Efficient Visibility-Based Algorithms for Interactive
Walkthrough, Shadow Generation, and Collision
Detection

by
Naga K. Govindaraju

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2004

Approved by:

Q

bl‘wﬂ %&1

Protessor eghMamcha, Advisor
AL

Professor Anselmo Lastra, Reader

00 O N

Professg(Ming Lin, Reader

tee [Il

Professor Steven Molnar, Reader

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© 2004
Naga K. Govindaraju
ALL RIGHTS RESERVED

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Hi

ABSTRACT
NAGA K. GOVINDARAJU: Efficient Visibility-Based Algorithms for
Interactive Walkthrough, Shadow Generation, and Collision Detection.
(Under the direction of Professor Dinesh Manocha.)

We present novel visibility-based algorithms for solving three problems: interactive
display, shadow generation, and collision detection. We use the visibility capabilities
available on graphics processing units (GPUs) in order to perform visibility computa-
tions, and we apply the results to complex 3-D environments.

We present a real-time visibility culling algorithm that reduces the number of ren-
dered primitives by culling portions of a complex 3-D environment that are not visible
to the user. We introduce an occlusion switch to perform visibility computations. Each
occlusion switch consists of two GPUs, and we use these GPUs either for computing an
occlusion representation or for culling away primitives from a given view point. More-
over, we switch the roles of each GPU across successive frames. The visible primitives
are rendered on a separate GPU or are used for generating hard-edged umbral shadows
from a moving light source. We use our visibility culling algorithm for computing the po-
tential shadow receivers and shadow casters from the eye and light sources, respectively.
We further reduce their size using a novel cross-culling algorithm.

We present a novel visibility-based algorithm for reducing the number of pair-wise
interference tests among multiple deformable and breaking objects in a large environ-
ment. Our collision detection algorithm computes a potentially colliding set (PCS)
using image-space occlusion queries. Our algorithm involves no precomputation and
proceeds in multiple stages: PCS computation at an object level and PCS computation
at a subobject level, followed by exact collision detection. We use a linear-time two-pass
rendering algorithm for computing each PCS efficiently. Our collision-pruning algorithm

can also compute self-collisions in general deformable models. Further, we overcome the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

sampling and precision problems in our pruning algorithm by fattening the triangles
sufficiently in PCS. We show that the Minkowski sum of each primitive with a sphere
provides a conservative bound for performing reliable 2.5-D overlap tests using GPUs.
In contrast to prior GPU-based collision detection algorithms, our algorithm guarantees
that no collisions will be missed due to limited frame-buffer precision or quantization
errors during rasterization.

We have implemented our visibility-based algorithms on PCs with a commodity
graphics processor such as the NVIDIA GeForce FX 5900. We highlight their perfor-
mance on complex 3-D environments composed of millions of polygons. In practice,
we arc able to achieve interactive frame rates of 10 - 20 frames per second in these

experiments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

I would like to thank my advisor Dinesh Manocha for his excellent guidance and
support throughout the course of the dissertation. Thanks to Prof. Ming Lin for the
feedback and collaboration in the collision detection projects. I would like to express my
gratitude to Dr. Steven Molnar for providing an opportunity to work in the NVIDIA
architecture group and for being a great mentor. The internship provided a valuable
learning experience in understanding the design and functionality of graphics processors.
Thanks to the rest of my dissertation committee for the feedback and discussions: Profs.
Frederick Brooks and Anselmo Lastra.

The research projects reported in this dissertation involved the efforts of several
student collaborators in UNC GAMMA and Walkthrough research groups. I appreciate
their help and support. In this regard, I would like to acknowledge the efforts of Brandon
Lloyd, Stephane Redon, Avneesh Sud, and Sungeui Yoon in developing the research
systems. Thanks to the UNC Computer Science graduate students for making my stay
comfortable, and to my friends who have always encouraged me during the difficult
times. T am thankful to the many UNC Computer Science faculty for being considerate
towards my efforts in balancing the demanding needs of research and coursework.

The technical support center of the UNC Computer Science department was ex-
tremely helpful in maintaining the group machines. In this regard, I would like to
mention the efforts of Charlie Bauserinan, Mike Carter and Mike Stone for their help. [
am thankful to NVIDIA Corporation for providing both software and hardware support

which have been extremely useful in our research projects. Paul Keller and Stephen

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vi

Ehmann of NVIDIA Corporation offered excellent driver support during critical deacd-
lines and I am grateful to them.

The rescarch projects were funded in parts by Arniy Research Office (grant DAAD19-
99-1-0162), National Science Foundation (NSF awards ACI-9876914, ACI-9876914, 1IS-
982167, and ACI-0118743), Office of Naval Research (contracts N00014-97-1-0631, NOOO14-
01-1-0067, and N00014-01-1-0496), Department of Energy ASCI grant, and Intel Cor-
poration.

I am grateful to my parents and family for their love, encouragement and support.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

LIST OF TABLES
LIST OF FIGURES

1 Introduction

1.1 Visibility from a Point
1.2 Visibility Algorithmso
1.3 Goals
1.4 Prior Work and Challenges

1.4.1 Visibility for Rendering Algorithms

1.4.2 Visibility for Shadow Algorithms

1.4.3 Visibility for Collision Detection
1.5 Graphics Processors.o e
1.6 Thesis Statement L
1.7 New Results

1.8 Organizationo

2 Related Work
2.1 Large-Model Rendering
2.1.1 Polygonal Simplification

2.1.2 Image-Based Representations

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Vil

xii

xiii

11

12

14

21

21

25

26

2.1.3 Visibility Culling 32
2.1.4 Parallel Rendering 40

2.2 Shadow Generation« 40
2.2.1 Image-Precision Methods 40
2.2.2 Object-Precision Methods 42
2.2.3 Hybrid Approaches 44

2.3 Interference Detectiono 44
2.3.1 Object-Space Algorithms 45
2.3.2 Image-Space Algorithms 46
2.3.3 Hybrid Algorithms o 48

3 Visibility Computations: Interactive Walkthroughs 49
3.1 Introduction 49
3.2 Interactive Occlusion Culling 51
3.2.1 Occlusion Representation and Culling 51
3.2.2 Occlusion Switch oo 53
3.2.3 Culling Algorithmo 54
3.2.4 Incremental Transmission 54
3.2.5 Bandwidth Requirements 55

3.3 Scene Representation 56
3.3.1 Unified Scene Hierarchy 57
339 Hierarchy Generabion « . . o oo 58
3.3.3 HLOD Generation i 62
3.3.4 HLODs as Hierarchical Occluders 63

3.4 Interactive Display oo 63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X

3.4.1 Culling Algorithmo 64

3.4.2 Occluder-Representation Generation 65
©3.4.3 Occlusion-Switch Algorithm 65
3.4.4 Render Visible Geometryo 65
3.4.5 Incremental Traversal and Front Tracking 66
3.4.6 Optimizations 69
3.4.7 DesignIssueso 70

3.5 Implementation and Performance 72
3.5.1 Preprocessing 72
3.5.2 Run-time System 73
3.5.3 Bandwidth Estimates 76

3.6 Analysis 76
3.6.1 Comparison with Earlier Approaches 78
3.6.2 Limitations 79

4 Visibility Computations: Interactive Shadow Generation 83
4.1 Introduction 83
4.2 Shadow Culling 85
4.2.1 LOD-based Interactive PVS Computation 86
422 Cross-Culling 91

4.3 Applications 92
431 Hybrid Shadow-Generation Algorithm 93
4.3.2 CC Shadow Volumes 94

4.4 Implementation and Performance 94
4.4.1 Implementation o 95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4.2 Performance 96

4.5 Analysis and Limitationso 99
4.5.1 Interactive Performance and Load Balancing 99
4.5.2 Comparison with Other Approaches 100
4.5.3 Limitations 101

5 Visibility Computations: Interactive Collision Detection 105
5.1 Introduction 105
5.2 Collision Detection Using Visibility Queries. 108
5.2.1 Potentially Colliding Set (PCS) 108
5.2.2 Visibility-Based Pruningo 109
5.2.3 Localizing the Overlapping Features. 111
5.2.4 Collision Detection 112

5.3 Self-Collision Culling using GPUs 112
5.4 Reliable Culling Using GPUs 115
54.1 Sampling Errors oo 116
5.4.2 Reliable VO Querieso 117
5.4.3 Collision culling 119

5.5 Interactive Collision Detection 120
5.5.1 Pruning Algorithmo 120
5.5.2 Visibility Querieso 121
5.5.3 Multiple-Level Pruning 122
55.4 CULLIDE 123
55.5 S-CULLIDE 124
55.6 FAR 125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.7 Optimdzationso
5.6 Implementationo
5.6.1 CULLIDE
56.2 S-CULLIDE
56.3 FAR
5.7 Analysis and Limitationso
5.7.1 Performance Analysis
5.7.2 Pruning Efficiencyo
5.7.3 Precision
5.7.4 Comparison with Other Approaches
5.7.5 Limitations
6 Conclusions
6.1 Walkthroughs
6.1.1 Future Work
6.2 Shadow Generation
6.2.1 Future Worko
6.3 Collision Detectiono
6.3.1 Future Work
BIBLIOGRAPHY

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

X1

130

131

132

133

133

137

138

139

141

144

146

147

147

148

148

149

152

X1l

LIST OF TABLES

3.1 Awerage frame rates obtained by different acceleration tech-
niques over the sample path. FPS = Frames Per Second, PP
= Power Plant model, DE = Double Fagle Tanker model, B-
777 = Boeing 777 model 74

3.2 Comparison of the number of polygons rendered by the two
implementations to the actual number of visible polygons. PP
= Power Plant model, DE = Double Fagle Tanker model 74

3.3 Comparison of the number of objects rendered by the two im-

plementations to the actual number of visible objects. PP =
Power Plant model, DE = Double FEagle Tanker model 75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xlil

LIST OF FIGURES

1.1 Complex piping in the Double Eagle Tanker model: This figure
shows an example of a complex scene with no large occluders or
portals. The scene is composed of 82 million polygons. Model
Courtesy: Newport News Shipping company. 4

1.2 Complex piping in the Power Plant model: This figure shows
the dense piping structures present in the furnace room of the
Power Plant model. Observe that each pipe occludes o very
small portion of the furnace room, whercas a group of spatially
prozimate pipes can occlude most portions of the scene. The
scene is composed of 13 million polygons. 6

1.3 Different culling techniques on a scene shown in (i): view-
frustum culling in (i), back-face culling in (44), and occlusion
culling in (). 8

1.4 Double Eagle Tanker model: This model is composed of 82
million polygons and exhibits high visual and depth complexity. 9

1.5 This figure shows a simple primitive projected on the screen
and its sereen-space bounding rectangle. Observe that the screen-
space bounding rectangle occupies a much larger screen space
in comparison to the projected primitive and can be quite con-
servative for performing visibility computations. 10

1.6 This figure shows a snapshot of a dynamic simulation consist-
ing of many objects in close proximity. These close-prozimity
scenarios are challenging for most interactive collision detec-
tion algorithms. In this simulation, as time progresses, there
are more than a thousand objects in close proxzimity. These
objects in the scene together are composed of 150K polygons. 13

1.7 Super Moore’s law : This figure shows the performance growth
rates of GPU, CPU, and AGP bandwidth between GPU and
CPU. GPU’s computational power has been progressing ot a
rate more than Moore’s law for CPUs. Courtesy Anselmo Las-
tra, UNC 14

1.8 Graphics architectural pipeline overview: This figure shows the

various units of a modern GPU. Fach unit is designed for
performing o specific operation efficitently. oL 16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.9 A snapshot generated from the application of our hybrid shadow-
gencration algorithm to the Power Plant model (12.7 mallion
triangles). Our interactive algorithm is able to generate shad-
ows at an average frame rate of 10 fps using three PCs, each
with an NVIDIA GeForce 4 graphics card. 23

3.1 This figure shows a view of the Boeing 777 model. The model
is designed using more than 470 million polygons. 49

3.2 System Architecture: Each color represents a separate GPU.
Note that GPU, and GPUs switch their roles each frame with
one performing hardware culling and other rendering occlud-
ers. GPUS is used as o display client. H2

3.3 Qur clustering and partitioning process applied to a 2-D
example. Fach different color represents a different object
at the end of a stage. (a) The model’s original objects.
This object distribution captures a number of features com-
mon in CAD models in which objects are defined by func-
tton rather than by location. (b) The initial partitioning
stage splits objects with large bounding boxes. This pre-
vents objects like 3, whose initial bounding box intersects
most of the others, from causing clustering to generate
Just one large cluster. (c) After clustering, the group of
the small objects around 1 have all been merged to form
1*. The row of objects, 2, has been merged into one clus-
ter, 2%, as well, but one which has a poor aspect ratio. (d)
The final partition splits 2* into two separate objects. 56

3.4 The image on the left shows the application of the partitioning
and clustering algorithm to the Power Plant model. The mid-
dle image shows the original objects in the Double Eagle tanker
model with different colors. The right image shows the appli-
cation of the clustering algorithm to the same model. FEach
cluster is shown with a different color. 60

3.5 System Overview: Each color represents a separate GPU, with
GPUy and GPU, forming a switch and GPU3 as the display
client. GPUy and GPUs each have o camera-receiver thread;
recetve camera parameters when the client transmits them due
to user’s motion; and store those in a camera buffer of size
one. The GPU performing OR takes the latest camera from
this thread as the camera position for the next frame. No-
tice that, in this design, the GPU performing HC exhibits no
latency in receiving the camera parameters. 67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XV

3.6 This figure shows a cut defined by the traversal of the scene
graph using our culling algorithm. The cul ws further decomn-
posed into wvisible and occluded fronts. Fach front is repre-
sented using the following colors: orange: wisible front; and
gray: occluded fromt L L. 68

3.7 Comparison of the number of nodes transmitted with and with-
out incremental transmission (described in Section 5.4.5) for
a sample path on Double Fagle Tanker model. Using incre-
mental transmission, we observe an average reduction of 93%
in the number of nodes transmitted between the GPUs. 72

3.8 Frame-rate comparison between SWITCH and Distributed Gi-
gaWalk at 1024 x 1024 screen resolution and 15 pizels of error
on the Boeing model. 80

3.9 Frame-rate comparison among SWITCH, GigaWalk and Dis-
tributed GigaWalk at 1024 x 1024 screen resolution. We obtain

2 — 3 times improvement in the frame rate as compared to Dis-
tributed GigaWalk and GigaWalk. 81

3.10 Double Fagle Tanker: Comparison of exact-visibility compu-
tation with SWITCH and GigaWalk at 20 pizels of error at
1024 x 1024 screen resolution. SWITCH is able to perform
more culling than GigaWalk; however, it renders one order of
magnitude more triangles or twice the number of objects as
compared to exact visibility. Lo 81

3.11 Performance of the occlusion-switch algorithm on the Double
Eagle Tanker model: This environment consists of more than
82 million triangles, and our algorithm renders it at 9 — 15 fps
on a cluster of 3 PCs, each consisting of an NVIDIA GeForce
4 GPU. Occlusion switch culls away most occluded portions
of the model and renders around 200K polygons in the view
shown. Objects are rendered in the following colors: wvisible:
yellow; view-frustum culled: violet; and occlusion-culled: orange. 82

3.12 Performance of occlusion switch on complex CAD models: Both

models are rendered ot 1024 x 1024 screen resolution using
NVIDIA GeForce 4 cards. o o 0 i i i e b e 82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

xvi

4.1 The left image shows a snapshot generated from the applica-
tion of our shadow culling algorithms and o hybrid shadow-
generation technique to the Power Plant model (12.7M trian-
gles). The maddle image shows o different viewpoint gener-
ated using perspective shadow maps. Notice the aliasing arti-
facts. The right image highlights the sharper boundaries of the
shadows generated by our interactive algorithm from the same
VIEWPOINE. . o o o o o e e e e e e e 83

4.2 Visibility Computation for Shadow Generation: This figure
shows a simple scene with a light source placed above a sphere
and a floor. Shadows are regions on the floor and sphere that
are visible to the eye, but not visible to the light. 86

4.3 This figure shows a cut defined by the traversal of the scene
graph using our improved culling algorithm. The cut is com-
posed of visible and occluded nodes. Each node in the hierar-
chy is composed of several HLODs and each HLOD 1s further
decomposed into multiple subobjects to improve the culling ef-
ficiency of our algorithm. 87

4.4 Self-shadowing artifacts due to a nawe LOD-selection algo-
rithm. We correct this problem by using the same LOD pa-
rameter for an object when computing PV Sg and PVSy,. 88

4.5 The effect of increasing the LOD-error threshold in the Double
Fagle Tanker model. These images have been generated with
0 (left), 10 (middle), and 20 (right) pizels of error. 89

4.6 Owerview of our hybrid approach showing the four stages of
the algorithm and the intermediate computations. 92

4.7 Architecture of the Process-Parallel Algorithm: This figure
shows the components of our hybrid shadow generation algo-
rithm. Each color represents a separate graphics processor or

CPU. . . 93

4.8 A snapshot generated from an application of our interactive
shadow generation algorithm to the house model. The model
has about 1.3M triangles. No LODs were used. 95

4.9 A sequence generated by a light source moving over the Power

Plant away from the viewer. Our algorithm can generate shad-
ows at 10 frames per second on average for this model. 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Xvil

4.10 A snapshot of the tanker model rendered using our system.
The tanker has more than 82 million triangles. This view
highlights the shadows generated by the long and thin pipes on
the deck. 98

4.11 Frame rates obtained for each model. 103

4.12 Performance of the culling techniques. OCEg refers to the num-
ber of triangles after object culling. The PVSs are obtained by
performing subobject culling. There is a reduction of almost an
order of magnitude in the size of PV S as compared to that of
OCpg. After cross-culling, the sizes of the shadow casters (SC)
and shadow receivers used for calculating shadow boundaries
are each on the order of a few thousand. 104

4.13 Comparison of shadows generated by uniform shadow maps
(left), perspective shadow maps (middle), and our hybrid algo-
rithm (right). Each image also includes a zoomed view of the
shadow boundaries on the top left corner. Perspective shadow
maps reduce some of the aliasing artifacts as compared to uni-
form shadow maps; however, they are unable to generate sharp
shadows in Many SCENATIOS. . . . « .« . oo 104

5.1 Tree with Falling Leaves: In this scene, leaves fall from the
tree and undergo nonrigid motion. They collide with other
leaves and branches. The environment consists of more than
40K triangles and 150 leaves. Our GPU-based reliable collision
detection algorithm, FAR, can compute all the collisions in
about 35 msec per time step on o PC with 2.8 GHz Pentium
IV CPU and NVIDIA GeForce FX 5950 Ultra GPU. 105

&1
Do

Potentially Colliding Set: In this viewpoint, two of the four
objects are in close proximity and belong to the potentially col-
Hding Set. e e 106

5.3 In this figure, the two objects are not colliding. Using View
1, we determine a separating surface with unit depth complez-
ity along the view and conclude from the existence of such a
surface that the objects are not colliding. This surface’s ez-
istence is a sufficient but not a necessary condition. Observe
that in View 2, there does not exist a separating surface with
unit depth complexity but the objects are not interfering. 109

5.4 System Architecture: The overall pipeline of the collision de-
tection algorithm for large environments 111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

o
[

5.6

5.7

5.8

2.9

5.10

The left image shows an object composed of triangles with
shared cdges and vertices. The right image shows the self-
intersecting triangles in the object. Observe that these self-
intersecting triangles do not share an edge or a verter.

Sampling Errors: @Q is a point on the line of intersection be-
tween two triangles in 3-D. The left figure highlights the ortho-
graphic projection of Q in the screen space. The intersection of
the two triangles does not contain the center of the pizel (C),
and therefore, we can miss a collision between the triangles.
QF is the Minkowski sum of Q and an azis-aligned bounding
box (B) centered at the origin with dimension p. QF trans-
lates B to the point Q. During rasterization, the projection of
QB samples the center of the pizel and generates at least two
fragments that bound the depth of Q.

This image shows an object with three triangles and its bounding-

offset representation (UOBB) in wireframe. The UOBB is

represented as the union of the OBBs of each triangle. In

practice, this bounding offset is a tight-fitting bounding volume

and is used for culling. oo

Results of our self-collision algorithm on a cloth simulation

where a cloth consisting of 20K triangles drapes around a sphere.

Figure (a) shows a snapshot of the simulation. Figure (b)

shows the triangles in PSCS.

Breaking-Object Scene: In this simulation, the bunny model
falls on the dragon which eventually breaks into hundreds of
pieces. FAR computes collisions among the new pieces of small
objects introduced into the environment and takes 30 to 60

MSEC Per frame.

Number of Objects vs. Average Collision-Pruning Time us-
ing CULLIDE: This graph highlights the relationship between
the number of objects in the scene and the average collision-
pruning time (object pruning and subobject/triangle pruning).
Each object is composed of 200 triangles. The graph indicates
that the collision-pruning time is linear to the number of ob-
JECES. . . e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XViii

X1x

5.11 Polygons per Object vs. Average Collision-Query Time using
CULLIDE: This graph shows the linear relationship between
the number of polygons per object and the average collision-
pruning time. This scene is composed of 100 deforming cylin-
ders and has a density of 1 - 2%. The collision-pruning time
is averaged over 500 frames and at an image-space resolution

OF 800 X 800, + o e e 135

5.12 Image-Space Resolution vs. Average Collision-Query Time
using CULLIDE: This graph indicates the linear relationship
between the screen resolution and the average collision-query
time. The scene consists of 100 deformable cylinders and each
object is composed of 200 triangles. 136

5.13 Relative Culling Performance on Breaking-Objects Scene: This
graph highlights the improved culling performance of our al-
gorithm as compared to a CPU-based culling algorithm (I-
COLLIDE) that uses AABBs (azis-aligned bounding bozes) to
cull away non-overlapping pairs. FAR reports 6.9 times fewer
pairs over the entire simulation.o 137

5.14 Reliable interference computation: This image highlights the
intersection set between two bunnies, each with 68K triangles.
The top right image (b) shows the output of FAR and the top
left image (a) highlights the output of CULLIDE running at a
resolution of 1400 x 1400. CULLIDE misses many collisions
due to the viewport resolution and sampling errors. 139

ot
—_
@51

Snapshots of Simulations on Three Complex Environments:
CULLIDE takes 4, 8, and 40ms respectively on each bench-
mark in order to perform collision queries on a GeForce F'X
5800 Ultra with an image resolution of 800 x 800. 142

5.16 Environment with Breakable Objects: As the bunny (with 35K
triangles) falls through the dragon (with 250K), the number
of objects in the scene (shown with a yellow outline) and the
triangle count within each object change. CULLIDE computes
all the overlapping triangles during each frame. The average
collision-query time is 35 ms per frome. L 143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction

Visibility computations are fundamental in computer graphics, computer vision,
robotics, computational geometry, etc. They have been researched extensively, and sev-
eral visibility algorithms have been designed. In a recent survey (Bittner and Wonka,

2003), visibility algorithms are broadly classified based on the problems as follows:
1. visibility along a line
2. visibility from a point
3. vigibility from a line segment
4. visibility from a polygon
5. visibility from a region
6. global visibility

Visibility computations require global processing and arc often considered difficult
and expensive in complex environments® (El-Sana et al., 2001). In this thesis, we restrict
our focus to wvisibility from a point algorithms and apply them for solving three geometric

problems on complex environments:

11 this thesis, we refer to complex environments as scenes composed of several hundreds of thousands
of geometric primitives.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Interactive Walkthroughs: Render the scene interactively as the user explores

the environment.

2 Shadow Generation: Cenerate shadows at interactive rates in a scene with a

moving point light source and a moving user.

3. Collision Detection: Compute colliding triangles interactively in a scene com-

posed of dynamic objects.

In this chapter, we provide our definition of visibility from a point and the background
for such a formulation. We briefly outline the prior work on the above three problems.
We give an overview of commodity graphics processors and their features for performing

visibility computations. We describe our approach and summarize our key results.

1.1 Visibility from a Point

The term wisible surface determination from a point in computer graphics often
relates to the problem of hidden surface removal (HSR) (Foley et al., 1990). Often,
HSR alporithms remove hidden portions of a surface by shooting rays at the surface and
computing the first point on the surface that intersects the ray. This formulation may not
be useful in many visualization applications in which a user may wish to observe portions
of a surface whose attribute values satisfy a constraint. These attributes include color,
projected area in the view, and distance from the viewer. Therefore, we define visibility

~ from a point as a function that operates on the attributes of geometric primitives and
computes portions of these primitives satisfying the function.

Graphics processors are well designed for visualizing surfaces from a view position,
and therefore the design of graphics pipeline has focused on defining the concepts of
visibility and occlusion from a point for catering to the needs of rendering. Graphics

architects have defined visibility as a composition of functions applied to the different

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-

portions of a primitive, and we refer to these functions as visibility functions. The
visibility functions operate on the attributes of a primitive, perform comparisons and
provide a binary outcome. Each function is performed as a test at a stage in the pipeline.
The pipeline is flexible, allowing any of these tests to be enabled or disabled. The tests
are user-specified. Examples of these tests include Alpha test, Stencil test, and Depth
test. Portions of a primitive that pass all these tests are considered visible. With
this formulation, several geometric problems can be solved efficiently. Our definition of
visibility from a point is based on the above formulation.

The above definition of visibility from a point allows for many interesting visual-
izations of geometric primitives based on their attributes. For example, a user may be
interested in visualizing the portions of a surface that are farthest from a view position,
or points on a surface with the alpha component of color greater than 0.5, or points on a
surface restricted to a portion of the view. These visualizations are useful in many scien-
tific applications related to computer graphics and computational geometry. One such
application is walkthrough of virtual environments. Moreover, the definition exploits
the capabilities of graphics processors in performing visibility computations efficiently.

We will discuss these capabilities later, in Section 1.5.

1.2 Visibility Algorithms

Several visibility algorithms have been proposed for performing walkthroughs, gener-
ating shadows, and computing interferences. These algorithms can be broadly classified

into three categories:

e Exact visibility techniques compute only the primitives that are visible to the
user. This set of primitives comprises the exact visible set. Often, it is difficult to
compute exact visible sets in real-time for complex general environments consisting

of millions of polygons.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

e Approximate visibility teclmiques compute most of the visible primitives but
may miss some. It is difficult to guarantee quality or accuracy of computations

using these techniques.

e Conservative visibility techniques compute a set of potentially visible primi-
tives. The potentially visible set includes the primitives in the exact visible set

and in addition, may include a few occluded primitives.

Figure 1.1: Complex piping in the Double Eagle Tanker model: This figure shows an ezample
of a complex scene with no large occluders or portals. The scene is composed of 82 mallion

polygons. Model Courtesy: Newport News Shipping company.

Visibility algorithms could be further classified as follows:

¢ Image-precision algorithms perform culling by using discrete representations

as an image. As objects are rendered, portions of the screen are filled and used

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for culling other portions of the scene. Image-precision algorithms are simple to
implement and provide the advantage of occluder fusion 2. In practice, they work

well on general environients.

e Object-precision algorithms use 3-D objects for Visibihty computations (Cohen-
Or et al., 2001a). They rely on the identification of large occluders or cells and
portals. For general environments, however, it is difficult to identify large occluders
or portals. Also, object-precision methods are usually less effective in performing

occluder fusion (Cohen-Or et al., 2001a).

e Hybrid algorithms use a combination of object-precision and image-precision

approaches (e.g., Hierarchical Z-Buffer (Greene et al., 1993)).

1.3 Goals

In this section, we present goals of our research. We highlight the challenges faced
by prior algorithms in achieving these goals and the design decisions used within our
algorithms.

The motivation for our research is studying the applications of visibility for per-
forming interactive walkthroughs, shadow generation and collision detection in complex

environments.

Goals: Our research focuses on achieving the following goals:

1. Performance: It is a key requirement for many interactive rendering applications.
Our primary goal is to design algoritluns capable of achicving intcractive rendering

rates (10 - 20 frames per second or more) on commodity graphics systems.

2. Complex Environments: Our goal is to handle models with high visual com-

plexity and polygon count. In our rendering applications, we apply algorithms

20c¢cluder fusion refers to the effect of obtaining combincd occlusion due to multiple occluders.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

O

Figure 1.2: Complez piping in the Power Plant model: This figure shows the dense piping
structures present in the furnace room of the Power Plant model. Observe that each pipe
occludes a very small portion of the furnace room, whereas a group of spatially prorimate pipes
can occlude most portions of the scene. The scene is composed of 13 mallion polygons.

on environments composed of millions of polygons and high depth complexity. In

terms of collision detection, we would like to compute interferences among objects

composed of hundreds of thousands of polygons.

3. General Environments: We do not make any assumptions about the geometric
representation of models. These 3-D models may have complex piping structures
and may not contain large occluders; examples of such models are shown in Figs.
1.2 and 1.3. Further, it may be difficult to decompose these models into cells

and portals. We also aim at designing collision detection algorithms capable of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

~1

handling polygon sets (or soups).

4. Quality and Accuracy: It is important to guarantee the final output - image
quality in the case of rendering algorithms and accuracy of collision computations
for simulation algorithms. Our goal is to develop conservative algorithms providing

bounds on the quality or accuracy of the computations.

5. Commodity Hardware: Many interactive applications such as games target
common users with access to commodity hardware. For the sake of practical
applications, we aim at developing algorithms on commodity processors rather

than on special-purpose hardware or supercomputers.

1.4 Prior Work and Challenges

Many efficient algorithms attempt to reduce the number of expeusive operations on
geonetric primitives for achieving interactivity. Rendering algorithms attempt to reduce
the number of geometric primitives sent to the graphics processors during each frame.
Collision detection algorithms attempt to reduce the number of pair-wise interference
tests between geometric primitives during each instance. We now give a brief overview
of visibility-based computations for reducing the number of expensive operations in the

above applications.

1.4.1 Visibility for Rendering Algorithms

Visibility computations have been well studied in computer graphics. Computing
exact visible scts of geometric primitives is often expensive in complex environments
(El-Sana et al., 2001). Alternatively, several culling strategies have been developed.

The commonly used techniques include:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

directions of triangles

A Eye View-Frustum Culling A\ Eve | Back-Face Cullin N Eys Occlusion Cullin
Y g /
\ A
,/ \\ \ Arrows represent normai \\ Qcclusion Culled Reglon

Qcclusion
Culled

. ‘ View-Frustum Culled ; q i Back-Face Culled
4 N/P—\ | A
JANPENENE <:>

Y/ V

W : (i (i) (i)

Figure 1.3: Different culling techniques on a scene shown in (i): view-frustum culling in (i),
back-face culling in (iii), and occlusion culling in (iv).

e View-frustum culling rejects primitives outside the view frustum. It is simple
and fast, and the culling efficiency depends upon the number of geometric primi-
tives within the view frustum. In many walkthrough applications, a large portion
of the scene can be within the view frustum. In such scenarios, view frustum

culling may not be effective.

e Back-face culling rejects primitives with normals facing away from the user. This
technique requires geometric primitives with valid normals. In many walkthrough
and virtual-reality applications, the user may be interested in viewing both sides
of the geometric primitives, and this limits the use of back-face culling in these
applications. In certain applications like shadow computations, however, it is
possible to compute valid normals for geometric primitives dynamically, based on

eve and light positions, and back-face culling can be applied.

e Occlusion culling rejects geometric primitives that are occluded by other geo-
metric primitives. It is more complex and expensive compared to back-face culling
and view-frustum culling (El-Sana et al., 2001) because visibility events are diffi-
cult to comprehend for even small changes in view position. It is primarily used

in wallthroughs of large data sets with high depth complexity.

