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ABSTRACT

Translators convert a program from one language to another, and are used to

solve a wide range of problems, such as the construction of compilers, optimizers, and

preprocessors. Although many tools support the creation of translators, these tools

do not provide integrated support for debugging the translator or the output of the

translator.

This dissertation investigates the tracking of information necessary to provide

debugging capabilities for those translators that are structured as a set of program

transformations operating on a tree-based representation. In this setting I describe

how basic debugging capabilities can be automatically and transparently de�ned with-

out semantic knowledge of the languages being translated. Furthermore, advanced

debugging support, relying on the semantics of the languages and transformations,

can be incorporated into this basic framework in a systematic manner.

To evaluate this approach I have constructedKhepera, a program transformation

system with integral support for the construction of debuggers. With this system I

have explored debugging capabilities for traditional compiler optimizations, for more

aggressive loop and parallelizing transformations, and for the transformation process

itself. I also present algorithms that increase the performance of the transformation

process.
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Glossary

Throughout this dissertation, several words are used to convey speci�c meanings or

to draw speci�c distinctions. This glossary is provided as a convenient reference for

the reader.

Abstract Syntax Tree ast is used to refer to any tree-based representation of a

program, even if that representation does not strictly embody abstract syntax.

Compiler A common, o�-the-shelf program that converts a program written in a

high-level language into exectuable code. A compiler is a special case of a

program translator.

Debugger A program used to debug other programs. \Debugger" never refers to a

human.

Optimization A transformation that tends to improve the time or space require-

ments for a program.

Source Language The input language for a translator.

Target Language The output language for a translator.

Transformation A relation between two programs that is valid if and only if the

programs are semantically equivalent.

Unoptimized Program A program that was compiled in a straight-forward man-

ner, such that there is a simple relationship between the machine code generated

and the statements in the program from which it is generated.

xv



Chapter 1

Problem De�nition

1.1 The Problem

Translators are used to convert a program from one language to another. A compiler,

which translates a program from a high-level language into assembly code, is the best

known type of translator. Translators are also used to solve a wide range of problems

beyond compilation, including the support for programming language extensions and

preprocessors. Although many tools are available that support the creation of trans-

lators, these tools provide little support for debugging the translator or the output of

the translator.

This dissertation investigates the tracking of information necessary to provide

debugging capabilities for those translators that are structured as a set of program

transformations operating on a tree-based representation. In this setting I describe

how basic debugging capabilities can be automatically and transparently de�ned with-

out semantic knowledge of the languages being translated. Furthermore, advanced

debugging support that relies on the semantics of the languages and transformations,

can be incorporated into this basic framework in a systematic manner.

1.2 Motivation

This section outlines the widespread use of translators and the problems providing

debugging support for translator output and for the translator itself.



Program written in L �! Translator
C
�! C Compiler �!

Native
Executable

Figure 1.1: Structure of Multistage Translator

1.2.1 Pervasive Use of Program Translators

Researchers often implement compilers for a new language L as translators from

L to an existing language. Compilers performing optimizations or parallelization

are also frequently implemented as source-to-source translators. In these cases, the

overall process of compilation consists of the composition of translators, as shown in

Figure 1.1. The ability to compose translators into a single \multistage" translation

system provides several advantages, among them:

� Ease of implementation: the native high-level language compiler takes care of

low-level, machine-speci�c details.

� Portability: a high-level language, such as C or Fortran 90, can be viewed as

a \portable assembly language".

� E�ciency: the native compiler provides machine-speci�c optimizations and an

interface to the operating system, freeing the researcher to concentrate on the

research language or optimization techniques being explored.

For example, implementations of the Sisal [Cann 1992], pC++ [Gannon et al.

1994], Proteus [Prins and Palmer 1993], and Mercury [Henderson et al. 1995] lan-

guages all use the native C or C++ compiler on the target machine as a back end

for the compilation process. At least one implementation of a High Performance

Fortran (HPF) compiler generates Fortran 77 output [Bozkus et al. 1995]. Other

systems, like the Parafrase-2 [Polychronopoulos et al. 1990] parallelizing compiler, are

also implemented as a program translator composed with a compiler for a high-level

language.

Program translators are also used outside the research environment for imple-

menting new languages (e.g., AT&T cfront [Stroustrup 1994], Modula-3 [Harbi-

son 1990], Eiffel [Meyer 1988]), for maintaining backward compatibility with old

languages (e.g., the Fortran-to-C translator, f2c [Feldman et al. 1995]), and for

implementing database programming systems that \compile" to C code with library

calls [Elmasri and Navathe 1989].
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1.2.2 Di�culties Providing Sophisticated Debugging

Support

Although program translators have been used to implement a wide variety of research

and commercial \compilers", including a wide range of source-to-source optimizers,

multi-stage compilers, and domain-speci�c langauge (dsl) processors, the implemen-

tations of program translators often lack debugging support. When debugging sup-

port is provided, it is often primitive (e.g., in the past, cfront output was often

debugged with a debugger that did not understand the C++ name-mangling con-

ventions); requires that many interesting optimizations be disabled (e.g., Sisal); or

requires recompilation as part of the debugging process (e.g., Eiffel).

Traditional unix1 implementations for C provide debugging support in the con-

text of a multistage translator. In these implementations, C is compiled into assembly

code, optimized by a standalone peep-hole optimizer, and then assembled into ob-

ject code. Information is transferred between successive stages of the compiler so

that symbolic debugging can be supported. This debugging support is usually im-

plemented in an ad hoc fashion for each speci�c compiler and requires considerable

implementation overhead. Even then, the debugger tool usually ignores the e�ects of

optimizations, causing considerable confusion for the programmer who attempts to

debug optimized code.

The key problem with providing debugging support for new languages has been

the di�culty of implementing the necessary language-speci�c debugging support. At

minimum, this debugging support would provide mappings between the source pro-

gram and the target language, with a simple interface to the existing debugger for

the target language. But even this level of support involves tremendous program-

mer overhead, especially when the syntax and semantics of a language have not been

frozen. Signi�cant work is involved in the implementation of a compiler or transla-

tor for any new language|providing support for advanced symbolic debugging may

prohibitively increase the complexity of this work, especially for new or experimental

languages in a research setting.

1
unix is a registered trademark in the United States and other countries, licensed exclusively

through X/Open Company Limited.
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1.2.3 Translators Require Specialized Debugging Support

There is a fundamental di�erence between debugging a translated program (as de-

scribed in Section 1.2.2, above) and debugging the translation process.

Debuggers generally provide access to the basic data types supported by a lan-

guage, and allow setting breakpoints at execution points which are reasonable for

that language. If a translator is implemented with the C programming language,

then the debugger would allow access to data types such as integers and arrays of

characters, and allow breakpoints to be set on C statements. The translator, how-

ever, is operating at a level of abstraction that is much higher than the C code which

implements it. The basic data types in a translator represent abstract objects, such

as the intermediate representation (ir) of the program and symbol table entries. Set-

ting a \breakpoint" in a translator should, at a high level of abstraction, interrupt

the translation process at some reasonable point within that process (instead of some

arbitrary point that the C debugger would produce).

Hence, debugging a translator written in C is fundamentally di�erent from de-

bugging an ordinary C program, and requires specialized debugging support. The

debugging algorithms discussed in this dissertation can be used to answer questions

about the program being translated or about the translation itself|these questions

will be outlined in the next section.

1.3 Approach

In this dissertation, optimizations, parallelization techniques, and language trans-

lation will all be viewed as the composition of successive program transformations

applied to an abstract syntax tree (ast) [Loveman 1977], as shown in Figure 1.2.

The ast, which provides a very general program representation, is commonly used

as an ir by compiler and translator implementors [Appel 1997; Muchnick 1997].

Consider the problem of translating a program P , written in the source language L,

into a program in the output language L0. In Figure 1.2, T0 is an ast which represents

P after the parsing phase, �. T` is the �nal transformed ast, and P 0 is a valid program,

in the output language L0, constructed from T` during the unparsing phase, �. The

transformation process is viewed as the composition of successive transformations

functions, k = 1; : : : ; `; �k+1(Tk) = Tk+1, to the ast. The determination of which

transformation function to apply next may require extensive analysis of the ast.

Once the transformation functions are determined, however, they can be rapidly
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Figure 1.2: Transformation Process

applied for replay or debugging.

When debugging a set of program transformations, the programmer requires de-

tailed information about each successive application of a transformation. Since merely

providing snapshots of each intermediate ast would be overwhelming and confusing,

methods to examine the ast in di�erent ways are necessary:

� The programmer may need to look at two successive asts and view only the

updated portions.

� The programmer may need to identify some \interesting" subset of the ast

and view only the transformations that involve this part, skipping all other

transformations.

� The programmer may need to examine the transformed asts in either the for-

ward (e.g., Tk; Tk+1; : : :) or in the reverse (e.g., Tk; Tk�1; : : :) transformation

direction.

This level of debugger functionality is necessary to provide detailed, manageable

debugging information for the transformations themselves. Note that debuggers can

be composed in the same way that compilers were composed in Figure 1.1, and

that if the functions needed for debugging the transformations can be provided, then

su�cient information will also be available to provide traditional debugging functions:

� setting breakpoints

� determining current execution location (e.g., in response to a breakpoint or

program exception)
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� reporting a procedure traceback

� displaying values of variables

The end-user, who is using the language processor to transform programs, may not

be interested in viewing the detailed transformation machinery. For this type of end-

user, the debugging queries will relate P and P 0, and will avoid the intermediate tree

representations. Based on anecdotal evidence obtained while observing and interact-

ing with scientists working on optimizing the performance of legacy Fortran codes,

I believe sophisticated end-users of the transformation system will be interested in

viewing intermediate tree representations. The sophisticated end-user will use the

capabilities of setting breakpoints by selecting semantic elements from an interme-

diate tree and will want to determine execution location or variable values on an

intermediate tree.

1.4 Scope and Goals of this Work

Given a translator implemented as a series of tree transformations:

� I can de�ne tracking of information that is automatic and transparent to the

implementor of the translator.

� This tracking enables building simple debuggers without semantic knowledge of

the languages being transformed.

� This tracking provides a framework for building sophisticated debuggers that

require semantic knowledge of the transformations.

The work presented here is limited in two ways. First, since a large variety of

language processors can be implemented using transformation on a tree-based inter-

mediate representation, my work concentrates on providing debugging capabilities

for these translators. Second, since these translators are often implemented as high-

level language translators, my work concentrates on high-level language translation

as described in Section 1.2.1, and leaves generation of machine code as future work.

In summary, I have concentrated on a framework for debugging in the face of

aggressive program transformations. The solution does not require any debugging

methods that could perturb the run-time characteristics of the program being de-

bugged. Further, the solution requires minimal assistance from the implementor of
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the translator, and does not restrict the type or complexity of transformations per-

formed. Compared with other debugging methods, the contributions made in this

dissertation include a description of:

1. debugging support that is independent of the semantics of the language being

transformed;

2. sca�olding for the support of other debugging methods that do depend on se-

mantic information;

3. debugging support that is transparent to the translator implementor;

4. debugging support for a large class of translators, including those that utilize

common scalar transformations, aggressive loop transformations, and complex

parallelization transformations; and

5. debugging support for both the output of the translator and for the translator

itself.

In addition, I have implemented the proposed debugging algorithms in the Khepera

transformational programming system; I have written a viewer for Khepera that

can be used to debug translator implementations; and I have explored the problem

of rapid tree-traversal on the ast intermediate representation.

Chapter 2 reviews the previous work on symbolic debugging of optimized programs

and explores enhancements necessary for debugging programs that have been aggres-

sively transformed using arbitrary structure-changing transformations on a tree-based

intermediate representation.

Chapter 3 outlines speci�c algorithms for tracking and replaying program trans-

formations.

Chapter 4 demonstrates the practicality of these algorithms by discussing their

implementation in Khepera, a system for writing and debugging complex transfor-

mation systems.

Chapter 5 demonstrates the generality and usefulness of these algorithms by pre-

senting an example of debugging the transformation system itself and by discussing

the construction of more sophisticated debuggers using the framework presented here.

Chapter 6 summarizes the work presented in this dissertation, the contributions

made, and possible areas for future exploration.
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Chapter 2

Related Work

This chapter presents an overview of debugger functionality and the terminology nec-

essary to discuss source-level (or symbolic) debuggers. This discussion will cover the

two main categories of debuggers (expected behavior and truthful behavior) and the as-

sociated problems posed by each category in the face of various kinds of optimizations.

Common optimizations will not be discussed in detail in this dissertation|curious

readers should consult one of the catalogs of optimizations that have been published:

Loveman [1977] and Wolfe [1989, 1996] (aggressive loop and vectorization optimiza-

tions), Bacon et al. [1994] (an excellent overview of both scalar and vectorization

optimizations), and Muchnick [1997] (common scalar optimizations). I will review

the previous work in the �eld of source-level debugging in terms of the problems

solved and the optimizations handled. Finally, I will discuss the previous work that

is most applicable to the debugging of transformation systems.

2.1 Debugger Functionality

In general, a debugger must be able to perform the following basic tasks:

1. Associate source code positions with machine code locations:

Set a breakpoint. The user speci�es a point in the program at which execu-

tion should stop, and the debugger runs the program until this point is

reached.

Trap or breakpoint location reporting. The program stops because of an

exception or a user-de�ned breakpoint, and the debugger reports the po-

sition in the original source code at which execution has stopped.



2. Associate source code variables with memory locations:

Display the value of a variable. The user selects a variable at some position

in the program (e.g., at the current breakpoint), and the debugger reports

the value of the variable.

Change the value of a variable. The user selects a variable at some posi-

tion in the program (e.g., at the current breakpoint), and speci�es a new

value for this variable. The debugger updates the value.

In addition to the control breakpoints discussed above (which break at a speci�c

point in the control 
ow of the program), more complicated debuggers may also pro-

vide breakpoints that stop execution when a variable is updated (data breakpoints)

or when a user-de�ned predicate becomes true (conditional breakpoints). These ad-

vanced breakpoints and other possible debugger features (e.g., the ability to modify

the executing code, or to execute arbitrary code during the debugging session) are

beyond the scope of this dissertation. These advanced features depend, at the lowest

level of debugger functionality, on the ability of the debugger to map source code

positions and source code variables to machine code locations and memory locations.

Ultimately, these advanced features can be implemented using the basic functionality

described above.

Traditionally, the granularity for breakpoints has been at the line or statement

level. When dealing with functional languages, or with aggressive optimizations, it

may be more convenient to set a breakpoint in the middle of a statement or an ex-

pression. The techniques and algorithms described later in this dissertation always

consider the source program as a collection of abstract syntactic or semantic elements.

From this viewpoint, breakpoints can be set on statements (if the language supports

the semantic notion of \statement") or the breakpoint can be set on any other seman-

tic element, such as an assignment or an expression. Traditional debuggers generally

report source code locations in terms of the statement boundary because this is the

granularity of information provided by the compilation system. If more precise in-

formation can be provided, then debuggers should provide that information to the

user.

In this discussion, I have used the terms \machine code locations" and \memory

locations" to convey the idea that the interesting associations are between high-level

source code and the low-level code that is being executed. Later in this dissertation,

I will generalize this notion to include associations between high-level \source" code
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and high-level \target" code (which may or may not be directly executable, but

which is the result of transformation or \compilation" of the original source code).

For the remainder of this chapter, however, thinking in terms of \source code" which

is compiled into \machine code" is a useful convenience.

2.2 Properties of Source-Level Debuggers

Zellweger [1984] de�nes two general classes of debuggers:

Expected Behavior A debugger that provides expected behavior \. . . always re-

sponds exactly as it would for an unoptimized version of the same program"

[Zellweger 1984, p. 34]. The e�ects of optimizations and program transforma-

tion are hidden from the user.

Truthful Behavior A debugger that provides truthful behavior \. . . avoids mislead-

ing the user: it either displays (in source program terms) how optimizations

have changed the program portion under consideration, or it admits that it

cannot give a correct response" [Zellweger 1984, p. 34]. A truthful debugger

may provide a response, but warn that the response may be incorrect.

Copperman and McDowell [1993] investigated several contemporary compiler/de-

bugger combinations and found that none of the examined combinations could provide

expected or truthful behavior for all of the example cases. Some combinations did

provide expected or truthful behavior for some cases|however, other combinations

did not provide expected or truthful behavior for any example cases.

I believe that it is better to depict how a program is actually behaving than to try

to hide the e�ects of optimization. Hiding the e�ects of optimization is undesirable

because the user is prevented from debugging the actual code that is being executed,

and must blindly trust that the compiler and debugger have correct implementations

for both the optimizations and the machinery which undoes the e�ects of the opti-

mizations. Further, as the optimizations become more and more complicated, hiding

their e�ects may become intractable.

2.3 Problems of Expected Behavior Debugging

Most of the prior work on symbolic debugging has concentrated on providing ex-

pected behavior in the face of the scalar optimizations similar to the ones shown in
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Constant folding
Copy propagation
Constant propagation
Common-subexpression elimination
Dead assignment elimination
Dead code elimination
Procedure inlining
Cross-jumping
Strength reduction
Induction variable elimination
Loop-invariant code motion
Code hoisting
Loop unswitching
Loop unrolling
Loop peeling

Figure 2.1: Common Scalar Optimizations

Figure 2.1 (see Appendix B for a brief summary of these optimizations). Based on

the required debugger functionality, the problems caused by optimizations fall into

two main categories: location problems (or code location problems) and data problems

(or data-value problems) [Zellweger 1984; Adl-Tabatabai 1996].

Zellweger [1984] provides an excellent overview of these major debugging problems:

Location problems. Contemporary debuggers use a simple one-to-one mapping

from program source to object code. Often, optimizations such as dead store

elimination or unreachable code elimination remove object code from the result-

ing executable. Other optimizations (e.g., procedure discovery, cross-jumping,

loop-unrolling, and inline procedure expansion) can cause object code to be

merged or duplicated, complicating the source to object mapping.

Data-value problems. These problems arise when variable values reported by a

contemporary debugger are incorrect because variable assignments are moved

or deleted by the optimizations applied. Typical optimizations which cause

these problems are: constant propagation, copy propagation, induction variable

elimination, and code hoisting.

In the next sections, these problems will be discussed in greater detail.
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2.3.1 Location Problems

Source-level debuggers usually use a compiler-generated line table for setting break-

points, resolving exception or breakpoint location, and providing information about

the execution context and stack. The line table generally contains tuples associating

a single line of source code with a single machine code location [Copperman 1993a].

In the face of the common scalar optimizations shown in Figure 2.1, a simple line

table is not su�cient, and requires considerable augmentation to properly describe the

mappings. For example, dead code elimination will remove tuples from the line table

so that a source line will no longer occur in the source code to machine code map-

ping. In contrast, control 
ow optimizations, which either merge identical code (e.g.,

procedure discovery, cross-jumping) or duplicate code (e.g., loop unrolling, procedure

inlining), create one-to-many or many-to-one source-code to machine-code associa-

tions. Other optimizations, such as instruction scheduling, can cause the e�ects of

two or more source statements to be interleaved in the �nal machine code.

Optimizations used by vectorizing and parallelizing compilers are shown in Fig-

ure 2.2 (see Appendix B for a brief summary of these optimizations). Wolfe [1989]

discusses these and other optimizations that are useful when vectorizing loops in scalar

programs, when discovering parallelism in sequential programs, and when compiling

programs written in a language that supports explicit parallelism. Several of these

optimizations are also useful on scalar machines that do not provide much concur-

rency. For example, loop interchange may help to provide increased locality of array

references and decreased paging on a scalar virtual memory machine [Wolfe 1989,

p. 105].

Location problems in the face of parallelizing optimizations are similar to, but

more complicated than, the location problems present with common scalar optimiza-

tions. These optimizations are more likely to require one-to-many, many-to-one, and

many-to-many source-code to machine-code associations. Further, when concurrency

is supported, or when the source language supports explicit process parallelism, as-

sociations may span processors.

2.3.2 Examples of Location Problems

In this section, examples of location problems from the expected-behavior debug-

ging literature will be described. These examples are designed to expose the main

problems of debugging in the face of optimizations while being straightforward and
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Loop interchange
Loop skewing
Loop reversal
Loop coalescing
Strip mining
Loop tiling
Loop splitting
Loop jamming
Software pipelining

Figure 2.2: Aggressive Loop Optimizations

understandable. These examples will be explored in more detail in Section 3.2.4

(page 39).

Control 
ow optimizations change the mapping between syntactic elements in

the input source code and equivalent or related syntactic elements in the output

source code. When the mapping is one-to-one, answering queries from the debugger

is relatively straightforward: a simple line table is su�cient to answer the queries.

However, in the face of control 
ow optimizations, the mapping may be many-to-one,

one-to-many, or many-to-many. Zellweger [1984] concentrates on two control 
ow

optimizations which have these characteristics:

� Inline procedure expansion: the replacement of a function call with the body of

the function being called. This creates a one-to-many mapping between lines

in the original function body and all of the points in the program at which the

function was inlined. For example, in Figure 2.3 (using C-like syntax), calls

to function f are inlined in function g. Given line-level granularity, setting a

breakpoint on line 11 (shown in the �gure with a box) in the original source

code should set a breakpoint on lines 11, 21, and 22 in the transformed source

code (shown in the �gure with boxes). Ideally, however, granularity would allow

the breakpoint to be set just prior to the assignment on lines 21 and 22, thereby

preserving the notion that the breakpoint was requested within function f .

� Cross-jumping: merging identical sections of code into a single section. This

creates a many-to-one mapping between the identical sections in the original

code and the single section in the cross-jumped code. As the example in Fig-
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10 int f(int x) f
11 return x + x ;

12 g

20 int g(int y, int z) f
21 int a = f(y);

22 int b = f(z);

23 return a + b;

24 g

�! 10 int f(int x) f
11 return x + x ;

12 g

20 int g(int y) f
21 int a = y + y ;

22 int b = z + z ;

23 return a + b;

24 g

Figure 2.3: Procedure Inlining Transformation

30 if (a == b) f
31 x = 1;

32 y = 2 ;

33 z = 3;

34 g else f
35 x = 2;

36 y = 2 ;

37 z = 3;

38 g

�! 30 if (a == b) f
31 x = 1;

34 g else f
35 x = 2;

38 g
39 y = 2 ;

40 z = 3;

Figure 2.4: Cross-Jumping Transformation

ure 2.4 shows, setting breakpoint on line 32 or line 36 in the original source

code should set a breakpoint on line 39 in the transformed source code.

Zellweger [1984] uses silent breakpoints to determine the most recently executed

path through the if statement, and has the debugger ignore the breakpoint on

line 39 unless the path in the selected branch of the code was followed. This

re�nement is an example of a debugging algorithm which is transformation-

speci�c: it works only with the cross-jumping transformation|a di�erent re-

�nement would have to be devised for every other transformation that leads to

a many-to-one mapping between original source code and transformed source

code.

When both of these transformations are combined, the results can require a many-

to-many mapping. As shown in Figure 2.5, a breakpoint set in the original code on
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either line 43 or line 46 will require breakpoints to be set in the transformed code on

lines 50, 66, and 72.

2.3.3 Data-Value Problems

For displaying or changing the value of a variable, source-level debuggers generally

use a symbol table containing tuples associating a symbol's name, type, and size with

one or more locations in memory [Copperman 1993a].

Because of optimizations, a variable may reside in di�erent locations during its

lifetime (e.g., in memory vs. in a register), making the use of a simple symbol table

insu�cient to determine the value of the variable. Further, after a variable is dead, a

debugger may not be able to determine the value because optimizations removed the

�nal store (e.g., dead store elimination).

Even if the debugger can determine the correct location of a variable, the reported

value may not be the value expected from inspection of the original source code. Much

of the previous work on expected behavior debugging has concentrated on currency

determination in the face of the optimizations listed in Figure 2.1. Hennessy [1982]

introduced the following terms to describe the status of a variable at a particular

point in a program:

current The value of the variable is guaranteed to be the same as the expected value

in unoptimized code, regardless of the path taken to this point in the program.

noncurrent The value of the variable is guaranteed to be computed from di�erent

expressions on all paths. Note that, depending on program inputs and the

calculations being performed, the values might the the same, but this is merely

coincidence.

endangered The value of the variable is computed from the same expressions on

some paths, but from di�erent expressions on other paths, so currency cannot

be statically determined.

