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Abstract

Li Guan: Multi-view Dynamic Scene Modeling.
(Under the direction of Marc Pollefeys.)

Modeling dynamic scenes/events from multiple fixed-location vision sensors, such as video

camcorders, infrared cameras, Time-of-Flight sensors etc, is of broad interest in computer

vision, with many applications including 3D TV, virtual reality, medical surgery, marker-

less motion capture, video games, and security surveillance. However, most of the existing

multi-view systems are set up in strictly controlled indoor environments, with fixed lighting

conditions and simple background views. Many complications limit the technology in the nat-

ural outdoor environments. These include varying sunlight, shadows, reflections, background

motion and visual occlusion etc. In this thesis, I address different approaches overcoming all

of the aforementioned difficulties, so as to reduce human preparation and manipulation, and

to make a robust outdoor system as automatic as possible.

The main novel technical contributions of this thesis are as follows: a generic heterogeneous

sensor fusion framework for robust 3D shape estimation; a way to automatically recover 3D

shapes of static occluder from dynamic object silhouette cues, which explicitly models the static

“visual occluding event” along the viewing rays; a system to model multiple dynamic objects

shapes and track their identities simultaneously, which explicitly models the “inter-occluding

event” between dynamic objects; and a scheme to recover an object’s dense 3D motion flow over

time, without assuming any prior knowledge of the underlying structure of the dynamic object

being modeled, which helps to enforce temporal consistency of natural motions and initializes

more advanced shape learning and motion analysis. A unified automatic calibration algorithm

for the heterogeneous network of conventional cameras/camcorders and new Time-of-Flight

sensors is also proposed.
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Chapter 1

Introduction

We live in a 3D world and directly perceive 3D information thanks to our pair of eyes.

Inspired by this natural endowment, a fundamental problem of computer vision is to

obtain 3D geometric information with the help of computers and digital sensing de-

vices. This process is called “3D reconstruction”. Due to the rapid advances as well

as decreasing cost of computing and sensing hardware, the focus of 3D reconstruction

has been gradually shifted from 3D static structure reconstruction to dynamic scene

modeling. A “dynamic scene” is a scene containing one or more objects to be modeled,

possibly with motion/deformation over time. The main focus of this thesis is the 3D

reconstruction of dynamic scenes in a natural environment from multiple viewpoints.

The design of robust and efficient algorithms are the major considerations. In addition,

emerging new sensing technologies such as the Time-of-Flight cameras are also explored

in collaboration with conventional video camcorders as a heterogeneous sensor network

for the modeling task.

1.1 Motivation

There are numerous applications of 3D dynamic scene modeling in our multimedia-

dominated modern world. In the movie industry, current motion capture systems have

to attach trackable markers or sensors to the actors to recreate 3D structures and mo-



tions. They are often inconvenient to put on and uncomfortable to perform with. The

ability to create 3D motions using images alone is therefore a very attractive and de-

sirable alternative. In the game industry, new 3D controlling devices such as Nintendo

WiiTM LED sensor bar and Xbox NatalTM 2.5D depth camera have already drawn a

tremendous amount of attention and opened up possibilities of brand new gaming ex-

periences. The demands for immersive 3D interactive games would be boosted by full

3D human pose real-time modeling. The technology also has applications in the med-

ical field. It can be used to create models of deforming organs, as well as to replay

disease development over time. Other application areas include sports broadcasting and

commentary, teleconferencing, robot navigation, object recognition, visual surveillance,

digital historic archiving etc.

The most common setup for a dynamic scene reconstruction consists of multiple

cameras mounted on different fixed locations, such as tripods, looking at a common

viewing region, as shown in Fig. 1.1. This is because a dynamic scene is theoretically a

4D spatiotemporal continuum, which cannot be captured by a single camera with only

3D sampling ability (2D image frames over time).

Figure 1.1: 1 Multi-camera network setup. Outdoor data capturing with 9 video cam-
corders behind the Ackland Museum, UNC-Chapel Hill, 2006/8/24.

1Fig. 1.1 courtesy of Jae Hak Kim.
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Over the past decades, people have proposed effective ways to recover 3D dynamic

shapes in indoor laboratory environment with constant lighting, uniform-colored static

background, empty viewing space without any visual occluders, etc. However, one

cannot extend such systems directly to an uncontrolled natural environment. A natural

scene is far more complicated with environmental variations, including sunlight changes,

soft shadows casted by clouds, dark shadows cast by trees or dynamic shapes themselves,

visual occluders that are common in outdoor scenes, varying background possibly with

fluttering tree leaves or passing-by people at distance, reflections on glassy or metallic

surfaces, etc.

This thesis contributes algorithms to address different aspects of the uncontrolled

3D dynamic scene modeling. Although difficult, the challenges have to be conquered, as

it is believed that in order to realize the previously mentioned real-world applications,

the system has to work outside of the laboratory ultimately.

1.2 Thesis Statement

3D dynamic scenes in an uncontrolled natural environment can be robustly and effi-

ciently reconstructed with a multi-view sensor network using a probabilistic occupancy

model and Bayesian sensor fusion framework, upon which visual occlusion can be ex-

plicitly modeled, static occluders can be automatically recovered, individual shapes can

be distinctively estimated and tracked, and effective spatiotemporal analysis can be

conducted to compute 3D dense motion field and refine the recovered shapes. More-

over, heterogeneous sensors can be easily integrated in the mathematical computation

framework.

1.3 Contribution

My thesis makes the following contributions:
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1. 3D static occluder automatic recovery.

An algorithm is introduced that robustly estimates the shape of static occluders

given only silhouette cues of dynamic shapes. The algorithm is built upon the existing

probabilistic occupancy volume algorithm for dynamic shape estimation. In addition to

the dynamic shape occupancy probability grid, a second probability grid of the static

occluders is introduced and is used to explicitly model the visual occlusion event. With

dynamic shapes’ arbitrary activity in the scene, the shape of the occluder is automati-

cally accumulated over time.

2. Simultaneous multiple shape estimation and tracking.

An algorithm is presented to reconstruct and track multiple dynamic shapes, such

as a group of people. An appearance model of each individual shape is automatically

learned when it first enters the scene. Similar to the static occluder recovery, the inter-

occlusion event between the dynamic shapes is explicitly modeled. At every time instant,

an object’s location is also tracked and updated.

3. Dense 3D motion field recovery.

I have developed an algorithm to recover the dense 3D motion field of arbitrary

dynamic shapes between two consecutive time instances. Comparing with the previous

tracking schemes, this is a more sophisticated way to enforce the temporal consistency.

The motion field is also consistent with the probabilistic framework for robustness in

the uncontrolled scenes and is computed by maximizing the posterior probability of the

occupancy given the image observations from the views and the occupancy estimation

from the previous time instance. The recovered dense 3D motion field can be used to

refine the estimated shape, as well as generalize the underlying arbitrary rigid skeletal

structure of the dynamic shape. Since no prior knowledge of the dynamic shape is

required, this algorithm can be used to automatically initialize the underlying skeleton

structure, which is used for 3D shape tracking and fitting.
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4. Heterogeneous sensor network of video camcorders and Time-of-Flight

sensors for dynamic scene reconstruction.

Methods are presented that, as long as the probabilistic sensor model can be defined

for shape reconstruction purpose, a sensor fusion framework can seamlessly combine

the heterogeneous sensor observations together, which is robust against noise and many

challenging scene variations. An example of a network of off-the-shelf video camcorders

and technologically-new-but-highly-potential Time-of-Flight(ToF) sensors are tested as

an example of the theory. ToF cameras are a relatively new technology that have

become widely available in the last decade. One of their features is the ability to

directly acquire 2.5D depth images at video frame rates. An automatic scheme to

calibrate the extrinsics of such heterogeneous network is also provided, despite the low

imaging resolution drawback of the current ToF sensor technologies to the traditional

checkerboard or laser-pointer calibration schemes.

1.4 Overview

The remainder of the dissertation is organized as follows.

Chapter 2 presents the background and fundamental technologies required for multi-

view reconstruction and an overview of the existing and related terminologies. First,

camera network calibration is discussed. Second, two types of reconstruction algorithms,

the silhouette-based method and the multi-view stereo are described and compared.

Finally, the mathematical foundation for the occupancy estimation, the Bayesian sensor

fusion model is described in detail.

Chapter 3 describes a novel method for automatic and robust 3D static occluder re-

construction with only dynamic shapes moving within the scene over time. Applications

include automatic 3D scene discovery and automatic camera-view selection.

Chapter 4 introduces a complete framework for simultaneous reconstruction and
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tracking of multiple dynamic shapes. Appearance models for each individual shape is

automatically learned when it first appears in the scene, and static occluder recovery is

also smoothly integrated in the framework.

Chapter 5 presents a new algorithm to compute a dense 3D motion field given the

probabilistic occupancy volumes computed at two consecutive time instances. The mo-

tion field is computed as a posterior probability maximization problem, which is com-

patible with the introduced probabilistic sensor fusion framework. The recovered motion

field can be used to refine the occupancy estimation and to generalize the underlying

skeletal structure of the dynamic shape.

Chapter 6 describes the sensor model of a Time-of-Flight(ToF) camera and how it

can be integrated in the Bayesian sensor fusion framework for dynamic scene reconstruc-

tion. As a matter of fact, a ToF camera is only one of the many examples of possible

vision sensors. Others include infrared cameras, laser scanners, stereo cameras etc. It

is in general tempting to exploit different types of sensors, especially new technologies,

because one sensor could compensate for another’s drawbacks. However, due to the

heterogeneity of the sensor output format, the fusion of different types of sensor data is

not straightforward. This chapter takes ToF sensor as an example to show the proposed

mathematical framework is suitable for not only camcorder network but also such het-

erogeneous sensor networks. An automatic calibration method is also introduced in this

chapter for such heterogeneous sensor network.

Chapter 7 summarizes the contributions, concludes the thesis and discusses potential

improvements and directions for future work.
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Chapter 2

Background

2.1 Multiple View Calibration

For multi-view 3D dynamic scene reconstruction, the most common set up is to have the

cameras looking inward at a common viewing region, where a performance happens. The

exact configuration parameters for each camera needs to be known in advance. These

parameters include intrinsics, such as focal length and aspect ratio, and extrinsics, such

as the camera location and orientation in the world coordinates. This pre-process to the

reconstruction is the “camera network geometric calibration”. The calibration requires

classical tools and concepts of multi-view geometry, including image formation models,

epipolar geometry, and projective transformations. In addition, feature detection and

matching, as well as estimation algorithms, are required. For all the datasets acquired

in this thesis, I use a planar checkerboard pattern as the calibration target. The board

is painted with 6× 9 120mm by 120mm alternating black and white squares, as shown

in Fig. 2.1.

One thing to notice is that in Fig. 1.1, instead of digital cameras, camcorders are

used. Camcorders output videos (a sequence of frames), and therefore are able to record

the dynamic event from a specific point of view. Consumer level camcorders nowadays

are able to produce high quality video frames at real-time frame rates with adjustable



Figure 2.1: Camera network calibration session of the SCULPTURE outdoor datasets.
This is one pose of the checkerboard calibration target. Four of the eight synchronized
camera views are shown.

lenses, shutter speed, aperture, gain, white balance etc., which are nice features to have

when shooting in an outdoor environment. They also have more affordable prices.

Although videos are captured from multiple views, the 3D reconstruction is per-

formed with one frame from each view at a time instance, as if one is reconstructing

different static objects one at a time. Therefore, the different videos must be synchro-

nized so that one is using the correct set of images for a specific “static object”. A

clapping of hand before and after the calibration session is used as a visual and acoustic

event for synchronization of these camcorders which are set to run at the same frame

rate. And then approximately 25 to 30 synchronized frames of different checkerboard

poses are taken from all the views. Without confusion, both the cameras taking multiple

pictures and the camcorders are called “cameras” in the rest of the thesis.

Camera calibration has been widely studied in [Zhang (2007); Svoboda et al. (2005)],
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and the details are not presented here. For the datasets captured in this thesis, I

used Jean-Yves Bouguet’s checkerboard calibration method1 based on [Zhang (2007)],

followed with a bundle adjustment to recover the cameras’ poses in the world coordinate

system.

The camera intrinsics (focal length, skew, optical center, radial distortion factors)

and the extrinsics (translation and orientation) with respect to the checkerboard pose

of the first frame can be recovered. Since this checkerboard pose is the same across

the synchronized camera views, it can be treated as the basis of the world coordinate

system and the camera network extrinsics in that frame are thus recovered. Since

cameras facing opposite to one another would be impossible to see the same checkerboard

pose, in practice, three to four cameras with small enough viewing angle difference are

calibrated as one group. Multiple calibration groups are carried out to recover the

complete camera network, as long as there are overlapping cameras in the groups that

can link all groups together. Followed with a final global bundle adjustment of the

complete camera network parameters.

A more convenient approach that can calibrate the complete set of cameras all at

once is introduced in [Svoboda et al. (2005)], which uses a laser pointer or a diffuse light

bulb as a calibration target and moves it around the reconstruction space. The method

works well with synchronized cameras indoors. However tracking a laser dot or a light

bulb in outdoor sunlight is not very robust. In Chapter 6 an extension of this method

using a big spherical calibration target is introduced to calibrate heterogeneous network

of camcorders and ToF cameras, which has very low image resolution and only respond

to light that is emitted from the sensor itself.

Recently, visual content, such as observations of a dynamic subject’s silhouette, have

been used to calibrate large-scale camera networks [Sinha et al. (2004)]. This method

only requires a dynamic shape, such as a person, moving in the common scene performing

1http://www.vision.caltech.edu/bouguetj/calib doc/
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arbitrary actions. An extension of the method does not require that the cameras are

synchronized [Sinha and Pollefeys (2004)]. However, a major constraint for the method

is the relatively high quality silhouette segmentation in every view, which is hard to

guarantee in natural environment as discussed later on in this chapter.

2.2 Dynamic Scene Reconstruction

Given the calibrated camera network, existing methods use various image cues to deduce

and construct geometrical object models. The two main cues used frequently are the

silhouettes of the object of interest and color consistency information. The former is

used to form a 3D approximation shape of the original object, the visual hull. The latter

is used to pinpoint and triangulate a surface coherent with the conjunction of observed

colors in images. Additional geometrical constraints such as surface smoothness are often

used to help deduce the information or fill in the gaps where image data is inconclusive.

All existing methods are generally successful in controlled environments, where the

lighting is constrained and the viewing conditions used to obtain images of objects

are optimal. They, however, face substantial difficulties when brought outdoors or in

generally unconstrained environments.

2.2.1 Silhouette-Based Methods

A common approach to multi-view reconstruction uses the silhouettes of objects as

sources of shape information. A 2D silhouette is the set of close contours that outline the

projection of the object onto the image plane, as well as the regions inside the contours.

A common representation is a binary mask image with black being background and

white being foreground, as shown on the left of Fig. 2.2.

The silhouette provides a strong cue for shape understanding. The back-projection

of the silhouettes from the camera optical center form generalized “viewing cone”s, as
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Figure 2.2: 1 Foreground silhouette and visual hull formation. Left: silhouette of the
teapot from one view (colored white); Right: back-projection of silhouettes from three
views (viewing cones) to intersect the visual hull of the teapot.

shown on the right of Fig. 2.2. The intersection of the viewing cones yields a reasonable

approximation of the real object. A “visual hull” is named by [Laurentini (1994)] to

describe such intersected volume with infinite number of viewpoints surrounding the

actual object.

A visual hull has a few special properties. First of all, it is the maximal object

that is consistent with all the silhouettes from the given viewpoints. This property is

sometimes called “conservativeness” of the visual hull, because the real shape, which is

also consistent with all the silhouettes, is guaranteed to be contained in the visual hull.

Secondly, every viewing cone can exclusively eliminate volumes outside of the cone.

However, no matter how many cameras are used, surface concavities are not re-

covered, due to self-occlusion. Notice the difference between “concavity” and “non-

convexity”: a visual hull is able to recover a “saddle region”, which is non-convex, as

shown in the teeth dents in Fig. 2.3, while the concave orbital area is never recovered.

One thing to point out is that although the original visual hull concept is based on

an infinite number of views, the above properties still hold for the shape recovered from

finite views. In fact, [Baumgart (1974)] originally introduced the visual hull idea with

1Fig. 2.2 adapted from [Matusik et al. (2000)].
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Figure 2.3: 1 Left: the same skull model as in Fig. 2.5; Right: its visual hull from 24
images. The non-convex teeth dents are recovered, but not the concavities around the
orbital and nasal area.

finite views in his PhD thesis. In the rest of this thesis, we only focus on the visual hull

reconstruction algorithms with finite number of views. But they are valid with infinite

views in theory.

Shape from silhouettes is a particularly good approach if only an approximate model

of the real world is required. The methodology is intuitive and easy to implement.

With the advances in computing powers, systems generating real-time 3D digital video

for dynamic reconstruction in studio-controlled environment are already on the market,

such as [StageTM (2007), 4D V iewTM(2008)]. Nevertheless, such systems are restricted

to a single solid shape within an indoor environment with strictly controlled conditions.

All such systems demand on the delicate process of silhouette extraction. If any

part of a single silhouette were corrupted, due to the exclusiveness of the viewing cone

carving, the corrupted parts would result in incomplete visual hull (which contradicts

the visual hull “conservativeness” property) and would never be recovered even if the

silhouettes from all other views are correctly computed. Unfortunately, so far, there

is no automatic solution that produces silhouettes with the quality as good as manual

segmentation. The technical detail about silhouette extraction is introduced later in

1Fig. 2.3 adapted from [Lazebnik et al. (2007)].
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Section 2.3.

2.2.2 Multi-view Stereo

Multi-view stereo algorithms recover 3D surface point locations by triangulating corre-

sponding visual features seen from different viewing angles, as shown in Fig. 2.4. Once

these sparse critical points are recovered, different kinds of smoothness constraints can

be applied to help recover the whole object surface. A common way to draw the feature

correspondences between views is to use the photo-consistency measures [Kutulakos and

Seitz (2000)]. Simply put, the resemblance between the pixels/patches in one image to

those in the other image is evaluated to see how well the two correlate. A thorough

survey is given in [Seitz et al. (2006)].

Figure 2.4: 1 Triangulation of 3D point Xj from four camera views. uij is the 2D
projection on image ℐ i with respect to camera Ci, where the camera index i ∈ {1, 2, 3, 4}.

Unlike the visual hulls, concave regions can be recovered as long as feature corre-

spondences in those regions can be triangulated from different camera views, Fig. 2.5

shows a few reconstruction examples. Another major advantage of multi-view stereo is

that the recovered surfaces are the exact shapes if triangulation is established for every

point on the surface. Therefore, even two views may produce some accurate surface

1The figure is modified from [Svoboda et al. (2005)].
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fragments, while a two-view visual hull is usually not satisfactory.

However, multi-view stereo algorithms generally only work well on highly textured

surfaces, where salient feature points are easy to find. In dynamic scene reconstruction

applications, especially human modeling, uniformly colored clothes are very common,

thus, it is difficult to find salient features on the person. Fig. 2.6 shows one of the

most commonly used scale-invariant features in vision community, the SIFT feature

detections [Lowe (2004)], in two sample outdoor frames. Most recovered SIFT features

are either on the background structures or at the boundary of the silhouette. The

latter unfortunately consists of partial foreground and background pixel information,

and thus does not correspond to consistent features from a different view. Therefore,

most of the recovered feature points cannot be used to perform 3D triangulation. In

situations without many robust features, modern stereo methods, such as [Vogiatzis et al.

(2007); Sinha et al. (2007)], have to “reduce” to silhouette constraints with varieties of

smoothness regularization.

The second concern is the computation complexity. Unlike the straightforward visual

hull algorithms which can reach real-time performance, multi-view stereo algorithms

usually involves much slower optimization processes to get the detailed surfaces. From

[Middlebury (2009)] dataset evaluation, the fastest GPU accelerated algorithms take tens

of seconds to output a final shape. It is not generally an issue for static scene modeling,

where the reconstruction quality is the main concern. However, for the dynamic scene

modeling, these methods are not feasible for real-time applications.

The third concern is the self-occlusion problem. Since the 3D point triangulation

requires at least two views of the same surface point from different perspectives, in order

to obtain as many corresponding features as possible, neighboring cameras should not

be too far apart. In practice, most of the existing successful multi-view stereo techniques

exploit tens or hundreds of views of a single static object, such as in [Pollefeys et al.

(2004); Seitz et al. (2006)]. This mainly works for static scenes where a camera can be
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Figure 2.5: 1 The multi-view stereo reconstruction examples. Above: skull
dataset(closed surface); Below: fountain dataset(open surface); Left: one of the original
images; Right: recovered surfaces. Notice the bottom row, the shape does not require
to be closed when using multi-view stereo.

moved around, but is not practical for dynamic scene modeling where different views

need to be obtained at the same time. Multiple cameras are thus required to model the

latter case.

An additional concern is the color consistency constraint. Besides pixel intensity,

pixel color consistency is often used as a multi-view stereo correspondence measure,

such as in [Kutulakos and Seitz (2000); Bonet and Viola (1999)]. The multiple color

channels contain more information than the pixel intensity and thus produce more ac-

curate 3D point correspondence. However, besides many heuristics discussed in [Larsen

(2006)], it requires the cameras from all views should be photometrically calibrated. Al-

though many advance algorithms have been proposed for camera network photometric

1The skull and fountain results are from [Sinha et al. (2007)] and [Strecha et al. (2004)] respectively.
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calibration as in [Kim (2008)], it is in general a tedious manual task [Ilie and Welch

(2005)]. The color inconsistency issue has been further investigated in Fig. 4.4 in Chap-

ter 4, where one can see how different the views of the same object are in a scene without

photometric calibration. Such significant difference normally makes multi-view stereo

algorithms fail.

Figure 2.6: The SIFT features extracted for two outdoor frames. Most of the recov-
ered salient features are on the silhouette boundary of the foreground shape or in the
background.

2.2.3 Comparison and My Choice

From the previous sections, one can see that both silhouette based and multi-view stereo

algorithms have beneficial properties but challenges remain in multi-view dynamic scene

modeling, especially in uncontrolled outdoor environments. Comparatively, when mod-

eling dynamic shapes, such as humans, silhouette based methods do give closed shapes,

no matter how weak the observation information is. This is not the case for multi-view

stereo methods. In fact, as mentioned earlier, some multi-view stereo algorithms rely

on a silhouette based visual hull as a coarse approximation of the shape and build a

more detailed shape upon that. In terms of computation complexity, given the hard-

ware currently available on the market, silhouette based methods are more practical

than multi-view stereo for real-time modeling.
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Given the above concerns, the main focus of this thesis is therefore on the challenges

of silhouette based methods, especially on how to robustly use silhouette information

from multiple views, how to deal with the visual occlusions, how to distinguish multiple

dynamic shapes in cluttered environment, and how to effectively make use of temporal

consistency given multi-view videos over time.

In the rest of this chapter, I will give an overview of basic automatic silhouette

extraction techniques, describing why silhouette extraction is a difficult task in natural

scenes. I will also survey silhouette based reconstruction algorithms, including various

visual hull representations that researchers have proposed over the years. Among those

representations, the probabilistic occupancy grid is the major building block of the

algorithms introduced in this thesis.

2.3 Silhouette Extraction

There are mainly two types of algorithms. The first uses appearance models such as

the active contour shape [Kass et al. (1987)] to compute the silhouette boundary, and

track it between frames. These algorithms do not require the cameras be static. But the

computation involves energy minimization. Depending on the choice of the appearance

measurement and energy design, the tracking result may be slow and may not be the

exact desired solution. Overtime, the tracked silhouettes may drift away from the correct

shape boundary, especially in some noisy image sequences.

Another commonly used automatic silhouette extraction algorithm is “background

subtraction”. It is the basis of the silhouette extraction method used in this thesis. The

name comes from the simple technique of subtracting ℐ, an observed image of the shape,

from ℬ, an image of the empty scene and thresholding the result to generate the binary

silhouette of the shape, as described in [Heikkila and Silven (1999)]. Since an empty

background image is required in advance, this algorithm is suitable for fixed camera
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views. The algorithm itself usually only involves local pixel color examination, which is

much easier than active contour energy minimization and involves intensity evaluation

of the whole image. The basic background subtraction algorithm [Heikkila and Silven

(1999)] as well as the probabilistic modification are introduced as follows.

A pixel p is labeled as the foreground if

ℐp − ℬp > �, (2.1)

where � is a predefined threshold. Then the binary image is evaluated with a 3 × 3

kernel to discard small regions.