The application of these techniques to a simple scene is illustrated in Fig. 1.3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

Figure 1.4: Double Eagle Tanker model: This model is composed of 82 million polygon.s and

exhibits high visual and depth complexity.

Challenges and Issues: We are interested in rendering general and complex envi-
ronments with high depth complexity. Moreover, thesc models may exhibit high visual
complexity and consist of millions of polygons. An example is shown in Fig. 1.4. Further,
the complexity of these models is increasing due to advances in acquisition, modeling
and simulation technologies, and rendering these models at interactive rates is becoming
increasingly difficult. Back-face culling and view-frustum culling techniques may not be
effective due to the reasons mentioned above, and visibility culling techniques need to
be designed for rendering these data sets at interactive rates.
Many visibility culling techniques have been developed for specialized environments.
Examples include architectural and urban environments and environments with large
“convex occluders. These algorithms may not work well on general environments (Cohen-
Or et al., 2001a) such as a Power Plant model consisting of many long and skinny pipes.
As mentioned in Section 1.2, object-space culling algorithms may not work well
on general environments. On the other hand, image-space culling algorithms provide
occluder fusion and, in practice, are well suited for general environments. They are

mainly implemented on graphics processors, as GPUs are optimized for fast rendering.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L0

Current image-space culling algorithms such as (Greene et al., 1993; Zhang et al., 1997h;

Baxter et al., 2002) involve the following issues:

N Projection of a
Primitive

2D Bounding Rectangle
of the Projected Primitive

Figure 1.5: This figure shows a simple primitive projected on the screen and its screen-space
bounding rectangle. Observe that the screen-space bounding rectangle occupies a much larger
screen space in comparison to the projected primitive and can be quite conservative for per-
forming visibility computations.

e Frame-buffer Readbacks: These can be expensive and are mainly bandwidth
limited. They may involve graphics pipeline stalls and thereby, affect the through-

put. These issues are discussed in a greater detail in Section 1.5.

e Conservativeness: Current image-space algorithms (Greene et al., 1993; Zhang
et al., 1997b; Baxter et al., 2002) read back the contents of the frame-buffer
and perform conservative occlusion culling by testing the 2-D bounding rectangles
of occludee-representation projections (e.g., projections of bounding boxes of oc-
cludees) for visibility. 2-D bounding rectangles of projected primitives are often

more conservative than projections of primitives as shown in Fig. 1.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

1.4.2 Visibility for Shadow Algorithms

Shadows due to a point light source refer to portions of the scene that arc not visible
from the light source. Shadows add realism to a scene and are important i many
interactive applications such as virtual walkthroughs and games. As these applications
have high performance demands, recent research has focused on designing techniques for
interactive shadow generation (Govindaraju et al., 2003a; Lloyd et al., 2004; Sen et al.,
2003; Fernando et al., 2001; Stamminger and Drettakis, 2002). These techniques can be

broadly classified into three categories:

e Image-precision techniques sample the scene at discrete positions and use the
sampled representation for generating shadows. However, discrete sampling of the
scene generates aliasing artifacts in many image-precision algorithms (e.g., shadow

maps (Williams, 1978)).

e Object-precision techniques compute the exact shadow boundaries and thus
avoid aliasing artifacts. Computation of shadow boundaries requires knowledge
of shadow casters and shadow receivers in the scene (Govindaraju et al., 2003a;
Lloyd et al., 2004). It may be difficult to compute these shadow casters and shadow
receivers interactively in general environments. Further, computation of shadow

boundaries can be expensive in complex environments.

e Hybrid techniques use a combination of object-precision and image-precision

techniques for computing shadows (Govindaraju et al., 2003a; Sen et al., 2003).

Challenges and Issues: We are interested in generating high-fidelity, interactive shad-
ows on general and complex models and using a few commodity PCs (typically three
or fewer PCs). Although shadow generation is extensively studied, current techniques

Lhave not been well demonstrated in applications with the above requirements.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

Image-precision techuiques work well on general environments but suffer from alias-
ing artifacts. Object-precision techniques generate high-quality shadows, but achieving
interactivity is challenging due to the large number of shadow casters and shadow re-
ceivers in a complex scene. There is a need to design shadow culling algorithms for
computing shadow casters and shadow receivers that do not result in aliasing artifacts.
Also, for generating shadows on large models, there is a need to investigate the integra-
tion of other rendering acceleration techniques such as level-of-detail-based algorithms

(LODs) for shadow generation.

1.4.3 Visibility for Collision Detection

Collision detection is a fundamental problem in several interactive applications such
as games, walkthroughs, etc. The problem of collision detection is very similar to the
problem of visibility computations in an environment. Both problems are global by
nature i.e., in the worst case, each primitive may be tested against all the remaining
primitives. In other words, the visibility of a primitive is determined based on the lo-
cation of other primitives. Similarly, the collision status of a primitive is determined
based on the location of remaining primitives. Visibility computations have been ap-
plied for pruning non-interfering primitives (Hudson et al., 1997b; Gottschalk et al.,
1996b; Rossignac et al., 1992). These approaches work well for rigid environments or

environments consisting of closed objects.

Challenges and Issues: Although many approaches have been proposed for fast com-
putation of colliding primitives, collision detection remains a bottleneck in several real-
time simulations. These simulations include non-rigid simulations as well as simulations
where objects change topology (e.g., breaking objects).

Object-space algorithms involve pre-processing and are designed to work well for

rigid models (Hubbard, 1993; Quinlan, 1994; Beckmann et al., 1990; Ponamgi et al.,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

Figure 1.6: This figure shows a snapshot of a dynamic simulation consisting of many objects in
close prozimity. These close-prozimity scenarios are challenging for most interactive collision
detection algorithms. In this simulation, as time progresses, there are more than a thousand
objects in close prozimity. These objects in the scene together are composed of 150K polygons.

1997; Gottschalk et al., 1996a; Barequet et al., 1996; Held et al., 1996; Klosowski et al.,
1998). Image-based algorithms (Baciu et al., 1998; Baciu and Wong, 2002; Heidelberger
et al., 2003; Hoff et al., 2001; Knott and Pai, 2003; Myszkowski et al., 1995; Rossignac
et al., 1992) (Shinya and Forgue, 1991; Vassilev et al., 2001) are well suited for non-
rigid simulations. Most of the current image-based algorithms, however, either involve
frame-buffer readbacks or are limited to closed models (Govindaraju et al., 2003b). In
addition, the accuracy of most of these algorithms is limited by the viewport resolution
or frame-buffer precision.

Prior algorithms utilizing visibility computations for collision detection involve sim-
ple heuristics and are quite conservative (e.g., view-frustum culling, shadow frusta,

shadow volumes for collision pruning) in complex non-rigid simulations, where objects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

nmay be in close proximity. An example is shown in Fig. 1.6. Hence, there is a need to
design less conservative visibility-based collision detection algorithms that are reliable

and work well on non-rigid models.

1.5 Graphics Processors

e

SMTris /s
BMB /5 (norm}
4 CPUInt2000 (norm)

* *

GPU Growth Rate

Performance
{log scaie)

MM

AGP Bandwidth Growth
Rate

1997 1998 1999 2000 2001 2002 2003
Figure 1.7: Super Moore’s law : This figure shows the performance growth rates of GPU, CPU,
and AGP bandwidth between GPU and CPU. GPU’s computational power has been progressing
at a rate more than Moore’s law for CPUs. Courtesy Anselmo Lastra, UNC

One of our goals is to use commodity processors for performing visibility compu-
tations and solving the three problems. Graphics procéssing units (GPUs) are highly
optimized for performing visibility computations from a viewpoint. These conputations
are typically performed on GPUs by rendering polygons. Current commodity graphics
processors such as the NVIDIA GeForceFX 6800 Ultra can render several hundreds
of millions of polygons per second. Moreover, their computational power seems to be

progressing consistently at the rate of 2.5 - 3.0 times a year, much more than Moore’s

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

law for CPUs. Fig. 1.7 shows the performance growth curve of GPUs, CPUs, and the
bandwidth between GPU and CPU. In order to achieve these high-performance bench-
marks, GPUs arc designed with special-purpose hardware. In this section, we outline

the various features of current GPUs useful for performing visibility computations.

1. Memory Bandwidth: A GPU is designed to transform the geometric description
of a scene rapidly into the pixels on the screen that constitute a final image.
Pixels are stored on the graphics card in a frame-buffer. The frame-buffer can be
conceptually divided into three buffers according to the different values stored at

each pixel:

e Color buffer: stores the color components of each pixel in the frame-buffer.
Color is typically divided into red, green, and blue channels with an alpha

channel that is used for blending effects.

e Depth buffer: stores a depth value associated with each pixel. The depth

is used to determine surface wvisibility.

e Stencil buffer: stores a stencil value for each pixel. Tt is called the stencil
buffer because it is typically used for enabling/disabling writes to portions of

the frame-buffer.

The frame-buffer has a high memory bandwidth, and is accessed by various por-
tions of the graphics pipeline. For example, NVIDIA GeForceFX 6800 Ultra has a
256-bit advanced memory interface to a high-speed memory with a data rate of 1.1
GHz, thus providing a peak memory bandwidth of 35.2 GBps. In contrast, current
high-end main memories on PCs such as dual channel 128-bit DDR2 400 RDRAM
have a peak bandwidth of 6.4 GBps. This fast memory interface on GPUs helps
in achieving high fill rates. For example, an NVIDIA GeForceFX 6800 Ulira has

a peak fill rate of 6.4 billion texels per second.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

GPUs also exploit spatial coherence obtained in polygon rasterization for reducing
the memory bandwidth. Examples include multi-sampling modes of rendering.
The color, depth, and stencil buffers are stored in a compressed format, allowing for
efficient reads and writes. Effectively, compression improves the available memory

bandwidth on GPUs considerably.

Visibility computations on GPUs typically involve comparison operations on the
frame-buffer data (e.g., depth values of primitives are compared against the depth
buffer). These operations usually require data reads from and writes to the frame-
buffer. The high memory bandwidth allows several operations to be performed in

parallel.

2. Pipeline: The transformation of geometric primitives (points, lines, triangles,
etc.) to pixels is performed by the graphics pipeline, consisting of several functional
units, each optimized for performing a specific operation. Fig. 1.8 shows the

various stages involved in rendering a primitive.

Vertices

i
i
‘

f_“PiiélPrucessingy
 Engine
| Alpha test
[Stenciltest_
_Depth test

Vertex Firuce‘ssfing% ‘
~ Engine

Pixels
*

Figure 1.8: Graphics architectural pipeline overview: This figure shows the various units of a
modern GPU. Each unit is designed for performing a specific operation efficiently.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

e Vertex Processing Engine: This unit receives vertices as input and trans-

forms them to points on the screen.

e Setup Engine: Transformed vertex data is streamed to the setup engine
which generates slope and initial value information for color, depth, and other
parameters associated with the primitive vertices. This information is used
during rasterization to construct fragments at each pixel location covered by

the primitive.

¢ Pixel Processing Engines: Before the fragments are written as pixels to
the frame-buffer, they pass through the pixel processing engines or fragment
processors. A series of tests can be used for discarding a fragment before
it is written to the frame-buffer. Each test performs a comparison using a

user-specified relational operator and discards the fragment if the test fails.

— Alpha test: Compares a fragment’s alpha value to a user-specified ref-

erence value.

— Stencil test: Compares the stencil value of a fragment’s corresponding

pixel with a user-specified reference value.

— Depth test: Compares the depth value of a fragment to the depth value

of the corresponding pixel in the frame-buffer.

The relational operator can be any of the following: =, <, >, <, >, and #. In
addition, there are two operators that do not require a reference value: never and
always.

These comparison tests mainly determine the visibility status of a primitive based
on our definition in Section 1.1. Aided by the power of comparisons, visibility
could be used as an effective tool in solving many general-purpose problems such
as database queries (Govindaraju et al., 2004), order statistics, mining of frequent

items, etc. Furthermore, each stage of the graphics pipeline operates on a stream of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

commmands and data, improving the overall throughput of the system. Therefore,
a GPU’s architecture may be well suited for different streaming applications such

as video processing, mining data strcams, etc.

3. Multiple Programmable Processors: Current generations of GPUs have a
vertex processing engine and pixel processing engine that are programmable. The
user can supply a custom vertex or fragment program to be executed on each in-
coming input to these engines. For example, a fragment program can compute
the alpha value of a fragment as a complex function of the fragment’s other color
components or its depth. These programmable processors have become power-
ful computational engines for many general-purpose computations such as linear
algebra operations (Kruger and Westermann, 2003), sparse matrix solvers for con-

jugate gradient and multigrid methods (Bolz et al., 2003), etc.

Furthermore, current GPUs have multiple vertex and pixel processing engines.
For example, an NVIDIA GeForce FX 6800 Ultra has 6 vertex processing en-
gines and 16 pixel processing engines, each of which operates at 400 MHz. These
powerful SIMD engines can process up to 600 million vertices per second and 6.4
billion texels per clock. In addition, some GPUs can perform twice the number
of operations in certain modes, improving their rendering throughput. For ex-
ample, an NVIDIA GeForce FX 6800 Ultra can process upto 32 pixels per clock
in 7Z/Stencil-only modes. These optimizations can improve the rendering perfor-
mance by nearly a factor of 2 in many visibility-based computations which typically

perform Z/Stencil-only operations.

4. Miscellaneous Features: Graphics processors have special hardware features,
some for improving the rendering performance, some for streaming computations,

and some for adding rendering effects.

e Texture Units: Fach pixel processing engine has access to texture units.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

These units support a variety of operations on the color component of prim-
itives such as random lookup, optional filtering etc. These operations are

useful for generating rendering effects such as transparency, ete.

e Caches: Caches are used to save the bandwidth required for accesses to
and from the texture units. Also, GPUs save transformation costs in vertex

engines using pre-transform and post-transform vertex caches.

e Early Z-Cull Hardware: This feature is used early in the pipeline for
terminating fragments not contributing to the final output. Examples of
these technologies include the HyperZ III from ATI and early Z-cull from
NVIDIA. This specialized hardware is integrated into the graphics pipeline

for improving the rendering throughput.

¢ Shadow Computations: These features are extensively used in gaming and
other interactive applications. Many vendors provide hardware support for al-
gorithms such as shadow maps and are adding new features such as NVIDIA’s
Ultra-shadow technology (D03 depthbounds, 2003). Many visibility-based
algorithms such as CSG rendering (Guha et al., 2003), range queries in

databases (Govindaraju et al., 2004), etc., use these features extensively.

e Occlusion Queries: These queries return the number of fragments that
are not discarded in the graphics pipeline (NVocclusion Query, 2001). As
these queries return an integer, they have low bandwidth requirements. Re-
cent hardware implementations allow asynchronous issue of multiple occlusion
queries at a time and read back the results at a later time. Asynchronous pro-
cessing reduces the pipeline stalls, improving the overall performance. Many
applications disable the depth writes and determine the visibility status of a
primitive using an occlusion query. These applications need to perform only
data reads from frame-buffer memory and therefore, are faster than those

performing depth or color writes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

These hardware functionalities of the GPU enable them to perform fast visibility com-
putations. Increasingly, their potential is being realized in solving many general-purpose

problems. GPUs, however, suffer from some limitations:

e Precision: Current GPUs support floating point textures with 24-bit or 32-bit
precision. Many algorithms perform computations on input data stored in these
textures and store the output results in textures. The precision of these algorithms
is limited to 24-bit or 32-bit floating point numbers. However, many scientific

applications require double precision for arithmetic calculations.

GPUs are also used for performing geometric queries such as proximity compu-
tations. These algorithms rasterize the input geometric primitives and perform
computations on the sampled screen-space representations. The accuracy of these
algorithms is limited by the precision of viewport (which is limited to 4K x 4K on
current GPUs like NVIDIA GeForce FX 6800 Ultra, thus accounting for 12 bits)

and depth buffer (which is limited to 24-bit fixed precision on current GPUs).

e Conditionals: The pixel and vertex processors are SIMD engines. Therefore,
evaluation of conditionals in fragment and vertex processors can be inefficient due

to lock-step computation (Foley et al., 1990).

e Data Rearrangement: Current fragment processors do not support arbitrary

writes, and therefore data rearrangements are expensive on GPUs.

e Frame-Buffer Readbacks: These can be expensive on current systems (Govin-
daraju et al., 2003b; Knott and Pai, 2003). Frame-buffer readbacks arc mainly
bandwidth limited. With the advent of PCI-Express, frame-buffer readbacks may
become fast. However, frame-buffer readbacks involve graphics pipeline stalls and
therefore affect the throughput. Also, the bandwidth growth rate is much lower

than Moore’s law for CPUs (as shown in Fig. 1.7), and since the performance of al-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gorithis involving frame-buffer readbacks is bandwidth limited, their performance

improves at a rate lower than Moore’s law.

1.6 Thesis Statement

Efficient algorithms can be designed to perform visibility computations in complex
environments and used for interactive walkthroughs, shadow generation, and collision

detection on current commodity graphics hardware.

1.7 New Results

In this section, we highlight our key results. Our results in solving each of the three

problems are summarized below.

Interactive Walkthroughs

1. Interactive Performance on Complex Environments: We present a par-
allel occlusion culling algorithm on three commodity GPUs for interactive walk-
throughs of complex environments. In order to achieve high frame rates, our algo-
rithm exploits frame-to-frame coherence to perform occluder selection, to traverse
scene hierarchy, and to reduce communication bandwidth between the three PCs.
Our algorithm achieves interactive performance on three complex environments: a
Power Plant model with 13 million triangles, the Double Eagle Oil Tanker model
consisting of 82 million triangles and a portion of Boeing 777 consisting of 20

million triangles.

2. General Environments: Our algorithm is image-based and therefore works well
on general environments (as discussed in Section 1.2). As compared to earlier

image-based algorithms, our approach involves no frame-buffer readbacks. As a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

result. our algorithm does not involve large pipeline stalls in comparison to stalls
due to frame-buffer readbacks. Moreover, our algorithm is less conservative than

prior image-based occlusion culling algorithms.

3. Quality : Our algorithm integrates with LODs and is able to render complex
models at interactive frame rates while sacrificing little image quality. The image
quality is computed as the deviation of projection of simplified primitives from
the projection of original primitives and is measured in terms of pixels of error. In
practice, we are able to render complex models using a few pixels of crror at high

resolutions (typically 5 or fewer pixels of error at 1000 x 1000 screen resolution).

4. Commodity Hardware: Our algorithm works on three commodity GPUs. Its
performance mainly depends upon the performance of occlusion queries and ras-
terization rate, both of which have been improving at a rate greater than Moore’s
law. Therefore, in the future, with improvements in GPU performance, we may

be able to handle more complex models.

Shadow Generation

1. Interactive Performance on Complex Environments: We present a parallel
shadow culling algorithm on three commodity GPUs for interactive shadow gener-
ation in complex environments. We use our visibility culling algorithms designed
for interactive walkthroughs to compute potential shadow casters and shadow re-
ceivers in the scene. In order to achieve high frame rates, we improve our visibility
culling algorithm to compute less conservative sets of shadow casters and shadow
receivers. We also present a novel shadow culling algorithm which eliminates
shadow casters and shadow receivers that do not contribute to the shadow bound-
aries. Moreover, we present a parallel pipelined architecture using three GPUs

for fast shadow generation. We demonstrate the performance of our algorithm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 1.9: A snapshot generated from the application of our hybrid shadow-generation algo-
rithm to the Power Plant model (12.7 million triangles). Our interactive algorithm is able to
generate shadows at an average frame rate of 10 fps using three PCs, each with an NVIDIA
GeForce 4 graphics card.
on three complex models: a house model with a million triangles, a Power Plant
model with 13 million triangles and a Double Eagle Oil Tanker model consisting

of 82 million triangles. Fig. 1.7 demonstrates the performance of our algorithm

on the Power Plant model. In practice, we are able to render thesc models at 7 -

10 frames per second using three NVIDIA GeForce 4 GPUs.

2. General Environments: Our shadow culling algorithm is image-based and
works well on general environments. Our approach involves no frame-buffer read-

backs and hence is not read back bandwidth-limited.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r) /jl

F4

3. Integration with LODs: We have integrated LODs with our visibility culling
algorithms. In practice, we are able to achieve interactive frame rates with little

loss in image quality (typically, 0 - 20 pixels of error at 512 x 512 screen resolution).

4. Commodity Hardware: Our algorithm uses three commodity GPUs. The per-
formance of our shadow culling algorithms depends mainly on the performance of

occlusion queries and rasterization rate.

Collision Detection

1. Interactive Performance on Complex Environments: We present a sim-
ple and efficient collision detection algorithm that uses visibility computations on
GPUs for performing fast collision detection on complex non-rigid models. Our
algorithm uses a novel two-pass rendering algorithm for pruning objects that are
not in close proximity. We have demonstrated the performance of our algorithm
on complex environments consisting of multiple moving objects and objects un-
dergoing non-rigid motion. These environments consist of tens of thousands of
polygons and may contain objects in close proximity. In practice, we are able to

compute all collisions in a few milliseconds (typically 3 - 50 ms).

2. General Environments: Our algorithm is capable of handling all simulations,
non-rigid as well as rigid. We do not make any assumptions on input geometric
primitives and can handle triangulated models that are convex or non-convex,
open or closed, as well as objects that have dynamically changing topologies.
Furthermore, our algorithm can compute self-intersections in complex non-rigid

simulations.

3. Quality and Accuracy: We present a hybrid algorithm computing a set of po-
tentially colliding primitives using an image-precision algorithm on GPU and com-

puting pairs of colliding primitives using an object-precision algorithm on CPU.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[\
e

Our image-based collision detection algorithm is reliable and does not miss a col-

lision up to floating point precision.

4. Commodity Hardware: Our algorithm uses visibility computations on com-
modity graphics hardware. Further, our algorithm involves no frame-buffer read-
backs, and its performance depends mainly on the performance of occlusion queries

and rasterization rate.

1.8 Organization

The rest of the thesis is organized in the following manner:

e Chapter 2 surveys the previous work in the areas of large-model rendering,

shadow generation and collision detection.

e Chapter 3 describes our algorithm Occlusion switch for performing interactive

walkthroughs of complex environments.

e Chapter 4 presents our visibility-based algorithms for generating high-fidelity

hard shadows on complex models at interactive frame rates using GPUs.

e Chapter 5 presents our visibility-based algorithms for performing fast collision

computations in complex simulations.

e Chapter 6 concludes with the major results of the thesis and discusses problem

areas for future research.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

Related Work

Visibility from a point is well studied in computer graphics, vision, computational
geontetry and related areas. It is beyond the scope of this thesis to survey the vast
literature exhaustively. We focus primarily on recent techniques designed to work well
for large-model rendering, shadow generation and collision detection. As much has been
written on these three topics, we briefly outline the details of the related algorithms.
We also highlight the advantages and disadvantages of these algorithms. More extensive
surveys are available for the interested reader (Bittner and Wonka, 2003; Cohen-Or et al.,
2001a; Hasenfratz et al., 2003; Lin and Gottschalk, 1998; Jimenez et al., 2001; Lin and

Manocha, 2003; Cohen and Manocha, 2003).

2.1 Large-Model Rendering

Occlusion culling‘is needed for interactive display of scenes with high dépth complex-
ity. Many visibility culling algorithms have been proposed to render scencs with high
polygon count and depth complexity. These algorithms are used primarily for reducing
the load on a graphics pipeline by culling polygons that are not visible to the user.
Alternatively, several other techniques have been proposed for reducing the load on a

graphics pipeline:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e rendering low polygon count approximations.
e approximating geometric primitives using multiple image-based representations,

e distributing the rendering load on multiple graphics pipelines or multiple proces-

SOTS.

In this section, we briefly survey the previous work in these areas.

2.1.1 Polygonal Simplification

Polygonal simplification techniques aim at reducing the geometric complexity of
a polygonal model to a level that can be rendered at interactive frame-rates. Each
object is represented using several levels-of-detail varying from coarse approximations,
which drastically simplify the object, to fine approximations, which closely represent the
original object. Depending on the level-of-detail, an approximation may consist of low
or high polygon count.

Many algorithms have been proposed to perform polygonal simplification. These
algorithms can be classified based on different properties: preservation of topology or
not, different error-metrics used in performing simplification, etc.

Most of these algorithms perform decimation operations for computing different
levels-of-detail. These operations include vertex removal, vertex clustering, vertex merg-
ing, edge collapses and face collapses (Cohen et al., 1996; Garland and Heckbert, 1997;
Hoppe, 1996; Rossignac and Borrel, 1993).

Cohen et al. (Cohen et al., 1996) compute an outer envelope and an inner envelope
bounding the surface mesh, and simplification is performed by progressively rcmoving
the vertices. After each vertex removal, the mesh is re-triangulated. A vertex removal
is valid if the re-triangulated mesh does not intersect the envelopes.

Hoppe et al. (Hoppe, 1996) generate progressive meshes by performing a sequence

of edge-collapse operations. Each edge-collapse operation replaces an edge with a ver-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

tex, and re-triangulates the mesh by replacing the edge vertices with the new vertex.
Progressive meshes encode a sequence of edge-collapse operations. Given a progressive
mesh and a sequence of edge-collapse operations, the mesh can be refined progressively.

Each decimation operation re-triangulates the resulting hole and is associated with an
error. The quality of the final image depends upon the error associated with the simpli-
fied representations. Cohen et al. (Cohen et al., 1997) describe simplification techniques
for computing error associated with surface attributes (e.g., textures) in addition to the
geometric error associated with simplified representations. Garland and Heckbert (Gar-
land and Heckbert, 1997) present an efficient simplification algorithm based on crror
quadrics. Error quadrics are 4 x 4 matrices that compute the distance from a point
to one or more planes that define the quadric. The simplification algorithm initially
computes an error quadric for each polygon in the mesh. Simplified representations are
computed by performing edge-collapse operations. Each edge-collapse operation replaces
an edge with a new vertex and re-triangulates the mesh. The error associated with this
edge-collapse is computed as the distance from the new vertex to each of the affected
polygons in re-triangulation. The error associated with the edge-collapse operation is
computed for each edge in the object. Then, the algorithm proceeds in a greedy manner
by selecting the edge-collapse operation that generates lowest error.

The simplification process is performed as a pre-process. Traditionally, for each
object, multiple simplified representations are created. These are often referred to as
static LODs. At run-time, the system selects the LOD that satisfies the user-defined
criteria such as distance from the viewer.

The use of static LODs can lead to many problems:

e Large Objects: If the object is large with respect to the view-point, it is difficult
to represent the object using a single level-of-detail as portions of an object that
are closer to the view-point require higher detail than portions of an object that

are farther away from the viewer.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

e Multiple Small Objects: Representing each object using a simplified represen-
tation may not reduce the polygon count drastically. For example, many objects
that are in close proximity and far away from the viewer could be represented us-
ing a single representation, and thereby obtaining higher degrees of simplification

as opposed to simplifying each object individually.

e Popping Artifacts: Each object represents a discrete level-of-detail and as the
user moves, the LOD representation may switch to coarser or finer LODs. Switch-

ing the LOD may result in undesirable popping artifacts.

Some of these issues can be resolved using view-dependent simplification (VDS)
techniques (Luebke and Erikson, 1997; Hoppe, 1997; Xia and Varshney, 1996). Instead
of generating LODs as a pre-process, a view-dependent tree which encodes the order
of decimation operations is created and used at run-time for choosing the appropriate
level-of-detail. Using this approach, a fine-grain fidelity control is provided to the user or
the rendering application. Given a fixed polygon budget, the VDS algorithm simplifies
portions of objects close to the viewer less drastically and simplifies portions further
away more drastically. A VDS algorithm also generates view-dependent approximations
with smaller polygon count by merging several objects together. There are, however,
a few disadvantages of using VDS in comparison to static LODs. The computation
of dynamic LODs at run-time requires higher CPU resources than the static LODs.
Moreover, it is more difficult to incorporate rendering-acceleration techniques such as
vertex arrays along with VDS than with static LODs.

Few algorithms have been proposed that perform geometric simplification by com-
puting a hierarchy of levels-of-detail (Erikson and Manocha, 1998; Clark, 1976; Hoppe,
1998). These algorithms inherit some of the advantages of VDS and static LODs. A
scene hierarchy is constructed and represented using a scene graph. Each intermediate
node is simplified and represented using a sequence of LODs. These are referred to as

hierarchical LODs (HLODs). (Erikson and Manocha, 1998) use error quadrics (Garland

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

and Heckbert, 1997) to perform simplification. At run-time, the scene graph is tra-
versed top-down, and nodes that satisfy the criteria (c.g., error threshold) are selected.
The selected nodes are rendered. Each HLOD can be considered a discretized node in
the view-dependent tree. HLODs inherit the advantages of static LODs. In addition,
multiple small objects are simplified to generate HLODs. At higher error thresholds,
however, switching between HLODs might introduce popping artifacts.

Although LOD algorithms rend.er simplified representations of objects and thus re-
duce the polygon count, in complex environments with high depth complexity, the se-
lected simplified representations may still consist of a large polygon count. Moreover,
many of these polygons may not be visible to the user. Therefore there is a need to
integrate visibility computations with simplification techniques to achieve interactive

frame rates on these large data sets.

2.1.2 Image-Based Representations

Image-based rendering (IBR) algorithms render simple, sampled approximations for
groups of primitives. Often these sampled approximations are represented using images
with or without per-pixel depth. In complex environments consisting of millions of
polygons, processing pixels in a sampled image may be faster than drawing the original
geometric primitives.

Most IBR techniques are based on the plenoptic function formulation (Adelson and
Bergen, 1991). Plenoptic functions are used to describe light transport in a scene.
The plenoptic function P computes the intensity value p at a point (z,y,z) as p =
P(z,y,2,0,¢,\,t) where (0, ¢) defines the view direction V, X is the wavelength and ¢
is the time. Most IBR algorithms assume that the environment is static and pre-process
the scene to generate many image-based representations sampled at different locations
and view positions. Given a view direction Vpe, and the plenoptic functions at nearby

sample locations along view directions Vg, Vi, Vo, ..., Viy, the goal of these algorithms is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

to construct an approximation for the plenoptic function at V... Many technigues have
been proposed based on this notion. A few common image-based rendering approaches
include texture mapping, image warping (Aliaga and Lastra, 1999; Max and Ohsaki,
1995; McMillan and Bishop, 1995), layered depth images (Shade et al., 1998), light fields
(Levoy and Hanrahan, 1996; Buehler et al., 2001), billboards (Decoret et al., 1999), and
texture depth meshes (Aliaga et al., 1999; Darsa et al., 1998; Jeschke and Wimmer, 2002;
Sillion et al., 1997; Wilson et al., 2001). These techniques replace distant geometry by
using image-based representations, and different image-based representations have been
proposed. Some of these representations include point primitives, layered depth images
(LDIs) and textured depth meshes (TDMs). We briefly outline some of these techniques
whose goal is to render complex models at an interactive frame rate.

Point-primitive-based techniques are designed primarily for rendering highly sam-
pled primitives (for, e.g., range-scanned data). These techniques mainly use points for
rendering. Recent large-model rendering techniques based on point primitives include
surfels (Pfister et al., 2000) and QSplat (Rusinkiewicz and Levoy, 2000). Pfister et
al. (Pfister et al., 2000) propose simple surface elements called surfels for rendering
geometric primitives. Surfels are points sampled on the surfaces of complex geometric
models. The samples are computed along three orthographic views in a pre-process.
While pre-processing the data scts, computation-intensive tasks such as texture, bump,
or displacement mapping are performed. Therefore rendering costs based on texturing
are eliminated at run-time. Surfels work well on models with high surface detail and
may not work well on flat surfaces.