Adl-Tabatabai [1996] uses the term suspect to indicate a variable whose currency

cannot be determined, and uses endangered to indicate a variable is either noncurrent

or suspect. This de�nition is consistent with Hennessy's, if one considers an endan-

gered variable to be one whose value may not correspond to the variable's expected

value. This classi�cation system is reasonable and useful when providing expected
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38 int b;

39 int f(int x) f
40 int a;

41 if (x == 3) f
42 a = 1;

43 b = 2 ;

44 g else f
45 a = 2;

46 b = 2 ;

47 g
51 return a;

52 g

60 int g(int c) f
80 int n = f(c);

81 int m = f(d);

82 return n + m;

83 g

�! 38 int b;

39 int f(int x) f
40 int a;

41 if (x == 3) f
42 a = 1;

44 g else f
45 a = 2;

47 g
50 b = 2 ;

51 return a;

52 g

60 int g(int c) f
61 if (c == 3) f
62 n = 1;

63 g else f
64 n = 2;

65 g
66 b = 2 ;

67 if (d == 3) f
68 m = 1;

69 g else f
70 m = 2;

71 g
72 b = 2 ;

82 return n + m;

83 g

Figure 2.5: Procedure Inlining and Cross-Jumping Transformations
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A, B, C: array (1..n) of integer
T: integer
do i = 1; n

T = A(i) +B(i)
C(i) = C(i) + y � T

end do

�!
A, B, C, T': array (1..n) of integer
T 0 = A +B
C = C + y � T 0

Figure 2.6: Example Loop Vectorization

behavior debugging, or when providing truthful behavior debugging with expected

behavior augmentation.

Code motion, storage overlaying, and copy propagation are examples of optimiza-

tions which often cause data-value problems because the location of the variable can

be determined, but the value is not the expected value. Optimizations that remove

variable references, such as constant propagation and induction variable elimination,

may cause a variable to be unknown to the debugger. Variable elimination may be a

serious problem for expected behavior debuggers|changing the value of these vari-

ables during a debugging session may be useless, and reconstructing their values at

may be di�cult.

When loop vectorizing optimizations are considered, data-value problems are com-

plicated because the type of the variable may change during the optimization. For

example, consider the vectorization, using Fortran-like syntax, shown in Figure 2.6.

In this example, the temporary scalar variable T is optimized away: only the vector

variable T 0 is available during debugging. Further, under Zellweger's de�nition of

expected behavior debugging, the debugger should be able to single step through this

loop, displaying intermediate values for T .

2.3.4 Examples of Data-Value Problems

In this section, examples of data-value problems from the expected behavior debug-

ging literature will be described. These examples are designed to expose the main

problems of debugging in the face of optimizations while being straightforward and

understandable.

In general, data-value problems are caused by assignments which are either deleted

(e.g., via redundant or dead assignment elimination) or moved (e.g., via code hoisting)

by the transformations. Examples of these sorts of problems will be presented below,
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100 ...

110 x = y + z;

120 ...

130 x = y + z;

140 ...

�! 100 ...

110 x = y + z;

120 ...

140 ...

Figure 2.7: Redundant Assignment Elimination

200 ...

210 x = w - v;

220 ...

230 x = y + z;

240 ...

�! 200 ...

220 ...

230 x = y + z;

240 ...

Figure 2.8: Dead Assignment Elimination

together with an outline of expected behavior solutions. In Section 5.2.3 (page 123),

these examples will be revisited, with a discussion of how to use the methods described

in this dissertation to debug them.

2.3.4.1 Redundant Assignment Elimination

An example of redundant assignment elimination is shown in Figure 2.7. Here, line

130 is removed because x, y, and z were not modi�ed since the assignment in line

110.

Adl-Tabatabai [1996] points out that this case does not create endangered vari-

ables, and so does not impact expected behavior debugging: the value of x did not

change, so the elimination of the second assignment does not produce an unexpected

value when x is queried at a breakpoint on line 140.

2.3.4.2 Dead Assignment Elimination

An example of dead assignment elimination is shown in Figure 2.8, where x is not

used between line 210 and 230.

Given a breakpoint on line 220, the value of x is noncurrent in the �nal trans-

formed program (since the assignment to x on line 210 was removed). Adl-Tabatabai
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300 x = u - v;

310 if (c) f
320 x = y + z;

330 g else f
340 ...

360 ...

370 g
380 ...

390 x = y + z;

400 ...

�! 300 x = u - v

310 if (c) f
320 x = y + z

330 g else f
340 ...

350 x = y + z;

360 ...

370 g
380 ...

400 ...

Figure 2.9: Code Hoisting

[1996] introduces a dead assignment descriptor whenever a local dead code elimina-

tion eliminates an assignment because of a later assignment. This descriptor helps to

detect noncurrency, but at the cost of additional overhead for the implementor of the

translator, since the semantics of assignment must be understood by the translator

when the descriptor is created.

2.3.4.3 Code Hoisting

An example of code hoisting is shown in Figure 2.9, where x is not used during the

else part.

There are two interesting breakpoints in this example:

Line 360 The expected value of x is u� v, but the actual value is y + z.

Line 380 The expected value of x is either u � v or y + z, depending on which

branch of the if was taken. The actual value is y + z. This may lead the

programmer to believe that the �rst branch was always taken, when, in fact,

the transformations make this assumption incorrect.

Using algorithms from Adl-Tabatabai [1996], an expected value debugger would

report the value of x at breakpoint on line 360 as noncurrent, and the value of x at a

breakpoint on line 380 as suspect. Using the methods from Zellweger [1984], a silent

breakpoint would be inserted in each branch of the if statement, thereby helping

the debugger to make a currency determination based on information collected at

run-time via the use of program instrumentation.
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Apply-to-all elimination
Promotion of functions

Figure 2.10: Transformations for Flattening Nested-Data Parallelism

2.3.5 Di�culties of Providing Expected Behavior

As discussed above, expected behavior debugging has been shown to be possible in the

face of most of the optimizations shown in Figure 2.1. In general, these optimizations

move or eliminate assignments, and the problem of expected behavior debugging is to

undo the e�ects of the code motion or to otherwise reconstruct the assigned values.

Indeed, Adl-Tabatabai [1996] notes:

. . . there are a number of invariants that are preserved when compilers

transform programs|compilers do not perform arbitrary transformations;

my algorithms take advantage of the invariants maintained by transforma-

tions that move or eliminate assignments. For example, if an assignment

is hoisted to a di�erent basic block, this basic block is post-dominated

by the original block; this limits the range of breaks where a variable is

endangered because of the hoisted assignment. Or, if an assignment is

eliminated because of backward redundancy, the value must be available

somewhere, and the debugger can provide this value to the user.

For other classes of optimizations, such as those shown in Figure 2.2 and Fig-

ure 2.10 (see Appendix B for a brief summary of these optimizations), expected

behavior debugging poses more complicated problems. Vectorization may spread the

computation of a variable over several lines, intermingle several computations that

were implicitly serialized in the original source code. The 
attening of nested-data

parallelism [Blelloch 1990] can be viewed as a transformation that changes the type

of variables, promoting scalar variables to vectors, or promoting nested sequences to

more deeply nested sequences. Reconstructing loops or source-level sequences for ex-

pected behavior debugging involves considerable complicated work for the debugger.

As of 1997, only limited, speculative work has been done on solving the problems

of providing expected behavior debugging for vectorizing, parallelizing, and 
attening

transformations. Further, it is not clear that expected behavior would be helpful in

20



the face of these aggressive optimizations, especially for research compilers which are

actively being developed.

In the best situation, the optimizations are correctly implemented and the debug-

ger's \undoing" is correct. In this case, an expected behavior debugger might hide

critical information about the optimizations from the end-user. Because the optimiza-

tions are aggressive and unfamiliar, it may be important for the user to understand

how the code was transformed. This is obviously important if the user is also the

implementer of the research compiler. Less obviously, this is important for users of

high-performance computers who are interested in obtaining the best possible opti-

mizations. These users might be interested in trying more aggressive optimizations,

and may feel more con�dent doing so if they have some understanding of how their

code is being transformed.

There are two other cases in which expected behavior debugging is potentially

harmful:

1. the optimizations are correctly implemented, but the debugger's \undoing" is

incorrect, or

2. the optimizations are incorrectly implemented.

In these cases, the debugger might hide implementation errors and prolong the de-

bugging process instead of making it shorter. From the standpoint of the compiler

writer, the work of implementing novel, aggressive transformations is doubled if ex-

pected behavior debugging must also be supported: the transformations must be

implemented correctly, and the ability of the debugger to undo or hide the e�ects of

the transformations must also be implemented correctly. Errors in either part of this

task can hide errors in the other part.

2.4 Problems of Truthful Behavior Debugging

In situations where expected behavior is di�cult or impossible to provide, truthful

behavior is sometimes considered \the next best thing". In the face of novel, aggres-

sive loop or 
attening transformations, the reasons outlined in the previous section

indicate truthful behavior is actually the best thing that can be provided.

The main problem with providing useful truthful behavior is that there may be

a tremendous amount of information that the debugger must present to the user in

order to explain the optimizations. The CXdb debugger [Brooks et al. 1992; Streepy,
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Jr. 1994] highlights regions of the original source code to show the progress of pro-

gram execution and to explain the e�ects of optimizations. Since only the original

source code is displayed, the mappings between the executing code and the original

sources may present overall changes that are too complicated for the user to under-

stand, especially in the face of many composed transformations. Cool [1992] suggests

displaying a high-level representation of the original source code and the �nal trans-

formed output of the translator, using highlighting to indicate which portions of the

program have been executed. Cool limits his proposal (there does not appear to be

an implementation) to optimizations for software pipelining and loop unrolling.

The debugging system described in this dissertation solves the problem of explain-

ing the transformations to the user by allowing the user to view program snapshots

throughout the transformation process. These views can be presented at several dif-

ferent levels of abstraction, thereby allowing the user to ignore the minutiae of the

transformations while still obtaining a view of the transformation process at several

important transformational points. Note that, for the na��ve end-user, a view of the

original and �nal transformed versions may be all that is desirable. For a sophisticated

end-user, or for the transformation implementor, a view of intermediate transforma-

tions may be required. This dissertation shows how to provide these capabilities

without forcing a single debugging paradigm on the end-user or the implementor of

the program translator.

2.5 Expected Behavior Debugging of Optimized

Programs

2.5.1 Manual Recompilation

The simplest way to provide \expected behavior" debugging of optimized code is to

require that the programmer manually recompile the source code with optimizations

disabled, and then execute and debug the unoptimized program. Unfortunately, this

is the only way to obtain anything approaching expected behavior debugging us-

ing most contemporary production-quality debugging systems. I mention it here for

completeness.

Copperman [1993a] discusses two main reasons why disabling optimization is not

an acceptable debugging alternative: some languages have semantics which allow

multiple correct translations for a certain construct (e.g., the simpli�cation of 
oating-
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point expressions) so the behavior of a correct program may be di�erent with and

without optimization; and a program with a bug may have di�erent behaviors with

and without (correct) optimizations. For our work on Proteus [Prins and Palmer

1993], and for other work on research compilers, it may be impossible to disable

optimizations and still produce an executable program. In the case of Proteus, the

\optimizations" are actually source-to-source transformations which are an intimate

part of the compilation process. In the case of other languages, a similar situation

may occur (perhaps the code must be serialized or parallelized before it can execute

on the target architecture).

Other languages (e.g., Eiffel [Meyer 1988]) require that the program be recom-

piled with a debugging module before debugging can take place. This poses many of

the same problems as recompilation without optimization, and adds the additional

possibility of the included debugging subsystem perturbing the program, eliminating

or changing the behavior that is being debugged.

2.5.2 Restricted Optimizations

Another common approach to the debugging problem is to restrict the set of optimiza-

tions that are allowed. This is also a common technique for increasing debuggability

in both production compilers (e.g., gcc) and research compilers. For example, when

debugging is performed, the Sisal compiler [Cann 1992] requires disabling interesting

and desirable parallelizing optimizations.

As will be discussed below, even some of the more aggressive techniques for pro-

viding expected behavior debugging require limiting the optimizations performed by

the compiler. As research has progressed, methods for avoiding limitations have been

described. However, aggressive loop, vectorizing, parallelizing, and 
attening opti-

mizations still have to be restricted.

2.5.3 On-the-Fly Deoptimization

Pollock and So�a [1988] propose a program representation that allows the debugger

to derive the unoptimized program when necessary. Optimizations and notations

for code that has been eliminated, moved, or replaced are made in an optimization

history. Debugging queries are speci�ed by the user, and portions of the program are

then recompiled with some optimizations disabled. Debugging is performed on the

new executable which contains some mix of fully optimized, partially optimized, and
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unoptimized code.

H�olzle et al. [1992] discuss a technique for dynamic deoptimization of programs

written in SELF, a pure object-oriented programming language designed for rapid

prototyping of code, which provides expected behavior debugging. As implemented,

the system performs run-time compilation of SELF code, using optimized procedures

when possible, and re-compiling unoptimized procedures when those procedures are

being debugged (after debugging, the optimized versions can replace the unoptimized

ones). Similar techniques could be used with a \fat" binary executable that con-

tains two versions of all procedures: one version optimized and the other version

unoptimized.

The techniques outlined by H�olzle et al. [1992] are applicable to many com-

mon scalar optimizations, including dead code elimination, strength reduction, global

common-subexpression elimination (cse), loop unrolling, and code hoisting. Interest-

ing object-oriented optimizations that can be dynamically undone in SELF include

inlining of methods, customization (multiple versions of polymorphic object methods

are produced by the compiler, each one customized for a particular type, allowing

static binding and inlining of otherwise dynamically-dispatched procedure calls), and

splitting (a similar customization of expressions for speci�c types).

H�olzle et al. speci�cally restrict dead store elimination and tail recursion opti-

mizations. More generally, however, optimizations are unrestricted only between

well-de�ned interrupt points occurring in method prologues and at the end of loop

bodies. Global optimizations (or local optimizations that cross interrupt points) are

not allowed.

In contrast to the work of Zellweger [1984], discussed below, the SELF debugger

allows for generalized single stepping and the ability to continue execution until the

end of a procedure (the �nish debugger command). Asynchronous breakpoints, how-

ever, are delayed until the next interrupt point. Setting breakpoints involves code

modi�cation (a call to the debugger is inserted) and recompilation of the method.

For his Loipe system, Feiler [1982] uses transparent incremental recompilation

for debugging when a user sets a breakpoint, but, in contrast to H�olzle et al., does

not dynamically recompile procedures that are currently executing. Instead, users

can adjust the level of initial optimization.

Dynamic recompilation (or \deoptimization") solves a few of the problems of us-

ing unoptimized code for debugging: the recompilation is transparent to the user, and

is selective, allowing the rest of the program to execute at full speed. However, other
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problems are not solved: the optimized and unoptimized code may still behave dif-

ferently, and this technique is not applicable when the optimizations must be applied

to ensure the program will execute.

2.5.4 Detection and Recovery of Noncurrent Variables

Hennessy [1982] introduces the notion of noncurrent variables: \variables whose val-

ues do not correspond to those in the original program". Variables may be noncurrent

at a particular point in a program because optimizations have caused a value to be

assigned too early (e.g., code hoisting) or to be obsolete (e.g., dead store removal).

Hennessy provides algorithms for identifying noncurrent variables, and suggests

modi�cations to the expression dag (directed, acyclic graph) to allow reconstruction

of the values that the variables should have in the unoptimized version of the program.

Several logical errors in these algorithms are corrected by Wall et al. [1985]. Although

some of Hennessy's work may be extended to global optimizations, his main emphasis

is on local optimizations. Copperman and McDowell [1993] extend Hennessy's algo-

rithms and provide a brief review of contemporary attempts to solve the currency

problem in general.

2.5.4.1 Generalizing the Currency Problem

Copperman [1993a,b, 1994] concentrates on providing expected behavior debugging

for a wide range of optimizations. His

. . . work is applicable in the presence of any sequential optimizations that
either do not modify the 
ow graph of the program or modify the 
ow
graph in a constrained manner. Blocks may be added, deleted, coalesced,
or copied; edges may be deleted, but control 
ow may not be radically
changed. [Copperman 1993b, p. 5]

Examples of optimizations that are not supported include loop interchange and

replacement of a bubblesort by a quicksort routine. Again, the supported optimiza-

tions are similar to the common scalar optimizations shown in Figure 2.1, and the

more aggressive vectorizing and 
attening optimizations are not supported.

Zellweger [1984] implements a debugger that provides expected behavior for in-

line procedure expansion and cross-jumping. The debugger makes use of static infor-

mation generated at compile time, and (only when necessary) dynamic information

generated during execution (via the use of instrumentation that could change the

run-time characteristics of the program).
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Adl-Tabatabai and Gross [1994] examine how global optimizations e�ect variable

currency (the data-value problem). They take advantage of invariants preserved by

correct optimizations for code hoisting and dead code elimination. Their approach

is restricted to transformations that do not perform arbitrary code movement and

elimination.

In his dissertation, Adl-Tabatabai [1996] presents a detailed analysis of the prob-

lems caused by scalar optimizations and shows how to track the e�ects of these

optimizations so that expected behavior debugging can be provided. He implements

these techniques for the cmcc compiler, a retargetable optimizing C compiler.

Adl-Tabatabai's methods can handle common scalar optimizations such as those

shown in Figure 2.1. However, he does not consider loop transformations that are

applicable to parallelization or optimizations which improve memory use. Because

these transformations occur at such a high level of abstraction, he suggests that \the

best approach to handling loop transformations may be to expose these optimizations

to the user by rewriting the source to re
ect the e�ects of loop transformations" [Adl-

Tabatabai 1996, p. 163].

Generally, these systems require that some extra notations be added to the trans-

formations so that debugging can be performed. In the case of Zellweger, debugging

support for only two optimizations is provided, and each optimization requires sig-

ni�cant coding to provide the debugging. In the case of Adl-Tabatabai [1996], the

compiler transformations must annotate the ir with special markers and attributes

that depend on how the transformation changes the program. Sometimes the anno-

tation depends on an understanding of the semantics of the programming language.

In contrast, the debugging algorithms described in this dissertation (Chapter 3), as

implemented in the Khepera system (Chapter 4), track transformations based only

on low-level changes made to the ast|without any knowledge of program seman-

tics. The advantage of this approach is that the tracking is performed transparently,

without special aid from the transformation writer. The Khepera debugging system

is ready as soon as the transformations are written, and can be used immediately

to debug them. If desired, the implementor can later add special per-transformation

annotations to the ast and implement, for example, Adl-Tabatabai's algorithms on

top of the basic Khepera debugging system (this example is discussed in Chapter 5).
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2.5.4.2 Variable Ranges

As mentioned earlier, typical debuggers use tables that maintain a one-to-one cor-

respondence between source variables and memory locations. Coutant et al. [1988]

implemented a system for HP9000 Series 800 RISC-based compilers that maintains

range data for variables. For each variable, a map exists from machine code ad-

dresses (i.e., locations in the program) to memory locations, registers, or constant

values. When the value of a variable is requested, the address of the current break-

point is searched for in the table, and, if found, the current location of the variable

is used to display its value. If the variable has been subjected to constant folding,

then a constant is stored in the table. If the address is not found in the table, then

the variable is not current and this information is given to the user. No attempt to

reconstruct the value of noncurrent variables is made.

This technique concentrates on data-value problems. Statement boundaries are

tracked by labeling the �rst instruction associated with the statement. When state-

ments are moved or deleted, the label is moved to the next instruction.

These techniques solve the stated goal of \tracking the locations of a variable's

values from memory through registers", and appear to work well for low-level opti-

mizations. The set of optimizations and transformations discussed include: copy elim-

ination, register allocation, register spills, and instruction scheduling. Loop variables

that were eliminated due to strength reduction and induction variable elaboration

can be recreated by the debugger. Higher-level or aggressive global optimizations,

however, cannot be handled by the techniques presented.

2.5.5 Debugging Parallelized Programs

2.5.5.1 Dynamic Order Restoration and Structural Mapping

Cohn [1992] describes a theoretical framework for expected behavior debugging of

the execution of single address space, sequential programs on a distributed memory

MIMD machine.

Cohn identi�es two requirements for expected behavior debugging of parallelized

code: dynamic order restoration and structural mapping. Dynamic order restoration

reproduces the sequential ordering of the unparallelized program. Structural map-

ping creates a map from variables in the unparallelized program to variables in the

parallelized program (e.g., an array in the unparallelized program is spread over n

processors in the parallel version). These functions allow a debugger to provide a
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\sequential view of parallel execution" [Cohn 1992, p. 1].

Cohn requires the computations performed by the parallelized code to be imple-

mented in the same order as the computations performed in the sequential code (for

example, the replacement of a sequential reduction by a parallel reduction may make

it impossible to construct a debugger for the program [Cohn 1992, p. 23]). Because

of this restriction, Cohn's work is not readily applicable to languages that contain

explicit parallelism or to aggressive parallelizing compilers that perform complicated

transformations, such as the 
attening of nested-data parallelism.

The Khepera tracking algorithms discussed in this dissertation (see Chapter 4)

could be used to directly extend Cohn's work by providing support for the complicated

structural mapping required in the face of aggressive program transformations.

As with other expected behavior debugging schemes, Cohn's debugger may require

a program to be rerun from the beginning or to be run without full optimization

(which, in this case, means with reduced parallelism) [Cohn 1992, p.54]. Since Cohn

assumes that the parallelizing compiler is correct, his debugger does not have to

be able to debug the newly added interprocessor communications primitives (these

communications primitives are hidden from the user's view).

Cohn uses a 4-line matrix multiply program to demonstrate the transformations

necessary to debug after block and cyclic distributions have been performed.

2.5.5.2 Instant Replay

LeBlanc and Mellor-Crummey [1987] propose a method of saving the \relative order

of signi�cant events as they occur, not the data associated with such events". The

saved order of events is used to reproduce the execution behavior of parallel programs.

The idea of saving and replaying program state was probably �rst proposed by

Balzer [1969] for debugging serial codes. Balzer's system stored a large amount of

program history, and then provided an environment for writing routines to query the

history tape, thereby answering questions necessary for debugging the program.

2.5.5.3 Instrumentation

Gupta [1988] presents a technique that integrates the debugger with a trace scheduling

compiler for highly parallel VLIW machines. In this system, the programmer speci�es

monitor points and the compiler instruments the original code with the monitor.

This process is faster than recompiling the whole program, since the semantics of the

program do not change. However, instruction scheduling can be perturbed by the
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instrumentation, so the program being debugged is not exactly the program that will

be executed if all debugging is removed.

2.5.5.4 Reverse Execution

Automatic instrumentation of code is also proposed by Tolmach and Appel [1991] for

the debugging of Standard ML, a general purpose programming language with �rst-

class functions, strong typing, and polymorphism [Milner et al. 1997]. This system

supports data value discovery via reverse execution, which is implemented using a

combination of checkpointing and re-execution. The debugger is implemented in ML

entirely within the ML concurrency model.

2.5.5.5 Other Viewpoints

Fritzson [1983] describes an integrated programming environment that relies on in-

cremental compilation for debugging programs. Optimizations are restricted so that

they do not span statement boundaries.

Pineo and So�a [1991] present a technique of global renaming which enables the

debugging of transformed and parallelized sequential programs. This converts the

program into a single-assignment form, allowing the debugger to work on the par-

allelized version of the code, while presenting a sequential-source viewpoint of data

values to the programmer. Variable values are not available when code is moved

forward ahead of the current breakpoint, and code location problems are ignored.

2.5.6 Summary of Expected Behavior Debugging

Expected behavior systems devote a great deal of e�ort to hiding the e�ects of opti-

mizations and to discovering when these e�ects cannot be hidden. The set of accept-

able optimizations for which expected behavior debugging can be provided is small

when compared with modern optimization techniques. For these modern systems,

a single method that allows for debugging the transformation system and user pro-

grams is necessary: the overhead in implementing a single debugging system is often

too large for a research or prototyping environment.
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2.6 Truthful Behavior Debugging of Optimized

Programs

2.6.1 Non-Graphical Debugging

The FDS debugger [Warren, Jr. and Schlaeppi 1978] appears to be one of the �rst sys-

tems that attempted to provide truthful debugging in the face of optimization. The

system concentrates on identi�cation (and recovery) of noncurrent variables in the

face of some simple scalar optimizations, reporting when a variable use was deleted or

moved. The compiler/debugger system includes a \no source change" optimization

mode, which prevents the compiler from eliminating variable uses, but which allows

cse within a single statement and full optimization of compiler-generated tempo-

raries. The proposed implementation of this system relies on one-to-one maps from

a location in the original input program to a location in the generated output code

(microcode, in this case)|no attempt is made to report which optimizations cause

the changes.

