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ABSTRACT
KARL HILLESLAND: Image Streaming to Build Image-Based Models

(Under the direction of Anselmo Lastra)

An important goal in computer graphics is to synthesize photo-realistic images of ob-

jects and environments. The realism of the images depends on the quality of the model

used for synthesis. Image-based modeling is an automated modeling technique aimed at

achieving this realism by constructing models from photographs of real-world objects or

environments. A wide number of image-based modeling techniques have been proposed,

each with its own approach to model generation. However, we can treat all image-based

modeling as a form of function fitting, where the function is our representation for ap-

pearance, and the data to which we want to fit are the photographs.

This dissertation addresses the use of nonlinear optimization to construct image-based

models of an object’s appearance, including a new algorithm for efficient computation

that is designed to take advantage of the high computational throughput of programmable

graphics hardware in order to generate the models in a timely manner. Application to

two diverse types of image-based models demonstrates the versatility and computational

efficiency of the approach. The two types are Light-Field Mapping (Chen et al., 2002a),

which is a radiance model generated from data decomposition, and a per-texel Lafortune

representation (McAllister et al., 2002), which is an analytic reflectance model.

Since GPUs (graphics processing units) lack the precision and accuracy of CPUs, this

work also includes a closer look at the kind of numerical error that occurs in employing a

numerical technique such as nonlinear optimization in this limited precision and accuracy

context. Furthermore, since GPU floating-point operations are not fully documented, this

work also includes a technique to measure the accuracy of GPU floating-point operations.
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Chapter 1

Introduction

An important goal in computer graphics is to synthesize photo-realistic images of ob-

jects and environments. The realism of the images depends on the quality of the model

used for synthesis. Image-based modeling is an automated modeling technique aimed at

achieving this realism by constructing models from photographs of real-world objects or

environments.

A wide number of image-based modeling techniques have been proposed, each with

its own approach to model generation. However, we can treat all image-based modeling

as a form of function fitting, where the function is our representation for appearance, and

the data to which we want to fit are the photographs. This dissertation addresses the use

of nonlinear optimization to construct image-based models of an object’s appearance, in-

cluding a new algorithm for efficient computation that is designed to take advantage of

the high computational throughput of programmable graphics hardware in order to gen-

erate the models in a timely manner. Scalability is achieved by tying the active working

set to model size rather than data size.

Application to two diverse types of image-based models demonstrates the versatility

and computational efficiency of the approach. The two types are Light-Field Mapping

(Chen et al., 2002a), which is a radiance model generated from data decomposition, and

a per-texel Lafortune representation (McAllister et al., 2002), which is an analytic re-

flectance model.

Although faster than CPUs in terms of raw computational power, GPUs (graphics



processing units) lack the precision and accuracy of CPUs. This work also includes a

closer look at the kind of numerical error that occurs in employing a numerical tech-

nique such as nonlinear optimization in this limited precision and accuracy context. Fur-

thermore, since GPU floating-point operations are not fully documented, this work also

includes a technique to measure the accuracy of GPU floating-point operations.

The next section gives background on image-based modeling, and a summary of the

approach proposed in this dissertation.

1.1 Background

In this dissertation, Image-Based refers to how a model is constructed, not the model’s

representation. The image-based models of interest here assume a known geometric de-

scription of the object to be modeled and a surface parameterization for one or more

textures. The textures contain parameters for the appearance model, which is a function

of the position on the surface of the object (surface parameterization), as well as other

quantities such as viewing conditions and lighting conditions. These other quantities may

also be stored in texture maps organized either by surface parameterization or some other

parameterization, such as view direction. This kind of model will be called a TIM for

textured, image-based model throughout this dissertation.

Pixels in an image represent samples of radiance. TIMs typically require hundreds to

thousands of images, and a total of millions to billions of radiance samples. Construc-

tion of the model typically consists of an iterative process in which the TIM is used to

synthesize an image corresponding to a photograph. The result of comparing the synthe-

sized image to the original image is used to update the model parameters, which typically

number in the millions for a complete object. The goal is to find the parameter values of

the appearance model that best approximate the image.

