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Abstract
Thomas Russell Gayle: Physically-based Sampling for Motion Planning.

(Under the direction of Dinesh Manocha.)

Motion planning is a fundamental problem with applications in a wide variety of

areas including robotics, computer graphics, animation, virtual prototyping, medical

simulations, industrial simulations, and traffic planning. Despite being an active area

of research for nearly four decades, prior motion planning algorithms are unable to

provide adequate solutions that satisfy the constraints that arise in these applications.

We present a novel approach based on physics-based sampling for motion planning that

can compute collision-free paths while also satisfying many physical constraints. Our

planning algorithms use constrained simulation to generate samples which are biased

in the direction of the final goal positions of the agent or agents. The underlying

simulation core implicitly incorporates kinematics and dynamics of the robot or agent

as constraints or as part of the motion model itself. Thus, the resulting motion is smooth

and physically-plausible for both single robot and multi-robot planning.

We apply our approach to planning of deformable soft-body agents via the use of

graphics hardware accelerated interference queries. We highlight the approach with a

case study on pre-operative planning for liver chemoembolization. Next, we apply it to

the case of highly articulated serial chains. Through dynamic dimensionality reduction

and optimized collision response, we can successfully plan the motion of “snake-like”

robots in a practical amount of time despite the high number of degrees of freedom in

the problem. Finally, we show the use of the approach for a large number of bodies in

dynamic environments. By applying our approach to both global and local interactions

between agents, we can successfully plan for thousands of simple robots in real-world

scenarios. We demonstrate their application to large crowd simulations.
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Chapter 1

Introduction

The general problem of motion planning requires finding a path for an agent or agents

through an environment, or otherwise reporting that one does not exist. Efficient meth-

ods for motion planning are essential to a wide variety of areas including robotics, com-

puter graphics, animation, medical simulation, virtual prototyping. Automated agents,

both in the real and virtual domain, are becoming more commonplace. From digital

actors, automated vacuum cleaners, to robotic “mules” or packhorses, their ability to

solve problems and adapt to new situations and difficult environments plays a significant

role in their utility and the level to which they will be adopted.

Generating motions for real or virtual agents, which are coupled to a goal or task,

is usually a complicated task. A wide variety of approaches and methodologies have

been proposed to tackle the problem. In most cases, these solutions can be viewed as

“search” algorithms, where we are seeking to find a way to the goal through some space

representative for the problem. Each search space is tailored to the problem itself, which

allows for an extremely wide variety of extensions, applications, and even interpretations

of the basic motion planning problem.

For example, consider a team of robotic arms on a manufacturing assembly line whose

task is to simultaneously paint an automobile. Each arm would need several joints in

order to effectively articulate itself to be able to cover any part of the vehicle. The



individual arms must move themselves to precise locations along the automobile’s body

while also avoiding collisions with other arms, the car and other parts of the assembly

line. Furthermore, if the vehicle or its parts are moving along the assembly belt, then

the painting end of the arms, their end-effectors, must accurately move with the item

in a prescribed manner. To automate this process, algorithms must be able to quickly

determine the sequence, or collectively a path, of joint angles that each arm must follow

to both reach the piece. Finally, it needs a motion controller to execute that sequence

(See Fig. 1.1).

Figure 1.1: Car manufacturing plant, robotic assembly line, elevated
view: Courtesy of Getty Images. http://www.gettyimages.com/detail/LA4074-
003/Riser, 2009.

For a different viewpoint on generating motion, consider the task of animating a

crowd of humans in an urban environment. Each human or virtual agent needs to be

able move around while also avoiding other agents or obstacles in the scene. An animator

could solve this task by painstakingly moving each agent through the scene. However, in

many cases where the goal is only to have a crowd that moves around, motion planning
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and simulation algorithms could be used to determine this locomotion and to provide

goals for each agent. Simple equations for pedestrian dynamics, mathematical models

which describe how humans to tend to move amongst each other, can model the agent’s

physical properties, how it interacts with its neighbors, and in which direction it should

proceed next. (See Fig. 1.2).

Figure 1.2: Trade show simulation: In the tradeshow scenario, each agent
has a series of goals which it must visit. Realistic movements and interactions
between humanoids is critical to creating a compelling and realistic simulation.

While these situations and their goals are mostly distinct, one generic similarity

is that they share a set of rules govern their motion. For instance, in the robot arm

example, every aspect of the generated motion is found and specified entirely by the

“rules” of a search algorithm and its resulting path. As such, a geometric interpretation

of this search only considers the geometry of the arm and disregards any masses or

moments. On the other hand, in the crowd example, the general motion is prescribed

by work on pedestrian dynamics and basic path planning. Instead of following a precise

path, agents in a crowd follow a more general set of rules that govern their motion and

interactions.
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These two simple examples represent two ends of a spectrum on how motion can be

considered and generated. An algorithm can precisely control all aspects of the situation,

or it can employ a predetermined set of laws or rules which influence the motion and

behavior. It is known that there are a wide variety of technical challenges at both

ends of this spectrum, resulting in consideration attention from the related research

communities. With precise control, it has been shown that the time required to find a

solution grows intractably as the complexity of the planning problem, the underlying

robot, or the scene increases. Additionally, the resulting motion is often considered ’un-

natural’ or ’un-intuitive’ when observed by humans. In comparison, modern physically-

based dynamics simulations (which are suitable for handling and applying sets of “rules”

or motion equations) are capable of handling tens of thousands of objects or agents in

complex environments (e.g., NVIDIA R©PhysX R©), but usually at the expense of fine-

tuned control or control beyond some local region of the objects.

A solution in the middle of the “control versus predetermined laws” spectrum would

be beneficial and help to overcome of the drawbacks of each. A robotic arm empowered

with control criteria, goals, and a physical “state” no longer requires explicit control of

all of its joints. By modeling the joints as physical bodies, a path could be generated

where these joints move as needed based on motion equations as the end effector moves.

With additional control, the artist would be able to provide specific goals for individual

members of the crowd to better direct its motion while the general crowd moves and

adapts appropriately. In general, realistic extensions to many planning problems can

utilize these ideas and improvements.

In this thesis, we focus on integrating precise control with generalized rules of motion

for motion planning of single (rigid, articulated, or non-rigid) or multiple agents. Our

goal is to utilize physics simulations to relax the requirement of precise control of many

degrees of freedom, and instead allow the agents or their parts to move toward the goal

through the use of artificial physical forces acting on the agents. We call this process
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physics-based sampling, because a system of forces and constraints are applied to the

the agents in a physically-based manner to bias the search toward the goal. Control,

when needed, is gained through integration of these forces with simplified paths through

the search domain. We show that a physics-based sampling framework can overcome

many of the limitations of prior approaches and show how it can be used in a variety of

application including medical simulation, hyper-redundant robots, and crowd or social

simulations.

1.1 Motion planning background

Since motion planning fundamentals are used throughout this work, this section first

introduces key concepts and ideas and traditional approaches in motion planning. Then,

we discuss extensions to the basic planning problem as related to this work and their

inherent challenges.

1.1.1 Definitions and Notation

Consider a robot r in an environment or workspace D embedded in R2 or R3. Within

the workspace is a set of obstacles, O = {o1 ,o2 , . . . ,on}. Traditionally, robot r is a

rigid or an articulated body composed of rigid parts and is the only object allowed to

move in D, the remaining obstacles and environment are completely static. A robot’s

configuration q is the set of variables or parameters which fully determine all points on

the robot’s body. This is often the position and orientation of robot as well as that of

its sub-parts, but any parameterization that completely models the agent can be used.

The number of configuration parameters is the number of degrees of freedom, or DOFs,

of the robot. The set of all possible configurations defines a robot’s configuration space,

C [LP83]. In many cases, there are constraints which prevent a robot from moving into

a particular configuration, such as collisions with an obstacle or limits on the range of
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motion. These constraints are mapped into C as illegal or forbidden regions. The space

outside of these regions makes up the robot’s free space, F . A path through C is a

function τ : [0, 1] → C between configurations τ(0) and τ(1). A path is collision-free if

for every configuration qt on τ , qt ∈ F (See Fig. 1.3).

Figure 1.3: Workspace vs Configuration space: This planning situation
requires the triangle to move translationally (no rotation) from the blue to the
pink position. The left image contains the start and final configurations, while the
right image maps it to its configuration space. The initial and final configurations
can be represented as a point in C while the C−obstacles have been enlarged.
Here, the F is the white area on the right image.

Using these definitions, we pose the basic motion planning as follows: Given a robot

r in workspace D and its initial and goal configurations, qinit and qgoal , respectively,

find a collision-free path τ such that τ(0) = qinit and τ(1) = qgoal , or report that such

a path does not exist.

1.1.2 Prior Approaches

A variety of approximations have been proposed and can usually be classified into a few

categories.

• Complete motion planning and cell decompositions: Many of the early ap-

proaches in motion planning compute an exact representation of the freespace, F .

These solutions are complete, in that they return a path if one exists or otherwise
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report that no path exists. One of the more popular approaches for this is cell

decomposition planners [SS83, BLP85]. The idea of cell decomposition planners is

that the configuration space can be divided into regions of non-overlapping cells.

The size and type of cell is usually chosen such that a path exists between any

configurations within a cell and it can be determined whether or not the cell is

in F . After determining all of the “free” cells, a connectivity graph is generated

by using the adjacency relationships between cells. To solve a planning query, the

algorithm first identifies which cells contain the initial and goal configurations and

then performs a graph search through the connectivity graph between these cells.

The final path is extracted from the returned sequence of cells.

Other complete motion planning approaches, often also called criticality-based al-

gorithms, include computing the free space for a specific class of robots [LPW79,

Don84, Hal02] and exact roadmap methods [Can88a]. However, due to the com-

plexity of exact geometric queries for higher degree of freedom problems, there are

no known practical and efficient implementations of these complete approaches

[HH03]. Several hybrid planners which include cell decompositions have been

proposed as well, many of which are complete [VM05, ZKM07]. Others are con-

sidered resolution-complete and work by subdividing cells which are known to be

both “free” and contain a configuration space obstacles. Thus, for a sufficiently

small cell, they can report whether or not a path exists (See Fig. 1.4)

• Roadmaps: Roadmap approaches represent the connectivity of F by a graph or

network of configurations and 1D collision-free curves connecting these configura-

tions. A roadmap is first constructed by sampling configurations in F (usually in

a randomized or otherwise prescribed manner) and then determining a local path

between these configurations. Given an initial and goal configuration, the planner

first determines how to connect each of these configurations to the roadmap. Then,

a graph search is performed on the roadmap to return the final path. The success
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Figure 1.4: Cell decomposition: A vertical cell decomposition of the C is
computed by extending the vertices of the C obstacles vertically to the environment
boundary. A path is created by connecting the midpoints of adjacent cells.

of a planning query relies on the quality of the roadmap: how well it captures the

global connectivity of F and on how easily any configuration can be connected

to the roadmap. Recently, randomized approaches of roadmap generation (Prob-

abilistic Roadmap Methods [KSLO96], Rapidly-exploring Random Trees [LK00])

have been very successful at solving a wide range of complex problems and have

also been shown to be probabilistically-complete (See Fig. 1.5).

• Potential fields: These planners exploit the idea that artificial potential functions

defined over the configuration space can be used as a heuristic to direct the path

search. Navigation potential functions are usually designed as a summation of an

attractive potential (or a sink) at the goal configuration, and repulsive potentials

(or sources) for each obstacle in the environment. For example, a simple potential
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Figure 1.5: Roadmap: A roadmap is created by randomly sampling the C.
Each sample in F is then connected to the nearest neighbors on the roadmap.
To find a path, the initial and goal configurations are connected to the roadmap.
Then, the shortest path between the configurations is found and used as the path.

function for a robot with a configuration qt at time t may be:

Ur(t) = Uqgoal
(t) + UO(t)

where

Uqgoal
(t) =

1

2
kp(qt − qgoal)

2

and

UO =
∑
oi∈O

1

2
ko(

1

d(oi ,qt)
− 1

ρ
)2

where Uqgoal
is an attractive potential to the goal, and UO is the total potential

away from obstacles, kp is a potential gain for the goal, ko is a potential gain for the

obstacles, ρ is a limit on the distance of the potential field influence, and d(oi ,qt)

is the shortest distance between qt and oi . The gradient at any configuration in
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the potential field points toward lower potentials and thus away from obstacles

and toward the goal. In many cases, the potential function can be sampled locally

and does not need to be entirely precomputed. Similarly, this often lends itself to

real-time executions since the potential field at a point can usually be determined

very quickly [Kha86]. However, one well known drawback of this approach of

potential field motion planning is that the field could contain local minima. If

a robot moves into one of these regions, it effectively becomes stuck. A variety

of approaches help reduce the likelihood of this situation such as construction of

a potential field which does not contain any local minima [RK92] or by adding

Brownian motion or a random walk to the motion at each stage [BL91]. While the

exact approach is limited by the number of degrees of freedom in the problem, the

Brownian motion solution has been shown to work effectively for tens of degrees of

freedom. Due to the randomization, it is also probabilistically-complete, or will find

a path if one exists given sufficient time. In general, probabilistic completeness

relaxes the requirement of path existence. (See Fig. 1.6).

While most work falls into the previously described categories, there are a few ap-

proaches which try to leverage the advantages and disadvantages of several of these

ideas. For instance, a coarsely defined roadmap does a good job of capturing the gen-

eral connectivity of an environment, while a potential field can help overcome difficulties

in navigating between the connected components. A roadmap could also be extracted

from a potential field by identifying the local minima checking if they can be connected

by a simple “link”.

The true success of any of these approaches is often measured by how large or complex

of a problem it can solve, and how quickly a solution can be found. While each of these

classes of planners or solvers have been extended to solve a wide variety of problems of

varying complexity, each has some inherent drawbacks. For instance, while the potential

field approach generally cannot easily find a shortest path, it often picks a path which
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Figure 1.6: Potential field: Since all obstacles here are given a repulsive or high
potential value, this potential field path causes the robot to try to stay optimally
far from obstacles as it navigates toward the goal.

is further away from obstacles. Furthermore, it is often perceived as being smoother

or more natural since the resulting path is smooth. The next two subsections discuss

additional topics: the range of problems which planning approaches can be used to solve

and the related complexity of these planning problems.

1.1.3 Extensions to basic planning

In many realistic or modern planning scenarios, the problem’s assumptions do not match

those of the basic motion planning problem. A wide variety of extensions to the basic

problem have been proposed. Since this work relates to several of them, we provide an

overview of the extensions related to our work here.

• Dynamic environments: In many scenarios, it is more realistic if the robot is

not the only entity moving in a scenario. For this extension, obstacles oi ∈ O

are no longer static and can either move on their own or be moved by a robot.
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If the motion of a dynamic oi is known a priori, the configuration space can

augmented to include a temporal dimension t where oi(t) describes the state of

the obstacle at any point in time. On the other hand, if the motion of oi is not

predetermined or is influenced by interactions with the robot, then the planning

algorithms must be able to quickly adapt or replan as time proceeds to account

for changes in the environment. If the obstacles can be moved by the robot, the

planner could consider how an obstacle must move or how the moved obstacle

changes the connectivity when planning a path.

• Differential constraints: The basic planning problem requires finding a path

based only on the geometry of the robot. Other factors can influence or otherwise

restrict the way a robot can move. For instance, a wheeled robot typically has a

limited turning radius and moves based on the directions of the wheels. In other

cases limits on velocity and acceleration require second order constraints (over

time) to be maintained. These types of constraints are often generically classified

as differential constraints. A planner needs to consider a different parameteri-

zation of space which includes the robot’s state rather than just its geometric

configuration, which includes additional information such as a robot’s velocity or

acceleration. Planning algorithms must then consider the robots state-space S

and any state-space obstacles. Finally, other factors such as avoiding inevitable

collisions states, or states in which the momentum of the body will cause a colli-

sion in the future, should be considered. This category is often broken down into

three subcategories: nonholonomic planning, kinodynamic planning, and trajec-

tory planning. Briefly, nonholonomic planning is primarily mentioned in regards

to wheeled robots, and involves constraints which cannot be completely integrated.

Kindoynamic planning usually requires velocity and acceleration bounds to be sat-

isfied while also avoiding obstacles, thus the second order dynamics of the motion

are included in the resulting path. Finally, trajectory planning often refers to
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determine a sequence of positions along with velocities (or velocity profiles) for a

robot that satisfy the dynamics constraints.

• Multiple agents: In many real and virtual world scenarios, a team of robots must

work together to solve a problem, or several agents will move in close proximity to

each other to individually reach their goals. For both of these, the basic problem

needs to be extended to include several robots. One view of this extension is

that it is very similar to unpredictable obstacles, each robot is an unpredictable

obstacle to every other robot. However, unlike obstacles, each agent or robot

can be controlled. In another view, groups of robots or the entire population of

robots can be treated much like a single robot in a “combined” or “aggregated”

configuration space. Then, motion for the multiple agents can be generated in a

similar manner to the standard planning approach.

• Deformable or non-rigid robots: With recent improvements in simulation

and robotics technology, it is no longer a requirement to have rigid agents or

robots. For instance, consider motion planning for a flexible fire hose or rubber

tube, a bendable needle, or any other soft-bodied or otherwise pliable object.

Also, consider a situation where a robot needs to move or adjust a deformable

object. Since any point on the surface can be moved or deformed relative to

any other point, the parameterization of the space is often much more difficult.

In practical implementations, the bodies are discretized as a set of volumes or

control points. For a higher resolution deformable body, this leads to a very large

number of control points and extremely large configuration spaces (and intractably

long planning times). Furthermore, planners for general deformable robots must

consider soft-body constraints such as volume and total or degree of deformation

as part of the planning and simulation process.
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1.1.4 Motion Planning Challenges

Advances in motion planning methods and algorithms have had a difficult time keeping

up with growth of complexity of many current systems or situations. For instance, med-

ical practitioners could make use of a deforming catheter-like robot to aid in performing

various procedures. Related simulations could also help as a teaching tool or for preoper-

ative planning. Hyper-redundant robots such as snake-like robots or self-reconfigurable

modules may contain hundreds or possibly thousands of links and joints. Fleets of mo-

bile robots sizing from the tens to hundreds are already used for managing warehouses.

Autonomous vehicles will need to know how to avoid and navigate among many other

moving obstacles. Virtual reality developers can populate their environments with many

agents each of which have their own goal, task, or behaviors. All of these examples are

very difficult to handle in the current state of motion planning algorithms.

The complete robot motion planning problem has been shown to be exponential in

number of DOFs of the robot [Rei79, Can88b]. As previously mentioned, many modern

and popular approaches employ randomization to quickly generate an approximate and

hopefully representative mapping of the C, and they also relax the completeness require-

ment in the process. These algorithms have enjoyed a great deal of success over the last

decade due to their ability to solve a wide variety of problems in higher dimensional, or

high DOF, configuration spaces in a more practical amount of time. Moreover, these

randomized algorithms are generally intuitive and relatively easy to implement.

As the complexity of the robot or its environment increases, motion planning becomes

more and more difficult. When considering problems with deformable robots, highly

articulated robots, or multiple, complex robots such as those previously mentioned,

the effectiveness of most motion planning algorithms rapidly deteriorates. By nature

of randomized algorithms, the motion itself may not be even be realistic. Most of

these approaches generate motion by linearly interpolating between states rather than

preserving any kinematics, dynamics, or differential constraints. As a result, the motion
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is not necessarily physically plausible, is not smooth, or may contain motion paths which

are un-intuitive. There are some approaches which plan in the “state” space of a robot,

sometimes referred to as “kinodynamic” planning [HKLR02]. However, since kinematic

and dynamic constraints increase the dimensionality of the space which needs to be

searched, they typically do not scale well to higher DOF planning scenarios.

Based on these considerations, we identify three important sources of complexity in

motion planning for realistic, and more generic, scenarios:

1. Agent complexity: The complexity is inherent to the robot itself or to its ge-

ometry. For instance, for a highly articulated robot with thousands of joints and

possibly many branches or kinematic loops, the C has an extremely high dimen-

sionality. As mentioned in Sec. 1.1.3, for a completely deformable robot the C may

be intractably large. In both cases, the complexity of the robot is typically too

great for standard planning approaches. Finally, to ensure smooth and realistic

motions, dynamics and kinematics for these robots should be considered. Since

each parameter in the “state” space adds additional DOFs to the problem, these

constraints can also greatly increase the overall problem complexity.

2. Numerous agents: Many real world and virtual planning situations include

multiple moving bodies, or multiple agents. A complete, centralized approach to

this situation treats the DOFs of all the robots as a single robot, i.e. a single

configuration describes the complete position and orientation of all robots and

their sub-parts. Under this formulation, the problem is identical to the single-

robot planning problem and can be handled as such (via any of the approaches

mentioned earlier). Since the number of DOFs grows linearly with the number of

robots, the inherent complexity of the planning problem becomes intractable with

just a few robots. Decentralized approaches treat each robot individually; they

plan for each robot individually and then perform a coordination planning step to

try to ensure that robots do not collide as they execute their paths [KZ86, OLP89].

15



The latter solution is usually faster, but gives up the completeness property of a

centralized algorithm and in practice has been shown to have a much lower success

rate [SI06].

3. Dynamic environments: Finally, in many cases, there are other obstacles or

items which are moving or are otherwise changing during the execution of the

motion. These dynamic events and environments add complexity to the planning

situation itself, and present additional challenges. In cases where the motion of

obstacles is unpredictable, it adds a real-time constraint. The robot has a finite

amount of time to decide how to avoid or adapt to a changing environment. In

many cases, this requires the robot to quickly re-plan or otherwise adapt its current

plan. Since planning is already a complex task, this poses a large challenge for even

moderately complex environments. When the obstacle motion is known a priori,

this adds a temporal dimension to C which makes planning more computationally

expensive due to the larger search space.

In many real and virtual world situations, many of these constraints may exist even

in a single situation or scenario. For instance, a city scene may include navigating

agents which must also avoid moving vehicles. While algorithms do exist which can

appropriately handle for each of them individually, the ability to do this successfully

and in a reasonable amount of time diminishes as the problems become more complex.

Even for moderately “realistic” problems, most modern motion planning algorithms

tend to take a long time or do not respond in a practical amount of time.

1.2 Constrained Simulation

Motion planning has enjoyed a great deal of success in providing specific, goal-oriented

automated control. However, the computational cost of that degree of control is very
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high. On the other hand physics simulators, systems or software which can adequately

model physics and physical interactions, have seen successes in handling large numbers of

objects in a general, unified manner, in a physically realistic manner, and in a relatively

faster amount of time.

With regards to robots, agents, and environments, many simulation environments

provide a uniform set of “motion equations,” or predefined rules or laws which dictate the

motion of a body, based on well established laws such as those of classical dynamics. This

permits any object in a scene to behave in a physically-plausible way: they accelerate,

torque, recognize collisions, and respond to collisions much like one would expect it

to respond. Constrained simulation augments standard simulation environments by

restricting or otherwise influencing the way an object can move. For example, consider

a hinged joint with two pieces, such as one that allows a door to open and close. One

solution to generate motion in this situation is for all the interactions between both

parts of the joint to be modeled. Since they are always in contact, there would be an

infinite number or extremely high number of contacts each of which would need to be

resolved. Instead, since we know by design that both parts of the hinge will always be in

contact, we can ignore these complex interactions and instead constrain the motion of

the two pieces to behave in this manner, like an articulated body. This greatly reduces

the computational complexity while still allowing for realistic simulations.

In this sense, constrained dynamics allows a body to follow and obey the established

motion laws and equations while also requiring it to obey the defined constraints and

restrictions. In a way, it gives more “control” over a simulation but still benefits from

the generalized simulation framework. This aspect of constrained simulation makes it a

good fit to aid in motion planning.

In this section we give a brief overview of a general simulation framework, describing

the primary tasks which a simulator needs to implement. A more complete treatment

with respect to this work is given in Chapter 3. Finally, we discuss the challenges and
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limitations in using constrained dynamics specifically for the task of motion planning.

1.2.1 Physically-based simulation

Most physics and dynamics simulators share common elements, regardless of what they

are attempting to simulate. This includes a set of motion equations which dictates

how the body moves given a set of external (and sometimes internal) forces, a collision

or interference query system which finds the set of overlapping geometry, a collision

response system which determines how to respond or react to collisions, and finally a

numerical solver which is used to evolve the state of the environment in time.

For example, consider a simple particle: a point in space with a mass. Its motion can

be most easily described via the Newton-Euler laws of motion. Collisions are detected

when the particle crosses any surface or plane in the environment, and a response can be

calculated by simply reflecting its currently velocity (and eliminating any acceleration in

the direction of the surface with which it collided). Finally, Euler’s numerical integration,

or any other numerical integration technique, can be used to solve the motion equations

and to update the state of the particle.

While this is a simple example, nearly all physical simulators have a similar frame-

work. The motion of rigid, articulated, and even deformable bodies can be described by

some equations. A wide variety of collision detection and response methods have been

studied for each of these classes of bodies, and a wide range of methods are available to

update the state. Regardless of the choice of components, the end result is a simulator

which reflects whatever behavior is encoded into the system.

1.2.2 Constraint-driven simulation

Standard physics simulators have been successful used in numerous applications, mainly

when the emphasis is on the evolution of the motion or the trajectory of objects in a

system rather than directly controlling the objects themselves. In general, the idea of
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constraint-driven or constrained simulation is that we want to be able to do more than

apply external forces, we want to be able to actually restrict the way the bodies are

allowed to move in a scene or environment. This is an important concept in general,

as it paves the way for more compelling and efficient simulations. Constraints allow us

to connect two bodies via hinge, require that certain bodies stay a fixed distance apart,

ensure that no pair of bodies are overlapping or interesting, and many more.

In the scope of this work, constraints generally fall into two different categories.

Hard constraints are firm restrictions on the motion or state and must be enforced at

all times whereas soft constraints are used to influence the motion or behavior at a

given state, but are not required to be maintained at all times. Thus, hard constraints

directly remove or changes properties of the body or its forces whereas soft constraints

act alongside (or in opposition to) external forces. When combined, these constraints

greatly enhance the capabilities of a simulation.

For example, consider a “point-distance” constraint between a pair of points x and y.

This hard constraint could be useful for fixing two points on a robot or ensuring that the

robot stays a fixed distance from some other object. Mathematically, this constraint can

be defined as Cdist(x,y) = ||x− y|| − d for some specified distance d. During execution,

if Cdist 6= 0, then let δd be the difference between d and the actual distance. We can

move each body a distance of δd
2

toward each other to enforce the constraint or apply a

force that would cause the same change in position.

Alternatively, consider a “goal attraction” soft constraint. This constraint can be

defined such that it will only be satisfied once the robot, or whatever part of the robot

the constraint is defined on, reaches its goal. A penalty force for this constraint would

point directly toward the goal or along a path, and could be applied to the entire robot

or to whatever part of the robot needs to reach the goal.

Many more details and specific examples of hard and soft constraints will be devel-

oped and described throughout this work.
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1.2.3 Simulation loop

To this point, we have discussed the main concepts for a constrained simulation. The

simulation loop ties these components algorithmically in order to generate physically-

plausible motion.

Note that we have not yet put all the pieces together into a single, unified system.

Many related works describes a simulation core or a simulation loop to achieve this. The

following are the general steps in a single step of a simulation core:

1. Clear the force accumulators: Each body or its components maintains a total

of all forces on it. At the beginning of each step, we clear the forces from the

previous step.

2. Detect collisions: Loop over all bodies and determine any contacts or collisions

in the scene and prepare them to be resolved.

3. Compute external forces: Loop over all external forces, including contact or

collision resolution forces, and add them to the force accumulators.

4. Compute constraint forces: At this point, each body or component knows the

total force acting upon it (its in force accumulator). To process the constraints,

first add any soft constraints to the accumulators. Finally, compute and apply the

hard constraint forces.

5. Compute derivatives: Gather derivatives as needed to prepare to update the

system.

6. Integrate and update the state of the simulation: Use a numerical integra-

tion method to update the state of the system by some small time increment.
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1.2.4 Constrained simulation challenges

Constrained simulation is a powerful framework for generating motion of many bodies.

A simple set of rules and constraints can be defined which will handle an extremely wide

variety of situations. As such, it has become an extremely popular tool in interactive

computer graphics, animation, and even in robotics. However, there are several chal-

lenges and complications inherent to physics simulation with respect to the goal of this

work.

• Computational bottlenecks: A wide variety of geometric and numerical methods

are used to determine the state of the bodies in the environment, interactions

between the bodies, their derivatives, and finally to advance the simulation in

time via numerical integration. Since these steps must be performed at every step,

the performance of a simulation dependent on the complexity of these methods.

Algorithms for the simulation core must be chosen to not only be accurate, but

also efficient, in a wide range of applications.

• Motion per step: Even if the simulation core is efficient, the overall simulation can

still take a great deal of time. For instance, if our time step is extremely small

or if the simulation’s goals require a the body to travel a great distance (relative

to the maximum amount it can travel per iteration) then the overall simulation

can still take a great deal of time. Thus, simulation core algorithms should try to

allow for large steps either in time or motion available.

• Stability: A well known drawback of several numerical integration techniques is

their instability. In particular, many integration methods suffer from stiff systems

and when the time step is too large. Compelling simulations need to be aware of

the complete range of interactions possible in order to try to avoid this state. While

higher-order explicit, semi-implicit, implicit numerical integration and tuning of
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simulation parameters can help overcome some of these drawbacks, these can also

significantly impact performance.

• Constraints: In general, there is a standard set of constraints like non-penetration

and collision response we can be included in any simulation. However, many sim-

ulations, such as hinges or joints as mentioned earlier, require specific additional

constraints. Thus, to some degree, every problem must be evaluated for which con-

straints are necessary. Furthermore, many of these constraints include constants

which must be tuned depending on the range of interactions and other dynamics

of the simulation.

• Accuracy and error: To help improve performance, many portions of a simula-

tion core are often approximated. The time-integration methods and computation

of derivatives are examples of methods that are often approximated or that can

include some additional error. Given the simulation loop, these errors can accu-

mulate over the duration of a simulation. Thus, components of the simulation

core must be precise enough to either correct for errors or keep them at a reason-

ably small level, but fast enough to be able to solve problems within a reasonable

amount of time.

While these topics each present challenges for simulation, they are common across

most simulation environments. Due to the popularity of simulation or simulation-related

techniques, a great deal of attention has been given to these topics to help alleviate or

reduce the impact of them. Nonetheless, they are important considerations in using

simulation as part of general motion planning.

1.3 Goals

In the previous sections, we describe two variations on ways to control motion of bodies

as they move between points or configurations in a workspace. Robot motion planning
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algorithms offer formal, proven methods to determine a geometric path through a the

problem’s configuration or state space to its goal. On the other hand, constrained

simulation provides a powerful set of tools for physically-plausible motion of a range of

bodies in complex situation.

By themselves neither method is completely capable of providing practical solutions

for finding paths for complex agents in complex environments. Motion planning algo-

rithms are intractable even for relatively simple situations and often the motion they

generate is neither smooth nor realistic. Simulation methods are usually posed solely to

allow the system to evolve uninterrupted or with minimal user input. As such, they lack

the specific, centralized control to generally allow for generating paths even for relatively

simple objects.

With regard to complex agents and workspaces, each method tends to account for

what the other lacks. The goal of this work is to integrate these methods to solve a wide

variety of motion planning problems which were previously not possible. The simulation

core can be used to manage the complexity of the scene, while planning algorithms can

be used to control the motion in the scene.

1.4 Thesis

Coupling traditional motion planning methods with constrained simulation through

physics-based sampling enables the generation of more realistic motion trajectories for

high degree of freedom articulated robots, deformable robots and for multiple robots in

complex environments in a practical amount of time.

1.5 Main Results

In this section, we present the main results of this dissertation. With regards to motion

planning and simulation, these fall into two main categories: a general motion planning
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framework incorporating physics-based sampling and applications of the planning frame-

work. We also present several optimizations to improve the performance and capabilities

of the simulation core for specific, planning-related circumstances.

1.5.1 Physics-based Sampling

Many standard motion planning techniques generate motion which is neither “smooth”

nor physically-plausible or realistic, nor do they scale to higher DOF problems. For ex-

ample, consider the roadmap and cell decomposition solutions presented earlier (Figures

1.4 and 1.5). Neither path is smooth, and in the case of the roadmap, the path will

cause the robot to move around haphazardly.

To cope with these drawbacks, we propose the use of a physics-based sampling frame-

work. Briefly, a constrained simulation-based motion planning framework is used to

generate samples and bias the search direction. Rather than randomly sampling in

state or configuration space, our framework uses workspace distance information and

artificial constraints in order to determine the next state-space sample and thus grows

polynomially in terms of run-time complexity with respect to the number of DOFs. This

approach can be seen as similar to potential fields, where we greatly augment our po-

tential function with state space information and additional planning constraints. This

has the following advantages over traditional approaches:

• Smooth and realistic: By using a simulation core, we ensure that the generated

step adheres to the motion equations which define the simulation and subsequently

to the motion of the bodies. Since typical motion equations include second-order

information, it approximates a smooth curve. Since the equations also model

the real world, the motion generated tends to be physically-plausible. Thus, our

framework produces motion sequences which in practice are both smooth and

realistic.

24



• Scalability: The complexity of this approach is dependent upon the simulation

components and the planning constraints. Many of these components involved in

the planning and sampling have linear time complexity, or at worst quadratic, in

the number of DOFs. Therefore, the approach scales well in the number of DOFs

when compared to most prior work which grows exponentially with the size of the

search space.

In general, the physics-based sampling framework can be broken down into two

stages. First, a general path or roadmap is determined from a simplified model of the

robot or robots based on workspace information, rather than configuration or state space

computation. This path or roadmap will serve as a guiding path or guidelines to bias the

direction of the physics-based sampling direction. Next, in an execution phase, the robot

or robots use the simulation core to proceeds along this path. The core determines the

direction to final direction to move in, taking planning as well as physical, mechanical,

and any dynamical constraints into account.

1.5.2 Motion planning with physics-based sampling

The physically-based sampling framework has numerous advantages of traditional plan-

ning methods and could be used to complement others. We propose several novel solu-

tions for a wide variety of motion planning situations.

Since simulation is a core component of our approach, the performance of the sim-

ulation core as well as the quality of the motion generated plays a large factor in both

the performance and quality of the resulting motion trajectory. In this work, we focus

primarily on optimizations of the simulation components specifically for our planning

scenarios and situations. For each extension of the planning problem, we propose novel

approaches to improve the overall efficiency and reduce the total amount of computa-

tional work.
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Deformable Agents

Figure 1.7: Planning of a deformable cylinder: The final path of a de-
formable cylinder as it travels through a series of walls with holes. The cylinder’s
radius is chosen so that it must deform in order to reach its goal.

We address the deformable agent extension to the motion planning problem. In one

aspect, this problem simplifies collision and orientation handling since a deformable body

can likely squeeze through a region rather than having to move a precise configuration.

However, the high dimensionality of the configuration space poses a challenge to many

approaches.