2.6.2 Selective Highlighting

The convex1 CXdb debugger [Brooks et al. 1992; Streepy, Jr. 1994] provides truthful

behavior symbolic debugging in the face of aggressive optimizations. The compiler

provides detailed mappings between source statements and object code, enabling a

visual debugger to highlight interesting portions of the original source code during

the debugging process.

This approach is excellent for simple code motion, dead store elimination, cse,

and code sharing. However, when more complicated optimizations are performed,

the highlighted section of code may not be helpful to the programmer. For example,

the composition of loop inversion and loop reversal can still be visualized using the

highlighting technique. However, since the highlighting is performed on the original

source code, the portions of the program which are highlighted may span several lines

and may change radically while single stepping the program, confusing the user or

providing little understandable information.

The approach of Edelstein et al. [1992] is similar to that of Brooks et al.: a

mapping between source statements and object code is maintained and is used to

1
convex is a trademark of Convex Computer Corporation.
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provide truthful debugging with a visual interface.

2.6.3 Exposing the Transformation Process

One early transformational software system [Kuck et al. 1981] allowed the user to

manually display a snapshot of a program during the transformation process. These

displays, however, were designed to help the user understand the optimization process

so that other optimizations or transformations could be (manually) applied. This

work was not directed toward the understanding of the transformation process in

the context of debugging and is discussed in the next section along with other early

transformational programming systems.

Cool [1992] proposes, but does not implement, a system that explains software

pipelining and loop unrolling by displaying original source code and transformed

source code side-by-side in a window. No provisions are made for stepping through

transformations, and it is unknown how well this approach would work in the face of

more complicated transformations, especially when several are composed together on

the same few lines of code.

2.6.4 Summary of Truthful Behavior Debugging

Since expected behavior debugging is di�cult or impossible to provide for many opti-

mizations [Brooks et al. 1992], it is not suitable for a general method for implementing

debugging support. Expected behavior debugging may also require optimization-

speci�c support in either the compiler or the debugger [Zellweger 1984], thereby

increasing the complexity of the debugging support that must be provided by the

language implementer.

When compilers for novel languages are considered, expected behavior (even if it

could be provided in all cases) would most likely make compiler debugging a very

di�cult task:

1. Expected behavior would hide the implementation errors that led to the need

for debugging the compiler.

2. The reverse transformations necessitated by expected behavior might have been

implemented incorrectly.

In this case, truthful behavior would be superior, especially if the proper information

about the transformations could be provided.
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Users of novel compilers, especially those targeted at high-performance computers,

may want to see exactly how their program was transformed so they can adjust their

code for optimum performance (this interest has traditionally been demonstrated

among scientists using Fortran compilers on supercomputers: although the scien-

tists are not compiler implementors, they care very much how and in what ways their

programs are being optimized|I have already observed this behavior in sophisticated

end-users of the Khepera system who were not directly involved in the implemen-

tation of Khepera). Again, truthful behavior is desirable for these users.

The main problems with current truthful debugging systems are:

� The visual interfaces provided, which highlight the original source code, or

which show before and after views of transformed source code, are best used

when single-stepping through the program, and may become extremely con-

fusing when debugging code after complicated loop transformations have been

applied.

� Changes to the transforms must be made so that debugging can be supported

(compared with expected behavior systems, fewer changes are needed for truth-

ful debugging systems, but any additional work beyond writing the transforma-

tions themselves increases implementor overhead and the chances for program-

mer error|and may result in a decision not to implement debugging support).

I believe the ability to view intermediate forms of the transformed program, ei-

ther as an ast or as source-code in some extended language, will be more helpful

than just seeing the original source program. The ability to view these intermediate

transforms will provide valuable information to the transformation implementor and

to the dedicated programmer. Further, the ability to view the transformations at

di�erent levels of abstraction (e.g., as a single transformation, or as a related set of

transformations) will make the examination of many thousands of tiny transforma-

tions manageable for the human (in our Proteus-to-C translator, the translation of

a simple quicksort [Cormen et al. 1991, Chapter 8] program requires more than 5000

transformation applications).

When the optimizations being applied are common scalar optimizations, the in-

formation tracked by the system described in this dissertation can be used to aug-

ment existing debugging systems or future expected behavior systems (e.g., using

techniques described in [Zellweger 1984; Copperman 1993a; Adl-Tabatabai 1996]).

This augmentation can provide expected behavior debugging for scalar code, with
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truthful behavior fallback when more complicated vectorizing or parallelizing trans-

formations are involved. Signi�cantly, the support for truthful behavior debugging

can be provided in a manner that is transparent to the transformation writer|all of

the necessary support can be encapsulated in the low-level transformation engine.

2.7 Debugging Transformation Systems

The work on debugging transformational compilation systems is sparse. Loveman

[1977] presents one of the �rst papers suggesting that source-to-source transforma-

tions \. . . provide a coherent model of the compilation process for high level languages

and for much of code generation". In Loveman's early transformational compilation

system, there appear to be utilities available to print and manipulate the intermediate

representation, but there does not appear to be a way to navigate through a hierar-

chy of applied source-to-source transformations. Similarly, the system described by

Kuck et al. [1981] has the ability to \regenerate a source program" after each trans-

formational module has been (manually) applied. However, there is no provision for

navigating through snapshots of these source programs, or for posing or answering

debugging queries.

Partsch and Steinbr�uggen [1983] present an excellent overview of program trans-

formation systems (Partsch [1990] presents a more recent overview), but debuggability

is never a driving issue. In general, the composition of language translators and the

subsequent need to compose debuggers is not explored in this literature.

One powerful transformation system, Refine2, contains a complete, general pur-

pose programming language built on a Lisp system [Reasoning Systems 1990]. KIDS,

the Kestrel Interactive Development System, is a tool which runs in the Refine

environment and provides, among many other features, the ability to examine se-

quential snapshots from a program transformation sequence [Smith 1990]. However,

KIDS does not appear to provide any support for composing its information with a

pre-existing debugger, and it is unclear if su�cient information is even available to

support this level of debugging.

Bertot [1991] outlines a method of subject tracking for debugging interpreters

based on term rewriting of the �-calculus. Tip [1995] de�nes a more general system

of object tracking that is also used for debugging inside term rewriting systems. His

2
Refine is a trademark of Reasoning Systems, Inc.
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basic algorithm is to annotate the initial term and propagate origins during rewriting.

Both of these methods can be automated, so the author of the term rewriting rules

obtains transparent debuggability of the rewriting system. In this way, this work is

similar to Khepera's use of tracking to debug the translator. However, both systems

are restricted to interpretive languages implemented using a term rewriting system:

there is no attempt to provide answers to debugging questions that would be useful if

the system were composed with another compiler/debugger combination, and there

is no attempt to provide navigation forward and backward in the term rewriting

sequence.

Since these systems track terms, they are unable to track through a rewrite rule

that changes the term, even though the semantics are preserved. For example, the

following rewrite rule:

trans(plus(E1,E2))! seq(trans(E1),seq(trans(E2),add))

the tracking system is unable to track the plus to the add. In contrast, Khepera-

style tracking would either track the plus to the add or track the plus to the outer-

most seq, depending on how the transformation rule was written.

2.8 Conclusion

Hennessy [1982] did early work on the problem of providing expected behavior sym-

bolic debugging in the face of aggressive scalar optimizations. Theoretical and prac-

tical considerations of this goal have been advanced signi�cantly by Zellweger [1984],

Copperman and McDowell [1993], and Adl-Tabatabai [1996]. Unfortunately, the tech-

niques for providing expected behavior debugging are complicated and have not yet

found their way into widespread use in commercial debuggers. Also, during this time,

compilation techniques have changed dramatically, and there is now signi�cant inter-

est in parallelization, vectorization, and aggressive transformational optimizations

that are not be handled well by the expected behavior techniques currently proposed.

The Khepera system does not provide expected value behavior, but has several

advantages over systems which do:

1. Debugging information is tracked transparently at a low level of ast manipu-

lation. When writing a transformation rule, the implementor does not have to

make special provisions for the debugging system.
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2. Debugging information is tracked in the compiler, and does not require any

changes to the executable or restrictions in the type or complexity of transfor-

mations performed.

In my work, I have concentrated on a framework for symbolic debugging in the

face of aggressive non-scalar optimizations. This framework is targeted at high-level

language processors that are composed with existing compilers. The solution space

does not allow instrumentation, dynamic recompilation, or any other methods which

could perturb the run-time characteristics of the program being debugged. Further,

the solution requires minimal assistance from the transformation implementor and

does not restrict the type or complexity of transformations performed.

In the next chapter, I will provide an overview of the problem and solution spaces

being explored, and in Chapter 4, I will discuss an example implementation of the

proposed techniques.
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Chapter 3

Tracking Algorithms

3.1 Introduction

This chapter provides an overview of the problem and the desired solution techniques,

using examples from the literature for illustration. The transformational view of a

language processor is formalized and the basic elements of transformations (e.g., copy,

delete) are described. Each of these elements causes speci�c information about the

ongoing ast transformation to be tracked. This information can be used to answer

speci�c questions that are necessary to provide transformation replay and debugging

of the transformations and of end-user codes.

3.2 Overview

3.2.1 Problem

Expected behavior debugging of optimized code is viable only for a relatively small

set of scalar optimizations. As optimizations become more complicated or are ag-

gressively composed, the ability to provide expected behavior debugging becomes

increasingly di�cult. When vectorizing, parallelizing, or 
attening optimizations are

considered, expected behavior debugging, even if possible, may not be helpful to the

end-user.

Expected behavior debugging is seldom useful for the compiler implementor who

requires detailed knowledge of optimization application during the debugging process.

Further, providing expected behavior debugging greatly increases the complexity of

implementing a compiler and debugging system. In practice, commercial debuggers do



not consistently provide expected behavior [Copperman and McDowell 1993], either

because implementing expected behavior is too expensive or because programmers do

not give a high priority to expected behavior.

In contrast, Convex has created a commercial debugger [Brooks et al. 1992;

Streepy, Jr. 1994] that provides a truthful debugging environment. The Convex de-

bugger, however, displays all debugging information in terms of the original source

program using highlighting and graphical annotations. For complicated or composed

optimizations, the original source program cannot capture the essence of the opti-

mizations and convey that information to the user. As a partial solution to this

problem, Loveman [1977] suggested using views of the partially transformed program

as a means of explaining optimizations, but his work was not concerned with debug-

ging issues or with navigation between views of partially transformed programs.

Since many research and conventional compilers are written as language processors

using a transformational viewpoint [Pittman and Peters 1992; Cordy and Carmichael

1993; Appel 1997], the problem of providing truthful debugging with useful explana-

tions is explored in this dissertation within the framework of a transformational pro-

gramming system. The debugging capabilities and restrictions on debugging methods

will be discussed in the next two sections.

3.2.2 Desired Behavior

The debugging method described here, an example of which is implemented in the

Khepera system (see Chapter 4), concentrates on the ability to handle a large class

of transformations while providing truthful behavior (see Section 2.4) and while pro-

viding the ability to debug the transformation system itself (see Section 2.7). This

system provides:

� The ability to navigate through intermediate versions of the transformed pro-

gram.

� The ability to navigate through the transformations at multiple levels of trans-

formation abstraction. For example, the user can select a single transformation

and see how that transformation was applied to the ast, or the user can select

a set of transformations that collectively provide some abstract transformation

(e.g., cse) and see the e�ects of applying that set of transformations to the

ast.
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� The ability to provide speci�c services that support the debugging of the �nal

transformed output (see Section 2.1):

{ setting breakpoints,

{ determining current execution location (e.g., in response to a breakpoint

or program exception),

{ reporting a procedure traceback, and

{ displaying values of variables.

3.2.3 Desired Solution Techniques

The goal of this dissertation is to provide e�ective truthful debugging of the pro-

duction version of the optimized program|without changes that would impact the

run-time characteristics of the program. This implies that the solution presented here

cannot use any of the more invasive methods for providing debuggability:

� The compiler may not limit the optimizations performed when debugging is

allowed.

� The compiler may not insert any special instructions into the transformed pro-

gram for debugging support (i.e., the compiler will not instrument the program

in any way).

� The debugger may not dynamically recompile portions of the program.

� The debugger may not insert \silent breakpoints" or other instrumentation

into the program at run time (i.e., the only breakpoints that will a�ect program

execution are those inserted with the full knowledge and consent of the user).

Given these restrictions, which prohibit debug-time changes to the program, the

solution presented here must rely on:

1. debugging information computed during the compilation/translation phase, and

2. information available to a standard (i.e., non-invasive) debugger (e.g., the pro-

gram counter and call stack are available when the program encounters a user-

de�ned breakpoint or a run-time exception).
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10 int f(int x) f
11 return x + x ;

12 g

20 int g(int y, int z) f
21 int a = f(y);

22 int b = f(z);

23 return a + b;

24 g

�! 10 int f(int x) f
11 return x + x ;

12 g

20 int g(int y) f
21 int a = y + y ;

22 int b = z + z ;

23 return a + b;

24 g

Figure 3.1: Procedure Inlining Transformation

3.2.4 Code Location Problems

Previous solutions to examples of code location problems from the literature on sym-

bolic debugging of optimized code were discussed in Section 2.3.2 (page 12). In this

section, these examples will be used to explore the solution proposed in this disser-

tation. At times, the restrictions listed above will be too severe to provide the exact

information that other techniques have provided. In these cases, a slight relaxation of

the restrictions (e.g., permitting silent breakpoints) may be su�cient to provide the

same level of information provided by other techniques. However, debugging systems

can always be improved by collecting additional information and implementing algo-

rithms to handle speci�c cases. The especially interesting and novel component of the

debugging techniques proposed in this dissertation is that valuable debugging infor-

mation can be provided independent of the transformations. Special transformation-

speci�c debugging information can be added to the compilation system, but is not

required. This allows experimental transformations to be added and tested quickly|

without breaking the debugging system until the transformation is enhanced with the

appropriate debugging information.

3.2.4.1 Inline procedure expansion

The procedure inlining example from Section 2.3.2 (page 12) is shown in Figure 3.1.

The Khepera system would use the tracking algorithms to map syntactic elements

on line 11 (i.e., x or +) to corresponding syntactic elements on lines 11, 21, or 22.

If Khepera is composed with a standard debugger, such as dbx or gdb, the in-

formation derived from tracking could be used to set breakpoints at line granularity,
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30 if (a == b) f
31 x = 1;

32 y = 2 ;

33 z = 3;

34 g else f
35 x = 2;

36 y = 2 ;

37 z = 3;

38 g

�! 30 if (a == b) f
31 x = 1;

34 g else f
35 x = 2;

38 g
39 y = 2 ;

40 z = 3;

Figure 3.2: Cross-Jumping Transformation

since this is the only granularity supported by the underlying debugger. However,

if a debugger with more capabilities is available, then a �ner breakpoint granularity

will be possible. The HP1/DDE Debugger (dde) can set a breakpoint on an individ-

ual statement, even if more than one statement appears on a single line of source

code. The convex Visual Debugger (cxdb) provides even �ner granularity, allowing

breakpoints to be set on expressions within statements. If Khepera is composed

with such a debugger, then the information from the tracking system can be used to

set breakpoints at a �ner granularity.

3.2.4.2 Cross-jumping

The cross-jumping example from Section 2.3.2 (page 12) is shown in Figure 3.2. In

this example, the user set a breakpoint on line 32 or line 36 in the original source.

In contrast to Zellweger's silent breakpoint solution, Khepera would either set

the breakpoint on line 30 or 39, depending on how the transformation was written.

For example, say the transformation was written in the most na��ve way possible,

simply matching the if statement on line 30, copying the tail from the then part,

and deleting the tail in the else part. With this transformation, a breakpoint set on

line 32 would be tracked to line 39, but a breakpoint set on line 36 would be tracked

to line 30 (since line 36 was deleted, tracking uses the place where the transformation

rule matched). If the transformation implementor wrote a slightly more complicated

transformation rule, however, there would be a notation in the tracking information

that lines 32 and 36 are were copied to line 39, and that lines 33 and 37 were copied

1HP is a trademark of Hewlett-Packard Corporation.
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to line 40. In this case, setting the breakpoint on either line 32 or line 36 would result

in a breakpoint set on line 39.

As will be shown in later examples, the exact behavior of Khepera is dependent

on how the implementor wrote the transformations being tracked. If the implementor

takes absolutely no care when writing the transformation, then Khepera will provide

less precise information. With a small amount of care, the information provided by

Khepera can be much more precise. Note, though, that the overhead required

from the transformation implementor is still very small compared with the overhead

involved in implementing expected behavior debugging algorithms.

Since the tracking functions allow the transformation application to be unwound

and viewed at any intermediate tree, the debugging system can also show the user

the transformed code and allow the user to �ne-tune the placement of the breakpoint

in terms of the transformed output. This solution has several advantages:

� the debugger doesn't insert any silent breakpoints (which might unexpectedly

change the run-time characteristics of the program, especially if the silent break-

points are set inside an inner loop),

� the debugger displays precise information about the exact placement of the

breakpoint, avoiding surprises such as those that occur when code motion causes

a breakpoint intended to be inside a loop to be placed outside the loop,

� the user views the breakpoint in the local context of the transformed program,

and can adjust the position of the breakpoint using new information obtained

from this view, and

� the sophisticated end-user or transformation implementor can also adjust the

breakpoint in partially transformed views of the program (this might be espe-

cially helpful when the transformations terminate with machine code genera-

tion: viewing and setting breakpoint positions in the �nal transformed version

of the high-level code might be more helpful than doing so in the machine code

version).

3.2.4.3 Procedure Inlining Together With Cross-jumping

When both procedure inlining and cross-jumping are combined, the results can require

a many-to-many mapping. As shown in Figure 3.3, a breakpoint set in the original

code at either line 43 or line 46 will require breakpoints to be set in the transformed
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code at lines 50, 66, and 72. Depending on how the transformations were imple-

mented, Khepera would map a breakpoint on line 43 in the original source code to

lines 41, 61, and 67 or to lines 50, 66, and 72.

3.2.5 Data-Value Problems

Several examples of data-value problems were outlined in Section 2.3.3 (page 15).

For expected value debugging, one of the biggest problems is to determine variable

currency and to recompute expected values for noncurrent variables. The typical use

of currency determination algorithms occurs when a variable value is requested at

a speci�c breakpoint. Since the debug tracking described in this dissertation maps

syntactic elements in the original source program to syntactic elements throughout the

transformation process, semantic questions, such as those about the variable currency

at a breakpoint, cannot be answered using the tracking machinery. Instead, typical

questions that can be answered are:

� Given an assignment to a variable in the input source, where is the equivalent

assignment in the transformed source?

� Given a use of a variable in the input source, where is the equivalent use in the

transformed source?

The algorithms necessary to answer these questions are identical to the algorithms

used to answer questions about breakpoints.

The discussion of location problems has provided an introduction to the capabil-

ities of the tracking system, and the full discussion of variable value determination

and the data-value problem is deferred until Section 5.2.3 (page 123). Below, a more

formal view of the transformation process is presented and the details of the low-level

tracking are explained. Chapter 4 will show how these tracking algorithms are actu-

ally implemented in an example transformation system, and Chapter 5 will discuss

various applications that can be built using the Khepera system.

3.3 Formalism of Structure-Changing Program

Transformation

An ast T is a pair (N;E), where N is a �nite set of nodes, and E is a set of edges,

forming a rooted tree. Children are ordered from left to right under the parent node.
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38 int b;

39 int f(int x) f
40 int a;

41 if (x == 3) f
42 a = 1;

43 b = 2 ;

44 g else f
45 a = 2;

46 b = 2 ;

47 g
51 return a;

52 g

60 int g(int c) f
80 int n = f(c);

81 int m = f(d);

82 return n + m;

83 g

�! 38 int b;

39 int f(int x) f
40 int a;

41 if (x == 3) f
42 a = 1;

44 g else f
45 a = 2;

47 g
50 b = 2 ;

51 return a;

52 g

60 int g(int c) f

61 if (c == 3) f
62 n = 1;

63 g else f
64 n = 2;

65 g
66 b = 2 ;

67 if (d == 3) f
68 m = 1;

69 g else f
70 m = 2;

71 g
72 b = 2 ;

82 return n + m;

83 g

Figure 3.3: Procedure Inlining and Cross-Jumping Transformations
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Figure 3.4: Transformation Process

P is a syntactically and semantically well-formed program in the input language,

L, and T0 is an ast created by parsing P during the parsing step, �. T` is the

�nal transformed ast, and P 0 is a valid program, constructed from T`, in the output

language, L0. P 0 is constructed by \unparsing" the ast in the � step.

The transformation process is viewed as a sequential application of various trans-

formation functions, k = 0; : : : ; `; �k+1(Tk) = Tk+1, to the asts, as shown in Fig-

ure 3.4.

Although not all language processors are implemented in this way, the work pre-

sented here assumes this model since it can be used to implement a wide variety of

language processors, and this model is in widespread use in the research compiler

and domain-speci�c language communities. Recent textbooks on general compiler

design [Pittman and Peters 1992; Appel 1997; Muchnick 1997] have also advocated

the transformational approach for compiler implementation.

3.3.1 A Tree Transformation Library

An ast Tk = (N;E) is transformed into a new ast Tk+1 = (N 0; E 0) by the application

of a transformation function � . This transformation function matches some subtree,

�m, rooted at m in Tk and performs some sequence of operations on Tk. A subtree

�m contains m and all of the descendants of m, if any descendants exist. A match

identi�es some subset of �m. � can perform the following operations:

1. Update attributes on one or more nodes. Attributes are programmer-de�ned

values which are associated with a node. For example, an Integer node may

have an attribute which contains a 32-bit integer value.
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2. Add nodes to the tree.

3. Delete nodes from the tree.

A typical tree transformation library or system will support low-level functions

which will support the following basic abstractions:

Node create. Create a new node.

Node destroy. Destroy an existing node.

Node copy. Create a new node n1, and copy to n1 all of the attributes from an

existing node n0.

Subtree replacement. Replace a subtree, �m, with a new subtree, �n.

The library will also have other functions that insert new subtrees into the ast,

that disconnect and delete existing subtrees from the ast, and that perform other

abstract operations on the tree. However, for the purposes of tracking, only the

four low-level functions outlined above are of interest: node create, node destroy,

node copy, and subtree replacement. For example, consider an example of constant

propagation and constant folding shown in Figure 3.5.

�1 �rst matches a subtree consisting of a single identi�er that was assigned a

constant in a previous statement (b2), replaces the identi�er (b2) with a copy of the

constant node (21 is copied to 22), and deletes the subtree containing the previous

assignment (�=1
). An actual rule for constant propagation must perform more com-

plicated analysis, but this description is su�cient for this example.

�2 matches a subtree rooted at an addition node with two integer children (�+2
,

12, and 22) and replaces the matched subtree with a new integer node (32), having

an attribute that is the sum of the values of the two integer children.

3.3.2 Tracking the Transformations

The goals of the tracking system are to provide tracking of debugging information

that is:

1. independent of the transformation being performed, and

2. transparent to the transformation implementor.

45



StatementList StatementList StatementList

=

b 2

=

a +

1 b

=

a +

1 2

=

a 3

T T Ti i+1 i+2τ τ1 2

Ti

1) b1 =1 21
2) a2 =2 12 +2 b2

�1�!

Ti+1

2) a2 =2 12 +2 22

�2�!

Ti+2

2) a2 =2 32

Figure 3.5: Constant Propagation and Constant Folding

These two goals can be attained if the tracking takes place at a very low level in

the transformation engine: at the level of node and subtree creation and destruction.

This way, the tracking is performed transparently whenever the transformations are

applied, and the author of the transformation does not have to make any special e�ort

to guarantee that tracking is performed.