Rather than trying to use a single model of this many parameters to fit all the data,

2



Disk Solve
1p

Disk Solve
2p

Disk Solve
3p

Disk Solve
4p

Distribution Step:Sort into Patches and Compute Dependency DiskI1IiILRadiance Images Dependency Data
Figure 1.1: The conventional approach is to preprocess all the image data, breaking it
down into individual models and datasets. I call this preprocess step the “distibution
step”. Then each piece is solved on its own. This two-step approach requires augmenta-
tion of the original image-data through resampling and characterization of each image
pixel in terms of the function space of the model, which is labelled as “dependency data”
in this figure.

the representation is often broken down into patches on the surface of the object and

a local model is associated with each patch. The number of patches varies from about

ten thousand to a million, and the number of parameters per patch varies from tens to

thousands. The size of the patch is a trade-off between the number of patches and the

number of parameters for each patch.

The conventional approach is to use a pre-process to turn the object and its images into

independent, abstract models and their corresponding data sets. The data consist of image

pixel data, which are typically resampled in some way, along with a characterization of

each image pixel in terms of the function space of each model. The best fit for each

individual model is then computed separately. This two-step approach is outlined in

Figure 1.1.

In contrast, this dissertation proposes an image-streaming framework that treats the

object and images as complete entities, and finds the best fit for all of the patches on the

surface at once. In other words, notions of object, images, lights, and cameras, along

with the entire rendering process, are kept throughout the solution process. This image-

streaming approach is diagramed in Figure 1.2.
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Radiance Images Dependency Data
Figure 1.2: In the image-streaming approach, the distribution step is performed on the
fly, and only for a single image at a time, thus trading computation to save total storage
and bandwidth requirements.

An image-streaming approach on graphics hardware demonstrates favorable perfor-

mance relative to the conventional approach. This is a result of paying a higher cost in

terms of computation in exchange for reducing bandwidth requirements. By rearranging

the computation in this manner, scalability is tied to model size, rather than data size and

resampling on the fly for a single image at a time in the lower dimensional model space.

Chapter 4 shows why this is true from a theoretical standpoint, while Chapters 7 and 8

give empirical results.

1.2 Summary of Previous Work

Related work comes from three main areas: 1) image-based modeling, 2) the use of

graphics hardware for non-graphics applications and 3) nonlinear optimization. In this

section, I give a brief summary of previous work. Further details are covered in later

chapters.

1.2.1 Image-Based Modeling

Previous work in image-based modeling focused largely on developing new image-based

models. With the development of each model, the authors developed an accompanying

technique to generate the model parameters from the images. This dissertation instead

proposes a model generation technique as a solution to a number of different kinds of
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image-based models.

For example, Chen et al. proposed Light Field Mapping (LFM), an image-based

model generated using matrix factorization (Chen et al., 2002a; Chen, 2002). Lafortune

et al. proposed a model generated using the Levenburg-Marquardt method, which is a

nonlinear optimization technique only suitable for models with a small number of pa-

rameters (Lafortune et al., 1997). In this dissertation I look at nonlinear optimization

techniques that will handle both a small parameter model like the Lafortune model, and

also a large parameter model such as a Light Field Mapping model. In order to demon-

strate this, I look more specifically at the LFM model as well as the SBRDF model, or

spatial bidirectional reflectance-distribution function model, which is built from a large

number of Lafortune functions (McAllister et al., 2002; McAllister, 2002). Chapter 2

gives further detail on these and other image-based models, describing how they fit into

my framework.

1.2.2 Graphics Hardware for Non-Graphics Applications

Although the idea of using graphics hardware for non-graphics applications has been

around for a while (Fournier and Fussell, 1988), there has been a recent resurgence due to

the introduction of programmability in mainstream graphics processors (Lindholm et al.,

2001). The GPGPU (general-purpose computation on GPUs) website, http://www.gpgpu.org,

covers current work in the use of graphics hardware for general purpose computation.