To cope with unknown or unpredictable deformations, our approach starts by gener-

ating a initial trajectory for a point robot through D, the workspace. Akin to prior meth-

ods for planning of deformable agents, this can be done with any traditional roadmap

planner, such as a probabilistic roadmap (PRM) planner or by extracting the Voronoi

graph of the workspace [BLA02c]. Note that this initial trajectory may, and will likely,

have collisions with a general environment once the full deformable body traverses the

initial path. We use a constraint-based soft-body dynamics simulation in order to incor-

porate deformation into and control the motion model of the robot. The physics-based

sampling framework extends this simulation in order to follow the initial trajectory and

to make appropriate path corrections and deformations as needs, yielding a collision-free

path (See Fig. 1.7). It should be noted that this general approach works best for agents

which are fairly compressible and flexible, otherwise the initial path and following would
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need to consider both position and velocity of the agent and any of its constituent parts.

We implement non-penetration, volume preservation, and soft-body constraints for

the deformable robot, so that the robot will deform yet preserve its initial form as it

comes in close contact with the obstacles in a physically plausible manner. In order

to achieve interactive performance, we assume the robot is represented as a closed sur-

face and relax the strict global volume preservation constraint by implementing a local

method that sets a threshold on the amount of deformation (e.g. elongation or com-

pression) based on implicit internal pressure fluctuations, simulating it as a soft-shell

with internal pressure and surface tension. We demonstrate our planner on several sce-

narios of varying complexity. In practice, we have successfully applied our approach to

environments with tens of thousands of triangles, and robots with just as many springs.

Our planner can compute a collision-free path for a deformable robot in a complex

environment consisting of tens of thousands of polygons in a few hours 4.2.

To improve performance, we develop a graphics hardware accelerated collision de-

tection method that works particularly well for motion planning problems where the

robot is in close proximity to the obstacles, compared to bounding volume hierarchy

methods. We present a new algorithm to detect collisions between a deformable model

and a complex, stationary environment. We compute a potentially colliding set of over-

lapping primitives using set-based computations. Our algorithm uses 2.5D overlap tests

between arbitrary objects and checks for the existence of a separating surface along a

view direction. We use graphics processors (GPUs) to efficiently perform 2.5D overlap

tests and we compute offsets and Minkowski sums to overcome image-precision errors.

In practice, our collision detection algorithm is significantly faster when compared to

prior approaches based on bounding volume hierarchies.

Our planner for deformable bodies based on physics-based sampling has the following

properties:

• Physically-plausible soft body agents: Our internal pressure model of a soft-
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body can represent a wide variety of deformable objects in a physically-realistic

manner. The formulation aids in computing collision response while also main-

taining the general shape and volume of the body as it travels along its path.

• Performance and efficiency: Our graphics hardware solution for collision de-

tection is quick and scales very well with the number of bodies. In cases where

the body is usually within close proximity to the obstacles (as is the case in many

interesting planning scenarios), we see a significant improvement since boundary

volume methods will still require a large number of collision checks. Additionally,

we use a quick and accurate solver to help minimize the amount of computational

per step on the simulation core.

Finally, to test the usefulness of our approach, we use this planner to find a path

for a medical procedure known as liver chemoembolization. Briefly, a physician must

navigate a thin, flexible catheter through a network of arteries in order to reach a tumor,

at which point a chemoembolizing agent can be administered directly to the tumor. Our

physics-based sampling approach can successfully find a path for the catheter while also

simulating the way it moves and bends in relation to the artery network.

Highly Articulated Agents

We present an efficient physics-based motion generation scheme for highly articulated

robots, particularly in a serial linkage, or chain-like configuration. Like the deformable

case, we compute an initial path in the workspace as a guiding path for the articulated

body. Then, we use the guiding path to influence the search direction of our simulation

core. This assumes that the robot can be guided or controlled via the “head” or end-

effector of the robot. In the case of articulated agents with branches, multiple points

may need to be considered.

Since the simulation of articulated bodies can be prohibitively slow for long or com-

plex bodies, our articulated body simulation framework exploits the coherence between

28



Figure 1.8: Articulated body planning: The final position of the high ar-
ticulated robot as it reaches its goal. The serpentine robot needed to navigate
through several walls with holes in order to reach its goal.

neighboring joints to attempt to reduce the dimensionality of the problem through the

use of “adaptive forward dynamics” [RGL05]. Based on motion metrics defined over joint

velocities and accelerations, we prioritize the joints to determine which ones capture the

majority of the motion of the chain. Adaptive forward dynamics takes advantage of

this formulation by only simulating these joints which effectively produce motion in a

reduced dimension and results in improved efficiency. Therefore, the complexity of sim-

ulation portion is sub-linear in the number of joints. Moreover, we discuss limitations

on the error associated with the approach and usability of the resulting solution when

compared to earlier planners for the same robots (See Fig. 1.8).

We also present a novel and fast contact handling algorithm for adaptive dynamics

computations of highly articulated robots. We exploit the structure of the hybrid tree

representation introduced by the adaptive dynamics algorithm [RGL05] and show that

we can also efficiently compute collision response for all contacts in a similar manner.

We use impulse-based dynamics computations along with analytical constraint solving

techniques. To improve the runtime performance, we derive a new formulation for
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the hybrid-body Jacobian, which exploits the structure of the hybrid tree to reduce the

overall computational complexity. Our algorithm has a sublinear runtime complexity

in the number of articulated body DOFs and can be used to efficiently simulate the

dynamics of snake-like or deformable robots with a very high number of DOFs.

We demonstrate the application of our planner on several highly articulated robots

consisting of 300 to 2500 single degree of freedom joints in a serial linkage. Each local

sampling step using adaptive dynamics for these robots takes few milliseconds on aver-

age. We have observed up to one order of magnitude performance improvement using

our approach as compared to sampling with full dynamics.

These components have been integrated into a motion planning approach for highly

articulated serial linkages. Some properties of the resulting planner include:

• Physically-based: We take into account forward dynamics of articulated joints

during motion planning, in addition to the geometric constraints including collision

detection, contact handling, kinematic constraints, etc.

• Efficiency: We perform lazy dynamics update and achieve sub-linear running

time performance in terms of DoFs when some of the joints do not move much.

• High DOF robots: Our algorithm can simulate the forward dynamics and plan

the path for a robot with very high number of DOFs (in the thousands) in nearly

real time, using a progressive refinement framework.

To highlight the behavior and performance of the articulated body planner, we apply

it to a variety of situations using snake-like robots for search and rescue amidst debris,

industrial pipe inspection for leakages, and finally as another way to solve the liver

chemoembolization problem.
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a b

Figure 1.9: Impact of multiple agents: The presence of multiple agents can
greatly impact the realism of a scene or scenario. On the left, we see a scene with
only the user’s avatar in an online virtual world. On the right, the avatar is joined
by intelligent agents which can autonomously navigate the virtual world.

Numerous agents in dynamic environments

In the previous results, our work focused on single robots in static environments. We

generalize the approach to work for multiple robots moving simultaneously through an

environment. Briefly, we decouple the approach such that each agent considers all the

other agents to be dynamics obstacles. Therefore, the overall approach works in environ-

ments where the motion of obstacles is not known a priori. With this decoupling, there

are three ways in which physics-based sampling could be applied: via local navigation

or local avoidance, via global navigation, or an integration of local and global ideas.

As in the case of a single deformable or articulated body, we could establish a static

path for each agent, and have the agent follow it. Then, while the agent is following

that path, various constraints would allow it to avoid other agents or other obstacles.

Since this this only accounts for other bodies near the agent, these constraints can be

considered part of local navigation.

Our local planning model considers coordination as a soft constraint, including gen-

eral repulsive or attractive behaviors, grouping, formations, local navigation, collision

avoidance, and distance constraints. While much of the related work for multiple robots

assumes point, point-like, circular or cylindrical robot primitives, this approach can
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handle arbitrary robot and obstacle shapes, including non-convex polyhedra. Instead

of a separate coordination phase, our approach interleaves coordination with motion

generation through the use of coordination constraints.

Local navigation uses social potential fields (SPF) as an additional constraint on the

simulation. Social potential fields are a variation of the potential field methods whose

resulting motion appears to exhibit various social behaviors. We generalize and reformu-

late social potential fields to be integrated with the physics-based sampling framework

and also to be applicable to a more general robot primitive. The social potentials will

act as a constraint on the system, allowing the robot to change its current trajectory

and move toward or away from other robots or obstacles. This framework supports

additional constraints, such as creating and maintaining group formations and other

behaviors. To reduce the effects of local minima, an excitation factor has also been

included. When a robots velocity is low and it is not at its goal, excitation will increase

the strength of the forces leading toward the goal.

The local navigation approach works well in several situations, particularly when

the connectivity of the environment changes little and when all the other agents are

following similar motion models. However, other obstacles in the scene could also move,

which could eventually invalidate our static path. In this case, we need to be able to

find a new path though the environment. We have developed a novel roadmap scheme

based on physics-based sampling which works well in a wide variety of situations. A

second approach could then be to have the agents follow this roadmap in a prescribed

manner. Since all the motion is controlled through this roadmap, we refer to it as part

of global navigation.

We present a novel, adaptive motion planning data structure called Reactive De-

forming Roadmaps (RDR), for motion planning of multiple robots in dynamic environ-

ments. Each link on a RDR can adapt, or deform, based on the motion of robots and

obstacles the environment. As such, it falls into the class of path modification algo-
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rithms. Essentially, we are computing and updating an adaptive roadmap of deforming

links. Our overall representation provides the capability to perform path maintenance

at local and global levels, since moving obstacles can alter or invalidate portions of the

roadmap. Each link reacts to obstacle motion to remain in F via link modification, and

the roadmap structure maintains connectivity or removes invalid links through roadmap

maintenance steps. By using a RDR, less connectivity information is lost since it be-

comes more difficult to invalidate a link as compared to links which cannot react to

obstacle motion. To improve performance, an adaptive sampling scheme ensures that

the areas of the roadmap closest to obstacles receive the most computational resources.

By integrating our local and global navigation schemes, we show that our physics-

based sampling approach for multiple agents can handle thousands of agents in several

situations. We apply it to several realistic situations, as well as to online virtual worlds.

We have specialized integrated social potential fields and RDRs for the task of simu-

lating numerous heterogeneous humanoid agents or crowds in both specified environment

and popular online virtual worlds. On top of RDR, we define link bands to represent

the portion of freespace nearby each link in the roadmap. These bands are used to

couple RDR with the local agent navigation. They help with both agent clustering

and resolving collisions among multiple agents. Due to lazy and incremental updates

to the roadmap and efficient computation of guiding-path forces using link bands, our

approach can scale to hundreds or thousands of individual agents. In practice, we can

perform realtime global navigation of many independent agents in complex, changing

environments, with generic obstacles and no restrictions on agent motion. Within a link

band, a social potential field based on a pedestrian dynamics model is used to guide

agent interaction and general motion.

To summarize, our planner for multiple robots has the following properties:

• Adapting roadmaps: We propose novel approaches to maintain and update a

roadmap in a dynamic environment. Briefly, we can attach a physical state to
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each configuration on a roadmap. Then, using the simulation core, we can update

it much in the same way that we update the robots. By placing bounds on the

roadmap, we can allow it to bend and deform for smaller motions, but also to break

and repair itself for larger motions. This blend allows for both local and global

updates in an efficient manner that fits naturally within our existing framework.

Furthermore, the configurations adapt in a physically realistic way which helps

ensure that the final path is smooth and realistic.

• Local avoidance and coordination: We generalize and integrate the pieces

of our physics-based sampling approach using Generalized Social Potential Fields

(GSPF). These have the advantage that arbitrary robots can be used and their

underlying motion model helps to ensure that the resulting motion is smooth and

realistic. The model is based on ideas from pedestrian dynamics (the study of how

humans move with and among each other), and thus the agents inherit behaviors

which are both repulsive and attractive.

• Efficiency: We develop an adaptive sampling scheme defined over the links of the

roadmap to help minimize unnecessary computation and link modification. This

helps to lower the overhead of maintaining the RDR. Also, we exploit grouping

and clustering of agents to help accelerate distance queries. These optimizations

combined with an efficient simulation at the core of the physics-based sampling

allows for the planning of thousands of agents in a variety of situations.

We demonstrate our approach in two types of scenarios. For crowd and social simu-

lation modeling, we apply the physics-based sampling approach to complex indoor and

outdoor scenarios, including a city scene consisting of 2,000 pedestrians with 50 moving

cars and an exhibition hall with 511 stationary booths and 1,000 individual agents on

foot and avoiding each other. In order to demonstrate the benefit of a global navigation

approach, we also place up to 1,000 agents in a maze environment. Our implementation
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is able to perform motion simulation of independent agents for these highly challenging

scenes in a fraction of a second per frame.

For additional real-world applications, we present an approach for adding numerous

autonomous virtual agents into online virtual worlds with a centralized server network

topology. We combine techniques from physics-based sampling to control the motion

of each agent based on local and global navigation with a general networking model.

Briefly, a variation on physics-based sampling determines how agents coordinate with

nearby objects while a separate global navigation module allows agents to select goals

in order to complete their current task or reach the goal position. To reduce the impact

of network latency, we make assumptions about the linearity of motion in a short time

interval and augment the local navigation model with a velocity-bias social force. Since

global planning is agent-specific, our algorithm that runs on the server can be used

to balance the computational load between client and server. We have implemented

our approach into the Second Life virtual world using a motion controller built with

LibOpenMultiverse (LibOpenMV, formerly LibSecondlife). We highlight our results by

simulating up to 18 agents over two different client computers of varying computational

power, in different geographic locations which are connected via different speed connec-

tions (See Fig. 1.9).

1.6 Organization

The remainder of this dissertation is organized as follows. In Chapter 2, we survey

related work in the areas of motion planning with an emphasis on high-DOF planning,

dynamic environments, and for multiple robots. Chapter 3 presents our framework

for physics-based sampling and the remaining chapters show the framework applied to

those situations. In particular, Chapter 4 introduces a novel framework for physics-

based motion planning with deformable robots. Chapter 5 extends these ideas onto
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more rigid and highly-articulated agents. Chapter 6 presents adaptations to handling

numerous agents while also considering dynamic environments. Finally, Chapter 7

discusses future directions and concludes this work.
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Chapter 2

Related Work

There is a substantial amount of work in the area of motion planning. In this section, we

describe work that is related to the problems mentioned here. This includes planning for

different types of complex robots, planning for multiple robots, and efficient replanning

methods. For a broader treatment of the field, we refer our readers to [Lat99, CLH+05,

LaV06b].

2.1 Randomized Motion Planning

Exact, or complete, solutions to the general, single-robot, motion planning problem

have a computational complexity that is exponential in the problem dimensionality

[Can88b]. As previously mentioned, to deal with this complexity, many algorithms

use randomization to exchange completeness for practical performance. Randomized

methods, such as the Probabilistic Roadmap Method (PRM) by Kavraki et. al and

its variants, create a graph in the configuration space [KSLO96]. This graph can then

be rapidly queried at run-time to provide answers to planning problems. Rapidly-

exploring Random Trees (RRT), proposed by Kuffner and Lavalle, work by iteratively

extending a tree toward goals and unexplored regions in the C [KL00]. These, and most

other randomized approaches, offer a weaker form of completeness called probabilistic

completeness. Briefly, this means that given enough time to adequately sample the



C, they will find a path if one exists. Furthermore, many of these methods and their

variants are relatively simple to implement.

There are many considerations with these approach. First of all, solutions are sus-

ceptible to the narrow passage problem and their effectiveness is dependent upon the

sampling method used to generate the milestones. Many algorithms have been proposed

to improve the performance of PRM planners in terms of developing better sampling

strategies and handling narrow passages [HKL+98, ABD+98, WAS99b, FGLM01].

Performance of randomized planners is dependent on determining whether or not

milestones and links are collision-free, via collision detection or distance queries.

2.1.1 Kinodynamic Planning

While many deterministic solutions have been proposed for kinodynamic motion plan-

ning, these approaches typically do not scale well to high DOF robots [DXCR93] since

they must plan over the S-space rather than the C. Many authors have also proposed

randomized kinodynamic planners based on PRMs [HKLR02] and RRTs [LK99]. Like

their C-space analogues, the performance depends upon the dimensionality of the state

space. Ladd and Kavraki pose a tree-based kinodynamic solution where the path seg-

ments are the samples rather than states [LK05]. Storing state can be generalized to

include the state of the entire simulation, allowing for planning with arbitrary changes

in both the environment and obstacles, such as deformations [RLA06b]

2.1.2 Sampling Strategies for Motion Planning

The problem of sample generation for various planning strategies has received a con-

siderable amount of attention. Several extensions have been proposed for PRMs. For

instance, visibility information can be used to generate and store fewer samples [SLN00]:

medial-axis based sampling [PHLM00, GHK99, Wil99] and sampling near the obstacle

boundaries [ABD+98] can help in dealing with narrow passages. Gaussian weighting can
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aid to place samples where they would reveal most information about an environment

[BB05].

With respect to RRTs, the standard algorithm already performs extra biasing [KL00]

to try to build more optimal trees [US03]. Better directions of growth based on Voronoi

diagrams of the C-space can be generated [LL05], if the Voronoi diagram of the con-

figuration space with the samples is available. Dynamic domains are used to improve

expansions in RRT [YJSL05]. Flood fill strategies can provide a deterministic sampling

strategy for tree-based planners . Forests (multiple trees) have been used as a good

trade-off between RRTs and PRMs, and also as a way to maintain configuration spaces

with dynamic obstacles [PBC+05, GKX07, ZKB07].

2.2 Deformable Robots

2.2.1 Motion Planning for Deformable Robots

Most of the literature in robot motion planning has focused on robots with one or more

rigid segment or link. Some of the earlier work on deformable robots included specialized

algorithms for bending pipes [SSL96], cables [NK97] and metal sheets [NM96]. Holleman

et al. [HKW98] and Lamiraux et al. [LK01] presented a probabilistic planner capable

of finding paths for a flexible surface patch by modeling the patch as a low degree

Bèzier patch and used an approximate energy function to model deformation of the

part. Guibas et al. [GHK99] described a probabilistic algorithm for a surface patch

by sampling the medial axis of the workspace. Anshelevich et al. [AOLK00] presented

a path planning algorithm for simple volumes such as pipes and cables by using a

mass-spring representation. Bayazit et al. [BLA02a] described a two-stage approach

that initially computes an approximate path and then refines the path by applying

geometric-based free-form deformation to the robot. More recently, Rodriguez et al.

[RLA06b] presented an RRT-based algorithm for a deformable robot in a deformable
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environment.

2.2.2 Collision Detection between Deformable Models

While collision and overlap detection has been actively researched for many years, much

of that has focused on rigid bodies. In this section, we give a brief overview of related

work in collision detection between deformable models. For general coverage of the

problem of collision detection, we refer the interested reader to some recent surveys

[Eri04, LM03, TKH+05].

Many of the most commonly used algorithms for collision detection are based on

bounding volume hierarchies (BVHs). These hierarchies cull away portions of a model

that are not in close proximity. Examples of such hierarchies include sphere-trees,

AABB-trees, OBB-trees, k-DOP trees, etc. [Eri04] and they are typically computed dur-

ing preprocessing. Recently, algorithms have been proposed to lower the overhead of up-

dating the hierarchy during every step of deformable simulation [JP04, LAM01, vdB97].

However, the cost of updating the hierarchy for complex models can be relatively high.

Moreover, in many close proximity configurations, these hierarchies may be unable to

perform significant culling which results in a high number of exact collision tests between

the primitives.

Many collision and proximity computation algorithms exploit the computational ca-

pabilities of graphics processors (GPUs) [BW02, GRLM03, HTG03, KP03]. Recent work

also includes methods for self-collisions of deformable models [GKJ+05]. Most of these

algorithms involve no preprocessing, therefore applying to both rigid and deformable

models. The GPU-based algorithms perform image-space computations and use the

computation power of rasterization hardware to check for overlaps. However, a major

issue with current GPU-based algorithms is limited accuracy due to image-space reso-

lution, possibly resulting in missed collisions between small triangles due to sampling

errors.
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2.3 Articulated Robots

Articulated body or multi-body motion planning has seen considerable attention from

the research community for many years. In many cases, much of the related work reduces

to standard randomized approaches (PRMs, RRTs) but with sampling schemes or local

planning methods which are optimized for various articulated structures.

2.3.1 Articulated Body Motion Planning

In general, much of the existing work in motion planning can be applied to articulated

chains. In fact, this is a special case of the more general planning problem applied to

branched or closed loop articulated bodies.

In the majority of these cases, various sampling schemes or improved local plan-

ning are used to improve the efficiency and effectiveness of the planning approach. This

includes optimizations for objects that are similar to articulated chains, such as pipes, ca-

bles, ropes, and flexible wires [SSL96, NK97, AOLK00, LK04, MK04, MK05, GSLM05a].

Another approach is to determine the principal components using statistical methods

to reduce the dimensionality of such a high DoF configuration space [TPK03]. Also,

Barraquand et. al used potential fields with random walks for high-DOF articulated

robots [Bar91b]. However, many of these algorithms do not consider the kinematic or

dynamics constraints related to these types of structures.

Several algorithms take into account kinematics information to aid in generating

samples for PRM-based planners [LYK99, HA00, CSL02]. However, these approaches

are targeted toward closed loop linkages and do not take contact responses such as

friction into account.
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2.3.2 Articulated Body Dynamics

Multibody dynamics has been extensively studied in the literature. We refer the readers

to a recent survey [FO00]. Theoretically optimal, linear-time forward dynamics algo-

rithms [Fea87, Hol80, Bar96, RK97] that depend on a recursive formulation of motion

equations have been proposed. Reformulations of the motion equations have also been

developed using new notations and formulations, including the spatial notation [Fea99a,

Fea99b], the spatial operator algebra [RJKD91], and Lie-Group formulations [MM03].

More recently, parallel algorithms have also been introduced to compute the forward

dynamics of articulated bodies using multiple processors [Fea99a, Fea99b, YN02].

Our work is based on the “Adaptive Dynamics” (AD) algorithm proposed by Redon

et al. [RGL05]. This approach enables automatic simplification of articulated body

dynamics. Using well-defined motion metrics, the algorithm can determine which joints

should be simulated in order to minimize the computation errors while approximating

the overall motion of an articulated robot. However, AD algorithm cannot handle

collisions and is limited to freely moving robot arms with no contacts or collisions. In

contrast, our approach introduces an adaptive contact handling technique that is tightly

coupled with the model representation of AD and enables collision response computation

for highly articulated bodies in sub-linear time.

2.3.3 Collision Detection and Response

Similar to the deformable bodies, many algorithms based on bounding volume hierar-

chies have been proposed for collision detection between articulated models and the rest

of the environment [LM03]. These hierarchies are updated at each discrete time step.

Moreover, efficient algorithms have been proposed to perform continuous collision de-

tection between two discrete time instances [Xav97, Xav02, RKLM04]. The continuous

algorithms model the trajectory of each body as a swept volume and check each swept

volume for overlap with the environment.

42



Several algorithms have been presented to simulate colliding rigid bodies. These

include impulse-based dynamics [Mir96], penalty-based methods, and constraint-based

dynamics: e.g. Gauss’ principle of least constraints [RKC02] or the linear complemen-

tarity problem (LCP) formulation [Bar91a, TTP01]. Post-stabilization techniques for

rigid body simulation with contact and constraints have also been proposed [CP03].

Mirtich [Mir96] and Kokkevis [Kok04] have described linear-time methods to han-

dle collisions based on Featherstone’s Articulated Body Method (ABM). Weinstein et

al. [WTF05] present a linear time algorithm to simulate articulated rigid bodies that

undergo frequent and unpredictable contacts and collisions.

2.4 Multiple Robots

The multiple robot extension is unique from other planning problems in that typically

the DoFs between different robots can be decoupled. This leads to two different classi-

fications of planners for multiple robots: centralized and decoupled. There is extensive

literature on path planning for multiple agents in robot motion planning and virtual

environments [LaV06a].

Several works have realized the various benefits of each planning model, and com-

bined them into hybrid approaches. For instance, [CRL03] combines a centralized plan-

ner for intra-group coordination while using a decoupled planner for inter-group plan-

ning. Both types of planners have been applied to a number of situations such as flocking

and shepherding [BLA02d, LRMA05].

2.4.1 Centralized Planners

The centralized approach to planning for multiple robots considers the robots as a single

system, rather than independent entities. In this case, much of the work previously

mentioned can be directly applied [BLA02b, FTT99, KO04, LD04, PLT05, SKG05,
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SAC+07].

However, direct application of these ideas may also lead to complications. If robots

are in close proximity to each other, this may result in narrow passages in the C-space.

For instance, it may be difficult to generate a random sample such that a robot in the

center of a cluster moves in unison with the surrounding robots. Li et al. identify and

accommodate for groups in planning is one method aid in this problem and improve

performance [LC03b]. Aronov et al gave centralized solutions for specific cases, such

as for pairs or triples of roots in a low density workspace [AdBvds+99]. Several other

algorithms have been proposed to extend the roadmap-based methods to dynamic envi-

ronments and multiple agents [GO07, LG07, PLT05, ZKB07]. Again, in many of these

cases, they have only been applied to relatively simple environments composed of a few

robots and restricted obstacles. These approaches may not scale well to environments

with a large number of independent agents.

The primary advantage of centralized methods is in their theoretical completeness.

Additional tasks such as coordination are not necessary since it is automatically solved

by the planner. However, again this comes at the price of complexity.

2.4.2 Decoupled Planners

In the decoupled approach, motion planning for multiple robots usually takes two stages.

In the first stage, a path is found for each robot without consideration of the paths of

the other robots. In the next step, paths are adjusted to try to allow for robot-robot

interactions, usually through some sort of coordination, such as velocity tuning. This is

often referred to as fixed-path coordination and is essentially adjusting velocities along

the paths such that no collisions occur. It is often done by exploring a coordination space

which represents the parameters along each robot path. In this approach, completeness

is lost since it is possible that no solution can be found in coordination space of the

predetermined paths even though a path may exist in C-space.
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Prioritized planning for multiple robots is a variant of the decoupled approach. The

idea is that each robot is assigned a priority ahead of time. In the order determined

by priority, each robot plans a path while treating the robots whose paths have already

been determined as dynamic obstacles [ELP86]. Choice of the priorities can have a

large impact on the performance of the algorithm [vdBO05]. Some planners also search

through a space of prioritizations [BBT02].

Alternatively, other decoupled schemes such as coordination graphs [LGP05], in-

cremental planning [SI06], integration with replanning [BTK07], and velocity obstacles

[vdBLM08] can help to ensure that no collisions occur along the paths even in cases

with complex dynamics.

Another class of decouple planners allows agents to move independently and in the

reactive style of potential fields. [Kha85, War90, GC02, BBGN07]. They can handle

large dynamic environments, but suffer from ‘local-minima’ problems and may not be

able to find a collision-free path when one exists [LaV06a]. Often these methods do not

give any kind of guarantees on their behavior. Other route planning algorithms are based

on path or roadmap modification, which allow a specified path for an agent to move or

deform based upon obstacle motion. These methods include Elastic Bands [QK93] and

Elastic Roadmaps [YB06]. Social potential fields alter the navigation function such that

the resulting motion reflects social behaviors [RW99]. Our work is most closely related

to this approach. Our approach bears some close resemblance to these techniques,

but RDR is lazily updated to deal with dynamic obstacles and we present many new

techniques to plan collision-free paths for multiple agents simultaneously using RDR.

2.4.3 Crowd Dynamics and Human Agents Simulation

Many different approaches have been proposed for modeling movement and simulation

of multiple human agents or crowds or individual pedestrians. [ALA+01, SS01, ST05,

TOCD06, Rey06, vdBPS+08]. They can be classified based on specificity, problem
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decomposition (discrete vs continuous), stochastic vs deterministic, etc.

Discrete methods

Discrete methods rely on a sampling of the environment or of the agents. Some common

approaches include:

Agent-based methods: These are based on seminal work of Reynolds [Rey87] and

can generate fast, simple local rules that can create visually plausible flocking behavior.

Numerous extensions have been proposed to account for social forces [CBS+05], psycho-

logical models [POSB05], directional preferences [SGC04], sociological factors [MT97],

tactical behaviors [Ree03], etc. Velocity obstacles have been utilized for improving local

avoidance in dense crowds [vdBPS+08].

Different techniques for collision avoidance have been developed based on grid-based

rules [LMM03] and behavior models [TT94]. Most agent-based techniques use local

collision avoidance techniques and cannot give any guarantees on the correctness of

global behaviors. Although, in many situations these resulting motion matches how

people navigate (e.g. people packing dense in a narrow corridor).

Cellular Automata methods: These methods model the motion of multiple agents

by solving a cellular automaton. The evolution of the cellular automata at next time

step is governed by static and dynamic fields [HLB+00]. While these algorithms can

capture emergent phenomena, they are not physically based.

Particle Dynamics: Computing physical forces on each agent is similar to N-body

particle system [SS01, HBW03]. Sugiyama et al. [SNH01] presented a 2D optimal veloc-

ity (OV) model that generalizes the 1D OV model used for traffic flow. Our formulation

is built on some of these ideas and we elaborate them in Section 6.5.2.
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Continuous Methods

The flow of crowds or multiple agents can be formulated as fluid flows. At low densities

crowd flow is like gases, at moderate densities it resembles fluid flow, and at high densities

crowd has been compared to granular flow [HBJW05]. Most recently, a novel approach

for crowd simulation based on continuum dynamics has been proposed by Treuille et al.

[TCP06]. We compare our approach with these methods in Section 7.

2.5 Dynamic Obstacles

In many real-world situations a robot must operate in an environment with moving or

otherwise changing obstacles. In some ways, the dynamic obstacle problem is related

to the multiple robot problem in the case where each agent views the other agents as

dynamic obstacles. Dynamic elements greatly increase the difficulty of motion planning.

In fact, motion planning for a single disc with bounded velocity among rotating obstacles

is PSPACE-hard [RS85]. However, there have been many attempts to provide practical

methods to cope with changing environments. For example, Stentz et al proposed the

D* deterministic planning algorithm to repair previous solutions instead of re-planning

from scratch [Ste95, KL02].

There have been two types of approaches for adapting randomized planners to dy-

namic environments. The first type includes both PRMs and RRTs that reuse previously

computed information to aid in finding a new path [LH00, LS02, KM04, JS04, FKS06].

The Dynamic Rapidly-exploring Random Tree (DRRT) proposed by Ferguson et al.

[FKS06] trims away subtrees of nodes found to be invalidated by an obstacle and causes

regrowth using the trimmed tree if the solution path is invalidated.

The second type of approach integrates obstacle motion directly into the planning

process. Some variations plan directly in a C-space augmented with a time parameter.

For example, the method of [Fra93] generates a roadmap in this space. Other approaches
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additionally model differential constraints placed on the robot [HKLR02]. From the

dynamics information, motion bounds can be computed from trajectory information to

remove the chance of being in a state where is a collision is definitely going to occur

[PF05].

Rather than changing the roadmap, other work for dynamic environments has fo-

cused on adjusting of modifying the path. Potential field planners use gradient descent

to move toward a goal, at a potential sink [Kha85]. As obstacles move, the potential

field changes which will be immediately seen by a robot. Since these global operations

are more expensive, other approaches instead adjust the path itself rather than entirely

recompute it. This allows a robot to automatically adjust to changes without having to

do a great deal of work.

Building on these ideas, Quinlan and Khatib first proposed elastic bands, which rep-

resented the path as a sequence of overlapping bubbles in the free-configuration space.

Internal forces kept bubbles from separating, while external forces from obstacles encour-

aged them to move towards the free-space [QK93]. By maintaining a set of homotopic

paths in similar free-space bubbles in the workspace a variety of paths can be selected

quickly at runtime [BK00]. Elastic strips simplified the problem by mapping portions of

articulated bodies to the workspace [BK99]. Elastic roadmaps exploited restrictions on

task-specific goals and workspace visibility to quickly update and maintain a roadmap

[YB06]. Additionally, Lamiraux et. al extend the ideas to include nonholonomic paths

[LBL04].
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Chapter 3

Physics-based Sampling

3.1 Introduction

Motion planning research has made great strides in providing solutions in a wide range

of application areas for wide ranges of environments, for a large variety of classes of

robots, and with numerous types of constraints and tasks. However, the majority of

this work still fails to scale well as the complexity of the scenes and robots increase or

as the search space becomes overly tightened. As mentioned, the goal of this work is

to integrate motion planning methodologies and concepts with motion guidelines from

physics simulations in order to create a planner which not only scales well in the number

of agents and types of environments but is applicable to a variety of situations and types

of robots.

The main observation in creating such a method is to note that constrained simu-

lation in the workspace is related to a directed search in the configuration (or state)

space. Rather than completely mapping out the configuration space, the constrained

simulation is biased or sometimes even forced to move toward or through what are es-

sentially narrow passages in the configuration space or state space. Furthermore, the

bias can often be formulated as a set of forces defined in the workspace. Thus, unlike

the majority of planning methods mentioned thus far constrained dynamical simulation



is intended to work well in environments with extremely large numbers of degrees of

freedom and in constrained passages.

It is these properties which make it a good candidate for providing practical solutions

to otherwise challenging planning situations. However, the difficultly in using simulation

for planning is that of control. Simulation is intended to be predictive and undirected

whereas planning requires control and spatial reasoning (in high dimensional spaces).

We develop a novel framework called physics-based sampling which couples spatial

reasoning and control in a simulation framework. The main idea is to use the constrained

space to our advantage. Rather than allowing the robot or agent to move arbitrarily, it

is necessary to define a set of constraints which will guide it toward its goal.

In the remainder of this chapter, we describe and develop the fundamental ideas

of physics-based sampling. First, we introduce the underlying constrained simulation.

Then, physics-based sampling is built as a series of constraints and a method for gener-

ating state or configuration space space samples to serve as a path. Finally, we discuss

some of its general properties when compared to different types of planning approaches.

3.2 Constrained simulation

Constrained simulation is a core computational component in physics-based sampling.

It is responsible for maintaining any constraints required for motion planning and finally

determining the next sample given a set inputs. This section describes the core ideas

behind physical simulation and constraints defined on top of it.

3.2.1 Physically-based Simulation and Modeling

At the heart of a simulation is a set of motion equations which define how an object

moves based on its physical properties and external forces acting upon those bodies. In

basic unconstrained simulation, the bodies solely follow these laws and are not concerned
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with external interactions such as joints, collisions, or other geometric constraints. In

this section, we first give a brief overview of physically-based simulation for particles and

rigid bodies, and then provide and describe constrained dynamics as they are related to

this work. For more information, we refer the interested reader to [WB97].

Particle simulation

In its most basic form, the Newton-Euler laws of motion describe movement and changes

in movement of particles. Consider a particle p to be a point in R2 or R3 with a mass

m to which external forces can be applied. We define the time-varying position of p as

x(t) at some time t. From the Newton-Euler laws of motion, we get that the motion

of this particle is described by f = ma = mẍ, where f is the net external force. Using

the fact that the velocity of p is v = ẋ, we get a pair of coupled first order differential

equations,  ẋ

v̇

 =

 v

f
m


Using position and velocity, we describe the state of the particle at time t as q = x(t)

v(t)

. Finally, to solve for q(t) at time t, we determine the total force f acting

on p and solve our system of differential equations given its current state. Additional

forces such as gravity, wind, or air resistance can be easily applied to the particle under

this formulation. For a system of many particles, we can store the state of each particle

and solve for them individually. Conceptually, one can consider the task of solving this

system as a state transition function.

Rigid body simulation

While particles are useful conceptually, it is an insufficient representation for a realistic

robot, particularly since a robot’s geometry is necessary part of the planning problem.
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Robots are often described by either a single rigid body or a collection of rigid bodies.