For su�cient data to be collected at the lowest level of the transformation engine,

the following assumptions are made:

� the index i of the current ast Ti is available;

� the current transformation � is available (� is the transformation which is ap-

plied to Ti to generate Ti+1);

� the subtree �m, at which � matched Ti, is available; and

� information relating the current transformation, � , to other semantically-related

transformations is available.

These assumptions are reasonable since this is a small amount of data that can be

made, at minimum, globally available within an implementation of the transformation

engine. Note that for a given tree Ti, a transformation � can only match at one

subtree|subsequent matches of the same rule are performed on subsequent subtrees.
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Given this information, tracking is performed by logging events to a database.

This database can be implemented as a 
at �le containing the tuples described below,

or as some more sophisticated data structure. Since matching and manipulating the

ast can be viewed at several levels of abstraction, changes to the ast can be tracked

in several ways:

1. A transformation function � matches a subtree �m and transforms the ast Tk

into the ast Tk+1. This can be denoted by the following tuple:

(k; �; �m) (3.1)

The type signature for this tuple is:

tree index� rule� subtree

2. The transformation function � changes the ast by manipulating subtrees. A

speci�c subtree can be deleted, copied, or replaced. For the algorithms described

later in this chapter, replacement is the only low-level operation on subtrees that

must be tracked:

(k; �; �m; replace; �old; �new) (3.2)

The type signature for this tuple is:

tree index� rule� subtree � \replace"� subtree� subtree

3. Ultimately, the functions that operate on subtrees modify individual nodes. A

node can be created, deleted, or copied. These operations can be denoted by

the following tuples:

(k; �; �m; create; nnew) (3.3)

(k; �; �m; delete; nold) (3.4)

(k; �; �m; copy; (nold1 ; nold2 ; : : : ; noldc); nnew) (3.5)
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The type signatures for these tuples are:

tree index� rule� subtree � \create"� node

tree index� rule� subtree � \delete"� node

tree index� rule� subtree � \copy"� list of nodes� node

In addition to the ability to track nodes and subtrees, more abstract tracking is also

possible. For example, a high-level compiler optimization, such as constant folding,

may be implemented using a set of transformation functions, f�1; �2; : : : ; �ng, which

should be considered together. For the rest of this section, however, only the lower-

level abstractions will be discussed, since these abstractions provide a foundation for

any additional tracking that is performed.

The tuples described above can be collected as the ast is undergoing transforma-

tion, and can be associated with the nodes that are a�ected by the changes described

by the tuple. For example, the tuple (k; �; �m) a�ects all of the nodes in Tk and Tk+1,

whereas the tuple (k; �; �m; replace; �old; �new) tuple a�ects only the nodes in the �old

and �new subtrees.

Continuing the example from Figure 3.5, the transformations would cause the

tuples shows in Figure 3.6 to be logged. Examples in Section 3.4.3 and Section 3.4.4

will show how these tuples can be used to answer typical debugging questions.

Given a node n, all of the tuples which a�ected this node can be examined. The

implementation of this capability will be discussed in Chapter 4, which details the

Khepera transformation system. Next, ways of using this information to provide

debugging capabilities for both the end-user and the transformation implementor will

be explained.

3.4 Algorithms for User-Level Debugging

3.4.1 Overview

Assuming that the tuples outlined above are used in conjunction with a standard

debugger for the target language L0, they provide su�cient information to perform the

following fundamental debugging functions by interactive with the tracking engine,

as outlined in Figure 3.7:
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StatementList StatementList StatementList

=

b 2

=

a +

1 b

=

a +
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=

a 3

T T Ti i+1 i+2τ τ1 2

Ti

1) b1 =1 21
2) a2 =2 12 +2 b2

�1�!

Ti+1

2) a2 =2 12 +2 22

�2�!

Ti+2

2) a2 =2 32

(i; �; �b2) (3.6)

(i; �; �b2 ; create; 22) (3.7)

(i; �; �b2 ; copy; (21); 22) (3.8)

(i; �; �b2 ; replace; �b2 ; �22) (3.9)

(i; �; �b2 ; delete; b2) (3.10)

(i; �; �b2 ; delete; b1) (3.11)

(i; �; �b2 ; delete;=1) (3.12)

(i; �; �b2 ; delete; 21) (3.13)

(i + 1; � 0; �+2
) (3.14)

(i + 1; � 0; �+2
; create; 32) (3.15)

(i + 1; � 0; �+2
; replace; �+2

; �32) (3.16)

(i + 1; � 0; �+2
; delete; 12) (3.17)

(i + 1; � 0; �+2
; delete;+2) (3.18)

(i + 1; � 0; �+2
; delete; 22) (3.19)

Figure 3.6: Example Logging of Tuples
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Figure 3.7: Debugging

Set a breakpoint. A syntactic element in P or a semantic element in Tk can be

mapped to a line in P 0.

Determine the current execution point. When a breakpoint or program excep-

tion is reached, a standard debugger will identify a line in P 0. This information

can be mapped backwards through the transformations, to P .

Display a value of a variable. An instance of a variable in P can be be selected

and mapped to that corresponding variable or variables in P 0. Transformations

that performed data type changes or variable elimination can be identi�ed and

explored. This use is di�erent from the mapping in a standard debugging system

between a variable value and its location in memory. The goal here is to explain

what happened to a variable during the transformation process, and to report

locations in the transformed code that correspond to assignments or use of the

variable in the original source code.

Display a procedure backtrace. In the same way that the current execution point

is determined, each call in the procedure backtrace can be mapped to some point

in Tk or P .

3.4.2 Algorithms

In this section, the algorithms necessary to answer the usual questions asked by a

user-level debugger will be discussed.

When answering debugging questions about the program transformation system,

a set of nodes S will be selected in some tree Ti, and a related set of nodes S 0 will be
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reported in another tree Tj.

In general, the set of nodes, S, which is being tracked should be as small as possi-

ble, growing only when a node being tracked is copied. Further, nodes being tracked

should remain as closely associated as possible. Hence, the tracking algorithms will

�rst examine node-speci�c tracking information, then subtree-replacement informa-

tion, and will use rule subtree-matching or ancestor information as a last resort.

3.4.3 Setting a Breakpoint

When setting a breakpoint, a syntactic element in P (or a node in some Tk) must be

mapped to a syntactic element in P 0. The algorithm Track-Breakpoint, shown in

Figure 3.8, describes how a set of syntactic elements S, in Tk, are tracked to other

syntactic elements S 0, in T`. Remember that T0 is created from the initial parse of

P , and that P 0 is created by unparsing T`.

Usually, the user will set a breakpoint by selecting nodes in T0. However, to

have better control over the breakpoint, the user may navigate through the various

intermediate trees, and set a breakpoint in some Tk.

The Track-Node-Forward algorithm, shown in Figure 3.9, tracks nodes be-

tween consecutive trees. This algorithm calls itself recursively since rule � may create

temporary nodes and then use copies of those nodes for insertion into the new tree.

Within a single rule application, node creation (e.g., via a copy operation) is unique,

so there will never be a situation where creation loops exist (e.g., node a is copied

to node b and then node b is copied back to node a). Therefore, this algorithm will

terminate.

Continuing the example in Figure 3.6, if the user places a breakpoint on +2 in Ti,

the following tracking is performed by Track-Breakpoint((+2); i; i+ 2):

Tree Tracking Contents of S

(start) +2

i +2 isn't changed in Ti, so S doesn't change

for Ti+1

+2

i + 1 +2 is deleted and replaced in Ti+1:

remove +2 from S ?

insert 32 into S 32

Therefore, in Ti+2, S will contain 32 as the node on which to set the \breakpoint". If

machine code were being generated during the compilation process, this might result
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Track-Breakpoint(S; k; `) returns S0

Input:
k, the index of the tree Tk where the breakpoint is speci�ed (by the user)
`, the index of the tree on which the breakpoint should be set (by the debugger)
S, the set of nodes in Tk on which the breakpoint should be placed

Output:
S 0, the set of nodes in T` on which the breakpoint should be placed

Notes:
k < `
(i; �; �m) describes the Ti ! Ti+1 transformation.

Algorithm:
t S
for i in k; k + 1; : : : ; ` do

S 0  ?

for n in t do
S 0  S 0[ Track-Node-Forward(n; k)

t S 0

End of Track-Breakpoint

Figure 3.8: Track-Breakpoint Algorithm
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Track-Node-Forward(n; i) returns A
Input:

n, the node to be tracked
i, the index of the tree Ti in which the node appears

Output:
A, the set of nodes, in Ti+1, to which n tracks

Notes:
(i; �; �m) describes the Ti ! Ti+1 transformation.
S is the global set of logged tuples.
o and x are bound by the tuple match operation.

Algorithm:
A n
for tuples in S matching (i; �; �m; copy; (: : : ; n; : : :); x) do

A A [Track-Node-Forward(x; i)
if any tuple in S matches (i; �; �m; delete; n) then

Remove n from A
if any tuple in S matches (i; �; �m; replace; �n; �x) then

A A [Track-Node-Forward(x; i)
else if A = ? then

if any tuple in S matches (i; �; �m; replace; o; x) 3 n 2 �o then
A A [Track-Node-Forward(x; i)

else if n 6= m then
A A [Track-Node-Forward(m; i)

else
A A [Track-Node-Forward(parent(m); i)

End of Track-Node-Forward

Figure 3.9: Track-Node-Forward Algorithm
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in a breakpoint being set on an immediate load instruction. Alternatively, certain

nodes in the output language may be denoted as nodes at which breakpoints are

possible. If 32 wasn't this type of node, the debugger may ascend the ast in search

of a more reasonable node type, perhaps placing the breakpoint on the =2 node.

3.4.4 Determining the Execution Points

When determining the execution point (e.g., of an exception or a breakpoint), a

syntactic element in P 0 (or a node in T`) must be mapped to a syntactic element

in P . The algorithms Track-Execution-Point, shown in Figure 3.10, and Track-

Node-Backward, shown in Figure 3.11, describe how a set of syntactic elements S,

in T`, are tracked backward to another set of syntactic elements S 0, in T0.

Usually, the set of syntactic elements S are generated by relating the report from

the composed debugger to P 0, the �nal transformed output. Syntactic elements on

P 0 can be related to nodes on T`. More generally, S can be selected on some arbitrary

tree, Ti, and mapped back to some other arbitrary tree, Tj.

Determining an execution point is, essentially, the reverse of this forward-tracking

process. Considering the example from Figure 3.6, if =2 was the execution point,

then Track-Node-Backward would have tracked this node back to the original =2

in Ti. The backward tracking of 32 is more interesting because it must be tracked

through two tree transformations:

Tree Tracking Contents of S

(start) 32

i + 1 32 is created, replacing +2:

remove 32 from S ?

insert +2 into S +2

i +2 isn't changed in Ti +2

Therefore, in Ti, S will contain +2 as the node from which the execution point tracked.

3.5 Algorithms for Transformation Debugging

3.5.1 Simple Replay

The set of (k; �; �m) tuples, for k = 0; 1; 2; : : : ; `, describe the complete transformation

process from T0 to T`. Iterating over these tuples and reapplying the transformations
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Track-Execution-Point(S; `; k) returns S0

Input:
`, the index of the tree where execution has stopped
k, the index of the tree Tk where the execution point should be reported
S, the set of nodes in T` on which execution has stopped

Output:
S 0, the set of nodes in Tk on which the execution point should be reported

Notes:
k < `
(i� 1; �; �m) describes the Ti�1 ! Ti transformation.

Algorithm:
t S
for i 2 `; `� 1; : : : ; k do

S 0  ?

forn in t do
S 0  S 0[ Track-Node-Backward(n; k)

t S 0

End of Track-Execution-Point

Figure 3.10: Track-Execution-Point Algorithm
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Track-Node-Backward(n; i) returns A
Input:

n, the node to be tracked
i, the index of the tree Ti in which the node appears

Output:
A, the set of nodes, in Ti�1, to which n tracks

Notes:
(i� 1; �; �m) describes the Ti�1 ! Ti transformation.
o1, o2, . . . , oc, and c are bound by the tuple match operation.

Algorithm:
A n
for tuples in S matching (i� 1; �; �m; copy; (o1; o2; : : : ; oc); n) do

for j = 1; 2; : : : ; c do
A A [Track-Node-Backward(oj; i)

if any tuple in S matches (i� i; �; �m; create; n) then
Remove n from A
if any tuple in S matches (i� 1; �; �m; replace; �x; n) then

A A [Track-Node-Backward(x; i)
else if A = ? then

if any tuple in S matches (i� i; �; �m; replace; o; x) 3 n 2 �x then
A A [Track-Node-Backward(o; i)

else
A A [m

End of Track-Node-Backward

Figure 3.11: Track-Node-Backward Algorithm
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provides a simple way to navigate between the trees. Since unparsing support exists

for intermediate trees as well as for T0 and T`, the intermediate views can be presented

using the notations of a high-level language. The language may be an intermediate

between the input language L and the output language L0, but would probably be

more readable than a simple Lisp-like S-expression [McCarthy 1960] rendering of the

ast. The ability to provide intermediate views of the transformation process is not

a feature that traditional debuggers or common transformation systems support.

Pro�ling data from the pre-Khepera Proteus-to-C translator indicate that the

time needed to apply the transformations themselves represents less than 0.5% of

the total compilation time. With the Khepera-based Proteus-to-C translator,

great care has been taken so that transformation determination is rapid|hence, the

translator runs faster, and transformation application requires a larger percentage of

run time (roughly 40{60% in the current version).

3.5.2 Example Queries

Given the ability to replay the transformation process, and to navigate between two

successive trees, the transformation implementor may want to pose debugging queries

of the following form:

� The programmer may want to look at two successive asts and view or highlight

the the updated portions.

� The programmer may want to identify \interesting" nodes on the ast and view

only the transformations that involve this part.

These and other queries can be easily supported using the tracking information

stored during the transformation process. Queries of this sort are not supported by

any other debugging or transformation system.

3.5.2.1 Finding Updates

Given Tk and Tk+1, the updated nodes of the trees can be found with the Find-

Updates algorithm shown in Figure 3.12. Considering the example from Figure 3.5

and the tree Ti, Find-Updates(i) returns:

U = (b2; b1; =1; 21)

U 0 = (22)
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Find-Updates(k) returns (U;U 0)
Input:

k, the index of the tree Tk which should be compared with Tk+1

Output:
U , the set of nodes, in Tk, which are tracked to Tk+1

U 0, the set of node, in Tk+1, which were tracked from Tk

Notes:
(k; �; �m) describes the Tk ! Tk+1 transformation.

Algorithm:
U  ?

U 0  ?

for tuples in S matching (k; �; �m; delete; x) do
U  U [ x

for tuples in S matching (k; �; �m; copy; (o1; o2; : : : ; oc); x) do
U  U [ (o1; o2; : : : ; oc)
U 0  U 0 [ x

for tuples in S matching (k; �; �m; create; x) do
U 0  U 0 [ x

End of Find-Updates

Figure 3.12: Find-Updates Algorithm

3.5.2.2 Finding Next \Interesting" Transformation

Given the current tree Tk and a set of \interesting" nodes S, the Find-Next algorithm

shown in Figure 3.13 will determine the next pair of trees, Ti and Ti+1, where some

or all of the nodes in S are updated. For example, considering the example from

Figure 3.5, Find-Next(i� 1; (+2)) returns i + 1, since that is the �rst tree on

which +2 was modi�ed.

Algorithms similar to this one allow the transformation implementor to select a

set of nodes in Tk and request that the next pair of trees where some of those nodes

are used or changed be displayed. This algorithm �nds the pair of trees where nodes

in S were deleted or copied. Other algorithms which are useful for debugging might

be ones that �nd only the trees where deletion took place, or only trees where all of

the nodes in S were used or destroyed.
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Find-Next(k; S) returns i
Input:

k, the index of the tree Tk that should be compared with Tk+1

S, the set of nodes in Tk that should be tracked until copied or destroyed
Output:

i, the index of the tree Ti where nodes in S were copied or destroyed
Notes:

(k; �; �m) describes the Tk ! Tk+1 transformation.
If, at algorithm termination, i = `, then none of the nodes in S were used or

deleted between Tk and T`.
Algorithm:

for i 2 k; k + 1; : : : ; ` do
if any tuple in S matches (i; �; �m; delete; n) 3 n 2 S return i
if any tuple in S matches (i; �; �m; copy; (: : : ; n; : : :); x) 3 n 2 S return i

End of Find-Next

Figure 3.13: Find-Next Algorithm

3.5.2.3 Other Queries

The Track-Node-Forward and Track-Node-Backward algorithms can be also

be used to debug the transformation system. These algorithms can answer questions

about how a node was transformed between the input program and the output pro-

gram, or how a syntactic element in the �nal transformed version of the program

relates to the original input program.

3.6 Conclusion

In this chapter, algorithms for tracking information and answering debugging queries

were presented. These algorithms are designed for use in a high-level language proces-

sor built using a transformational programming system based on tree manipulation.

Tracking of debugging information is performed at the lowest levels of tree manipu-

lation in a manner that is independent of the semantics of the transformations being

applied.

The information tracked can be used to answer questions from a composed de-

bugger to allow breakpoint setting or execution point determination. Questions from
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the debugger about variable values can be answered, thereby helping the composed

debugger to explain program transformations which might change the expected value

of a variable.

Further, the information can be used to answer questions that will help debug the

transformation system itself. These queries can be used by the transformation imple-

mentor during the implementation and debugging phase of the program translator,

or they can help a sophisticated end-user understand how the transformation system

changed the program being debugged.

The next two chapters will:

� OutlineKhepera, a prototype implementation of a transformation system that

performs the tracking outlined here, including slightly more complicated trans-

formational examples.

� Explore substantially more complicated examples taken from our work with

Proteus.
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Chapter 4

The Khepera Transformation

System

The Khepera system is a toolkit for the rapid implementation and long-term main-

tenance of research compilers and processors for domain-speci�c languages (DSLs)

[Faith et al. 1997]. Khepera emphasizes the construction of processors which trans-

late from one high-level language to another. So, while Khepera may be useful for

implementing front-ends for more general compilers, it does not currently provide spe-

cialized support for code generation. Khepera supports the viewpoint that program

translators are most easily implemented with simple parsing, sophisticated tree-based

analysis and manipulation, and target source generation using pretty-printing tech-

niques.

In the context of this dissertation, the Khepera system �lls two main roles.

� First, the system provides an implementation of the algorithms outlined in

Chapter 3: the source-to-source transformation support provided by Khepera

transparently tracks debugging information, providing support for transforma-

tion replay and navigation, and for answering debugger queries.

� Second, Khepera provides support and sca�olding necessary for experimenta-

tion with performance-optimized tree-traversal and transformation algorithms.

At the end of this chapter, I present an algorithm for rapid tree traversal.

4.1 Goals for a Program Transformation Toolkit

The implementation of a program translator requires considerable overhead, both for

the initial implementation and as the language speci�cation evolves. A toolkit for



the construction of translators should leverage existing, familiar tools as much as

possible. Use of such tools takes advantage of previous implementor knowledge and

the availability of comprehensive resources explaining these tools.

Within a transformational model, a translator-building toolkit can simplify the

implementation process by providing specialized tools where pre-existing tools are

not already available, and by providing integrated support for debugging within this

framework.

The Khepera system facilitates both the problem of rapid translator prototyping

and the problem of long-term translator maintenance through the following speci�c

design goals:

Familiar, modularized parsing components. Khepera supports the use of

familiar scanning and parsing tools (e.g., the traditional lex and yacc [Levine et al.

1992], or the newer PCCTS [Parr 1997]) for implementation of a language processor.

Because Khepera concentrates on providing the \missing pieces" that help with

rapid implementation of language processors, previous programmer knowledge can

be utilized, thereby decreasing the slope of the necessary learning curve.

Familiar, 
exible, and e�cient semantic analysis. Khepera uses the source-

to-source transformational model outlined in Figure 4.1. This model uses tree-pattern

matching for ast manipulation, analysis, and attribute calculation. For tedious but

common tasks, such as tree-pattern matching, sub-tree creation, and sub-tree replace-

ment, Khepera provides a \little language" [Bentley et al. 1987; Bentley 1988] for

describing tree matches and for building trees. For unpredictable or language-speci�c

tasks, such as attribute manipulation or analysis, the Khepera little language pro-

vides an escape to a familiar general-purpose programming language (C). Standard

tree traversal orders are supported (e.g., preorder, postorder), as well as arbitrar-

ily complicated syntax-directed sequencing. Data-structure maintenance accelerates

pattern matches in standard tree traversal orders.

Familiar output mechanism. A pretty-printing facility is provided that can out-

put the ast in an easily readable format at any time. One strong advantage of this

pretty-printer when compared with other systems is that it will always be able to

print the ast, regardless of how much of the transformation has been performed. If

the ast is in the original input format or the �nal output format, then the pretty-

printed program will probably be executable in the input language L or the output
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Figure 4.1: Transformation Process

language L0. However, if the ast being printed is one of the intermediate trees, then

the output will use some combination of the syntax of L and L0, with a fallback to

simple Lisp-like S-expressions [McCarthy 1960] for ast constructs which do not have

well-de�ned concrete syntax. While the program printed may not be executable, it

does use a familiar syntax that is helpful for a human who is familiar with both

languages when replaying transformations during the debugging process.

Debugging support for language translation. Khepera implements the track-

ing algorithms described in Section 3.3.2, and includes a viewer which uses the debug-

ging algorithms from Section 3.4 to replay the transformation sequence and answer

questions about which transformations were applied at which points on the ast.

This is helpful when writing and debugging the language processor, as well as when

implementing a debugger for programs written in the experimental language itself.

Transformations are either written in the high-level Khepera language and are

transformed by Khepera into executable C with calls to the Khepera library (as

discussed in Section 4.4.7 and shown in Figure 4.9 and Figure 4.10); or the transfor-

mations are written using explicit calls to the Khepera library tree manipulation

functions. In either case, low-level hooks in the Khepera library track debugging

information when nodes or subtrees are created, destroyed, copied, or replaced. This

low-level information can be analyzed using the algorithms from Chapter 3 to provide

the ability to navigate through intermediate versions of the transformed program, and

the ability to answer speci�c queries that support the debugging of the �nal trans-

formed output:

� setting breakpoints,
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� determining current execution location (e.g., in response to a breakpoint or

program exception), and

� tracking variable use and transformation.

The tracking algorithms were presented in Chapter 3, a short example of how the

tracking data can be used to set a breakpoint will be shown in Section 4.4, and more

extensive debugging problems will be explored in Chapter 5.

4.2 Related Work

Khepera is similar to some compiler construction kits. However, these systems

usually restrict the scanning and parsing tools used [Grosch and Emmelmann 1990;

Bates 1996]; specify ast transformations using a low-level language, such as C [Tjiang

et al. 1992] (instead of a high-level transformation-oriented language); or require that

the ast always conforms to a single grammar speci�cation, making translation from

one language to another di�cult [Reasoning Systems 1990]. Several systems share

several of the limitations listed above, often because they provide some interesting

feature that is peripheral to the task of source-to-source transformation.

For example, txl [Cordy et al. 1991; Cordy and Carmichael 1993], while not

a complete compiler generation tool, is designed to perform source-to-source trans-

formations to provide a means of rapid prototyping of language extensions. The

language used to specify these transformations uses concrete syntax and depends on

the use of the txl parser, a top-down, fully backtracking parser that can handle any

context-free grammar. Using the input grammar for an \unparser" provides a means

of printing the output program. However, this dependence on a single input grammar

restricts the use of txl to same-language transformations. Also, the grammar can

be di�cult to write, since a poorly-constructed grammar can cause the parse to take

a long time to complete.

Sorcerer, from the PCCTS toolkit [Parr 1997], is the most similar toKhepera,

since it does not require the use of speci�c scanning and parsing tools, and since

it provides a little language in the style of lex and yacc with embedded proce-

dures written in another general-purpose programming language (e.g., C). Sor-

cerer and Khepera share abilities to describe tree structures and perform syntax-

directed translations; both support the writing of ast-based interpreters. In contrast,

Khepera also supports rule-based translations that do not require a grammar speci�-
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Figure 4.2: The Khepera Transformation System

cation for the ast; Khepera rules are suitable for writing compiler-required analysis

routines; and writing pretty-printer rules in Khepera does not require a complete

tree-grammar speci�cation. This allows pretty-printing to easily take place during

grammar evolution.

