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ABSTRACT

JACOB DAVID FURST: Hcight Ridges of Oriented Medialness
(Under the direction of Stephen Pizer.)

Shape analysis of objects is an important aspect of medical image processing. [nfor-
mation gained from shape analysis can be used for object segmentation. object-based
registration and object visnalization. One shape analysis tool is the core. defined to
be a height ridge of a medial strength measure made on an image. In this disserta-
tion [ present 3D cores. defined here to be optimal scale-orientation height ridges of
oriented medial strength measurements. This dissertation covers 1) a medial strength
measurement, Blum-like medialness. that is robust. efficient. and insensitive to inirafig-
ural interference. 2) a new definition for a ridge. the optimal parameter height ridge. and
its properties. and 3) an algorithm. Marching Ridges. for extracting cores. The medial
strength measurement uses Gaussian derivarives. so is insensitive to noise and responds
to object boundaries at points rather than on entire spheres. so is faster to calculate
and less sensitive to boundaries of other image figures. The Marching Ridges algorithimn
uses the grid structure of the image domain to identify ridge points as zero-crossings
of first derivatives and to track ridges through the image domain. [ include results of
this algorithm on medical images of cerebral vasculature. a skull. kidneyvs. and brain

ventricles.
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Chapter 1

Introduction

1.1 Motivation

Since the advent of X-rays. medical imaging has become an increasingly important tool
in the diagnosis and treatment of illness. X-ray films. CT scans. ultrasound. nuclear
imaging and other imaging techniques all play a vital role in the practice of modern
medicine. This dissertation is broadly about the analysis of these medical images as a
tool to aid physicians in their work: of particular importance is the aspect of medical
image analysis calied shape analysis. in which a physician identifies and makes decisions
about the shape of various objects found in medical images. Medical practitioners in
fields as diverse as radiology. psychiatry. neurosurgery and radiation oncology use shape
analysis in their work: it aids radiologists in identifying whether or not structures in
an image are normal or pathological [42]. psychiatrists in studying schizophrenia [{4].
neurosurgeons in conducting minimally-invasive surgery [5]. and radiation oncologists in
the more accurate direction of fatal radiation to cancerous cells [19]. Until recently. most
shape analysis had been done manually. without the aid of computing devices. a process
that may be slow and unreliable. However. there is an increasing use of computers to
provide automatic and semi-automatic tools in shape analysis. which offer the hope of
quick. repeatable analyses.

Such computing tools have typically used three different kinds of image structures in
shape analysis: landmarks (Figure 1.1). points in the image defined to have particular
importance [4]. boundartes (Figure 1.2). the contour separating an object from its back-
ground [10]. or skeletons (Figure 1.3). structures representing the middles of objects
[28, 6. 38].

These analysis methods typically create shape representations for homologous objects
in a set of training images using landmarks, boundaries or skeletons, and then perform
a statistical analysis to create a model describing the range of objects encountered in
the training images. This model is then compared to the shape representation of a

homologous object in a new image to provide a quantification of the similarities and
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Figure 1.1: Example landmarks in an image shown by X's.

differences between the mode! and the object. This quantification. in turn. can aid
physicians in making diagnoses or deciding on plans of treatment These structures can
also be used in segmentation tasks to penalize shape change of such a model.

Recently. Pizer [21] and the Medical Image Display and Analysis Group (MIDAG)
at the University of North Carolina at Chapel Hill (UNC-CH) have done studies of
object shape analysis using cores. a type of object skeleton defined as a height ridge of
medialness. Using this definition of cores requires an understanding of measurements
of medial strength called medialness (Section 1.3). and ridges (Section 1.4) while the
extraction of cores requires a knowledge of locus-finding algorithms (Section 1.5). This
dissertation is about the extraction of cores from objects in medical images for use
in shape analysts and contributes in each of the above three areas. The core finding
algorithms and tools [ have developed here show promise for many medical imaging
tasks as well as tasks in other disciplines where imaging is a basic means of gathering

information.

1.2 Background

Medical image analysis is a multidisciplinary field including medical practitioners and
researchers. computer scientists, biologists, mathematicians, and psychologists, to list
a few. As a computer scientist. [ have written primarily about ideas and algonthms.

although I include a solid mathematical background for the ideas and a summary of the
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Figure 1.2: Example boundaries in an image. outlining the corpus collosum and the cerebellum.

results of the algorithm on test images and medical images. To support understanding.
[ have included a broad chapter containing background material | used in creating the
work in this dissertation. [ncluded are a section on some basics of medical image analysis
as theyv relate to my work. a brief survey of current ideas about the representation and
description of ohject shape. a basic but rigorous introduction to the Blum symmetric
axis. a description of past work in medialness measurements. a definition of height ridges
and a survey of such ridges already being used in medical image analysis. and a quick

introduction to three relevant locus finding aigorithms.

1.3 Medialness

Medialness is a way of measuring for the middles of objects and is used in this dissertation
for the extraction of cores. The concept of medialness arises from Blum's work on
symmetric axes (Chapter 2) and has been refined extensively at UNC-CH. To provide
an intuitive notion of what medialness is. [ will use an analogy for medialness based on
some standard geometric and algebraic notions.

The formula for a disk (Figure L.4) is (r — k)* + (y — h)> < r? in which (k. h) is the
center of the disk and r the radius. Any disk can be described in this way by a point
(the center of the disk} and an associated width (the radius of the disk). This simple
description of disks is possible because of their mathematical nature. with complete and

perfectly distinct boundaries. Objects in medical images rarely have complete or even
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Figure 1.3: Example skeletons in an image. tracing the middles of a fold in the cerebrum. the corpus
collosum. the brain stem and the cerebellum.

easily recognizable boundaries. as one tissue transitions into another. However. there
are objects that may appear roughly disk-like. and it would be efficient and useful to be
able to describe them as simply as one can describe a disk, with a center location and
a radius. In fact, this simplification of representation i1s one of the key components of
making useful shape models.

Imagine. then. a disk with an indistinct and perhaps broken boundary (Figure 1.4).
as might appear in a medical image. It would be difficult to describe the exact center
of the disk and the corresponding radius. In fact. Pizer {38] has taken the approach
that it is not necessary (or even possible) to know the center or radius of such a disk
exactly. Instead. from among all the points in the disk. and from among all possible
radii. choose the point and radius that are most likely the center and the appropriate
radius. To make this choice. one must be able to measure for this property of being like
a center at an appropriate radius: the choice then amounts to finding the maximum of
the measurement. This measurement is called medialness. Thus. to find the “center”
of a disk with broken and indistinct boundaries. measure medialness at all positions
and all radii. Figure 1.5 shows medialness of the disk measured at three radit. The
position and radius pair having the highest value of medialness is the center (as well
as it can be known) of the disk. Figure 1.6 shows the center (black dot) of the disk
determined by medialness as well as the appropriate radius, shown by the black circle.

To look at this in other way. one can imagine that the mathematical equation for circle,
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(r—k)* 4 (y—h)> = r’, is a very rigidly defined medialness in which plugging in values
of (h.k) and r yield a response of 0 (when the circle fails to match the beundary of
the disk) for any point not in the center of the disk or not at the correct radius, or a
respeonse of 1 (when the circle does match the boundary) for the actual center and correct
radius. The center of the disk. with a measurement of 1. would be the maximum of the
measurement over all possible positions and radii. since any other comibination would
produce a measurement of 0. Medialness provides a way of grading this binary value so

that in medical images the complexity of the image can be reflected in the mediainess

values measured.

Figure 1.4: A disk and a fuzzy disk

Figure 1.5: Medialness of fuzzy disk at radii of 20, 25, and 30 pixels (brighter pixels have greater
medialness)

There are many ways to expand on this intuitive notion of medialness. One is to
model medialness not after a circle. but instead as a disk. in which the emphasis is not
on the medialness measurement matching the boundary of the object. but on the overlap
between the medialness measurement and the object. This has the advantage (in medical
images) of being less sensitive to noise at the boundary of the object. since the emphasis is
on the difference between the average intensity of the object versus the average intensity

of its background. Another way is to use portions of the circle rather than the entire
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Figure 1.6: “Center” and “boundary”. determined by maximal medialness. superimposed on fuzzy

disk.

circle. This provides the advantages of being able to measure medialness of non disk-like
objects and of speed. since one can check for boundaries at isolated points rather than
along the entire circumference of the circle. (For example. when measuring medialness of
bar-like objects with parallel sides. only twe points on a circle are interesting in regard
to matching boundaries of the object.) A natural choice for pieces of the circle might be
two antipodal points (as in the example of the bar) (Figure 1.7 - left) or an entire half

circle (for instance. if the bar were to have a semicircular end cap) (Figure 1.7 - right).

Figure 1.7: Model medialness based on two antipodal points (left) and based on a semicircle (right}.

This approach requires some specification of which two points to use. or which partic-
ular semicircle. done with an orientation parameter. This way of measuring medialness
requires not only checking all possible radii for every position. but also all possible angles
of orientation (thus all pairs of antipodal points or all semicircles). The same choices
could be made for medialness modeled on the disk. Further. while each of these notions
is 2D. all of them can be extended to 3D (spheres and balls) or to any arbitrary dimen-
sion using hyperspheres and hyperdisks. (I am interested in static medical images. so
I will only use medialness measurements for 2D and 3D spaces.) All of these intuitive
definitions have been quantified and used by researchers at UNC-CH in 2D and will be

discussed in Chapter 2. My own work on medialness (Chapter 3) includes 1) exten-
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sions of the 2D medialness measurements into 3D. involving decisions about the nature
of the core to be extracted and providing a basis from which to extrapolate higher di-
mensional medialness measurements: 2) a new classification of medialness measurements
based on implicit properties of the measurement and type of core extracted from medial-
ness. providing a framework from which to choose medialness measurements best suited
for a particular task: and 3) a new medialness measurement. called Blum-like medial-
ness. modeled on a circie (or sphere) for which any two arbitrary points (requiring two
angles to define) are used to measure medialness. providing an efficient and natural way

to measure medialness for points in an object of arbitrary shape.

1.4 Ridges

Ridges are intuitively extended “high™ places. However. this intuitive notion falls far
short of any useful application in medical image analysis tasks. Thus. many more specific
notions have arisen. which [ will describe intuitively here and capture mathematically in
Chapter 2.

One kind of ridge can be illustrated by a hypothetical walk in the mountains. As you
walk. always maintain the steepest possible drop on both your left and right sides. You
can then be sure that you are on a ridge. Another kind of ridge can be illustrated by
walking always uphill. if. in your walk. you take a sharp right or left turn to keep going
uphill. you have started walking on a ridge. A third kind of ridge can be illustrated by
walking along the direction in which the mountain is most curved. keeping track of how
curved it is. Every tinie you get a maximum of curvature. mark that point as being on
the ridge. A fourth kind of ridge can be illustrated by walking at a constant altitude in
the mountains. Every time you take a sharp left or right turn. you have crossed a ridge.
If you walked at all altitudes and marked the ground every time you crossed a ridge.
the collection of such marks would be a ridge. A much different way to think intuitively
about ridges is to look at the boundaries between watersheds. such as the continental
divide of the Rocky Mountains which separates the United States into that part in which
water flows to the Pacific basin and that part in which water flows to the Atlantic. The
boundaries between the final catch basins (in this case. the Pacific and Atlantic) are
ridges. The mathematical foundations for these intuitive notions are an important tool
in medical image analysis.

Unfortunately. these intuitive notions all attempt to describe ridges on the familiar
two dimensional surface of our planet in terms of mountains. In medical image processing.
ridges defined on image intensity (rather than mountains) are of interest. In the case of
measuring intensity. used throughout this dissertation. [ will define image intensity as a
function of image posttion. I(I). r € R’. and then cousider the graph of the function as
a kind of mountain range (Figure 1.8). Ridges then exist in this landscape of intensity
analogously to their existence in mountains. In fact. one can find ridges of any function
f in such a manner. by examining the graph of the function as a landscape. and in all

of the following discussions [ will assume that I am interested in finding a ridge of some
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general function.

Figure 1.8: A greyscale image of a human head viewed as a height function of the image space.

Thus. ridges may be defined on functions whose domains are spaces of dimension
greater than two (e.g.. 3D medical images). These ridges are not as easily described in-
tuitively. although one can imagine a cloud of particles. with the densest part of the cloud
being traced by a ridge (analogous to always walking on the highest part of the moun-
tains). However, even three dimensions may be inadequate for certain problems. where
other. possibly non-Euclidean. spaces are of interest. For example. if the boundary of an
object is identified by a ridge. one may be interested in the normal to the boundary as
well as the position of the boundary. This may involve finding ridges on a function whose
domain is an orentation space. in which positional information is augmented by angular
information. Another example involves medialness. which is a measurement made on
position and radius. Ridges of medialness would then be defined in scale spaces in which
positional information is augmented with width information. I combine orientation and
scale space (Chapter 4) 1o produce orientation scale spaces which may have dimensions
as high as eight. Intuition fails in trying to follow a curve through eight dimensional
space.

Moreover, ridges may not just be curves. In 2D. these and relative maxima are the
only ridges of interest. In 3D spaces. ridges may be surfaces. curves or points. The
variety of manifolds which can be ridges increases as the dimensionality of the domain
space of the function increases. These are also hard to describe intuitively. although the
middle page of a book might help to think about a 2D ridge of medialness. Another way
to imagine ridges in higher dimensional spaces is to break the space containing the ridge
into two subspaces: one that follows the ridge and one that crosses over the ridge. (In

the familiar example of a mountain ridge. Figure 1.9. each of these subspaces is 1D.)
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Figure 1.9: Following and crossing spaces of a mountain ridge.

The following space (the subspace that travels parallel to or along the ridge) may
contain any behavior of the function. but the crossing space (the subspace that travels
perpendicular to or across the ridge) must contain a relative maximum of the function
restricted to the crossing space. This is called the subdimenstonal martmum property. It
is this property that allows both mountain peaks and mountain passes to belong to the
same ridge. This notion describes ridges as a collection of “cross-sectional”™ mountain
peaks collected across the line orthogonal to the cross-sections.

My own work on ridges (Chapter ) includes the definition for a particular kind of
ridge. called an optimal parameter ridge. that allows for a natural choice of ridge crossing
directions based on a specific image processing task and a reduction in dimensionality,
so that. for example. a ridge defined in 6D may be defined in terms of a ridge in one 3D
subspace and a relative maximum in the orthogonal 3D subspace. I will also discuss the
algorithmic choices possible when calculating optimal parameter ridges. [n conjunction
with this is a proof that optimal parameter ridges preserve the subdimensional maximum

property.

1.5 Locus-finding Algorithms

Given an image. it is often desirable to be able to locate a particular subset of the image
domain that 1s unportant for some particular task. Landmarks. boundaries and skeletons
all fall into the category of interesting subsets. Having made the decision to look for a
particular subset. the next step is to then define an algorithm for finding that particular

locus.
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The most common method of finding these loci is manually: that i1s. having humans
locate the subset of interest. As with any manual algorithm. there may be problems of
speed and reliability. Thus there has been much research focused on the automatic and
semi-automatic extraction of these subdimensional loci. To create any such algorithm. it
is necessary to define mathematically the locus of interest. Thus, for example. a common
way of identifying landmarks in an image is to define them as local maxima of intensity.
Then. to find these loci. one designs an algorithm for finding maxima and inputs the
image to the algorithm. Or. as another example. one may define a locus with derivatives
and then use a differential equation solver to locate the set.

Of greatest interest to this dissertation is a class of algorithms designed to take
advantage of the regularly sampled grid of pixels in a medical image to find loci. Also.
in contrast to algorithms that search for the locus of interest in the entire image. these
algorithms typically take advantage of the subdimensional and connected nature of a
locus (for example, a boundary) to gain speed efficiency by following the locus through
the image and thus not having to make any calculations where the locus is not. These
algorithms are called marching or tracking algorithms because they march from one point
on the locus to the next using the image grid as a guide. In Chapter 2 I will discuss
the most relevant of these: those that can be adapted for finding ridges and thus cores.
Chapter 5 will present my own marching algorithm. called marching ridges. designed to

find ridges defined using the optimal parameter ridge definition.

1.6 Thesis

Oriented medialness and optimal parameter height ridges employed in a
marching ridges algorithm will effectively extract cores of 3D greyscale im-

ages.

1.7 Contributions

This dissertation presents five contributions:

o a definition of Blum-like medialness. a medialness deiined to be efficient and to

avold the effects of interfigural interference in the extraction of cores (Chapter 3).

¢ a definition of optimal parameter height ridges. designed to simplify ridge finding

based on choices natural to a particular task (Chapter ).

e a proof that optimal parameter height ridges have the subdimensional maximum
property (Chapter ).

e an algorithm to extract optimal parameter height ndges from 2D and 3D grevscale
images (Chapter 5).

e extraction of 1D and 2D cores of 3D medical images (Chapter 6).
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1.8 Organization

This document is organized as follows: Chapter 2 provides an introduction to relevant
aspects of medical image analysis. including the use of weighting functions for measuring
image properties such as boundariness or medialness. product spaces. and dimensionless
derivatives in non-Euclidean product spaces: a basic definition of the Blum symmetric
axis and its extension into 3D: a catalog of medialness measurements used in medical
image processing: mathematical notions of ridges: and a description of three important
locus-finding algorithms. Each of these subjects is helpful for the understanding of and
critical to the success of my work. Chapter 3 includes a categorization of the many
medialness measurements used in research at UNC-CH and the introduction of new
definitions of medialness based on 1) extensions of current medialness measurements
and 2) the mathematics of the Blum symmetric axis. specifically introducing the notion
of multiple orientaticns into existing medialness measurements. The emphasis in the
discussion of Blum-like medialness will be on 3D medialness measurements. although
the work will be shown conceptually sound in 2D. Further. Chapter 3 presents a short
discussion of the derivative and invariant nature of medialness kernels. Chapter 4 expands
on the notion of distinguished directions in ridge definitions and presents the optimal
parameter ridge. [t also includes a proof of the subdimensional maximum property of
optimal parameter ridges and discusses why optimal parameter ridges are the natural
choice when defining cores. Chapter 5 presents an algorithm for finding height ridges.
called Marching Ridges. I discuss the use of Marching Ridges for finding ridges of 2D
images and for finding 1D and 2D ridges of 3D images. This chapter also includes a time
analysis of the marching ridges algorithm. a catalog of possible pathological behaviors.
and some heuristics employed in the calculation of ridges. Finally. Chapter 6 discusses the
contributions of this dissertation including results of the ideas and algorithms on images
and identifies directions for future work. including higher dimensional ridge tracking.

more efficient and robust ridge tracking. and the use of connectors for shape analysis.
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Chapter 2

Background

2.1 Introduction

This chapter considers six areas of importance to this dissertation and is organized as
follows. First. [ discuss the basics of medical image processing helpful in understanding
the work in this and later chapters. Second. [ provide a basic but rigorous introduction
to the Blum symmetric axis. including its extension into 3D. Third. I list and discuss the
various medialness measurement functions used at UNC-CH. Fourth. [ provide a general
definition of height ridges. followed by a list of more specific definitions and examples
and the relation of cach to this work. Finally. [ discuss the different manifold-finding

algorithms that directly contributed to this work.

2.2 Medical Image Analysis

Medical image analysis is an enormous field. covering a wide range of disciplines and
applications. I have focused my work on the applications of medialness and height ridges
to study the shape of objects in medical images. With sections following dedicated to
medialness and height ridges. [ will concentrate here on image analysis fundamentals
used in this werk.

2.2.1 Weighting Functions and Convolution

A frequent task in medical image analysis is measuring an image for some quantity.
such as boundary strength. intensity derivative. or medialiess. This is often done by the
specification of a measurement function that is then applied to the image. The mechanics
of this involve a translation of the measurement function to the image location to be
measured. followed by an integration over the domain space of the image of the product

of the iimage and the measurement function.
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If F(£). £ € R' is the measurement function and [(£) the image to be measured.

then the actual measured value at a particular location £g is

[ Fli= o105 dg
R

Since medical images are defined over finite domains. @ C R'. the integration is
also defined only over the finite space Q. Further. since medical images are discretely

sampled. the integration is implemented as a summation. so that the value at £4 is
p g 0

Finally. because a smaller domain results in fewer multiplications and thus faster
computaticns. the domain of the summation is {requently truncated to a subset of Q.
This subset. which | will call the footprint of the weighting function F. is dependent
on the kind of measurement function used and the measurement accuracy desired. As [
will show in Chapter 5. one of the primary advantages of the medialness measurement
functions [ propose is their smaller {cotprint. allowing programs to run more quickly.

There are frequent cases in medical image processing in which the desired result of
measurement is not a single value, but a new function describing the measurements taken
at all locations in the image. This is accomplished by the application of the weighting

function at all image locations.

f(2) =) F(y—#)1(y) (2.1)
yeEN

Equation 2.4 contains three functions. f(r). F(£) and /{r). To avoid ambiguity in
my discussion of these functions, [ will use the following conventions: 1) I will refer
to [ as an image. an intensity function or a measured function: 2) [ will refer to F as
a weighting function or a measurement function: and 3) I will refer to f simply as a
function. [ will also keep the capitalization consistent so that the weighting function will
be an uppercase letter and the function resulting from the application of the weighting

function to the entire image domain will be the corresponding lowercase letter.