As in the particle case, we can consider the state q of a single rigid body to include

both a position and a velocity. However, unlike the particle case, both the position

and velocity each now contain an angular component. Let R(t) and ω(t) represent the

orientation and angular velocity of our body, respectively. Furthermore, since the body

is not a point in space, the inertial tensor I describes its reaction or resistance to torques

τ .

A rotational analog to our motion equations can be formulated by the following

system of differential equations:



ẋ

Ṙ

v̇

ω̇


=



v

ωR

f
m

τI−1


For a more complete derivation of this equation, we refer readers to [WB97].

Similar to particle simulation, to solve for the position and velocity for a rigid body

at time t, we first determine the total force and torque acting upon the body and then

integrate to solve the differential equations.

Articulated and deformable body simulation

Articulated and deformable bodies in physical simulations add flexibility in terms of

what types of bodies (or robots) can be represented. As in the previous examples,

both articulated bodies and deformable bodies can be described by a state q which is

updated based on a set of motion equations. Since deformable bodies and articulated

bodies (particularly with many links or a high branching factor) are a focus of this work,

their physical descriptions and their motion equations can be found in Chapters 4 and

5, respectively.
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Numerical integration

The prior sections define the motion of a body but omits a key step for simulation,

how to computationally solve for the body’s motion over time. In general, this requires

solving the motion equation ordinary differential equations (ODEs). In some cases, a

closed solution can be found given some initial values. A closed form solution could

be sampled at any resolution to get positions and velocities along the motion path.

For physical systems, closed form solutions are often to determine, especially when

certain unpredictable external factors such as collisions are involved. Instead, we can

use numerical integration to approximate the solution over some small change in time.

By iteratively applying numerical integration for a discrete time step, we determine a

sequence of states over time for our bodies.

One of the simplest integration techniques available is Euler’s Method (see Appendix

A.1). Let the current state of a body be q(t) and its derivative be q̇(t). Using Euler’s

Method, we can advance time by a step h using the following formula:

q(t+ h) = q(t) + hq̇(t)

Conceptually, Euler’s computes a piecewise approximation to the true state solution by

sampling the derivative at the current state as a guideline for which direction to move

in. Then, the state is updated by proceeding in that direction for a small portion of

time.

While simple and quick to compute, Euler’s is fairly inaccurate. A smaller time-step

can be used to improve accuracy, but this requires more computation to evolve the sys-

tem by some amount of time. There are numerous other integration methods available,

each often varying degree of accuracy, performance, simplicity and stability. One of the

keys to quick and realistic simulation is appropriate choice of integration method. In

our implementations, we use a variation of “Verlet” integration (See Appendix A.2).
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3.2.2 Constraint-driven simulation

In the previously unrestricted simulation environments, particles or rigid bodies were

allowed to move freely through the environment using simple rules for motion equations.

In general, the idea of constraint-driven or constrained simulation is that we want to

be able to do more than apply external forces, we want to be able to actually restrict

the way particles or other bodies are allowed to move in a scene. This is an important

concept in general, as it paves the way for more compelling and efficient simulations.

Constraints allow us to connect two bodies via hinge, require that certain bodies stay

a fixed distance apart, ensure that no pair of bodies are overlapping or interesting, and

many more. In dynamic simulation, there are effectively two ways to constraint the

motion of body. First, the motion equations themselves can be derived to include these

constraints. This is often the case hinges and joints on articulated bodies or wheeled

vehicles. Otherwise, the total force acting on a body can be constrained such that the

force component that causes a constraint to become un-satisfied is removed. This is often

implemented a constraint force, or a force which eliminates the portion of the force that

causes a constraint to be invalidated. Even more generically, the constraint force could

also be viewed as an influence on the motion. While more firm constraints eliminate

portions of the total force, other constraints could bias the motion by contributing to

the total force. The idea of constraint forces is heavily exploited throughout this work

since it enables a way to both impose restrictions and influence the final motion.

Constraint forces

Constraints are firm requirements that a particle or body must obey during a simulation

and can take many forms. A large subset of constraints on the motion itself take

the form of constraint forces and are solved as such. Constraints could include fixing

the body to a path or certain types of motions and ensuring that collisions, contacts,

and their related response forces are adequately considered. Joints could fall into this
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category although common practice is to incorporate articulated motion directly into

the motion equations. Certain constraints, such as those defined over the geometry

(e.g. non-penetration constraints), could also be enforced by geometric transformations.

Alternatively, a net force could be found to effectively cause the same transformation.

In practice, both methods work well in different situations.

For example of constraints and constraint forces, consider a “point-distance” con-

straint between a pair of points x and y. Mathematically, this constraint is defined as

Cdist(x,y) = ||x− y|| − d for some specified distance d. During simulation, if Cdist 6= 0,

then let δd be the difference between d and the actual distance. We can move each body

a distance of δd
2

toward each other, or otherwise alter the force component of each body

in the direction of the other body to have the same effect, to enforce the constraint.

Many geometric constraints can be formulated in this manner, several of which will

receive more attention in the subsequent chapters.

The complete derivation of constraint forces is more involved and much of it is beyond

the scope of this work. For simplicity we will derive the underlying ideas for constraints

on a single particle [WB97]. This can be generalized for a system of constraints as

well as for general rigid bodies. For a more complete treatment, we refer readers to

[WB97, Kok04].

Let us define a constraint function for a particle C(x(t)) as a scalar implicit function,

i.e. it describes a property and is satisfied when C(x(t)) = 0. To satisfy a constraint we

want to apply a constraint force in the direction of the gradient of the constraint. Thus,

the resulting force will be of fc = λĊ, where λ is an unknown scaling factor which must

be determined.

If we assume that constraint forces are passive, that energy is neither added or lost

in the system (C̈ = 0), then:

Ċ = Nẋ
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⇒ C̈ =
∂

∂t
[Nẋ]

⇒ C̈ = Ṅẋ + Nẍ

⇒ C̈ = Ṅẋ + N
ḟ + fc
m

⇒ C̈ = Ṅẋ + N
ḟ + λN

m

where N = ∂C
∂x

and Ṅ = ∂2C
∂x∂t

. Setting C̈ = 0 and solving for λ we get:

λ = −(
mṄẋ

NN
+

Nf

NN
)

which gives us our constraint force given the partial derivatives of our constraints. Thus,

for a motion constraint, the first task is to compute its derivatives. Then, they can be put

into this “template” to be applied to the body. Conceptually, this can be thought of as

eliminating the portion of the external force that would allow a constraint to be broken.

This works well in general, but has a few drawbacks. It is possible that the constraint

may not be satisfied in the initial state or numerical drift can cause the constraint to no

longer be held. In both cases, a common approach is to include a feedback term which

counteracts these situations.

3.3 Physics-based sampling

As stated in the thesis statement, one of the primary goals of this work is to develop a

planning approach that couples traditional motion planning and constrained simulation.

We propose physics-based sampling as one solution on how to accomplish this task.
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Conceptually, motion planning based on physics-based sampling reformulates the motion

planning problem as a constrained dynamical system coupled with a set of constraints.

This idea, and similarly the main idea in “constraint-based motion planning” [GL02],

exploit the relationship and resemblance between motion planning and the boundary

value problem, where the boundary conditions are the initial and goal configurations

of the robot. Physics-based sampling is used to compute the intermediate states that

link the start and goal configurations by traversing a path while satisfying constraints

imposed on the dynamical system.

The key differences between this approach and existing geometric techniques is that

motion planning is no longer treated as a purely geometric problem. With this frame-

work, we can automatically incorporate the mechanical and physical properties of the

robots and obstacles, in addition to their geometric description. This core computa-

tional task of this framework is based on constrained dynamics [WB97], where both

standard simulation and planning constraints are enforced by virtual forces imposed on

the system. By combining constraint forces chosen for planning into a simulation frame-

work, the constrained dynamical system can guide the robot to follow these constraints

at each time step, which can lead to a path toward the final configuration. An overview

of the framework and the computation of constraint forces is shown in Fig. 3.1. We refer

the readers to [GL02] for more detail.

As a result, solving a problem with physics-based planning first requires reformulat-

ing the scenario as simulation inputs and planning constraints. The simulation inputs

consider the workspace or environment, obstacles and their geometry, and the robots

and their geometry. Since physical bodies also include a mass (such that they have an

inertia), some mass must be assigned to the robots as well. This value can be altered

depending on the desired results, but a uniform mass across all bodies tends to work

well in most of our applications. The challenge in physics-based planning is determining

a suitable set of constraints for solving a planning problem. In many cases, the choice
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Figure 3.1: Planner Architecture: The physics-based motion planning cores
uses the robots, goals, obstacles, and a set of planning constraints as its input. By
solving the constraints (several different types are mentioned in the figure) and
applying the resulting forces, motion is generated and the system is updated. The
resulting value is a waypoint along the path and serves as the next input.

of constraints directly impacts the ability of the planner to control the agent and find a

path as well as the performance of the planner.

For the remainder of this work, we will define two categories of constraints used

in planning. Hard constraints are firm restrictions on the motion or state and must

be enforced at all times. This is the type of constraint defined in Sec. 3.2.2. Soft

constraints, on the other hand, are more akin to a relaxation of the constraint functions.

These “constraints” are used to influence the motion or behavior at a given state, but

are not required to be maintained at all times. It is an important to note that soft

constraints, while mathematically defined in a manner similar to hard constraints, are

not truly constraints. Instead, they are more related to biases on the motion. However,

for the sake of uniformity, we will refer to them as constraints throughout the remainder

of this work.

In summary, hard constraints directly remove or changes properties of the body or
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its forces whereas soft constraints act alongside (or in opposition to) external forces.

When combined, these constraints greatly enhance the capabilities of a simulation. The

remainder of this section describes and defines both hard and soft constraints and also

details the process of generating samples based on the simulation and constraints.

3.3.1 Hard constraints

Hard constraints are firm requirements that a particle or body must obey during a

simulation and can take many forms. Constraints on the motion itself are usually

applied via constraint forces and are solved as such. Since hard constraints are the type

as defined in Sec. 3.2.2, details on how to define the constraint force for a particular

constraint follow from the derivation.

Examples of hard constraints in robotics and planning include distance constraints,

direct motion constraints, and non-penetration constraints. While joint or hinge con-

straints could fall into this category, common practice is to incorporate articulated mo-

tion directly into the motion equations. Direct motion constraints fix the body to a path

or certain types of motions, such as bead traveling along a (solid) wire. Non-penetration

and other constraints defined on geometric properties can be alternatively be enforced

by geometric transformations or also by appropriately set constraint forces. In practice,

both methods work well. We refer readers to Garber and Lin for additional common

hard constraints used in planning problem [GL02].

In most cases, there will be a number of hard constraints acting on a simulation. It

is entirely possible that solving one hard constraint will cause another hard constraint

to become un-satisfied. To handle this situation, we iteratively relax hard constraints

until they are all satisfied. Briefly, the value of each constraint function is evaluated.

The constraint with the highest magnitude constraint value is solved and the result is

applied to the simulation. This evaluation and relaxation continues until all constraints

are satisfied or some fixed number of iterations. In practice, it is very uncommon to
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reach a state which cannot be resolved.

Hard constraints enhance simulations by giving them a strong and stable means by

which to restrict motion. For instance, it would be much easier to simulate a bead

on a wire or a slot car racing along a fixed track or path. By augmenting simulation

with well formulated hard constraints, users gain firm control while also maintaining a

physically-plausible and smooth simulation over a variety of situations.

3.3.2 Soft constraints

Unlike hard constraints, soft constraints are relaxed requirements and are applied to

a body without regard of the other forces acting on it. Again, it is this aspect that

makes them not really constraints but more like biases or biasing forces. As such, these

constraints are often implemented as “penalty” forces, i.e. when the constraint is not

being satisfied, a force is applied to it that will move in a direction that will satisfy the

constraint. Other factors which add external forces, such as energy fields and springs,

can often be considered or adapted to be soft constraints as well.

For example, consider a simple “goal attraction” soft constraint. Clearly, this con-

straint will only be satisfied (its constraint function will evaluate to zero) once the robot,

or whatever part of the robot on which the constraint is defined, reaches the goal. A

penalty force for this constraint would simply point directly toward the goal and could

be applied to the entire robot or to whatever part of the robot needs to reach the

goal. Since soft constraints act irrespective of other constraints, these can be solved and

directly applied without regard for the other soft constraints.

Soft constraints have several advantages, particularly in that they can influence the

motion of a system or otherwise attach some behavior to it. However, at the same

time, there are many challenges in choosing a good set of soft constraints such that they

are strong enough to have the desired effect while not causing the system to become

stiff. It is easy to define a large number of soft constraints, but this can be detrimental
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to performance. Finally, it is important to evaluate soft constraints prior to the hard

constraints since it is possible that a force from a soft constraint could cause a hard

constraint to become un-satisfied.

As with hard constraints, many more soft constraints will be described in the subse-

quent chapters. These constraints complement hard constraints and provide a flexible

to influence the underlying motion of a body in the simulation. In some cases, soft

constraints can be thought more of as directly a simulation toward a specified direction

or behavior as much as they also alter the underlying motion.

3.3.3 Sample Generation

Given an appropriate set of constraints, the final task is to use those constraints to

generate samples. In many aspects, this methodology effectively generates joint samples

in a search direction biased by the constraints. Samples are built off one another (akin to

state-space RRTs [LK99]) by solving the motion equation ordinary differential equations.

sampling in state or configuration space and moving in that direction, we use workspace

distance information in order to generate forces which direct the growth.

The ideas behind biasing forces are similar to potential field method for a high-

DOF robot, and similarly is susceptible to local minima in the force field defined by

the biasing forces. To help alleviate the impact of local minima, it is common practice

with physics-based sampling to generate an initial path or roadmap prior to generating

samples. After extracting a path to the goal, a soft constraint defined using this initial

path can aid in avoiding or escaping these minima.

Given the set of constraints which are treated as biasing forces in the system, each

simulation step is then solved using numerical methods to advance toward the goal

configuration. The general procedure is given in Algorithm 1. This fragment is repeated

until we reach the final configuration. This simulation framework generates samples that

are physically plausible at a potentially fast rate.
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Data: Robot r
Data: Obstacles O
Data: Soft constraints Fsoft
Data: Hard constraints Fhard
fnet = ComputeExternalForces(r, O, . . . );
fnet = fnet + SolveSoftConstraints(Fsoft,r, O, . . . );
Robot rnext = UpdateState(r,fnet);
while NotSatisfied(rnext, Fhard) do

fnet = RelaxConstraints(rnext, fnet, Fhard);
rnext = UpdateState(rnext,fnet);

end
return rnext;

Algorithm 1: Generating physics-based samples: This algorithm gener-
ates generically performs a simulation step while maintaining the various hard
and soft constraints. Given the simulation inputs and constraints, the algorithm
first computes any forces due to external simulation factors and soft constraints
(ComputeExternalForces(r, O, . . . ) and SolveSoftConstraints(Fsoft,r, O, . . . ), re-
spectively. Then, it solves the motion equations (UpdateState(rnext,fnet)) in an
iterative manner and relaxes the hard constraints while simultaneously adjusting
the net force (RelaxConstraints(rnext, fnet, Fhard)). Finally, a new sample is re-
turned.

3.4 Discussion and analysis

Physics-based sampling offers a novel way to approach the general motion planning

problem. As with most other planning algorithms, there are several trade-offs and

limitations on the effectiveness of the approach. Since many of the goals and driving

applications motivating this work require finding paths for very high-DOF robots in

geometrically complex environments, there are many considerations which must be taken

into account. In both concept and practice, motion planning based on physics-based

sampling has able to accomplish many of these goals. In this section, we discuss several

key aspects of physics-based sampling and compare it to related planning methods.

3.4.1 Performance and applicability

The main advantage of physics-based sampling is that the majority of the work is done

in the workspace, as opposed to the configuration space. Therefore, the dimensionality
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of the configuration or state space plays less of a role despite the fact that it is inherently

navigating in these spaces. As a result, performance is instead dominated by that of the

simulation core, and particularly the expected performance of generating a single sample

and each task in a simulation step can potentially be a large bottleneck. Fortunately, a

wide body of research exists on fast and effective simulation.

External force computation usually includes physical elements which are outside the

scope of soft constraints (although they can sometimes be treated progamatically like

soft constraints), such as gravity. Ordinarily, this does not pose a large computational

task.

The performance of constraint solving varies greatly based on robot and environment.

For higher DOF robots, there tends to be many more soft constraints whereas each hard

constraint usually takes substantially longer to relax or resolve. For example, each

surface elements on deformable robots is a single soft constraint. On the other hand,

the problem of non-penetration on a deformable robot is considerably more difficult

especially if self-collisions are possible. The computational burden of both soft and hard

constraints must be considered when defining the constraints. Many examples of the

performance of both soft and hard constraints are in the subsequent chapters.

Finally, state updates can be particularly intensive and the magnitude of the time

step plays a large role in the total planning. Since the size of time step bounds the total

distance the robot can travel, if a time step is too small then the robot may not make

sufficient progress toward the goal. To complicate the issue further, there is a clear trade-

off between performance and accuracy. Larger time-steps tend to lead to less accurate

(and sometimes non-converging) simulations. More accurate ODE solvers (which allow

larger time-steps) perform several force evaluations (and hence constraint solving) per

step. In any planning situation, the balance between accuracy and performance must

be considered.

By optimizing across all of the items, it is possible to use physics-based simulation
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for a wide variety of higher DOF problems. As is described in the subsequent chapters,

planning using physics-based sampling can solve problems with hundreds and thousands

of DOFs and in environments with tens of thousands of triangles in a relatively short

amount of time.

3.4.2 Compared to potential field planners

Physics-based sampling shares several ideas with potential field planners. In general,

soft constraints (and particularly the associated biasing forces) act much like potential

fields. As a result, physics-based sampling shares a problem of local minima. In practice,

planners based on physics-based sampling use a guiding path to help steer the robots

out of local minima.

For low DOF (purely translational robots) robots, the resulting motion of poten-

tial fields and physics-based sampling can be fairly similar depending on how the soft

constraints are defined. However, general potential fields are less practical higher DOF

robots (since the potential field is often created in the configuration space rather than the

workspace). However, by planning in configuration space, certain variations of potential

fields have been shown to be probabilistically complete whereas there are currently no

clear convergence guarantees for physics-based sampling. This is an area of future work

for the approach.

3.4.3 Compared to randomized planners

Randomized methods such as PRM and RRT explore the configuration space by random

sampling and tree expansions, respectively. Both are known to be effective for relatively

high DOF situations. Both of these randomized methods have been shown to handle

10s of DOFs in a practical amount of time. For certain classes of robots and tasks,

these methods have even been shown to successfully plan for hundreds of DOFs (e.g.

[LC03a]). In comparison, the class of planning methods developed in this work scales
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to thousands of DOFs.

The type of paths generated by each approach will vary significantly. Most random-

ized solutions incorporate straight-line local paths between milestones. As a result, the

final path will only be smooth if additional smoothing is used or if planning is done in

the state space. Both of these operations increase the complexity of the randomized

approaches, but are features that are built into physics-based sampling due to way it

samples.

Finally, randomized approaches are probabilistically complete which again is a qual-

ity that needs to be considered with respect to motion planning using physics-based

sampling.
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Chapter 4

Deformable Agents

4.1 Introduction

A vast majority of the work in motion planning has focused on robots that are either

rigid bodies or articulated models. To this point, there has been comparatively lit-

tle research on motion planning of a deformable or otherwise flexible robot. Flexible

robots are becoming increasingly important in industrial and medical applications. For

instance, motion planning can be used for cable placement in large factory plants and

buildings, wire routing for nano-, micro-, to mega-scale electronic and mechanical struc-

tures, surgical procedure planning and simulation, etc. Endoscopic manipulators for

minimally invasive surgery, power assist suits for human-movement support, and flex-

ible agents for entertainment are some examples of a growing number of “deformable

robots” populating through many different applications. One of the major challenges

in this area is controlling and planning the motion and behavior of these robots in

simulated environments.

A driving application of this work was insertion of flexible catheters in human vessels

for planning and guiding surgical procedures [GHSC96, vWV98]. For example, consider

the situation in Figure 4.2. In a procedure called liver chemoembolization, a thin flexible

catheter is inserted into an opening in the femoral artery and must be navigated to



reach a tumor in the liver. There are multiple concerns regarding the choice of catheter.

Manipulation of catheters in small vessels frequently causes spasms if the cross-sectional

area of the catheter is close to that of the vessel being navigated, then the size similarity

will reduce fluid flow. On the other hand, if the cross sectional area is too small then

it may be difficult to use it to administer a treatment. Accurate path planning studies

can help overcome these obstacles by becoming an integral part of preoperative surgical

planning, i.e. choosing the size and properties of the catheter. However, accurate

geometric models of the arteries and a deformable catheter consist of tens of thousands of

primitives (e.g. polygons). Many algorithms for motion planning and collision detection

between deformable models are unable to handle models of relatively high geometric

complexity.

Motion planning for deformable robots introduces several challenges. In contrast

with rigid or articulated robots, the space of all states of a deformable body is intractably

large. Even a simple discretized deformable object can have hundreds of control points

or elements, leading to thousands of degrees of freedom. Furthermore, the task of

generating physically-plausible motion for a deformable body is considered a difficult

problem. In order to create any planning algorithm for flexible robots, we need to either

enumerate its configurations [ABG06] or be able to model the physical properties and

mechanical constraints of the robots. The computational requirements of generating an

accurate deformation using a continuum model can be rather high.

Another challenge is fast and accurate collision detection between a deformable

robot and surrounding obstacles. Current algorithms for collision detection between

deformable models have a high overhead. Moreover, in many deformable planning sce-

narios, the free space of a robot becomes very constrained. The robot is often close

to the obstacle boundary, leading to an extremely high number of proximity queries or

complex interactions with the environment. As a result, collision detection is a major

bottleneck in terms of developing efficient planners.
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Figure 4.1: The Ball in Cup Scene: The goal is to plan a path to move the
ball into the cup. Since the cup’s rim has about the same diameter as the ball,
a deformation on the ball simplifies the path planning. The image, generated by
our planner, shows the path of the deforming ball as it moves toward the center
of the cup. Note that the final path causes the ball to deform around the rim of
the cup.

The standard algorithms for rigid robots are not directly applicable to deformable

robots. Most of the related work on motion planning for deformable agents has focused

on smaller environments with relatively simple agents. At the same time, the case of

deformable bodies can be seen as being more forgiving or lenient than rigid or articulated

bodies. In cases of narrow passages, in many cases a deformable robot can be “pushed”

or “pulled” through rather than having to move into a particular configuration. However,

there are also limits to how much a body can bend or stretch, just need to be maintained.

One of our major goals is to investigate and develop physically-based sampling meth-

ods for general deformable robots. More specifically, we extend the following modified

version of the general motion planning problem: Given a robot which deforms in a phys-

ically realistic manner and an environment with many static obstacles, find a path from

an initial configuration to a final configuration. In addition, we would like to design a

planner to be as efficient as possible.

In this chapter, we apply our physics-based sampling framework to the problem of
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planning for deformable bodies. In our solution, the motion of any point on the body and

the body itself can be represented and controlled via a simulation core. For deformable

agents, it is important that our physics-based sampling framework incorporates the

available motion of the body, any constraints on the body and its motion, and also a

means to generate and follow some initial path or trajectory.

The choice of an initial trajectory heavily influences the resulting motion. For plan-

ning of this trajectory, the medial axis of the workspace is approximated and used as a

roadmap. This is essentially a roadmap for a point-robot in the workspace. From this

roadmap, an initial trajectory is determined by connecting the start and goal positions

to the roadmap and performing a path search. In most cases, this trajectory is likely

to have collisions for our deformable robot. As our the deformable agent navigates the

environment, physics-based sampling makes appropriate path corrections in order to en-

sure that the path is penetration-free while simultaneously maintaining deformation and

soft-body constraints. Propulsion along the path is performed by randomly selecting or

specifying a “control” point (e.g. the “head” of a thin tube or the center of mass of

flexible ball) on the agent and then “pushing” or “pulling” the point along the path.

We have implemented and applied our planner to a variety of simple and complex

environments, including a case study of path planning of catheters for liver chemoem-

bolization. Our planner can compute a collision-free path for a deformable robot in a

complex environment consisting of tens of thousands of polygons in under two hours.

There are a few remarks about the approach developed here. The choice of a medial

axis is to facilitate the motion since it will be optimally far from obstacles, although

in general any initial trajectory or general roadmap in the workspace will suffice. For

realistic and smooth deformation, it is important that both non-penetration and volume

preservation constraints are accurately and reliably integrated with the framework. This

allows the robot to deform in a plausible manner as it approaches or comes in contact

with a surface. Since these constraints can be computationally expensive, we relax the

69



strict global volume preservation constraint by implementing a local method that sets

a threshold on the amount of deformation (e.g. elongation or compression) and on

internal pressure fluctuation. Since collision detection is a bottleneck, we develop and

utilize graphics hardware to accelerate the collision queries.

4.2 Overview

In this section, we introduce additional notation related to deformable body simulation

and our planning algorithm and give a brief overview of the approach.

4.2.1 Notation and Definitions

In relation to simulation, there are a wide variety of methods available for representing

and simulation a deformable agent. Among the simplest methods is a spring-mass sys-

tem, where the body is described by a collection of point masses, or particles, connected

by springs and organized into a lattice structure. In practice, mass-spring systems are

easy to construct and can be simulated at interactive rates on current commodity hard-

ware. More accurate physical models treat deformable objects as a continuum. One

of the most commonly used continuous models is the finite element methods (FEM).

The object is decomposed into elements joined at discrete node points and a function

that solves the equilibrium equation is computed for each element. The computational

requirements of FEM can be high (as a function of model complexity) and it is difficult

to use them for complex models in real-time applications. In fact, a spring-mass system

can be seen as a discrete version of FEM.

The deformable robot, r, is represented as a time dependent set of n particles, P(t) =

{p1(t),p2(t), . . . ,pn(t)}, connected by a set of springs E . Each spring si ,j ∈ E attaches

pi to pj and additionally has a rest length l, a spring constant ks a damping constant kd,

a stress stress , and a threshold value δs. Briefly, rest length and the two constants define
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Figure 4.2: Path Planning of Catheters in Liver Chemoembolization:
The deformable catheter (robot), represented by 10K triangles, is 1.35mm in diam-
eter and approximately 1, 000mm in length. The obstacles including the arteries
and liver consist of more than 83K triangles. The diameter of the arteries varies
in the range 2.5-6mm. Our goal is to compute a collision free path from the start
to end configuration for the deformable catheter. The free space of the robot is
constrained. The path computed by our motion planner is shown in Fig. 4.9.
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the behavior of the spring and elasticity of the body, while the stress and threshold are

used to define material constraints. Finally, the set of positions of the particles X (t) =

{x1(t),x2(t), . . . ,xn(t)} represent the agent’s configuration, q, at time t and the set of

states of particles (positions and velocities) T = {(x1,v1)
T , (x2,v2)

T , . . . , (xn,vn)T} is

the agent’s state, s.

Since the shape of the body can change over time, we define other terms over the body

which are used to generate physically-plausible motion. We define a deformation energy

function E(r) of the robot. E(r) simulates the potential energy of elastic solids, and is a

measure of the amount of deformation from its rest state. The robot can be interactively

deformed as contacts occur with the obstacles in the environment. This deformation

may change the volume V (r), as well as the energy E(r). To simulate physically plausible

deformation, we need to find a new configuration of r, that preserves the total volume

of the deformed robot, while minimizing the the total energy of the system.

Our approach uses a roadmap extracted from the medial axis to answer simple plan-

ning queries and provide a initial trajectory for the robot to follow. Again, the following

is done by selecting or specifying a control point or a series of control points on or in

the robot. The roadmap, G, consists of a set of milestones, M, and a set of links, L.

Our initial trajectory using this roadmap is the sequence of connected milestones and

their links.

Problem Formulation: Given these definitions, we restate our problem as: Find a

sequential set of robot configurations q(t0), ..,q(t1) such that no q(ti) intersects any ob-

stacle in O and q(ti) satisfies the non-penetration and volume preservation constraints,

where q(t0) is the initial configuration of the robot, and q(t1) is the final configuration.

4.2.2 Extension to Deformable Agents

We need to determine a set of constraints which will be sufficient to solve planning prob-

lems for a deformable body. We introduce constraints designed to guide the deformable
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robot through the environment to the desired goal configuration. Using global analysis

from any roadmap algorithm (e.g. PRM) to compute a possible path for a point robot,

we define both geometric and physical constraints that move the deformable robot to

avoid both static and moving obstacles, and also follow an estimated path to the goal.

Finally, we identify some computational bottlenecks of the process and propose methods

to optimize the performance of these portions. The main components of our physics-

based motion planning approach include:

1. Guiding Path: Our framework allows the use of any estimated path computed by

either quick global analysis of the environment, such random sampling [KSLO96,

FGLM01, LK00] or user guided input [BSA00]. Since we can use a path for a point-

sized robot, we can extract the medial axis of the workspace as our roadmap.

2. Constraints: To achieve the desired results without robustness issues, we de-

termine a set of hard and soft constraints to guide our sampling process. Along

with the standard hard constraints (obstacle non-penetration and staying within

the environment boundaries), we additionally define soft-body and volume preser-

vation constraints. Global volume preservation is relaxed for performance, and

instead we define an internal pressure on the body and use this to help locally

preserve the body’s volume. Necessary soft constraints include a path following

constraint and collision response to guide the robot along its initial trajectory and

to keep the robot from intersecting bodies. Thus, our approach will compute the

new path by taking into consideration the body’s deformable properties and the

interaction of the flexible robot with the obstacles in the workspace.

3. Discretization of Continuum: As for modeling the deformation of the robot

or the environment, there exists many possible approaches. For example, these

may include physically-based free-form deformation (FFD), mass-spring systems,

boundary element methods (BEM), and finite element methods (FEM). The choice
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of discretization impacts performance and also how the soft-body constraints are

enforced. For coding simplicity and runtime performance, we chose an implementa-

tion based on the spring-mass system to validate our basic approach. However, we

can easily incorporate any discretization technique within this algorithmic frame-

work.

4. Proximity Queries: We can take advantage of methods proposed in [HCK+99,

GRLM03] that uses graphics hardware to quickly perform proximity queries on

the workspace or to provide dynamically updated discretized distance fields for

obstacle avoidance involving deformable models.

4.3 Planning algorithm for deformable agents

Following our general physics-based planning framework, our algorithm for deformable

agents consists of two phases: (a) off-line roadmap generation and (b) a runtime path

query phase based using physics-based sampling. A detailed algorithm is given in Algo-

rithm 2. The basic steps are:

1. Roadmap Generation: Create a roadmap, G = {M,L} of the environ-

ment with a point robot. Recall that links and milestones will be defined in

the workspace.

2. Guiding path: Query the roadmap to find an initial path τ in G from the initial

to goal configuration.

3. Physics-based sampling: Use physics-based sampling to follow the path (via

the “control” points) while maintaining constraints. As the robot reaches each

milestone in M, we store the state, s, of the robot in case we need to back-trace.

If at any point the hard constraints cannot be satisfied, we return the agent to its

last saved state and remove the link that we being traversed. Then, we replan the
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initial trajectory. If no such path exists, we back-trace once again. If we return to

the initial state, return with no path found.

4.3.1 Roadmap generation and guiding path

As described earlier, the goal of this phase is to create the set M of milestones and set

L of links. For the sake of simplicity and efficiency, we treat the robot as a point robot.

This strategy for simplifying the problem makes the generation of each milestone simple

and quick. We use estimated paths to generate an initial approximation to the path.

This idea has been used in motion planning [CB96, FGLM01, WAS99a].

A wide variety of planning methods are available to generate a primary roadmap. In

particular, we use a medial-axis based approach that computes an approximate medial-

axis of the work space using voxelized methods and performs path smoothing. This

estimated path tends to result in smoother final paths that maintain the farthest distance

from nearby obstacles.

It is likely that the initial roadmap generated could cause the resting shape of the

robot to be intersecting with the environment. If the robot must reach one of these

milestones during the simulation, it is possible that the robot will have to deform to

reach the goal configuration subject to the physical constraint. In cases when it cannot,

the edges linking to this milestone will be pruned away and the planner can look for

another path. This is done by storing the state of the robot as it passes through each

milestone. When a path forces the robot to go break a constraint, we remove the link

and replan.

One potential drawback to this method is that the resulting path may not be a

minimal energy path. This could be accomplished by computing the minimal distance

from an obstacle to the link and weighting the links accordingly. Since the largest

deformations are most likely to occur near an obstacle, by staying farther away from

obstacles, we can reduce the energy required to perform all deformations along a path.
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The main benefit of computing the roadmap in this manner is speed and simplicity.

4.3.2 Physics-based sampling phase

This phase follows the general framework described in Section 3.3. In particular, we

augment this process to include the constraints and optimizations specific to planning

for deformable robots. As a result, it creates a path for the robot which is smooth and

physically-plausible for a deformable body. The remainder of this chapter details these

additional constraints and optimizations.

4.4 Deformable agent simulation and constraints

In this section, we detail the components simulation framework used in the physics-based

sampling core for deformable robots and the constraints used to direct and control the

simulation.

4.4.1 Soft-body motion

Following our approach, we need to describe a deformable robot as a dynamical sys-

tem. As mentioned earlier, we have chosen to discretize the continuum via a mass-

spring system. Let qt be the configuration of the robot at some time t and X (t) =

{x1(t), . . . ,xn(t)} be the set of particle positions.

As before, a goal is to determine how this body moves. The motion equations of

a mass-spring system can be described by a second-order ordinary differential equation

(ODE):

M ¨X (t) + C(Ẋ (t)) +KX (t) = fc(S
t) + fg(q(t))

where M is a diagonal mass matrix (the mass of each particle pi is on the ith diagonal), C

is a diagonal matrix of spring damping constants as specified similarly to M , and K is a
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Data: Robot r
Data: Obstacles O
Data: Environment D
Data: Initial configuration qinitial

Data: Final configuration qfinal

Roadmap G = BuildRoadmap(O, D);
Path τ = QueryRoadmap(G, qinitial , qfinal);
r.q = qinitial ;
τ .SetLastState(r.s);
while r.q != qfinal do

ConstraintForces) = ComputeConstraintForces(r, τ , O, D);
SolveAndUpdate(r, ConstraintForces);
if Not ConstraintsMet(r) then

r.s = τ .GetLastState();
G.RemoveLink(τ .CurrentLink);
τ = QueryRoadmap(G, qinitial , qfinal);
if τ is empty then

return “No Path Found”;
end

end
if τ .CrossedMilestone(r) then

τ .SetLastState(r.s);
end

end

Algorithm 2: Planning for deformable robots: This algorithm outlines
the procedure used for path planning for deformable robots. Briefly, given a
robot’s description and an environment, first determine a roadmap in that envi-
ronment (BuildRoadmap(O,D)). Then, extract a path for this particular planning
query (QueryRoadmap(G, qinitial , qfinal). After initializing planner state, the al-
gorithm begins computing the constraint forces (both hard and soft constraints)
(ComputeConstraintForces(r, τ , O, D). Next, it applies these forces and updates
the state of r. If constraints cannot be satisfied from this position, then we perform
our back-trace and path update steps. Finally, for maintenance, we store the state
of the robot at milestones as we cross them (τ .SetLastState(r.s)), for use in the
back-trace stages if needed. This process continues until the robot reaches its goal.
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banded matrix of spring constants. Note that K is banded since it must represent spring

forces which are functions of the distance between two masses. fc(q(t)) and fg(q(t)) are

3N -dimensional vectors representing the constraint and external forces acting upon each

of the N masses. To help reduce numerical instability from stiff systems, we solve the

ODE with a semi-implicit Verlet integration scheme (see Appendix A.2). This solver

requires only one additional force computation step, keeping the overall computational

cost low. Thus, our simulation uses this scheme to generate the next physically-based

sample for the robot’s path.