This simple subtraction inequality only works with an ideal static background. When

sensor noise is taken into account, the pixel color observation of the scene is not a

constant, but follows a probabilistic sensor model with a certain noise distribution. The

most common noise model is an n-dimensional Gaussian model, where n is the number

of color channels of the pixel readout. Suppose the camera output is an RGB color

image, for every pixel, the background color model can be written as

ℬp ∼ N (�RGB,ΣRGB), (2.2)

where �RGB and ΣRGB are respectively the mean vector and covariance matrix of the

RGB channels at p, and N denotes the normal distribution. ℬp explains the probability

of a given pixel color to be background, namely p(ℐp∣ℬp). The probability distribution

can be learned with a few training images in advance. As for the foreground appear-

ance model ℱp , namely p(ℐp∣ℱp), since the dynamic object can take an arbitrary color,

without any prior knowledge, one can assume it to be a uniform distribution. Sup-

pose each RGB channel has been discretized to 256 intensity levels, then theoretically

p(ℐp∣ℱp) = 1/2563. However, in practice, some colors never show up due to the com-

position of the actual scene, color space approximation or even the sensing range of the
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camera. This implies that the colors actually being observed should have greater chance

than 1/2563. Therefore, usually a constant value c larger than 1/2563 is used for the

uniform distribution. Formally put,

ℱp = c > 1/2563. (2.3)

A pixel p is labeled as foreground if

p(ℱp∣ℐp) > �. (2.4)

Using Bayes rule, one can easily rewrite the left side of Eq. 2.4 as follows.

p(ℱp∣ℐp) =
p(ℐp∣ℱp)p(ℱp)

p(ℐp)
=

p(ℐp∣ℱp)p(ℱp)
p(ℐp∣ℬp)p(ℬp) + p(ℐp∣ℱp)p(ℱp)

, (2.5)

where p(ℬp) and p(ℱp) are the prior probabilities of an image pixel being labeled as the

background and foreground respectively.

Notice the background model described here is a per-pixel model without assuming

any spatial consistency between the neighboring pixels. Thus the algorithm is paral-

lelizable, and can gain tremendous speedup when ported to a GPU. This is yet another

reason to choose the background subtraction algorithm for silhouette extraction. Details

about the GPU acceleration are discussed in Chapter 3. Although one could argue for

the use of more advanced mathematical tools such as Markov Random Field (MRF)

to model the spatial coherences and eliminate a few falsely classified local pixels, e.g.

[Ahn et al. (2006)], the general per-pixel model described above is the core for most

background subtraction algorithms, and is good enough for many applications. The

sub-index p in ℐp, ℬp and ℱp are omitted for simplicity afterwards, when not otherwise

specified.

So far, background subtraction is based on a static background hypothesis which is
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often not the case in real environments. With indoor scenes, reflections or soft shadows

lead to background changes. Similarly, the static background assumption has difficulties

with outdoor scenes, due to wind, clouds, hard shadows, or background motion (motion

in the background that is not of the interest, such as tree leaves flickering, people walking

at a distance etc.). An example of an outdoor result using Eq. 2.4 is shown in Fig. 2.7,

where the shadows and tree leaves are mislabeled as part of the foreground silhouette.

Figure 2.7: The silhouette from background subtraction. Left: an outdoor scene with
a person; Middle: the trained mean background; Right: the silhouette(white) by thesh-
olding the per-pixel background probability computed from Eq. 2.4. The shadow is
labeled as a part of the silhouette.

The background variation problem can be tackled by background updating algo-

rithms [Toyama et al. (1999)] and with Gaussian Mixed Models (GMM) instead of the

näıve normal distribution [Stauffer and Grimson (1999)]. However, complex background

models are computationally more expensive. Additionally, the online update of the back-

ground model often gets confused with very slow foreground motion. For example, a

seated person would gradually fade into the background, which is not desirable for sil-

houette extraction. An alternative is to find robust features. For example, robust color

features alleviate the problem of illumination variations, e.g. [Finlayson et al. (1996)],

but the trade-off is that a more robust color coordinate often means less discriminative

power.

In addition to all of the challenges mentioned above, for silhouette extraction, a

very critical problem with background subtraction is the existence of static occluders in
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many scenes. An “occluder” in this thesis context is a potential visual obstacle that,

from a certain viewing direction, may be visually occluding the subject to be modeled.

For example, the metallic sculpture in Fig. 1.1. Since the sculpture is not movable

in this case, the background model trained in advance would have the sculpture as

part of the background. Consequently, when a person goes behind the sculpture, the

occluded pixels would still take the color of the sculpture, which is consistent with the

trained background model. Such phenomenon together with shadows and reflections are

illustrated in Fig. 2.8. As discussed before, such an incomplete silhouette is disastrous

for visual hull construction, because every missing bit in any silhouette view will carve

away some part belonging to the real shape.

Figure 2.8: Background subtraction results of incomplete silhouettes outdoors. Left: a
person behind the metallic sculpture; Middle: the trained mean background; Right: the
foreground silhouette probability without thesholding with black and white denoting 0.0
and 1.0 respectively.

Two related problems are also worth noting. First, if a person goes out of a scene

(whether partially or entirely) from one camera view, the visual hull would not be

correctly constructed. In this case, the camera field-of-view(FOV) can be taken as if it

casts a big occluder outside the view. This means the dynamic shape’s moving space

is constrained by the intersection of the camera network’s FOVs. Hence comes the
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dilemma: the more cameras used, the better visual hull approximates the real shape,

but at the same time, the smaller freedom of motion for the subject. This limits the

potential of the multi-view systems in practice. People have come up with algorithms

such as camera view selection, which only uses the views that contain the whole subject

shape for visual hull construction. But the criterion to determine silhouette completeness

is non-trivial. An algorithm that does not require such camera view selection is discussed

in Section 2.4.2 and is extended to solve the static occluder problem in Chapter 3.

Second, when the foreground object color happens to be similar to the background

color of certain pixels, Eq. 2.4 & 2.5 would classify the pixel as background. In Fig. 2.7,

the missing hair at the top of the person is because of this. Given a natural scene, this

problem tends to happen only for individual pixels and in individual time instants, but

not consistently happen on a specific foreground region (e.g. the hair) when the subject

moves between locations. Therefore, this problem can be largely overcome by consid-

ering spatially and temporally neighboring information. It could also be alleviated by

a more specific foreground object appearance model rather than just a uniform fore-

ground model as in Eq. 2.3. The ideas mentioned above have been used in algorithms

in Chapter 4 and 5.

2.4 Visual Hull Reconstruction

Visual hull algorithms have a long development history. The original focus was the geo-

metric properties of the reconstruction. Therefore, the majority of the early algorithms

are deterministic, e.g. they start from perfect binary silhouettes obtained in controlled

laboratory scenes or from manual segmentation. Recently, attention has been drawn to

the lack of robustness of the algorithms due to the silhouette extraction noise sensitiv-

ity. The probabilistic sensor fusion framework is gradually gaining popularity, because it

tries to postpone binary object boundary determination to the 3D reconstruction stage.
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2.4.1 Deterministic Approaches

Except some hybrid approaches, such as [Boyer and Franco (2003)], most of the de-

terministic approaches fall into two categories: (1) surface approaches that focus on a

surface representation of the visual hull and (2) volumetric approaches that focus on

the volume of the visual hull and usually rely on a discretization of 3D space. A third

category exists that computes a view dependent visual hull image from an arbitrary

viewpoint [Matusik et al. (2000)]. This method does not require recovery of the explicit

3D models, which although is useful in many applications, is not the major concern of

this thesis. All deterministic approaches suffer from corrupted silhouette computation.

Surface Representation

The final output of this category of algorithms is the visual hull surface, which is cre-

ated by analyzing the silhouette boundaries in the images. [Baumgart (1974)] proposed

the earliest approach to compute a polyhedral representation of objects from silhou-

ette contours, approximated by polygons. A number of approaches assume the local

smoothness of the reconstructed surface [Koenderink (1984); Giblin and Weiss (1987);

Cipolla and Blake (1992); Vaillant and Faugeras (1992); Boyer and Berger (1997)], and

compute the rim points based on a second-order approximation of the surface, from

epipolar correspondences.

More recent methods [Cross and Zisserman (1998); Kang et al. (2001); Brand et al.

(2004); Liang and K.Wong (2005)] exploit the duality that exists between points and

planes in 3D space, and estimate the dual of the surface tangent planes as defined by

silhouette contour points. More recent approaches [Matusik et al. (2001); Shlyakhter

et al. (2001); Lazebnik et al. (2007); Franco and Boyer (2009)] extend the image rendering

and multi-view geometry concepts to produce view-independent polyhedral models. The

most important contribution of these newer algorithms is the reduction of 3D polyhedral

intersections to 2D computation. But similar to previous approaches, singularities due
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to calibration errors or local surface topology near the frontier points have to be dealt

with explicitly and carefully.

Volume Representation

A 3D solid volume is the final output of this category of algorithms, which is usually in

the form of discretized unit cells—the voxels. Unlike surface algorithms, the computation

is consistent with the image formation procedure. Every voxel is projected from its 3D

location to the silhouette images of every camera view. Only the voxels whose projections

fall into the silhouette regions in all camera views are considered visual hull voxels and

kept. Others are carved away. After all voxels are evaluated, a discretized visual hull

approximation is computed.

Various schemes have been proposed to discretize the 3D space, ranging from the

basic fixed grid representations with orthogonal axis-aligned voxels [Martin and Aggar-

wal (1983)], to adaptive or hierarchical decompositions of the scene volume [Chien and

Aggarwal (1986); Potmesil (1987); Srivastava (1990); Szeliski (1993)]. Some applications

have an extra step to extract the object surface from the computed volume, using for

example the Marching Cube algorithm [W. Lorensen (1987)].

The volume based algorithms have inherent disadvantages. Even with very fine

discretization of the scene, they may still have aliasing artifacts depending on the camera

orientation and volume axes directions. But because these algorithms do not have the

numerical difficulties in the surface based algorithms as discussed in the previous section,

they are very popular as an initialization for other 3D shape refinement algorithms, such

as multi-view stereo. Also because they are simple to implement and easy to parallelize

on a GPU, they are often the backbone of many real-time, lab environment dynamic

scene modeling systems.
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2.4.2 Probabilistic Sensor Fusion

Since deterministic visual hull approaches suffer from unstable silhouette images, a more

robust way of 3D shape estimation is needed for noisy environments such as outdoor

scenes. Ideas to compute the visibility probability have been used in shape from photo-

consistency and multi-view stereo by [Bonet and Viola (1999); Broadhurst et al. (2001);

Yao and Calway (2003)]. A 3D spatial probabilistic occupancy grid concept, borrowed

from the robotics community to detect obstacles for robot navigation, is introduced by

[Franco and Boyer (2005)] into the shape from silhouette problems. Similar to volume

based visual hull approaches, the 3D space is discretized into a regular grid. Instead of

a hard decision from binary silhouette images, the algorithm computes the probability

of a voxel’s occupancy by fusing the silhouette information from all camera views.

In terms of probability theory, their goal is to compute the posterior occupancy

probability for every voxel given the observed silhouette information in all camera views

using Bayes’ rule. The silhouette information is modeled as a hidden random variable,

which is marginalized in the final formulation. This means no hard threshold is needed

to get a binary silhouette before the visual hull is computed, which is one of the main

source of instability in deterministic visual hull algorithms. A threshold step can be

conducted after the visual hull probability volume is computed, if a deterministic decision

is required. But compared to deterministic visual hull algorithms, such a hard decision

is postponed from the beginning (the binary silhouette extraction phase) to the very last

moment (the 3D surface extraction phase), thus maintaining the maximum robustness.

Since this probabilistic framework is the foundation of the algorithms introduced in

the later chapters, the variable notations and detailed fusion formulation are given as

follows.
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Figure 2.9: Voxel occupancy probability inference overview. Every voxel X is computed
from the observations of all camera views using Bayes’ rule.

Problem Formulation

Consider a single time instant for now. With an orthogonal axis-aligned equal-sized

discretization of the 3D space X , for every 3D location X in X , its probability of being

occupied by the dynamic object is computed, given a set of image observations ℐ from n

geometrically calibrated camera views. This occupancy probability is denoted as p(GX)

with GX the binary variable at X. The setup is shown in Fig. 2.9, where Li, i ∈ {1, ..., n},

denotes the n viewing lines going through the camera centers and X.

An intuitive assumption is that different views can be independently rendered with-

out the knowledge of other views. The background model for one view can be indepen-

dently trained.

A second assumption is that the space occupancy variable GX ∈ {0, 1} depends only

on the information along the optic rays that go through X, which may include not just

the single pixel that the voxel is projected onto, but a 2D neighborhood of pixels around

the voxel’s projection.

Yet another common occupancy grid assumption is that the voxel probability can

be independently inferred just from image observations, no 3D neighboring voxel status

26



Figure 2.10: Occupancy probability inference dependency graph. An arrow points from
a source node to a destination node, indicating the destination is caused by or depended
on the source node.

is needed. This assumption allows the tractability of the final probability computation.

This assumption is reasonable also because it has been successful in many deterministic

volumetric visual hull algorithms, where every voxel’s status is evaluated individually

against its projections onto the image pixels. Results show that the independent com-

putation, while not as exhaustive as a global search over all voxel configurations, still

provides very robust and usable shape estimation, at a much lower cost.

The sensor network relationship is modeled as the joint probability p(GX ,ℱ ,ℬ, ℐ).

Based on the statistical dependencies expressed in Fig. 2.10, the following decomposition

is proposed:

p(GX ,ℱ ,ℬ, ℐ) = p(ℬ)p(ℱ)p(GX)p(S∣GX)p(ℐ∣ℬ,ℱ ,S), (2.6)

where S is the binary latent variable introduced to model the silhouette information.

Both cases of S—a pixel being the foreground or background, are considered when

computing the final occupancy probability, thus maintaining the maximum robustness

to silhouette instability.

∙ p(ℬ), p(ℱ) are the prior probabilities of a pixel to be background and foreground,

which can be approximated statistically by the total background or foreground

pixels divided by the number of pixels in the video sequence.

∙ p(GX) is the prior likelihood for occupancy. Because this occupancy is at the top

of the causality chain in the dependency graph, this term is set to be uniform,

without favoring any locations.
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∙ p(S∣GX) is the silhouette likelihood term. The dependency reflects that the voxel

occupancy in the scene explains the object detection in images.

∙ p(ℐ∣ℬ,ℱ ,S) is the image likelihood term. Image colors are conditioned by object

detections in the images, and the knowledge of the pre-learned background and

uniformly-distributed foreground color models.

Based on the independence assumptions discussed earlier, Eq. 2.6 can be further

decomposed as:

p(GX ,ℱ ,ℬ, ℐ) = c
∏
i,p

p(Si,p ∣ GX)p(ℐi,p ∣ ℱi,p,ℬi,p,Si,p), (2.7)

where c denotes a constant encoding the uniform prior probabilities discussed before.

Once the terms in Eq. 2.7 are explained, the voxel occupancy inference can be carried

out following Bayes’ rule as:

p(GX ∣ℱ ,ℬ, ℐ) =

∑
S p(GX ,S,ℱ ,ℬ, ℐ)∑

GX , S p(GX ,S,ℱ ,ℬ, ℐ)
(2.8)

=

∏
i,p

∑
Si,p p(Si,p ∣ GX)p(ℐi,p ∣ ℱi,p,ℬi,p,Si,p)∑

GX

∏
i,p

∑
Si,p p(Si,p ∣ GX)p(ℐi,p ∣ ℱi,p,ℬi,p,Si,p)

.

In Eq. 2.8, p(ℐi,p ∣ ℱi,p,ℬi,p,Si,p) is the image formation term. If Si,p = 1, an object

detection occurred at pixel (i, p). The pixel color value is explained by the uniform

foreground model; if Si,p = 0, the pixel color value is explained by the background

model. Both the uniform foreground and Gaussian background models are obtained

following Eq. 2.2 & 2.3 respectively.

The only term left in Eq. 2.8 is p(Si,p ∣ GX), the silhouette formation term. It

models the silhouette detection response of a single pixel sensor (i, p) to the occupancy

state of voxel GX . Two local binary hidden variables—sampling variable A and external

detection cause variable ℰ—need to be introduced to model the uncertainty along the
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viewing ray of GX that may affect the silhouette status. For example, voxel GX may

not exactly lie on the viewing line of a pixel, due to potential camera calibration errors,

camera mis-synchronization, or simply because a voxel projection is larger than a pixel

region. Also, a silhouette may be formed by an object in front of GX along the viewing

ray, or sensor noise variations.

When voxel X is occupied (GX = 1), the silhouette detection at pixel (i, p) is con-

trolled by the sampling variable A:

p(S∣[GX = 1]) = p(A = 0) U(Si,p) (2.9)

+ p(A = 1) Pd(Si,p).

By definition, A = 0 if voxel X is not on the viewing line of pixel (i, p). In this

case, the knowledge of X’s occupancy is irrelevant to the sensor detection at (i, p).

Therefore, the uniform distribution U(Si,p) is used for the silhouette detection in Eq.

2.9. Otherwise, if the voxel is on the viewing line (A = 1), then the detection at the

pixel is ruled by the probability distribution Pd(Si,p). In practice, this distribution is set

using a constant PD ∈ [0, 1], which is a parameter of the system: Pd([Si,p = 1]) = PD

is the detection rate of a pixel sensor. PD models the silhouette detection rate, as

it happens in practice. The term p(A) is dependent on i, p and X. Both uniform

sampling and normal based sampling could be used depending on the required accuracy

and computation cost.

When voxel X is empty (GX = 0):

p(S∣[GX = 0]) = p(A = 0) U(Si,p) (2.10)

+ p(A = 1) [ p(ℰ = 1)Pd(Si,p) + p(ℰ = 0)Pf (Si,p) ].

When the voxel is not on the viewing line of p(A = 0), no knowledge can be inferred

about detection. Therefore the uniform distribution is used here again. When voxel
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X is on p’s viewing line (A = 1), one needs to also check if there is some other object

in front of X too. If yes, then pixel (i, p) is not explained by X. This is a simple

model to explain the visual occlusion relationship along a viewing line. By definition,

ℰ = 1 accounts for the possibility that some other object is on the same viewing line

but in front of X: in this case, the detection is again ruled by the distribution Pd(Si,p).

However, when no other object obstructs X on the viewing line (ℰ = 0), the detection

is ruled by the distribution Pf (Si,p), which is defined as a constant PFA ∈ [0, 1], another

parameter of the system: Pf ([Si,p = 1]) = PFA. It models the false alarm of a pixel

sensor, which occurs when the sensor falsely relates the presence of matter on its viewing

line, when in fact there is none. p(ℰ) is set to be yet another constant. Because there can

be detection anywhere along the viewing line of p, no further assumptions about these

causes are made. The constant p(ℰ) means detection is equally likely to be triggered by

the voxel occupancy or by the above causes.

Algorithm Experiment and Qualitative Evaluation

In [Franco and Boyer (2005)], an indoor dataset rond of 8 cameras is tested. A person

is walking in the scene captured by cameras at different image resolutions (640 × 480

and 780 × 580), but at the same frame rate (15 fps). As shown in Fig. 2.11, with

PD = 0.9, PFA = 0.1, and a uniform sampling 5×5 window for silhouette formation, the

computed occupancy volume itself is a good estimate of the dynamic shape. Although

the scene is in a controlled lighting environment, the silhouette segmentations still have

artifacts, as shown on the left in Fig. 2.12. But with the introduced probabilistic sensor

fusion, most of the system noise does not get much support from another camera at a

different viewing angle, and therefore is weakened in the final result. This phenomenon

is the key to the robustness of the algorithm.

The computation in the original paper is approximately 13 sec. per volume on a

1Fig. 2.11 & Fig. 2.12 courtesy of Jean-Sébastien Franco.
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Figure 2.11: 1 Color coded 1203 occupancy probability volume of rond sequence, with
PD = 0.9, PFA = 0.1, and a uniform sampling 5×5 window for the silhouette formation.

Figure 2.12: 1 Silhouette comparison between deterministic and probabilistic ap-
proaches. Left: silhouette extraction of deterministic approaches; Middle: maximum
intensity projection rendering of occupancy grid (1203) probabilities from original view-
points, with black pixels probability 0 and white pixels 1; Right: thresholded slice of
the middle column. Silhouette quality shows drastic improvement.
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2.4 GHz PC. Fortunately, similar to volumetric visual hull algorithms, all voxels in the

volume go through exactly the same computation procedure. Therefore, the algorithm

is generically parallelizable. A GPU acceleration of this algorithm with the nVidia

CUDATM general GPU programming tool is introduced in Chapter 3, which achieves

real-time computation with 8 or 9 camera views and a volume size of 1283 voxels.

Properties of the Probabilistic Sensor Fusion Result

The probabilistic output of the occupancy grid does not strictly follow the “conservative-

ness” property of the visual hull [Laurentini (1994)]. In other words, after thresholding

the probability volume, the output shape is not guaranteed to contain the entire shape.

However, the output can be taken as a robust shape estimate of the original object from

multiple camera views.

Another property of the occupancy grid is that the recovered shape is not only ro-

bust to the sensor noise, but also to the sensor failure or the “out of the field of view”

scenario. The second row of Fig. 2.12 indeed shows one example, where the person’s

arm is out of the camera view. But since most of the cameras see the arm, the final 3D

shape estimate still have very high occupancy probability at the arm voxels in Fig. 2.11.

Therefore, unlike many multi-view systems, such as [Gupta et al. (2007)], this proba-

bilistic approach does not require any explicit camera selection when the 3D object is

out of view. Moreover, this phenomenon gives some intuition into how to automatically

deal with visibility occlusions, as discussed in the following chapters.

In this chapter I have reviewed the state-of-the-art in dynamic scene reconstruction.

Visual hull, photo-consistency and multi-view stereo approaches are briefly discussed.

The most promising framework for the real-time performance appears to be the proba-

bilistic occupancy grid computation originated from the visual hull concept, which pays

additional attention on the robustness of the shape estimation.
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Chapter 3

Static Occluder (Visibility Obstacle)

Inference

In general environments, occlusion is a problem for shape-from-silhouette methods. It

can be categorized into (1) static occlusion and (2) dynamic shape inter-occlusion, both

of which decrease the reconstruction quality, yet are very common and almost unavoid-

able in real sequences. Static occlusion is the main focus of this chapter. Dynamic shape

inter-occlusion is discussed in Chapter 4.

3.1 Static Occluder Challenge

Static occlusions happen when a static object blocks the view of a dynamic object, such

as the sculpture blocking the person in Fig. 2.8 and Fig. 3.1. The static object is called

an “occluder”. Like the sculpture, occluders cannot always be removed from the scene

in advance, so their appearances are learned as a part of the background model if not

manually delineated. The problem with static occluder comes when a dynamic object

goes behind a static occluder, since the image does not differ from the background model

in this occluded region, these pixels still have high background probability. According

to background subtraction algorithms discussed as in Eq. 2.4, an incomplete silhouette

happens. Consequently, due to the intersection rule, such corrupted silhouettes result



in an incomplete visual hull.

Figure 3.1: Static occlusion problem in silhouette-based reconstruction method. (a) a
natural scene with unremovable complicated static occluders; (b) a camera frame during
a dynamic scene capturing; (c) manual segmentation of the foreground silhouette.

Generally detecting and accounting for occlusions has attracted the attention of

researchers for problems such as structure from motion [Favaro et al. (2003)], motion

and occlusion boundary detection [Apostoloff and Fitzgibbon (2005)]. The scope of

these works is however limited to extraction of sparse 2D features such as T-junctions

or edges to improve robustness of data estimation. Inter-object occlusions were implicitly

modeled in the context of voxel coloring approaches, using an iterative scheme with semi-

transparent voxels and multiple views of a scene from the same time instant [Bonet and

Viola (1999)]. [Brostow and Essa (1999); Zhou and Tao (2003); Guan et al. (2006)] all

propose 2D solutions for detecting one or several motion and occlusion layers for a single

camera view. [Stein and Hebert (2009)] show that learning motion and appearance cues

on super pixels in video frames can also generate more robust estimate of the boundary

location. Both 2D occlusion layers and boundary information can be used and accounted

for, when building the visual hull of dynamic objects [Guan et al. (2006)]. To the best
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of my knowledge, the method introduced in this chapter, based on [Guan et al. (2007)]

is the first to address the dense recovery of full 3D occluder shapes from multiple image

sequences.

Recently, [Keck and Davis (2008)] also proposed to explicitly model static occluders.