Equation 2.1 can be restated as a convolution. defined as

fIE)=>_F(E-g)(g)=F+I (2.2

gEN
in which F(£) = F(—£). In this case. F is usually referred to as a convolution kernel.
The work in later chapters of this dissertation will be described using weighting functions.

while some of the material in this chapter will be described using convolution kernels.
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2.2.2 Apertured Measurement Functions and Scale Space

One of the possible measurements on an image is a measurement of intensity deriva-
tives. Unlike mathernatics, the world of physical measurement rarely has the luxury of
a closed form description of data (discrete or continuous) with the consequent ease of
symbolic manipulation. Further there is no physical operator with which to acquire
derivatives that can measure over the infinitesimally small footprint required to produce
a description of instantaneous change. Even more difficult is the problem of dealing with
discretely sampled data. in which the smallest footprint any operator can use for mea-
suring derivatives is the distance between samples. Thus. image analysts are forced to
deal with ill-posed differentiation. Florack [16] has shown that well-posed differentiation
of a discrete signal 1s possible by convolving the signal with derivatives of the Gaussian

(Figure 2.1)

.- 1 deg?
CI(I.O') = mf‘:o‘ (2.3)

Figure 2.1: A 2D Gaussian.

The standard deviation of the Gaussian. o. introduces a new parameter into the
measurement of derivatives, called the scale (or aperture) of the measurement. Many
image scientists have chosen to fix this scale at some predetermined g, but more recently
there has been much research that has o vary continuously over all positive values. The
result of the convolution of an image and a Gaussian derivative kernel at all possible
scales is a function whose domain is the Cartesian product of position and scale. called a
scale space. (In much of the image processing literature. the function produced from the
convolution is called a scale-space representation. Sometimes it is simply called a scale
space. | will avoid this latter use and only refer to the domain of the function as a scale

space.)

g(£.0) = Z D(G(F — g.0)[(5))

geEN

in which D is a arbitrary derivative.
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Because medialness is defined differentially. all medialness weighting functions will
also include a scale component. The immediate consequence of this is that medialness
functions have a domain whose dimension 15 a least | greater than the domain of the

image they measure, explained below.

2.2.3 Generalized Product Spaces

Very often. the weighting function used for making image measurements will have a
greater number of arguments than the intensity function. That is. the weighting function
will be a function of the spatial variables of the image domain and auxiliary parameters. |
use the word parameter in this dissertation to distinguish spatial variables from auxiliacy
variables: [ do not intend to imply that auxiliary variables are in any sense fixed properties
of the function. The scale example important in image processing was shown above. In
another common example. measuring directional derivatives, the weighting function also
includes parameters of ortentation. The general term for the domains of each of these
weighting functions is product space. as each 1s the Cartesian product of more than one
space. Scale spaces can be described as R’ x Ry. the product of the Euclidean space
R’ and the positive aperture space IR, . Single orientation spaces can be described as
R' x $'=1. the Euclidean space R’ times the unit [ — | hypersphere. However. there is no
reason why a product space must be restricted to a single scale. a single orientation or
even the product of only two spaces. In Chapter 3. for example. [ propose a medialness
weighting function whose domain is the product space R’ x R, x S'=! x §'~!. To define
the domain of the function resulting from the convolution of an image and a measurement
function. let { be the number of spatial variables of the image and Q@ C R’ be the domain
of the image. Further. let p be the number of additional parameters of the weighting
function and 1 C IR be the space of those parameters. Then IR' x A is the domain
space of a weighting function F and Q x 1 is the domain of the function f. produced by
the convolution of F and /. The relation of these spaces to each other and the image

play an important role in Chapter 4.

2.2.4 Invariance to Similarity Transformations

Shape theory states that object shape must be invariant to similarity transformations:
any combination of translation. rotation and uniform scaling. Thus. a shape does not
change even though its position. orientation and size may change. This has the important
consequence that any measurement function that attempts to quantify a shape property
must also be invariant to those same transformations. Because medialness 1s a shape
measurement. in Chapter 3. | will explore the consequences that invariance to similarity
transformations has on the definition of medialness measurements.

If I{£) is an intensity function. and F(£) is a measurement function. and T : R’ — R’

is a similarity transformation. then for F to be invariant to T requires that

Jeu o= ainmandi = [ Fr - a1
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Medialness 1s an object shape measurement function so must also be invariant to
similarity transformations. [ will explore the effect of this in Chapter 3.
Note: Mathematicians and image scientists use the word ncvariance differently. To

a mathematician. for a measurement function F to be invariant to a transformation T

means that
/ Fly— )[(T(y))dg = / Fly— £)1(§)dy
R' R

What an image scientist calls invariant. a mathematician would call equirarant.
Since this is an image processing dissertation. [ will adopt the imaging convention and
use the word invariant. Mathematicians reading this are to understand that [ really

mean equivariant.

2.3 Blum Symmetric Axis

The Blum symmetric axis is a skeleton for an object with a continuous. closed boundary.
Mathematically. let an object in a two dimensional image be described by the set of
maximal disks. where maximal disks are disks that fit inside the object but in no other
disk. This maximality requirement ensures that the disks are tangent to the boundary
of the object at one or more points. The symmetric axis is then the collection of the
centers of these disks (Figure 2.2). This formalism has been extended for objects in three
dimensional images by using maximal balls. The symmetric axis was first defined by
Blum [3] and has been written about extensively both in the mathematics and computer

science literature, most relevantly to this work by Nackman [36] for the case of 3D objects.

Figure 2.2: Example of a Blum symmetric axis (light grey) in 2D.

For 2D objects. the symmetric axis is generically a branching curve. although a disk’s
symmetric axis i1s a point. The curve and its branches end at the centers of disks with but
a single point of osculated tangency. For 3D objects. the svmmetric axis is genericaily a

branching surface (Figure 2.3). although solid cvlinders produce lines and balls produce
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points. The symmetric axis transform. a bijective mapping between symmetric axes and
object boundaries. can be found if one includes the radius of the disk or sphere as a

function of position on the symmetric axis. (See Nackman [36] for details.)

Figure 2.3: Example of a Blum symmetric axis (dark grev) in 3D.

The symmetric axis transform contains two key components for this dissertation. The
first component is its linking of boundary points. called involutes. to identify the axis.
The linked boundary points are the points on the boundary to which the disk (or ball)
is tangent: they are associated through the center of this disk. This notion is the origin
of medialness: [ have refined it to produce Blum-like medialness weighting functions in
Chapter 3. The second component is the identification between the ~orientation™ of
maximal disks and the tangent to the symmetric axis at the center of the disks. If the
orientation # of a maximal disk is defined as the average of the orientations of the vectors
connecting the center of the maximal disk to the two boundary involutes and r(s) and
y(s) are the coordinate functions of parameterized position along the axis. then

dy

- = Ld 6
dr tan

This equation defines how the object is oriented at a particular point. by defining
the tangent to the symmetric axis. This quantifies intuitive notions of how the object 1s
turning as one progresses along the symmetric axis.

In the case of three dimensional objects, in which the symmetric axes are generically
surfaces. Nackman established a similar identity between the “orientation™ of maximal
balls and the tangent plane of the symmetric axis at the center of the ball. As with the
2D case. the 3D identity quantifies intuitive notions of how the object bends along any
direction in the tangent plane of the axis. | will explore the effect that this has on the
calculation of optimal parameter ridges in Chapter 3.

In practical application. the Blum symmetric axis has two major drawbacks. First.

calculation of the axis requires a closed boundary. This problem was alluded to in
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Chapter 1 in the discussion of a circle as a medialness weighting function. Edge detection
and boundary finding algorithms are notoriously difficult in medical images. especially
in the presence of image disturbances such as noise. Second. even given such a boundary.
the symmetric axis is extremely sensitive to small positional changes of the boundaries.
Thus. a small pimple on the surface of an object will result in a completely new branch

of the symmetric axis. Cores overcome these drawbacks by using medialness.

2.4 Medialness

Medialness is a measurement designed to produce medial axes that do not require bound-
arles as input and that are not sensitive to small boundary perturbations. thus bypassing
the two major drawbacks of the symmetric axis. This allows a change in the paradigm

for calculating medial shape descriptors from

e Find the boundary of an object in an image.

e Find the medial axis from the boundary.
to

e Find the medial axis of an object in an image.
o Find the boundary implied by the medial axis.

e Displace the boundary from that implied by the medial axis.

Medialness is what makes the first step of Pizer's paradigm [39] possibie. while the
second and third steps provide a much more stable way of identifving the boundaries of
an object.

Thus. given a product space formed by product of the image domain and the range
of possible widths of objects. a necessary condition fer finding Pizer’s medial axes is to
be able to measure how similar locations in this product space (spatial positions and
associated widths) are to the middles of objects in the image. Medialness is a function
designed to quantify this property of image locations using the ideas of Blum and others:
a point is most like a middle of an object when it is equidistant from two or more boundary
points of that object. However. in the Blum tangent disk paradigm. the similarity of a
point in an image to the middle of an object is a binary decision: a point either is or is
not a middle point. This is a useful formalism when given binary object boundaries and
instantaneous measurements. Unfortunately. most images delivered by physical imaging
devices do not contain binary boundaries. and. as mentioned. scientists (as opposed to
mathematicians) have no methods for making instantaneous measurements. [nto this
breach comes medialness. Medialness is a real-valued function of how like the middle of
an object of a particular width any image lccation is. The aperture of the measurement
function is proportional to the width of the object and allows the medialness weighting
function to be insensitive to small boundary perturbations. where =“small” is defined

relative to the width of the object.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Applyving the medialness weighting function to the entire domain of an tmage creates
a medialness function: a function that provides a measurernent of how medial every point
in the original image 1s at every position and radius. If M is the medialness kernel and

[ is an image. then the medialness function m is defined by

m(r.r) = E Mz -yg.r)(y) (2.4)

gen
In more recent practice, ridge finding 1s done only locally. and the entire medialness
function is not calculated. Rather, single values of the medialness function are calcutated

by applying a medialness weighting function to the original image at isolated points.

2.4.1 Isotropic Medialness Weighting Functions

In its simplest form. a medialness weighting function can be typed as follows:
M r):R' xRy - R

This is an isotropic medialness weighting function. one that has no orientation compo-
nent. This describes the original mediainess weighting functions developed at UNC-CH.
Each of the three kinds of medialness weighting functions shown below can be easily gen-
eralized to an arbitrary dimension. although they have only actually been implemented

in 2 and 3 dimensions.

Laplacian of Gaussian Medialness

Fritsch [18] used the negated Laplacian of a Gaussian (Figure 2.1) as a medialness weight-
ing function. Fritsch originally used the Laplacian medialness weighting function for
finding cores of objects in 2D medical images. Subsequently. it has been used by both
Fritsch and Furst for finding cores of objects in 3D medical images. The general equation

for Laplacian medialness is
M(E.r) = —r’AG(E.1)

Since this medialness weighting function is non-zero at its center and has a large foot-
print. it responds strongly to a difference in average object and background intensities.
This is analogous to the disk example presented in Chapter 1. It will respond maximally
to an object that is a disk of the same radius as the measurement. In all other cases. it
will respond maxirally at a radius greater than the half width of the object for which it

is measuring medialness.

Morse Medialness

Morse [35] created the Hough-like medial axis transform (HMAT) in an attempt to more
closely model the symmetric axis and to reduce the effects of intensity in the interior of

objects: the HMAT concentrates on the difference in object and background intensities
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Figure 2.4: 2D Laplacian of Gaussian medialness weighting function.

at the boundary of the object. as the circle analogy describes in Chapter 1. The HMAT
integrates boundariness measurements over a circle of radius proportional to the aperture
of the boundariness measurement.

Define boundariness as a measurement of how like any point in an image is to the
boundary of an object in the image. As with medialness., boundariness measurements
must also be made with some measurement aperture. Additionally. a boundariness
measurement is an ortented measurement. responding strongly normal to the boundary
and weakly tangent to it. Thus, boundariness is a measurement of position. aperture

and orientation:
B(i.o.d):R' xRy xS"' 5 R

\While there are many boundariness measurements that have been used. Morse defined

his boundariness measurement as a directional first derivative of a2 GGaussian:
B{z.o.4) = ca-VG(L. o)

and then defined medialness as an integration of the absolute value of boundariness:

.U(.i'.r):/ |B(£ + rif. pr. —@)| d
Sl-!

where p is the proportion between the standard deviation of the boundariness measure-
ment function and the radius of the medialness weighting function and [ is the dimension
of the space containing r. Morse originally created this weighting function in 2D (Fig-
ure 2.5): it was later adapted to 3D by Liu and then Furst. Because Morse implemented
his core finding algorithms on entire images. he chose to calculate medialness using a
convolution. To achieve this, he was required to remove the absolute value from his

definition of medialness

M(z.r) = B(r + riu, pr. —u}da
Sl—l
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As with the Laplacian medialness weighting function. the Morse measurement func-
tion will respond maximally to object boundaries at a radius greater than the half width
of the object.

Eberly [l4] has shown that as p approaches 1. the Morse measurement function
approaches the Laplacian. and as p approaches 0. the Morse measurement function ap-
proaches the disks defining the Blum symmetric axis. Morse [33] typically used p = 0.25.

which he chose as a result of experiments with human subjects.

Figure 2.5: 2D Morse redialness weighting function.

Fritsch Medialness

Because of the computational tinie involved in calculating the boundariness integral in
the Morse medialness weighting function. Fritsch defined an approximation to Morse
medialness that uses offset Gaussian derivatives in polar coordinates (Figure 2.6).
M(z.r} = ﬂG(r — R.pr)
pr
where R = |F|.

This measurement function exhibits behavior and response to object boundaries very
similar to that of the Morse measurement function. applies to any dimension. and 1s
faster to compute. However, Eberly [14] has shown. in both 2D and 3D. closed form
solutions to the linear form of the Morse medialness integral that are not much more

computationally expensive than the Fritsch medialness.

2.4.2 Oriented Medialness Weighting Functions

As mentioned above. the isotroptc medialness weighting functions proved unsatisfactory
for making accurate width neasurements of bar-like object in 2D images containing

o J t=] [=]
parallel sides. To overcomie this obstacle. first Fritsch and then others devised medialness

weighting functions that were not isotropic and had a preferred orientation:

MErd) R xRy xS$"' SR
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Figure 2.6: 2D Fritsch medialness weighting function.

In each of these medialness weighting functions. an isotropic medialness weighting
function was given a single orientation component. changing the kernel so that it measures
boundaries only at two antipodal points. As such. they are able to more accurately

estimate the widths of bars.

Oriented Laplacian Medialness

Fritsch took the Laplacian tnedialness weighting function and created the oriented Lapla-

cian measurement function
M(z.r. @) = —r’Dyu(G(£. 7))

Fritsch called this measurement function L, medialness because in practice. he chose
the direction @ by an eigensolution of the Hessian matrix of /. where « was the eigenvector
corresponding to the most negative eigenvalue. This direction is often labeled as p.
This choice maximizes the medialness weighting function over orientation and forms
a foundation for the optimal parameter ridges discussed in Chapter 4. The oriented

Laplacian measurement function has been used in both 2D {Figure 2.7) and 3D.

Figure 2.7: 2D L,, medialness weighting function.
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Puff Medialness

Puff [40] extended Fritsch’s idea of an oriented medialness weighting function to the
Morse medialness weighting function and created a rnedialness weighting function that
only integrated boundariness at two antipodal points of a circle of radius proportional
to measurement aperture and used this to identify stenoses in angiograms. Similarly to
the oriented Laplacian medialness. this measurement function is not radially svmmetric:

it also was designed for use with objects having parallel boundaries.
M(r.r.u) = B(z +ru.pr.—u) + B{(z — rid. pr. o)

where the boundariness measurement functions are the same as those used by Morse.
Also. as did Fritsch. Puff maximized his medialness weighting function over orientation
as part of the medialness calculation. Puff only implemented his tneasurement function
in 2D (Figure 2.8). [ will discuss 3D extenstons of this medialness weighting function in

Chapter 3.

Figure 2.8: 2D Pufl medialness weighting function.

Oriented Fritsch Medialness

Because of the speed of calculating the Puff medialness weighting function. there has
been no need for an oriented version of the Fritsch medialness weighting function in
2D. However. one of the possible extensions of the Puff medialness into 3D suffers from
the same speed difficulties as the original Morse medialness. making an oriented Fritsch

medialness weighting function useful in 3D. I will discuss this more fully in Chapter 3.

2.4.3 Other Medialness Weighting Functions

In addition to the medialness measures listed above. there are a number of other medi-
alness weighting functions that have been defined at UNC-CH. [ describe Clary endness

and Low and McAuliffe medialness below.
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Clary Endness

Clary [9] has used a variant of medialness termed endness that is very similar to the Puff
medialness except that it adds a third boundariness in a direction perpendicular to the
orientation of the other two boundariness values (Figure 2.9). Thus. this measurement
function responds to three points on the boundary and registers very highly at the ends
of objects containing paralle] boundaries.

SR

M(e.r.i) = Blz+rd.pr.—d)+ B(£ —rid.pr. @) + B(£ + ra*.pr. ~a™}

Clary is currently using the endness measurement function for 2D problems.

Figure 2.9: 2D Clary endness measurement function.

Low Medialness

Low [31] has used a medialness weighting function that extends both the Pufl medialness
and the Clary endness by using up to ten ortentation parameters to define points at which
to calculate boundaries (Figure 2.10). He uses this medialness for applications involving
deformations of shape models.

N

M(E.r iy .. div) = Z B(% + ri;. pr. — ;)

i=1
where N < 10. As .V — x. the Low medialness weighting function approaches the Morse
medialness weighting function without absolute value (Equation 2.4.1). Low used this
medialness weighting function in 3D image processing tasks using a slice-based approach.
effectively meaning the measurement function was 2D. although another orientation may

be used to specify the slice of interest.

McAuliffe Medialness

McAuliffe [33] produced a medial measurement function similar to the HMAT but with

adaptive boundary detectors based on possibly nonisotropic Gaussians to reduce the ef-
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Figure 2.10: Low medialness weighting function with .V = 6.

fects of neighboring objects on the calculation of medialness. The boundary measurement

function that McAuliffe used was

B(r.u) = max D (G, 0y.02))

(or.03)

where o7 + 03 = 2(pr)® and where

G(£.01.00)

il
o
-

To keep computation fast. McAuliffe actually implemented his medialness weighting
function as did Low: he chose a finite number of points evenly spaced around the area
of Morse integration at which to calculate his adaptive boundariness. The McAuliffe
boundariness measurement function as defined is 2D and has not been implemented in

3D.

2.5 Ridges

Given the number of different ways of describing ridges intuitively in Chapter 1. it is
not surprising that mathematical definitions of ridges are at least as varied as the verbal
ones. The many different definitions of ridges in the literature can generally be grouped
inte three different classes: ridges which are based on height. ridges which are based on
curvature. and ridges which separate catch basins. Most of the examples provided in this
section will be ridges in two dimensional spaces: a few are in three dimensional spaces.
Similarly. most of the ridges in these examples are one dimensional ridges. However. this
dissertation is interested in the full general notion of a ridge: a d-dimensional locus on
an n-dimensional manifold. where the only requirement is that ¢ < d < n. Thus. the
definitions presented here are fully generalizable. as will be the definition presented in
Chapter 1.

Further. I am interested in ridges that can be defined locally. using differential ge-
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ometric measurements. The first two classes of ridges. those which respond to height
and curvature. can be so defined. Ridges which separate catch basins cannot be defined
locally so are not used as a basis for this dissertation. Height ridges are defined on
functions: as described intuitively in Chapter 1. the graph of a function can be viewed
as a “landscape™ on which to identifv ridges. Curvature ridges. on the other hand. are
defined on any manifold. In computer science. however. these manifolds are typically
restricted to level sets of a function and graphs of functions viewed as Monge manifolds.
In both cases. the curvatures of the resulting manifold can be described by functions.
which leads to describing these ridges as height ridges of curvature functions. Therefore.
in the remainder of this discussion. [ will treat all differentially defined ridges as height
ridges.

For the purposes of the following discussion of height ridges. I will start with an

intensity function [/

and create another function f
f:Ox AR
via an application of a weighting function F
F-R'x1—=R

to the entire image domain as described in Section 2.2.1.

In both f and F above. @ C IR! denotes the spatial domain of the image / and -4 C RF
denotes the domain of auxiliary parameters. if any. {€.g.. scales and orientations) in the
product space domains of f and F. As mentioned above. F may be a measurement
function for image intensity. curvature. medialness. or any other image quantity.

Pizer {22] has derived a definition for height ridges that intuitively captures the no-

tions of height. following directions and crossing directions described in Chapter 1.

Definition 2.5.1 (Height Ridges) A d-dimensional height ridge of a real-valued function
f:QxA = R (ord-ridge of f). 1s a d-dimenstonal locus in the (n-dtmenstonal. n = l+p.

n > d) domain of f. In generai. the definition of this locus involves
{. a rule for choosing n—d linearly independent directions, © . transverse to the putative
ridge at a location {(r.a) € Q x A, and

2. the requirement that f be marimized in cach of the n —d one-dimensional subspaces
determined by the . That 1s. the first dertvative of f must vamsh (f-. = 0) and

the second dervative of f must be less than zermo (ferpo < 0) in each lineur subspace.