After advancing the system, we must verify if the geometric and physical constraints

are satisfied by iterating through the list of constraints. We verify the constraints subject

to minimization of the total energy in the system. If any constraint is not satisfied, we

perform a pruning step as previously mentioned by backtracking through the set of valid

configurations stored at the milestones. This process is detailed in Algorithm 2.

4.4.2 Constraints

We impose a number of known geometric, physical, and mechanical constraints suitable

for the problem and to handle deformations. In our implementation, the hard constraints

are solved for and enforced through the collision detection and response, as described

in 4.5. For deformable bodies, the soft constraints are often computationally expensive

and additionally challenging. Here, we provide details on the soft constraints as they

relate to our deformable agent.

Deformation Energy Function

The elastic deformation energy measures the amount of deformation. In this case,

deformation is essentially local stretches of the body in various directions. If the motion

is simply a rigid transformation, meaning that it preserves the distances between all

particles (no stretches), the energy must be zero. The local deformation is governed by
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the deformation gradient. The right Cauchy-Green tensor, C = F TF , is physically the

square of local change in distances due to deformation where F = fc(S
t) + fg(q(t)) is

the total force acting on the system. It measures the length of an elementary vector

after deformation, and is insensitive to rigid body transformations.

Let E(X ) be the energy density function of an elastic solid undergoing deformation.

The total energy is obtained by integrating E(X ) over the entire volume of the solid. E

can be expressed as a function of the right Cauchy-Green tensor C for elastic materials

unless zero E is allowed for a non-rigid transformation (spurious zero-energy mode).

In fact, the simplest law uses a quadratic function of the right Cauchy-Green tensor

C [Tal94]. Since F and C are a linear and quadratic functions of X respectively, E is at

least a quartic function of X . We have chosen the energy function of a spring network

that connects the neighboring nodes. The energy function can be written as:

E(X ) =
∑
j

k

2
(||dj|| − lj)2

where j is the index of a spring and lj is the natural length of the spring and ||dj|| is

the distance between two particles pi and pk connected by the spring.

Basically we would like to find X by solving

min E(X ) subject to ∇V (X ) ≤ ε.

We relax the hard volume preservation constraint by allowing the change in volume

to be less than a given tolerance ε. This problem can be solved by using a global

constrained minimization technique. Our current implementation uses a local method

that checks whether the internal pressure fluctuation is bounded and the deformation

at each edge/spring si does not exceed certain pre-defined tolerance (i.e. stress i < δs)

to achieve the same effects.
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Volume Preservation

One limitation of the mass-spring system is the difficulty of representing objects with

sharp edges. A possible solution would be to add extra angular springs. In order to

achieve a similar effect and satisfy the volume preservation constraint, we rely on the

ideal gas law. By definition, the force due to pressure on a surface, fp, has the magnitude:

fp = PA

where P is the total pressure inside the object, A is the surface area and fp has the

same vector direction as the face normal n̂ pointing away from the surface. To quickly

approximate the pressure inside the object, we use the ideal gas law:

PV = nRgT

where V is the volume of the robot, n is the number of moles of gas, Rg is the universal

gas constant and T is the temperature of the gas. For any given situation, we can

set nRgT to be a user-defined constant since it should not vary within the simulation

(otherwise we implicitly allow the volume to change). The remaining unknown in this

equation is the volume of the robot. Given this formulation, we need to apply it as a

constraint force on the particles in the body.

Once we solve for P , we can compute the pressure force fp for a triangle. By com-

puting this quantity for each mass, we obtain a simple simulation of pressure in a soft
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object. For details, see Algorithm 3.

Data: Robot r

Data: Environment D

V = ComputeVolume(r);

P = nRgT

V
;

forall Face f on r do

fp = PAf ;

forall Particle pi on a vertex of f do

nIncidentFaces = numFacesIncidentToParticle(pi);

Fint
pi

+= fp
nIncidentFaces

;

end

end

Algorithm 3: Volume preservation forces: This algorithm is used in the

simulation core to determine the local volume preserving, pressure-based force on

each particle. Briefly, ComputeVolume returns the total volume of the body, Af

is the surface area of face f , and numFacesIncidentToParticle(pi) returns the total

number of faces which include pi as a vertex.

Volume Computation

To compute the volume, we break the space into triangular prisms. Each prism is formed

as the swept volume from the triangle to its projection onto the XY plane. To find the

volume of the prism, we multiply the average height by the area of the projected triangle.

Or:

V =
∑

Abaseh,

where

Abase =
1

2
((p2 − p1)× (p3 − p1))z
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Figure 4.3: Soft-body robots with varying internal pressures: The left-
most robot has a relatively low pressure, while the rightmost has a fairly high
pressure. The middle image has a pressure value in between the other two.

and

h =
(p1 + p2 + p3)

3
.

where p1, p2, and p3 are the vertices of the triangle. It is important to note that PV is

a constant. Thus, if P does not greatly vary, then V also will not change much.

4.4.3 Deformation Step

Taking discrete time steps can occasionally lead to situations where the object penetrates

or intersects one of the obstacles, if it is moving fast enough. Since a collision can also

result in penetration, it is important to check for contacts during the simulation. For

robustness of the implementation, we consider that the robot is colliding with an obstacle

if the robot is within tolerance to an obstacle, or when the robot has actually intersected

the obstacle. We can handle this situation by performing backtracking in time and then

applying the collision resolution step. To accelerate the collision detection, we utilize

the method described in Section 4.5.

4.5 Hardware Accelerated Collision Detection

The running time of most practical motion planning algorithms is dominated by collision

detection [Lat99]. Collision detection is considered a major bottleneck in computing a
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Figure 4.4: SphereWorld benchmark: The robot is shown in wireframe, and
is deforming between some of the larger spheres. Each of the larger spheres are
stationary, rigid obstacles.

collision free path for a robot from an initial configuration to a final configuration. Most

of the prior algorithms are based on bounding volume hierarchies and work well for rigid

robots [LM03]. Even in case of motion planning for rigid objects, collision detection can

take more than 90% of the running time for a path planner [Lat99]. In the case of

path planning for flexible or deformable robots, collision detection becomes a greater

bottleneck for the following reasons:

• The free space of a deformable robot is constrained, and in several configurations

the boundary of the robot comes into close proximity of the obstacle boundary.

This close proximity leads to a higher number of potential contacts with the ob-

stacles.

• Most prior collision detection algorithms are based on bounding volume hierar-

chies. As the robot deforms, the precomputed hierarchy needs to be updated to

account for non-rigid motion. The cost of re-computing a hierarchy can be signif-
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Scenario Obstacle Robot Path Total Average
(tris) (tris) Est. Sim. Step

time time time
(sec) (sec) (sec)

Ball
In Cup 500 320 1 41.5 0.015
Sphere
World 3200 320 1 333.16 0.077
Holes
In Walls 216 720 48 605.958 0.037

Tunnel 72 720 575 833.24 0.068

Table 4.1: Deformable robot planning performance: This table highlights
the performance of our planner running on a laptop with a 1.5GHz Pentium-4
processor. We highlight geometric complexity of the environment in terms of the
number of triangles. We report the high-level path generation time and simulation
time. The last column reports the average time taken per simulation step.

icantly higher for complex deformable models. Furthermore, the hierarchies may

not be able to provide sufficient culling when the robot is in close proximity to the

obstacles.

We present a collision detection algorithm for a deformable robot undergoing motion

among rigid obstacles. Our goal is to compute a small subset of potentially colliding

primitives (e.g. triangles) and only perform exact interference tests among these primi-

Figure 4.5: Walls with holes benchmark: This scenario shows a sequence
of four walls with holes in them. To reach the goal, the robot travels through
each hole. This figure highlights the various states of the deformable robot while
traveling along the displayed path.
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Figure 4.6: Tunnel benchmark: This environment is a simple tunnel which
the robot must travel through in order to reach the goal. In this image, the striped
cylinders represent the deformable robot at various states in its path through the
tunnel. Note that a collision-free would not be possible if this robot was not
deformable

tives. Our algorithm is based on two main components:

1. Reliable 2.5D overlap tests using GPUs: Since the robot is close to the

obstacle boundary, we perform a tighter overlap test by checking whether there

exists any separating surface between the robot and the obstacles. We perform this

test using the rasterization capabilities of the GPU. We also compute Minkowski

sums of the robot and the environment with bounded spheres in order to overcome

image-precision errors.

2. Set-based computations: In order to deal with a high number of colliding prim-

itives, we compute sets of potentially colliding primitives as opposed to computing

each pair of overlapping primitives explicitly. The size of each set is at most

O(n), the number of triangles in the model, whereas the number of pairs in close

proximity can be super-linear (or even O(n2) in the worst case) for a robot in a

constrained free space.
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Figure 4.7: 2.5D overlap tests used for collision detection: The query
checks whether there exists a separating surface along a view direction of depth
complexity one. S has depth complexity more than one from View 1 as well as
View 2. In the right image, s1 has depth complexity one from View 1 and s2 has
depth complexity one from View 2. As a result, we use two 2.5D overlap tests to
decide that R1 and R2 are not colliding with the obstacles (Oi).

4.5.1 Reliable 2.5D overlap tests using GPUs

The robot undergoes non-rigid deformation between successive steps of path planning.

Instead of using BVHs, we check for overlaps between the robot and the obstacles using

the rasterization capabilities of graphics processing units (GPUs). The GPUs are widely

available on all commodity PCs and their computational capabilities are increasing at

a rate exceeding Moore’s law.

We perform visibility computations [GRLM03] between the objects on the GPUs to

check whether R (robot) and O (obstacles) overlap. In particular, we choose a view

direction, usually along an axis, and check whether R is fully visible with respect to O

along that direction. If R is fully visible, then there exists a separating surface between

R and O (see Fig. 4.7). Moreover, the separating surface needs to have a one-to-

one mapping with a plane orthogonal to the viewing direction or depth complexity one

along the view direction. We call this the 2.5D overlap query; this provides a sufficient

condition that the two primitives do not overlap. The 2.5D overlap test is significantly

less conservative and more powerful as compared to earlier collision detection algorithms
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that check whether two bounding volumes (e.g. spheres, OBBs, etc.) overlap in 3D.

For example, in Fig. 4.7(b) there exists a single separating surface between R1 and the

obstacles as well as R2 and the obstacles. In this case, we can verify with two 2.5D

queries that the robot does not overlap with the obstacles.

A main problem with a GPU-based overlap test is the underlying image precision

used to perform visibility computations. In particular, the rasterization of R or O

introduces many sampling errors, including projective errors and depth-buffer precision

errors. In order to overcome these errors, we compute and render a bounding offset for

each object. Let the dimension of square pixel used for orthographic projection be p.

Moreover, let Sp represent a sphere of radius
√

3p/2 and RSp and OSp represent the

Minkowski sum of R and O with Sp, respectively. In this case, we use the following

lemma:

Lemma: If RSp is fully visible with respect to OSp from any view direction under or-

thographic projection on a 2D discrete grid with pixel size p, than R and S do not

overlap.

This lemma provides us with a sufficient condition that the robot and the obstacle do

not overlap. The exact computation of the Minkowski sum of a primitive with a sphere

corresponds to the offset of that primitive. The exact offset representation consists

of non-linear spherical boundaries. Instead, we compute a bounding approximation

of the offset. In case of obstacles, we decompose the boundary into triangles, edges

and vertices. The offsets of each of these primitives are represented as swept sphere

volumes: as rectangular swept-sphere (RSS), line swept-sphere (LSS) and point swept-

sphere (PSS), respectively [LGLM99]. We precompute the swept spheres to enclose the

obstacle primitives. Since the robot undergoes deformation, we dynamically compute a

bounding OBB (oriented bounded box) for each triangle on the boundary. The cross-

section of the OBB has the same plane as the triangle and the height of the OBB is equal

to
√

3p. Moreover, we perform the 2.5D overlap test from a number of fixed directions
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(e.g. X, Y and Z axes) to check for the existence of a separating surface.

4.5.2 Set-based Computations

Our algorithm uses the concept of a potentially colliding set (PCS) of objects or prim-

itives [GRLM03]. In this section, we present a specialized algorithm for a deforming

robot among fixed obstacles. Given a collection of primitives, P = {p1, . . . , pn}, we

initially insert all the primitives into a PCS. Next, we check whether pi overlaps with

the remaining objects: P − {pi}. If they do not overlap, we remove pi from the PCS.

Based on this property, we reduce the number of object pairs that need to be checked for

exact collision. There are two main issues in using set-based computations for collision

detection:

• Set-based overlap tests: We need the capability to perform overlap tests between

two different sets of objects. In particular, we need a simple test to check that the

objects in S1 do not overlap with objects in S2. We use the reliable 2.5D overlap

test described above.

• Set partitions: A set of n objects has 2n subsets and we cannot check every possible

pair of subsets for overlap. Rather we want to perform almost linear number of

set-based overlap tests.

We compute two sets for collision detection. These are the R-set and the O-set. The

R-set = {r1, r2, . . . , rm} consists of all the polygonal or triangular primitives used to

represent the robot. If the number of triangles in the robot is high, we group them into

small clusters and each ri represents a cluster of triangles. In the same manner, O-set =

{o1, o2, . . . , on} is a set of obstacles in the environment and we ensure that each obstacle

oi does not have a high polygon count.

We update the vertices of the robot based on the deformation and compute a new

bounding OBB for each triangle on its boundary. The set-based collision proceeds in
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two passes.

In the first pass, we compute R-PCS and O-PCS. In particular, ri ∈ R-PCS, if ri

does not overlap with all the obstacles in O-set. Similarly, oi ∈ O-PCS, if oi does not

overlap with all the ri’s in R-set. The R-PCS is computed by performing 2.5D overlap

test between each {ri} and O-set. Similarly, O-PCS is computed by performing 2.5D

overlap tests between each {oi} and R-set.

In the second pass, we perform set-based 2.5D overlap tests in a recursive manner.

We represent R-PCS = {R1,R2}, where R1 and R2 have approximately the same

number of elements. Similarly we decompose O-PCS = {O1,O2}. We perform 2.5D

overlap tests between the following set combinations: (R1, O1), (R1, O2), (R2, O1) and

(R2,O2). If none or only one of the 2.5D overlap test results in a separating surface,

we terminate the recursion and perform exact collision checking between R-PCS and

O-PCS. Otherwise, we remove either R1 or R2 from R-PCS or remove O1 or O2 from

O-PCS. The set-based culling algorithm is applied recursively to the new PCS’s.

Analysis: The running time of the set-based culling algorithm for potentially colliding

pairs is bounded by O(m log n+ n logm). We assume that the cost of performing each

2.5D overlap test is constant. The first pass of the algorithm takes linear time. In

the second pass, the algorithm takes linear time during the first iteration. During each

successive iteration we reduce the number of objects in one of the PCS’s by half and

therefore, performing O(m log n+ n logm) 2.5D overlap tests in the worst case.

4.5.3 Exact Collision Detection

Given the potentially colliding sets, R-PCS and O-PCS, we perform exact tests between

the primitives to check for collisions. If the number of primitives is small, we check all

pairwise combinations. Otherwise, we compute a bounding box for each primitive of

R-PCS and O-PCS. We perform pairwise overlap tests between the bounding boxes by

projecting the bounding box along the X, Y and Z-axes and compute the overlapping
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intervals using insertion sort. If the projections of any bounding box pair overlaps along

any axis, we explicitly check whether the corresponding 3D bounding boxes overlap and

perform exact intersection tests between the primitives.

4.6 Implementation and Results

We have implemented and tested this algorithm on on two platforms. For a proof of

concept design, we used a laptop with a 1.5 GHz Pentium-M processor, 512 MB of main

memory, and a 64 MB ATI Radeon 9000 Mobility graphics card. Finally, to include the

GPU-accelerated collision detection algorithm, we tested them on a PC with a 2.8 GHz

Pentium IV processor, 1 GB of main memory, and a NVidia GeForce FX 6800 card.

We used of NVidia’s occlusion query extension along with offsets to perform visibility

queries for reliable 2.5D overlap tests.

To test the effectiveness of our algorithm, we applied our planner to various scenarios

that evaluate different aspects of the planner. They are as follows:

• Ball In Cup - The simplest of the scenarios, this environment has a spherical,

deformable robot which must find its way into a cup. The cup’s rim has been

adjusted so that the ball will barely be able to fit in, and will thus have to deform

to do so. (See Fig. 4.1)

• Many Spheres - This is primarily a test on how varying degrees of geometric

complexity affects the performance of the planner. The environment is composed

of a collection of spheres of varying positions and radii. A spherical, deformable

sphere must move through these spheres to reach a goal in the opposite corner of

the space. (See Fig. 4.4)

• Walls with Holes - Based on one of the Parasol Motion Planning benchmarks

[Gro03], this scene has a sequence of four walls, each of which has a small hole.
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In order to reach its goal, the robot must make its way through each hole. We

modified the model to have a wide, flexible cylindrical robot that either cannot,

or barely can, fit through the holes. It is wide enough that finding a collision free

path would be very difficult, if not impossible, if the robot was rigid. The goal of

this scenario was to fit a deformable robot through a small space. (See Fig. 4.5)

• Tunnel - This is also based on a Parasol Motion Planning benchmark [Gro03]. The

scene contains a small tunnel with two bends in it. Like in the Walls benchmark,

we augment the model by having a robot that is both long and wide. These

constraints would make it impossible for a rigid robot to find a collision-free path.

This scenario tested the planner’s ability to force the robot to bend and deform

around sharp corners. (See Fig. 4.6)

Results from each of these tests can be seen in their associated figures and are

also summarized in Table I. The first two columns of the table describe the geometric

complexity of the scene, for both the robot and the obstacles. The next columns give

performance results of the planner by highlighting the time spent in various stages. One

column gives the time the planner spent in high-level path generation, and the next

gives the total time the planner spent in simulation steps. Lastly, we give an average

step time for each simulation step.

Taking differences of systems into account, the average step time reported here is

comparable to the time to process purely geometric deformations (based on FFD) used

in other planners for deformable objects [BLA02a]. However, our technique also takes

into account the physical constraints.

As can be seen from the table, the bulk of the time is in the simulation steps.

These steps include the force calculation, collision resolution, establishing constraints,

and solving the resulting system. Our current implementation is not optimized and the

performance of each of these stages can be further improved.
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4.6.1 GPU acceleration analysis

In order to test the effectiveness of our collision detection algorithm, we have done

additional testing for two scenarios:

• Serial Walls. This scenario is based on a Parasol Benchmark [Gro03] in which

a stick-like robot must navigate through a series of walls with holes (shown in

Fig. 3). We have extended the benchmark by changing the robot into a soft-body

sphere with 1280 polygons and the walls are represented using 18K polygons. As

before, the sphere’s diameter is set to be larger than the holes, but small enough so

that the robot’s material constraints allow it to fit through, forcing it to deform to

reach its goal configuration. It takes about 16 minutes to compute a collision-free

path.

• Liver Chemoembolization. This scenario demonstrates the ability of our plan-

ner to work in a realistic complex environment and acts as our target driving

application for deformable path planning. We attempt to plan the path of a tube-

like cylinder, called a catheter, through a set of arteries in order to mimic the

catheterization process in liver chemoembolization. More details are given below.

We highlight the performance of our algorithm in these environments in the table

and graph. Fig. 4.2 shows a detailed breakdown of the average time spent in various

stages of a simulation step. The collision detection and response phase consists of both

the 2.5D overlap tests along with the exact triangle-triangle intersection tests. Finally,

we highlight the time spent in solving the motion equations and the total time spent on

a time step. One curious result is that more time was spent on exact test in the Walls

scenario even though it is a simpler environment. This result is due to greater culling

effectiveness in the catheterization case.

Fig. 4.8 compares the effectiveness of the 2.5D overlap tests as a function of the

scene complexity. To measure the performance of our new collision detection algorithm,
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Table 4.2: Planning performance with 2.5D overlap test: This table gives
a breakdown of the average time step for each scenario. Constraint update refers
to the time spent in computing each constraint for the given configuration. The
2.5D overlap test along with the exact triangle intersection test are the two stages
of the collision detection algorithm. The Solve-System time is that spent in solving
the motion equations during each step.

we varied the scene complexity of the Walls environment and ran our algorithm with

and without the GPU-based 2.5D overlap tests. The case of no overlap test reduces to

solely using the bounding volume hierarchies. In the graph, we see a greater speedup in

collision detection as the obstacle complexity increases.

4.6.2 Path Planning of Catheters in Liver Chemoembolization

We use our path planning algorithm as a guidance tool for a catheterization procedure,

specifically chemoembolization of liver tumors. Liver chemoembolization involves the

injection of chemotherapy drugs directly into the hepatic artery that supplies a tumor.

The procedure takes advantage of the fact that liver tumors obtain their blood supply

exclusively from the branches of the hepatic artery. Under X-ray guidance, a small tube

or catheter, is inserted into the femoral artery and is then advanced into the selected

liver artery supplying the tumor. Chemotherapy drugs, followed by embolizing agents,

are then injected through the catheter into the liver tumor.

During this procedure, careful manipulation of the catheters is essential [GHSC96,

vWV98]. Manipulation of catheters in small vessels frequently causes spasms, which

prevent adequate flow to carry the chemoembolization material into the tumor. Another

93



Figure 4.8: 2.5D speed-up vs. triangle count: This graph highlights the
speedups obtained by utilizing the 2.5D overlap tests in our collision detection
algorithm, as we increase the polygonal complexity of our scene. We observe nearly
an order of magnitude improvement in complex scenes over prior algorithms based
on bounding volume hierarchies.

problem may arise if the catheter has a cross-sectional area close to that of the vessel

being injected. In this case, the size similarity will also reduce fluid flow and increase

the risk of reflux of chemoembolization material into other arteries. Accurate planning

studies can help to overcome these difficulties. Preoperatively, path planning can be

used as part of surgical planning techniques to help choose the size and properties of the

catheter used. We used a geometric model of the catheter and arteries shown in Fig. 4.2

(along with their relative dimensions). The catheter is modeled using 10, 080 triangles.

The model of the arteries consist of 70, 006 triangles and the liver is represented using

12, 459 triangles. The start and end configuration of the catheter are shown in the same

figure.

We used our motion planning algorithm to compute a path for a flexible catheter to

a specific hepatic artery that is supplying a tumor inside the liver. The 3D models of
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the liver and the blood vessels, that make up the environment, were obtained from the

4D NCAT phantom [Seg01]. The flexible, snake-like, catheter was modeled as a cylinder

with a length of 100 cm and a diameter of 1.35 mm. Figure 4.9 shows a 3D rendering

of the models used in this study with the starting (insertion of the catheter) and ending

(tumor supplying vessel) locations marked.

Despite the scenario’s complexity, our planner was able to successfully plan a path for

this problem. A breakdown of the step time averages is given in Fig. 4.2. As the table

shows, a large portion of the computation time is spent done in the collision detection

phase (more than 80%). Further optimizations in GPU-based 2.5D overlap tests would

improve the performance of the overall planner.

We use a large number of material constraints and are able to generate fairly smooth

deformations throughout the simulation (as shown in Fig. 4.9). An additional path

smoothing step further helps to improve the quality of the deformation.

4.6.3 Conclusion

In this chapter, we have developed constraints and methods for path planning for de-

formable bodies. Since we use a well-established motion model and realistic physically-

driven interactions with the environment, the resulting path is smooth and reasonably

“natural” in terms of the generated motion. Furthermore, with physics-based sampling

and the accelerated simulation, the planner typically returns a path in a reasonable

amount of time.
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Figure 4.9: Path Planning of Catheters in Liver Chemoembolization:
We highlight the collision-free computed by our algorithm for the catheter shown
in Fig. 4.2. We show the overall path from the start to the end configuration in
the rightmost image. The left images highlight the zoomed portions of the path,
showing bends and deformations.
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Chapter 5

Articulated Agents

5.1 Introduction

Modeling and simulation of multi-body dynamical systems has been well-studied due to

its wide applications including robotics and automation, molecular modeling, computer

animation, medical simulations, and engineering analysis. Examples of highly articu-

lated robots include snake or serpentine robots, reconfigurable robots [CB94b, GRC05],

and long mechanical chains. In molecular modeling, long series of atoms typically

represented by hundreds or thousands of links are commonly used [Sur92]. Catheters

[GSLM05b], cables [LK04], and ropes can also be modeled as articulated robots with a

very high number of joints.

Highly articulated robots, such as snake or serpentine robots, with many degrees of

freedom (DoFs) have recently received considerable attention from the robotics com-

munity [CB94c, HHC98, WJC+03]. Chirikjian and Burdick first introduced the term

hyper-redundant robots to describe such robots with a very high number of DoFs

[CB90, CB94a]. Snake-like robots can serve as suitable alternatives over traditional

robotic systems for difficult terrains and challenging scenarios. These include search

and rescue missions in complex urban environments, planetary surface exploration, min-

imally invasive surgery, or inspection of piping and cabling. Highly articulated robots



also have many applications in homeland security and national defense, as well as en-

abling inspection of ships, containers and other structures with narrow, tight workspace.

Many computational biology algorithms also model the molecular chains as articulated

models with hundreds or thousands of links.

As previously mentioned, randomized motion planning research has made great

strides toward providing planning solutions in high dimensional configuration spaces.

Probabilistic roadmaps (PRMs), rapidly-exploring random trees (RRTs), and several

variants can solve complex problems with dozens of DoFs [KSLO96, KL00]. Since they

rely upon randomization to map or explore the configuration space, their performance

degrades considerably for robots with much higher dimensionality (e.g. hundreds or

thousands) for a couple of reasons[PK06]. As the number of degrees of freedom increases,

it becomes more expensive to compute representative samples of the configuration space

for these planners. Moreover, dynamics or kinematics constraints on the problem further

constrain the search space and make sample generation even more difficult since many

planners only consider geometric constraints (such as non-penetration). For instance,

consider the motion generated by a either a PRM or RRT. In most variations of these

methods, the links are typically generated as straight-line paths in the configuration

space using a local planner and only take into account geometric constraints (e.g. col-

lision avoidance). As a result, motion is non-smooth when transitioning between links.

A local planner will also have to perform additional checks along the link to ensure that

kinematics constraints are satisfied. On the other hand, if the motion generated was

completely physically-based, the path would be more realistic.

One of the key components of multi-body dynamics simulations is forward dynam-

ics computation, which determines the acceleration and resulting motion of each link,

given a set of active joint forces and external forces. The optimal algorithms have a

linear runtime complexity in the number of degrees of freedom (DOFs). However, these

algorithms may still not be sufficiently fast for complex systems that have a very high
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number of degrees of freedom. Furthermore, if the environment consists of many obsta-

cles or multiple articulated robots, dynamic simulation with robust contact or collision

handling can become a major bottleneck for real-time applications.

5.2 Overview

In this section, we define the notation used throughout the chapter and introduce the

main ideas needed for physics-based sampling for highly articulated bodies.

5.2.1 Notation and Definitions

Our articulated robot is represented using Featherstone’s recursive definition of an ar-

ticulated body: an articulated body is composed of two other articulated bodies that

are connected through a principal joint (See Fig 5.1) at a “handle”, the location on the

link where the joint is connected [Fea99a].

At the base level, we have a set of n rigid bodies. For simplicity, we define our

joint primitives to be 1-degree of freedom (DoF) revolute joints. More complex 2-DoF

revolute joints can be added in a standard way as follows. A rigid body, bthin , with

zero (or sufficiently small) width is placed between each pair of bodies, bi and bi+1.

A standard 1-DoF joint will connect bi and bthin , and another 1-DoF joint rotated 90

degrees about the center of the chain will connect bi+1 and bthin .

We represent the articulated body’s state at time t as A(t) = {B,J ,q(t), q̇(t)},

where B = {b1, b2, . . . , b2n−1} is the set of rigid bodies, J = {j1, j2, . . . , j2n−2} is the

set of joints, q(t) is a vector of length 2n − 2 of joint positions, and q̇(t) is a vector of

length 2n− 2 of joint velocities at time t. To build the articulated body, pairs of bodies

are connected via principal joints from the bottom up, following the recursive definition.

The robot’s principal joint is then the middle joint along the linkage. This process forms

an assembly tree (See Fig. 5.1).
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Figure 5.1: Construction of an articulated body: An articulated body A
is connected to body B at the principal joint, j2, to form body C. The assembly
tree for C is shown beneath the body. Forces and accelerations which govern C’s
motion are shown.

For the forward dynamics problem, our goal is to compute the joint accelerations,

q̈, given the state of the body and any external forces acting upon the body. This

information is used to advance the simulation in time. The spatial acceleration of the

body is given by:



â1

â2

...

âm
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b̂2

...

b̂m


,

where âi is the 6× 1 spatial acceleration of link i, f̂i is the 6× 1 spatial force applied to

link i, b̂i is the 6× 1 bias acceleration of link i (i.e. the acceleration link i would have if

all link forces were zero), Φi is the 6 × 6 inverse articulated-body inertia of link i, and

Φij is the 6× 6 cross-coupling inverse inertia between links i and j.

This system of equations is expressed using spatial notation. The underlying notation
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is essentially an aggregate of linear and angular components of the physical quantity. For

example, if a is the linear acceleration of a body, and α is the angular acceleration, then

its spatial acceleration is â =

 α

a

. Spatial algebra simplifies some of the notation, as

compared to the 3D vector formulation of these quantities. A detailed explanation of

spatial notation and algebra is given in [Fea87].

With these motion equations, standard numerical integration techniques such as

Euler’s method or various Runge-Kutta schemes can be used to determine the next

state of the system. For complete dynamics simulation, it is necessary to determine

how the body responds to interactions with the environment. Standard techniques use

analytical constraints and impulse-based dynamics [Mir96, Kok04].

We can restate the path planning problem for articulated bodies as: Find a sequential

set of robot configurations q(t0), ..,q(t1) such that no q(ti) intersects any obstacle in O

and q(ti) satisfies the non-penetration, kinematic, and articulated dynamics constraints,

where q(t0) is the initial configuration of the robot, and q(t1) is the final configuration.

5.2.2 Extension to articulated agents

Our intended application of this work is an articulated chain, where actuators may

exist to control the internal joints. However, the ideas presented in this paper are also

applicable to rigid bodies and branching articulated structures.

Multi-body systems and forward dynamics are central to simulation of an articulated

robot. We make use of a simplified articulated model, much like that proposed by

[RGL05], in order to reduce the dimensionality of the configuration space. An impulse-

based contact determination and response algorithm for adaptive forward dynamics

was described by [GLM06]. Other physical constraints on the joints can be efficiently

simulated through analytical constraints [Kok04]. These are the necessary components to

ensure realistic samples for our algorithm. Due to space limitations, we refer the reader
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to a recent survey on multi-body simulation [FO00] for more details. The following items

are the main components in our physics-based sampling approach applied to articulated

bodies.

1. Guiding Path: Just like the deformable body case, we use the medial axis of

the workspace as our roadmap. Generally, this path will guide the end effector or

some other single point on the articulated agent.

2. Constraints: As before, the goal of the constraints is to adjust the path to

satisfy hard constraints during path execution and to guide the sampling rather

than to predict trajectories. Several hard and soft constraints are used to guide the

sampling. With articulated bodies, additional hard constraints include kinematic

constraints and joint limitations. Similar to other cases, a path following and

collision response are needed as soft constraints to help guide the robot along the

path it is following. With these constraints, the agent will move toward a final

configuration while considering the agent’s kinematic and dynamics constraints

(via the articulated body equation and its related collision handling).

3. State-space reduction: In general, highly articulated bodies includes hundreds

or thousands of joints. This leads to a very high degree of freedom problem which

is embedded in a complex state space. However, with articulated bodies we can

exploit the fact that at many instances, joints tend to move very little or not at all.

We can freeze or otherwise restrict the motion of various joints dynamically while

allowing others to be “active” or more freely to create a reduced dimensionality

problem. Dynamics simulation on such bodies has been shown to be very efficient

with up to a two orders of magnitude improvement compared to a full articulated

body. The run-time complexity is linear in the number of active joints, which is

often much less than the total number of degrees of freedom.

with often a sub-linear run-time complexity with respect to the number of DoFs
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in the entire body.

4. Collision handling: For articulate bodies, collision detection and handling are

complex tasks and are often computational bottlenecks in simulation. We use the

graphics hardware optimized approach as detailed in 4.5 to accelerate collision

queries. Finally, we develop a novel collision handling scheme to work well with

our reduced dimensionality articulated bodies.

5.2.3 Articulated Chain Planning

Several ideas motivate our approach of using dynamics simulation to improve sampling

and path generation.

Randomized planning algorithms such as PRMs and RRTs have recently been pop-

ular due to their success in a wide range of applications and in high-dimensional con-

figuration spaces, or C-spaces. Probabilistic Roadmaps (PRMs) explore a configuration

space by randomly placing milestones throughout it. Then, it determines which mile-

stones connect to each other and uses this information for a roadmap. The advantage

of this approach is that roadmaps can often be reused to solve planning problems with

varying start and goal configurations on the same environment.

On the other hand, Rapidly-exploring Random Trees (RRTs) grow a tree in order to

explore the space. Since the growth originates from a root, the search is more oriented

towards regions of space near the root and thus are not as useful when a different

start or goal configuration is used. On the other hand, due to the RRT construction

algorithm, growth of the tree is biased toward unexplored regions of space. This makes

it an appealing choice for a number of applications, but it also suffers from less optimal

paths.

For highly articulated robots, the performance of these planners is dictated by the

dimensionality of the configuration space. It would require a large number of samples

are needed to adequately cover or explore the space. While the resulting path would
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be valid, the motion would not look “natural” since randomized planning does not take

the chain dynamics into account.

5.2.4 Planning in state-space

We use kinodynamic planning which generates realistic motions and paths. Specifically,

we incorporate both the kinematic and dynamics constraints directly into planning; by

working in a state space, or phase space. This state space maintains the physical state

of the robot, often its configuration augmented by trajectory information. However,

the kinodynamic planning problem is often considered much more difficult since state

spaces are typically at least twice the dimensionality of configuration spaces. For each

element in configuration space, at least an associated velocity is typically required.

Like configuration-space planners, the complexity for the problem lies mainly in the

dimensionality of this space.

Due to the dimensionality of the state-space of a highly articulated robot, these

algorithms are likely to take an extremely long time to find a solution. Like the C-space

planners, these do not scale well to extremely high dimensional state-spaces. In fact,

applications of these algorithms typically involves robots with very few DoFs, typically

under 15-20 [LK99]. Since this model takes trajectories into account, we’re like to have

a path with “natural” looking motion.

In the remainder of this chapter, we describe the various components along with the

final planning approach. We conclude with results and analysis by using physics-based

sampling with a reduced state-space simulation core.

5.3 Articulated body simulation

In this section, we give a brief background on techniques used to simulate articulated-

body dynamics as related to this work. These include Featherstone’s original algorithm
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and hybrid techniques.