Some techniques have been proposed for rendering massive models using TDMs
(Aliaga et al., 1999; Wilson and Manocha, 2003). TDMs are simplified meshes created
from the sampled depth values in a depth image. A TDM is a height field with respect
to the sample view position. The MMR system (Aliaga et al., 1999) is a massive model

rendering system that integrates multiple rendering-acceleration techniques, including

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

visibility culling, geometric levels-of-detail, and TDMs. The system performs extensive
pre-processing and partitions the model into view-point cells. Distant geometry is ap-
proximated by TDMs generated from the center of view-point cell. However, as the
viewer moves from one cell to another cell, some visibility artifacts can occur. Wilson
and Manocha (Wilson and Manocha, 2003) propose an incremental algorithm for com-
puting image-based simplifications of large environments. The scene is sampled based
on visibility, and TDMs are constructed at each view-point placed at the center of the
cell. Further, an optimization function is proposed for selecting the sample points and
is used for minimizing artifacts such as skins and cracks in reconstruction. A primary
advantage of TDMs is that they are compatible with the standard rendering pipeline.
Due to discrete sampling, however, algorithms using TDMs can result in some visibility

artifacts.

2.1.3 Visibility Culling

Visibility culling techniques aim at rejecting geometric primitives not visible to the
user. In the literature of computer graphics, there are three classical strategies for

performing visibility culling (refer to Fig. 1.3):

e View-frustum Culling techniques aim at rejecting geometric primitives outside
the view frustum. Many efficient hierarchical techniques have been proposed for
performing fast view-frustum culling (Clark, 1976; Rusinkiewicz and Levoy, 2000;
Greene et al., 1993). The amount of culling obtained using view-frustum culling is

dependent on the number of geometric primitives within the user’s view frustum.

e Back-face Culling techniques aim at rejecting geometric primitives whose nor-
mals face away from the user. The technique is limited to scenes consisting of
geometric primitives with valid normals. On current commodity graphics proces-

sors, back-face culling is supported in hardware, and this improves its performance

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

considerably. Kumar et al. (Kumar et al., 1999) present an algorithin for perfori-

ing hierarchical back-face computation.

e Occlusion Culling algorithms aim to cull away a subset of the primitives that
are occluded by other primitives and therefore are not visible from the view-point.
View-frustum culling and back-face culling depend on the location or normal of
a geometric primitive. In contrast, occlusion culling depends upon the inter-
relationship of a primitive with other geometric primitives and therefore is more

complex than the other two techniques.

At a broad level, these visibility algorithms can be classified further as point-based
algorithms (Greene et al., 1993; Zhang et al., 1997b; Baxter et al., 2002) or region-based
algorithms (Durand et al., 2000; Schaufler et al., 2000; Wonka et al., 2000). Point-based
algorithms reject. geometric primitives that are not visible from a given point. Region-
based algorithms reject geometric primitives that are not visible from any point in a
given region. As it is expensive to perform visibility computations for an entire region,
many of the region-based algorithms pre-compute the potentially visible sets for each
region and render these sets at run-time for any view-point in the region. This imposes
a further restriction that the input scene is appropriately decomposed into regions, and
visibility computations can be performed efficiently for each region.

Each of these strategies has its own advantages and disadvantages. As region-based
algorithms involve pre-computation, they may not work well on dynamic environments
with moving objects in comparison to point-based algorithms. Also, region-based al-
gorithims are more conservative than point-based algorithms. In additioﬁ, region-based
algorithms can require long pre-processing and significant storage overhead. As region-
based algorithms pre-compute visible geometric primitives, they are more suitable for
out-of-core algorithms which require disk-to-memory pre-fetching of visible geometry.

In the literature of computer graphics and computational geometry, these visibility

culling strategies have been studied extensively. In the remaining section, we focus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

primarily on point-based occlusion culling algorithms and briefly discuss region-based
occlusion culling algorithins. For detailed studies, refer to recent surveys (Cohen-Or

et al., 2001a; Bittuer and Wonka, 2003).

Point-Based Visibility Algorithms

Point-based algorithms have been designed for handling specialized environments or

general environments.

e Specialized Environments: Many occlusion culling algorithms have been de-
signed for specialized environments, including architectural models based on cells
and portals (Airey et al., 1990; Teller, 1992) and urban data sets composed of
large occluders (Coorg and Teller, 1997; Hudson et al., 1997a; Schaufler et al.,
2000; Wonka et al., 2000; Wonka et al., 2001). These algorithms exploit the spe-
cial characteristics exhibited by architectural environments and urban data sets.
For example, many architectural scenes are naturally organized into rooms with
doors and windows, and urban environments have large occluders. As these algo-
rithms depend on the scene characteristics, they may not obtain significant culling

on large environments composed of a number of small occluders.

e General Environments: Algorithms designed for these environments do not
make any assumptions about the characteristics of the scene (Greene et al., 1993;

Zhang et al., 1997a; Baxter et al., 2002; Govindaraju et al., 2003c).
Point-based algorithms perform visibility computations either in object space or
image space or a combination of both techniques (hybrid). Next, we give a brief overview
of these algorithms.

Object-Space Algorithms

These algorithms use geometric representations based on original primitives to perform

culling. Examples of these representations include binary spatial partitioning (BSP)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

trees, shadow frusta of occluders, ete. Some of the recent object-space algoriths for
performing walkthroughs include cells and portals (Luebke and Georges, 1995), large
convex occluders (Coorg and Teller, 1996; Coorg aund Teller, 1997), shadow-frusta culling
(Hudson et al., 1997a), and BSP-tree culling (Bittner et al., 1998).

Cells and portals are used mainly for rendering architectural scenes as these scenes
can be decomposed easily into cells (rooms) connected by portals (windows or doors).
Visibility computations use the observation that from any given cell, other cells are
visible only via portals. Many earlier algorithms have been designed to pre-compute
potentially visible set (PVS) for each cell (Airey et al., 1990; Teller, 1992). Luebke
and Georges (Luebke and Georges, 1995) extend these ideas to compute PVS from a
view-point at run-time. The algorithm proceeds by rendering the cell containing the
view-point. The portals of the cell within the view frustum are identified. New cells
and portals that are visible through these portals are clipped against their frusta. These
newly clipped portals are added, and the algorithm proceeds in a recursive manner. The
algorithm terminates when there are no visible portals.

Coorg and Teller (Coorg and Teller, 1996; Coorg and Teller, 1997) use a subset of
large convex occluders to cull portions of the scene that are not visible to the user. The
visibility status of occludees is determined by tracking a subset of visual events. Tem-
poral coherence is used for incrementally computing these visual events. The algorithm
assumes that the occluders are convex and large, and therefore it may not work well on
large environments with many small objects.

Hudson et al. (Hudson et al., 1997a) propose a visibility culling algorithm by testing
whether the occludee representations are enclosed within the shadow frusta of occluders.
The occluder set is pre-computed using a spatial-partitioning algorithm. The scene is
represented using a hierarchy, and each node contains the bounding box of the enclosed
geometric primitives. At run-time, the approach chooses a set of occluders and computes

their shadow frusta. The scene hierarchy is traversed top-down, testing whether the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

bounding box of the node is enclosed within the shadow frustum of some occluder.
(Bittner et al., 1998) improve the work of (Hudson et al., 1997a) by combining shadow

frusta of occluders using BSP trees.

Image-Space Algorithms

Image-space algorithms cull away portions of the scene by testing them against discrete
image representations. As portions of a scene are rendered, different regions of the
image are filled and used for culling other portions of the scene. A primary advantage
of using image-space algorithms is occluder fusion: the effect of obtaining the combined
occlusion effect of multiple occluders. Therefore these algorithms are well suited for
handling general environments that may consist of a large number of small objects.
Recent image-based algorithms include ray casting, hierarchical Z-buffer (HZB) (Greene
et al., 1993), hierarchical occlusion maps (HOM) (Zhang et al., 1997b), algorithms
using multiple graphics pipelines (Baxter et al., 2002), and others based on image-based
visibility queries (Bartz et al., 1999; Klosowski and Silva, 2001; Greene, 2001; Meissner
et al., 2002; Hillesland et al., 2002).

Ray casting is a simple image synthesis algorithm that determines the first polygon
in the scene intersecting the eye ray for each pixel. For cach pixel, a ray originating from
the eye and passing through a point in the pixel determines an eye ray. At run-time,
the eye ray traverses the scene hierarchy, and polygons in the nodes of the hierarchy are
tested for ray intersection. The algorithm can be highly parallelized, and spatial and
temporal optimizations can be used, leading to well-optimized implementations (Parker
et al., 1999; Foley et al., 1990; Wald et al., 2001; Purcell et al., 2002).

Z-buffer is a popular hidden surface removal algorithm that is supported in current
graphics cards. The algorithm uses a discretized image representation and for cach
pixel, maintains the nearest depth value of all polygons that project onto the pixel. In

modern graphics cards, an optimized architecture is designed to implement the algo-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rithu. (Greene et al., 1993) proposed a hierarchical implementation of the Z-buffer. An
image-space Z pyramid is constructed, and each primitive is tested for visibility against
the Z pyramid. The 7Z pyramid is constructed by successively applying a 2 x 2 filter
recursively on the levels of the Z Pyramid beginning with the finest level. The filter
computes the maximum value of the 4 adjacent values in a level. The original Z-buffer
is used as the finest level of the pyramid. The Z-pyramid construction terminates when
the filtering operation reaches the coarsest level, which contains one single value. For
each polygon tested for visibility, the finest-level pixel sample of the pyramid contain-
ing the screen-space bounding rectangle of the polygon is computed. If the nearest 7
value of the polygon is farther than the Z value of the pixel, the polygon is determined
to be invisible. Otherwise, the algorithm recurses down the 7 pyramid, testing the Z
values of all pixels that cover the screen space bounding rectangle of the polygon. If
the algorithm reaches the finest level and the polygon is not rejected, it is considered
potentially visible. The algorithm has the advantage of occluder fusion and therefore is
well suited for general environments. However, as the algorithm uses the screen-space
bounding rectangle of a polygon and only its nearest Z value for testing its visibility,
the rejection test can result in many false negatives, leading to large potential visible
sets in complex environments (i.e., overly conservative).

(Zhang et al., 1997b) used hierarchical occlusion maps for performing visibility culling
of general environments. An occlusion map stores the opacity value of a rectangular
block in an image. A hierarchy of occlusion maps is constructed by filtering operations
similar to (Greene et al., 1993). The filtering operation computes the average of the 2x 2
blocks in each level. During each frame, a set of occluders is rendered, and a hierarchy
of occlusion maps is constructed. These occlusion maps are used to cull portions of the
scene not visible to the user.

(Baxter et al., 2002) use an additional graphics pipeline for performing visibility

computations. Baxter et al. (Baxter et al., 2002) propose a two-pipeline-based occlu-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

sion culling algorithm for interactive walkthrough of complex 3-D environments. The
resulting system, GigaWalk, uses a variation of the two-pass HZB algorithm that reads
back the depth buffer, and then computes the hierarchy in software. GigaWalk has
been implemented on an SGI Reality Monster and uses two Infinite-Reality pipelines
and three CPUs. Due to the high read back cost on current GPUs, a distributed imple-
mentation of the algorithm on commodity processors can be slow (Govindaraju et al.,
2003c¢).

A number of image-space visibility queries have been added by manufacturers to
their graphics systems to accelerate visibility computations. These include the HP oc-
clusion culling extensions, item buffer techniques, AT’s HyperZ extensions, etc. (Bartz
et al., 1999; Klosowski and Silva, 2001; Greene, 2001; Meissner et al., 2002; Hillesland
et al., 2002). All these algorithms use the GPU to perform occlusion queries as well
as render the visible geometry. As a result, only a fraction of a frame time is available
for rasterizing the visible geometry, and it is non-trivial to divide the time between
performing occlusion queries and rendering the visible primitives. If a scene has no oc-
cluded primitives, this approach will slow down the overall performance. Moreover, the

effectiveness of these queries varies based on the model and the underlying hardware.

Hybrid Algorithms

These algorithms use a combination of object-space algorithms and image-space algo-
rithms for performing visibility culling. Recent approaches include HZB (Greene et al.,
1993), HOM (Zhang et al., 1997b), and GigaWalk (Baxter et al., 2002). These algo-
rithms use an object-space hierarchy such as an octree or an axis-aligned bounding box
(AABB) tree. Each node in the hierarchy is associated with a bounding box that en-
closes the geometric primitives within the scene-hierarchy below the node (including the
node). At run-time, the scene hierarchy is traversed top-down, and the bounding box of

the node is tested against the view frustum. If the bounding box is in the view frustum,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the hox is tested for visibility against the image representation (7 pyramid, hierarchical
occlusion maps, etc). The use of image-space representations enables these algorithins
to perform occluder fusion and obtain a good amount of culling in general environments

with high depth complexity.

Region-Based Visibility Algorithms

These algorithms pre-compute visibility for a region of space to reduce the run-time
overhead (Durand et al., 2000; Schaufler et al., 2000; Wonka et al., 2000).

Durand et al. (Durand et al., 2000) propose a visibility pre-processing algorithm for
computing potential visible geometry for volumetric view cells efficiently. The algorithin
uses extended projection operators for performing conservative occlusion culling with
respect to all view-points in a cell. These projection operators are generalizations of
occlusion maps for volumetric cells. The approach is image-based and therefore, has the
advantage of obtaining combined occlusion effect of multiple occluders. The approach
can compute conservative occludee projections and may result in a large potentially-
visible sets for some cells.

The approach presented by Wonka et al. [2001] computes the PVS for a region at run-
time in parallel with the main rendering pipeline and works well for urban environments.
The PVS computation, however, is performed using the occluder shrinking algorithm
(Wonka et al., 2000) to compute the region-based visibility, which works well only if
the occluders are large and volumetric in nature. The method also makes assumptions
about the user’s motion.

Most of these algorithms work well for scenes with large or convex occluders. Nev-
ertheless, a trade-off occurs between the quality of the PVS estimation for a region and

the memory overhead.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

2.1.4 Parallel Rendering

A number of parallel algorithms have been proposed in the literature to render
large data sets on shared-memory systems or clusters of PCs. These algorithms include
techniques for assigning different parts of the screen to different PCs (Samanta et al.,
2000). Other cluster-based approaches include WireGL, which allows a single serial
application to drive a tiled display over a network (Humphreys et al., 2001) as well
as paralle] rendering with k-way replication (Samanta et al., 2001). The performance
of these algorithms varies with different environments as well as with the underlying
hardware. Most of these approaches are application independent.

Parallel algorithms have also been proposed for interactive ray tracing of volumetric
and geometric models on a shared-memory multi-processor system (Parker et al., 1999).
A fast algorithm for distributed ray tracing of highly complex models has been described

in (Wald et al., 2001).

2.2 Shadow Generation

Shadows refer to the problem of computing visibility of polygons from the light
source. In this section, we give a brief overview of previous work on shadow generation.
Woo et al. (Woo et al., 1990) give a survey of some of the basic shadowing techniques.
We limit ourselves to algorithms that compute hard-edged umbral shadows. In general,
shadowing algorithms can be classified as either image-precision or object-precision. A

few hybrid combinations have also been proposed.

2.2.1 Image-Precision Methods

These techniques perform visibility computations using discrete image representa-
tions to check whether a point is in shadow or not. Popular image-precision techniques

for generating shadows are shadow maps (Williams, 1978) and ray tracing.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Shadow maps were introduced by Williams (Williams, 1978) as an image-precision
solution for generating shadows. A shadow map is simply a depth map generated from
the light’s view. In order to determine whether a point lies in shadow, its light-space
depth is compared to the depth value stored in the shadow map. Shadow maps can be
implemented with standard hardware (Segal et al., 1992; Heidrich and Seidel, 1999), and
recent graphics cards have improved support for handling shadow mapping efficiently.
By using parabolic projections, shadow maps can be used for hemispherical and omni-
directional light sources (Brabec et al., 2002).

One of the main drawbacks of shadow maps is aliasing. Aliasing can occur when
a shadow map pixel projected on the scene subtends more than one pixel in the eye
view. There are two main types of aliasing: perspective aliasing and projective aliasing
(Stamminger and Drettakis, 2002). Perspective aliasing occurs when a point is much
closer to the eye than to the light source. Projective aliasing occurs when the angle
formed with a surface normal is greater for the light direction than the view direction.
These situations arise often in walkthroughs of complex models with curved objects and
wide depth range.

Many techniques have been proposed for handling aliasing of shadow edges. Reeves
et al. (Reeves et al., 1987) introduced percentage-closer filtering which improves the
appearance of aliased edges by blurring them. In some situations the blurring may be
excessive or even undesirable. Brabec et al. (Brabec et al., 2001) applied this filtering
for hardware-based shadow map rendering. Fernando et al. (Fernando et al., 2001)
presented adaptive shadow maps which are used to increase the effective shadow map
resolution in areas where edge aliasing occurs. Unfortunately, adaptive shadow maps
require software rendering, which is too slow for interactive rendering of large models.
Adaptive shadow maps also use progressive refinement, which may not work well for
scenes with a moving light source. Another approach similar to adaptive shadow maps

uses multiple shadow maps of varying resolution (Tadamura et al., 2001). Perspective

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

shadow maps (Stamminger and Drettakis, 2002) ameliorate aliasing by warping the
depth buffer in order to allocate more samples near the viewer. Though perspective
shadow maps can often reduce perspective aliasing, their performance is highly view
dependent and they do not reduce projection aliasing. Silhouette shadow maps (Sen
et al., 2003) improve the visual quality by augmenting a shadow map with the location of
points on the geometric silhouette. The approach requires the use of fragment programs
on GPUs and may be much slower in performance as compared to traditional shadow
maps or perspective shadow maps. In addition, the quality of shadows is view dependent
and may still involve aliasing artifacts.

Other image-precision methods for shadow generation are based on ray tracing.
Many algorithms for fast ray tracing have been proposed on shared-memory multi-
processor systems (Parker et al., 1999) as well as on a cluster of PCs (Wald et al.,

2001).

2.2.2 Object-Precision Methods

Object-precision approaches avoid the edge-aliasing problem by computing exact
shadow boundarics. These approaches include projection techniques that calculate
shadow boundaries on the scene polygons. Atherton et al. (Atherton et al., 1978)
clip the scene polygons against each other from the light view. The resulting clipped
polygons, representing the lit surfaces, are attached to the original polygons as surface
details. Blinn (Blinn, 1988) rendered shadows by projecting the vertices of an occluder
object onto the plane of a receiver polygon and used the resulting polygons to modu-
late the surface color. In practice, however, these techniques do not scale well to large
models.

One of the most popular object-precision techniques is the shadow volume algorithm
introduced by Crow (Crow, 1977). A shadow volume is the set of points that lie in

shadow behind a shadow-caster. For a polygonal shadow-caster, the shadow volume is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

a semi-infinite frustum extending away from the edges of the polygon to infinity. The
shadow-volume algorithim checks whether a particular point is in shadow by counting
the crossings with shadow-frusta polygons on any ray extending away from the point.
Bergeron (Bergeron, 1985) generalized shadow volumes for non-manifold objects and
non-planar polygons. BSP trees have been used to represent shadow volumes (Chin
and Feiner, 1989; Chrysanthou and Slater, 1995). These techniques do not work well
with dynamic lights because the entire tree has to be rebuilt when the light source
moves. Heidmann (Heidmann, 1991) showed that shadow volumes can be implemented
in hardware by using the stencil buffer to count crossings. Recently, techniques have
been proposed to ensure that hardware shadow volumes are not clipped “open” by the
near and far clipping planes (Everitt and Kilgard, 2002). Brabec and Seidel (Brabec
and Seidel, 2003) described an algorithm for fast shadow-volume computation using the
graphics hardware for silhouette-edge computation. The enhanced robustness of the
algorithm has led to shadow volumes’ becoming increasingly more popular in games
(e.g., Doom-3).

Shadow volumes, however, may not scale well for complex models. The number of
shadow polygons can be extremely large. A common configuration in walkthroughs is
a light source overhead with geometry such as beams or trusses above the viewer. The
shadow-frustum polygons created by the overhead geometry may fill the whole screen,
yet the shadows they define may be very small. In the presence of many large shadow
volumes, the application will quickly become fill-bound.

In order to reduce the fill generated by shadow volumes, Lengyel (Lengyel, 2002)
proposed the use of a scissor test for restricting shadow volumes to within the light
bounds. McGuire et al. (McGuire et al., 2003) improved upon Lengyel’s algorithm by
adding culling and using the depth-bounds test (D03 depthbounds, 2003) to restrict
shadow-volume rendering further. Chan and Durand (Chan and Durand, 2004) propose

a hybrid algorithm that combines shadow maps and shadow volumes to reduce fill. They

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

render a shadow map to identify shadow boundaries and render shadow volumes only in
these areas. Aila and Moller (Aila and Akenine-Moller, 2004) perform shadow-volume
calculations on coarse tiles in screen space to determine which tiles contain shadow
boundaries and then render shadow volumes only in these tiles. These approaches rely
on existing or proposed culling hardware to avoid unnecessary rendering. Lloyd et al.
(Lloyd et al., 2004) proposed an algorithm that reduces the size and complexity of the

rendered shadow volume.

2.2.3 Hybrid Approaches

Some combinations of object-space and image-space techniques have been proposed
for shadow generation and related computations. Brotman and Badler (Brotman and
Badler, 1984) combined shadow volumes with a software-based, depth-buffered, tiled
renderer to generate soft shadows. McCool (McCool, 2000) extracts edges from a shadow
map to create shadow volumes. While the technique replaces aliased edges with sharp
edges, it does not replace the details lost due to the limited resolution of the shadow
map. Udeshi and Hansen (Udeshi and Hansen, 1999) presented an improved shadow-
volume algorithm using multiple CPUs and graphics processors on a shared-memory

architecture, but they only rendered relatively small indoor scenes.

2.3 Interference Detection

The problem of interference detection is related to the computation of portions of
object boundaries that overlap with other objects in the scene. As it involves overlap
detection, and visibility computations can be used to compute overlapping regions, many
researchers have proposed visibility-based algorithms for interference detection (Baciu
and Wong, 2002; Hoff et al., 2001; Heidelberger et al., 2003; Govindaraju et al., 2003b).

In this section, we briefly survey interference-detection algorithms and primarily focus

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

on visibility-based interference-detection algorithms.

Interference-detection algorithms can be classified broadly into three categories:
object-space algorithms, image-space algorithms and hybrid algorithins. Most of these
algorithms operate in two phases: the “broad phase,” in which collision culling is per-
formed to reduce the number of pairwise tests, and the “narrow phase,” in which the
pairs of objects in proximity are checked for collision (Cohen et al., 1995; Hubbard,

1993).

2.3.1 Object-Space Algorithms

Object-space algorithms use spatial data structures to accelerate interference com-
putations. These spatial data structures include spatial-partitioning structures and
bounding-volume hierarchies. Some of the commonly used bounding-volume hierarchies
include sphere trees (Hubbard, 1993; Quinlan, 1994), AABB trees (Beckmann et al.,
1990: Ponamgi et al., 1997), OBB trees (Gottschalk et al., 1996a; Barequet et al., 1996),
k-DOP trees (Held et al., 1996; Klosowski et al., 1998), etc. At run-time, the hierarchy
is traversed, and bounding volume representations of nodes of the hierarchy are used to
cull away portions of objects that are not in close proximity. Typically, these represen-
tations are built in a pre-processing stage to accelerate run-time queries. In practice,
they work well for rigid objects.

Efficient algorithms for handling large environments consisting of multiple moving
objects have also been designed. These techniques reduce the number of pairwise col-
lision checks by using spatial subdivision algorithms or checking whether the bounding
hoxes of the objects overlap (Cohen et al., 1995; Baciu et al., 1998). (Cohen et al., 1995)
propose a sweep-and-prune algorithm for pruning objects that are not in close proximity.
For each object, its AABB is projected along the three world-space axes and is tested
for overlap with the bounding-box projections of remaining objects. If the AABB is not

overlapping with any object along any of the three axes, then it does not collide with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

other objects in the environment. The overlap operation can be performed efficiently
on all the objects by insert sorting the intervals of each object’s AABB along the axes.
Using temporal coherence, the expected running time of insertion sort is reduced to
O(n), where n is the number of objects in the scene. In practice. the algorithm works
well for large environments composed of rigid objects.

For deformable models, the overhead of recomputing the hierarchy on the fly can be
quite significant (Baciu and Wong, 2002; Hoff et al., 2001). More recently, (Larsson and
Akenine-Moller, 2001) proposed different bounding-volume trees suitable for fast update
in deforming objects. For fast updates, they maintain AABBs in bounding-volume trees
and use them for collision culling. However, in complex simulations with many objects
in close proximity, AABBs may not provide effective culling as they are conservative,

and thereby affect the overall performance.

2.3.2 Image-Space Algorithms

Many image-space algorithms have been designed on graphics processors for interfer-
ence and collision computations (Baciu et al., 1998; Baciu and Wong, 2002; Heidelberger
et al., 2003; Hoff et al., 2001; Knott and Pai, 2003; Myszkowski et al., 1995; Rossignac
et al., 1992; Shinya and Forgue, 1991; Vassilev et al., 2001). These algorithms require
no pre-processing and therefore are well suited for handling deformable models. Most of
these algorithms use visibility computations for detecting overlapping regions between
objects. Objects are rendered from a view-point, and 2-D or 2.5-D overlaps are detected
in image-space. | |

(Lombardo et al., 1999) use view-frustum culling to prune interactions of a surgical
tool with the organs in virtual surgery. Many image-space algorithms detect 2-D overlaps
using color buffer (Baciu et al., 1998; Baciu and Wong, 2002; Vassilev et al., 2001;
Rossignac et al., 1992). These algorithms use color-blending operations to encode the

overlapping polygons in color buffer. Few algorithms use the stencil buffer for detecting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A7

overlaps (Hoff et al., 2001; Knott and Pai, 2003). Knott and Pai (Knott and Pai, 2003)
use original objects as shadow volumes, setting stencil in portions of the screen that are
overlapping with other objects. The algorithm is approximate and works only on closed
objects. Algorithms using depth information in addition to 2-D overlap information
have also been proposed (Knott and Pai, 2003; Heidelberger et al., 2003; Govindaraju
et al., 2003b). Heidelberger et al. (Heidelberger et al., 2003) compute layer depth images
(LDIs) on the GPU, use the LDIs for explicit computation of the intersection volumes
between two closed objects, and perform vertex-in-volume tests.

Many of these algorithms are limited to closed objects or involve frame-buffer read-
backs or both. Frame-buffer readbacks can be slow on current graphics systems, as they
involve graphics pipeline stalls, and are limited by the bandwidth from GPU to CPU
(Knott and Pai, 2003; Govindaraju et al., 2003b). Graphics-pipeline stalls affect the
rendering throughput and thus reduce the performance of the underlying algorithms. A
major drawback of current hardware-accelerated image-space algorithms is the inaccu-
racy in collision computations. These inaccuracies occur due to the limited viewport
resolution and frame-buffer precision on GPUs, resulting in some missed collision events.
Such errors can often lead to simulations that are not physically convincing.

There exist software implementations for reliable interference detection using fat
edges' and read back multiple depth layers (Rossignac et al., 1992), but they work
well only on pairs of objects involving few contacts. Also, Rossignac et al. (Rossignac
et al., 1992) does not address the issue of aliasing in the depth buffer. This limitation
is addressed in (Raskar and Cohen, 1999) and is used for rendering image-precision
silhouette edges. Raskar and Cohen (Raskar and Cohen, 1999) fatten the back-facing
polygons for rendering silhouette edges. The front-facing polygons are not fattened, as
the technique only renders silhouette edges. As some polygons are not fattened, the

technique described in (Raskar and Cohen, 1999) may miss interferences due to limited

IFat edges are edges with linewidth of more than one pixel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

image precision.

2.3.3 Hybrid Algorithms

Hybrid algorithms combine some of the benefits of the object-space and image-space
approaches. (Hoff et al., 2001) perform coarse geometric localization by computing
rectangular regions of space that contain potential intersections and then perform image-
based interference computations within these rectangular regions. Kim et al. (Kim et al.,
2002b) compute the closest distance from a point to the union of convex polytopes using
the GPU, refining the answer on the CPU. The accuracy of these algorithms is limited

by the viewport resolution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

Visibility Computations:

Interactive Walkthroughs

3.1 Introduction

Figure 3.1: This figure shows a view of the Boeing 777 model. The model is designed using
more than 470 million polygons.

Many CAD and virtual-reality applications often involve large geometric models
composed of millions of primitives. For example, a Boeing 777 airplane model is de-
signed using 470 wmillion polygons (shown in Fig. 3.1). These models are composed of

several complex piping structures and exhibit high visual complexity. In this chapter,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

we describe a new parallel occlusion culling algorithm for rendering large geometric envi-
ronments at interactive frame rates. Our visibility culling algorithm “occlusion switch”
uses two GPUs. During each frame, one GPU renders the occluders and computes
an occlusion representation, while the second GPU performs culling in parallel using
image-space occlusion queries. In order to avoid any depth-buffer readbacks and to per-
form significant occlusion culling, the two GPUs switch their roles between successive
frames. The visible primitives computed by the occlusion switch are rendered in parallel
on a third GPU. The algorithm utilizes frame-to-frame coherence to compute occluders
for each frame as well as to lower the bandwidth or communication overhead hetween
different GPUs.

We have combined the occlusion culling algorithm with static levels-of-detail (LODs)
and used it for interactive walkthrough of complex environments. The static LODs are
computed as a pre-process. We present a novel clustering algorithm for generating
a unified scene-graph hierarchy, which is used for generating LODs and performing
occlusion culling.

The rest of the chapter is organized in the following manner. In Section 3.2, we
present our occlusion culling algorithm “occlusion switch”, and analyze its bandwidth
requirements. In Section 3.3, we describe the scene representation and preprocessing
steps including hierarchy computation. In Section 3.4, we combine our occlusion culling
algorithm with pre-computed levels-of-detail, and use it to render large environments.
We describe its implementation and highlight its performance on three complex envi-
ronments in Section 3.5. Finally, we provide an analysis of our algorithm and describe
its limitations.

The clustering algorithm described in this chapter is presented in (Baxter et al,
2002). Details of the occlusion culling algorithm are presented in! (Govindaraju et al.,

2002; Govindaraju et al., 2003c).

'Joint work with William Baxter, Avneesh Sud and Sung-Eui Yoon

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2 Interactive Occlusion Culling

In this section, we present occlusion switches and use them for visibility culling. The
resulting algorithm uses multiple graphics processing units with image-space occlusion

queries.

3.2.1 Occlusion Representation and Culling

An occlusion culling algorithm has three main components. These include

1. computing a set of occluders that correspond to an approximation of the visible

geometry,
2. computing an occlusion representation, and
3. using the occlusion representation to cull primitives that are not visible.

Different culling algorithms perform these steps either explicitly or implicitly. We use an
image-based occlusion representation because it is able to perform “occluder fusion” on
possibly disjoint occluders (Zhang et al., 1997a). Some of the well-known image-based
hierarchical representations include HZB (Greene et al., 1993) and HOM (Zhang et al.,
1997a). The current GPUs, however, do not support these hierarchies entirely in the
hardware. Many two-pass occlusion culling algorithms rasterize the occluders, read back
the depth buffer, and build the hierarchies in software (Baxter et al., 2002; Greene et al.,
1993; Zhang et al., 1997a).

However, reading back a high resolution depth buffer can be slow on current PC ar-
chitectures, as described in Section 1.5. Moreover, constructing thé hierarchy in software
incurs additional overhead.