They use iterative EM framework that at each frame first solves the voxel occupancy

which then feeds back into the system by updating the occlusion model. Hard threshold

of silhouette information is required during initialization and the occluder information

is maintained in a 4D (a 3D space volume per camera view) state space. Also, the

usage of iterative refinement makes it only an off-line solution and hard for real-time

accelerations. The advantage of [Keck and Davis (2008)], is that it focuses on systems

with fewer cameras. Although three to four cameras may still be feasible, [Guan et al.

(2007)] use eight or more cameras simply to produce decent shape estimate.

Since publication, the proposed algorithm has been embedded in a dynamic scene

reconstruction system which incorporates multiple dynamic shape estimation and track-

ing as well as static occluder recovery [Guan et al. (2008b)]. It has been shown that

the recovery of occluders does help refine dynamic shapes. More details are discussed

in Section 3.4 and Chapter 4.

3.2 Intuition and Solution

Given video sequences from n fully calibrated cameras, observing a scene at discrete

time steps t ∈ {1, ..., T} where people, and more generally dynamic moving objects can

evolve. A set of background images of the scene, free from any dynamic object, have

previously been observed for each camera. Static occluder objects, whose appearance is

recorded in the background images of the scene, are present in the interaction space of

dynamic objects. They are thus liable to generate partial occlusions of dynamic objects,

with respect to one or several cameras.
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Figure 3.2: Deterministic occlusion reasoning. (a) An occluder-free region U t can be
deduced from the incomplete visual hull Vℋt at time t. (b) U : occluder-free regions
accumulated over time.

Theoretically, occluder shapes can be accessed with careful reasoning about the visual

hull of incomplete silhouettes (Fig. 3.2). Let St be the set of incomplete silhouettes

obtained at time t, and Vℋt the incomplete visual hull obtained using these silhouettes.

These entities are said to be incomplete because the silhouettes used are potentially

corrupted by static occluders that mask the silhouette extraction process. However, the

incomplete visual hull is a region that is observed by all cameras as being both occupied

by an object and unoccluded from any view. Thus an entire region U t of points in space

can be deduced that are free from any static occluder shape. U t is the set of points

X ∈ ℝ3 for which a view i exists, such that the viewing line of X from view i hits the

incomplete visual hull at a first visible point A, and X ∈ OA, with O the optical center

of view i (Fig. 3.2 (a)). The latter expresses the condition that X appears in front of

the visual hull with respect to view i. The region U t varies with t, thus assuming static

occluders and broad coverage of the scene by dynamic object motion, the free space in

the scene can be deduced as the region U =
∪T
t=1 U t. The shape of occluders, including

concavities if they were covered by object motion, can be recovered as the complement

of U in the common visibility region of all views (Fig. 3.2 (b)).

However this deterministic approach would yield a non-robust solution, due to the
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inherent silhouette sensitivity to noise. It also suffers from the limitation that only

portions of objects that are seen by all views can contribute to occlusion reasoning. In

addition, this scheme only accumulates negative information, where occluders are certain

not to be. However, positive information is also available to the problem: if one had

known or could take a good guess at where the object shape was, discrepancies between

the object’s projection and the actual silhouette recorded would tell where an occlusion

is happening. Thanks to the sensor fusion occupancy grid introduced in Chapter 2, it

can lift these limitations and provide a robust probabilistic solution.

Recall from Section 2.4.2, that the probabilistic occupancy grid has the property that

even if a part of the dynamic shape is out of a certain camera’s field of view, (e.g. the

person’s arm on the bottom row of Fig. 2.12), as long as majority of the cameras see the

object, the out-of-view parts still have high occupancy probability, as shown in Fig. 2.11.

In fact, one can think of the out-of-view scenario as a special case of static occlusion,

that the area outside of a camera field of view is equivalent to a big occluder. This

robustness is also true for general occlusions. As long as majorities of the camera views

can provide correct support, the occupancy grid would have high occupancy probability

in the occluded region.

Intuitively, one can project the computed occupancy probability grid to the occluded

view, with every pixel storing the maximum probability along the projection ray, sim-

ilar to the maximum intensity projection rendering result shown in Fig. 2.12. The

inconsistency between the “projected probabilistic dynamic shape” and the silhouette

information provided by the background model indicates occlusion event has happened

here. It tells that there may be occluders along the viewing ray (positive cue for oc-

cluder inference). On the other hand, for an occlusion-free view, the occupancy grid

projection is consistent with the silhouette cue obtained from the background model.

Such consistency indicates the viewing ray from the camera to the dynamic shape is

occlusion-free (negative cue for occluder inference).
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Given the robust sensor fusion framework for dynamic shape estimation, a second

occupancy grid is introduced to model the static occluder probabilistically, in which

all negative and positive cues are fused and compete in a complementary way toward

occluder shape estimation. Similar to the dynamic shape estimation, this occlusion

computation algorithm is also robust to natural scene variations.

3.3 Modeling

Figure 3.3: Occluder inference problem overview. (a) Geometric context of voxel X.
(b) Main statistical variables used to infer the occluder occupancy probability of X.
Gt,Ĝti ,Ǧti : dynamic object occupancies at relevant voxels at, in front of, behind X re-
spectively. O ,Ôti ,Ǒti : static occluder occupancies at, in front of, behind X. ℐti , ℬi:
colors and background color models observed where X projects in images.

Consider a scene observed by n calibrated cameras. Focus on the case of one scene

voxel with 3D position X among the possible coordinates in the lattice chosen for scene

discretization. The two possible states of occluder occupancy at this voxel are expressed

using a binary variable O. This state is assumed to be fixed over the entire experiment

in this setup under the assumption that the occluder is static. Clearly, the regions of

importance to infer O are the n viewing lines Li, i ∈ {1, ..., n}, as shown in Fig. 3.3(a).

Scene states are observed for a finite number of time instants t ∈ {1, ..., T}. In particular,

dynamic shape occupancies of voxel X at time t are expressed by a binary statistical

variable Gt, treated as an unobserved variable, which is computed using the formulation

introduced in Section 2.4.2. Notice that, the subscript X at GtX is omitted from now on

for clearer readability.
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Observed Variables

The voxel X projects to n image pixels xi, i ∈ {1, ..., n}, whose color observed at time t

in view i is expressed by the variable ℐti . Assume that static background images were

observed free of dynamic objects, and that the appearance and variability of background

colors for pixels xi was recorded and modeled using a set of parameters ℬi. Such obser-

vations can be used to infer the probability of dynamic object occupancy in the absence

of background occluders. Since the foreground model ℱ still follows the uniform distri-

bution, it is omitted for readability. The actual dynamic shape computation is exactly

the same as in Section 2.4.2. The problem of recovering occluder occupancy is more

complex because it requires modeling interactions between voxels on the same viewing

lines. Relevant statistical variables are shown in Fig. 3.3(b).

Viewing Line Modeling

Because of potential mutual occlusions, one must account for other occupancies along

the viewing lines of X to infer O. These can be either other static occluder states, or

dynamic object occupancies that vary across time. Several such occluders or objects can

be present along a viewing line, leading to a number of possible occupancy states for

voxels on the viewing line of X. Accounting for the combinatorial number of possibilities

for voxel states along X’s viewing line is neither necessary nor meaningful: first, because

occupancies of neighboring voxels are fundamentally correlated with the presence or

absence of a single common object; second, because the main useful information one

needs to make occlusion decisions about X is whether something is in front of it or

behind it, regardless of where the intervening object is along the viewing line.

The image pixel of the viewing line through Xalways falls into one of the following

three scenarios: (1) the pixel formation can be explained by the component in front

of X, if the voxel(s) are not all empty; (2) it can be explained by X, if all voxels in

front of Xis empty but Xis not; (3) it can be explained by the component at the back
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of Xwith respect to the camera view, if all space from the camera to Xincluding Xis

empty. With this in mind, each viewing line is modeled using three components, the

state of X, the state of occlusion of Xby anything in front and at the back of X. As

mentioned before, neighboring voxels’ states are highly correlated. Namely if a voxel has

a high probability of being occupied by a dynamic object, its neighbor is very likely to

have a high probability too. Therefore, the front and back components of Xare modeled

by extracting the two most influential modes in front and behind of X, that are given

by two voxels X̂ t
i and X̌ t

i with the highest occupancy probability. We select X̂ t
i as the

voxel at time t that most contributes to the belief that X is obstructed by a dynamic

object along Li, and X̌ t
i as the voxel most likely to be occupied by a dynamic object

behind X on Li at time t.

Viewing Line Unobserved Variables

With this three component modeling, comes a number of related statistical variables

illustrated in Fig. 3.3(b). The occupancy of voxels X̂ t
i and X̌ t

i by the visual hull of a

dynamic object at time t on Li is expressed by two binary state variables, respectively

Ĝti and Ǧti . Two binary state variables Ôti and Ǒti express the presence or absence of

an occluder at voxels X̂ t
i and X̌ t

i respectively. Note the difference in semantics between

the two variable groups Ĝti , Ǧti and Ôti , Ǒti . The former designates dynamic visual hull

occupancies of different time instants and chosen positions, while the latter expresses

static occluder occupancies, whose position only was chosen in relation to t. Both

need to be considered because they both influence the occupancy inference and are

not independent. For legibility, the conjunction of a group of variables is occasionally

referred to without indices and exponents, e.g. G = {G1, ...,GT}, ℬ = {ℬ1, ...,ℬn}.
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Figure 3.4: The dependency graph for the static occluder inference at voxel X, assuming
the probability for X to be G is known. Notice that the background model for each view
ℬi does not change with time, but just drawn duplicatedly for the clarity of the graph.

3.3.1 Joint Distribution

As a further step toward offering a tractable solution to occlusion occupancy inference,

the noisy interactions between the considered variables are described through the decom-

position of their joint probability distribution p(O,G, Ôti , Ĝti , Ǒti , Ǧti , ℐ,ℬ). According to

the dependency graph shown in Fig. 3.4 the following decomposition of the joint prob-

ability is proposed:

p(O,G, Ôti , Ĝti , Ǒti , Ǧti , ℐ,ℬ) = (3.1)

p(O)
T∏
t=1

p(Gt∣O)
n∏
i=1

p(Ôti)p(Ĝti ∣Ôti)p(Ǒti)p(Ǧti ∣Ǒti)p(ℐti ∣Ôti , Ĝti ,O,Gt, Ǒti , Ǧti ,ℬi),

where p(O), p(Ôti), p(Ǒti) are priors of occluder occupancy. They are set to a single

constant distribution PO which reflects the expected ratio between occluder and non-

occluder voxels in a scene. No particular region of space is to be favored a priori.
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3.3.2 Dynamic Occupancy Priors

Next, let us discuss p(Gt∣O), p(Ĝti ∣Ôti) and p(Ǧti ∣Ǒti). They are priors of dynamic visual

hull occupancy with identical semantics. This choice of terms reflects the following

modeling decisions. First, the dynamic visual hull occupancies involved are considered

independent of one another, as they synthesize the information of three distinct regions

for each viewing line. However, they depend upon the knowledge of occluder occupancy

at the corresponding voxel position, because occluder and dynamic object occupancies

are mutually exclusive at a given scene location. Importantly, one has no direct access

to dynamic object occupancies but to the occupancies of its visual hull. Fortunately, this

ambiguity can be adequately modeled in a Bayesian framework by introducing a local

hidden variable C expressing the correlation between dynamic and occluder occupancy:

p(Gt∣O) =
∑
C

p(C)p(Gt∣C,O). (3.2)

One can set p(C = 1) = Pc , a constant, expressing the prior belief about the

correlation between visual hull and occluder occupancy. The prior p(Gt∣C,O) explains

what is expected to be known about Gt given the state of C and O:

p(Gt = 1∣C = 0,O = !) = PGt ∀! (3.3)

p(Gt = 1∣C = 1,O = 0) = PGt (3.4)

p(Gt = 1∣C = 1,O = 1) = Pgo , (3.5)

with PGt the prior dynamic object occupancy probability as computed independently

of occlusions as in Section 2.4.2, and Pgo set close to 0, expressing that it is unlikely

that the voxel is occupied by dynamic object visual hulls when the voxel is known to

be occupied by an occluder and both dynamic and occluder occupancy are known to be

strongly correlated (Eq. 3.5). The probability of visual hull occupancy is given by the
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previously computed occupancy prior, in case of non-correlation (Eq. 3.3), or when the

states are correlated but occluder occupancy is known to be empty (Eq. 3.4).

3.3.3 Image Sensor Model

The sensor model p(ℐti ∣Ôti , Ĝti ,O,Gt, Ǒti , Ǧti ,ℬi) is governed by a hidden local per-pixel

process S. Similar to dynamic shape modeling, the binary variable S represents the

hidden silhouette detection state (0 or 1) at this pixel. It is unobserved information and

can be marginalized, given an adequate split into two subterms:

p(ℐti ∣Ôti , Ĝti ,O,Gt, Ǒti , Ǧti ,ℬi) (3.6)

=
∑
S

p(ℐti ∣S,ℬi)p(S∣Ôti , Ĝti ,O,Gt, Ǒti , Ǧti ).

The first term p(ℐti ∣S,ℬi) indicates what color distribution is expected given the

knowledge of silhouette detection, trained background color model and uniform fore-

ground model at this pixel.

The second part of the sensor model p(S∣Ôti , Ĝti ,O,Gt, Ǒti , Ǧti ) specifies what silhou-

ette state is expected to be observed given the three dominant occupancy state variables

of the corresponding viewing line. Since these are encountered in the order of visibility

X̂ t
i , X, X̌ t

i , the following relations hold:

p(S∣{Ôti , Ĝti ,O,Gt, Ǒti , Ǧti}={o, g, k, l,m, n},ℬi) (3.7)

=p(S∣{Ôti , Ĝti ,O,Gt, Ǒti , Ǧti}={0, 0, o, g, p, q},ℬi)

=p(S∣{Ôti , Ĝti ,O,Gt, Ǒti , Ǧti}={0, 0, 0, 0, o, g},ℬi)

=PS(S∣o, g) ∀(o, g) ∕= (0, 0) ∀(k, l,m, n, p, q).

These expressions convey two characteristics. First, that the form of this distribution
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is given by the first non-empty occupancy component in the order of visibility, regardless

of what is behind this component on the viewing line. Second, that the form of the

first non-empty component is given by an identical sensor prior PS(S∣o, g). The four

parametric distributions of PS(S∣o, g) are set as following:

PS(S = 1∣0, 0) = Pfa PS(S = 1∣1, 0) = Pfa (3.8)

PS(S = 1∣0, 1) = Pd PS(S = 1∣1, 1) = 0.5, (3.9)

Pfa ∈ [0, 1] and Pd ∈ [0, 1] are constants expressing the prior probability of false alarm

and the probability of detection, respectively. They can be chosen once for all datasets

as the method is not sensitive to the exact value of these priors. Meaningful values

for Pfa are close to 0, while Pd is generally close to 1. Eq. 3.8 expresses the cases

where no silhouette is expected to be detected in images, i.e. either when there are

no objects at all on the viewing line, or when the first encountered object is a static

occluder, respectively. Eq. 3.9 expresses two distinct cases. The first case is where a

dynamic object’s visual hull is encountered on the viewing line, in which case we expect

to detect a silhouette at the matching pixel. The second case is where both an occluder

and dynamic visual hull are present at the first non-free voxel. This is perfectly possible,

because the visual hull is an overestimate of the true dynamic object shape. While the

true shapes of objects and occluders are naturally mutually exclusive, the visual hull of

dynamic objects can overlap with occluder voxels. In this case the distribution is set to

uniform, because the silhouette detection state cannot be predicted: it can be caused

by shadows cast by dynamic objects on occluders in the scene, and noise.

3.3.4 Inference

Estimating the occluder occupancy at a voxel translates to estimating p(O∣ℐ,ℬ) in

Bayesian terms. Applying Bayes’ rule to the modeled joint probability (Eq. 3.1) leads
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to the following expression, once hidden variable sums are decomposed to factor out

terms not required at each level of the sum:

p(O∣ℐ,ℬ) =
1

c
p(O)

T∏
t=1

⎛⎝∑
Gt
p(Gt∣O)

(
n∏
i=1

P ti

)⎞⎠ (3.10)

where

P ti =
∑
Ǒt

i ,Ǧti

p(Ǒti)p(Ǧti ∣Ǒti)
∑
Ôt

i ,Ĝti

p(Ôti)p(Ĝti ∣Ôti) p(ℐti ∣Ôti , Ĝti ,O,Gt, Ǒti , Ǧti ,ℬi). (3.11)

P ti expresses the contribution of view i at a time t. The formulation of Eq. 3.10

therefore expresses Bayesian fusion over the various observed time instants and avail-

able views, with marginalization over unknown viewing line states. The normalization

constant c is easily obtained by ensuring that the distribution sums to 1.

3.3.5 Online Incremental Computation

Occlusion information is not gathered from all views at the same time. As the dynamic

shape moves around in the scene, different viewing angles may have gathered occlusion

cues at different times. Due to calibration errors and other sources of noise, one should

not trust the observation of a voxel from just one camera view. Only when occlusion

cues of a voxel have been gathered from all camera views, can one reliably compute the

voxel’s occluder probability. Another critical reason to have such a reliability term is

because if information is obtained from a single view, one only knows that the occlusion

is happening somewhere along the viewing line, but has no idea of where exactly in 3D

until a second view gathers enough knowledge so that 3D triangulation can be performed.

To determine the reliability of voxels, one needs to model the intuition that voxels

whose occlusion cues arise from an abnormally low number of views should not be
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trusted. Since this involves all cameras and their observations jointly, the inclusion of

this constraint in the initial model would break the symmetry in the inference formulated

in Eq. 3.10 and defeat the possibility for online updates. Instead, a second criterion is

used in the form of a reliability measure R ∈ [0, 1]. Small values indicate poor coverage

of dynamic objects, while large values indicate sufficient cue accumulation. One can

define reliability using the following expression:

R =
1

n

n∑
i=1

max
t

(1− PĜti )PǦti , (3.12)

where PĜti and PǦti the prior probabilities of dynamic visual hull occupancy. R examines,

for each camera i, the maximum occurrence of X across the complete video sequence

duration to be both unoccluded and in front of a dynamic object. This determines how

well a given view i was able to contribute to the estimation across the sequence. R then

averages these values across views, to measure the overall quality of observation, and

underlying coverage of dynamic object motion for the purpose of occlusion inference.

The reliability R can be used online in conjunction to the occlusion probability

estimation to evaluate a conservative occluder shape at all times, by only considering

voxels for which R exceeds a certain quality threshold. As shown in Section 3.4, it can be

used to reduce the sensitivity to noise in regions of space that have only been observed

marginally.

3.3.6 Accounting for Occlusion in Dynamic Shape Estimation

As more data becomes available and reliable, the results of occluder estimation can be

accounted for when inferring the occupancies of dynamic objects. This translates to

the evaluation of p(G� ∣ℐ�ℬ) for a given voxel X and time � . The difference with the

single-frame formulation of dynamic object occupancy in Section 2.4.2 is that a prior

over the occlusions at every voxel in the grid is now known. For this inference, G� is
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considered independent of Gt ∀t ∕= � , leading to the following simplified joint probability

distribution:

p(O)p(G� ∣O)
n∏
i=1

p(Ô�i )p(Ĝ�i ∣Ô�i )p(ℐ�i ∣Ô�i , Ĝ�i ,O,G�,ℬi),

where G� and O are the dynamic and occluder occupancy at the inferred voxel, Ô�i ,

Ĝ�i the variables matching the most influential component along Li, in front of X.

This component is selected as the voxel whose prior of being occupied is maximal, as

computed to date by occlusion inference. In this inference, there is no need to consider

voxels behind X, because knowledge about their occlusion occupancy has no influence

on X’s state.

The parametric forms of this distribution have identical semantics as in Section

3.3.1 but different assignments because of the nature of the inference. Naturally, no

prior information about dynamic occupancy is assumed here. p(O) and p(Ô�i ) are set

using the result to date of Eq. 3.10 at their respective voxels, as prior. p(G� ∣O) and

p(Ĝ�i ∣Ô�i ) are constant: p(G� = 1∣O = 0) = 0.5 expresses a uniform prior for dynamic

objects when the voxel is known to be occluder free. p(G� = 1∣O = 1) = Pgo expresses a

low prior of dynamic visual hull occupancy given the knowledge of occluder occupancy,

as in Eq. 3.5. The term p(ℐ�i ∣Ô�i , Ĝ�i ,O,G� ,ℬi) is set same as Eq. 3.7, only stripped of

the influence of Ǒ�i , Ǧ�i .

Notice that the formulation introduced here is an extension of that in Section 2.4.2.

In order to make such a model feasible, one can assume that O follows a uniform

occluder distribution at first, and change it to the reliable occluder distribution after

the dynamic shape has explored the scene well enough, so that the dynamic computation

can be refined with the accumulated knowledge about the static environment.
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3.4 Results and Evaluation

3.4.1 Sensor Model Summary

Figure 3.5: Regions of influence of a mono-camera sensor among the various voxels of a
scene, as described by the proposed model.

The core of the occlusion formulation is controlled by five parameters Po , Pgo , Pc ,

Pd and Pfa . If two dynamic objects are perfectly known to occupy space in regions Ω1

and Ω2 (Fig. 3.5), various regions of importance appear in the occlusion inference, for

a given camera and time instant. N1 and N2 are regions where the current view does

not contribute and the inference reverts to the prior Po : N1 because it is outside of

the viewing cone of dynamic objects, N2 because it is obstructed by an actual dynamic

object Ω1. E projects to a positive silhouette response area in the image and the

probability of occluder occupancy is thus deduced to be low. D projects to an image

area with low silhouette response, despite being in front of Ω1, thus it is deduced that

an occluder is probably in this region. The strength of the contribution in these regions

depends on the confidence in observations, as expressed by Pd and Pfa . Finally, Ω1

and Ω2 also contribute directly to the estimation through Pc and Pgo : a higher Pc and

lower Pgo give more weight to the mutual exclusivity constraint between occluders and

dynamic objects and thus lead to lower occluder probabilities in these regions.

Depending on the actual probabilities of silhouette response and on the prior prob-

abilities of the dynamic occupancy in regions Ω1 and Ω2, actual voxel contributions

exhibit a mixture of these different behaviors in practice, which the model automati-
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cally combines. Values given to the model parameters could be learned using training

data. Nevertheless, the inference has low sensitivity to small changes of these param-

eters, and they are sufficiently generic and intuitive that setting them manually for a

large number of different sequences is possible. Throughout the experiments described

in this section, a single set of parameters is used: Po = 0.15, Pgo = 0.001, Pc = 0.5,

Pd = 0.8 and Pfa = 0.1.

3.4.2 Occlusion Inference Results

Figure 3.6: Occluder shape retrieval results (best viewed in color). Sequences: (a)
pillar , (b) sculpture , (c) chair . 1) Scene overview. Note the harsh light, difficult
backgrounds for (a) and (b), and specularity of the sculpture, causing no significant
modeling failure. 2-3) Occluder inference according to Eq. 3.10. Blue: neutral regions
(prior Po ), red: high probability regions. Brighter/clear regions indicate the inferred
absence of occluders. Fine levels of detail are modeled, sometimes lost—mostly to cali-
bration. In (a) the structure’s steps are also detected. 4) Same inference with additional
exclusion of zones with reliability R under 0.8. Peripheral noise and marginally observed
regions are eliminated. The background protruding shape in (c3) is due to a single oc-
clusion from view (c1), thus yielding the viewing cone of the occluder as expected. This
shows why the reliability term is important.
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The approach is tested on several multi-view sequences: the pillar and sculp-

ture sequences which are acquired outdoors, and the chair sequence, acquired indoors,

with combined artificial and natural light from large bay windows. In all sequences 9 DV

cameras surround the scene of interest, background models are learned in the absence

of moving objects. One or several people then walk around and through the occluder

in each scene. The shape of the people is estimated at each time step and used as prior

to occlusion inference. The data is used to compute an estimate of the occluder’s shape

using Eq. 3.10. Results are presented in Fig. 3.6.

All cameras are recording at 30Hz. Color calibration is unnecessary because the

model uses silhouette information only. The background model is learned per-view us-

ing a single Gaussian color model per pixel, and training images. Although simple,

the model proves sufficient, even in outdoor sequences subject to background motion,

foreground object shadows, and substantial illumination changes, illustrating the strong

robustness of the method to difficult real conditions. The method can cope well with

background mis-classifications that do not lead to large coherent false positive dynamic

object estimations: pedestrians are routinely seen in the background for the sculp-

ture and pillar sequences (e.g. Fig. 3.6(a1)), without any significant corruption of

the inference.