5.3.1 Articulated Body Method (ABM)

In Featherstone’s original method [Fea87], links and joints are numbered from 1 to n (for

n total links and joints) such that joint h connects link h to its parent link h− 1. The

original formulation was proposed for serial linkages with single-DOF joints and a fixed

base and it can be easily extended to more general situations. Branching or looping

structures are constructed as long as i < j, where i is the parent of link j. Multiple

DOF joints are simulated by placing several joints (each with a single DOF) between

the rigid bodies. Similarly, a floating base can be represented by associating six DOFs

with the base: three revolute and three prismatic.

Given this representation, the ABM algorithm computes all the joint accelerations,

given the current state and any external forces or torques acting upon it. The overall

algorithm proceeds in four steps.

1. Velocity computation: This step is performed in bottom-up manner and is used

to determine the velocity of each link.

2. Initialize inertias: This step initializes the articulated body inertial tensors and

the internal articulation forces in a top down manner.

3. Inertia computation: This step also proceeds in a top down manner and computes

the articulated inertias and bias accelerations.

4. Acceleration computation: This last step computes both the joint and spatial

accelerations in a bottom-up manner.

The first step iterates from the end of the body to the front and computes the velocity

of each link. The second step proceeds in the other direction (i.e. from the tip of the link

to the base), and initializes the articulated body inertia as well as internal articulation
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forces associated with each link. The third step also proceeds from the tip to the base

and computes the articulated inertia along with the articulated zero acceleration force

at each link. Finally, the fourth pass proceeds from the base to the tip, and computes

the joint accelerations and spatial accelerations for each link.

Mirtich’s Hybrid Response

Contact handling has been one of the core difficulties and challenges with multi-body

simulations. Impulse-based dynamics provides a local solution to the contact handling

problem for articulated bodies [Mir96]. Briefly, collisions are resolved by applying im-

pulses at the contact point. The ‘hybrid’ in this computation refers to combining kine-

matic joint constraints with impulses. One advantage of the method is that friction can

be easily incorporated in this formulation.

Impulse-based dynamics computes the response based upon three assumptions, which

provide a unified framework for resting and separating contact of rigid bodies. Mirtich

generalized this framework to articulated models. Based upon the ABM formulation,

the equations of motion for a robot in collision at an end effector is given by,

q̈(t) = H−1(q(t))[Q(t)− C(q(t), q̇(t)) ˙q(t)−G(q(t)) + JT (q(t))f̂(t),

where H is the joint-space inertia matrix, C describes the Coriolis forces in matrix form,

G describes external forces such as gravity, J is the Jacobian of the end effector, f̂ is the

external spatial force applied to the end effector, and Q is a vector of the magnitudes of

forces and torques being applied at the joint actuators. Collisions at other points can be

computed by aggregating the forces at that location, as well as Jacobian computation

at the contact location.

Given this formulation, a 3 × 3 collision matrix K is defined that contains the dy-

namics information to locally process a collision. Determining K for a contact point

requires applying test forces to a body and measuring the response. Since this is based
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upon the ABM method, it has O(n) complexity. One major drawback of this method

is that the response time can be very high for a large number of links or when there are

a large number of contacts.

In section 5.4, we generalize these ideas to create a response algorithm for adaptive

articulated bodies.

5.3.2 Divide-And-Conquer Articulated Bodies

Our approach is based on Featherstone’s Divide-And-Conquer (DCA) algorithm [Fea99a,

Fea99b]. Rather than considering an articulated body to be simply a set of joints and

bodies, the DCA method defines an articulated body as a recursive construction of

articulated bodies connected by joints. This construction forms a tree structure which

is commonly referred to as the assembly tree. The leaf nodes are the rigid bodies and

all the remaining nodes represent joints. The root node represents the primary joint

through which entire rigid body interaction is modeled (see Fig. 5.1).

Featherstone showed that the articulated body equations for a larger body C could

be defined in terms of two children bodies A and B connected by a joint. In particular,

if the motion equations for A and B are,

aA1 = ΦA
1 f

A
1 + ΦA

12f
A
2 + bA1 ; aA2 = ΦA

21f
A
1 + ΦA

12f
A
2 + bA2 ,

aB1 = ΦB
1 f

B
1 + ΦB

12f
B
2 + bB1 ; aB2 = ΦB

21f
B
1 + ΦB

12f
B
2 + bB2 .

Then the equations for C are given as,

aC1 = ΦC
1 f

C
1 + ΦC

12f
C
2 + bC1 ; aC2 = ΦC

21f
C
1 + ΦC

12f
C
2 + bC2 ,

where

ΦC
1 = ΦA

1 − ΦA
12WΦA

21; ΦC
2 = ΦB

2 − ΦB
21WΦB

12,
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ΦC
21 = ΦB

21WΦA
21 = (ΦC

12)
T ; bC1 = bA1 − ΦA

12γ; bC2 = bA2 − ΦB
21γ,

and

W = V − V S(STV S)−1STV ; γ = Wβ + V S(STV S)−1Q,

V = (ΦB
1 + ΦA

2 )−1; β = bA2 − bB1 + Ṡq̇,

and S is the joint’s motion subspace.

The motion subspace can be thought of as a 6× dj matrix that maps joint velocities

to a spatial vector, where dj is a degree of freedom of the joint. For example, for a

1-DOF revolute joint that rotates along the z-axis, S = [001000]T . At the leaf nodes,

the coefficients are

Φ1 = Φ2 = Φ12 = Φ21 = I−1; b1 = b2 = I−1(fk − v × Iv),

where fk is an aggregation of external forces, independent of acceleration, acting upon

the link. This can include springs, forces fields, or gravity.

The DCA dynamics algorithm consists of four steps. The first step starts at the

leaves and works up to the root while the second pass starts at the root and works to

the leaves. These two passes simply update the position and velocity information for

each joint and body.

The third pass, called the main pass, starts at the leaves and works up. This pass is

used to compute the motion equations. It first computes the coefficients for the nodes,

and progressively moves up the tree. Once the coefficients have been updated for two

children nodes, the parent is also updated. Note that this independence from nodes

other than its children also enables DCA to be easily and effectively run in parallel.

The final pass, called the back-substitution pass, starts from the root and proceeds

to the leaves. This pass computes and updates the joint accelerations at each joint as

well as the constraint forces to enforce articulation.
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For more details of each the steps, we refer readers to [Fea99a, Fea99b].

5.3.3 Adaptive Articulated Body Dynamics

Redon et al. [RGL05] exploit the structure of the assembly tree and adaptively compute

forward dynamics in the DCA formulation based on motion error metrics. Specifically,

the assembly tree is replaced by a hybrid tree. In a hybrid tree, joints are allowed to be

either active or inactive. An active joint is a joint that is simulated while an inactive

joint is not simulated, and is also referred to as rigidified. We label nodes in a hybrid

tree to be either rigid, in which case the node and its children have been rigidified, or

hybrid, when the primary joint is active but a subset of children nodes are rigid. As a

result, a fully articulated body is the one in which all nodes are active, whereas a body

in which all nodes are inactive behaves like a rigid structure. We refer to an articulated

body that contains some rigidified nodes as a hybrid body.

The motion equations for a hybrid body are similar to that used by the DCA method.

The primary difference is that if a joint is inactive, its motion subspace is replaced by

0. This converts the joint into a rigid body, and its motion coefficients are reduced to:

ΦC
1 = ΦA

1 − ΦA
12(Φ

B
1 + ΦA

2 )−1ΦA
21,

ΦC
2 = ΦB

2 − ΦB
21(Φ

B
1 + ΦA

2 )−1ΦB
12,

ΦC
21 = (ΦC

12)
T = ΦB

21(Φ
B
1 + ΦA

2 )−1ΦA
12,

and

bC1 = bA1 − ΦA
12(Φ

B
1 + ΦA

2 )−1(bA2 − bB1 ),

bC2 = bB2 − ΦB
21(Φ

B
1 + ΦA

2 )−1(bA2 − bB1 ).

The simulation of a hybrid body is similar to the DCA algorithm. Assuming that
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the set of active nodes is known, the algorithm defines a passive front. The nodes on

the passive front are those that have been rigidified, but have an active parent. These

nodes serve as the base case, or leaf nodes, for our adaptive algorithm.

The bias accelerations are computed by making a pass from nodes in the passive

front to the root. The motion equations vary based on the location of each node. Next,

a top-down pass is performed to compute the acceleration of active joints. Then, the

velocities and positions of the active joints are updated based upon the accelerations.

Finally, the inverse inertias are updated. Redon et al. [RGL05] show that these do not

need to be updated for rigidified nodes. Since each step in this dynamics algorithm only

operates on the active region, the time complexity for a step is O(dn), where dn is the

number of active joints.

Since this algorithm only simulates a subset of the nodes, it can result in approxi-

mation errors in the motion of the articulated body (as compared to the original DCA

algorithm). In order to quantify this error, we utilize the motion error metrics [RGL05],

the acceleration metric value and the velocity metric value:

A(C) =
∑
i∈C

q̈Ti Aiq̈i,

V(C) =
∑
i∈C

q̇Ti Viq̇i,

where Ai and Vi are symmetric, positive, definite dJi×dJi matrices, and dJi is the number

of degrees of freedom of joint i in C. The acceleration metric can be computed without

explicitly computing the accelerations of the joints in C.

One of the main components of the algorithm is the computation of the active region.

This can be done in two ways: with an user defined error threshold, errormax or an user

defined number of active joints, dn. Note that this does not need to be done at every

time step, but may add additional error to the system.

For the error threshold, we maintain a current error as errorc. Initially, we set
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errorc = A(C), where C is the primary joint of the root node. This represents the

total acceleration metric value for the body. If errorc > errormax, we compute the

acceleration and forces for the current joint, remove its contribution, q̈TAq̈, from errorc,

compute the acceleration metric value for its children, and add these into a priority

queue. Body A has a higher priority than a body B when A(C) > B(C). We proceed

along the nodes with the highest priority, until we satisfy our error bounds.

For the specified number of active joints, we proceed in a similar fashion. Initially,

we add the primary joint of the root node to the priority queue. For each joint at the

front of the queue, we remove it, compute its joint acceleration, the metric value of its

children, and add the children to the queue. We continue this process until we have

simulated, or computed the acceleration and forces, for dn joints.

The simulated joints from this step make up the transient active region. We then

update the velocities and velocity metric for this region. From this information, we

determine the new active region once again based upon the velocity metric in a similar

manner to that above. Additionally, there may be nodes in the transient region that

do not need to be simulated. Impulses are applied to the body to zero out these forces.

For more information, we refer the reader to [RGL05].

5.4 Efficient Collision Handling for Adaptive Artic-

ulated Bodies

We address the problem of handling complex interactions between articulated rigid

bodies with a high number of DOFs. Our solution incorporates static or dynamic friction

states, resting states, as well as separating contacts. Many different methods have been

proposed to detect such interactions and handle them robustly. Some of the commonly

used approaches include constraint-based, penalty-based, impulsed-based methods, or

via analytical constraints.
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Figure 5.2: Collision Frame: The collision frame, Fcoll is determine by the
point of contact and the contact normal. By convention, the z-direction of the
collision frame is in the direction of the contact normal. Forces upon link k must
be transformed from the Fcoll to Fk, the link’s inertial frame.

In this section, we present our adaptive contact handling algorithm. This is based

on using a hybrid hierarchy for collision detection as well as Mirtich’s impulse-based

dynamics algorithm for response computation. We also present a formulation of the

hybrid Jacobian and show how it can be used for contact handling in sub-linear time,

or linear with respect to the number of active joints (which is typically much less than

the total number of joints).

5.4.1 Adaptive Impulse-Based dynamics

As shown in [Mir96], proper contact handling involves computing the collision matrix K

for rigid as well as articulated models. Given the collision matrix, collision integration

can be performed by finding a spatial impulse that is applied to the colliding link. This

spatial impulse causes a change in joint velocities that must be propagated through

the articulated body. In more detail, the following steps are performed to compute the

response to each contact:

1. Update the articulated inertias of the bodies.

2. Apply a test impulse to the colliding link.
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Figure 5.3: Multiple simultaneous collisions: Each collision imparts a large,
external force onto the associated link. We present an efficient algorithm to com-
pute collision response. The complexity of our algorithm is linear in the number
of contacts and sub-linear in the number of DOFs.

3. Compute the impulse response of the body along the path from the colliding link

to the base. This involves one pass through the links of the articulated body from

the colliding link to the base, and another pass from the base to the colliding link.

4. Compute the collision matrix K by applying test impulses of known magnitude

and measuring their effects.

5. Use K and collision integration to compute the collision impulse.

6. Propagate the collision impulse to the base.

7. Propagate the resulting changes in velocity throughout the body.

The primary challenge here is to adapt these steps in the framework of the adaptive

dynamics (AD) algorithm. Most of the changes are algorithmic. The resulting algo-

rithm would compute the same impulses as when Mirtich’s algorithm is applied to an

articulated body that has the same structure and rigid links as that of the hybrid body.

The primary equations used to compute Mirtich’s response, such as those necessary to

propagate the impulse or the components of K, do not change. Instead, the amount of

computation is reduced by utilizing the adaptive dynamics framework. Any change to
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the equations, for instance the dimension of the Jacobian or of the joint acceleration and

velocity vectors, vary with the number of active joints. With this in mind, we describe

the algorithmic changes to Mirtich’s collision response for articulated bodies.

If the inertia computation can be reused, the first step is performed during the

forward dynamics calculations. Unfortunately, this is not the case for either DCA nor

AD. Instead, this can be done by visiting the resulting rigidified sub-assemblies and

computing their inertias. This essentially traverses the leaf nodes of the active portion

of the subtree, and can be viewed as an in-order traversal of nodes on the active front.

Since only active nodes are being visited, this step takes time linear to the number of

active joints, rather than the total number of joints.

The next two steps are repeated for three passes for each articulated body involved

in the contact, one for each of the standard basis directions. The relationship between

the applied contact impulse and the change in velocity is linear (since K is constant

for a given contact), which allows the response to be measured through the application

of known test impulses. Each pass applies a unit test impulse in a basis direction.

Application of test impulse requires evaluation of joint accelerations, which we have

shown to be sub-linear by our adaptive method.

Once a test impulse is applied, the impulse response is measured. For a fully-

articulated body, this operation has a worst-case run time of O(n). By exploiting the

adaptive front of the hybrid tree, we test the impulse response of the hybrid body, ef-

fectively treating each rigidified section as a link or a rigid body. Then, traversal to the

base link is equivalent to following the adaptive front in the hybrid tree. For an adaptive

serial linkage built as a balanced tree, this is a subset of the nodes along the passive

front. In particular, we iterate through nodes along the passive front that are seen prior

to the colliding link in an in-order traversal of the hybrid tree. During this step there

is no need to traverse deeper than a node along the passive front. By following this

front, the computation is reduced to iterating over only a subset of active joints, again
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achieving a sub-linear run time for this step.

One more detail needs to be noticed here. Spatial velocities need to be tracked

throughout the rigidified links. However, AD (and DCA) maintain state only through

the joint positions and velocities. We rely upon the Jacobian to map joint velocities

into spatial velocities. Normal analytical solutions for the Jacobian would require iter-

ating through all the bodies and joints. Instead, we introduce an hybrid-body Jacobian

which treats the body as having fewer active links with some joins rigidified. From this

formulation, our Jacobian computation only needs to iterate through the active joints

and we maintain the desired sub-linear run time for this step as well. The computation

of a hybrid-body Jacobian is explained later.

Steps 4 and 5 both involve computations that are independent of the number of

joints or bodies, and cannot be accelerated by the adaptive structure. Once the collision

impulse, p̂coll, has been applied to the body, it must be propagated through the nodes.

The first step passes p̂coll again from the link to the base node. This is performed in the

same manner as in measuring impulse response.

The final step requires propagating the change of velocities due to p̂coll through the

body. This step is accomplished through one bottom-up pass to update the joint velocity

of the root, followed by a top-down pass to pass it to the remaining bodies. This step

only has to be performed for nodes in the update region, achieving a sub-linear runtime.

At this point, the contact has been processed and its effects have been propagated

through the articulated body.

Note that this method only solves for translational contact and collision. The spa-

tial collision impulse does not contain any torque. Thus, impacts related to joint limits

or friction between joints cannot by simulated by impulse-based dynamics in this for-

mulation. Other methods, such as analytical constraints, can effectively simulate the

dynamics of these events. Next, we explain how to incorporate analytical constraints

for events that require a response torque.
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5.4.2 Analytical Constraints

Adaptive dynamics fits very nicely into this type of framework for response. Based upon

the standard articulated body equation, Kokkevis showed that at a given time instant,

there exists a linear relationship between the magnitude of the joint accelerations and

the magnitude of all forces, both internal and external, acting upon the body [Kok04].

This relationship can be expressed as

q̈f = kf + q̈0,

where q̈0 and q̈f are the joint accelerations before and after some force is applied. A

proof of this relationship is given in [Kok04]. Contact, collisions, as well as other joint

constraints, can all be posed in this manner. We focus on its use for joint constraints.

There are a couple of considerations when using this technique with AD. First, the

motion equation is based on slightly different sets of equations than as compared to

what AD is based upon. Second, this derivation leads to a computation model which

is linear in the number of joints. Moreover, we can only interact with the articulated

body at the handles. Thus, external forces must be transformed into equivalent forces

at one or more handles, resulting in less efficient computations.

The first issue can be easily resolved. The matrix form of motion equations is com-

putationally equivalent to Featherstone’s ABM method. The second issue requires small

modifications to the analytical constraints algorithm. In proving the relationship be-

tween forces and accelerations, one step requires converting all external forces acting

upon the body to a generalized force and torque. This conversion is normally done

through multiplication by the Jacobian at the point of contact or manipulation. An-

alytically computing this Jacobian is an O(n) operation. Instead, we again base our

response using our “hybrid-body Jacobian.”

Given the hybrid tree, a “hybrid body Jacobian” can be computed or closely approx-
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imated in a number of ways. The key concept is that we only need to recurse through

the active joints, reducing the Jacobian computation to an O(dn) operation. We will

describe this step in more detail in the next section.

It follows that for any linear function h of joint accelerations q̈, there exists a k such

that:

h(q̈f )− h(q̈o) = kfı.

Therefore, by evaluating the linear constraint function h before and after the application

of some known (non-zero) force fı, we can solve for k and use that to compute the force

which must be applied to obtain a given value of h(q̈). For the case of joint constraints

or impacts, we then apply the resulting torques to the specified joint or handle.

In many cases, several constraint equations will have to be solved simultaneously in

order to ensure that the solution from one constraint does not have an adverse effect on

another constraint. For instance, this occurs when multiple joints are exceeding their

positional limits. This method can be generalized into solving a system of p constraint

equations:

h− ho = Kf ,

where h and ho are p-dimensional linear functions of one or more joint accelerations, K

is an p× p matrix with the kij values relating constraint i and j, and f is a p× 1 vector

of constraint forces.

One advantage of this approach is that it is fairly simple to use once the articulated-

body implementation is in place, since it only needs to set forces and retrieve the resulting

body and joint accelerations. This is similar to the application of test impulses in

the previous section. Since each update is a O(dn) operation for dn bodies, solving

for p constraints takes times O(dnp + p3), since solving the linear system is a O(p3)

computation in the worst case. In our tests so far, p is typically much smaller than dn.

One of the important applications of acceleration-based constraints in our algorithm
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is to resolve joint limit violation events. A joint reaching a limit can easily be detected

by comparing the current joint position to some known limit.

Kokkevis [Kok04] gives a fairly complete method for resolving these constraints, but

we suggest ways to simplify the physical simulation in order to improve the overall

computation. The goal of these constraints is to cause an instantaneous change in the

velocity through the application of an impulse to ensure that the joint does not move

further in its current direction. We also need to ensure that it is not accelerating in this

direction.

The application of an impulse can be considered as applying a large force over a

very short time, the compression and restitution phase of a collision. We can choose a

desired resulting joint velocity (usually zero) to result from a joint impact. Given this,

we can build an acceleration constraint by approximating the desired acceleration as:

q̈I =
q̇+ − q̇−

δt
,

where q̈I is the joint acceleration during δt, and q̇+, and q̇− are the joint velocity before

and after the impact. This joint acceleration could then be used with the constraint

equation h(q̈) = aı(q̈)− aIı to solve for the force that will enforce the constraint.

The process for resolving joint limits is very similar. An impact constraint can be

used to compute an impulse that will cause the velocity of the joint breaking its limit to

be zero. A joint acceleration constraint can be used to ensure that inter-penetration will

not occur in later steps. Again, since the process for joint velocities has been formulated

as an acceleration constraint, we maintain the same complexity as that portion. Thus,

resolving joint impacts fits within our sub-linear run-time resolution scheme.
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5.5 Physics-based Sampling and Path Computation

In this section, we tie the components together to create a physics-based sampling

strategy in the case of highly articulated robots. As previously mentioned, we exploit the

coherence between joint angles via the adaptive forward dynamics framework. Joints are

first prioritized based upon well-defined motion metrics. Then, only the most important

joints are simulated which effectively reduces the dimensionality of the search space.

Potential bias forces are applied to encourage movement towards a goal.

Hard constraints such as non-penetration and environment bounds are handled

through the use of accelerated collision detection and impulse-based collision response

for hybrid articulated bodies. It remains to define additional constraints used to direct

or bias the sampling direction.

5.5.1 Additional constraints

To encourage the system toward a goal, we generate several types of constraint forces

and torques as biasing forces. This has the similar effect of a potential-field planner

guiding a robot towards a goal configuration. To avoid problems of local minima in

the “potential” well, additional forces are introduced to ensure that the robot makes

progress toward its goal.

The first force is a repulsive force that helps to keep the robot away from obstacles.

If contact occurs with the environment, impulse-based responses are applied to ensure

no penetration with obstacles. We can create simple limited radius repulsive force based

upon the distance to the link. For each link, we apply a force

forceobi
(bj) =

 −( δ2

d(bj ,obi)2
− 1)d̂ if d(bj, obi) < δ

0 otherwise
(5.1)

where δ is a distance threshold, d(bj, obi) is the distance between rigid link bj and
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obstacle obi, and d̂ is the direction from bj to obi.

The second is an attraction force to the goal configuration. This force can be applied

to the entire body, a subset of links or joints, or alternatively to a single node or joint

such as the end effector:

forcegoal(q) = wgoal
(qgoal − q)

‖qgoal − q‖

where wgoal is a goal node weight, qgoal is the goal configuration.

To escape local minima, we use a third path-following force at the cost of generating

a path for a point robot in the workspace. This methodology works especially well in

situations where the end effector needs to reach a point, and the configuration of the

remainder of the robot is less important as long as it is valid. The path following force

acts much like the goal attraction force, but instead uses a configuration along the path

on the way to the goal.

The fourth is a torque rather than a force. It encourages the robot toward the desired

goal configuration. This control is implemented as a linear torsion spring acting on a

joint:

torqueji = −ks(qi − qgoal)− kdq̇i

where ks is the angular spring coefficient and kd is an angular sprint damping coefficient.
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5.5.2 Motion generation

Input: Robot R, Starting configuration qstart , Goal configuration qgoal , obstacles

o1, . . . , on

Output: A path of robot states, S

Ri.q ← qstart ;

while d(Ri.q, qgoal) > GoalReachedThreshold do

Add Ri to S;

Apply potential bias forces to Ri;

/* Generate next sample */

Ri+1 ← AdaptiveDynamicsSolver(Ri);

/* Prioritization of Joints */

remainingMotion ← A(Ri+1.treeRootNode);

PriorityQueue P .enqueue(Ri+1.treeRootNode);

nodeCount = 0;

while remainingMotion > motionThreshold and nodeCount <

numActiveNodes do

n← P .front;

Mark n to be simulated;

P .enqueue(n.leftchild);

P .enqueue(n.rightchild);

remainingMotion ← Σni∈P A(ni);

nodeCount ← nodeCount +1;

end

Ri ← Ri+1;

end

Algorithm 4: Physically-based sampling and path computation

The framework described here can be used in at least two ways: either as a local

planner when coupled with some high-level randomized planner, or potentially as a
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way to determine the entire path. Pseudocode for the sampling algorithm is given in

Algorithm 4.

The method begins by first initializing the robot, R, with the starting configuration,

qstart . If the robot is sufficiently close to the goal configuration, qgoal , then the planner

has reached the goal. Otherwise, we apply the potential bias forces to the robot. Next,

The adaptive forward dynamics solver is used to determine the joint accelerations and

perform numerical integration in order to arrive at the next sample. Finally, prioritiza-

tion of the joints determines which joints should be simulated, effectively reducing the

dimensionality of the problem.

This results in a path or path segment that maintains kinematics and dynamics

constraints at every intermediate configuration. With the efficient forward dynamics

algorithm, we are able to compute this in a relatively small amount of time. Other

probabilistic planners would likely require significantly more time or do not typically

take both kinematics and dynamics constraints into account.

5.6 Results and analysis

5.6.1 Collision handling results

We have implemented our collision detection and response algorithm on top of adaptive

dynamics. We use three benchmarks to test the performance of our algorithm.

1. The first benchmark shown in Fig. 5.4 allows a highly articulated pendulum to

swing back and forth. Along its path are various pegs with which the pendulum

collides. The pendulum is modeled using 200 DOFs and we have observed 5X

speedup in this simulation using our adaptive algorithm.

2. This scenario involves taking a thread-like articulated body (Fig. 5.5), and feeding

it through a sequence of holes. This benchmark involves computing the collision
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Figure 5.4: Pendulum benchmark: For testing the feasibility of our collision
handling approach, in this benchmark an articulated pendulum with one end fixed
to a point falls toward a set of randomly placed cylinders. The pendulum is
modeled with 200 DOF. A visually accurate simulation was run with only 40 active
DOFs and gives a 5X speedup in collision detection and response computation.

Figure 5.5: Threading benchmark: The articulated body is modeled with
300 DOFs and moves through a sequence of holes in walls. At each step of the
simulation, we use only 60 DOFs for adaptive dynamics and collision response
computation. Overall, our adaptive algorithm results in 5X speedup in this simu-
lation.
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Figure 5.6: Bridge benchmark: The articulated body travels around the
bridge in a snake-like motion. The body contains over 500 links and 500 DOFs
(i.e. 500 DOFs). We used only 70 DOFs for adaptive dynamics and collision
response, resulting in 8X improvement in the simulation.

response at the hole boundaries, but also adaptive forward dynamics computation.

The articulated model contains 300 DOFs, and we observe 5X speedup in this

complex simulation.

3. The bridge benchmark (Fig. 5.6) is to demonstrate the idea on snake-like robots.

The articulated body wraps around the bridge as a means to travel across it.

The body contains over 500 DOFs and large portions of the body are in contact

with the bridge. Our adaptive simulation algorithm achieves 8X speedup in this

simulation.

In our benchmarks, we observe significant improvement in the performance of colli-

sion response computation algorithm. In each benchmark we fixed the number of active

joints and the performance of our algorithm is directly proportional to the number of

active joints. As can be seen from the graph (Fig 7), the performance is roughly pro-

portional to the ratio of active joints to the total number of joints. Furthermore, the

absolute performance numbers are very similar for articulated bodies with the same
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Figure 5.7: Collision response time vs. number of active joints: This
chart shows the average time to process a collision for a fixed number of active
joints. It also shows that there is a relatively linear relationship between the active
joints and the running time.

number of active joints and do not vary much as a complexity of environment or the

number of contacts. This result is promising since it shows bodies with any number of

or DOFs can be simulated at about the same rate. However, if we use only a few DOFs,

than the resulting simulation can have higher errors.

Runtime Analysis

In the modified response algorithm, each step runs in O(dn) time, where dn is the number

of active joints. From empirical results, we observe that it is sufficient to have dn < n

without introducing significant error into the system for models with a high number of

DOFs. For articulated bodies with a large number of DOFs, this speedup is beneficial as

the hidden constants in the analysis can be fairly large. For instance, in order to compute

the matrix K for impulse response, there can be as many as twelve propagations through

the joints and links. This happens when two articulated bodies are colliding and each

body measures the result of three test impulses and each impulse requires two passes
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through the active joints. Finally, the number of these contacts depends mostly on the

geometry of the environment as well as the geometry and placement of the articulated

bodies.

Approximation and Collision Error

Since the original AD algorithm provides bounds on error, we wish to show that the new

algorithm maintains some error bounds as well. First, note that our algorithm effectively

computes the correct Mirtich-based response for the hybrid body. Each contact response

computed could have a direct effect on the joint acceleration of each rigid link. This in

turn also causes a change in joint velocity at each link. Since both joint acceleration

and velocity are both used in the error metric, this could have an effect on the active

joints.

Since the active joints are determined by a priority-based recursive evaluation of the

metrics, this could mean that various resulting motions are possible with this technique.

If the collision response causes a joint to have a significant acceleration or velocity, then

the rigid zone update would observe it and the joint would likely be activated. On the

other hand, in situations where this is not significant, perhaps when the body is at rest,

or the joint velocity of a joint is much less than that elsewhere on the body, then these

joints will not be activated. The resulting motion would still be valid and motion error

as measured by the acceleration or velocity metric is bounded.

For best results, active region updates are performed at every timestep or at the

end of every timestep that consist of a collision. However, this has a reasonably high

overhead that is proportional to the number of active joints. This is especially true

when the body is in constant contact with an obstacle. While asymptotically the run-

time complexity is still O(dn) for these operations, the constant associated with the

computation can increase considerably. In practice, it is sufficient to only apply updates

about every ten to fifteen timesteps, since the long term impact of collisions do not
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Table 5.1: Articulated body planning performance table: Planning perfor-
mance breakdown across each of our benchmarks. Longer simulation times result
from the robot having to travel a greater distance, whereas the average step times
are relatively uniform across all environments.

disappear in a short time interval. Within this interval, changes in acceleration and

velocity seem to be accurately captured without a significant hit on performance.

It should also be noted that delaying the update can also add to the amount of error.

Since a reasonably good set of active joints should have been chosen prior to a collision,

the motion should still be representative of the general motion. This error is essentially

limited by the update interval.

We implemented this algorithm on a Dell M60 Mobile Workstation, with a 2.1GHz

Pentium M processor and 1GB of main memory.

5.6.2 Planning results

We tested our algorithm on a number of benchmarks. In each case, a highly articulated

robot in a serial linkage must navigate through an environment. The goal of the planning

is for the end effector to reach a certain position in the workspace. The base links of the

robot, including the thin rigid bodies as described in Section 5.2.2, are cylinders, each

represented by 20 triangular primitives.

• Serial Walls - This scenario is based on a benchmark created by the Texas A&M

Parasol Laboratory. A 300 joint articulated chain must travel through a sequence

of walls with holes. (See Fig. 5.9(a))
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Figure 5.8: Planning time vs. Number of active joints: Relationship
between active joints and planning time for the Serial Walls (300 DoF) and Tunnel
benchmarks (600 DoF). The horizontal line represents the time taken by using
Featherstone’s DCA algorithm. The values above it are the speed-ups over the
DCA algorithm when that many active joints are simulated.

• Tunnel - Also based on a benchmark created by the Texas A&M Parasol Lab-

oratory, the tunnel environment requires a 600 joint articulated chain to move

through a tunnel. The tunnel has two right angle bends about half way through

the block. (See Fig. 5.9(b))

• Catheterization - This scenario is based upon a medical procedure called liver

chemoembolization. A thin, flexible catheter, modeled as a 2500-joint articulated

robot, must travel through a network of arteries. The goal is to find a tumor in

the liver for cancer treatment. (See Fig. 5.9(c))

• Pipes - This situation represents an application of snake-like robots in a pipe

inspection task. The 2000-joint robot supports itself by coiling around a pipe while

searching for a leak. The coiling behavior was encoded into the goal attraction

force. (See Fig. 5.9(d))
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Figure 5.9: Articulated planning benchmark scenarios: (a) Serial Walls;
(b) Tunnel; (c) Liver Catheterization; (d) Pipes; (e) Debris.

• Debris - In this case, the 2000-joint robot aids in a search-and-rescue operation.

The goal is to find an opening into the debris pile and to seek a large, open pocket

where a survivor or important item may be found, and then to plan a way out.

(See Fig. 5.9(e))

Our sampling method was able to complete the task without the explicit need to

perform planning in the high-dimensional configuration or state space. Planning perfor-

mance and sampling time using adaptive dynamics simulation is given in Figure 5.1. We

show results for a fixed number of active joints that determine the reduced dimensional-

ity of the configuration space for the articulated body. The fourth and fifth columns give

the geometric complexity of the robot and environment. Finally, the last two columns

give the total planning time followed by the average time it took to generate samples

en route to the goal.

As can be seen, our algorithm has very favorable performance. Aside from the

complexity of the environment and robot, other factors that affect the performance

include the length of the path and any velocity constraints on the robot. Longer paths

or slow speeds will increase the time it takes to reach a solution since the robot only

travels a finite distance for each step. We observed up to an order of magnitude speed

with 10% to 15% of the joints being active. Figure 5.8 shows the speed-up over simply

using Featherstone’s algorithm for a fixed number of active joints.
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Figure 5.10: Full vs. Reduced dimensionality articulated body accu-
racy: Visual comparison of the simulation of an articulated with 100 joints. On
the left, all 100 joints are simulated while on the left only the most important 25
of the 100 are simulated. Each segment represents a rigidified portion of the body.

Motion Deviation Analysis

The effectiveness of the state space reduction is dependent upon the allowed motion

threshold. To get an idea of how the motion affects dimension reduction, we tested

various threshold settings in the Serial Walls environment. We have observed that by

halving the motion metric threshold, the dimensionality increases by 9% to 38%. Also,

there were certain threshold values which caused a much larger change than others.

This is likely due to the fact that even though we reduce motion threshold, the current

motion is close enough to the actual motion that it requires a smaller threshold to

capture additional motion deviations. Since the total planning time is closely related to

the average dimensionality, we noted that halving the threshold increased the planning

time by about 10% to 34%.

While accurate simulation is not a focus of this planning work, we like to comment

briefly on the kinematic and dynamics differences that results from the reduction. First,

we note that quantitatively, motion deviation metrics as defined by adaptive dynamics
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Figure 5.11: Joint angle difference over time: Each curve shows the max-
imum joint error during the Serial Walls benchmark for a fixed motion metric
threshold.

is very difficult to interpret. Therefore, we consider the joint angle difference between

adaptive dynamics and full dynamics simulation over the course of a planning situation.

Fig. 5.11 shows the joint difference throughout the Serial Walls benchmark for varying

amounts of motion threshold. Since the difference is bounded on a per time step basis,

it has a tendency to slowly accumulate over the course of the planning. The potential

forces help to reduce the total difference by ensuring that the robot follows roughly the

same path regardless of the amount of simplification. This accounts for some of the

sharp drops seen in the graph.
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Discussion

There are several advantages and some disadvantages of this method. It is able to per-

form physically-based local planning in a high-DoF state space in a reasonable amount

of time. Its performance makes it a favorable choice as a local planner for either PRM

or RRTs to compute link queries. However, as the distance between the start and goal

configuration increases, the time to find this path increases since it moves a finite dis-

tance per iteration. Additionally, it is possible that this method may fail to find a path,

even if one exists. Although, in practice this has not been a problem when adequate

forces are applied to the robot to escape local minima due to various constraints.

We examine the resulting trajectory generated by the various sampling criteria. Note

that for a highly articulated body of 300 joints the standard PRM and RRT algorithms

were not able to find a solution within a suitable period of time. Thus, the following

discussion examines the trajectory if such a path was found.

• Path Validity

We first mention that paths generated by this algorithm are completely valid.

