. On the right, we allow 45 pixels of error in order to
achieve approximately 10 frames per second from the same viewpoint. 19

Figure 2.1: Example of vertex removal of the black vertex. When the vertex is removed, a
hole forms. This hole must be re-triangulated.ccccooioiii i, 24

Figure 2.2: Examples of operations used in decimation algoritaps/ertex removal of the
black vertex. When the operation takes place, a hole forms that is subsequently
re-triangulated.(b) Edge collapse of the black edge incident to the two black
vertices. The edge is collapsed to a common point at the gray vés)ex.

XX

Vertex merge of the two black vertices. The dotted black line denotes a virtual
edge. Thetwo vertices are merged to a common point at the gray vertex.27

Figure 2.3: A geometric interpretation of error quadrics. (a) A smple object consisting of 5
vertices and 3 planar faces. (b) An error quadric represents a set of planes and
each vertex has an associated error quadric. Initially, the error quadric for a
vertex consists of the planes of the vertex’s adjacent faces plus planes to
preserve sharp edges and boundary edges. A vertex’'s adjacent faces are any
faces that are incident to that vertex. In this example, there are only planes to
preserve boundary edges, shown as dotted black lines. These planes define the
error quadric at each vertexc) The two black vertices are next to be merged.
Only the planes of error quadrics involved in this merge are sh{yi.he
error quadric of the merged vertex is constructed by taking the union of the
planes of the error quadrics involved in the merge. Therefore, all of the planes
shown are included in the error quadric of the new vertex. The position of the
new vertex is determined by attempting to minimize the sum of squared
distances between it and all of the planes in its error quadric. The component
distances used in this calculation are shown as black arrows and the new vertex
S ole] (o] ¢=To o] £\ VAPPSR PPPTRRPRSPPPPPTIN 33

Figure 3.1: The problem with specifying a single distance threghald) The top pair of
rectangles is a scaled copy of the bottom pair. What is agioodhis model?
Ideally, 7 should be independent of scale and simplify both pairs of rectangles
identically. (b) Grey edges are real edges and black dotted edges are virtual
edges. There are not enough virtual edges wligethe shortest distance
between the bottom rectanglgg) There are too many virtual edges wimes
the shortest distance between the top rectangles.cccoooviiiiiiiiiiiiiiineee, 47

Figure 3.2: Simplification using an adaptive distance threshold. The polygonal geometry is the
same as in Figure 3.1. Gray edges are real edges and dotted black edges are
virtual edges. (aJhe initial value ofr is the shortest distance between the
bottom pair of rectangles. The black vertices joined by a virtual edge are the
best pair to merge. (d)he gray vertex is the position of the newly merged
vertex. Again, then next pair to be merged is joined by a virtual €dpe.

Because there are no more edges or virtual edges with length less than or equal
tO 7, GAPS MUSE OUDIE. ... oo e 48

Figure 3.3: Continued from Figure 3.&d) 7 has doubled. A normal edge is about to be
collapsed.(e) GAPS selects another edge to collapgeThe bottom pair of
rectangles will disappear due to the next vertex merge..........cccooevevevnneeens 49

XXi

Figure 3.4: Continued from Figure 3.3. (g) Again, there are no more edges or virtual edges
with length less that or equal to 7, so GAPS will double 7. The bottom pair of
rectangles has disappeared because the rectangles were collapsed to aline.

Lines are filtered from the object. (h) Note how the top pair of rectanglesis
being simplified in the same fashion as the scaled bottom pair. Growing 7 while
simplifying allows GAPS to achieve scale independence.c.cccceeviveeeiiieens 50

Figure 3.5: A two-dimensional example of uniform spatia partitioning to determine pairs of
vertices within the distance threshold 7. The polygonal geometry is the same as
in Figure 3.1. Darkly shaded squares contain at least one vertex. Lightly shaded
squares hold no vertices but are corner-adjacent to darkly shaded squares........52

Figure 3.6: Simplification without surface area preservation. (a) The original model. (b)
Since the two black vertices are in close proximity, they are next to be merged.
(c) The gray vertex shows the newly merged vertex. (d) Note that each vertex
merge deletes a significant amount of surface area from the model. (e) Thetwo
rectangles disappear iNdependently. ..o 54

Figure 3.7: Simplification using surface area preservation. (a) The original model. (b) All of
the edges marked with an “X” are not allowed to collapse because the operation
would delete too much surface area from the model in relatian Ttne best
remaining pair spans a virtual edge. Again, the best vertices to merge
collapse across a virtual edg@l) There are no more edges or virtual edges
with length less than or equal tdhat are allowed to collapse. Therefore,
GAPS doubles. (e) The amount of surface area that can be deleted or inserted
in a single vertex merge operation depends.o8incer has grown, previously
disallowed merges are now allowed. The two rectangles have joined and
produced a higher quality Simplification..............ccoooviiiiiiii e 55

Figure 3.8: Determining if a vertex merge is allowable according to surface area preservation.
On the left, the pairs of black vertices are potential merge candidates. In the
middle, the shaded area represents the surface area change due to the merge.
On the right, the shaded area has formed a circle with equivalent surface area.
(a) This operation is not allowed since the area it changes shown in the top
circle is greater thaa = 717%, the middle circle. However, ifdoubles, then this
operation becomes legal. (Bhe merge is legal because the area in the bottom
circle is less than the middle CirCle. ..o 56

Figure 3.9: Some sample cases of attribute merging. The black vertices are next to be
merged. The symbols at the corners of these vertices represent the attribute of
the face at that corner. (4)case involving continuous attributes. When the

XXii

two vertices merge, the middle faces disappear and attributes a and S combine
into @ For example, if aisthe color red and Sis blue, then gwould be purple.
(b) A caseinvolving an attribute discontinuity. When the vertices merge, the
middle faces disappear and the pairs of attributes a and £, and dand y’combine
into @and A, respectively. For example, if aisred, Sisblue, diswhite, and yis
black, then gwould be purple and A would be gray. (c) A caseinvolving a
virtual edge. After the pair merges, the attributes are unaffected. 57

Figure 3.10: Interpolation of a new attribute. The black vertices are the next to be merged
and the gray vertex is the best merge point according to error quadrics. We find
the barycentric coordinates of the nearest point on the nearest face to the gray
vertex to produce an interpolated attribute ¢ Inthiscase, ¢= .3a + .3y + .40.

Figure 3.11: Conversion of normal space error to object space error. (a) The two black
vertices are next to be merged. The average normals at the vertices are shown,
depicting their initial normal point clouds. (b) The combined normal point cloud
in normal space when the vertex pair is merged. The gray point represents the
point of minimum error according to this point cloud. The average distance
between this point and the normals in the point cloud is approximately 0.4.
Dividing by 2 results in the normalized error of 0.2. (c) The surface area of the
adjacent faces of the two vertices being merged form the shaded circle above.
Thisareais multiplied by 0.2 to obtain the final affected surface area,
represented by the smaller circle with radiusr. r isdefined to be the object
space distance error due to normals. In other words, r is a distance error in O°.

Figure 3.12: Geometric error comparison, as detailed in Section 3.5.3, between GAPS and
QSlim on various objects. The percentage error isin terms of the maximum
dimension of the object’s bounding DOX...........cooiiiiiiiiiii s 73

Figure 3.13: Comparison between the approximate geometric error used by GAPS and a more
precise geometric error calculated during the simplification of various objects.
The percentage error is in terms of the maximum dimension of the object’s
POUNAING DOX. .. 74

Figure 3.14: The original Rotor object and its LODs created by GAPS. From left to right
these LODs consist of 4,736 faces, 1,184 faces, 296 faces, and 72.facegb

Figure 3.15: Switching distances for LODs of the Rotor object if we allow 1 pixel of error
according to our approximate error metric described in Section 3.3.3. From left

XXiii

to right these LODs consist of 23,681 faces, 1,184 faces, 592 faces, and 296
faces. The original object consists of 4,736 faCes........cccevveeevcieeiiiee e, 75

Figure 3.16: The original texture-mapped Head object and its LODs created by GAPS. From
left to right these objects consist of 9,580 faces, 2,395 faces, 597 faces, and 148
L= 0= SRR 76

Figure 3.17: The approximate error bounds reported by GAPS for the same LODs as in
Figure 3.16. The radii of the spheres are the approximate errors at the vertices
they enclose as defined by the unified error metric in Section 3.3.3.4. These
error bounds are used to automatically determine switching distances for LODs.
From left to right these objects consist of 9,580 faces, 2,395 faces, 597 faces,
AN LAB TACES.eie ettt ettt e s nneeeens 76

Figure 3.18: Switching distances for LODs of the Head object if we alow 1 pixel of error.
From left to right these LODs consist of 4,789 faces, 2,395 faces, 1,196 faces,
and 597 faces. The original object consists of 9,580 faces...........cccevvveeviieenns 77

Figure 3.19: LODs for the Chamber object from atop-down view created by GAPS when
error due to attributesisignored. Note how the shadow and lighting
information of this radiositized model rapidly disappears as the simplification
proceeds. From left to right, these LODs consist of 10,423 faces (the original
object), 9,119 faces, 7,817 faces, and 5,210 faCeS........cccccevevcveriiiee e 77

Figure 3.20: LODs for the Chamber object created by GAPS using the unified error metric
described in Section 3.3.3.4. The results are superior to the LODs in Figure
3.19 interms of color preservation. However, notice that the polygonal
geometry of the lamp, i.e., the yellow ring, is preserved better in Figure 3.19.
From left to right these LODs consist of 10,423 faces (the original object), 9,120
faces, 7,817 faces, and 5,211 fACES.uuvvvriiiiiieiiiiiiieeeeeerreeeeeseeerresreresrerereeraea... 77

Figure 3.21: Switching distances for LODs of the Chamber object if we allow 1 pixel of error.
From left to right these LODs consist of 7,817 faces, 5,211 faces, 2,605 faces,
and 1,302 faces. The original object consists of 10,423 faces.cccceeviueenne 78

Figure 3.22: LODs for the Econ object created by GAPS with no distance threshold and no
surface area preservation. Note how the pipes thin during simplification. From
left to right these LODs consist of 23,556 faces (the original object), 5,888
faces, 1,472 faces, 368 faces, and 92 fACES.uvvvvvvvveeiiiiiiiiiirieeievvievreeeereeaens 78

XXV

Figure 3.23: LODs for the Econ object created by GAPS using an adaptive distance threshold
and surface area preservation. The pipes join together at the latter stages of
simplification, preserving more of the surface area of the object as compared to
Figure 3.22. From left to right these LODs consist of 23,556 faces (the original
object), 5,888 faces, 1,470 faces, 368 faces, and 90 faces.ccceevcvveeiiinens 79

Figure 3.24: Switching distances for LODs of the Econ object if we alow 1 pixel of error.
From left to right these LODs consist of 5,888 faces, 2,944 faces, 1,470 faces,
and 736 faces. The original object has 23,556 faCes.cccccveriiieeiiieeiiiiennns 79

Figure 3.25: The original Bunny object and its LODs created by GAPS. From left to right
these LODs consist of 69,451 faces, 8,680 faces, 1,085 faces, and 135 faces. .. 79

Figure 3.26: Switching distances for LODs of the Bunny object if we allow 1 pixel of error.
From left to right these LODs consist of 17,361 faces, 8,680 faces, 4,340 faces,
2,169 faces, and 1,085 faces. The original object consists of 69,451 faces.80

Figure 3.27: LODs for the ShDivWest object created by GAPS with no distance threshold and
no surface area preservation. From left to right these LODs consist of 141,180
faces (the original object), 17,646 faces, 2,204 faces, and 272 faces. 80

Figure 3.28: LODs for the ShDivWest object created by GAPS using an adaptive distance
threshold and surface area preservation. In the latter stages of smplification,
these LODs retain more of the overal structure of the pipes than the onesin
Figure 3.27. From left to right these LODs consist of 141,180 faces (the
original object), 17,644 faces, 2,202 faces, and 272 faCes.ccceeeeevieeeriieennns 80

Figure 3.29: Switching distances for LODs of the ShDivWest object if we allow 1 pixel of
error. From left to right these LODs consist of 70,588 faces, 35,292 faces,
17,644 faces, and 8,822 faces. The original object consists of 141,180 faces...81

Figure 3.30: The original Sierra object and its LODs created by GAPS. From left to right
these LODs consist of 162,690 faces, 20,335 faces, 2,541 faces, and 317 faces.

Figure 3.31: Switching distances for LODs of the Sierra object if we allow 1 pixel of error.
From left to right these LODs consist of 81,345 faces, 40,671 faces, 20,335
faces, and 10,168 faces. The original object consists of 162,690 faces. 81

XXV

Figure 4.1: A smple scene graph. (a) A model of aface. (b) The model's scene graph....... 87

Figure 4.2: Rendering of a face model using LO[g.Scene graph of the face model. Red
arrows show LODs representing polygonal geometry contained in each node.
(b) The original face model(c) Since the viewer is far away, this simplified face
Is an acceptable approximation. The LODs enclosed in blue bof@sarre the
ones rendered. The rendering algorithm traverses the scene graph starting at
Face. It renders an appropriate representation of the face using LOD 3, and
then traverses the node’s children. Next, it visits Eye and renders the left eye
with LOD 3. It then visits Eye again and renders the right eye with LOD 3.
Finally, it enters Mouth and renders LOD 3..........cooiiiiiiiiiiiiiiiiee e 93

Figure 4.3: Rendering of a face model using LODs and HLB)sScene graph of the face
model. Red arrows show LODs representing polygonal geometry contained in
each node. The green arrow shows HLODs representing portions of the scene
graph. In this case, the HLODs represent the entire m@u)el.he original face
model. (c)Since the viewer is far away, this simplified face is an acceptable
approximation. The HLOD enclosed in the blue bofa)nis the one rendered.

Our algorithm traverses the scene graph starting at Face. It renders an
appropriate representation of the face using HLOD 0. Since this HLOD
represents the entire scene graph, the system ignores the node’s children and is
finished rendering. Note that HLOD 2 demonstrates the merging of the two
eyes, something not possible in a traditional object-based LOD algorithm........ 94

Figure 4.4: Methods of LOD selection. (&), d represents the distance between the eye of
the viewer and the center of the LOD’s bounding circle(b)jnd represents the
shortest distance between the eye and the LOD’s bounding circle.................... 95

Figure 4.5: Since the structure of the scene graph controls the creation of HLODs, the creator
of the scene can dictate the order used for grouping obj@jté. sparse office
model. The creator of the office scene graph has intelligently grouped the can
and cabinet together and the desk and chair together because of theiityorox
(b) The resulting scene graph from this grouping. Since nearby objects are
grouped together, view-frustum culling efficiency and HLOD quality are
maximized. (C)A poor choice of grouping objects. (8his scene graph leads
to inefficient HLOD creation and view-frustum culling............c.cccooooevevinnnnnn. 97

Figure 4.6: A flattened scene graph of the office model. No objects are hierarchically grouped
1401 [=3 1 = P 98

XXVi

Figure 4.7: Associations for a small two-dimensional scene. Objects are depicted using their

bounding circles along with a gray point representing the circle’s center. The
center of an object’s bounding circle determines which partition the object lies
in. Association is a top-down procegs) The entire scene and its bounding
rectangle. There are more than two objects in the rectangle so the space is
subdivided using a quadtreé) There are more than two objects in the upper
left and lower right quadrant. These quadrants must be subdi\ide@nly the
lower right quadrant needs to be subdivided. T{a} final quadtree subdivision.

Figure 4.8: Creation of the bounding volume hierarchy from the quadtree subdivision in

Figure 4.7.(a) The hierarchy is built bottom-up. Each bounding circle encloses
any objects or bounding circles that lie within a particular partition. The blue
bounding circle bounds the lowest level objects in the quadtree subdivisjon.

The green bounding circle encloses both nodes and the blue bounding circle. (c)
Red bounding circles enclose objects and bounding circles created during the
first quadtree subdivision. (d)he root node bounding circle encloses

EVEIYENING. e e 100

Figure 4.9: The resulting association graph from Figure 4.7 and Figuré.Bhe original

Figure 4.10:

Figure 4.11:

scene with one bounding volume. The objects are numbésgd@he bounding
volume hierarchy created in Figure 4(8) The scene graph for the original
scene.(d) The scene graph for the associated scene. This scene graph allows
for more effective view frustum culling and HLOD creation..................... 101

Partitioning a small two-dimensional object. T{@ original object. (byhe

object has been spatially partitioned into four uniform sized quadrants. The
upper left quadrant is colored red. Any vertex or any centroid of a face that falls
within this partition is colored red. Similarly, the other quadrants are colored
green, blue, and cyan. Faces are included in the partition that contains their
centroid. (c) Any face whose vertices are contained in more than one partition
are restricted. A vertex included in a restricted face is itself restricted.

Restricted faces consist of black edges. Gray vertices in the diagram denote
restricted vertices while white ones are unrestricted.c.ccoooeeiiiiiiiiinnenens 103

Simplification of each partition from Figure 4.18). Simplification of the red
partition. None of the gray restricted vertices are allowed to be merged. The
next pair to be merged is colored black. Simplification stops when there are no
more pairs to merge. (@)he green partition(c) The blue partition.(d) The

(oY= T I o= T 110 o 1P 104

XXVii

Figure 4.12: Creation of the partition scene graph for the scene in Figure 4.10 and Figure
4.11. The four quadrants are children of the partition root node. Shown below
each quadrant node is its coarsest simplified geometry.........ccocvvvveiieciieenen. 105

Figure 4.13: Forming the polygonal geometry of the partition root node from Figure 4.12. (a)
The polygons of each of the children nodes are combined. (b) The partition size
shown as a dotted black rectangle doubles to include all of the polygonal
geometry. Therefore, all vertices that were restricted are now free to be merged
since they al lie in the same partition. Duplicate vertices are shared and HLODs
for the partition root node are created. The black pair of vertices shows the next
pair to be merged during this Smplification ProCess.........ccocvveviieeeiiieesinennns 106

Figure 4.14: Example of targeting aframe rate. We start with the coarsest representation
possible, namely the coarsest HLOD of the root node. Note that this HLOD
represents the entire scene. The portions of the scene graph that are currently
active are highlighted in blue. The number of faces that can be drawn within this
example frame-rate constraint is 20. The current representation of the sceneis 2
polygons. The polygonal geometry in the dotted black box is the current
representation we would draw. The HLODs and LODs are numbered. Also,
the number of polygons that make up an HLOD or LOD and the error
associated with themis shown. For example, the coarsest HLOD of the root
node consists of 2 polygons and has a projected pixel-error of 60, shown in
PAENTNESES. ...t 108

Figure 4.15: We refine the scene graph from Figure 4.14 since we can draw 18 more
polygons. We substitute afiner HLOD for the coarsest HLOD..................... 109

Figure 4.16: We again substitute a more detailed HLOD for the previous representation in
FIQUIE A.15. ..ot 110

Figure 4.17: We refine further because the representation in Figure 4.16 is only 11 polygons.
There are no more HLODs in the root node. To refine the previous HLOD, we
descend into the scene graph and choose the coarsest LODs for each of the
children nodes. Note that there are two blue boxes around Eye LODs, showing
that there are currently two instances of eyesinthe model.............cccccoeeeeeee. 111

Figure 4.18: We refine the LOD or HLOD that exhibits the most error. In the previous
representation in Figure 4.17, the Face polygona geometry has a projected
pixel-error of 10, which is greater than the error at the Mouth and Eyes.
Therefore, we refineiit first by choosing the next finer LOD of the Head. 112

XXVili

Figure 4.19:

Figure 4.20:

Figure 4.21:

Figure 4.22:

Figure 4.23:

Figure 4.24:

Figure 4.25:

Figure 4.26:

Figure 4.27:

Figure 4.28:

We still have one more polygon in our budget so we attempt to refine the Head
LOD again since it exhibits the most error. However, we cannot refine it since it
would add 45 polygonsto the scene. Therefore, we attempt to refine other parts
of the scene graph. The only LOD that can be refined and still be within the
polygon budget is one of the Eyes. Once the Eye isrefined, we have a
representation of the scene that cannot be refined further without exceeding the
polygon budget. The final image rendered is shown in the dotted black box.
Note that the Eyes are rendered with different LODS.ccccovveeviiieiniennne 113

Performance difference between display lists and immediate mode on a SGI
Reslity Monster with a 300 MHz R12000 processor and 16GB of main memory.

Performance difference between using LODs and not using LODs.................. 122

Performance difference between using LODs versus using LODs and HLODs.

Performance of our target frame-rate Mode.oocevrriieeiiieesiiee e 125

LODs created for the Bronco model using the error quadric metric alone. They
consist of 74,308 faces (the original model), 1,366 faces, 343 faces, and 107
=0 SR 127

LODs created for the Bronco model using GAPS. They consist of 74,308 faces,
1,357 faces, 341 faces, and 108 fACES.uvvvvrrrirririiiiiiiiiieiirrererrrerrrereerereaeaane. 127

LODs and HLODs created for the Bronco model using GAPS. They consist of
74,308 faces, 1,357 faces, 338 faces, and 80 faCesS.cooeeeeeeeeveieeeieeeeieeeeen, 128

LODs crested for the Cassini model using the error quadric metric alone. They
consist of 349,281 faces (the original model), 3,629 faces, 939 faces, and 226
L= =SS 128

LODs created for the Cassini model using GAPS. They consist of 349,281 faces,
3,601 faces, 906 faces, and 228 faCES.covvveririieeiie e 129

XXX

Figure 4.29: LODs and HLODs created for the Cassini model using GAPS. They consist of
349,281 faces, 3,587 faces, 892 faces, and 217 faces.cccevcveevceeeviieeesneen, 129
Figure 4.30: LODs created for the Torpedo Room model using the error quadric metric alone.
They consist of 883,537 faces (the original model), 6,386 faces, 827 faces, and
0 =00 RS 129
Figure 4.31: LODs created for the Torpedo Room model using GAPS. They consist of
883,537 faces, 6,160 faces, 822 faces, and 95 faces.ccccccvvvvvevieciee e, 130
Figure 4.32: LODs and HLODs created for the Torpedo Room model using GAPS. They
consist of 883,537 faces, 6,160 faces, 822 faces, and 95 faces.cceeueeeee. 130
Figure 4.33: LODs created for the Power Plant model using the error quadric metric alone.
They consist of 12,731,154 faces (the original model), 9,627 faces, 2,494 faces,
=00 [O o SR 130
Figure 4.34: LODs created for the Power Plant model using GAPS. They consist of
12,731,154 faces, 9,558 faces, 2,405 faces, and 612 faCes.vvvvvvvvvvvvvvnnns 131
Figure 4.35: LODs and HLODs created for the Power Plant model using GAPS. They consist
of 12,731,154 faces, 9,503 faces, 2,375 faces, and 590 faces.c.ccveeenneen. 131
Figure 4.36: Partitioning the Sierra Terrain Model...........c.cooiieiniiiiiee 133
Figure 4.37: Adaptive smplification and view-frustum culling using partitioning. 133
Figure 5.1: A SImple SCeNE Graph.ooiiiiiie it 141

Figure 5.2: Error changes in the HLODs due to object movement. (a) Trandation. (b)

Rotation. (c) Scaling. (d) Scaling followed by rotation followed by trandation.

... 141
Figure 5.3: The error due to movement propagates up the scene graph.cccecvevieeienns 142
Figure 5.4: Even though an HLOD is inaccurate, it may be used to approximate groups of

(0] o= ot =AU PRSP 142

XXX

Figure 5.5: Example of movement that does not affect the association of nodes in a scene
graph. (a) Thissceneisthe same asin Figure 4.9. (b) Node 3 moves dightly.
However, its entire movement is contained within the red bounding circle
labeled A. The dotted red bounding circle iswhat A used to be. The solid red
bounding circle is the new tighter fitting bounding circle for Nodes 1, 2, and 3.
Similarly, we recursively recalculate bounding circles further up the scene graph.
In this case, the Root node is a parent of A so we recalculate its bounding circle.
The old circleis shown in dotted black and the new circle is shown in solid

Figure 5.6: Example of movement that affects the association of nodes in a scene graph. (a)
This sceneisthe same asin Figure 4.9. (b) Node 9 moves outside of its blue
POUNAING CIFCIE. ... 144

Figure 5.7: Continued from Figure 5.6. (a) The initial scene graph corresponding to the
original positions of the objects. (b) Since node 9 has moved outside of its
bounding circle, it is temporarily deleted from the scene graph. When we delete
node 9, node E only has one child, namely node 8. Having only one child is
inefficient in terms of HLOD creation and view-frustum culling. Node E was
created by our association process and is not an original node in the scene graph.
Therefore, we collapse node 8 upward to replace node E.ccoeevveennee 145

Figure 5.8: Continued from Figure 5.7. (a) Here is the bounding volume hierarchy of the
scene graph with node 9 deleted. A gray outline shows the real position of node
9. Next, we perform a search to determine where node 9 should be located in
the scene graph. We first perform an upward search, starting from node 9’s
former parent. Node 9’s parent used to be node E, but that was replaced by
node 8. Therefore, we start searching upward at node 8. We continue going up
the scene graph until we find a node whose bounding circle contains node 9's
bounding circle. In this case, node 8’s bounding circle does not contain node
9’s. Node D’s bounding circle also does not contain node 9's. Node C's
bounding circle does contain node 9's. We next perform a downward search,
starting from where we ended our upward search. We continue going down the
scene graph until we find no children nodes whose bounding circles enclose
node 9’'s bounding circle. In this case, no children of node C have bounding
circles that enclose node 9’'s. At this point, we insert node 9 as a child node of
the node where we ended our downward search. Therefore, we make node 9 a
child of node C. (b)rhe new scene graph after this operation....................... 146

Figure 5.9: Continued from Figure 5.8a) We attempt to associate children nodes of the
node where we terminated our downward search. In this case, we are able to
associate nodes 6 and 9 using our quadtree subdividihe new bounding

XXXi

volume hierarchy for this scene, including a new node Z which encloses nodes 6
and 9. We calculate this new hierarchy in a bottom up fashion from the node C,
the end of our downward search. (c) The new scene graph for this environment.

Figure 5.10: Diagram showing how the different processes in our agorithm interact. 150

Figure 5.11: On the left we have a 5x5x5 grid of cubes consisting of 1,500 polygons. On the
right isan HLOD of these cubes consisting of 750 polygons.............cccceeee.... 156

Figure 5.12: On the left, each of the cubes from Figure 5.11 has moved to a new location. As
before, there are 125 cubes consisting of 1,500 polygons. On the right is an
HLOD consisting of 692 polygons that was recomputed for the cubes after they

Figure 5.13: This graph shows the time it takes to recalculate HLODs of a scene consisting of
a specific number of cubes utilizing a specific number of simplification processes.
It shows simple scenes, with 216 cubes or less. Note that adding processes
actually slows down the performance of the system due to contention overhead.

Figure 5.14: This graph shows the time it takes to recalculate HLODs of a scene consisting of
a specific number of cubes utilizing a specific number of simplification processes.
It shows complex scenes ranging from 216 to 1,331 cubes. Adding processes
significantly speeds up the recalculation process as the scenes grow in
complexity. For small scenes, adding processes may reduce the performance of
the system (SEe FIgUIE 5.13)...ccuiieiieiiie e 160

Figure 5.15: The original Bronco model consisting of 74,308 polygons and two HLODs
consisting of 580 and 143 polygons reSpectively..........cocveveereeneenecneennnne 163

Figure 5.16: Dynamic modification of the Bronco model. We have moved the top of the
Bronco in order to look into itsinterior. The two HLODs consist of 552 and
136 polygons respectively and took 3 seconds to recompute using 4
simplification processes on an SGI Reality Monster with 300 MHz R12000
processors and 16GB Of MaiN MEMONY.ooiieiiieiie e 163

Figure 5.17: The original Cassini model consisting of 349,281 polygons and two HLODs
consisting of 1,790 and 445 polygons reSpectively.........c.cevvereereenecneeninnne 163

XXXii

Figure 5.18: Dynamic modification of the Cassini model. We have moved the gold disc away
from the Cassini. The two HLODs consist of 1,236 and 307 polygons
respectively and took 6 seconds to recompute using 4 simplification processes
on an SGI Reality Monster with 300 MHz R12000 processors and 16GB of
IMBIN MEIMIONY. <.ttt ettt ettt b e s sae e b e e ear e e san e e be e et e e snneenneennneeas 164

Figure 5.19: The original Torpedo Room model consisting of 883,537 polygons and two
HLODs consisting of 5,572 and 1,393 polygons respectively...........cccocenee... 164

Figure 5.20: Dynamic modification of the Torpedo Room model. We have moved 3 of the
torpedo tubes to the side of the main structure. These two HLODs consist of
5,191 and 1,296 polygons respectively and took 9 seconds to recompute using 4
simplification processes on an SGI Reality Monster with 300 MHz R12000
processors and 16GB Of MaiN MEMOTY.ooiieiiieiie e 164

Figure 5.21: The original Power Plant model consisting of 12,731,154 polygons and two
HLODs consisting of 9,384 and 2,379 polygons respectively...........cccoceeee.e. 165

Figure 5.22: Dynamic modification of the Power Plant model. We have moved multiple parts
in the scene around. These two HLODs consist of 9,441 and 2,395 polygons
respectively and took 43 seconds to recompute using 4 simplification processes
on an SGI Reality Monster with 300 MHz R12000 processors and 16GB of

XXXili

1 INTRODUCTION

1.1 Visualization of Large Polygonal M odels

Interactive visualization of three-dimensional datasets is an important application and
consequently an important research topic in the field of computer graphics and scientific
visualization. Many applications, such as computer-aided design and walkthroughs, benefit
from interactive navigation, i.e., being able to move around a model at greater than 10 frames
per second. When users are able to move around the model interactively and view it from all

directions, they are able to quickly gain a good understanding of the three-dimensional data.

In some applications, objects in the environment move. Such scenarios are common in
design evaluation of large assemblies where a designer moves, adds, or deletes parts. Other
cases of dynamic environments include smulation-based design, driving smulators, battlefield
visualization, urban environment visualization, and entertainment software. All of these
applications require that objects be capable of movement, either by programmed behavior or
interactive manipulation. For example, Figure 1.1 shows a user interacting with a Ford

Bronco model.

Figure 1.1: A user interactswith a Ford Bronco model consisting of 74,308 polygons. On the left isthe

original model. On theright, the user hasremoved the body of the Bronco to view itsinterior.

A common problem for visualization systems is that large three-dimensional datasets
require agreat deal of rendering power. Speciaized graphics systems are commonly used to
accelerate the process. However, models exist that cannot be rendered at interactive frame
rates even with current high-end graphics machines. For example, Figure 1.2 shows a view of
acomplex power plant model that overwhelms an SGI Infinite Reality system [Montrym et al.
97]. For such modelsit is necessary to use algorithmic techniques to accelerate the rendering
process. These methods attempt to render at interactive frame rates by either substituting
simpler approximations for portions of the dataset or ignoring parts of it that are not visible.

The goal isto improve interactivity without significant degradation in image fidelity.

Figure 1.2: A view of the Power Plant model. Thisarea isone of many that consists of a mass of pipes.
The whole model consists of 12,731,154 polygons and cannot be rendered at inter active frame rates using
an SGI Reality Monster with a 300 MHz R12000 processor, 16 GB of main memory, and an SGI Infinite
Reality 2E graphics subsystem containing 4 GEsand 2 RM 9s.

Three-dimensional datasets are usually represented using polygons because of their
simplicity and generality. Polygons are mathematically simple and most graphics systems have
been specifically designed to render them quickly. Other formats such as curved surfaces and
volumetric data sets can be easily converted into polygonal representations to any desired
accuracy. Polygons are the lowest common denominator of three-dimensional formats, as
evidenced by their predominance in visuaization applications. Therefore, most techniques for

accelerating the rendering of three-dimensional datasets deal with polygona models.

Vishility and simplification techniques are two commonly used methods for accelerating
the rendering of large polygonal environments. Visibility techniques are designed to quickly

cull away portions of a scene that are not visible to the viewer. Methods based on efficient

3

cell-to-cell vishility for architectural environments are widely used [Airey et a. 90, Teller and

Séquin 91, Luebke and Georges 95]. More complicated algorithms have been developed to
handle general polygonal environments [Greene et al. 93, Coorg and Teller 96, Hudson et al.
97, Zhang et al. 97]. Simplification methods are used to approximate regions of the model
when rendering, usually sacrificing image quality for speed. Some simplification algorithms
replace portions of the environment with images [Maciel and Shirley 95, Schaufler and
Stuerzlinger 96, Shade et al. 96, Aliaga and Lastra 99] while others pobmgnal

simplification, replace complex objects with lower polygon count approximations. This thesis

introduces new techniques for the field of polygonal simplification.

The goal of polygonal simplification techniques is to genaraldé-resolution
representations [Clark 76, Heckbert and Garland 94] for polygonal objects. Based on the
distance between an object and the viewer, a visualization application renders an appropriate
representation for the object. If an object is far off in the distance and covers only a few pixels
on the screen, a coarse representation will suffice; if the viewer is close to the object, a highly
detailed version is probably necessary. Polygonal simplification is the problem of reducing the
number of polygons needed to represent a three-dimensional polygonal object while retaining
a good approximation of its original shape and appearance. Traditionally, simplification
algorithms produce a series of representations, or levels of deailin object. Given the
distance between the viewer and an object, the rendering systesait@ag distances to
determine which LOD to draw. Figure 1.3 shows LODs of a polygonal bunny model and

Figure 1.4 demonstrates the distance at which some of the bunny LODs would be rendered.

Figure 1.3: LODsof a bunny model. From left toright, these LODs consist of 69,451 polygons, 8,680

polygons, 1,085 polygons, and 135 polygons, respectively.

Figure 1.4: Switching distancesfor LODs of the Bunny object. From left toright these LODs consist of
17,361 faces, 8,680 faces, 4,340 faces, 2,169 faces, and 1,085 faces. The original object consists of 69,451

faces.

1.2 Definitions

Throughout this dissertation, we refer to high quality and drastic approximations. In

this section, we define these terms.

1.2.1 High Quality

There is no standard definition of quality of approximation in the field of polygonal
simplification. Usually, a metric that approximates error between the original and simplified
object is used to guide a simplification algorithm. Simplification operations that introduce the
least amount of error according to this metric are performed first. However, in the context of
rendering, the output of a simplification algorithm is rarely judged by the error reported by a
metric. Instead, the output of these agorithmsisjudged visually. If an approximation does
not look good, then it is not good, regardless of the metric error. Therefore, the goal of
polygonal simplification algorithms used for rendering is not to produce approximations that

minimize an error metric, but rather to produce good-looking approximations.