We utilize the hardware-based occlusion queries that are becoming common on
current GPUs. These queries scan-convert the specified primitives (e.g., bounding

hoxes) to check whether the depth of any pixel changes. Different queries vary in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 GPU,
= GPU,
] GPU,

HO OR HC
Hardware Cull
For Frame i

Render Occluders Hardware Cull
I’For Frame it+2 For Frame it+2

P

RVG ’ RVG
W(,is,playjﬁgﬁmetry Display Ge metry
P For Frame i+1 ~ For Frame i+2

Framei e Frame i+1 w———— Frame i+2

Figure 3.2: System Architecture: Each color represents a separate GPU. Note that GPU1 and
GPU, switch their roles each frame with one performing hardware culling and other rendering
occluders. GPUS3 is used as a display client.

their functionality. Some of the well-known occlusion queries based on the OpenGL
culling extension include the HP_Occlusion_Query (http://oss.sgi.com/projects/
ogl-sample/registry/HP/occlusion_test.txt) and the NVIDIA OpenGL extension
GL_NV_occlusion_query (http://oss.sgi.com/projects/ogl-sample/registry/NV/
occlusion_query.txt). These queries can sometimes stall the pipelines while waiting
for the results. As a result, we use a specific GPU during each frame to perform only
these queries.

Our algorithm uses the visible geometry from frame ¢ as an approximation to the
occluders for frame ¢ 4+ 1. The occlusion representation implicitly corresponds to the
depth buffer after rasterizing all these occluders. The occlusion tests are performed

using hardware-based occlusion queries. The occlusion switches are used to compute

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[
[N,

the occlusion representation and perform these queries.

3.2.2 Occlusion Switch

An occlusion switch takes the view parameters for frame ¢ + 1 as input and transmits
the potential visible set and view parameters for frame 7 as the output to the renderer.
An occlusion switch is composed of two GPUs, which perform the following functions,

with each function running on a separate GPU in parallel:

e Computing Occlusion Representation (OR): Rendering the occluders in or-
der to compute the occlusion representation. The occluders for frame 7 + 1 corre-

spond to the visible primitives from frame <.

e Hardware Culling (HC): Enabling the occlusion-query state on the GPU and
rendering the bounding boxes corresponding to the scene geometry. Using the
image-space occlusion query to determine the visibility of each bounding box and
compute the PVS. We disable modifications to the depth buffer while performing

these queries.

During a frame, each GPU in the occlusion switch performs either OR or HC, and
at the end of the frame the two GPUs interchange their functions. The depth buffer
computed by OR during the previous frame is used by HC to perform the occlusion
queries during the current frame. The visible nodes computed by HC correspond to
the PVS. The PVS is rendered in parallel on a third GPU and is used by the OR for
the next frame to compute the occlusion representation. The architecture of the overall
system is shown in Fig. 3.2. The overall occlusion algorithm involves no depth buffer

readbacks from the GPUs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.2.3 Culling Algorithm

The occlusion culling algorithm uses an occlusion switch for computing the PVS and
renders them in parallel on a separate GPU. G PU; and GPU, constitute the occlusion
switch, and G PUs is used to render the visible primitives (RVG). In an occlusion switclh,
the GPU performing HC requires OR for occlusion tests. We circumvent the problem
of transmitting occlusion representation from the GPU generating OR to the GPU
performing hardware cull tests by “switching” their roles between successive frames, as
shown in Fig. 3.2. For example, GPU; is performing HC for frame ¢ and sending visible
nodes to G PU, (to be used to compute OR for frame i+ 1) and GPUs (to render visible
geometry for frame i). For frame i + 1, GPU, has previously computed OR for frame
i+ 1. As a result, GPU, performs HC, GPU; generates the OR for frame 2 + 2 and

G PUs; displays the visible primitives.

3.2.4 Incremental Transmission

The HC process in the occlusion culling algorithm computes the PVS for each frame
and sends it to the OR and the RVG. In order to minimize the communication overhead,
we exploit frame-to-frame coherence in the list of visible primitives. Each GPU keeps
track of the visible nodes in the previous frame. The GPU performing HC uses this list
and only transmits the changes to the other two GPUs. The GPU performing HC sends
the visible nodes to OR and RVG, and therefore it has information related to the visible
set on HC. Moreover, the other two processes, OR and RVG, maintain the visible set as
they receive visible nodes from HC. In order to reduce the communication bandwidth,
we transmit only the difference in the visible sets for the current and previous fraumes.
Let V; represent the potential visible set for frame ¢ and 6 = V; — Vi be the difference

between the two sets. During frame i, HC transmits d; ;1 and 0,1, to OR and RVG,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4\,_(
Ut

respectively. We reconstruct V; at OR and RVG based on the following formulation:

Vi=(Viey — i14) U 0jin.

We expect that the size, in most interactive applications, of the set d;_y; U d; ;1 will be

much smaller than that of V; due to frame-to-frame coherence.

3.2.5 Bandwidth Requirements

We now discuss the bandwidth requirements of our algorithm for a distributed im-
plementation on three different graphics systems (PCs). Each graphics system consists
of a single GPU, and the three PCs are connected using a network. In particular, we
map each node of the scene by the same node identifier across the three different graph-
ics systems. We transmit these integer node identifiers across the network from the
GPU performing HC to each of the GPUs performing OR and RVG. This procedure is
more efficient than sending all the triangles that correspond to the node, as it requires a
smaller bandwidth per visible node (i.e. 4 bytes per node). So, if the number of visible
nodes is n, then the GPU performing HC must send 4n bytes per frame to each OR and
RVG client. Here n refers to the number of visible objects and not the visible polygons.
We can reduce the header overhead by sending multiple integers in a packet. This pro-
cess, however, can introduce some extra latency in the pipeline due to buffering. The
size of view parameters is 72 bytes; consequently, the bandwidth requirement per frame
is 8n +nh/b+3(72+ h) bytes, where h is the size of the header in bytes and buffer size
b is the number of node identifiers in a packet. If the frame rate is f frames per second,
the total bandwidth required is 8nf +nhf/b+216f +3hf. If we send the visible nodes

by incremental transmission, then n is equal to the size of §;;,_1 U d;—1,.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3 Scene Representation

In this section, we present an object-clustering based algorithm for computing a
scene-graph representation of the geometric data set automatically.

CAD data sets often consist of a large number of objects that are organized according
to a functional, rather than a spatial, hierarchy. By “object” we mean simply the lowest
level of organization in a model or model data structure above the primitive level. The
size of objects can vary dramatically in CAD data sets. For example, in the Power Plant
model a large pipe structure, which spans the entire model and consists of more than
6 million polygons, is one object; a relatively small bolt with 20 polygons is another.
Our rendering algorithm computes LODs, selects them, and performs occlusion culling
at the object level; therefore, the criteria used for organizing primitives into objects has
a serious impact on the performance of the system. Our first step, then, is to redefine

objects in a data set based on criteria that will improve performance.

(a) Original (c) Clustered (d) Partitioned-II

Figure 3.3: Our clustering and partitioning process applied to a 2-D example. FEach
different color represents a different object at the end of a stage. (a) The model’s original
objects. This object distribution captures a number of features common in CAD models in
which objects are defined by function rather than by location. (b) The initial partitioning
stage splits objects with large bounding boxes. This prevents objects like 3, whose initial
bounding box intersects most of the others, from causing clustering to generate just one
large cluster. (c) After clustering, the group of the small objects around 1 have all been
merged to form 1*. The row of objects, 2, has been merged into one cluster, 2%, as well,
but one which has a poor aspect ratio. (d) The final partition splits 2* into two separate
objects.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.3.1 Unified Scene Hierarchy

Owr rendering algorithm performs occlusion culling using two rendering processes:
the OR process renders occluders in order to create an occlusion representation for
culling, and the RVG process renders the objects that are deemed visible by the HC
process. Given this approach, we could consider using a separate representation for
occluders in OR than for displayed objects in RVG (Hudson et al., 1997a; Zhang ct al.,
1997a). Using different representations would have the advantage of allowing differcnt
criteria for partitioning and clustering for each hierarchy. Moreover, it would give us the
flexibility of using a different error metric for creating simplified occluders, one optimized
to preserve occlusion rather than visual fidelity.

Despite these potential advantages, we used a single unified hierarchy for occlusion
culling and levels-of-detail-based rendering. A single hierarchy offers the following ben-
efits:

e Simplicity: A single representation leads to a simpler algorithm.

e Memory And Preprocessing Overhead: A separate occluder representation would
increase the storage overhead and increase the overall preprocessing cost. This increase
can be significant for gigabyte data sets, depending upon the type of occluder represen-
tation used.

e Conservative Occlusion Culling: Our rendering algorithm treats the visible ge-
ometry from the previous frame as the occluder set for the current frame. In order to
guarantee conservative occ‘lusion culling, it is sufficient to ensure that exactly the same
set of nodes and LODs in the scene graph is used by each process. Ensuring conservative

occlusion culling when different representations are used is more difficult.

Criteria for Hierarchy

A good hierarchical representation of the scene graph is crucial for the performance

of occlusion culling and the overall rendering algorithm. We use the same hierarchy for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

view-frustum culling. occluder selection, occlusion tests on potential occludees, hicrar-
chical simplification, and LOD selection. Though there has been considerable work on
spatial-partitioning and bounding-volume hierarchies, including top-down and bottom-
up strategies and spatial clustering, none of them seem to have addressed all the charac-
teristics desired by our occlusion culling algorithm. These include good spatial localiza-
tion, object size, balanced hierarchy, and minimal overlap between the bounding boxes
of sibling nodes in the tree.

Bottom-up hierarchies lead to better localization and higher fidelity LODs. How-
ever, it is harder to use bottom-up techniques to compute hierarchies that not only are
balanced but also have minimal spatial overlap between the nodes. On the other hand,
top-down schemes are better at ensuring balanced hierarchies and bounding boxes with
little or no overlap between sibling nodes. Given their respective benefits, we use a
hybrid approach that combines both top-down partitioning and hierarchy construction

with bottom-up clustering.

3.3.2 Hierarchy Generation

In order to generate uniformly-sized objects, our pre-processing algorithm first re-
defines the objects using a combination of partitioning (Private Communication with
Sud, 2003) and clustering algorithms (see Fig. 3.3). The partitioning algorithm splits
large objects into multiple objects. The clustering step groups objects with low polygon
counts based on their spatial proximity. The combination of these steps results in a
redistribution of geometry with good localization and emulates some of the benefits of

pure bottom-up hierarchy generation. The overall algorithm proceeds as follows:

1. Partition large objects into subobjects in the initial database (top-down)
2. Organize disjoint objects and subobjects into clusters (bottom-up)

3. Partition again to eliminate any uneven spatial clusters (top-down)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

4. Compute an AABB bounding-volume hierarchy on the final redefined set of objects

(top-down).

Next, we present the algorithms for clustering and partitioning in detail.

Partitioning Objects

We subdivide large objects—based on their sizes, aspect ratios, and polygon counts--
into multiple subobjects, since long, thin objects with large bounding boxes are less

likely to be occluded. The algorithm proceeds as follows:
1. Check whether an object meets the splitting criteria:

e the number of triangles is above a threshold #,, and
e the size (bounding-box diagonal) is greater than a threshold sy, or
e the ratio of largest dimension of bounding box to smallest dimension is above

a threshold 7.

2. Partition the object along the longest axis of the bounding box. If that results in

an unbalanced partition, choose the next longest axis.
3. Split the child objects recursively in the same manner.
See Section 3.5.1 for the parameter values used for this algorithm and the subsequent

stages of our preprocess.

Clustering

Many approaches for clustering disjoint objects are based on spatial partitioning by
such means as adaptive grids or octrees. These partitioning approaches, however, may
not work well for complex, irregular environments composed of a number of small and

large objects. Rather, we present an object-space clustering algorithm by extending

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

{(a) Partitioning & Clus- (b) Original Objects in (¢) Partitioning & Clus-
tering on Power Plant Double Eagle tering on Double Eagle

Figure 3.4: The image on the left shows the application of the partitioning and clustering
algorithm to the Power Plant model. The middle tmage shows the original objects in the
Double Eagle tanker model with different colors. The right image shows the application of the
clustering algorithm to the same model. FEach cluster is shown with a different color.

a computer-vision algorithm for image segmentation (Felzenszwalb and Huttenlocher,
1998). The algorithm uses minimum spanning trees (MST) for representing the clusters.
It uses local spatial properties of the environment to incrementally generate clusters
that represent global properties of the underlying geometry. The resulting clusters are
neither too coarse nor too fine. The algorithm imposes this criterion by ensuring that
it combines two clusters only if the internal variation in each cluster is greater than
its external variation (by using the Hausdorff metric). In each cluster, the maximum-
weight edge (which denotes the internal variation) of the MST representing the cluster
denotes the maximum separation between any two “connected” objects in the cluster.
A minimum-weight edge connecting two different clusters (which denotes the external
variation between the two clusters) estimates the separation between objects of one
cluster with those of the other. In other words, it denotes the minimum radius of
dilation necessary to connect at least one point of one cluster to one point in another.
The algorithm is similar to Kruskal’s algorithm (Kruskal, 1956) for generating a forest

of minimum spanning trees. The overall algorithm proceeds as follows:

1. Construct a graph G(V, E) of the environment with each object represented by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ol

a vertex in the graph. Construct an edge between two vertices if the distance
between the two vertices (objects) is less than a threshold D. The distance function
is defined as the shortest distance between the bounding boxes of the two objects.

If the two boxes overlap, then the distance is zero.

2. Sort E into m = (01,09,...,08), 0; € E, i =1,...,k in a non-decreasing order
based on edge weights, w(o;). Start with a forest F” where each vertex v; represents

a cluster.
3. Repeat Step 4 for the set of edges o, = 01, ..., 04, k = || E|].

4. Construct forest F¢ from F7! as follows. Let o, = (v;,v;), (i.e., edge o, connects
vertices v; and v;). If there is no path from v; to v; in Fa1 and w(o,) is small
compared to the internal variation of components containing v; and v;, and if
the bounding volume of the resultant component is less than a maximum volume
threshold, then add o, to F' 71 in order to obtain FY, otherwise add nothing.
Mathematically, if C7" % C¢" and w(o,) < MZI(CF',CI7), then F9 = F"' U
0, where C?™' denotes the cluster containing vertex v; in F9! and 47! is the

cluster containing vertex vj; else F'7 = F97! where

MI(Ch, Cy) =

min(Z(Cy) + K/||Ch], Z(Cs) + K/||Cal|)

and

Z(C) = max w(e) (3.1)

e MST(CLF)

The K/||C;|| terms bias the results toward clusters of cardinality bounded by O(K),
where K is user specified. We set a maximum volume threshold V' in order to ensure
final clusters are not too large in size. The algorithmn is reasonably fast in practice and

generates good spatial clusters. Fig. 3.4 shows its application to the Power Plant and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Double Eagle models.
Overall, the clustering algorithm successfully merges small objects into larger groups
with good localization. It improves the performance of the culling algorithm as well as

the final-image fidelity.

Partitioning Clusters

Finally, we repartition clusters with unevenly distributed geometries, splitting ob-
jects about their centers of mass. This is similar to the partitioning algorithm presented
in Section 3.3.2; however, we use higher thresholds for the size and triangle count in or-
der to avoid splitting clusters back into small objects, but tighter bounds for the aspect

ratio in order to force splitting of uneven clusters.

Hierarchy Generation

We compute a standard AABB bounding-volume hierarchy in a top-down manner on
the set of redefined objects generated after clustering and partitioning. The bounding
boxes are assigned to left and right nodes of the hierarchy using their geometric centers
in order to avoid overlap between the nodes. The redefined objects become the leaf

nodes in the AABB hierarchy.

3.3.3 HLOD Generation

Given the above scene graph, the algorithm computes a series of LODs for each
node. The HLODs are computed in a bottom-up manner. The HLODs of the leat
nodes are standard static 1.ODs, while the HTLODs of intermediate nodes are computed
by combining the LODs of the nodes with the HLODs of node’s children. We use a
topological-simplification algoiithm for merging disjoint objects (Erikson and Manocha,
1999). |

The majority of the pre-computation time is spent in LOD and HLOD generation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

The HLODs of an internal node depend only on the LODs of the children, so by keeping
only the LODs of the current node and its children in main memory, HLOD generation
is accomplished within a small memory footprint. Specifically, the memory usage is

given by

main_memory footprint < sizeof(AABBHierarchy)
ax (si N,
+]\IglggXG(SLZGOf(i)+

Z sizeof(C;))

C,eChild(N;)

where SG denotes the scene graph and N; is a node in the scene graph.

3.3.4 HLODs as Hierarchical Occluders

Our occlusion culling algorithm uses LODs and HLODs of nodes as occluders to
compute the occlusion representation. They are selected based on the maximum screen-
space pixel-deviation error on object silhouettes.

The HLODs our rendering algorithm uses for occluders can be thought of as “hierar-
chical occluders.” A hierarchical occluder associated with a node ¢ is an approximation
of a group of occluders contained in the subtree rooted at 4. The approximation provides
a lower-polygon-count representation of a collection of object-space occluders. It can

also be regarded as object-space occluder fusion.

3.4 Interactive Display

In this section, we present our overall rendering algorithm for interactive display
of large environments. We use the occlusion culling algorithm described above and

combine it with pre-computed static levels-of-detail (LODs) in order to render large

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Gl

environments. We represent our envirommnent using a scene graph, as described in Section
3.3.3. We describe our occlusion culling algorithm and highlight many optimizations

used for improving the overall performance.

HardwareCull(Camera *cam)

1 queue = root of scene graph

2 disable color mask and depth mask
3 while(queue is not empty)

4 do

5 node = pop(queue)

6 visible= OcclusionTest(node)

7 if(visible)

8 if(error(node) < pixels of error)
9 Send node to OR and RVG
10 else

11 push children of node to end of queue
12 endif

13 end if

14 end do

ALGORITHM 3.4.1: Pseudocode for Hardware cull (HC). OcclusionTest renders the
bounding boxz and returns either the number of wvisible pizels or a boolean, depending upon
the implementation of the query. The function error(node) returns the screen-space projection
error of the node. Note that if the occlusion test returns the number of visible pizels, we could
use it for computing the level at which it must be rendered.

3.4.1 Culling Algorithm

At run-time, we traverse the scene graph and cull away portions of the geometry
that are not visible. The visibility of a node is computed by rendering its bounding box,
comparing the rasterized depth values against the occlusion representation and querying
whether the bounding box is visible or not. Testing the visibility of a bounding box is
a fast and conservative way to reject portions of the scene that are not visible. If
the bounding box of the node is visible, we test whether any of the LODs or HLODs
associated with that node meet the pixel-deviation error bound. If one of the LODs or
HLODs is selected, we include that node in the PVS and send it to the GPU performing

OR for the next frame as well as to the GPU performing RVG for the current frame. If

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the node is visible and none of the HLODs associated with it satisty the simplification
error bound, we traverse down the scene graph and apply the procedure recursively on
each node. On the other hand, if the bounding box of the node is not visible, we do not
render that node or any node in the subtree rooted at the current node.

The pseudocode for the algorithm is described in Algorithm 3.4.1. The image-space
occlusion query is used to perform view-frustum culling as well as occlusion culling on

the bounding volume.

3.4.2 Occluder-Representation Generation

At run-time, if we are generating OR for frame i 4 1, we receive camera 4 + 1 from
RVG and set the camera parameters. We also clear the depth buffer of OR. While OR
receives nodes from the GPU performing HC, we render them at the appropriate level-
of-detail. An end-of-frame identifier is sent from HC to notify the other GPUs that no

more nodes need to be rendered for this frame.

3.4.3 Occlusion-Switch Algorithm

We now describe the algorithm for the “switching” mechanism described in Section
3.2. The two GPUs involved in the occlusion switch interchange their roles of performing
HC and generating OR. We use the algorithms described in Sections 3.4.1 and 3.4.2 to
perform HC and OR, respectively. The pseudocode for the resulting algorithm is shown

in Algorithm 3.4.2.

3.4.4 Render Visible Geometry

The display client, RVG, receives the camera for the current frame from HC. In
addition, it receives the visible nodes in the scene graph and renders them at the ap-

propriate level-of-detail. Moreover, the display client transmits the camera information

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

if GPU is gencrating OR

camcra=grabLatestCam()

[NR e

end if
Initialize the colormask and depth mask to true.
if GPU is performing HC
Send Camera to RVG
else /*GPU needs to render occluders */
Clear depth buffer
end if
10 Set the camera parameters
11 if GPU is performing HC
12 HardwareCull(camera)
13 Send end of frame to OR and RVG
14 else /* Render occluders */

Na e e e

15 int id= end of frame +1 ;
16 while(id!=end of frame)
17 do

18 id=receive node from HC
19 render(id, camera);

20 end do

21 end if

22 if GPU is performing HC
23 do OR for next frame

24 else

25 do HC for next frame

26 endif

ALGORITHM 3.4.2: The main algorithm for the implementation of occlusion switch.
Note that we send the camera parameters to the RVG client at the beginning of HC (on line
6) in order to reduce latency.

to the GPUs involved in occlusion switch based on user interaction. The colormask and

depthmask are set to true during initialization.

3.4.5 Incremental Traversal and Front Tracking

The traversal of the scene graph defines a cut that can be partitioned into a visible

front and an occluded front as shown in Fig. 3.6.

e Visible Front: composed of all the visible nodes in the cut. In addition, each
node belonging to the visible front satisfies the screen-space error metric while its

parent does not.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

07

[6PU1l
Hardware Cull Render Occluders EEGPU?
. GPU3
For Frame i b
GPU1
: Node
Node ode
ids ids
|aPU2
wera i | | Camwera i+2 Cspnera il

" Display Geometry”
- For Frame i+l

.l\‘Iouse«Fluictioil :
| Motion Function
Keyboard Fundioll

GPU3

Figure 3.5: System Overview: Each color represents a separate GPU, with GPU; and GPUy
forming o switch and GPUs as the display client. GPUy and GPUs each have a camera-receiver
thread; receive camera parameters when the client transmits them due to user’s motion; and
store those in a camera buffer of size one. The GPU performing OR takes the latest camera
from this thread as the camera position for the next frame. Notice that, in this design, the
GPU performing HC exhibits no latency in receiving the camera parameters.

e Occluded Front: composed of all the occluded nodes in the cut. Also, an oc-

cluded node may not satisfy the screen-space error metric.

We reduce the communication overhead by keeping track of the visible and occluded
fronts from the previous frame at each GPU. Each node in the front is assigned one of

the following states:

e Overrefined: Both the node and its parent satisfy the silhouette deviation metric

in screen space.

e Refined: The node satisfies the silhouette deviation metric while the parent does

not.

e Underrefined: The node does not satisfy the silhouette deviation metric.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

03

Occluded Front HLOD

Visible Front HLOD4—HLOD,

HLODo HLOD»

HLOD:

Scene Graph

Figure 3.6: This figure shows a cut defined by the traversal of the scene graph using our
culling algorithm. The cut is further decomposed into visible and occluded fronts. Each front
is represented using the following colors: orange: visible front; and gray: occluded front

Each node in the front is updated depending upon its state. If the node is Overrefined,
we traverse up the scene graph to reach a parent node which is Refined. If the node
is Underrefined, we traverse down the scene graph generating a set of Refined children
nodes. At the beginning of each frame, both OR and RVG update the state of each
node in the visible front before rendering it.

We also render each node in §;,-; at OR and RVG. At the end of the frame, the
visible nodes for the current frame are reconstructed as described in Section 3.2.4. The
update of the state of each node is important for maintaining the conservative nature
of the algorithm.

At the GPU performing HC, we maintain the occluded front in addition to the visible
front of previous frame. Doing so enables us to compute d;;_; efficiently by performing
culling on the occluded front before the visible front. A node in the occluded front is
refined only if it is in the Overrefined state. Each of the occluded fronts and visible
fronts is refined before performing the culling algorithm on the refined fronts. Moreover,

the nodes in ¢;; ., are a part of the refined occluded front.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

3.4.6 Optimizations

We use o number of optimizations to improve the performance of our algorithms,

including

e Multiple Occlusion Tests: Our culling algorithm performs multiple occlusion
tests using GL_NV _occlusion_query; this avoids immediate readback of occlusion
identifiers, which can stall the pipeline. More details on implementation are de-

scribed in Section 3.4.6.

e Visibility for LOD Selection: We utilize the number of visible pixels of ge-
ometry queried using GL_NV _occlusion_query in selecting the appropriate LOD.

Details are discussed in Section 3.4.6.

Multiple Occlusion Tests

Our rendering algorithm performs several optimizations in order to improve the
overall performance. The GL_NV_occlusion_query on current GPUs allows for issuing
multiple occlusion queries at a time and querying the results at a later time. We traverse
the scene graph in a breadth-first manner and perform all possible occlusion queries for
the nodes at a given level. This traversal results in an improved performance. Note
that certain nodes may be occluded at a given level and are not tested for visibility.
Next we query the results and compute the visibility of each node. Let L; be the list of
nodes at level i that are being tested for visibility as well as pixel-deviation error. We
generate the list L;,; that would be tested at level 141 by pushing the children of a node
n € L; only if its bounding box is visible and it does not satisfy the pixel-deviation-
error criterion. We use an occlusion identifier for each node in the scene graph, and
we exploit the parallelism available in GL_NV _occlusion_query by performing multiple

occlusion queries at each level.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-1

Visibility for LOD Selection

The LODs in a scene graph are associated with a screen-space projection error.
We traverse the scene graph until each LOD satisfies the pixels-of-error metric. This
approach, however, can be too conservative if the object is mostly occluded. We therefore
utilize the visibility information in selecting an appropriate LOD or HLOD of the object.

The number of visible pixels for a bounding box of a node provides an upper bound on
the number of visible pixels for its geometry. The GL_NV _occlusion_query also returns
the number of pixels visible when the geometry is rendered. We compute the visibility
of a node by rendering the bounding box of the node, and the query returns the number
of visible pixels corresponding to the box. If the number of visible pixels is lower than
the pixels-of-error specified by a bound, we do not traverse the scene graph any further
at that node. This additional optimization is very useful if only a very small portion of
the bounding box is visible and the node has a very high screen-space projection error

assoclated with it.

3.4.7 Design Issues

Latency and reliability are two key components considered in the design of our overall
rendering system. In addition to one frame of latency introduced by an occlusion switch,
our algorithm introduces additional latency due to the transfer of camera parameters
and visible node identifiers across the network. We also require reliable transfer of data

among different GPUs to ensure the correctness of our approach.

System Latency

A key component of any parallel algorithm implemented using a cluster of PCs is the
network latency introduced in transmitting the results from one PC to another during
each frame. The performance of our system depends on the latency involved in receiving

the camera parameters by the GPUs involved in occlusion switch. In addition, latency

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

is introduced in sending the camera parameters from the GPU performing HC to the
GPU performing RVG. Moreover, latency is also introduced in sending the visible nodes
across the network to RVG and OR. We eliminate the latency problem in receiving the
camera parameters by the GPU performing HC using the switching mechanism.

Let GPU, and GPU, constitute an occlusion switch. G PU; performs HC for frame ¢
and G PU, generates OR for frame i+ 1. For frame i+ 1, GPU; generates OR for frame
i+ 2, and GPU, performs HC for frame ¢ + 1. Given that GGPU, has already rendered
the occluders for frame ¢ + 1, it has the correct camera parameters for performing HC
for frame 7+ 1. As a result, no additional latency is incurred as HC receives the camera
parameters. The GPU performing OR, however, requires the camera parameters from
the GPU performing RVG, and receiving these parameters introduces latency. Because
HC takes some time to perform hardware cull tests before transmitting the first visible
node to the GPU performing OR, this latency is usually hidden. We reduce the latency
in transmitting camera parameters from HC to RVG by sending them at the beginning of
each frame. Fig. 3.5 illustrates the basic protocol for transferring the camera parameters

among the three GPUs. We enumerate other sources of network latency in Section 3.6.

Reliability

The correctness and conservativeness of our algorithm depend on the reliable trans-
mission of camera parameters and the visible nodes between the GPUs. Our system
is synchronized based on transmission of an end-of-frame (EOF) packet. This protocol
requires us to transmit the camera parameters reliably from the GPU performing HC to
the GPU performing RVG. Also, we require reliable transmission of node identifiers and
EOF from the GPU performing HC to the GPUs performing OR and RVG. We have

used reliable transfer protocols (TCP/IP) to transfer the data across the network.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5000

I T T T

I
=m» # Of Visible Object
= |ncremental Transmission
4500 I

4000 - R

P 4 yl’wyl"'v# X
,.*I»'" o o
b2 —
4 k“
Ty m
£ 4
- n" Mn‘w"“-.."'
3000 PSS L B

3500

T
»
3
ey

2500 N

Object Count

T

2000

1500 N

1000

T
|

200 - —

L 1 |
50 100 150 200 250

Frame Number

Figure 3.7: Comparison of the number of nodes transmitted with and without incremental
transmission (described in Section 3.4.5) for a sample path on Double Eagle Tanker model.
Using incremental transmission, we observe an average reduction of 93% in the number of
nodes transmitted between the GPUs.

3.5 Implementation and Performance

In this section, we describe the implementations of our preprocessing algorithm and
the run-time occlusion culling algorithm. We also compare the performance of our

culling algorithm with earlier approaches.

3.5.1 Preprocessing

This section reports the values used for the preprocessing parameters mentioned in
Section 3.3 and provides details about the amount of time and memory used by our

preprocess.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73
Preprocessing Parameters

For Partition-I (Sec. 3.3.2), we have obtained good results with £,=1000,
s = 0.1 x model_dimension, r=2.5.

For Clustering (Sec. 3.3.2), we use D = 0.1 x max_bounding_box_dimension. We
can also work on a complete graph, but choosing a threshold in general works well and
reduces the computational complexity. We choose
V =107 X total_scene_bounding box_volume as the maximum volume threshold. For
K we use 1500, which prevents too many closely-packed objects from merging into a
single cluster.

For Partition-II (Sec. 3.3.2) we use sp = 2s; and triangle count ¢, = 10¢; but tighter

bounds for the aspect ratio: 7o = 0.57ry.

Time and Space Requirements

The preprocessing step was computed on a single-processor 2 GHz Pentium 4 PC
with 2 GB RAM. The preprocessing times for the Double Eagle model were 45 min
for Partition-1, 90 min for Clustering, 30 min for Partition-1I, 32.5 hours for out-of-core
HLOD generation, and 12 min for the AABB-hierarchy generation. The size of the final
HLOD scene graph representation is 7.6 GB, which is less than 2 times the original data
size. The AABB-tree hierarchy occupies 7 MB space.

The main memory requirement for partitioning and clustering is bounded by the
size of the largest object/cluster. For the Double Eagle it was less than 200 MB for

partitioning, 1 GB for clustering, and 300 MB for out-of-core HLOD generation.

3.5.2 Run-time System

We have implemented our parallel occlusion culling algorithm on a cluster of three 2.2
GHz Pentium-4 PCs, each having 4 GB of RAM (on an Intel 860 chipset) and a Gelorce

4 Ti 4600 graphics card. Each runs Linux 2.4, with bigmem option enabled giving 3.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

Average FPS

Pixcls of | SWITCH | Distributed | GigaWallk
Model | Error GigaWalk
PP) 14.17 6.2 5.6
DE 20 10.31 4.85 3.90
B-777 15 13.01 5.82

Table 3.1: Average frame rates obtained by different acceleration techniques over the sample
path. FPS = Frames Per Second, PP = Power Plant model, DE = Double Fagle Tanker
model, B-777 = Boeing 777 model

Pixels of Number of Polygons
Model Error SWITCH | GigaWalk | Exact Visibility
PP) 91550 119240 7500
DE 20 141630 173350 10890

Table 3.2: Comparison of the number of polygons rendered by the two implementations to the
actual number of visible polygons. PP = Power Plant model, DE = Double Eagle Tanker
model

GB of user-addressable memory. The PCs are connected via 100 Mb/s Ethernet. We
typically obtain a throughput of 1-2 million triangles per second in immediate mode
using triangle strips on these graphics cards. Using the NVIDIA OpenGL extension
GL.NV_occlusion_query, we perform an average of around 50,000 queries per second.