When searching for a d-dimensional ridge. there are n — d linearly independent di-

rections transverse to the ridge. However. the definition of height ridges merely requires
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transverse directions: it makes no specifications about the choice of directions. We there-
fore cxpress the rule for choosing these transverse directions by ¢ (f. /). 1 <1< n-d.
making no requirements on the choice. As [ will show in the following sections. the choice

is highly dependent on the particular image processing task.

2.5.1 Maximum Convexity Height Ridges

The most natural height ridge is the maximum convexity ridge. By natural [ mean
that if there is no a prior: knowledge about the particular task. the maximum convexity
definition will supply transverse directions based only on properties of the function.

Eberly [14] defines maximum convexity ridges as follows

Definition 2.5.2 (Marimum Converity Height Ridges) A d-dimensional marimum con-
verity height ridge of a function f € C*(IR™.R) s the locus of pownts £ € R™ for which
An-d < 0 and

d
DS -{JJ(D*f = An-esril}]DS =0
1=1
where the A; are the eigenvalucs of the Hesstan matrir of second derivatives of f and

A <A << A, and i ts the n x n 1dentity matrer.

The maximum convexity heignt ridges uses as its choice of transverse directions the
eigenvectors of D*(f). The rest of the definition then applies naturally to the definition
of height ridges. where the eigenvalues are the second derivatives of the function in the
transverse directions. The maximum convexity ridge exceeds the requirements of the
height ridge to insure that every maximum convexity ridge point is a maxiimum tn the
entire space spanned by the transverse directions. not just in each direction indepen-
dently. This desirable property is just a restatement of the subdimensional maximum
property mentioned in Chapter 1.

Eberly [14] has written an excellent book on the subject of maximum convexity ridges:
it is highly recommended reading for anyone interested in the nature of ridges. Damon
[12] has done extensive work on the generic behavior of maximum convexity ridges of two
dimensional functions and related manifolds and on the generic transitions which will
occur in one parameter families. Keller [23. 27] and Miller [34] have produced similar
results for ridges in higher dimensional spaces. Kalitzin [25] independentiy developed a
height ridge definition which can be applied to any symmetric tensor. When that tensor
is the Hesslan matrix of second derivatives. his definition produces exactly the maximum
convexity ridge.

The maximum convexity height ridge makes no assumptions about the iniage process-
ing task: it relies solely on the differential structure of the function on which ridges are
being calculated. However. many ridges have been defined for particular image analysis
tasks. In the following section. I will describe vartous definitions of ridges for four distinct
functions: intensity. boundariness. medialness, and curvatures. In each case. knowledge

about the particular problem can influence the choice of transverse directions.
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2.5.2 Height Ridges of Intensity

When searching for ridges of intensity. there is often no useful ¢ priort knowledge of the
problem at hand. and the most natural choice for choosing transverse directions is the
maximum convexity definition. However. some researchers have made other choices as

shown below.

Haralick Ridges

Haralick [24] describes the intuitive notion of a ridge in a digital image as a simply
connected sequence of pixels having gray-tone intensity values which are significantly
higher in the sequence than those neighboring the sequence. He defines a ridge as the
collection of surface points which have a zero-crossing of the first directional derivative
taken in the direction mimimizing the second directional derivative: D..f =0 and D, f <
0 where ¢ is the direction that minimizes D, f. This definition is the maximum convexity
height ridge definition. To find ridges. he fits a bicubic poivnomial to image data in R
and computes the one dimensional ridge of intensity on this bicubic. Thus. Haralick is
finding a 1-dimensional ridge of a real-valued function f defined over IR?. where there

are no auxiliary parameters. The function f on which Haralick finds ridges is
fle.y) =k, + kaz + kay + kir® + kgry + ksy® + kzo® + kyrly + kary® + kioy®

where the &; are the polvnomial coeflicients.
Since Haralick is finding 1D ridges in a 2D space. there is a unique (n—d =2—-1 = 1)

transverse direction. The rule for finding that direction is
r = (cos a.sina)
where Haralick approximates a as
a = £tan"Hks/ (ks — kg)]

Unfortunately. he found that with this definition (thus the maximum convexity
definition also). non-pathological simple surfaces. such as radially symmetric surfaces
f(z2+y?). satisfied this definition evervwhere on the surface. Also. this definition. when
generalized to 3D densities. produces ridges that are surfaces only: it is not broad enough

to produce curves or points.

Crowley Ridges

Crowley [11] identifies ridge points as locations where difference of low pass (DOLP)
impulse responses are a “best fit” to 2D image data. He defines ridge points in a DOLP
transform as points for which any two opposite neighbors have smaller magnitudes or
different signs than the point in question. This represents a choice of transverse direc-

tions that are coordinate axes. If either transverse direction produces a maximization of
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intensity. then that point is a ridge. He then links these ridge points at bandpass levels
and between bandpass levels to create a representation of shape. The representation thus
defined is multiresolution (coarse-to-fine} and defined on grey scale images. two features
it shares with this work. Also. this representation of shape produces a skeleton of an
object. much like medial axes and cores. two other foundations of this work. Further. the
DOLP representation can be used in image matching algorithms. However. unlike most
other ridges. there are points on DOLP ridges that are clearly distinguished and can be
ised as landmarks in certain matching algorithms. Unfortunately. the identification of
ridge points in the DOLP transform relies on the coordinate axes defined at a particular
band pass level. This reliance on the coordinate axes to identify ridge points makes
Crowiey’s ridge points fail to be rotationally invariant: that is. there may be points in
the image that identify as ridge points for one orientation of the coordinate axes but not

for another orientation.

Lindeberg Ridges

Lindeberg [29] uses Haralick’s definition of a ridge. which he describes as

Lu = 0
Lyu < 0
[Leo] € {Luel

or
L = 0
L < 0

14
te
[‘UUI S I’Llli

where L, = D,G = and u and v are the eigenvectors of the matrix of second derivatives
D2G « [. Lindeberg uses this definition to find multiscale ridges by applying it for each
scale. sweeping out a surface in scale space. At cach spatial position. he then calculates a
maximum with respect to scale of some ridge strength measurement. reducing the surface
to a curve. In this sense. Lindeberg is first finding a 2D ridge of a function of two spatial
variables and one scale parameter using the maximum convexity definition to identify
one transverse direction. and then finding a 1D ridge from the 2D ridge by choosing the
scale axis as another transverse direction. He shows visually compelling results with a

variety of different images.

2.5.3 Height Ridges of Boundariness

Classically. the detection of edges has been treated separately froni the detection of ridges.
Pizer. however. takes the view that edges. as described in the literature. are frequently
height ridges of boundariness. This idea is supported by the edge-finding algorithms
described below. Further. while most rules for choosing transverse vectors will require

only the function f. the case of height ridges of boundariness is one in which the gradient

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



30

direction in the original image [ provides a natural orientation choice at each respective
position. This is the reason that the rule for choosing transverse directions is stated as
e(f.N).1<i<n-d

As mentioned above in Section 2.4. boundariness is an image measurement made at a
spatial position. with a particular orientation. and at some scale: B(£.0:0p). Typically.
op is taken as a constant of B. but as with Lindeberg below. it can be a parameter of
the function. Let b be the function produced from a convolution of the boundariness
measurement B and the image [. We can then define a boundary. or edge. of an object
as the projection of a ridge of b from the domain space of b onto the domain space of the
image. The dimensionality of the boundary is one less than that of the image domain.

1.e. boundaries are [ — 1 dimensional ridges of b.

Canny Edges

Boundariness can be defined as the gradient magnitude of an image /
B =|Vi(t:c8)]

in which case boundariness is measured without orientation. If og is taken as a constant,
then b is defined on the same domain of the image. requiring a single transverse direction
to define a ridge. The maximum convexity definition can be used for choosing this trans-
verse direction. However. there is a priort information known about the image gradient:
it will be roughly perpendicular to object boundaries defined by first derivatives. and
this information can be used to choose the transverse direction as Canny [7] does. Canny
defines an edge point as a local maximum in the @ direction of the measurement D.G
applied to an image /. where 1 is the smoothed gradient direction and D, 1s the first

directional derivative of the Gaussian in the u direction. Thus. a ridge point must satisfy

DuuG =1 =0
and
Dyuu G =1 <0
where o = l—g—?—,—:—;'-! is the single transverse direction defined as the normalized gradient

direction. Canny defines his edges only in the case of one and two dimensional signals.
but they are readily extendible to three dimensions (with the assumption that an edge
will always be a locus of dimension one less than the signal in which it is foundj. In this
case. Canny's choice of transverse direction is simply the smoothed gradient direction u.
In [11]. Qu uses a similar approach with three dimensional images. [n both cases. Canny

and Qu use the image [ to choose transverse directions.
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Lindeberg Edges

Lindeberg [29] describes a multiscale approach to finding edges similar to his approach

for multiscale intensity ridges. His definition is the same as Canny's:

Lyu = 0
Ll‘tlu < O

where L is defined as before and u is the direction of the image gradient. Lindeberg
applies this definition for each scale. again sweeping out a surface. He then finds local
maxima with respect to scale of a measurement of edge strength. reducing the surface
to a curve. Again. Lindeberg takes a two step approach: first finding a 2D ridge in a
3D space where one transverse direction is the gradient magnitude direction. and then

finding a 1D ridge on the 2D ridge by choosing changing scale as the transverse direction.

2.5.4 Height Ridges of Medialness

Height ridges of medialness are. by definition. cores. Most of the research on cores has
been done at UNC-CH. and a large body of work exists. Here I will present examples

most relevant to the work in this dissertation.

Maximum Convexity Cores

Pizer. Morse [35] and Eberly all studied cores defined using the maximum convexity
definition of height ridges. Morse and Eberly were able to show good results in identifving
cores of 2D images. and thus. because miedialness has an aperture. height ridges of a
function of three variables. However. when Eberly and Furst tried to extend the work into
3D images. and thus medialness functions of four variables. both encountered problems

related to tracking maximum convexity ridges in the higher dimensional space.

Optimal Scale Cores

Fritsch [18] modified the maximum convexity height ridge definition to produce optimal
scale cores. At each spatial position of the medialness function. Fritsch identified local
maxima through scale. The collection of these maxima produces implicitly defined man-
ifolds in the medialness domain space of one less dimension than the domain. Fritsch
called these manifolds optimal scale manifolds. He then applied the ridge definition to
the medialness function restricted to the optimal scale manifold to produce cores. Note
that the identification of local maxima through scale is equivalent to the conditions that
D,m = 0 and D,.m < 0: that is. Fritsch has chosen scale as one of the transverse direc-
tions. The remaining transverse direction Fritsch chose using the maximum convexity

definition of a new function
m(E) = m(z. P(£))

where
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P(%) = argmaxm(£.r)
r

Fritsch used the chain rule to calculate the gradient and Hessian matrix of m in terms
of derivatives of m.

It is useful to contrast Fritsch's definition of a ridge with either of Lindeberg’s. in that
Lindeberg does successive ridge finding on two separate functions in the order of space
and then scale. while Fritsch performs successive ridge finding on two related functions
in the order of scale and then space. As [ will show in Chapter 1. Fritsch’s 1s a more

generally useful paradigm for calculating ridges.

2.5.5 Height Ridges of Curvature
There are three distinct kinds of curvature ridges:
e crests. or their one dimensional analog vertices. which respond to loci of high cur-
vature on manifolds.

o verter ridges formed from a family of crests of level sets of a function f parameterized

by isocontour value. and

e curcature ridges. which are height ridges of the “curvature™ of the graph of a function
f using second derivative measurements to measure an analog to curvature.

Crests

Eberly [14] provides a definition of crests that includes crests of arbitrary dimension on

a manifold of arbitrary dimension as follows:

Definition 2.5.3 (Crests) A d-dimensional crest on an n-dimensional manifold. 0 <

d < n. s the locus of all points satisfying the conditions that
Kg>0.v;-Dr; =0
and
viD3;r; <0.1<i<n—-d 1<j<d

where Ky > Ko > ... > K, are the principal curvatures of the manifold and vy.va. .. tq

the associated principal directions.

While this definition is applicable to any surface, including the graph of a function
f viewed as a Monge manifold. attempts to use it on the graph of f run against the
problem of mixing measures of height of a function and distance in the function’s do-
main. With only a few exceptions (e.g.. range data). height measurements of function

values and distance in the function domain are incommensurate. and using the crest
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definition on function graphs frequently requires untenable assumptions. This has leac

some researchers to the following two curvature ridges.

“Curvature” Ridges

One way to avoid the problem of incomnmensurability of measurements between a function
graph and its domain is to use second derivatives to approximate the curvature of the

graph. The definition of crests can then be modified to produce

Definition 2.5.4 (Marimum “Curvature” Ridges) A d-dimenstonal marimum curvature
ridge of a real-valued function [ : IR — IR s a d-dimensional locus of all points in the

(n-ditmensional, n > d) demamn of [ satisfying the cond:tions that
A1 <0.6;-DA =0
and
£D*\ 6 <0.1<i<n~d

where \y < X2 < ... < A\, are the egenvalucs of D*f and the ¢ are the associated

cigenvectors.

This definition avoids the problem of incommensurability but may identify ridges that
are not what might be expected. Figure 2.11 show an example in which this definition
will identify either dark line on the graph. instead of the intuitively more pleasing ~top”

of the graph. This problem leads to the final definition for curvature ridges.

Figure 2.11: Failure of maximal curvature ridge to identify top of ridge

Vertex Ridges

The definition of crests is limited to a single manifold and unsuitable for a function graph.
Hosever, the locus of crests formed by linking crests over all level sets (implicitly defined

manifolds) of a function f is called a vertex ridge and does not suffer the problems of
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crests, since level sets of a function are subsets of the function domain space. and all
measurements there will be commensurate. If (. 1s the set of crests defined on the level
set f = c. then the vertex ridge |" = U:elR C'-. Note the result that if . 15 an d
dimensional crest. then 1" is an d 4+ 1 dimensional vertex ridge.

Thirion [45] carefully describes the vertex ridges of functions of two and three vari-
ables. paying particular attention to the extraction of these vertex ridges in terms of
partial derivatives of the function frem which the level sets are derived. For functions
of two variables. Thirion labels these loct as martmal curvature curves and for functions
of three variables. he labels the loci as crest surfaces. Thirion goes on to show that
the intersection of these vertex ridges with level sets produces crests. but the major
mathematical work is in the definition of the vertex ridges. In R?. let x(r.y) be the
function of curvature of level curves. and let {{r. y) be the tangent vector to level curves.
Then Va(z.y) -t = 0 is the condition Thirion uses for finding maximal curvature curves.
The analogous result for three dimensional images is Ux, 1> = 0. where «; is the first
principal curvature of the level surfaces. and (> is the second tangent vector of the level
surfaces. In our framework. the function f on which they are finding ridges 1s Un, where
x 1s the function of curvature of level curves in 2D and the first principal curvature of
level surfaces in 3D. Their transverse directions are the tangent to level curves in 2D and
the second principal direction for level surfaces in 3D.

Curiously enough. Thirion makes no requirements on x(r. y) or D?x(r.y). the Hessian
matrix of second derivatives. Since he does not require that the second derivative in
the transverse directions be negative. themaximal curvature curves and crest surfaces
are supersets of ridges. This treatment of ridge supersets foreshadows connector sets,
discussed in Chapter 6.

Fidrich [15] extends Thirion and Gourdon’s work on crest lines into scale space by
measuring for crest lines through scale and extends their ridge definition into scale space.

Maintz [32] is interested not in finding ridges explicitly but in measuring how like a
ridge is each point in an image. This approach leads to ridge strength images. rather than
ridge loci. although one can imagine finding height ridges of ridge strength measurements
to find ridges. Maintz is interested in using these ridge strength images for the registration
of images taken with different modalities. To do this. Maintz evaluates the effectiveness of
two different ridge measurements: L. the second derivative in the " direction (D, G */}.
and 'LL‘.". the isophote curvature. where ¢ = {(L:.—L;) and & = (L..L,) for some
L : R®> — IR. While he does not extract ridges. he defines them as the places where L,
or _LL., is locally maximal in the ¢ direction: that is. D"-—LL;“ = 0 and D‘.,,ZL!‘—:& < 0.
Note that this is just the vertex ridge formed from the locus of crest points of all level
curves of L.

Evaluations of these ridges. while natural in two dimensions. involve a nontrivial
extension into three dimensions. Further, the definition of the vertex ridge involves
fourth derivatives of the original intensity function. Finally. as with crests. vertex ridges
may fail to identify what we intuitively think of as a ridge on a graph. However. Maintz

reports good results in using both measurements and the resultant ridge strength images
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for registering 2D and 3D medical images.

2.5.6 Subdimensional Maximum Property

The property of being a subdimensional maximurm is an important property of any height
ridge point. Without this property. there 1s no guarantee that a ridge point is in any
sense a “high™ point. Formally. let T(£.a) be a linear space spanned by a specific set
of transverse directions of a ridge point of f at (r.aj and passing through (£.a). Let
V7 fi2.a) be the gradient of flr at (z.a) and D7 fi, 4; be the Hessian matrix of second
derivatives with respect to an orthonormal basis of f|r at (£.a). Then. for the ridge
point (. a) to have the subdimensional maximum property. the function f must be a local
maximum at {£.a) when restricted to the space 7. That is. u-\r fi; 5y must vanish and
' D7 [+ 4, must be negative for all non-zero @ € T. As already mentioned. any ridge
point of a maximum convexity ridge has the subdimensional maximum property. This
follows from the choice of transverse directions as eigenvectors of the Hessian matrix of f.
In Chapter 1 | will prove that any optimal parameter ridge point also has this property.

making optimal parameter ridges an attractive choice for many image analysis tasks.

2.6 Locus-Finding Algorithms

Having defined ridges as level sets of first derivatives, I then need to locate them. The
literature provides a rich set of algorithims designed to locate level sets. and the marching
ridges algorithm presented in Chapter 5 is built on three of them: marching cubes.
tracked and converged partitioning. and marching lines. All four algorithms share the
common property of using the lattice of the function domatn space to locate level sets of

the function.

2.6.1 Marching Cubes

Lorensen {30] created an algorithm called marching cubes that creates triangle models of
constant density surfaces from 3D medical data. If [ is the image intensity and ¢ ts the
constant. he finds an implicitly defined surface in a volume by trapping sign changes of
the function [ — ¢ and uses linear interpolation to identify intersections of the surface
and the Cartesian grid of the samiple space. From this. he uses a case table to define the
local triangle topology.

The basic marching cubes algorithm creates logical cubes from the original 3D image.
where each vertex of the cube is a data point of the imnage. The algorithm then determines
how the level surface intersects each of these cubes (Figure 2.12). Given a starting cube.
the algorithm only intersects the surface with cubes adjacent to the starting cube if they
share a face which the surface intersects. This is the marching part of the algorithm.
This provides an enormous speed advantage over having to intersect the surface with all

the cubes. since most of the cubes will not have any surface intersections.
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Figure 2.12: Diagram of a marching cube

The actual intersection is done by assigning a 1 (identified by F* above) to a cube
vertex if the image data at that point is higher than the level value and a 0 (identified
by F~ above) if the image data is lower than the level value. This creates a cube with
eight vertices Iabeled either 0 or 1. Of the 256 possible cases from this labeling. Lorensen
reduced the number of patterns to 14 based on rotational symmetry and complementary
cases where O’s are interchanged with I's. Each of these 14 patterns is entered in an edge
table. indicating which edges of the cube contain intersections with the surface. In half of
these patterns. the intersections do not completely specify the topology of the surface in
the cube. In these cases of topological ambiguity. Lorensen specified what he determined
to be the most likely topology of the surface. When a cube’s vertices have been labeled.
the state of this labeling serves as a pointer into the edge table. and the intersections of
the surface (identified by F = 0 above) are linearly interpolated on the intersected edges.
These points are joined into | to - triangles. each providing a linear approximation of
the surface in that cube. Each face that contains a segment of a triangle indicates a

neighboring cube (identified by the arrow) in which to search for surface intersections.

2.6.2 Tracked and Converged Partitioning

Bloomenthal [2] produced two variants of the marching cubes aigorithm. called trucked
partitioning and conrverged partitioning. While the tracked partitioning is very similar to
the marching cubes algorithm. Bloomenthal added the notion of using simplexes (Fig-
ure 2.13) instead of the Cartesian grid to remove topological ambiguities. The geometry
of simplices allows an ordering of edge intersections that can produce only one triangula-
tion. Bloomenthal also advocates adaptively subdividing cubes in which the intersecting
surface is highly curved.

Bloomenthal's converged partitioning adds a coarse to fine component that speeds
the operation considerably in areas where the surface is not changing much and 1s well
suited to a muitiscale approach. The converged partitioning also does not require a seed
cube from which to start. However. small surface detail may be missed by a coarse
cube. thus terminating subdivision early. Also. if the extent of the desired surface is not

correctly estimated. it may be truncated.
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Figure 2.13: Marching cube divided into pyramidal simplices

2.6.3 Marching Lines

Thirion produced an improvement and an extension to the marching cubes algorithm
called marching lines. In this algorithm. he uses cycles and segments to ensure sound
topological properties of the extracted surface. Also with this algorithm. he was able to
identify curves defined by the intersection of two implicit surfaces (Figure 2.14}. The
initial stages of this algorithm are similar to the marching cubes algorithm: it produces
a polygonal approximation to one level set. However. the marching lines algorithm then
traps zeroes of a second level set on the edges of this polvgonal model. producing a
piecewise linear representation of a curve. Thus. each voxel containing the implicitly
defined curve produces a line segment. Any face of the voxel containing an endpotnt

of this line segment identifies a neighboring cube in which to search for subsequent line

segments.