Therefore, it is common that an error metric of a simplification algorithm is tweaked to
enhance its visua output. For example, trying to preserve the silhouette or regions of high
curvature of an object during simplification is a common technique used by most algorithms.
These areas are deemed perceptually important and are preserved even at coarse
approximations. In other words, simplification algorithms use heuristics, either along with or
integrated with error metrics, in order to produce good-looking results. These heuristics are

derived from empirical evidence.

Suppose that an error metric exists that could quantify the exact perceptual error
between the original and simplified object. If this perfect error metric was known, it would
define high quality. 1t would be used by simplification algorithms to produce the best possible
approximations. Using imperfect error metrics and heuristics, simplification algorithms
attempt to mimic thisideal metric. Since a perfect metric has not yet been discovered, thereis
currently no quantitative way to measure how close a simplified object is to the ideal
approximation. However, we can view the simplified object with our own eyes and judge
how well it approximates the original object. We can also perceive when it is appropriate to
render this approximation in place of the original object. Since the ideal metric has not yet
been realized, we define it by using our own eyes. Our perception defines high quality.
Therefore, when we say that an algorithm produces high quality approximations, we imply
that it produces good-looking approximations according to our own eyes. Figure 1.5 further

explains this definition of high quality.

Perfect Algorithm

4 Guided by the

Quality of Perfect Metric

Approximation

According to Algorithm Guided

by an Approximate

the Perfect)
Error Metric Melric
(Our Eyes)
v
Poor
Origina # » 1Polygon
Polygons

Polygonsin Approximation

Figure 1.5: Our definition of high quality. The vertical axis measuresthe quality of an approximation
using the perfect error metric. The horizontal axis shows the number of polygonsin an approximation,
ranging from the original object down to an approximation that consists of one polygon. The solid black
curve denotes the quality of approximations gener ated by an algorithm that is guided by the perfect
error metric. In other words, for every number of polygons, this curve shows the quality of the best
possible approximation. The lighter gray curve denotes the quality of simplifications produced using an
approximate error metric. Thegoal of a simplification algorithm isto minimize the ar ea between its
curve and the ideal curve, thus producing high quality approximations. Since a perfect error metric has

not been discovered, the dark curveisdefined by our visual judgement.

1.2.2 Drastic

A drastic approximation is a representation containing a small fraction of the polygons
as compared to the original object or objects. This fraction depends on how many polygons
make up the original objects being simplified, but it is always less than 102 Thus, original
objects consist of at least two orders of magnitude more polygons as compared to a drastic
approximation of them. For objects or environments consisting of more than 1,000,000
polygons, this fraction can be as low as 10“. In these cases, a drastic approximation might
consist of 100, 1,000, or 10,000 polygons.

1.3 Motivation

An abundance of research has been done in the field of polygonal simplification: some
papers deal with smplifying single objects while others deal with visualizing static
environments using the output of simplification algorithms. To the best of our knowledge, no
previous work directly focuses on the problems associated with smplifying large dynamic
environments. The motivation for this thesis can be understood by reviewing the previous

work.

1.3.1 Simplification of Static Polygonal Objects

A great deal of research over severa years has been done in the field of simplification of
static polygonal objects. Some algorithms deal exclusively with smplifying polygonal
geometry and ignore surface attributes such as colors, normals, and textures. [Schroeder et
al. 92] iteratively decimates manifold meshes. [Turk 92] uses repulsion forcesto determine
the positions of vertices of the smplified object. [Hoppe et a. 93] attempts to minimize an
energy function during simplification. [Rossignac and Borrel 93] overlays models with a
uniform grid to simplify topology. [Eck et al. 95] uses wavelets to create a multi-resolution
representations for objects. [He et al. 95] uses volumetric simplification techniques. [El-Sana
and Varshney 97] detects and removes holes from objects. [Low and Tan 97] extends upon
[Rossignac and Borrel 93] by using a more advanced spatial subdivision called floating-cell
clustering. [Schroeder 97] extends upon [Schroeder et a. 92] by performing decimation
operations in order of increasing error. Since none of these algorithms can handle surface
attributes, they can produce poor approximations for objects containing attributes as
Illustrated by the radiositized Chamber model shown in Figure 1.6.

Figure 1.6: The benefits of handling surface attributes. On theleft isan overhead view of the original

radiositized Chamber model consisting of 10,423 polygons. In the middleisthe result of ssimplifying the
model while ignoring surface attributes. On theright, we use surface attributesto guide the
simplification process, retaining mor e of the color information of the model. Each simplified model

consists of 5,120 polygons.

Other agorithms use more advanced techniques to simplify and guarantee that the
topology of an object will not change. [Cohen et al. 96] uses simplification envelopes to
guarantee error bounds. [Hoppe 96] decimates manifold meshes using the edge collapse
operation to create progressive meshes. [Ronfard and Rossignac 96] collapses edgesto
vertices that minimize error according to a set of local planes. [Cohen et a. 97] bounds
geometric and texture-coordinate error using successive mappings. [Cohen et al. 98]
preserves the surface appearance of an object by storing color and normal information in
texture and normal maps, respectively. [Lindstrom and Turk 98] demonstrates that high
quality smplifications can be produced even though information from previous decimation
operationsisignored. Since none of these algorithms change the topology of objects, they are
limited in the amount of simplification that they can perform in certain cases. For example, to
simplify the Rotor model, shown in Figure 1.7, to low polygon count approximations, an

algorithm must be able to close the holes of the object.

Figure 1.7: The benefits of topological smplification. The original Rotor model, consisting of 4,735

polygons, ison the left. If we do not allow topological simplification, then we cannot eliminate the tiny
holesin thisobject. The coarsest approximation we can produce without topological smplification isin
the middle and consists of 480 polygons. On the right, we simplify the Rotor model’s topology to

produce a 68 polygon approximation.

A few algorithms are capable of topological simplification. [Garland and Heckbert 97]
uses error quadrics to measure geometric error at vertices. 1t smplifies topology, guided by a
user-specified tolerance parameter. Specifying a good tolerance parameter is not trivial and in
general, no one tolerance will work well on al objects. [Garland and Heckbert 98] extends
upon [Garland and Heckbert 97] to handle surface attributes. [Popovic and Hoppe 97]
presents a general technique that sacrifices speed in order to handle all types of polygonal
input.

We desire a simplification algorithm that exhibits the following properties:

* Handles al types of polygonal input, including polygons that contain surface

attributes as well as non-manifold and degenerate polygonal geometry;

» Simplifies objects automatically, without requiring the user to tweak parameters
on a per-object basis (changing a global parameter for an entire scene of objects

Is acceptable);
* Produces useful error bounds for both polygonal geometry and surface attributes,

» Creates high quality approximations of an object, preserving its basic shape, main

features, and surface appearance;

10

* Produces drastically low polygon count approximations;
» Executes quickly and uses as little memory as possible.

To the best of our knowledge, no one smplification algorithm simultaneoudly exhibits

all of these properties.

1.3.2 Simplification of Static Polygonal Environments

Previous visualization algorithms have used polygonal simplification methods to render
large environments at accelerated frame rates. Early methods used atraditional scene graph
representation combined with object LODs in order to visualize large modelsin real-time,
However, these techniques cannot simplify across different objects in the scene. Merging
polygons between objects helps produce better-looking coarse approximations for models
with numerous parts in close proximity (see Figure 1.8). [Rohlf and Helman 94] describes
IRIS Performer, a scene graph based toolkit for real-time visualization of models. [Schneider
et al. 94] presents asimilar system where LODs are created using the algorithm described in
[Rossignac and Borrel 93]. [Cohen et al. 96] integrates LODs produced by simplification

envelopes into IRIS Performer to visualize large models.

Figure 1.8: On theleft isthe Cassini spacecraft model consisting of 127 objects and 349,281 polygons.
The middle image shows a drastic smplification of the Cassini model using 226 polygons wher e we do
not mer ge polygons of different objects. On the right, we mer ge the polygons of different objectsto

produce a better drastic simplification consisting of 217 polygons.

11

Besides accelerating the frame rate, some research also focuses on rendering at constant
frame rates. In other words, the user specifies atarget frame rate and the algorithm attempts

to render the best possible representation of the scene within this time constraint.

There are two types of target frame-rate methods based on polygonal simplification
techniques, predictive and reactive. Predictive algorithms attempt to predict how long the
next frame will take to render in order to select an appropriate set of LODs for the scene. In
order to do this prediction, assumptions must be made about system performance that may not
be accurate during run-time. [Funkhouser and Séquin 93] presents an algorithm that assigns a
cost-benefit value for each LOD of each object in the scene. Picking which LODs to render is
reduced to a Knapsack problem. A greedy method is used to pick an approximation solution
to this problem. [Maciel and Shirley 95] extends [Funkhouser and Séquin 93] by

hierarchically grouping objects intoeta-objects.

Reactive algorithms use the performance of previous frames to guide the selection of
LODs for the next frame. [Rohlf and Helman 94] usésedback |oop to coarsen or refine
objects in the scene depending on the performance of previous frames. [Mueller 95] describes
how flight simulators also use feedback loops to adjust which LODs to render from frame to
frame. These techniques must attempt to prevent oscillation between slow and fast frame

rates.

Recently, several researchers have propasaddependent simplification, a method
that enables adaptive simplification across objects or regions of an environment. These
algorithms are very elegant and work well on spatially large objects. They impose significant
CPU and memory overhead, involve traversing a vertex tree for every object in the scene, and
are inherently immediate-mode techniques unable to take advantage of display lists. [Xia et al.
97] uses edge collapses in order to visualize single objects close to the viewer. [Hoppe 97]
proposes a view-dependent technique based qurageessive mesh work of [Hoppe 96].
[Luebke and Erikson 97] demonstrates a view-dependent algorithm capable of merging

different objects in the scene.

We desire a visualization algorithm for rendering large static polygonal environments

that exhibits the following properties:

12

* Automatically merges polygons of different objects in the scene to produce drastic
simplifications,
» Supports two rendering modes: one that allows the user to specify a desired image

quality and another that allows the user to specify atarget frame rate;

» Uses predictive techniques to target a frame rate but reacts to run-time

peculiarities such as display list cache misses,

» Takes advantage of computer graphics hardware to render models as efficiently as

possible.

To the best of our knowledge, no one visualization algorithm exhibits all of these

properties simultaneousdly.

1.3.3 Simplification of Dynamic Polygonal Environments

Little research has been performed on the problem of simplification of large dynamic
polygonal environments. Algorithms that support scene graphs, such as the one described in
[Rohlf and Helman 94], allow movement of objects by modifying transformations between
parent and children nodes. These techniques do not support merging polygons from different
objects in the scene and cannot create high quality drastic approximations of groups of

objects.

Other papers discuss how to update bounding-volume hierarchies and spatial
partitionings after the movement of objects. [Torres 90] discusses dynamically updating BSP
trees using a hierarchy of six levels of splitting planes. [Chrysanthou and Slater 92] updates
BSP trees incrementally after movement. [Sudarsky and Gotsman 96] incrementally updates
an octree spatial partitioning and also uses temporal bounding volumes to bound the extents

of an object through arange of time.

We desire a visualization algorithm for dynamic polygonal environments that exhibits

the following properties:

* It should dynamically update bounding volume hierarchies and spatial partitionings

incrementally and efficiently;

13

* Since the algorithm merges polygons of different objects in the scene, the relative
movement of these objects might change previously created approximations. The
algorithm should be able to identify and update these approximations. Figure 1.9

shows this process.

Figure 1.9: On theleft isthe original Ford Bronco model consisting of 466 objects and 74,308 polygons.

Next toit isa coarse approximation consisting of 580 polygons wher e polygons of different objects have
merged together. The next image, consisting of 74,308 polygons, shows a user removing the Bronco’s top
to view its interior. On the right, the coarse approximation of the model has been updated and consists

of 552 polygons.

1.4 Assumptions

Like many other workers, [Clark 76, Rohlf and Helman 94, Cohen et a. 96], we assume
that the polygonal environment being rendered is represented by ascene graph. A scene
graph is adirected acyclic graph consisting of nodes connected by arcs. A node contains
polygonal geometry as well as a bounding volume that encloses the node’s polygons plus all
of the bounding volumes of the node’s children. A directed arc connects a parent and child
node. The arc also contains a child-to-parent space transformation matristafced
node is one that is a child of several parent nodes. Instancing allows objects in the scene to be

replicated easily and efficiently.

The only visibility techniques we use in our approach are staidakeface culling and
view-frustum culling [Clark 76, Rohlf and Helman 94]. Back-facdliog assumes that
objects in the scene are closed and ignores polygons that are facing away from the viewer. A

view-frustumis a volume enclosing all space that a user could potentially see from a particular

14

vantage point. If the bounding volume associated with a node in the scene graph does not

intersect this frustum, then the node can be ignored during rendering.

We assume that the polygonal geometry within each node of the scene graph is static
and not deformable. Therefore, our work deals with rigid body environments where objects
in the scene move due to modifications of the scene graph. Dynamic environments require
several scene graph operations such as adding nodes and arcs, deleting nodes and arcs, and
changing transformations at arcs. This last operation is the most common for scenes

composed of moving objects.

1.5 Thesis Statement

Polygonal simplification techniques based on merging unconnected regions of
polygons and groups of objects can be the foundation of a powerful algorithm for interactive

visualization of large static and dynamic polygonal environments.

1.6 New Results

We approach the visualization of large static and dynamic polygonal scenes by splitting
the problem into three steps that build upon each other. First, we tackle the problem of
generating multi-resolution representations for an arbitrary set of polygons. We call such a
collection of polygons an object. Since we deal with rigid bodies, this problem is the
simplification of static polygonal objects. Using simplification techniques to render static
polygonal environments represented by scene graphs is the second task, which we call
simplification of static polygonal environments. Finally, we concentrate on rendering
dynamic polygonal environments, or the problem of simplification of dynamic polygonal

environments. Below we list our new results in each of these areas.

1.6.1 Simplification of Static Polygonal Objects

We introduce a new static polygonal object simplification algorithm called General and
Automatic Polygonal Smplification, or GAPS. The main features of GAPS are:

15

General: GAPS is able to smplify polygonal objects with cracks, non-manifold

vertices and edges, coincident polygons, and T-joints.

Automatic: No user input is required to guide the smplification process. Often it
Is necessary to simplify a large polygonal scene, containing numerous objects.
Requiring the user to input parameters on a per-object basis is tedious and time-

consuming.

Surface Attribute Handling: In order to enhance visual realism, objects usualy
include surface attributes such as textures, colors, and normals. GAPS uses these
surface attributes to guide the smplification process and approximates themin the

result.

Unified Error Metric: GAPS produces a unified error bound that is sengitive to
both the polygonal geometry and the surface attributes of the smplified object.
Our visualization algorithm uses these error bounds to automatically determine

switching distances between LODs.

High Quality: GAPS constructs high quality approximations of an object,

preserving its basic shape, main features, and surface appearance.

Drastic Simplification: GAPS is capable of drastic smplification of a polygonal
object such that a user can target a number of polygons and it produces an

appropriate smplification.

Topological Simplification: GAPS joins unconnected regions of the object or
changes its genus by closing holes in order to achieve high quality and drastic

simplifications of an arbitrary group of polygons.

Efficient: GAPS simplifies quickly.

GAPS has been tested on awide variety of polygonal objects including terrain meshes,

radiositized models, scanned meshes, and large CAD models. It produces high quality

simplifications quickly. Figure 1.6, shown previously on page 9, demonstrates the

effectiveness of GAPS on handling surface attributes during smplification. Figure 1.10,

below, shows the result of using GAPS on a complicated pipe structure. Ona 195 MHz

16

R10000 SGI Onyx 2, GAPS simplified these pipesin 26 seconds and the Chamber model in 7
seconds. On average, GAPS performs 500 vertex merge operations per second on this
machine. If surface attributes are ignored and topological simplification is not used, GAPS
runs approximately two times faster. In other words, handling surface attributes and

performing automatic topological simplification comes at a cost of half the performance.

Figure 1.10: On the left isthe original series of pipes consisting of 23,556 polygons that come from a

power plant model. Inthemiddleisthe smplified output of an algorithm that does not merge
unconnected regions of the model. On theright, GAPS mer ges unconnected r egions of the pipesto
produce a higher quality drastic smplification. Both approximations consist of roughly 90 polygons.

1.6.2 Simplification of Static Polygonal Environments

We present a new algorithm based on our simplification techniques for displaying large
static polygonal environments. It uses GAPS to preprocess the model. The main features of

our approach are described below:

» Hierarchical Levelsof Detail: Not only does the method use GAPS to create
LODs for polygonal geometry at each node of the scene graph, but it also uses
GAPS to create hierarchical levels of detail, or HLODs. HLODs represent

portions of the scene graph, or groups of objects. Our algorithm uses the higher-

17

order HLODs to cull away portions of the scene graph when necessary to achieve

atarget frame rate or for displaying a distant group of objects.

Association: The creation of HLODs depends on associating, or grouping, nearby
objects together. This grouping process is done hierarchically using an octree

spatial subdivision.

Partitioning: Spatialy large objects are problematic for traditional LOD
algorithms. By partitioning these objects and then grouping the partitions

hierarchically, our technique gains limited view-dependent rendering capabilities.

Two Rendering M odes: The algorithm can render using two different modes. A
desired image quality can be achieved by specifying an alowablepixel error. The
second mode is a target frame-rate mode where the algorithm attempts to render

the best possible image given a frame-rate constraint.

Efficient: To take advantage of graphics hardware, we use display lists to render
LODs and HLODs.

We tested our technique on severa different large CAD environments including a

terrain mesh, an automobile, a spacecraft, a submarine, and a power plant. Our method

allows us to interactively navigate and explore these environments. Figure 1.8, shown

previously on page 11, demonstrates the visua benefit of HLODs compared to using solely
LODs. Using an SGI Redlity Monster with an SGI Infinite Reality 2E graphics subsystem
containing 4 Graphics Engines (GEs) and 2 Raster Managers (RM9s), a 300 MHz R12000

processor, and 16GB of main memory, we preprocessed the Power Plant model, consisting of

12,731,154 polygons and 1,179 objects, in less than 4 hours and 15 minutes. Using a

combination of LODs and HLODs, our algorithm rendered this model on average nearly 306

times faster than using no LODs at all on a selected viewing path with little or no lossin

image quality. Due to the complexity of this environment, this speedup is not enough to

achieve interactive frame rates from all viewpoints. Figure 1.11 showsthe lossin image

quality that we must accept to achieve 10 frames per second for a particular view of the

model. Our agorithm was able to render the other CAD environments at interactive frame

rates with little or no loss in image quality.

18

Figure 1.11: Two views of the Power Plant model rendered in a 1000 by 1000 pixel window on an SGI

Reality Monster with an SGI Infinite Reality 2E graphics subsystem containing 4 GEsand 2 RM9s, a
300 MHz R12000 processor, and 16GB of main memory. On the left we render the original model at
0.05 frames per second from this viewpoint. On theright, we allow 45 pixelsof error in order to achieve

approximately 10 frames per second from the same viewpoint.

1.6.3 Simplification of Dynamic Polygonal Environments

In rigid-body dynamic environments, the bounding volume hierarchy of the scene
graph, structure of the scene graph, and transformations at arcs can change. Therefore, the
fundamental problem with dynamic scenes using our method is that HLODs change as objects
move. To be more precise, only HLODs that represent objects that have moved must be

recalculated. The main features of our algorithm’s dynamic ditipalare described below:

» Updating the Scene Graph: Movement of objects in the scene changes error
bounds of HLODs, the bounding volume hierarchy, and the structure of the scene
graph. Previously created node associations, which group objects according to
their proximity, may need to hgpdated. Therefore, the algoritlmassociates
objects to update the scene graph structure. This re-association process involves
associating objects that have moved close together and removing associations

between objects that have moved far apart.

19

* Asynchronous Simplification: Polygona simplification is currently a ow
process compared to rendering. When objects move, and HLODs need to be
recalculated, the algorithm creates the HLODs asynchronously from the rendering
process. This technique allows our algorithm to render the scene without waiting
for HLOD recalculations to complete.

We tested the dynamic portion of our visualization algorithm on the same large CAD
environments we tested in our static approach. Our current implementation is able to
recalculate HLODs in a few seconds only in scenes with limited dynamic movement. Thus, it
Is most useful for design and review scenarios, where the user infrequently manipulates a few
objects in the environment at atime. Figure 1.9, shown previoudly on page 14, demonstrates
the ability of the method to update the HLODs of an environment after objects in the scene
have moved. The recalculation of these HLODs for this figure took 3 seconds using 4
processors on an SGI Reality Monster with 300 MHz R12000 processors and 16GB of main
memory. Since these HLODs were recalculated asynchronously from the rendering process,

the user was able to interactively navigate around the model during the entire viewing session.

1.7 Dissertation Overview

The rest of the dissertation is organized as follows. Chapter 2 describes related work in
the areas of simplification of static polygonal objects, static polygonal environments, and
dynamic polygonal environments. Since there exists an abundance of work in the field of
polygonal simplification, this chapter does not attempt to cover all of it. Instead, we highlight

specific algorithms that are most relevant to our dissertation.

Chapter 3 presents General and Automatic Polygonal Smplification, or GAPS, for
short. This algorithm merges unconnected regions of polygons by using an adaptive distance
threshold and surface area preservation. During execution, it handles surface attributes to
guide the simplification process. It usesaunified error metric, that combines both geometric
and surface attribute error, to produce error bounds useful for autometically calculating

switching distances for LODs. We have used GAPS on awide variety of models ranging from

20

radiositized meshes to complex CAD parts. GAPS simplifies quickly and produces high
quality and drastic approximations.

In Chapter 4, we describe our scene-graph-based visualization algorithm used to render
large static polygonal environments. By using hierarchical levels of details, or HLODs, we
are able to merge polygons of different objects in the scene graph to produce better-looking
drastic approximations for groups of objects. We use GAPS to produce these HLODs. For
efficient view-frustum culling and HLOD creation, our technique is able to associate, or
group, nodes in the scene graph based on spatial proximity. By partitioning spatialy large
objects and then grouping these partitions together hierarchically, we are able to approximate
adiscrete version of view-dependent rendering. HLODs also alow the algorithm to render at
atarget framerate. We have used our algorithm to interactively navigate several large and

complex CAD environments.

Chapter 5 describes how our visualization algorithm is extended to handle dynamic
movement of objectsin the scene. To handle dynamic movement, our algorithm updates error
bounds of affected HLODs, re-associates nodes in the scene graph based on the new positions
of objects, and updates the bounding volume hierarchy of the scene. It detects HLODs that
have been affected by this movement and recomputes them asynchronously by using GAPS on
separate simplification processes. We have demonstrated our algorithm on several large CAD

environments with limited dynamic movement.

Finally, Chapter 6 presents conclusions and discusses possible avenues for future work.

21

2 PREVIOUSWORK

In this chapter, we describe previous work in the three areas addressed in this
dissertation. Thefirst areais smplification of static polygonal objects, or polygonal
simplification. Next, we review work in smplification and visuaization of static polygonal
environments. The final areais the simplification and visualization of environments with

moving objects.

2.1 Simplification of Static Polygonal Objects

Numerous methods have been proposed that produce simplified versions of polygonal
objects. They vary in terms of quality of approximation, efficiency, smplification operations,
and assumptions on the input model. In this section, we cover only some of these algorithms,
namely ones that have been frequently referenced in the polygonal simplification literature.
For amore thorough survey of simplification algorithms, consult [Heckbert and Garland 97].
Even though each algorithm is unique, we classify them by the general method they use to
produce simplifications. The three classifications are refinement, sampling, and decimation.

Similar classification schemes appear in [Erikson 96, Luebke 97, and Heckbert and Garland
97].

2.1.1 Refinement Algorithms

Refinement algorithms start with a very simple base representation of the original object
and recursively refine it, adding more and more detail to local areas of the model at each step.
Once the refined object approximates the original to some user-specified error tolerance or

some polygon limit has been reached, the algorithm terminates.

2.1.1.1 Multiresolution Analysis of Arbitrary Meshes[Eck et al. 95]

This algorithm uses wavelets to create a multi-resolution representation for a polygonal
object. Smoothly interpolating between these different representations simply requires adding
or subtracting wavelet coefficients. This method can handle any three-dimensional manifold
that is avalid triangulated mesh. The algorithm cannot exactly reconstruct models with sharp
edges or creases, and thus its approximations of CAD objects tend to be of lower quality than
algorithms that preserve these sharp edges.

The algorithm initially creates a base mesh that is the coarsest representation of the
object. Polygons are grouped together to approximate a Voronoi diagram based on geodesic
distance over the surface of the object. The algorithm performs a Delaunay triangulation of
this diagram resulting in a base mesh consisting of base faces. Next, this method creates a
globally continuous parameterization of the base mesh by ensuring continuity between the
boundaries of base faces. Using this parameterization, it can refine the base faces by splitting
each triangle into four triangles. This refinement process continues until a user-specified error
bound is met.

2.1.2 Sampling Algorithms

Sampling algorithms initially sample the polygonal geometry of the original object by
either sampling random points from its surface, or by voxelizing it. These algorithms
reconstruct alower polygon count object to fit this sampled data. The user typically has
control over how much sampling is done, but not much control over the resulting number of

geometric primitives in an approximation.

2.1.2.1 ReTiling Polygonal Surfaces[Turk 92]

This algorithm allows the user to specify a specific number of verticesin the final
simplified object, useful for creating a series of approximations. It can handle three-
dimensional manifolds with concave or convex polygons, even ones with holes. The method
performs best on polygonal objects that approximate curved surfaces since it has difficulty
preserving sharp edges.

23

Initially, the algorithm randomly places the user-specified number of points over the
surface of the object. Next, it simulates repulsion forces between the points to distribute them
evenly across the surface. It incorporates these points as new vertices in the origina object by
re-triangulating each face to include them. The algorithm removes the original vertices one by
one, filling in the resulting holes by re-triangulation (see Figure 2.1). The remaining vertices

of the smplified object are the sampled points.

O O O O O Q

O O O O O O

Figure 2.1: Example of vertex removal of the black vertex. When the vertex isremoved, a hole forms.

Thishole must be re-triangulated.

2.1.2.2 Mesh Optimization [Hoppe et al. 93]

This algorithm was originally designed to reduce the polygonal geometry of meshes
reconstructed from sampled points. By first point sampling a polygonal object, the algorithm
can be applied to any three-dimensional manifold. It produces excellent simplifications slowly
and allows the user to specify a constant that determines the number of polygonsin the

resulting output.

The algorithm distributes numerous point samples across the surface of the input object.
Using these samples, plus the original vertices of the object, it reconstructs an initial mesh
consisting of triangles. The method tries to minimize an energy function consisting of a
distance term, a vertex term, and a spring term. The distance term is proportional to the sum
of squared distances between the sample points and the simplified mesh. The vertex termis
proportional to the number of verticesin the mesh. The spring term simulates the effect of
placing springs on the edges of the mesh, effectively penalizing long edges. An iteration of the
algorithm consists of an outer and inner optimization loop. The outer loop minimizes the
energy function by randomly selecting an edge and performing one of three different

operations (edge collapse, edge swap, or edge split). The inner loop minimizes the distance

24

and spring terms by optimizing the position of vertices. The agorithm gradually decreases the
spring term to guide this optimization process to alocal minimum. It stops after a fixed

number of iterations.

2.1.2.3 Multi-resolution 3D Approximations for Rendering Complex Scenes

[Rossignac and Borrel 93]

This algorithm accepts any input object, no matter if it contains non-manifold or
degenerate geometry. This method runs very quickly and ignores the topology of the original
object, sometimes producing low quality approximations.

Theinitial step of the algorithm involves automatically weighting vertices according to
their perceptual importance, estimated using local curvature and incident edge lengths. Each
polygonal face is triangulated and a three-dimensional grid is placed on top of the object.
Vertices that liein asingle grid cell are grouped together. These vertices are collapsed to the
most important vertex in the cell, determined by the initial weighting process. Degeneracies
created by the collapsing of vertices are removed and normals for the final triangles are
recalculated. The user can specify the size of the grid cellsin order to control the degree of

simplification.

2.1.24 Mode Simplification Using Vertex-Clustering [Low and Tan 97]

This algorithm extends on [Rossignac and Borrel 93] in order to improve the quality of
approximations, while still executing quickly. It can handle al three-dimensional inputs,

including non-manifold and degenerate geometry.

The details of the agorithm are equivalent to [Rossignac and Borrel 93] except for two
aspects. It uses an improved system for initially weighting vertices and abandons the uniform
subdivision of [Rossignac and Borrel 93] by creating cells centered on the most important
verticesfirst. Thisfloating-cell clustering isless sengitive to changes in the size of the grid
cells. The agorithm uses thick lines to draw elongated parts of an object that have collapsed
to asingle edge. Asin[Rossignac and Borrel 93], the user can specify the size of the grid

cellsin order to control the degree of simplification.

25

2.1.25 Voxe-Based Object Simplification [He et al. 95]

This algorithm uses a signal processing approach to simplify polygonal objects. It
eliminates high frequency detail of an object and thus smoothes sharp edges or creases. It
assumes the input object is a closed volume, meaning that the object has a clearly defined

inside and outside.

First, the algorithm voxelizes the object by overlaying athree-dimensional grid on top of
it. For each voxel, it approximates the percentage of the voxel that isinside and outside the
polygonal object. Using alow passfilter, the final density of each voxel is determined. The
algorithm uses a variation on the Marching Cubes algorithm [Lorensen and Cline 87] to
reconstruct the simplified object from this voxel representation. The user can vary the voxel

size in order to produce a series of approximations for an object.

2.1.3 Decimation Algorithms

The majority of polygonal simplification algorithms are decimation algorithms. These
algorithms start with the original object and repeatedly remove vertices, edges, or faces. This
decimation process continues until either the object can no longer be smplified and till meet a
user-specified error bound, or a polygon target has been reached. It isassumed in all of the
decimation algorithms described below that the input object has been triangulated.

Common operations that decimation algorithms use to reduce the amount of polygonal
geometry in an object are vertex removal, edge collapse, and vertex merge (see Figure 2.2).
The vertex removal operation removes a single vertex and faces incident to that vertex. A
hole is created because of this removal and must be filled in by re-triangulation. Performing
an edge collapse involves dliding the two vertices that make up the edge onto a common
point. The vertex merge operation forces two vertices to move to a common point. If the
two vertices share an edge, then this operation is equivalent to an edge collapse. If they do

not share an edge, then we say they share avirtual edge.

26

OO0 OO0 O O
o0 OO0 ® ®
® O O © O O ® ®
OO OO0 O ®
(@) (b) (©)

Figure 2.2: Examples of operations used in decimation algorithms. (a) Vertex removal of the black
vertex. When the operation takes place, a hole formsthat is subsequently re-triangulated. (b) Edge
collapse of the black edge incident to the two black vertices. The edgeis collapsed to a common point at
the gray vertex. (c) Vertex merge of the two black vertices. The dotted black line denotes a virtual

edge. Thetwo verticesare merged to a common point at the gray vertex.

2.1.3.1 Decimation of Triangle Meshes[Schroeder et al. 92]

The Marching Cubes algorithm [Lorensen and Cline 87] tends to create polygonal
objects with large numbers of polygons even in planar regions. [Schroeder et al. 92] describes
an algorithm to simplify these types of polygonal objects. This method, based on vertex
removal, handles three-dimensional manifolds. The vertices of the smplified object are
guaranteed to be a subset of the original. Therefore, attribute data stored at vertices, such as

color and texture coordinates, need not change or be recomputed during simplification.

The algorithm chooses a vertex and calculates an average plane of itslocal polygonal
geometry. The normal of this plane is the area-weighted average of normals of incident faces
to the vertex. One point on the plane isthe area-weighted average of the centers of incident
facesto the vertex. This normal and point define the average plane of the local polygonal
geometry. If the distance between the vertex and its average plane is less than a user-specified
error bound, the vertex is removed from the object. This process of choosing a vertex and

removing it if it meets the error criterion repeats until no more vertices can be removed.

27

2.1.3.2 A Topology Modifying Progressive Decimation Algorithm [Schroeder
97]

This algorithm uses the same error metric introduced in [Schroeder et al. 92].
However, it has been modified to smplify in order of increasing error. It handles non-
manifold and degenerate geometry, simplifies topology, and is extremely fast. The agorithm
Is not capable of merging unconnected polygons and thus can produce low quality

approximations for objects with closely grouped, but digoint polygons.

Asin[Schroeder et a. 92], the agorithm calculates the distance between each vertex
and the average plane of its local polygonal geometry. Vertices are placed in a heap according
to this distance and are extracted in order of increasing error. A vertex isremoved by an edge
collapse operation involving its shortest incident edge. Edge collapses that cause faces to flip
orientation and fold over one another are deemed invalid. When no valid edge collapse
operations exist for avertex, it is split into two vertices. These two vertices can then be
simplified independently of each other, potentially causing the local polygonal geometry to
split apart. This splitting process modifies the topology of the object. The algorithm

continues to simplify until it reaches a specified error bound or polygon count.

2.1.3.3 Progressive Meshes [Hoppe 96]

This paper presents the progressive mesh, a new representation for smplified objects
that allows for continuous levels of detail. A progressive mesh is simply an ordered list of
decimation operations. An object can be simplified or refined by performing or undoing these

operations.

The paper also describes a simplification algorithm that produces progressive meshes by
minimizing an energy function much like that of [Hoppe et a. 93]. However, it starts with the
original object, not a sampled version, and uses only the edge collapse operation to decimate.
During simplification, it handles both scalar attributes, such as vertex colors, normals, and
texture coordinates, and discrete attributes, such as face materials and textures. It also

handles instances of attribute discontinuities, such as normals surrounding sharp edges. It

28

runs slowly and allows the user to specify the relative importance between geometric and

surface attribute error to achieve high-quality simplifications.

The algorithm minimizes an energy function consisting of a distance term, a spring term,
ascaar term, and a discontinuity term. The distance and spring terms are identical to the
corresponding termsin [Hoppe et al. 93]. The scalar term measures the distance in attribute
space between the original and the simplified mesh. The discontinuity term measures the
geometric distance between the original and the simplified mesh along attribute discontinuity
edges. An iteration of the algorithm again consists of an outer and inner optimization loop.
The outer loop minimizes the energy function by selecting an edge collapse that is on top of a
heap, ordered by increasing error. The inner loop minimizes the distance, spring, scalar, and
discontinuity terms by optimizing the position of vertices. The algorithm terminates when it

simplifies to a user-specified triangle limit.