Previous work includes exploration of numerical methods implemented on graph-

ics hardware, particularly the solution of linear systems, partial differential equations

which reduce to linear systems, and coupled map lattice approaches to simulation. This

dissertation addresses the solution of nonlinear systems, or more specifically, nonlinear

optimization.

The computer vision community has used graphics hardware to generate models

(Yang et al., 2003; Yang and Pollefeys, 2003), but their goal is to reconstruct geometry
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using fairly simple appearance models to aid the process, whereas I focus on reconstruct-

ing the reflectance model itself. My work also shares some similarity to the work of

Lensch et al. (Lensch et al., 2003), who use graphics hardware as part of a next-best view

system for capturing an image-based model, but in their case, the computation is mainly

performed on the CPU using a more conventional approach.

Further details on previous work in treating graphics hardware as a more general

computational device are give in Chapter 4.

This dissertation also includes a new technique for measuring GPU floating-point

behavior. Related work for CPUs concentrated on conformance testing and detection of

logic error (Karpinski, 1985; Schryer, 1981). GPUBench, which measures precision of

unary transcendental functions in graphics hardware (Buck et al., 2004), and my own test

system for addition, subtraction, multiplication and division (Hillesland and Lastra, 2004)

were presented at the first ACM Workshop on General Purpose Computing on Graphics

Processors in 2004. I describe previous work along with my own work in Appendix A.

1.2.3 Nonlinear Optimization

I do not propose any new techniques for nonlinear optimization. However, since nonlin-

ear optimization is not a typical subject covered in computer science, I give a brief tutorial

in Chapter 3. Further details on nonlinear optimization can be found in a textbook on nu-

merical nonlinear optimization such as Numerical Optimization by Nocedal and Wright

(Nocedal and Wright, 1999) or Numerical Methods for Unconstrained Optimization and

Nonlinear Equations by Dennis and Schnabel (Dennis and Schnabel, 1996), or Practical

Optimization by Gill, Murray and Wright (Gill et al., 1981).
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1.3 Process Overview

Nonlinear optimization has been used for generating image-based models of appearance

in the past. The complete procedure for generating models from images is given next.

1. Take pictures of the object with known viewing and lighting conditions.

2. Construct the object’s geometry.

3. Choose an appearance model function.

4. Postulate a set of parameters for the appearance model.

5. Try to synthesize the reference images using the model. If the model does a good

enough job of matching what was in the reference images, you are done. Otherwise

proceed to the next step.

6. Use the result of this comparison to refine the model parameters and return to step

5.

This dissertation focuses on steps 5 and 6. All images are processed for a single

iteration of the nonlinear optimization process, so there is an implied inner loop in step

five. Figure 1.3 shows the stages of processing for each image.

1.4 Thesis

This section presents the thesis of the dissertation, and clarifies its claims. The next

section outlines the demonstration of the thesis.

An image-streaming approach to nonlinear optimization is a widely applica-

ble and efficient technique for image-based model construction.
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Synthesized
Image

Transform from 
Image Space to 
Model Space

Accumulate 
Error, Gradient 
and Other Per-
Iteration Data

Reference 
Image

Figure 1.3: Conceptually, there are three stages of processing each image, which are
outlined here. The first stage involves a comparison of the photograph (upper image)
and an image created by using the image-based model (lower image). A transformation
from image-space to model space occurs before or after the comparison, as discussed in
Section 5; this figure signifies the latter case. Finally, some accumulation of information
derived from each image is necessary.

We have already discussed the overall process in terms of image-streaming. The

remainder of this section clarifies some of the claims of the thesis statement.

1.4.1 What is Meant by “Image-Based Models”?

Although the image-streaming framework might be applied to reconstruction of geomet-

ric information, I only investigated the generation of models for surface appearance. In

fact, the framework is specifically intended to create TIMs. Besides geometry, it is as-

sumed that camera and lighting information are available as necessary for the model. In

cases of relighting, there are no provisions in this dissertation for handling global illumi-

nation effects.