The scene database is replicated on each PC. Communication of camera parameters
and visible node identifiers between each pair of PCs is handled by a separate TCP/IP
stream socket over Ethernet. Synchronization between the PCs is maintained by sending
a sentinel node over the node sockets to mark an end of frame (EOF).

We compare the performance of the implementation of our algorithm (called SWITCH)

with the following algorithms and implementations:

e GigaWalk: A fast parallel occlusion culling system which uses two SGI IR2 graph-
ics pipelines and three CPUs (Baxter et al., 2002). OR and RVG are performed
in parallel on two separate graphics pipelines, while occlusion culling is performed
in parallel using a software-based hierarchical Z-buffer. All the interprocess com-

munication is handled using the shared memory.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pixels of Number of Objects
Model Error SWITCH | GigaWalk | Exact Visibility
PP d 1557 2727 850
DE 20 3313 4036 1833

Table 3.3: Comparison of the number of objects rendered by the two implementations to the
actual number of visible objects. PP = Power Plant model, DE = Double Eagle Tanker model

e Distributed GigaWalk: We have implemented a distributed version of Gi-
gaWalk on two PCs with NVIDIA GeForce 4 GPUs. One of the PCs serves as the
ocelusion server, implementing OR and occlusion culling in parallel. The other PC
is used as a display client. The occlusion culling is performed in software similar to
GigaWalk. Interprocess communication between PCs is based on TCP/IP stream

sockets.

We compared the performance of the three systems on three complex environments:
a coal fired Power Plant composed of 13 million polygons and 1200 objects, a Double
Eagle Tanker composed of 82 million polygons and 127K objects, and part of a Boeing
777 composed of 20 million triangles and 52K objects. Figs. 3.8, 3.9(a), and 3.9(b)
illustrate the performance of SWITCH on a complex path in the Boeing 777, Double
Eagle, and Power Plant models, respectively. Notice that we are able to obtain 2-3 times
speedups over earlier systems.

We have also compared the performance of the occlusion culling algorithm in terms of
the number of objects and polygons rendered as compared to the number of objects and
polygons exactly visible. Ezact visibility is defined as the number of primitives actually
visible up to the screen-space and depth buffer resolution from a given viewpoint. The
exact visibility is computed by drawing each primitive in a different color to an “item
buffer” and counting the number of colors visible. Figs. 3.10(a) and 3.10(b) show the
culling performance of our algorithm on the Double Eagle Tanker model.

The average speedup in frame rate for the sample paths is shown in Table 3.1.

Tables 3.2 and 3.3 summarize the comparison of the primitives rendered by SWITCH

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

and GigaWalk with the exact visibility for polygons and objects respectively. As the
scene graph of the model is organized in terms of objects and we perform visibility tests
at an object level and not at the polygon level, we observe a discrepancy in the ratios

of number of primitives rendered to the exact visibility for objects and polygons.

3.5.3 Bandwidth Estimates

In our experiments, we have observed that the number of visible objects n typically
ranges from about 100 to 4000 depending upon scene complexity and the viewpoint. If
we render at most 30 frames per second (fps), header size h (for TCP, IP and Ethernet
frame) of 50 bytes and buffer size b of 100 nodes per packet, then we require a maximum
bandwidth of 8.3 MBps. Hence, our system is not limited by the available bandwidth on
fast ethernet. However, the variable-window-size buffering in TCP/IP (Jacobson, 1988),
introduces network latency. The incremental-transmission algorithm greatly lowers the
communication overhead between different GPUs. Fig. 3.7 shows the number of node
identifiers transmitted with and without incremental transmission for a sample path
in the Double Eagle Tanker model. We observe a very high frame-to-frame coherence
and an average reduction of 93% in the bandwidth requirements. During each frame,
the GPUs need to transmit pointers to a few hundred nodes, which adds up to a few
kilobytes. The overall bandwidth requirement is typically a few megabytes per second

(typically less than 10MBps).

3.6 Analysis

In this section, we analyze different factors that affect the performance of occlusion-
switch-based culling algorithim. One of the key issues in the design of any distributed-
rendering algorithm is system latency. In our architecture, we may experience latency

due to one or more of the following reasons:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

1. Network: Network latencies mainly depend upon the implementation of trans-
port protocol used to communicate between the PCs. The effective bandwidth
varies depending on the packet size. Tmplementations like TCP/IP inherently
buffer the data and may introduce latencies. Transmission of a large number of
small packets per second can cause packet loss, and re-transmission introduces
further delays. Buffering of node identifiers reduces the loss but increases network
latency. Using our current implementation based on TCP/IP on the benchmarks,

we have observed latencies upto 50ms per frame.

2. Hardware Cull: Rendering a bounding box usually requires more resources in
terms of fill-rate as compared to rasterizing the original primitives. If the appli-
cation is fill-limited, HC can become a bottleneck in the system. In our current
implementation, we have observed that the latency in HC is less than the network
latency. Using a front-based ordered culling, as described in Section 3.4.5, reduces
the fill requirement involved in performing the queries and thus results in a better

performance.

3. OR and RVG: OR and RVG can become bottlenecks when the number of visible
primitives in a given frame is very high. In our current implementation, HC
performs culling at the object level. As a result, the total number of polygons
rendered by OR or RVG can be quite high depending upon the complexity of the
model, the LOD-error threshold, and the position of the viewer. We can reduce

this number by selecting a higher threshold for the LOD error.

The overall performance of the algorithm is governed by two factors: culling efficiency

for occlusion culling and the overall frame rates achieved by the rendering algorithm.

e Culling Efficiency: Culling efficiency is measured in terms of the ratio of the
number of primitives in the potentially visible set to the number of primitives

visible. The culling efficiency of occlusion switch depends upon the occlusion

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

representation used for performing culling. A good selection of occluders is crucial
to the performance of HC. The choice of bounding geometric representation used
to determine the visibility of an object affects the culling efficiency of HC. In our
current implementation, we have used a rectangular bounding box as the bounding
volume because of its simplicity. As HC is completely GPU-based, we can use any
other bounding volume (e.g. a convex polytope, k-dop) and the performance of
the query will depend on the number of triangles used to represent the boundary

of the bounding volume.

e Frame Rate: Frame rate depends on the culling efficiency, the load balancing
between different GPUs, and the network latency. Higher culling efficiency results
in fewer primitives rendered by OR and RVG. A good load balance between the
occlusion switch and the RVG would result in maximum system throughput. The
order and the rate at which occlusion tests are performed affects the load balance
across the GPUs. Moreover, the network latency also affects the overall frame

rate. The frame rate also varies based on the LOD selection parameter.

With faster GPUs, we would expect higher culling efficiency as well as improved frame

rates.

3.6.1 Comparison with Earlier Approaches

We compare the performance of our occlusion culling algorithm with two other well-
known occlusion culling algorithms: HZB (Greene et al., 1993) and HOM (Zhang et al.,
1997a). Both of these approaches use a combination of object-space and image-space
hierarchies and are conservative up to the image precision. The current imnplementations
of HZB and HOM are based on frame-buffer readbacks and perform the occlusion tests in
software. The software implementation incurs additional overhead in terms of hierarchy

construction. Moreover, these algorithms project the object’s bounding volume to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

screen-space and compute a 2-D screen-space bounding rectangle for performing the
occlusion test. As a result, these approaches are more conservative as compared to
occlusion-switch-based culling algorithm. Further. the depth buffer readbacks can be
expensive as compared to the use of occlusion queries, especially on current PC systems.
In practice, we obtained almost three times speedup over an implementation of HZB on
two PCs (Distributed GigaWalk).
Our algorithm also utilizes the number-of-visible-pixels parameter returned by

GL_NV _occlusion_query for LOD selection. This bound makes our rendering algorithm
less conservative compared to earlier LOD-based rendering algorithms, which compute

a screen-space bound from the object space deviation error.

3.6.2 Limitations

Occlusion-switch based culling introduces an extra frame of latency in addition to
double buffering. The additional latency does not decrease the frame rate, as the second
pass is performed in parallel. However, it introduces additional latency into the system;
the overall algorithm is best suited for latency-tolerant applications. In addition, a
distributed implementation of the algorithm may suffer from network delays, depend-
ing upon the implementation of the network-transmission protocol used. Our overall
approach is general and independent of the underlying networking protocol.

Our occlusion culling algorithm also assumes high spatial coherence between succes-
sive frames. If the camera position changes significantly from one frame to the next,
the visible primitives from the previous frame may not be a good approximation to the
occluder set for the current frame. As a result, the culling efficiency may not be high.

Our algorithm performs culling at an object level and does not check the visibility
of each triangle. As a result, its performance can vary based on how the objects are

defined and represented in the scene graph.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20 T T T T T T I I I
— SWITCH
==x Distributed GigawWalk

1/Frame Time (fps)

0 10 20 30 40 50 60 70 80 90 100

Frame Number

Figure 3.8: Frame-rate comparison between SWITCH and Distributed nga Walk ot 1024 <1024
screen resolution and 15 pizels of error on the Boeing model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

— SWITCH . §o—— SWITCH

-~ Distibted GigaWak :| 18 | - Oisiibited CigaWak 't
1 -= Gigawak ! - GigaWalk i
18 0
12 !

! 14
2" ! !
£ : L. !
5 E 10 »
£ & o

%
Vo
W M

(] 50 100 150 200 250 300 0 50 100 150 200 30 0 300
Frame Mumber Frame Number

(a) Double Eagle Tanker model at 20 pixels (b) Power Plant model at 5 pixels of error
of error

Figure 3.9: Frame-rate comparison among SWITCH, GigaWalk and Distributed GigaWalk
at 1024 x 1024 screen resolution. We obtain 2 — 3 times improvement in the frame rate as
compared to Distributed GigaWalk and Giga Walk.

10
250 ey ! ! ! ~ 5000, B . . '
e Exact Vishiity | [ev §;;$;!‘slbimy ! -
e SWITCH - | . A A pI
= GigaWalk PR . ool a1y MR
, s
- £y i i L
2 { 000 Hn H And
S 15 ;
o S
H g 200
3 g
H 5 e N i
& 4 © 2000 P AR
o rnc, e .,
1500} e ey
05 1000
500
DL PRSPV AR T R A R i
; . . . o \ \ , . \
a 50 100 150 200 250 0 50 100 150 ° 200 250
Frame Number Frame Number
(a) At polygon level (b) At object level

Figure 3.10: Double Fagle Tanker: Comparison of exact-visibility computation with SWITCH
and GigaWalk at 20 pizels of error at 1024 x1024 screen resolution. SWITCH is able to perform
more culling than GigaWalk; however, it renders one order of magnitude more triangles or
twice the number of objects as compared to exact visibility.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 3.11: Performance of the occlusion-switch algorithm on the Double Eagle Tanker model:
This environment consists of more than 82 million triangles, and our algorithm renders it at
9 — 15 fps on a cluster of 3 PCs, each consisting of an NVIDIA GeForce 4 GPU. Occlusion
switch culls away most occluded portions of the model and renders around 200K polygons in
the view shown. Objects are rendered in the following colors: wvisible: yellow; view-frustum
culled: wviolet; and occlusion-culled: orange.

-
(a) Portion of a Boeing 777 model ren- (b) Power Plant model composed of
dered at 15 pizels of error. QOur sys- more than 12.7 million triangles.
tem, SWITCH, is able to render it at SWITCH can render it ot 11-19
11-18 frames per second on a 3-PC frames per second using 5 pizels of de-
cluster. viation error.

Figure 3.12: Performance of occlusion switch on complex CAD models: Both maodels are
rendered at 1024 x 1024 screen resolution using NVIDIA GeForce 4 cards.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

Visibility Computations:

Interactive Shadow Generation

Figure 4.1: The left image shows a snapshot generated from the application of our shadow
culling algorithms and a hybrid shadow-generation technique to the Power Plant model (12.7M

triangles). The middle image shows a different viewpoint generated using perspective shadow
maps. Notice the aliasing artifacts. The right image highlights the sharper boundaries of the
shadows generated by our interactive algorithm from the same viewpoint.

4.1 Introduction

The generation of shadows is a classic visibility problem in computer graphics.

Shadows provide important spatial cues and can greatly increase the visual realism of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

computer-generated images. Iu this chapter, we address the problem of calculating hard-
edged umbral shadows cast by a moving light source in complex static environments at
intcractive frame rates. Examples of these environments include architectural models,
urban data sets, and CAD models of large structures such as airplanes or oil tankers.
These types of scenes consist of thousands of objects, contain millions of polygons, and
typically exhibit a wide depth range (as shown in Fig. 4.1).

We present a new shadow culling algorithm for interactive shadow generation in
complex environments. The shadow culling algorithm consists of two novel components.
First, we improve the techniques described in Chapter 3 for computing the potentially
visible set (PVS) in complex environments using a combination of hierarchical repre-
sentations, LODs, and image-space occlusion queries. The compactness of the PVS
produced by this technique is necessary for object-space shadow computation. Second,
we introduce a cross-culling operation involving visibility computations between the
PVS computed from eye view and the PVS computed from the light view. Cross-culling
results in a reduced set of potential shadow casters and potential shadow receivers. We
have integrated our algorithm with a hybrid shadow-rendering method (Private Com-
munication with Lloyd, 2003). The hybrid algorithm combines object-space shadow
polygons with shadow maps. The shadow polygons are computed by a clipping al-
gorithm using the potential shadow casters and shadow receivers identified by cross-
culling. Our improved PVS-computation algorithm can also be used to accelerate other
rendering applications. Likewise, our cross-culling algorithm can also be useful for other
object—precision shadow algorithms such as shadow volumes (Lloyd et al., 2004).

Compared to earlier approaches, our shadow culling algorithm offers many advan-
tages. It makes no assumptions about the input model or connectivity information; it
can be used for generating sharp shadow edges, greatly reducing aliasing; and can be
used with a moving light source to generate dynamic shadows at interactive rates in

complex environments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Portions of this chapter are described in (Govindaraju et al.,, 2003a; Lloyd et al.,
2004) '. The rest of the chapter is organized in the following manner. In Section 4.2,
we describe the improved PVS-computation algorithm and discuss ways to minimize
artifacts due to LODs in shadow computation. We also present the cross-culling algo-
rithm for reducing the sizes of potential shadow casters and shadow receivers. In Section
4.3, we describe the hybrid shadow-generation algorithm and discuss the application of
shadow culling algorithms to it. In Section 4.4, we describe our implementation of this
hybrid algorithm and present our results. We analyze the performance of the system

and discuss some of its limitations in Section 4.5.

4.2 Shadow Culling

Visibility computation is an integral part of any shadow-generation algorithm. Given
a point source, the hard-edged umbral shadows can be determined by partitioning the
visible surface of the eye view with respect to visibility of the light as shown in Fig. 4.2.
Regions not visible to the light lie in shadow. However, exact computation of the visible
surface is too slow for interactive applications and is prone to geometric-robustness
problems.

In this section, we present the two components of our shadow culling algorithm:

e The PVS-computation algorithm for computing the PV'S from the eye view (PV .Sp)
and the PV'S from the light view (PVSp). We also discuss the issues that arise

from using LODs to accelerate the PVS computation.

e The cross-culling algorithm for computing the actual shadow casters and shadow

receivers contributing to the shadow boundaries.

! Joint work with Brandon Lloyd, Sung-Eui Yoon, Jeremy Wendt and Avneesh Sud

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

Shadow

Figure 4.2: Visibility Computation for Shadow Generation: This figure shows a simple scene
with a light source placed above o sphere and a floor. Shadows are regions on the floor and
sphere that are visible to the eye, but not visible to the light.

4.2.1 LOD-based Interactive PVS Computation

Our PVS-computation algorithm is based heavily on our prior work, which combines
LODs with occlusion culling. The details are discussed in Chapter 3. In chapter 3, we

. perform culling only at the object level. As a result, the computed PVS can be overly
conservative, ranging anywhere from 200K to 450K triangles in size on our benchmark
models. Although we can render a PVS of this size at interactive rates on current
graphics processors, it is too large for interactive shadow-generation algorithms. We
present an improved algorithm that reduces the size of PVS by almost an order of

magnitude as compared to our prior algorithm and decreases the latency in the pipeline.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Oceluded Nodes HLOD

Visible Nodes HLODsS— HL O

oo
HLODo—-HLOD: HLOD»
ses e eve

Scene Graph

sub-object

Figure 4.3: This figure shows a cul defined by the traversal of the scene graph using our
improved culling algorithm. The cut is composed of visible and occluded nodes. Each node
in the hierarchy is composed of several HLODs and each HLOD is further decomposed into
multiple subobjects to improve the culling efficiency of our algorithm.

To improve the performance of culling, we decompose each LOD or HLOD object
into a shallow hierarchy of subobjects as shown in Fig. 4.3. After object-level culling
has been performed, we render the subobjects of the visible objects and use occlusion
queries for checking whether they are visible. The subobject hierarchy is typically 1 - 2
levels deep. A deeper hierarchy can lead to stalls when performing image-space occlusion
as explained further in Section 5.1. Each subobject is composed of k triangles, where
k is typically a small number (say 1 - 10). A higher value of & reduces the number of
subobjects per object, thereby reducing the number of occlusion queries to be performed.
On the other hand, a lower value of k results in a much smaller PV S. If £ = 1, the
algorithm computes the smallest PVS for a given LOD-error threshold.

With a smaller PVS, fewer occluders are rendered during OR generation 2. As

a result, we can compute the occlusion representation and perform scene-graph culling

2Details on OR generation are discussed in Chapter 3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

shadow boundary
deviation

LOD,

self-shadowing

Figure 4.4: Self-shadowing artifacts due to a naive LOD-selection algorithm. We correct this
problem by using the same LOD parameter for an object when computing PV Sg and PV Sy.

(SGC) on one GPU instead of two with little loss in overall performance. This procedure

reduces the latency in the pipeline and decreases the load on the network.

Interactive Shadow Maps: The savings incurred by the improved PVS computation
malkes possible the rendering of large models with a shadow map on a single graphics
processor. In order to render each frame, PV Sk is computed first and PV.S) second.
The final image is then rendered using the depth map left over from the computation of
PV S, as the shadow map. Using this approach, we can render the 82.7 million triangle

Double Eagle Tanker model with perspective shadow maps at interactive rates.

LODs and Shadow Generation

The use of LODs and HLODs in PVS computation introduces inaccuracies in shadow

boundaries and can cause self-shadowing artifacts. In this section, we discuss the vari-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

Figure 4.5: The effect of increasing the LOD-error threshold in the Double Eagle Tanker
model. These images have been generated with O (left), 10 (middle), and 20 (right) pizels of
error.

ous artifacts and trade-offs involved in selecting an LOD for an object when rendering

shadows.

Inaccuracy in Shadow Boundaries: A shadow is formed by the projection of the
silhouette of an object onto other surfaces in the scene. A deviation in the silhouctte
due to the use of LODs causes a deviation in the shadow boundary. This deviation
is based on two factors: a distance factor that magnifies the deviation as the distance
between the shadow caster and a shadow receiver is increased and an orientation factor
that magnifies deviation as the orientation of the shadow receiver surface normal is
almost perpendicular to the light direction (see Fig. 4.4). We cannot bound the error
introduced by the orientation factor, since the orientation of the surfaces of an object
can be arbitrary. But we can bound the error caused by the distance factor by using
an LOD-selection metric that bounds the screen-space silhouette deviation. We use a
conservative criterion based on the maximum distance between any shadow caster and
shadow receiver, which is bounded by the size of the model. This ensures that, at a
given point in space, the deviations in all shadow boundaries will be bounded, though
the size of the error bound will be different at each point due to differences in distance

and orientation with respect to the light. Fig. 4.5 shows the effect of increasing the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LOD-error threshold on shadows.

Artifacts due to LODs: In order to minimize LOD artifacts, we must select the LODs
carefully. Let LOD; and LODg be the LODs selected for a given object from the light
view and eye view, respectively. If the object is visible in both the views, it is both
a potential shadow receiver and a potential shadow caster. If LOD;, and LODy are
not the same, self-shadowing artifacts can occur (as shown in Fig. 4.4). We propose
two methods for selecting consistent LODs in both views. Both have advantages and

disadvantages:

1. max(LODg, LODy): This method (Private Communication with Lloyd, 2003)
produces shadows with the minimum deviation for a given LOD-error threshold,
but it can result in extra geometry being rendered. Objects distant from the eye
but close to the light will have a higher LOD in the eye view than is necessary
to meet the LOD-error threshold. Rendering with a higher LOD than necessary
should not negatively affect the final image but it does impact the performance.
One potential problem for a static view is popping in the shadows, as LODs change

when the light moves.

2. LODpg: Using LODg all the time without regard to the position of the light can
lead to shadows with large deviation in the shadow boundary. An object far from
the eye will have a coarse LOD. If that object is close to the light, then inaccuracies
of the LOD are magnified in the shadow. Shadows that are too coarse are usually
less noticeable than objects that are too cdarse, because the shadow is broken up
by the geometric primitives on which it falls. This method has the advantage of
keeping the number of geometric primitives rendered to a minimum. Also, the
geometric primitives used for the shadows will change only if the eye view does,
which usually is less distracting than if the geometric primitives change while the

eye view is static.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91

When an object is not visible in both views, self-shadowing is not a problemn because
either the object is completely in shadow (not in the light view) or the shadows arc not
computed (not in the eye view). Even though avoiding self-shadowing artifacts is not
necessary in these cases, it is still a good idea to continue to use the same LOD selection;
otherwise distracting popping artifacts can occur if the LOD changes drastically when
the object does become visible in both views.

Both the criteria highlighted above have relative advantages. Using either LOD-
selection criterion, the LOD for an object may change when the user moves. As a result,

we need to recompute PV .Sy, even if the light source is static.

4.2.2 Cross-Culling

Every triangle in PV.S; is a potential shadow caster and every triangle in PV Sg is
a potential shadow receiver. Cross-culling aims to reduce these sets to the triangles that
actually cast or receive shadows up to image precision. PV Sg can be partitioned into

three subsets with respect to PV Sy, in the light view (as shown in Fig. 4.6):

e Fully lit(FV): These triangles are fully visible in the light view and are not

shadowed.

e Fully shadowed receivers (SRr): These triangles are totally occluded in the

light view and therefore, lie fully in shadow.

e Partially shadowed receivers (SRp): These triangles contain shadow bound-

aries because they are partially occluded in the light view .

We refer to the subset of PV S, that casts shadows on SRp as shadow casters, SC.
SRp and SC can be used in both object-precision and hybrid algorithms (described in
chapter 2) for computing shadow boundaries.

In order to compute SRp, we first render PV S, to generate the depth map from

the light view. Next we disable the depth mask and render the triangles in PV S while

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

Stage 1: Stage 2: Light Stage 3 : Abight | Stage4:
PVS Computation Cross-Culling - Shadow / ' Render
J— 24 Generation
izsﬁ RS, " W Fully Lt
— PV3&; Shadow Region ;8 .14 A Shadow 2 Shadowed
! Polygons

Eye A Eve A
Object-Space A i |
Clipping 7
i1

Figure 4.6: Querview of our hybrid approach showing the four stages of the algorithm and the
intermediate computations.

performing occlusion queries. Occlusion queries indicate which triangles contain pixels
that passed the depth test. Triangles that are completely occluded (SRp) are removed
from PV Sg leaving only potentially visible triangles. These triangles are rendered with
the depth function reversed so that the triangles that fail the occlusion test are actually
fully visible (FV). The remaining triangles are only partially visible (SRp).

In order to compute SC, we need to determine the subset of PV .Sy that potentially
shadows SRp. This computation is performed using the stencil test. While rendering
the visible triangles in the previous step, we also set the stencil where the depth test is
passed, which will be in the shadowed regions of SRp. We then set the depth function
to EQUAL and re-render PV .Sy. The triangles that pass both the occlusion and the

stencil tests are the potential shadow casters (SC).

4.3 Applications

Our shadow culling algorithms can be integrated with object-precision and hybrid
algorithms for generating high-quality shadows. In this scction, we describe the appli-

cation of our culling techniques in two recent shadow generation algorithms.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

O iy

Compute PVS, ComputePVS, Compute PVS,
Eye for frame i for framis i#1 for frame i+2 ‘

I [
Scene | | PVSg ¢ ¥ FL y N]
el .

Rendler

Sﬁédm)v generatlon

Shadow generation do
: - for frama 1+1

Polygons
forframef

hadow
Generation

frame | e frame [+1 weswm—p- frame +2

(a) Data flow diagram (b) Frame based timing diagram

Figure 4.7: Architecture of the Process-Parallel Algorithm: This figure shows the components
of our hybrid shadow generation algorithm. Each color represents a separate graphics processor
or CPU.

4.3.1 Hybrid Shadow-Generation Algorithm

Lloyd (Private Communication with Lloyd, 2003) integrated our shadow culling al-
gorithm with a combination of object-precision and image-precision techniques for gen-
erating high-quality shadows. The integrated algorithm proceeds in four stages (see
Fig. 4.6). First, the PVS-computation algorithm described in Section 4.2 is used for
computing PV Sk and PV Sy, for a given eye-view and light-view. Second, cross-culling
between the PVSs is used for identifying the triangles that cast and receive shadows.
Third, this information is used to generate object-precision shadow polygons. Finally,
the shadow polygons are combined with a shadow map in order to render the final image.
A variation of the classic Atherton-Weiler-Greenberg algorithm (Atherton et al., 1978)
is used for computing the shadow polygons. For more details, refer to (Govindaraju
et al., 2003a).

For large models, the integrated algorithm imay not be able to compute PV Sg and
PV Sy, perform cross-culling, and render shadows on a single graphics processor at
interactive rates. In order to increase performance, the algorithm is parallelized over
three graphics cards (on three different PCs) and the computation is pipelined. The
architecture of the resulting system is shown in Fig. 4.7(a). At the beginning of each

frame, the PC with GPU, transmits the light view and the eye view cameras for the next

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

frame to the other GPUs. GPU; and GPPU, compute PV Sy and PV'S, for the current
frame in parallel (see Fig 4.7(b)). At the same time, the PC with GPU; receives the
PVSs for the current fraine, performs cross-culling, computes the shadows, and renders
the final scene. This algorithm introduces one frame of latency while greatly improving
the frame rate.

Network Transmission: Each PVS sent to GPUjz comprises a list of the identifiers
of the visible subobjects in the scene graph. In most cases, the change in the PVS
computed between successive frames is small. By transmitting only these incremental
changes we can lower network traffic among the PCs. All the communication among

the PCs is synchronized using acknowledgments.

4.3.2 CC Shadow Volumes

Lloyd et al. (Lloyd et al., 2004) present an interactive shadow volume rendering
algorithm for rendering complex models. The technique applies our shadow culling
algorithms for removing shadow volumes that are themselves in shadow or that are not
contributing to the final image. Next, a novel clamping algorithm is applied to restrict
shadow volumes that actually contain shadow receivers. More details arc available in

(Lloyd et al., 2004).

4.4 Implementation and Performance

In this section, we describe the implefnentation of our shadow culling algorithms as
part of a hybrid shadow-generation technique and highlight its performance on three

complex environments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.8: A snapshot generated from an application of our interactive shadow generation
algorithm to the house model. The model has about 1.3M triangles. No LODs were used.

4.4.1 Implementation

We have implemented our hybrid algorithm on 3 Dell Precision workstations, each
with dual 1.8 GHz Pentium-IV CPUs, 2 GB of main memory and a NVIDIA GeForce-4
Ti 4600 GPU.

For increased rendering performance, we reserve 72MB of the 128MB on each GPU
for storing the vertices of objects, subobjects, and bounding boxes. The memory allo-
cated in the graphics card is sufficient to hold 6 million vertices. We perform memory
management if we exceed this limit. We also use NVIDIA vertex arrays in video mem-
ory for accelerating rendering. Our algorithm keeps track of the starting location of
the vertices of each object in the video memory and uses it for rendering the object’s

primitives.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

Figure 4.9: A sequence generated by a light source moving over the Power Plant away from
the viewer. Qur algorithm can generate shadows at 10 frames per second on average for this
model.

We perform occlusion queries using the NVIDIA OpenGL extension
GL_NV_occlusion_query. In order to avoid stalls in the graphics pipeline, we perform
all the queries at one time and obtain the results later. In theory, current graphics
processors can perform these queries at the rate of rasterization. However, we have
observed considerable overhead which limits the number of queries performed. Using
the current driver for NVIDIA GeForce 4 on the Linux OS, we can perform about 240K
queries per second. In order to work around this limitation, we perform queries for
groups of triangles, subobjects, instead of performing occlusion culling directly at the

triangle level.

4.4.2 Performance

In order to measure the performance of our algorithm, we generated multiple paths

for the eye and light through three large models:

e A Power Plant model (shown in Fig. 4.1) composed of more than 1,200 objects
and 12.7 million triangles. We used a path that travels around the Power Plant.
Fig. 4.9 shows a sequence of images generated by the moving light source in the

Power Plant model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

e A Double Eagle tanker model (shown in Fig. 4.10) composed of more than 82
million triangles. We used a path generated by moving a spotlight over the top of

the deck of the tanker and into the engine room.

e An architectural model (shown in Fig. 4.8) of a replicated house composed of more
than 1.3 million triangles. The house contains a number of rooms with furniture.
For the the path inside the house a pure shadow-map-based approach will suffer

from projective aliasing.

The Power Plant and tanker models contain many long, narrow objects such as pipes,
beams, and trusses. These structures are particularly problematic for shadow generation
because they produce large numbers of shadow boundaries. These fine structures also
tend to alias badly in shadow maps.

For the Power Plant and tanker models we used an LOD-error threshold of 10 and
20 pixels respectively, while for the house model no LLODs were used because the model
is not overly-tessellated. Furthermore, we used the second LOD-selection algorithm
described in Section 4.2.1 (i.e., use LODpy all the time) for generating the graphs and
the paths shown in the video. We set the size of the subobjects to 8 triangles (i.e.
k = 8). Cross-culling required around 20K occlusion queries per frame (on average)
with this setting.

Fig. 4.11 shows the frame rates obtained over the different paths for each model.
The average frame rate for the house model is significantly greater than that for the
Power Plant or for the tanker, because the house is much smaller and relatively simple.
The larger models require more time fér scene-graph traversal, PVS computation, and
shadow generation. The Power Plant walkthrough runs at an average of 10 frames per
second while the tanker runs at an average of 7 frames per second.

The graphs in Fig. 4.12 demonstrate the performances of different culling algorithms
used for shadow generation in a portion of the paths through the Power Plant and tanker.

Subobject culling reduces the sizes of the PVSs computed after object culling by almost

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

Figure 4.10: A snapshot of the tanker model rendered using our system. The tanker has more
than 82 million triangles. This view highlights the shadows generated by the long and thin pipes
on the deck.

an order of magnitude. PV Sg drops from about 100K to 11K triangles in the Power
Plant and from 900K to 90K in the tanker. Cross-culling provides significant additional
culling vielding sets of shadow casters and shadow receivers on the order of several

thousand triangles in size, three orders of magnitude less than the model size.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

4.5 Analysis and Limitations

In this section, we analyze the performance of our algorithm and discuss its limita-

tions.