Figure 2.14: A marching line

This algorithm is ideally suited to the calculation of 1D ridges in a 3D ambient
space. since such ridges are the intersection of two implicit surfaces themseives. This
dissertation uses the techniques of Thirion for the purpose of finding cores of tubular

objects in 3D: objects whose cores are curves.
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Chapter 3

Medialness

3.1 Introduction

The ideas of medialness have been well established by the image processing community
at UNC-CH and have been implemented in a large variety of image analysis tasks. This
dissertation extends the work of those researchers in three ways. First. most of the prior
work in medialness has been done in 2D. | present higher dimensional medialness mea-
surements derived from the 2D measurements in current use. [ describe these extensions
first in a way that generalizes to any dimension. and then in the specific case of the 3D
measurements used in the marching ridges algorithm to locate cores. Second. existing
medialness measurements respond most strongly to non-generic image objects such as
disks and tubes. [ propose medialness measurement functions that mimic the action of
the maximal disks and balls of the Blum symmetric axis and respond strongly to generic
irnage objects. Finally. because medialness is a shape measurement. I discuss invariance
to similarity transformations through a functional approach and show what it implies

for the structure of medialness measurement functions and their derivatives.

3.2 New Medialness Weighting Functions

3.2.1 Extensions to Existing Medialness Weighting Functions

The first medialness weighting functions designed at UNC-CH were isotropic measure-
ments. They responded to boundaries equally in all directions from a center point. Puff.
in his work using cores to identify stenoses in arteries. noticed that isotropic medialness
measurement functions overestimated the width of the stenoses. In response. Fritsch
designed an anisotropic medialness measurement: one that responded to boundaries only
at two antipodal points of the measurement function. Intuitively. Fritsch divided the im-
age domain space into two orthogonal subspaces such that his medialness measurement

responded to boundaries in one space and did not respond to boundaries in the other
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space. Fritsch’'s choice was a natural one to make in 2D and provided more accurate
width estimates of objects resembling bars. with parallel sides. The same decision to
divide the image domain space into a boundary response space and a no response space
can be made for medialness measurements of any dirnension. with the higher dimensional
spaces offering more choices for the division.

To formalize this. let R’ be the domain of the image to which the medialness weighting
function will be applied. Divide this space into two orthogonal spaces. R (the boundary
response space) and R'™* (the no response space). u < [. Let [ be an orthonormal set
of vectors spanning R* and let u be the matrix [@,.---.d,] whose columns are the
elements of ". Let " be an orthonormal set of vectors spanning IR*™* and let v be
the matrix [.- - -. fi— 4] whose columns are the elements of V". Then. a u-oriented. (D
medialness measurement is defined to be a weighting function that has a spatial domain
of R" and that responds to boundaries only in the space spanned by {". In 2D images.
therefore. the choices for p are 2. 1. and 0. g4 = 2 defines an isotropic medialness
measurement function that responds to boundaries in the entire domain of the image.
The measurement functions defined in Section 2.4.1 are of this type. u = 1 defines
an anisotropic niedialness measurement function that responds to boundaries in one
linear subspace of the image domain but does not respond in the orthogonal subspace.
The measurement functions defined in Section 2.4.2 are of this type. u = 0 creates
a medialness weighting function that does not respond to boundaries at all: since an
essential aspect of medialness is the linking of boundary points. 4 = 0 will be considered
no further. Let { = 3 (3D images). however. and the choices for g become 3. 2. and 1.
while higher dimensional images provide even greater choice.

In general. the three major medialness measurements. Laplacian. Morse. and Fritsch,
can be described for any p and [ using £ € R'. r. {". u. V". and v. Thus. the g-oriented.
ID Laplacian medialness weighting function is defined as

M(Eru) = (- IT“ : f;'f)c(;:-_ r) (3.1)

the p-oriented. D Morse medialness weighting function is defined as

M(F.r.u)= / |B(£ + r.pr. —q)|dq {3.2)
Si=tn<el">

where < " > denotes the subspace spanned by the vectors in ", and the p-oriented. (D
Fritsch medialness weighting function is defined as
VI F __(T—'.f'ul) . - 2, -2 " .
M{z.rou)= TG(\/((r — |rul)” + |£vi7). pr) (3.3)
The medialness measurements defined in Sections 2.4.1 and 2.1.2 are specific ex-
amples of the above definitions. The medialness measurements defined in Section 2.4.3
are special cases of the above medialness measurements in which the weighting function
does not respond to boundaries in the entire subspace IR¥. For example. Clary’s end-
ness is essentially a 2-oriented, 2D Morse medialness measurement that samples R* at

three distinct points. while the Low measurement is a 2-oriented. 3D Morse medialness
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measurement function that samples IR* at up to 10 distinct points.
In the following sections. I will give specific examples of these general definitions

(Equations 3.1, 3.2 and 3.3) for 3D medialness measurements used in marching ridges.

Ball Response from Disk Response

The isotropic medialness measurement functions in 2D can be described as responding
most accurately to disks. That is. they will estimate the radius of a disk better than the
half width of any other object. Each has the property that g = {. and maintaining that
property results in 3D medialness measurements that respond most accurately to balls.
These are isotropic medialness weighting functions in 3D and do not require any special

definition. The definitions of Section 2.4.1 are fully generalizable to any dimension.

Tube Response from Disk Response

More interesting is the case in which the property g = 2 is maintained when moving these
2D isotropic medialness measurement functions into 3D. This defines measurements that
respond to boundaries in a plane. but don’t respond in the direction normal to the plane.
This generally describes a tube. in which any cross-section through the axis of the tube
will resemble a disk. Let u = [u]. u3] be a matrix of orthonormal vectors spanning the
plane of boundary response. and let {” = [¢7] be the matrix whose column is the direction
in which there is no boundary response.

Then. the 2D isotropic Laplacian medialness weighting function becormnes

- (N
M(E.rd)=(2- ('_—2)(;(1’:.1-) (3.4)
where d = /((£ - 41)® + (£ - u2)®). the 2D isotropic Morse medialness measurement

becomes
M{z.r.0}) = / {B(£ + rq.pr.—qjldq
Sl

where S! is the space of unit vectors that are linear combinations of 47 and u3. and the
2D isotropic Fritsch medialness measurement function becomes
. - (r—d) . " i
M(z.r.e1) = —TG(\/((I' —d)” + (2 -v71)7). pr)
where d is the same as was used in Equation 3.-.

All of these weighting functions can then be described as anisotropic. tube-response
medialness measurements. Note that in each of these cases. [ is defined as a measure-
ment function of ¢} and not u. as in Section 3.2.1. 3D has the special property that a
single vector can specify a plane. so a more compact representation results by using ¢}

instead of u.
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Slab Response from Bar Response

The anisotropic medialness measurements in 2D can all be described as responding most
accurately to bars. That is. with their antipodal points response. they most accurately
estimate the half width of bar-like objects. Each of these has the property that g = 1 and
each is described in Section 2.4.2. Maintaining the property that y = | when extending
the medialness weighting functions into 3D produces measurernents that still respond to
boundaries at two antipedal points: however. in 3D this best describes a slab-like object
with parallel sides. Let u = [u}j] be the matrix whose column describes the normals to
the parallel sides. thus the linear subspace of boundary response. and let v = [¢7. 3]
be the matrix whose orthonormal columns span the plane with no boundary response.
In the case of both the Laplacian and Morse 2D anisotropic medialness measurements,
the equations in 3D are identical to those given in Section 2.-4.2, and both the Laplacian
and the Morse slab-response medialness measurement functions have been used in the
calculation of cores of slab-like objects. The 2D anisotropic Fritsch medialness. when

extended to 3D. becomes

r—r-uy

M(2.rouy) = —-pr—G(\/((r —&-uy)? +d%).pr)

where d = J{(£ - 77)? + (£ - 12)3).
All of these measurements can then be described as anisotropic. slab-response medi-

alness measurements.

3.2.2 Blum-like Medialness Measurement Functions

Each of the medialness measurements described above i1s defined in terms of mutually
orthogonal. linear subspaces. The result of this is that they respond to specific object
types: disks and bars in 2D, and balls. tubes and slabs in 3D. None i1s designed for
optimal response to a wedge in 2D. for example. or a cone in 3D. That is. the paral-
lel/perpendicular nature of their definitions produces responses to objects with the same
parallel/perpendicular structure. I have defined a Blum-like medialness weighting func-
tion that has two orientations. such that the measurement can respond to any two points
or integrate over any circle. Thus. these measurements will respond well to boundaries at
any orientations to each other. Because of this. the Blum-iike medialness measurement
function has no isotropic form: it is inherently anisotropic. Further. the Blum-like medi-
alness measurement has the potential to serve as its own endness measurement: at the
end of a figure. the two points will come together at a single point or the circle of inte-
gration will shrink to a point. This corresponds to the endpoints of the Blum symmetric
axis where the maximal disks and balls osculate the boundary of the figure. Finally. the
Blum-like medialness. as with the oriented Morse medialness measurement, has a very
small footprint when used as a weighting function and can be computed quickly. Initial

results in 2D [37] have shown promise for this kind of medialness.
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2D Measurements

The Laplacian. Morse. and Fritsch oriented medialness measurement functions can all
be described as bar-response. since theyv respond to parallel boundaries. However. while
the Blum-like medialness measurement can also respond this way. it is more general and
cannot correctly be described as bar-response. I will borrow the terms wedge. flare, and
cup from Blum [3] to describe the more general shapes for which the Blum-like medialness
measurement is designed to respond (Figure 3.1). In 2D. this essentially describes any
figure that has a linear extent: this underlies the appeal of the Blum-like medialness

weighting function.

.

Figure 3.1: A wedge. a flare. and a cup

Given some boundariness function B defined as a measurement of position. aperture

and orientation, the Blum-like medialness (Figure 3.2) is then defined in 2D as
M(2.r.b.0) = B(; + rR(8)b. pr. —R(8)b) + B(# — rR(6)b. pr. R(6)b)

where R(8) is the rotation matrix describing a rotation by 4.

The list of variables to the medialness measurement function are. in order. the spatial
position of the origin of the weighting function (£}, the length of each of the ~arms™ (r).
the bisector of the two arms (1;). and the angle between the bisector and cach arm (8). |
choose this particular representation because of the relationship between the medialness

measurement and the ridges [ will find on the resulting medialness function {Chapter 1).
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Figure 3.2: 2D Blum-like medialness measurement function.

3D Measurements

As with the the other oriented 3D medialness measurements. the 3D Blum-like medialness
weighting function has two varieties: one to respond to tubes and the other to respond to
slabs. although as with the case of the 2D Blum-like measurement function. the objects
are actually more general. [ will use the terms cone. trumpet, and cap to describe the
tube-like objects. The slab-like objects can best be described as the direct product of
any combination of two wedges. flares or cups (Figure 3.3).

When seeking a response for tubes-like objects. the Blum-like medialness weighting

function is defined as

M{z.r.b.6) :/ B(f + rR(a.0)b. pr. — R(a.8)b)da
St

where R(a.8) i1s the matrix describing the rotation of a point from the north pole of
$? to a point on the surface defined by the spherical angle (a.6) along a great circle.
This medialness measurement can be described as a cone which integrates boundariness
values along its base. facing its terminus. and accumulates the integral at its terminus.
Alternately. imagine rotating the 2D Blum-like measurement completely around & to
produce the tube response 3D Blum-like measurement. As before. f defines the location
of the terminus. r defines the distance along the outside of the cone from terminus to
base. b defines the direction of the central axis of the cone. and § defines the angular
distance from the axis to the outside of the cone (Figure 3.4).

When seeking a response for slab-like objects. the Blum-like medialness measurement

function 1s defined as
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Figure 3.3: A cone, a trumpet. a cap. and the direct product of a wedge and a flare

M(2.r.5.0) = B(+# + rR(6)b. pr. —R(6}b) + B{(# — rR(8)b. pr. R(6)b)

where R(6) is the rotation matrix describing a rotation by the spherical angle 8. This
medialness measurement is more easily described similarly to the 2D Blum-like medial-
ness weighting function as a central point (£) with two arms of length (r). bisected by the

vector b with @ describing the spherical angle from the bisector to the arms (Figure 3.3).

3.3 Invariance to Similarity Transforms

Shape theory requires that measurements of shape be invariant to similarity transforma-
tions (rotations. translation. and uniform scalings. also called zoom) of objects. Thus.
medialness measurements. designed to measure shape properties. must also be invariant
to these transformations. This treatment of invariance is more rigorous than that sup-
plied in Section 2.2.4 and will show the consequence that invariance has on the design of

nmedialness weighting functions.

3.3.1 Functional Definition of Invariance

Let T be a set of D . scalar images:
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Figure 3.44: Blum-like medialness weighting function for tube-like objects

I={Ill:R > R}

The set T can have various properties appropriate to specific applications.

Let 7 be a set of image transformations:
T={TiT:-IT =1}

Examples of image transformations include ail the similarity transformations. as well as
such operations as contrast enhancement. convolution with a specific kernel and intensity
scaling.

Let F be a set of image measurement functions:

F={FIF:T =T

The set F is intuitively a set that accepts an image and produces another image. with
I’ denoting a space image with possibly different properties than Z. 7 still acts on Z’.
Examples of image measurements include differentiation. boundariness. and medialness.
Note that this typing is more general than that already given for medialness and bound-
ariness. | use this function type here so that [ am not restricted to talking only about
weighting functions. The type given above is for a more general measurement function.

Given this. a particular measurement function F € F is invariant to a particular
transformation T € T ifand only if To F = F o T. In other words. measuring an image
and then transforming the measurement must produce the same resuit as measuring a

transformed image. A classic example 1s the invariance of differentiation to translation.
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Figure 3.5: Blum-like medialness weighting function for siab-like objects

rotation. and uniform scalings. This is the heart of invariance: 1 will use this equality
in the case of the application of weighting functions to show the requirements of those

weighting functions is they are to be invariant to a particular transformation.

3.3.2 Similarity Transformaticns

Since similarity transformations are really not transformations of an image so much as
transformations of the domain on which an image is defined. I will define another set of

transformations as follows:
Ty = {T|T : R' = R"}

Examples of such coordinate transformations include such things as similarity transfor-
mations.

Specifically. a translation transformation T; € Ty is defined as

T(f)=f+¢ (3.5)

a rotation transformation T, € 7Ty is defined as

T.(£) = (£ — &)R(f) + ¢ (3.6)

where R(8) is the matrix describing the rotation of a point from the north pole of S/~
to a point on S'~! defined by the spherical angle (§) along a great circle and ¢ is the

fixed point of the rotation. and a zoom translation 7. € Tx is defined as
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T.-(f) = mr—¢ (3.7)

where —£7.m # L is the fixed point of the zoom.

Invariance to these transformations is given by the requirement that F(f o T) =
F(I) o T. As before. this requires that a measurement made on an image with a trans-
formed coordinate system be the same as the measurement with a transformed coordinate
system and describes the key invariance property of measurements. Likewise. [ will use
this equality in the specific context of weighting functions to derive the properties that

weighting functions must have if they are to be invariant to certain transformations.

3.3.3 Weighting Functions

[ will now return to a discussion of weighting functions. expanding on the matertal pre-
sented earlier. concentrating on weighting functions with an aperture (scale) parameter.

Let Fi be a set of apertured weighting functions:
Fu = {F|F: R’ x Ry — R}
and let f be any function defined as the application of the weighting function F to [/
fle.o)= [ Fl7-2.0)15)dg

Then. based on the invariance property already stated (F(/o7T) = F{[)oT). the
definition of f as the application of the weighting function F to the image /. and the
change of variables formula for multiple integrals. f is invariant to some coordinate

transformation T € Tx if and only if 3A : Ry — R4 such that

[ e =g onT@ds = [ FT(E) = 5. hio)(5) dy (3.8)

Here. 1 will only show that for a certain kind of apertured weighting function. con-

volution is zoom invariant. Substituting Equation 3.7 into Equation 3.8 vields
/ , F(r —y.o)[{my -¢)dg = /IR' F(mr —¢—g.h(o))I(y)dy
The coordinate transformation y = Z + ¢ on the right side of the equality produces
/ F(x —y.o){{my —¢)dy = / F(mi—¢é—(m:—2¢&). h(e))[(m: — é)m'd:
R R’
followed quickly by the coordinate transformation Z = g
/IR F{r —yg.o)[(my—¢)dy = A m! F(m(z - g). k(o)) {my — é) dyg
{ _{l

implies that any zoom invariant weighting function must satisfy
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F(#.0) = m' F(ini. h(c)) (3.9)

for some h.

3.3.4 Zoom Invariance of Medialness Measurements

Medialness weighting functions have aperture. so they must satisfy Equation 3.9. [ will
show. for the Laplacian. the Morse. the Fritsch. and the Blum-like medialness measure-
ments defined in Sections 3.2.1 and 3.2.2. zoom invariance for h(r) = mr.

The Laplacian medialness measurement

ru ru

M(r.rou)=(u— - )G (. r)

r

IS a zoom-tnvariant measurement.

I

m' M(m#. mr.u)
mru mru

m! M (mz. h(r).u)

= mi{p-— )G {(mz. mr)
mr mr
; ra ru, .,
= m'(pg— —  —)G{mzr. mr)
ror
( ru i'u) J 1 RE-rird
= t— — - —n 2 Smris
! ror (27 (mr)? )/}
ru ru 1 £
= L - — - — =
( rooor )(2:.'1'2)“/'-‘)
, rua ru_ . .
= (- — —)Cz.r)
ror
= M(r.r.u)

The Morse mediainess measurement
M(r.r.u) :/ |B(£ + rq. pr. —q)|dq
Si=tacl >

is also a zoom-invariant measurement.

Morse defined boundariness as

B(t.oc.q) =o¢-VG(r.0)

B(mz + mrq.pmr.—q) = ~moq-VG(mE+mrq. pinr)

= -—moq-VG(m(z+rq).pmr)
1

mt

= —moq-V{—G{t+ rq.pr))
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I
= —o—q -VG{Z+rq. pr))

1413

I ] ~
= a;n—l[}(: + rq.pr. —q)
Using this information.

m'M(mz h(r).u) = m'M(mE. mr. u)

= m [ |B(mz + mrq. pmr. q)|dq
./sl-ln<l‘>

1 - -
- m’/ |2 B(£ + rd.pr. )} dj
St=lrcl >

m!

= / Bz + rd. pr. ) dF
Si—-itngl >

= M{z.r.u)

Because the Blum-like medialness measurements sum boundariness as does the Morse
measurement. they are also zoom invariant for h(r) = mr.
Finally. the Fritsch kernel

{(r — [tu})

M(z.r.u) = Gi/{(r — |Fu])? + |£V]?). pr)

pr

I1s also a zoom-invariant measuremnient.

m!M(mE. h(r).u) = m'M{imé. mr.u)

— lmnr

= m £Lir—lil—-)-(;(\/((mr — |mzul)? + [miv|?). pinr)
pmr

= m (L—_ﬂll—)fx'(m\/((r — |#u|)? + |2v]?). prar)
pr

r—|ruf) 1 ” L

= m {r = [£ul) TG (V((r = |tu})” + |Ev]™). pr)

pr m
(r = [£ul) T L = s
= G e - faul)® + v or)
= M(z.r.u)

3.3.5 Zoom Invariance of Medialness Derivatives

The height ridge definition requires first and second derivatives of the function on which
the ridge is being found. Thus. in the calculation of cores. first and second derivatives
of medialness mieasurements are used as weighting functions to supply the derivative

quantities needed. As shape measurements. these derivatives also need to be zoom
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invariant.

In following the proof for the zoom invariance of medialness functions given above. it
becomes evident in each case that the zoom invariance of the medialness measurements
is dependent on the zoom invariance of the Gaussian. So it is with the derivatives of
medialness, and rather than show zoom invariant derivatives for each medialness mea-
surement. | will instead do so for Gaussian derivatives. However. differentiation. while
rotationally and translationaliy invariant, is not zoom invariant. To create a zoom in-
variant Gaussian derivative measurement of order & requires the premultiplication of the
derivative measurement by r*. The proof follows.

The Gaussian 1s
Gz 1 (£t
I.r)= —————e¢'3r

) (27722
and the k% derivative is
AP | S N
D*G(z.ry = —P*(=)G(£.r)
rx r
where P*(%) is a k-order polynomuial in £.