2.1.3.4 Progressive Simplicial Complexes [Popovic and Hoppe 97]

This algorithm extends on [Hoppe 96] in order to simplify any three-dimensional object,
even if it is non-manifold or degenerate. Vertex merge is the decimation operation used.
Unlike other agorithms that filter degenerate triangles, it uses spheres and cylinders to render

triangles collapsed to points and lines, respectively. The algorithm executes extremely slowly.

A set of candidate vertex pairsisinitially determined by finding vertices that share an
edge or are in close proximity according to a Delaunay triangulation. Vertices that do not
share an edge, but are a candidate pair, share avirtual edge. By using vertex merges on these
pairsin order of increasing error, the algorithm is able to change the topology of the smplified
object. Asin[Hoppe 96], the algorithm minimizes an energy function representing error.

This function consists of distance, discontinuity, area, and fold terms. The distance termis
equivalent to that of [Hoppe et al. 93] and the discontinuity term preserves sharp edges in the
object. The areaand fold terms penalize surface stretching and folding respectively.

29

2.1.3.5 Simplification Envelopes [Cohen et al. 96]

The simplification envelopes algorithm guarantees that each point on the approximation
Is within a user-specified distance tolerance ¢ of the origina object. This feature allowsthe
user to switch automatically between representations of an object, depending on its distance
from the viewer. The algorithm performs many involved geometric calculations to insure this
distance tolerance guarantee, causing it to run slowly. This method accepts three-dimensional

manifolds as input.

The algorithm creates inner and outer offset surfaces, or envelopes, a distance ¢ from
the object such that they contain no self-intersections. Having no self-intersections implies
that the topology of the object will not change during simplification, which sometimes limits
the degree of simplification possible. The method then selects vertices to be removed from
the object. A vertex removal operation is disallowed if any of the re-triangulated faces
intersect either the inner or outer envelope. The agorithm repeatedly removes vertices until

no more vertex removal operations are allowed.

2.1.3.6 Simplifying Polygonal Models Using Successive M appings [Cohen et al.
97]

This algorithm uses the edge collapse operation to simplify polygonal objects with
manifold geometry. It keepstrack of both polygonal geometry and texture-coordinate error

bounds during simplification and executes slowly.

This method uses a heap of edges, sorted by increasing error. An edge is weighted by
first finding a projection plane of its local neighborhood, performing the collapse in this plane,
computing a mapping between the original and collapsed neighborhoods, and then optimizing
the position of the collapsed vertex. This computed mapping is also used to assign new
texture coordinates to the collapsed vertex. Using axis-aligned boxes at each vertex, the
algorithm keeps a tight bound on both geometric and texture-coordinate error during

simplification.

30

2.1.3.7 Appearance-Preserving Simplification [Cohen et al. 98]

This algorithm, similar to [Cohen et a. 97], smplifies not only the polygonal geometry
of an object but color and normal information in texture and normal maps respectively. It
introduces an error metric for texture maps which guarantees that a texture does not shift
more than a user-specified number of pixels on the screen. This method does not handle non-

manifold or degenerate geometry and runs fairly slowly.

The algorithm converts an input object into a decoupled representation consisting of its
polygonal geometry, texture maps representing its surface colors, and norma maps
representing the curvature of its surface. Edges are collapsed in order of increasing tota
error, a combination of both geometric and texture deviation error. Axis-aligned boxes are
stored at each vertex to help bound both geometric and texture deviation error efficiently.
The simplified objects are of high quality as compared to algorithms that simplify colors and
normals directly, rather than converting them to texture and normal maps. Currently only a
few specialized machines, such as PixelFlow [Molnar et a. 92, Eyles et a. 97], developed
jointly by Hewlett Packard and the University of North Carolina at Chapel Hill, can accelerate
the rendering of models with normal maps.

2.1.3.8 Full-range Approximation of Triangulated Polyhedra [Ronfard and
Rossignac 96]

This algorithm uses the edge collapse operation to decimate objects. It uses a set of
planes at each vertex to bound the error of the simplified object. The agorithmis able to
change topology during simplification. It executes at a respectable speed and produces high
quality approximations. It does not merge unconnected regions of the model and uses alot of

memory. The vertices of the simplified object are a subset of the original vertices.

The algorithm initially calculates the error associated with each edge collapse in the
object and inserts them into a heap, sorted by increasing error. To determine the error of an
edge collapse, this method uses alocal geometric error and alocal tessellation error that
prevents meshes from folding back on themselves. The geometric error at a vertex is defined

to be the maximum distance between the vertex and its set of planes. This set of planesis

31

initialy the planes of faces incident to the vertex. A new merged vertex has a set of planes
equal to the union of the set of planes of the merged vertices. The position of a merged

vertex is one of the two vertices being merged.

2.1.3.9 Surface Simplification Using Quadric Error Metrics[Garland and
Heckbert 97]

This algorithm, similar to [Ronfard and Rossighac 96], tracks an error bound by
associating each vertex with a set of planes. However, it approximates the set of planes using
a symmetric matrix called an error quadric. It uses vertex merging as its decimation
operation, so it is able to join unconnected regions of an object. It isfast and produces high
quality results. It isfairly memory intensive since each vertex has an associated error quadric
that requires 10 floating-point values of storage. Figure 2.3 shows a geometric interpretation

of error quadrics.

If p=[abcd] represents the plane defined by the equation ax + by + cz+ d = 0 where

a’ + b’ + ¢® = 1, then this algorithm associates with p a fundamental error quadric K, where

&* ab ac adO
« o r_gb D bo bdp
P PP T 0e be @ cdD
0 .0
@d bd cd d°

To find the squared distance from a plane p to a point v = [v, W V, 1], the algorithm uses
the quadric form v'K ,v. Error quadrics can represent a union of two quadrics, or a set of
planes, smply by adding their corresponding matrices together. Each vertexv has an
associated error quadric Q that may consist of several fundamental error quadrics summed
together. The error at a vertex v with quadric Q is defined to be A(v) = v'Qv. Thisvalue
represents the sum of squared distances between the vertex v and al of the planes associated
with the quadric Q. Given a quadric Q, an optimal vertex position v can usually be calculated
that minimizes A(v). This calculation involves inverting a matrix thet is defined by Q. If Q is

not invertible, then other approximations are used to determine the new vertex position v.

32

O) :Q'. .'Q
@ .))y *
O .’:’::::,-"“" O ::F’;ﬁ‘:‘..
O O O @)
© (d)

Figure 2.3: A geometric interpretation of error quadrics. (a) A smple object consisting of 5 vertices and

3 planar faces. (b) An error quadric representsa set of planes and each vertex has an associated error
quadric. Initially, the error quadric for a vertex consists of the planes of the vertex's adjacent faces plus
planes to preserve sharp edges and boundary edges. A vertex’s adjacent faces are any faces that are
incident to that vertex. In this example, there are only planes to preserve boundary edges, shown as
dotted black lines. These planes define the error quadric at each vertefc) The two black vertices are
next to be merged. Only the planes of error quadrics involved in this merge are show(d) The error
quadric of the merged vertex is constructed by taking the union of the planes of the error quadrics
involved in the merge. Therefore, all of the planes shown are included in the error quadric of the new
vertex. The position of the new vertex is determined by attempting to minimize the sum of squared
distances between it and all of the planes in its error quadric. The component distances used in this

calculation are shown as black arrows and the new vertex is colored gray.

Initially, the error quadric of each vertex consists of planes of the vertex’s adjacent faces
plus planes to preserve sharp edges and boundary edges. A vertex’s adjacent faces are any
faces that are incident to that vertex. Candidates for vertex merging include vertices that
share an edge or two vertices that are within an optional user-specified distance threshold
Vertices that do not share an edge, but are a candidate pair, share a virtual edge. For each
candidate merge, the optimal vertex position and total error are calculated. The candidates
are inserted into a heap, sorted by increasing error. The vertex merge on top of the heap is
performed, and the error quadric of the new vertex becomes the sum of the quadrics of the

merged vertices. The error of candidate pairs in the local neighborhood of the merge must be

33

updated. The algorithm continues to merge vertices until a target number of polygonsis

achieved.

2.1.3.10 Simplifying Surfaceswith Color and Texture Using Quadric Error
Metrics[Garland and Heckbert 98]

This algorithm extends [Garland and Heckbert 97] in order to simplify objects with
surface attributes such as normals, colors, and texture coordinates. However, this algorithm
uses edge collapse, rather than vertex merge, as its decimation operation. Therefore, the
distance threshold 7 presented in [Garland and Heckbert 97] does not exist in this version of
the algorithm. This method produces high quality approximations and runs slower than
[Garland and Heckbert 97] due to the extra overhead of surface attributes.

The algorithm extends the error quadric of [Garland and Heckbert 97] to incorporate
colors, normals, and texture coordinates. For example, a vertex with color information is
considered to be a 6-dimensional entity v = [Vx Vi V, V; Vg V] With an associated generalized
error quadric consisting of a 6x6 matrix and a 6-dimensional vector. When an edge is
collapsed, the optimal merged 6-dimensional vertex position is calculated by inverting a 6x6
matrix. Therefore, not only does this process determine the position of the new vertex, but
the new color at the vertex aswell. Normals and texture coordinates are handled in a similar
fashion. Inthe extreme, a vertex containing a color, normal, and texture coordinate is
represented by an 11-dimensional vector. Since the generalized error quadrics are of higher
dimension than that of the error quadrics in [Garland and Heckbert 97], calculating merged

vertices takes longer and memory requirements are greater.

2.1.3.11 Fast and Memory Efficient Polygonal Simplification [Lindstrom and
Turk 98]

This algorithm demonstrates that it is not necessary for a simplification method to retain
information about previous decimation operations in order to smplify well. Since it does not
store any information during smplification, the memory it requiresis equivalent to the data

needed to represent the original object. This method uses the edge collapse operation,

34

simplifies fairly quickly, and requires little memory compared to other techniques. It is
capable of simplifying degenerate and non-manifold geometry and is shown to produce high

quality approximations by comparing its output with other simplification algorithms.

The algorithm places candidate edges in a heap, sorted by increasing error. The
placement of the new merged vertex is guided by volume preservation, volume optimization,
and triangle shape optimization. Volume preservation tries to place the new vertex such that
the volume of the local neighborhood is equivalent before and after the collapse operation.
Volume optimization rewards edge collapses that make only small changes to the local
volumes of individual neighboring triangles. Triangle shape optimization penalizes long and
skinny triangles as compared to equilateral triangles. Other techniques are used in the special
case of boundary edges, where local volume is undefined. The goal of the algorithmisto find
three non-parallel constraint planes using these techniques. These three planes uniquely define

apoint, the position of the new merged vertex.

2.1.3.12 Controlled Simplification of Genus for Polygonal M odels [El-Sana and
Varshney 97]

This algorithm simplifies the topology of polygonal objects. In particular, it detects and
triesto eliminate holesin the object. It accepts degenerate non-manifold geometry and
executes fairly quickly. The algorithm assumes that after it eliminates holes that a topology

preserving simplification algorithm is executed on the resulting object.

The algorithm first determines boundary edges for holes by detecting where there are
sharp edges in the object. Next, these edges are grouped together to form chains of edges
that represent the boundary of a single hole. Alpha prisms of a user-specified size are created
around these edge chains. An apha prism of an edge is the Minkowski sum, or convolution,
of the edge and a sphere of the user-specified size. The polygona geometry inside these alpha
prismsis then re-triangulated by trying to minimize edge lengths. This processis usually all
that is needed to eliminate holes. Some triangles, initially on the surface of the object, become
interior faces of the smplified object. These triangles are detected and eliminated.

35

2.1.4 Summary of Algorithms

To the best of our knowledge, no one technique simultaneously exhibits all of the
desired properties for a simplification algorithm as outlined in Section 1.3. Table 2.1 below
categorizes the capabilities of algorithms described above. The Non-manifold column shows
whether the algorithm accepts non-manifold meshes as input while Attributes indicates if the
technique handles surface attributes during simplification. Automatic refers to whether the
method is completely automated. Geometric Error and Attribute Error indicate if the
algorithm keeps track of geometric error and surface attribute error respectively. Drastic
refers to whether the technique is capable of drastic simplification such that a user can specify
atarget number of polygons. Whether the algorithm can change the topology of an object by
joining unconnected regions together is noted in Join Unconnected. Execution Speed and
Memory Usage refer to the efficiency of the technique in both of these categories.

Some columns of Table 2.1, such as Non-manifold and Join Unconnected use boolean
values. A blank entry implies that the algorithm does not have that capability while an entry
with a “v” means that it does. Other columns, sucExasution Speed, can take on four
values. A “—*equals low marks, an “="means average marks, a “+” indicates high marks, and
a blank entry implies the category is not applicable to the method. Due to lack of information

from the description of an algorithm, some entries are unknown, designated by a “?”.

Note that [Garland and Heckbert 97] appears twice in Table 2.1; one for the basic
algorithm and the other for when the distance threshsiédpecified for virtual edge
selection. None of the algorithms shown in the table exhibit all of the desired properties of
Section 1.3.

36

Non- Attributes Automatic Geometric Attribute Drastic Join Execution Memory
manifold Error Error Unconnected Speed Usage

[Cohen et al. 96] v v = ?
[Cohen et al. 97] v v v v - -
[Cohen et al. 98] v v v v - -
[Eck et al. 95] v v = ?
[El-Sanaand Varshney 97] v v v v v ¥ ?
[Garland and Heckbert 97] v v v v + -
without 7

[Garland and Heckbert 97] v v v v + -
with 7

[Garland and Heckbert 98] v v v v v v ¥ =
[Heetal. 95] v v v v v ? ?
[Hoppe et al. 93] v v - 2
[Hoppe 96] v v v - ?
[Lindstrom and Turk 98] v v v + +
[Low and Tan 97] v v v v v + ?
[Popovic and Hoppe 97] v v v v v v _ 2
[Ronfard and Rossignac 96] v v = ?
[Rossignac and Borrel 93] v v v v v + 2
[Schroeder et al. 92] v v + +
[Schroeder 97] v v v v ¥ +
[Turk 92] v 2 2

Table 2.1: Properties of previous simplification algorithms. A “—* equals low marks, an “="means
average marks, and a “+” indicates high marks. Due to lack of information from the description of an

algorithm, some entries are unknown, designated by a “?".

2.2 Simplification of Static Polygonal Environments

This section highlights previous work dealing with the acceleration of rendering large
static polygonal environments using polygonal simplification techniques. Some algorithms
deal with traditional levels of detail within a scene graph representation. Others calculate a
continuous level of detail representation that is able to be adaptively refined. Finaly, afew
methods deal with the problem of targeting a frame rate during the rendering of these large

environments.

37

2.2.1 IRISPerformer: A High Performance M ultiprocessing Toolkit for Real-
Time 3D Graphics [Rohlf and Helman 94]

This paper describes IRIS Performer, atoolkit for real-time visualization applications on
Silicon Graphics machines. Polygonal environments are represented by scene graphsin
Performer. The scene graph structure allows the user to store polygonal geometry at nodes as
well as to specify LOD nodes that are used to select which children to render based on
switching distances. Performer supports view-frustum culling through the use of a bounding
volume hierarchy created for the scene graph. The application uses a multiprocessing scheme
to work on different stages of rendering concurrently. Finaly, IRIS Performer provides a
target-frame-rate mode by using a feedback loop. Using the time it took to render the last
couple of frames as feedback, the application coarsens or refines the objects in the scene for
the upcoming frame. RIS Performer is very general, and allows the user to provide custom
designed callbacks to meet needs that are outside the scope of the toolkit. The basic toolkit
does not automatically generate LODs and switching distances for objects in the environment.
Output from a polygonal simplification algorithm must be inserted into the Performer scene

graph, as was done in [Cohen et al. 96].

2.2.2 Adaptive Real-Time L evel-of-Detail-Based-Rendering for Polygonal
Models[Xiaet al. 97]

This paper expands upon the progressive mesh representation presented in [Hoppe 96]
by enabling selective refinement of the mesh. Instead of storing alist of decimation
operations, the algorithm stores a tree of decimation operations. By traversing thistree
selectively, it can adaptively smplify across the surface of an object. It usesimage-space
feedback, such as local illumination, screen-space projections, visibility culling, and silhouette
boundaries to selectively refine objects being visuaized. This method aids the visualization of
complex individual objectsthat are close to the viewer and is less effective on large polygonal

environments.

The algorithm creates a merge tree for each object being visualized. The mergetreeisa

tree of edge collapse operations. The edge collapses associated with the children of a parent

38

node cannot be performed until the parent node has collapsed its associated edges. The
algorithm attempts to build well-balanced trees while collapsing edges in order of increasing
length. This focus on well-balanced trees sometimes means sacrificing quality of
approximation. At vertices, it stores distance errors and bounding cones for normal vectorsin
order to aid the selective refinement process. During each frame, the algorithm determines
which vertices to display by traversing the merge tree according to the image-space criteria. It

takes advantage of coherence to update these display vertices from frame to frame.

2.2.3 View-Dependent Simplification of Arbitrary Polygonal Environments
[Luebke and Erikson 97]

This paper presents hierarchical dynamic simplification, or HDS that uses view-
dependent ssimplification to render large polygonal environments. View-dependent
simplification enables adaptive simplification across the surface of objects. Using the vertex
merge operation, HDS creates a hierarchical tree of vertices, called the vertex tree, which
provides a continuous level of detail representation for the whole environment. HDS
traverses this tree and renders any polygons in the scene that are active. Active polygons are
determined by a variety of criteria such as a screen-space error threshold, silhouette

preservation, and a triangle budget.

HDS can use any polygonal simplification algorithm to create the vertex tree for an
environment. Its default algorithm partitions space hierarchically using an octree and then
merges vertices within each octree node to the most important vertex in that space.
Importance is calculated in afashion similar to [Rossignac and Borrel 93]. Using this method,
HDS is able to merge unconnected regions of the environment together to produce drastic
approximations for groups of objects. This preprocessing method is very fast and tends to

produce low quality approximations.

2.2.4 View-Dependent Refinement of Progressive M eshes [Hoppe 97]

This paper presents an elegant view-dependent simplification algorithm based on the

author’s previous work on progressive meshes [Hoppe 96]. Similar to [Luebke and Erikson

39

97], this paper traverses a hierarchy of vertices during visualization to produce a view-
dependent representation of an object. The algorithm creates this vertex tree using the
simplification algorithm presented in [Hoppe 96]. The paper uses surface orientation and
screen-space geometric error for its view-dependent refinement criteria. 1t also simplifies
portions of an object that are outside the view frustum. Geomorphing is used to morph
between different states of the vertex tree, thereby providing a smooth transition between
different approximations of the same object. The paper concentrates on simplifying individual

objects. It does not merge polygons across different objects in the scene.

2.2.5 Adaptive Display Algorithm for Interactive Frame Rates During
Visualization of Complex Virtual Environments [Funkhouser and Séquin
93]

This algorithm attempts to visualize complicated polygonal scenes at user-specified
target framerates. It treats the problem as an optimization problem by attempting to choose a
level of detail and rendering method for each potentialy visible object in the scene in order to
display the best possible image within the time constraint. This method is able to produce a
more uniform frame rate during visualization as compared to techniques using no LODs,

LODs with a uniform error tolerance, and feedback loops.

Associated with each LOD of each object in a scene is a cost and benefit value. The
cost of an LOD of an object is an approximation to the amount of time required to render the
LOD from a particular viewpoint. This cost metric depends on a number of factors including
the number of faces and vertices in the LOD, the approximate number of pixels it will cover in
the final image, and the average performance of the graphics machine performing the
visualization. The benefit of an object is an approximation of how much an LOD of an object
will perceptually contribute to a scene from a particular viewpoint. This value depends mostly
on the size of the LOD in the final image, but other factors are involved such as accuracy of

representation, user-specified importance, viewer focus, motion blurring, and hysteresis,

The problem of choosing appropriate representations for each object in the scene to

produce the best image given atarget frame rate is equivalent to a version of the Knapsack

40

problem. Since this problem is NP-complete, the authors use a simple and greedy method to
choose representations for objects. Each LOD of each object has an associated value, which

is defined to be the object’s benefit divided by its cost. LODs are added to the scene in
descending order of value until the cost of the scene is equivalent to the frame-rate time
constraint. By using coherence between subsequent frames, the algorithm minimizes the

overhead of selecting which LODs to render.

2.2.6 Visual Navigation of Large Environments Using Textured Clusters [Maciel
and Shirley 95]

This algorithm, building upon [Funkhouser and Séquin 93], presents another target
frame-rate technique. Unlike [Funkhouser and Séquin 93], the algorithm is able to cluster
multiple objects of a scene into one rendering primitive. Therefore, this algorithm uses a
hierarchy of levels of detail for objects [Clark 76], instead of just levels of detail for each
object. It represents clusters of distant objects using view-dependent textured faces. This
method produces a more uniform frame rate during visualization as compared to brute force

rendering.

Each LOD of each object, or each view-dependent textured cluster of objects has an
associated cost and benefit value. The definitions of cost and benefit and the method used to
select representations for objects are similar to the ones in [Funkhouser and Séquin 93],
except that textured clusters can be chosen to represent numerous objects at once. In theory,
the hierarchical levels of detail used by this algorithm should enable it to avoid looking at
every object in the scene every frame. In practice, the benefit of clusters of objects changes in
a view-dependent fashion, requiring the algorithm to check the benefit of a cluster’s individual
objects every frame. Therefore, just as in [Funkhouser and Séquin 93], every object is

checked during the rendering traversal.

2.3 Simplification of Dynamic Polygonal Environments

Not much research has been done on simplification of dynamic environments consisting

of rigid bodies. Systems such as IRIS Performer [Rohlf and Helman 94] that use traditional

41

LOD techniques can modify transformations in the scene graph to make objects move. These
systems do not hierarchically group objects after movement in order to produce drastic
approximations. Most research on dynamic environments has dealt with updating bounding
volume hierarchies and spatial partitionings when objects move. Since our algorithm deals

with this same problem, this section covers the previous work in this area.

2.3.1 Optimization of the Binary Space Partitioning Algorithm (BSP) for the

Visualization of Dynamic Scenes[Torres 90]

Torres introduces a six-level structure called adynamic BSP tree. Thefirst level of the
BSP tree is made of divisor planesthat are defined by the user. The second set of planes, or
first range separating planes, is used to separate objects completely from other objects. In
some cases, complete separation is not possible so Torres uses a third set of planesto
sacrifice, or split up objects. A fourth set of planes, called wrapping planes, is used to
surround and prevent the splitting of objects from planes due to sacrificed objects. The
algorithm tries to build balanced intra-object BSP trees using halving planes. These planes
attempt to split polygons of an object into two equally dense halves. Finaly, the sixth level of
the structure includes polygons of sacrificed objects. When objects move, only portions of the
BSP tree need to be updated. By choosing the top-level structure of the dynamic BSP tree

carefully, a user can achieve efficient updates of the tree.

2.3.2 Computing Dynamic Changesto BSP Trees[Chrysanthou and Slater 92]

This paper presents efficient methods for updating BSP trees due to the movement,
insertion, or deletion of objectsin ascene. Movement of objectsis handled by deleting them
from the BSP tree and then reinserting them. The algorithm inserts objects into the tree using
afiltering process. Insertion starts at the root of the BSP tree. If the polygon being inserted
isin front of the polygon at the BSP tree node, then the algorithm recursively traverses the
front space of the node. If it is behind the polygon at the node, the algorithm recursively
descends down the back space of the node. If this process reaches a leaf node, then a new

child node is created and the polygon inserted. If the polygon shares the same plane asthe

42

polygon at anode, it is added to the node. Deletion of a polygon is split up into several cases.

If the polygon exists in aleaf node without any other polygons, then the whole node is

deleted. If the polygon shares a node with other polygons, then the polygon is deleted. If the
polygon’s node has only one child, then this child node can replace the node. Finally, if a
polygon’s node has two children, then the larger child replaces the node while the smaller
child is filtered into this new node. These techniques allow incremental updates of a BSP tree

that are faster than recomputing the tree from scratch.

2.3.3 Output-Sensitive Visibility Algorithms for Dynamic Scenes with
Applicationsto Virtual Reality [Sudar sky and Gotsman 96]

This paper presents an efficient way to update an octree spatial partitioning after
movement of objects in a scene. The central idea of the paper is that instead of deleting a
moving object from the octree and then reinserting it, it attempts to efficiently update the
octree locally. Therefore, if an object does not move a great distance, this algorithm will
change the octree structure slightly or not at all. This type of local update is more efficient

than traversing the tree once for deletion and once for insertion.

The paper also uséamporal bounding volumes, or TBVs to bound not only the
object’s extents, but its possible locations in the future due to movement. Each TBV is
associated with an object plus a certain span of time. This volume can be used to aid visibility
queries. For example, if the TBV is completely outside the view frustum and the current time
Is within the volume’s span of time, then the object can be ignored during rendering. Once the
span of time for a TBV is over, it must be recalculated. TBVs can be easily constructed for
objects that have a maximum velocity or have constrained movement. Choosing the optimal

span of time for a TBV’s existence is difficult, and adaptive methods are necessary.

3 SIMPLIFICATION OF STATIC POLYGONAL OBJECTS

This chapter presents our approach for simplifying static polygonal objects. Our
method is general in that it works on models that contain both non-manifold geometry and
surface attributes. It isautomatic since it requires no user input to execute and it returns
approximate error bounds used to calculate switching distances between levels of detail. Our
algorithm, called General and Automatic Polygonal Smplification, or GAPS for short, uses
an adaptive distance threshold, surface area preservation, and a quadric error metric to join
unconnected regions of an object. Its name comes from this ability to “fill in the gaps” of an
object. Our algorithm uses a new object space error metric that combines approximations of
geometric and surface attribute error. GAPS efficiently produces high quality and drastic

simplifications of a wide variety of objects.

The rest of this chapter is organized in the following manner. We provide an overview
of our algorithm in Section 3.1. In Section 3.2, we describe symbology used in the chapter.
Section 3.3 discusses the technical details of GAPS. Implementation details of GAPS are
presented in Section 3.4 and performance results are shown in Section 3.5. Analysis of the
running time of GAPS is provided in Section 3.6. We compare GAPS to other polygonal

simplification algorithms in Section 3.7 and we conclude the chapter in Section 3.8.

3.1 Overview

As described in Section 2.1.4, no previous algorithm simultaneously exhibits all of the
desired properties for a simplification algorithm as outlined in Section 1.3. We introduce a
new simplification algorithm, called GAPS, that is general, automatic, runs quickly, and

produces high quality and drastic approximations.

3.2 Symbology

Symbols used in Section 3 and their meanings are briefly described in Table 3.1. Note
that subscripts n, ¢, and t refer to normal, color, and texture-coordinate point clouds
respectively. For example, ¢, refers to the surface area associated with normal point cloud ¢,
and A(p) isthe average error of point p with respect to the texture-coordinate point cloud c..
Point clouds are described in detail in Section 3.3.3.

r Distance threshold used for selecting virtual edges

a, a’, a | Anamount of surface area

A(V) Error of an area-weighted error quadric of vertex v (as described in Section
2.1.3.9)

S(v) Surface area associated with a vertex's quadric

r(v) GAPS geometric error at vertgx

a, a1, ... | Weights corresponding to surface areas

M(p) Squared error of poi in point cloud ¢

Co Surface area associated with point cloud

A(p) Average error of poinp in point cloud c

N(v) GAPS normal error at vertex

C(v) GAPS color error at vertex

T(V) GAPS texture-coordinate error at vertex

E(Vv) GAPS unified object space error at vertex

Table 3.1: Brief descriptions of symbolsused in this chapter.

3.3 General and Automatic Polygonal Simplification

In GAPS, we use the vertex merge operation along with the quadric error metric, as
defined in Section 2.1.3.9, and extend upon this base in three ways to meet our simplification
goals.

* We automatically and adaptively select the distance thregtoldrder to simplify
topology.
* We do not allow vertex merges that change the local surface area greatly in

relation tor through the use of a technique calladface area preservation.

45

» Surface attributes are updated during the simplification process. We define a
unified error metric that combines both geometric and surface attribute error to

approximate an object space distance error for each vertex.

Like other algorithms, GAPS triangulates input objects as a preprocess step.

3.3.1 Automatic and Adaptive Selection of Distance Threshold

As stated in Section 2.1.3.9, [Garland and Heckbert 97] requires the user to specify a
distance threshold 7 that determines all virtual edge pairs for the rest of its execution. If two
vertices are within this distance 7, then the virtual edge between them is inserted into the heap
of candidate edges. We desire an algorithm that runs without user intervention. Furthermore,
for some polygonal objects, specifying a single 7 will result in too little or too many virtual
edge candidates (see Figure 3.1). If there are not enough virtual edge candidates, the quality
of the simplified object may suffer. If there are too many candidates, then the algorithm will

execute slowly. Therefore, the process of manually picking agood 7 is adifficult one.

GAPS does not use a single distance threshold. Instead, 7 starts at a very small value
and grows during the simplification process. Determination of the initial value 7 and its
subsequent growth happen automatically, without user intervention. 7 can be thought of as
the current scale at which GAPS is operating. The basic idea of the method isillustrated in
Figure 3.2, Figure 3.3, and Figure 3.4.

46

O O O O
O ONO O
(@)
O OO O
@) O O O
O O O O
O (O O
by r1=...
O (O ®) O
O O O O
O O
(c) T= s

Figure 3.1: The problem with specifying a single distance threshold 7. (a) The top pair of rectanglesisa
scaled copy of the bottom pair. What isa good 7 for thismodel? Ideally, 7 should be independent of
scale and simplify both pairs of rectanglesidentically. (b) Grey edgesarereal edgesand black dotted
edgesarevirtual edges. There are not enough virtual edgeswhen risthe shortest distance between the
bottom rectangles. (c) There aretoo many virtual edgeswhen risthe shortest distance between the top

rectangles.

a7

O O O O
O o0 O
(@) T=.....
O (O ®) O
@) O O O
O O O O
O O O
by r1=...
O o0 O
@) O O O
O O O O
© O O O
c 7=
O O O

Figure 3.2: Smplification using an adaptive distance threshold. The polygonal geometry isthe same as
in Figure 3.1. Gray edges arereal edges and dotted black edgesare virtual edges. (a) Theinitial value
of risthe shortest distance between the bottom pair of rectangles. The black verticesjoined by a virtual
edge arethe best pair tomerge. (b) The gray vertex isthe position of the newly merged vertex. Again,
then next pair to be merged isjoined by a virtual edge. (c) Because there are no more edgesor virtual

edgeswith length less than or equal to 7, GAPS must double r.

48

O @) @) @)
® O @)
d) 7=
o @) @)
O @) @) @)
O @) @) @)
O o
(© T= o
@) o
O @) @) @)
O @) @) @)
o
O T =p— O
® O

Figure 3.3: Continued from Figure 3.2. (d) rhasdoubled. A normal edgeisabout to be collapsed. (€)
GAPS selects another edge to collapse. (f) The bottom pair of rectangleswill disappear dueto the next

vertex mer ge.

49

O @) @) @)
(9 T= ceeeenns

O O

O O O O
(h) =T

Figure 3.4: Continued from Figure 3.3. (g) Again, there areno more edgesor virtual edgeswith length
lessthat or equal to 7, so GAPSwill double 7. The bottom pair of rectangles has disappear ed because
therectangleswere collapsed toaline. Linesarefiltered from the object. (h) Note how thetop pair of
rectanglesis being simplified in the same fashion as the scaled bottom pair. Growing 7 while simplifying

allows GAPS to achieve scale independence.

In order to find virtual edges within the distance threshold efficiently, GAPS partitions
space to avoid O(n?) growth. Given the bounding box of the object, GAPS partitions it
uniformly into cubes of side 7. To determine vertices within 7 from a specific vertex, GAPS
checks only vertices that lie in the same cube or corner-adjacent cubes of the vertex (see
Figure 3.5). However, when 7is small, the number of cubesistoo large to fit into memory.
Therefore, our method represents this uniform grid by a hash table of size h, a prime number
greater than the number of verticesin the object. Hashing collisions are resolved by storing
the vertices in the same bin, a technique known as chaining. According to [Cormen et al. 94],
Donald Knuth, in [Knuth 73], credits H. P. Luhn (1953) for inventing hash tables, along with
the chaining method for resolving collisions. This hashing scheme has been widely used to

50

solve the problem of sharing vertices of an object given a distance tolerance [Turk 94].
Suppose a vertex has coordinates [x y Z], the object has a bounding box with minimum
coordinates [X"y z], and a and b are two prime numbers (we use 17 and 101 asin [Turk
94]). Then the hash function f for avertex is

f(xy,2)= ([(x— X)/T[@.+ [(y— y')/r[[ﬂ)+ [(z— z')/r[)modh

Theinitial guess for 7 assumes that the vertices are distributed uniformly throughout the
bounding box of the object. Suppose there are v vertices and the object has a bounding box

+ 4t

with maximum coordinates [X" y* z']. Then risinitialized such that

SRS IS NCES IO s s cia

T T T \Y

Using this starting value, GAPS partitions space into cubes of length 7 using the hashing
method described above. If an insertion of a vertex into the hash table causes a bin to contain
more than a constant number of vertices, then GAPS deems rto be invalid. This constant
could be any reasonable value but we used 10 for &l resultsin thisthesis. If risnot valid,
then GAPS halves 1 and rechecks its validity. GAPS repeats this process until 7 becomes
valid or falls below & (1€ in our implementation). Because GAPS uses a hash table, there is
a chance that a particular object’s vertices will cause numerous hashing collisions, resulting in
T never being valid. However, for the wide variety of objects we have tested, GAPS produces
a reasonable initial value @f Objects that cause the starting value tf be less thaa
would most likely benefit from a vertex sharing preprocess. Vertex sharing replaces groups of

vertices that are within a specified distance threshold of each other with a single vertex.

Vertex pairs that are within the distance threshidde flagged akocal pairs, whether
they represent real or virtual edges. Vertices that are connected by real edges and separated
by more tharr are deemedlobal pairs. If the error (described in Section 3.3.3) associated
with the next pending vertex merge is greater thanthere are no local pairs remaining, then
rdoubles. Whem grows, a new hash table is created and any remaining vertices are re-

inserted.