4.5.1 Interactive Performance and Load Balancing

A number of factors govern the overall performance of our algorithm, including the
model complexity, the scene-graph representation, the relative positions of the light and
the viewpoint, and the rate at which we can perform the occlusion queries. The frame
rate is determined by the performance of each stage (as shown in Fig. 4.6) as well as
by the network latency between the PCs. Network latency usually does not have much
effect on performance because we exploit frame-to-frame coherence to transmit only the
incremental changes in the PVSs.

The main factors that affect the system performance are the LOD-error threshold
and the capabilities of the graphics processors. A higher LOD threshold improves the
performance of the overall algorithm at the cost of image quality. A faster GPU will
speed up both rendering and occlusion culling.

The first stage of the algorithm computes the PVS from the eye view and the light
view. We compute the PVSs in parallel on separate PCs. The time it takes to compute
each PVS depends on the view and the LOD-consistency criterion (described in Section
4.2.1). We found that the size of PV S, was generally smaller as compared to the
size of PV Sg and took relatively less time to compute because the light source was
usually farther away from the scene than the eye. The most expensive part of the PVS
computation is typically the subobject culling step because it usually requires more
occlusion queries than the object-culling step.

The performance of cross-culling is directly related to the sizes of PV .Sy, and PV Sg.

The benefit of cross-culling depends on the size of SRp relative to that of PV .Sy and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

the size of SC relative to that of PV.S;. In gencral, the smaller the sizes of these sets,
the larger the fraction of shadows that can be calculated with object precision, leading
to higher image quality. The overhead of cross-culling is about 15-35 ms according to
our benchmarks.

Load Balancing: The algorithm can spend more time in PVS computation than in
the other stages. In this case we can either increase the LOD threshold in order to use
coarser LODs or increase the number of triangles per subobject, k, in order to reduce the
number of occlusion queries performed. If cross-culling or shadow generation becomes
the bottleneck we use a smaller k. This decreases the size of PV .Sg and PV.S; and the

number of potential shadow casters and shadow receivers.

4.5.2 Comparison with Other Approaches

In this section, we briefly compare our algorithm with earlier approaches.

Shadow Maps: Our shadow culling algorithms can be integrated with hybrid algo-
rithms that use shadow maps to yield higher-quality, sharper shadows than pure shadow
map approaches (as shown in Fig. 4.13). Uniform shadow maps (Williams, 1978) are
simple to implement but suffer from aliasing. Perspective shadow maps greatly reduce
the aliasing problem for many view configurations (Stamminger and Drettakis, 2002)
but cannot always eliminate it completely, especially when the field of view is narrow or
when the near plane must be kept close to the viewpoint. Our algorithm can greatly re-
duce the aliasing artifacts present in shadow maps, while maintaining interactive frame
rates. |

Shadow Volumes: Shadow volumes are too slow for large models because current
graphics systems cannot handle the large number of shadow casters. Currently, however,
the cost of shadow volumes is dominated by the fill-rate. Recent work by Lloyd et
al. (Lloyd et al., 2004) integrates our shadow culling algorithms with shadow volume

clamping algorithms for reducing the fill requirement of shadow voluines and thereby,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

rendering complex scenes upto a hundred thousand polygons at interactive frame rates.
Shadow Volume Reconstruction from Depth Maps: McCool [McCool 2000] uses
the information in the depth buffer to construct shadow boundaries for rendering shadow
volumes; thus, the shadows can be no more accurate than the information contained in
the depth buffer. We use the depth buffer for computing visibility information for the
objects. This information can be used for computing the shadow boundaries at object-
precision (Govindaraju et al., 2003a; Lloyd et al., 2004). As a result, the quality of the
shadows may be better. Moreover, McCool’s algorithm requires a depth buffer readback
during each frame, which can be slow on current graphics systems (e.g. 50 millisec-
onds at 1K x 1K resolution from a high-end PC with NVIDIA GeForce 4 card). This
overhead may limit the algorithm’s usefulness for interactive performance in complex
environments.

Ray Tracing: Another approach for shadow generation is ray tracing. Wald et al.
[2001] described how to ray trace complex scenes at interactive rates on a cluster of
commodity PCs. They were able to ray trace shadows on the Power Plant model with
a resolution of 640 x 480 at 1 - 3 fps on a cluster of seven dual-processor PCs. The
main advantages of their approach are that frame rate can scale with the number of
processors and model size and that they can reduce the inaccuracies in shadow boundary
by ray tracing the original geometry. However, our approach utilizes the commodity
graphics processors effectively, and we are able to generate higher frame rates at a

higher resolution with three graphics processors and $wo CPUs.

4.5.3 Limitations

Our current algorithm can only generate hard shadows from point-light sources. In
theory, we can use more than one light source, but this requires additional graphics pro-
cessors (one per light source) and additional computations in cross-culling and shadow

generation. Our algorithm may not be suitable for latency-sensitive applications. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PVS-computation algorithm, which is performed on separate graphics processors, intro-
duces a latency that is typically slightly less than one frame.

Our algorithm expects high colerence between successive locations of the eye view
and the light view. We agsume that the set of visible primitives from the previous frame
is a good approximation of the set of occluders in the current frame. If either view
undergoes drastic motion, this assumption may not hold. As a result, the sizes of the
PVSs, SRp, and SC can become large, leading to increased frame time.

The use of LODs can introduce visual artifacts as well as inaccurate shadow bound-
aries. We have discussed the inaccuracies in the shadow boundaries in Section 4.2.1.
Some of the popping artifacts due to the use of LODs can be eliminated by performing
view-dependent simplification (Yoon et al., 2003).

Our PVS-computation and cross-culling algorithms use image-space occlusion queries
to accelerate visibility computations. Very small objects or surfaces that are nearly per-
pendicular to the light view may be missed in rasterization. When this occurs, the
visibility of the object may be misclassified resulting in missing shadows or in polygons
that are incorrectly labeled as fully shadowed. Note that the effects of these artifacts
will be no worse than those resulting from the use of shadow maps. Some of these prob-
lems may be avoided by increasing the resolution, by supersampling, or by performing
occlusion queries in post-perspective space as in rendering perspective shadow maps. In

practice, we have observed a few misclassification artifacts.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

frame per sec(fps)

50

I
o

[4%)
(9]

)
Q

[\
w

[y
o

—_
9]

N
o

House model

Powerplant model

Double eagle tanker

200 250 300 350 400

Frame number

100 150

Figure 4.11: Frame rates obtained for each model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

450

-

104

o

|
{
|

ey
o

of Triangles (log scale)
i - * - ‘ZJ
of Triangles (log scale

o

g

o

107]
102 1 L Il 1 L L] o 102 1 1 1 L L L 1 i PP
0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450
Frame number Frame number
(a) Double Eagle Tanker model at 20 (b) Power Plant model at 10 pizels of
pizels of error error

Figure 4.12: Performance of the culling techniques. OCg refers to the number of triangles
after object culling. The PVSs are obtained by performing subobject culling. There is a reduc-
tion of almost an order of magnitude in the size of PV Sg as compared to that of OCp. After
cross-culling, the sizes of the shadow casters (SC) and shadow receivers used for calculating
shadow boundaries are each on the order of a few thousand.

Figure 4.13: Comparison of shadows generated by uniform shadow maps (left), perspective

shadow maps (middle), and our hybrid algorithm (right). Each image also includes a zoomed
view of the shadow boundaries on the top left corner. Perspective shadow maps reduce some
of the aliasing artifacts as compared to uniform shadow maps; however, they are unable to
generate sharp shadows in many scenarios.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

Visibility Computations:

Interactive Collision Detection

Figure 5.1: Tree with Falling Leaves: In this scene, leaves fall from the tree and undergo
nonrigid motion. They collide with other leaves and branches. The environment consists of
more than 40K triangles and 150 leaves. Our GPU-based reliable collision detection algorithm,
FAR, can compute all the collisions in about 35 msec per time step on a PC with 2.8 GHz
Pentium IV CPU and NVIDIA GeForce FX 5950 Ultra GPU.

5.1 Introduction

Collision detection is an important problem in computer graphics, game develop-
ment, virtual environments, robotics, and engineering simulations. In this chapter, we
mainly address the problem of collision detection among moving objects, either rigid or

deformable, using graphics processing units (GPUs).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Potentially Colliding Set

Figure 5.2: Potentially Colliding Set: In this viewpoint, two of the four objects are in close
proximity and belong to the potentially colliding set.

We present, a novel algorithm for collision or interference detection among multiple
moving objects in a large environment using graphics hardware. Given an environment
composed of triangulated objects, our algorithm computes a potentially colliding set
(PCS). The PCS consists of objects that either are overlapping or are in close proximity.
An example is shown in Fig. 5.2. We use visibility computations in order to prune
the number of objects in the PCS. This is based on a linear-time two-pass rendering
algorithm that traverses the list of objects in forward and reverse order. The Visibility
relationships are computed using image-space occlusion queries.

The pruning algorithm proceeds in multiple stages. Initially it computes a PCS of
objects. Next it considers all subobjects (i.e., bounding boxes, groups of triangles, or
individual triangles) of these objects and computes a PCS of the subobjects. Finally, it

uses an exact collision detection algorithm in order to compute the overlapping triangles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

The complexity of the algorithm is a linear function of the input and output sizes as well
as the size of the PCS after each stage. Since there are no depth-buffer readbacks, it
is possible to perform the image-space occlusion queries at a higher resolution without
significant degradation in performance. The additional overhead is in terms of fill rate
and not the readback bandwidth.

Our pruning algorithm can also compute self-collisions in general deformable models
without making assumptions about mesh connectivity. As we do not require mesh
connectivity, our algorithm ignores contacts between triangles in order to avoid false
collisions between connected or neighboring triangles (triangles with a shared edge or a
shared vertex) and computes only penetrating triangles.

We overcome the sampling and precision problems in our pruning algorithm by “fat-
tening” the triangles in the PCS sufficiently. We show that the Minkowski sum of each
primitive with a sphere provides a conservative bound for performing reliable 2.5-D
overlap tests using GPUs. The radius of the sphere is a function of viewport resolu-
tion and depth buffer precision. For each geometric primitive (a collection of triangles),
our algorithm computes a tight bounding-offset representation. The bounding-offset
representation is a union of object-oriented bounding boxes (UOBB) where each OBB
encloses a single triangle. Our algorithm performs visibility queries using these UOBBs
on GPUs in order to reject primitives that are not in close proximity. Overall, our algo-
rithm guarantees that no collisions will be missed due to limited framebuffer precision
or quantization errors during rasterization.

The rest of the chapter is organized as follows. In Section 5.2, we give an overview
of PCS computation using visibility queries. We then present our self-collision culling
and reliable-collision culling algorithms in Sections 5.3 and 5.4. We describe our overall
collision detection algorithms in Section 5.5. In Section 5.6, we present our implemen-
tations and highlight the performance of our algorithms on different environments. We

also analyze their accuracy and performance in Section 5.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.2 Collision Detection Using Visibility Queries

In this section, we give an overview of our collision detection algorithm CULLIDE.
We show how a PCS can be computed using image-space visibility queries, followed by
exact collision detection between the primitives.

Given an environment composed of n objects, Oy, Oa, ..., O,. We assume that cach
object is represented as a collection of triangles. Our goal is to check which objects over-
lap and also compute the overlapping triangles in each intersecting pair. In this section,
we restrict ourselves to inter-object collisions. Our algorithin makes no assumptions
about the motion of objects or any coherence between successive frames. In fact, the
number of objects as well as the number of triangles in each object can change between

successive frames.

5.2.1 Potentially Colliding Set (PCS)

We compute a PCS of objects that either are overlapping or are in close proximity.
If an object O; does not belong to the PCS, it is implied that O; does not collide with
any object in the PCS. Based on this property, we can prune the number of object pairs
that need to be checked for exact collision. This concept is similar to that of computing
the potentially visible set (PVS) of primitives from a viewpoint for visibility culling
(Cohen-Or et al., 2001b).

We perform visibility computations between the objects in image space to check
whether they are potentially colliding or not. Given a set .S of objects, we test the
relative visibility of an object O with respect to .S using an image-space visibility query.
The query checks whether any part of O is occluded by S. It rasterizes all the objects
or primitives belonging to S. O is considered fully visible if all the fragments generated
by the rasterization of O have depth values less than those of the corresponding pixels

in the frame buffer. We do not consider self-occlusion of an object (O) in checking its

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

View 1

View 2

Separating Surface

Figure 5.3: In this figure, the two objects are not colliding. Using View 1, we determine a
separating surface with unit depth complezity along the view and conclude from the existence
of such a surface that the objects are not colliding. This surface’s existence is a sufficient but
not a necessary condition. Observe that in View 2, there does not exist a separating surface
with unit depth complexity but the objects are not interfering.

visibility status. This visibility-based pruning formulation provides a sufficient condition
for the existence of a separating surface between O and S with unit depth complexity
along the view direction. A simple two-object illustration for explaining this concept is
shown in Fig. 5.3.

We use the following lemma to check whether O is overlapping with any object in .S.
Lemma 1: An object O does not collide with a set of objects S if O is fully visible with
respect to S.

Proof: The proof of this lemma is quite obvious. If O is overlapping with any object in
S, then some part of O is occluded by S. We also note that this property is independent
of the projection plane.

The accuracy of the algorithm is governed by the underlying precision of the visibility
query. Moreover, this lemma provides only a sufficient condition and not a necessary

condition for overlap between O and S.

5.2.2 Visibility-Based Pruning

We use Lemma 1 for PCS computation. Given n objects Oy, ..., Oy, we check whether

O, potentially intersects with at least one of Oy, .., 0;_1, 0,1, ..., Oy, 1 < i < n. Instead

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

of checking all possible pairs (which can be O(n?)). we use the following lemma for
designing a linear-time algorithm to compute a conservative set.

Lemma 2: Given n objects O, Oy, ...,Opn, an object O; does not belong to the PCS o+f
it does mot intersect with Oy, ..,0;_1,0;41,...,0n, 1 <4 < n. This test can be easily
decomposed as follows: an object O; does not belong to the PCS f it does not intersect
with O, .., 0;_1 and with O;y1,...,0,, 1 <1< n.

Proof: Follows trivially from the definition of the PCS.

We use Lemma 2 in order to determine whether an object belongs to the PCS. Our
algorithm uses a two-pass rendering approach for computing the PCS. In the first pass,
we check whether O; potentially intersects with at least one of the objects Oy, .., O;_1.
In the second pass, we check whether it potentially intersects with one of O, 11, ..., Oy.
If an object does not intersect in either of the two passes, then it does not belong to the
PCS.

Fach pass requires the object representation to be rendered twice as shown below:

1. To test whether an object representation is fully visible or not by using image-
space occlusion queries. We define these queries as visibility-based overlap (VO)

queries.

o

To render the object representation into the frame buffer.

We can render either all the triangles used for representing an object or a bounding
box of the object. Initially, the PCS consists of all the objects in the scene. We perform
these two passes in order' to prune objects from the PCS. [Furthermore, Wé repeat the
process by using cach coordinate axis as the axis of projection to prune the PCS further.
We use Lemma 1 to check whether an object potentially intersects with a set of objects.

It. should be noted that our GPU-based pruning algorithm is quite different from
algorithms that prune PCS using 2-D overlap tests. Our algorithm does not perform

frame-buffer readbacks and computes a PCS that is less conservative than a PCS com-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

111

lobject Levelg Sub-object Exact

Pruning *° Levgl pcs Collisipn

(GPU) T Rruning " Detection |
(GRPU). L (CPU)

Figure 5.4: System Architecture: The overall pipeline of the collision detection algorithm for

large environments

puted by an algorithm based on 2-D overlap tests.

5.2.3 Localizing the Overlapping Features

Many applications need to compute the exact overlapping features (e.g., triangles)
for collision response. We initially compute the PCS of objects based on the algorithm
highlighted above. Instead of testing each object pair in the PCS for exact overlap,
we again use the visibility formulation to identify the potentially intersecting regions
among the objects in the PCS. Specifically, we use a fast global pruning algorithm for
localizing these regions of interest.

We decompose each object into subobjects. A subobject can be a bounding box, a
group of k triangles (say a constant k), or a single triangle. We extend the approach
discussed in Section 5.2.1 to the subobject level and compute the potentially intersecting
regions based on the following lemma.

Lemma 3: Given n objects Oy, O,, ..., O,,, with each object O; composed of m; subobjects
TiTi, ..., TT",LZ_, a subobject T} of O; does not belong to the object’s potentially intersecting
region if it does mot intersect with the subobjects of Oy, ..,0;-1,Oit1,...,O0p, 1 <@ < n.
This test can be decomposed as follows: a subobject T} of O; does not belong to the
potentially intersecting region of the object if it does not intersect with the subobjects of
O, .,0;_ and Oy y,...,0,, 1 <i < n.

Proof: Follows trivially from Lemma 2.

In this case, we again use visibility queries for resolving the intersections among
subobjects of different objects. However, we do not check an object for self-intersections

or self-occlusion and therefore do not perform visibility queries among the subobjects of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

the same parent object.

5.2.4 Collision Detection

Our overall algorithin CULLIDE performs pruning at two stages, object level and

subobject level, and eventually checks the primitives for exact collision.

e Object Pruning: We perform object-level pruning by computing the PCS of the
objects. We first use the AABBs of the objects in order to prune this set. Next
we use the exact triangulated representation of the objects in order to prune the
PCS further. If the PCS is large, we use the sweep-and-prune algorithm (Cohen
et al., 1995) for computing potentially colliding pairs and decomposing the PCS

into smaller subsets.

e Subobject Pruning: We perform subobject pruning in order to identify potential

regions of each object in the PCS that may be involved in collision detection.

e Exact Collision Detection: We perform exact triangle-triangle intersection
tests between the triangles or primitives in the PCS on the CPU in order to

check whether objects collide or not.

The architecture of the overall system is shown in Fig. 5.4, where the first two stages
are performed using image-space visibility queries (on the GPU) and the last stage is

performed on the CPU.

5.3 Self-Collision Culling using GPUs

In this section, we present the details of our self-collision detection algorithm S-
CULLIDE that utilizes visibility queries on GPUs for culling primitives in an object
that do not self-intersect. Our algorithm extends CULLIDE for performing self-collisions

among general deformable models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

() {ii)

Figure 5.5: The left image shows an object composed of triangles with shared edges and vertices.
The right image shows the self-intersecting triangles in the object. Observe that these self-
intersecting triangles do not share an edge or a vertez.

Self-Collisions

Self-collision detection can be considered a special case of N-body collision detection in
which each primitive in the object is tested for collision with the remaining primitives
in the object. Although CULLIDE performs N-body collision detection, it cannot per-
form self-collision computations on general environments. In order for an algorithm to
perform self-collisions in a deforming object, it has to compute collisions among the sub-
objects of an object. In many simulations, objects are represented as connected meshes.
It is a trivial observation that a separating surface does not exist between a subobject
s; and a set of subobjects S if s; shares one or more edges with .S. The non-existence
of a separating surface is due to the formulation of interference computation in CUL-
LIDE. In CULLIDE, two objects are considered interfering if they are intersecting, and
this algorithm includes the special case when these objects touch each other. There-
fore two triangles sharing an edge and belonging to different subobjects are considered
intersecting in CULLIDE, and so CULLIDE results in an overly conscrvative PCS of
subobjects.

In order to overcome this problem in CULLIDE, we need to decompose objects

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

into subobjects that do not share edges. For general deformable objects. computing
such a decomposition at run-time efficiently is difficult. We overconie the problem by
modifying the collision-pruning algorithm in CULLIDE based on penetration distance
between subobjects. For subobjects!, we define the penetration distance between them

as follows:

Definition 1: Given two subobjects, we define their penetration distance as the mini-
mum translational distance for separating one subobject from the other if the subobjects
are intersecting. If the subobjects are touching or not intersecting, we define their pen-
etration distance as zero.

Computing penetration distance even for closed objects is considered difficult and
expensive (Kim et al., 2002a) as the worst-case computational complexity in a scene
with n polygons is O(n8). However, our self-collision pruning algorithm does not require
the computation of exact penetration distance and only tests whether the penetration
distance between the subobjects is zero. We define two objects as interfering in the

following manner:

Definition 2: Two subobjects are considered interfering if the penetration distance
computed between the subobjects is nonzero.

In the above definition, two triangles are considered interfering if they are penetrating
(ignoring contacts). Using visibility computations, we can efficiently test whether the
penetration distance between two subobjects is zero. A subobject s; is penetrating
another subobj.ect sy if some portion of s1 is occluded by s;. We élightly' modify the
definition of “fully visible” status of a primitive in CULLIDE for testing whether the

penetration distance of a subobject is zero.

Definition 3: Given a subobject P and a set of subobjects S, a point p; in S occludes

tPenetration distance is well defined for closed objects. As subobjects are typically polygon soups
that are not closed, we define penetration distance as in Def. 1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L5

a point py in P if the distance from the viewer to py is strictly less than the distance

from the viewer to po.

Definition 4: A subobject P is considered fully visible with respect to a set of subob-

jects S, if no point in .S occludes a point in P.

Lemma 4: Given a subobject P and a set of subobjects .S, if P is fully visible with
respect to S along a view direction, then the penetration distance computed between P
and S is zero.

Proof: Trivial.

Using Lemma 4, we design a self-collision pruning algorithm similar to the two-pass
rendering approach in CULLIDE for computing self-collisions in an object. The self-
collision pruning algorithm computes a compact potentially self-colliding set (PSCS)
of subobjects. This set consists of the subobjects that are partially visible along the
view direction. Our algorithm begins with a PSCS composed of all the subobjects in
the object. We then use the object-pruning algorithm in CULLIDE with the visibility

formulation in Def. 3.

5.4 Reliable Culling Using GPUs

Our algorithm CULLIDE described in Section 5.2 may miss interferences between
triangles due to image-sampling and frame-buffer precision errors. In this section, we
present our culling algorithm FAR which extends CULLIDE for performing reliable
collision detection using graphics hardware. Our algorithm FAR aims at pruning objects
in the PCS that are not far apart. We analyze the sampling problems causcd by limited
viewport resolution and present a sufficient condition for performing conservative and

reliable culling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

5.4.1 Sampling Errors

We define the notation used in the rest of the section as well as the issues involved

in performing interference detection on GPUs.

Orthographic projection: Let A be an axis, where A € {X,Y, Z} and, Ap,;, and
Amax define the lower and upper bounds on I, and P, along A’s direction in 3-D.
Let RES(A) define the resolution along an axis. The viewport resolution of a GPU is
RES(X) x RES(Y) (e.g., 21! x 2!1) and the depth buffer precision is RES(Z) (e.g., 224).

Let O be an orthographic projection with bounds (Xmin, Xmaz, Ymins Ymazs Zmin, Zmanx)

on the 3-D primitives. The dimension of the grid along an axis in 3-D is given by dga

Amaz — Amin

ms(a Rasterization of a primitive under orthographic projection per-

where d4 =
forms linear interpolation of the vertex coordinates of each primitive and maps each
point on a primitive to the 3-D grid. This mapping is based on sampling of a primitive
at fixed locations in the grid. When we rasterize the primitives in order to perform VO
queries, many errors arise due to sampling. There are three types of errors:

1. Projective and perspective aliasing errors: These errors can result in some of
the primitives not getting rasterized. This error may result in an incorrect answer to
the VO query.

2. Image-sampling errors: We can miss interferences between triangles due to sam-
pling at the fixed locations. In this case, each triangle is sampled, but the intersection
set of the triangles is not sampled (see Fig. 5.6).

3. Depth buffer precision errors: If the distance between two primitives is less than

RES(Z), the VO query may not be able to compute accurately whether one is fully

visible with respect to the other.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117
5.4.2 Reliable VO Queries

We can overcome the errors described in Section 5.4.1 by generating a “fattened”
representation T'7 for each triangle T'. If a triangle T interferes with a set of primitives
S within a pixel, we may miss interferences because the triangle is inaccurately classified

as fully visible due to the following possibilities:
e Error 1: a fragment is not generated during the rasterization of 7" or S.

e Error 2: a fragment is generated but does not sample the interfering points within

the pixel.

e Error 3: a fragment is generated and samples the interfering points within a

pixel, but the precision of the frame or depth buffer is not sufficient.

These errors correspond to the three types of errors discussed in Section 5.4.1. Our
approach solves these problems by using “fattened” representations of triangles that

serve two important functions.
e They generate at least two fragments for each pixel touched? by a triangle.

e For each pixel touched by a triangle, the depth of the corresponding two fragments

bound the depth of all points of the triangle that project inside the pixel.

We use a closed, fattened representation T2 for each triangle T in CULLIDE. Do-
ing so provides a sufficient condition for eliminating the sampling and precision errors.
Suppose tWo primitives T} and T3 intersect at some point Withiﬁ a pixel X that may or
may not be sampled. Then 77 is not fully visible with respect to 727, as rasterization of
T'B generates two fragments corresponding to X and at least one of the two fragments
fails the depth test. Similarly, T:F is not fully visible with respect to T°. Therefore

neither T nor 75 is pruned from the PCS. In the rest of the section, we formally prove

2A pixel is touched by a triangle if some point of the triangle projects inside the pixel.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Proj(QB)

C = pixel center |,

—y

p = pixel length
Viewport in world space

Figure 5.6: Sampling Errors: @Q is a point on the line of intersection between two triangles
in 3-D. The left figure highlights the orthographic projection of () in the screen space. The
intersection of the two triangles does not contain the center of the pizel (C), and therefore, we
can miss a collision between the triangles. QP is the Minkowski sum of Q and an azis-aligned
bounding box (B) centered at the origin with dimension p. QF translates B to the point Q.
During rasterization, the projection of QF samples the center of the pizel and generates at
least two fragments that bound the depth of Q.

that, for a given orthographic view, the Minkowski sum of a bounding cube B centered
at the origin with T provides a conservative fattened representation T2 and eliminates
sampling or precision errors irrespective of the sampling strategy used by the underlying
graphics hardware. The size of the bounding cube B is a function of the world-space
pixel dimensions and in practice, is very small. Therefore, P? is a very tight fit to the
original geometric primitive P.

Our algorithm does not make any assumptions about sampling the primitives within
a pixel. We compute an axis-aligned bounding box B centered at the origin with dimen-
sion p where p = maz(2+dx, 2+dy,2+dz). In practice, this bound may be conservative.
If a GPU uses some uniform supersampling algorithm during rasterization, p can be fur-
ther reduced. For example, if the GPU samples each pixel in the center, then p can be
reduced by half.

Let B be an axis-aligned cube centered at the origin with dimension p. Given two
primitives, P, and Py, let () be a point on their line of intersection. We use the concept
of the Minkowski sum of a primitive P with B, (P? = P @& D), which can be defined as
{p+b|pe P be B} Next weshow that P ® B can be used to perform reliable VO

queries. We first state two lemmas and use them to derive the main result as a theorem.

Lemma 5: Under orthographic transformation O, the rasterization of the Minkowski

sum QF = (Q @ B), where Q is a point in 3D space that projects inside a pixel X,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

samples X with at least two fragments hounding the depth value of ().

Proof: QF is a box centered at (), and its projection covers the center of X, as shown in
Figure 5.6. As a result, @) is sampled by the rasterization hardware, and two fragments
that bound the depth of) are generated. [

Lemma 6: Given a primitive P, and its Minkowski sum PZ = P, @ B. Let X be a
pixel partly or fully covered by the orthographic projection of P;. Let us define MIN-
DEPTH(F;,X) and MAX-DEPTH(P;,X) as the minimum and maximum depth values,
respectively, of the points of P, that project inside X, respectively. The rasterization of
PP generates at least two fragments whose depth values bound both MIN-DEPTH (P, X)
and MAX-DEPTH(P;,X) for each pixel X.

Proof: The proof follows from Lemma 5. This lemma indicates that at least two
fragments are generated after rasterizing PP such that their depth values provide lower
and upper bounds to the depth of all points of P; that project inside X. This result

holds irrespective of projective or perspective errors. [

Theorem 1: Given the Minkowski sum of two primitives with B, PP and PP. If P, and
P, intersect, then a rasterization of their Minkowski sums under orthographic projection
overlaps in the viewport.

Proof: Let P, and P, intersect at a point @ inside a pixel X. Based on Lemma 2, we can
generate at least two fragments rasterizing PP and PP. These fragments bound all the
3-D points of Py and P, that project inside X. Showing that the pairs (MIN-DEPTH (P,
X), MAX-DEPTH(P;,X)) and (MIN-DEPTH (P2, X), MAX-DEPTH(P,,X)) overlap is suf-
ficient. This observation‘ follows trivially as MIN-DEPTH(P;, X) < Depth(Q), MIN-

DEPTH(P, X) < Depth(Q) and MAX (P, X) > Depth(Q), MAX{(P,, X) > Depth(Q). I

5.4.3 Collision culling

A corollary of Theorem 1 is that if PP and P£ do not overlap, then P, and P do

not overlap. In practice, this test can be conservative, but it will not, miss any collisions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

hecause of the viewport or depth resolution. However, the Minkowski sums, P and PP,
are only useful when the primitives are projected along the Z-axis. In order to generate
a view-independent bound, we compute the Minkowski sumn of a primitive P with a
sphere S of radius v/3p/2 centered at the origin. The Minkowski sum of a primitive

with a sphere is the same as the offset of that primitive.

5.5 Interactive Collision Detection

In this section, we present our overall collision detection algorithms — CULLIDE,
S-CULLIDE, and FAR - for computing all the contacts among multiple moving objects
in a large environment. These algorithms use the visibility pruning algorithm described
in Section 5.2.2. The algorithms are general and applicable to all environments. We
also highlight many optimizations and the visibility queries used for accelerating the

performance of our algorithms.

5.5.1 Pruning Algorithm

For performing linear-time PCS pruning, we use a two-pass rendering algorithm
based on the visibility formulation defined in Section 5.2.2. In particular, we use Lemma
2 for computing the PCS. In the first pass, we clear the depth buffer and render the
objects in the order Oy, .., O, along with image-space occlusion queries. In other words,
for each object in Oy, .., O,,, we render the object and test if it is fully visible with respect
to the objects rendered prior to it. In the second pass, we clear the depth buffer and
render the objects in the reverse order O, O, _1,...0q along with image-space occlusion
queries. We perform the same operations as in the first pass while rendering each object.
At the end of each pass, we test whether an object is fully visible. An object classified

as fully visible in both the passes does not belong to the PCS.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

5.5.2 Visibility Queries

Our visibility-based PCS-computation algorithm is based on hardware visibility
query which determines if a primitive is fully visible or not. Current commodity graph-
ics hardware supports an image-space occlusion query that checks whether a primitive
is visible. These queries scan-convert the specified primitives and determine whether
the depth of any pixel changes. Various implementations are provided by different
hardware vendors, and each implementation varies in its performance as well as func-
tionality. Some of the well-known occlusion queries based on the OpenGL exten-
sions include the GL_HP _occlusion_test (http://oss.sgi.com/projects/ogl-sample/
registry/HP/occlusion_test.txt) and the NVIDIA OpenGL extension
GL_NV _occlusion_query (http://oss.sgi.com/projects/ogl-sample/registry/NV/
occlusion_query.txt). The GL_HP_occlusion test returns a boolean answer after
checking whether any incoming fragment passed the depth test, whereas the
GL_NV _occlusion_query returns the number of incoming fragments that passed the depth
test.