None of the previous systems, including Sorcerer, contain built-in support for

\replay" of transformations, or for automatic and transparent tracking of debug-

ging information. The transformation discovery and replay capabilities of Khepera

have been used to implement a viewer that presents intermediate views of the trans-

formation process, and that can answer typical queries posed by a debugger (see

Section 4.4.8).

4.3 Overview of Khepera

The Khepera library provides low-level support for:

� building an ast

� applying transformation rules to the ast

� unparsing the P 0 source code from the T` ast (the � \transformation")

An overview of the Khepera system is shown in Figure 4.2. Khepera encapsu-

lates low-level details of the language processor implementation: ast manipulation,

symbol and type table management, and management of line-number and lexical in-

formation [Faith 1996a]. On a higher level, library routines are available to support

pretty-printing (currently, with a small language to describe how to print each node

type in the ast), type inference, and tree transformation. The tree transformation
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routines include functions for tracking debugging information, as described in Chap-

ter 3 [Faith 1996b]. Further, the implementation of a little language (described in

Appendix A) supports a high-level description of the transformation rules. If trans-

formation rules are written in the Khepera language, or if they are written in an

ad hoc manner using the underlying Khepera ast manipulation library, then the

debugging tracking and transformation replay support will be automatically provided.

An overview of how the Khepera system �ts into a complete language trans-

lator implementation solution is shown in Figure 4.3. In the example shown in the

next section, various input speci�cations will be outlined. In general, various speci-

�cations are written that are processed by various intermediate processors. Some of

these processors may be familiar tools, such as lex and yacc. Others are new tools

contained in the Khepera toolkit. These processors generate, in this case, C code

that is then compiled by a native compiler, producing a language processor for the

speci�ed language.

The input speci�cations to the traditional processors, such as lex and yacc, make

calls to the Khepera library routines to track source line number and token o�set

information, and to build the initial ast. The input speci�cations to the Khepera

processors describe how to manipulate and print the ast. Some of these speci�cations

are optional. For example, if the lex speci�cation doesn't make all of the necessary

calls to the Khepera library, it may be impossible for Khepera to provide line

number information later in the transformation process. However, without this in-

formation, other features of Khepera will still be provided. For the initial language

implementation, the programmer may �nd it convenient to leave out a complete type

inference or pretty-printing speci�cation, relying on default behavior or assumptions

about the experimental language (e.g., that all of the variables are integers and do

not need type checking). As the experimental language becomes more complicated,

or as the implementation becomes more complete, these other speci�cations can be

added or enhanced as needed.

In Figure 4.4, the \Language Processor" from Figure 4.3 is expanded, showing the

components that are created from the language processor source code and showing

how the language processor executable is used during the compilation of a program

written in the experimental language. The input program is parsed, transformed,

and pretty-printed for compilation with a native compiler. All of the components of

the language processor make calls to the Khepera library, which provides support

for high-level functions, such as tree-manipulation and pretty-printing, as well as
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extensive support for low-level functions required by compiler implementors, such as

string pool or symbol table maintenance.

4.4 Example

A simple language translation problem based on Proteus [Prins and Palmer 1993;

Riely et al. 1995] will be used to illustrate the Khepera system. This example

language is a subset of Fortran 90 [Adams et al. 1992] with the addition of a nested

sequence data type and a sequence comprehension construct that can be used to create

nested sequences. The translation problem is to remove all sequence comprehension

constructs and replace them with simple data-parallel operations, yielding a program

suitable for compilation with a standard-conforming Fortran 90 compiler.

4.4.1 Example Language Syntax

The lexical elements of the experimental language are:

Id Int (/ /) ( ) + , : = in
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program ::= statement-list
statement ::= Id = expression
statement-list ::= statement

j statement-list statement
expr ::= Id

j Int
j expr + expr
j add( depth , expr )

j length( depth , expr )

j range( depth , expr )

j dist( depth , expr , expr )

j (/ expr-list /)
j (/ Id in expr : expr /)

expr-list ::= expr
j expr-list expr

depth ::= depth=Int

Figure 4.5: cfg for First Example Language

A program is described by the context free grammar (cfg) shown in Figure 4.5.

For this example, the array constructor notation from Fortran 90 is used to specify

literal sequences and a similar notation is used to specify the sequence comprehension

construct. However, the sequence comprehension construct creates arbitrarily nested,

irregular sequences. (In contrast, the array constructor from Fortran 90 can only

generate vectors or rectangular arrays.)

4.4.2 Example Language Semantics

As a convenience, every value in the example language is considered an element of

a sequence type. A sequence type includes a scalar base type and a depth. For

simplicity, only integer scalar types are considered. Zero-depth sequences are simply

scalars. Non-scalar sequences (i.e., with depth � 1) are written as lists of elements

between (/ and /) brackets; for example, (/ /) is the empty sequence, and

(/ (/ 1; 2 /); (/ 3; 4; 5 /); (/ /) /) is a sequence of three elements, a \sequence of

sequences of integers". All sequences have uniform depth.

Omitted here is a collection of type (inference) rules for the language that de�ne

a well-typed program (these rules would be trivial for this example, since only integer

scalar types are permitted). See Hindley [1969], Milner [1978], and Cardelli [1987] for

detailed information on polymorphic type systems.
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4.4.2.1 Primitive Operations

Primitive operations of arity ` are applied by writing p(depth= d; a1; : : : ; a`), where p

is a primitive operation (add, length, range, or dist), a1; : : : ; a` are the arguments,

and d is the depth at which the operation is to be applied. If d is zero, the application

is basic, otherwise it is lifted [Riely et al. 1995]. To avoid error, the nesting structures

of the arguments must be identical down to depth d. For example,

add( depth= 0; 5; 6 ) = 11

add( depth= 1; (/ 4; 3; 1 /); (/ 3; 6; 7 /) ) = (/ 7; 9; 8 /)

add( depth= 2; (/ (/ /); (/ 2; 3 /) /);

(/ (/ /); (/ 7; 1 /) /) ) = (/ (/ /); (/ 9; 4 /) /)

Below, I give extensional descriptions of the sequence primitives:

� add performs addition on the elements of a sequence, returning a sequence with

the same depth as the two arguments. A special notation with depth= 0, using

in�x notation is allowed: a + b
def
= add(depth= 0; a; b). Examples are shown

above.

� length returns the length of its argument. For example:

length( depth= 0; (/ 9; 8; 7; 6 /) ) = 4

length( depth= 0; (/ (/ 9; 8; 7 /); (/ 6; 5 /) /) ) = 2

length( depth= 1; (/ (/ 9; 8; 7 /); (/ 6; 5 /) /) ) = (/ 3; 2 /)

� range is the iota function from apl. For any value of n and all integer values

of d,

length( depth= d; range( depth= d; n ) ) = n

For example:

range( depth= 0; 5 ) = (/ 1; 2; 3; 4; 5 /)

range( depth= 1; (/ 2; 3 /) ) = (/ (/ 1; 2 /); (/ 1; 2; 3 /) /)
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� dist distributes a value, making a number of copies. For all values of c and n,

and for all integer values of d,

length( depth= 0; dist( depth= d; c; n ) ) = n

For example:

dist( depth= 0; 1; 5 ) = (/ 1; 1; 1; 1; 1 /)

dist( depth= 1; (/ 1; 2 /); (/ 2; 3 /) ) = (/ (/ 1; 1 /); (/ 2; 2; 2 /) /)

4.4.2.2 Sequence Comprehension

For an expression, e with free variable i, the sequence comprehension

(/ i in A : e(i) /)

yields the sequence of successive values of e obtained when i is bound to successive

values in A. For example, the sample program:

A = range(depth = 0, 3);

B = (/ i in A: i + i /);

C = (/ i in A: (/ j in range(depth = 0, i): i /) /)

yields:

A = (/ 1, 2, 3 /)

B = (/ 2, 4, 6 /)

C = (/ (/ 1 /),

(/ 2, 2 /),

(/ 3, 3, 3 /) /)

4.4.3 Example Translation

A program is viewed in terms of the ast corresponding to the cfg of Section 4.4.1.

In the ast, an application of one of the four basic operations is written as a function
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application node (N Call) with the operation to be applied described by the left-most

child and a depth attribute that is 0. The other children of the node are expressions

for each of the arguments.

The following 3 rules can be used to eliminate all sequence comprehension con-

structs from the ast:

Rule 1

(/ x1 in e1 : x1 /) �! e1

Rule 2 Provided e2 is an Id or Int, and e2 6= x1,

(/ x1 in e1 : e2 /) �! dist( depth= 0; e2; length( depth= 0; e1))

Rule 3 Provided p is a primitive operation (add, length, range, or dist),

(/ x1 in e0 :

p( depth= d;

e1; : : : ; en ) /)

�!

p( depth= d+ 1;

(/ x1 in e0 : e1 /);

: : : ;

(/ x1 in e0 : en /) )

The resultant ast can be written out as Fortran 90. Given an appropriate

implementation of the primitive functions, the resultant program speci�es fully par-

allel execution of each sequence comprehension construct, regardless of the degree of

nesting and sequence sizes.

For example, using these rules, the program from Section 4.4.2.2 (page 71) would

be transformed as follows:

A = range(depth=0, 3)

B = add(depth=1, A, A)

C = dist(depth=1, A, length(depth=1, range(depth=1, A)))

Note that functions with depth = 0 operate on scalar arguments, whereas functions

with depth � 1 operate on nested sequence arguments.

When the source language is more expressive and optimization becomes an issue,

the rules shown here are not necessarily terminating, hence additional sequencing

rules must be added to control rule application [Palmer 1996].
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NL nn
...

%%

<STARTOFLINE>f
.*fNLg src_line(yytext,yyleng); yyless(0); BEGIN(OTHER);

.* src_line(yytext,yyleng); yyless(0); BEGIN(OTHER);

g
...

fNLg BEGIN(STARTOFLINE);

Figure 4.6: Storing Lines While Scanning

4.4.4 Scanner

The ast is constructed using a scanner and parser generator of the implementor's

choice with calls to the Khepera library ast construction routines. At the level

of the scanner, Khepera provides support for source code line number and token

o�set tracking. This support is optional, but is very helpful for debugging. If the

implementor desires line number and token o�set tracking, the scanner must interact

with Khepera in several ways.

First, each line of source code must be registered. In versions of lex that support

states, providing this information is trivial (although ine�cient), as shown in Fig-

ure 4.6: each line is captured in the STARTOFLINE state, and then the lexer's input

bu�er is reset so that the OTHER state can parse the tokens in the line. For other scan-

ner generators, or if scanning e�ciency is of great concern, other techniques can be

used. The routine src_line stores a copy of the line using low-level string-handling

support. While the routines used in these examples are tailored for lex semantics,

the routines are generally wrapper routines for lower-level Khepera functions and

would, therefore, be easy to implement for other front-end tools.

Second, line number information generated by the C preprocessor must be inter-

preted correctly. This requires a simple lex action:

^#n .* src_cpp_line(yytext, yyleng);

Finally, every scanner action must advance a pointer to the current position

on the current line. This is accomplished by having every action make a call to

src_get(yyleng), a minor inconvenience that can be encapsulated in a macro.
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%token <token_from_scanner> '='

%type <ast_node> Statement StatementList

%type <ast_node> Identifier Expression

Statement: Identifier '=' Expression

{ $$ = tre_mk(N_Assign, $2.src, $1, $3, 0); };

StatementList: Statement

{ $$ = tre_mk(N_StatementList,

tre_src($1), $1, 0); }

| StatementList Statement

{ $$ = tre_append($1, $2); };

Figure 4.7: Building the ast While Parsing

4.4.5 Parsing and ast Construction

The productions in the parser call Khepera tree-building routines|all other work

can be reserved for later tree traversal. This tends to simplify the parser description

�le, and allows the implementor to concentrate on parsing issues during this phase of

development. A few example yacc productions are shown in Figure 4.7. The second

argument to tre_mk is a pointer to the (optional) source position information obtained

during scanning. The abstract representation of the constructed ast is that of an

n-ary tree, and routines are available to walk the tree using this viewpoint (physically,

the tree is stored as a tilted binary tree, although other underlying representations

would also be possible).

Immediately after the parsing phase, the ast is available for printing. Without

any pretty-printer description, the ast is printed as a nested S-expression, as shown

in Figure 4.8.

4.4.6 Pretty-Printing

For pretty-printing, Khepera uses a modi�cation of the algorithm presented by

Oppen [1980]|the main modi�cation allows the algorithm to continue formatting if

the speci�ed line length is exceeded and a break cannot be found. This algorithm is

linear in space and time, and does not backtrack when printing. The implementation

was straightforward, with simple modi�cations added to support source line tracking

and formatted pretty-printing. Other algorithms for pretty printing, some of which
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A = range(depth=0, 3)

B = (/ i in A : i + i /)

C = (/ i in A :

(/ j in range(depth=0, i) : i /) /)

(a) Original Program

(N_StatementList

(N_Assign

(N_Identifier/"A")

(N_Call

(N_Identifier/"range")

(N_ExpressionList

(N_Integer/3))))

(N_Assign

(N_Identifier/"B")

(N_SequenceBuilder

(N_Iterator

(N_Identifier/"i")

(N_Identifier/"A"))

(N_Add

(N_Identifier/"i")

(N_Identifier/"i"))))

(N_Assign

(N_Identifier/"C")

(N_SequenceBuilder

(N_Iterator

(N_Identifier/"i")

(N_Identifier/"A"))

(N_SequenceBuilder

(N_Iterator

(N_Identifier/"j")

(N_Call

(N_Identifier/"range")

(N_ExpressionList

(N_Identifier/"i"))))

(N_Identifier/"i")))))

(b) Initial ast (with attribute values shown after the slash)

Figure 4.8: Example Input and Initial ast
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support a �ner-grain control over the formatting, are presented by Rubin [1983], Pugh

and Sinofsky [1987], Cameron [1988], Jokinen [1989], and Ruckert [1997].

For each node type in the ast, a short description, using printf-like syntax, tells

how to print that node and its children. If the node can have several di�erent numbers

of children, several descriptions may be present, one for each variation. List nodes

may have an unknown number of children. Multiple descriptions may be present for

multiple languages, with \fallback" from one language to another speci�ed at printing

time (so, Fortran may be printed for all of those nodes that have Fortran-speci�c de-

scriptions, with initial fallback to C, and with �nal fallback to generic S-expressions).

This fallback scheme provides usable pretty-printing during development, even before

the complete pretty-printer description is �nished and debugged.

For printing which requires local analysis, implementor-de�ned functions can be

used to return pre-formatted information or to force a line break. These functions

are passed a pointer to the current node, so they have access to the complete ast

from the locus being printed. While the pretty-printer is source-language independent

and is unaware of the speci�c application-de�ned attributes present on the ast, the

implementor-de�ned functions have access to all of this information. These functions

are typically used to format type information or to add comments to the generated

source codes.

Additional pretty-printer description syntax allows line breaks to be declared as

\inconsistent" or \consistent"1; allows for forced line breaks; and permits indentation

adjustment after breaks.

1See Oppen [1980] for details. Each group may have several places where a break is possible.
An inconsistent break will select one of those possible places to break the line, whereas a consistent
break will select all of these places if a break is needed anywhere in the group. This allows the
following formatting to be realized (assuming breaks are possible before +):

Inconsistent

x = a + b + c
+ d + e + f

Consistent

x = a
+ b
+ c
+ d
+ e
+ f
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4.4.7 Using the Khepera Transformation Language

Khepera transformations are speci�ed in a special little language that is translated

into C code for tree-pattern matching and replacement. A simple transformation

rule conditionally matches a tree, builds a new tree, and performs a replacement.

This language is described more fully in Appendix A. In this section, a subset of

this language will be discussed in the context of the the example currently being

developed.

The Khepera rule that implements the �rst sequence comprehension elimination

transformation (Rule 1 from Section 4.4.3) is shown in Figure 4.9, together with a

formal description of the rule, using the variable names from the rule implementation,

and an example ast.

In Figure 4.9c, a tree pattern follows the match keyword. Tree patterns are

written as S-expressions. The tree pattern in this example is compiled to the pattern

matching code shown in the �rst part of Figure 4.10 (code for sections of the rule

follow the comment containing that section).

The when expression, which contains arbitrary C code, guards the match, pre-

venting the rest of the rule from being executed unless the expression evaluates to

true. The build statement creates a new subtree, taking care to copy subtrees from

the matched tree, since those subtrees are likely to be deleted by a replace command.

The tracking necessary for debugging and transformation replay is performed at

a low level in the Khepera library. However, the Khepera language translator

automatically adds functions (with names starting with trk_, shown with boxes in

Figure 4.10) to the generated rules:

trk enter, trk leave These functions ensure that, when a rule makes nested calls

to other rules, all of the associated changes to the ast are \charged" to the

outermost rule in the sequence. This is essential for replay, using the logging

described by Tuple 3.1 (page 47).

trk application This rule registers the name of the rule currently being applied

(�) and the subtree matched by the rule (�m). This information is used by the

low-level ast-manipulation functions of the Khepera library to log the tuples

described in Tuple 3.2, Tuple 3.3, Tuple 3.4, and Tuple 3.5 (page 47).

trk work This rule causes the tuple described in Tuple 3.1 (page 47) to be logged

when a Khepera replace, do, or delete command actually causes a modi�-

77



If id1 = id2, then

N SequenceBuilder
z }| {

(/ id1 in D
| {z }

N Iterator

: id2 /)

�! D

(a) Formal Rule 1

id1:N_Identifier

id2:N_Identifier

N_SequenceBuilder

N_Iterator

D:.

D:.

(b) ast Transformation

rule eliminate_iterator1

f
match (this:N_SequenceBuilder

(N_Iterator id1:N_Identifier D:.)

id2:N_Identifier)

when (tre_symbol(id1) == tre_symbol(id2))

build new with D

replace this with new

g

(c) Khepera Rule

Figure 4.9: Simple Transformation Rule (Rule 1)

78



int rule_eliminate_iterator1( int *_kh_flag, tre_Node _kh_node )

f
const char *_kh_rule = "rule_eliminate_iterator1";

Node _kh_pt;

Node this = NULL; /* sym */

Node id1 = NULL; /* sym */

Node D = NULL; /* sym */

Node id2 = NULL; /* sym */

Node new = NULL;

/* match (this:N_SequenceBuilder

(N_Iterator id1:N_Identifier D:.) id2:N_Identifier) */

trk_enter();

_kh_pt = _kh_node;

if (_kh_pt && tre_id( this = _kh_pt ) == N_SequenceBuilder) f
_kh_pt = tre_child( _kh_pt ); /* N_Node */

if (_kh_pt && tre_id( _kh_pt ) == N_Iterator) f
_kh_pt = tre_child( _kh_pt ); /* N_Node */

if (_kh_pt && tre_id( id1 = _kh_pt ) == N_Identifier) f
_kh_pt = tre_right( _kh_pt );

if (_kh_pt) f
D = _kh_pt;

_kh_pt = tre_parent( _kh_pt );

_kh_pt = tre_right( _kh_pt );

if (_kh_pt && tre_id( id2 = _kh_pt ) == N_Identifier) f
_kh_pt = tre_parent( _kh_pt );

assert( _kh_pt == _kh_node );

/* when (tre_symbol(id1) == tre_symbol(id2)) */

if (tre_string(id1) == tre_string(id2)) f

trk_application( _kh_rule, _kh_node );

/* build new with D */

new = tre_copy(D);

/* replace this with new */

++*_kh_flag;

trk_work( _kh_rule, _kh_node );

tre_replace( this, new );

g
g

g
g

g
g

trk_exit();

return 0;

g

Figure 4.10: Generated Tree-Pattern Matching Code (Rule 1)
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cation to the ast. (The arguments are the same as for trk application|this

redundancy is used for error detection.)

For completeness, the second rule, Rule 2 from Section 4.4.3, is shown in Fig-

ure 4.11.

Finally, a more complicated Khepera rule is shown in Figure 4.12, with the

corresponding ast transformation shown in Figure 4.13. This rule implements the

third sequence comprehension elimination transformation (Rule 3 from Section 4.4.3).

This transformation matches a N SequenceBuilder with a function call, then iterates

over the arguments to the function call, building up the new arguments for the new

call to the promoted function. After the new function call is created, the depth

attribute (called prime in the Khepera code) is updated.

The example in Figure 4.12 uses the children statement to iterate over the

children of the N_ExpressionList node, and uses the do statement as a general-

purpose escape to C. This escape mechanism is used to build up a new list with the

tre_append function, and to modify an implementor-de�ned attribute (prime).

Khepera language features not discussed here include the use of a conditional

if-then-else statement in place of a when statement, the ability to break out of a

children loop, and the ability to perform tree traversals of matched subtree sections

(this is useful when an expression must be examined to determine if it is independent

of some variable under consideration).

4.4.8 Debugging with Khepera

The Khepera library tracks changes to the ast throughout the transformation pro-

cess using the tuple logging algorithms described in Section 3.3.2 (page 45). The

tracking is performed, automatically, at the lowest levels of ast manipulation: cre-

ation, destruction, copying, and replacement of individual nodes and subtrees. This

tracking is transparent, assuming that the programmer always uses the Khepera

ast-manipulation library, either via direct calls or via the Khepera transformation

language, to perform all ast transformations. This assumption is reasonable because

use of the Khepera library is required to maintain ast integrity through the trans-

formation process. Since the programmer does not have to remember to add tracking

capabilities to the transformations, the overhead of implementing debugging support

in a language processor is greatly reduced.
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If e2 is an Int or (e2 is an Id and e2 6= id1), then

N SequenceBuilder
z }| {

(/ id1 in e1
| {z }

N Iterator

: e2 /)

�! dist( depth= 0; e2; length( e1 ) )

(a) Formal Rule 2

id1:N_Identifier

N_SequenceBuilder

N_Iterator

e1:. e1:.

e2:.e2:.

N_Dist

N_Length

(b) ast Transformation

rule eliminate_iterator2

f
match (this:N_SequenceBuilder

(N_Iterator id1:N_Identifier e1:.) e2:.)

when (tre_id(e2) == N_Integer

|| (tre_id(e2) == N_Identifier

&& tre_symbol(id1) != tre_symbol(e2)))

build new with (N_Dist e2 (N_Size e1))

replace this with new

g

(c) Khepera Rule

Figure 4.11: Another Simple Transformation Rule (Rule 2)
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N SequenceBuilder
z }| {

(/ id1 in e0
| {z }

N Iterator

: f(depth= prime; e1; : : : ; en) /)

�!

f(depth= prime + 1; (/ id1 in e0 : e1 /); : : : ;

(/ id1 in e0 : en /))

(a) Formal Rule 3

rule dp_func_call

f
match (this:N_SequenceBuilder

iter:N_Iterator

(f:N_Call

fn:N_Identifier

plist:N_ExpressionList))

build newPlist with (N_ExpressionList)

children plist f
match (p:.)

build next with (N_SequenceBuilder

iter p)

do f tre_append(newPlist, next); g
g

build call with (N_Call fn newPlist)

delete newPlist

do f call->prime = f->prime + 1; g
replace this with call

g

(b) Khepera Rule

Figure 4.12: Iterator Distribution Rule (Rule 3)
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N_CallN_SequenceBuilder

N_Iterator

id1:N_Identifier

e0:.

N_Call

N_Identifier N_ExpressionList

en:.

N_Identifier N_ExpressionList

N_SequenceBuilder

N_Iterator

id1:N_Identifier

e0:.

e1:.

N_SequenceBuilder

id1:N_Identifier

N_Iterator

e0:.

en:.

e1:.

Figure 4.13: ast Transformation for Iterator Distribution Rule (Rule 3)
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The tracking algorithms associate the tree being transformed (Ti), the transfor-

mation rule (�) being applied, and the speci�c changes made to the ast. This in-

formation can then be analyzed to answer queries about the transformation process.

For example, the implementor of the experimental language may have identi�ed two

intermediate asts, Ti and Ti+1, and may ask for a summary of the changes between

these two asts.

On a more sophisticated level, the user may identify a node in the input program

and request that a breakpoint be placed in the program output. An example of this

is shown in Figure 4.14a. Here, the user clicked on the scalar + node in the left

window. In the right window, the generated program, after 13 transformations have

been applied, is displayed, showing that the breakpoint should be set on the call

to the vector add function. The breakpoint was set using the Track-Breakpoint

algorithm from Section 3.4.3 (page 52).