51

Figure 3.5: A two-dimensional example of uniform spatial partitioning to determine pairs of vertices
within the distance threshold 7. The polygonal geometry isthe same asin Figure 3.1. Darkly shaded
squares contain at least one vertex. Lightly shaded squares hold no vertices but ar e cor ner -adjacent to
darkly shaded squares.

3.3.2 Surface Area Preservation

In [Garland and Heckbert 97], vertex merges are performed in order of increasing error
based on the error quadrics at each vertex (see Section 2.1.3.9). Although we feel these error
guadrics provide a good approximation of geometric error at vertices, there are some cases
where merging in order of increasing error leads to poor simplification choices. Because error
guadrics measure distance error at vertices, pairsthat are joined by short edges will most
likely be merged first. However, if the merging of two vertices changes the local surface area
drastically, the visual results are unappealing. For example, an isolated long and skinny
triangle will disappear if any of its edges collapse. However, this disappearance is very
noticeable even though the quadric error metric returns a small error for the operation (see
Figure 3.22 and Figure 3.27). Through the use of surface area preservation, vertex merges
that increase or decrease the local surface area greatly in relation to 7 are not allowed. In
many cases, this technique alows GAPS to join unconnected regions of objects, thereby

producing higher quality simplifications. A demonstration of the difference that surface area

52

preservation makes during the simplification of a simple model is shown in Figure 3.6 and

Figure 3.7.

To determine whether a vertex merge changes the local surface area drastically relative
to 7, we first sum the surface areas of all faces adjacent to at least one of the vertices involved
inthe merge. Thissum, a, isthe local surface area before the merge operation executes. To
calculate o', the local surface area after the merge, we sum the surface areas of all adjacent
faces of the new merged vertex. Besides being the distance threshold for virtual edge
selection, 7 also determines the allowable change in surface area during a vertex merge. The
alowable change in surface areais defined to be a = 7%, i.e., the area of acircle of radius 7.
We chose this definition of « for three reasons. We wanted to produce a surface arearelated
to rusing a simple geometric primitive. Since polygons are planar, and we total the surface
areas of polygonsto calculate @ and o, we wanted this simple geometric primitive to be
planar. Finaly, for the objects we tested in Section 3.5, using the area of a circle of radius r
worked well.

If the change in surface area Oa* — a”Ois greater than a, then the merge is not allowed.
If 7 grows (see Section 3.3.1), previously disallowed merge operations may become legal.
Intuitively, surface area preservation temporarily blocks merge operations that cause isolated
collections of polygons to disappear. It thereby promotes the merging of unconnected regions
of an object in order to produce higher quality ssimplifications. Figure 3.8 shows an example

of determining whether vertex merges are alowed according to surface area preservation.

53

O O O O
(@)
. O O O
‘ O O O
(b) 1=
O O ‘
O
O O ’
(© T= e
. O
O O
. O
d) 7=
[
O
[
(® T= v

Figure 3.6: Simplification without surface area preservation. (a) Theoriginal model. (b) Sincethe two
black verticesarein close proximity, they are next to be merged. (c) The gray vertex showsthe newly
mer ged vertex. (d) Notethat each vertex merge deletes a significant amount of surface area from the

model. (e) Thetwo rectangles disappear independently.

O O ©) ®)
@)

O Q- o O

X X X X

O Orrmmmeeeees O O
(0) T eeeeeemeeeennn

O O ©)

X X X X

O Q- o O
© T= e

O O @)

X X X

O O ®)
(@) 7% o

o O ®)

o O O
() I

Figure 3.7: Simplification using surface area preservation. (a) Theoriginal model. (b) All of the edges
marked with an “X” are not allowed to collapse because the operation would delete too much surface
area from the model in relation tor. The best remaining pair spans a virtual edge(c) Again, the best
vertices to merge collapse across a virtual edgéd) There are no more edges or virtual edges with

length less than or equal tar that are allowed to collapse. Therefore, GAPS doubles (€) The amount

of surface area that can be deleted or inserted in a single vertex merge operation degeon 7. Sincer

has grown, previously disallowed merges are now allowed. The two rectangles have joined and produced

a higher quality simplification.

55

_>
° ® ®
@ -
® ® o ®
_>
° ® ®
(b)

Figure 3.8: Determining if a vertex merge is allowable accor ding to surface area preservation. On the
left, the pairs of black vertices are potential merge candidates. In the middle, the shaded area

repr esents the surface area change due to the merge. On theright, the shaded area hasformed a circle
with equivalent surface area. (a) Thisoperation isnot allowed since the area it changes shown in the top
circleisgreater than a = 7%, the middlecircle. However, if T doubles, then this operation becomes

legal. (b) Themergeislegal becausethe areain the bottom circleislessthan the middlecircle.

3.3.3 Attribute Handling and a Unified Error Metric

Many objects contain surface attributes such as normals, colors, and texture coordinates
aswell as polygonal geometry. Handling these attributes during simplification is an important,
but difficult problem that involves many perceptual issues that are not well understood. We
present a simple, efficient, and intuitive method that provides a reasonable object space error
metric. Each type of error, whether it is due to polygonal geometry, normals, colors, or

texture coordinates, is independently tracked during smplification.

3.3.3.1 Interpolating Attributes

We decouple geometric and attribute error and use quadric error metrics for

determining merged vertex positions. Besides locating new vertices, we update any vertex

56

attributes that are adjacent to the edge being collapsed. If the pair of vertices forms a virtual
edge, then only the polygonal geometry of the object and not its attributes are affected by the
merge (see Figure 3.9). To merge two vertex attributes, we first find all faces that both
disappear during the merge and contain these attributes at their corners. From these faces, we
find the face nearest to the new merged vertex. We calculate the point on this nearest face

that is closest to the merged vertex.

o0 0 o0 0 o o
ad d a,
o——jei—/8f o o© 33%—966 o o Ye--ef 0O
o0 0 o0 0 o o
o0 0 o0 0 o o
Q,
o4 o o9 o ok o0
o0 0 o0 0 o o
(@) (b) (©)

Figure 3.9: Some sample cases of attribute merging. The black verticesare next to be merged. The
symbols at the corners of these verticesrepresent the attribute of the face at that corner. (a) A case
involving continuous attributes. When the two vertices mer ge, the middle faces disappear and attributes
a and B combineinto @ For example, if aisthecolor red and Sisblue, then gwould be purple. (b) A
case involving an attribute discontinuity. When the vertices merge, the middle faces disappear and the
pairsof attributes a and 3, and dand ycombineinto gand A, respectively. For example, if aisred, Bis
blue, diswhite, and yisblack, then gwould be purple and A would be gray. (c) A caseinvolving a

virtual edge. After the pair merges, the attributes ar e unaffected.

Using this nearest point, we calculate the barycentric coordinates of the point on the
nearest face. By weighting the attributes at the corners of the nearest face with these
barycentric coordinates, we produce a new interpolated attribute (see Figure 3.10).
Therefore, the positions of new vertices produced by error quadrics aso directly determine
the appearance of new attributes. This method is simple and efficient, but makes polygonal

geometry inherently more important than surface attributes during simplification.

57

O35 O 0305 0O

aa
@) 85 5 O —» O gg)gqp ¢)
oYXy g o Yo¥-——0

Figure 3.10: Interpolation of a new attribute. The black vertices are the next to be merged and the gray
vertex isthe best merge point according to error quadrics. We find the barycentric coordinates of the
nearest point on the nearest face to the gray vertex to produce an inter polated attribute @ In thiscase, ¢

= .3a+ 3y+ .40

3.3.3.2 Geometric Error

We handle geometric error by associating an error quadric with each vertex (see Section
2.1.3.9). Initially, we insert the planes of a vertex’s adjacent faces, weighted by the surface
area of each face, into the vertex’s error quadric. In addition, we keep track of the amount of
surface area involved in each quadric. Whenever we merge vertices, the error quadric of the
new vertex is simply the sum of the error quadrics of the merged vertices. The surface area
involved in the new quadric is the sum of the surface areas involved in the merged quadrics.
Assumev = [xy z 1] is the position of a vertex,is the number of planes in the vertex’s error
quadric,Ko, K1, K, ..., Ky-1 are the fundamental error quadrics for each planeaziag,
a, ..., &-1 are their associated surface area weightings. According to [Garland and Heckbert

97], the geometric error at this vertex is

A(v) :VTEZa,.KiEV

This error is the area-weighted sum of squared distances between the vertex and its set
of planes. The total surface area involved in an error quadric at a vertex is stored at that

vertex and is defined to be
n-1
#ﬂ=ga

We convertA(v) into a distance error in object space to obtain the final geometric error

58

A(V)

r(v) =)

I"(v) conservatively approximates the weighted average deviation error of the vertex
from its set of planes. For a proof of thisresult, see the appendix. Thus, while A(v) measures
a sum of squared distances (see Section 2.1.3.9), ' (v) estimates the average distance between

avertex and its set of planes.

3.3.3.3 AttributeError Via Point Clouds

We opted to use a simple, efficient, but approximate method for computing error in
attribute space. We make the assumption that values in attribute space are bounded. We
independently track different types of attribute error due to normals, colors, and texture
coordinates, by using point clouds. A point cloud is a collection of points enabling the
efficient calculation of the sum of squared distances between a specified point and all the
pointsin the cloud. Assume we are working in three-dimensional space, and there aren
poINts Po, P1, P2, ... Pn-1, With corresponding weights ao, a1, @y, ..., &-1, in the cloud. Each
point has coordinatgs = [x Vi z], andp = [Xy 7 is the point of interest. Then the weighted

sum of squared distances from the specified point to the cloud of points is

-1

np)=Y alp-pil —Za[x x) +(y-y) +(z-2)]=

3

= Jl

n-

;&[(XZ +y? +22)—2(XD<i +y 0y, +Zgi)+(xi2 ry? +Zi2)]:
ggai @xz +y? +zz)—2%<lzaixi %EL, ay %%2% %
Zai(xi2 +y,’ +Ziz)

For each point cloud, we store a veater [C, C; C; C3 C4] Where

59

Co = Zai
1

C.=)ax
1=0
n-1

C, =) ay
-

;=) az

C, = nz_jai(xiz + yi2 +Zi2)
Using the vector ¢, we can quickly calculate M(p) by
M(p) = ol +y2 +22)-2(c, x+c, y+c,)+,

We define the error of apoint p in respect to apoint cloud c as

Intuitively, A(p) approximates the average error at point p with respect to cloud c.

This representation for a cloud of points makes combining clouds very efficient.
Suppose we have two cloudsd = [dy d; d> d3 ds] and e =[ey €1 €; €; &), and we create a new
cloud of points ¢ which contains all points from both clouds. Then c = [(dy + &) (d; + &) (d2
+&) (d:+ &) (ds+e)],orc=d+e

For a given point cloud c, the minimum of M(p) occurs when

%I_l(p)ZZCOX—Zq:OD X:%
il‘l(p):ZCoy—ZCZ:OD y=2
¥ Co
il_l(p)ZZCOZ—Z%:OD z=2
oz G,

This minimum occurs at the weighted average of all the points included in the cloud.

60

Every vertex, besides containing an error quadric to measure geometric deviation, also
keeps track of a point cloud per type of attribute used. Thus, if an object used normals,
colors, and texture coordinates, the vertex would contain an error quadric, a normal point
cloud, a color point cloud, and a texture-coordinate point cloud. To simplify the handling of
attribute discontinuities, we initialize each point cloud with exactly one point. We calculate
this point by performing a weighted average of attributes contained by faces adjacent to the
vertex, where each attribute is weighted by the surface area of its containing face. Therefore,
attributes in the local neighborhood affect the point cloud, not just attributes adjacent to the
vertex. When we insert this point into the cloud, we weight it by the sum of surface areas of
all the faces adjacent to the vertex. When two vertices merge, we combine their error
quadrics plus their attribute point clouds. Since we initially store an average attributein a
point cloud, we do lose attribute discontinuity information at vertices. However, we accept
this approximation for reasons of efficiency and the fact that attribute discontinuities are
handled in part by the quadric error metric (see Section 3.4.2).

3.3.3.3.1 Normal Error

Normals for polygonal objects are usualy initially calculated from the polygonal
geometry itself. Therefore, since we are aready handling error due to geometric deviation, it
is unclear whether there is much benefit to tracking error due to normals. We believe that
approaches such as [Cohen et al. 98] that bound the error of normal maps are superior to
calculating the error of normals directly. Since normal maps are not widely available in
hardware, GAPS includes the ahbility to calculate error due to normals. If normal maps are
required for a polygonal object, the procedure for tracking the normal map coordinate error is

exactly the same as for tracking texture coordinates (see Section 3.3.3.3.3).

Normal point clouds consist of three-dimensional points, as in the example point cloud
description above. To find the error in normal space due to two vertices merging, we first
combine the normal point clouds. Idealy, the interpolated normal resulting from this merge
would be used to determine the error in normal space using the new normal point cloud.

However, the operation of interpolating the normals (see Section 3.3.3.1) istoo expensive to

61

be performed every time we rate the quality of a merge candidate. Therefore, we use an
efficient, but approximate method in its place. For a combined cloud, we assume that the
interpolated normal will be the one that creates the least amount of normal space error.

In order to approximate how much error in object space is due to normals, we use the
degree of error in normal space plus the amount of surface area this affects. Since the
Euclidean distance between two normals on the unit sphere is at most 2, we halve the average
error An(p) of the normal point cloud c,. This normalized value is within the range O to 1,
indicating the degree of error in normal space.

The more surface area this normal error affects, the more visual error there will be due
to simplification. Based on thisidea, we transform normal error into object space by using a
simple and approximate technique. Associated with the point cloud c, is Cqo, the sum of all
weights involved in the point cloud. However, these weights equal the total surface area
represented by this merged vertex. Therefore, we use ¢y as the total surface areain which the
error occurs, and the normalized error as the measure of error across thisarea. Suppose pn, IS
the minimal error point for point cloud c,. Then, the transformation from error in normal

space to error in object space for a vertex v with normal point cloud ¢, is

Intuitively, this equation starts with surface area c,o and multiplies it by the measure of
normal error. Next, it finds the radius of the circle whose surface areais equivalent to this
multiplied area. Thisradiusis defined to be the object space distance error due to normals
(see Figure 3.11). We chose this radius as the distance error because of three reasons. We
wanted to convert from a surface area to a simple geometric primitive. Since the surface area
Cno IS @ sum of surface areas of polygons, and polygons are planar, we wanted this simple
geometric primitive to be planar. Finally, for the objects we tested in Section 3.5, using the

radius of this circle as the distance error worked well.

62

O
(@) (b) (©

Figure 3.11: Conversion of normal space error to object spaceerror. (a) Thetwo black vertices are next
tobemerged. The average normals at the vertices ar e shown, depicting their initial normal point
clouds. (b) The combined normal point cloud in normal space when the vertex pair ismerged. The gray
point represents the point of minimum error according to thispoint cloud. The average distance
between this point and the normalsin the point cloud is approximately 0.4. Dividing by 2 resultsin the
normalized error of 0.2. (c) The surface area of the adjacent faces of the two vertices being mer ged
form the shaded circle above. Thisareaismultiplied by 0.2 to aobtain the final affected surface area,
represented by the smaller circlewith radiusr. risdefined to be the object space distance error dueto

normals. In other words, r isa distance error in 0O0°.

We have noticed when working with normals on several objects that they change rapidly
during smplification as compared to other surface attributes. The normalized error isavaue
between 0 and 1. Thus, if we square the normalized error, then it decreases and remains
bounded between 0 and 1. If we perform a square root on the normalized error, then it
increases and remains bounded between O and 1. Therefore, in order to decrease the
sengitivity of error due to normals, we square the normalized error in normal space and modify
N(v) to be

PPl
|:| =

N(v) = B2 _

\/ (A (po)) B0

3.3.3.3.2 Color Error

We assume colors have four components: red, green, blue, and alpha and that these

components are within the range O to 1. Therefore, we use four-dimensional point clouds to

63

keep track of color. We represent a four-dimensional point cloud in aimost the same way as a

three-dimensional one, except we keep track of six values, rather than five.

Since the Euclidean distance between two colorsin color space can be at most

J1-07 +(1-02+(1-0)* +(1-0)* =2,

we normalize color error by thisvalue. Suppose p. isthe minimal error point for color point
cloud c.. Then, the transformation from error in color space to error in object space for a

vertex v with normal point cloud c; is

It has been our experience that the visual effect of dlight color changes is noticeable.
Therefore, we enlarge the error due to color by taking the square root of the normalized error

in color space and changing C(v) to

3.3.3.3.3 Texture-Coordinate Error

We assume two-dimensional texture coordinates for polygonal objects, so we use two-
dimensional point clouds to track texture-coordinate error. We represent a two-dimensional
point cloud in almost the same way as a three-dimensional one, except we keep track of four
values, rather than five. Since we rely on attribute values being bounded, we assume that each
dimension of atexture coordinate is within the range 0 to 1. Therefore, clamped or repeated
textures that use texture coordinates outside the range of O to 1 are not handled directly using
this method. We can transform an object with clamped or repeated textures to an object that
meets our texturing requirements. We also assume that the entire texture is applied over the
model. If only a subset of the texture is used, then our approximation will return erroneous

results. We can fix this problem by clipping the texture to its used subset.

64

Since the Euclidean distance between two texture coordinates in texture-coordinate

Spaceis at most

J(1-07 +(1-0)? =42,

we normalize texture-coordinate error by thisvalue. Suppose p: is the minimal error point for
texture-coordinate point cloud ¢;. Then, the transformation from error in attribute space to

error in object space for a vertex v with texture-coordinate point cloud ¢; is

3.3.3.4 Unified Error Metric

We define the average error at a vertex v with normal point cloud c,, color point cloud
C., and texture point cloud ¢;, to be aweighted average of al of its component errors. In

other words,

E(v) _ S(v)[lr(v)+ Cro EIN(V) +Cq E:(v)+ Coo Er(v)
S(V)+ €y + Co + G
If aparticular vertex does not have a specific attribute associated with it, then that

attribute is not included in the average. For example, if a vertex in the object does not have
color information, then the final error would just be the average of the polygonal geometry,
normal, and texture-coordinate error. We use E(v) to determine the best candidate vertex pair
to merge. Since E(v) is an approximation to the average error, and not the maximum error,
we cannot directly useit to calculate switching distances for LODs. However, we have found
that by scaling the average E(v) of al vertices by a constant (we use 10), we can automatically
generate reasonable switching distances. We empirically chose this scaling constant because it
amost always overestimated the maximum error for the models we tested. Details on the

results of this error approximation are shown in Section 3.5.4.

65

3.4 Implementation

We have implemented GAPS using C++, GLUT, and OpenGL. The code is portable
across PC and SGI platforms. GAPS has produced visually pleasing results on a variety of
datasets including scanned, terrain, radiositized, and CAD objects.

3.4.1 Generality

GAPS handles al polygonal objects, whether they are manifold meshes or unorganized
lists of polygons. As a preprocess, objects are triangulated and then represented by sharing
vertices and calculating normals. Although these operations are not necessary, GAPS can
take advantage of the increase in the resulting topology information to produce better-looking

simplifications more efficiently.

Objects consist of vertices, triangular faces, vertex attributes, and face attributes.
Vertex attributes are colors, normals, and texture coordinates. Face attributes are colors,
meaterials, and textures. This categorization is equivalent to the one described in [Hoppe 96]
and [Hopped8], except that Hoppe names them scalar and discrete attributes respectively.
We use asmple internal representation for objects where faces consist of three corners. Each
corner has a pointer to avertex and a vertex attribute. Vertices consist of a three-dimensional
point plus alist of pointersto adjacent faces. We assume no ordering on these adjacent faces.
Almost any polygonal model can be described with this representation. In practice, we have
used GAPS on large CAD models composed of non-manifold and degenerate geometry.

3.4.2 Discontinuities

Asin [Garland and Heckbert 97], additional perpendicular constraint planes are added
to the error quadrics of vertices that lie on boundary edges or sharp edges. Unlike [Garland
and Heckbert 97] that assigns a large penalty to these planes, we weight them using the
surface area of the face that contains the boundary edge or sharp edge. Similarly, if thereisa
vertex attribute or face attribute discontinuity occurring at an edge, constraint planes are

inserted as if the edge was a boundary edge. 1t has been our experience that these extra

66

constraint planes work very well at preserving both geometric and attribute discontinuities

during simplification.

3.4.3 Preventing Mesh Inversion

Vertex merges can cause faces to flip orientation and fold over one another. Asin
[Garland and Heckbert 97], we prevent these mesh inversions from occurring by comparing
the normals of faces before and after a vertex merge operation. |If any of the normals flip, the

merge is not allowed.

3.4.4 Candidate Merge Pairs

We use a heap containing candidate merge pairs to merge vertices in order of increasing
error. Candidate pairs consist of pointers to two vertices, a bit flag, a merged vertex position
if the candidate is chosen, the error involved in the merge operation, and the index of the pair

in the pair heap.

The bit flag specifies whether the pair is active, legal, local, virtual, or dirty. A pair is
inactive if a merge operation eliminates the pair from consideration. A pair islegal if it does
not cause any mesh inversions and meets the requirements of surface area preservation (see
Sections 3.3.2 and 3.4.3). lllegal pairs are never inserted into the pair heap. A pair islocal if
the distance between the verticesis less than or equal to the current distance threshold 7 as
defined in Section 3.3.1. A pair isvirtua if the edge connecting the two vertices of the pair is
virtual. A pair isdirty if it isin need of recalculation (dirty pairs are introduced in [Cohen et
al. 97]). After merging a pair, we recalculate the error and legality for each pair that contains
the new merged vertex. However, because the merge operation changes the polygona
geometry of faces surrounding the new merged vertex, we must also check for mesh inversion
and surface area preservation in pairs that have any vertex adjacent to the new vertex. Most
of the time, the error and legality of these pairs will not change appreciably due to aremote
vertex merge. Therefore, instead of slowing down the algorithm by recalculating the error

and legality of these pairs, we mark them as dirty. When adirty pair is on top of the heap, we

67

recalculate its error and then reinsert it if it islegal. Marking pairs as dirty is atechnique to

increase the efficiency of GAPS while not reducing its apparent quality.

3.45 Main Loop

After initidization, the main loop of GAPS executes as follows:

Check if 7 needsto be doubled. Doubling occurs when either there are no more
legal and local pairsin the heap or when the pair on top of the heap has error
greater thanz. When GAPS doubles 7, we recalculate the error and legality of all

active pairs.

If the pair on top of the heap is dirty, recalculate its error and reinsert it if legal.
Repest this step of checking the top pair.

Extract the top pair from the heap. Delete the two verticesin the pair from the
hash table with grid cells of size 7. Insert the new vertex into the hash table to find
virtual edges incident to it. Add quadrics and point clouds of the two vertices and

store this information in the new vertex.

Determine which pairs need to be updated or deleted due to the merge. Mark

remote pairs as dirty.

Repesat until a specified number of vertices or faces remain, or an error threshold
has been reached.

3.5 Resaults

In this section, we describe the performance of GAPS on various polygona models.

We review the speed at which GAPS executes and its memory efficiency, aswell as a

discussion of its approximation of geometric error.

68

3.5.1 Execution Speed

All of our timing results were gathered on a 195 MHz R10000 SGI Infinite Reality2
with 2 gigabytes of main memory. Table 3.2 shows timing comparisons between GAPS and
QSlim, Michael Garland’s publicly available simplification code [Garland 97]. These timings
include both setup time, such as initializing the error quadrics and determining virtual edge
pairs, plus simplification time. For QSlim, we specified optiemgpreserve mesh quality), —
a (areaweight error quadrics), and —B 1000 (penalize boundary edges with weight 1000).
Assuming these settings, QSlim runs about twice as fast as GAPS on average.

The Bunny object is the traditional scanned mesh from Stanford University, Head isa
texture-mapped scanned mesh, and Sierraiis aterrain model (see Figure 3.25, Figure 3.16, and
Figure 3.30, respectively). If the user knows that an object consists of one connected mesh
with no holes and genus zero, then there islittle point in using a distance threshold for the
selection of virtual edges. Therefore, there is an option in GAPS to turn off virtual edge
selection. The timings for GAPS using this option are shown in Table 3.2 aswell. Even
though GAPS is still handling attributes, the results are comparable to QSlim.

Only objectsthat contain disconnected regions of polygons in close proximity benefit
fromusingz. Rotor, Econ, and ShDivWest, and Chamber all fall under this type of object (see
Figure 3.14, Figure 3.22, Figure 3.27, and Figure 3.19, respectively). Rotor, Econ, and
ShDivWest are CAD models while Chamber is aradiositized object. Note that if we specify a
reasonable 7 for QSlim, then GAPS, with its adaptive distance threshold, outperforms QSlim
on Econ and ShDivWest.

3.5.2 Memory Usage

GAPS needs to store extra information at vertices and faces during simplification. For
each vertex, we store an error quadric, a4x4 symmetric matrix, plus the total area weight of
the quadric, atotal of 11 floating-point values. In addition, we store point clouds for normals,
colors, and texture coordinates, shown in Section 3.3.3.3. These point clouds tota 5, 6, and 4
floating-point values respectively. Finaly, we store alist of pair heap indices associated with

the vertex. Thislist of indices allows efficient updates of specific pairsin the pair heap.

69

Therefore, assuming GAPS is tracking normals, colors, and texture coordinates, each vertex
consists of at least 26 extra floating-point values, plus an integer per pair heap index. For
each face, we keep track of its associated plane, its surface area, and whether it is still active.
A faceis activeif it has not yet disappeared during the ssmplification process. The plane and
surface area information are used to make GAPS more efficient when checking for mesh
inversion and surface area preservation. Therefore, each face entry consists of 5 extra
floating-point values plus a boolean value. GAPS aso stores a hash table that contains

pointers to vertices and a heap of candidate pairs. Therefore, this algorithm uses a lot of

memory.
Object Vertices | Triangles | QSlim | Qdim | GAPS | GAPS
Time | Time not (secs)
(secs) usingt |usng T
(secs.) | (secs)
Rotor 2328 4736 1.45 1.59 1.56 2.19
Head 4925 9580 2.89 3.63 351 4.63
Chamber 5685 10423 948 17.09 350 6.98
Econ 10032 23556 7.61| 68.60 7.72| 25.22
Bunny 34834 69451 | 27.23 30.15| 27.91| 3872
ShDivWest 65245 141180 | 42.02| 170.55 47.35 | 147.49
Sierra 81920 162690 | 67.18| 18254 60.41 | 193.09

Table 3.2: Simplification timingsfor various modelsrunning on an SGI Infinite Reality2 with a 195

MHz R10000 processor and 2 gigabytes of main memory. The default settings used for QSlim wereto
preserve mesh quality, area weight quadrics, and penalize boundary edges. To choose 7for QSlim, we
used 1% of the maximum bounding box dimension of the object being simplified. The “GAPS not using
7" column signifies that attribute error was handled, but that no virtual edges were considered and no

surface area preservation was performed.

70

3.5.3 Geometric Error Versus QSlim

There is no standard method of comparing the output of two simplification algorithms,
especialy if the smplification involves attributes. However, anatural way of calculating the
geometric error between the original object and its smplified version is to first point sample
both objects. For each point, find the distance to the closest point on the other object. If we
want to find the average geometric error, we average these distances. If we wish to calculate
the maximum geometric error, we take their maximum. This last calculation approximates the

Hausdorff error metric as described in [Rossignac 97].

Our results, shown in Figure 3.12, show that the average and maximum geometric error
of GAPS and QSlim are roughly the same. These results are not surprising since GAPS uses
almost the same geometric error bound as QSlim. Note that for these results, GAPS used an
adaptive 1, surface area preservation, and attribute handling. However, only the geometric
error is shown in Figure 3.12 as there is no standard error metric for surface attributesin the
simplification literature. The graph of the Chamber model shows that QSlim does a better job
of smplifying polygonal geometry initially, but that GAPS catches up quickly. However, the
simplified model produced by GAPS is visually superior because it handles attributes (see
Figure 3.20). [Lindstrom and Turk 98] presents geometric error comparisons between QSlim
and various other simplification algorithms. 1f we were to compare GAPS versus these
algorithms in terms of geometric error, the results would almost be equivalent to substituting

QSlimin its place.

Our goal was to show that adaptively changing 7 and preserving surface area decrease
the geometric error of some simplified objects as compared to QSlim. Econ and ShDivWest
are objects where an adaptive 7 and surface area preservation seem to make a large visua
difference in the smplified output (see Figure 3.23 and Figure 3.28). The ShDivWest graph
shows that GAPS mainly outperforms QSlim when the simplified object is less than a
thousand faces. This behavior matches visual results where GAPS seems to produce better-
looking drastic smplifications than QSlim for ShDivWest. However, GAPS appears to
produce better looking drastic simplifications for Econ as well, but this difference is not

reflected in the graph in Figure 3.12. A possible explanation for this discrepancy comes from

71

[Rossignac 97] that gives examples where the error metric we use does not do a good job of

measuring shape similarity.

3.5.4 Geometric Error Approximation

It would be useful to know how close the approximate average geometric error (see
Section 3.3.3.2) isto the more precise average geometric error described in Section 3.5.3.
Our results in Figure 3.13 show cases where the approximate average error underestimates
and overestimates the more precise average error. In order to approximate the maximum
error, we scale the average error of al vertices by a constant (we use 10 in our current
implementation). Note that these approximate maximum values, also shown in Figure 3.13,
also underestimate and overestimate the more precise maximum error. These more precise
error bounds can be calculated if an application requires them, but at great computational
cost. Note that this discussion avoids the issue of our attribute error handling since thereis no
standard error metric for colors, normals, and texture coordinates. In practice, this
approximation of maximum error produces reasonable switching distances for LODs. In

Chapter 4, we discuss how to calculate a switching distance based on this approximate error.

In Figure 3.13, Avg. App. refers to the approximation of the average geometric error.
Max. App. shows the approximation of the maximum error of the simplified object. Avg.
Prec. is the more precise average geometric error. Max. Prec. refers to the more precise

maximum geometric error.

72

GAPS vs. QSlim Geometric Error (Rotor) GAPS vs. QSlim Geometric Error (Head)
100
B V j 10
s e W 5
i 1
S S
0.1
T T T 0.001 T T T 0.01
10000 1000 100 10 1 10000 1000 100 10 1
Faces # Faces
——Avg. GAPS -I- Max. GAPS —X-Avg. QSlim —+ Max. QSIim\ \%%Avg. GAPS -II- Max. GAPS —X-Avg. QSlim —+- Max. QSIim\
GAPS vs. QSlim Geometric Error (Chamber) GAPS vs. QSlim Geometric Error (Econ)
100
pﬂ%ﬂ—;jf 10
S R 7 t1 S
] =i 0
£ Nl ol %
% 0.000001 2/' 0.01
T T T 0.00000001 : . T T 0.001
10000 1000 100 10 1 100000 10000 1000 100 10 1
Faces # Faces
—<—Avg. GAPS - Max. GAPS —X- Avg. QSlim —+ Max. QSIim‘ \%%Avg. GAPS -II- Max. GAPS —X- Avg. QSlim —+- Max. QSIim\
GAPS vs. QSlim Geometric Error (Bunny) GAPS vs. QSlim Geometric Error (ShDivWest)
100.000 100
—_ [10 —_
I I
i 1 o
B B
% 01
T T T T 0.001 T T T T 0.01
100000 10000 1000 100 10 1 100000 10000 1000 100 10 1
Faces # Faces
——Avg. GAPS -I- Max. GAPS —X-Avg. QSlim —+ Max. QSIim\ \%%Avg. GAPS -II- Max. GAPS —X- Avg. QSlim —+- Max. QSIim\

GAPS vs. QSlim Geometric Error (Sierra)

% Error

i T T T 0.01
100000 10000 1000 100 10 1

Faces

[~0—Avg. GAPS - Max. GAPS —X- Avg. QSlim —+ Max. QSlim|

Figure 3.12: Geometric error comparison, asdetailed in Section 3.5.3, between GAPS and QSlim on
various objects. The percentage error is in terms of the maximum dimension of the object’s bounding

box.

73

Approximate vs. More Precise Geometric Error Approximate vs. More Precise Geometric Error
(Rotor) (Head)
r 100 100
X
ro th= 10 .
X 1 S - 1 2
i} i}
0/(, 0.1 © lugd X °
% S % 01 ©
4 0.01 0/<><7 X
T T T 0.001 T T T 0.01
10000 1000 100 10 1 10000 1000 100 10 1
Faces # Faces
—>— Avg. App. T+ Max. App. X Avg. Prec. + Max. Prec. —— Avg. App. TMax. App. X Avg. Prec. + Max. Prec.
Approximate vs. More Precise Geometric Error Approximate vs. More Precise Geometric Error
(Chamber) (Econ)
10000 100
t100 o ro _
1 = =
W < 01 Y
X =
o 0.01 001
‘ ‘ ‘ 0.0001 X ‘ ‘ ‘ 0.001
10000 1000 100 10 1 100000 10000 1000 100 10 1
Faces # Faces
——Avg. App. T Max. App. X Avg. Prec. + Max. Prec. —— Avg. App. T Max. App. X Avg. Prec. + Max. Prec.
Approximate vs. More Precise Geometric Error Approximate vs. More Precise Geometric Error
(Bunny) (ShDivWest)
1000.000 100
+ 100.000 _ L 10 .
r10.000 5 x X S
1.000 g pre W .
0.100 X liig - 01 X
0.010 Q/gf ‘
T T T T 0.001 T T T T 0.01
100000 10000 1000 100 10 1 100000 10000 1000 100 10 1
Faces # Faces
—— Avg. App. T Max. App. X Avg. Prec. + Max. Prec.\ H%Avg. App. T+ Max. App. X Avg. Prec. + Max. Prec.

Approximate vs. More Precise Geometric Error
(Sierra)

1000.000

10.000
1.000
0.100
0.010
0.001

% Error

100000 10000 1000 100 10 1
Faces

H%Avg. App. T+ Max. App. X Avg. Prec. + Max. Prec.\

Figure 3.13: Comparison between the approximate geometric error used by GAPS and a more precise
geometric error calculated during the simplification of various objects. The percentage error isin terms

of the maximum dimension of the object’s bounding box.

74

3.5.5 Visual Comparison

Although the results in Section 3.5.3 do not clearly show a distinction between the
output of GAPS and using the quadric error metric aone, a visua comparison of the two
techniques on more intricate objects, such as Econ (Figure 3.22 and Figure 3.23) and
ShDivWest (Figure 3.27 and Figure 3.28), does show a difference.