The zoom invariant derivative measurement of order & is
*DEG(E. 1)

Thus. using h(r) = mr.

c ko A . ST | mr )
m'(mr)*D*G(me.mr) = m'm*r*—— P¥(—)G{mzi.mr)
(mr)k mr

= mlr"‘—EPk(ﬁ)G(m.t.mr)
r r
A S .
= *—PYI)G(ir)
r r

= r*D*G(s.r)

Because of this. the zoom-invariant medialness derivative measurements are all mui-
tiplied by r*. where k is the order of differentiation. It is interesting to note that Eberly
[13] derived the multiplication by r* prior to this dissertation without a zoom-invariance
argument. His was a dimensionless derivatives argument for the hyperbolic metric of
scale space formed by the convolution with a Gaussian measurement. Further. Yoo [-16]

has shown that a premultiplication by (cr}* does not alter the proof of zoom invariance.
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3.4 Summary

This chapter presented a primary contribution in the definition of a Blum-like medialness
operator that responds well to a large class of object shapes. is quick to compute. and
has good potential for recognizing the ends of objects. This chapter also presents two
secondary contributions in the general extension of the Laplacian. Morse and Fritsch
niedialness measurements into any dimension and any subspace of ortentation and in
the proof of the zoom invariance of these measurements and the reproof of Eberly’s
dimensionless derivatives by way of a zoom invariance argument. Chapter 4 will show

how these medialness measurements can be used to create new kinds of cores.
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Chapter 4

Optimal Parameter Height Ridges

4.1 Introduction

Having seen in Chapter 2 the many choices one can make for transverse directions in
defining a height ridge. I expand here on Fritsch’s notion of optimal scale ridges. in which
he chose the direction of changing scale as a transverse direction. The expanded notion
of an optimal scale ridge [ call the distinguished parameter herght ridge. A distinguished
parameter height ridge of a function is any height ridge in which a non-empty subset
of the coordinates axes of the function domain is chosen a priori to be a subset of the
transverse directions. In the example of the Fritsch optimal scale ridge. the scale axis
is chosen to be a single transverse direction. [n this chapter I provide a definition of
distinguished parameter height ridges. Following that. I discuss the choice of optimal
parameters and remaining transverse directions as well as the mechanics of the reduction
in dimensionality available with the distinguished parameter height ridge definition. In
particular. [ concentrate on and define the optimal parameter height ridge. produced from
a specific choice of dimension reduction. Finally, I provide a proof of the subdimensional

maximum property for optimal parameter height ridges.

4.2 Distinguished Parameter Height Ridges

A distinguished parameter height ridge of a function is a height ridge in which some
set of coordinate axes of parameters of the function are chosen as transverse directions.
leaving the remaining transverse directions to be chosen in any manner. This divides
the set of transverse directions into two subsets: one containing coordinates axes of
optimal parameters and the other containing directions chosen by some other rule. The
distinguished parameter height ridge definition further requires that the function be
maximized in each space spanned by the two subsets of transverse directions. rather

than each transverse direction independently.
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Definition 4.2.1 (Distingutshed Parameter Height Ridges) A d-dimensional optunal pa-
rameter heiwght ridge of a real-valued function f : R' x R — R (or d-ridge of f). 1s a
d-dumensional locus in the (n-dimensional, n =1+ p. n > d) domain of f. In general.

the definttion of this locus involves

1. a rule for choosing n—d linearly independent directions, © . transverse to the putative
ridge at a location (f£.a) € R’ x R* win which p of these transverse directions are

coordinate ares of the domamn of f spanming the space S = RP. and

the requirement that f be marimized in 8 as well as the space £ C R' spanned by

te

the remaining ¢ = (n — d) — s transverse directions. That 1s. Vs(f} and Vs{f)
must vamsh and DZ(f) and DZ(f) must both be negative definite. where s(f) 1s
the gradient of f with respect to S. Vg (f) s the gradient of f with respect to £,
DZ(f) 1s the Hessian matrir of second derivatives of f with respect to S. and DZ(f)

1s the Hessian matnrr of second derivatives of f with respect to £.

This definition is different than the definition given by Furst at the 1997 Scale Space
conference [23]. That definition requires only that f be maximized over each transverse
direction in § individually. rather than maxinuzed over the entire space S.

The set of distinguished parameter ridges i1s a subset of the set of height ridges. It is

an interesting and useful subset to study because it allows the following two benefits:

e a natural choice of transverse directions for a particular task and

e a reduction of dimensionality and consequently. a simpler ridge finding algorithm.

The distinguished parameter ridge can be further restricted to the optimal parameter

ridge. defined fully in Section 1.4.4. The optimal parameter ridge offers the following

benefit:

e the subdimensional maximum property.

4.3 Natural Choice of Transverse Directions

The distinguished parameter height ridges provide a natural choice of transverse direc-
tions by requiring that certain transverse directions be ~pure”™: that is. only a single
function parameter varies along that direction. This restriction can provide a clearer
understanding of the behavior of the function along the ridge by isolating the cause for a
particular change in the ridge. For example. in the case of Canny edges [7]. orientation is
chosen as a transverse direction, and this choice provides a normal to the edge at every
point along the edge. This choice i1s also natural in the sense that it can separate param-
eters that respond to different aspects of the function. In the example of optimal scale
cores. r is chosen as an distinguished parameter because it responds to object width.
while the other variables respond to object position.

Another advantage to this natural choice of directions is a simplification in the cal-
culation of derivatives. Eberly [14] has shown that a function domain that is a product

space may have a non-Euclidean retric based on the definition of the function. The
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result of this is complicated derivatives involving tensor calculus. While Eberly provides
the mathematics for such derivatives, the task of finding an appropriate metric for a par-
ticular function domain is non-trivial. Further. the computational burden can be large.
The distinguished parameter height ridge definition provides a way past this by allowing
non-commensurate function parameters to be specified as optimal. [n the special case
where all the auxiliary parameters are chosen as optimal parameters. the derivatives in

the remaining space (IR'. the domain of the image) are simply Euclidean derivatives.

4.3.1 Choice of Distinguished Parameters

As shown in Chapter 2. there are often choices of transverse directions that are natural
for particular tasks. In the case of Canny edges, orientation was a natural choice for
one transverse direction since it matched intuitive notions of the image analysis task
and could then be used to determine the second transverse direction. The calculation of
cores is a task for which the natural choice for one transverse direction 1s changing radius.
That is. regardless of spatial position. the radius parameter of the medialness weighting
function should match the half width of the object for which cores are being found.
Further. when using oriented medialness weighting functions, the weighting function
should be oriented along the core of the object. These choices are also natural in that
they provide intuitive measurements about the shape of an object such as turning and
widening. Measurements of width and orientation should be distinct from each other
and distinct from spatial position.

In general. when finding ridges of a function of spatial variables and auxiliary param-
eters. f(r.a). a natural choice for optimal parameters are the auxiliary parameters a.
This provides a clear separation between the action of the auxiliary paramneters on the
ridge and the actions of the spatial variables on the ridge. This separation is often intu-
itive and can provide a good understanding of object shape along the optimal parameter
ridge. The resuit of having Euclidean derivatives as specified tn Section 1.3 is another

benefit associated with this choice.

4.3.2 Choice of Remaining Transverse Directions

Frequently. the natural choice for the remaining transverse directions is the maximal cur-
vature choice, especially in the case when the auxiliary parameters have been chosen as
the distinguished parameters. This choice guarantees that the ridge will have the prop-
erty that the function is maximal when restricted to £. However. in tasks involving both
Euclidean and orientation components, choosing orientations as distinshuished parame-
ters can provide a more natural choice of transverse directions in the Euclidean space of
the problem. In this paradigm. the distinguished orientations provide a set of directions
based on the polar/spherical/cylindrical coordinate transformation between Euclidean
and angular coordinates. This is the decision that Canny made: in this example. the
direction is the gradient direction. The orientation compenent of oriented medialness

measurement functions can be used similarly to specify transverse directions in £. This
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is one of the primary benefits of studying the mathematics of the Blum symmetric axis. in
which the orientation of the medialness measurement function specifies an axis direction
and thus a transverse direction perpendicular to it. In the special cases where a single
orientation specifies a plane in the Euclidean space. the maximum convexity definition

can be used to distinguish individual directions spanning the plane.

4.4 Reduction of Dimensionality

Having decided that certain parameters should be transverse directions. it is possible
to reduce the dimensionality of the ridge finding problem by using optimal parameter
manifolds. defined implicitly by vanishing gradients of f with respect to § and negative
definite Hesslans of f with respect to §. This creates an (n — s}-dimensional manifold .M
in the domain space of f. This manifold is referred to as the optimal parameter manifold
(e.g.. optimal scale manifold). Finding ridges of fju reduces the dimensionality of the

ridge finding problem from n to n — s.

4.4.1 Optimal Parameter Hypersurfaces

[ will begin the discussion of optimal parameter manifolds by using a single optimal
parameter: following that. I will present the generalization to any number of optimal
parameters.

Given a function f(f.a). in which a 1s chosen as an optimal parameter. generate an

optimal parameter manifold .M implicitly using the {ollowing formulation:
M = {(£.a)|D,f(F.a) = Oand Dy f(£.a) < 0}

For .M to be a manifold. it is sufficient that V(f,) # 0. where V{f,) is the gradient
of f, with respect to its entire domain of spatial variables and auxiiiary parameters.
The definition of .M requires that fi;.(f) < 0 (implying that V{f;) # 0 since at least
the f,. component does not vanish) and thus that .M is a manifold. Additionally. the
condition fs;a(£) < 0 permits boundaries for these manifolds. As with any implicitly
defined manifold. .\ has dimensionality one less than the containing space R’ x R!.
Thus. for example. if I = 2, M is a surface. This is the formulation which Fritsch used

to generate his optimal parameter surfaces.

4.4.2 Optimal Parameter Manifolds

To generalize optimal parameter hypersurfaces to optimal parameter manifolds. [ define a
function f(Z.a) in which the parameters a,.a2.---.a, are chosen as optimal parameters.

Start by generating an implicitly defined set as follows:

N = {(£.a)|fa,(£.@) = 0and f,,,,(F.a) <0. 1 <i< s}
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Alternately, the definition may be stated as the intersection of s implicitly defined

manifolds

s
A = (Y{(2.a){fa,(£.a) = 0and fa,q,(Z.a) < 0}
t=1
However, the distinguished parameter ridge definition requires that points on the
optimal parameter manifold be local maxima of fls. Restricting the definition of .\’

produces the optimal parameter manifold .M.
M=A{(z.a)|[Vs(f}{r.a) = 0 and DZ(f)(£.a) is negative definite}

where Ts(f) and D%(f) are the gradient and the Hessian matrix of f with respect to

the space §. The manifold .M is a subset of .\".

4.4.3 Ridges on Optimal Parameter Manifolds

Once having made the choice of definition for an optimal parameter manifold. there are
three possibilities for completing the other distinguished parameter ridge requirement

that f{s be a local maximum.

o Calculate height ridges of f|u
o Calcuiate height ridges of f on coordinate patches mapping R' to .M

e Calculate height ridges of the projection of M onto R’

Each of the three choices produces a different ridge. Canny chose the first solution
for his calculation of edges in the rase of 2 two-dimensional image space and a single
direction of orientation. Eberly [14] has shown how to do this in a space of arbitrary
dimensions: it is computationally very expensive and has never been applied except in
the case of Canny edges. Kalitzin has used the third method for segmenting structures
in two dimensional grey scale images using a single dimension of orientation. He reports
good results for a single test case using an optimal orientation manifold. Fritsch [20]
uses the second method: I call this case the optimal parameter height ridge. The work

in this dissertation is based on that method.

4.4.4 Optimal Parameter Height Ridges

The optimal parameter height ridge requires a coordinate mapping from R’ to .M. Define

P(z£) = arg m(_;'t.\:f(.i'. a) (1.1)

in which the arg maxy is the set of a’s producing local maxima of f at the position r.
Let § € R' and let p € P(y). Let P be a function that maps spatial positions in the
neighborhood of g to auxiliary parameters in the neighborhood of {g.p) on .M. P is then
a local coordinate chart mapping R' to M. This coordinate chart is always well defined

except where the projection of the optimal parameter manifold is degenerate (e.g.. folds)
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with respect to R'. However. these folds occur only where Hs(f) becomes singular:
since the definition requires that Hs{f) be negative definite. we can always define such
coordinate charts.

Define another function

f(£) = f(£. P(£)) (4.2)

The final step of the optimal parameter ridge definition is to find height ridges of this
new function f. We are then faced with the decision about which transverse directions to
use. depending on the problem as with the case of Canny edges. Chapter 5 will explore
the decisions made in this dissertation.

We are now in a position to fully define the optimal parameter height ridge:

Definition 4.4.1 (Optimal Parameter Height Ridges) A pownt (f.a 1s an optimal pa-
rameter height ridge point of f with respect to a space £ C R’ spanned by a set of

transverse directions if and only if fls 1s locally martmal.

4.4.5 Calculating Derivatives of f

The optimal parameter height ridge definition requires that V¢ (f) vanish and that Di(/f)
be negative definite for any ridge point of f. However. f is defined only in terms of f
and P. Therefore. to calculate optimal parameter height ridges. [ need derivatives of f
in terms of f and P. Further. since P has no closed form representation upon which
to perform symbolic manipulation. | need derivatives of P in terms of f. This section
provides derivatives of f in terms of derivatives of f which can be used to complete the
calculation of optimal parameter height ridges.

The solution for Tg(f) involves differentiating Equation 1.2 using the coordinate

chart P (Equation 4.1) and the chain rule

Celf) =Teif) + Ts() V(P) (4.3)

However. Y s(f) is known to vanish on ridge points by previous requirements of the

optimal parameter ridge definition. Thus. Equation 4.3 simplifies to

V() =Ye(f) (4.4)

This is also required to vanish for a point to be on the optimal parameter ridge.
The solution for Df-(f) involves differentiating Equation 4.3 using the coordinate

chart P (Equation 4.1) and the chain rule

Di{f) = Di(f)+
Ts(YVe() T (P) +
(Y(P) (V=(Vs(f) + DI T(P) +
Vs(f) D*(P)
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which can be simplified using Vs(f) =0 to
DZ(f) = DES) + Vs(Ve(f) V(PY+ (T(P) (Ve(Ts(f) + DE(S) T(P))
which becomes

D (f) = D) + 2V (Ve (f)) T(P) + (Y(P)) DE(/) T (P) (4.5}

However. | need derivatives of f only in terms of f. Differentiating T s(f) = 0 with

respect to & produces
Ve(Cs(f)) +DE(S) T(P) =0
which becomes. when solved for T (P}

T(P) = =(Dz)"Hf) Te(Vs(f) (4.6)

Substituting Equation 1.6 into the right hand side of Equation 4.5 produces

Di(f) = D) -
2Vs(Ve(f) (DZ) U Ve(Tsf)) +
Ts(Te(f) (Dé) L) D) (D)~HS) T(Ss()

which then simplifies to

Di(f) = D?-(f)—
() (D3NS T=(Ts(N)) +
V'slv:'\f) (Dgr‘u) Te(VTs(f)

and then to

DE(f) = DE(f) - Vs(Ye(f) (DTS} Te(Ts() (1.7)

This is required to be negative definite for a point to be on the optimal parameter
height ridge.

I use these derivatives in this chapter to prove the subdimensional maximum property.
In Chapter 5 [ show how the marching ridges algorithm uses these derivatives to identify

optimal parameter ridge points.
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4.5 Proof of Subdimensional Maximum Property

As discussed in Chapter 2. it is desirable to have a ridge point of a function be a local
maximum of the function restricted to the space spanned by the transverse directions of
the ridge at that point rather than just along each direction independently. However. the
space spanned by the transverse directions at an optimal parameter ridge point is split
into two subspaces. with the only condition being that the function f is a local maximum
in both subspaces. It might be that a point that is a maximum of a function restricted to
two different subsets of the function’s domain might not be a maximum of the function
restricted to the product space of the two domatn subsets. For example. in 2D. a thin
saddle rotated by x/1 from the x-axis would have a maximum at the origin along both
coordinate axes. but it would not have a local maximum over the entire plane. [n the
case of optimal parameter ridges. however. I prove that ridge points are local maxima in

the product space spanned by all the transverse directions.

Figure 4.1: False identification of local maximum

Theorem For any optimal parameter ridge point (£.a) of f as described above,
flexs{(Z.a) is locally maximal.

Proof I will divide the proof into two parts. The first part will show that e s(f)
vanishes. and the second will show that DI _<(f) is negative definite. Together. the two
conditions assure that f|sxs 15 a local maximum.

To show the first part of the proof.let 7€ . fe S. and € £ xS =au+ Jr. To
show that VTe.s(f) vanishes. [ need to show that o - Teys(f) = 0.

However. since ii € £ and ¢ € S. this can be simplified to

- Vexs(f) = ad-e(f) + 3F-Vs(f)
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And by Equation 4.4

@ Vexs(f) = ad-Ve(f) +30-Vs(f)

)

Since both Ts(f) and Vs(f) vanish by definition at any point on an optimal param-

eter height ridge. « - Crys(f) = 0. completing the first section of the proof.
To show the second part of the proof. let & be as before. To show that DI _<(f) is

negative definite. [ need to show that & Di, s(f) v <O.

& DI, () & = (ed+ 30) Di s(f) (ad+ 3¢)
= au Df-,(s(f) ai’ +

ai DI ¢(f) 35 +

and. because 1€ £ and T € S

@ DI, s(f) & = ad Di(f)ad +
ad DEs(f) 3T +
3T D s(f) ol +
3¢ DI(f) I

Further. because DZ 5(f) includes only the second partial derivatives of f once with

respect to & and once with respect to S. I write it more succinctly as Cs(Ys(f)) or

Ce(Vs()

By definition. at any point of the optimal parameter height ridge. D3(f) is negative

definite. and thus a@® D*(f) ad < 0. Subtracting this quantity from the right side of

the equation insures a greater value than on the left.

Ry
s
x
I,‘

(f) & < a@ D (f) ot —
aii DI(f) ad +
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ai Vs(Te(f)) I +
IEVe(Vs(f) ad +
I DI(S) 3

< ai@ (DF(f) - Di(f) ad* +
aid Cs(Ve(f)) 38 +
I Te(Ts(f)) ad® +

)

3¢ D3(f) I
A slight alteration of Equation 4.7 produces
Di(f) - DE(/) = Ts(Ve(f)) (DZITHS) Ve(Ts(f)

which substituted into the right hand side of Equation 1.8 yields

& Di,5(f) & < ad Cs(Ve() (DF)7HS) Ve(Vs(f) ad +
ad Cs(Ve(f)) 3¢ +
ITT(Ts(f)) ad +
3¢ DI(f) 37

(4.8)
(4.9}
(4.10)
(4.11)

The introduction of (D%)~!{f) D3(f) and its inverse leaves the right hand side un-

changed

s @ < ad Ts(Te() (D)7 Ve(Ts(f) ed +

ad Cs(Vs(f) (D3)7HS) D3(S) 3¢ +
3¢ DE(S) (DF)7H(S) Ve(Ts()) ad +
3¢ DE(S) (D3)"H(f) DE(f) 3¢

< ad Ts(Ve(M) D)) (o Ts(Y(N) +
ad Vs(Ts(f) (D3)7HS) (3¢ DI +
3¢ DE(S) (DZ)7HS) (ad V(TN +
3F D3(S) (D)) (37 DE(N))

< ad@ Us(Vs(f) + 3¢ D3(S)
(DZ)~'(/)
(aid Ts(Ve(f)) + 3¢ DE(N)

Since DZ(f) is negative definite. by definition, at any optimal parameter ridge point.

(D2)H(Sf) is also. Thus.
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0 > aid Vs(Ve(f))+ 3¢ Di(f)
(D3)"(S)
(aff Ts(Te(f)) + 3¢ DI(S))

and by the transitive property of inequality.

& DI s(f) <0

This completes the second part of the proof. Thus. any point on an optimal parameter

ridge has the subdimensional maximum property that f

4.6 Summary

This chapter provided a definition for optimal parameter height ridges. listed the benefits
of these ridges. and provided intuitive and mathematical support for each of the benefits.

[ will use this information in the marching ridges algorithm (Chapter 3) to calculate

optimal scale and orientation cores of objects in 3D medical images.
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Chapter 5

Marching Ridges

5.1 Introduction

This chapter presents an algorithm for identifying height ridges called Marching Ridges
derived from earlier work on finding cores [22]. It is designed as a general purpose
algorithm that can solve for height ridges of any measurement derived from an image:
examples include intensity. boundariness. and medialness. The majority of this chapter
is independent of the choice of function. However. parts of this chapter and the results
presented in Chapter 6 are specific to medialness functions and optimal parameter height
ridges. The Marching Ridges algorithm does not deal with the limiting cases of 0- or
n-dimensional ridges. 0D ridges are local maxima of a function and. as isolated points.
require no tracking. rendering the Marching Ridges algorithm superfluous and inefficient.
Similarly. an nD ridge of a function of n variables is simply the domain of that function
and requires no special algorithmn to identify.

As mentioned in Chapter 2. Marching Ridges is a method of finding piecewise lin-
ear approximations to ridges by using the lattice structure of the domain in which the
ridge i1s contained. The marching also occurs within the lattice structure of the domain
by identifying hypercubes adjoining the hypercube containing the ridge from shared hy-
perfaces which contain a part of the ridge. This chapter is organized to first introduce
the interface for Marching Ridges and then describe the algorithm for calculating ridges.
The algorithm is divided into ridge finding strategies. both general (not depending on the
codimension of the ridge) and specific (depending on the codimension of the ridge). and
marching strategies. also both general (not depending on the dimension of the ridge) and
specific (depending on the dimension of the ridge). Following this is a brief discussion of

the time and space complexity of the Marching Ridges algorithm.
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5.2 Grid elements

Marching Ridges is organized around a regular partition of the n-dimensional product
space in which the ridge is to be found. The subdivision of the product space into unit
n-cubes produces grid elements. | use the term grid clement in preference to dimension
specific terms such as pixel and voxel for two reasons. First. Marching Ridges has been
designed for the general purpose of finding d-dimensional ridges in an n-dimensional
function domain space. and the use of grid elements allows a dimensionally neutral
discussion of the algorithm. Second. a grid element has vertices which are sample points
of the function in its domain space rather than the more common notion of pixels and
voxels. in which the pixel or voxel is centered at a sample point of the function. Thus.
the grid element of a 2D space would contain four sample points. one at each vertex
of a square. and the grid element would reference four function values rather than the
single value associated with a pixel. I will also refer to subelements: lower-dimensional
components of grid elements. For example. grid elements of a 3D space are cubes.
while the various subelements are six faces (containing four sample points). 12 edges
(containing two sample points) and eight points (containing a single sample point). [
will further use the term border element to distinguish the largest subelement that grid
elements can share with each other. This will be a subelement of dimension one less than
the grid element: for example. each border element of a cubic grid element is a square

element.