At this point, the user could navigate backward and forward among the transfor-

mations, viewing the particular intermediate asts that were involved in transforming

the original + into the call to add. These intermediate trees are found using the

Find-Next algorithm, described in Section 3.5.2.2 (page 59). The ability to nav-

igate among these views is unique to the Khepera system and helps the user to

understand how the transformations changed the original program. This is especially

useful when many transformations are composed.

The tracking algorithms can also be used to understand relationships between

variables in the original and transformed programs. For example, in Figure 4.14b,

the user has selected an iterator variable i that was removed from the �nal trans-

formed output. In this case, both occurrences of A are marked in the �nal output,

showing that these vectors correspond, in some way, to the use of the scalar i in the

original input. This feature uses the Track-Breakpoint algorithm from Section 3.4.3

(page 52).

In addition to the \forward" tracking, described here, Khepera also supports

reverse tracking, which can be used to determine the current execution point in source

terms, or to map a compile or run-time error back to the input source, using the

Track-Execution-Point algorithm from Section 3.4.4 (page 55).
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4.5 Fast Tree Traversal

When the translator attempts to apply rules to the ast, the ast is traversed in either

preorder or postorder, with each node examined to see if the current rule matches the

subtree rooted at that node. If the rule matches, it is applied, and the traversal of the

ast continues from that point. When the traversal �nishes, if the rule was applied at

least once, then the traversal is repeated and the same rule is matched and applied to

the tree again. If the rule did not match during a tree traversal, then another rule is

selected, and another tree traversal is performed. This general algorithm for applying

a rule � to a tree T is described in Figure 4.15 for the postorder traversal (the boxes

highlight the di�erences between this algorithm and the FastApplyRulePostorder

algorithm shown in Figure 4.17 and discussed below).

Depending on the set of rules being applied, many of the details just outlined can

be changed. For example, the application of one rule might trigger the application

of another rule at the current node, or a rule might not be repeatedly applied to the

ast before another rule is selected. However, the general idea is that, whenever a

rule is selected, every node in the tree is examined to determine if the rule matches,

and the rule is applied to those nodes that match. This means that a great deal of

matching code is being executed (the �rst part of Figure 4.10, for example) at every

node, but the body of the rule is executed only at nodes which match.

In Section 4.5.1, empirical timing data from a prototype Proteus-to-C translator

is presented, showing that the matching operations can be responsible for a signi�cant

percentage of total execution time. In Section 4.5.2, observations about the rule

matching problem are outlined and a general overview of a method for increasing the

performance of the match search is proposed. Section 4.5.3 presents an evolution of

several algorithms, the last of which provides best performance for a set of examples.

Section 4.5.3.7 presents an analysis of the worst case performance of the algorithms,

and empirical data showing that the average or expected performance is better than

the worst case performance.

4.5.1 Problem

The prototype Proteus-to-C translator was implemented using C and Sorcerer

[Parr 1997]. The execution pro�le of this translator indicates that about half the

run time is spent searching for tree matches. Representative results are shown in
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Program Platform Tree-Traversal Time Total Execution Time
(%) (seconds)

qsorta SPARCb 53 100
Pentiumc 43 13

trinsd SPARC 55 339
Pentium 40 48

Table 4.1: Prototype Proteus-to-C Translator Performance

aqsort performs a simple quicksort [Cormen et al. 1991, Chapter 8] of a sequence of numbers.
The program is about 20 lines of Proteus, and is transformed into about 475 lines of C code.

bThe SPARC machine is a SPARCstation-10 with a 125MHz HyperSparc CPU upgrade and
96MB of main store, running SunOS 4.1.4.

cThe Pentium machine is a 133MHz Pentium with 32MB main store running Linux 2.0.27.
dtrins implements a dynamic programming solution to the triangular solitaire game. The pro-

gram is about 150 lines of Proteus, and is transformed into about 2500 lines of C.

Table 4.1.2

These data also point to a problem with using Sorcerer for tree matching. For

common tasks (e.g., compiling C code), the SPARC machine used in this example

usually performs at about 75% of the processing speed of the Pentium machine (not

the 10{20% suggested by the data in Table 4.1). The dramatic di�erence in speed

noted in this example can be attributed to the use of setjmp/longjmp by Sorcerer.3

This mechanism is used to backtrack after partial tree matches. The jumping mech-

anism is probably expensive on the SPARC processor because of the sliding register

windows.

4.5.2 Observations

Most of the rules that are applied in a typical set of transformations match a tree that

is rooted at a speci�c type of node. For example, a transformation rule that assigns

symbol table entries to identi�ers need only match \identi�er" nodes. Similarly, most

of the code-restructuring transformations that are used for the 
attening of nested-

data parallelism match a speci�c type of syntactic construct [Palmer 1996]. Other

rules, that initially appear to require a generic match, can be re-written to match a

tree rooted at a speci�c type of node. For example, cse requires matching all operator

2SunOS is a registered trademark of Sun Microsystems, Inc.; SPARC is a registered trademark
of SPARC International, Inc.; Linux is a registered trademark of Linus Torvalds; and Pentium is a
registered trademark of Intel Corporation.

3Version 1.00B6 (March 1994) was used for these tests. More recent versions of Sorcerer exist,
but they also appear to use the setjmp/longjmp mechanism.
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nodes, but can be re-written as several more speci�c rules that match each type of

operator (e.g., \add", \multiply"). This increases the amount of transformation code

but, as discussed in the next section, this re-writing can dramatically decrease the

amount of time spent searching for successful matches. Further, simple extensions

to the Khepera transformation language can make expansion of these sorts of rules

automatic, thereby reducing programmer overhead.

Nyland [1994] �rst suggested that an improvement in tree pattern matching could

be realized if lists are maintained of each type of node, and only one list is traversed

when searching for tree matches. For example, if the rule matches a tree of the form

(Plus Identifier Constant), then examining the list of Plus nodes is su�cient to

�nd all of the matches in the tree. However, implementing a \fast" tree walker is not

as simple as maintaining unordered lists of nodes by type. Instead, the lists must be

maintained in the order in which the nodes would have been visited if a full preorder

or postorder traversal of the ast was performed.

When used for transformation application, a \fast" tree walker must generate

identical results when compared with a standard tree walker. Since transformations

may assume a preorder or postorder transversal of the tree, the \fast" tree walkers

must preserve this ordering. Therefore, the lists of nodes must be ordered. Data

structures which permit rapid insertion into an ordered list and inorder traversal may

be suitable for storing these lists.

Without loss of generality, I will assume that the desired traversal order is pos-

torder, and will only discuss this case. However, similar observations and solutions are

also possible for other traversal orders. Figure 4.16b shows a tree labeled with consec-

utive integers such that visiting each node in increasing integer order is the same as

visiting each node in postorder. Figure 4.16c shows lists for each node type. Visiting

the nodes of a speci�c type in increasing order in the list is equivalent to traversing

the tree in postorder and only visiting the the nodes of the speci�c type. An algo-

rithm, similar to ApplyRulePostorder (Figure 4.15), is shown in Figure 4.17, with

the key di�erences denoted with boxex.

Since the transformations make changes to the tree during the traversal, the lists

must be updated on-the-
y for each tree alteration. Therefore, the lists must be

stored in data structures that can be updated in the middle of a walk through the

data structure. This rules out the use of red-black trees, 2-3-4 trees, AVL trees, or

other \balanced" binary tree structures: an insertion into one of these structures can

result in a rotation such that a stack-based traversal which is in progress at the time
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of the insertion is perturbed. Figure 4.18 shows an example of this problem [Cormen

et al. 1991, p. 266]. Assume that an inorder traversal of the tree is being performed,

and that x has been matched by a transformation rule that performs an operation

requiring a rotation of the red-black tree. Before the rotation, subtree � will be

traversed next, and then the walk will proceed to y, since y is currently on the stack.

However, after the insertion, node y is the next node: �, y, and 
 will be traversed,

and then the stack will return the walk to y. This problem could be overcome by

using a doubly-linked red-black tree, and avoiding the use of a stack during red-black

tree traversal. However, simpler data structures exist which do not require special

threading for traversal in the face of insertions and deletions.

An unbalanced binary tree meets the requirements for the list-containing data

structure, but would likely become degenerate during the transformation process,

making insertions into the list very expensive. Skip lists [Pugh 1990b] meet the

requirements and have probabilistic O(lgn) amortized performance for searches, in-

sertions, and deletions. Further, because of their simple implementation, skip lists

may have a smaller constant factor than a comparable balanced binary tree imple-

mentation.

Other solutions to this problem are possible. However, any solution must be

constrained by several implementation considerations:

� if the nodes are labeled, the labels must �t in a reasonable number of bits (since

the tree can be degenerate, using one bit per tree level is not an implementation

option), and

� the solution must not dramatically increase the memory required to store a node

(since there may be hundreds of di�erent node types in a typical application

(e.g., the Proteus-to-C translator), threading all of the node lists through each

node is not an implementation option).

Because of these constraints, other solutions that I have considered (but have not

implemented) appear to require at least as much work as the algorithms described in

the next section.

89



ApplyRulePostorder(T; �) returns T 0

Input:
T , the current tree
� , the transformation rule being applied

Output:
T 0, the �nal transformed tree

Notes:
Match is a function that returns true if the rule \matches" at the speci�ed sub-

tree. This function performs the same actions as the match and when
commands in the Khepera language, described with examples in Sec-
tion 4.4.3.

Apply is a function that applies the body of the rule to the speci�ed subtree.
This function performs the same actions as the body of a rule written
in the Khepera language, applying changes to the tree, as outlined in
Section 3.3.1.

First-Postorder is a function that returns �rst node that should be visited for
a postorder traversal of T .

Next-Postorder is a function that returns the next node in the tree in pos-
torder. The walk is always continued from the current node, so that the
e�ects of ast changes can be taken into account.

Algorithm
do

f  false

n First-Postorder(T )

while n 6= ? do
if Match(�; n) then

Apply(�; n)
f  true

n Next-Postorder(n)

while f = true
End of ApplyRulePostorder

Figure 4.15: ApplyRulePostorder Algorithm
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a = (23 + 42) + 37

(a) Expression
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(b) ast Labelled in Postorder

Node Type List of Labels
2 + 4, 6

 Integer 2, 3, 5

(c) Per-Node Lists

Figure 4.16: Postorder Labelling of Tree and Corresponding Per-Node Lists

91



FastApplyRulePostorder(T; �; St) returns T
0

Input:
T , the current tree
� , the transformation rule being applied, which matches a subtree rooted at a

node of type t
St, the list of nodes of type t arranged such that iterating over all of the nodes

in S is equivalent to a postorder traversal of these nodes in T
Output:

T 0, the �nal transformed tree
Notes:

Match is a function that returns true if the rule \matches" at the speci�ed sub-
tree. This function performs the same actions as the match and when
commands in the Khepera language, described with examples in Sec-
tion 4.4.3.

Apply is a function that applies the body of the rule to the speci�ed subtree.
This function performs the same actions as the body of a rule written
in the Khepera language, applying changes to the tree, as outlined in
Section 3.3.1.

First-SkipList returns the �rst node in the skiplist for the type of node that
is the root of the subtree matched by � .

Next-SkipList returns the next node in the skiplist for the same type of node
as n. The walk is always continued from the current node, so that the
e�ects of ast changes can be taken into account.

Algorithm
do

f  false

n First-SkipList(�)

while n 6= ? do
if Match(�; n) then

Apply(�; n)
f  true

n Next-SkipList(n)

while f = true
End of FastApplyRulePostorder

Figure 4.17: FastApplyRulePostorder Algorithm
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Figure 4.18: Rotation on a Red-Black Tree
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4.5.3 Fast Tree-Traversal Algorithms

The algorithms presented here assume skip lists are being used for the implementation

of the node lists. This simpli�es some of the language necessary to describe the

algorithms and the interaction between the ast data structure and the data structure

which is used to store the node lists. However, skip lists do not have to be used|

any data structure which allows a �rst-to-last traversal in the face of insertions and

deletions can be used.

Note that if nodes are deleted from the ast, they can simply be deleted from the

skip lists, and a postorder walk can still be performed on the ast. Hence, the follow-

ing algorithms only address insertions of new subtrees into the ast. The di�culty is

to design an algorithm that maintains the skip lists but which does not incur greater

overhead than would a simple postorder traversal of the whole ast. Algorithm0 is

used within the Apply algorithm shown in ApplyRulePostorder. The other algo-

rithms are used within the Apply algorithm shown in FastApplyRulePostorder.

The �ve algorithms presented below describe the successive improvements of a

design for a suitable algorithm for fast tree traversal. Algorithm 0 is the base case,

and Algorithm 4 is the �nal suggested algorithm. Without loss of generality, these

algorithms all assume that the desired tree-traversal sequence is postorder. If a pre-

order traversal is desired, the labelling algorithms require slight modi�cations. Since

postorder is a commonly used traversal order for transformation rule application, all

of the empirical data collection assumes that fast matching is available for postorder

traversals, but not for preorder traversals.

The example transformation shown in Figure 4.19a, the initial step of a cse algo-

rithm, will be used throughout this discussion to illustrate how the various algorithms

manipulate the ast and associated data structures. Note that the next step in cse

would be to replace the x + y expressions in the assignments to a and b. This step

involves two tree replacements, and needlessly complicates this example.

4.5.3.1 Notation

For this discussion, T and T 0 represent complete asts, � is the subtree being inserted

at some point on the ast, and n refers to a node. Nodes have attributes, as shown

in Table 4.2. The `.' operator is used to access an attribute value, so n:l refers to

the minimum label range for node n. For each node type, a global skip list exists,

Stype . When Apply-Need-Based-Labels is introduced, there will be constants for
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(b) Insertion on ast

Figure 4.19: Example of Algorithm 0

95



Attribute Name Meaning Type

type the type of the node integer
parent the parent of the node node
child the �rst child of the node node
left-sibling the left-hand sibling of the node node
right-sibling the right-hand child of the node node
label the label of the node integer
left-need the label needs for the left-hand subtree integer
right-need the label needs for the right-hand subtree integer
need left-need + right-need integer
l minimum label range for left-hand subtree integer
r maximum label range for right-hand subtree integer

Table 4.2: Node Attributes

the minimal label value, min-label, and the maximal label value, max-label, usually

selected to be zero and the maximum representable integer. For purposes of the

examples, however, max-label is de�ned to be 100.

The tree is an n-ary tree, with an underlying tilted binary tree representation

[Knuth 1973]. On the binary tree representation:

� the left-hand child is the child attribute on the n-ary tree,

� the right-hand child is the right-sibling attribute on the n-ary tree, and

� the parent is the left-sibling attribute on the n-ary tree, or, if the left-sibling

attribute is ?, the parent attribute.

An example of an n-ary tree and the equivalent binary tree is shown in Figure 4.20.

Some of the algorithms described below depend the ability to traverse the n-ary tree

as if it were a tilted binary tree. This is the underlying implementation used in

Khepera, but the ability to perform these sorts of traversals is not dependent on

the underlying representation: any n-ary tree can be traversed as if it were a binary

tree.
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Figure 4.20: An n-ary Tree and an Equivalent Binary Tree
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4.5.3.2 Algorithm 0

Algorithm 0, shown in Figure 4.21, does not use skip lists or attempt to perform any

\fast" walks. An example of the input and output for this algorithm is shown in

Figure 4.19.

Algorithm0(T;�) returns T 0

Input:
T , the current tree
�, the subtree being inserted into the tree

Output:
T 0, the tree T with � inserted

Algorithm
T 0  T with � inserted

End of Algorithm0

Figure 4.21: Algorithm 0

Algorithm 0 is the reference case for all of the other algorithms, both in terms of

performance and in terms of correctness. The Khepera debugging tracking features

can be used to log all ast manipulations to a �le. The output of this logging should

be identical regardless of which algorithm is being used.
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4.5.3.3 Algorithm 1

Algorithm 1 is shown in Figure 4.22. Algorithm 1 uses Apply-Consecutive-Labels,

shown in Figure 4.23a, and Skip-List-Insert, shown in Figure 4.23b.

Algorithm1(T;�) returns T 0

Input:
T , the current tree
�, the subtree being inserted into the tree

Output:
T 0, the tree T with � inserted and attributes updated

Algorithm:
T 0  T with � inserted
Apply-Consecutive-Labels(T 0)
Skip-List-Insert(�)

End of Algorithm1

Figure 4.22: Algorithm 1

Whenever a subtree � is inserted into the ast, the whole ast is traversed to

apply labels, and then the nodes on � are inserted into the appropriate skip lists.

Since an insertion of subtree � does not change the relative ordering of any of the

other nodes in the ast, nodes do not have to be deleted from the skip lists before

the relabeling step (although, during the relabeling step, the skip lists may be in an

unde�ned state|this is not a problem, since the lists are not accessed during this

step).

In Figure 4.24a, the tree and skip lists are shown immediately after � is inserted

into T . Figure 4.24b shows the tree and skip lists after Apply-Consecutive-Labels

has executed|note that the relabelling step also updates the labels in the skip list.

Figure 4.24c shows the skip lists after Skip-List-Insert has executed (the labels on

the tree are the same as in Figure 4.24b).

This algorithm minimizes skip list operations, but still requires a complete traver-

sal of the ast for the relabeling step. Unfortunately, the relabeling step cannot be

completely avoided without using labels which have at least one bit for each tree level.

The remaining algorithms will try to minimize the amount of relabeling needed for

many (but not all) insertions.
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Apply-Consecutive-Labels(T )
Input:

T , the current tree
Output:

T , the current tree with label attributes updated
Notes:

First-Postorder is a function that returns �rst node that should be visited for
a postorder traversal of T .

Next-Postorder is a function that returns the next node in the tree in pos-
torder.

Algorithm:
c 0
n Root(T )
while n 6= ? do

n:label c
c c+ 1
n Next-Postorder(n)

End of Apply-Consecutive-Labels

(a) Apply-Consecutive-Labels Algorithm

Skip-List-Insert(�)
Input:

�, subtree
Output:

Skip lists updated. For each node type, there is a global skip list, Stype .
The type of a node is accessible via the type attribute.

Notes:
First-Postorder is a function that returns �rst node that should be visited for

a postorder traversal of T .
Next-Postorder is a function that returns the next node in the tree in pos-

torder.
Algorithm:

n First-Postorder(T )
while n 6= ? do

Insert n into skip list Sn:type

n Next-Postorder(n)
End of Skip-List-Insert

(b) Skip-List-Insert Algorithm

Figure 4.23: Apply-Consecutive-Labels and Skip-List-Insert Algorithms
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=: 14=

T’ is StatementList: 14

=: 7

+t

x y

a: 1 +: 6 b: 8 +: 13

z: 5+: 4

y: 3x: 2

+: 11 w: 12

x: 9 y: 10

= : 7; 14

+ : 4; 6; 11; 13

id : 1; 2; 3; 5; 8; 9; 10; 12

(a) Tree and Skip Lists After � inserted into T

=: 19

T’ is StatementList

=: 12=: 5

b: 13 +: 18+: 4t: 1 a: 6 +: 11

+: 16 w: 17y: 3x: 2 +: 9 z: 10

x: 14 y: 15x: 7 y: 8

= : 12; 19

+ : 9; 11; 16; 18

id : 6; 7; 8; 10; 13; 14; 15; 17

(b) Tree and Skip Lists After Apply-Consecutive-Labels

= : 5; 12; 19

+ : 4; 9; 11; 16; 18

id : 1; 2; 3; 6; 7; 8; 10; 13; 14; 15; 17

(c) Skip Lists After Skip-List-Insert

Figure 4.24: Example of Algorithm 1
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4.5.3.4 Algorithm 2

Algorithm 2, shown in Figure 4.25a, relabels every node on the tree, inserting all the

new nodes on � into the skip lists. Since an insertion does not change the ordering of

the nodes in the ast, the nodes do not have to be removed from the skip lists|they

just have to be relabeled.

The Compute-Needs function performs a reverse postorder walk on the binary

tree representation (not the n-ary representation) of the ast T , keeping track of the

total number of \left-hand" and \right-hand" children under the node. Note that a

reverse postorder traversal of a binary tree is like a regular postorder traversal, except

that the right-hand child is visited before the left-hand child.

For each node n visited in the reverse postorder traversal of the binary represen-

tation of T , Compute-Needs evaluates the algorithm shown in Figure 4.25b.

Figure 4.26a shows the tree after � has been inserted and Compute-Needs has

been run. The two numbers on each node are the left and right \needs" for that

node|intuitively, the total number of children under that node on the left and right

sides. The dotted lines point to the left (downward) and right (rightward) children

for each node, when traversed using the reverse postorder traversal of the binary tree

representation of the n-ary ast.

The Apply-Need-Based-Labels function performs a preorder walk of the ast

T , computing unique labels from limits set in the parent. For each node, n, visited

in the preorder traversal of T , Apply-Need-Based-Labels evaluates the algorithm

shown in Figure 4.27a. Apply-Need-Based-Labels uses Apply-Limits, shown in

Figure 4.27b.

Figure 4.26b shows the tree after Apply-Need-Based-Labels has been run.

The three numbers on each node are the l value, the label, and the r value from

the algorithm. For this example, min-label
def
= 0, and max-label

def
= 100. The dotted

lines point to the left (downward) and right (rightward) children for each node, when

traversed using the reverse postorder traversal. Intuitively, this algorithm is taking

the available labels (in this case, 0; 1; 2; : : : ; 100), and partitioning them among the

children in a manner weighted by the number of children in the left and right subtrees

(the \needs" computed above). The e�ect is that:

1. There are always enough labels to label the nodes that exist on the current tree.

2. There are extra labels available that might be used when a small tree is inserted.

The following algorithms explore ways to determine when enough labels exist
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for an insertion, and when some or all of the tree must be relabelled before an

insertion can take place.

The complex expression in the last line of the algorithm divides up the labels among

the nodes, with care that labels can be within one unit of each other, but are never

the same.

This algorithm is easier to understand if we remember the n-ary ast is imple-

mented using a tilted binary tree. Our goal is to label the n-ary ast in postorder|

this is the equivalent of labeling the tilted binary tree inorder [Knuth 1973, p. 335].

Figure 4.28 shows the tree and skip lists before and after the new labels have been

applied, and shows the skip lists after Skip-List-Insert has executed.
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Algorithm2(T;�) returns T 0

Input:
T , the current tree
�, the subtree being inserted into the tree

Output:
T 0, the tree T with � inserted and attributes updated

Algorithm:
T 0  T with � inserted
Compute-Needs(T 0)
Apply-Need-Based-Labels(T 0)
Skip-List-Insert(�)

End of Algorithm2

(a) Algorithm 2

Compute-Needs(T )
Input:

T , the current tree
Output:

T , the tree T , with attributes updated
Notes:

First-Reverse-Postorder is a function that returns �rst node that should be
visited for a reverse postorder traversal of the binary representation of T .

Next-Reverse-Postorder is a function that returns the next node in the bi-
nary representation of the tree in reverse postorder.

Algorithm:
n First-Reverse-Postorder(T )
while n 6= ? do

n:left-need 0
n:right-need 0
if n:child 6= ? then

n:left-need 1 + n:child:need
endif
if n:right-sibling 6= 0 then

n:right-need 1 + n:right-sibling:need
endif
n:need = n:left-need + n:right-need
n Next-Reverse-Postorder(n)

End of Compute-Needs

(b) Compute-Needs Algorithm

Figure 4.25: Algorithm 2 and Compute-Needs
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t: 0, 3

T’ is StatementList: 19, 0

=: 4, 14

b: 0, 5 +: 4, 0+: 2, 0 a: 0, 5 +: 4, 0

+: 2, 1 w: 0, 0y: 0, 0x: 0, 1 +: 2, 1 z: 0, 0

x: 0, 1 y: 0, 0x: 0, 1 y: 0, 0

=: 6, 7 =: 6, 0

(a) After Compute-Needs

t: 0, 1, 15

T’ is StatementList: 0, 80, 100

=: 0, 15, 80

b: 36, 38, 64 +: 38, 53, 64+: 1, 7, 15 a: 15, 17, 36 +: 17, 27, 36

+: 38, 41, 53 w: 41, 43, 53y: 2, 3, 7x: 1, 2, 7 +: 17, 20, 27 z: 20, 21, 27

x: 38, 39, 41 y: 39, 40, 41x: 17, 18, 20 y: 18, 19, 20

=: 15, 36, 80 =: 36, 64, 80

(b) After Apply-Need-Based-Labels

Figure 4.26: Example of the Compute-Needs and Apply-Need-Based-Labels Algo-
rithms
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Apply-Need-Based-Labels(T )
Input:

T , the current tree
Output:

T , the tree T , with attributes updated
Notes

First-Preorder is a function that returns �rst node that should be visited for
a preorder traversal of the binary representation of T .