Contact constraints and forces ensure that no penetration occurs between the robot

and obstacles. When no dimension reduction occurs, the generated solution will

clearly adhere to kinematic and dynamics constraints and joint angle limitations

will not be violated. When joints are rigidified, they were already in a valid state

and will remain that way if become active again. Therefore, at any time instant,

all the joints will be in a valid configuration and the resulting path is valid.

• Comparison with Configuration-Space Planners

For randomized C-space planners, we compare our method with solutions that

might be generated via PRMs or RRTs. It should be noted that in most common

implementations, a robot travels between milestones along a straight-line path.

While this will yield valid results, kinematics constraints require additional checks
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for each link and dynamics constraints are not considered. So, the motion may not

be smooth when transitioning between links. Thus, the quality of the resulting

motion may not be as realistic, though the computed solutions may be adequate

to solve the problem.

Arguably, if the space is more completely sampled by a random kinematics based

method, then the milestones would be quite close. In that case, the motion gen-

erated by the resulting path would be much better. However, sufficient sampling

of this space would not be practical.

In comparison, each configuration along a path generated by our method will

follow a simplified kinematics and dynamics model. Thus, the resulting motion

will look natural with respect to how the world is modeled and the biasing forces

being applied.

• Compared to state space planners

While deterministic kinodynamic solutions exist for some simple problems, many

of these will not scale to the dimensionality of our benchmarks. Therefore, one

of the randomized kinodynamic planners may be able to generate some solution.

However, such an approach is likely to take an extraordinary amount of time and

not practical. For instance, it took an RRT-based kinodynamic planner on average

over 10 minutes to compute a path for just a rigid body in space (i.e. 12 DoF state

space) on an 800 MHz Pentium III computer with 256 MB RAM [LK99]. While

it would be much faster with current computational resources, it also was a very

simple model.

Again, in our solution the kinematics and dynamics are modeled for a simplified

model. Thus, while the resulting motion may not be identical to the full kino-

dynamic solution, it will not be much worse, assuming that we set a sufficiently

small motion threshold as can be seen in Fig. 5.11.
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Chapter 6

Numerous Agents

6.1 Introduction

Multiple robots and agents are increasingly used in different applications to cooper-

atively solve complex tasks. These include assembly, manufacturing, swarm or dis-

tributed robotics, virtual prototyping, animation, traffic engineering, crowd simulation,

etc. Given a set of rigid or articulated robots with their initial and final configura-

tions, the goal is to compute a collision-free path for each robot as it moves among the

obstacles and other obstacles.

Compared to single-robot motion or path planning, the multiple-robot problem is

more challenging in terms of the theoretical complexity as well practical implemen-

tations. A variety of factors contribute to this added complexity. Most notably, in a

multi-robot system each robot’s degrees of freedom (DOFs) contribute to the total num-

ber of DOFs of the system. Thus, the problem complexity itself grows rapidly with the

number of agents. One of the other main challenges is coordination among the different

robots. In many cases, robots must work together in order carry out a task, maintain

a formation, or stay within a group, all while also coordinating their motion such that

they do not collide.

Multi-robot planning can also be viewed as many individual robots that must navi-



gate among many obstacles whose motion is not known a priori. In this situation, the

problem is how to have this robot adjust to the motion of the surrounding obstacles.

If group tasks or formations or involved, other agents must be considered even though

the single robot cannot predict how the other agents are moving. These properties of

multi-robot planning make it challenging to develop a complete planner even for systems

with only a few robots.

Prior techniques for motion planning and coordination in multi-robot systems can be

classified into centralized and decentralized methods. The centralized methods group the

robots into one large system and reduce the problem to planning the motion of a single

composite robot with high DOFs. Coordination requirements can further constrain

the search space and result in rather narrow passages. Decentralized methods reduce

this overall complexity by exploiting the independent nature of DOFs between robots.

Typically, each robot initially plans a path independently of the other robots. Then, a

coordination step is required to ensure that different robots do not collide with each other

while traversing their paths. However, the overall approach is susceptible to reliability

issues and may not work well in practice [SL02, SI06].

The physics-based sampling framework fits naturally into a decentralized planning

scheme, and this can be approached in a variety of manners. The most natural extension

is to arrange the robots as in the previous chapters: each robot has a guiding path, and

the physics-based simulation core along with it constraints can represent the collision

avoidance needed when robots are close to other obstacles and as they near their goals.

However, with a fixed guiding path, this prevents the robot from adjusting to changes

in the environment which invalidate the guiding path. Thus, in another approach we

have the robot’s path adjust as their obstacles move. In this way, we consider a physics-

based roadmap which uses the sampling to drive updates. This too has some challenges.

First, the cost of frequently updating a roadmap can be prohibitively expensive for

large and complex problems. Furthermore, smooth path changes on the physics-based
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Figure 6.1: Guarding and escorting: This image is from a guarding and
escorting scenario. 35 aggressive robots (in red) are trying to reach an important
robot (in green). The black robots are attempting to stay in a formation while
protecting the important robot. Their goal is to escort it across the environment.
Our social force model allows the aggressive robot to move toward the important
robot while avoiding collisions and distance coordination constraints are used to
help maintain the formation. This benchmark took 132.9 s with an average step
time of 42 ms.

roadmap may not always translate into motion that is physically plausible, particularly

at the milestones. Finally, the motion of agents using a physics-based roadmap might

ignore any require coordination between the robots unless that is also encoded into the

roadmaps.

These solutions again represent both ends of a spectrum. On one end, all agent

interactions are handled via physics-based sampling constraints. However, these are

local in scope and cannot adjust to changes in the environment which would invalidate

the guiding path. On the other hand, a more dynamic, physics-based roadmap does not

scale well to large numbers of robots and is difficult to represent for a wide variety of

problems. We seek a solution which uses both of these concepts. We maintain a novel
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roadmap representation which incorporates some ideas from physics-based sampling to

ease the work of global replanning. Individual robots, each of which follows a physics-

based sampling methodology, use this roadmap as a guiding path so that they can reach

their goal.

6.2 Overview

In this section, we introduce the main concepts and definitions for the remainder of

this chapter. We highlight our results with a specialized model for crowd simulations in

densely populated and complex environments.

6.2.1 Notation and definitions

We address the problem of collision-free motion planning for multiple robots in a dy-

namic environment. Consider a set of n robots, R = {r1 . . . rN}, where each robot

ri ∈ R is a rigid or articulated body. The physical state, qi(t), of robot ri(t) at time

t can be described by its degrees of freedom (DOFs) and the first-order derivatives of

the DOFs with respect to time, i.e. qi(t) = [xi(t) ẋi(t)]
T . We make no assumptions

about the motion of r relative to each other and the goal of each robot is completely

independent of the other robots. A set of m constraints, F = {Ci . . . Cm} act on robots

in R and obstacles in O. The constraints include soft constraints such as goal seeking,

the coordination constraints such as agent grouping, and other hard constraints such as

non-penetration of other bodies.

A configuration qi in the configuration space Ci of robot ri describes the position

and orientation that robot. We use the symbol Fi(t) to denote the free space of ri at

time t. We represent the workspace as D with obstacles O where the motion of each

obstacle oi ∈ O may not be known ahead of time. We consider that state of a obstacle

at time t as oi(t) and refer to Ci-obstacle as the subset C \ Fi(t).

137



Given an initial state of the system Q(tinitial) = {qi(tinitial) . . .qn(tinitial)}, a final

stateQ(tfinal) = {qi(tfinal) . . .qn(tfinal)}, and a list of constraints F , or goal is to compute

a collision-free path for each robot through the environment and among other robots or

agents.

6.2.2 Extension to multiple robots and dynamics environments

Our target application is in large scale crowd and social simulations, in both simulated

and online virtual worlds. Our aim to provide path planning for a large number of agents

in complex environments. Thus, each agent or robot should maintain its own goal as

well as any other constraints it has with respect to nearby objects or other agents.

As briefly described earlier, we decompose the problem into two separate problems.

First, we consider a single agent’s motion solely among other agents as would be neces-

sary to follow a fixed, guiding path. Since this task considers constraints and obstacles

only nearby a given agent, we refer to this as local navigation. Second, we consider how

the guiding path itself can be adjusted using concepts from physics-based sampling to

accommodate changes in which may invalidate a guiding path. Since this considers the

global connectivity, we refer to this as global navigation. Finally, we highlight the in-

tegration these two approaches for a efficient and scalable planning algorithm for many

agents. This will give us a list of constraints needed to solve this problem in a practical

amount of time.

The following items are the main components in our multiple robot extension to

physics-based sampling.

1. Dynamic guiding path: By utilizing the physics-based sampling core, we gen-

eralize the concept of a guiding path to be that of a “reactive deforming roadmap”

(RDR). Briefly, a RDR can adapt a link or milestone within a local region of itself

while motion of surrounding obstacles is relatively small. If the motion becomes

too large for the link, the RDR performs a replanning step to help regain con-
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nectivity if it is lost. Finally, the RDR will serve as the guiding path for each

robot.

2. Agent representation: Following with the ideas of physics-based sampling,

agents are represented by physical objects with establish motion equations.

3. Coordination constraints: In addition to the standard constraints defined in the

physics-based simulation core, the multi-robot planning problem places restrictions

on how the robots can or should move amongst each other. We develop motion

constraints based on established motion models which look at how pedestrians

move among each other.

4. Integrated global and local navigation: Rather than restrict each agent onto

the path as defined by the RDR, we integrate the two methods via link bands.

These link bands are regions of the free-space which are described by the band itself

and provide an easy mechanism for defining how an agent should move through a

region. These are similar to corridors, as described in some multi-robot literature

[GO07].

5. Autonomous agents in online virtual worlds: To show the applicability of

the local navigation model, we had an additional goal of planning for virtual agents

in an online virtual world. Local navigation is computed for each virtual agent on

its local host and commands are sent to the central server. Additional planning

considerations to help account for network latencies are included.

6.2.3 Global navigation

The problem of path planning, especially in the case where obstacle motion is not

known in advance, has received a great deal of attention over the past two decades.

Many proposed approaches can be classified into two two broad-level techniques: path
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modification and replanning algorithms. The path modification techniques allow the

robot to react to dynamic obstacles, but cannot cope with changes in the connectivity

of the free space. On the other hand, replanning methods update the connectivity and

compute new paths during execution. However, the cost of performing these updates can

be relatively high and current algorithms do not scale well to a large number of robots.

To overcome these challenges, our goal is to build a roadmap data structure which

incorporates both of these ideas such that the roadmap can quickly handle smaller

changes to the environment, but be robust amid motion in the environment which

changes the global connectivity of the roadmap itself.

Reactive Deformation Roadmaps

As previously mentioned, given a robot, ri, we treat all the other robots as dynamic

obstacles. As a result, the extended motion planning problem reduces to computing a

collision-free path for each robot in a dynamic environment. By planning for each robot

in this manner, each robot finds a collision free path through the environment. As the

obstacles and other robots undergo motion in the environment, we update the roadmaps

so that they capture the connectivity of the free space. Allowing paths themselves

to react or move to remain in the free configuration space provides a simple way to

respond to small changes in the C-obstacle boundaries. To accomplish this task, we

utilize Reactive Deformation Roadmaps (RDRs). An RDR is a dynamic data structure

for motion planning of multiple robots in dynamic environments. A RDR dynamically

captures the connectivity of the free configuration space F . The RDR itself is composed

of dynamic milestones and reactive links. The dynamic milestones correspond to points

in F and are allowed to move as F for a robot changes. The reactive links are collision-

free paths between two dynamic milestones. As the milestones associated with a link

move, that link deforms based on energy minimization and thereby reacts to the motion

of the dynamic obstacles and other robots. (See Fig. 6.2).
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Figure 6.2: Reactive Deforming Roadmaps (RDR): The RDR contains a set of
dynamic milestones and reactive links. Each of these are represented with C-space
particles: a point mass in the configuration space. As the obstacle oi moves, the
dynamic milestones move as well and the reactive links of the roadmap deform to
avoid the obstacle boundary. (c) If a path link deforms too much or is too close
to the obstacle oi , the link is removed.

Conceptually, the RDR itself can be thought of as a series of robot configurations

along a link, each of which is using physics-based sampling to avoid obstacles and remain

in F . Instead of having a goal constraint defined by the problem, the goal constraint is

defined during the creation of the roadmap instead.

We use motion equations based on Newtonian physics and Hooke’s Law to determine

how the milestones move and the links deform. Internally, the entire RDR (including

each link) is represented as a particle system, much like in the case of our deformable

soft-body agents (Chapter 4). We use internal spring forces as constraints to prevent

the particles from drifting apart while external repulsive forces due to the obstacles and

other robots are applied to the system. In this sense, RDRs could also be viewed as

a physically-based roadmap whose motion is determined by elastic forces due to path-

length minimization and an artificial potential function. We also add new milestones

and links, as well as deleting some of the milestones and links to dynamically capture

the connectivity of the free space.
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Motion Planning with RDRs

The RDRs are used for motion planning in the following manner. In the case of a

single robot, our planner proceeds in a manner similar to other planners. First, the

robot’s starting and final configurations are connected to the roadmap. Then, a path is

computed via a graph search algorithm such as A*. As the milestones and links along the

path move and “deform” the roadmap, a new path is implicitly computed and the robot

automatically uses these changes so that it can follow a collision-free path accordingly.

Our search algorithm also takes into account additions and deletions of links for path

computation in a dynamic environment. In case of multiple robots, we may need to

compute and update a separate RDR for each robot. In certain other cases, a group of

robots have the same shape and configuration space, we only need to maintain a single

RDR for each such group.

6.2.4 Local planning

In many randomized planners, local planning usually only considers the straight-line

path between two points. If this path is determined to be collision-free, the then local

behavior is to simply follow that segment (effectively separating planning from control

and execution). In the case of multiple robots, local planning and behavior comes in

many forms. In a centralized planner, it is simply to follow the links that lead to the goal.

In a decoupled planner, many solutions are viable. If the path or roadmap is fixed, local

planning usually involves an additional coordination phase where the velocities along the

path are adjusted such that collisions do not occur. If a path can be rapidly replanned,

then local planning again is simply following the links. Alternatively, various avoidance

and goal seeking constraints can be defined which incorporate avoidance between two

agents. However, all of these decoupled strategies sacrifice completeness for performance

and rapid planning.
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Social Potential Fields

As briefly mentioned earlier, potential field methods [Kha85] are a popular choice for

real-time motion planning of multiple robots due to their efficiency and simplicity. Social

potential fields (SPF) [RW99] are a variation of potential fields which characterize the

potential function by inverse-force laws, rather than a navigation function. The motion

of resulting systems have been shown to exhibit emergent “social” behaviors, such as

clustering, guarding, or escorting.

In the initial work, given point robots r1, r2, . . . , rn with positions x1,x2, . . . ,xn, the

force between robots i and j is defined as:

Fsoc(ri, rj) =

(
L∑
k=1

c
(k)
i,j

d(i, j)σ
(k)
i,j

)(
xj − xi
d(i, j)

)
(6.1)

Thus, the social force acting on ri from rj is the summation of L force laws, where c
(k)
i,j

is the force coefficient for the kth law, σ
(k)
i,j is the inverse power of the kth law, and

d(i, j) = ||xj − xi||. Here, the sign of the force coefficient determines if the force acts

in a attractive (positive) or repulsive (negative) manner. These force laws can be easily

assigned based on desired behavior to an individual robot, a group of robots, or even an

entire set of robots.

Other variations on the Eq. 6.1 have been proposed, such as that by Helbing et

al [HBW03]. The behavior of Helbing’s social force law is similar to that of Eq. 6.1,

but also has been shown to exhibit emergent behavior of lane formation for point-based

robot primitives. This force is defined as:

Fsoc(ri, rj) = αe−d(i,j)/βni,j (6.2)

where α is our force coefficient, β is the force fall-of distance, and ni,j is the normalized

vector between xi and xj. Similarly, the sign of α determines whether the force is
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Figure 6.3: Social Potential Fields: This figure compares Inverse-force laws
(dark-blue and green curves) and Helbing’s social force laws (red and cyan curves)
with differing parameters. The Inverse-force plots initially decline rapidly, and
then the rate of decline slows greatly. On the other hand, the Helbing plots do not
smoothen out quite as quickly and do not grow indefinitely as distance approaches
0.

repulsive or attractive. Additionally, like Eq. 6.1, several force terms could be used

instead of just one for both repulsive and attractive behaviors.

Our Approach

As previously mentioned, our goal is to combine key ideas of physics-based sampling and

social potential fields. In most cases, a potential field can be sampled and converted

into an artificial force field. Thus, social potential fields can be incorporated into the

physics-based sampling approach by describing the social potentials as forces. In our

approach, an artificial force field applies forces directly onto the robot to influence its

motion. In this manner, the artificial force field is a type of constraint in itself.

We utilize this property to establish a general local avoidance function based on social

potential fields. We generalize the approach to consider both convex and nonconvex
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Figure 6.4: Antipodal Robots: In this benchmark, 16 polygonal robots, col-
ored by starting quadrant, start along the edge of a circle. Each robot must travel
to a position across the circle and to a different orientation. This sequence shows
four steps in the planning. (a) The robots are at their initial position. (b-c) The
robots are in the process of moving across the circle, where social forces help pre-
vent collision while also leading toward the anti-podal position. (d) The agents
arrive at their anti-podal positions and we see the paths they traveled.

polyhedra instead of solely point-like bodies. We consider the use of both types of

social potential functions, Eq. 6.1 and 6.2. Since we achieved similar results with both,

we decided to use Eq. 6.2 since its magnitude is bounded as distance approaches 0

(See Fig. 6.3). This helps greatly for simulation stability since large forces result in

stiff systems. Also, the parameters of Eq. 6.2 are more intuitive to tune, since they

carry physical meaning. Briefly, α is the maximum magnitude of the social force in

Newtons and β is the distance at which the force is approximately 1
3

of its maximum.

Finally, there parameters can also allow for algorithmic improvements which can help

with performance.

On top of PMP and SPF, many coordination constraints such as maintaining forma-

tions can be easily represented and quickly computed to give the robot the appearance

of more advanced behaviors. In the case of crowd simulation, generalized social poten-

tial fields can be reduced to acting on a single point or particle, further reducing the

computational effort required for the task.
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Figure 6.5: Adding links to the RDR: (Left) To explore, a random sample
q1rand is generated, and its nearest neighbor to the roadmap is found, q1near . To
merge different connected components, a random milestone, q2rand on Component
2 is selected and its nearest neighbor on Component 1 is found, q2near . (Right) New
milestones, qinew are added by extending qinear toward qirand and valid straight-line
links are added.

6.3 Global navigation

In this section, we give details on building RDRs and modifying them based on the

motion of obstacles or other robots. While RDRs are defined over C, there are several

optimizations and uses for RDRs when planning can be done in the workspace.

6.3.1 Reactive Deforming Roadmaps

An RDR, R, is represented as a set of dynamic milestones, V , and reactive links, E

between the milestones, R = (V , E). The milestones and links move as the free space of

the robot changes over time. Each dynamic milestone is associated with a C-particle: a

point in C with a mass, to which forces can be applied. The state of a particle i consists

of its position (q), xi(t) and its velocity (q̇), vi(t), at time t can be defined as

pi(t) =

 xi(t)

vi(t)

 .

Similarly, reactive links are represented as a sequence of these particles, placed at equal

distances along an initial straight-line link. The spacing, or density, of the particles
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along a link is specified in advance. This approach allows the link between connected

milestones to behave as a short reactive path. These elements are shown in Fig. 6.2. In

order for the RDR to be valid, the straight-line path between the connected particles

must be valid, i.e. lie in the free space.

The RDR can be initialized using well-known algorithms for constructing a roadmap

such as random sampling in the configuration space. In cases where it is sufficient to

plan in the work space, a medial axis can be computed and sampled.

Applied Force Computation

We apply forces to move the milestones and links away from obstacles while simulta-

neously maintaining the connectivity of the roadmap. We define two types of forces:

internal restoring forces and external reacting forces. The internal forces are spring-like

or elastic such that the links attempt to stay in a state of minimum energy. This con-

straint helps us minimizing the jittery motion and provides smoother and shorter paths.

The external forces are generated in a manner similar to that of potential field methods

[Kha85] and are used to retract the roadmaps as they react to dynamic obstacles and

other robots in the scene. The total force acting on mass i is given as:

Fi = Fint
i + Fext

i

Based on these forces, the algorithm repositions the affected particles (or milestones)

thereby updating the state of the roadmap.

Internal Forces The internal restoring forces are necessary to prevent the particles

on the same link from moving unnecessarily far apart during the deformation and also

to prevent the roadmap from drifting too far from its initial configuration. The force on
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C-particle pi from a connected C-particle pj is given as:

Fint
ij = −ks(‖xij‖ − Lij )

xij

‖xij‖
,

where ks is a spring constant, xij is the vector between particle pi and particle pj, and

Lij is the initial separation distance between the two particles. An equal and opposite

force is applied to particle pj.

External Forces As robots or dynamic obstacles move through the environment,

the RDR responds to the changes in the connectivity of the free space by moving the

dynamic milestones and deforming the reactive links. External forces from other moving

robots and dynamic obstacles are applied to the particles. Given the particle pi, the

force from obstacle Oj is

Fext
ij =

b

d(pi, Oj)2 + ε
, (6.3)

where b is a constant. We set ε > 0 so that the force due to the obstacle Oj does not

cause numerical issues and it helps to improve stability of the system.

Roadmap Deformation Once the forces on each particles have been determined,

the state of the roadmap is updated.

A complete dynamics computation is inappropriate since it can capture all the tran-

sient states, including unwanted oscillation, in the reactive links. Instead, we preform

a quasi-static simulation by using a variant of forward Euler integration that considers

each particles to be at rest throughout the time step. For each particle i, we update its

position and velocity as follows.

xi(t+ dt) = xi(t) +
1

2
Fnet
i (dt)2.

Since this method is based on an explicit Euler integration scheme, it is susceptible

to numerical issues and instabilities. Many of these issues are reduced by bounding
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Figure 6.6: Unsafe and Safe Link Samplings: (Left) The default sampling
of link l1 is insufficient, since the safety region (circles) defined by η(p1) and η(p2)
do not overlap. Similar for link l2. (Right) The addition of particles p4 and p5

result in safe links, since the the entire link is covered by some safety region.

the magnitude of the potential functions. Furthermore, our potential energy based link

removal method is tuned to remove links before they become unstable.

Adaptive Particle Sampling of Links

As previously mentioned, the links in a roadmap are discretized into a sequence of

particles to allow them to react to the motion of dynamic obstacles. This discretization

plays an important role in the performance of our algorithm. Prior work in adaptive

roadmaps uses a uniform sampling based on a user-specified distance between particles

[SGA+07]. While this gives control of a range of motion it also had several drawbacks,

primarily on its behavior and run-time performance.

Uniform Sampling: In general, the behavior of a link is governed by the number

of particles used to discretize it. Too few particles results in an inadequate range of

link deformation, impeding its ability to avoid obstacles. On the other hand, too many

particles can result in oscillations or unwanted bends along the link from compression.
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Also, the performance of a link and the resulting roadmap is linearly proportional to

the number of particles used to discretize the entire roadmap.

In the case of uniform sampling, the distance-between-particles parameter must be

adjusted for each scenario in order to find a balance between desirable behavior and per-

formance. To the best of our knowledge, no good techniques are known for automatically

computing the parameter for all kinds of complex and dynamic environments.

Furthermore, uniform sampling can result is a great deal of unnecessary computation.

In areas of the environment where little or no motion is happening, it is not necessary

to have many particles. Similarly, we would like to localize the computation to areas in

closer proximity to obstacles.

Adaptive Sampling: To overcome many of these issues related to uniform sam-

pling, we use an adaptive procedure based on workspace distances between adjacent

samples. Our formulation greatly reduces the number of particles in the scene, localizes

computation for smoother links and removes the need to have an user tune a distance

parameter.

Our approach, Adaptive Particle Sampling of Links (APSL), is based on the notion

of distance bounds in F . In our representation, when a particle pi is farther away

from an obstacle, the applied force on pi will be more similar to that of its neighbors.

Therefore, the resulting motion of the link will be similar to that of pi. As a result, we

can reduce the number of particles that need to be in close proximity to pi. Similarly,

as a particle pj nears an obstacle, the motion of the link containing pj will be less like

that of pj and more particles are needed nearby. Our approach is based on defining a

notion of particle safety regions, and using them for sample generation.

In the motion planning literature, it has been shown that the straight-line between

two arbitrary robot configurations is collision free [SSL02] if

ρd(pi,pj) < η(pi) + η(pj) (6.4)
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where ρ is a constant defined by the agents, d(pi,pj) is the distance between particles

i and j, and η(pi) is the nearest distance to a non-agent obstacle. This criterion can

easily be adapted to our agent representation.

In relation to our approach, η(pi) can be considered the safety region for pi. Eq.

6.4 gives a criterion for when a sampling along a link is sufficient based on its distance

bounds in F . Fig. 6.6 shows two cases where the sampling is insufficient or sufficient

based on this equation.

We use a two-pass approach to generate a sample based on this distance bound.

The first stage checks each segment between connected particles to ensure that Eq. 6.4

is satisfied. In the case that Eq. 6.4 is not satisfied between particles pi and pj, an

adaptive subdivision process is used generate samples until the condition is satisfied

along a link. First, a new particle pnew whose position is half way between pi and pj is

created. Then, Eq. 6.4 is checked between pi and pnew, and also between pnew and pj.

The subdivision process continues until each sub-segment satisfies the criterion. Each

time a pair is subdivided, the spring connecting the original pair is removed, and springs

are added for each of the pairs which satisfy the criterion.

The second pass removes redundant particles. A particle pi is considered redundant

if it falls within the safety region of two other particles. In this case, the behavior of

particle pi will be represented by its neighbors and therefore pi is not necessary. So,

pi is removed from its link. The neighboring particles are then connected by a linear

spring. For simplicity, we only check pairs of particles that are at most one particle

apart. Since at most half the particles along a link can be removed at any timestep,

it will take at most O(log(n)) time-steps to remove all the particles along a link or to

reach a minimal sampling based on Eq. 6.4. The results for both passes can be seen in

figure 6.7.

151



v

O1

v

O1

v

O1

l1

l2

l3

Figure 6.7: Adding and Removing Particles: (Left) The links, between
orange circles as the endpoints, have been sampled based on the position of a
dynamic obstacle O1. Samples are shown as green circles. The blue open circles
show the safety region for each particle (Middle) As O1 moves, η(pi) is updated
for each particle. As a result, there are redundant particles on link l1 and too few
particles on link l3. (Right) The add particle procedure adaptively adds particles
to l3 until it passes the safety criterion, and particles who belong in the safety
regions of its neighbors have been removed from l3.
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Data: Roadmap R

Queue Q;

forall Links li ∈ R do

forall Connected particles (pi,pj) ∈ li do

if not Safety-Criterion(pi, pj) then

Remove-Pair((pi, pj), li);

pnew.xnew = 1
2
(pi.xi + pj.xj);

Add-Particle(pnew, li);

Add-Pair((pi, pnew), li );

Add-Pair((pnew, pj), li );

end

end

forall Particles pi ∈ li do

if pi is not a milestone then

(pleft, pright) = Get-Neighbors(pi);

if Safety-Criterion(pleft, pright) then

Remove-Particle(pi, li);

end

end

end

end

Algorithm 5: Adaptive Particle Sampling of Links: Add-Pair() and Remove-

Pair() add and remove a connection between their arguments, respectively. Add-

Particle() and Remove-Particle() add and remove a particle and remove any con-

nections from that particle from a link, respectively. Get-Neighbors() returns par-

ticles which are connected to the input particle. Briefly, the first forall loop adds

any particles to satisfy the safety criterion (Eq. 6.4) while the second loop removes

redundant particles. More details are in Sec. 6.3.1.
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A pseudo-code description for these passes is presented in Algorithm 5. The roadmap

R is initialized so that each link only contains a single elastic connection between its

two milestones. Particles are considered connected if there exists a spring connecting

them in the representation. In this algorithm, the function Safety-Criterion(pi, pj)

determines whether or not the safety regions of each particle overlap. The Remove-

Pair(pi, li) and Add-Pair((pi, pnew), li ) functions remove and add connections and

springs between their inputs, respectively. Similarly, Add-Particle(pnew, li) simply adds

the particle to the list of particles. It is important to note that Remove-Particle(pi, li)

not only removes the input particle, but also removes the connections associated with

that particle. Finally, Get-Neighbors(pi) returns the pair of particles that are connected

with the input particle, pi.

In this algorithm, the first of the inner forall loops is the first pass which subdivides

the links. This routine checks each connected pair of particles for the safety criterion. If

any of them fail this criterion, it places two new pairs in its place on the list of particle

pairs that need to be checked. The second inner forall loop removes redundant particles

by checking the safety criterion.

At the conclusion of the algorithm, we have guaranteed that all portions of all links

are covered by the safety region of some particle. Moreover, redundant particles are

removed to help minimize the computational cost of updating the roadmap.

6.3.2 Global Updates

In the previous subsection, we described a general representation for RDR and how it

adjusts to the moving obstacles. However, this type of deformation can not guarantee

a valid roadmap or that a path can be found at all times, e.g. when a moving obstacle

moves directly into a link. These cases require additional link removal or link addition

steps to update the roadmap.
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Link Removal

Link removal is essential for maintaining a valid roadmap and plays a key role in its

resulting behavior. If links are removed too frequently, then we may have rather small

deformation in the links. On the other hand, if the links are allowed to deform consid-

erably, this may cause problems with the numerical stability of the simulation or may

unnecessarily increase the path lengths of some links. We use two properties to evaluate

the links for removal in our framework: amount of deformation and proximity to the

obstacles.

For the link i, the extent of deformation of a link can be measured through its

potential energy,

Ei(t) =
∑
sj∈li

kjs
2

(dj − Lj)2,

where kjs is the spring constant for spring j, dj is its current length, and Lj is its

rest length when unstretched or compressed. When Ei(t) > τs for some user specified

potential threshold τs, the link is removed and the milestones incident to the link may

no longer be connected. For example, the link in Fig. 6.2(c) is removed as it needs to

be considerably deformed due to obstacle O.

In order to account for proximity to any obstacle or other robot, the minimum

separation distance (in workspace) is computed from a path link to the nearby obstacles.

If this distance value is less than a pre-defined proximity threshold τd, then the link is

removed. Specifically, τd is chosen such that the link remains at a safe distance from the

obstacle, for instance, the radius of the bounding sphere for rigid robots.

Adding Links and Milestones

The process of removing links can result in losing connectivity information about F .

Moreover, as the obstacles move, we may need to add new links or milestones to capture

the connectivity. Our framework uses three methods for this computation.
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In the first method, we utilize the fact that many obstacles are ephemeral and that

a formerly valid path will likely become valid again. To implement this strategy, a list

of removed links is maintained. Periodically, or when no path can be found for a robot,

the straight-line path in the configuration space for some or all of the links in this list

is tested for validity. If they are valid, a reactive link is added in its place.

The second approach tries to connect various disjoint components of the roadmap

by using a construction algorithm similar to that used in the RRT algorithm [LaV06b].

Given a component Ci, for each other component Cj, a random milestone qj ∈ Cj is

chosen. Then, the nearest neighbor qnear ∈ Ci to qj is computed. Next, a new milestone,

qnew , whose configuration extends qnear toward qj is computed such that it has a valid

straight-line path to qnear in the configuration space. Finally, straight-line paths from

qnew and the nearest neighbors in Ci and Cj are connected if they lie in the free space.

Our third approach extends the roadmap toward unexplored regions of the free space,

also in a manner similar to that of RRT algorithm [LaV06b]. First, a random configura-

tion qrand is generated and its nearest neighbor on the roadmap qnear . Moreover, we bias

these samples toward the obstacles, since least explored areas are likely to be near them.

A new milestone qnew is generated that extends qnear toward qrand . Then, straight-line

paths from qnew to its nearest neighbors are tested and added to the roadmap if they

are valid.

Numerical Stability

Since RDR relies upon numerical integration due to particle simulation, stability is a

concern due to the possibility of applying large spring or repulsive forces. However,

when combined with the removal rules, this has not been an issue in our benchmarks.

In general, using Verlet integration greatly helps in stability by treating the particle to

be at rest during integration. Also, our link removal steps help in ensuring stability.

Any link which is likely to become unstable will also likely be close to an obstacle or
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Figure 6.8: Reactive Deforming Roadmaps (RDR): An example with 4
translational agents (red circles) and goals (yellow triangles). The static obstacles
shown as dark blue rectangles and dynamic obstacles are shown as cyan rectangles
with arrows indicating the direction of motion. The green curves represent links of
the reacting deforming roadmap, using uniform sampling. The dynamic obstacles
represent cars. As the highlighted car (circled) moves, the affected link in the
roadmap is removed.

otherwise highly deformed. These types of links will be removed, and thereby helping

the system remain in a stable state.

6.4 Local navigation

Our approach builds upon physics-based motion planning (PMP) [GL02, GRS+07] and

social potential fields (SPF) [RW99, HBW03]. PMP solves motion planning problems

through the use of a constraint-directed physical simulation. Social potential fields are

a variation of the potential field methods whose resulting motion appears to exhibit

various social behaviors.

We generalize and reformulate social potential fields to be integrated with the PMP

framework and also to be applicable to a more general robot primitive. The social

potentials will act as a constraint on the system, allowing the robot to change its current

trajectory and move toward or away from other robots or obstacles. The PMP framework
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Figure 6.9: Roadmap Link Bands: Link bands are a partition of the freespace
based on the links of RDR. (a) Several RDR links, in solid black lines, respond
to a static obstacle, O2 and a dynamic obstacle O1. The link band, B(1), for
link l1 is shaded, and the link boundaries are shown as dashed lines. (b) As O1

approaches link l2 it deforms. Link band B(1)’s boundary is highlighted in bold
dashed lines and shows the two segments of the milestone boundary, Bm(1), and
the intermediate boundary Bi(1). (c) Link l2 is removed due O1’s motion while
the link band B(1) changes to reflect the removal.

supports additional constraints, such as creating and maintaining group formations and

other behaviors. To reduce the effects of local minima, an excitation factor has also

been included. When a robot’s velocity is low and it is not at its goal, excitation will

increase the strength of the forces leading toward its goal to encourage it to escape the

minimum.

The method is relatively simple to implement and provides practical solutions to

a wide variety of complex problems. Fig. 6.1 highlights an example of our approach

applied to a group of robots (in black) guarding and escorting an important robot (in

green). Additional benchmarks and more detailed results are given in Sec. 6.6.2.

6.4.1 Local Coordination with Generalized Social Forces

Social forces have been shown to work well for coordination and planning of point-based

primitives. However, little work has been done on a similar formulation for a general

robot. In this section, we generalize the concept of social forces and integrate it along

with other coordination constraints into the physics-based motion planning framework.
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Generalized Social Potential Fields

As previously mentioned, social potential fields are an useful tool for motion and co-

ordination which resemble various complex behaviors. Here, we propose a generalized

version of social potential fields which are applicable to non-point primitives. For a

general body, the effect of a social potential field can be felt with varying magnitudes

across the entire body. The potential field will not only apply a force, but also induce

a torque on the robot.

From Eq. 6.2 we first define the value of the social potential field (in the robot’s

workspace) from robot rj at an arbitrary point in space, x by

Fsoc(x, rj) = αe−d(x,rj)/βn(x, rj) (6.5)

where d(x, rj) is the shortest distance between x and rj, and n(x, rj) is the normal

vector between x and the nearest point on rj. A similar social potential can be defined

from Eq. 6.1.