Adjacent frames in the input videos contain largely redundant information for oc-

cluder modeling, thus videos can safely be subsampled. pillar was processed using

50% of the frames (1053 frames processed), sculpture and chair with 10% (160 and

168 processed frames respectively). Processing of both dynamic and occluder occupancy

was handled on a 2.8 GHz PC at approximately 1 timestep per minute. The very strong

locality inherent to the algorithm and preliminary benchmarks suggest that real-time

performance could be achieved using a GPU implementation. Occluder information

does not need to be processed for every frame because of adjacent frame redundancy,

opening the possibility for online, asynchronous cooperative computation of occluder
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Figure 3.7: Online inference analysis and ground truth visual hull comparison, using
pillar dataset, focusing on a slice including the middle pillar (best viewed in color).
(a) Frames 109, 400 and 1053, inferred using Eq. 3.10. (b) Same frames, this time
excluding zones with reliability under 0.8 (reverted here to 0.5). (c) Number of voxels
compared to ground truth visual hull across time.

and dynamic objects at interactive frame rates.

3.4.3 Online Computation Results

All experiments can be computed using incremental inference updates. Fig. 3.7 depicts

the inference’s progression, using the sensor fusion formulation alone or in combination

with the reliability criterion. For the purpose of this experiment, the pillar sequence

is used and the occluder is manually segmented in each view for a ground truth compar-

ison, and a subregion of the scene is analyzed in which the expected behaviors are well

isolated. Fig. 3.7 shows that both schemes converge reasonably close to the visual hull

of the considered pillar. In scenes with concave parts accessible to dynamic objects, the

estimation would carve into concavities and reach a better estimate than the occluder’s

visual hull. A somewhat larger volume is reached with both schemes in this example.

This is attributable to calibration errors which over-tightens the visual hull with respect
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Figure 3.8: (a) Person shape estimate from pillar sequence, as occluded by the right-
most pillar and computed without accounting for occlusion. (b) Same situation ac-
counting for occlusion, showing better completeness of the estimate. (c) Volume plot
in both cases. Accounting for occlusion leads to more stable estimates across time, de-
creases false positives and overestimates due to shadows cast on occluders (I), increases
estimation probabilities in case of occlusion (II).

to the true silhouettes, and accumulation of errors in both schemes toward the end of the

sequence. Those are traced to the redundant, periodical poses contained in the video,

that sustain consistent noise (e.g. the person periodically walks close to the pillar). This

suggests the existence of an optimal finite number of frames to be used for processing.

Jolts can be observed in both volumes corresponding to instants where the person walks

behind the pillar, thereby adding positive contributions to the inference. Use of the

reliability criterion contributes lowers the sensitivity to noise, and gives a conservative

estimate of the occluder volume as the curves show in frames 100-200. Raw inference

Eq. 3.10 momentarily yields large hypothetical occluder volumes when data is biased

toward contributions of an abnormally low subset of views (frame 109).

3.4.4 Accounting for Occlusion in Dynamic Shape Inference

The formulation of Section 3.3.6 can be used to account for the accumulated occluder in-

formation in dynamic shape inference. Only occlusion cues from reliable voxels (R > 0.8)

are used to minimize false positive occluder estimates, whose excessive presence would
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lead to sustained errors. While in many cases the original dynamic object formulation

from Section 2.4.2 performs robustly, a number of situations benefit from the additional

occlusion knowledge (Fig. 3.8). Person volume estimates can be obtained when account-

ing for occluders. These estimates appear on average to be a stable multiple of the real

volume of the person, which depends mainly on camera configuration. This suggests a

possible biometrics application of the method, for disambiguation of person recognition

based on computed volumes.

3.5 GPU Acceleration

Since the scene involves dynamic activities, ideally the algorithm should be real-time.

But it is not achieved on CPU implementation. The optimized CPU version of the

dynamic shape volume computation algorithm runs 11.1317 sec per time instant for a

grid size of 1283, and 9 camera views of 720 by 480 RGB images on a AMD AthlonTM

64x2 Dual Core 4800, 2.41GHz, 2.0G RAM machine.

However, one may have noticed that most of the computation process is the same for

every voxel. Intuitively, this means the algorithm can be parallelized. In this section, a

GPU implementation based on CUDA unified pipeline version on nVIDIA’s G80 graphics

hardware is introduced.

3.5.1 Algorithm Analysis

Foreground Inference

Background color RGB Gaussian model has to be trained for every pixel in a camera

view in advance. Assume that the background stays the same during the capturing, for

every time instant, given the background model and a new image frame, the silhouette

probability of a pixel is computed. Using this information from all views, the posterior

probability of a 3D space voxel to be occupied by a dynamic object can be inferred. In
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fact, voxel occupancy probability can be reliably computed from its corresponding pixels

along the camera-viewing ray. Therefore, assuming neighboring voxel occupancies are

independent, the inference procedure is the same for every voxel.

Occluder Inference

After the dynamic shape is computed, the occlusion events at every voxel position are

examined by looking at inconsistency between the computed dynamic shape volume and

the silhouette information from the background models at image views. As discussed

before, this inconsistency happens when the dynamic objects has been occluded in the

same view, while some other views still give positive information for dynamic shape

occupancy. For a voxel in the occluder volume, again, only the corresponding camera-

viewing rays need to be examined. The major difference is that one needs to know

the maximum values of dynamic shape occupancy probability along the viewing ray in

the direction forwards and backwards from the voxel being examined. The examination

requires view-dependent ordering, which is the most challenging part for parallelization.

Once the peak information is computed, the rest is almost the same information fusion

process as dynamic shape volume inference. A merging of the accumulated occluder

computed at each time instant is needed to get a final grid, which is again very easy to

parallelize.

Algorithm Complexity Analysis

In Section 3.3.5, a term R is introduced for every occluder voxel to model how reliable

its value already is, given the inference up to the current time instant. The CPU

implementation complexity chart is given in Fig. 3.9. For the current GPU version this

term is not implemented yet, and according to the chart, it does not affect the total

complexity of the algorithm and can be added easily too.

The CPU version is bounded by O(fnN3), where f is the number of frames, n is the

54



Figure 3.9: CPU occupancy grid algorithm complexity analysis, including both dynamic
shape and static occluder computation.

number of cameras, N is the side length. Most of the computations are on the voxels,

which makes GPU parallelization feasible. It is unlikely that all temporary volumes can

be stored in memory, which means one might need to re-design the data flow for GPU

implementation. The most time-consuming process is the “peak-finding” in the occluder

grid computation step, which takes O(2nN3) time complexity for every time instant.

Peak Finding—Brute force method

For every voxel, the brute-force algorithm would traverse the viewing ray for all n

camera views, which takes nN times, therefore the whole algorithm takes O(nN4).

This algorithm is very slow, but because it is implemented on a voxel basis, it takes

the advantage of parallelization. One definitely can make this implementation together

with occluder probability inference in a single function, thus reduce the data transfer

time between the CPU and GPU. This algorithm takes the camera projection matrices,

foreground volume, pre-computed background probability images from all cameras as

input and computes two accumulating values, namely Eq. 3.10, and the final occluder
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probability as output. However, the implementation shows that it takes more than 4

minutes to compute one time instant, which is much slower than optimized CPU version.

Therefore, it is definitely not acceptable for a real-time solution.

Peak Finding—Divide and conquer method

What is actually implemented in the final GPU version is splitting the peak finding

process and the occluder inference process. More specifically, one can pre-compute

two volumes storing “peak-in-the-front” and “peak-behind” values for each voxel from

one camera direction, compute the intermediate marginalization probability result in a

temporary volume, and move on to next camera direction. For each direction, a 2D image

is used to store the maximum value along the viewing ray so far has been swept, and

sequentially test 2D slices along the direction in the 3D volume against this 2D image.

While this reduces the time complexity to O(N3), two 2D images have to be kept to

store the current “peak-in-the-front” and “peak-behind” values when the sweeping plan

traveling the 3D volume in the “front-to-back” and “back-to-front” order with respect

to the camera direction. Four more volumes are also needed to store the temporary

probability result, since the algorithm is computing every camera view separately first

and merging them in the final step.

Peak Finding—Cache-friendly divide and conquer method

Since the plane sweeping direction depends on the camera view orientation, for a certain

camera view, the plane sequential value access may be not local at all, for which the

operating system may be constantly transferring data pieces in and out of the cache.

This actually has a huge impact on the speed of the peak finding. From the “Peak finding

analysis” in Section 3.5.3, one can see that it might take about 2 times more to complete

the peak finding process for a cache-unfriendly direction than a cache-friendly one as

CPU implementation. However, since the cache-friendly CPU version requires ordered
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traversal, which prevents parallelization, the GPU version cannot really benefit from

it. Therefore, the final GPU implementation goes with the cache-unfriendly version as

described in the previous section. However, there might still have room in this direction

for speedup.

3.5.2 GPGP Solution

nVIDIA’s G80 and above graphics cards plus CUDA provides a programming environ-

ment similar to traditional C programming language to code algorithms for execution

on the GPU. The divide-and-conquer method data flow is implemented as in Fig. 3.10.

Input data as texture

In CUDA, various types of memories can be accessed by the hardware with different

access time. Texture memory is cached, so a texture sampling costs one memory read

from device only on a cache miss. However, texture memory is read only. Therefore, it

should be used to store constant values that are used frequently. Therefore the camera

projection matrices are assigned into textures, because these parameters are used for

every voxel location, and their values remain un-changed during the whole computation.

This immediately doubles the speed of dynamic shape computation.

The most recommended feature of CUDA is its shared memory mechanism. Shared

memory can be accessed much faster than global memory. However, in terms of data

size and thread interaction, no place in the implementation would possibly benefit from

this mechanism. This may be a direction of further improvement though.

Intermediate result handling

The function “Peak Finding” assigns values for a 2D slice of 3D volume, and is called

N times to complete the peak volume for a certain camera direction. The computed

slices are stored on GPU and are not read back to CPU. For later “After Peak Finding”
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Figure 3.10: The data flow for GPGP CUDA version, including foreground and occlu-
sion inference. The light blue color indicates inputs, of which the checker box pattern
indicates inputs as textures. The pink color indicates outputs. Gray boxes are function
names, and the white boxes are intermediate results. Best viewed in color.

58



function and “Occluder Voxel Computation” function, the results are directly read from

GPU and thus do not send the peak volumes from CPU to GPU again. This also gains

a speedup from 2.5 second per time instant to 1.8 second per time instant.

3.5.3 Result and Comparison

Throughput and Timing

The optimized CPU version of the algorithm runs 29.1317 second per time instant for

a grid size of 1283, and 9 camera views of 720 by 480 RGB images on an AMD Athlon

64x2 Dual Core 4800, 2.41GHz, 2.0GB RAM machine on single thread.

Figure 3.11: Chart of throughput and timing.

The chart of Fig. 3.11 shows the statistics of throughput and function computation

time. The CUDA version is tested on an Intel Core2 6600, 2.40GHz, 2.0GB RAM. The

CPU writing to the hard disc is one of the main bottlenecks in data transferring for now.

fread/fwrite in C are used to perform the file reading/saving. It takes almost 2 times

more for saving than reading. More analysis should be addressed for this issue. For

improvements, one can do a cached streaming for reading and a separate CPU thread
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for compressing and output. The GPU data bandwidth is around 70 times faster than

CPU. The CPU/GPU data transfer only takes 0.02 second to complete. Therefore,

one can ignore this part of the overhead for now. Deeper analysis should be on how

to achieve the best result by changing block/grid sizes [nVidia (2009)]. Currently, for

silhouette probability image pre-computation, the block size cannot be set over 30 by

30, and since the image size is 720 by 480, the block size is set to be 20. For dynamic

shape volume computation, the card will not load the executable file if the block size is

set to 16 by 16, so 8 by 8 is used for the 1283 volume.

Foreground computation on different hardware architectures

The maximum performances of the pure foreground computation are listed as follows. In

this part, the CPU version and CUDA version are compared, together with a traditional

GPU version (vertex-fragment-shader style) of foreground computation. The tests are

all performed on an AMD Athlon 64x2 Dual Core 4800, 2.41GHz, 2.0GB RAM machine.

This has included the CPU to GPU and GPU to CPU data transfer time. From Fig. 3.12,

one can see that CUDA version for the foreground computation is the best among the

three.

Figure 3.12: Performance chart of dynamic shape computation with CPU and GPU
versions.

The reason that CUDA version is twice as fast as the traditional GPU version is not

fully investigated. However, the unified shader pipeline tends to simplify a lot of the

redundancy in setting up the input and output formats and the function calls.
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Peak finding analysis

The brute-force algorithm takes around 4 minutes to finish the peak finding for 9 cam-

eras, so no further discussion is addressed on this O(nN4) algorithm. The divide-and-

conquer method reduces the time to around 1.8 second per time instant on an Intel

Core2 6600, 2.40GHz, 2.0GB RAM machine. However, as shown in Fig. 3.13 of the 9

camera views, depending on the specific camera orientation, it is almost 3.5 times to

compute a z direction sweeping path than an x direction one. This has everything to

do with the caching missing in z direction sweeping on GPU. In other words, depending

on the camera orientations, the method might take 0.9 seconds to 3.15 seconds to run

the peak finding for 9 cameras.

Figure 3.13: GPU occluder computation peak finding analysis.

3.5.4 GPU implementation summary

Dynamic shape volume inference from multiple camera videos has been implemented

based on the new unified shader nVIDIA G80 pipeline. The complete algorithm gets a

speedup of around 15 times. The dynamic shape computation alone reaches a speed-up

of more than 80 times and a frame-rate of 0.2 second per frame on the test-machines,

which is already satisfactory for real-time applications.

Although the static occluder computation is far from real time yet (0.9 seconds to

3.15 seconds per time instant), as a complete dynamic scene modeling system, this

speedup is already feasible. This is because the static occluder inference is based on

dynamic shape occluding cues. Within the time of seconds, the dynamic shape has not

changed its location much yet, therefore the occluding cue is redundant for occluder

computation anyway.
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Future works mainly follow the direction of CUDA architecture in a more cache-

friendly manner. Grid-size/block-size influence and shared memory usage for peak find-

ing in the occlude volume computation stage also require further analysis. Structures

that are more delicate can be used for background probability computation. For ex-

ample, one really does not need to pre-compute the complete images because the 3D

volume may not reach all parts of the image. Another direction is to make more use of

the cached texture as the foreground volume, this might alleviate the bottleneck of peak

finding, although the cache misses still exist. In short, as the development of the new

parallel processing hardware, such as true 3D grid computation, double precision accu-

racy, etc. the real-time implementation of the algorithm will finally be achieved. After

integration with volume rendering and video capturing pipeline, the ultimate goal of an

automatic/semi-automatic real-time dynamic scene analysis system can be achieved.

3.6 Further Discussion

Properties of Static Occluder Shape

The computed occluder shape is in a probabilistic form. Its counterpart in the deter-

ministic representation is given in Fig. 3.2. Since it is formed by carving away dynamic

shapes, it has some unique properties that are different from the traditional visual hull.

Consider a dynamic shape D with infinitesimal volume. I define a “visibility Hull” as

an approximation volume to a static occluder recovered with a infinitesimal volume dy-

namic shape D moving randomly about for long enough time that the recovered shape

does not change anymore. It can be shown that the visibility hull of the occluder is the

combination of regions that only one camera or no camera can see, where the dynamic

object D’s visual hull cannot be recovered. The actual occluder region also belongs to

the “no camera visible region”. In Fig. 3.14 (a) and (b), the thick black lines delineate

the visibility hull. In comparison, in Fig. 3.14 (c) and (d), the thick black lines delineate
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the visual hull of the occluder, supposing the silhouette of the object is known. The

visual hull is the region formed by intersecting the back-projections of all the cameras’

silhouettes.

Figure 3.14: 2D theoretical visibility hull and visual hull. (a) 3 camera visibility hull; (b)
4 camera visibility hull; (c) 3 camera visual hull; (d) 4 camera visual hull. Concavities
can be recovered by visibility hull. Best viewed in color.

Fig. 3.14 shows that unlike the visual hull, the visibility hull can recover concavities.

In fact, when cameras are distributed all over space, the actual shape of an arbitrary

static occluder can be recovered. (In fact, it is a sufficient but not necessary condition,

finite number of cameras sometimes may also be capable of this.) However, the visibility

hull shape is highly dependent on the camera placement. As (a) shows, the visibility

hull may even not be closed. For visibility hull, there is no lower bound number to

guarantee the closed shape. Although the visibility hull in (b) is closed, if the fourth

camera changes its orientation or position, this may be open again. On the contrary,

only two silhouettes from different views can guarantee a closed visual hull, which is the

minimum number of cameras required for a visual hull.
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Given the above analysis, some empirical requirements for good quality occluder

estimation are summarized as follows:

∙ There is no guarantee that how many cameras would produce closed occluder

shape. But when the size of the occluder is small relative to the camera focal

length, or the occluder position is far enough from the cameras, so that the region

where only one camera can see the dynamic shape is limited, a closed occluder

shape can usually be recovered through the algorithm in this chapter.

∙ For a region behind the occluder, where no camera view has sampled, the algorithm

cannot infer any information. For example, the algorithm does not recover the wall,

for a person is hiding completely behind it. In this case, the person’s occupancy

is not recovered in the first place. One solution may be to add more camera views

behind the wall.

∙ Since the closed dynamic shape is required (needs at least two camera views), plus

an occluded view for the occluding incidence, at least three cameras are required

for the occluder inference in theory.

What Happens with Multiple Dynamic Shapes?

In the formulation, all dynamic objects are treated as a single object as being occupied

by G. This may introduce ambiguity when objects go too close to one another. But

even with such additional noise, the algorithm is still robust enough to recover the

occluder probability volume correctly. This is mainly due to the automatic correction

of information with accumulation over time. Fig. 3.15 shows a two people result of

the SCULPTURE dataset. In the next chapter, an algorithm is proposed to refine the

dynamic shape estimation with multiple people scenario.
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Figure 3.15: sculpture occluder recovered from two people sequence.

3.6.1 Conclusion

In this chapter, a method has been proposed to detect and build the dense 3D shape

of occluders indirectly observed through the motion of dynamic objects in a scene, in

calibrated videos obtained from multiple views. The proposed Bayesian sensor formu-

lation provides a useful probabilistic occluder representation, enabling detection and

online accumulation of occluder information, and cooperative estimation of occluder

and dynamic object shapes. The prposed framework is robust to noise and avoids hard

decisions about scene state. This new approach can lead to promising applications.

Shape-from-occlusion could prove useful in conditions where segmenting objects is diffi-

cult or does not make sense, and using a moving object is easier, when all cameras do not

have a complete view of the occluder for example. Visual media such as infrared images

exhibiting cold static objects of interest, inseparable from a broader cold background,

could be used for modeling using a third, warm moving object. Detecting occlusions
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using this method can be helpful for a number of vision problems related to modeling,

not limited to silhouette-based approaches. Many extensions are possible, such as au-

tomatic detection of changes in occluder configuration, cooperative background color

model updates and occlusion estimation, and integration of other cues such as color and

texture.
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Chapter 4

Multiple Dynamic Shape Modeling and

Tracking

In the previous chapter, we introduced an algorithm to recover a static occluder given an

occluding event with dynamic object(s). Occlusions may also occur between two or more

dynamic objects, as shown in Fig. 3.15. With the increase of such “inter-occlusions”, the

discriminatory power of the silhouettes decreases, resulting in the reconstructed shapes

much larger in volume than the real objects. In fact, when multiple dynamic objects

clutter the scene, the visibility ambiguity in general increases, no matter if two dynamic

objects are occluding each other or if they are well-separated.

Most shape-from-silhouette techniques use a bianry-classification of space occupancy

and silhouettes, based on image regions that match or disagree with a static background

appearance model. Binary silhouette information becomes insufficient to unambiguously

carve 3D space regions as the number and density of dynamic objects increases. In

such difficult scenes, multi-view stereo methods suffer from visibility problems, and

rely on color calibration procedures difficult to apply outdoors. In this chapter a new

algorithm is proposed to automatically detect and reconstruct scenes with a variable

number of dynamic objects. The formulation distinguishes between m different shapes in

the scene by using automatically learnt view-specific appearance models, eliminating the

color calibration requirement. Bayesian reasoning is then applied to solve the m-shape



occupancy problem, with m updated as objects enter or leave the scene. Results show

that this method yields multiple silhouette-based estimates that drastically improve

scene reconstructions over traditional two label silhouette scene analysis. This enables

the method to also efficiently deal with multi-person tracking problems.

4.1 Intuition and Related Works

The ability of visual hull algorithms to capture the dynamic scenes degrades as the

number of objects in the scene increases. In such cases the binary silhouettes are am-

biguous in distinguishing between regions actually occupied by objects and unfortunate

silhouette-consistent “ghost” regions. Such regions have been analyzed in the context

of tracking applications to avoid committing to a “ghost” track [Otsuka and Mukawa

(2004)]. The method proposed in this chapter casts the problem of silhouette modeling

at the multi-object level, where ghosts can naturally be eliminated based on per-object

silhouette consistency. Multi-object silhouette reasoning has been applied in the context

of multi-object tracking [Mittal and Davis (2003); Fleuret et al. (2007)]. The reconstruc-

tion and occlusion problem has also been studied for the specific case of transparent

objects [Broadhurst et al. (2001)]. Recent tracking efforts also use 2D probabilistic oc-

clusion reasoning to improve object localization [Gupta et al. (2007)]. The algorithm

introduced in this chapter based on [Guan et al. (2008b)] is more general as it estimates

full 3D shapes and copes with 3D occlusions, both dynamic and static.

Perhaps the closest related work is the approach of [Ziegler et al. (2003)], which builds

3D models deterministically from multi-label user-provided silhouette segmentations.

The approach discussed in this chapter produces a more general probabilistic model

that accounts for process noise and requires little or no user intervention.

The ghost phenomenon occurs when the configuration of the scene is such that re-

gions of space occupied by objects of interest cannot be disambiguated from free-space
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Figure 4.1: The principle of multi-object silhouette reasoning for shape modeling dis-
ambiguation. Best viewed in color.

regions that also happen to project inside all silhouettes, as the polygonal gray region

in Fig. 4.1(a). Ghosts are increasingly likely as the number of observed objects rises,

because it then becomes more difficult to find views that visually separate objects in the

scene and carve out unoccupied regions of space. This problem is even aggravated for

robust probabilistic occupancy scheme as described in Section 2.4.2 [Franco and Boyer

(2005)], which do not strictly require silhouettes to be observed in every view. To ad-

dress this problem, a set of view-specific appearance models associated to m objects

in the scene is initialized and learned. The intuition is then that the probability of

confusing ambiguous regions with real objects decreases, because the silhouette set cor-

responding to ghosts is then drawn from non-object-consistent appearance model sets,

as in Fig. 4.1(b).

It is possible to process multiple silhouette labels in a deterministic, purely geomet-

ric fashion [Ziegler et al. (2003)], but this comes at the expense of an arbitrary hard

threshold for the number of views that define consistency. Silhouettes are then also

assumed to be manually given and noiseless, which is not realistic for automatic pro-

cessing. Using a volume representation of the 3D scene, multi-object sequences are thus

processed by examining each voxel in the scene using a Bayesian formulation (Section

4.2), which encodes the noisy causal relationship between the voxel and the pixels that

observe it in a generative sensor model. In particular, given the knowledge that a voxel

is occupied by a certain object among m possible in the scene, the sensor model defines
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the appearance distribution corresponding to that object. It also encodes state infor-

mation about the viewing line and potential obstructions from other objects, as well

as a localization prior used to enforce the compactness of objects, which can be used

to refine the estimate for a given instant of the sequence. The proposed method can

be seen as a multi-object generalization of previous probabilistic approaches focused on

2-label silhouette modeling in Section 2.4.2 and Chapter 3.

This scheme enables silhouette inference in Section 4.2.3 in a way that reinforces

regions of space which are drawn from the same conjunction of color distributions,

corresponding to one object, and penalizes inconsistent regions, while accounting for

object visibility. An algorithm in Section 4.3 is then proposed to integrate the inference

framework in a fully automatic system. Because they are mutually dependent, spe-

cific steps are proposed for the problems of initialization, appearance model estimation,

multi-object and occluder shape recovery.