Next-Preorder is a function that returns the next node in the binary repre-
sentation of the tree in preorder.

Algorithm:
n First-Preorder(T )
while n 6= ? do

Apply-Limits(n)
n:label n:l + (n:left-need + 1) b(n:r� n:l� 2)=(n:need + 4)c
n Next-Preorder(n)

End of Apply-Need-Based-Labels

(a) Apply-Need-Based-Labels Algorithm

Apply-Limits(n)
Input:

n, a node
Output:

n, with limits l and r updated
Algorithm:

if n:left-sibling = ? then
if n:parent = ? then

n:l min-label
n:r max-label

else
n:l n:parent:l
n:r n:parent:label

endif
else

n:l n:left-sibling:label
n:r n:left-sibling:r

endif
End of Apply-Limits

(b) Apply-Limits Algorithm

Figure 4.27: Apply-Need-Based-Labels and Apply-Limits Algorithms
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=: 56=

T’ is StatementList: 75

=: 28

+t

x y

a: 2 +: 17 a: 30 +: 45

z: 7+: 5

y: 4x: 3

+: 33 w: 33

x: 31 y: 32

= : 28; 56

+ : 5; 17; 30; 45

id : 2; 3; 4; 7; 30; 31; 32; 33

(a) Tree and Skip Lists After � inserted into T

=: 64=: 15

T’ is StatementList: 80

=: 36

+: 7t: 1

x: 2 y: 3

a: 17 +: 27 b: 38 +: 53

z: 21+: 20

y: 19x: 18

+: 41 w: 43

x: 39 y: 40

= : 36; 64

+ : 20; 27; 41; 53

id : 17; 18; 19; 21; 38; 39; 40; 43

(b) Tree and Skip Lists After Apply-Need-Based-Labels

= : 15; 36; 64

+ : 7; 20; 27; 41; 53

id : 1; 2; 3; 17; 18; 19; 21; 38; 39; 40; 43

(c) Skip Lists After Skip-List-Insert

Figure 4.28: Example of Algorithm 2
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4.5.3.5 Algorithm 3

Algorithm 3, shown in Figure 4.29, uses Binary-Ancestors-Of, shown in Fig-

ure 4.30.

Algorithm3(T;�) returns T 0

Input:
T , the current tree
�, the subtree being inserted into the tree

Output:
T 0, the tree T with � inserted and attributes updated

Notes: the parent attribute of the root of T is ?
Algorithm:

T 0  T with � inserted
Compute-Needs(�)
for n in Binary-Ancestors-Of(�) do

Compute-Needs(n)
Apply-Need-Based-Labels(T 0)
Skip-List-Insert(�)

End of Algorithm3

Figure 4.29: Algorithm 3

Since \needs" are computed in postorder, the insertion of � changes the computed

needs only for the ancestors of �, not for all of the nodes in the tree. So, Algorithm 3

only computes the new needs for these nodes, as shown in Figure 4.31. For this sim-

ple example, after the needs are computed, Apply-Need-Based-Labels proceeds

exactly as in Figure 4.28b, and Skip-List-Insert proceeds exactly as in Figure 4.28c.
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Binary-Ancestors-Of(n) returns A
Input:

n, the reference node
Output:

A, an ordered list containing all of the binary-tree ancestors of n
Algorithm:

A ?

p n
while p 6= ? do

A append(A; p)
if p:left-sibling = ? then

p p:parent
else

p p:left-sibling
endif

End of Binary-Ancestors-Of

Figure 4.30: Binary-Ancestors-Of Algorithm

109



T’ is StatementList: 14, 0

b: 0, 5 +: 4, 0a: 0, 5 +: 4, 0

+: 2, 1 w: 0, 0+: 2, 1 z: 0, 0

x: 0, 1 y: 0, 0x: 0, 1 y: 0, 0

=: 6, 7 =: 6, 0

(a) Needs Before � inserted into T

t: 0, 3

T’ is StatementList: 14, 0

=: 4, 14

b: 0, 5 +: 4, 0+: 2, 0 a: 0, 5 +: 4, 0

+: 2, 1 w: 0, 0y: 0, 0x: 0, 1 +: 2, 1 z: 0, 0

x: 0, 1 y: 0, 0x: 0, 1 y: 0, 0

=: 6, 7 =: 6, 0

(b) Needs After � inserted into T

t: 0, 3

T’ is StatementList: 19, 0

=: 4, 14

b: 0, 5 +: 4, 0+: 2, 0 a: 0, 5 +: 4, 0

+: 2, 1 w: 0, 0y: 0, 0x: 0, 1 +: 2, 1 z: 0, 0

x: 0, 1 y: 0, 0x: 0, 1 y: 0, 0

=: 6, 7 =: 6, 0

(c) Needs For Ancestor of � Updated

Figure 4.31: Example of Algorithm 3

110



4.5.3.6 Algorithm 4

Algorithm 4, shown in Figure 4.32, demonstrates the reason for computing needs and

need-based labels: sometimes it will be possible to insert a new subtree, �, into the

ast and relabel only part of the ast. This partial relabeling is possible because the

need-based labels are spread out such that there are often extra labels available to

label a newly inserted subtree. This algorithm is more e�cient than the others for

the Proteus-to-C transformations. Because it shares worst-case performance with

Algorithm 3, it should always do at least as well as that algorithm.

Algorithm4(T;�; T 0)
Input:

T , the current tree
�, the subtree being inserted into the tree

Output:
T 0, the tree T , with � inserted and attributes updated

Notes: the parent attribute of the root of T is ?
Algorithm:

T 0  T with � inserted
Compute-Needs(�)
for n in Binary-Ancestors-Of(�) do

Compute-Needs(n)
Apply-Limits(�)
if �:l >= �:r then

/* not enough extra labels exist, so relabel whole tree */
Apply-Need-Based-Labels(T 0)

else
/* enough extra labels exist */
Apply-Need-Based-Labels(�)

endif
Skip-List-Insert(�)

End of Algorithm4

Figure 4.32: Algorithm 4

Unfortunately, the example I have been using is too small to demonstrate the

di�erences between Algorithm 3 and Algorithm 4. So, I will extend the example ast

with additional ancestors (perhaps in the form of a case or switch statement), as
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shown in Figure 4.33a with need attributes. Figure 4.33b shows the tree after � has

been inserted and the needs of the ancestors have been updated. Updates have been

marked with boxes.

When Apply-Need-Based-Labels is executed, only the inserted tree and the

rightward siblings of this tree will be relabeled: none of the leftward siblings or

ancestors are relabelled.

Algorithm 4 can be improved in two ways:

1. When computing the label needs of the ancestors, it may not be necessary to

traverse all the way to the top of the ast. A previous deletion (which did not

update the label needs values) may have created extra unused labels.

2. The need-based labels do not have to be applied to all siblings of �. Instead,

it may be possible (if enough extra labels are available), to modify the ranges

of the rightward sibling, and to relabel only � and one rightward sibling of �.

Currently, � and all rightward siblings of � are modi�ed.
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5, 05, 6

T’ is StatementList: 14, 12

b: 0, 5 +: 4, 0a: 0, 5 +: 4, 0

+: 2, 1 w: 0, 0+: 2, 1 z: 0, 0

x: 0, 1 y: 0, 0x: 0, 1 y: 0, 0

=: 6, 7 =: 6, 0

5, 275, 33

39, 0

(a) Needs Before � inserted into T

5, 05, 6

t: 0, 3

T’ is StatementList: 19, 12

=: 4, 14

b: 0, 5 +: 4, 0+: 2, 0 a: 0, 5 +: 4, 0

+: 2, 1 w: 0, 0y: 0, 0x: 0, 1 +: 2, 1 z: 0, 0

x: 0, 1 y: 0, 0x: 0, 1 y: 0, 0

=: 6, 7 =: 6, 0

5, 315, 37

43, 0

(b) Needs After � inserted into T

Figure 4.33: Example of Algorithm 4
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4.5.3.7 Analysis

If each node visit is counted as a unit of work, then the worst-case performance

of Algorithms 1 through 4 is dominated by the size of the �nal tree T 0, and their

asymptotic work is O(T 0) (an overline is an operator which returns the number of

nodes in a tree, so T 0 is the number of nodes in the tree T 0). This asymptotic work

bound doesn't help to di�erentiate the algorithms, or to explain why one of them

may be more attractive than Algorithm 0.

Instead, Table 4.3 shows theoretical performance counting the number of node

visitations and the number of skip list insertions. The node visitations may be la-

belling (i.e., via Apply-Consecutive-Labels or Apply-Need-Based-Labels) or

the visitation may be non-labelling (i.e., via Compute-Needs). The node visita-

tions, regardless of purpose, have approximately the same cost, V. Skip list insertions

have a higher cost, I.

Table 4.3 also show empirical results from the Proteus-to-C transformation en-

gine. The transformations have been divided up into the Proteus-to-Proteus


attening transformations and the 
attened-Proteus-to-C transformations. These

two sets of transformations were designed to perform very di�erent tasks, so measur-

ing each separately, even though they are part of the same application, will provide

an approximation of two completely di�erent sets of transformations.

We see from these data that Algorithm 4 produces a speedup between 2 and 15

times, when compared with Algorithm 0. For this example, the label ranges were large

enough so that a total relabelling of the tree was never necessary (so p(T 0; �) = �).

The major di�erence between the transformation sets was the height of the ast: the

height for the second transformation set was approximately 5 times that of the �rst

transformation set, so h(T 0) contributed to the performance di�erence. As shown in

Table 4.1, tree traversal is responsible for approximately 50% of the run-time of the

translator, so an in�nite speedup in tree traversal would only half the run time of the

translator. However, this is a substantial improvement that will be more important

when other parts of the translation process are improved.

4.6 Future Work

The current Khepera system implements the debugging capabilities described in

this dissertation. The system contains more than 20,000 lines of C, flex, and bison

code, implementing about 500 library calls. Khepera has been used to implement
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Algorithm Analytic Average Speedup
Performance Transform Set 1 Transform Set 2

0 1.0 1.0

1 � I + T 0 V 2.6 0.9

2 � I + 2T 0 V 1.5 0.5

3 � I + (� + h(T 0) + T 0)V 2.1 0.7

4 � I + (� + h(T 0) + p(T 0; �))V 15.0 2.3

V = cost of a node visitation

I = cost of inserting into a skip list data structure

h(T 0) is a function of the height of T 0 at the insertion point for �, bounded by T 0.

p(T 0; �) is a function that returns either T 0 or �, depending on the need for a relabeling
of the whole tree.

Table 4.3: Performance of Fast Tree-Traversal Algorithms

a language processor for a subset of the Proteus programming language. In the

future, enhancements to various parts of the Khepera system could be made:

� The Khepera language could be extended to provide more complicated tree-

pattern matching capabilities. For example, allowing regular expressions in the

tree-pattern speci�cation would allow some types of transformation rules to be

more easily speci�ed.

� Currently, theKhepera language processor is only partially bootstrapping. An

initial version of the processor is built with all of the non-transformational capa-

bilities of the Khepera processor. This intermediate processor is used to build

the full version of the Khepera processor. Other priorities prevented imple-

mentation of an additional bootstrapping stage. A fully bootstrapping version

would be able to make use of more features in the Khepera transformation

language to implement more expressive language extensions. One area that was

not addressed in the original implementation is the need to insert subtrees into

the main ast by appending to other nodes (rather than by simple replacement,

as is now supported). Further, type checking could be used to detect several

errors which are now only detected when the Khepera output is compiled with

a C compiler.
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� The node-de�nition �le and pretty-printing descriptions that Khepera now

uses could be re-designed in light of the experiences gleaned from working

with the Proteus-to-C translator. Many transformational programming sys-

tems provide some sort of \unparsing" or pretty-printing support, and most

of this support appears to be provided in an ad hoc manner. Future research

could build on the work of Oppen [1980] and others to provide a more powerful

pretty-printing paradigm that would be even more useful for transformational

programming.

� In Section 4.5.3.6, several algorithmic improvements were suggested for the

�nal algorithm for rapid tree searching. Additional performance improvements

could be obtained by pro�ling and optimization of low-level library routines.

For example, the skip list implementation in Khepera currently does not use

\�ngers", pointers to recently accessed data that can generally improve the

performance of skip lists [Pugh 1990a].

4.7 Conclusion

This chapter introduced the Khepera transformation system, which implements the

tracking algorithms from Chapter 3. This implementation demonstrates the practi-

cality and viability of using these algorithms in a real transformational programming

tool. Khepera has been used by the author to implement a Proteus-to-C transla-

tor, and is now being used by others to implement a Nesl-to-Fortran 90 translator.

One of the problems with using the transformational approach to programming

is that a large amount of execution time is spent searching for places to apply the

transformations. This problem is discussed in Section 4.5, and an algorithm is pre-

sented which allows rapid tree traversal to be performed while still maintaining the

same search order as would a standard preorder traversal of the complete tree.
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Chapter 5

Debugging with Tracking

In Chapter 3, the notion of translation via program transformation was formalized,

and detailed algorithms were presented that track nodes between asts. In Chapter 4,

the Khepera transformation system was presented as an implementation of the low-

level tracking algorithms along with several examples of how these algorithms interact

with a viewer for the transformation system. In this chapter, the tracking engine is

considered as a server that tracks information during translation and that can later

answer questions about how nodes map from one tree to another. Applications, such

as the Khepera viewer, are clients of this server, using the node tracking information

provided by the tracking engine in a variety of di�erent ways. For example, using

this client-server analogy, the Khepera viewer is a client that:

1. uses the node tracking information to map nodes from the original source code

to nodes in the transformed output, enabling the setting of a breakpoint;

2. uses the node tracking information to map nodes from the transformed output

to the original source code, enabling the determination of current execution

location; and

3. uses the node tracking information to navigate between trees, based on how a

selected set of nodes changes through the translation process.

The use and implementation of clients that solve two debugging problems will be

explored in the next two sections of this chapter:

1. The viewer will be used to demonstrate how node tracking can be used to debug

the program translator itself. This is a capability of Khepera that is not found

in modern transformation or debugging systems.



2. Several approaches to the problem of reporting variable values will be described,

with a revisitation of the expected behavior data-value problem, and an explo-

ration of loop interchange|an important optimization that is not handled by

currently-available expected behavior debugging systems.

5.1 Debugging the Program Translator

The problem of transformation ordering (also called the phase problem) is a di�cult

problem to debug in a transformation system. This problem occurs when the appli-

cation order of a set of transformations is such that later transformations cannot be

applied because earlier transformations removed the opportunity for application. For

example, say there are two transformation rules, �1 and �2. There may be a situation

where �1 can be applied twice in succession, but that the second application prevents

�2 from matching. However, if the ordering is changed slightly, so that �2 is applied

immediately after any application of �1, then the rules can all apply in the following

order: �1; �2; �1.

The implementation of Khepera has been driven by the problem of translating

the Proteus language into C or Fortran 90. Proteus is a high-level, nested-

data parallel language described by Palmer et al. [1995b,a] and Palmer [1996] that

depends on transformations for the 
attening of nested-data parallelism. Experience

with these transformations was gained by implementing a Proteus-to-C translator

once using Sorcerer [Parr 1997] and again using Khepera. In his dissertation,

Palmer [1996] identi�es \ubiquitous" examples of expressions in the Proteus lan-

guage that are a�ected by transformation application ordering. Instead of explaining

the Proteus language here, we will use the example language from Chapter 4 with

an additional transformation rule. For brevity, please refer to Section 4.4 (page 68)

for the complete description of the language.

The three transformation rules from Section 4.4.3 (page 71) are repeated below,

with the addition of a fourth rule:
Rule 1

(/ x1 in e1 : x1 /) �! e1

Rule 2 Provided e2 is an Id or Int, and e2 6= x1,

(/ x1 in e1 : e2 /) �! dist( depth= 0; e2; length( depth= 0; e1))
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Rule 3 Provided p is a primitive operation (add, length, range, or dist),

(/ x1 in e0 :

p( depth= d;

e1; : : : ; en ) /)

�!

p( depth= d+ 1;

(/ x1 in e0 : e1 /);

: : : ;

(/ x1 in e0 : en /) )

Rule 4 Provided e is a complex expression (e.g., not a simple identi�er or constant)

in which there are no free occurrences of v,

(/ v in D : e /) �! dist( depth= 0; e; length( depth= 0; D))

For this example, Rule 4 is very similar to Rule 2. In a more complete implementation,

Rule 4 would actually introduce another scope into the result, but this is not necessary

for this example. For details, see Palmer [1996].

Now, consider the following example, where k is a scalar integer constant:

R = (/ v in D : (/ w in E : k + v /) /)

If the rules are applied in the order written (i.e., Rule 1, then Rule 2, then Rule

3, then Rule 4), the transformed output is (the Fortran-90 continuation mark (&)

has been removed):

R = add(depth=2,

dist(depth=0,

dist(depth=0, k, length(depth=0, E)),

length(depth=0, D)),

dist(depth=1,

D,

dist(depth=0,

length(depth=0, E),

length(depth=0, D))))
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However, if the ordering is changed so that Rule 4 is applied �rst (i.e., Rule 4,

then Rule 1, then Rule 2, then Rule 3), the transformed output is:

R = dist(depth=1,

add(depth=1,

dist(depth=0, k, length(depth=0, D)),

D),

dist(depth=0,

length(depth=0, E),

length(depth=0, D)))

While both of these transforms are semantically correct, and will compute the

same result, the later transform is more e�cient because it performs fewer of the

expensive distribution operations. The Khepera viewer can be used to understand

how transformation ordering a�ects the translator output.

If the �rst case, Rule 3 is the �rst rule that matches, so it is applied, yielding the

following result:

R = (/ v in D :

add(depth=1,

(/ w in E : k /),

(/ w in E : v /)) /)

However, in the second case, Rule 4 is the �rst rule that matches, so it is applied,

yielding the following result:

R = (/ v in D :

dist(depth=0,

add(depth=0, k, v),

length(depth=0, E)) /)

This key di�erence, which happens to show up early in this simple example, was

discovered by using the Khepera viewer to single step between transformations.

Similar problems with transformation sequencing have been discovered in much more

complicated Proteus programs by using theKhepera viewer to step between trans-

formations. In complicated cases, where thousands of transformation steps are in-

volved, a portion of the program can be identi�ed, and then most of the intermediate

transformations can be skipped using an implementation of the Find-Next algorithm
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described in Section 3.5.2.2 (page 58). After the key transformation step is identi�ed,

the ability to step the viewer forward and backward by a single transformation is used

to understand which simpli�cation opportunity was being missed. Changes can then

be made to the transformation sequencing speci�cation for the translator.

5.2 Reporting Variable Values

Reporting of variable values is a typical debugger capability. The programmer re-

quests a breakpoint be set, and execution of the program stops at that breakpoint.

Then the programmer asks for the value of a variable visible from that breakpoint.

If the breakpoint is a line, the variable does not have to be on that line|it can

be anywhere in the enclosing scope. This problem is, fundamentally, not one that

node tracking seeks to solve: the node tracking engine tracks nodes from one ast to

another|it does not have the semantic information available to provide information

about variables visible from a speci�c line. Hence, Khepera does not provide di-

rect support for the determination of variable currency that is required for expected

behavior debugging.

However, Khepera can provide answers to queries that are required for expected

behavior debugging algorithms or for truthful explanations of how transformations

might have changed variable values.

5.2.1 Currency Determination for Scalar Optimizations

Assuming that the transformations implemented in the Khepera system fall into the

class of simple scalar optimizations that are supported by Adl-Tabatabai [1996], then

Adl-Tabatabai's algorithms can be implemented in a Khepera client so that variable

currency can be determined. This requires considerable overhead above and beyond

the implementation of the transformations, but the result is that capabilities are pro-

vided that Khepera was not originally designed to provide. However, the overhead

is not as great as implementing Adl-Tabatabai's expected behavior debugging from

scratch, since the Khepera system can provide a great deal of support.

To demonstrate how Khepera can support the implementation of additional

debugging techniques, assume that a set of transformation rules have been written,

and the goal is to add the required support for Adl-Tabatabai's data-
ow and currency

determination algorithms. Adl-Tabatabai outlines four cases where special tracking
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of semantic information is necessary. Below, each case is examined and the changes

necessary to track this additional information are described:

Code insertion. Hoisted or sunk expressions must be marked via additions to the

transformation rules which hoist and sink expressions (e.g., code motion and

cse).

Code replacement. Replacement of one variable by another must keep track of the

original variable. In this case, Khepera already provides this sort of tracking

automatically, so no changes are needed to the transformation rules.

Code deletion. When an assignment to a variable is eliminated, an addition to the

transformation rules must, under certain circumstances, replace this node with

a special marker node. The information carried by this marker node is already

tracked automatically by Khepera, so the only addition is the marker node

itself|not its attributes.

Code duplication. When block B is duplicated, marker nodes inside block B must

also be duplicated. Khepera will perform this duplication without any changes

to the transformation rules.

So, out of four types of semantic information that must be tracked, Khepera provides

at least half of the tracking without any changes. Further, since the Khepera system

can log all insertions and deletions, Khepera can be used to �nd all of the other

places where changes are required.

5.2.2 Variable Values and Complex Transformations

While Khepera can support the implementation of debugging algorithms, such as

those described by Adl-Tabatabai, these algorithms are useful for only a restricted

set of scalar optimizations. They are not useful for aggressive loop transformations

or for parallelizing transformations. In these cases, the implementor of the program

translator is still faced with the problem of reporting the value of a variable. There

are many solutions to this problem. One solution is to simply report the variable's

value, without any additional comment. However, if the value of the variable is

not current at that point in execution, then the debugger has not provided truthful

behavior, since no explanation was given. A simple algorithm based on computing

the 
ow graph of the program is presented below. A program translator will likely
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have computed a 
ow graph for other reasons, and that same 
ow graph can be used

to support variable value reporting.

When a breakpoint is reached and the value of a variable x is requested by the

user, the debugger interface uses the 
ow graph to determine the de�nitions for x

that reach the breakpoint (e.g., by following def-use chains). These de�nitions will

be associated with nodes on the ast (e.g., assignment nodes that assign a value to

x), and these nodes can be tracked from the original tree, T0, to the �nal transformed

tree, T`. The user can then be shown the de�nitions on T0 and what those de�nitions

track to on T`. This will help the user to understand the value for x reported by the

debugger.

As a useful re�nement, the de�nitions for x in T` can also be determined by using


ow graph analysis on the transformation output. The de�nition points on T` can

also be shown to the user and compared with the de�nition point on T0. If these

de�nition points di�er, then the variable x may not be current at the breakpoint in

T`.

The examples in the next section will help to clarify how this algorithm might

be used, how it helps the end-user to interpret the reported value for the variable

queried, and how it di�ers from the information that Adl-Tabatabai's algorithms

would provide.

5.2.3 Solving Data-Value Problems With Khepera

In general, data-value problems are caused by assignments that are either deleted

(e.g., via redundant or dead assignment elimination) or moved (e.g., via code hoist-

ing) by the transformations. Examples of these sorts of problems were presented in

Section 2.3.3 (page 15), with a description of typical expected behavior solutions. In

this section, solutions to these examples using the truthful behavior algorithm based

on simple 
ow graph analysis from Section 5.2.2 will be discussed.

Additionally, examples of variable promotion (e.g., from scalar to vector) and

loop interchange will be explored, since these transformations are not covered by

expected behavior research, and therefore demonstrate some of the additional capa-

bilities provided by Khepera.
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100 ...

110 x = y + z;

120 ...

130 x = y + z;

140 ...

�! 100 ...

110 x = y + z;

120 ...

140 ...

Figure 5.1: Redundant Assignment Elimination

5.2.3.1 Redundant Assignment Elimination

The example of redundant assignment elimination from Section 2.3.4.1 (page 18) is

shown in Figure 5.1. Here, line 130 is removed because x, y, and z were not modi�ed

since the assignment in line 110.