We need a query that tests whether all the incoming fragments of a primitive have
depth values less than the depth values of the corresponding fragments in the frame
buffer. In order to support such a query, we change the depth test to pass only if the
depth of the incoming fragment is greater than or equal to the depth of the corresponding
fragment in the frame buffer. With this depth-comparison function, we use an image-
space occlusion query for testing whether a primitive is not visible when rendered against
the depth buffer. If the primitive is classified as not visible, then each incoming fragment
has a depth value less than the corresponding depth value in the frame buffer, thus
providing a visibility query for testing whether a primitive is fully visible. Note that
we need to disable the depth writes so that the change in the depth function does not
affect the depth buffer. We refer to these queries as full-visibility queries in the rest of

the chapter. These queries can sometimes stall the graphics pipeline while waiting for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

results. In Section 5.5.7, we describe techniques to avoid these stalls.

Bandwidth Requirements: Occlusion queries can be performed at the rate of the
rasterization hardware and involve very low bandwidth requirements in comparison to
frame-buffer readbacks. If we perform n occlusion queries, we readback n integers for
a total of 4n bytes sent to the host CPU from the GPU. Moreover, the bandwidth

requirement for n occlusion queries is independent of the resolution of the frame buffer.

5.5.3 Multiple-Level Pruning

We extend the visibility pruning algorithm to subobjects in order to identify the
potentially intersecting regions among the objects in the PCS. We use Lemma 3 for
performing subobject level pruning. We render each subobject for every object in the
PCS with a full-visibility query. The subobject could be a bounding box, a group of
triangles, or even a single triangle.

The following is the pseudocode of the algorithm.

e First pass:

1. Clear the depth buffer (use orthographic projection).
2. For each object O;,1=1,..,n
— Disable the depth mask, and set the depth function to GL_.GEQUAL.
— For each subobject T}, in O;
Render T} using an occlusion query.
— Enable the depth mask, and set the depth function to GL_LEQUAL.

— For each subobject T} in O;

Render Tj}.
3. For each object O;,i=1,..,n

— For each subobject le in O

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Test whether TZ is not visible with respect to the depth bufier. If it

is not visible, set a tag in order to note it as fully visible.
e Second pass:

Same as first pass, except that the two “For each object” loops are run with
t = n,.,1 and we perform occlusion queries only if the primitive is fully

visible in the first pass.

5.5.4 CULLIDE

CULLIDE performs object-level pruning, subobject-level pruning, and triangle in-

tersection tests among the objects in PCS.

Object-Level Pruning

We perform object-level pruning in order to compute the PCS of objects. Initially,
all the objects belong to the PCS. We first perform pruning along each coordinate
axis, using the axis-aligned bounding boxes as the object’s representation for collision
detection. The pruning is performed until the PCS does not change between successive
iterations. We also use the object’s triangulated representation for further pruning the
PCS. The size of the resulting set is expected to be small, and we use all-pair bounding-
box overlap tests for computing the potentially intersecting pairs. If the size of this set
is large, then we use the sweep-and-prune technique (Cohen et al., 1995) to prune this

set instead of performing all-pair tests.

Subobject-Level pruning

We perform multiple-level pruning in order to identify the potentially intersecting
triangles among the objects in the PCS. We group adjacent local triangles (say k tri-

angles) to form a subobject used in multilevel pruning and prune the potential regions

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

considerably. This technique improves the performance of the overall algorithm because
performing a fully visible query for each single triangle in the PCS of objects can be
expensive. At the next level, we consider the PCS of subobjects and perform pruning
using each triangle as a subobject. The multiple-level subobject pruning is performed

across each axis.

Intersection Tests

We perform exact collision detection between the objects involved in the potentially

colliding pairs by testing their potentially intersecting triangles.

5.5.5 S-CULLIDE

Our self-collision-detection algorithm is very similar to our pruning algorithm de-
scribed in Section 5.5.3. We use the two-pass pruning algorithm on the primitives in
the PSCS and determine a smaller PSCS. We then perform triangle intersection tests
on the CPU in order to determine the pairs of overlapping triangles in the PSCS.

Although the pruning algorithm in S-CULLIDE is similar to that in CULLIDE, there

are two key differences between them:

e Image-space queries: CULLIDE describes an implementation where the visi-
bility query determines whether all the incoming fragments have depth values less
than the depth values of corresponding fragments in the frame buffer. Our im-
plementation requires a visibility query that determines whether the depth values
of all the incoming fragments is less than or equal to the depth values of corre-
sponding fragments in depth butfer. However, current graphics hardware does not
support such queries. In order to support such a query, we change the depth test
to pass an incoming fragment if its depth is greater than the depth of the corre-
sponding fragment in the depth buffer. As mentioned in Section 5.5.2, we disable

depth writes while performing these queries.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

e Object representations: The object representations used in CULLIDE can be
a group of triangles or any bounding-volume representation of the object. How-
ever, our pruning algorithm would be too conservative if we used bounding-volume
representations. In fact, our algorithm requires the use of original geometric prim-

itives for defining subobjects.

5.5.6 FAR

In this section, we present our reliable collision culling algorithm. We first describe
the computation of a bounding-offset representation for each primitive and integrate it

with CULLIDE for interactive collision detection.

Bounding-Offset Representations

In order to overcome sampling errors, we use a bounding offset for each primitive
as implied by Theorem I. Our collision culling algorithm renders bounding-offset repre-
sentations to cull away primitives that are not in close proximity. Several choices are
possible for computing bounding offsets, and they either trade off tightness of fit for a

lower rendering cost.

e Exact Offsets: The boundary of an exact offset of a triangle consists of piece-
wise linear and spherical surfaces. In particular, the Minkowski sum of a triangle
T and a sphere S centered at the origin is the union of three edge-aligned cylin-
ders of thickness Radius(S), three spheres S centered at the vertices, and two
triangles. The two triangles are shifted along the normal of the original triangle
by the Radius(S). The exact offset is the tightest fitting volume that can be ren-
dered using graphics processors ensuring reliable interference computation. Using
fragment programs, it is possible to render the exact-offset representation for each

triangle but can be relatively expensive.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

e Bounded Exact Offsets: Another possibility is to bound the exact offset of
triangles tightly using three edge-axis-aligned bounding boxes, each bounding a
cylinder and a sphere. This representation is a tighter fit and replaces each triangle
with three bounding boxes and two triangles, thus generating 30 vertices. In our
implementation, we observed that the tight fit provides better culling but is vertex-

transform limited.

e Union of Object-Oriented Bounding Boxes (UOBBs): A tight-fitting con-
servative bounding representation for a primitive is a union of the object-oriented
bounding boxes (OBBs) where each OBB encloses a single triangle of the primi-
tive. Given a triangle T', we compute the tightest fitting rectangle R that encloses
T'; one of its axes is aligned with the longest edge of the triangle. We compute
the OBB for a triangle as the Minkowski sum of B and R, where B is a locally
axis-aligned bounding cube of width Diameter(S). The width of the OBB, along a
dimension orthogonal to the plane containing R, is set equal to v/3p. The bounding
offset of a triangulated object is the union of OBBs of each triangle (see Fig. 5.7).
We render this bounding offset by rendering each OBB separately and performing
VO queries. In practice, this is a very tight bounding volume for an object, as
compared to using a single sphere, an AABB (axis-aligned bounding box) or an

OBB that encloses the entire object.

Our algorithm uses UOBBs as bounding-offset representations as shown in Fig. 5.7
for reliable collision culling. The computation of an OBB for a triangle requires 24 multi-
plications, 41 additions, 6 divisions, and 2 comparison operations. Further optimizations
such as shared edges between adjacent triangles can be used to reduce the number of
operations. Alternatively, other tight representations such as triangular prisms could be
used, but these can be expensive to compute and are more conservative for long, skinny

triangles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.7: This image shows an object with three triangles and its bounding-offset represen-
tation (UOBB) in wireframe. The UOBB is represented as the union of the OBBs of each
triangle. In practice, this bounding offset is o tight-fitting bounding volume and is used for
culling.

Algorithm

We have integrated our reliable culling algorithm with CULLIDE in order to perform
reliable collision detection between objects in a complex environment. As described in
Section 5.2, CULLIDE uses VO queries to perform collision culling on GPUs. We extend
CULLIDE to perform reliable collision culling on GPUs by using the reliable VO queries
described in Section 5.4.2. For each primitive in the PCS, we compute its bounding-offset
(i.e., union-of-the-OBBs) representation and use the bounding-offset representations in
CULLIDE for testing whether the primitives belong to the PCS.

Our collision detection algorithm, FAR, proceeds in three steps:

1. Compute the PCS at the object level. We use sweep-and-prune (Cohen et al.,

1995) on the PCS for computing the overlapping pairs at the object level.
2. Compute the PCS at the subobject level as well as the overlapping pairs.

3. Perform exact interference tests between the triangles on the CPU (Moller, 1997).

Fill Reduction: Bounding-offset representations generate nearly twice the amount

of fill in comparison to the original geometric primitives. As the offset representation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

for each triangle is closed, we can reduce the fill requirements for our algorithm by
a factor of two by using face culling. In our optimized algorithm, we cull front faces
while rendering the offset representations with occlusion queries, and we cull back faces
while rendering the offset representations to the frame-buffer. These operations can be

performed efficiently using back-face culling on graphics hardware.

Localized Distance Culling

Many algorithms aim to compute all pairs of objects whose separation distance is
less than a constant distance D. In this case, we modify FAR so that it culls away
primitives whose separation distance is more than D. Given a distance D, our goal is to
prune triangles further away than D. We can easily modify the reliable culling algorithm

presented above to perform this query. We compute the offset of each primitive by using

V3p

a sphere of radius % + 5%, rasterize these offsets, and prune away a subset of primitives

whose separation distance is more than D.

Accuracy

We perform reliable VO queries by rendering the bounding offsets of primitives.
Theorem I guarantees that we will not miss any collisions due to the viewport resolution
or sampling errors. We perform orthographic projections as opposed to perspective
projections. Further, the rasterization of a primitive involves linear interpolation along
all the dimensions. As a result, the rasterization of the bounding offsets guarantees that
we will not miss any collision due to depth-buffer precision. If the distance between two

primitives is less than the depth buffer precision then the VO query on their

1
* RES(z)’
offsets will always return them as overlapping. Consequently, the accuracy of the reliable
culling algorithm is governed by the accuracy of the hardware used for performing vertex

transformations and mapping to the 3-D grid. For example, many of the current GPUs

use IEEE 32-bit floating-point hardware for performing these computations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

5.5.7 Optimizations

In this section, we highlight a number of optimizations used for improving the per-

formance of our algorithms.

e AABBs and Orthographic Projections: We use orthographic projection of
axig-aligned bounding boxes. These could potentially provide an improvement
factor of six in the rendering performance. Orthographic projection is used because
of its speed and simplicity. In addition, we use axis-aligned bounding boxes for

pruning the objects for intersection tests.

e Visibility Query Returning Z-fail: A hardware visibility query providing z-fail
(in particular, a query for testing whether z-fail is non-zero) reduces the amount
of rendering by a factor of two for AABBs under orthographic projections. This
query allows us to update the depth buffer along with the occlusion query, thus
improving performance by a factor of two. We take additional care in terms of
ordering the view-axis-perpendicular faces of the bounding boxes and ensure that
the results are not affected by possible self-occlusion, thus not affecting the query

result by self-occlusion.

e Avoiding Stalls: We utilize GL_NV _occlusion_query in order to avoid stalls in
the graphics pipeline. We query the results of the occlusion tests at the end of
each pass, improving the performance of our algorithm by a factor of four when

compared to the performance of a system using GL_HP _occlusion_test.

e Rendering Acceleration: We use vertex arrays in video memory in order to im-
prove the rendering performance by copying the object representation to the video
memory. The rendering performance can be further improved by representing the

objects in terms of triangle strips and using them along with vertex arrays.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

5.6 Implementation

In this section, we present the implementation details of our algorithms and describe

the benchmarks used for measuring their performance.

5.6.1 CULLIDE

We have implemented CULLIDE on a Dell Precision Workstation consisting of a 2.4
GHz Pentium IV CPU and a GeForce FX Ultra 5800 GPU. We are able to perform
around 400K image-space occlusion queries per second on this card. We have tested

our system on four complex simulated environments.

e Environment 1: It consists of 100 deformable, open-ended cylinders moving
in a unit cube with a density of 5 - 6%. Each object consists of 200 triangles.
The average collision-pruning time is around 4 ms at an image-space resolution of

800 x 800. A snapshot from this environment is shown in Fig. 5.15(a).

e Environment 2: [t consists of six deformable tori, each composed of 20,000
triangles. The scene has an estimated density of 6 - 8%. The average collision-

pruning query time is around 8 ms. A snapshot from this environment is shown

in Fig. 5.15(b).

e Environment 3: It consists of two highly tessellated models: a bunny (35K
triangles) and a dragon (250K triangles). In Fig. 5.15(c), we show a relative
~configuration of the two models, with different colors used for highlighting the
triangles that belong to the PCS. A zoomed-in view of the intersection region is

shown in Fig. 5.15(d). Performing each collision query takes about 40 ms.

e Breaking Objects: We used our collision detection algorithm to generate a real-
time simulation of breaking objects. Fig. 5.16 highlights a sequence from our

dynamic simulation in which the bunny and the dragon collide and the dragon

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

breaks into multiple pieces due to the impact. The total number of objects and
the number of triangles in each piece are changing over the course of the simulation.
Earlier collision detection algorithing are unable to handle such scenarios in real-
time. CULLIDE takes about 35 ms (on average) to compute all the overlapping

triangles during each frame.

5.6.2 S-CULLIDE

We have implemented S-CULLIDE on a Dell Precision workstation with a 2.8 GHz
Xeon processor, 1 GB of main memory, and an NVIDIA GeForce FX 5950 Ultra graphics

card. We used GL_NV _occlusion_query for performing the visibility queries at a viewport

resolution of 1400 x 1400.

Figure 5.8: Results of our self-collision algorithm on a cloth simulation where a cloth consisting
of 20K triangles drapes around a sphere. Figure (a) shows a snapshot of the simulation. Figure
(b) shows the triangles in PSCS.

We have tested our system for computing self-collisions in a cloth simulator. The
cloth is represented as a rectangular grid with nearly 20K triangles. The simulation is
performed on the CPU and could be easily implemented on the GPU using pixel shaders.

Our pruning algorithm is able to compute self-collisions within 20 - 30 ms, on average.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.3 FAR

We have implemented FAR on a Dell Precision workstation with a 2.8 GHz Xeon
processor, 1 GB of main memory, and an NVIDIA GeForce FX 5950 Ultra graphics card.
We use a viewport resolution of 1400 x 1400 for performing all the computations. We im-
prove the rendering throughput by using vertex arrays and use GL_NV _occlusion_query
for performing the visibility queries.

We have tested our algorithm on three complex scenes and have compared its culling
performance and accuracy with some prior approaches.

Dynamically generated breaking objects: The scene consists of a dragon model,
initially with 112K polygons, and a bunny model, initially with 35K polygons, as shown
in Fig. 5.9. In this simulation, the bunny falls on the dragon, causing the dragon to break
into many pieces over the course of the simulation. Each piece is treated as a separate
object for collision detection. Eventually hundreds of new objects are introduced into
the environment. We perform collision culling to compute which object pairs are in close
proximity. It takes about 35 ms towards the beginning of the simulation, and about 50
ms at the end, when the number of objects in the scene is much higher.

Interference computation between complex models: In this scene, we compute
all the overlapping-triangle pairs between a 68K-triangle bunny that is moving with
respect to another bunny, also with 68K triangles. The bunnies are deeply penetrating,
and the intersection boundary consists of 2,000 - 4, 000 triangle pairs. In this case, the
accuracy of FAR equals that of a CPU-based algorithm using 32-bit IEEE floating-point
arithmetic. |

Multiple objects with nonrigid motion: This scene consists of a nonrigid simulation
in which leaves fall from a tree, as shown in Fig. 5.1. We compute collisions among the
leaves of the tree as well as between the leaves and branches of the tree. Each leaf is
represented using 156 triangles and the complete environment consists of 40K triangles.

The average collision detection time is 35 ms per time step.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

A

Figure 5.9: Breaking-Object Scene: In this simulation, the bunny model falls on the dragon
which eventually breaks into hundreds of pieces. FAR computes collisions among the new picces
of small objects introduced into the environment and takes 30 to 60 msec per frame.

5.7 Analysis and Limitations

In this section, we analyze the various factors that affect the accuracy and perfor-

mance of our algorithms. We also discuss the limitations of our algorithms.

5.7.1 Performance Analysis

The performance of our algorithms is based mainly on the underlying pruning algo-
rithm in CULLIDE. Therefore we have tested the performance of our pruning algorithm
in CULLIDE on different benchmarks. Its overall performance is governed by some key

parameters. These include the following benchmarks:

e Number of Objects: Our object-level pruning algorithm exhibits linear-time
performance in our benchmarks. We have performed a timing analysis by varying
the number of deformable objects, and Fig. 5.10 summarizes the results. In our
simulations, we have observed that the pruning algorithm requires only a few
iterations in order to converge (typically, it is two). Also, each iteration reduces
the size of the PCS. Therefore the visibility-based pruning algorithm traverses a

smaller list of objects during subsequent iterations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.5

N

Collision Time
—
o

1 L

L t t |
20 30 40 50 60 70 80 90 100
Number of Objects

Figure 5.10: Number of Objects vs. Average Collision-Pruning Time using CULLIDE: This
graph highlights the relationship between the number of objects in the scene and the average
collision-pruning time (object pruning and subobject/triangle pruning). Fach object is com-
posed of 200 triangles. The graph indicates that the collision-pruning time is linear to the
number of objects.

e Triangle Count per Object: The performance of our pruning algorithm de-
pends upon the triangle count of the potentially intersecting objects. We have
tested our system with simulations consisting of 100 deformable objects and vary-
ing the triangle count of the objects. Fig. 5.11 summarizes the results. The
graph indicates a linear relationship between the polygon count and the average
collision-query time. Moreover, the number of polygons per object is much higher

than the number of objects in the scene.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.5

Collision Time
o
[¢)] [4,}

o
(2]

4 1 | L | { i
200 300 400 500 600 700 800
Number of Polygons per Object

Figure 5.11: Polygons per Object vs. Average Collision-Query Time using CULLIDE: This
graph shows the linear relationship between the number of polygons per object and the average
collision-pruning time. This scene is composed of 100 deforming cylinders and has a density
of 1 - 2%. The collision-pruning time is averaged over 500 frames and at an image-space
resolution of 800 x 800.

e Accuracy and Image-Space Resolution : The accuracy of the overall algo-
rithm is governed by the image-space resolution. Typically a higher resolution
leads to higher fill-rate requirements in terms of rendering the primitives and
bounding boxes and performing occlusion queries. A lower image-space resolution
can improve the query time but can miss intersections between two objects, whose
boundaries are touching tangentially or have a very small penetration. Figure 5.12
highlights the relationship between the collision-pruning time and the image-space

resolution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

6.5

Collision Time
n
(6, [4,]

-
”n

3 1 1 | [1 1 |
500 600 700 800 900 1000 1100 1200
Screen Resolution (Res x Res)

Figure 5.12: Image-Space Resolution vs. Average Collision-Query Time using CULLIDE:
This graph indicates the linear relationship between the screen resolution and the average
collision-query time. The scene consists of 100 deformable cylinders and each object is com-
posed of 200 triangles.

e Output Size: The performance of any collision detection algorithm varies as a
function of the output size (i.e., the number of overlapping triangle pairs). In our
case, the performance varies as a linear function of the size of the PCS after object-
level pruning and subobject-level pruning as well as of the number of triangle
pairs that need to be tested for exact contact. In case two objects have a deep
intersection or penetration, the output size can be large and therefore the size of

each PCS can be large as well.

e Rasterization Optimizations: The performance of our algorithms is accel-

erated using the rasterization optimizations discussed in Section 5.5.7. We have

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

used AABBs with orthographic projections for our pruning algorithms. We have
used immediate mode for rendering the models and breakable objects, and used

GL_NV _occlusion_query to maximize the performance.

5.7.2 Pruning Efficiency

Our approach for collision detection is based on pruning techniques. Its overall
performance depends on the input complexity, the relative configuration of different
objects in the scene as well as pruning efficiency of the object-level and subobject level
algorithms. Most pruning algorithms based on bounding-volume hierarchies can take
a long time for parallel close-proximity scenarios (Gottschalk et al., 1996a) (e.g., two
concentric spheres with nearly the same radius). Our algorithm performs pruning at
the triangle level and works well in these configurations. It should be noted that the
pruning efficiency depends largely upon the choice of view direction for orthographic
projection. Certain view directions may not provide sufficient pruning, as a larger
number of objects may be partially visible from these views. One possible solution
for avoiding such configurations is to select the directions for orthographic projection

randomly.

2500

' Culling Performance Comparison

2000 !

TR

4
g
§ 1500 h
ey !
o !
o
= |
a 1000 1 -
] i
L 1]
VLR N
2 1 I CPU Culling Algorithm ™’
© 4 1 [RIS i
R RN o i |
t d .
e SO SR] 1
L P : }’J\"‘w, ,v._._i‘-Mn—.FAR e mnren] "#W

i, LSl
0 100 200 300 400 500 600 700 800 900 1000 1100 1200
Frame Number

4

Figure 5.13: Relative Culling Performance on Breaking-Objects Scene: This graph high-
lights the improved culling performance of our algorithm as compared to a CPU-based culling

algorithm (I-COLLIDE) that uses AABBs (axis-aligned bounding bozes) to cull away non-
overlapping pairs. FAR reports 6.9 times fewer pairs over the entire simulation.

We compared the pruning efficiency of our GPU-based reliable culling algorithm with

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

an implementation of the sweep-and-prune algorithm available in .COLLIDE (Cohen
et al,, 1995). The comparison was performed on the environment with dynamically
generated breaking objects. The sweep-and-prune algorithm computes an axis-aligned
bounding box (AABB) for each object in the scene and checks all the AABBs for pairwise
overlaps. Fig. 5.13 shows the comparison between the culling efficiency of AABB-based
algorithm and that of FAR. Overall, FAR returns 6.9 times fewer overlapping pairs.
This reduction occurs mainly because FAR uses much tighter bounding volumes (i.e.,
the union of OBBs) for an object as compared to an AABB and is able to cull away
more primitive pairs.

As CULLIDE and S-CULLIDE miss collisions, and the amount of inaccuracy in their
computations is not bounded, it is not possible to compare their pruning efficiencies with

those of other algorithms.

5.7.3 Precision

The precision of CULLIDE and S-CULLIDE is governed mainly by the image resolu-
tion and frame-buffer precision. However, our reliable culling algorithm FAR is conser-
vative and its precision is governed by that of the reliable VO queries. The accuracy of
the reliable culling algorithm is equivalent to that of the floating-point hardware (e.g.,
32-bit IEEE floating-point) inside the GPUs used for performing transformations and
rasterization. The precision of FAR is not governed by viewport resolution or frame-
buffer precision.

We have compared our algorithm With‘ an optimized GPU implementation of CUL-
LIDE on the environment illustrating interference computation between complex mod-
els. Our implementation runs nearly 3 times slower due to the overhead of rasterizing
bounding boxes instead of triangles. However, as shown in Fig. 5.14, CULLIDE (like
other GPU-based collision detection algorithms) misses several interferences and may

lead to inaccurate simulations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

Figure 5.14: Reliable interference computation: This image highlights the intersection set
between two bunnies, each with 68K triangles. The top right image (b) shows the output of
FAR and the top left image (a) highlights the output of CULLIDE running at a resolution of
1400 x 1400. CULLIDE misses many collisions due to the viewport resolution and sampling

errors.

5.7.4 Comparison with Other Approaches

Collision detection is well studied in the literature, and a number of algorithms and
public-domain systems are available. However, none of the earlier algorithms provide the
same capabilities or features as our algorithm based on PCS computation. As a result,
we have not performed extensive timing comparisons with the earlier systems. We just
compare some of the features of our approach with those of the earlier algorithms.
Object-Space Algorithms: Algorithms based on sweep-and-prune are known for N-
body collision detection (Cohen et al., 1995). They have been used in I-COLLIDE,
V-COLLIDE, SWIFT, SOLID, and other systems. However, these algorithms were
designed for rigid bodies and compute a tight-fitting AABB for each object using incre-
mental methods, followed by sorting their projections of AABBs along each axis. It is
not clear whether they can perform real-time collision detection on large environments

composed of deformable models. On the other hand, our algorithm performs two passes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

on the object list to compute the PCS. We expect that our PCS-based algorithm to be
more conservative as compared to sweep-and-prune. Furthermore, the accuracy of our
approach is goveriied by the image-space resolution.

A number of hierarchical algorithms have been proposed to check two highly tes-
sellated models for overlap, and some optimized systems {(e.g., RAPID, SOLID, and
QuickCD) are also available. They involve considerable preprocessing and memory
overhead in generating the hierarchy and will not work well on deformable models or
objects with changing topologies. We have compared FAR with a CPU-based implemen-
tation SOLID (SOLID, 2002) on the environment with dynamically generated breaking
objects.® SOLID is a publicly available library that uses pre-computed AABB trees
for collision culling. As the objects in our scene are dynamically generated and the
topologies of existing objects (e.g., dragon) change, we need to compute the hierarchies
dynamically. Moreover, as the hierarchies are recomputed, there is an additional over-
head of allocating and deallocating memory in SOLID. Ignoring the overhead due to
memory, we observed that the pre-computation of data structures for SOLID require
100 - 176 ms per frame. These timings do not include the pruning time. On the con-
trary, we are able to compute all collisions up to floating-point precision within 50ms
(including UOBB-computation time and pruning time).

Image-Space Algorithms : These include algorithms based on stencil-buffer tech-
niques as well as distance field computations. Some systems, such as PIVOT, are able
to perform other proximity queries, including distance and local penetration compu-
tation, whereas our PCS-based algorithm is limited to only checking for interference.
However, our algorithm only needs to readback the output of a visibility query and not
the entire depth buffer or stencil buffer. This feature significantly improves its perfor-
mance, especially when we use higher image-space precision. Unlike earlier algorithms,

our PCS-based algorithm is applicable to all triangulated 3-D models (and not just closed

3For the sake of fairness, we have not compared CULLIDE with SOLID, as CULLIDE misses inter-
ferences whereas SOLID does not.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

objects) and can handle an arbitrary number of objects in the environment. Also, unlike
prior GPU-based collision detection algorithms, our reliable culling algorithm does not

miss collisions due to image-sampling or frame-buffer precision crrors.

5.7.5 Limitations

Our current approach has some limitations. First, it only checks for overlapping
objects and does not provide distance or penetration information. Our reliable colli-
sion culling algorithm cannot extend directly to performing reliable self-collisions. In
practice, however, it is possible to apply the reliable algorithm for performing reliable

self-collisions efficiently in specialized environments such as cloth models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a) Environment 1: This scene
consists of 100 dynamically de-
forming open cylinders moving
randomly in a room. FEach cylin-
der is composed of 200 triangles.

(¢) Environment 3:This scene shows
a wired frame of a dragon and a
bunny rendered in the following col-
ors: cyan and blue, which high-
light triangles in the PCS, and red
and white, which illustrate portions
not in the PCS. The PCS is com-
puted using CULLIDE. The dragon
consists of 250K triangles and the
bunny consists of 35K triangles

112

(b) Environment 2: This scene consists
of 10 dynamically deforming torii mowv-
ing randomly in a room. Fach torus is
composed of 20000 triangles

(d) Environment 3: Zoomed view
highlighting the ezact intersections
between the triangles in the PCS
computed using CULLIDE. The
configuration of the two objects is
the same as in Fig. 5.15(c). The
cyan and the blue regions are the
overlapping triangles of the dragon
and the bunny respectively.

Figure 5.15: Snapshots of Simulations on Three Complex Environments: CULLIDE takes 4,
8, and 40rmns respectively on each benchmark in order to perform collision queries on a GeForce
FX 5800 Ultra with an image resolution of 800 x 800.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Figure 5.16: Environment with Breakable Objects: As the bunny (with 35K triangles) falls
through the dragon (with 250K), the number of objects in the scene (shown with a yellow out-
line) and the triangle count within each object change. CULLIDE computes all the overlapping
triangles during each frame. The average collision-query time is 35 ms per frame.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Conclusions

In this thesis, we have designed efficient visibility-based algorithms for solving three
different problems: walkthroughs, shadow generation, and collision detection. Our al-
gorithms utilize the occlusion queries available on commodity GPUs for performing
visibility computations. We have applied these algorithms to complex environments
composed of hundreds of thousands of primitives. We have also compared the perfor-
mance of some of our algorithms to prior state-of-the-art algorithms. In some cases, we
obtained significant increases in speed as compared to earlier algorithms. Moreover, our

algorithms have many advantages:

1. Generality: They make no assumptions about the scenes and are applicable to

all complex environments.
2. Accuracy: Our algorithms perform conservative visibility computations up to

e screen-space image precision for walkthrough and shadow computations, and

e 32-bit IEEE floating-point precision for collision computation.
3. Low Bandwidth: Our algorithms involve no depth-buffer readback from the
graphics card. The bandwidth requirements of our algorithms vary as a function

based on the number of primitives in the scenes and, in practice, is very low (e.g.,

a few kilobytes per frame).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

L5

4. Significant Occlusion Culling: As compared to earlier approaches. our algo-

rithms cull away a higher percentage of primitives
e not visible from the current viewpoint in the cases of walkthrough and shadow
computations, and
¢ 1ot colliding from the current viewpoint in the case of collision computations.
5. Practicality: Our algorithms can be implemented on commodity graphics proces-
sors, and only assume hardware support for the occlusion query, which has become

widely available. Furthermore, we obtain significant improvements in frame rate

as compared to earlier algorithms.
Our algorithms do, however, involve some limitations:

1. Environments: Our visibility-based algorithms work well for complex 3-D envi-

ronments exhibiting

e high depth complexity for walkthrough and shadow computation, and

e deforming and dynamically changing topologies for collision computation.

2. Latency: Our parallel algorithms for walkthrough and shadow generation involve
a frame of latency in addition to double buffering. These algorithms are well suited

for latency-tolerant applications.

3. Precision: The accuracy of our shadow culling and self-collision pruning algo-
rithms are limited by image precision. Their accuracy can be improved by using

a reliable algorithm similar to our reliable collision detection algorithm.
4. Pair Computation: Our algorithms compute potential sets of primitives:

e potentially visible sets of primitives for walkthrough computation,

s potential shadow casters and shadow receivers for shadow computation, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

e potentially colliding sets of primitives for collision computation.

Some algorithis require the computation of pairs of associated primitives. For
example, a shadow-polygon-clipping algorithm requires the shadow receivers as-
sociated with each shadow caster to generate shadow polygons, and a collision
detection algorithm requires the pairs of potentially colliding primitives. As our
algorithms compute sets of primitives, they need to be integrated with other al-

gorithms for generating pairs of associated primitives.

5. Artifacts: Our interactive algorithms for walkthrough and shadow generation
have been integrated with static levels-of-detail. Using static LODs may lead to
popping artifacts at high LOD-error threshold due to switching between approxi-

mations.

6. Coherence: Our real-time culling algorithms for walkthrough and shadow gen-
eration assume high spatial coherence between successive frames. The culling

efficiency may not be high if the camera position changes significantly.

In the following sections, we summarize our algorithms and describe avenues for

future investigation.