4.2 Formulation

Consider a single time instant in this section. With a scene observed by n calibrated

cameras, a maximum of m dynamic objects of interest can be present. Let us focus on

the state of one voxel at position X chosen among the positions of the 3D lattice used to

discretize the scene. Assuming that a static appearance model for the background has

previously been observed, one can model how knowledge about the occupancy state of

voxel X influences image formation. Because of occlusion relationships arising between

objects, the zones of interest to infer the state of voxel X are its n viewing lines Li,

i ∈ {1, ..., n}, with respect the different views. Assume that some prior knowledge about

scene state is available for each voxel X in the lattice and can be used in the inference.

Various uses of this assumption will be demonstrated in Section 4.3. A number of

statistical variables are used to model the state of the scene, the image generation
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process and to infer G, as in figure Fig. 4.2.

Figure 4.2: Overview of main statistical variables and geometry. G is the occupancy
at voxel X and lives in a state space ℒ of object labels. {ℐi} are the color states
observed at the n pixels where X projects. {Gvji } are the states in ℒ of the most likely
obstructing voxels on the viewing line, for each of the m objects, enumerated in their
order of visibility {vj}i.

4.2.1 Statistical Variables

Scene voxel state space

The occupancy state of X is represented by the variable G. The difference of the

modeling from the previous chapter lies in the multi-labeling characteristic of G ∈ ℒ,

where ℒ is a set of labels {∅, 1, ...,m, u}. A voxel is either empty (∅), one of m objects

the model is keeping track of (numerical labels), or occupied by an unidentified object

(u). u acts as a default label capturing all objects that are detected as different than

background but not explicitly modeled by other labels, which proves useful for automatic

detection of new objects (Section 4.3.3). The notation G is an extension of the previous

chapters.
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Observed appearance

The voxel X projects to n camera views, with the projected pixel color denoted by ℐi

i ∈ {1, ..., n}. Assume these colors are drawn from a set of object-and-view-specific color

models whose parameters noted as ℱ li , where l ∈ ℒ. More complex appearance models

are possible using gradient or texture information, without loss of generality.

Latent viewing line variables

To account for inter-object occlusion, it is necessary to model the contents of viewing

lines and how they contribute to image formation. Assuming some a priori knowledge

about where objects lie in the scene is known, the presence of such objects can have an

impact on the inference of G because of the visibility of objects and how they affect G.

Intuitively, conclusive information about G cannot be obtained from a view i if a voxel

in front of G with respect to view i is occupied by another object, for example. However,

G directly influences the color observed if it is unoccluded and occupied by one of the

objects. But if G is known to be empty, then the color observed at pixel ℐi reflects the

appearance of objects behind X in image i, if any. These visibility intuitions are similar

to the ones in Chapter 3, and are formalized in detail below (Section 4.2.2).

It is not meaningful to account for the combinatorial number of occupancy possibil-

ities along the viewing rays of X. This is because neighboring voxel occupancies on the

viewing line usually reflect the presence of the same object and are therefore correlated.

In fact, assuming no more than one instance of every one of the m objects along the

viewing line is witnessed, the fundamental information that is required to reason about

X is the knowledge of presence and ordering of the objects along this line. To represent

this knowledge, as depicted in Fig. 4.2, assuming prior information about occupancies is

already available at each voxel, for each label l ∈ ℒ and each viewing line i ∈ {1, ..., n},

one can extract the voxel whose probability of occupancy is dominant for that label

on the viewing line. This corresponds to electing the voxels which best represent the
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m objects and have the most influence on the inference of G, and generalizes the peak

influence idea of Chapter 3. To account for this knowledge in the problem of inferring

X, a set of statistical occupancy variables Gli ∈ ℒ is introduced, corresponding to these

extracted voxels. Since only one time instant is considered, the superscript of Gli does

not have the same temporal meaning as in Chapter 3.

4.2.2 Dependencies

Several simplifications can be considered in the joint probability distribution of the set

of variables, that reflect the prior knowledge about the problem. To simplify the writing,

the conjunction of a set of variables is noted as following: G1:m
1:n = {Gli}i∈{1,...,n},l∈{1,...,m}.

The following decomposition for the joint probability distribution p(G,G1:m
1:n , ℐ1:n,ℱ1:m

1:n )

is proposed:

p(G)
∏
l∈ℒ

p(ℱ l1:n)
∏
i,l∈ℒ

p(Gli∣G)
∏
i

p(ℐi∣G,G1:m
i ,ℱ1:m

i ). (4.1)

The following is a detailed explanation of the above expression:

Prior terms p(G) carries prior information about the current voxel. This prior can

reflect different types of knowledge and constraints already acquired about G, e.g. lo-

calization information to guide the inference (Section 4.3). p(ℱ l1:n) is the prior over

the view-specific appearance models of a given object l. The prior, as written over the

conjunction of these parameters, could express expected relationships between the ap-

pearance models of different views, even if the cameras are not color-calibrated. Since

the focus in this chapter is on the learning of voxel X, this capability is not used here

and we assume p(ℱ l1:n) to be uniform.

Viewing line dependency terms The prior information along each viewing line is

represented using the m voxels most representative of the m objects, so as to model
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inter-object occlusion phenomena. However, when examining a particular label G = l,

keeping the occupancy information about Gli would lead to account for intra-object

occlusion phenomena, which in effect would lead the inference to favor mostly voxels

from the front visible surface of the object l. Because it is intended to model the volume

of object l, the influence of Gli is discarded, when G = l:

p(Gki ∣{G = l}) = P(Gki ) when k ∕= l (4.2)

p(Gli∣{G = l}) = �∅(Gli) ∀l ∈ ℒ, (4.3)

where P(Gki ) is a distribution reflecting the prior knowledge about Gki , and �∅(Gki ) is the

distribution giving all the weight to label ∅. In Eq. 4.3, p(Gli∣{G = l}) is thus enforced

to be empty when G is known to be representing label l, which ensures that the same

object is represented only once on the viewing line.

Image formation terms The image formation term p(ℐi∣G,G1:m
i ,ℱ1:m

i ) explains what

color one expects to observe given the knowledge of viewing line states and per-object

color models. Each such term is decomposed into two sub-terms by introducing a local

latent variable S ∈ ℒ representing the hidden silhouette state:

p(ℐi∣G,G1:m
i ,ℱ1:m

i ) =
∑
S

p(ℐi∣S,ℱ1:m
i )p(S∣G,G1:m

i ). (4.4)

The term p(ℐi∣S,ℱ1:m
i ) simply describes what color is likely to be observed in the im-

age given the knowledge of the silhouette state and the appearance models corresponding

to each object. It generalizes the p(ℐ∣S,ℬ,ℱ) term of Section 2.4.2 for multiple objects.

S acts as a mixture label: if {S = l} then ℐi is drawn from the color model ℱ li . For ob-

jects (l ∈ {1, ...,m}) Gaussian Mixture Models (GMM) [Stauffer and Grimson (1999)]

is typically used to efficiently summarize the appearance information of dynamic ob-

ject silhouettes. For background (l = ∅), per-pixel Gaussians are used as learned from
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pre-observed sequences, although other models are possible. When l = u the color is

drawn from the uniform distribution, as no assumption about the color of previously

unobserved objects is known.

Defining the silhouette formation term p(S∣G,G1:m
i ) requires that the variables be

considered in their visibility order, to model the occlusion possibilities. Note that this

order can be different from 1, ...,m. {Gvji }j∈{1,...,m} denotes the variables G1:m
i as enumer-

ated in the permuted order {vj}i reflecting their visibility ordering on Li. If {g}i denotes

the particular index after which the voxel X itself appears on Li, then the silhouette

formation term can be re-written as p(S∣Gv1i ⋅ ⋅ ⋅ G
vg
i ,G, Gvg+1

i ⋅ ⋅ ⋅ Gvmi ). A distribution of

the following form can then be assigned to this term:

p(S∣∅ ⋅ ⋅ ⋅ ∅ l ∗ ⋅ ⋅ ⋅∗) = dl(S) with l ∕= ∅ (4.5)

p(S∣∅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ∅) = d∅(S), , (4.6)

where dk(S), k ∈ ℒ is a family of distributions giving strong weight to label k and lower

equal weight to others, determined by a constant probability of detection Pd ∈ [0, 1]:

dk(S = k) = Pd and dk(S ∕= k) = 1−Pd

∣ℒ∣−1
to ensure summation to 1. Eq. 4.5 thus expresses

that the silhouette pixel state reflects the state of the first visible non-empty voxel on

the viewing line, regardless of the state of voxels behind it (“*”). Eq. 4.6 expresses the

particular case where no occupied voxel lies on the viewing line, the only case where

the state of S should be background: d∅(S) ensures that ℐi is mostly drawn from the

background appearance model in Section 4.4.1.

4.2.3 Inference

Estimating the occupancy at voxelX translates to estimating p(G∣ℐ1:n, ℱ1:m
1:n ) in Bayesian

terms. Bayes’ rule is applied using the joint probability distribution, marginalizing out
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the unobserved variables G1:m
1:n :

p(G∣ℐ1:n ℱ1:m
1:n ) =

1

c

∑
G1:m1:n

p(G, G1:m
1:n , ℐ1:n, ℱ1:m

1:n ) (4.7)

=
1

c
p(G)

n∏
i=1

f 1
i (4.8)

where fki =
∑
Gvki

p(Gvki ∣G)fk+1
i for k < m (4.9)

and fmi =
∑
Gvmi

p(Gvmi ∣G)p(ℐi∣G, G1:m
i , ℱ1:m

i ). (4.10)

The normalization constant c is easily obtained by ensuring that the distribution

sums to 1: c =
∑
G,G1:m1:n

p(G, G1:m
1:n , ℐ1:n, ℱ1:m

1:n ). Eq. 4.7 is the direct application of Bayes

rule, with the marginalization of latent variables. The sum in this form is intractable,

thus the sum in Eq. 4.8 is factorized. The sequence of m functions fki specify how

to recursively compute the marginalization with the sums of individual Gki variables

appropriately subsumed, so as to factor out terms not required at each level of the sum.

Because of the particular form of silhouette terms in Eq. 4.5, this sum can be efficiently

computed by noting that all terms after a first occupied voxel of the same visibility rank

k share a term of identical value in p(ℐi∣∅ ⋅ ⋅ ⋅ ∅ {Gvki = l} ∗ ⋅ ⋅ ⋅ ∗) = Pl(ℐi). They can be

factored out of the remaining sum, which sums to 1 being a sum of terms of a probability

distribution, leading to the following simplification of Eq. 4.9, ∀k ∈ {1, ⋅ ⋅ ⋅ ,m− 1}:

fki = p(Gvki =∅∣G)fk+1
i +

∑
l ∕=∅

p(Gvki = l∣G)Pl(ℐi). (4.11)

4.3 3D Modeling and Localization Algorithm

Section 4.2 presents a generic framework to infer the occupancy probability of a voxel

X and thus deduce how likely it is for X to belong to one of m objects. Some additional

work is required to use it to model objects in practice. The formulation explains how to
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compute the occupancy of X if some occupancy information about the viewing lines is

already known. Thus the algorithm needs to be initialized with a coarse shape estimate,

whose computation is discussed in Section 4.3.1. Intuitively, object shape estimation

and tracking are complementary and mutually helpful tasks. Section 4.3.2 explains

how object localization information is computed and used in the modeling. To be fully

automatic, our method uses the inference label u to detect objects not yet assigned to

a given label and learn their appearance models (Section 4.3.3). Finally, it has been

shown that static occluders can be computed using silhouette occlusion reasoning as

discussed in Chapter 3 [Guan et al. (2007)]. This reasoning can easily be integrated in

the current approach and help the inference be robust to static occluders (Section 4.3.4).

The algorithm at every time instant is summarized in Fig. 4.3.

Figure 4.3: Multi-shape dynamic scene reconstruction algorithm.

4.3.1 Shape Initialization and Refinement

The proposed formulation relies on some available prior knowledge about the scene

occupancies and dynamic object ordering. Thus, part of the occupancy problem must

be solved to bootstrap the algorithm. Fortunately, using multi-label silhouette inference
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with no prior knowledge about occupancies or consideration for inter-object occlusions

provides a decent initial m-occupancy estimate. This simpler inference case can easily

be formulated by simplifying occlusion related variables from Eq. 4.8:

p(G∣ℐ1:n, ℱ1:m
1:n ) =

1

c
p(G)

n∏
i=1

p(ℐi∣G, ℱ1:m
i ). (4.12)

This coarse inference can then be used to initialize a second, refined inference, this

time accounting for viewing line obstructions, given the voxel priors p(G) and P(Gji ) of

Eq. 4.2 computed from the coarse inference. The prior p(G) is then used to introduce

soft constraints to the inference. This is possible by using the coarse inference result as

the input of a simple localization scheme, and using the localization information in p(G)

to enforce a compactness prior over the m objects, as discussed in Section 4.3.2.

4.3.2 Object Localization

The localization prior can be used to enforce the compactness of objects in the inference

steps. For the particular case where walking people represent the dynamic objects,

one can take advantage of the underlying structure of the dataset, by projecting the

maximum probability over a vertical voxel column on the horizontal reference plane.

Then the most likely position of objects is localized by sliding a fixed-size window over

the resulting 2D probability map for each object. The resulting center is subsequently

used to initialize p(G), using a cylindrical spatial prior. This favors objects localized in

one and only one portion of the scene and is intended as a soft guide to the inference.

Although simple, this tracking scheme is shown to outperform state of the art methods

(Section 4.4.2), thanks to the rich shape and occlusion information modeled.
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4.3.3 Automatic Detection of New Objects

The main information about objects used by the proposed method is their set of appear-

ances in the different views. These sets can be learned offline by segmenting each ob-

served object alone in a clear, uncluttered scene before processing multi-objects scenes.

More generally, one can initialize object color models in the scene automatically. To

detect new objects, label u’s object location and volume size can be computed during

the coarse inference, and is used to track the unknown volume just like other objects

as described in Section 4.3.2. A new dynamic object inference label is created (and m

incremented), if all of the following criteria are satisfied:

∙ The entrance is only at the scene boundaries;

∙ Label u’s volume size is larger than a threshold;

∙ Subsequent updates of U ’s track are bounded.

To build the color model of the new object, the maximum voxel probability along

the viewing ray is projected to the camera view, which is then thresholded to form a

“silhouette mask”. Pixels within the mask are chosen as training samples for a GMM

appearance model. Samples are only collected from unoccluded silhouette portions of

the object, which can be verified from the inference. Because the cameras may be badly

color-calibrated, an appearance model is trained for each camera view separately. This

approach is fully evaluated in Section 4.4.1.

4.3.4 Occluder computation

The algorithm introduced in Chapter 3 [Guan et al. (2007)] computes dynamic object

binary occupancy distributions at every voxel. It then analyzes the presence of dynamic

object dominant probabilities of occupancy in front and behind of the voxel on its

viewing lines, for every view and passed time instant of the sequence. Such dominant

occupancies are then used to accumulate cues about occluder occupancy at the current
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inferred voxel. The same formulation can easily be used and extended with the analysis

presented in this chapter. At every time instant the dominant occupancy probabilities

of m objects are already extracted; the two dominant occupancies in front and behind

the current voxel X can be used in the occupancy inference formulation of Chapter 3.

The occlusion occupancy inference then benefits from the disambiguation inherent to

multi-silhouette reasoning.

4.4 Result and Evaluation

Four multi-view sequences are used to validate the approach. Eight 30Hz 720 by 480 DV

cameras surrounding the scene in a semi-circle are used for the cluster, sculpture

and bench sequences. lab dataset is from [Gupta et al. (2007)].

Cam. No. Dynamic Obj. No. Occluder

cluster (outdoor) 8 5 no

bench (outdoor) 8 0 - 3 yes

lab (indoor) 15 4 no

sculpture (outdoor) 9 2 yes

Cameras in each data sequence are geometrically calibrated but not color calibrated.

The background model is learned per-view using a single Gaussian color model at ev-

ery pixel, with training images. Although simple, the model proves sufficient, even in

outdoor sequences subject to background motion, foreground object shadows, window

reflections and substantial illumination changes, showing the robustness of the method

to difficult real conditions.

For dynamic object appearance models of the cluster, lab and sculpture data

sets, an RGB GMM model is trained for each person in each view with manually seg-

mented foreground images. This is done offline. For the bench sequence however,

appearance models are initialized online automatically.
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The time complexity is O(nmN3), with n the number of cameras, m the number of

objects in the scene, and N3 the scene volume resolution. The data sets are processed

on a 2.4 GHz Core Quad PC with computation times varying of 1−4 min per time step.

The very strong locality inherent to the algorithm and preliminary benchmarks suggest

that around 10 times faster performance could be achieved using a GPU implementation,

similar to Section 3.5.

Figure 4.4: Appearance model analysis. A person in eight views is displayed in row 4. A
GMM model ℱi is trained for view i ∈ [1, 8]. A global GMM model ℱ0 over all views is
also trained. Row 1, 2, 3 and 5 compute p(S∣ℐI ,ℬ,ℱi+1), p(S∣ℐ,ℬ,ℱi−1), p(S∣ℐ,ℬ,ℱ0)
and p(S∣ℐ,ℬ,ℱi) for view i respectively. The probability is displayed according to the
color scheme at the top right corner. The average probability over all pixels in the
silhouette region and the mean color modes of the applied GMM model are shown for
each figure. Best viewed in color.
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4.4.1 Appearance Modeling Validation

It is extremely hard to color-calibrate a large number of cameras, not to mention under

varying lighting conditions, as in a natural environment. To show this, different ap-

pearance modeling schemes are compared in Fig. 4.4, for a frame of the outdoor bench

dataset. Without loss of generality, GMMs are used. The first two rows compare sil-

houette extraction probabilities using the color models of spatially neighboring views.

These indicate that stereo approaches which heavily depend on color correspondence

between neighboring views are very likely to fail in the natural scenarios, especially

when the cameras have dramatic color variations, such as in view 4 and 5. The global

appearance model in row 3 performs better than the models in row 1 and 2, but this

is mainly due to its compensation between large color variations across camera views,

which at the same time, decreases the model’s discriminability. The last row, where a

color appearance model is independently maintained for every camera view, has the best

performance. Therefore, the last scheme is used in the final system. Once the model is

trained, it is currently not updated as time goes by. But the online updating could be

an easy extension for robustness.

4.4.2 Densely Populated Scene

The cluster sequence is a particularly challenging configuration: five people are in

a circle of less than 3m in diameter, yielding an extremely ambiguous and occluded

situation at the circle center. Despite the fact that none of them are being observed in

all views, the proposed algorithm is still able to recover the people’s label and shape.

Images and results are shown in Fig. 4.5. The näıve 2-label reconstruction from Section

2.4.2 yields large volumes with little separation between objects, because the entire scene

configuration is too ambiguous. Adding tracking prior information estimates the most

probable compact regions and eliminates large errors, at the expense of dilation and

lower precision. Accounting for viewing line occlusions enables the model to recover
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more detailed information, such as the limbs.

Figure 4.5: Result from 8-view cluster dataset. (a) Two views at frame 0. (b) Respec-
tive 2-labeled reconstruction. (c) More accurate shape estimation using our algorithm.
Best viewed in color.

Figure 4.6: lab dataset result from [Gupta et al. (2007)]. (a) 3D reconstruction with 15
views at frame 199 (b) 8-view tracking result comparison with methods in [Gupta et al.
(2007)], [Mittal and Davis (2003)] and the ground truth data. Mean error in ground
plane estimate in mm is plotted. Best viewed in color.

The lab sequence [Gupta et al. (2007)] with poor image contrast is also processed.

The reconstruction result from all 15 cameras is shown in Fig. 4.6. Moreover, in order

to evaluate our localization prior, we compare our tracking method (Section 4.3.2) with

the ground truth data, the result of [Gupta et al. (2007)] and [Mittal and Davis (2003)].

We use the same 8 cameras as in [Mittal and Davis (2003)] for the comparison, shown
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in Fig. 4.6(b). Although slower in its current implementation (2 min. per time step)

our method is generally more robust in tracking, and also builds 3D shape information.

Most existing tracking methods only focus on a tracking envelope and do not compute

precise 3D shapes, such as [Fleuret et al. (2007)]. This shape information is what enables

our method to achieve comparable or better precision.

4.4.3 Automatic Appearance Model Initialization

The automatic dynamic object appearance model initialization has been tested using

the bench sequence. Three people are walking into the empty scene one after another.

By examining the unidentified label u, object appearance models are initialized and used

for shape estimation in subsequent frames. Volume size evolution of all labels are shown

in Fig. 4.7 and the reconstructions at two time instants are shown in Fig. 4.8.

Figure 4.7: Appearance model automatic initialization with the bench sequence. The
volume of u increases if a new person enters the scene. When an appearance model is
learned, a new label is initialized. During the sequence, L1 and L2 volumes drop to near
zero because they walk out of the scene on those occasions.

During the sequence, u has three major volume peaks due to three new persons

entering the scene. Some smaller perturbations are due to shadows on the bench or the

ground. Besides automatic object appearance model initialization, the system robustly

re-detects and tracks the person who leaves and re-enters the scene. This is because

once the label is initialized, it is evaluated for every time instant, even if the person is

out of the scene. The algorithm can easily be improved to handle leaving/reentering
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Figure 4.8: bench result. Person numbers are assigned according to the order their
appearance models are initialized. At frame 329, P3 is entering the scene. Since it’s P3’s
first time into the scene, he is captured by label u (gray color). P1 is out of the scene at
the moment. At frame 359, P1 has re-entered the scene. P3 has its GMM model already
trained and label L3 assigned. The bench as a static occluder is being recovered. Best
viewed in color.

labels transparently.

4.4.4 Dynamic Object & Occluder Inference

The bench sequence demonstrates the power of our automatic appearance model ini-

tialization as well as the integrated occluder inference of the “bench” as shown in Fig. 4.8

between frame 329 and 359. Refer to Fig. 4.7 about the scene configuration during that

period.

We have also processed the sculpture sequence from the end of Chapter 3 with two

persons walking in the scene, as shown in Fig. 4.9. For the dynamic objects, much cleaner

shapes are obtained when the two persons are close to each other, and more detailed

shapes such as extended arms. For the occluder, the finer shape is also recovered, while

the computation using uniform foreground appearance model has a lot of noise, due to

the occluder inference using ambiguous regions when people are clustered.
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Figure 4.9: sculpture data set comparison. While both methods from the previous
chapter and this one recover the static sculpture, the current method (the right column)
resolves inter-occlusion ambiguities, and estimates much better dynamic object shapes.
Best viewed in color.

4.5 Further Discussion

A Bayesian method to build 3D shapes from multi-object silhouette cues is proposed in

this chapter. The appearances of objects are used to disambiguate free regions of space

that project inside silhouettes, and occlusion information and object localization priors

are used to update the representation iteratively so as to refine the resulting shapes.

Our results show that the shapes obtained using this approach yield significantly better

results than pure silhouette reasoning, which makes no distinction between different ob-

jects. This new multi-silhouette inference algorithm is robust to very difficult conditions,

and can prove very useful for various vision tasks such as tracking, localization and 3D

reconstruction, in highly cluttered scenes with densely packed dynamic object groups.

A large number of extensions can be tested on the basis of the framework provided,

including more general and complex appearance modeling, different enforcements of the

compactness of objects, a more general management of objects entering and leaving the

scene. It is possible to analyze object label transition, for example a static object in the

scene might be moved to a different place, and a person might come and sit statically on
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the bench. Temporal consistency constraints could also be included in stronger forms,

to enforce temporal continuity of the reconstruction and smoothness of the flow in the

scene.

4.5.1 Limitations and Extensions

The algorithm proposed in this chapter uses image observation information for occu-

pancy inference. If a dynamic shape is not observed from more than one camera view,

in theory, the visual hull occupancy would not be closed. Therefore in an extremely

densely populated scene, the algorithm may fail. One solution is to add more camera

views so as to increase the spatial sampling power of the system.

Both the static occluder inference and multiple dynamic shape inference benefit

from explicitly modeling the occluding event. The difference is that for static occluder,

temporal accumulation is possible while for dynamic shapes, the decision must be made

within the time instant. Therefore, the occlusion modeling for multiple dynamic shapes

also tends to be less robust than static occluder accumulation.