5.3 Interface

The interface (Figure 5.1) to the Marching Ridges algorithm is a window containing a
central image canvas 512 pixels square surrounded by sliders and buttons to provide
parameters and instructions to the algorithm. The list of buttons along the upper left
side of the interface provides overall control of the window. The set of three buttons
below that determines the function on which the algorithm will find ridges. The two
numeric buttons below determine the dirnensionality of the ridge. The two buttons at
the bottom provide the user a choice of maximization techniques for optimal parameter
ridges. The six sliders on the right side of the window provide parameters to the program.
The set of three buttons below the sliders determines what. if any. parameters of the
measurement function will be optimized. Finally. the two buttons at the bottom of the
window allow the user to choose white features on a biack background or black features

on a white background. The controls set and maintain four important quantities:

e the number of optimal parameters s,
e the dimemnsion of the grid elements g = n — s,
e the dimension of the ridge d. and

e the codimension of the ridge with respect to the dimension of the grid elements

c=g—d.
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Each of these quantities is initially 0 but will change as the user sets the parameters
of the ridge-finding task by selecting certain buttons. As [ describe each set of buttons

below. I will indicate how particular choices affect the values of s. g. d and c.

Quit | [ Radius 7 Theta
Clear
U | 4 0f i
- P
Jown | [ Extent [ Phi
Track i ‘ ; r
. 4 B -
Trace | i !

N— 3 | —
Single | "~ Ro 2z
~ Intensity : i ‘ )

0.5 4.00; !
~ Boundariness B .
-« Hedialness
« Ho Opt.
w1l ~~ Scale Opt
w2 -~ Scale/Urtent Opt
« WB
~- Cong Grad
.~ Simplex

Figure 5.1: Marching Ridges Interface

5.3.1 Control buttons

The quit button allows the user to exit the program after completing any ridge. It will
not interrupt the current ridge calculation. The load button allows the user to work with
a new image. chosen from a pop-up menu box. When the image is selected and loaded.
the value of g is set to the dimensionality of the image. As with the quit button. this
option is only available when the current ridge calculation is complete. The drauw button
allows the user to redraw the image without any ridge points on it. or to redraw the
image with the current ridge superimposed. The choice of whether to include the ridge
or not is provided by a text menu in the same window from which the Marching Ridges
algorithm was initiated. When loading a 3D image. Marching Ridges determines how
many slices of the image can be displayed on the image canvas. Marching Ridges then
breaks the original image into metaslices. each containing the number of slices than can

be simultaneously displayed in the interface. The up and down buttons are used to view
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different metaslices of the images. The track button initiates ridge finding based on a
user supplied grid element (Section 5.6.1). The trace button provides a diagnostic tool
for examining function values at a single spatial position parameterized by scale or scale
and orientation. The single button allows the user to calculate ridges for a single grid
element of the function domain space. It provides action identical to the track button
but will not extend the ridge if the single element contains a ridge nor search for initial

ridge points if the element does not.

5.3.2 Image measurements

Marching Ridges allows the user to choose from three functions on which to find ridges.
The first choice is an intensity function. in which Marching Ridges measures the intensity
of the image using a zero-mean Gaussian weighting function of a specified standard de-
viation (Section 3.3.5). The second choice is a boundariness function. in which Marching
Ridges measures boundariness using either gradient magnitude or oriented first deriva-
tives using a zero-mean Gaussian first derivative weighting function of a specified stan-
dard deviation and orientation (in the case of oriented first derivatives). The choice of
boundariness functions is provided using a text menu. The third chocice is a medialness
function. in which Marching Ridges measures medialness using either an isotropic Lapla-
cian. an oriented Laplacian or an oriented Morse/Fritsch medialness weighting function:
the Morse function is used to find 2D cores of 3D umages while the Fritsch medialness is
used to find 1D cores of 3D images. The choice of medialness functions is provided by a
text menu. The algorithm uses medialness weighting functions as described in Chapter 3
of a specified standard deviation and orientation for the oriented weighting functions.
The choice of measurement may also affect the dimension of the grid elements. Oriented
boundariness adds [ — | to g. 1sotropic Laplacian medialness adds . and any of the

oriented medialness measurements add [. where [ is the dimension of the image.

5.3.3 Ridge dimension

Marching Ridges currently allows the user to find 1D or 2D ridges. In the case of 2D
images. only the 1D ridges are appropriate. while both may be sought in the case of 3D

images. This choice also sets the ridge dimension d and codimension ¢ = g — d.

5.3.4 Maximizations

Marching Ridges was originally programmed to accept either simplex maximization or
conjugate gradient maximization. However, the current implementation of Marching

Ridges only accepts simplex maximization.

5.3.5 Parameters

The radius paramecter affects the size of the weighting function used to measure the

image. In the case of intensity and boundariness measures, the radius is the standard
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deviation of the Gaussian weighting function. In the case of medialness measures. the
radius is as explained in Section 2.4. The theta orientation parameter is used only for
oriented weighting functions: directional derivatives and oriented medialness. Similarly.
the phi orientation parameter is used only for weighting functions oriented in 3D. All
three parameters. radius. theta and phi, are set by the user to determine an initial value
for optimization when finding optimal parameter ridges or to determine the initial grid
clement for the Marching Ridges algorithm when finding other ridges. The extent pa-
rameter determines the footprint of the weighting function. In most cases. the footprint
of the weighting function is radius times extent. In the case of Fritsch and Morse medi-
alness. the size of the footprint is r(1 + p€). where r is the radius and £ is the extent.
The rho parameter is additionally used as described in Section 2.4 as the ratio between
radius and aperture for Morse and Fritsch medialness weighting functions. Finally. the Z

parameter is the ratio of the interslice distance to the intraslice distance for 3D images.

5.3.6 Optimizations

The three optimization buttons provide the user the choice of no optimization. scale
optimization only. or a combination of scale and orientation optimizations. three choices
corresponding to choosing certain parameters as transverse directions. These optimiza-
tions are used as described in Chapter 4 to calculate optimal parameter ridges. Not
shown on the interface is the option of orientation optimization only for boundariness
measures made as directional first derivatives. The Marching Ridges algorithm was de-
signed around the decision to make all auxiliary parameters optimal or to make none of
them optimal. Thus. for example. it is not possible to find optimal scale ridges of an
oriented medialness function. The choice of optimizations may also affect both ¢ and s.
Scale optimization decreases g and increases s by 1. Scale and orientation optimization

decreases ¢ and increases s by [.

5.3.7 Object/Background Polarity

Marching Ridges is able to find intensity and medialness ridges of white objects on black
backgrounds or black objects on white backgrounds. The decision is not material in
the case of ridges of boundariness: gradient magnitude is unaffected by polarity and
directional first derivatives merely indicate opposite normals. depending on polarity.

which does not affect the location of the ridge.

5.3.8 Mouse

Marching Ridges supports a three-button mouse. The left button sets a spatial position
in the image for the track. trace. and single buttons. The middle mouse button reports
the image value and coordinates of the location at which the button is pressed. It does
not set an initial location. The right mouse button allows the user to enter an initial
spatial position and auxiliary parameter values through the kevboard. rather than the

mouse and sliders. These values are then used in a trace.
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5.4 General Ridge-finding Strategies

Most of the ridge-finding strategies of Marching Ridges are dependent on the codimension
c of the ridge. as that determines what particular subelement identifies ridge elements.
However. there are two actions that are essentially independent of ¢: actions at points

and averaging transverse directions.

5.4.1 Actions at Points

Points are the lowest dimensional subelement for any product space. There are three

actions that occur at every point. and form the basis for any ridge calculation:

o the calculation of derivatives in coordinate directions.
e the determination of transverse directions. and

e the alignment of transverse directions and the calculation of derivatives in transverse

directions.

Calculation of Derivatives

The first action at points is the calculation of derivatives. In the case of optimal parame-
ter height ridges. the calculation of derivatives is preceded by a local maximization of the
original function f over the optimal parameters. The point then calculates derivatives
of the original function using the coordinates of the point and any optimized parameter
values. This is done using symbolic manipulation of the original weighting function to
produce derivative weighting functions that are then applied to the image. Each point
will apply a large number of derivative weighting functions to the image. In the case of
optimal parameter ridges. the derivatives of the optimal parameter function f are then
calculated from the derivatives of f as described in Section -1.4.5. The result is a set of

first and second derivatives at each point.

Determination of Transverse Directions

The determiination of transverse directions in image space may follow two different paths.
depending on whether ridges are optimal orientation or not. In the case of optimal
orientation ridges. the transverse directions are determined from the optimal orientation:
transverse directions are perpendicular to the optimal orientation. If the ridge finding
requires more than one transverse direction (notably 1D ridges from 3D images). they are
chosen from the space perpendicular to the optimal orientation using an a prior: choice
that prevents a degenerate set of transverse directions. Given that the weighting function
1s isotropic in the plane spanned by the two transverse directions. the only critical need
15 to identify two orthogonal directions. In all other cases. the transverse directions are
chosen from an eigen-analysis of the Hessian matrix of second derivatives as described in

Section 2.5.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68



69

Alignment of Transverse Directions

Because the Marching Ridges algorithin relies on zero-crossings of directional first deriva-
tives. it is important to insure that the directions all share the same sense or sign. March-
ing Ridges accomplishes this by computing an average set of transverse directionsfor the
element’s vertices. and then comparing each point’s transverse directions with the aver-
age. [f the dot product of a transverse direction and its average is negative. then the
transverse direction ts multiplied by -1. This action does depend on the codimension
¢ of the ridge since a point has ¢ transverse directions that it must align. Once each

transverse direction has been aligned. the point calculates derivatives in the transverse

direction(s)
D..(f) =1 -Y(f)

5.4.2 Average Transverse Directions

Stetten [43] has a method of performing an eigen-analysis on unit vectors in order to
capture an “average orientation of the vectors without regard to the sense of the vector.
This is the method that Marching Ridges uses to create a set of average transverse
directions for points.

Given h vectors ¢;. 1 < 1 < & representing a transverse direction. . construct a

matrix C such that

|

h
l
C= E &t (5.1)
=1

and perform an eigen-analysis of . The ~average™ transverse direction ¢ is the eigen-
vector of (" corresponding to the greatest eigen-value. If there is more than one transverse

direction. perform this analysis separately for each.

5.5 Specific Ridge-finding Strategies

The strategy of Marching Ridges is to use the codimension ¢ of the ridge to push ridge
finding to the lowest subelement possible. This will always result in finding ridge points
contained in the subelements of a given grid element. If necessary. these points can
be “sewn” together to form higher dimensional representations of a ridge (e.g.. splines
and patches). The particular subelement identifving a ridge point is the one having
dimension equal to ¢. This is merely a restatement of the fact that two manifolds will
generically intersect at points when the sum of their codimensions equals the dimension
of the space in which they lie. For example. when finding 1D ridges in a 3D grid element
(ridges of codimension two). the actual identification of ridge points is done at the faces
(subelements of dimension two) of the cubic grid elements. If necessary. the ridge points
on the faces of the cubic grid element can be stitched together to form a curve in the

grid element. Marching Ridges currently supports ridges of codimension one and two. so

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the following sections concentrate on the actions of edges and faces that produce ridge

points.

5.5.1 Ridge-finding on Edges

Ridges of codimension one (¢ = 1) share the property of only requiring a single transverse
direction. As explained above. the subelement on which to search when ¢ = 1 will be
the edge. Exampies in which ¢ = 1 include boundaries of objects and generic skeletons

of objects. The edge performs three actions in the calculation of ridge points:

e the determunation of average transverse directions.
e the calculation of zero-crossings. and

e a check on second derivatives.

Determination of Average Directions

(Figure 5.2)

As mentioned. points attempt to align their transverse directions with an average set
of transverse directions. Since in this case. edges are identifying ridge puints. the edge
is responsible for averaging the transverse directions of its endpoints and reporting this
information to those points. The edge queries its endpoints and uses Stetten’s algorithm
(Equation 5.1. h = 2) to identify an average transverse direction. Each of its endpoints

then aligns it own transverse direction with the average.

Yq Vi

\ |

1
Figure 5.2: Average transverse direction on an edge

=

Calculation of Zero-crossings

(Figure 5.3)

Once the endpoints of the edge have aligned their transverse direction to the average.
the edge looks for zero crossings of the first directional derivative of the ridge function
in the transverse direction. Assuming that the first directional derivative is a continuous
function. the intermediate value theorem ensures that. given first directional derivatives
of opposite sign at each endpoint. there will exist at least one point on the edge for which
the first directional derivative is zero. Assuming that the first directional derivative is
linear. the edge interpolates a location for a single zero crossing. This is a potential
location for a ridge point. having satisfied the first condition of being a ridge: a vanishing

first derivative in the transverse direction.
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Figure 5.3: Interpolated zero crossing of the first directional derivative

Second Derivative Check

(Figure 5.4)

Having found a zero crossing of the first directional derivative. the edge must check
the second condition for being a ridge: a negative second directional derivative. The
interpolated zero crossing performs all the actions that a grid point does in calculating
derivatives, finding transverse directions. aligning the transverse direction to the edge

average. and recalculating the second derivative in the transverse direction

D....(f) = GH([)T

This derivative is tested against zero. with a negative result marking the point as a ridge

point. The point is then drawn to the image window and added to a list of ridge points.

vi

RN

V1V1

Figure 5.-4: Positive identification of ridge point based on second directional derivative

Note: the first derivative is not recalculated at the potential ridge point. The linear
interpolation is assumed to have provided a close estimate of the zero crossing of the first

derivative. so no further check is actually made.

5.5.2 Ridge-finding on Faces

Ridges of codimension two (¢ = 2) share the property of requiring two transverse direc-
tions. As explained above. the subelement on which to search when ¢ = 2 will be the
face. An example in which ¢ = 2 is the skeleton of a tubular object. The face performs

four actions in the calculation of ridge points:

e the determination of average transverse directions for the vertices of the face.

¢ the calculation of zero-crossings of first directional derivatives in the first transverse

direction,

o the calculation of zero-crossings of first directional derivatives in the second trans-

verse direction, and
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e a check on second derivatives.

Determination of Average Directions

(Figure 5.5)

As with the edge. a face identifying ridge points must determine a pair of average
transverse directions formed from the transverse directions calculated at each of its ver-
tices. Each transverse direction is averaged independently (Equation 5.1. h = 4) and the

results reported to the vertices of the face.

V1 v1
VZ‘\ v
1
-~ .y
vi vy
Vo v2

Figure 5.5: Average transverse directions on a face.

Calculation of Zero-crossings in First Transverse Direction

(Figure 5.6)

Once the vertices of the face have aligned their transverse directions to the average.
the face looks for zero crossings of the first directional derivative of the ridge function in
the first transverse direction on each of its four edges. At this stage. the face is identifying
a codimension one ridge as determined by the first transverse direction. As before. the
assumptions of continuity and linearity provide a single location for a zero crossing on

any edge containing endpoints with derivatives of opposite sign.

Figure 5.6: Interpolated zero crossings in first transverse direction
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Calculation of Zero-crossings in Second Transverse Direction

(Figure 5.7)

If less than two edges identify zero-crossings. then there is no ridge in the face. If
more than two edges identify ridge points. the face chooses the two most convex. (See
Section 5.7.1.) These twe points then perform the standard actions of points. resulting
in first directional derivatives in the second transverse direction. These derivatives are
checked for sign. and if they are opposite. a zero-crossing is interpolated along the segment
connecting the two. This zero-crossing is a potential ridge point in the face. having

satisfied the condition that the first derivatives vanish in each transverse direction.

ve
V1 4 /
v.
i
~ v2> 0
V2o | v.=0
f,$0 72

Figure 5.7: Interpolated zero crossing in second transverse direction

Second Derivative Check

(Figure 5.8)

Having found a zero crossing of the first directional derivative in the second transverse
direction. the face must check the second condition for being a ridge: negative second
directional derivatives. The interpolated zero crossing performs all the actions that a grid
point does in calculating derivatives. finding transverse directions. aligning the transverse
directions to the face average. and calculating the second derivatives in the transverse
directions. These derivatives are tested against zero. and if both are negative. then the
point 15 marked as a ridge point. The point is then drawn tc the image window and

added to a list of ridge points.

vq

v1v1<0

fv2v2< 0

Figure 5.8: Positive identification of ridge point based on second directional derivatives
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5.6 General Marching Strategies

Most marching strategies are a function of ridge dimension d. However. three actions

are not:
e specifving the initial grid element.
e searching for the initial ridge points. and

e instantiation of new grid elements.

5.6.1 Initial Grid Element

Marching Ridges is a semi-automatic algorithm: it requires the intervention of a user
to identify a starting point. The user manipulates two mechanisms. the mouse and the
parameter sliders, to designate an initial grid element in which to search for a ridge. As
mentioned above. the parameter sliders are used to specify the radius and orientation of
the initial grid element. while the mouse is used to indicate the spatial position of the
initial grid element. (For large 3D images. the up and down buttons may be necessary
to locate the correct metaslice before identifying the spatial position with the mouse.)
The position so identified is called the anchor vertex of the grid element. The rest of
the vertices of the grid element are calculated as a unit cube whose smallest coordinate
15 the anchor vertex (Figure 5.9). From this initial grid element, Marching Ridges will

search for the closest ridge point and then extend the ridge from this identified point.

(i.j.k+1 j+1.0.k+1)
(i.j+1,5€1) +1,j+140e1)
H{.k) (ir1.J.k)
(i,j+1.k) (ie1.j+1.k)

Figure 5.9: Initial grid element

5.6.2 Expanding the Search

[f the user-specified grid element contains a ridge. then the initial search has succeeded
and extending begins. If not. then Marching Ridges begins a breadth first search of the
grid elements neighboring the initial grid element until it either finds a ridge point or
searches all the grid elements of the search space. If a ridge point is found. Marching
Ridges immediately begins extending it. In this way. Marching Ridges finds the ridge

point closest to the user specified grid element.
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5.6.3 Instantiation of New Grid Elements

When a new grid element is required. either in the initial search for a ridge or in the
extension of an existing ridge. Marching Ridges creates one. It then identifies the subele-
ments of the new grid element that have already been created and assigns them to the
new element. Any subelements that have not been created are then created. with points
performing their three actions. and any subelements responsible for identifying ridge
points (depending on ¢) performing their necessary actions. In this way, the creation of

a new grid element automatically initiates ridge finding procedures.

5.7 Specific Marching Strategies

Extending a ridge is similar to the initial search for a ridge point. except that instead
of exploring all neighboring grid elements. Marching Ridges only searches grid elements
into which the ridge extends and thus depends on d.

Once ridge points have been found in a particular grid element. Marching Ridges
determines the existence of a ridge in each of the border elements of the grid element.
Since border elements are shared by two grid elements. each border element that contains
the ridge identifies a neighboring grid element into which the ridge extends. The anchor
vertex of each of these grid elements is added to a queue of vertices in which Marching

Ridges will search for ridge points.

5.7.1 Curve Ridges

All 1D ridges are curves. and share the same topological problems. the same heuristics,

and the same manner of identifving. continuing. and ending the ridge.

Topological Problems

Damon [12] has shown that the maximum convexity height ridge does not generically
branch while Miller [34] has shown the same for optimal scale ridges. Marching Ridges
uses this assumption even in the case of more general optimal parameter height ridges. for
which comparable results are not fully known. To implement this topological constraint,
Marching Ridges assumes that any grid element containing a piece of a 1D ridge will

only contain two ridge points among its border elements.

Heuristic Solutions

The solution to a grid element that identifies too many ridge points is to choose the two
ridge points that are most convex. where convexity C is defined as the magnitude of the

product of second derivatives in each of the transverse directions.
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This heuristic is the maximum convexity heuristic and assumes that the most convex

ridge points are the ridge points of greatest interest to the user.

Finding an Initial Ridge Segment

During the initial search for a ridge. a grid element will only identify a ridge if at least
two of its border elements identify ridge points. Having identified at least two ridge
points, it will then choose the two most convex ridge points from among all those found

and report success for the search.

Continuing the Ridge

Having identified the first grid element containing a ridge. each border element of the
grid element containing a ridge point identifies a neighboring grid element in which to
extend the ridge (Figure 5.10). The anchor of each of these grid elements is entered into
a list of grid elements in which Marching Ridges will search for ridge points. Each such
grid element is then required to identify one other ridge point (the exit point) to continue
the ridge. If it identifies more than one ridge point among its border elements. it chooses
the most convex as the extension of the ridge. This border element in turn identifies a

grid element whose anchor is entered into the list. This continues until the ridge ends.

Figure 5.10: A curve ridge continuing into an adjacent cube

Ending the Ridge

The ridge can end in three ways. [t may exit the image when a border element containing
a ridge point is unable to identify a neighboring grid element contained in the image. It
may close on itself. when a grid element is created with two ridge points already identified
among its border elements. Finally, the ridge may end when a grid element with one

ridge point (the entry point) fails to identify another ridge point (the exit point}).