6.1 Walkthroughs

We have presented a new occlusion culling algorithm based on occlusion switch and
used it for rendering massive models at interactive rates. Each occlusion switch is
composed of two GPUs and uses the hardware occlusion query that is becoming widely
available on commodity GPUs for computing the potentially visible set of geometric
primitives. We have combined the occlusion culling algorithm with static levels-of-
detail (LODs) and used it for interactive walkthrough of complex environments. The

static LODs are computed as a preprocess. We present a novel clustering algorithm for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

generating a unified scene-graph hierarchy used for generating LODs and performing
occlusion culling. We highlighted the performance of our occlusion culling algorithm on
three complex environments. We have obscrved 2 - 3 times improvement in frame rate
over earlier approaches. The culling performance of the algorithm is further improved by
using a subobject hierarchy and the improved algorithm is used for interactive shadow

generation (Govindaraju et al., 2003a).

6.1.1 Future Work

Many research opportunities lie ahead. A low-latency network implementation is
highly desirable to maximize the performance achieved by our parallel occlusion culling
algorithm. One possibility is to use raw GM sockets over Myrinet. We are also exploring
the use of a reliable protocol over UDP/IP. Our current implementation loads the entire
scene graph and object LODs on each PC. Due to limitations on the main memory,
we would like to use out-of-core techniques that use a limited memory footprint. One
possibility for a simple out-of-core solution can be obtained by using additional frames
of latency, during which visible geometric primitives can be pre-fetched from the disk.
Moreover, the use of static LODs and HLODs can lead to popping artifacts as the
rendering algorithm switches between different approximations. One possibility is to use
view-dependent simplification techniques in order to alleviate these artifacts (Yoon et al.,

2003). Finally, we would like to apply our algorithm to other complex environments.

6.2 Shadow Generation

We have presented a shadow culling algorithm for interactive shadow generation
in complex environments with a moving light source. Our algorithm can be used for
generating shadows with sharp edges and for reducing the aliasing artifacts present

in pure image-precision approaches. Our algorithm uses level-of-detail techniques for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

generating shadows at interactive rates. We have presented an LOD-selection metric that
attempts to reduce artifacts in shadows due to switching of LODs. We have integrated
our algorithm with a hybrid shadow generation technique and applied it to three large
models. Our preliminary results are very encouraging.

We have also presented an improved algorithm for PVS computation, which can
be useful for other rendering applications. Our cross-culling algorithm can be used

for accelerating the performance of a pure-shadow-volume-based approach such as CC

shadow volumes (Lloyd et al., 2004).

6.2.1 Future Work

There are many promising directions for further investigation. Our current approach
handles only point and directional light sources. We would also like to explore ways to
handle omni-directional or multiple light sources by using additional graphics processors.
We want to develop an out-of-core system that does not load the entire scene graph
into main memory. Using view-dependent simplification in place of static LODs could
reduce popping artifacts. Finally, we would like to extend our algorithms for improving

the performance of soft-shadow-generation algorithms.

6.3 Collision Detection

We have presented a novel algorithm for collision detection among multiple de-
formable objects in a large environment using graphics hardware. Our algorithm is
applicable to all triangulated models, makes no assumptions about object motion, and
can compute all contacts up to image-space resolution. It uses a novel linear-time
PCS-computation algorithm applied iteratively to objects and subobjects. The PCS is
computed using image-space visibility queries widely available on commodity graphics

hardware. It needs to readback the results of a query, not the frame-buffer or depth

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

buffer.

Our algorithm can also compute self-collisions in general deformable models and does
not require mesh-conncetivity information. Further, our algorithm can perform reliable
collision detection among multiple objects with little computational overhead. Our
reliable algorithm overcomes a major limitation of earlier GPU-based collision detection
algorithms and is able to perform reliable interference queries. Furthermore, the culling
efficiency of our algorithm is higher as compared to prior CPU-based algorithms that
use AABBs or spheres for collision culling. We have demonstrated its performance in
complex scenarios where objects undergo rigid and nonrigid motion.

Our algorithm can be applied to other problems such as continuous collision detection

(Redon et al., 2003) and shadow volume clamping (Lloyd et al., 2004).

6.3.1 Future Work

There are many avenues for future work. Our PCS computation algorithm only
computes sets of potentially colliding objects. We would like to extend our algorithm to
compute pairs of colliding objects. We would like both to use our PCS-based collision
detection for more applications and to evaluate its impact on the accuracy of the overall
simulation. Our current self-collision algorithm computes collisions among geometric
primitives up to image-precision. A reliable self-collision algorithm for handling general
deformable models would be very useful. Further, we are exploring reliable self-collision
detection algorithms for handling specialized environments such as cloth models, etc. We
are also investigating the use of the ne\;v programmability features of graphics hardware

for improving our algorithms as described helow.

Desirable Hardware Features: We propose a simple architecture for the graphics
pipeline for accelerating the performance of our algorithm. The modified architecture

requires the following characteristics:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

e Precision: I order to obtain floating-point precision, the graphics pipeline should
support floating-point depth buffers. However, it is important to note that the
viewport resolution is mainly respousible for the sampling errors thaun the depth-
buffer precision. Therefore floating-point depth buffers alone cannot solve the

sampling problem.

e Rasterization Rules: We set a state in which the following rasterization rules

are used in order to overcome the viewport-resolution problems.

— A fragment is generated for each pixel that a triangle touclies.

— For each pixel, depth is computed at all four corner samples of the rectangular
pixel. A depth set function is applied to the four depth samples, and one of
the four values is output as the depth of the current fragment. The depth
set function could be one of {maxz, min} and is specified as a state before
rasterizing a primitive. The function maex computes the maximum value of
the four depth samples, and min computes the minimum value of the four

depth samples.

The above rules are sufficient for designing an algorithm ensuring floating-point
precision for interference computations. In the pseudocode described in Section 5.5.7,
while rendering a primitive to the frame buffer, we set the depth set function to min
and the depth function to GL_LEQU AL. This operation ensures that for each pixel
touched by a primitive, we compute the minimum depth of all points of the primitive
that project onto the pixel. While testing the fully visible status of a primitive, the
depth set function is set to rmawx. This operation ensures that we test whether the
maximum depth of all points of a primitive that project onto the pixel is fully visible. It
is easy to see that these two operations can be used for testing conservatively whether
one primitive interferes with another.

Most graphics hardware implementations involve tile-based rasterization (Kelleher,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1998; McCormack and McNamara, 2000; Morein, 2000; Akenine-Moller and Strom,
2003). All the pixels covered by a primitive and within a tiled region (e.g., a region
consisting of 4 x4 pixels) are computed before moving to the next tile. As adjacent pixels
share common sample points, it is possible to design a simple architecture computing
the depth at a sample point (e.g., the left corner of a pixel) and depth values at the
samples covering the top and right corners of a tile. A simple hardware can be used for
computing the max or min values of these fragments in a tile and returning the sample
depths.

A simple hardware implementation requires the computation of few more samples
than the actual number of samples in a normal rasterization pipeline. However, the
overhead of this computation can be minimized by using additional hardware such as

pixel caches.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIOGRAPHY

Adelson, E. and Bergen, J. (1991). The plenoptic function and the elements of early
vision. In Computational Modelsof Visual Processing, pages 3 20. MIT Press.

Aila, T. and Akenine-Moller, T. (2004). A hierarchical shadow volume algorithm. In
Proceedings of Graphics Hardware 2004.

Airey, J., Rohlf, J., and Brooks, F. (1990). Towards image realism with interactive
update rates in complex virtual building environments. In Symposium on Interactive
3D Graphics, pages 41-50.

Akenine-Moller, T. and Strom, J. (2003). Graphics for the masses: a hardware rasteri-
zation architecture for mobile phones. ACM Trans. Graph., 22(3):801--808.

Aliaga, D., Cohen, J., Wilson, A., Zhang, H., Erikson, C., Hoff, K., Hudson, T., Stuer-
zlinger, W., Baker, E., Bastos, R., Whitton, M., Brooks, F., and Manocha, D.
(1999). MMR: An integrated massive model rendering system using geometric and
image-based acceleration. In Proc. of ACM Symposium on Interactive $D Graphics,
pages 199-206.

Aliaga, D. and Lastra, A. (1999). Automatic image placement to provide a guaranteed
frame rate. In Proc. of ACM SIGGRAPH.

Atherton, P., Weiler, K., and Greenberg, D. (1978). Polygon shadow generation. In
Computer Graphics (SIGGRAPH ’78 Proceedings), volume 12, pages 275-281.

Baciu, G. and Wong, S. (2002). Image-based techniques in a hybrid collision detector.
IEEE Trans. on Visualization and Computer Graphics.

Baciu, G., Wong, S., and Sun, H. (1998). Recode: An image-based collision detection
algorithm. Proc. of Pacific Graphics, pages 497-512.

Barequet, G., Chazelle, B., Guibas, L., Mitchell, J., and Tal, A. (1996). Boxtree: A
hierarchical representation of surfaces in 3D. In Proc. of Furographics’96.

Bartz, D., Meibner, M., and Huttner, T. (1999). Opengl assisted occlusion culling for
large polygonal models. Computer and Graphics, 23(3):667-679.

Baxter, B., Sud, A., Govindaraju, N., and Manocha, D. (2002). GigaWalk: Interactive
walkthrough of complex 3D environments. Proc. of Eurographics Workshop on
Rendering, pages 203-214.

Beckmann, N., Kriegel, H., Schneider, R., and Seeger, B. (1990). The r*-tree: An
efficient and robust access method for points and rectangles. Proc. SIGMOD Conf.
on Management of Data, pages 322-331.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bergeron, P. (1985). Shadow volumes for non-planar polygons. In Graphics Interfuce
89 Proceedings, pages 417—418.

Bittner, J., Havran, V., and Slavik, P. (1998). Hierarchical visibility culling with occlu-
sion trees. In Proceedings of Computer Graphics International '98 (CGI’98), pages
207-219. IEEE.

Bittner, J. and Wonka, P. (2003). Visibility in computer graphics. In Journal of Enuvi-
ronment and Planning.

Blinn, J. (1988). Jim blinn’s corner: Me and my (fake) shadow. IEEE Computer
Graphics and Applications, 8(1):82-86.

Bolz, J., Farmer, 1., Grinspun, E., and Schroder, P. (2003). Sparse matrix solvers on the
gpu: Conjugate gradients and multigrid. ACM Trans. on Graphics (Proc. of ACM
SIGGRAPH), 22(3).

Brabec, S., Annen, T., and Seidel, H. (2001). Hardware-accelerated rendering of an-
tialiased shadows. In Proc. of Computer Graphics International.

Brabec, S., Annen, T., and Seidel, H. (2002). Shadow mapping for hemispherical and
omnidirectional light sources. In Proc. of Computer Graphics International.

Brabec, S. and Seidel, H. (2003). Shadow volumes on programmable graphics hardware.
Proc. of Eurographics.

Brotman, L. S. and Badler, N. 1. (1984). Generating soft shadows with a depth buffer
algorithm. IEFE Computer Graphics and Applications, 4(10):71-81.

Buehler, C., Bosse, M., McMillan, L., Gortler, S., and Cohen, M. (2001). Unstructured
lumigraph rendering. In Proceedings of ACM Siggraph.

Chan, E. and Durand, F. (2004). An efficient hybrid shadow rendering algorithm. In
Proceedings of the Furographics Symposium on Rendering. Eurographics Associa-
tion.

Chin, N. and Feiner, S. (1989). Near real-time shadow generation using BSP trees. In
Computer Graphics (SIGGRAPH °89 Proceedings), volume 23, pages 99-106.

Chrysanthou, Y. and Slater, M. (1995). Shadow volume BSP trees for computation of

shadows in dynamic scenes. In 1995 Symposium on Interactive 3D Graphics, pages
45-50.

Clark, J. (1976). Hierarchical geometric models for visible surface algorithms. Commu-
nications of the ACM, 19(10):547-554.

Cohen, J., Lin, M., Manocha, D., and Ponamgi, M. (1995). I-.COLLIDE: An interactive
and exact collision detection system for large-scale environments. In Proc. of ACM
Interactive 3D Graphics Conference, pages 189-196.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cohen, J.. Manocha, D., and Olano. M. (1997). Simplifying polvegonal models using
suceessive mappings. In Proc. of IEEE Visualization, pages 395 402.

Cohen, J., Varshney, A., Manocha, D., Turk, G., Weber, H., Agarwal, P., Brooks, Jr.,
EF. P., and Wright, W. (1996). Simplification envelopes. In Rushmeier, H., editor,
SIGGRAPH 96 Conference Proceedings, Annual Conference Series, pages 119-128..
ACM SIGGRAPH, Addison Wesley. held in New Orleans, Louisiana, 04-09 August
1996.

Cohen, J. D. and Manocha, D. (2003). Model simplification. In Handbook of Visualiza-
trom.

Cohen-Or, D., Chrysanthou, Y., Durand, F., Greenc, N., Koltun, V., and Silva, C.
(2001a). Visibility, problems, techniques and applications. SIGGRAPH Course
Notes # 30.

Cohen-Or, D., Chrysanthou, Y., and Silva, C. (2001b). A survey of visibility for walk-
through applications. SIGGRAPH Course Notes # 30.

Coorg, 5. and Teller, S. (1996). A spatially and temporally coherent object space visi-
bility algorithm. Technical Report TM-546, Laboratory of Computer Science, MIT.

Coorg, S. and Teller, S. (1997). Real-time occlusion culling for models with large oc-
cluders. In Proc. of ACM Symposium on Interactive 8D Graphics.

Crow, F. (1977). Shadow algorithms for computer graphics. volume 11, pages 242-248.

D03 depthbounds (2003). Ext_depth_bounds_test specification.
http://www.nvidia.com/dev_content /nvopenglspecs/
GL_EXT _depth_bounds_test.txt.

Darsa, L., Costa, B., and Varshney, A. (1998). Walkthroughs of complex environments
using image-based simplification. Computer and Graphics, 22(1):55-69.

Decoret, X., Schaufler, G., Sillion, F., and Dorsey, J. (1999). Multi-layered impostors
for accelerated rendering. Computer Graphics Forum, 18(3).

Durand, F., Drettakis, G., Thollot, J., and Puech, C. (2000). Conservative visibility
preprocessing using extended projections. Proc. of ACM SIGGRAPH, pages 239-
248.

El-Sana, J., Sokolovsky, N., and Silva, C. (2001). Integrating occlusion culling with
view-dependent rendering. Proc. of IEEE Visualization.

Erikson, C. and Manocha, D. (1998). Simplification culling of static and dynamic scene
graphs. Technical Report TR98-009, Department of Computer Science, University
of North Carolina.

Erikson, C. and Manocha, D. (1999). GAPS: General and automatic polygon simplifi-
cation. In Proc. of ACM Symposium on Interactive 3D Graphics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Everitt, C. aud Kilgard, M. (2002). Practical and robust stenciled shadow volumes for
hardwarc-accelerated rendering. In SIGGRAPH 2002 Course Notes, volume 31.

Felzenszwalb, P. and Huttenlocher, D. (1998). Efficiently computing a good segmernta-
tion. In Proceedings of IEEE CVPR, pages 98-104.

Fernando, R., Fernandez, S., Bala, K., and Greenberg, D. (2001). Adaptive shadow
maps. In Proceedings of ACM SIGGRAPH 2001, pages 387--390.

Foley, J. D., van Dam, A., Feiner, S. K., and Hughes, J. F. (1990). Computer Graphics:
Principles and Practice. Addison-Wesley, Reading, MA. second edition.

Garland, M. and Heckbert, P. S. (1997). Surface simplification using quadric error
metrics. In Proc. of ACM SIGGRAPH, pages 209-216.

Gottschalk, S., Lin, M., and Manocha, D. (1996a). OBB-Tree: A hierarchical structure
for rapid interference detection. Proc. of ACM Siggraph’96, pages 171-180.

Gottschalk, 5., Lin, M. C., and Manocha, D. (1996b). OBB-tree: A hierarchical structure
for rapid interference detection. Computer Graphics, pages 171-180.

Govindaraju, N., Lloyd, B., Wang, W., Lin, M., and Manocha, D. (2004). Fast compu-
tation of database operations using graphics processors. Proc. of ACM SIGMOD.

Govindaraju, N., Lloyd, B., Yoon, S., Sud, A., and Manocha, D. (2003a). Interactive
shadow generation in complex environments. Proc. of ACM SIGGRAPH/ACM
Trans. on Graphics, 22(3):501-510.

Govindaraju, N., Redon, S., Lin, M., and Manocha, D. (2003b). CULLIDE: Interactive
collision detection between complex models in large environments using graphics
hardware. Proc. of ACM SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware, pages 25-32.

Govindaraju, N., Sud, A., Yoon, S., and Manocha, D. (2002). Interactive visibility
culling in complex environments with occlusion-switches. Technical Report CS-
02-027, University of North Carolina. Appeared in Proc. of ACM Symposium on
Interactive 3D Graphics.

Govindaraju, N., Sud, A., Yoon, S., and Manocha, D. (2003c). Interactive visibility
culling in complex environments with occlusion-switches. Proc. of ACM Symposium
on Interactive 3D Graphics, pages 103-112.

Greene, N. (2001). Occlusion culling with optimized hierarchical z-buffering. In ACM
SIGGRAPH COURSE NOTES ON VISIBILITY, # 30.

Greene, N., Kass, M., and Miller, G. (1993). Hierarchical z-buffer visibility. In Proc. of
ACM SIGGRAPH, pages 231-238.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Guha, 5., Krishnan, S., Munagala, K., and Venkatasubramanian, S. (2003). Application
of the two-sided depth test to csg rendering. In Procecdings of the 2003 symposiun
on Intcractive 3D graphics, pages 177-180. ACM Press.

Hasenfratz, J.-M., Lapierre, M., Holzschuch, N., and Sillion, F. (2003). A survey of
real-time soft shadows algorithms. In Furographics. Furographics, Eurographics.
State-of-the-Art Report.

Heidelberger, B., Teschner, M., and Gross, M. (2003). Real-time volumetic intersections
of deforming objects. Proc. of Vision, Modeling and Visualization.

Heidmann, T. (1991). Real shadows real time. RIS Universal, (18).

Heidrich, W. and Seidel, H. P. (1999). Realistic hardware-accelerated shading and
lighting. In Proc. of ACM SIGGRAPH, pages 171-178.

Held, M., Klosowski, J., and Mitchell, J. S. B. (1996). Real-time collision detection for
motion simulation within complex environments. In Proc. ACM SIGGRAPH 96
Visual Proceedings, page 151.

Hillesland, K., Salomon, B., Lastra, A., and Manocha, D. (2002). Fast and simple
occlusion culling using hardware-based depth queries. Technical Report TR02-039,
Department of Computer Science, University of North Carolina.

Hoff, K., Zaferakis, A., Lin, M., and Manocha, D. (2001). Fast and simple 2d geometric
proximity queries using graphics hardware Proc. of ACM Symposium on Interactive
3D Graphics, pages 145-148.

Hoppe, H. (1996). Progressive meshes. In Proc. of ACM SIGGRAPH, pages 99-108.

Hoppe, H. (1997). View dependent refinement of progressive meshes. In ACM SIG-
GRAPH Conference Proceedings, pages 189-198.

Hoppe, H. (1998). Smooth view-dependent level-of-detail control and its application to
terrain rendering. In IEEE Visualization Conference Proceedings, pages 35-42.

Hubbard, P. M. (1993). Interactive collision detection. In Proceedings of IEEE Sympo-
stum on Research Frontiers in Virtual Reality.

Hudson, T., Manocha, D., Cohen, J., Lin, M., Hoff, K., and Zhang, H. (1997a). Ac-
- celerated occlusion culling using shadow frusta. In Proc. of ACM Symposium on
Computational Geometry, pages 1-10.

Hudson, T., Manocha, D., Cohen, J., Lin, M., Hoff, K., and Zhang, H. (1997b). Acceler-
ated occlusion culling using shadow frustra. In ACM Symposium on Computational
Geometry, pages 1-10.

Humphreys, G., Eldridge, M., Buck, L., Stoll, G., Everett, M., and Hanrahan, P. (2001).
Wiregl: A scalable graphics system for clusters. Proc. of ACM SIGGRAPH.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Jacobson, V. (1988). Congestion avoidance and control. Proc. of ACM SIGCOMM.
pages 314 329.

Jeschke, S. and Wimmer, M. (2002). Textured depth mesh for real-time rendering of
arbitrary scenes. In Proc. Eurographics Workshop on Rendering.

Jimenez, P., Thomas, F., and Torras, C. (2001). 3d collision detection: A survcy.
Computers and Graphics, 25(2):269-285.

Kelleher, B. (1998). Pixelvision architecture. Technical Report 1998-013, Digital Systems
Research Center.

Kim, Y., Lin, M., and Manocha, D. (2002a). DEEP: an incremental algorithm for pen-
etration depth computation between convex polytopes. Proc. of IEEE Conference
on Robotics and Automation, pages 921-926.

Kim, Y., Otaduy, M., Lin, M., and Manocha, D. (2002b). Fast penetration depth com-
putation for physically-based animation. Proc. of ACM Symposium on Computer
Anwmation.

Klosowski, J., Held, M., Mitchell, J., Sowizral, H., and Zikan, K. (1998). Efficient,
collision detection using bounding volume hierarchies of k-dops. IEEE Trans. on
Visualization and Computer Graphics, 4(1):21-37.

Klosowski, J. and Silva, C. (2001). Efficient conservative visiblity culling using the
prioritized-layered projection algorithm. [EEE Trans. on Visualization and Com-
puter Graphics, 7(4):365-379.

Knott, D. and Pai, D. (2003). Cinder: Collision and interference detection in real-time
using graphics hardware. Proc. of Graphics Interface, pages 73-80.

Kruger, J. and Westermann, R. (2003). Linear algebra operators for gpu implementation
of numerical algorithms. ACM Trans. on Graphics (Proc. of ACM SIGGRAPH),
22(3).

Kruskal, J. B. (1956). On the shortest spanning subtree of a graph and the traveling
salesman problem. Proc. of American Mathematical Society, 7:48-50.

Kumar, 5., Manocha, D., Garrett, W., and Lin, M. (1999). Hierarchical back-face
computation. Comput. & Graphics, 23(5):681-692.

Larsson, T. and Akenine-Moller, T. (2001). Collision detection for continuously deform-
ing bodies. In Furographics.

Lengyel, E. (2002). The mechanics of robust stencil shadows. Gamasutra.
http://www.gamasutra.com/features/20021011/lengyel _01.htm.

Levoy, M. and Hanrahan, P. (1996). Light field rendering. In SIGGRAPH 96 Conference
Proceedings, pages 31-42.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

Lin, M. and Gottschalk, S. (1998). Collision detection between geometric models: A
swrvey. Proc. of IMA Confcrence on Mathematics of Suifaces.

Lin, M. and Manocha, D. (2003). Collision and proximity queries. In Handbook of
Diserete and Computational Geometry.

Lloyd, B., Wendt, J., Govindaraju, N., and Manocha, D. (2004). Cc shadow volumes.
Technical report, University of North Carolina, Department of Computer Science.

Lombardo, J. C., Cani, M.-P., and Neyret, F. (1999). Real-time collision detection for
virtual surgery. Proc. of Computer Animation.

Luebke, D. and Erikson, C. (1997). View-dependent simplification of arbitrary polygon
environments. In Proc. of ACM SIGGRAPH.

Luebke, D. and Georges, C. (1995). Portals and mirrors: Simple, fast evaluation of
potentially visible sets. In ACM Interactive 3D Graphics Conference, Monterey,
CA.

Max, N. and Ohsaki, K. (1995). Rendering trees from precomputed Z-buffer views. In
FEurographics Rendering Workshop 1995.

MeCool, M. (2000). Shadow volume reconstruction from depth maps. ACM Trans. on
Graphics, 19(1):1-26.

McCormack, J. and McNamara, R. (2000). Tiled polygon traversal using half-plane edge
functions. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS workshop on
Graphics hardware, pages 15-21. ACM Press.

McGuire, M., Hughes, J., Egan, K., Kilgard, M., and Everitt, C. (2003).
Fast, practical and robust shadows. Technical report, NVIDIA.
http://developer.nvidia.com/object /fast_shadow_volumes.html.

McMillan, L. and Bishop, G. (1995). Plenoptic modeling: An image-based rendering
system. In Proc. of ACM SIGGRAPH, pages 39-46.

Meissner, M., Bartz, D., Huttner, T., Muller, G., and Einighammer, J. (2002). Gen-
eration of subdwlsmn hlerarclnes for efficient occlusion culling of large polygonal
models. Computer and Graphics.

Moller, T. (1997). A fast triangle-triangle intersection test. Journal of Graphics Tools,
2(2).

Morein, S. (2000). ATI Radeon HyperZ technology. In ACM SIG-
GRAPH/EUROGRAPHICS workshop on Graphics hardware, Hot3D Proceedings.

Myszkowski, K., Okunev, O. G., and Kunii, T. L. (1995). Fast collision detection
between complex solids using rasterizing graphics hardware. The Visual Computer,
11(9):497-512.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LH9

NVocchision Query (2001). Nv_occlusion_query specification.
http://www nvidia.com/dev_content /uvopenglspecs/
GL_NV occlusion_query.txt.

Parker, S., Martic, W., Sloan, P., Shirley, P., Smits, B., and Hansen, C. (1999). Inter-
active ray tracing. Symposium on Interactive 3D Graphics.

Pfister, H., Zwicker, M., van Baar, J., and Gross, M. (2000). Surfels: Surface elements
as rendering primitives. Proc. of ACM SIGGRAPH.

Ponamgi, M., Manocha, D., and Lin, M. (1997). Incremental algorithms for collision
detection between solid models. TEEFE Transactions on Visualization and Computer
Graphics, 3(1):51-67.

Private Communication with Lloyd (2003). Private communication with Brandon Lloyd.
Private Communication with Sud (2003). Private communication with Avneesh Sud.

Purcell, T, Buck, I., Mark, W., and Hanrahan, P. (2002). Ray tracing on programmable
graphics hardware. ACM Trans. on Graphics (Proc. of SIGGRAPH’02), 21(3):703~
712.

Quinlan, S. (1994). Efficient distance computation between non-convex objects. In
Proceedings of International Conference on Robotics and Automation, pages 3324~
3329.

Raskar, R. and Cohen, M. (1999). Image precision silhouette edges. In Proceedings of
the 1999 symposium on Interactive 8D graphics, pages 135-140. ACM Press.

Redon, 5., Kim, Y., Lin, M., and Manocha, D. (2003). Fast continuous collision detection
for articulated models. Technical Report TR03-038, University of North Carolina,
Department of Computer Science.

Reeves, W., Salesin, D., and Cook, R. (1987). Rendering antialiased shadows with depth
maps. In Computer Graphics (ACM SIGGRAPH '87 Proceedings), volume 21, pages
283-291.

Rossignac, J. and Borrel, P. (1993). Multi-resolution 3D approximations for rendering.
In Modeling in Computer Graphics, pages 455—465. Springer-Verlag.

Rossignac, J., Megahed, A., and Schneider, B. (1992). Interactive inspection of solids:

cross-sections and interferences. In Proceedings of ACM Siggraph, pages 353 60.

Rusinkiewicz, S. and Levoy, M. (2000). Qsplat: A multiresolution point rendering system
for large meshes. Proc. of ACM SIGGRAPH.

Samanta, R., Funkhouser, T., and Li, K. (2001). Parallel rendering with k-way replica-
tion. IEEE Symposium on Parallel and Large-Data Visualization and Graphics.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16O

Samanta. R.. Funkhouser, T.. Li, I{., and Singh, J. P. (2000). Hybrid sort-first and sort-

last. parallel rendering with o cluster of pes. Eurograplics /SIGGRAPH workshop
on Graphics Hardware, pages 99 -108.

Schaufler, G., Dorsey, J., Decoret, X., and Sillion, F. (2000). Conservative volumetric
visibility with occluder fusion. Proc. of ACM SIGGRAPH, pages 229-238.

Segal, M., Korobkin, C., van Widenfelt, R., Foran, J., and Haeberli, P. (1992). Fast
shadows and lighting effects using texture mapping. In Computer Graphics (SIG-
GRAPH 92 Proceedings), volume 26, pages 249-252.

Sen, P., Camiarano, M., and Hanrahan, P. (2003). Shadow silhouette maps. ACM
Transactions on Graphics (Proceedings of ACM SIGGRAPH 2003), 22(3):521-526.

Shade, J., Gortler, S., wei He, L., and Szeliski, R. (1998). Laycred depth images. Proc.
of ACM SIGGRAPH, pages 231-242.

Shinya, M. and Forgue, M. C. (1991). Interference detection through rasterization. The
Journal of Visualization and Computer Animation, 2(4):131-134.

Sillion, F., Drettakis, G., and Bodelet, B. (1997). Efficient impostor manipulation for
real-time visualization of urban scenery. In Computer Graphics Forum, volume 16.

SOLID (2002). Freesolid: Software library for interference detection.
http://www.win.tue.nl/ gino/solid/.

Stamminger, M. and Drettakis, G. (2002). Perspective shadow maps. In Proceedings of
ACM SIGGRAPH 2002, pages 55T -562.

Tadamura, K., Qin, X., Jiao, G., and Nakamae, E. (2001). Rendering optimal solar
shadows with plural sunlight depth buffers. The Visual Computer, 17(2).

Teller, S. J. (1992). Visibility Computations in Densely Occluded Polyheral Environ-
ments. PhD thesis, CS Division, UC Berkeley.

Udeshi, T. and Hansen, C. (1999). Towards interactive photorealistic rendering of indoor
scenes: A hybrid approach. In Lischinski, D. and Larson, G. W., editors, Rendering
Techniques '99, pages 63-76.

Vassilev, T, Spanlang, B., and Chrysanthou, Y. (2001). Fast cloth animation on walking
avatars. Computer Graphics Forum (Proc. of Eurographics’01), 20(3):260--267.

Wald, 1., Slusallek, P., and Benthin, C. (2001). Interactive distributed ray-tracing of
highly complex models. In Rendering Techniques, pages 274-285. :

Williams, L. (1978). Casting curved shadows on curved surfaces. In Computer Graphics
(SIGGRAPH 78 Proceedings), volume 12, pages 270-274.

Wilson, A. and Manocha, D. (2003). Simplifying complex environments using incre-
mental textured depth meshes. Proceedings of ACM SIGGRAPH/ACM Trans. on
Graphics, 22(3):678-688.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

Wilson. A., Mayer-Patel. K.. and Manocha, D. (2001). Spatially-encoded far-field rep-
resentations for interactive walkthroughs. Proc. of ACM Multimedia.

Wonka, P., Wimmer, M., and Schmalstieg, D. (2000). Visibility preprocessing with
occluder fusion for urban walkthroughs. In Rendering Techniques, pages 71-82.

Wonka, P., Wimmer, M., and Sillion, F. (2001). Instant visibility. In Proc. of Euro-
graphics.

Woo, A., Poulin, P., and Fournier, A. (1990). A survey of shadow algorithms. [EEE
Computer Graphics and Applications, 10(6):13-32.

Xia, J. C. and Varshney, A. (1996). Dynamic view-dependent simplification for polygonal
models. In IEEE Visualization '96. IEEE. ISBN 0-89791-864-9.

Yoon, S., Salomon, B., and Manocha, D. (2003). Interactive view-dependent render-
ing with conservative occlusion culling in complex environments. Technical Report
TRO03-015, Department of Computer Science, University of North Carolina. Ap-
peared in Proc. of IEEE Visualization 2003.

Zhang, H., Manocha, D., Hudson, T., and Hoff, K. (1997a). Visibility culling using
hierarchical occlusion maps. Proc. of ACM SIGGRAPH.

Zhang, H., Manocha, D., Hudson, T., and III, K. E. H. (1997b). Visibility culling
using hierarchical occlusion maps. Annual Conference Series, pages 77-88. ACM
SIGGRAPH, ACM Press.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