1.4.2 What is Meant by “Nonlinear Optimization”?

The nonlinear optimization technique must be one that works well within the stream-

ing framework proposed. For example, a full Newton’s method would be impractical

in terms of space requirements, which are O(n2) with respect to the number of parame-

ters. Secondly, the nonlinear optimization technique will require continuous derivatives.
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Third, I have only considered cases where an analytical expression for the gradient is

given. Finally, constraints are handled through a penalty method, which works well for

soft constraints, but is difficult to use for hard constraints.

1.4.3 What is Meant by “Efficiently”?

In order to be useful, the algorithm must scale well in terms of memory, bandwidth, and

computational requirements, and it must show favorable performance relative to con-

ventional methods on the CPU. The streaming model offers potential scaling benefits as

discussed in Secton 4.1, and an algorithm that supports streaming can ride that faster

curve.

1.5 Motivation and Demonstration

This section documents how the thesis is demonstrated by addressing each of the key

aspects: that it is applicable to a fair range of image-based models and nonlinear opti-

mization techniques, that it is efficient with respect to time and computational resources,

and that it will produce the correct result.

1.5.1 Wide Applicability

Image-based modeling is a function fitting process. One goal of this dissertation is to

explore how to fit an image-based model to image data. Rather than concentrating on a

single modeling function, this work tries to address a wide class of image-based models

by exploring the use of nonlinear optimization. Nonlinear optimization has been used to

construct image-based models in some specific cases. This dissertation presents nonlinear

optimization as a more general technique with respect to its applicability to image-based

modeling. Chapter 3 provides background on nonlinear optimization that is relevant to

its application in image-based modeling.
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(c) Ornament

Figure 1.4: Three models models were used to demonstrate the application of the frame-
work in practice. (a) and (b) are LFM models of real-world objects. (c) is a SBRDF
model generated from a synthetic image-capture process.

Any image-based modeling system with some form of surface parameterization will

require a transformation from image space to model space. Chapter 5 describes the issues

associated with this transformation. Not included are issues related to image registration

and camera calibration, for which considerable literature already exists.

Chapter 2 describes the types of image-based models handled by this framework. I

implemented two image-based modeling techniques under this framework to demonstrate

its range of applicability in practice. The first is called Light Field Mapping, or LFM

(Chen et al., 2002a; Chen, 2002). It is a model of view-dependent radiance that uses a

compressed representation derived from a data decomposition approach. The second is a

spatial bidirectional reflectance-distribution function or SBRDF (McAllister et al., 2002;

McAllister, 2002). It fits an analytic reflectance model to acquired data. Figure 1.4 shows

the models I used to demonstrate that both LFM and SBRDF models can be created using

this framework.

I would not expect a general nonlinear optimization technique to be more effective
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than a special-purpose algorithm designed for a specific image-based modeling tech-

nique. However, in the cases I’ve tried so far, this framework is competitive in both time

and accuracy with the original special-purpose algorithms used by the original authors.

I believe an analysis of how to apply nonlinear optimization to image-based modeling

in a more general sense should provide some useful insights with broad application in

image-based modeling.

1.5.2 Scalability

Image-based modeling involves processing of large data sets. As already mentioned,

there are on the order of thousands of images, and millions of model parameters. This

work treats the image-based modeling process as an image-streaming process. The

image-streaming approach and the choice of nonlinear optimization techniques reflect

the need for handling data sets of this size.

The original images constitute the data in the stream. There are three key aspects to

the scalability of this approach. First of all, the active working set is tied to model size (on

the order of tens of megabytes) rather than data size (on the order of gigabytes). Second,

any resampling is done on the fly, and only for a single image at a time. Third, resampling

is done in model space, not in the original, and often much higher dimensional, data-

space. Chapter 4 details how this is achieved. Chapter 3, which provides background on

nonlinear optimization, concentrates on techniques designed for large problems, where

storage requirements are O(n) with respect to the number of model parameters.

1.5.3 Fast Computation

The computation to construct an image-based model can often be fairly time consuming.