5.7.2 Surface Ridges

All 2D ridges are surfaces and share the following topological problems. heuristics. and

manner of identifying. continuing. and ending the ridge.
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Topological Problems

The main topological problem with finding a piece of a surface ridge in a grid elemnent is
that each border element finds ridge segments independently of the other border elements.
[deally. the ridge segments in each border element of a particular grid element would
connect to form a closed loop along the boundary of the grid element: the border of the
ridge contained in that grid element. However. with each border element finding ridges
independently. there is no guarantee that the ridge segments will connect. Further.
there is the same problem of topological ambiguity that appears in the marching cubes

algorithm where there are multiple possible connections among ridge segments.

Heuristic Solutions

Marching Ridges currently uses no heuristics to deal with topological problems in iden-
tifving surface ridges. Chapter 6 discusses possible heuristics that may be employed in

the future.

Finding an Initial Ridge Patch

The basic step in identifving an initial ridge patch in a grid element is having the border
elements identify ridge curves. This is done exactly as indicated in Section 5.7.1. withthe
exception that border elements are finding ridge segments. not the original grid element.
If any border element of the grid element finds a ridge segment. the grid element contains

a ridge patch, and the search has succeeded. The ridge is then continued.

Continuing the Ridge

As with 1D ridges. having identified the first grid element containing a ridge. each border
element of the grid element containing a ridge identifies a neighboring grid element in
which to extend the ridge (Figure 5.11). The anchor of each of these grid elements is
entered into a list of grid elements in which Marching Ridges will search for ridge points.
Each such grid element is then required to identify at least one other boundary element
containing a ridge {an exit curve) to continue the ridge. If it identifies more than one
ridge curve among its border elements. the ridge continues into all such adjacent grid

elements. This continues until the ridge ends.

Ending the Ridge

A 2D ridge does not “end” in the intuitive way that a 1D ridge does. Rather. the 2D
ridge encounters its boundaries. This may happen in two ways. The ridge may exit
the image when a border element containing a ridge is unable to identifv a neighboring
grid element contained in the image. Or the ridge may end when a grid element fails
to identifv any border elements containing the ridge except for the border elements that

contain the incoming ridge. This is the same result that occurs when a 2D ridge closes.
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Figure 5.11: A surface ridge continuing into adjacent cubes.

5.8 Complexity of Marching Ridges

5.8.1 Time Complexity

Marching Ridges runs two major loops. The first searches for a ridge and the second
extends an identified ridge. Given a good approximation by the user for an initial ridge
point. the search loop will end quickly. so [ will concentrate on the extension loop. This
loop will iterate once for each grid element that contains a ridge. Let p be the number
of ridge points. Each grid element will be processed in the same fashion. in which the
bulk of the work is in the optimization of optimal parameters and the calculation of
derivatives of medialness. Each grid element after the first will have no more that half of
its vertices performing these calculations. If ¢ is the dimension of the search space. then
29-1 is the maximum number of new vertices at each step of extension. Additionally.
the identification of ridge points requires the same computations as at vertices of a grid
element. Each new grid element identifies no more than 29+¢ potential ridge points. where
c is the codimension of the ridge. Thus. there are no more than 2°¢¥°—1 optimization
and derivative calculations. The number of optimizations depends on the nearness of
the initial values to a local maximum. the complexity of the image and the complexity
of the medialness weighting function. Experience has shown the optimizer to converge
at about 100 iterations: it is coded to stop optimizing after 200 iterations. The number
of derivatives calculated depends on the dimension of the search space and the kind of
optimization. [t will not exceed (n(n + 1))/2 where n is the number of arguments of
the weighting function. This limits the number of weighting function applications to
(200 + (n(n + 1))/2)(229*°1). The final consideration is the footprint of the weighting

function.

Isotropic Laplacian and Oriented Laplacian Medialness

The isotropic Laplacian and the oriented Laplacian weighting functions are both used for
ID from 3D cores and 2D from 3D cores. They have identically sized footprints. If r is
the radius of the weighting function and £ is the extent. then the footprint of weighting

function is :f—,mf:’rs. This limits the number of voxel operations in the calculation of a
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Oriented Fritsch Medialness

The oriented Fritsch weighting function is used in the calculation of 1D from 3D cores
because it is easier to symbolically differentiate. If r is the radius of the weighting
function. & is the extent., and p is the ratio of the radius to the weighting function
aperture. then the footprint of the weighting function is 27r38p(1 + £p)2. limiting the

number of voxel operations to
27(200 + (n(n + 1))/2)(2*7%°~1)Ep(1 + £p)*r2

The ratio of this to the oriented Laplacian weighting functions is 3/2(p(1 +&p)?)/€2. and
given typical values of p = 0.25 and £ = 4, the oriented Fritsch weighting function is

about 10 times as fast to apply-

Oriented Morse Medialness

The oriented Morse weighting function is used in the calculation of 2D from 3D cores
because of its very small footprint. If r is the radius of the weighting function. £ is
the extent. and p is the ratio of the radius to the weighting function aperture. then the
footprint of the weighting function is 8/37z&3p%r?. limiting the number of voxel operations

to

|

7(200 + (n(n + 1)) /2)(2°9%=1)e3,3,3

o~

The ratio of this to the oriented Laplacian weighting functions is 2p>. and given a typical

value of p = 0.25. the oriented Morse weighting function is about 32 times as fast to

apply.

5.8.2 Space Complexity

Marching Ridges use 3 + ¢ data structures in the calculation of ridges. The first is the
list of grid elements waiting to be searched. The second is the list of ridge points found.
The sum of their lengths will not exceed p. the number of ridge points in the final ridge.
The other g + 1 data structures are hash tabies that contain all the grid elements and
their subelements calculated in the course of finding a ridge. This limits the number of
elements to a linear function of p dependent on the grid dimension g.

All of the data structures have linear access time and do not affect the time complexity

of the algorithm.

5.9 Summary

This chapter described a general algorithm for identifying optimal parameter and maxi-

mum convexity height ridges. It describes the algorithm in a dimensionally neutral way.
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showing that ridge finding strategies are generally dimensionally based while marching
strategies are generally codimensionally based. This provides a basis for arbitrary exten-
sions to the algorithm. Chapter 6 shows the results of Marching Ridges for identifyving

ID and 2D cores of 3D medical and test images.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30



Chapter 6

Discussion & Results

6.1 Overview

This dissertation contains five main contributions to image processing. listed in Chap-

ter 1. In this chapter. I will visit each of these claims and

¢ relate each of the earlier chapters to specific claims.
o discuss results related to each ciaim. and
e provide possibilities for future research.

Further. [ will examine the thesis presented in Chapter | and show how it is sup-
ported by results of the marching ridges algorithm. using oriented medialness and opti-
mal parameter height ridges. in finding cores of 3D greyscale images. both synthetic and

medical.

6.2 Medialness

Chapter 3 presents three additions to the research on medialness measurements: 1) ex-
tensions of previously defined 2D medialness measures into 3D, involving decisions about
the nature of the core to be extracted and providing a basis from which to extrapolate
higher dimensional medialness measures: 2) a new classification of medialness measures
based on implicit properties of the measure and type of core extracted from medialness.
providing a framework from which to choose medialness measures best suited for a par-
ticular task and in which to place new medialness measures: and 3) a new medialness
measure. called Blum-like medtalness. modeled on a circle (or sphere) for which any two
arbitrary points (requiring two angles to define) are used to measure medialness. provid-
ing an efficient and natural way to measure medialness for points in an object of arbitrary

shape.
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6.2.1 3D Medialness Measurements

The extension of medialness into 3D is a step toward a better shape analysis of 3D im-
ages. Much of the shape research done with 2D images could not be applied to 3D images
without these medialness measurements. With the availability of 3D medialness mea-
surement functions. some of the work originally performed in 2D is now being conducted
in 3D. most notably with deformable shape loci. Further. all of the results displayed
in Section 6.4 were created with the 3D medialness measurement functions defined in
Section 3.2.1.

A significant direction for future research in medialness measurement is the resam-
pling of medialness weighting functions in proportion to their aperture. Because all the
medialness measurement functions in this dissertation are based on Gaussian derivatives.
they have the effect of blurring the image when applied as weighting functions: larger
apertures blur more. A constant sampling of the weighting function (usually equal to the
sampling of the image) provides redundant information at large apertures. Sampling the
weighting function in proportion to aperture provides a way of avoiding this redundant
information and consequently speeding up the calculation of medialness without loss of
accuracy. The time complexity analysis of Chapter 5 shows that in 3D the number of
voxel calculations increases as the cube of the aperture: medialness weighting functions
at large radii run correspondingly more slowly. Resampling the weighting function offers
a constant calculation time for medialness at any radius. making core finding of wide

objects no more costly than core finding of narrow objects.

6.2.2 Blum-like Medialness

Chapter 3 presented

e a definition of Blum-like medialness. a medialness defined to be efficient and to

avoid the effects of interfigural interference in the extraction of cores.

This definition represents a decision to design medialness functions that have a smaller
footprint. incorporate more orientation information. and respond better to generic image
objects than do other medialness weighting functions. The last two decisions result in
a medialness measurement that is less sensitive to the interference of neighboring figure
boundaries on the interaction between the boundaries of a single figure.

The results of using Blum-like medialness for locating cores are preliminary. Results
for 2D objects were obtained using an algorithm similar to. but predating. marching
ridges. The basic objects were binary tear-shapes. with variants including a small in-
dentation. a small protrusion. blurring of the object and perturbing the boundary of
the object. In each case. the cores seemed stable despite intensity noise and boundary
perturbations. and stopped at the ends of objects. This strengthens the hypothesis that
the Blum-like medialness weighting functions may serve as their own endness functions:
as the core approaches the end of an object. the two boundary response points of the
measurement function come together at a single point. signifyving the end of the object.

This is equivalent to a Blum symmetric axis with but a single point of tangency to the
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boundary of an object. This hypothesis underscores one of the more important aspects
of Blum-like medialness: that the Blum symmetric axis has been researched for 30 vears
and is in many ways well understood. In particular. the relationships defined by Blum
and Nackman in their works on symmetric axes provides important clues to the struc-
ture of optimal scale/orientation cores. Further, the relationship between symmetric axes
and boundaries is well understood and this knowledge could be used in shape models.
Medialness that mimics the action of the Blum maximal disks also provides a good op-
portunity for the comparison of cores and symmetric axes. Katz [26] is currently doing
such research with the oriented Laplacian medialness measurements. The application of
Blum-like medialness to the marching ridges algorithm and 3D images offers an exciting

possibility for further research.

6.2.3 Invariances

The section on zoom-invariance of inediainess weighting functions presented the require-
ments for the design of any shape measurement based on Gaussian derivatives. These
may prove useful as the study of medialness progresses. This argument arrives at the
same conclusion that Eberly has. but uses a simpler and more directed approach than
the Eberly argument. in that it does not depend on non-Euclidean metrics and tensor
calcutus and that it is directly applied to the discussion of shape and the necessary

invariances of shape measurements.

6.3 Height Ridges

Chapter 4 provided three contributions to the research on height ridges. The first is the
definition of the distinguished parameter height ridge. a particular kind of height ridge
that requires the specification of certain parameters as transverse directions. The second
is the reduction in the dimensionality of the ridge-finding algorithm available with certain
parameters as transverse directions. The reduction in dirnensionality is explained in the
context of three algorithmic choices and is explored closely in the case of the optimal
parameter ridge. The third is a proof of the subdimensional maximum property. The
subdimensional maximum prcof shows that any optimal parameter heighi ridge point is

a local maximum in the space spanned by the directions transverse to the ridge.

6.3.1 Optimal Parameter Height Ridges

Chapter 4 provided
e a definition of optimal parameter height ridges. designed to simplify ridge finding
based on choices natural to a particular task.
The definition was given as a specific instance of the more general height ridge def-
tnition. with the specification of certain parameters as transverse directions and the

requirement of maximality in two orthogonal subspaces. The emphasis is on a natural

choice of transverse directions. In practice. [ have used this definition to find boundaries
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of objects in 2D and 3D images using optimal orientation. as well as 1D cores of objects
in 2D and 3D images. and 2D cores of objects in 3D images using optimal scale. Further
tests of optimal scale-orientation cores for objects in 2D were successful. None of those
results are presented here: the 2D results are original only in the application of the op-
timal parameter height ridge definition. and the 3D resuits are ignored in favor of the
results presented in Section 6.1, calculated using the optimal scale-orientation definition
for cores.

A clear direction of future research for the optimal parameter height ridge is the
discovery of its generic structure and behavior. Damon. Miller and Keller have derived
the generic structure of maximum convexity height ridges of arbitrary dimension. while
Milier has shown the generic structure of optimal scale ridges in 2D. Results for optimal
parameter height ridges of arbitrary dimension would be useful in providing expectations
of ridge behavior in medical images as well as providing heuristics for the resolution of

topological ambiguities in the marching ridges algorithm.

6.3.2 Reduction in Dimensionality

This dissertation offers three choices for using the distinguished parameters to reduce
the dimensionality of the ridge finding algorithm. important because of the potential
for decreased complexity and increased speed. The first. finding ridges on an optimal
parameter manifold. is presented as computationally too expensive to offer any time
saving in the calculation of ridges. while the third. projecting the optimal manifold
onto the image domain. may ignore vital information about the nature of the optimal
parameter manifold. [ chose the second. the optimal parameter ridge. as providing
the best compromise between complexity and loss of information. and I set down the
derivative calculations necessary to find an optimal parameter height ridge based on this
choice. Further. this choice satisfies the subdimensional maximum property. a property
not proved for the other two options for reducing dimensionality. All the results of this
dissertation were made using optimal parameter height nidges.

The optimal parameter height ridge relies on an optimization algorithm to satisfy the
maximality condition in the optimal parameter transverse directions. Marching ridges
currently uses a simplex optimization. a robust but slow method. The speed of the algo-
rithm might be increased with the use of a more sophisticated maximization algorithm.
Further. the initial value for the maximizer is provided using only local information: the
inclusion of more global information about the core might provide better initialization.
both speeding up the algorithm and preventing the identification of maxima far from

expected values.

6.3.3 Subdimensional Maximum Property

This dissertation also presented

e a proof that optimal parameter height ridges have the subdimensional maximum

property.
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I showed that every point of an optimal parameter ridge point has the property of
being a local maximum of the function restricted to the space spanned by the transverse
directions. the directions crossing over the ridge. This is a desirable property of any
height ridge point and provides a compelling reason to use the optimal parameter height
ridge. The proof is presented such that the space of optimal parameters and the space
of rernaining transverse directions can be of any dimension. The specific case of optimal
orientation determining the remaining transverse directions is natural. but not required

for the correctness of the proof.

6.3.4 Connectors

Damon [12] introduced the concept of connectors. a superset of maximurm convexity
ridges. In his notion. each subset of the sct of eigenvectors of the Hessian matrix can
identify a different connector. depending on the sign of the eigenvectors. This defines a
fully connected set of manifolds whose intersections define lower dimensional connectors.
This provides the possibility of more completely defining image geometry without a large
increase in algorithmic cost. Examples of the use of connectors include identifving local
maxima and saddle points lying on a ridge. the continuation of ridges through noisy
or blurred parts of an image object. and the identification of branching subfigures via
connectors of medialness that intersect the parent figure's core. The idea of connectors
can also be applied to the optimal parameter ridge definition: Miller [3-4] has begun such
work. but much still waits to be discovered. Modifying the marching ridges algorithm to

also locate connectors could be a rewarding line of research.

6.4 Marching Ridges

The major algorithmic claim of this dissertation is

e an algorithm to extract optimal parameter height ridges from 2D and 3D greyscale

images.

The marching ridges algorithm itself is composed of three components : the measure-
ment function. the ridge extraction. and the marching. This modular design enhances
the ease with which the algorithm can be extended and incorporated into other work.
[ have used the algorithm in a number of different ways. and it is general enough to
be used in other applications also. I have used the marching ridges algorithm to locate
both optimal parameter and maximum convexity ridges. [ have located intensity ridges,
boundariness ridges. and medialness ridges of 2D and 3D objects. demonstrating the
general applicability of both the algorithm and the ridge definition. However. there are
still many improvements possible for marching ridges. For example. the added require-
ment of negative second derivatives means that marching ridges suffers from topological
ambiguities at least as great as the ambiguities inherent in marching cubes. While the
second derivative does provide a heuristic for making decisions. it does not remove the

problem. There are many possible ways to deal with the ambiguities that would be
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fruitful directions for further research. Bloomenthal uses simplices. Thirion uses cycles.
Researchers at UNC have suggested other approaches involving using more global infor-
mation about the ridge. Further. the marching ridges algorithm currently supports just
2D and 3D search spaces. While it will likely be used only for 2D and 3D images in
the near future. an extension to allow higher dimensional search spaces would allow me
to compare the behavior of optimal parameter height ridges with maximum convexity
height ridges. The extension into higher dimensions would also allow an exploration of
different choices of optimal parameters.

The genesis of and the main impetus behind this entire dissertation is the
e extraction of 1D and 2D cores of 3D medical images.

The satistaction of this claim and the four preceding it. provide the basis for my
thesis: oriented medialness and optimal parameter height ridges employed
in a marching ridges algorithm will effectively extract cores of 3D greyscale
images. Additionally. the results presented here concretely support the algorithmic
claim that Marching Ridges does extract optimal parameter height ridges.

[ first ran the algorithm on synthetic images: images for which I knew what the
behavior of the ridge should be. Satisfied that the results of the test on synthetic images
produced very nearly the expected results. [ ran Marching Ridges on medical images.

images for which [ had only an intuitive notion of what the cores should be.

6.4.1 Synthetic Objects

There are two main reasons that [ tested the algorithm on synthetic images. First.
synthetic images are much less complex than medical images. Second. using constructed
objects allowed me to know what kind of behavior to expect from the cores of such
objects. In each of the results following. I compare calculated ridges points with expected
ridge points. Each comparison involves the difference between calculated and expected
position. radius. and orientation. Included with each comparison is an image of the
synthetic object. with the object implied by the core dispiayed as a locus of black pixels
superimposed on the object. The object implied by the core is generated by drawing a
sphere at each point of the core, where the radius of the sphere is the maximal scale at
that point. The union of all such spheres is taken as the object implied by the core: this

is only approximately the object implied by the core of oriented medialness.

Flaring Tube

The first synthetic object is a flaring tube (Figure 6.1). It is oriented along the r = y = =
line in 3D. and its radius is a parabolic function of the parameterized distance along the
centerline. It has two hemispherical caps placed at the ends of the tube. beginning at
a distance of 32 pixels from the eorigin along the centerline of the object. The flaring
tube provides a test image that includes changing position and changing radius. Given
this, I expect a core extending along the r = y = = line that has an optimal orientation

identifying that line and an optimal scale that is a parabolic function of distance from the
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origin along the core. [ expect the core to end where the hemispherical caps begin. The
core shown in Figure 6.2 was generated with the 2-oriented. 3D Laplacian medialness
measurement function. responding to boundary circles. Shown is the object implicitly
defined by the core overlaid on the original object. [ have scaled the original object
intensities so that the core object is visible. The actual core contains 64 points and took
a little over an hour to generate. Visually. the core behaves as expected until it enters
the hemispherical caps. where it deviates from the r = y = = line. doubling back before
it ends. This can be secen in places where the core object is outside the objects of the
boundaries. [ allowed the core object to extend beyvond the boundaries of the image

slices to provide a fuller visualization of the core.
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Figure 6.1: Image of flared tube. The 3D image has been divided into slices of constant z and the
slices are presented from left to right. then top to bottom. Each sliceis 64 pixels by 64 pixels: there
are 6 slices.
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Figure 6.2: Image of flared tube (grevscale) with object implied by core supertmposed (black}.
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Figure 6.3 displays two graphs showing the performance of the core. The X axis of
the graph is parameterized distance along the core of the tube. with 0 at the center of
the tube. The three functions plotted are radius: on the left, the difference between the
actual object radius and the calculated radius of the core, on the right. this distance
normaiized by the known radius: orientation. the dot product of the orientation of the
center line of the tube and the calculated orientation of the core: and position, the
distance between each core point and the closest point on the center line of the object.
The orientation and position function are both very well behaved until the ends of the
objects. This is confirmed visually in the image by the apparent wandering of the core
near the hemispherical caps of the tube. This is a potential argument for using either
endness or Blum-like medialness in future research. The core consistently underestimates
the radius of the tube. getting worse as the tube widens. This may be due to the Gaussian
blur applied to the original binary object or it may be that the Laplacian medialness
measurement is responding inappropriately to the flared walls of the tube. providing

another argument for the continued investigation of Blum-like medialness.
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Figure 6.3: Evaluation of core of flared tube. showing difference between expected and actual position
and radius. and the dot product of the expected and actual orientation.

Flat Slab

The second synthetic objects is a flat slab (Figure 6.4). It is oriented along the r =
y plane. Its radius is constant and its ends are the boundaries of the image. The
core shown (Figure 6.5) was generated with the l-oriented. 3-dimensional Laplacian
medialness measurement. responding to antipodal boundary points. As with the flared
tube, the object implied by the core is actually shown. The flat slab provides a test
image that includes changing position. Given this. I expect a core extending along the

= y plane that has an optimal orientation identifying the planar normal and an optimal
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scale that is constant. [ expect the core to end at the image boundary. The core shown
contains 7881 core points and took over an hour to generate. Visually. it lies where

expected and ends where expected.
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Figure 6.4: [mage of a slab (greyscale). The 3D image has been divided into slices of constant z and
the slices are presented from left to right. then top to bottomn. Each slice is 64 pixels by 64 pixels:
there are 64 slices.