Figure 3.14: Theoriginal Rotor object and its LODs created by GAPS. From left toright these LODs
consist of 4,736 faces, 1,184 faces, 296 faces, and 72 faces.

Figure 3.15: Switching distancesfor L ODs of the Rotor object if we allow 1 pixel of error according to
our approximate error metric described in Section 3.3.3. From left toright these LODs consist of 23,681
faces, 1,184 faces, 592 faces, and 296 faces. The original object consists of 4,736 faces.

75

Figure 3.16: Theoriginal texture-mapped Head object and its L ODs created by GAPS. From left to
right these objects consist of 9,580 faces, 2,395 faces, 597 faces, and 148 faces.

Figure 3.17: The approximate error boundsreported by GAPS for the same LODsasin Figure 3.16.
Theradii of the spheresarethe approximate errors at the vertices they enclose as defined by the unified
error metricin Section 3.3.3.4. These error bounds ar e used to automatically deter mine switching
distancesfor LODs. From left toright these objects consist of 9,580 faces, 2,395 faces, 597 faces, and
148 faces.

76

Figure 3.18: Switching distancesfor L ODs of the Head object if we allow 1 pixel of error. From left to
right these LODs consist of 4,789 faces, 2,395 faces, 1,196 faces, and 597 faces. The original object

consists of 9,580 faces.

Figure 3.19: LODsfor the Chamber object from a top-down view created by GAPS when error dueto
attributesisignored. Note how the shadow and lighting infor mation of thisradiositized model rapidly
disappear s as the smplification proceeds. From left toright, these LODs consist of 10,423 faces (the
original object), 9,119 faces, 7,817 faces, and 5,210 faces.

Figure 3.20: LODsfor the Chamber object created by GAPS using the unified error metric described in
Section 3.3.3.4. Theresultsare superior tothe LODsin Figure 3.19 in terms of color preservation.
However, notice that the polygonal geometry of the lamp, i.e., the yellow ring, is preserved better in
Figure 3.19. From left toright these LODs consist of 10,423 faces (the original object), 9,120 faces, 7,817
faces, and 5,211 faces.

77

Figure 3.21: Switching distancesfor L ODs of the Chamber object if we allow 1 pixel of error. From left
toright these LODs consist of 7,817 faces, 5,211 faces, 2,605 faces, and 1,302 faces. The original object

consists of 10,423 faces.

Figure 3.22: LODsfor the Econ object created by GAPS with no distance threshold and no surface area
preservation. Note how the pipesthin during simplification. From left toright these LODs consist of
23,556 faces (the original object), 5,888 faces, 1,472 faces, 368 faces, and 92 faces.

78

Figure 3.23: LODsfor the Econ object created by GAPS using an adaptive distance threshold and
surface area preservation. The pipesjoin together at the latter stages of simplification, preserving more
of the surface area of the object as compared to Figure 3.22. From left toright these LODs consist of

23,556 faces (the original object), 5,888 faces, 1,470 faces, 368 faces, and 90 faces.

Figure 3.24: Switching distancesfor L ODs of the Econ object if we allow 1 pixel of error. From left to
right these LODs consist of 5,888 faces, 2,944 faces, 1,470 faces, and 736 faces. The original object has
23,556 faces.

Figure 3.25: The original Bunny object and itsLODs created by GAPS. From left toright these LODs
consist of 69,451 faces, 8,680 faces, 1,085 faces, and 135 faces.

79

Figure 3.26: Switching distancesfor L ODs of the Bunny object if we allow 1 pixel of error. From left to
right these LODs consist of 17,361 faces, 8,680 faces, 4,340 faces, 2,169 faces, and 1,085 faces. The

original object consists of 69,451 faces.

Figure 3.27: LODsfor the ShDivWest object created by GAPS with no distance threshold and no surface
area preservation. From left toright these LODs consist of 141,180 faces (the original object), 17,646
faces, 2,204 faces, and 272 faces.

Figure 3.28: LODsfor the ShDivWest object created by GAPS using an adaptive distance threshold and
surface area preservation. In the latter stages of smplification, these LODsretain more of the overall
structur e of the pipesthan the onesin Figure 3.27. From left toright these LODs consist of 141,180
faces (the original object), 17,644 faces, 2,202 faces, and 272 faces.

80

Figure 3.29: Switching distancesfor L ODs of the ShDivWest object if we allow 1 pixel of error. From
left toright these LODs consist of 70,588 faces, 35,292 faces, 17,644 faces, and 8,822 faces. The original
object consists of 141,180 faces.

Figure 3.30: Theoriginal Sierra object and its L ODs created by GAPS. From left toright these LODs
consist of 162,690 faces, 20,335 faces, 2,541 faces, and 317 faces.

Figure 3.31: Switching distancesfor LODs of the Sierra object if we allow 1 pixel of error. From left to
right these LODs consist of 81,345 faces, 40,671 faces, 20,335 faces, and 10,168 faces. The original
object consists of 162,690 faces.

81

3.6 Analysis

Because we use a pair heap, GAPS has a bound on running time of O(p Ig p) where p is
the number of pairsin the heap. However, the number of pairs changes depending on the
legality of pairs and the doubling of the distance threshold 7. To simplify our analysis of
GAPS, we assume that the number of vertices that are within the distance threshold 7, the
number of incident edges, and the number of adjacent faces of a specific vertex are a most a
constant ¢, even after 7 doubles. This assumption relies on 7 doubling only when the vertex
and edge density of the simplified object becomes lower than some constant density during the
simplification process. For all the polygonal objects we have tested, GAPS exhibits this
behavior, athough one could create counter-examples. Another assumption we make is that
hashing is a constant-time operation. Again, an object could be crafted to make this

assumption invalid, but it holds true for our test results.

To find an initial distance threshold 7, we first make an initial guess in constant time. 1f
it isnot valid, then we halve 1 and check its validity again, otherwise we stop. Note that 7 has
alower bound of £ (1€ in our implementation). Each validity check of 7 involves hashing v
vertices, where v isthe number of verticesin the original object. We assume that each vertex
Is hashed in constant time. Let n be the maximum number of times we could halve the initial

guessof 7. To caculaten,

(0 4 =570 nnlg)f) - 5 -m,)

Since each validity check of 7involves hashing v vertices, and hashing is assumed to be

a constant-time operation, calculating the initial distance threshold 7 costs
vO(1) th = v[O(1) [log Y (/)=0lvagl/)
2

For the objects tested in Section 3.5, the initial value of rwas almost always found by
the third iteration of halving its value.

82

Initially, we insert a maximum of cv/2 edges and cv/2 virtual edges as pairs into the
heap, given our assumption that there are no more than c incident edges and c vertices within
the distance threshold 7 of a particular vertex. Therefore, there could be a maximum of cv
pairs in the heap initially. In our analysis, we ignore the case where 7 doubles because the
maximum error on top of the pair heap is greater than 7. The only other way 7 doublesis
when all local edges are collapsed, resulting in new virtual edges being added to the heap.
Assuming there were v vertices originaly, then the number of vertices remaining when ©
doubles is approximately v/c by our assumption of maximum constant density. In other
words, in order for al of the virtual edges of a vertex to have been collapsed, it implies that
each of the approximately ¢ neighboring vertices have merged with it. Therefore, at this stage
there will be a maximum of c(v/c) = v pairsin the heap. In general, after the nth doubling of 7,
there will be at most c(v/c") candidate pairs. Once v/c" = 1, the simplification process stops.
Each time a pair is extracted from a heap of size p, the operation costs O(lg p). Therefore, a
bound on the running time due to the heap can be determined using the Master Theorem,
described in[Cormen et a. 94], as

ofov1g(ov) + ol)alelyg)+ el okl -+ ol Jnalel .) =

O(cv g(cv))

Finding virtual edges for one vertex, assuming constant time hashing, takes O(c), or
constant time. Therefore, finding virtual edges for v vertices takes O(cv) time. The time
taken to find virtual edges after 7 doubles during the entire simplification process can be

derived from the Master Theorem, described in[Cormen et a. 94], as

Ofcv) + O(c(%))+ O(c(%z))+ e O(c(%n)) = 0(cv)

Other time critical operations, such as checking for surface area preservation, checking
for mesh inversion, calculating optimal vertex positions, joining quadrics, and combining point
clouds can be considered constant time operations. Therefore, using our smplified analysis,

the expected execution time of GAPS is

owlgle//)+ ofevtig(ev) + O(ev) = Ofv) + Ovigv) + Ofv) = OfvIgv)

83

As empirical proof of this analysis, the timings of GAPS versus QSlim are similar (see
Section 3.5.1). With afew assumptions, QSlim can be shown to run in O(p Ig p) time where p
is the number of initial candidate pairsin its heap. Intheworst case, p = O(V). Thusthe
worst case running time for QSlim and GAPS is O(V* Ig V). Thisworst case scenario would
involve smplifying very contrived or degenerate polygonal geometry. In practice, none of the

test objects in Section 3.5 produced this worst case behavior.

3.7 Comparison

In this section, we first compare simplification algorithms that lie in the domain of
topological smplification followed by ones that handle surface attributes. [Popovic and
Hoppe 97] presents an elegant topological simplification algorithm to produce a progressive
simplicial complex. It isslow and uses primitives other than polygons. [Rossignac and Borrel
93] and [Low and Tan 97] use vertex clustering to topologically smplify models quickly and
robustly, sometimes producing low quality approximations. [He et a. 95] uses a voxel-based
approach that makes it difficult to control the degree of simplification. [El-Sanaand Varshney
97] controls the genus of an object and [Schroeder 97] simplifies to any target number of

faces quickly, and both are not able to join unconnected regions of an object.

Increasingly more algorithms are addressing surface attributes during the simplification
process. [Hoppe 96] includes scalar and discrete attributes in the energy function the
algorithm triesto minimize. This method is dow in practice. [Cohen et al. 98] uses texture
and normal maps for appearance preserving simplification. It requires a surface
parameterization that is difficult to compute for arbitrary polygonal objects. Machines that do
not support normal mapping will render the simplified output owly. Garland and Heckbert
extend their original algorithm in [Garland and Heckbert 98] to handle surface attributes.
They ignore topological smplification and use a higher dimensional error quadric to track
geometric and surface attribute error together. We efficiently decouple surface attributes
from polygonal geometry and use a unified error metric that aids automatic selection of

switching distances for LODs of an object. [Cignoni98] proposes an efficient algorithm that

creates surface attributes for a simplified mesh by sampling the original object. This method
requires the storage of potentially large texture maps for each level of detail desired.

3.8 Summary

We present a new topological simplification algorithm that is general, automatic,
executes efficiently, handles surface attributes, produces high quality approximations, and
merges unconnected regions of objects using an adaptive distance threshold and surface area
preservation. It uses an object space error metric, incorporating both geometric and surface
attribute error, to aid the calculation of switching distances for LODs. The algorithm appears

to work well on awide range of models, ranging from smooth surfaces to digoint pipes.

85

4 SIMPLIFICATION OF STATIC POLYGONAL ENVIRONMENTS

In the previous chapter, we presented techniques to achieve static intra-object polygonal
simplification. It was shown that merging unconnected regions of polygonsin a single object
Is an effective technique for producing high quality and drastic approximations. However,
large polygonal environments usually consist of numerous objects. If objects are in close
proximity in the scene, a simplification algorithm might be able to produce visually better
approximations by merging regions of different objects. In other words, the agorithm would
perform inter-object in addition to intra-object simplification. In this chapter, we present an
algorithm to accelerate the rendering of large static polygonal environments. We represent
these polygonal scenes using a modified scene graph that includes both traditional levels of
detail, or LODs, and hierarchical levels of detail, or HLODS, that approximate the polygonal
geometry of portions of the scene graph. HLODs are the product of inter-object
simplification. We discuss how they are created, how they are integrated into the traditional
scene graph traversal, and how they can be used to gain limited view-dependent rendering
capabilities.

Therest of this chapter is organized in the following manner. We provide an overview
of our algorithmin Section 4.1 and discuss the technical details in Section 4.2.
Implementation details are presented in Section 4.3 and performance results are shown in
Section 4.4. Analysis of the running time of the system is shown in Section 4.5. We compare
our algorithm based on HLODs to other rendering methods in Section 4.6 and we conclude
the chapter in Section 4.7.

4.1 Overview

We assume that the polygonal environment is represented using a scene graph [Clark

76, Rohlf and Helman 94] and that our algorithm uses standard view-frustum culling. A scene

graph is a directed acyclic graph consisting of nodes connected by arcs. Polygonal geometry
and bounding volumes are stored at nodes while transformations are stored at arcs. We can
efficiently replicate objects in the scene by using instancing. An example scene graph is shown

in Figure 4.1.

e

VA

Eye Mouth

6
(@) (b)

Figure 4.1: A simple scene graph. (a) A model of aface. (b) The model’s scene graph.

In Figure 4.1, boxes enclosing text represent nodes while black arrows represent arcs.
Red arrows show the polygonal geometry that is contained in each node. Bounding boxes for
each node are shown in green. Even though the face node is the root node and not a leaf
node, it contains polygonal geometry. The dotted gray boxes in the face node’s polygonal
geometry denote the bounding boxes of its children. Note the bounding box of the face node
encloses its polygonal geometry and the bounding volumes of its children. There is only one
definition of the polygonal geometry of an eye, but there are two in the model due to the eye
node’s two incoming arcs. Each arc uses a different transformation to instance the eye at

different positions on the head.

A traditional scene graph rendering system such as Performer [Rohlf and Helman 94]
uses LODs to accelerate the rendering of polygonal environments. We demonstrated in
Chapter 3 that high quality and drastic LODs can be created for certain objects by merging
unconnected regions of polygonal geometry during simplification. Polygons located in
different nodes of the scene graph will never be merged together in a traditional LOD-based
system. For example, Figure 3.23 shows the Econ model. By creating LODs for this model,

we assume its polygons are located in one node in a scene graph. In Chapter 3, we use GAPS

87

to merge the digjoint pipes of the Econ model together, thereby performing intra-object
simplification. Suppose the polygona geometry of each pipe of the Econ model was located
in its own node in a scene graph. If we use a purely LOD-based system, we would simplify
the polygons of each pipe independently, regardless of the simplification technique used.

Given the results shown in Figure 3.23, we would prefer to merge the pipes.

The idea of hierarchical levels of detail, or HLODs, is not new. HLODSs are equivalent
to what [Clark 76] calls objects and what [Maciel and Shirley 95] calls meta-objects. [Clark
76] introduces the idea of a hierarchy of levels of detail. [Maciel and Shirley 95] presents a
method of generation based on creating view-dependent images. Unlike this previous work,
we use a polygona simplification method, namely GAPS presented in Chapter 3, to generate
LODsand HLODs. Sinceit is able to merge digoint polygons, GAPS is well suited for the
creation of HLODs. In order for this merging to occur, we pool the polygons of different
nodes in the scene graph and perform inter-object simplification on this combined polygonal
geometry. By doing so, we create hierarchical levels of detail that represent multiple nodesin
the scene graph.

During the visualization of polygonal environments, HLODS provide several
advantages. By rendering an HLOD, we can ignore portions of the scene graph that the
HLOD represents, making the scene graph traversal more efficient. Since HLODs are created
by smplifying and merging the combined polygonal geometry of multiple nodes in the scene
graph, they are, in general, better-looking representations for this group of objects as
compared to the individual LODs of these objects. Figure 1.8 demonstrates the visual benefit
of HLODs compared to using solely LODs. Other visual comparisons between using LODs
and HLODs to render various scenes are shown in Section 4.4.4. By partitioning spatially
large objects, hierarchically grouping these partitions, and creating HLODs for this hierarchy,
we gain limited view-dependent simplification capabilities. This partitioning scheme is
described in Section 4.2.3. Findly, when we traverse the scene graph, HLODs guarantee that
we will aways have a complete representation of the scene. Asshown in Section 4.2.4, this

guarantee helps our method to target a frame rate when rendering.

88

4.1.1 Levelsof Detail VersusView-Dependent Techniques

Traditionally, a smplification algorithm produces a series of levels of detail for a
polygonal object. For example, Figure 1.3 shows LODs generated for a bunny model. A
rendering algorithm chooses between these LODs when drawing the bunny. Asthe viewer
moves around in the environment, different representations of the bunny are rendered. If the
system renders different LODs for the bunny from one frame to the next, the viewer can
sometimes see a “pop,” or subtle shift in the image. This problem associated with static LODs
is called the popping problem Early techniques used alpha-blending to transition smoothly
between two different LODs. This method requires rendering two sets of the model during

the transition period.

Spatially large objects pose another problem for traditional LOD-based algorithms.
Suppose there are LODs that represent a long, skinny, and highly tessellated polygonal
cylinder, and the viewer is near one end. If we render a coarse LOD, then parts of the
cylinder that are close to the viewer will be of low quality. If we render a highly tessellated
LOD, then we will be unecessarily rendering polygons at the other end of the cylinder in high
detail, even though they are a great distance away. The problem with this object is that it
spans a great distance and thus the viewer can simultaneously be both near to and far from

different parts of it.

Recently, many researchers [Hoppe 97, Luebke and Erikson 97, Xia et al. 97] have
proposed usingiew-dependent simplification for polygonal environments. These algorithms
adaptively simplify across the surface of objects. They store simplifications in a hierarchical
tree of vertices produced by collapse operations and traverse this tree when rendering.
Different types of selective refinement criteria based on surface orientation and screen-space
projected error are used. Through the use of geomoighprogressive meshes [Hoppe 96]
and adaptive simplification at the vertex level, rather than the object level, view-dependent
algorithms provide an elegant solution to popping problem associated with LODs. Also,
since view-dependent systems render spatially large objects using adaptive simplification, they
eliminate the inefficiency of using LODs to represent them. In the case of the cylinder

example, view-dependent simplification algorithms would reduce the polygon count

89

significantly by rendering areas of the cylinder close to the viewer in high detail and regions

further away in lower detail.

There are reasons why we chose not to use view-dependent simplification for our

applications.

They impose significant overhead in terms of memory and CPU usage during the

execution of the viewer.

Instead of choosing an LOD per visible object, view-dependent algorithms

typically refine every active vertex of every visible object.

These algorithms handle instancing inefficiently since each instance must contain
its own list of active vertices. In many CAD applications, instancing is heavily
used.

Display list rendering is often significantly faster than immediate mode rendering
on current high-end graphics hardware [Aliaga 97] such as SGI Infinite Redlity
systems. Existing view-dependent algorithms are inherently immediate mode
techniques. Therefore, polygonal data must be transferred to the graphics machine
each frame. Asaresult, these techniques must simplify the environment more to

achieve a frame rate comparable to using display lists for LODs.

View-dependent methods must constantly insert and delete faces from alinked list
of active faces. To render an object, the view-dependent system sequentially
traversesthislist and draws each face. There isno guarantee that these faces are

contiguous in memory, which can lead to inefficient memory access.

Finally, in Chapter 5, we extend our system to handle dynamic environments. For
aview-dependent system, it is unclear how one could efficiently update the

hierarchical tree of vertices to account for moving objects.

For these reasons, our approach to rendering static scenes uses traditional LODs

augmented with HLODs. HLODs approximate the polygonal geometry of portions of the

scene graph. When an HLOD is rendered, the system can ignore those portions during its

scene graph traversal. HLODs are created by first associating, or grouping together, nearby

0

nodes in the scene graph based on an octree spatial partitioning, and then performing
simplification on this pooled polygonal geometry. Traditional LOD-based agorithms can be
ineffective at representing spatialy large objects. However, by partitioning these objects,
building a scene graph structure for these partitions complete with HLODSs, and guaranteeing
that we produce no cracks between partitions, we gain limited view-dependent capabilities.
Since each node of the scene graph contains an HLOD representing the scene graph rooted at
that node, our algorithm can render using a target frame-rate mode, as well as a pixel-error
mode. Finally, the system uses display lists to efficiently render al LODs and HLODs. By
choosing LODs and HLODs, we offer no new solution for the popping problem. Our
algorithm has been used on several complicated CAD environments. When viewing these
scenes with our techniques, we achieve significant speedups with little loss in image quality as

compared to using no LODs at all.

4.2 Hierarchical Levelsof Detail to Accelerate the Rendering of Static

Environments

We extend the traditional scene graph representation for polygona models to include
inter-object smplification viaHLODs. The main techniques that make this algorithm practical

are described below.

* The system precomputes and includes HLODs at each node in the scene graph and

its scene graph traversal algorithm is modified accordingly.

» Objects are hierarchically grouped together for inter-object simplification using a

process called association.

» Thealgorithm partitions spatially large objects in order to gain limited view-
dependent rendering capabilities.

» Besidesusing apixel-error rendering mode, our algorithm is capable of targeting a

frame rate as aresult of using HLODs.

* All LODs and HLODs are efficiently rendered using display lists.

91

4.2.1 Hierarchical Levelsof Detail

Hierarchical levels of detail, or HLODs, are a set of LODs for a group of objectsin an
environment. We use a polygona simplification method, namely GAPS, to generate LODs
and HLODs. GAPS iswell suited for the creation of HLODs since it is able to merge
unconnected regions of polygons from separate objects.

LODs represent the polygonal geometry of single nodes in the environment’s scene
graph. HLODs represent portions of the scene graph, or the polygons of multiple nodes.
Using only LODs, we would render an appropriate level of detail for each object in the scene
(see Figure 4.2). Using HLODs, we might render a hierarchical level of detail in place of a

portion of the scene graph (see Figure 4.3).

A more precise summary of how HLODs are constructed is as follows. LODs represent
the polygons of a single node. If a node in the scene graph is a leaf node, then its HLODs are
equivalent to its LODs. Otherwise, HLODs of a node are approximations that represent the
polygons contained in the LODs of the node plus the HLODs of any children nodes. The
starting geometry for HLODs of a node is the combination of the coarsest LOD of the node
combined with the coarsest HLODs of the node’s children. HLODs are created from these
base polygons using GAPS. For example, in Figure 4.3, the HLODs in Face represent the
polygonal geometry of the LODs of Face and the HLODs of Eye (left), Eye (right), and
Mouth. Since Eye and Mouth do not have children nodes, their HLODs are equivalent to
their LODs. Thus, when an HLOD is rendered, the system can ignore the node and all of its

children while traversing the scene graph.

92

QOOL

4
Face
Eye Mouth
» N\
01 2]13|4 0 1 2 3 4
(@
(b) (©

Figure 4.2: Rendering of a face model using LODs. (a) Scene graph of the face model. Red arrows show
L ODs representing polygonal geometry contained in each node. (b) The original face model. (c) Since
the viewer isfar away, this simplified face is an acceptable approximation. The LODsenclosed in blue
boxesin (a) arethe onesrendered. Therendering algorithm traver sesthe scene graph starting at Face.
It renders an appropriate representation of the face using LOD 3, and then traverses the node’s
children. Next, it visits Eye and renders the left eye with LOD 3. It then visits Eye again and renders

the right eye with LOD 3. Finally, it enters Mouth and renders LOD 3.

93

//Mx:QO@

Soo

RO

(©

Figure 4.3: Rendering of a face model using LODsand HLODs. (a) Scene graph of the face model. Red
arrows show L ODsr epresenting polygonal geometry contained in each node. The green arrow shows

HL ODsrepresenting portions of the scene graph. In thiscase, the HLODsrepresent the entire model.

(b) The original face model. (c) Since the viewer isfar away, this simplified face is an acceptable
approximation. The HLOD enclosed in the blue box in (a) isthe onerendered. Our algorithm traver ses

the scene graph starting at Face. It rendersan appropriate representation of the face usng HLOD 0.

Since this HLOD represents the entire scene graph, the system ignores the node’s children and is
finished rendering. Note that HLOD 2 demonstrates the merging of the two eyes, something not possible

in a traditional object-based LOD algorithm.

Each LOD and HLOD has an associated distance error that is produced by GAPS (see
Section 3.3.3.4). Thiserror isused to determine if a particular LOD or HLOD isan

94

acceptable representation given a maximum allowable pixel-error threshold and the position of

the viewer relative to the object. Figure 4.4 shows two methods of LOD selection.

(b)

Figure 4.4: Methods of LOD selection. In (&), d represents the distance between the eye of the viewer
and the center of the LOD’s bounding circle. In(b), d represents the shortest distance between the eye
and the LOD’s bounding circle.

In Figure 4.4, the distance from the eye to the view plane is v and the field of view angle
for half the view frustum is . Assume the user specifies a maximum of P pixels of error in
the final image and the viewing screen consists of N by N pixels. To transform P pixels of
error into adistance error p along the view plane, we multiply the ratio of pixels of error to
view screen pixels by the length of the view plane. The length of the view plane in eye space
Is2viiand. Thus,

p =P/ feviiang)

The LOD’s bounding circle is shown as well as a dashed smaller circle representing the
distance erroe associated with the LOD. The projected screen-space distance err@yis

using similar triangles,

2ve
d

4&
w

:ED S=
d

95

The LOD is an acceptable approximation given P as a constraint if sisless than or equal

to the allowable pixel distance error p. 1n other words, the LOD can be rendered if
2ve
cE <P
sspl =< PR d2vian6) 0 e<d P fand

We render the coarsest LOD possible that meets the pixel error criteria. Note that in
Figure 4.4, (b) is a more conservative method for determining which LOD to render than (a)
since d is always smaller in (b) than (a) for the same object. Our algorithmis capable of using
either method, but uses method (a) by default. For efficiency and rotational invariance, we
assume the viewer islooking directly at an object when we calculate which LOD to render. In
other words, the distance d between the viewer and an object remains constant as the viewer

rotates in a stationary position.

4.2.2 Node Association

We assume that for each polygonal environment, a scene graph already exists. If the
model has no hierarchy, then our algorithm is capable of creating one using partitioning (see
Section 4.2.3). Because we use the scene graph associated with a polygonal environment as
IS, the creator of the scene graph has control over which objects are grouped together into
HLODs and in which order they are combined. Therefore, the scene graph can be structured
in away that groups objects intelligently and efficiently. For example, suppose we are
working with a polygonal model of a sparse office consisting of walls, a garbage can and filing
cabinet in one corner, and a chair and desk in another. For the purpose of creating HLODs,
an efficient grouping of these objectsto utilize spatial coherence would be to group the
garbage can and cabinet together as well as the chair and desk. Then the walls and these two
groups could be joined as the root of the scene graph. Figure 4.5 demonstrates this grouping.
Note that by grouping nearby objects first, we make both HLOD creation and view-frustum

culling more efficient.

96

Office

Desk ¢

Walls Walls Group 1 Group 2

Chair /¢

Cabinet Cabinet Can

Desk Chair
(@ (b)

Office

o S,

Walls Walls Group 1 Group 2

Chair /¢

Cabinet Can Chair

Can

O

Cabinet Desk
(©) (d)

Figure 4.5: Since the structur e of the scene graph controlsthe creation of HL ODs, the creator of the

scene can dictate the order used for grouping objects. (a) A sparse office model. Thecreator of the
office scene graph hasintelligently grouped the can and cabinet together and the desk and chair
together because of their proximity. (b) Theresulting scene graph from thisgrouping. Since near by
obj ects ar e grouped together, view-frustum culling efficiency and HL OD quality are maximized. (c) A
poor choice of grouping objects. (d) Thisscene graph leadsto inefficient HLOD creation and view-

frustum culling.

Unfortunately, not all scene graphs are built for rendering performance. It is common
for CAD models to group things by functionality, ignoring the relative locations of objects. In
these cases, a user can tell our algorithm to ignore the incoming scene graph and instead use a
flattened graph. A flattened scene graph consists of aroot node with as many children nodes
asthere are objects in the scene. For example, Figure 4.6 shows the office model using a

flattened scene graph.

97

Office

Wwal Isﬁabi ne}m Chair

Figure 4.6: A flattened scene graph of the office model. No objectsare hierarchically grouped together.

Flat scene graphs are not efficient for either view-frustum culling or HLOD creation.
Therefore, we augment scene graph nodes that contain multiple children through a process
called node association. If a node has more than two children, then we use an octree spatial
partitioning to associate nearby nodes together. We combine nodes that are in close
proximity to attempt to minimize the bounding volume size of each new node in this
association graph. This grouping of nodes is performed hierarchically by combining objects
in close proximity first, making view-frustum culling more efficient. Grouping nearby objects
also alows for the creation of higher quality HLODs. This approach makes HLOD
computation feasible for nodes with large numbers of children, since it bounds the number of
children of any node in the association graph by eight. Figure 4.7, Figure 4.8, and Figure 4.9

demonstrate node association on a small scene.

98

Figure 4.7: Associationsfor a small two-dimensional scene. Objects are depicted using their bounding
circles along with a gray point representing the circle’s center. The center of an object’s bounding
circle determines which partition the object lies in. Association is a top-down process. (d8he entire
scene and its bounding rectangle. There are more than two objects in the rectangle so the space is
subdivided using a quadtree.(b) There are more than two objects in the upper left and lower right
quadrant. These quadrants must be subdivided(c) Only the lower right quadrant needs to be

subdivided. (d) The final quadtree subdivision.

99

(© (d)

Figure 4.8: Creation of the bounding volume hierar chy from the quadtree subdivision in Figure 4.7. (a)
The hierarchy isbuilt bottom-up. Each bounding circle encloses any objects or bounding circlesthat lie
within a particular partition. The blue bounding circle boundsthe lowest level objectsin the quadtree
subdivision. (b) The green bounding circle encloses both nodes and the blue bounding circle. (c) Red
bounding cir cles enclose objects and bounding cir cles created during the first quadtree subdivision. (d)

Theroot node bounding cir cle encloses ever ything.

100

@) Root

(d) 8 || 9

Figure 4.9: Theresulting association graph from Figure 4.7 and Figure 4.8. (a) Theoriginal scene with
one bounding volume. The aobjects are numbered. (b) The bounding volume hierarchy created in Figure
4.8. (c) Thescene graph for the original scene. (d) The scene graph for the associated scene. This scene

graph allowsfor mor e effective view frustum culling and HLOD creation.

101

4.2.3 Partitioning Spatially Large Objects

Since we use static LODs, spatially large objects pose a problem. When the viewer is
close to any region of a spatialy large object, the entire object must be rendered in high detail,
even though portions of it might be very far from the viewer. To alleviate this problem, we
partition the model to gain limited view-dependent rendering capabilities. We simplify each
partition while guaranteeing that we do not produce cracks between partitions by imposing
simplification restrictions at vertices. Finally, we use HLODs to combine the polygonal

geometry of these partitions hierarchically.

We partition large objects using a three-dimensional uniform spatial subdivision. A
user-specified distance p determines the size of the cubes into which we partition the object.
This distance is usualy based on a user-specified percentage of the size of the bounding
volume of the entire scene graph. Objects that are completely contained within this distance
are not partitioned. Therefore, we use this technique only on objects that are large relative to
the whole environment. We lay a uniform three-dimensional grid over the object and
determine into which cube each polygon’s centroid falls. Each partition is assigned a
collection of polygons, namely the ones whose centroids fall within the partition. To insure
that we do not create cracks during simplification of partitions, each vertex in the original
object has an associated numberestrictions. If a polygon’s centroid lies within a particular
partition, but the polygon’s vertices do not all lie in that same partition, then the number of
restrictions for each vertex of the polygon is incremented by one. It is possible for a vertex to
have more than one restriction if it is part of polygons that are included in different partitions.
If a vertex has one or more restrictions, then it is a restricted vertex. An example of this

partitioning scheme is shown in Figure 4.10.

Next, the system simplifies the geometry within each partition independently. GAPS
cannot use a restricted vertex in a vertex merge operation. This restriction guarantees that
GAPS will not create cracks between partitions. GAPS simplifies the unrestricted geometry
until no more vertices can be merged or a user-specified distance error threshold has been
exceeded. This distance error is defined as a certain percentage of the size of the bounding

volume of the partition. This simplification process is demonstrated in Figure 4.11.

102

Figure 4.10: Partitioning a small two-dimensional object. (a) Theoriginal object. (b) The object has
been spatially partitioned into four uniform sized quadrants. The upper left quadrant iscolored red.
Any vertex or any centroid of a face that fallswithin this partition iscolored red. Similarly, the other
quadrantsare colored green, blue, and cyan. Facesareincluded in the partition that containstheir
centroid. (c) Any face whose vertices are contained in more than one partition arerestricted. A vertex
included in arestricted faceisitself restricted. Restricted faces consist of black edges. Gray verticesin

the diagram denote restricted vertices while white ones are unrestricted.

103

: o : o o
3 SO N
. @ :
/@ 10 0
1SS P e i o T
; ® 5 o
SR A < S o
o o
(@
A o) p o) p
/e o
1 . ¢ ¢
i1® o0 o7 o P o
© OOO Q... © O 6 © O O
O o o
o (®) o
............ o <@l o o
o e e ‘ © o ° 5 ©
® O o O.E o y o y
o o 4 o d o
O e g ® ®
e® o o) ¥ o O o)
Y o o o
A EEEEEEEEEEEEEEEEEEEEEEEERR (C)
TR © S Q... O O O O
PO o o o o
Y0 O
o_: o o o o o
o~ O/ 0 o
0 ° \ O.o o © o ©
o J o 9 O O
(d)

Figure 4.11: Simplification of each partition from Figure 4.10. (a) Simplification of thered partition.
None of the gray restricted vertices are allowed to be merged. The next pair to be merged is colored
black. Simplification stopswhen there are no more pairsto merge. (b) The green partition. (c) The

blue partition. (d) The cyan partition.

When all partitions have been smplified independently, our algorithm associates them
hierarchically, smilar to the approach described in Section 4.2.2. However, since the

partitions were created using a uniform subdivision, we take advantage of thisinformation to

104

group them efficiently. We double p and group previously created partitions that fall within

the same partition cube based on this new distance. When partitions are merged, the number

of restrictions for each vertex is updated. In other words, if by doubling p aface that was

once restricted becomes unrestricted, then the number of restrictions on each of the face’s
incident vertices is decremented by one. Therefore, some of these vertices that were once
restricted may become unrestricted. This freeing of vertices enables GAPS to perform more
vertex merge operations in order to create HLODs for this new hierarchical grouping of
partitions. This process of grouping and simplifying is repeatedly applied usgirpater or

equal to the size of the object’s bounding volume. At this point, there is only one partition for
the object and so there are no more vertex restrictions. Thus, GAPS can drastically simplify
the root node of this partitioned scene graph to any target number of polygons. Figure 4.12

and Figure 4.13 demonstrate these concepts.