For example, the construction of an image-based model for re-lighting can take on the

order of several hours or days for current techniques (McAllister, 2002), (Furukawa et al.,
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2002). This computation becomes an important bottleneck in the image-based modeling

process. It is desirable to have some way to quickly evaluate the adequacy of the data

captured, as it can be inconvenient, or even impossible, to return to a capture site after

finding that there are data missing. With the ability to compute and evaluate a model

in a timely manner, any missing or inadequate data can be identified while the object or

environment is still readily available.

This dissertation will address speed in computation by showing how an image-streaming

process using programmable graphics hardware results in efficient computation. This

takes advantage of an important computational resource that is a component of nearly

every computer system. Chapter 4 describes this streaming process and how to leverage

graphics hardware for computation in this manner. Chapters 7 and 8 report timing results

from implementing the framework on two different kinds of models to show its effec-

tiveness in practice. In the LFM case study the GPU version performed a factor of five

faster than an equivalent CPU version, and comparable to the original matrix factoriza-

tion implementation. I believe the streaming formulation will prove to be important for

real-time image-based model generation.

1.5.4 Numerical Error Analysis

Graphics hardware supports only single precision floating-point arithmetic (at best). Chap-

ter 6 explores numerical error for the framework proposed in this dissertation. For exam-

ple, image-based models often only need to match the photographs to within the eight-bit

precision of a color buffer channel. Graphics hardware is restricted to a 32 bit floating-

point representation, and also has a 16 bit mode to reduce bandwidth. Chapters 7 and 8

give empirical evidence that 16 bit precision is adequate.

Development of numerical methods requires knowledge of the floating-point behavior

of the device. CPU manufacturers document specifications of the floating-point behavior

of their hardware; therefore, CPU floating-point tests check for conformance to particular
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floating-point models (Karpinski, 1985) or tests for logic errors in their implementation

(Schryer, 1981). GPU manufacturers, by contrast, do not currently publish specifications

for the floating-point behavior of their hardware. Therefore, I have developed a system

for measuring floating-point accuracy in addition, subtraction, multiplication, and divi-

sion (Hillesland and Lastra, 2004), which is described further in Appendix A. To my

knowledge, this is the first published technique for quantifying the accuracy of these

operations.

1.6 Relationship to The SIGGRAPH Paper

Part of this work was presented as a 2003 SIGGRAPH paper (Hillesland et al., 2003).

As the SIGGRAPH paper was a collaborative work with two others, it is important to

distinguish the contributions of the individuals from my own contribution, as well as

discuss what is different in this dissertation.

The SIGGRAPH paper presented the image-streaming framework, including an im-

plementation for the same LFM and SBRDF models used in this dissertation. Optimiza-

tion was performed using both the steepest descent and conjugate gradient methods. Time

comparisons were made between a CPU implementation using the conventional approach

and the image-streaming approach on the GPU. Error analysis consisted of comparing

synthesized results against the original photographs. We analyzed resource utilization

empirically. Next I outline the roles each of us played in the work for the SIGGRAPH

paper. Naturally, there was some measure of overlap in our roles, but I have tried to

emphasize the main responsibilities of each person.

Radek Grzeszczuk proposed the high level idea of creating image-based models in a

feedback loop using graphics hardware. He also pointed me to nonlinear optimization

as the feedback mechanism for this endevour. He developed the technique for building

the stepsize incrementally using second-order derivative information as described in Sec-
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tion 4.3.3. He also did some of the early work on the SBRDF prototype, which was

based on my LFM prototype. He was also responsible for the bulk of the writing in the

SIGGRAPH paper.

Sergey Molinov assisted with implementation; particulary, setup of the basic structure

for the DirectX implementation. He also implemented the full system for the SBRDF

model.

I figured out how to use nonlinear optimization to build an LFM model. I developed

the image-streaming framework, and how it could be implemented for graphics hardware.

I suggested the SBRDF model as a 2nd kind of model to try. I first implemented a

small prototype for building LFM models in OpenGL/Cg using a software emulator, and

then implemented the full version using the DirectX structure that was setup by Sergey

Molinov.