Using Eq. 6.5, the social force between ri and rj, can then be defined as

Fsoc(ri, rj) =

∫
p∈A(ri)

Fsoc(p, rj) dA (6.6)

where A(ri) is the region of ri and p is a point on the area of ri in 2D or a point in the

volume of ri in 3D. The associated torque on the body is

τ soc(ri, rj) =

∫
p∈A(ri)

(n(p, rj)× Fsoc(ri, rj)) dA (6.7)

In effect, the translation component of the total force on ri will be the resulting social

force over the entire region of the robot, and the total torque will similarly be the torque

induced by each of these forces at each point on the body.

Like the formulations in Eq. 6.1 and Eq. 6.2, the constants of the social force can
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be adjusted for varying strengths, ranges of effect, and for repulsion or attraction. For a

repulsive social force, as the distance between these points decreases the resulting force

and torque will increase causing those points on the bodies to separate. Then, the total

social force and torque on a single robot would be the summation of the resulting values

of Eq. 6.6 and 6.7.

Discretization

While the general social potential field is formulated over a continuous space, it is

not simple to evaluate this integral in implementation. Instead, in our implementation

we approximate the integral. Given a uniform sampling of the robot ri’s region, P i =

{pi1,pi2, . . . ,piK}

Fsoc(ri, rj) =
1

K

∑
p∈Pi

Fsoc(p, rj) (6.8)

and

τ soc(ri, rj) =
1

K

∑
p∈Pi

(n(p, rj)× Fsoc(p, rj)) (6.9)

It should be noted that this can lead to a very large number samples, which could become

computationally expensive. By using Helbing’s formulation of the social force, the force

parameters provide several ways of approximating the summations. First, note that

the parameter β controls the rate at which the Fsoc declines. Thus, when the distance

between points and robots is greater than cβ, for relatively large c, the value of the force

is negligible and does not contribute greatly to the social force. In our implementation,

we set c such that αe−c < 0.001. We can use this value as a distance bound and quickly

cull away the negligible point-robot pairs. (See Fig. 6.10).

Excitation

One well known drawback of potential field based methods is the possibility of getting

stuck in a local minima. This is also the case for the forces generated by our approach.

To help overcome a local minima, we define an excitation factor, E. Briefly, while an

agent has not reached its goal and its velocity is below a predefined threshold, v0, its
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excitation level increases. As excitation rises, the attractive force in the direction of its

goal grows as well.

We define excitation to evolve over time as

dE

dt
= −E

T
+ (1− ||v||

v0
)

where T is a damping factor (we use T = 2). Essentially, the first term smooths the

excitation so that it does not grow too large too quickly, while the latter term increases

or decreases the level of excitation depending on how fast a robot is moving in relation

to v0. Then, given E, we can redefine α in Eq. 6.2 by

α(E) = α ∗ (1.0 + E)

In practice, this approach has performed well and we have not observed many situations

where a complete deadlock has occurred due to local minima.

6.4.2 Additional coordination constraints

The social potential forces provide a strong basis for coordination between several robots.

A variety of behaviors including grouping, following, guarding, moving toward a local

goal, and more can be directly implemented through manipulation of the social potential

fields. However, there are a number of situations which are less suitable for use with

these fields.

Distance Constraints

There are several situations in which group of robots need to be able to form and

maintain a formation. While strong attractive social fields could be used to help keep

robots in close proximity, they lose strength rapidly when robots get further apart.

Therefore, we add a distance constraint which works to maintain a distance between

points on a pair of robots. Depending on the strength of the constraint, other robots
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may or may not be able to easily affect a formation built from these constraints. Briefly,

we can define a distance constraint between points xi and xj on different robots by the

function:

Cdist(xi,xj) = ||xj − xi|| − r

where r is the desired distance between the points. While this constraint could be

solve exactly, we relax the constraint so that the formation can also adapt to necessary

changes in the environment or by other robots. Instead, we use a spring-like force:

fdist(xi,xj) = −
(
ks(|x| − r) + kd

ẋ · x
|x|

)
x

|x|

where ks is a spring constant, kd is a spring damping constant, and x = xj − xi. As

before, the related torque on robot ri is:

τ idist(xi,xj) = (dxi,O)× fdist(xi,xj)

where dxi,O is the vector from the origin of the inertial frame O to xi. The net result

of this force can be seen in Fig. 6.1, since the guard robots use a distance constraint to

maintain their formation.

6.4.3 Online virtual world constraints

Large, online 3D virtual worlds (VWs) have been growing rapidly in popularity due

to rich environments, widespread interactivity and immersion, and large user bases.

Millions of users are registered and are actively participating in worlds such as Second

Life R© (SLTM), World of WarcraftTM (WoW), or OLIVETM by Forterra Systems, Inc.

In addition to these online worlds, Microsoft’s Virtual EarthTM or Google EarthTM

represent large and detailed navigable environments, although they do not currently

support avatars. Many of these virtual worlds have been used for gaming applications
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Figure 6.10: Social Force Discretization: Since the general social force in-
tegral is difficult to compute, we discretize the domain. This figure shows the
discretized social force computation on ri from rj. Robot ri has been uniformly
sampled into a set of points, shown as small blue dots. For each sample, pin within
a fixed distance from rj, Fsoc(pin, rj) will be computed. By the force law definition,
points closer to rj such as pi15 will receive larger forces than points farther away,
such as pi6. For points too far away, such as pi4, no force is computed.

and recently they have been shown useful for remote collaboration, economic planning,

social simulations, and educational activities [Bai07]. These online virtual worlds also

provide a unified environment to study complex global behaviors such as traffic flows or

evacuations.

At any time, thousands of users are logged on, but they are typically widely dis-

tributed over the virtual world. As a result, many portions of these worlds appear

sparsely inhabited. In simulations or experiences where interaction with other avatars is

essential, this can pose a problem and can detract from the overall immersive experience.

One way to overcome this problem is to add virtual avatars to populate these worlds

and improve the overall immersive experience. In this context, a virtual agent or avatar

is a member of the virtual world whose motion is controlled entirely by a simulation,
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Figure 6.11: College campus: (a) Many areas in online virtual worlds, such
as this college campus in Second Life R©, are sparsely inhabited. (b) We present
techniques to add virtual agents and perform collision-free autonomous naviga-
tion. In this scene, the virtual agents navigate walkways, lead groups, or act as a
member of a group. A snapshot from a simulation with 18 virtual agents (wearing
blue-shaded shirts) that automatically navigate among human controlled agents
(wearing orange shirts). (c) In a different scenario, a virtual tour guide leads
virtual agents around the walkways among other virtual and a real agent.

whereas a human agent is controlled by a human user.

There are several challenges in adding realistic virtual agents to online virtual worlds.

First, virtual agents should automatically navigate the environments and act appropri-

ately in a variety of situations, such as maintaining a separation from other agents or

moving in a formation. Secondly, networking issues such as limited bandwidth and

client-to-server latency add uncertainties into much of the navigation process, result-

ing in incomplete information about the environments. Finally, performance is a key

consideration in evaluating online virtual worlds and adding virtual agents should not

greatly degrade the performance of the online virtual world system.

Fortunately, physics-based sampling with GPSF as previously described can ade-

quately the local interactions between virtual agents in an online. However, it makes

the assumption that positions and velocities of agents and obstacles are known at any

time. Due to latency between hosts, this is not usually the case with online worlds. We

include additional constraints which can help to account for problems due to latency.

The local motion model for each virtual agents is based on our concept of generalized

social potential fields.
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For virtual agents ri, our base local navigation model includes the components of

GPSF as described above. Since all the agents can be represented as cylinders, this

reduces the discretization to simply be a point in 2D. To summarize, we can use the

following forces applied to the center of mass of each agent. A social repulsion and

attraction force (Fsoc
j (ri) and Fatt

j (ri), respectively) determines how much agent ri wants

to avoid or move towards agent rj. A goal force, Fgoal(ri), encourages an agent to move

towards its current goal (See Fig. 6.12(a)).

In order to compute total force applied to an agent, we aggregate these forces as

follows:

Fnet(ri) = Fgoal(ri) + Fagents(ri) + Fobstacles(ri), (6.10)

where

Fagents(ri) =
∑

rj∈R,i 6=j

(Fsoc
j (ri) + Fatt

j (ri)),

and

Fobstacles(ri) =
∑
ok∈O

(Fobs
k (ri) + Fobsat

k (ri)).

The primary component forces are defined as:

Fgoal(ri) =
vde− vi

τ

Fsoc
j (ri) = αe(rij−dij)/βnij

Fobs
k (ri) = Ae(ri−dik)/Bnik

where vd is the agent’s desired speed, e is the direction to the agent’s current goal, τ

is its reaction time, rij = ri + rj, dij = xi − xj, α is a social scaling constant, β is the

agent’s personal space dropoff constant, nij is the normalized direction between ri and

rj, A is an obstacle scaling constant, B is the obstacle distance dropoff constant, and

nik is the vector from ri to the nearest point on ok to ri. The attractive forces, Fatt
j (ri)

and Fobsat
j (ri), take the same form as their repulsive counterparts except that they have
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different values for the constants and an opposite sign for the scaling term. Since these

forces are largely based on the social force model of Helbing et al [HBW03], we refer the

reader to this for more details.

Contact Handling: While the repulsive forces generally allow agents to avoid

contacts, they do not give guarantee of a collision-free motion.. Social forces with a

large magnitude can cause the agents to move directly towards each other. Moreover,

network communication latencies can result in incomplete information about the location

of other agents, objects or dynamic obstacles in the scene. In these situations, contacts

between the agents must be resolved. We assume that the central server is ultimately

in charge of resolving intersections between both agents and obstacles. Since latency

is a factor even in the absence of virtual agents, it enforces hard constraints on agent

positions to prevent intersection and returns that information to the clients.

In order to reduce the impact of future collisions with the currently colliding obstacle

or agent, additional forces are applied to each agent in collision. A pushing force,

Fpush
j (ri), acts to force a separation between agents and a frictional force, Ffric

j (ri)

simulates the act of slowing down due to a collision. Unlike the associated repulsive

force, these forces are only applied when an intersection has taken place.

For agent ri and an intersecting agent rj, the following forces are added to Eq 6.10:

Fpush
j (ri) = κ(rij − dij)nij

Ffric
j (ri) = λ|Fpush

j (ri)|tij

where κ is a pushing spring constant, λ is a sliding friction constant, and tij is the

tangent vector to nij. Contacts with obstacles are treated in a similar fashion.

Network Modeling: Our virtual agent model is computed based on the information

on a client database. This introduces certain amount of uncertainty in the position and

velocity of other agents and also in other moving obstacles in two ways. First, some
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Figure 6.12: Local Navigation via social forces: The colors of the arrows
correspond to the specific object that generates the social force. (a) Agent r1 is
acted upon by social repulsive force Fsoc

2 (r1) from r2, attractive force Fatt
3 (r1) from

r3, repulsive obstacle force Fobs
1 (r1) from o1, and goal force Fgoal(r1). Repulsive

and attractive forces encourage the agent to move toward or away from agents and
obstacles, respectively. (b) An additional velocity bias force Fvel

2 (r1) is computed
to account for agent r2’s velocity during inaccurate sensing. By assuming a linear
trajectory over a short period of time, we can help to reduce the impact of network
latency. No velocity bias force is computed for r3 since it is heading in the same
direction as r1. The final net force Fnet(ri) reflects the sum of all the forces and
serves as the agent’s next heading.

agents or obstacles may not have yet been sensed, i.e. their base information has not

yet been received by the client from the server. Second, due to low network bandwidth

or high network latency, the updated positions and velocities are not received in time

by both the server and client.

To account for these issues, we augment the social force model with a velocity bias

force, Fvel
j (ri), to help reduce the impact of latency. Let Vj = SSV (rj,vj, tbias) be the

spherical swept volume as agent rj travels along heading vj/||vj|| for time tbias. Then,

Fvel
j (ri) = γe(ri−d(Vj ,pi)/ε)n(i,Vj),

where γ is a velocity bias scaling factor, ε is a bias dropoff distance, and d(., .) and n(., .)

are the distance and normal direction between the ri and volume Vj. Intuitively, the

force naively assumes that agent rj will proceed in its current direction for a fixed period
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of time and generates a force field around the volume swept of rj along that heading

(See Fig. 6.12(b)). As a result, other agents will tend to move away from their current

direction of motion. Combined with Fsoc
j (ri), the resulting force is strongest closest to

rj and reduces further from the swept volume. The net effect of this force is that it gives

virtual agents a way to estimate where other agents will go based on the information is

available, and thus reduces the impact of latency or bandwidth limitations. Behaviorally,

this force has additional benefits in that the agents will tend to slow down and avoid

each other as they move toward their goals.

6.5 Motion planning for multi-agent systems

In our physics-based sampling framework, we have decomposed the multi-robot motion

planning problem into two portions: a global replanning phase and a local navigation

or local avoidance phase. Since both of the these phases are backed by physics-based

sampling cores, they will each evolve over time with different objectives. In this section,

we detail these planning components and show how they are both used for motion

planning of many agents.

6.5.1 Motion Planning with RDRs

The reactive deforming roadmap (RDR) is a dynamic data structure for motion planning

of multiple agents, or in dynamic environments. To this point, we have described the

data structure, its properties, and how it evolves over time. In this section, we show

the various ways in which the RDR can be used for multi-agent planning. This includes

providing each agent with its own RDR and also providing a means for a shared RDR

when the robots have the same geometry.
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Simple Approach

Performing motion planning using RDRs is similar to other roadmap-based methods.

For multiple robots, each robot uses its own RDR. In this way, it treats all other robots

as dynamic obstacles.

We first connect the each robot’s starting and final configurations to the RDR by

finding the nearest dynamic milestone to each configuration and attach them via a

reactive link. Next, an A* path search algorithm is used to compute a path. As the path

deforms in response to the dynamic obstacles, the robot’s motion follows the deformed

path naturally.

It is possible that a path can become invalidated during execution. This occurs

when a link has been removed due to obstacle motion. When these events occur, first

we determine if the robot is still connected to the roadmap, and then replanning is

performed via an A* search. If no path is found, links are added as previously mentioned.

Global RDR Approach

In certain circumstances with multiple robots, each robot is identical to the other robots.

When each robot is entirely rigid (such that C ⊂ R2 × S or C ⊂ R3 × SO3), we can

exploit their similarity to improve th performance of RDRs. Rather than maintaining a

separate RDR for each of these robots, we can use a single RDR (see Fig. 6.13). In this

case, fewer particles are needed, resulting in a better overall performance. To note, this

method will also hold for certain articulated bodies but it does not easily generalize to

higher-dimensional configuration spaces.

In order to use this single RDR for multiple robots, we make a few modifications to

our basic algorithm. Robots need to be able to apply forces to the RDR and additional

coordination is required.

Robot Force

Paths for separate robots can be disjoint but nearby each other. In this case, a robot
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Figure 6.13: Multiple robots on the RDR: For proper avoidance, each robot
applies forces on the RDR except on the particles that are in its fixed particle
zone.

would need to apply forces to the single RDR and to the the other robot to ensure

avoidance with other robots. The force a robot applies on the roadmap is the same

as that for an obstacle (Eqn. 6.3). One caveat is that a robot would also by applying

forces to its own path along the roadmap, possibly causing unnecessary motion in this

direction. To prevent this, we define a “fixed particle zone” for a robot i with path P

as:

Z = {p|(p ∈ P , d(x,P) < εp) ∧ d(x,q(t)) < εr},

where x is the position of particle p, d(x,P) is the distance from x to the path link, εp is

a path distance threshold, and εr is a robot distance threshold. This region may enclose

the particles either on or near the path link which the robot is currently traversing, as

well as those near the robot (See Fig. 6.13).

Coordination

With multiple robots on a single RDR, it may be necessary to coordinate their

motion to prevent deadlock or collisions with other robots.

Coordination is handled through altering agent velocities and creating additional

routes. The main issues arise when the robots arrive at a milestone at the same time
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Figure 6.14: Adding additional links between milestones: As the robot r2
approaches a link occupied by r1, an additional link L2 is added for r2 to traverse.

and a robot is trying to use a link that is already occupied by another robot. When

robots are near each other, one robot further away from the milestone is instructed to

slow down until the robot ahead is sufficiently clear of the milestone and other robots.

To handle link contention, it is possible to make use of the reactive properties of the link

itself. Rather than coordinating which robot uses the link at a given time, an additional

link is added between the milestones as a reactive link (See Fig. 6.14). This additional

link will react to the motion of the other robot that is already on the link and vice versa

for the existing link. This approach also provides an effective mechanism for the robots

to avoid each other.

It should be noted that these solutions have their limitations. It is necessary to

be careful about how the agent velocities are altered in order to not create a deadlock

situation or a situation in which a single robot is stalled and cannot proceed. The

additional link is not practical when there is insufficient space for two separate robots

to pass through each other safely.

6.5.2 Integrated local and global planning

In this section we describe our approach to compute collision-free paths, particularly

for a large number of agents with coordination constraints using RDRs. In order to
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nl

ek

Figure 6.15: Agent clusters for fast proximity computation: (Left) Each
color corresponds to a unique cluster of nearby agents. Link band boundaries are
shown as dashed orange lines. (Center) Zoomed-in view of the clusters in the boxed
region, with a single agent highlighted and circled. The roadmap force components
are shown for another agent with the central milestone as next intermediate goal.
nl denotes the unit normal vector from agent to the link l. ek denotes the unit
vector direction towards next goal. (Right) Cluster updates are highlighted, as an
agent crosses a link band boundary.

allow the agents to occupy the entire free space for navigation, we relax the restriction

of constraining the agent’s position to the links of the roadmap. Rather, we introduce

link bands defined by each link of RDR, and use them for path planning as well as local

dynamics simulation of each agent. The architecture for our complete navigation system

is given in Fig.6.16. In this section we introduce link bands (Section 6.5.2), use them

for global path planning (Section 6.5.2), for defining agent clusters (Section 6.5.2) and

for local dynamics computation (Section 6.5.2).

Link Bands

The link band associated with a link of the roadmap is the region of free space that

is closer to that link than to any other link on the roadmap (Fig.6.9(a)). Formally,

the link band of a link li is given by B(i) = V(li|L) ∩ F . The width of the link band

is the minimum clearance from the link to the obstacles in the environment, Bw(i) =

minoj∈O(d(li,oj )). The link bands form a spatial partitioning based on proximity of a

point in free space to the nearest link. Each link band specifies a collision free zone

in a well-defined neighborhood of each link of the roadmap. Additionally, link bands
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provide the nearest link, which is required for path search (Section 6.5.2), distance to

the roadmap that is used to compute guiding forces to advance the agent along the path

(Section 6.5.2), and a spatial decomposition used for agent clustering (Section 6.5.2).

In a dynamic environment, an agent might be required to recompute its path since its

original path could become invalid or otherwise change. We use link bands to detect such

events. In particular we keep track of an agent’s motion across each link band boundary.

We classify points on a link band boundary into milestone boundary and intermediate

boundary (see Fig. 6.9(b)). A point on the milestone boundary belongs to two adjacent

link bands whose links share a common milestone. On the other hand, the intermediate

boundary is all points on the boundary that do not belong to the milestone boundary.

Formally, the milestone boundary of a link li, Bm(i) = B(i)∩B(j), ∀li∩ lj 6= ∅, and the

intermediate boundary of a link li, Bi(i) = δB(i) \ Bm(i). In the next section we show

how the link bands are used for global path planning and to detect replanning events.

Path Planning

We use the RDR for global path computation for each agent. Since an agent is not

constrained to the roadmap, we initially compute the link band it belongs to (i.e. the

link band containing the position xi of agent ri). This link is set as the source link.

Similarly the link band containing the goal position is computed and the corresponding

link is set as the goal link. We assign a weight to each link as a combination of the link

length, the reciprocal of the minimal link band width, and the agent density on the link

as:

w(li) =


∞ if 2Bw(i) < ra,

α|li|+ β 1
Bw(i)

+ γ n
|li|Bw(i)

otherwise,

where α, β, γ are constants,|li| is the length of link li, and n is the number of agents on

link B(i). The third term approximates the agent density on the link and causes the

agents to plan a path with less crowded regions of freespace. The relative values of the
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constants are determined by the behavior characteristics of individual agents. A high

relative value of α allows for the choice of shortest path, a high value of β avoids narrow

passages and a high value of γ demonstrates preference of less crowded passages. In

our experiments, we used a high value of α for slow agents, whereas aggressive agents

are assigned a higher value of γ. Given a weighted roadmap, an A∗ graph search is

performed to compute the minimum weight path from the source to goal link band,

which is stored by the agent. Once the agent reaches its goal link band, it proceeds to

its goal position within the band.

As the simulation progresses, the nearest link to an agent may change. We determine

the events that require a path recomputation based on the boundary type, since these

define whether the event was due to progress along a path or due to a path changing.

Crossing a milestone boundary indicates agent motion along its path on the adaptive

roadmap, and does not require a path recomputation. However, it is also possible for

an agent to cross over the intermediate boundary. This typically occurs as a result of

roadmap modification. In this case, it is possible that an alternative path to the goal

exists and a path recomputation is required. However, we also allow the agent to move

back to its previous path since this should be its path of least cost.

Local Dynamics Computation

To use link bands with our local navigation or social forces, we add a constraint that is

defined over each link band.

We modify the social force model, to include a force term Fr that guides an agent

along a link band on the roadmap. In addition, there is a repulsive force Fsoc to the

nearby agents, an attractive force Fatt to simulate the joining behavior of groups, and

a repulsive force from dynamic obstacles Fobs. Let the point p (representing agent ri)
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belong to link band B(k), then the force field at a point p is given as

F(p) =
∑
j

[
Fsoc
j (p) + Fatt

j (p)
]

+ Fr
k(p) + ΣoF

obs
o (p), (6.11)

rj ∈ R, j 6= i, o ∈ O

where,

Fsoc
j (p) =Ai exp(2ra−‖p−xj‖)/Bi nj(p)(

λi + (1− λi)
1 + cos(φj(p))

2

)
,

Fatt
j (p) =− Cjnj(p)

Fobs
o (p) =Ai exp(ra−d(p,o))/Bi no(p)(

λo + (1− λo)
1 + cos(φo(p))

2

)
Fr
k(p) =

vdk(p)− vi
τi

+Did
4(p, lk)nlk(p)

where φj(p) is the angle between p and agent rj, φo(p) is the angle between the nearest

point on obstacle o and p, Ai and Bi denote interaction strength and range of repulsive

interactions and Cj is the strength of attractive interaction, which are culture-dependent

and individual parameters. λi reflects the anisotropic character of pedestrian interaction.

The obstacle force field Fobs simulates the repulsion of the agents from other obstacles

in the environment. Since the obstacles may be dynamic, we introduce an additional

anisotropic term which biases the repulsive forces along the motion of the obstacles.

This effect has also been modeled in other approaches by creating a ‘discomfort zone’

in front of dynamic obstacles [TCP06]. For efficient computation of repulsive force Fsoc

and obstacle force Fobs, we compute forces to agents and obstacles within a radius Bi.

The roadmap force field Fr
k guides the agent along the link lk. The link band B(k)
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Figure 6.16: Navigation System: Given a description of the environment,
an RDR is computed and updated. This is used in conjunction with our local
dynamics model to simulate the motion of each agent.

is used to define the region which is used to compute the force field for lk. The first

term in Fr
k makes the agent achieve a desired velocity along the link, whereas the second

term attracts the agent within the link band. nlk(p) is the unit normal from point p

to the closest point on lk, d(p, lk) is the distance from p to lk. The desired velocity

vdk(p) = vmaxek(p), where ek(p) is a unit vector orthogonal to nlk(p). The direction

of the normal is chosen such that ek(p) points along the roadmap towards the next

milestone on an agents path (see Figure 6.15(center)). Di is a weighting term and

the attractive force term keeps an agent inside the link band, reducing toggling across

intermediate boundaries.

Resolving Agent Collisions

While our local dynamics model generally avoids intersections between the agents well,

collisions are still possible on a generated physics-based sample. Large forces resulting

from a dense group of agents or a relatively large simulation time step can lead to this

situation. We employ a collision elimination scheme similar to that of Lakoba et al.
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[LKF05].

For each intersecting agent rcol, we place it in a priority queue Q, ordered by extent

of intersection with both agents and obstacles. We determine the amount of intersection

by the total penetration depth rcol with all other agents and obstacles. This can easily

be determined by computing the distance to the agent’s center and comparisons with

the agent’s radius or obstacles.

To remove overlaps, we first dequeue an agent ri from Q. If ri intersects an obstacle,

we first move it away from the obstacle until it is collision free. Then, for each other

agent rj that intersects ri, we move it by a distance

ε(ri + rj − ||xi − xj||)

away from ri’s center to remove any overlap, where ε > 1 is a safety threshold, r is

an agent’s radius, and x is its position. The effect of ε is to move them into a safer,

non-intersecting state. Note that for larger ε, it becomes more difficult to remove all

of the collisions. Any agent which is intersecting with other agents as a result of this

process are inserted into Q. This process is repeated until no agents are in collision.

Intuitively, this position modification algorithm for agents treats them as they were

in contact throughout some portion of a time step and that they remain in a near

collision state until the end of timestep. We do note that in degenerate cases, such as a

densely packed room, this process could take a long time and possibly result in an invalid

state. However, in practice this collision resolution algorithm finishes very quickly and

has not resulted in such a state in our benchmarks. This is likely due to the fact that

local forces help prevent such cases when agents are nearby each other.
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Figure 6.17: Maze environment: Left: Navigation of 500 virtual agents in a
maze consisting of 8 entrance and 8 exit points. Center: Each agent computes an
independent path to the nearest exit using adaptive roadmaps. Right: Our local
dynamics simulation framework based on link bands captures emergent behavior
of real crowds, such as forming lanes. We perform real-time navigation of 500
agents at over 200fps.

Agent Clustering for Fast Proximity Computation

Proximity computation is a key step in force computations within our local dynamics

model. Prior work for local dynamics computation used a spatial hash function based on

regular spatial decomposition [SGA+07]. While this provides a simple acceleration struc-

ture, it has some drawbacks primarily in scaling to large heterogeneous environments

and increased storage overhead. However, in order to achieve optimum performance,

the size of a grid cell in the spatial hash has to be carefully chosen for each environment.

In this section we introduce an acceleration structure based on link bands to effi-

ciently compute proximity information for Fsoc and Fr in Eq (6.11). Link bands provide

a partitioning of the free space, and are used for global path computation for each agent.

Therefore, we use the link band data structure to define a clustering of agents for efficient

proximity computations.

Given the set of agents R, we use simple techniques to cluster them into groups. An

agent cluster is a set of agents that belong to same link band and are sufficiently close

to each other. Formally, a set of agents Ci is a cluster on link l if ∀rj, rk ∈ Ci,

xj,xk ∈ B(l)
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and

d(rj, rk) ≤ δ1

where δ1 is a predefined constant governing the maximum size of a cluster. An example

of agent clusters for a subset of the Maze environment(Fig. 6.17) is shown in Fig. 6.15.

The first condition (same link band B(l)) ensures that two agents within the same

cluster are in close spatial proximity as defined by the roadmap. Furthermore, all agents

within a cluster have one of two intermediate goals given by the two end milestones of the

link l. Thus the roadmap force Fr
k for all agents rk within a cluster Ci is defined by normal

vector field nl to same link l. The second condition (inter-agent distance) bounds the

maximum spatial extent of a cluster. This is useful in heterogeneous environments which

contain long links in the roadmap. The maximum size of a cluster δ1 is proportional to

the interaction range of repulsive interactions among agents (the term Bi in Eq (6.11)).

We now describe our algorithm for computing and updating the agent clusters. Ini-

tially for each agent ri the nearest link lk is computed and agent ri is assigned to cluster

Ck corresponding to link band B(k). The axis-aligned bounding box (AABB) of a link

band B(k) is computed. If the diagonal of the AABB is greater than δ1, then Ck is split

into equal sized clusters Ck1, Ck2, . . . , Ckn such that the diagonal of the AABB of each

sub-cluster is less than δ1.

As the simulation progresses, the agent clusters are updated incrementally. We

update the agent set contained in each link band, as well as the clusters within each

link band. The agent set is updated when an agent crosses a link band boundary. If

a link band boundary is crossed, then the clusters are updated by moving the agent to

the appropriate adjacent agent set. As the clusters are updated, the AABB of all agents

within the cluster is updated. If the AABB size exceeds δ1, then the clusters within the

link band are recomputed.

Given the set of agent clusters, the proximity computation for computing the re-

pulsive and roadmap forces is efficiently performed. For each cluster, the nearest link
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is determined from the link band and used to compute the roadmap force Fr. For an

agent within a cluster Ci, the set of adjacent clusters is computed using the link adja-

cency information. The repulsive force Fsoc is computed against all agents in the set of

adjacent clusters.

6.6 Results and analysis

In this section, we highlight our results on a variety of benchmarks involving multi-

ple more complex robots or thousands of simple human agents in a complex scheme.

For each method, we present results as well some discussion on the performance and

comparisons approach.

6.6.1 Global navigation

RDR Results

In this section, we analyze the performance of our planner on some benchmarks and

also highlight its performance.

Results

We highlight the performance of our planner on planar robots undergoing trans-

lational and rotational motion, as shown in Fig. 6.18 and in Fig 6.19. In this first

benchmark, we demonstrate our algorithm on motion planning of 15 star-shaped robots

(indicated in different colors) using reactive-deforming roadmaps. Each robot has 3-

DOF (2T+R) and acts as a dynamic obstacle for the other 14 robots. The goal for each

robot is represented as a thick point of same color in the figure. Thin gray segments

represent the initial roadmap, thick colored segments denote the path for each robot.

Fig. 6.18 (b) and (c) show the snapshots of two timesteps of our planning algorithm.

Only the deforming paths are shown. Fig. 6.18 (d) shows the final configuration of the

robots, the reactive-deforming roadmaps, and the corresponding paths. Our planner
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(a) (b) (c) (d)

Figure 6.18: Multi-robot motion planning of 15 star-shaped robots in
different colors using reactive-deforming roadmaps: (a) Initial configura-
tion. Each robot has 3-DOF (2T+R) and acts as a dynamic obstacle for the other
14 robots. The goal for each robot is represented as a thick point of same color.
Thin gray segments represent the initial roadmap, thick colored segments denote
the path for each robot. (b)-(c) Two timesteps of our planning algorithm. Only
the deforming paths are shown. (d) The final configuration showing the reactive-
deforming roadmaps and the corresponding paths. Total number of simulation
steps = 1, 525, average time per step = 10.6 msec on a 2.1GHz Pentium Core2
CPU.

takes a total of 1, 525 simulation steps, with an average time per step of 10.6 msec on a

2.1GHz Pentium Core2 CPU.

The second benchmark incorporates an application of multi-robot planning with

dynamic obstacles to crowd simulation. Fig.6.19 shows an urban environment with 4

dynamic obstacles (cars) and 3-DoF human agents. Each agent has a unique goal near

one of the buildings, which is updated as an agent reaches the goal. The dynamic

obstacles invalidate links which forces agents to replan. As links become clear, the

roadmap is repaired. For an environment with 100 agents, the average time per step is

11.5msec.

Performance

In this section, we analyze the performance of different components of our planner. Most

of the time in RDR computation is spent in roadmap update, force computations, and

roadmap maintenance. Roadmap update needs to be performed for each particle and

the cost of this step is O(n) for n particles. Internal forces are computed for each spring.
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(a) (b) (c)

Figure 6.19: Application of N-body motion planning using reactive de-
forming roadmaps to complex crowd simulation with human agents and
polygonal dynamic obstacles: (a)-(b) An instructive example with 4 agents (in
red) and goals (in yellow). The static obstacles are in dark blue and dynamic ob-
stacles (cyan). The reactive deforming roadmap is shown with green links. The
dynamic obstacles represent cars. As the highlighted car (circled) moves, the af-
fected link in the roadmap is removed. (c) A real-time simulation of motion plan-
ning for 100 human agents and 4 cars in same environment. The average time for
roadmap update and motion planning per frame = 11.5ms on a 2.1Ghz Pentium
Core2 CPU.

Based on our existing construction algorithm, the number of springs is generally O(n). If

the initial roadmap is very dense, the number of springs can be a super-linear function

of n. In the worse case, each obstacle can potentially apply a force to each particle,

so for m obstacles, the worst case performance is O(nm). In practice, if each particle

only applies forces within a small or localized region, then the expected complexity of

roadmap update is nearly linear in the number of particles. It is difficult to derive tight

bounds on complexity of roadmap maintenance as it depends on the environment and

the motion of the obstacles. The complexity of the algorithms for adding or removing

links is also linear in the number of springs. removal methods is on the same order as

that of the number of springs. Even though we perform a fixed number of link and

milestone additions, the cost of each update is at least O(n), for a nearest neighbor

search. So, the total cost is at most O(n2 +nm). Fortunately, in any practical case, the

cost much lower than this.

Analysis and Conclusions
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We have presented a physically-based, adaptive roadmap representation that retracts

and changes its topology as a function of the dynamic environment. The RDR can be

used to plan the motion of a single robot or multiple robots among dynamic obstacles.

Our formulation offers several advantages over existing approaches. Most of replanning

algorithms remove the links as soon as they are invalidated. Since our links can retract

based on the motion of the obstacles or other robots, they are not invalidated as fre-

quently. Thus, the planner removes relatively fewer links and performs fewer milestone

and link additions into the initial roadmap. In addition, by maintaining relatively longer

links, in terms of path length, roadmap connectivity is not updated as frequently. More-

over, our formulation can easily accommodate moving goals of the robots or changes in

the path topology due to dynamic obstacles. It is relatively simple to implement our

algorithm using a mass-spring simulation framework, on top of a roadmap-based motion

planner.

Our approach also has some limitations. Since we do not make any assumptions on

the motion of the obstacles, the generated motion is susceptible to leaving the robot

in a state where a collision is inevitable. It is also difficult to give any guarantees on

the optimality of the computed paths. If the environment consists of heterogeneous or

different robots, we need to maintain and update a separate RDR for each robot which

can be prohibitively expensive. Even when there are classes of robots which can occupy

a single RDR, the RDR overhead can be the bottleneck in planning.

Currently, we have tested the performance of our planner on complex scenarios with

tens of planar 3-DOF robots. As part of future work, we plan to evaluate its performance

on more complex scenarios with high-DOF robots (so, the particles would exist in C

rather than in the workspace). Improved coordination could lessen the number of extra

lanes, and also improve performance. Multiresolution methods would also help improve

the performance. Finally, we want to add a dynamics to the agent motion for more

realistic behavior.
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Particle sampling

Different sampling schemes have a impact on the overall performance and behavior of

the global RDR planner. In our tests, we have observed up to a 3 times speedup in

overall roadmap performance. This largely comes from far fewer roadmap particles to

be simulated.

There is a clear visual distinction between the different methods as well (See Fig.

6.20). Uniform sampling causes unwanted oscillation along a link due to elastic forces,

compression between the link’s milestones, and oversampling. Depending on the degree

of oscillation, this may effect the agent’s goal force. On the other hand, the effect of

APSL is to increase link elasticity near obstacles, but also to shorten the link farther

away from obstacles. This shortening removes oscillation along a link, helps to smooth

agents’ goal forces, and greatly improves roadmap update timings. Additionally, the

resulting link will have similar sampling density as uniform sampling near obstacles,

where more samples are needed.