Partition Root

Red
0) 0] o e)
) O
& 0 0
(@)
)
) o ” o
¢)
Blue
o e ¢ O O
)
o @)
- ¢)
O 0
< 0 e
) o e O
e

Figure 4.12: Creation of the partition scene graph for the scenein Figure 4.10 and Figure 4.11. The four
quadrants are children of the partition root node. Shown below each quadrant nodeisits coar sest

simplified geometry.

105

@)
o O Ay O o o \/ O
O o
@) O @) @) @) @)
O @)
(@) (b)

Figure 4.13: Forming the polygonal geometry of the partition root node from Figure 4.12. (a) The
polygons of each of the children nodes are combined. (b) The partition size shown as a dotted black
rectangle doublesto include all of the polygonal geometry. Therefore, all verticesthat wererestricted
are now free to be merged since they all liein the same partition. Duplicate vertices are shared and
HL ODsfor the partition root node are created. The black pair of vertices showsthe next pair to be

mer ged during this simplification process.

One can view this partitioning process as a discrete approximation to view-dependent
simplification techniques. Since each leaf node is simplified independently of other partitions,
partitions far away from the viewer will be rendered in lower detail while partitions near the
viewer will be rendered in higher detail. When several partitionsin close proximity are very
far away from the viewer, they are rendered together using HLODs. In addition, partitioning
allows us to view-frustum cull parts of the object which is not possible with traditional LODs.
Finally, partitioning does not limit the amount of simplification possible since there are no

vertex restrictions at the root node of the partition scene graph.

4.2.4 Targeting a Frame Ratewith HLODs

Target frame-rate systems have the goal of rendering the best image possible within a
user-specified frame-rate constraint. [Funkhouser and Séquin 93, Maciel and Shirley 95]

show that targeting a frame rate using prediction techniques is a variant of the Knapsack

106

problem. Both of these algorithms rely on precomputed calculations of system performance
that may not be accurate during run-time. [Rohlf and Helman 94, Mueller 95] describe
reactive feedback loops to target aframe rate, meaning that the time it took to draw previous
frames would be used to calculate the image quality for the next. Feedback loops suffer from
the potential problems of oscillation and hysteresis and many steps must be taken to prevent
them from occurring. Our algorithm, using a combination of predictive and reactive

techniques, is capable of achieving atargeted frame rate due to its use of HLODs.

In our algorithm, we keep track of atarget number of faces. This number is the best
guess of how many polygons the system can render given the user-specified frame-rate
constraint. It isthis number that is updated reactively. Thus, if we could not render the
number of faces within the frame-rate constraint, the target number of facesis decreased for
the next frame. Therefore, before each frame is rendered, we have a strict limit on the number
of faces that can be drawn. Suppose a user is viewing a model and comes upon aregion of
the model with alarge number of textures. The user might encounter a slowdown in frame
rate due to texture paging. Solely predictive systems, such as [Funkhouser and Séquin 93,
Maciel and Shirley 95] will have problems with such a scenario since they measure system
performance before the application runs in order to predict how much time a textured polygon
takes to draw. Also, these algorithms will have problems with objects that are partially
clipped by view-frustum culling. They will assume that the model takes a specific time to
draw, but because of view-frustumlliig and clipping, this time is not representative of the
actual time needed to render the polygons. The method we use adapts the number of target
polygons based on the performance of previous frames. Therefore, if the viewer were to enter

a highly textured area, our algorithm would compensate for the slowdown.

We search the scene graph to determine which faces to render. We use a greedy
method, one that at each step refines the node with the most projected pixel-error. We repeat
this procedure until any refinement would cause the total number of faces to be above the
target number of faces. The algorithm starts with the coarsest HLOD of the root node of the
entire scene graph. It attempts to refine the node with the most screen-space error by
replacing it with its children nodes. If replacing a node would cause our algorithm to render

more polygons than the target number of faces, then this action is not allowed. We refine

107

nodes until no more nodes can be replaced. For example, the sequence of Figure 4.14, Figure
4.15, Figure 4.16, Figure 4.17, Figure 4.18, and Figure 4.19 shows our algorithm targeting a

frame rate when rendering a simple scene.

HLODs *e A
S~~~
0 1

2
11(20) 6(40) 2(60)
l:@ O
2
50(0) 5(7) 4(10)
. . \/ \ /7 N\ / R :
0 1 2 : :
20(0) 5(1) 4(2) 20(0) 10(2) 6(4) A
Target Faces: 20 ;
Faces So Far: 2

Figure 4.14: Example of targeting a frame rate. We start with the coar sest r epr esentation possible,
namely the coarsest HLOD of theroot node. Note that thisHLOD representsthe entire scene. The
portions of the scene graph that are currently active are highlighted in blue. The number of facesthat
can be drawn within this example frame-rate constraint is20. The current representation of the sceneis
2 polygons. The polygonal geometry in the dotted black box isthe current representation we would
draw. TheHLODsand LODsare humbered. Also, the number of polygonsthat make up an HLOD or
LOD and theerror associated with them isshown. For example, the coarsest HLOD of the root hode

consists of 2 polygons and has a projected pixel-error of 60, shown in parentheses.

108

HLODs ¢*e A

~——
0 1 2
11(20) 6(40) 2(60)
50(0) 5(7) 4(10)
. . \/ \ VRN / prrsesene s :
0 1 2 : :
20(0) 5(1) 4(2) 20(0) 10(2) 6(4)
Target Faces: 20
Faces So Far: 6

Figure 4.15: We refine the scene graph from Figure 4.14 since we can draw 18 more polygons. We
substitute a finer HLOD for the coarsest HL OD.

109

nLops|(€ @ Ao
~——
0 1 2
11(20) 6(40) 2(60)
l:@ O
2
‘/ 50(0) 5(7) 4(10)
. . \/ O N\ / grrasanans s :
0 1 2 : :
20(0) 5(1) 4(2) 20(0) 10(2) 6(4)
Target Faces: 20
Faces So Far: 11

Figure 4.16: We again substitute a more detailed HL OD for the previousrepresentation in Figure 4.15.

110

HLODs *e A
S~~~
0 1

11(20) 6(40) 2(60)

«x@@

;/ 50(0) 5(7) 4(10)
. \/ \ / \ / E. E
0 : :

0 1|12 1 2
20(0) 5(1 4(2)| 20(0) 10(2) 6(4)
Target Faces: 20
Faces So Far: 18

Figure 4.17: Werefine further because the representation in Figure 4.16 isonly 11 polygons. Thereare
nomore HLODsin theroot node. To refinethe previous HL OD, we descend into the scene graph and
choose the coarsest LODsfor each of the children nodes. Note that there are two blue boxes around Eye

L ODs, showing that there are currently two instances of eyesin the model.

111

HLODs *e A
S~~~
0 1

2
11(20) 6(40) 2(60)
Face
Eye Mouth 5 1 5
‘/ \ 50(0) 5(7) 4(10)
. \/ \ / \ / E. E
0 1|12 0 1 2 : :
20(0) 5(1 4(2)| 20(0) 10(2) 6(4)
Target Faces: 20
Faces So Far: 19

Figure 4.18: Werefinethe LOD or HLOD that exhibitsthe most error. In the previousrepresentation
in Figure 4.17, the Face polygonal geometry has a projected pixel-error of 10, which isgreater than the
error at the Mouth and Eyes. Therefore, werefineit first by choosing the next finer LOD of the Head.

112

HLODs *e A
S~~~
0 1

2
11(20) 6(40) 2(60)
Face
Eye Mouth 5 1 5
‘/ \ 50(0) 5(7) 4(10)
. . \/ \ / \ / E. E
0111 2 0 1 2 : :
20(0)15(1 4(2)| 20(0) 10(2) 6(4)
Target Faces: 20
Faces So Far: 20

Figure 4.19: We «till have one more polygon in our budget so we attempt to refine the Head L OD again
sinceit exhibitsthe most error. However, we cannot refineit sinceit would add 45 polygonsto the
scene. Therefore, we attempt to refine other parts of the scene graph. The only LOD that can be
refined and till be within the polygon budget is one of the Eyes. Oncethe Eyeisrefined, we have a
representation of the scene that cannot be refined further without exceeding the polygon budget. The
final image rendered isshown in the dotted black box. Notethat the Eyes arerendered with different
LODs.

4.2.5 Display Lists

Each object or group of objects is represented by a set of LODs or HLODs. Even
spatially large objects are represented using a combination of partitioned LODs and HLODs.
Since each LOD or HLOD is precomputed, we are able to store them in display lists. Display
list rendering is 2 to 3 times faster than immediate mode rendering on high-end graphics
systems [Aliaga 97]. Therefore, we can take advantage of the efficiency of display lists.

113

4.3 Implementation

We have implemented our visualization algorithm based on LODs and HLODs using
C++, GLUT, and OpenGL. The code is portable across PC and SGI platforms. This
application has allowed us to visualize extremely large models, including a nearly 13 million
polygon Power Plant model.

4.3.1 Generality

Our agorithm, as a preprocess step, uses GAPS to produce all LODs and HLODs for
the scene graph. Asdiscussed in Chapter 3, GAPS isvery general. In practice, we have used

our agorithm on complex and degenerate CAD models.

4.3.2 LOD and HLOD Generation

The scene graph used by our algorithm has LODs and HLODs at every node. A node’s
LODs are created using GAPS by repeatedly halving the number of faces of the polygonal
geometry. By doing so, we limit the amount of memory it takes to store the LODs of a node
to at most double the memory of the original polygons. GAPS simplifies until the distance
error associated with the node’s simplified polygons is greater than a user-specified
percentage of the size of the node’s bounding sphere. At this point, GAPS halts simplification
since any vertex merge operation on the remaining polygons would produce too much error.
These remaining polygons are included as the base polygons for the node’s first HLOD, along
with the polygons of the coarsest HLODs from the node’s children. Note that if an arc from
the parent node to a child node contains a transformation, the children’s polygons must be
transformed into the parent’s coordinate space. Again, HLODs are constructed using GAPS
so that each successive HLOD has half the number of polygons as the previous one. By doing
so, we limit the amount of memory it takes to store the entire model to at most double the

memory of the original polygonal geometry of the whole scene graph.

Our current implementation could be improved in terms of the error metric GAPS uses
when producing LODs and HLODs (see Section 3.3.3.4). Grouping the polygons of multiple

nodes to create HLODs often produces better drastic approximations of objects rather than

114

using the individual LODs of each object. However, even though the HLOD looks better than
aset of LODs, it isusually the case that GAPS reports a higher distance error for the HLOD
than for any of the individual LODs.

The reason for this behavior is that GAPS ignores the quadric error metric when using
surface area preservation (see Chapter 3). By using surface area preservation, GAPS
temporarily prohibits certain vertex merges that an algorithm using the quadric error metric
alone would perform. However, the geometric error term of our unified error metric uses the
distance error associated with the error quadric at each vertex. Therefore, when we do not
allow vertex merges, we are actually forcing another pair of verticesto merge. This new
merge operation resultsin larger error according to our unified error metric. Therefore,
GAPS reports that the individual LODs can be substituted closer to the viewer than their
HLOD representation. In other words, the LODs have a smaller distance error associated
with them as compared to the HLOD. However, usually the HLOD is visually a better
approximation of the objects. We discuss this issue further in the future work section of
Chapter 6.

4.3.3 Targeting a Frame Rate

Most of the time, the performance of the previous frame is a good predictor of the
next frame. However, there are often cases where the performance from one frame to the
next changes significantly. It isdifficult to predict such abrupt changes as well as determine
the reason for the change in performance. It could be due to a cache miss or that numerous
polygons have suddenly come into view that were previoudly invisible. If we just use the
previous frame time to predict the performance of the next frame, then the frame rate will
sometimes oscillate from fast to dow when one of these events occurs. If asowdownin
frame rate is a one-frame occurrence, then the rendering system can probably ignore this
“hiccup.” However, if the frame rate slows for several frames, the rendering algorithm must

adapt and render fewer polygons.

The first problem to overcome when implementing a target frame-rate algorithm is to

estimate what the frame rate is. We estimate the frame rate by using a hierarchy of simple

115

moving averages. When the frame rate is changing rapidly, we use a two-frame moving
average. If the framerate is changing less rapidly, we use a four-frame moving average. If
the frame rate is hardly oscillating, we use a ten-frame moving average. In other words, we
estimate the frame rate by using the moving average representing the largest number of frames
possible out of these three options. The user can specify a delta percentage that determines
when a moving average is an acceptable representation of the true frame rate. If the two-
frame moving average is within this percentage of the four-frame moving average, then the
four-frame averageisused. Similarly, if the four-frame moving average is within this delta of
the ten-frame moving average, we use the ten-frame average. The user can modify this
percentage during run-time and we have found that 10% to 20% gives good results. This
percentage is also used to define arange of acceptable frame rates. 1n other words, suppose
the user targets aframe rate of 20 frames per second but specifies a delta percentage of plus
or minus 10%. It tells the system that 20 frames per second isthe target, but 18 to 22 frames
per second is acceptable. Allowing the system to target a range such as this and the use of a

hierarchy of moving averages greatly cuts down on oscillation problems.

Suppose the target number of polygons for the previous frame was pqi4, the target
framerate isf, our hierarchy of moving averages estimates the frame rate as fe, and the user-

specified delta percentageiso. If f < f - or f = f +d thenthetarget number of

polygons for the next frame is updated tO prew Where
—_— fest
pnew - pold 0 f

4.3.4 Main Loop
The main loop of our agorithm is shown below.
» Handlesinput to change viewer position.

» If theagorithmisin pixel-error mode, it performs a depth-first search of the scene
graph, locally terminating when an HLOD or LOD isreached that has an

associated screen-space error less than the allowable pixel-error.

116

» If theagorithmisin target frame-rate mode, it traverses the scene graph to
determine which polygons to render, terminating when the polygon budget is
reached.

4.4 Results

We have tested our algorithm on three large CAD environments. The first model isa
polygonal version of the Cassini spacecraft. The second environment is a Torpedo Room
model. The final sceneis of a nearly 13 million polygon Power Plant environment. We also
use a small model of a Ford Bronco to demonstrate the effectiveness of HLODs aswell as a
Sierra Terrain model to show the benefits of partitioning. Thisterrain model is a single mesh
that has no scene graph hierarchy.

4.4.1 Preprocessing Time

We use GAPS to create LODs and HLODs for polygonal scenes as a preprocessing
step. Table 4.1 shows the amount of time it took to preprocess our test models. The number
of objects, or leaf nodes in the scene graph, is shown in the table as well as the number of
triangles that make up the model. Note that there is a certain amount of overhead to grouping
together and simplifying polygonsto create HLODs. The amount of overhead depends on the
complexity of the scene graph and how much polygonal geometry is pooled to form each
HLOD. There are two timing columnsin thistable. The first column shows the time it takes
to create only LODs for each node in the scene graph while the second shows the time it takes
to create both LODs and HLODs for the scene graph. Note that HLOD creation takes less
time on the Sierra Terrain model than LOD creation. The reason for this difference in
performance is that by partitioning the terrain model, GAPS is initialy able to work on local
portions of the terrain model independently. Simplification of subsets of polygonsis faster
than simplifying the entire polygonal geometry at once due to the performance behavior of
GAPS. All of these tests were performed on an SGI Reality Monster with a 300 MHz

R12000 processor and 16GB of main memory.

117

Scene Objects Triangles LOD Time (secs.) HLOD Time (secs.)

Bronco 466 74,308 31 43
SierraTerrain 1 162,690 141 117
Cassini 127 349,281 172 195
Torpedo Room 356 883,537 450 495
Power Plant 1,179 12,731,154 14358 15136

Table 4.1: Preprocessing timesfor several polygonal environments.

4.4.2 Rendering Speed

For each test environment, we recorded a walkthrough path through the scene. The
walkthrough starts with the entire object fully in view. The viewer first zooms out of the
scene o that the entire environment is only a small portion of the screen. Then the viewer
zooms into the model and exploresitsindividual parts briefly. Finaly, the viewer zooms out
to approximately the original viewing distance. For each path, we tested our current
implementation in five ways. First, we tested our algorithm on the model using no LODs and
no display lists. Second, we used display lists, but no LODs. Third, we rendered the scene
using LODs and display lists. Fourth, we used display lists, LODs, and HLODs. Finaly, we
tested the target frame-rate mode of our algorithm using atarget of 20 frames per second.
Weran al of these tests on an SGI Reality Monster with a 300 MHz R12000 processor and
16GB of main memory. We specified a transition between LODs and HLODs if the distance
error during simplification was greater than 1% of the radius of the bounding sphere of an
object. In other words, if we reached this error threshold when creating an LOD of anode, its
remaining polygons would be used as base polygons for the HLOD of the node’s parent. For
the Sierra Terrain model we specified that the initial partition size be 10% of the radius of its
bounding sphere. Partitions were simplified until the distance error due to simplification was

greater than 1% of the size of the partition.

118

4.4.2.1 Immediate Mode Versus Display Lists

We tested each polygonal environment to validate our use of display lists over
immediate mode rendering. Figure 4.20 shows the results. On most models, display lists
accelerate the rendering of the model by around 40 to 50 percent. These timings include the
overhead of scene graph traversal, including view-frustum culling. The Sierra Terrain model
does not have a scene graph hierarchy and the performance increase is notably higher.
Assuming there is no scene graph traversal overhead, then high-end SGI Infinite Reality
machines render 2 to 3 times faster using display lists as compared to immediate mode

rendering [Aliaga 97].

119

Bronco using no LODs
Immediate Mode vs. Display Lists

Sierra Terrain using no LODs
Immediate Mode vs. Display Lists

\f Immediate Mode — Display Lists\

Tgs 40 Tgs 25 4 o
— e —
E‘.:’ 20 \rw.wu\\ﬂ E 15 +—y T—
—— ‘ 10
7 — \ g !
g 10 £
© ©
L 0 L
1 51 101 151 201 251 301 351 401 1 51 101 151 201 251
Frame # Frame #
\f Immediate Mode — Display Lists\ \f Immediate Mode — Display Lists\
Cassini using no LODs Torpedo Room using no LODs
Immediate Mode vs. Display Lists Immediate Mode vs. Display Lists
Tgs 10 - 'g 25 4
§ 8 § 20 u
~ 6 ~ 15 ‘
& & 1
n 4 o 10 [A
£ 2 £ e
g g 2 vl
(T} L
1 51 101 151 201 251 1 51 101 151 201 251 301 351
Frame # Frame #

\f Immediate Mode — Display Lists\

Power Plant using no LODs
Immediate Mode vs. Display Lists

©c o 9
N o o r
I

H
I

A |l

Frames Per Second
©
N

_JUL

o
=

51

101
Frame #

151 201

\f Immediate Mode — Display Lists\

Figure 4.20: Performance difference between display lists and immediate mode on a SGI Reality

Monster with a 300 MHz R12000 processor and 16GB of main memory.

For the Bronco, display lists outperform immediate mode by 49.4% on average.

Display lists outperform immediate mode by 162.6% on average on the Sierra Terrain model.

Since the Sierra Terrain model has no scene graph hierarchy, there is no traversal overhead

which explains this higher gap in performance. We conjecture that the dipsin the display list

performance for this model are due to the cost of clipping numerous polygons when we zoom

inon the terrain. For the Cassini, display lists outperform by 48.7% on average. On the

120

Torpedo Room model, they accelerate rendering by 44.5% on average. For the Power Plant
model, they accelerate rendering by 3.0% on average. Note that the Power Plant graph shows
amost equivalent performance between immediate mode and display lists. We conjecture that
since only a small percentage of this massive Power Plant model can fit into the display list
cache of the machine, that display lists have little effect when rendering all 13 million
polygons. The use of LODs and HLODs would alleviate this problem.

4422 NoLODsVesusLODs

To demonstrate the effectiveness of LODs, we measured the performance of rendering
using LODs versus without. Display lists were used during these timing runs and we selected
apixel error tolerance of 5 pixels on a 1000 by 1000 pixel window. There was little
noticeable loss in image quality using this error tolerance. Figure 4.21 shows the results on

our five test models.

For brief periods of time, rendering with no LODs is faster than rendering with LODs,
probably due to display list cache misses when switching between LODs. The performance is

equivalent during stretches when the viewer is very close to objects in the scene since we

render the scene’s original geometry in both cases. For the Bronco model, we achieve a 3.18

times average speedup by using LODs. For the Sierra Terrain model, we achieve a 1.72 times

average speedup by using LODs. We render the Cassini model on average 9.97 times faster

using LODs. We achieve a 9.07 times average speedup on the Torpedo Room model. For

the Power Plant, our system renders on average 305.88 times faster using LODs. Clearly, this

average speedup depends on the viewing path we selected. Note that in the Power Plant

graph, the frame rate when using no LODs is so low that it is barely visible.

121

Bronco using display lists Sierra Terrain using display lists
No LODs vs. LODs No LODs vs. LODs
8L
o i o R g
G 100 \ ‘\ § o0 | i
5 5 | [|
£ 60 fﬁﬂr“L ******* = = —|| &40 |]
8 40 +——] 2 20 J \ ‘
g 20 “ | [\ g - NS
- 0 L 0
1 51 101 151 201 251 301 351 401 1 51 101 151 201 251
Frame # Frame #
|~ No LODs — LODs] |~ No LODs — LODs|
Cassini using display lists Torpedo Room using display lists
No LODs vs. LODs No LODs vs. LODs
B0 %)
(8] nr— (8]
@ 60 Hh O 5 |
5 I | 5 40 —
] 40] 1)
%, — |1 ij — %, 30 N \ \ I
® 20 | ; © 20 T — f) \VaE
§ I W vy 10— A e W
‘LE O - ‘LE O ST T
1 51 101 151 201 251 1 51 101 151 201 251 301 351
Frame # Frame #
—No LODs — LODs —No LODs — LODs

mes Per

T 70 A

Power Plant using display lists
No LODs vs. LODs

51

101 151 201
Frame #

|~ No LODs — LODs|

Figure 4.21: Performance difference between using L ODs and not using L ODs.

Another statistic we gathered was the performance difference if the model istotally

122

within the viewing window, but takes up most of the viewing screen. We render the Bronco
model at 66 frames per second using LODs and 16.5 frames per second using no LODs, a4
times speedup. The Sierra Terrain model is rendered at 13 frames per second using LODs and
13 frames per second using no LODs. Thereis no performance difference on this model

because in order to meet the 5 pixel-error bound, we must render the highest LOD, i.e,. the

original polygona geometry. We render the Cassini model at 33 frames per second using

LODs and 3.5 frames per second using no LODs, a 9.4 times speedup. The Torpedo Room
model isrendered at 13 frames per second using LODs and 1.3 frames per second using no
LODs, a 10 times speedup. We render the Power Plant model at 10 frames per second using
LODs and 0.05 frames per second using no LODs, a 200 times speedup.

4423 LODsVeasusHLODs

Our next series of performance tests compare using only object LODs to using both
object LODs and HLODs for nodes in the scene graph. To be fair, we allowed 5 pixels of
error in @ 1000 by 1000 pixel viewing window for timing runs in both configurations. This
amount of pixel error resultsin little or no lossin image quality. However, as described in
Section 4.3.2, sometimes our unified error metric is not areliable indicator of relative visual
quality of approximations. Therefore, by specifying the same pixel error for only LODs and
for LODs and HLODs, the current implementation of the system will usually render more
polygons when using HLODs. Figure 4.22 shows the results of our timing runs. Given the 5-
pixel error, there was no apparent difference in image quality between using only LODs and
using LODs and HLODs together. Both configurations produced images that had little lossin
image quality compared to rendering the original model.

For these test runs, using HLODs caused a 5.4% average sowdown on the Bronco, a
75.3% average speedup on the Sierra Terrain, a 0.1% average sowdown on the Cassini, a
5.4% average slowdown on the Torpedo Room, and a 2.9% average slowdown on the Power
Plant model. Most of these results show that HLODs slow down the current implementation
of our system. However, aswill be shown in Section 4.4.4, HLODs are usually higher quality
approximations for closely spaced groups of objects as compared to the individual LODs of
these objects. The reason that HLODs greatly accelerated the rendering of the Sierra Terrain
model is mostly due to partitioning and view-frustum culling. If we use LODs for the terrain
mesh then it is either completely in or completely out of the view-frustum. When we partition

the model, some partitions may fall outside the view-frustum and can be culled.

123

Bronco using display lists Sierra Terrain using display lists
LODs vs. HLODs LODs vs. HLODs
© 140 - T 80
9 120 o
(8] [1 [|
& 100 & | B |
— — ‘ ‘
8_) 60 +— ‘\ T ‘ T i —— 8_) 40 | |
G 40 JJ l‘ | L ‘ I 8 20 i “ |
L]
g 20 ' | g U _/—_/J
- 0 L 0
1 51 101 151 201 251 301 351 401 1 51 101 151 201
Frame # Frame #
—LODs —HLODs —LODs —HLODs
Cassini using display lists Torpedo Room using display lists
LODs vs. HLODs LODs vs. HLODs
S 80 - T 70 ~
9 I -
g:) 40 ‘ g:) gg T— HU
(7] a LVA_W A (7] w_"y | L ﬂ
O o0 + | y - AHUULL o 20 i t =
£ M b £ 1o =1 P 7
0 L 0
1 51 101 151 201 251 1 51 101 151 201 251 301 351
Frame # Frame #
—LODs —HLODs —LODs —HLODs

Power Plant using display lists
LODs vs. HLODs
270 [
g T
G T
[0
o 30 H_[LH
@] L
o 20 /ﬂ T \L\
E 10 = ———=
L 0 T i
1 51 101 151 201
Frame #
—LODs —HLODs

Figure 4.22: Performance difference between using LODs versus using LODs and HL ODs.

4.4.2.4 Targeting a Frame Rate

We measured the performance of our target frame-rate mode to see how well the
algorithm would react to paths through severa different models. Figure 4.23 shows the target
frame rate results on the four test environments. Note that our algorithm knew nothing about

the specifications of the SGI Reality Monster on which it was running. In fact, our algorithm

124

can run on any graphics system without knowing its performance specifications. It does so by

combining both reactive and predictive techniques as described in 4.2.4.

(see Section 4.3.3) was 15%. Therefore, an acceptable frame rate for the algorithm was in the

Figure 4.23: Performance of our target frame-rate mode.

Bronco using 20 FPS target frame rate Sierra Terrain using 20 FPS target frame rate
35 70 ~
T [T
230 [} | lﬁ 2 60
S 25 L] 2 50 | \
& T & ‘ ‘
= 20 - I = 40
g P g g
g 1° | g1 I
g 10 £ 20— —F = —
© ©
r 5 T 10
0 0
1 51 101 151 201 251 301 351 401 1 51 101 151 201 251
Frame # Frame #
Cassini using 20 FPS target frame rate Torpedo Room using 20 FPS target frame rate
35 - 35
I 1
] 2 I
3 25 A B 3 25 L
& o 3)) N 11 A
= 20 T = 20 i i i i
13 I 1 sl I u T
2 15 2 15
e 10 e 10
© ©
Tz 5 T 5
0 0
1 51 101 151 201 251 1 51 101 151 201 251 301 351
Frame # Frame #
Power Plant using 20 FPS target frame rate
70 ~
2 60 %
S |
$ 50 ;
P a0 ‘!
g-) 30 | | H |
g 1
% 20 ﬁ‘r‘ VVVﬁr — r\‘ ‘J Vh\"‘\‘ \ﬁ
I 10 :
0
1 51 101 151 201
Frame #

For each scene, we used 20 frames per second as our target and our delta percentage

range 17 to 23 frames per second. For a majority of the time, our method rendered each

model within the acceptable range. However, for each viewing path of each model there are

sharp transitions in polygona geometry, causing low or high spikes in these performance

125

graphs. Our algorithmis able to quickly react to these changes and bring the frame rate within
acceptable bounds. Sometimes we render much faster than the target framerate. Inthese
cases, we are rendering the original polygons of the model, but there is not enough of it in the
view frustum to keep a constant frame rate. This behavior is not really a problem since the

frame rate could easily be clamped if so desired.

4.4.3 Memory Usage

As described in Section 4.3.2, we create a series of levels of detail or hierarchical levels
of detail such that LODs consist of half the number of polygons of the previous LOD. By
doing so, we limit the memory usage due to the geometry of the scene to double that of its

original geometry.

4.4.4 Visual Comparison

So far, there has been no performance evidence that HLODs actually help the
visualization of large polygonal models. We will show many visual results of the five models
examined in this section. The effectiveness of HLODs depends on the model and whether its
objects are closely spaced together. For example, HLODs would not help much for a model
of the universe, since objects such as stars are generally not close to other stars. Therefore,
not much merging would occur between different objects so using only LODs would be just
as effective. However, some models consist of tightly packed, but independent objects.
HLODs are most effective on these scenes, where an abundance of polygona geometry from

different objectsis close together.

We will show a specific view of four of the models using three different methods. The
first method uses the quadric error metric alone to create LODs for the scene. The second
technique uses GAPS to create LODs for the model. The last method uses GAPS to create
LODs and HLODs for the environment. These images show how GAPS promotes the
merging of unconnected regions of geometry as compared to the quadric error metric alone.
However, it also shows that by creating only LODs, even GAPS cannot create acceptable
drastic approximations of these models. By creating HLODs, GAPS is able to combine

126

geometry from different objects in the scene to produce higher quality drastic approximations.

One thing to notice isthat by promoting the merging of unconnected regions of objects,

GAPS must sometimes choose merging over the preservation of well-defined geometry.
Therefore, HLODs tend to look “fuzzy” as compared to the individual LODs. However, the

overall shape tends to better represent the whole set of polygonal geometry. The next series

of figures show a visual comparison of the three methods on our four test scenes.

Figure 4.24: L ODs created for the Bronco model using the error quadric metric alone. They consist of
74,308 faces (the original model), 1,366 faces, 343 faces, and 107 faces.

Figure 4.25: L ODs created for the Bronco model using GAPS. They consist of 74,308 faces, 1,357 faces,
341 faces, and 108 faces.

127

Figure 4.26: LODsand HLODs created for the Bronco model using GAPS. They consist of 74,308 faces,
1,357 faces, 338 faces, and 80 faces.

Notice that if we use LODs alone, the Bronco splits apart at the seams at low polygon
count approximations. Using HLODs, we are able to preserve the general shape of the
Bronco further into the simplification process. Note that in the 300 polygon approximations,
the HLOD version has a fuzzy interior while the GAPS LOD version has sharper geometry in
itsinterior. This example shows how HLODs sacrifice individual areas of polygonsto better

approximate the whole set.

Figure 4.27: LODs created for the Cassini model using the error quadric metric alone. They consist of
349,281 faces (the original model), 3,629 faces, 939 faces, and 226 faces.

128

Figure 4.28: LODscreated for the Cassini model using GAPS. They consist of 349,281 faces, 3,601 faces,
906 faces, and 228 faces.

Figure 4.29: LODsand HLODs created for the Cassini model using GAPS. They consist of 349,281
faces, 3,587 faces, 892 faces, and 217 faces.

Notice that the LODs created using the quadric error metric alone break apart at the
seams at low polygon count approximations. GAPS does a better job with its LODs, but
holes between the individual objects of the Cassini are still visible at coarse approximations.
Using HLODs, we are able to preserve the general shape of the Cassini further into the

simplification process.

R TS Il i
TSI | o W l::
3 | o mmEpEl 1

e Al 1™

Figure 4.30: LODs created for the Torpedo Room model using the error quadric metric alone. They
consist of 883,537 faces (the original model), 6,386 faces, 827 faces, and 100 faces.

129

Figure 4.31: LODs created for the Torpedo Room model using GAPS. They consist of 883,537 faces,
6,160 faces, 822 faces, and 95 faces.

Figure 4.32: LODsand HLODs created for the Tor pedo Room model using GAPS. They consist of
883,537 faces, 6,160 faces, 822 faces, and 95 faces.

Notice that the mgjority of the geometry disappears at low polygon count
approximations if we do not use HLODs. Using HLODs, we are able to merge unconnected
objects and produce a more solid shape at drastic approximations. The last HLOD is coarse,
but still provides a better solid approximation of the whole Torpedo Room than the equivalent
set of LODs.

Figure 4.33: LODs created for the Power Plant model using the error quadric metric alone. They
consist of 12,731,154 faces (the original model), 9,627 faces, 2,494 faces, and 607 faces.

130

Figure 4.34: LODscreated for the Power Plant model using GAPS. They consist of 12,731,154 faces,
9,558 faces, 2,405 faces, and 612 faces.

Figure 4.35: LODsand HLODs created for the Power Plant model using GAPS. They consist of
12,731,154 faces, 9,503 faces, 2,375 faces, and 590 faces.

The Power Plant consists of alarge smokestack, a central building housing numerous
complex pipe structures on the right of these images, and other structures. Using the quadric
error metric alone makes the central building completely disappear at drastic approximations.
LODs created by GAPS are able to preserve the central building further into the simplification
process, but most of the interior of the building vanishes. Using HLODs, we are able to
merge a majority of the central building into a solid block at low polygon counts.
Unfortunately, in the process we have made the left edge of the model vanish. Note how the
HLODs merge the smokestack with its surrounding geometry.

In order to visualize complex environments, such as the Power Plant model, at a target
frame rate of 20 frames per seconds, sometimes image quality has to be sacrificed by
substituting coarse approximations for the origina polygonal geometry (see Figure 1.11 in the

introduction chapter). Depending on the graphics system and the complexity of the model,

131

these coarse approximations could replace objects that are very close to the viewer. Inthese
cases, we cannot hope to render a high quality image. However, we can hope to preserve the
general shape of the region in view such that the image conveys a general impression of the
objectsinvolved. As shown by the previous images in this section, HLODs are better visual
representations for objects in close proximity as compared to the individual LODs of these
objects. Therefore, HLODs make alarge impact on the visual quality of our target frame-rate

mode.

One might think an acceptable approach for a model like the Bronco would be to flatten
the scene graph hierarchy and treat the model as one object. There are two reasons not to
flatten the model. The first reason is that by flattening the Bronco’s hierarchy, one eliminates
the rendering algorithm’s ability to choose an LODdach object in the scene. Thidigb
allows objects far from the viewer to be coarser than ones that are near. Second, the objects
in the scene might move. Suppose a user wanted to edit the Bronco model and move a door
out of the way so he or she could better see into its interior. By flattening the hierarchy, one
eliminates any possibility of dynamic movement of these individual parts. We address

dynamic environments in Chapter 5.