This dissertation takes a more disciplined approach to the line search (described in

Chapter 3) and resampling (Chapter 5). In addition to empirical timing results, I provide

theoretical analysis of the scalability of this approach in Chapter 4.1. Error analysis is

augmented by a more theoretical approach, including development of conditions for con-

vergence in the presence of numerical error in Chapter 6. I have also developed a system

for measuring floating-point error to facilitate this, which is documented in Appendix A.

1.7 Outline Summary

This dissertation begins by examining what kinds of image-based models fit into this

framework (Chapter 2). Included are descriptions of the LFM and SBRDF models, which

are used as case studies. The chapter ends with a description of how construction of

image-based models is treated as a function-fitting process.

Chapter 3 provides background on nonlinear optimization as it applies to this frame-

work. It discusses steepest descent, conjugate gradient, and limited memory BFGS,
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which are descent techniques that work well for large problems. Penalty methods are

discussed as a technique for imposing some amount of smoothness on the model func-

tion parameters and for bounding the range of model parameters.

The image-streaming framework is described in Chapter 4. This image-streaming

framework is built on the observation that the model can be built from the images incre-

mentally. Quantities such as the error function, which is a measure of how well the model

matches the reference images, are expressed as a summation across images.

Chapter 5 is focused on implementation of some of the core functions of the frame-

work in graphics hardware. The model parameters are the texels in texture maps orga-

nized according to various spaces of the model, such as surface location and view direc-

tion, so these operations generally involved moving data between these different spaces.

Graphics hardware has limited precision, and so Chapter 6 examines the implications

of round-off error in this framework. Since graphics hardware floating-point behavior is

undocumented, I have developed a technique to measure this behavior, which is docu-

mented in Appendix A.

In Chapters 7 and 8 this theory is put to practice in applying the framework to the LFM

and SBRDF models respectively. These chapters include analysis of both accuracy and

performance; showing favorable performance relative to a conventional implementation

on the CPU while maintaining reasonable accuracy.

Work still remains for building on this framework to make it both easier to use and

for realtime model generation. Chapter 9 includes suggestions for future work that can

achieve these kinds of goals.
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Chapter 2

Image-Based Modeling

Image-based modeling refers to a process of constructing a model from images. The

purpose of this chapter is to give some background on the kinds of image-based models

covered by this dissertation. As discussed in Section 1.4.1, this dissertation concentrates

on models with an underlying, known geometric model. The goal is to acquire a model

for the appearance of the object. The model should be spatially-varying meaning there

is some sort of variation over the surface of the object, primarily represented by a set of

texture maps. I call these models textured, image-based models or TIMs.

These models fall into two broad categories: models of exitant radiance and mod-

els of surface reflection. The next two sections provide background on radiance and

reflectance models, concentrating on issues most relevant to this dissertation. Included

are descriptions of Light Field Mapping (LFM) (Chen et al., 2002a; Chen, 2002) and the

spatial bidirectional reflectance-distribution function (SBRDF) (McAllister et al., 2002;

McAllister, 2002), which are two diverse image-based modeling approaches used as case

studies. The chapter ends with a description of how construction of image-based models

is treated as a function-fitting process.

2.1 Radiance Models

Radiance is a measure of light power passing through a differential area in a certain

direction (per solid angle) and has units of W/m2/sr. The plenoptic function (Adelson



and Bergen, 1991) describes radiance at a point, and is in general a seven-dimensional

function describing the radiance at point (x,y,z) in direction (θ ,φ), a wavelength λ , at

time t:

f (θ ,φ ,λ ,x,y,z, t) (2.1)

From now on, wavelength dependence will be handled by using an independent radi-

ance model for each of three specific wavelengths: red, green, and blue, and will therefore

be dropped from further notation. Since this dissertation only covers time-independent

models, time will also be dropped from subsequent notation.

Radiance along a ray is constant as long as there there are no occluders along this path,

making one of the dimensions redundant in this case. This is why position and direction

were replaced by a 4D parameterization (u,v,s, t) for Light Field Rendering (Levoy and

Hanrahan, 1996) and the Lumigraph (Gortler et al., 1996).

A surface light field (Miller et al., 1998) is parameterized on the surface of the object.