One direction to go is to explore the temporal consistency of the dynamic scene, based

on the observation that the video frame rates are so high that consecutive frames are

almost the same. In this chapter, the temporal link is only exploited in the form of the

cylindrical shape location prior, which is a very näıve enforcement. In the next chapter,

a method to recover the dense 3D motion field between consecutive time instances is

introduced, with the help of which the ultimate temporal consistency is constrained, and

the 3D dynamic shape occupancy probability is refined. More interesting applications

can also be computed from this dense field, such as the automatic generalization of the

rigid motion skeleton of the dynamic shape.
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Chapter 5

Dense Occupancy Flow Estimation

It has been shown in the last chapter that a simple tracking scheme can improve the

3D shape estimation quality as a way to constrain the temporal consistency. To fully

explore this direction, this chapter presents a new framework to analyze 3D motions of

dynamic subjects with a calibrated multi-view setup. Inspired by 2D optical flow motion

analysis methods [Sun et al. (2008)] and the seminal 3D scene flow work from [Vedula

et al. (2005)], the proposed framework allows to estimate 3D motion flow between two

subsequently acquired frame sets of the scene for arbitrary moving objects. Unlike

existing approaches however, the motion flow computed in this chapter is volumetrically

dense in 3D space and does not rely on any explicit boundary representation of the

scene subjects. It only relies on (1) implicit silhouette cues with no binary segmentation

decision, and (2) the assumption of spatial continuity of the motion field. The proposed

framework thus explores what minimal constraints and data can be used for 3D motion

analysis. The motivation is to better exploit raw observations from multiple views

without premature assumptions, while being robust to typical sources of noise in images

that affect 3D reconstruction methods.

Building 4D space-time representations of scenes observed from multiple calibrated

views is a major challenge in computer vision. Such representations are often sought, to

track and build time-coherent 3D shape geometry and analyze 3D motion of subjects in



the scene. They are relevant to many fields in research and industry, for free viewpoint

video acquisition, automatic 3D shape and human performance acquisition, virtual real-

ity and HCI applications, 3D shape matching and recognition. An overview of the main

related works and problems are given below.

5.1 Related works

The problem of building geometric 3D representations across time was first approached

in a purely frame-by-frame manner without any temporal consistency constraint, using

photometric stereo information [Kutulakos and Seitz (2000)], sparse feature matches,

or silhouettes [Laurentini (1994)]. While photometric stereo and match information

can provide precise surface information for reconstructed models, it does so mainly in

highly constrained setups with good light control, high resolution inputs, and an im-

plicitly assumption that observed objects surfaces are largely textured. This is why

silhouette-based methods [Laurentini (1994)] have gained popularity for shape acquisi-

tion tasks [Lazebnik et al. (2007); Franco and Boyer (2009)] as they are robust with

color-inconsistent or weakly textured data, on top of being generally more time-efficient

in terms of computation. Most aforementioned shape modeling approaches focus on

surface representations, yet alternative representations, such as volumetric probability

grids, have emerged to improve robustness to noise of various methods including pho-

tometric space carving[Broadhurst et al. (2001)]. The use of such representations with

latent silhouette data has been demonstrated to be particularly robust for difficult, nat-

ural environments as discussed in Chapter 2, 3, and 4 [Franco and Boyer (2005); Guan

et al. (2007, 2008b)], a property also leveraged for silhouette-based 3D motion analysis

in this chapter.

For long scientists have wanted to exploit the redundancy of information across

time in the acquired videos to build time-consistent representations of arbitrary objects,

89



refine shape information, and capture the dynamics of recorded 3D scenes. Lately,

mesh-tracking methods have been proved to be successful solutions for time-consistent

dynamic acquisition. Their common goal is to retrieve a geometrically and temporally

consistent surface state from the video sequences. Many such methods fit existing,

fixed-topology mesh/skeletal model templates as in [de Aguiar et al. (2007); Ballan

and Cortelazzo (2008)] to image data. These methods are however often particularized

for the case of a specific shape, usually human [Vlasic et al. (2008)], by underlying

geometric or kinematic assumptions and user manipulation. Other methods aim for

more general surfaces and can sometimes deal with surface topology changes [Varanasi

et al. (2008). To constrain surface construction, the methods use a variety of image

cues, for example dense optical flow [de Aguiar et al. (2007)], or sparse feature matches

[Varanasi et al. (2008)]. Such inputs can be difficult to obtain in uncontrolled and poorly

textured general environments. Other 4D analysis methods exist to build alternative

time-consistent shapes representations. [Cheung et al. (2003)] combines voxel-based

representations with silhouette inputs, albeit in the more particular cases of rigid or

articulated objects.

Quite remarkably, a large majority of time-consistent shape modeling methods use

silhouette-based constraints in one form or another to stabilize estimation, since most

real-life scenes with human subjects tend to be poorly textured or simply hard to find

effective 3D feature correspondences as shown in Fig. 2.6. In fact, some mesh tracking

methods actually use silhouette data alone [Vlasic et al. (2008)]. This shows the con-

straining power of the visual cue, which the proposed method in this chapter wishes to

exploit in full generality. Also, the vast majority of 4D shape building methods have only

been tested in completely controlled environments, and are prone to drifting and failure

in the presence of noisy, uncontrolled scenes. As such, these methods could benefit from

a new, general 3D motion analysis step such as the one proposed in this chapter, which

makes no geometrical assumptions about the scene, and could be used as additional
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input to constrain mesh motion.

Among all 3D motion analysis methods, the proposed method most closely relates

to scene flow concepts. Scene flow algorithms produce dense motion vector associated

to various visible surface representations including voxels [Vedula et al. (2005)], im-

plicit representations [Pons et al. (2007)], stereo disparity maps [Wedel et al. (2008)] or

meshes [de Aguiar et al. (2007)]. Importantly most scene flow approaches assume an

underlying surface is already available [Vedula et al. (2005); de Aguiar et al. (2007)] or

simultaneously built [Pons et al. (2007)]. Scene flow methods rely on the estimation

of spatial derivatives of the image signal, sometimes delegated to existing 2D optical

flow estimation [Vedula et al. (2005); de Aguiar et al. (2007)]. As noted in [Starck and

Hilton (2007)], flow-based approaches are generally limited to small displacements, as

a consequence of finite difference approximations of derivatives. The 3D dense motion

flow analysis proposed in this chapter relies on silhouette cues rather than photometric

cues, and can be computed before any surface construction, making it a complementary

approach to existing scene flow methods. Issues with large displacements is addressed

using a multi-scale approach to 3D flow estimation.

5.2 Overview

A different and complementary approach from most methods above is proposed in this

chapter, which abandon surface representations altogether and avoid their caveats, yet

proves useful for retrieval of 3D shape and motion cues as shown in later experiments.

Indeed, no surface initialization, surface matching steps, or underlying kinematic control

structure of any type are needed with the proposed method. Moreover, only volumetric

continuity of motion is used as a constraint, which enables the inference to extrapolate

dense 3D motion estimations from latent silhouette cues, much in the way 2D optical flow

methods [Sun et al. (2008)] propagate motion information from edge motion boundaries.
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As such the method provides a new tool for 3D motion analysis, which could be used

as input to shape analysis and reconstruction, kinematic chain recognition or motion

segmentation, using truly minimal scene assumptions and input constraints.

A probabilistic modeling of the scene shape and motion is used in the form of statistic

variables attached to voxels in a volumetric grid, described in Section 5.3. The resulting

estimation problem translates to an Expectation Maximization algorithm, which is fully

described in Section 5.4. It alternates between estimating voxel occupancy probabilities

in the E-step (Section 5.4.2), and finding a motion field best estimate in the M-step (Sec-

tion 5.4.3). The M-step can be cast as a multi-label MRF by discretizing the motion

field space, which is efficiently solved using a coarse-to-fine approach as described in

Section 5.5. The method is validated on several synthetic, indoor, and outdoor datasets

(Section 5.6).

5.3 Problem Formulation

Figure 5.1: Overview of main statistical variables and geometry of the problem. GX is
the occupancy at voxel X.

The scene is represented with a 3D lattice of points in space (Fig. 5.1), denoted as X .

At time t, a set of images ℐ, specifically ℐ1, ℐ2 ⋅ ⋅ ⋅ ℐn from n camera views are observed

with known geometrical calibration information. Each point X ∈ X is associated to a
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binary occupancy state, empty or occupied, denoted by GX ∈ {0, 1}. The conjunction

of all grid states is noted G. The algorithm is interested in using information from

time t − 1 given a certain time discretization, where the previous grid state is noted

Ḡ. The motion of matter from t − 1 to t is represented by a displacement vector field

D. Specifically, each point X is associated to the vector DX that displaces matter from

location X − DX to X between times t − 1 and t. Since no surface representation is

used, it is assumed that the motion field is defined everywhere in space and continuous,

thus treating space as an image-constrained fluid, where the probabilistic occupancy

and motion representation indifferently embeds actual matter or air.

Figure 5.2: System variable dependency graph.

The relationship between the different factors of the system can be modeled by the

joint probability of the variables: p(Ḡ,G,D, ℐ). Based on the dependency graph shown in

Fig. 5.2, a logical decomposition of the joint probability is stated in Eq. 5.1: to predict

occupancies G, only the displacements D and previous occupancies Ḡ are needed; to

predict images ℐ, only the occupancies G at time t needs to be known.

p(Ḡ,G,D, ℐ) = p(ℐ∣G)p(G∣D, Ḡ)p(Ḡ)p(D) (5.1)

Assume voxel occupancies GX are mutually independent and assume that pixels on

which a voxel center X projected are measurements exclusively associated to that voxel.

This is a typical silhouette-based method simplification, which enables breaking the

dependencies between voxels of the same viewing line. Additionally, assume conditional
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independence of a voxel X’s pixel measurements given the knowledge of the voxel’s state

GX , one can express Eq. 5.1 as a product over voxels, image views and pixels:

p(Ḡ,G,D, ℐ) = p(D)
∏
X

(
p(ḠX)p(GX ∣D, Ḡ)

∏
i

p(ℐi∣GX)

)
(5.2)

where i is the camera image view index. ℐi is the pixel color at the projection of

X in image i. For readability, the measurement term at time t is denoted Φ(GX) =∏
i p(ℐi∣GX).

In Eq. 5.2, the term p(ḠX), p(GX ∣D, Ḡ) models the information obtained from the

previous time instant. As a first degree approximation, only one of the displacements,

DX , influences X at time t. Thus only ḠX−DX
influences GX :

p(Ḡ,G,D, ℐ) = p(D)
∏
X

(
p(ḠX−DX

)p( GX ∣ḠX−DX
)⋅Φ(GX)

)
. (5.3)

The term p(D) models the prior over the 3D motion field. The first order continuity

properties of the fields will be used, as described in Section 5.4.3. As probabilistic

inference information is assumed to be already available for the previous time step for

ḠX , ḠX is treated as a latent variable. This allows to retain the probabilistic information

from t− 1 by marginalizing out ḠX in all subsequent inferences.

5.4 Estimating 3D Motion and Occupancy

Given the identified dependencies, ideally the goal is to compute the full distribution

of p(D,G∣ℐ) since the primary interest is to estimate the displacement field and occu-

pancy probabilities at time t given image observations. Unfortunately this inference

is intractable given the huge state spaces of D and G. However the problem is well

suited for an EM formulation [Dempster et al. (1977)] with some simplifications. By
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focusing on estimating the Maximum A Posteriori (MAP) of p(D∣ℐ) and treating G as

a latent, unobserved variable set, an EM procedure can be constructed that iteratively

refines estimates d0, d1 ⋅ ⋅ ⋅ , d∗ of the motion field D (M-step), while providing with each

new iteration k + 1 an estimate of p(G∣ℐ, dk) (E-step). The latter term corresponds to

estimating voxel occupancy probabilities given the image data at time t and using the

previous iteration’s computed motion field, thus providing a probabilistic shape esti-

mate representation analog to previous probabilistic methods [Broadhurst et al. (2001);

Franco and Boyer (2005)]. A MAP-EM formulation is chosen also because the tradi-

tional EM formulation does not consider the prior p(D) on motion fields, which is used

to enforce spatial continuity.

5.4.1 Expectation Maximization Formulation

Here is a MAP-EM formulation, whose goal is to find the optimal d∗ such that:

d∗ = argmaxD F (D) with F (D) = p(D∣ℐ). (5.4)

This goal is achieved iteratively starting from an initial guess d0, by building a se-

quence of motion field estimates d0, d1, ⋅ ⋅ ⋅ , d∗ which increase the log-posterior objective

function F (D), i.e. F (d0) ≤ ⋅ ⋅ ⋅ ≤ F (d∗). This is usually achieved at each step by max-

imizing a lower bound of F (D), whose maximum coincides with an analytically simpler

function Q(D∣dk). For a good choice of lower bound and Q(D∣dk), the maximization

guarantees an increase of the log-posterior, such that dk+1 can be defined as follows:

The M-Step: dk+1 = argmaxD Q(D∣dk). (5.5)

It can be shown that a Q(D∣dk) verifying these properties is obtained in the case of

95



our problem using the following conditional expectation:

Q(D∣dk) = EG∣ℐ,dk{ln p(ℐ,G,D)}

=
∑
G

p(G∣ℐ, dk) ln p(ℐ,G,D). (5.6)

The E-step evaluates p(G∣ℐ, dk) of Eq. 5.6, i.e. the grid occupancy probabilities

given images ℐand the previously predicted displacement dk. Given this distribution,

the log-expectation of p(ℐ,G,D) can be computed for all possible Das in Eq. 5.6.

The E-step of the algorithm then consists in evaluating the p(G∣ℐ, dk) term of the

expression, i.e. the grid occupancy probabilities given images and the previously pre-

dicted displacement. Both probability distributions can be obtained from Eq. 5.3. Each

step is developed subsequently in further detail.

5.4.2 E-step: Occupancy Probability Update

In order to compute voxel probabilities at a given EM iteration, one needs to express

p(G∣ℐ, dk) in terms of the joint probability distribution (5.3). Bayes’ rule is used (5.7) and

the summations is re-factored (5.8) to depending terms, with ∝ denoting proportionality

up to a unit normalization factor:

p(G∣ℐ, dk) ∝
∑
Ḡ

p(ḠGdkℐ) (5.7)

∝
∏
X

Φ(GX) ⋅
∑
Ḡ
X−dk

X

p(ḠX−dkX )p(GX ∣ḠX−dkX ), (5.8)

where
∑
Ḡ
X−dk

X

p(ḠX−dkX )p(GX ∣ḠX−dkX ) sums possibilities over occupancy states of the

voxel X − dkX that has been mapped to Xthrough displacement dkX . For simplicity,
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p(GX ∣ḠX−dkX ) is set deterministically: if the previous voxel X − dkX was occupied (resp.

empty), then once displaced to Xit is still occupied (resp. empty) with probability 1.

Expression (5.8) then becomes:

p(G∣ℐ, dk) ∝
∏
X

(
Φ(GX) ⋅ p([ḠX−dkX = GX ])

)
. (5.9)

For the purpose of providing a probabilistic shape estimate, each voxel X’s proba-

bility after an E-step can thus be identified as p(GX ∣ℐ, dk) ∝ Φ(GX) ⋅ p([ḠX−dkX = GX ]),

the product of current observation terms at time t, with the probability of the voxel

mapped to Xfrom t− 1.

Φ(GX) can be computed by expliciting the image formation terms p(ℐi∣GX). For

every pixel x in every image, it is assumed that the parameters ℬ of a background

model have been learned offline from images of a quasi-static scene with no object of

interest. Similar to Section 2.4.2, the image term p(ℐi∣GX) can then be set as following

[Franco and Boyer (2005)]:

p(ℐi∣GX) = p(GX=0)p(ℐi∣ℬ) + p(GX=1)U(ℐi),

where U(ℐi) is the uniform distribution over pixel color space, used to model the

aspect of objects of interest since no information about it is used, and p(ℐi∣ℬ) is the

probability of ℐi to be drawn from the background model ℬ. p(ℐi∣ℬ) can be, for instance,

a Normal or Gaussian Mixture Model distribution. Here the voxel X’s occupancy GX

serves as a mixture label to draw ℐi from foreground or background aspect distributions.

The silhouette information is latent in this representation and does not require any

binary segmentation decision.
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5.4.3 M-step: 3D Motion Field Update

To optimize Eq. 5.5, one still needs to expand the expression of Q(D∣dk) in Eq. 5.6. The

distribution p(ℐ,G,D) can be computed by marginalizing Eq. 5.3 over Ḡ, and simplified

similarly to Eq. 5.8:

p(ℐ,G,D) ∝ p(D)
∏
X

(
Φ(GX) ⋅ p([ḠX−DX

= GX ])
)

(5.10)

Taking the logarithm of Eq. 5.10 to computeQ(D∣dk), and noting that the Φ(GX)term

does not depend on D, the M-step becomes:

dk+1 = argmaxD ln(p(D))

+
∑
X

∑
GX

p(GX ∣ℐ, dk) ⋅ ln p([ḠX−DX
= GX ]) (5.11)

where p(GX ∣ℐ, dk) is computed in the E-step (Eq. 5.9).

To model 3D motion field continuity, p(D) is chosen to be a Markov Random Field.

The M-step in the EM framework becomes a standard first-order MRF MAP problem.

From time t to t + 1, if the displacement possibilities at every point is quantized to

n displacement options denoted as a label set ℒ = {l1, ⋅ ⋅ ⋅, ln}, then Eq. 5.11 can be

represented as standard graph optimization pairwise and unary energy terms:

EMRF =
∑
X

∑
Y ∈N (X)

EXY (lX , lY ) +
∑
X

EX(lX), (5.12)

where N (X) is the neighborhood system of point Xin the 3D graph. In Eq. 5.12,∑
X

∑
Y ∈N (X) EXY (lX , lY ) are the binary terms, and

∑
X EX(lX) are the unary terms.
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They correspond to the negative of ln(p(D)) and
∑

X

∑
GX p(GX ∣ℐ, d

k) ⋅ ln p([ḠX−DX
=

GX ]) in Eq. 5.11 respectively.

The M-step in this EM framework thus becomes a discrete multi-labeling problem,

with the go
∑

X

∑
Y ∈N (X) EXY (lX , lY ) are the binary terms, and

∑
X EX(lX) are the

unary terms. They correspond to the negative of ln(p(D)) and
∑

X

∑
GX p(GX ∣ℐ, d

k) ⋅

ln p([ḠX−DX
= GX ]) in Eq. 5.11 respectively.

The M-step in our EM framework becomes a discrete multi-labeling problem, with

the goal of computing a labeling L ∈ ℒ∣X ∣, which assigns each grid node X ∈ X a label

from ℒsuch that the energy EMRF is minimized. Thus

dk+1 = argminLEMRF . (5.13)

The solution to this MRF thus provides the updated displacement field in the EM

iteration. Further details on MRF implementation is given in the sections below.

5.5 Motion Field Optimization

The EM previously developed provides the framework and justification for shape and

motion estimation. Because of the large state space and ill-posed nature of the problem,

and because EM has the potential to converge to unwanted local minima, additional

steps must be taken to ensure convergence. First what field assumptions are to be used

in the framework (Section 5.5.1) are reviewed. The resulting energy function can be

optimized using Fast-PD approaches [Komodakis et al. (2007)] (details in Section 5.5.2).

Fast-PD can be applied in a coarse-to-fine approach for method stability, efficiency and

convergence (Section 5.5.3).
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5.5.1 Motion Field Properties

Only assume that motions are bounded and locally smooth. Since no hard surface

assumption is used and to store only probabilistic shape information, the motion field

covers the whole grid space. Thus matter and empty space (air) are embedded in the

same motion field indifferently, while being image-constrained to map probably empty

voxels (resp. occupied) to probably empty (resp. occupied) voxels, as modeled in Eq. 5.9.

A simple motion field smoothness can be defined in the pairwise energy function EXY in

Eq. 5.12 as a distance function computing the magnitude of vector differences [Glocker

et al. (2008)]:

EXY (lX , lY ) = �XY ∣d(lX)− d(lY )∣0.8 (5.14)

where �XY is a weighting factor, d(l) is the motion vector that label l represents and

the index 0.8 is specially chosen to be less than one, motivated by statistics of velocity

difference distribution studied for optical flow constraints [Sun et al. (2008)].

However, as pointed out in [Glocker et al. (2008)], a more desirable pairwise energy

term can be defined specifically to avoid overly fluid-like deformations in the case of

iterative, coarse-to-fine approches:

EXY (lX , lY ) = �XY ∣DX+d(lX)−DY −d(lY )∣0.8 (5.15)

where DX and DY are the motions that have been recovered at location X and Y from

previous iterations.

5.5.2 Fast-PD Optimization

Given the form of the energy terms Eq. 5.12, the M-step can be solved by discrete graph

optimization schemes. The Fast-PD approach is selected [Komodakis et al. (2007)],
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which builds upon principles drawn from the duality theory of linear programming in

order to efficiently derive almost optimal solutions for a very wide class of NP-hard

MRFs [Komodakis and Tziritas (2007)]. Indeed this approach has several advantages:

it is faster than state-of-the-art graph cut �-expansion methods [Boykov et al. (2001)]

and guarantees an optimality bound. In addition, it handles cost functions with arbi-

trary pair-wise potentials, lifting the submodularity constraint of previous approaches

[Kolmogorov and Zabih (2004)]. This provides freedom to use the more elaborate forms

of motion field local properties EXY (lX , lY ), such as the one used in Eq. 5.15.

5.5.3 Coarse-to-Fine Approach

To avoid local optima, speed up each EM iteration, and break the problem into memory

efficient steps, a coarse-to-fine approach is chosen and parametrization is used for 3D

volumetric registration in medical imaging [Glocker et al. (2008)]. The EM is initialized

with a coarse global translation registration of grids. Then the 3D space is embedded in

a 3D B-Spline free form deformation (FFD) controlled by a uniform grid of sparse con-

trol points. At each chosen scale, the MRF previously defined is solved for the control

points, and initialization for finer scales obtained by interpolation of the coarser scale.

Control point spacing ds at each scale is set relative to scene scale. The label set ℒ of a

control point’s motion is constrained to be within half of the control point spacing, ds/2.

This avoids self-folding and constrains the FFD to be a diffeomorphism over the vol-

ume. Specifically, the cubic range defined by the maximum displacement [−ds/2, ds/2]

is sparsely sampled along the three axis. Additionally the deformation optimization

is repeated at each control scale until the FastPD stabilizes to null displacements (in

practice 4 to 8 times depending on the dataset) which proves more stable. As shown in

the result section, this also allows the recovery of motions even larger than the maximal

allowed in the coarsest scale.
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5.6 Results

The proposed algorithm has been tested on a synthetic dataset with two moving boxes,

and several real world datasets, also shown in the supplemental video. The results in

this section validate the correctness and feasibility of the algorithm. All the datasets

are challenging for state-of-the-art general 3D motion computation algorithms because

of texture-less surfaces, different types of noise, and lack of photometric calibration.

In all experiments, a 1283 occupancy grid and three levels of control grid with 5, 3,

and 1 voxel as largest motion magnitude respectively are used. The control points in

the three levels are 11, 7 and 1 voxels apart respectively. The EM converges in less than

five iterations for all datasets. Each maximization step is repeated, and 4 to 8 times

per scale. The preliminary implementation takes several minutes per frame for most

datasets. Most of the time is spent building the graph and computing weights, which

could be optimized and parallelized.

5.6.1 Synthetic Dataset

Two cubes of different sizes are flying in elliptic orbits in 3D space. They are observed

by 9 virtual cameras surrounding the scene as shown in Fig. 5.3(b). The probabilistic

occupancy grid of 9 time steps is computed from the synthetic camera frames added

with random noise. 8 flow fields are then computed using the proposed method. Then,

selected grid point above 0.98 probability in the first time step’s occupancy grid can

be traced through the sequence using the computed flow field, and accumulated as in

Fig. 5.3(a). The ground truth tracks of the orbiting cubes are drawn with thick curves

for comparison.

The absolute 3D angular error (AAE) is computed between the ground truth cube

motion vector and the obtained motion vectors of every grid point above 0.98 probability.

The statistics of each cube at every time instant is plotted as in Fig. 5.5. The small
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Figure 5.3: Left: the computed dense motion tracks of 2 orbiting cubes. The ground
truth trajectories are shifted above for clearer comparison. Right: virtual setup for this
synthetic 3D scene capturing. Best viewed in color.

cube’s AAE against the ground truth is much smaller than the big cube. It is true for

the following reasons: (1) As opposed to stereo methods, the proposed method does not

have access to tangential motions of the surface. Thus rotations of objects, particularly

near an axis of symmetry, are more difficult to estimate by the method. This can be seen

in Fig. 5.5, where the motion tracks inside the big cube are shorter than the ground truth

trajectory, which is locally a valid translation solution. (2) Voxels of larger shapes tend

to rely more on interpolation and less on image information. Conversely, the motion

and amount of silhouette information of the smaller cube is large compared with its

own size, creating less motion ambiguity for those voxels: this suggests the cases where

the algorithm works best, when a thin part of an observed shape is observed moving

by several silhouettes. This includes translations, and many of the limb joint-rotations

observable from silhouettes, as shown in Fig. 5.4.