We do not show the same set of images for the Sierra Terrain model because it is a
single mesh. Thus, the quadric error metric, GAPS, and GAPS using HLODs will all look the
same. To look at LODs of the Sierra Terrain model, see Figure 3.30 and Figure 3.31.
However, the images shown in Figure 4.36 and Figure 4.37 demonstrate the power of
partitioning on this model. Most of the performance gain when rendering a partitioned
version of this model comes from view-frustum culling, rather than the hierarchical structure

of the partition scene graph (see Section 4.4.2.3).

132

Figure 4.36: Partitioning the Sierra Terrain model.

In Figure 4.36, the left image shows the original Sierra Terrain model consisting of 1
object (the mesh itself) and 162,690 polygons. The middle image shows a rendering of the
partitioned terrain model in wire frame using 83,559 polygons. Notice the faint boundaries
within the model. These boundaries are noticeable because our algorithm preserves them
during smplification to avoid cracks between partitions. Finally, the last image shows that
even though we use partitioning, we are still able to smplify the model drastically. It shows
the geometry of the root node of the partition graph consisting of 168 polygons. As described
in Section 4.2.3, the root node does not have any remaining vertex restrictions and thus can be

simplified to any target number of polygons.

Figure 4.37: Adaptive smplification and view-frustum culling using partitioning.

133

In Figure 4.37, the left image in wire frame demonstrates the ability of our system to
render using adaptive simplification. The view-frustumis colored yellow and there are 35,591
polygons rendered. Partitions near the viewer are drawn in high detail while partitions far
away from the viewer are drawn in lower detail. The right image has 74,359 polygons and
shows that by partitioning the model, we achieve more efficient view-frustum culling. 1f we
only used LODs for thisterrain, we would not see any view-frustum culling since the model is

one mesh and part of it isin view.

4.45 Sweetening Mode

For very complex environments such as the Power Plant model, it is nice to be able to
move around at 20 frames per second using the target frame-rate mode. However, once the
viewer stops moving, usualy they want to look at the scenein finer detail. Therefore, the user
will normally switch to pixel-error mode and specify alow threshold of error in order to view
a high quality image. We combine the two rendering modes into a sweetening mode. When
the viewer is moving, we render using the target frame-rate mode. When the viewer stops, we
progressively refine the image [Bergman et a. 86, Airey et a. 90]. If the viewer stays till for
any length of time, we eventually render the original geometry of the scene. Assoon asthe
viewer starts to move, we switch to our target frame-rate mode. We have found that this
sweetening mode is very useful for quickly finding places of interest in the model and then

viewing these locations in high detail without having to switch modes manually.

4.5 Analysis

There is not much analysis we can perform on the run-time portion of our visualization
algorithm. However, there are parts of the preprocessing stage that we can examine. We use
GAPS to create LODs and HLODs and we have aready analyzed this algorithm in Section
3.6. Theonly other stepsin the preprocess stage that could adversely affect performance are

node association and partitioning.

We do add nodes to the scene graph whenever we perform node association or

partitioning. 1f anode has n children, then in the worst case we could grow the height of the

134

scene graph by n during node association. However, this result assumes that the children
nodes are spatially organized in a degenerate manner. For most situations where polygons are
reasonably spatially balanced, we expect to increase the height of the scene graph by
approximately Ig n using node association. Partitioning could potentially create any number
of leaf nodes in the partition scene graph depending on the user-specified partition distance.
Suppose there are p leaf nodes in this partition scene graph. Since we group partitions by

doubling the partition distance, the height of this partition scene graph will always be bounded
by Ig p.

4.6 Comparison

Our agorithm is different from traditional scene graph methods such as [Rohlf and
Helman 94] because of its inclusion of HLODs in each node of the scene graph. HLODs
allow our algorithm to group polygons of multiple nodes for purposes of merging them
together during smplification. Often, this combination of polygonal geometry resultsin better
drastic approximations as shown in Figure 4.26.

[Luebke and Erikson 97], [Hoppe 97], and [Xia et al. 97] present research on view-
dependent simplification schemes. In Section 4.1.1, we go into detail on why we chose an
algorithm based on LODs and HLODs. With our approach, we are able to render using

display lists and approximate view-dependent rendering schemes using partitioning.

[Funkhouser and Séquin 93], [Maciel and Shirley 95], and [Aliaga and Lastra 99]
present target frame-rate systems. [Funkhouser and Séquin 93] does not use any hierarchical
representations of objects and thus cannot guarantee the frame rate if the time it takes to
consider each object in the scene is more than the time allowed for a single frame. This
algorithm uses strictly predictive methods to choose which LODs to render. Sometimes run-
time performance cannot be predicted in advance. [Maciel and Shirley 95] extends the work
presented in [Funkhouser and Séquin 93] by using view-dependent images as hierarchical
representations of multiple nodes in the scene graph. The way in which the algorithm
traverses the scene graph touches every object in the environment in order to determine the

benefit of view-dependent images. Our algorithm uses LODs augmented with HLODs. It

135

traverses the scene graph to determine which polygons to render and can terminate this search
at any time since it always has a complete representation of the environment. Our target
frame-rate mode uses a combination of predictive and reactive methods that do not rely on

performance specifications of a machine.

4.7 Summary

We have presented an algorithm for accelerating the rendering of large static polygona
environments. It augments the traditional level of detail scene graph with hierarchical levels of
detail. HLODs allow polygons of multiple nodes in the scene graph to be grouped together
for the purposes of simplification. For groups of objects that are close together, HLODs are
usually higher quality drastic approximations than the union of the individual LODs of these
objects. When an HLOD isrendered, we cull away portions of the scene graph. To make
HLOD creation and view frustum culling more efficient, we use a process called node
association which groups nodes in the scene graph by spatial proximity. Spatially large
objects are partitioned and then these partitions are grouped hierarchically to approximate
view-dependent rendering techniques and to maximize the benefit of view-frustum culling.
Our agorithm is capable of rendering using a pixel-error mode or atarget frame-rate mode.
Both partitioning and this target frame-rate mode depend on the use of HLODs. Since LODs
and HLODs are static, we efficiently render them using display lists. Finaly, our system has
accelerated the rendering of awide variety of large polygonal environments with little or no

loss in image quality.

136

5 SIMPLIFICATION OF DYNAMIC POLYGONAL ENVIRONMENTS

In the previous chapter, we presented an algorithm to accelerate the rendering of static
polygonal environments represented by scene graphs by using a combination of LODs and
HLODs. It was shown that by using HLODs to merge polygons from multiple nodes in the
scene graph, we could produce higher fidelity and more drastic approximations for particular
types of static environments. A user often needsto insert, delete, or move objectsin the
scene, such asin spatial design applications. Since the polygonal geometry in each node does
not change due to this movement, the LODs of each node never change. However, when
objects move, their relative positions change and thus any HLODs that represent these objects
must be updated. In this chapter, we extend our algorithm to handle rigid-body dynamic
environments. This extension consists of two operations. When objects move, we update the
error of affected HLODs, regroup nodes based on spatia proximity, and update the bounding
volume hierarchy of the scene. After nodes are regrouped, we recalculate their HLODs in

parallel with the rendering process.

Therest of this chapter is organized in the following manner. We provide an overview
of our approach in Section 5.1. Section 5.2 discusses the technical details of our algorithm.
Implementation details are presented in Section 5.3 and our performance results are shown in
Section 5.4. Analysis of the running time of the algorithm is shown in Section 5.5. We
compare our dynamic environment algorithm based on HLODs to other rendering algorithms

in Section 5.6 and we conclude the chapter in Section 5.7.

51 Overview

A dynamic environment is one where objects or even individual polygons change
positions or orientations between frames. If individua polygons within an object change

shape, then this movement is considered to be a deformation of the object. Deformation can

be a computationally expensive operation since it involves changing every polygon of an
object that is affected by the movement. Rigid-body motion is where objects move, but the
polygons in the objects do not change their relative positions. Scene graph structures for
polygonal environments are well suited for rigid-body motion. Objects change position or
orientation by updating transformations at arcs in the scene graph. Since we use scene graphs
to represent polygonal environments, it is natural for usto support rigid-body motion. The

current algorithm does not handle deformable objects.

Since we assume rigid-body motion, the polygonal geometry of a node in the scene
graph never changes. The node’s LODs remain the same throughout the visualization of the
scene. Only the relative placement of objects in the scene changes due to movement. The
creation of HLODs depends on the relative locations of objects in the environment.

Therefore, as objects move, previously created HLODs may no longer be accurate.

Our approach updates HLODs in response to dynamic movement within the
environment. It first updates error bounds of HLODs affected by the movement. It then
performs an incremental process cafede re-association where it groups together nodes in
the scene graph according to their pmoty. Finally, it updates the scene graph’s bounding
volume hierarchy. Once the scene graph has been modified, we insert nodes whose HLODs
must be recalculated into a queue. Simplification processes running asynchronously and in
parallel with the rendering process remove nodes from the queue to create HLODs using
GAPS. If the motion of the objects is small, then it may be acceptable for the rendering
process to use previously created HLODs while waiting for the simplification process to

finish.

Rigid body dynamic environments can be classified in terms of their degree of motion.
Dynamic environments are a crucial part of entertainment software where almost every entity
in the game is capable of some sort of movement. For example, in the first-person shooter
genre, players are expected to move quickly, evade creatures that are chasing them, and fire
weapons to defeat them [Erikson 99]. Almost everything in this scenario is a moving object,
except for perhaps the city or maze in which the action occurs. There are environments where

there is continuous movement, but only in localized sections or in few objects of the scene.

138

An example of this type of environment isamodel of aminiature train set. The terrain,
tunnels, trees, and most of the track is stationary while the train itself is one of afew moving
objects. Finally, there are scenes where the mgjority of the time no objects move at all.
Occasionally, a single object, or group of objects, will move to a new location. Thistype of
environment is characterized by bursts of activity. An example of such an environment isa
design and review scenario. A user can move objects around by selecting them and placing
themin new locations. When the movement is over, usually the user will take some time to

make sure everything looks okay before continuing.

We will show that our current implementation for dynamic environments is most
effective for this last scenario. If too many objects are moving in the scene, our polygonal
simplification process will not be able to update HLODs quickly enough. In this chapter, we
describe a simple model for defining the degree of motion in an environment. This model is
used to estimate the computing power it would take to recalculate the HLODs of ascenein a
specified amount of time. The results of this model verify that the current implementation of

our technique works best on environments with limited dynamic movement.

5.2 Dynamically Updating HL ODs

For our algorithm, the key problem for dynamic environments is updating HLODs that

are affected by object movement. We use the following techniques to handle such scenes:

* When objects move, HLOD error bounds, the grouping of nodes, and the
bounding volume hierarchy are all updated. We call the process of regrouping

nodes according to their spatial proximity node re-association.

* Nodesin need of HLOD recalculation are inserted into a queue. Our agorithm
spawns parallel and asynchronous simplification processes that extract nodes off
this queue to recalculate their HLODs using GAPS.

139

5.2.1 Updating the Scene Graph Due to Object M ovement

Objects in a scene move because of changing transformations at arcs in the scene graph.
An object may be inserted or deleted from the scene graph, but we view these as different
operations than pure movement. One can argue that by changing transformations at an arc,
objects can be thought of as being deleted from their old position and inserted into their new
position. However, in terms of efficiency, these operations are not equivalent and we handle
them differently. We first discuss objects that move in the scene due to a change of

transformations.

5.2.1.1 Modification of Transfor mations

Assuming a transformation at an arc has changed, our algorithm determines its effect on
the accuracy of HLODSs, re-associates nodes based on the new positions of objects, and

updates the bounding volume hierarchy of the scene graph.

5.2.1.1.1 Updating Error Bounds of HLODs

Our agorithm compares the relative locations of the bounding spheres of the old object
position and the new object position, and measures changes in orientation and scale. It
produces a distance error in object space due to this movement and adds this error to the
distance error associated with each HLOD of the node (see Section 4.2.1). By calculating the
error using the bounding volumes of the moving objects, we conservatively estimate the
distance error that this movement adds to the HLODs. This movement also affects HLODs of
the parent nodes in the scene graph. Therefore, we propagate this error up the scene graph
and add it to all of the affected HLODs.

Figure 5.1, Figure 5.2, and Figure 5.3 show an example of the effects of movement on
the accuracy of a node’s HLODs. In Figure 5.1, we show a simple scene graph. The House
node has two children that are rooms and contains HLODs that represent the whole scene.
The Game Room node has two children and it contains HLODs that represent this whole
room. One of the Game Room’s arcs points to a node with a moving Ball object. The other

points to a stationary table. The bold arc contains a transformation that we use to change the

140

position, scale, and orientation of the Ball. When we change this transformation, it affects the
accuracy of HLODs in the Game Room’s node. Note that by changing this transformation,

we change the location of the Ball in the Game Room'’s coordinate space.

House
Y
Game Room Dining Room
¥
Ball Table

Figure5.1: A ssmple scene graph.

In Figure 5.2, we show error changes in HLODs due to object movemefa), In
circles denote bounding volumes of the Ball. The dotted circle represents the Ball's old
position while the solid circle is its new position. The length of the arrows shows how much
error an operation causes. The error caused by translation is the distance that the Ball moves.
In (b), the error caused by rotation is the distance a point moves along the surface of the
circle. In (c) the error caused by scaling is the distance a point on the surface of the circle
moves. In (d)if the Ball is scaled, rotated, and then translated, then the error is a sum of all
three component errors. If the operations occur in a different order, the resulting error would

change.

(@ (b) (© (d)

Figure5.2: Error changesin the HLODs due to object movement. (a) Trandation. (b) Rotation. (c)

Scaling. (d) Scaling followed by rotation followed by trandation.

141

In Figure 5.3, we show that the error due to movement not only affects the Game
Room’'s HLODs, but it also affects any HLODs that represent the Ball's geometry. The
dotted region denotes parts of the scene graph affected by the Ball's movement. Thus, after
each of the HLODs in the Game Room is modified, the error is propagated up the scene
graph. The dotted arrows show this error propagation. In this case, the movement also
affects the House node’s HLODs. Note that the distance error in the Game Room is

transformed into the coordinate system of the House.

House
/ ; \ AAAAA
g Dining Room
‘K - \ AAAAAAAAAAAAAAA |
Bl Table

Figure5.3: The error due to movement propagates up the scene graph.

Adding to the distance error of affected HLODs implies that they will be rendered
further away from the viewer than in previous frames. These HLODs are still usable, but are

of lower quality since some of the polygonal geometry that they represent has changed

position.
O ON© O @) O @) O @) O @) O
> —>

O OO O O O O O O O O O
O O O

O O O O O O
O O O

(@) (b) (©)

Figure 5.4: Even though an HLOD isinaccur ate, it may be used to approximate gr oups of objects.

Figure 5.4 demonstrates how our approach reuses inaccurate HLO@}. ebch

rectangle in the top row represents the polygonal geometry for an individual node in the scene

142

graph. The HLOD representing these top two rectanglesis in the middle and consists of two

merged triangles. The dotted line represents the distance error associated with thisHLOD. In

(b), the right rectangle moves away from the left one. The distance error associated with the

HLOD isincreased by the distance the rectangle has moved. Note that the HLOD is still a

fairly good approximation for these two rectangles. In (c), the right rectangle moves even

farther away from the left one. The HLOD's distance error is again increased by the distance
the rectangle moved. Now the HLOD is a very poor approximation for the two rectangles.
However, it is still possible to substitute this HLOD for the rectangles if the viewer is a great

distance away.

5.2.1.1.2 Node Re-Association

As described in Section 4.2.2, we associate nodes when a parent node has multiple
children nodes. By hierarchically grouping these children according to thampyopwe
make HLOD creation and view-frustum culling more efficient. As objects move in the scene,
the relative locations of nodes change. Thus, what was once an efficient association of nodes
might no longer be as efficient. Our system updates the association scene graph by re-
associating these nodes. The degree of movement affects how much work we have to
perform on the scene graph. If a node moves a small distance, then it is sometimes possible to
update the bounding volume hierarchy without changing the structure of the scene graph. If a
node moves a larger distance, then the scene graph structure itself changes. Examples of this

process are shown in Figure 5.5, Figure 5.6, Figure 5.7, Figure 5.8, and Figure 5.9.

143

Figure 5.5: Example of movement that does not affect the association of nodesin a scene graph. (a) This
sceneisthe same asin Figure 4.9. (b) Node 3 moves dightly. However, its entire movement is contained
within thered bounding circle labeled A. The dotted red bounding circleiswhat A used tobe. The
solid red bounding circle isthe new tighter fitting bounding circle for Nodes 1, 2, and 3. Similarly, we
recursively recalculate bounding circles further up the scene graph. In thiscase, the Root nodeisa
parent of A sowerecalculateitsbounding circle. Theold circleisshown in dotted black and the new

circleisshown in solid black.

(b)

Figure 5.6: Example of movement that affects the association of nodesin a scene graph. (a) Thissceneis

the same asin Figure 4.9. (b) Node 9 moves outside of its blue bounding circle.

144

Root

AR
@ 104&
ik

AN

AL P S
et

Figure5.7: Continued from Figure 5.6. (a) Theinitial scene graph corresponding to the original
positions of the objects. (b) Since node 9 has moved outside of its bounding circle, it istemporarily
deleted from the scene graph. When we delete node 9, node E only has one child, namely node 8.

Having only one child isinefficient in terms of HLOD creation and view-frustum culling. Node E was
created by our association process and isnot an original node in the scene graph. Therefore, we collapse

node 8 upward to replace node E.

145

10 11 8

Figure 5.8: Continued from Figure 5.7. (a) Hereisthe bounding volume hier ar chy of the scene graph

with node 9 deleted. A gray outline showsthe real position of node 9. Next, we perform a search to

deter mine wher e node 9 should be located in the scene graph. Wefirst perform an upward search,

starting from node 9’s former parent. Node 9’s parent used to be node E, but that was replaced by node
8. Therefore, we start searching upward at node 8. We continue going up the scene graph until we find
a node whose bounding circle contains node 9's bounding circle. In this case, node 8’s bounding circle
does not contain node 9’s. Node D’s bounding circle also does not contain node 9's. Node C’s bounding
circle does contain node 9's. We next perform a emward search, starting from where we ended our
upward search. We continue going down the scene graph until we find no children nodes whose
bounding circles enclose node 9's bounding circle. In this case, no children of node C have bounding
circles that enclose node 9's. At this point, we insert node 9 as a child node of the node where we ended
our downward search. Therefore, we make node 9 a child of node @) The new scene graph after this

operation.

146

(@) (b)

o
AT A
e s

(©)

Figure 5.9: Continued from Figure 5.8. (a) We attempt to associate children nodes of the node where we
terminated our downward search. In thiscase, we are able to associate nodes 6 and 9 using our quadtree
subdivision. (b) The new bounding volume hierarchy for this scene, including a new node Z which

encloses nodes 6 and 9. We calculate this new hierarchy in a bottom up fashion from the node C, the end

of our downward search. (c) The new scene graph for thisenvironment.

In Section 4.2.2, we describe how the creator of a scene graph can dictate how objects
will be grouped for purposes of view-frustum culling and HLOD creation. Nodes that make
up this scene graph are original nodes and should not be modified. During our upward and
downward searches, we never traverse past an origina node in the scene graph. Suppose that
the scene shown in Figure 5.9 was a small portion of the entire environment and the Root
node was an original node that had a parent. The upward traversal could not go farther than

147

the Root node because it is an original node in the scene graph. Not allowing these searches
to penetrate original nodes in the model makes the algorithm stay true to the wishes of the
designer of the scene graph. In other words, just like the original association of the scene
graph, we isolate the re-association of the nodes to places that will not modify the original
design of the environment. If there was no pre-existing scene graph for the environment, then

our algorithm can freely modify the scene graph hierarchy.

Movement of objects causes the approximation quality of HLODs to decrease.
However, when node re-association occurs, some HLODs become invalid atogether. For
example, in the scene shown in Figure 5.7 and Figure 5.9, any HLODs of node D in the
original scene graph represented all of its descendants, namely nodes 8, 9, E, 10, and 11.
However, when node 9 moves, node D has only nodes 8, 10, and 11 as descendants.
Therefore, its HLODs have no chance of representing the correct geometry anymore. In fact,
the HLODs of every node visited by our upward or downward searches are invalidated except
for the node where our upward search terminates. In Figure 5.8, nodes C and D were visited
during our upward and downward search. However, node C is where we terminated our
upward search. Therefore, the only set of HLODs that we invalidate is node D’s HLODs.
We add these invalidated HLODs into our simplification queue. These HLODs remain invalid

until our parallel simplification process can recalculate them.

5.2.1.1.3 Updating the Bounding Volume Hierar chy

After re-associating each moving node, we recalculate the bounding volume hierarchy
of the scene graph. We start from the node where we terminated our downward search
during the re-association process. We recursively update the bounding volume hierarchy
upward from this node. It is possible that movement by a node in the scene graph causes
bounding volumes higher up in the hierarchy to shift. Modifying a bounding volume of an
original node in the scene graph is considered to be a movement of the node. Thus, further

re-association of nodes higher up in the scene graph might be necessary.

148

5.2.1.2 Insertion and Deletion

Insertion and deletion of nodes in the scene graph are abrupt operations and cannot be
handled as elegantly as changing transformations at arcs. If anodeisinserted into the original
scene graph, then we invalidate all HLODs further up the scene graph. These HLODs were
created to represent geometry that did not include this new object and thus are now almost
completely wrong. Furthermore, the insertion of this new node might change associations
that were created earlier. Therefore, we re-associate the scene graph starting at the parent of
this new node. We skip the upward search in this case and perform the downward search to
determine where the new node will be inserted. For deletions, we also invalidate HLODs
further up the scene graph, starting from the parent of the deleted node. If the parent node
was created by association and now only has one child, we compress the scene graph so that
the child becomes the parent. An example of this type of collapse is shown in Figure 5.7 (b),
where node 8 replaces node E. Both insertion and deletion can cause the bounding volume
hierarchy to change and thus could cause additional re-associations further up in the scene
graph. Nodeswith invalid HLODs are inserted into the smplification queue in order to
recompute the HLODs.

5.2.2 Asynchronous Simplification

Simplifying polygonal geometry is much slower than rendering the same polygonal
geometry on current platforms. For example, we render one frame of the original polygonal
geometry of the Power Plant model of Section 4.4 in 20 seconds. However, simplification
preprocessing of this model takes more than 4 hours as shown in Table 4.1. For interactive
visualization, it is not feasible to have one process both rendering the scene and updating
HLODs in the scene graph. If we used only one process, the updating of HLODs would
dominate the running time of our algorithm. Thus, in addition to a rendering process, we use

one or more smplification processes.

The movement of nodes in the scene causes many HLODs to be inaccurate or even
invalid. These nodes are inserted into a smplification queue. We run multiple simplification

processes on multiple CPUs to recalculate HLODs. The job of a simplification processis

149

simply to dequeue a node and create a set of HLODSs for that node. We use GAPS at run-
time to update these HLODs.

Each simplification process ideally resides on a different CPU in the machine. The
process polls the smplification queue. If there are no nodes to simplify, it does nothing. If
there is at least one node on the queue, it dequeues the node and starts simplifying the node’s
associated polygons. Once it finishes creating a set of HLODs for the node, it copies these
HLODs into the scene graph for future use. There can be one or more simplification
processes running independently of the rendering process. They perform their tasks
asynchronously, while the rendering process continues to render the scene. The rendering
process has access to an updated set of HLODs only when a simplification process has
finished creating them. We describe how we handle several issues dealing with accessing and

modifying the scene graph with multiple processors in Section 5.3.

Simplification }
e
Simplification Queue simplification |
Render 7 —
Scene Simplification }
Graph

Figure 5.10: Diagram showing how the different processesin our algorithm interact.

The interaction between the rendering process and simplification processes is shown in
Figure 5.10. The Render process determines which nodes in the scene graph need their
HLODs updated. It inserts these nodes into the Simplification Queue. The multiple
Simplification processes pull nodes off the Simplification Queue and create HLODs for the
node’s polygons. The black arrows show the data flow of these nodes in need of HLOD
recomputation. The lowest black arrow emanating from the Simplification Queue shows that
sometimes nodes are dequeued and then immediately re-inserted in the queue. This re-

insertion happens when the node is a parent of a child node in need of HLOD recalculation.

150

Since the polygonal geometry of the child node’s HLODs affects the HLODs of the parent
node, the child node must be updated before the parent. Any newly created HLODs are re-
inserted in the scene graph, ready to be used by the Render process. The gray arrows show

this re-insertion process.

Since there is a speed discrepancy between rendering and simplification, we cannot
expect to update the HLODs interactively if there is a great deal of movement in the scene.
However, our system works well for design and review scenarios where a user occasionally
interacts with objects. Since movement in the scene is infrequent, the simplification processes
are usually able to update HLODs in a few seconds (see Section 5.4). Often, d asr w
manipulate objects that are near their current viewing position. Since we only recalculate
HLODs and not LODs, and HLODs are used for coarse approximations, the user must move
some distance away from these nearby objects before the new HLODs will be needed for
rendering. By the time the user moves to a new viewpoint and the HLODs are needed,
hopefully they will have beeapdated. We perform a simple analysis of how much movement

our algorithm can currently handle in Section 5.5.

5.3 Implementation

We have implemented our dynamic environment visualization algorithm using C++,
GLUT, and OpenGL. The code is portable across PC and SGI platforms. Our algorithm has

allowed us to interactively visualize complex models as we move some of their parts around.

5.3.1 Generality

The simplification processes use GAPS to recalculate HLODs for the scene graph. As
demonstrated in Chapter 3, GAPS is very general. In practice, we have used this system on a

variety of complex and degenerate CAD models.

151

5.3.2 Node Status

We store one integer, used as a bit flag, in each node in the scene graph to represent its
status. A node can be dirty, in which case its HLODs are inaccurate or invalid and it is
currently in the simplification queue. A node can be an original node, meaning that it was a
node in the original scene graph. Asdescribed in Section 4.2.2, our algorithm has more
control over nodes created by association, rather than the original nodes. A node can be
marked as deleted, meaning that either deletion or re-association has removed the node from
the scene graph (see Section 5.2.1). In some situations, we cannot immediately delete this
node from memory. For example, suppose the node has been inserted into the simplification
gueue, but is later deleted from the scene graph. The simplification queue still refersto the
node so we wait until this reference is dequeued before deleting the node from memory.
Finally, a node’s HLODs can be marked as deleted in the node’s bit flag. This flag is useful
when an HLOD of a node is determined to be invalid while a simplification process is already
trying to recalculate its HLODs from a previous frame. When the simplification process is
finished, we ignore its output and re-insert the node into the simplification queue because the

node’s HLOD is marked as deleted.

5.3.3 Asynchronous Simplification

Both the rendering process and simplification processes need to access and modify the
scene graph during the execution of our algorithm. We prevent multiple processes from
corrupting the scene graph data by using a combination of three semaphores. One semaphore
protects the scene graph, another protects HLODs at nodes, and the final semaphore controls
access to the simplification queue. To clarify the following explanations, we label these

semaphoreSG, H, and SQ respectively.

We use S@o control access to the scene graph. Whenever the rendering process is
about to render a frame, we o8, render the frame, and then unld&&&. Whenever our
system re-associates nodes, it first I08%&s changes its structure, and then unlocks SG
When a simplification process finishes creating a set of HLODs, weSlBckisert the newly

created HLODs into the correct node, and then unlock \B@& also must lock and unlo&8&

152

when checking to see if a node on the simplification queue has been marked as deleted or its
HL ODs have been marked as deleted. Basically, anytime we modify or query the structure of
the scene graph, SG must be locked. Having SG locked prevents other processes from

modifying the scene graph data simultaneously.

We use H to control access to HLODs of nodes. In order for smplification processes
to create HLODs, they must be able to pool the polygons of the node being recalculated, plus
the polygons of the children nodes’ HLODs. SifGedeals with the structure of the scene
graph and not the polygonal geometry within nodes, the simplification process can read, but
not write, the polygons of LODs and HLODs whé&a is locked. Therefore, this grouping of
polygons to create HLODs can execute independently of actions such as rendering. When
pooling polygonal geometry, a simplification process first IddksAfter the polygons are
grouped, Hs unlocked. During the simplification of this polygonal geometry, no semaphores
need to be locked. When the HLODs have been credtaddSG are both locked, the
newly created HLODs are inserted into the scene graph, and thed batt8G are

unlocked.

The final semaphoré&Q, is used to restrict access to the simplification queue. When
the rendering process determines that certain nodes are in need of HLOD recomputation, it
can lock Q insert a new node in the simplification queue, and then uSQckAll
simplification processes attempt to I08R in order to remove nodes from the queue. If the
process gains access to the queue, but it is empty, then the process3plfacksirther
queries. If the queue is not empty, it dequeues the head node and then $lotke

process then has access to a node in need of HLOD recalculation.

All of the processes rely on being able to access the scene graph. However, we do not
want to slow down the rendering process becauser3is locked by a simplification
process. Therefore, it is very important that simplification processes lociSBathd H for
only brief periods of time. Once a simplification process has finished creating HLODs for a
node, it must reinsert this new polygonal geometry into the scene graph. To do so, it must
lock SG and H. If we perform a copy of the HLODs into the scene graph, it could take a

significant amount of time. Instead, a node contains a pointer to its HLODs. We simply

153

assign a new pointer to change the HLODs of the node and then unlock both SG and H.
Thus, our system only executes one pointer assignment between locking and unlocking SG
and H. After unlocking SG and H, we free the memory of the HLODs pointed to by the old

pointer.

5.3.4 Targeting a Frame Rate

When displaying dynamic environments, our algorithm can still target a frame rate as
long as there are valid HLODs at each node in the scene graph. As objects move, some
HL ODs become inaccurate. Our system can till use these inaccurate HLODs to target a
frame rate. However, large movement causes some HLODs to become invalid, meaning that
they cannot possibly represent the true polygonal geometry of the scene (see Section 5.2.1).
In these cases, we cannot guarantee that our system will be able to target a frame rate
assuming that no polygonsis not a valid representation of an LOD or HLOD. In other words,
atraversal of the scene graph, as outlined in Section 4.2.4, will encounter invalid HLODs that
cannot be used. Our algorithm must then search further down the scene graph until a
complete set of LODs and valid HLODs for the sceneis found. Since this traversal cannot
stop at an invalid HLOD, we cannot bound the time it will take to finish, and thus we cannot
target aframerate. If no polygon representations are acceptable for LODs and HLODs, then

we can still target aframe rate.

5.3.5 Main Loop

Similar to the static algorithm, the main loop of the rendering process for dynamic

scenesis as follows:
» Handlesinput to change the viewer position.

* If theagorithmisin pixel-error mode, then it performs a depth-first search of the
scene graph, locally terminating when an HLOD or LOD is reached that has an

associated screen-space error less than the allowable pixel-error.

154

» If theagorithmisin target frame-rate mode, it traverses the scene graph to
determine which polygons to render, terminating when the polygon budget is
reached and all HLODs are valid.

* If an object moves, we update error bounds of HLODs, perform node re-
association, and update the bounding volume hierarchy. Nodes in need of HLOD

recalculation are inserted into the simplification queue.
The main loop of asimplification processis as follows:
» Extract anode off the simplification queue.
* Create new HLODs for this node.

* Insert the newly created HLODs back into the scene graph.

5.4 Reaults

This section consists of four parts. We first measure the performance of our
asynchronous simplification technique on a simple scene as we vary the number of
simplification processes. We aso measure how long it takes to update the scene graph when
objects move in this scene. We then discuss the amount of memory our algorithm uses.
Finally, we show visual results of our implementation on several real world CAD

environments. These environments are the same ones that were shown in Chapter 4.

5.4.1 Asynchronous Simplification

We tested the performance of multiple asynchronous simplification processes to
determine if there are levels of movement in scenes for which our current implementation is
not effective. To perform the tests, we created a simple scene consisting of aroot node that
has multiple instances of a cube object asits children. We tested multiple scenes using
multiple smplification process configurations. The scenes we tested consisted of 23, 3°, 4°,
53, 6%, 7°, 8%, 9°, 10°, and 11° cubes. These cubes were arranged in a grid and then randomly
moved a distance less than the side of the whole grid from their original positions (see Figure

5.11 and Figure 5.12). After the movement was completed, the simplification processes

155

recomputed HLODs for the scene. The configurations used were 1, 2, 4, 8, 16, and 31
simplification processes. We ran these tests on an SGI Reality Monster with 32, 300 MHz
R12000 processors and 16GB of main memory. Since we reserve one process for rendering,

we can have 31 simplification processes each running on its own CPU on this machine.

Figure5.11: On the left we have a 5x5x5 grid of cubes consisting of 1,500 polygons. On theright isan

HL OD of these cubes consisting of 750 polygons.

156

Figure 5.12: On the left, each of the cubesfrom Figure 5.11 has moved to a new location. Asbefore,

there are 125 cubes consisting of 1,500 polygons. On theright isan HL OD consisting of 692 polygons

that was recomputed for the cubes after they moved.

The timing results of our tests are shown in Table 5.1. Graphs of this data are shown in
Figure 5.13 and Figure 5.14. Figure 5.13 shows that adding ssmplification processes incurs
some overhead cost and in cases where the scene is not dynamically complex, slows down the
system. This overhead cost is mainly due to contention for data in the scene graph. In other
words, adding processes causes more blocking to occur when locking and unlocking the three
semaphores described in Section 5.3.3. We briefly discuss approaches to aleviate this

contention in Chapter 6.

Figure 5.14 demonstrates that as the scenes consist of more moving objects, the benefit
of using more simplification processes becomes apparent. Theoreticaly, we should see a
linear speedup as we add more simplification processes. However, in the test cases we have
observed, we achieve a sub-linear speedup. We conjecture that these results are due to
overhead costs such as contention for data in the scene graph, plus the relatively small size of
the scenes being tested. As the scene grows larger, we would expect the efficiency of multiple

simplification processes to increase.

157

These results show that using multiple simplification processes is only beneficial when
we have severa hundred moving objectsin the scene. However, even with 31 simplification
processes, the recomputation of HLODs of these scenes does not occur in real-time. For a
scene of moderate dynamic complexity, such as the environment with 512 cubes, it takes more
than half a minute to update the affected HLODs. And we assume that the cubes move for
only one frame. If the cubes moved constantly, clearly the simplification processes would
never catch up. This performance suggests that our dynamic system is best used on
environments with limited dynamic complexity such as design and review scenarios. Since a
large number of simplification processes seem to slow the recalculation of HLODs in scenes
with limited dynamic movement, it makes sense to use only a few of them for these

environments.