An additional advantage of the APSL algorithm is that it can be used to reduce the

complexity of the input roadmaps, both in terms of number of links and milestones.

The APSL algorithm generalizes to higher dimensions (in a manner similar to that

proposed by Quinlan et al [QK93]), so it can be applied to higher dimensional RDRs as

well. In many cases, the initial roadmap may be overly sampled due to our selection of

Voronoi vertices. We can apply the APSL algorithm to the input roadmap by inspecting

all milestones with a valence of 2, or those that are only connected to exactly two

other milestones. If the milestones connected to this milestone satisfy the APSL safety

criterion, then the milestone can be removed (See Fig 6.21). We have applied this to

our input roadmaps. The results of this are summarized in Table 6.1. Note that in the

case of the maze and city demos, the roadmaps were already relatively clean so this

approach did not help much. However, in the case of the tradeshow, the size of our

initial roadmap was reduced by a factor of 3.
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Demo Sampling Num Num
Milestones Links

Maze Uniform 99 103
Maze APSL 94 98
Tradeshow Uniform 3734 3896
Tradeshow APSL 1154 1316
City Uniform 2321 3216
City APSL 2189 3084

Table 6.1: Uniform Sampling vs. APSL in Roadmap Cleanup. This
shows the reduction in input roadmap size based on the APSL sampling metric.

We also note an important consideration when using the APSL sampling method.

It tends to oversample when the link is near an obstacle since the safety region for a

particle is relatively small. Other approaches, such as those based on curvature or basis

functions, may yield coarser samplings in these situations. However, most of these other

approaches require the tuning of some parameter which may be non-intuitive based on

the situation or may be relatively complex to implement. On this other hand, this

approach works well in a wide variety of situations and is simple to implement with

the RDR framework and data structures for efficient obstacle proximity queries. Plus,

through the application of forces, the links will tend to move away from obstacles,

which, over time, will result in the coarsest sampling a link allows based on the obstacle

configuration and the APSL sampling criterion.

6.6.2 Local navigation

Generalized Social Potential Field Results

We have completed a preliminary implementation of Generalized Social Potential Fields

and tested its performance and scalability on a workstation computer with 2.66 GHz

Intel X5355 Xeon CPUs and 3 GB of main memory. To understand the effectiveness of

the approach, we have applied it to a variety of local coordination benchmarks.

Benchmarks
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We have tested our approach on three different benchmarks, each designed to test

different aspects of the coordination technique.

• Antipodal: In this benchmark, a fixed number of random robots are placed

around the circumference of a circle. Each robot must move across the circle

and toward the opposing orientation. This benchmark uses social potential fields

between all bodies as well as an attractive force to have the robots cross the circle

to its antipodal position. Planning took 125 s to complete the task for 16 robots

with an average step time of 8ms. See Fig 6.4.

• Letters: In the letters benchmark, 33 randomly placed robots must navigate to

form the letters ICRA’09. Like the Antipodal demo, only social repulsive and

attractive forces are used. The benchmark took 273 s to complete, with an average

step time of 5 ms. See Fig 6.23.

• Guarding and Escorting: In this benchmark, an important robot is trying to

navigate to a position across the environment. Several guard robots form a for-

mation around the important robot and then escort it to its goal while trying

to remain in formation. This benchmark has 35 aggressive robots, and uses for-

mation constraints as well as social repulsive and attractive potentials. Planning

completed in 133 s with an average step time of 42 ms. See Fig 6.1.

The preliminary results of our approach are very promising. In a mostly unoptimized

implementation, we were able to generate collision-free, coordinated motion plans in a

relatively short amount of time. Again, there is no global planner present so robots will

simply attempt to take the straight-line path to the goal even if the free space is more

constrained than other paths. Even though this results in a great deal of traffic, they are

frequently able to still reach their goals. Table 6.2 highlights the run-time performance

for our benchmarks. We note that in all cases, as the number of robots scales from 16

to 200, the average step time remains at a few to tens of milliseconds (ms) which shows
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Demo Num Forces Update Avg Step Total
Robots (s) (s) Time (s) Time (s)

Antipodal 16 0.0078 0.00001 0.00781 125.7
Antipodal 32 0.0231 0.00003 0.02313 358.7
Antipodal 48 0.0303 0.00004 0.03034 637.2
Antipodal 64 0.0464 0.00005 0.04645 881.1
Antipodal 80 0.0290 0.00007 0.02907 939.3
Antipodal 100 0.0300 0.00008 0.03008 969.4
Antipodal 200 0.0752 0.00017 0.07537 3748.8
Guarding 39 0.0419 0.00003 0.04193 132.9
Letters 33 0.0053 0.00002 0.00532 273.8

Table 6.2: Planning times for benchmarks: This table shows the timing for
each of our benchmarks. Forces (force computation, constraint updates), update
(motion equation integration), and step time are averages over the entire planning
run. Total time is the amount of time it took to find a planning solution.

that it scales well with the number of robots. For the Antipodal benchmark, there was

a drop in the average time as we went beyond 64 robots. This can be attributed to

the fact that the size of the circle was increased to accommodate the robots. When

the robots are further apart, fewer interactions occur. Fig. 6.22 confirms the scalability

with the number of robots, as it shows the average step time as the number of robots

increases. The total planning times can be misleading, since these are also dependent on

how far each robot must travel. The average step time is a better indicator of the actual

performance since total planning time is a function of average step time and average

distance traveled per step.

Analysis

There are numerous factors which play a role in the theoretical run-time performance

of our approach. The most dominant feature would be the number of robots, N , and

their discretization. Each sample on a robot ri could potentially visit every other sample

on every other robot and obstacle at each time step. Thus, in the worst case, our time

step complexity approaches O(M2), for M > N samples. However, by exploiting the fall-

off distance parameter in Eq. 6.2, this is typically not the case. Given the maximum

search distance of cβ (as defined in Sec. 6.4.1), each sample visits a finite, bounded
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number of other samples within that region. This reduces our run-time complexity

to O(M), but it is important to note that while bounded, the maximum number of

samples a single sample could visit could still be a large number. In our tests, we did

see cases where too fine of a sampling severely degraded performance but these are

usually eliminated by the previously mentioned optimizations.

Like other simulations with several parameters, the values of these parameters played

a role in the success of the approach. However, since many of the parameters in our

approach have real-world interpretations (distance, force in Newtons, etc), we found

that giving them realistic values often resulted in successful and stable planning.

Comparison and Limitations

In this section, we provide a qualitative comparison of our work with the large body of

work on multi-robot motion planning and note some limitations of our approach.

Comparisons

Like other decentralized methods, our work relaxes completeness for efficiency. Thus,

compared to centralized approaches such as Probabilistic Roadmap Methods (PRM)

[KSLO96], Rapidly-exploring Random Trees [LK00], or other variations on these meth-

ods, our approach scales much better in the number of robots, but does not offer com-

pleteness or convergence. Furthermore, additional coordination constraints can greatly

restrict the search space, making it more difficult for centralized approaches to find

suitable paths. As a result, these methods become impractical for systems with a large

number of robots, such as in the scenarios we are attempting to solve.

Of the decentralized methods, we can group them into several categories: incremental

planning, decoupled planning and coordination, dynamic replanning, path modification,

and potential fields.

Incremental planning methods first determine a priority for each robot. Then, robots

plan in the priority order such that they avoid collisions with robots who have already
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found a path. Variations on this interleave centralized planning with incremental to im-

prove reliability [SI06]. Since each robot is completely independent other robots, certain

coordination constraints such as distance constraints are more difficult to satisfy than

in our approach. In contrast, the social potential model in our approach accommodates

close proximity between robots and scales well, as the number of robots increases. How-

ever, since incremental planning uses a planner for each individual robot, it supports a

wider range of robots than is currently supported by our approach and can navigate in

environments where a global path is required.

Decoupled planning and coordination is a variation on incremental planning and

decomposes multi-robot planning into two phases. In the first phase, paths are planned

without consideration of other robots. Then, a coordination phase adjusts the robot’s

velocity along their path so that no collisions occur [KZ86, SLL99, PA05]. Similarly,

graph representations such as coordination graphs, help to combine planned paths to

avoid collisions [LGP05]. This approach shares many of the same qualities as incremental

planning. Particularly, stiffer coordination constraints increase the difficulty and lower

the chance of success as compared to our approach.

Dynamic replanning methods wait until the current path becomes invalidated, and

then uses any remaining valid information to determine a new plan [Ste95, KM04,

ZKB07, BTK07]. Some replanning methods have been popular choices for higher-DOF

multi-robot problems. The key drawback of replanning methods is that the cost of

replanning can be high, particularly for a large group of robots or with additional co-

ordination constraints such as distance constraints. Thus, they will not always scale

as well as potential field methods. Path modification approaches [QK93, BK02, YB06]

attempt to bend or deform the path around moving obstacles, rather than allow them

to become invalidated. However, in general these methods cannot handle global changes

in connectivity which commonly occur in multiple robot problems.

Various planners also make different assumptions for sensing or exchange of infor-
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mation. Communication is a popular choice, and was successfully used for a replanning

approach coupled with decentralized planning of multiple vehicles [BTK07]. Several

communication configurations assume that sufficiently precise position and trajectory

information can be passed to robots within a local region such that the position of

nearby robots is known at any point in time as long as the robot follows that trajectory.

This works well and provides essentially the same information as needed by SPF. On the

other hand, sensing of position information as in SPF can also account for unexpected

changes to the paths of other robots or other inaccuracies in sensing.

As discussed earlier, potential field methods [Kha85, War90, RW99, GC02] rapidly

update a navigation function to adjust to moving obstacles and robots. Constraint-based

Motion Planning (CBMP) [GL02] also falls into this category with iterative methods to

satisfy additional constraints. We propose a generalization of the social potential field,

which has assisted in generating collision-free motion in crowded settings while offering

real-time performance.

Limitations

There are some limitations to our work. There is no guarantee that a robot will find

a path even if one exists. However, this has not often been the case in our experiments.

While the excitation helps robots escape a local minimum, it is not guaranteed to always

work. For instance, a relatively small and light robot will not be able to move past several

larger, heavier robots. Since we do not consider points beyond our distance criterion,

a fast moving robot or obstacle might collide with a robot before it could react. While

dynamic constraints are inherently simulated, they are not explicitly handled and thus it

is possible for a robot to reach an inevitable collision state. However, it should be noted

that by either bounding relative velocities or by adjusting the social force parameters

to give a robot sufficient time to react, these cases can frequently be avoided.
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6.6.3 Physics-based planning for multiple agents

Multi-agent planning results

In this section we describe the implementation of our multi-agent navigation system and

highlight its performance on various environments. We have implemented our algorithm

on a PC running Windows Vista Enterprise operating system, with a two 2.66Ghz

Quad-Core Xeon CPUs, 3GB memory and an NVIDIA Quadro NVS 285 GPU. We used

Visual C++ 8 programming language and OpenGL as the graphics API for rendering

the environments. Since the robots are in these tests have two translational DOFs

and a single rotational DOF, the initial Reactive Deformable Roadmap (RDR) for an

environment is initialized by computing the Voronoi diagram of the static obstacles in

the environment. This computation helps initialize the roadmap with links that are

optimally clear of obstacles when the simulation begins. To simulate particle dynamics

of the agents, we used a semi-implicit Verlet integrator [Jak01].

Proximity computations to dynamic obstacles are accelerated using a spatial hash

data structure to identify the nearby objects. In addition, to accelerate proximity com-

putations to static obstacles, we precompute a discretized Voronoi diagram of the ob-

stacles using the GPUs [SGGM06]. The discrete Voronoi diagram provides proximity

information to the nearest obstacle. To get the set of all obstacles within a given radius

r, we scan the discrete Voronoi diagram (and distance field) within a window of size

r × r and check if the distance value at the discrete samples is less than r. Thus the

proximity computation to static obstacles is reduced to a small number of table lookups.

Benchmarks

We demonstrate our system on three complex scenarios.

• Maze: The maze scenario considers the case of multiple agents navigating a maze.

The maze has 8 entry and 8 exit locations, and 1288 polygons. The initial roadmap

consists of 113 milestones and 281 links. By using RDR, they have complete
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knowledge of how to navigate the maze despite its complexity and thus are able

to quickly move toward their goals. See Fig. 6.17.

• Tradeshow: The tradeshow scenario is an indoor environment of an exhibit hall

in a trade show. The exhibit consists of 511 booths and 110K polygons. The

initial roadmap consists of 3996 links and 5996 milestones. Numerous agents walk

around and visit multiple booths. The goals for each agent are updated as the

agent arrives at a booth. Some agents stop when they reach their goal in order

to simulate observation of a particular point of interest. After a certain amount

of time, the agents will resume walking toward their next goal. Also, certain

booths have fixed agents whose orientation changes according to passing agents.

See Fig. 6.30.

• City: The city scenario is an outdoor scene consisting of multiple city blocks. The

model consists of 924 buildings and 235K triangles. The initial roadmap for the

environment consists of 4K links. The environment also consists of 50 moving cars

as dynamic obstacles. As the cars move through the urban setting, links on the

path deform around the obstacles and get invalidated. We add a higher potential

in front of the cars along their direction of motion, which decreases the probability

of the agents from selecting paths in front of moving obstacles. The environment

is populated with a non-uniform density of agents moving along the side walks or

crossing the streets. Additional behavior characteristics of each agent are assigned

at run-time. These individualized behaviors includes updating the goals, varying

the maximum speed, and changing interaction range of the agents. See Fig. 6.29.

We highlight the performance of our crowd simulation algorithm on the complex

benchmarks. Our approach can perform real-time simulation of crowds with up to

1, 000 independent agents at interactive rates using APSL sampling and agent clustering

– ranging from 54 to 307 frames per second, depending on the scene complexity and the
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Demo Agents Sim Path RDR Total
Search Update Time

Maze 500 3.01 0.006 0.24 3.256
Maze 1000 7.98 0.013 0.26 8.37
Trade Show 500 2.51 1.02 2.21 5.74
Trade Show 1000 6.52 2.21 2.22 10.95
City 500 3.18 2.03 5.88 11.09
City 1000 8.11 3.85 6.07 18.03

Table 6.3: Performance on each scenario. Timings reported here are the
average simulation time per frame (step) broken down into the time for simulating
local dynamics (Sim), performing path search (Path Search), and updating RDR
on the fly (RDR Update). All timings are in milliseconds.

crowd density. The performance of our algorithm in the environments (with different

complexity) and varying number of agents is highlighted in Table 6.3.

We further highlight our results by comparison with prior approaches. Figures 6.24,

6.25, and 6.26 break down our algorithm based on which novel features it includes.

As can be seen, both APSL sampling and agent clustering improve the total time per

simulation step. We note that in the maze scenario, very little path search and RDR

update improvement is visible. This is largely because the roadmap was already fairly

optimized to begin with.

Analysis and Discussion

In this section we analyze the time complexity of stages of our algorithm, and provide

a qualitative comparison with prior work.

Analysis Performance of our approach depends on a number of factors. At each

time-step, RDR’s complexity is O(|M | + |E|), or linear in the number of particles and

edges. The tasks per timestep include force computations, numerical integration, as

well as path search and roadmap maintenance. Agent motion also depends linearly in

the number of agents, but each agent also performs a path search, thus making the

agent portion of computation complexity O(N + N |E|lg|E|). In all of these cases, the

performance scales linearly with the number of agents or the complexity of the roadmap.
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Furthermore, particle simulation is easily parallelizable, so this approach should be able

to scale well to a large number of agents.

Comparison and Limitations

We compare some of the features of our approach with prior algorithm and highlight

some of its limitations. Our adaptive roadmap based agent navigation algorithm is

designed to perform real-time global navigation for a large number (e.g. hundreds or

thousands) of independent or heterogeneous agents, each with different goals. We also

take into account dynamic obstacles and the local dynamics among the agents. RDR

continuously adapts to dynamic obstacles and is used to compute collision-free paths

in dynamic environments. As compared to local or potential field methods, RDR can

compute a global path for each agent. In addition, we use elastic bands and link bands

to augment the local dynamics and resolve collisions among multiple agents. Due to

lazy and incremental updates to the roadmap and efficient computation of guiding-path

forces with link bands, this approach can scale well to hundreds or thousands of agents.

Comparisons: Our work is complementary to several existing works on crowd simu-

lation and multi-agent planning. Continuum Crowds [TCP06] targets navigation for a

small umber (2 − 5) groups of human agents, where each group consists of many (up

to thousands) agent with identical goals and behavior characteristics. Moreover, this

approach uses local collision avoidance and its accuracy is governed by the underlying

grid resolution. This approach has not been shown to extend well to a large number of

groups or when there are challenging narrow passages in the free space, as shown in our

maze and trade show benchmarks.

Graph based approaches [PLT05, LD04, LG07] use proximity graphs to capture the

connectivity of the navigable space and use it for agent coordination. However, the nav-

igation graphs are precomputed and thus are mainly restricted to static environments.

Multi-agent Navigation Graphs [SAC+07] efficiently compute dynamic navigation graphs

for simple agents. However, this approach is limited to a few hundred agents and does
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not scale with the number of agents. It cannot guarantees coherent and smooth paths.

Corridor Maps [GO07] use similar proximity ideas as link bands to define navigable

space, and can adapt to dynamic obstacles. However, corridor maps cannot easily han-

dle dynamic topology of the roadmap and model emergent behaviors like agents following

each other in lanes. Local agent-based and potential-field methods [Rey87, ST05] per-

form well for a large number of agents and exhibit interesting crowd-like behaviors, but

cannot provide same guarantees in path finding as global approaches.

Limitations: Our approach has some limitations. Our current implementation

addresses collision-free navigation of a large number of 3-DoF agents, therefore our

work does not produce realistic motion in situations where each human is modeled as

a high DoF avatar. Although RDR uses a global roadmap at each given time step for

path computation, the local dynamics formulation to update the links can potentially

result in an agent getting stuck in a local minimum across space-time. In other words,

our work may not be able to provide completeness on the existence of a collision-free

path for each agent in all environments. Furthermore, we currently treat each agent as

an individual agent and do not exploit all the behavior-related characteristics of real

crowds such as grouping.

Autonomous agents in online virtual worlds

In this section we describe our implementation, show results of our virtual agent model,

and discuss possible issues with the approach.

Implementation

A preliminary implementation of his approach has been developed for Second Life,

based on the LibSecondlife (LibSL) framework. LibSL is used to reverse engineer the

SL network protocol. With this, it is possible to create a SL client session without using

the official SL viewer resulting in avatars that appear as full clients to the server. It

includes data structures for avatars and objects as well as events for when data has been
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updated. Support for simultaneously controlling multiple avatars also exists. While the

number of avatars per computer is limited, additional computers can be used to host

additional clients. In this way, the algorithm can scale easily to multiple computers as

long as there exists a single host server. The avatar motion control model along with

the local agent dynamics has been implemented on top of this framework. A forward

Euler integrator is used to estimate a heading and the velocity is locally computed.

For increased interactivity, the ALICE chatterbot engine has also been integrated into

virtual agents. This allows them to have small conversations with users and to define

goals based on the location of agents which a virtual agent is chatting with.

For testing, one PC ran only virtual agents while a second PC ran both virtual agents

and a viewer. These computers were placed on different networks, a university network

connection and an at home cable modem respectively.

We have tested our approach in a two scenarios:

• Populating a city block: This city block scenario includes 2 streets, a fountain

and a patio of a building. Virtual agents are added to the city block to improve

realism (Fig. 6.27). Virtual agents randomly select points of interest while inter-

acting with each other through repulsive forces. Each agent randomly selects a

goal and travels to that location, after which it selects another goal. All agent and

obstacle interactions are with repulsive forces. Basic avoidance as well as a little

bit of lane formation is apparent. The server managed 18 virtual agents and 3 real

agents. The 17 virtual agents were distributed between two PCs.

• Campus tour guide: To show a wider variety of behaviors, we added agents to a

university campus. This scene included three classes of virtual agents: wandering

students, a tour group, and a tour guide. Grouping and following along with the

effects of both attractive and repulsive behaviors and following are observable in

this scene (See Fig. 6.11(c)). There are a total of 20 agents, 2 real and 18 virtual

agents, in the scene. As before the virtual agents were simulated on two client
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PCs.

The overall run-time performance in both scenarios was about the same. Virtual

agents were distributed over 2 client computers. After tuning the computers, we were

able to achieve interactive performance. So, it is likely that this approach will scale with

additional client computers.

While the simulation computation was relatively cheap, the biggest limiting fac-

tor was the available bandwidth. Each agent, even when hosted on the same client

computer, sends and receives a extensive amount of information to the server. In our

experiments, each PC could support about 8 to 15 agents without noticeable degrada-

tion in performance. It should be noted that our limit of 18 agents is unrelated to the

performance. Instead, it was the number of accounts on Second Life we were able to

use. In the future, we expect to use many more agents.

6.7 Conclusions

We present a potential field based method for local coordination of multiple robots.

For local avoidance and navigation, social potential fields were generalized for convex

and non-convex polyhedra and adapted to fit within a physics-based motion planning

framework. Overall, the results are promising based on our preliminary implementation.

We are able to plan for many robots, several of which are often in tight spaces, in a

relatively short amount of time.

There are several additional directions for future work along with the items men-

tioned in the limitations. It would be useful to integrate this method with a global

planner to allow it to function in larger and more complex environments. A similar

approach may be possible for holonomic vehicles as well as for articulated robots. For a

more realistic simulations, sensing and communication can be considered. Better models

of discretization can help to reduce the number of samples per robot while also preserv-
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ing accuracy. Since the approach is parallelizable, better implementations are likely to

improve performance.

We present a novel approach for real-time navigation of independent agents in com-

plex and dynamic environments. We use adaptive roadmaps and present efficient al-

gorithms to update them. These roadmaps are augmented with link bands to resolve

collisions among multiple agents. The algorithm has been applied to complex indoor

and outdoor scenes with hundreds or thousands agents and dynamic obstacles. Our

preliminary results are encouraging and the algorithm can compute collision-free paths

for each agent towards its goal in real time.

There are many avenues for future work. First of all, we would like to incorporate

agent clustering in a multi-resolution simulation framework [OFL01] to handle a very

large number of agents, e.g. 10-20K independent agents at interactive rates. Secondly,

we would like to use better models for local dynamics and behavior modeling that

can result in more realistic crowd-like behavior. Instead of its current simple model,

we would like to use higher DoF articulated models for each agent to generate more

realistic motion. However, this would increase the dimensionality of the configuration

space and significantly increase the complexity of the navigation algorithm. Finally, it

may be useful to extend these results to generate truly heterogeneous crowd behavior

[Bon95], using example based models to guide the simulation [LCL07].

Finally, we have applied our planning and collision avoidance to virtual agent naviga-

tion in online virtual worlds. In our implementation, each virtual agent navigates using

an established pedestrian model augmented to take sensing latencies into account. Our

preliminary results are promising and the algorithm can control and simulate several

virtual agents from a single computer.

While the approach works well, there are some limitations. The approach generally

requires more bandwidth, which can become a bottleneck. Moreover, server-based so-

lutions probably require modifications on the server if not already supported and thus
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may be less practical. As with many “potential field” planners, there is no guarantee

of success in reaching a goal. Finally, we hope to scale our work to include much larger

crowds in virtual worlds.
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Figure 6.20: APSL vs. Uniform Sampling: The simple city scene after 700
simulation steps. Larger, orange circles are milestones, while the light green circles
are the internal samples along a link. (Top row) Uniform sampling effectively
covers the links to provide smooth deformations. (Bottom row) APSL provides
straighter links and can provide equivalent sampling in the most deformed state of
a link. (Right column) A zoomed in view of the boxed region is shown to highlight
the differences as well as unnecessary bends and oscillation in the Uniform case.
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Figure 6.21: APSL Roadmap Cleaning: (Left) A zoomed in portion of the
input roadmap for the tradeshow scenario, where roadmap links are the black
lines and milestones are the yellow circles. (Right) By applying the APSL al-
gorithm, many redundant milestones have been removed which helps to improve
RDR performance.

Figure 6.22: Antipodal benchmark timings: To test scalability, the number
of robots was increased in the antipodal benchmark.
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Figure 6.23: Letters: The letters benchmark consists of 33 convex and non-
convex robots in an assembly-like situation. (a) The letters start off at random
positions and orientations. (b) Repulsive and attractive forces allow the robots
to move toward their goals but to also avoid collisions with each other. (c) The
robots arrive at their final location.
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Figure 6.24: Maze - Performance vs. Number of Agents: This chart
compares the performance of including APSL and agent clustering into a crowd
system for the maze scenario.

0

5

10

15

20

25

30

35

40

45

50

500 500 500 1000 1000 1000

Time
(ms)

Number of Agents

Sim. Time Path Search AERO Update

A – No APSL or Clustering
B – APSL Only
C – APSL and Clustering

A AB C B C

17.23

11.99

5.77

45.45

37.38

10.95
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crowd system for the trade show scenario.
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Figure 6.26: City - Performance vs. Number of Agents: This chart
compares the performance of including APSL and agent clustering into a crowd
system for the Cityscenario.
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Figure 6.27: City block: The sequence of images follows the evolution of virtual
agents in a small city block. Several virtual citizens (circled in red and wearing
shirts in various shades of blue) move around the streets and occasionally stop
by the fountain. Virtual agent behaviors include exploration, attraction to the
fountain (for a period of time), and avoidance. Agents r1 and r2 are identified
to demonstrate their avoidance of each other as they cross near the fountain. A
human controlled agent (orange) acts as an obstacle and must be avoided. The
scene has 18 virtual agents distributed over 2 PCs.
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Figure 6.28: Campus tour guide: A sequence of still images following the
evolution of virtual agents in a campus scene, at the University of North Car-
olina’s Second Life campus. To better simulate the real world, several virtual
agents (wearing shirts with various shades of blue) have been added to the scene.
Agent behaviors include leading a group, following, being part of a group, select-
ing random goals for exploration, and avoidance. This models a virtual tour guide
leading a small tour group while also avoiding the human controlled agents. There
are 18 virtual and 2 real agents in this scene.
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Figure 6.29: Crowd simulation in an urban landscape: A street intersection
in a virtual city with 924 buildings, 50 moving cars as dynamic obstacles and 1, 000
pedestrians. We show a sequence of four snapshots of a car driving through the
intersection. As the car approaches a lane of pedestrians (top), the lane breaks
(middle two images) and the pedestrians re-route using alternate links on the
adaptive roadmap. Once the car leaves the intersection (bottom) the pedestrians
reform the lane using the adaptive roadmap. We are able to perform navigation
of 1, 000 pedestrians in this extremely complex environment at 54fps on a 2.6Ghz
Dual Processor PC.
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Figure 6.30: Sequence of 3 snapshots from Tradeshow demo: The en-
vironment contains 511 booths with 110K polygons. The agents move toward
different booths and avoid each other using link bands.
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Chapter 7

Conclusion

In this dissertation, we have developed a novel framework for motion planning using

physics-based sampling and showed how it can be applied to several realistic situations

by expanding the list of constraints either explicitly as part of the robot’s motion model,

including planning with deformable soft-body robots, highly articulated serial linkages,

and finally for a large number of agents in dynamics environments. In practice, the

method performs well in that the physics simulation core which generates the samples is

close to “real-time” and scales well to a large number of bodies and complex situations.

Many optimizations to the physics simulation components, specifically for our motion

planning problems, further help with the performance. Thus, the total planning time

required is usually proportional to how long the task would take in real life. Also,

since the underlying physics model usually solves for second order motion equations

(i.e. considering acceleration), the resulting motion tends to be smoother than other

planning algorithms which are based on straight-line linkages between milestones.

It is important to note that there are a couple of noteworthy limitations to the ap-

proach. While the physical equations are modeled for each scenario, not all kinodynamic

constraints are considered in all cases. Thus, for certain bodies and trajectories, not all

motions will always be physically-plausible. Variations on our guiding path, such as

that proposed by [RLA06a], could included to help alleviate these problems. More fun-



damentally, there is no guarantee that a robot will find a path even if one exists, such

as when the body becomes “stuck” or get snagged on some part of the environment (in

the case soft-bodies) or when the robot reaches a local minima in the artificial force

field. However, in practice this has not been the case in our experiments. Excitation

in the local motion model can help overcome some of the limitations of local minima,

but is not guaranteed to work in all cases. For instance, a relatively small and light

rigid body will not be able to move past several larger, heavier robots. With respect

to dynamic obstacles, a fast moving obstacles may still collide with a robot since the

robot may not always have enough time to react. A velocity-bias also helps with this

situation, by essentially projecting the moving obstacle forward in time to a position

which a robot can reason about. This situation can also usually be overcome by placing

velocity-limits on the obstacles or otherwise tuning the local avoidance parameters. Re-

garding parameters, many of the simulation components require tuning of parameters

to have a realistic and stable simulation. Some algorithms exist which can auto-time

some of these parameters, but to the best of our knowledge no approach does this well

in a generic manner.

Along with the variety of limitations, there are several avenues for future work. We

would like to obtain better simulation coefficients through physical measurements, par-

ticularly in the case of deformable robots and catheters. This could improve the modeling

and interaction of the soft-bodies with the surrounding environment. In these cases, it

would be then worthwhile to compare the results to real-life procedures to help improve

our model along with the decisions made when performing the procedures. We could

further improve these simulations by include a deformable environment, much like the

internals of human-body. In fact, this situation would work extremely well with RDR,

since paths would rarely be invalidated (the global connectivity should not change) and

only local adjustments would need to be made to the path itself. At the moment, we

often rely on a guiding path generated from the medial axis or a Voronoi diagram of
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the workspace. While the property of being far away from obstacles helps to reduce

the chance of collisions, it does not always procedure the most efficient final paths (in

terms of time needed or total work necessary to execute the path). We would like to

see if the effectiveness of the approach changes with different models of guiding paths

or roadmaps. In real life certain robots, such as the snake-like robots, also have unique

modes of locomotion. It would be interesting to improve our physics model to capture

this sort of locomotion and incorporate that in our physics-based sampling search. Much

of the current framework assumes perfect knowledge of position and velocity. It would

also be interesting to consider sensing and communication between robots, much like the

work of [BTK07]. Finally, in most cases, these implementations are still not completely

optimized. Many of these algorithms can be trivially parallelized or can be implemented

with more efficient data structures, especially in the physics simulation core and its sup-

porting components. These optimizations could help tremendously with performance.

In a similar manner, faster, more robust components in this core could also allow for

the robots to take larger steps over time, also helping the overall performance.

Finally, we highlight the results of our work by showing a variety of uses of the frame-

work for realistic and challenging situations which would be difficult for many other mo-

tion planning algorithms, including a medical procedure called liver chemoembolization,

using snake-like robots for industrial pipe inspection and for search-and-rescue opera-

tions, for social planning of crowds of agents in an open city environment which includes

vehicles, to estimate pedestrian traffic in a large trade-show environment, and finally

for populating online virtual worlds. Each of these tasks can include complex robots, a

large number of robots, a complex dynamic environment, or real-time constraints in the

form of network latency.
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Appendix A

Numerical Integration

As posed in this work, the motion equations in physical simulation are in the form of

(coupled) ordinary differential equations (ODEs). In general, these are of the form:

ẋ = f(x, t)

where f is a known function and x is the state of the bodies in the simulation.

In order to evolve the state of the simulation, or otherwise advance time, it is nec-

essary to solve these ODEs. This is often referred to as either numerically solving the

ODEs and also numerical integration. There are many different approaches for numer-

ically solving ODEs, each with various benefits and trade-offs. We will detail the most

popular methods as well as some trade-offs for each one here.

A.1 Euler’s method

Perhaps the simplest method for solving ODEs is Euler’s Method. This approach ap-

proximates the solution by using the first two terms in the Taylor expansion of x,

x(t+ h) = x(t) + hf(x(t), t)

In more general terms, x is approximated by evaluating the tangent of the curve at t

and then moving along that slope by some amount h.
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For example, consider the state of a particle p(t) with state

 x(t)

v(t)

. If we differ-

entiate this with respect to time and note that v̇ = a = f
m

, then

 ẋ

v̇

 =

 v

f
m


yields a pair of coupled first order differential equations.

To apply Euler’s method, we first select some fixed time step size h. Then,

x(t+ h) = x(t) + hv

and

v(t+ h) = v(t) + ha(t) = v(t) + h
f

m

In order to take a step in time using Euler’s method, it is first necessary to solve for the

total force acting on the particle, f .

The error in this approximation can be expressed as the remaining terms in the

Taylor expansion.

1

2
h2f ′′(t) +O(h3)

Since the number of steps required to solve a solution (over a range of t) is proportional

to 1
h
, the accumulated error is proportional to h. Thus, Euler’s method is considered a

first order approximation to f .

Additional analysis reveals that Euler’s method has a relatively small region of stabil-

ity (with respect to h), and thus is considered unstable particularly with stiff differential

equations. This forces the use of smaller values of h, which can significantly increase

the number of steps needed for a solution. However, due to its simplicity and relatively

quick per-step performance (it only requires a single force computation), it is a popular
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choice in many physical simulations.

A.1.1 Backward Euler

To overcome the stability problem, many simulations make use of implicit methods.

These are known to have much larger stability regions and in some cases are uncondi-

tionally stable. The implicit version of Euler’s method, or familiarly backward Euler

uses the approximation:

x(t+ h) = x(t) + hf(x(t+ h), t+ h)

To use this method, x(t + h) must be found or approximated ahead of time. Various

methods can be used to approximate it.

Since backward Euler requires this additional computation, it is generally slower

than (the explicit) Euler’s method. Furthermore, implicit methods generally are a little

more complex in implementation and are often less accurate.

A.1.2 Higher order explicit methods

Euler’s method is known to be relatively unstable, expensive in that the step sizes are

typically very small, and relatively inaccurate. More terms in the Taylor expansion of x

could be used to simultaneously improve accuracy and improve stability. However, this

comes at the cost of additional derivative computations. The second-order method, or

the midpoint method, has the form

x(t+ h) = x(t) + hf(x(t) +
h

2
f(x(t), t), t+

h

2
)

Intuitively, this uses Euler’s method to first approximate the value of x(t + h
2
). Then,

it computes the final value of x(t+ h) based on the tangent at this point. This method
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can generalized as in the class of Runga-Kutta methods. If stability and accuracy

are a concern and if the computational cost of additional derivative computations is

acceptable, then higher order methods may be a good choice for simulations.

A.2 Verlet integration

Verlet integration was proposed specifically to integrate Newton’s equations of motion.

In general, it offers greater stability than Euler integration while only requiring a single

derivative computation. Furthermore, it has been shown to have some properties such

as time-reversibility which is beneficial to physical simulations.

Verlet integration reduces the error by calculating the position at the next time based

on the positions at the previous and current time step. It is derived from the addition

of two Taylor expansions of x

x(t+ h) = x(t) + hv(t) +
h2

2
a(t) +

h3

6
˙a(t) +O(h4)

and

x(t− h) = x(t)− hv(t) +
h2

2
a(t)− h3

6
˙a(t) +O(h4)

Note that both the v and ȧ terms cancel out, leaving a O(h4) error term.

After adding and re-arranging the terms, Verlet integration is given by:

x(t+ h) = −x(t− h) + 2x(t) + h2a(t)

If needed, the instantaneous velocity at time t can be found by using the mean value

theorem and the computed positions.
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