5.6.2 Indoor ROND Dataset

This indoor sequence is processed from [Franco and Boyer (2005)], including walking and

hand waving motion patterns. It is captured using 8 video camcorders at 15Hz. Due to

this relatively low frame rate, motions between frames are relatively large (some larger
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Figure 5.4: Recovered dense flow and the 3D probabilistic occupancy grid. For visual-
ization, we threshold the grid at probability 0.98 to roughly get the person’s surface,
and only the vectors on this surface are sparsely displayed. The motion vectors are in
red, with their magnitudes color coded as top right. The cumulated point tracks over a
long time are in blue as bottom left. One of the 8 views is overlaid on t3’s occupancy
grid and flow. Part of t3 is magnified at bottom right. Best viewed in color.
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Figure 5.5: The absolute angular error (AAE) of the computed motion vector against
the ground truth. The statistics is computed for all points above occupancy probability
0.98. The small and faster cube has more accurate estimated flow in general.

than 5 voxels), but the proposed iterative multi-scale solution recovers large motions

correctly. Fig. 5.4 and Fig. 5.6 show the analysis of waving and walking motions in

the sequence respectively. The motion tracks are computed by following the computed

pairwise motion fields to track the history of some final voxels. The piece-wise linear

effect of the motion track is not an artifact of our computation, but shows actual steps

between frames, resulting from the combination of strong arm motion and relatively low

video capture frame rate.

Fig. 5.7 shows two slices of the occupancy grid at two time instants in the waving

sub-sequence. The motion fields in red are overlaid on the probability slices, with

higher probability being darker. This shows that the motion fields are computed in

all the occupancy grid point locations and probabilistic nature of underlying shape

information, which is the biggest difference between our method and the existing 3D

surface motion field literatures. Such a representation maintains maximum robustness of

the estimations against shadows, occlusion, etc. An example of occlusion case is shown

in Fig. 5.4, where the person’s arm is outside of the second view, yet the method still

successfully recovers arm shape and motion information.

5.6.3 Outdoor SCULPTURE Dataset

This outdoor sequence is processed from [Guan et al. (2007)] with 6 video camcorders

running at 30fps. The cameras are not color calibrated. There are sun light changes,
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Figure 5.6: Left: two different viewing angles of dense motion field overlaid on top of
thresholded (> 0.98) occupancy grid. The two rows are at t710 and t860 respectively. The
motion vector magnitude is color coded. The largest motion happens at the swinging
hand and the opposite leg, while walking. Middle: camera images at corresponding time
instant. Right: accumulated motion track from t858 to t864. The right hand motion is
the largest during the interval. Best viewed in color.

Figure 5.7: Left: occupancy slices at the same position in the volume at two time
instants t1 and t3. The field is computed on the entire volume. The hands are waving
down during the interval. 3D views are shown in Fig. 5.4.
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shadows, reflections on the metallic sculpture. Given the noisy data and static back-

ground color models used, the computed occupancy grid shown includes high voxel

probabilities for unwanted shapes, such as a shadow volume on the ground or sculpture,

as visible in Fig. 5.8(a). Nevertheless, the proposed framework is able to recover a coher-

ent shape and dense flow estimate in spite of these underlying geometric incoherences.

Such perturbations are likely to lead to failure of boundary-based methods such as mesh

tracking approaches.

Figure 5.8: Left: estimated occupancy at t259 and motion between t258 and t259. (a)
demonstrates the direction. (b) shows the magnitude. Right: two views at t259. Since
the dataset has double frame rates, the color scheme of the velocity magnitude is different
from the rond dataset. Best viewed in color.

Fig. 5.9 shows the potential benefits of jointly estimating shape and motion to im-

prove shape estimates. If perfect silhouettes are assumed to be vailable at time t258

(manually segmented for the purpose of the experiment), one can help the occupancy

estimation at t259 and further. By using the proposed method to simultaneously esti-

mate dense motion from t258 to t259 and occupancy probabilities from t259, occupancy

probabilities at t258 act as a per-voxel prior, and clean the shadow region and reflection

for t259 and later frames without using additional appearance models. This suggests the

potential for shape refinement across time of the proposed method, and the possibility of
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tracking and refining a probabilistic shape template while estimating dense 3D motions.

Figure 5.9: Occupancy refinement application. Column 1: the clean t258 grid computed
from manually segmented silhouettes. Column 2: automatically estimated occupancy
at t259. Shadows and reflections are erroneously included due to naive automatically
trained appearance models. Column 3: refined occupancy at t259 using the clean grid at
t258 and the computed motion field between t258 and t259 of Column 4. All the occupancy
and motion vectors are only plotted for points above probability 0.98. Column 2, 3 and
4 are overlaid with images at t259. Best viewed in color.

5.7 Discussion

A new direction in dense geometric and temporal 3D analysis has been explored, and

a novel low-level approach has been proposed for simultaneously estimating 3D dense

motion fields and probabilistic shape estimates between two consecutive calibrated view

sets, using only silhouette cues. Experiments show the viability and robustness of the

approach with various real datasets, and outdoor conditions challenging for photometric

and surface-based methods. The method is promising and opens new possibilities and

applications. As it relies on no explicit boundary modeling, it can be used as input to a

variety of scene analysis tasks, such as motion segmentation with no geometric model or

prior, or 3D tracking, kinematic structure inference, shape estimation. Existing shape

modeling and tracking methods could use the resulting fields as a cue to replace current
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2D optical flow or sparse match inputs without having to explicitly deal with occlusion or

premature assumptions associated to an explicit boundary model. Other cues could be

included in the temporal analysis, as the Bayesian framework proposed easily allows to

perform fusion of heterogeneous cues, such as depth, from stereo or z-cameras, or using

other sensor modalities. New temporal shape refinement schemes could be explored by

using soft shape priors or using more past observations.

5.7.1 Motion Flow Ambiguity

The computed flow in this chapter is called “3D occupancy flow” instead of general 3D

motion flow, not only because it is computed from probabilistic occupancy information

inferred from silhouette cues. It is also because some specific motions may not be recov-

ered from this inference, for example self-rotation of a 3D sphere, where the occupancy

of the shape is static. This drawback may be alleviated if the surface texture information

can be combined in the motion field estimation. But with a uniform colored sphere, it

is still going to be a problem. Such degeneracy is also intractable for any vision only

based approaches, such as 2D optical flow and 3D scene flow cases.

However, to combine surface textures together with the 3D volumetric motion field

estimation is not straightforward, since the proposed approach deliberately assumes no

explicit surface during the computation for robustness, and it would therefore require

a probabilistic representation of where the surface, hence the surface texture is in the

3D volume. This would further introduce visibility ordering along viewing lines, which

complicates the voxel independence assumption, i.e. every voxel’s state can be inde-

pendently inferred from its camera view projection appearance. This volume-surface

information combination will be a future direction to go.
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5.7.2 Motion Discontinuity

There are two aspects of the problem. First of all, it has been assumed that the motion

field in the 3D volume is spatially smooth in local regions. Dynamic shapes, especially

articulated shapes may have drastically different motion at different parts. When these

parts happen to be spatially very close, the above assumption is only valid when the

volume resolution is at a even finer granularity. Otherwise, the recovered motion would

be “over-smoothed” in the questionable region. Fig. 5.8 is likely to be affected by such

issue, where the arm and the torso are close together but with different motion directions

and magnitudes.

Instead of a uniform sampling of the 3D space with a regular grid representation,

the aforementioned problem may be solved by occupancy-probability-guided sampling

scheme, which densely samples the regions more likely to have cluttered different mo-

tion parts, while sparsely samples more uniform regions. This would certainly lose the

convenient ordered indexing of the regular grid, but helps overcome the “over-smooth”

problem.

Second, the temporal motion smoothness is not taken for granted. Although a lot

of the motions daily observed are temporally smooth, it is very common in reality, to

have sudden motion changes, such as in a hand-waving motion, which the temporal

motion smoothness assumption would in fact cause more problems than to be helpful.

Therefore, this still remains an open question whether and how to effectively use the

temporal motion smoothness constraint in the formulation.

5.7.3 Skeleton Generalization

One interesting and important application is that skeleton model of an arbitrary piece-

wise rigid dynamic shape (such as a person or a spider) can be generalized given a few

such motion fields. With a second EM framework, the parameters of the rigid skeletal

parts can be estimated, given the fact that voxels in the rigid body parts should follow
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the same motion pattern described by the set of parameters.

Figure 5.10: Skeleton generalization from dense motion field. Left: initialization of the
three-part cluster of the human volume, thresholded at 0.85 probability; Right: the
converged three rigid parts and the motion of these three parts.Best viewed in color.

As an example shown in Fig. 5.10, the motion field is computed frame 740 to 742

of the ROND hand waving sequence. The field is first thresholded at 0.95 probability,

and shown in the left plot of Fig. 5.10. The arms are waving upward, and the motion is

shown in blue vectors as well as one of the three body parts. The system is initiated with

three rigid body parts, and use MATLAB K-mean clustering to get the three parts (red,

green and blue). The dense flow is shown in blue vector fields. The parameters to be

estimated for each rigid parts are R the 3D rotation matrix and the T the 3D translation.

After 2 iterations of using R and T computation plus Fast-PD label assignment taking

into account spatial continuity, the refined three rigid parts are shown in the right plot

of Fig. 5.10. The computed Rs and T s for each of the three parts are shown in blue

vector fields.

The rigid parts can be linked together as a complete skeleton model of the person,

given more motion fields informations in the following sequences. More detailed rigid

part decomposition may also be feasible when enough motion information is acquired.

After the full skeleton model is recovered, the dense motion field computation can be

only applied on recovered rigid parts, with normally a much smaller parameter space,
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thus drastically speeds up the motion field computation. However, the dense motion

field computation proposed by this chapter is the key to the novel arbitrary skeleton

model initialization.
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Chapter 6

Heterogeneous Network for Dynamic Shape

Estimation

6.1 Time-of-Flight Sensor

In the previous chapters, the main focus is on the video camcorder network. It has been

shown that 3D dynamic shape reconstruction from camcorder networks has many appli-

cations such as virtual reality, vision-guided surgeries, medical studies and simulations,

video games, architectural design, etc.

However, people have never slowed down the exploration of new sensing technologies.

Within the past five years, a promising new technology, Range Imaging (RIM) cameras

based on Time of Flight (ToF) principles are coming to market. Swiss Ranger 3000 as

shown in Fig. 6.1 is a typical model. 2.5D range images combined with 2D intensity

images can be directly read out up to 50 fps. Although most of these ToF cameras

do not have high image resolution (e.g. 176 x 144 for Swiss Ranger 3000), their mea-

surement throughput is still far beyond the traditional depth sensors, such as LIDAR.

This opens enormous potential in a wide range of application areas, including action

recognition and tracking, object pose recognition, obstacle detection and so on. Unfor-

tunately, few literatures have explored its potential in 3D object reconstruction. The

main challenges are (1) the range images are noisy and not always accurate enough for



3D reconstruction purposes. In fact, the RIM camera depth calibration itself remains a

new and active research topic [Kahlmann (2007)]; (2) the relatively low image resolution

prohibits detailed reconstruction.

Figure 6.1: (a) ToF camera, Swiss Range 3000; (b) a typical output from the sensor.

This chapter explores the reconstruction potential of the ToF cameras by introducing

a heterogeneous sensor network of ToF cameras and high-res camcorder. A unified

approach to automatically calibrate such sensor network is first introduced [Guan and

Pollefeys (2008)]. Then the Bayesian sensor fusion framework is extended to solve the

dynamic shape estimation problem [Guan et al. (2008a)].

6.2 Heterogeneous Sensor Network Calibration

Typically, a ToF camera emits a modulated optical radiation field in the infra-red spec-

trum. This signal is diffusely backscattered by the scene and detected by the camera.

Every CMOS/CCD pixel is able to demodulate the signal and detect its phase, which is

proportional to the distance of the reflecting object. Although, currently most of these

ToF cameras do not have high image resolution (e.g. 176× 144 for Swiss Ranger 3000,

as shown in Fig. 6.1), they can generate a 2.5D depth image together with an intensity

image (an amplitude image in some literatures) at a frame rate up to 50fps, which is

far beyond the throughput of traditional depth sensors, such as LIDAR.
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For such a powerful multi-modal sensor network to work for 3D reconstruction, the

first requirement is the geometric calibration of the system. All the literatures related to

ToF camera calibration are focused on the single camera extrinsics calibration or depth

calibration [Kahlmann (2007); Lindner et al. (2008)]. For camera/camcoder, contrarily,

multi-view calibration has been well studied over the past decades.

Thanks to the intensity image generated by the ToF cameras, the traditional checker-

board calibration of the network as introduced in Chapter 2 [Zhang (2007)] would work

for such system. But due to the extremely low imaging resolution of the ToF cameras,

the checkerboard corner points cannot be robustly extracted, which is a major source

of computation noise. In addition, the checkerboard calibration itself is very tedious

because not all sensors can see the board at the same time, if they are placed in a circu-

lar fashion, hence the complete calibration of the sensor network would require merging

all camera views together and extra bundle adjustment to minimize the computation

errors.

An alternative solution for multi-view camera/camcorder calibration is to use a sin-

gle 3D laser point [Svoboda et al. (2005)] to recover the parameters up to the global

scale ambiguity, or a rigid grid of 3D points [Uematsu et al. (2007)] to recover the full

Euclidean space. In these cases, all the cameras can see the calibration target simultane-

ously, thus solve the second problem of the previous planar calibration target approach.

But because of the low image resolution, the detection of this type of calibration targets

is not always robust in the ToF camera images. What is worse, since most of the active

sensing ToF cameras are filtering out light frequencies that were not sent out from the

cameras themselves, it might be very possible that the ToF cameras cannot detect any

laser point dots at all.

In this section, a new calibration approach is proposed [Guan and Pollefeys (2008)],

which follow the laser point global calibration scheme, but instead of using a moving

laser dot or a grid of rigidly connected points, a moving sphere of an unknown ra-
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dius is used as the calibration target. Literatures [Agrawal and Davis (2003); Ying

and Zha (2006); Zhang et al. (2007)] also propose to use a spherical calibration target

for a camera/camcorder network. The main difference is that they use the complete

sphere contour information constrained by the absolute conic. However, due to the

low resolution of the ToF camera images, the sphere contour extraction is risky for the

heterogeneous setup discussed here.

Whereas it is shown later in the section that the sphere center can be robustly

extracted not only from the high-res camcorder frames, but also the low-res ToF frames,

based on the original observation that in a ToF camera intensity image, a sphere center

is always highlighted. The highlight is due to the ToF camera active sensing mechanism,

the surface reflectivity of the sphere and the spherical surface normal direction property.

Real images from an SR3100 ToF camera are shown in Fig. 6.3 and Fig. 6.6. After

the sphere center locations are extracted, an automatic bundle adjustment similar to

Svoboda et al. (2005) can be performed recovering the global extrinsic camera poses and

sphere center 3D locations. Given the extra depth information from the ToF cameras,

the global scale and the full Euclidean space can be recovered.

6.2.1 Unified calibration scheme Overview

A sphere with an unknown radius is moved around in the common viewing space of

the sensor network. Assume the intrinsic parameters of the sensors are known, either

from factory specification of the cameras or through a pre-calibration [Zhang (2007)].

Thus the image radial distortion can be removed. By extracting the sphere center from

the synchronized video frames from all sensors, a bundle adjustment over sensor extrin-

sic parameters and sphere 3D locations can be performed to solve the system up to a

scale factor. Then, the global scale ratio can be recovered using the ToF sensor depth

measurement and the already-computed 3D sphere centers locations in the similarity

space. Notice that this scale ratio is not taken into account during the geometry bun-
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dle adjustment, because the ToF camera depth measurement sometimes can be very

noisy. Therefore, it is not recovered during the bundle adjustment optimization, but is

recovered in a separate step.

6.2.2 Sphere center detection

Camera/camcorder

Figure 6.2: Left: A sphere projection on to the image of a camera centered at C is in
general an ellipse, due to the projective distortion. The sphere center’s projection O′

is also not at the ellipse center. Right: a 2D side view of the same configuration. The
“hypothetical sphere” located at (xi, yi, 1)T is shown as the red dotted circle with radius
ri.

After the radial distortion is removed, the 2D image of a sphere is an ellipse [Agrawal

and Davis (2003); Ying and Zha (2006); Zhang et al. (2007)], as illustrated in Fig. 6.2.

Hough transform is applied for robust ellipse detection. In general, an ellipse is defined

by five parameters. So the Hough space is 5D. However, since the camera principal point

is known, one can unambiguously define an ellipse in an image i by the sphere radius R

and the viewing ray from the camera optical center to the sphere center, namely vector

⟨xi, yi, 1⟩. But since R is unknown, an alternative way is needed to describe the radius.

Given that the intrinsics are known, for every image i, a “hypothetical sphere” can be

introduced located at (xi, yi, 1)T – one can think of a sphere located on the Z = 1 plane

in the 3D space – with a varying radius ri, such that this new sphere results in the
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same elliptical image projection as our real radius R sphere, as shown in the right plot

of Fig. 6.2. Therefore, the problem actually has only an (xi, yi, ri) 3D Hough space,

which makes the computation easier. Practically, the “edgeness” cue and the color of

the sphere are used to guide the Hough transform. To further exploit the temporal

consistency between neighboring image frames, given (xi−1, yi−1, ri−1) in frame i− 1, a

simple tracking scheme is applied to constrain the local search window for detection in

frame i.

ToF camera

Figure 6.3: Left: A typical intensity image of a Swiss Ranger 3100 mapped on to its
depth mesh. The highlight is due to most of active light reflection in a local region.
Right: A top view of the same depth mesh. The highlight is along the viewing ray
through the camera optical center and sphere center.

A sphere center in a ToF camera image should not be extracted in the same way as

a camera/camcorder, because of the extremely low image resolution and relatively bad

sphere edge contrast. However, thanks to the ToF camera active sensing mechanism, an

even simpler way is available to find a sphere center.

Most of the current ToF cameras (e.g. Swiss Rangers, PMD sensors and Canesta

cameras) have LEDs evenly distributed around the camera lens. The active light can

thus be think of as from a single virtual “point light source” located at the camera

optical center. Therefore, assume a Lambertian sphere surface, which has the property

that the witnessed brightness in an image depends only on the angle between the surface

normal and the light source, the brightest pixel in the intensity image is the one that
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lies on the line connecting the camera optical center (the virtual “point light source”

position) and the sphere center, which by definition is the sphere center’s projection in

the image, as shown in Fig. 6.4. In fact, the Lambertian assumption is not necessary,

since the specularity of the surface even strengthens the highlight, due to the overlapping

virtual light source with the camera optical center. Both Fig. 6.3 and Fig. 6.6 show this

phenomenon in a real SR 3100 image.

Figure 6.4: Explanation of sphere center coincide the ToF image highlight. The highlight
locates at the normal direction to the camera, which is the same as the direction going
through the sphere center.

Some might point out that strictly speaking the assumption that it is a virtual “point

light source” does not hold, because the light source is not a point (but a network of

LEDs), the non-perfect shape and texture of an actual spherical object, and aliasing

effects. But instead of blame the low resolution, one should thank that the observed

highlight blob is so small that only with in the size of a pixel and the questioned

assumption still holds, as long as the sphere is far away enough from the imaging plane

and the relative sphere radius is much bigger than the dimension of the light source

array.

Also some might have noticed that the depth image from the ToF cameras as well
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gives some hint to the sphere center’s image location, but there are at least two reasons

that it is not computed from the depth cue. First of all, the closest point on the sphere

depth mesh is usually NOT the sphere center location, unless the sphere center goes

through the principal axis. Thus the computation would not be as easy and direct as

the following proposal. Secondly, the depth image is noisy, as shown in Fig. 6.3.

Here comes the actual proposal: To recover the sphere center’s image location in

each ToF frame, one can detect and track the highlight in the intensity image only. A

paraboloid is fitted to achieve sub-pixel accuracy, given the intensity values around the

found maximum location.

6.2.3 Recover the extrinsics via bundle adjustment

Given the intrinsics and sphere center’s image locations in the synchronized frames from

all the views, one can now perform a global bundle adjustment similar to [Svoboda et al.

(2005)] to recover the camera poses and sphere 3D locations. The intrinsics of the video

camcorders are pre-computed using [Zhang (2007)]’s method. The intrinsics of the ToF

cameras are obtained from the factory manual. But the intrinsics can be also put into

the bundle for a further refinement. Due to the heterogeneity of the sensors, namely

the image resolutions are very different and the sphere center extraction methods as

just described are very different (The uncertainty of the camcorder Hough transform is

related with the sphere boundary extraction, intrinsic optical center computation, radial

distortion correction and Hough space resolution; The uncertainty of the ToF camera

sphere center extraction is related with image noise and motion blur.), to minimize

the algebraic error (pixel re-projection error) is meaningless. Therefore, the bundle

adjustment error metric is defined to be the angular re-projection error [Oliensis (2002);

Hartley and Schaffalitzky (2004); Ke and Kanade (2005)], i.e. the angle � between the

observed ray x and the re-projection ray r :
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f(X ) = ∣ tan(�)∣ =
∣∣∣∣x × r

xTr

∣∣∣∣ . (6.1)

This overcomes the image resolution difference. Since it is hard to model the method-

ological distinction between the two sphere center extraction approaches, for now assume

the two methods have equal uncertainties, thus this issue is ignored in the rest of the

chapter.

6.2.4 Recover the sphere radius R and global scale S

After the bundle adjustment, one can compute the relative distance from each sphere

center 3D location to the camcorder optical centers. And since ri is known from the

Hough transform, for each camcorder image i, the 3D sphere radius Ri can be computed

by similar triangle analysis, as shown in the right plot of Fig. 6.2. For the real sphere

radius R, it just takes the mean of all Ri s. Notice that R is still in the similarity space,

but not the metric radius of our calibration target.

To recover the global scale S, the depth measurements Di at the sphere center’s pixel

position is read out from the ToF depth images. And suppose the relative distance from

the sphere center to the ToF camera optical center is di, the expression below can be

derived. Detailed implementation is described in Section 6.2.5 with a real dataset.

Di = (di −R) ⋅ S. (6.2)

6.2.5 Calibration Result and Evaluation

Experiment setup

In this section, a real dataset consists of two Canon HG10 camcorders and two Swiss

Ranger 3100 ToF cameras is evaluated. The camcorders are set to run at 25 fps with

an image resolution of 1920× 1080 pixels. The Swiss Rangers are set to run at 20 fps
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with an image resolution of 176 by 144 pixels. Although many delicate approaches could

be applied, the four views are synchronized by temporally sub-sampling the frames at

5 fps. The calibration target is a yellow gymnastic ball. The four sensors locate on a

rough circle, looking inward at a common free space. The two ToF cameras are set at

different modulation frequencies, i.e. 19 MHz and 20 MHz, so that the active lights are

not interfering with each other. And this gives a minimum unambiguous depth range of

7.1 meters, which well satisfies the current scene modeling application.

Sphere center extraction

The sphere centers are extracted using the described methods in the previous section.

The camcorder image Hough transform is illustrated in Fig. 6.5. And the ToF camera

sphere center highlight is shown in Fig. 6.6. The extracted sphere center locations for all

four views are shown as green dots in Fig. 6.7. In order to get an unbiased and robust

calibration, the sphere is intensionally move to sample the 3D space as uniformly as

possible.

Figure 6.5: Camcorder ellipse extraction. Only cropped images are shown. Best viewed
in color. Left: A thresholded gradient magnitude image. Middle: 2D projection of the
(xi, yi, ri) 3D Hough space. A single solution is found, at the crossing. Right: The
recovered ellipse and the sphere center overlaid on the original image.

Bundle adjustment evaluation

After the bundle adjustment, the recovered camera configuration and 3D sphere center

locations are shown in the left plot of Fig. 6.8. The plot on the right is the re-projection

error statistics in the box-and-whisker diagram from our bundle adjustment result. A
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Figure 6.6: ToF camera Swiss Ranger 3100 intensity image sphere center highlights.
To detect the highlight robustly and automatically, a simple Region of Interest (ROI)
tracking method is applied.

different way to evaluate our recovered poses is to project the camera centers to different

camera views, as shown in the yellow crosses in Fig. 6.7. One can see that the projected

camera centers well overlay their images from a different view as expected.

For completeness, the physical projection matrices of the four cameras in the setup

are listed in Tab. 6.1 (sensor internal and external parameters) and the full dataset used

for reconstruction in Section 6.3 is available upon email request.