Assuming a breakpoint on line 140, the truthful behavior algorithm can examine

the assignment to x on lines 110 and 130. The x on line 110 would be tracked to the

x on line 110, showing the user that the assignment was not transformed. The x on

line 130 could be tracked to two di�erent places in the transformed code, depending

on how the transformation rule was written:

� If the transformation rule matches the assignment to x on line 110, and then

removes all redundant assignments, then the assignment to x on line 130 would

track to the assignment on line 110 (because that is where the rule matched).

� If the transformation rule matches the assignment to x on line 130 and then

deletes the redundant assignment, tracking would move to a point higher in the

tree than the deleted line, tracking to line 120.

In both cases, an examination of the de�nition of x during the breakpoint in line 140

would show that line 130 was removed, and would provide some explanation for the

end-user. For the na��ve user, this explanation could take the simple form of reporting

that the assignment on line 130 was removed because the \redundant assignment

removal" transformation had been applied. For the sophisticated user, or for the

program transformation implementor, a \before and after" view of the local portion

of the program could be displayed, showing the deleted assignment.
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200 ...

210 x = w - v;

220 ...

230 x = y + z;

240 ...

�! 200 ...

220 ...

230 x = y + z;

240 ...

Figure 5.2: Dead Assignment Elimination

5.2.3.2 Dead Assignment Elimination

The example of dead assignment elimination from Section 2.3.4.2 (page 18) is shown

in Figure 5.2, where x is not used between line 210 and 230.

Without any such semantic knowledge, the truthful behavior algorithm can use

the tracking system to analyze the transformation of x on line 210. Again, there are

two possible ways to write the transformation rule:

� If the transformation rule matches line 230 and then eliminates line 210, x on

line 210 will track to x on line 230. A report can be made to the user, either with

a simple explanation about the application of the \dead store elimination" rule,

or with a more complex before and after view of the transformation process.

� If the transformation rule matches the x on line 210 and then eliminates that

line, tracking for x will move to line 200, since that is the \parent" of the elim-

inated line on the ast (see Figure 3.9 on page 53). In this case, the movement

of the tracking point and the deletion of the line can be reported to the user.

In both cases, tracking can be combined with data 
ow analysis to provide a reason-

able explanation for the user without any special debugging considerations when the

transformation rule was written.

5.2.3.3 Code Hoisting

The example of code hoisting from Section 2.3.4.3 (page 19) is shown in Figure 5.3,

where x is not used during the else part.

There are two interesting breakpoints in this example:

Line 360. The expected value of x is u� v, but the actual value is y + z.
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300 x = u - v;

310 if (c) f
320 x = y + z;

330 g else f
340 ...

360 ...

370 g
380 ...

390 x = y + z;

400 ...

�! 300 x = u - v

310 if (c) f
320 x = y + z

330 g else f
340 ...

350 x = y + z;

360 ...

370 g
380 ...

400 ...

Figure 5.3: Code Hoisting

Line 380. The expected value of x is either u � v or y + z, depending on which

branch of the if was taken. The actual value is y + z. This may lead the

programmer to believe that the �rst branch was always taken, when, in fact,

the transformations make this assumption incorrect.

Using the truthful behavior algorithm, data 
ow analysis can be used to show that

there are two de�nitions for x in the original source (on lines 300 and 320). These

de�nitions will be tracked to the corresponding de�nitions in the �nal transformed

program (also on lines 300 and 320). Further, data 
ow analysis of the �nal trans-

formed program will show that there are three de�nitions for x visible from line 360

or line 380. This additional de�nition can be tracked backward to T0, allowing the

debugger to display before and after views that show all of the important assignments

to x, even those that come after line 380 in the original program.

5.2.3.4 Variable Promotion

An example of variable promotion performed by a loop vectorization transformation

is shown in Figure 5.4. T is a scalar in the original program, but T 0 is a vector.

Providing expected behavior debugging for this type of transformation is di�cult.

After setting a breakpoint on line 510, the expectation is that the loop will stop

during the �rst iteration. Reconstructing this expected behavior in the general case is

di�cult, and is not usually discussed in the literature dealing with expected behavior

debugging.
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A, B, C: array (1..n) of integer
T: integer
do i = 1; n

T = A(i) +B(i)
C(i) = C(i) + y � T

end do

�!
A, B, C, T': array (1..n) of integer
T 0 = A +B
C = C + y � T 0

Figure 5.4: Example Loop Vectorization

10 do J = 2, M

20 do I = 1, N

30 A(I,J) = A(I,J-1) + B(I,J)

40 enddo

50 enddo

�! 10 do I = 1, N

20 do J = 2, M

30 A(I,J) = A(I,J-1) + B(I,J)

40 enddo

50 enddo

Figure 5.5: Increasing Parallelism with Loop Interchange

Given a breakpoint at line 510 and a request for the value of variable i, the truth-

ful behavior algorithm would report that the do loop was replaced. A request for the

value of variable T would report that the de�ning assignment to T was changed to a

de�ning assignment to variable T 0, thereby providing the debugger enough informa-

tion to explain that a variable substitution occurred. The debugger, with knowledge

of the type system, could then o�er to display some part of T 0.

5.2.3.5 Loop Interchange

Wolfe [1996] calls loop interchange the \single most important loop restructuring

transformation". Traditionally, loop interchange has been important for the discovery

of parallelism: if the inner loop carried dependencies, but the outer loop did not, then

switching the loops would allow the inner loop to execute in parallel. An example

of this use of loop interchange is shown in Figure 5.5. Before the loop interchange,

the inner loops cannot be executed in parallel because A(I; J � 1) must be computed

before A(I; J). Hence, the iteration over J must proceed sequentially. After the loop

interchange, however, all of the inner loops can execute in parallel.

Loop interchange is also important for scalar compilers. As branch prediction

in processors becomes more sophisticated, interchange to replace an inner loop that

127



iterates only a few times with an outer loop that iterates many times can dramatically

increase performance [Intel Corporation 1997]. Further, as processor speeds continue

to increase faster than memory speeds [Wulf and McKee 1994; McCalpin 1995], loop

interchange can be used to increase the spatial and sequential locality of memory

references (e.g., by reducing the stride of the loop to one [Bacon et al. 1994]).

A Khepera transformation rule that performs the loop interchange shown in

Figure 5.5 might match the outer loop, perform some analysis of the contents of the

loop (e.g., verify that loop interchange is helpful and allowed, and verify, for this

simple example, that id1 is not used within the expressions that de�ne the inner

loop), and then perform a replacement. A rule that matches a simple case where loop

interchange might be useful would look something like this:

match (outer:N_For

id1:N_Identifier

lower1:N_Expression

upper1:N_Expression

(N_StatementBlock

(inner:N_For

id2:N_Identifier

lower2:N_Expression

upper2:N_Expression

body:.)

rest:.))

when (is_interchange_ok(outer))

build new with (N_For id2 lower2 upper2

(N_StatementBlock

(N_For id1 lower1 upper1 body)

rest))

replace outer with new

In this case, asking questions during debugging about I and J would track to the

appropriate variables in the interchanged loops. Asking questions about either for

statement itself would track to the for in the outer loop (since the N For nodes were

not copied in the rule).

In this simple example, Khepera would provide a simple, easy-to-understand

answer to a debugging query. An expected behavior debugging system, however,
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would probably not support loop interchange transformations at all because recon-

structing the behavior of the non-interchanged loops, especially in the face of many

composed transformations, would be di�cult or impossible. Adl-Tabatabai leaves to

future work the determination of currency in the face of loop-nest transformations, in-

cluding loop interchange and loop skewing. If algorithms for currency determination

in the face of loop transformations were available, the methods would probably in-

volve transformation-speci�c annotations that track semantic information about the

transformation itself. In contrast, the answers provided by Khepera are indepen-

dent of the speci�c transformation semantics. Again, as other methods are discovered

to provide more debugging information to the user, these methods can be added to

the Khepera rules to provide more information (although at the cost of increased

overhead for the transformation implementor and maintainer).

5.3 Conclusion

In addition to the ability to answer questions about simple scalar optimizations using

information that is tracked transparently, the node tracking of the Khepera system

also has the ability to provide debugging features that other systems cannot provide:

� Khepera can answer debugging questions about the transformation system it-

self, thereby providing support for debugging the program translator and for

gaining an understanding of the transformations. This support can be used

by the implementor of the program transformation system or by the sophisti-

cated end-user who is interested in understanding the workings of the program

translator.

� Khepera can provide valuable sca�olding for the implementation of debugging

systems that require semantic information about the transformations being ap-

plied.

� Without the addition of semantic tracking to the individual transformations,

Khepera can be combined with data 
ow analysis to provide truthful infor-

mation about variable values.

� Khepera can answer debugging questions for optimizations and transforma-

tions that are more complex than the simple scalar optimizations discussed in
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the literature. Examples include loop interchange, variable promotion, and the


attening of nested-data parallelism.
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Chapter 6

Contributions and Future Work

Translators are pervasive, being used to implement increasingly complicated lan-

guages and language extensions. I have focused on truthful behavior debugging, since

this type of behavior is reasonable for debugging a program undergoing large structure

changes. This is also the kind of debugging required by a translator implementor.

Assuming the translator is implemented as a series of tree transformations, my

algorithms track debugging information at a very low level, without semantic knowl-

edge of the languages being transformed. This saves the implementor from the task of

writing, for each and every transformation, additional code to implement debugging.

It also provides a framework for implementing more complicated semantic-aware de-

bugging systems if the implementor chooses.

I have builtKhepera as an example implementation, showing that this automatic

and transparent debugging is possible within a real transformation system.

6.1 Contributions

The work presented in this dissertation makes the following contributions:

1. Given a program translator that is structured as a set of program transforma-

tions operating on a tree-based representation, I have described methods for

tracking debugging information in this system in a manner that is transparent,

automatic, and independent of the semantics of the languages being transformed

(see Chapter 3).

2. I have presented algorithms that use this tracking information to provide sup-

port for debugging the translator and the output of the translator (see Chap-

ter 4).



3. I have shown how to use this tracking framework to systematically build ad-

vanced debugging support, relying on the semantics of the languages and trans-

formations (see Chapter 5).

4. I have described algorithms that increase the performance of the transformation

process (see Chapter 4).

6.2 Evaluation

To evaluate this approach and the proposed algorithms:

1. I have constructed Khepera (see Chapter 4), a program transformation system

with integral support for the construction of debuggers. This system implements

the tracking algorithms (see Chapter 3), and the algorithms for rapid tree walk-

ing (see Section 4.5.3). Khepera has been used to implement a Proteus-to-C

translator.

2. I have written a viewer for the Khepera system that can be used to debug the

translator implementation (see Chapter 5).

3. I have used the Khepera system and its viewer to explore debugging capabil-

ities for traditional compiler optimizations, for more aggressive loop and par-

allelizing transformations, and for the transformation process itself (see Chap-

ter 5).

4. I have used the Khepera system to analyze average performance for the rapid

tree-walking algorithms for a set of programs and transformations (see Sec-

tion 4.5.3).

6.3 Future Work

6.3.1 Khepera Improvements

I've built Khepera as an initial demonstration of the tracking algorithms. Khepera

can be improved by making the language for describing transformations more expres-

sive, by adding a better way to describe how to sequence transformations, and by

more work with data structures to improve its overall performance.
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Further, the algorithms described in Chapter 4 for rapid tree-walking can be

improved with more careful implementation of the underlying data structures. For

example, skip list performance can be dramatically improved with the addition of

\�ngers" that cache recently accessed locations in the skip list structure [Pugh 1990a].

6.3.2 Tracking Improvements

The tracking algorithms presented here should also be applicable to translators that

generate machine code. Experiments with these algorithms and machine code gener-

ation can take two routes:

1. the exploration of tracking machine code on an ast, and

2. the exploration of using the tracking algorithms on an ir that is not an ast

(often, non-ast irs are used for the �nal stages of machine code generation and

optimization).

More experience should be obtained with debuggers for large systems, and for

systems other than the Proteus-to-C translator. The tracking algorithms should be

incorporated into another translator construction system, such as the suif compiler

construction toolkit [Tjiang et al. 1992].

6.3.3 Program Veri�cation

During transformation, Khepera produces a log of transformations applied to vari-

ous parts of the tree. This log can be \replayed" to transform the original program

into the transformed program. Discovering which transforms to apply to the program

may be a di�cult and complicated process, involving type exploration and program

analysis. However, the log of transformations is a much simpler problem. Proving

the correctness of a small \transformation application" program would be much eas-

ier than proving the correctness of the Khepera system. To prove correctness of

a program P translated to P 0 by Khepera|that is, to prove that P and P 0 are

semantically equivalent|we need only prove:

1. the correctness of the transformation rules, and

2. the correctness of the program applying the log of transformations.
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Appendix A

The Khepera Language

The Khepera language is described in this section. Section 4.4 (page 68) discusses

how some of the Khepera language constructs can be used to build a language

processor.

A.1 Reserved Words

The following words are reserved outside of C code sections:

break build children decl

if include match rebuild

replace return rule using

walk when

A.2 Reserved Variables

Variable names beginning with kh are reserved everywhere, including within the C

code sections.

A.3 Comments

Standard C comments (e.g., /* */) may be used anywhere.



A.4 Tree-Matching Speci�cations

tree ::= ( node [ children ] )

children ::= [ children ] node

j [ children ] tree

node ::= id [ast node name]

j id : id [Label preceding ast node name]

j . [Wildcard (matches any single node)]

j id : . [Label preceding wildcard]

j :: [Sibling wildcard (matches all remaining siblings)]

j id : :: [Label preceding sibling wildcard]

j 0 [Ground (matches absence of node)]

When matching an ast, the �rst node in a tree must be a node name from the node

de�nition �le. Our local convention is that all of these special names start with N_

to distinguish them from other identi�ers, but this convention is not enforced by

Khepera.

One should think of a sibling wildcard as a reference to a list or forest of subtrees.

A.5 Tree-Building Speci�cations

b-tree ::= ( b-head [ b-children ] )

b-children ::= [ b-children ] b-node

j [ b-children ] b-tree

b-head ::= id [ast node reference]

j id : id [New label preceding ast node name]

b-node ::= id [Matched label]

j id : id [New label preceding matched label]

Labels from the tree-matching speci�cation may be used in this section to indicate

that a copy of the matched tree should be included at this point in the tree that is

being built. A \new label" may be attached to that copy so that the copy may be
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referenced in later C code. If a label from the tree-matching speci�cation refers to a

sibling wildcard, then the labeled tree and all rightward siblings will be copied.

A.6 Rule Speci�cations

rule ::= rule id { command-list }

match ::= match tree [ when c-bool ]

command-list ::= [ command-list ] command

command ::= decl { c-code } [C declarations]

j match [Match a subtree]

j build id with b-tree [Build a new subtree]

j rebuild id with b-tree [Rebuild a subtree]

j using id match command [Using a matched label,

perform another match]

j children id command [Iterate over children]

j break [Break from iteration]

j do { c-code } [Arbitrary C]

j replace [ id1 ] with id2 [Replace tree]

j { command-list }

j if c-bool command [Conditional]

j return [Early return]

If id1 is missing from a replace command, then the subtree matched by the �rst

match command is used.

c-code can be any arbitrary C code. At this time, this code is not parsed by

Khepera, so any errors in this code will be reported at compile-time.

c-bool can be an arbitrary C expression. This expression will be used in a C if

statement to guard the match. Since Khepera rules are generally executed in an

iterative manner until they no longer \�re", it is extremely important that the when

clause prevents the rule from �ring when there is not more work to be done|otherwise

the iterative applications will halt only if some other rule removes the pattern which

is matched by the current rule.
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The C code can refer to labels used in tree and b-tree constructs. These labels are

seen a Khepera \Node" variables (e.g., a pointer to a node created with tre mk).

The using command begins a new scope, so variable names may be re-used from

one using command to another. This often makes the Khepera rules easier to read.
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Appendix B

Optimizations

B.1 Common Scalar Optimizations

This section provides brief descriptions of representative scalar optimizations that

are commonly used in production compilers [Stallman 1993]. Methods for providing

expected behavior debugging in the face of these and similar optimizations have been

described [Zellweger 1984; Copperman 1993a; Adl-Tabatabai 1996].

B.1.1 Constant Folding

Constant folding (also called constant-expression evaluation) is the compile-time eval-

uation of expressions whose values are known to be constant [Muchnick 1997, p. 329].

B.1.2 Copy Propagation

Copy propagation (also called assignment propagation) replaces the use of a variable

with the expression most recently assigned to it [Muchnick 1997, p. 356]. For example,

given the assignment x = y, copy propagation would replace later uses of x with y.

B.1.3 Constant Propagation

Constant propagation replaces the use of a variable with the constant value most

recently assigned to it [Muchnick 1997, p. 362].



B.1.4 Common-Subexpression Elimination

Common-subexpression elimination locates multiple occurrences of the same expres-

sion (common-subexpression), and replaces the recomputation with the use of a value

stored from the initial computation [Muchnick 1997, p. 378].

B.1.5 Dead Assignment Elimination

Dead assignment elimination locates assignments to variables which are never used

on any path from assignment, and removes the assignment [Muchnick 1997, p. 592].

An example is shown in Figure 2.8 (page 18).

B.1.6 Dead Code Elimination

Dead code elimination locates code which is never executed or which computes values

which are never used on any path from the code, and removes the code [Muchnick

1997, p. 592].

B.1.7 Procedure Inlining

Procedure inlining (also called procedure integration or automatic inlining) replaces

a call to a procedure with a copy of the procedure body [Muchnick 1997, p. 465].

B.1.8 Cross-Jumping

\Cross-jumping is a special case of procedure discovery that examines code paths

that join. If the tail portions of any two paths are the same, cross-jumping moves

the join point for those two paths from its original location backward to the earliest

identical point and deletes one copy of the identical code". [Zellweger 1984, pp. 54{5].

Cross-jumping is also called tail merging [Muchnick 1997, p. 590]. An example of

cross-jumping is shown in Figure 2.4 (page 14).

B.1.9 Strength Reduction

Strength reduction replaces one expression with another expression that is equivalent

but uses a less expensive operator [Bacon et al. 1994, p. 359].
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B.1.10 Induction Variable Elimination

An induction variable is a variable whose value is derived from the number of iter-

ations that have been executed by an enclosing loop. After strength reduction has

been performed on induction variable expressions, the induction variables can often

be eliminated entirely. In this case, loop termination relies on a strength-reduced

expression instead of on the original induction variable [Bacon et al. 1994, p. 359].

B.1.11 Loop-Invariant Code Motion

When an expression is computed within a loop, but the value computed does not

change between loops, the expression can be moved outside the loop [Bacon et al.

1994, p. 360].

B.1.12 Code Hoisting

Code hoisting (also called uni�cation) �nds expression that would always be evaluated

on some path through a program, and moves the expressions to the earliest possible

point beyond which they would always be evaluated [Muchnick 1997, p. 417]. An

example is shown in Figure 2.9 (page 19).

B.1.13 Loop Unswitching

Loop unswitching replaces a loop which contains a loop-invariant conditional with a

conditional containing a copy of the loop in each of its branches [Bacon et al. 1994,

p. 361].

B.1.14 Loop Unrolling

Loop unrolling replicates the body of a loop some number of times, with a corre-

sponding change in the loop bounds and the use of the index variables [Bacon et al.

1994, pp. 368{9].

B.1.15 Loop Peeling

Loop peeling removes a small number of iterations from the beginning or end of a

loop, replicating the code before or after the main body of the loop [Bacon et al.

1994, p. 372].
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B.2 Aggressive Loop Optimizations

This section describes aggressive loop optimizations for which no expected behavior

debugging methods exist [Zellweger 1984; Copperman 1993a; Adl-Tabatabai 1996].

B.2.1 Loop Interchange

Loop interchange exchanges the position of two loops. An example is shown in Fig-

ure 5.5 (page 127).

B.2.2 Loop Skewing

Loop skewing changes the bounds of the loop together with the expressions that use

the corresponding index variables [Wolfe 1996, pp. 341{3]. Loop skewing is often used

an an \enabling" transformation that is useful in combination with loop interchange

[Bacon et al. 1994, pp. 363{4].

B.2.3 Loop Reversal

Loop reversal changes the direction in which loops iterate over their index variable,

and can be used to change the dependencies for vectors within a loop, thereby enabling

other optimizations [Bacon et al. 1994, p.365].

B.2.4 Loop Coalescing

Loop coalescing (also called loop collapsing) replaces a pair of nested loops with a

single loop [Bacon et al. 1994, p. 371].

B.2.5 Strip Mining

Strip mining replaces a single loop with two nested loops [Wolfe 1996, pp. 350{1].

B.2.6 Loop Tiling

Loop tiling (also called loop blocking) is similar to strip mining, but it operates on

multiple nested loops instead of a single loop. Loop tiling can be an important

optimization on scalar machines, since it can improve cache reuse [Bacon et al. 1994,

pp. 366{7].
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B.2.7 Loop Splitting

Loop splitting (also called loop �ssion or loop distribution) replaces a single loop with

several (non-nested) loops: each loop has the same range as the original loop, but

contains only a subset of the statements which were in the original loop [Bacon et al.

1994, p. 367].

B.2.8 Loop Jamming

Loop jamming (also called loop fusion) is the inverse of loop splitting: several loops

with the same bounds are replaced with a single loop containing the union of the

statements in the original loop.

B.2.9 Software Pipelining

In software pipelining, the body of a loop is broken up into stages and the original

loop is replaced by a new loop that intermingles the stages across the iteration space

[Bacon et al. 1994, p. 369].

B.3 Transformations for Flattening Nested-Data

Parallelism

This section describes aggressive parallelizing optimizations for which no expected

behavior debugging methods exist [Zellweger 1984; Copperman 1993a; Adl-Tabatabai

1996].

Flattening nested-data parallelism transforms a nested parallel construct into a


at parallel construct [Blelloch 1990, p. 143]. Blelloch and Sabot [1990] �rst intro-

duced the concept of 
attening nested-data parallelism. Prins and Palmer [1993] and

Palmer [1996] present 
attening in terms of a transformational framework with two

distinct sets of transformations that are necessary to 
atten a program: the �rst is the

elimination of apply-to-all constructs (also called iterator elimination); the second is

the promotion of functions (also called replication).
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B.3.1 Apply-to-All Elimination

Apply-to-all constructs are replaced with calls to special functions which operate on

a set of inputs in parallel [Palmer 1996, Chapter 3]. For example, the apply-to-all

construct:

(/ i in D : i+ i /)

can be replaced by a call to a special plus function which can operate on all elements

in a sequence in parallel:

plus(D;D)

B.3.2 Promotion of Functions

The 
attening of nested-data parallelism depends on the existence of versions of

routines which can operate on a set of inputs in parallel. Blelloch [1990] calls the

creation of these routines \replication". The creation of these special functions is

called promotion or introduction of data-parallel function de�nitions. For example, if

the following apply-to-all construct was eliminated:

(/ i in D : f(i; i) /)

to yield:

f 0(D;D)

then the promotion transformation would copy the source code for f and create the

special version, f 0.
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Appendix C

Obtaining the Khepera

Transformation System

The programs in the Khepera Transformation System are licensed under the terms

of the GNU General Public License and the library routines inKhepera and libmaa

are licensed under the GNU Library General Public License. Copies of these licenses

are included in the source code distributions.

The Khepera system is currently available for anonymous ftp from:

ftp://ftp.cs.unc.edu/pub/projects/khepera

Web pages with pointers to the Khepera source distribution include:

http://www.cs.unc.edu/~faith/khepera

http://www.cs.unc.edu/Research/khepera

If these pointers have changed over time, please send email to Jan F. Prins at

prins@cs.unc.edu or to Rickard E. Faith at faith@cs.unc.edu or faith@acm.org.



Appendix D

Mythology

Kheper _a, �� �+ , is the third form of R�a, the Sun-god, and is called the \father

of the gods". Kheper _a rose up out of the watery abyss of Nu and created Ma�a,

�+ , as a foundation upon which to create everything else [Budge 1969, pp. 295{

8]. Kheper _a is self-begotten and self-born, and is associated with creation, rebirth,

and transformation. His symbol is the Egyptian Scarab beetle (Scarabaeus sacer), a

symbol of creation and transformation [Budge 1969, pp. 355{8].
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