Figure 6.5: Image of a slab (greyscale) with core object superimposed (black).
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Figure 6.6 is a graph showing representative performance of the core. [ sampled the
core on the plane : = 31 and. as before. set the X axis of the graph as the parameterized
distance along the core segment. with 0 at the center of the core. The three functions
plotted are again radius. the difference between the actual object half-width and the
calculated radius of the core: corientation. the dot product of the normal to the center
plane of the slab and the calculated normal to the core: and position. the distance
between each core point and the closest point on the segment of the core at = = 31. The
orientation is very well behaved. The position has some small variation along the core.
but it is under 3% of the interpixel distance for most of the core. As before. the core
consistently underestimates the radius of the tube, although with the slab it s generally
under half of a pixel. This is likely due to the Gaussian blur applied to the original

binary object.

o R L

artum

Figure 6.6: Evaluation of core of slab. showing difference between expected and actual position and
radius. and the dot product of the expected and actual orientation.

Ellipsoidal Shell

The third synthetic object is an ellipsoidal shell (Figure 6.7). [t has a variable radius.
thickness and orientation at all points of the shell. The 2D core shown was generated with
the l-oriented. 3D Morse medialness measurement. respoading to two antipodal points.
The ellipsoidal shell provides a test image that includes changing position. changing
radius and changing orientation. [ expect the core to lie between the inner and outer
boundaries of the shell. with the optimal orientation identifving a vector normal to the
shell. The radius will depend on the position of the core point. The core should close in

on itself and have no boundaries. The core (Figure 6.8) contains 9255 points and took two
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hours to generate: as expected. considerably faster than the generation of the core of the
slab using the Laplacian medialness measurement. Visually. it lies where expected and
does not end. As with the previous two objects. I have displayed the original ellipsoidal

shell and the object implied by the core superitnposed on the ellipsoidal shell.
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Figure 6.7: Image of an ellipsoidal shell (grevscale). The 3D image has been divided into slices of
constant z and the slices are presented from left to right. then top to bottom. Each slice is 6- pixels
by 64 pixels: there are 64 slices.
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Figure 6.8: Image of an ellipsoidal shell (greyscale) with core object superimposed (black).
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Figure 6.9 i1s a graph showing representative performance of the core. As with the
slab. [ chose the intersection of the core and the plane = = 31 as a sample on which to
examtine the performance of the core. The X axis of the graph is parameterized as angle
(in radians) around the circle of the core sample. The three functions plotted are again
radius. the difference between the actual object half-width and the calculated radius of
the core: orientation, the dot product of the normal to the center of the shell and the
calculated normal of the core: and position. the distance between each core point and
the closest point on the circle of the core at = = 31. The orientation is very well behaved.
The position is consistently between ().2 pixels and 0.4 pixels from the actual center of
the shell: less than half the interpixel distance. The radius overestimates where the shell
is thin and underestimates where the shell is thick. This may be pixel noise causing
the optimizer to find a small local maximum or it may be the response of the Morse
medialness measurement to non parallel boundaries, again arguing for further research

of Blum-like medialness measurements.
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Figure 6.9: Evaluation of core of ellipsoidal shell. showing difference between expected and actual
position and radius. and the dot product of the expected and actual orientation.

6.4.2 Medical Images

After gaining some confidence in the ability of marching ridges to extract cores that are
correct. | tested it on medical images. | have included four results here: the core of
cerebral blood vessels. a skull. kidneys and brain ventricles. As before. there are two
displays for each medical image: the first s the medical image displayed four slices at
a time and the second is the object implied by the core superimposed in black on the

medical image.
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Cerebral Blood Vessels

The first medical image is of cerebral vasculature (Figures 6.10 through 6.29). The image
is a MRA scan taken from the top of the head down. with slices parailel to the = plane.
Each slice is 256 by 236 pixels: there are 48 slices. Each pixel is 0.859 mm by 0.859 mm:
the distance between slices is 1 mm. The figures | have included each contain four slices
of the original image. The slices are arranged with the slice highest in the body in the
upper left corner and are arranged left to right and then top to bottom with the lowest
slice in the lower right corner. I have included only those slices of the original image
which contain calculated core points. The points were generated at the rate of about
1 point every 20 seconds. The blood vessels are tube-like structures for which [ used
the 2-oriented. 3D Laplacian weighting function to calcuiate medialness. | expect the 1D
cores of blood vessels to be curves running along the center of the vessel. with an optimal
orientation along the direction of the blood vessel and an optimal scale proportional to
the width of the blood vessel. Ridge theory indicates that ridges don't branch. The
cerebral vasculature does branch. and I expect the core to stop when it encounters a
branch. Further. the vessels narrow. fade. and turn sharply. all conditions that make
ridge tracking difficult. The endings of the cores in the figures can all be attributed
to such events. The only comparable research results are from Stephen Aylward [1].
who performed an analysis of cerebral vasculature using an algorithn that first found an
intensity ridge and then maximized medialness over scale along the intensity ridge. He
also had trouble with vessels ending: the ridges in he found in the same irmage averaged
25 voxels in length. Recently. Aylward has found that using connectors has increased the
length of his ridges. opening the possibility of using connectors for optimal parameter

ridges.
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Figure 6.11: Image of cerebral vasculature (inetaslice 1 - image slices 3-8) with object implied by

the core superimposed in black
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Figure 6.13: Image of cerebral vasculature (metaslice 2 - image slices 9-12) with object implied by

the core superimposed in black
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Figure 6.15: Image of cerebral vasculature (metaslice 3 - image slices 13-16) with object implied by
the core superimposed in black
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Figure 6.17: Image of cerebral vasculature {metaslice 4 - image slices 21-24) with object implied by

the core superimposed in black
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Figure 6.19: Image of cerebral vasculature (metaslice 5 - image slices 23-28) with object implied by
the core superimposed in black
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Figure 6.21: Image of cerebral vasculature (metaslice 6 - image slices 31-32) with object implied by
the core superimposed in black
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Figure 6.23: Image of cerebral vasculature (metaslice 7 - image slices 33-36) with object implied by
the core superimposed in black
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Figure 6.25: Image of cerebral vasculature (metaslice 8 - image slices 37-40) with object implied by
the core superimposed in black
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Figure 6.27: Image of cerebral vasculature (metaslice 9 - image slices 41-44) with object iinplied by
the core superimposed in black
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Figure 6.29: Image of cerebral vasculature (metaslice 10 - image slices 15-48) with object implied
by the core superimposed in black
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Kidneys

The second medical image is of an abdomen (Figure 6.30 through Figure 6.47). The
image i1s a CT taken from the top of the abdomen down. with slices parallel to the =
plane. Each slice is 256 by 256 pixels: there are 41 slices. The figures | have included
each contain four slices of the original image. The slices are arranged with the slice
highest in the body in the upper left corner and are arranged left to right and then top
to bottom with the lowest slice in the lower right corner. | have included only those
slices of the original image which contain the core. The kidney is slightly more slab-
like than tube-like. so [ set the algorithm to find 2D cores. However. the distinction is
slight. and I expect the core to be very narrow. It should run down the middle of the
kidney, with radius proportion to the radius of the kidney and with an crientation along
the minor axis of the elliptical cross section of the kidney. [ used the 2-oriented. 3D
Laplacian weighting function to calculate medialness. The results on the two kidneys
are very different. The kidnev on the left faced the problem of the indistinct boundary
with the liver. and the core began to expand into the liver. | manually stopped the core
traversal before the results of the liver obscured the kidney. In general. the poor contrast
in the image caused problems for the core tracking. most especially in the left kidney.
A further characteristic behavior is the extent of the core into the image slices above
the kidney. This is a problem in core extraction encountered frequently in 2D studies.
The upper end of the kidney did not stop the core traversal. further compounded by the
confusion of organs near the top of the kidney. The kidney on the right displays very
different behavior of the core. [t stopped without my intervention. and while it describes
the kidnev well near the center of the organ. it also has problems near the top of the
kidney. but this time stopping early. This also is due to the indistinct organ boundaries
near the top of the core. Note that both cores did well in describing the kidney near
the bottom end. where the kidney i1s more distinctly separated from the other image

structures surrounding it.
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Figure 6.31: Image of abdomen around kidneys (metaslice 1 - image slices 1-4) with object implied
by the core superimposed in black
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Figure 6.33: Image of abdomen around kidneys (metaslice 2 - image slices 5-8) with object implied
by the core superimposed in black
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Figure 6.35: Imnage of abdomen around kidneys (metaslice 3 - image slices 9-12) with object implied
by the core superimposed in black
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Figure 6.37: Image of abdomen around kidneys (metaslice 4 - image slices 13-16) with object implied
by the core superimposed in black
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Figure 6.39: Image of abdomen around kidneys (metaslice 5 - image slices 17-20) with object implied
by the core superimposed in black

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

™ Radtus [ Theta

Qn_t i f— Radius '_— Theta
_tod_| 5
g i s
Clear | N l ;
L “ :
Do | T Extent [ Pht
t
Trace s‘ {J
Singls | r'
~r Intenst ; 1 .
id !
“ Madial
| No Opt
vl « Scale Opt.
~2 “> Scale/Ortent Opt
A~ WB
«.- Cony .
-~ Steples

Figure 6.41: Image of abdomen around kidneys (metaslice 6 - image slices 21-24) with object implied
by the core superimposed in black
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Figure 6.43: Image of abdomen around kidneys (metaslice 7 - image slices 25-28) with object implied
by the core superimposed in black
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Figure 6.45: Image of abdomen around kidneys {metaslice & - image slices 29-32) with object implied

by the core superimposed in black
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Figure 6.46: Image of abdomen around kidneys (metaslice 9 - image slices 33-36)
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Figure 6.47: Image of abdomen around kidneys (metaslice 9 - image slices 33-36) with object implied
by the core superimposed in black
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Skull

The third medical image is of a skull (Figures 6.48 through 6.67). The image is a CT
scan taken from the top of the head down. with slices parallel to the = plane. Each
slice is 256 by 256 pixels: there are 40 slices. Each pixel is 0.1449 mm by 0.1449 mm:
the distance between slices 1s 0.4 mm. The figures I have included each contain four
slices of the original image. The slices are arranged with the slice highest in the body
in the upper left corner and are arranged left to right and then top to bottom with the
lowest slice in the lower right corner. The skull is a slab-like structure. very much iike
the ellipsoidal shell used as a test case. so I used the 2-oriented. 3D Morse weighting
function to calculate medialness and set Marching Ridges to extract 2D cores. [ expect
the core to run between the inner and outer side of the skull. be of nearly constant radius
and have orientation normal to the surface of the skull. Because the marching ridges
algorithm has trouble near the ends of objects and where small scale structures become
complicated. I limited the search for core points to 4000 points: they took a iittle over an
hour to generate. | performed such searches twice. once beginning on the left side of the
skull and once beginning of the right side of the skull. The core follows the skull very well
except where the skull becomes extremely thin and where its structure becomes much
more complicated. The radius of the core points of the skull varies between 0.5 pixels
and 1.6 pixels. This is an extremely small radius. and the variation is likely due to pixel
noise. The orientation is mostly aligned with the y: plane, becoming more horizontal
as the core approaches the top of the skull. as expected. The interslice distance of this
image is also a problem for the core tracker: note that the top of the skull does not have
a top and a bottom: the interslice distance is so great that only a single slice intersects
the top of the skuil. The core finder relies on opposite edges. so neither core extended
to the top of the skull. The breaks in the core are due to the extreme narrowness of the
skull at those points. At radii so small. the weighting functions applied to the image are
only slightly larger than a pixel and do not provide reliable results for ridge tracking.
The large black blob is what happens when the core tracking encountered complicated

small scale structure and ~got lost™.
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Figure 6.49: Image of skull (metaslice 1 - image slices 1-4) with object implied by the core superim-
posed 1n black
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Figure 6.50: Image of skull (metaslice 2 - image slices 5-8)
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Figure 6.51: Image of skull (metaslice 2 - image slices 5-8) with object implied by the core superim-
posed in black
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Figure 6.53: Image of skull (metaslice 3 - image slices 9-12) with object implied by the core super-
imposed in black
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Figure 6.53: Image of skull (metaslice 4 - image slices 13-16) with object implied by the core
superimposed in black
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Figure 6.57: Image of skull (metaslice 5 - image slices 17-20} with object implied by the core
superimposed in black
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Figure 6.58: Image of skull (metaslice 6 - image slices 21-24)

Figure 6.59: Image of skull (metaslice 6 - image slices 21-24) with object implied by the core
superimposed in black
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Figure 6.61: Image of skull (metaslice 7 - image slices 25-28) with object implied by the core
superimposed in black
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Figure 6.63: Image of skull (metaslice 8 - image slices 29-32) with object implied by the core
superimposed in black
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Figure 6.65: Image of skull (metaslice 9 -

image slices 33-36) with object implied by the core
superimposed in black
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Figure 6.67: Image of skull (metaslice 10 - image slices 37-40) with object implied by the core
superimposed in black
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Brain Ventricle

The third medical image is of a brain (Figures 6.68 through 6.79). The image is an
MRI taken from the top of the head down. with slices parallel to the : plane. Each
slice is 256 by 256 pixels; there are 50 slices. Each pixel is 0 839 mm by 0.859 mm:
the distance between slices is 1.4 mm. The figures I have included each contain four
slices of the original image. with decreasing = left to right and then top to bottom. The
ventricle looks remarkably like a Klingon Bird of Prey with the bridge split in half. For
those without Star Trek knowledge. the ventricle is a dark. C-shaped slab with a pair
of spindly legs. I extracted cores from the upper. C-shaped slab. so used the 2-oriented.
3D Morse weighting function to calculate medialness and set Marching Ridges to extract
2D cores. [ expect the core to run between the inner and outer sides of the ventricle and
be of nearly constant radius. [ extracted cores from both the left and right ventricle.
expecting that the core would have troubie with the relatively low contrast of the image
and endstopping. The results show that the core tracking did very well in certain parts of
the ventricle. but not in others where it extended bevond the boundaries of the ventricle
and became lost. Consistent with expectations. Marching Ridge has trouble with the
boundary of the ventricle for two major reasons: 1) the oriented Morse kernel does
not register ends of object well. and 2) the gradually decreasing radius has the effect
of creating weighting functions that are so small as to be unstable. Consistent with
expectations. the core extended past the end of the ventricle. Once the ridge tracking
has extended beyvond the limits of the ventricle. the noise and complexity of the rest of

the image make the behavior of the ridge tracking essentially unpredictable.
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Figure 6.69: Image of ventricles (metaslice 1 - image slices 1-4) with object implied by the core
superimposed in black
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Figure 6.71: Image of ventricles (metaslice

2 - image slices 5-8) with object implied by the core
superimposed in black
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Figure 6.73: Image of ventricles (metaslice 3 - image slices 9-12) with object implied by the core
superimposed in black
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Figure 6.74: Image of ventricles (metaslice 4 - image slices 13-16)
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Figure 6.75: Image of ventricles (metaslice 4 - image slices 13-16) with object imiplied by the core
superimposed in black

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



133

GQut

2l

e

Figure 6.77: Image of ventricles (metaslice 5 - image slices 17-20) with object implied by the core
superimposed in black
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Figure 6.79: Image of ventricles (metaslice 6 - image slices 21-24) with object implied by the core
superimposed in black
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Overall. the core extraction performed as expected. The results on the test objects
indicate that the core extraction is accurately calculating positions. widths and orienta-
tions of ridges of medialness that are known to be present. The marching extends over
the entire core. not stopping prematurely. [t could be much faster. and future work will
include faster optimizers. more efficient medialness calculations. and porting to the faster
machines now avatlable.

The results on the medical images. while not as “clean”™ as the results of the test
objects. were predictable in their behavior. Three behaviors of cores predicted by the

mathematics of medialness and ridges were observed:
e the marching algorithm passes through the ends of objects.
e ridges do not branch and may stop at places where an object branches. and
e low contrast boundaries between objects are ignored.

Each of these behaviors can be seen in the results of the medical images. (In fact.
the first is seen even in the core of the flared tube.) Figure 6.73 shows what happens at
the ends of objects: the core marches past the end of the object and begins wandering in
the rest of the image. While the ventricle is well modeled where its sides are parallel. at
the lower tip of the right ventricle. the core has gone through. and interacting with noise
in the image. started wandering through the image. Figure 6.15 shows what happens at
a branch: the core of a blood vessel is coming up from lower in the brain in the lower
two slices. and then stops. not appearing in the upper two slices. The vessel begins to
branch in the lower left slice and does not continue into the branch of the upper slices.
Figure 6.37 shows what happens when two objects do not have a high contrast boundary:
the core marches into the second object. The kidney on the left is quite close to the liver.
and the boundary between them is very indistinct. The core. initiated in the kidney. has
begun to register in the liver.

[n addition to the properties of cores predictable from theory. other behaviors derive
from the Cartesian grid of sample points and Marching Ridges is susceptible to the

following pixel-based constraints:
e a lower limit on the size of objects and
e an upper limit on the curvature of the core.

Both of these constraints are evident in the medical images. Figures 6.55 and 6.57
show how the core does not extend into very thin sections of the skull. although slightly
thicker parts are well identified. Figure 6.49 show the effect of curvature: the core does
not extend up into the top of the skull. Here the curvature is with respect to z distance.
because the interslice distance is 2.76 times the intraslice distance between sample points.
Thus. the skull curves extremely sharply with respect to z. and the marching fails to
follow the core.

Future work will investigate how best to deal with these behaviors and overcome
these constraints. Blum-like medialness may provide a mechanism for naturally recog-
nizing the ends of objects. Connectors may provide a way of dealing with branches. by

following connectors through the branch until ridges again emerge away from the branch.
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Supersampling may provide a way of dealing with the pixelization artifacts. Adaptive
medialness that changes its behavior as radius changes may also provide a method of
dealing with this problem.

In general. the cores look promising as starting points for the medial analysis of
object shape in medical images. Besides the needed improvements just described. there
is other work to be done. For example. the visualization provided in these iinages is very
basic. The orientation of the core is not shown in the images. and the representation of
the core is limited to the original slices of the image. A system of viewing cores that
allowed arbitrary slices or 3D visualizations would be more useful and easier to intuitively
understand. as would one that allowed a visualization of core radius and orientation.

Further. this dissertation concentrates only on medical images. Other imaging modal-
ities, such as seismic. visible light. and infrared may also benefit from medial shape

analysis and thus prove a fertile ground for the application of this research.

6.4.3 Practical Considerations
There are three main practical issues concerning the work in this dissertation:

e speed.
e extensions. and

e incorporation into other systems.

The issue of speed has been raised a number of times already in the dissertation. The
choice of medialness can have a huge impact on the speed of the algorithm. depending
on the footprint of the weighting function. The Morse and Blum-like medialness mea-
surements are fastest for finding 2D cores, while the Laplacian is fastest for 1D cores.
The choice of which dimension reduction strategy to use with optimal parameter ridges
was determined in part by speed. There are other options for speeding up the algorithm.
The first is a software sclution. involving resampling the image and medialness weighting
function based on the scale parameter of the medialness measurement. This has two
potential benefits: 1} the footprint of the weighting function iz constant. regardless of
the radius of the core and 2) the number of different medialness weighting functions is
reduced as aperture becomes constant in terms of pixel widths. The former will naturally
drastically speed up the calculation of larger radius cores while the latter would allow
the precalculation of a small number of weighting functions, removing those calculations
from deeply nested loops. The second option is a hardware option: the design of circuits
for the specific application of medialness weighting functions. Digital signal processing
chips are fairly common in specific 1D applications. and it is not unreasonable to expect
that the same will happen for 2D and 3D applications.

The work in this dissertation has been designed to be easily extended. The compo-
nents of the algorithm have been separated in source code as they are in this dissertation:
the calculation of medialness is contained in separate source files from the calculation
of optimal parameter ridges. which is kept in separate source files from the marching

algorithms. This has allowed me to relatively easily add medialness functions as they are
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defined. change the method of finding ridges. and extend the Marching Ridges algorithm
from 2D to 3D. Clary [¥] is in the process of extending the code to include endness cal-
culations in the ridge calculation. He has reported relatively little trouble in 2D. Other
extensions could include the calculation of connector sets. Bium-like medialness. and 41D
data sets.

This separaticn of source that makes this work easily extended also benefits its in-
clusion in other systems. A number of researchers have taken the medialness functions
included here and applied them to thetr own algorithms successfully. Aylward and I were
able to modify a medialness function and apply it to his ridge finding system in his work
on finding ridges of blood vessels. Both Fritsch {17} and Low use the oriented Laplacian

medialness measurement in their work on deformable shape models in 3D.

6.5 Conclusion

The contributions of this dissertation provide a better understanding of the medial shape
analysis of objects in 3D medical images. They support the thesis that oriented medial-
ness and optimal parameter height ridges emploved in a marching ridges algorithm will
effectively extract cores of 2D and 3D greyscale images. This thesis, in turn. provides a

platform from which to launch even deeper studies into the miedial analysis of shape.
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