Table 6.1: Recovered camera projection matrices with our method.

Cam #1

-69.098 123.3147 152.3223 340.4835

-176.7834 -83.9725 46.8359 103.5043

-0.0888 -0.3609 0.9284 1.2298

Cam #2
-799.49 1401.3 286.95 2048.2

-1418.8 -360.37 -123.77 416.72

-0.56033 0.18502 0.80743 1.7704

Cam #3
380.59 -1900.0 115.72 -1140.6

-1716.4 -704.98 -151.45 296.97

-0.14273 -0.54063 -0.82907 -1.0773

Cam #4
25.9357 -129.1248 -167.5592 -304.4062

-209.1743 -37.0983 -45.5719 31.5774

-0.3153 0.42896 -0.84651 -0.42014

Attempts also have been made to actually calibrate the system with a planar checker-

board pattern for comparison, but fail to link the camera pairs (#1, #2) and (#3,#4)

together. Because as seen in Fig. 6.8, view #1 is almost opposite to view #3, so as #2

to #4, which unfortunately is one of the extreme cases having been discussed before.
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Figure 6.7: The extracted sphere center’s image locations are shown in green dots. The
sphere samples cover the 3D space as much as possible. After the bundle adjustment,
the recovered camera centers are re-projected to the images as yellow crosses. They
overlap very well with the camera image, showing that the system is well calibrated.

Figure 6.8: Left: The recovered sphere center’s image locations for all four views. Right:
Image re-projection error statistics. Cam #1 and #4 are ToF cameras. Cam #2 and
#3 are video camcorders. The re-projection errors for the ToF cameras are significantly
smaller than those of the video camcorders, whose image resolution is much higher. This
shows our bundle adjustment does not have a bias to the resolution difference.
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This again shows the advantage of the proposed calibration approach.

Sphere Radius and Global Scale Recovery

Given the recovered 3D structure and camera poses, and the hypothetical sphere radius

ris, the mean radius can be computed R = 0.0248, simply by similar triangle inference,

as shown in the right plot of Fig. 6.2. Note again that R is not the true sphere radius,

but in the recovered similarity space.

To recover the absolute scale S, one can re-write Eq. 6.2 as a minimization problem:

argmin
S

∑
i

∣Di +R ⋅ S − di ⋅ S∣ . (6.3)

Given the dataset, one can solve S = 11.3886, and the absolute sphere radius R′ =

R ⋅S = 0.2824 m. The actual sphere circumference is measured to be 1.7925 m, namely

the measured sphere radius is 0.2853 m, which is very close to the above computation.

6.3 Heterogeneous Sensor Network Fusion

The depth information and silhouette cues have been explored separately for 3D re-

construction purpose. Both have their own advantages and drawbacks. For the depth

information, it can give actual object surface patches. But due to self-occlusion, indi-

vidual patches only provide a partial model of the object surface, so one of the many

challenges is to deal with missing patches and fill up the holes so as to get a topologically

correct object shape [Bajaj et al. (1995); Curless and Levoy (1996); Hilton et al. (1998);

Davis et al. (2001); Casciola et al. (2005)]. On the other hand, reconstruction from

silhouette cues [Baumgart (1974); Laurentini (1994); Szeliski (1993); Lazebnik et al.

(2007); Franco and Boyer (2009)] are praised for a closed shape estimate of the object.

And recently even no hard decision binary silhouette images are required for a robust

probabilistic visual hull reconstruction [Franco and Boyer (2005)], introduced in Section
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2.4.2. As discussed, an inherent drawback of a visual hull is that it cannot recover object

concavities no matter how many views of silhouettes are provided. However, this can be

directly compensated by the depth information. In fact, object depth and silhouette are

quite complementary information in nature: the former encodes lights bouncing back

from the frontal surfaces; and the latter is tangent to the object. So in theory, these

two could be combined to improve the reconstruction quality. Additionally, in the het-

erogeneous sensor network, the shape details can be recovered with the high-resolution

camcorder frames to compensate the low-res ToF camera images.

However, silhouette and depth integration is not straightforward due to the hetero-

geneity of the information. [Li et al. (2002)] try to tackle the problem with pure surface

representation, which requires a lot of delicate handling of geometry computation er-

rors. As an alternative, volumetric fusion can be favored to avoid topological problems

[Kampel et al. (2002); Sablatnig et al. (2002); Yemez and Wetherilta (2007)], but these

methods are all based on deterministic criteria, which have to specifically deal with

sensor noise perturbations.

In order to achieve a more robust but also more general solution to the fusion prob-

lem, similar to [Franco and Boyer (2005)], the framework discussed in this section [Guan

et al. (2008a)] borrows the concept of a space occupancy grid from the robotics literature

[Elfes (1989); Margaritis and Thrun (1998); Pathak et al. (2007)] as the representation

of 3D scenes. After defining the probabilistic sensing models for each type of sensors,

the reconstruction simply becomes a Bayesian inference. The reconstruction result is

a posterior probability volume given sensor observations. It is inherently robust and

requires no special treatment regarding sensor noise, because the noise and variation is

already part of the probabilistic sensing models. One thing to note is that the proposed

framework is not limited to the fusion between silhouette cues and depth maps, but

any type of sensor observations such as point clouds and disparity maps, as long as the

sensing model can be properly defined.
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6.3.1 Problem Formulation

After the sensor network calibration as discussed in Section 6.2, with the following

notations, the problem formally can be defined formally: given a set of synchronized

observations V from n sensors at a specific time instant, one can infer for every 3D

location X in an occupancy grid G expanding the 3D space its probability of being

occupied or not by the dynamic object being modeled. And this probability is denoted

as p(GX) with GX the binary variable at X. Because of the heterogeneity of the sensors

in the network, the sensing models are denoted as ℳ.

Figure 6.9: General sensor network system dependency.

The space occupancy variable GX ∈ {0, 1} depends only on the information along

optic rays that go through X. However, anti-aliasing effects need to be considered. the

same sampling window strategy introduced in Section 2.4.2 [Franco and Boyer (2005)] is

used, where a certain 3D voxel affects the formation of pixels within the sampling window

similar to a point spread function. Another common occupancy grid assumption is the

statistical independence between voxel occupancies. Each voxel occupancy likelihood is

computed independently for tractability. Therefore, the sensor network relationships are

modeled as computing the joint probability of these variables, p(GX ,V1,...,n,ℳ1,...,n), and

the following decomposition is proposed, based on the statistical dependencies expressed

in Fig. 6.9:

p(GX ,V1,...,n,ℳ1,...,n) = p(GX)
n∏
i=1

p(ℳi)p(Vi∣GX ,ℳi) (6.4)
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∙ p(GX) is the prior likelihood for occupancy, which is independent of all other

variables except � . It is chosen not favor any voxel location and is set to uniform.

∙ p(Vi∣GX ,ℳi), or more specifically, given the aforementioned viewing-ray indepen-

dence assumption, p(Vpi ∣GX ,ℳ
p
i ) represents the sensor observation probability.

Once the joint probability distribution has been fully determined, it is possible to

use Bayes rule to infer the probability distributions of our searched variable GX , given

the sensor models ℳ and their observations V .

p(GX ∣V1,...,n,ℳ1,...,n) =

∏n
i=1 p(V

p
i ∣GX ,ℳ

p
i )∑

GX

∏n
i=1 p(V

p
i ∣GX ,ℳ

p
i )

(6.5)

If Eq. 6.5 is applied for all locations and obtain this probabilistic volume G , the

3D objects can be simply reconstructed by extracting iso-probability surfaces, or more

robustly using state-of-the-art techniques, such as Graphcut/Levelset algorithms [Snow

et al. (2000); Whitaker (2004)]. The remaining problem is to define the proper sensor

modelsℳ so that the observation formation p(Vi∣GX,ℳi) in Eq. 6.5 is reasonable. But

so far, a very general sensor fusion framework is introduced, which has no constraints

on the sensor type nor data type.

ToF Camera Sensor Model

The probabilistic camcorder background model ℬ is introduced in Section 2.4.2. For a

ToF camera, the observation Vpi is the depth measurement. Similar to the silhouette

variable Spi in camcorder sensor, here a latent variable T pi is also introduced, to model

the front most surface of the object with respect to the ToF camera. The relationship

between sensor variables is shown in Fig. 6.10. Basically, the existence of an object at

GX affects the front most surface location T pi to a certain ToF camera i. And T pi affects

the depth measurement directly.

Because T pi is a latent variable, it needs to be marginalized. However, T pi is not a
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Figure 6.10: ToF camera dependency.

binary variable as its counterpart — the silhouette Spi for a camcorder, but its range

expands all possible locations along the viewing direction. Namely, T pi ∈ [0, dmax], with

0 being the ToF camera optical center, and dmax the largest detectable distance of the

ToF camera.

p(Vpi ∣GX ,ℳi) (6.6)

=

∫ dmax

0

p(Vpi ∣T
p
i ,D

p
i )p(T

p
i ∣GX)dT pi (6.7)

∙ p(Vpi ∣T
p
i ,D

p
i ) is the depth measurement term. It depicts how precise the ToF

camera depth measure is. A normal distribution N (T pi , �) is used to model it,

where � is trained from depth calibration process or obtained from the camera

manual.

∙ p(T pi ∣GX) is the surface formation term. Assume every voxel is independent

along the viewing direction of length dmax, and any place on the viewing ray has

an equal chance of 1/dmax to be the front most point. Now, if GX = 1, the front

most surface position T pi still has a chance of 1/dmax to be at any position in

front of X, namely T pi < dX − �, where � → 0. But this is not the case for the

positions behind X, because X is already blocking the viewing ray. Eq. Eq. 6.8

& Eq. 6.9 shows the complete scenario, with dX being the distance from X to the

RIM camera. Both distributions of p(T pi ∣[GX = 1]) and p(T pi ∣[GX = 0]) must sum

up to 1.
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p(T pi ∣[GX = 1]) (6.8)

=

⎧⎨⎩
1/dmax if T pi < dX − �

(1− dX/dmax)/� if dX − � ≤ T pi ≤ dX

0 if T pi > dX

p(T pi ∣[GX = 0]) = 1/dmax (6.9)

To get an intuitive idea of the ToF camera model, imagine a single pixel ToF camera,

with the depth detection standard deviation � = 0.3m and maximum detection range

of 8m. If the current sensor readout is 5.0m, according to the RIM sensor model, one

can plot out the space occupancy probability p(GX ∣V ,D) along the viewing ray as in

Fig. 6.11, given Eq. 6.4, 6.5 & 6.6-6.9. This means the object is most likely existing at

5m, the observed depth region. Regions in front of it should be free of any object and

visible up to the camera. Regions behind 5m remains total uncertainty, 0.5, because one

has no clue whether there is matter behind the surface or not. The peak falls smoothly

on both directions, because of the limited sensor precision. This plot is consistent with

the depth sensor models described in other literatures such as [Coué (2003); Pathak

et al. (2007)].

6.3.2 Sensor Fusion Experiment and Result

Two sets of data are acquired to test the proposed calibration and heterogeneous sensor

framework. Without losing generality, for the camcorders and ToF cameras, we use

Canon HG10 and Swiss Ranger 3100 respectively. Canon HG10 DV camcorders are set

to run at 25 fps with an image resolution of 1920 by 1080 pixels. Swiss Ranger 3100
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Figure 6.11: Space occupancy probability p(GX ∣V ,D) at certain distances given the ToF
camera readout of 5.0m. It is a longitudinal cut of what probabilities look like on one
viewing ray in the grid.

are set to run at 5 fps with an image resolution of 176 by 144 pixels. The dataset

specifications are listed below. For Sensor Network 2, in order to prevent the

interference between multiple ToF cameras, their modulation frequency are manually

set at 19MHz, 20MHz and 21MHz respectively. Although this setting will affect the

maximum detection depth of each camera, the minimal range 7.1m [Imaging (2007)]

is still beyond the reconstruction volume range, 6m. Both datasets use an occupancy

volume.

Canon HG10 SR 3100 volume size

Sensor Network I 3 1 128× 256× 128

Sensor Network II 6 3 128× 128× 128

SENSOR NETWORK I result

Two static shapes are reconstructed from this 4 sensor setup: an office chair with two

boxes and a sitting person. The output of the alrogithm is a probabilistic volume, for

visualization purpose, the volume surfaces are extracted at an arbitrary iso-probability

of 87%, and the results are shown in Fig. 6.12 and Fig. 6.13. The reconstructions

from the proposed framework preserve detailed concavity and significantly improve the
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quality of the result from the 3 camcorder only (the probabilistic visual hull). More

delicate surface extraction schemes can be applied to get better object shapes, but this

is beyond the scope of this paper.

Figure 6.12: An office chair with two boxes. Top: the four camera views Bottom:
3-camcorder probabilistic visual hull and 4-camera fusion result with our proposed al-
gorithm. The calibrated camera configuration is also shown here, with #2 the SR3100,
and #1, 3 and 4 the Canon HG10.

SENSOR NETWORK II result

This 9 camera network generates two reconstructions: a person with a rubber ball, and

a crowd of 5 people. The number of cameras in use is not designed on purpose, instead is

based on the number of sensors available. Admittedly though, more detailed information

can be obtained with more sensors, and it really helps in challenging cases such as

very cluttered scenes. The results are shown in Fig. 6.14 and Fig. 6.15 respectively.

The camera calibration procedures are the same as the previous dataset. And the

recovered camera poses are shown in Fig. 6.14, with red cones denoting three SR3100.

The reconstructed ball in Fig. 6.14 has a diameter of 60cm, which is pretty close to the

actual value is 57.06cm given the low volume resolution. This again shows the power
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Figure 6.13: A sitting person. The same configuration with Fig. 6.12.

of our depth calibration. A more challenging example is Fig. 6.15, where 5 people are

highly clustered in the space. Without the depth information to recover the concavities

the visual hull would fail the reconstruction task. One thing to note is that the missing

forearms are sub-voxel size. They can be recovered if the volume resolution is increased

at those places.

Figure 6.14: Top: the camera settings. Bottom: the reconstruction of a person with a
rubber ball. Best viewed in color.

133



Figure 6.15: The reconstruction of the densely populated scene from all 9 sensors with
concavity and details. Visual hull fails in this case, resulting an indistinguishable blob.

6.4 Summary of ToF Camera

In this chapter, a new heterogeneous sensor network of camcorders and ToF cameras in

multi-view 3D object reconstruction is proposed. To achieve more accurate geometric

measurements, a new unified calibration method with a spherical calibration target is

carried out despite the heterogeneity of the network. It overcomes the low resolution

ToF camera image issue, and is almost automatic to recover the Euclidean sensor con-

figuration. Both statistical evaluation and real dataset verify the feasibility and power

of this calibration approach and this multi-modal sensor network setup.

With the calibrated four-sensor setup, it demonstrates the possibility to use a mini-

mum of two opposite-posing ToF cameras for detailed geometry reconstruction and other

two opposite-posing video cameras for extra guidance and more importantly complete

texture maps. Another interesting idea worth exploring is the relationship between the

ToF camera depth measurement against the active light incident angle to the reflecting

surface, a relationship pointed out by [Lindner et al. (2008)]. The fact is that after the

geometric calibration of the system, the ToF camera images captured during the calibra-
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tion process should be analyzed further, because of the nice surface normal properties of

the spherical calibration target. Future works also include depth calibration refinement,

more dataset acquisition and temporal synchronization analysis.

After the system is calibrated, a novel probabilistic sensor fusion framework is pro-

posed as an extension to Section 2.4.2 to robustly relate camcorder silhouette cues and

ToF camera depth images together, and improve the reconstruction quality significantly

comparing with the result using either type of sensor alone. ToF cameras are thus shown

for the first time to be a very promising new type of sensor for accurate multi-view 3D

reconstruction, besides its proposed usage in object detection, tracking etc. More im-

portantly, the proposed sensor fusion framework is general enough and not limited to

a silhouette cues or depth images, but also to disparity maps of stereo camera pairs or

3D point clouds of LIDAR sensors etc., as long as the proper sensor model is provided.

Finally, consider computation time to our volume framework, most of the computation

can be parallelized on GPU, similar to Section 3.5. Also given the high frame rate of

both the camcorders and ToF cameras, dynamic scenes can be recovered in real-time.
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Chapter 7

Conclusion and Future Work

The thesis conclusion is stated before opportunities for further investigation are dis-

cussed.

7.1 Conclusion

The growing computation power and reducing hardware price have enabled many prac-

tical computer vision applications including multi-view 3D dynamic scene modeling.

However, to date, most methods have only achieved good reconstruction quality in

strictly controlled scene settings with fixed lighting and relatively simple background.

The result is far from satisfactory in natural environment. The most promising cate-

gory of algorithms [Bonet and Viola (1999); Broadhurst et al. (2001); Franco and Boyer

(2005)] all taking into account noise issue and model the scene probabilistically.

Following the direction of Franco and Boyer (2005), which recovers the dynamic

shapes despite of the lighting variations, shadows and reflections, I have introduced in

this thesis an extension to overcome static occlusion issue related with the drawback of

traditional background modeling. This greatly extends the system’s ability in cluttered

indoor/outdoor environment. Combined with the camera network calibration algorithm

from only silhouette information [Sinha et al. (2004)], one can imagine a multi-view

system being set up in an arbitrary environment, and after a couple of minutes of



recording, automatically learns the background models and computes the camera poses

and recovers static occlusions in the scene, and then robustly models dynamic scene

in real-time taking into account the recovered static occlusion information. Due to the

sensor fusion principle, this system does require majority of the sensors observing the

dynamic shape without visual obstacles in the way.

The idea of explicitly modeling the static occlusion can be further extended to infer

the inter-occlusion between dynamic shapes, so as to significantly reduce the ambiguity

of silhouette cues. A nice thing is that this framework can naturally combine the pre-

viously introduced static occluder recovery algorithm. Although the shape estimation

quality is not good enough for video conferencing so far, it is already good enough for

outdoor surveillance purposes. And as the dataset evaluation shows, by explicitly mod-

eling the shapes of the dynamic objects, the 3D object tracking result gets improved

from simple rectangle shape model.

Dynamic event modeling is more constrained than static object reconstruction, I have

discussed in the thesis how to enforce temporal consistency between consecutive time

step imageries to further refine the reconstruction result. The method is also formulated

in the probabilistic framework to model the uncertainty of the real environment and

achieve maximum robustness.

I have also shown that such sensor fusion framework is general enough to incorporate

heterogeneous sensing modalities as long as the probabilistic imaging sensing model can

be well-defined. An example of a video camcorder and ToF camera network is proposed

for dynamic scene modeling task.
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7.2 Future Work

7.2.1 Combination of Multi-view Stereo

It is tempting to combine the silhouette information with surface correspondences re-

covered with multi-view stereo technique. Because similar to ToF camera’s depth map,

multi-view stereo also recovers surface information compensating the silhouette infor-

mation. However, in order to exploit the advantages of both methods in a robust prob-

abilistic framework, one needs to either convert surface information to the occupancy

probability with a hidden variable of the frontal surface of the occupancy, similar to the

ToF camera and camcorder fusion in Chapter 6; or one can formulate to compute the

“object surface probability” from the silhouette information.

The latter is straightforward because within the visual hull, the surface of the real

shape could literally take any form, which means given the shape of the visual hull,

the object surface probability is 0.5 within the visual hull and 0.0 outside of the visual

hull. Although this does not give any positive information (probability greater than 0.5)

alone, when combined with the surface information from multi-view stereo, one would

definitely have a refined probabilistic shape estimation, as long as the stereo information

is easily transformed into the same probabilistic form.

7.2.2 Dense Motion Flow and Motion Segmentation

Dense 3D motion computation is ill-posed. As I discussed in Chapter 5, many heuristic

assumptions are made. The local motion smoothness is one of them. On the one hand, it

helps to recover the motion inside the shape where no visual observation is available. On

the other hand, it smooths out the motion discontinuities where two different motions

occur very closely together. For example, during the normal walking sequence, one of

the two arms aside the torso has a backward swing motion, while the torso is moving

forward.
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One solution is to track body parts instead of voxels. Because now voxels within

the same body part are spatially connected together and share the same parameter-

ized motion, it is not necessary to have the strong assumption of “motion smoothness”

anymore. However, the algorithm introduced in Chapter 5 is important in the sense

of a bootstrapping of what body parts are in the scene and which voxels belong to

them. The bootstrapping can be done following the direction of motion segmentation

in the discussion section of Chapter 5. And only with such initialization, can arbitrary

dynamic shapes be modeled and tracked in the 4D spatiotemporal domain.

A second issue is when large motions are at presence in the scene. Intuitively,

the larger the motion, the more likely the optimization gets stuck in a local optima.

For the specific framework proposed in Chapter 5 though, given a fixed video frame

rate, there is always a chance that some parts of the motion are too large, i.e. the

magnitude of certain motion vectors are larger than that of the coarsest level motion

labels. The current framework iteratively computes the motion field to a locally optimal

solution. This may result in fluid-like motion, which is usually not a desirable solution.

One improvement is to incorporate visual feature correspondence information from the

dynamic shape surfaces if there are any, so as to drag the solution out of local optima.

Finally, although for such wide baseline camera setup, to find very dense surface

correspondences across views are impractical, the optical flow over time within the same

view may provide extra information for the 3D motion field computation. It also does

not need the photo-consistency requirement across views as for the photometric stereo

algorithms. But since the corresponding features and optical flows only appear on

the actual object surface or its 2D projection, one must be careful how to use these

constraints in a probabilistic volume, where no explicit surfaces are extracted.

139



Bibliography

Agrawal, M. and Davis, L. (2003). Complete camera calibration using spheres: A dual-
space approach. International Conference on Computer Vision, pages 782–790. 116,
117

Ahn, J., Kim, K., and Byun, H. (2006). Robust object segmentation using graph cut
with object and background seed estimation. International Conference on Pattern
Recognition, 2:361–364. 19

Apostoloff, N. and Fitzgibbon, A. (2005). Learning spatiotemporal T-junctions for
occlusion detection. IEEE Conference on Computer Vision and Pattern Recognition,
2:553–559. 34

Bajaj, C., Bernardini, F., and Xu, G. (1995). Automatic reconstruction of surfaces and
scalar fields from 3D scans. Proceedings of SIGGRAPH, pages 109–118. 125

Ballan, L. and Cortelazzo, G. M. (2008). Marker-less motion capture of skinned models
in a four camera set-up using optical flow and silhouettes. International Symposium
on 3D Data Processing, Visualization and Transmission (3DPVT). 90

Baumgart, B. (1974). Geometric modeling for computer vision. PhD thesis-University
of Stanford. 11, 23, 125

Bonet, J. D. and Viola, P. (1999). Roxels: Responsibility weighted 3D volume recon-
struction. International Conference on Computer Vision, 1:418–425. 15, 25, 34, 136

Boyer, E. and Berger, M.-O. (1997). 3D surface reconstruction using occluding contours.
International Journal of Computer Vision, 22(3):219–233. 23

Boyer, E. and Franco, J.-S. (2003). A hybrid approach for computing visual hulls of
complex objects. IEEE Conference on Computer Vision and Pattern Recognition,
1:695–701. 23

Boykov, Y., Veksler, O., and Zabih, R. (2001). Fast approximate energy minimization
via graph cuts. PAMI. 101

Brand, M., Kang, K., and Cooper, D. B. (2004). Algebraic solution for the visual hull.
IEEE Conference on Computer Vision and Pattern Recognition, 1:30–35. 23

Broadhurst, A., Drummond, T., and Cipolla, R. (2001). A probabilistic framework for
the space carving algorithm. International Conference on Computer Vision, pages
388–393. 25, 68, 89, 95, 136

Brostow, G. and Essa, I. (1999). Motion based decompositing of video. International
Conference on Computer Vision, 1:8–13. 34

140



Casciola, G., Lazzaro, D., Montefusco, L., and Morigi, S. (2005). Fast surface recon-
struction and hole filling using positive definite radial basis functions. Numerical
Algorithms, 39(1-3):289–305. 125

Cheung, G., Baker, S., and Kanade, T. (2003). Shape-from-silhouette of articulated ob-
jects and its use for human body kinematics estimation and motion capture. Computer
Vision and Pattern Recognition, 1:77–84. 90

Chien, C. and Aggarwal, J. (1986). Volume/surface octress for the representation
of three-dimensional objects. Computer Vision, Graphics and Image Processing,
36(1):100–113. 24

Cipolla, R. and Blake, A. (1992). Surface shape from the deformation of apparent
contours. International Journal of Computer Vision, 9:83–112. 23
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