#Cubesw 2°= | 3= | 4= | 5= | 6= 7= | 8= 9= | 10°= 11°=

Procs.| 8 27 | 64 | 125 216 | 343 | 512 | 729 | 1,000 | 1,331

1/ 01, 04| 11| 19 38 214|443 1251 2157 3131

2/ 01 04 12| 17, 333|194 469| 920 1552 2264

4 01| 05 12 19| 34| 157 345| 69.3| 1106 1550

8/ 01 06| 15 23| 40| 134 287 49.7| 79.9| 116.2

16| 02 07| 19 26| 45142 288 458 | 61.7| 89.2

31| 02 08| 22| 33| 55| 155 321| 470 619 790

Table 5.1: Performance resultsin seconds of multiple smplification processes on scenes of varying
dynamic complexity. Adding simplification processes causes the recalculation of HLODsto be slower on
simple scenes. Thisbehavior istheresult of overhead incurred by adding more processes. Asthe scenes
grow larger, using more simplification processesisjustified. The only time 31 simplification processes

accelerate the recomputation of HL ODs, as compar ed to 16 processes, iswhen there are 1,331 cubes.

158

Dynamic Environment Asynchronous Simplification Performance

216
125

64
27 # Cubes

31

Figure 5.13: Thisgraph showsthetimeit takesto recalculate HL ODs of a scene consisting of a specific
number of cubes utilizing a specific number of simplification processes. It shows simple scenes, with 216
cubesor less. Note that adding processes actually dows down the perfor mance of the system due to

contention over head.

159

Dynamic Environment Asynchronous Simplification Performance

350
300

250

200
Time (Secs.)

1331
1000

Cubes

Procs. 16 216
31

Figure5.14: Thisgraph showsthetimeit takesto recalculate HL ODs of a scene consisting of a specific
number of cubes utilizing a specific number of simplification processes. It shows complex scenesranging
from 216 to 1,331 cubes. Adding processes significantly speeds up the recalculation process as the scenes
grow in complexity. For small scenes, adding processes may reduce the per formance of the system (see
Figure 5.13).

5.4.2 Updating the Scene Graph Due to Object M ovement

Before recalculating HLODs when objects move, we update the scene graph as
described in Section 5.2.1 using one CPU. During our test runs with the cube scenesin
Section 5.4.1, we also recorded how much time updating the scene graph took after the cubes
moved. Theresults are shown in Table 5.2. Even though we incrementally refine the scene
graph, each refinement involves afair amount of work. Error bounds on HLODs that
represent the moving object are increased, the scene graph structure is modified using an
octree spatial partitioning, and the bounding volume hierarchy is updated. Table 5.2 shows
that for scenes with hundreds of moving objects, updating the scene graph cannot be
performed in real-time. This limitation suggests that our algorithmis currently most useful for

160

limited dynamic environments such as design and review scenarios. We discuss possible

techniques to accelerate updating the scene graph in Chapter 6.

2= | = | &= 5= | 6= T= 8= | = 10= | 11’

8 27 64 125 | 216 | 343 512 729 1,000 | 1,331

0.002 | 0.005| 0.053 | 0.114| 0.235 2967 6.045| 8291 11.998 | 15.248

Table 5.2: The amount of timethat our current implementation takesto update the scene graph for
scenes of varying dynamic complexity. Thetop row isthe number of cubesin the scene and the bottom
row isthetimein seconds. Our system updatesthe scene graph at interactive frame ratesonly for

scenes with less than a hundred moving objects.

543 Memory Usage

As described in Section 4.3.2, we creste a series of levels of detail or hierarchical levels
of detail such that LODs consist of half the number of polygons of the previous LOD. By
doing so, we limit the memory usage due to the polygons of the scene to double that of the
original polygonal geometry. However, with dynamic environments, we pool polygonal
geometry from different nodes to create HLODs at run-time. The polygonal geometry we
need to access is the coarsest HLOD of each node and it is not possible to access this data
from an OpenGL display list. Therefore, if we use display lists to render LODs and HLODS,
then we must store a separate copy of this polygonal geometry. We also store simplification
information with the polygonal geometry, such as error quadrics at vertices. Note that we do
not store extra copies of static LODSs, since they never change. In practice, dynamic scenes
require roughly six times the memory of the original polygonal geometry. Table 5.3 shows
the memory increase going from static to dynamic environments for the CAD models shown

in Chapter 4. Our system uses a large amount of memory for dynamic environments.

161

Scene Objects | Triangles | Memory Increase
Bronco 466 74,308 3.25
Cassini 127 349,281 2.92
Torpedo Room 356 883,537 2.99
Power Plant 1,179 | 12,731,154 2.64

Table 5.3: Memory increase going from static to dynamic environments. On aver age, the memory
increaseisroughly threetimes. Since static environmentstake up double the memory of the original
polygons, dynamic environmentstake up roughly six timesthe memory of the original polygonal

geometry.

5.4.4 HLOD Recalculation Visual Results

We have used our dynamic scene algorithm to visualize the four CAD models shown in
Chapter 4. Section 5.4.1 showed our current implementation to be most useful in scenes with
limited dynamic movement. This type of movement occursin design and review scenarios.
To simulate a design and review scenario, we allow the user to select and move objectsin
view. For each scene, we changed the locations of a few of the objects. We visualy compare
the difference that this movement caused in the HLODs of the scene graph as well as how
long it took for our agorithm to re-associate nodes and generate the new HLODs. For each
test run, we used 4 simplification processes. Figure 5.15 through Figure 5.22 show HLODs
being updated after object movement in these scenes. The execution speed of HLOD

recomputation for these examplesis shown in Table 5.4.

162

Figure5.15: The original Bronco model consisting of 74,308 polygons and two HL ODs consisting of 580
and 143 polygonsrespectively.

Figure 5.16: Dynamic modification of the Bronco model. We have moved the top of the Broncoin order
tolook intoitsinterior. ThetwoHLODs consist of 552 and 136 polygons respectively and took 3 seconds
to recompute using 4 simplification processes on an SGI Reality Monster with 300 MHz R12000

processor s and 16GB of main memory.

Figure5.17: Theoriginal Cassini model consisting of 349,281 polygons and two HL ODs consisting of

1,790 and 445 polygons respectively.

163

Figure 5.18: Dynamic modification of the Cassini model. We have moved the gold disc away from the
Cassini. ThetwoHLODs consist of 1,236 and 307 polygons respectively and took 6 secondsto recompute
using 4 simplification processes on an SGI Reality Monster with 300 MHz R12000 processor s and 16GB

of main memory.

Figure5.19: Theoriginal Torpedo Room model consisting of 883,537 polygons and two HL ODs
consisting of 5,572 and 1,393 polygons r espectively.

Figure 5.20: Dynamic modification of the Torpedo Room model. We have moved 3 of the tor pedo tubes

tothe side of the main structure. Thesetwo HLODs consist of 5,191 and 1,296 polygons r espectively and
took 9 secondsto recompute using 4 simplification processes on an SGI Reality Monster with 300 MHz

R12000 processor s and 16GB of main memory.

164

Figure5.21: Theoriginal Power Plant model consisting of 12,731,154 polygons and two HLODs

consisting of 9,384 and 2,379 polygons r espectively.

Figure 5.22: Dynamic modification of the Power Plant model. We have moved multiple partsin the

scene around. Thesetwo HLODs consist of 9,441 and 2,395 polygons respectively and took 43 secondsto
recompute using 4 smplification processes on an SGI Reality Monster with 300 MHz R12000 processor s

and 16GB of main memory

Scene Objects | Triangles | HLOD Recalculation with 4 CPUs (secs.)
Bronco 466 74,308 3
Cassini 127 349,281 6
Torpedo Room 356 883,537 9
Power Plant 1,179 | 12,731,154 43

Table 5.4: HLOD recalculation execution speed for the simulations shown in the figur es above.

165

5.4.5 Using LODsIn Place of Invalid HLODs

HLODs can become invalid, meaning that they cannot possibly be acceptable
representations of the scene graph viewed from any distance, due to the movement of objects
(see Section 5.2.1). If the HLODs for a node are invalid, then our algorithm will not render
these HLODs while they are in the process of being recomputed. By ignoring these HLODS,
our agorithm must traverse further down the scene graph to find a valid representation
consisting of LODs and HLODs. However, if we store a complete set of LODs for each node
in the scene graph, then it is possible to use these LODs while HLODs are being recalculated.
By rendering the individual LODs, it is possible to reduce the polygon count until valid
HLODs are created. A complete set of LODs means that there are representations ranging
from the original polygona geometry down to one or afew polygons. Unfortunately, storing
acomplete set of LODs for each node in the scene graph requires more memory. Assuming
each LOD consists of half the polygons of the previous one, then in the worst case, they could

add another copy of the original model in terms of storage space.

5.5 Analysis

In this section, we derive a rough measure of how much motion our algorithm can
handle. Since we use a number of symbolsin the following discussion, they are summarized in
Table 5.5.

Number of siblings of a node in the scene graph

Number of children for parent nodes

Height of the scene graph

Number of vertex merges needed to update HLODs after a single object moves
Number of vertex merges GAPS can perform in a second

Number of moving objects in the scene

How much the polygons of an HLOD are reduced by during simplification
Number of seconds before updated HLODs are needed for rendering

Number of vertices in an object in the scene graph

<U7“DBZIOU

Table 5.5: Brief descriptions of symbolsused in our analysis.

We first analyze the performance of updating the scene graph’s bounding volume

hierarchy and structure through node re-association. Suppose the scene graph istgf height

166

and we move an object that has b siblings in the original scene graph. As described in Section

4.5, in the worst case our re-associated graph will be of height b. 1n non-degenerate cases, it

will be of height Ig b. Therefore, when we move a node, we expect the re-association of the

scene graph to take O(lg b) time. However, we must also update the bounding volume

hierarchy as well as HLODs all the way up the scene graph. Updating the bounding volume

hierarchy takes O(h) time. Marking HLODs as invalid or inaccurate and then inserting them

into a simplification queue takes O(h) time aswell. Therefore, for each object that moves, the

work involved in updating the scene graph is O(h).

Next, we categorize the type of dynamic environment that our algorithm can currently

handle. We use the following assumptions in our analysis.

Since HLOD recalculation is the most time consuming operation to be performed
when objects move, we ignore the cost of updating error bounds of HLODS, re-

associating nodes, and updating the bounding volume hierarchy.
GAPS performs m vertex merge operations per second.
We use a single simplification process.

The agorithm will not need to render the newly created HL ODs before s seconds
have passed.

The height of the scene graph is h and polygons of objects are at leaf nodes.
Therefore, for every object that moves, we must recalculate h — 1 sets of HLODs

up the scene graph.

The average number of vertices that make up the original polygonal geometry of
an object is v and LODs or HLODs contain half the number of vertices and faces
of the previous LOD or HLOD.

GAPS simplifies a node’s polygonal geometry containingrtices until xr
vertices remain. Thesér vertices are combined into the parent of the node to

form the base polygonal geometry for the HLODs of the parent.

Each parent node in the scene graphctaslidren.

167

Assuming ¢ # r, the number of vertex merges M that we must performin such a

scenario for each object that movesis
M =

A 7 7 e 7 T o R 78 I A
o - 300+ -) ke e ()-
AP A AT VN

w%%}@y)ﬂmﬁ

+ +...4+

If c=r, then

kM)V)ZMJQA
wﬁyH/%;/-¢v hr (h$
Al

e/ -y)een(v)-

v(h-2 (1—%)+v=
-2~ 1)+

If M < ms then our algorithm is capable of recomputing the affected HLODs before
they are needed for rendering.

The basic idea behind these formulasis that they are calculating the number of vertex
merges required to update HLODs up the entire scene graph. For this analysis, we assume
that objects are located at leaf nodes. HLODs of a leaf node are equivalent to its LODS so
they cannot change. Thus, we first calculate the number of vertex merges required to
recompute HLODs for the parent node of the leaf node. To perform this calculation, we need
to know how many vertices the parent node will pool together fromiits children. By our
assumptions, each child’s coarsest HLOD contdmsertices and there aoechildren.

Thereforecvir vertices are pooled. The coarsest HLOD of the parent node will consist of

168

cvir? vertices since the cvir vertices will be reduced by 1/r. The number of vertex merge

operations required to create this coarsest HLOD is thus cvir - cv/r?. This number of vertex

merge operations is represented by the first term in the definition of M. Subsequent terms are

created using recursion. For example, for the grandparent node, each child’s coarsest HLOD
containscv/r? vertices and there acechildren. Therefore,?a/r? vertices are pooled. This

recursion terminates at the root node of the scene graph.

For a more concrete example, suppose we are attempting to recalculate HLODs for the
Torpedo Room model while we render it. This model consists of 356 objects, 883,537
polygons, and 545,949 vertices. The scene graph has an average of 3.1 children per node, its
HLOD reduction ratio is approximately 8.3, and its height is 7. Assume HLODs must be
recalculated in 10 seconds and that GAPS performs, on average, 650 vertex merge operations
per second on an SGI Reality Monster with a 300 MHz R12000 processor and 16GB of main
memory. Then the above constants for the Torpedo Room model are approximately

m = 650
s=10
c=31
h=7

~ 545949 ~
\ 356 1534

r=8.3
These constants imply that
M =803

Since803 =M < ms = 6500, our algorithm should be able to handle this scenario

within the given time constraint. Suppose we mowabjects in the scene. As long as

nM < ms, our algorithm should still be able teaalculate the HLODs within the time
constraint. Thus, our analysis suggests that our current implementation should be able to
update the Torpedo Room HLODs within 10 seconds after 8 objects have moved

(8B03 =6424 <6500). In practice, our algorithm took approximately 13 seconds to update
the HLODs of the scene using 1 simplification process after moving 8 parts of the Torpedo

Room model. In this case, the results of our analysis are overoptimistic. However, it uses

169

approximate values for m, ¢, v, and r and ignores the execution cost of updating the scene
graph and semaphore access. Thus, this model of performance should only be used as arough

guide to how much dynamic movement our algorithm can handle.

5.6 Comparison

Not much research has been performed on simplifying dynamic environments. In fact,
not many rendering systems handle dynamic environments at al. Since traditional scene graph
methods such as [Rohlf and Helman 94] use only LODs, dynamic environments are handled
by smply transforming arcs in the scene graph. Since our system extends the traditional scene
graph with HLODs, dynamic movement causes these HLODs to become inaccurate or even
invalid. To retain the benefits of HLODs, namely the ability to merge polygons from distinct
objectsin the scene graph, we must update these HLODs as quickly as possible. For
scenarios with limited dynamic movement, this recomputation is possible and provides higher
quality coarse approximations of the scene. However, the memory requirements of our
dynamic visualization algorithm are large and its implementation is more complex than
traditional scene graph systems mainly due to its simultaneous use of processes that render

and smplify.

5.7 Summary

We have demonstrated an algorithm that updates simplification approximations of
groups of objects in response to dynamic movement in a polygonal environment. When
objects move in the scene, our algorithm updates error bounds of affected HLODS, re-
associates nodes, and recalculates the bounding volume hierarchy of the scene graph. Some
HLODs may become inaccurate or even invalid due to this movement. Our approach uses
asynchronous simplification processes to recalculate these HLODs while the rendering process
continues to render. Once these HLODs have been recomputed, they can be used to
accelerate the rendering of the polygona environment or be used as coarse approximations
when targeting a frame rate (see Chapter 4). Our analysis shows that our current

implementation is best suited for environments with limited dynamic movement, such as

170

design and review scenarios. We presented a simple model to determine if our algorithmis
able to recompute HLODs quickly enough to handle a given dynamic environment. In
practice, our algorithm has been used on severa large polygonal environments where we

allowed the user to interactively manipulate objects in the scene.

171

6 CONCLUSION

6.1 New Results

This dissertation presents new techniques in the areas of simplification of static
polygonal objects, simplification of static polygonal environments, and simplification of

dynamic polygonal environments.

6.1.1 Simplification of Static Polygonal Objects

We presented GAPS, an agorithm that simultaneously achieves the following goals for
the simplification of static polygonal objects:

» It handles objects with degenerate polygonal geometry.
» It does not require any user input.
* It handles surface attributes during simplification.

* It usesaunified error metric, combining both geometric and surface attribute
error, that can be used to automatically calculate switching distances of LODs.

* It produces high quality and drastic approximations of objects.
* It can reduce the number of polygons of an object to any target number.

* It merges unconnected regions of polygons using automatic topological

simplification.

* It executes quickly.

6.1.2 Simplification of Static Polygonal Environments

We presented an algorithm that accelerates the rendering of large static polygonal
environments. It achieves the following goals for the smplification of static polygonal

environments:

» It creates hierarchical levels of detail, representing groups of objects in the scene
graph, using GAPS.

* |t associates nodes in the scene graph based on their spatial proximity.

* |t partitions spatially large objects in order to gain limited view-dependent
rendering capabilities.

* |t canrender in a pixel-error or target frame-rate mode.

» It efficiently renders polygonal geometry using display lists.

6.1.3 Simplification of Dynamic Polygonal Environments

We presented an algorithm that updates simplification approximations when objects in
the scene move. It achieves the following goals for the simplification of dynamic polygonal

environments:

* It re-associates nodes in the scene graph based on their spatial proximity after
objects move.

* |t uses asynchronous simplification processes to update HLODs that are either
inaccurate or invalid due to object movement. Therefore, the rendering process

can continue to render while the smplification processes smplify.

6.2 FutureWork

This section describes possible avenues for future work in the fields of simplification of
static polygonal objects, simplification of static polygonal environments, and simplification of
dynamic polygonal environments.

173

6.2.1 Simplification of Static Polygonal Objects

We would like to improve our approach for handling surface attributes, asit is currently
avery approximate techniqgue. Combining our topological simplification techniques with
appearance preserving methods in [Cohen et al. 98] might produce higher quality
simplifications. Now that more simplification algorithms are handling surface attributes,
future work may include developing a comparison tool that measures the quality of each
algorithm’s output. This tool would define “quality” by using an error metric that involves

both polygonal geometry and surface attributes.

We would like to incorporate the work of [Lindstrom and Turk 98] in order to lessen
the memory consumption of GAPS. Not only would these techniques help simplification of
static polygonal environments, but it would also aid the memory requirements of our dynamic

algorithm as well.

We are interested in creating progressive mesh representations [Hoppe 96] from the
topological simplifications produced by GAPS. Our topological simplification techniques

might also be extended to models composed of spline primitives [Gopi and Manocha 98].

Furthermore, since our approach tends to produce solid shapes for close, but disjoint
polygonal geometry, we are interested in using GAPS to create approximations for occluders
that can be used by visibility algorithms [Greene et al. 93, Coorg and Teller 96, Hudson et al.
97, Zhang et al. 97].

GAPS uses spatial partitioning to determine which vertices are in close proximity.
However, a vertex that is close to a large face, but not to another velitaryver be moved
to close the gap between the vertex and the face. This behavior is due to undersampling. The
smaller the faces, the less likely this scenafibbe& a problem. Simplification techniques tend
to be vertex-centric, but maybe future research will consider the proximigex fis well as

vertices to produce higher quality simplifications.

Finally, through the use of surface area preservation, GAPS prohibits certain vertex
merges from occurring. By not merging these vertices, we are merging another pair that

produces greater error according to the quadric error metric. One component of our unified

174

error metric, presented in Section 3.3.3.4, is the quadric error metric. Thus, according to our
error metric, using surface area preservation creates lower quality approximations. However,
these approximations tend to be higher quality representations for the object even though our
error metric says otherwise. We would like to extend our error metric so that it measures

error more in line with the subjective visual quality of the approximation.

6.2.2 Simplification of Static Polygonal Environments

Our system works well on complicated polygonal environments where most of the
polygonal geometry is closely spaced. For wide-open environments, the power of HLODs is
greatly diminished. Therefore, we could extend our algorithm to judge which regions of the
environment would benefit from HLODs and which would not. For example, if we associate
two nodes but their bounding spheres are not close to intersecting, then there is probably little

point in creating HLODs for this pair of nodes.

Also, since HLODs tend to be coarse, but solid approximations of objects, we are

interested in using them as occluders for visibility agorithms.

6.2.3 Simplification of Dynamic Polygonal Environments

We would like our dynamic algorithm to handle environments that exhibit a great deal
of dynamic movement. In order to do so, we would have to improve our algorithm in several
ways. First, by speeding up the execution of GAPS, we could simplify more objects in less
time. Second, by updating error bounds of HLODs, re-associating nodes, and updating the
bounding volume hierarchy more efficiently when objects move, we could handle more
restructuring of the scene graphin lesstime. Currently, once each object moves, the scene
graph is updated incrementally. 1f we updated the scene graph on multiple processes, we
could accelerate the process for large scene graphs. Finally, instead of using three global
semaphores to access data in the scene graph (see Section 5.3.3), we are interested in using
semaphores that are localized to portions of the scene graph. These localized semaphores
might decrease the contention between simplification processes and therefore accelerate

HLOD recomputation.

175

Our current dynamic implementation requires a great deal of memory, about 6 times the
memory of the original polygonal environment. We would like to investigate ways to reduce
this memory consumption. Note that by making GAPS more memory efficient, we would cut

down on our memory usage for dynamic environments.

Finally, we would like to extend our techniques to handle more general dynamic
movement such as deforming polygonal objects. However, given that our current
implementation can only handle limited rigid-body dynamic movement, this extension seems

very difficult.

176

APPENDI X

Suppose there are n planes stored in an error quadric for a particular vertex. Suppose
that d, represents the distance between the vertex and the ith plane in its error quadric. The
proof we demonstrate below shows that the square root of the average of squared distances is
greater than or equal to the average distance from the vertex to its set of planes. It implies

that our approximation to the average distance in Section 3.3.3.2 is conservative.

Lemmal If a, b0, then

a’+b?>2ab
Proof.

(a-b)*=00 a®*-2ab+b*>00 a’ +b* > 2ab

177

Lemma 2

(d02+d12+...+dn_12)+(n—1)(d02+d12+,,,+dn_12):
d?+d*+...+d_2)+[ld,2+d?)+(d,?+d,?)+...+d,2+d 2)+
° ! n-1 0 1 0 2 0 n-1
n—2)(d12+d22+,,_+dn_12 >

(

(00 + a2 +...+d2)+[2dyd, +2d,d, +...+ 2d,d,]+

[(dl2 + d22)+ (dl2 + d32)+... + (dl2 + dn_lz)]+ (n —3)(d22 +d2+.+ dn_12)2
(0, + a2 +...+d_2)+[2d,d, +2d,d, +...+2d,d,]+

[2d,d, +2d,d, +...+2d,d,]+ (n-3)d,? +d,> +...+d,)=

2

(0, + a2 +...+d_2)+[2d,d, +2d,d, +...+2d,d,]+

[2d,d, + 2d,d, +...+2d,d, | +...+[2d, ,d,] =

Theorem 1

n-1) n-1
d d
2 3
n n
Proof. Using Lemma 2,

n-1 d_2 Ed g n-1 d'2 n—ld'
nzdi22§digmgl > :ZIDD ;I 2; I
i= = [l n n n n

178

REFERENCES

[Airey et al. 90] Airey, J., Rohlf, J., and Brooks, F., “Towards Image Realism with
Interactive Update Rates in Complex Virtual Building Environments,” Symposium on
Interactive 3D Graphics '90 Proceedingl-50, 1990.

[Aliaga 97] Aliaga, D., “SGI Performance Tips,” http://mmw.cs.unc.edu/~atja/I R.html,
1997.

[Aliaga and Lastra 99] Aliaga, D. and Lastra, A., “Automatic Image Placement to Provide a
Guaranteed Frame Rat&omputer Graphics (SIGGRAPH '99 Proceedin@8)-316,
1999.

[Bergman et al. 86] Bergman, L., Fuchs, H., Grant, E., and Spach, S., “Image Rendering by
Adaptive Refinement,Computer Graphics (SIGGRAPH '86 Proceedin@9)37,
1986.

[Chrysanthou and Slater 92] Chrysanthou, Y., and Slater, M., “Computing Dynamic Changes
to BSP Trees,” Computer Graphics Forum (Eurographics '92 ProceediBgE)332,
1992.

[Clark 76] Clark, J., “Hierarchical Geometric Models for Visible Surface Algorithms,”
Communications of the ACM, 547-554, 1976.

[Cohen et al. 96] Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P.,
Brooks, F., and Wright, W., “Simplification Envelope&6mputer Graphics
(SIGGRAPH '96 Proceedings)19-128, 1996.

[Cohen et al. 97] Cohen, J., Manocha, D., and Olano, M., “Simplifying Polygonal Models
Using Successive MappingdEEE Visualization '97 Proeedings395-402, 1997.

[Cohen et al. 98] Cohen, J., Olano, M., and Manocha, D., “Appearance-Preserving
Simplification,” Computer Graphics (SIGGRAPH '98 Proceedinddp-122, 1998.

[Coorg and Teller 96] Coorg, S., and Teller, S., “Temporally Coherent Conservative
Visibility,” Proceedings of 12" ACM Symposium on Computational Geometry, 1996.

[Cormen et al. 94] Cormen, T., Leiserson, C., and RivestntRaduction to Algorithms,
MIT Press and McGraw-Hill, 1994.

[Eck et al. 95] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle,
W., “Multiresolution Analysis of Arbitrary MeshesComputer Graphics (S GGRAPH
'95 Proceedings)173-182, 1995.

[El-Sana and Varshney 97] El-Sana, J., and Varshney, A., “Controlled Simplification of
Genus for Polygonal ModelslEEE Visualization '97 Proeedings403-410, 1997.

179

[Erikson 96] Erikson, C., “Polygonal Simplification: An OverviewJNC Chapel Hill
Computer Science Technical Report TR96-016, 1996.

[Erikson 99] Erikson, EPersonal communication with Erik Erikson of Red Storm
Entertainment, Rendering Software Engineer of Rainbow Sx, 1999.

[Eyles et al. 97] Eyles, J., Molnar, S., Poulton, J., Greer, T., Lastra, A., England, N., and
Westover, L., “PixelFlow: The Realizationr GGRAPH/Eurographics Workshop on
Graphics Hardware '97 Proceedings/-68, 1997.

[Funkhouser and Séquin 93] Funkhouser, T., and Séquin, C., “Adaptive Display Algorithm
for Interactive Frame Rates During Visualization of Complex Virtual Environments,”
Computer Graphics (SIGGRAPH '93 Proceedin@d)-254, 1993.

[Garland 97] Garland, M., “QSlim Simplification Software,”
http: //mmwv.cs.cmu.edu/~garland/quadrics/gdlim.html, 1997.

[Garland and Heckbert 97] Garland, M., and Heckbert, P., “Surface Simplification Using
Quadric Error Metrics,Computer Graphics (SIGGRAPH 97 Proceedin@dp-216,
1997.

[Garland and Heckbert 98] Garland, M., and Heckbert, P., “Simplifying Surfaces with Color
and Texture using Quadric Error Metric82EE Visualization '98 Proeedings263-
269, 1998.

[Gopi and Manocha 98] Gopi, M., and Manocha, D., “A Unified Approach for Simplifying
Polygonal and Spline ModelsdEEE Visualization '98 Proeedings271-278, 1998.

[Greene et al. 93] Greene, N., Kass, M., and Miller, G., “Hierarchical Z-Buffer Visibility,”
Computer Graphics (SIGGRAPH '93 Proceedin@S)-238, 1993.

[He et al. 95] He, T., Hong, L., Kaufman, A., Varshney, A., and Wang, S., “Voxel-Based
Object Simplification,”IEEE Visualization '95 Proeedings296-303, 1995.

[Heckbert and Garland 94] Heckbert, P., and Garland, M., “Multiresolution Modeling for
Fast Rendering,Graphics Interface '94 Proceeding43-50, 1994.

[Heckbert and Garland 97] Heckbert, P., and Garland, M., “Survey of Polygonal Surface
Simplification Algorithms,”Draft of Carnegie Mellon University Computer Science
Technical Report (http://mwwv.cs.cmu.edu/~garland/Papers/simp.pdf), 1997.

[Hoppe et al. 93] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W.,
“Mesh Optimization,"Computer Graphics (SIGGRAPH 93 Proceedind$}26,
1993.

[Hoppe 96] Hoppe, H., “Progressive Meshé&sgmputer Graphics (SIGGRAPH 96
Proceedings)99-108, 1996.

180

[Hoppe 97] Hoppe, H., “View-Dependent Refinement of Progressive Meshes,” Computer
Graphics (SIGGRAPH '97 Proceeding$89-198, 1997.

[Hudson et al. 97] Hudson, T., Manocha, D., Cohen, J,, Lin, M., Hoff, K., and Zhang, H.,
“Occlusion Culling using Shadow Volumes,” Proceedings of A3CM Symposium on
Computational Geometry, 1997.

[Knuth 73] Knuth, D., Sorting and Searching, volume 3 of The Art of Computer
Programming, Addision-Wesley, 1973.

[Lindstrom and Turk 98] Lindstrom, P., and Turk,G., “Fast and Memory Efficient Polygonal
Simplification,” IEEE Visualization '98 Proeedings279-286, 1998.

[Lorensen and Cline 87] Lorensen, W., and Cline, H., “Marching Cubes: A High Resolution
3D Surface Construction AlgorithmZComputer Graphics (SIGGRAPH '87
Proceedings)163-169, 1987.

[Low and Tan 97] Low, K., and Tan, T., “Model Simplification Using Vertex-Clustering,”
Symposium on Interactive 3D Graphics '97 Proceediigs2, 1997.

[Luebke and Georges 95] Luebke, D. and Georges, C., “Portals and Mirrors: Simple, Fast
Evaluation of Potentially Visible SetsSymposium on Interactive 3D Graphics '95
Proceedings105-106, 1995

[Luebke 97] Luebke, D., “A Survey of Polygonal Simplification AlgorithmdNC Chapel
Hill Computer Science Technical Report TR97-045, 1997.

[Luebke and Erikson 97] Luebke, D., and Erikson, C., “View-Dependent Simplification of
Arbitrary Polygonal EnvironmentsComputer Graphics (SIGGRAPH 97
Proceedings)199-208, 1997.

[Maciel and Shirley 95] Maciel, P., and Shirley, P., “Visual Navigation of Large
Environments Using Textured Clusters,” Symposium on Interactive 3D Graphics '95
Proceedings95-102, 1995.

[Molnar et al. 92] Molnar, S., Eyles, J., and Poulton, J., “PixelFlow: High-Speed Rendering
Using Image Composition,” Computer Graphics (SIGGRAPH '92 Proceedizifs),
240, 1992.

[Montrym et al. 97] Montrym, J., Baum, D., Dignam, D., and Migdal, C., “InfiniteReality: A
Real-Time Graphics SystenComputer Graphics (SIGGRAPH 97 Proceedin@9B-
302, 1997.

[Mueller 95] Mueller, C., “Architectures of Image Generators for Flight SimulatbifsC
Chapel Hill Computer Science Technical Report TR95-015, 1995.

181

[Popovic and Hoppe 97] Popovic, J., and Hoppe, H., “Progressive Simplicial Complexes,”
Computer Graphics (SIGGRAPH '97 Proceedin@4)-224, 1997.

[Rohlf and Helman 94] Rohlf, J., and Helman, J., “IRIS Performer: A High Performance
Multiprocessing Toolkit for Real-Time 3D Graphic§bdmputer Graphics (S GGRAPH
'94 Proceedings)381-394, 1994

[Ronfard and Rossignac 96] Ronfard, R., and Rossignac, J., “Full-range Approximation of
Triangulated Polyhedra,” Computer Graphics Forum (Eurographics '96 Proceedings),
67-76, 1996.

[Rossignac and Borrel 93] Rossignac, J., and Borrel, P., “Multi-Resolution 3D
Approximations for Rendering Complex Scendsgbmetric Modeling in Computer
Graphics, 455-465, 1993.

[Rossignac 97] Rossignac, J., “Geometric Simplification and Compreskiattjtesolution
Surface Modeling SIGGRAPH '97 Course Nof€87.

[Schaufler and Stuerzlinger 96] Schaufler, G., and Stuerzlinger, W. “Three Dimensional
Image Cache for Virtual RealityComputer Graphics Forum (Eurographics '96
Proceedings)227-235, 1996.

[Schneider et al. 94] Schneider, B., Borrel, P., Menon, J., Mittleman, J., and Rossignac, J.,
“Brush as a Walkthrough System for Architectural Moddsfth Eurographics
Workshop on Rendering, 389-399, 1994.

[Schroeder et al. 92] Schroeder, W., Zarge, J., and Lorensen, W., “Decimation of Triangle
Meshes,"Computer Graphics (SIGGRAPH '92 Proceedin§s}),/0, 1992.

[Schroeder 97] Schroeder, W., “A Topology Modifying Progressive Decimation Algorithm,”
IEEE Visualization '97 Proeedings205-212, 1997.

[Shade et a. 96] Shade, J., Lischinski, D., Salesin, D., DeRose, T., and Snyder, J.,
“Hierarchical Image Caching for Accelerated Walkthroughs of Complex Environments,”
Computer Graphics (SIGGRAPH '96 Proceedings)82, 1996.

[Sudarsky and Gotsman 96] Sudarsky, O., and Gotsman, C., “Output-Sensitive Visibility
Algorithms for Dynamic Scenes with Applications to Virtual Realitygmputer
Graphics Forum (Eurographics '96 Proceeding&39-258, 1996.

[Teller and Séquin 91] Teller, S., and Séquin, C., “Visibility Preprocessing for Interactive
Walkthroughs,"Computer Graphics (SIGGRAPH '91 Proceeding4)}69, 1991.

[Torres 90] Torres, E., “Optimization of the Binary Space Partitioning Algorithm (BSP) for

the Visualization of Dynamic Scene§bmputer Graphics Forum (Eurographics '90
Proceedings)507-518, 1990.

182

[Turk 92] Turk, G., “Re-Tiling Polygonal Swates,”Computer Graphics (SIGGRAPH '92
Proceedings)55-64, 1992.

[Turk 94] Turk, G., “Ply Model Format Tools,”
http://www-graphics.stanford.edu/data/3Dscanrep”, 1994.

[Xia et al. 97] Xia, J., EI-Sana, J., Varshney, A., “Adaptive Real-Time Level-of-Detail-
Based-Rendering for Polygonal ModelHZEE Transactions on Visualization and
Computer Graphics, 171-183, 1997.

[Zhang et al. 97] Zhang, H., Manocha, D., Hudson, T., Hoff, K., “Visibility Culling using
Hierarchical Occlusion MapsComputer Graphics (SIGGRAPH '97 Proceeding3},
88, 1997.

183