I will use s as the two dimensional parameterization on the surface, and ω for the two-

dimensional parameterization of direction. This reduces Equation 2.1 to

f (s,ω). (2.2)

A surface light field is more specifically intended to be a model of exitant radiance, mean-

ing it is for radiance that is reflected from the surface, rather than the radiance incident

on the surface.

Direct construction of a single function describing the spatially-varying radiance

emitted from an entire object is impractical for all but the most trivial models. Therefore

the appearance model is typically handled by breaking the surface down into independent

patches. We might write the function in this manner:

f j(s,ω). (2.3)

18



Figure 2.1: The surface light field parameterization. This parameterization is suit-
able for representing static sample-based scenes. This figure is from Chen’s dissertation
(Chen, 2002).

Of course, this must be a finite, discrete set of functions in practice, and therefore I use

the subscript j to denote this fact. A triangle is an example of a patch that is simple and

frequently used (Nishino et al., 1999). A more sophisticated example of a patch would

be a vertex and the ring of triangles sharing that vertex. This is the formulation used in

LFM.

Typically, a surface light field is built by first constructing an independent function

for each point on the surface:

fs j(ω), (2.4)

where the index j enumerates the patch. The framework proposed in this dissertation is

quite amenable to this representation. The paper by Wood et al. (Wood et al., 2000) starts

with a point-sampled approach of this nature. Their function corresponding to Equa-

tion 2.4 is called the “lumisphere”. The lumisphere is a fairly data-intensive represen-

tation, so Wood et al. compress these data using what they call “function quantization”

and “principal function analysis”, which are based on vector quantization and principal
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component analysis (PCA) respectively. The original representation prior to compression

consists of independent models at each point on the surface. Because surface light fields

are spatially coherent, compression is achieved by taking advantage of this coherence, at

the cost of creating an inter-dependence between points on the surface of the object in the

compressed representation. Wood et al. used a global compression scheme, whereas this

work focuses on more localized coherence.

The smallest patch size considered in this work is a texel-sized or point-sized patch,

where each independent model has no explicit dependence on surface parameterization,

resulting in a model in the form of Equation 2.4. Later, we will look at the SBRDF which

uses a texel-sized patch, but for modeling reflectance.

I chose to look more specifically at LFM as an example of a radiance model. It is

a patch-based model of the form in Equation 2.2. Further details of LFM are given in

Section 2.4.

2.2 Reflection Models

This dissertation also addresses models of reflectance. Nicodemus et al. (Nicodemus

et al., 1977) defined the bidirectional scattering-surface reflectance-distribution function,

or BSSRDF as the function S(ωi,si,ωr,sr) relating differential radiation flux dφi coming

from direction ωi = (θi,φi) incident on a surface at point si = (ui,vi) to its differential

reflected radiance dLr leaving point sr = (ur,vr) in the direction ωr = (θr,φr):

dLr = S ·dφi (2.5)

Analogous to the plenoptic function for radiance, and nearly equivalent to the BSS-

RDF, Debevec et al. proposed the reflectance field:

R = R(Ri;Rr) = R(si,ωi;sr,ωr), (2.6)
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which relates the incident light field Ri(si,ωi) arriving at a surface to the light field

Rr(sr,ωr) leaving the surface (Debevec et al., 2000). In their discussion of the radi-

ance field, they do not necessarily parameterize on a surface corresponding to a physical

surface; this is in contrast to what’s implied by the description of the BSSRDF.

Another formulation where exitant radiance at one point is related to incident radiance

at another point is the BTF, or Bidirectional Texture Function (Dana et al., 1999). The

BTF is conceptually a texture image recorded under a number of viewing and lighting

directions. There have since been a number of techniques for representing the BTF for

the sake of compression and rendering (Müller et al., 2004). Although I have not tried

a model of this type, experience with light-field mapping and the SBRDF (described

later) leads me to believe that BTF-based models are possible within my framework. The

reason is that the effects in BTFs arising from interaction between different points on

the surface are somewhat localized. Note that BTFs have been measured by looking at

a single material sample, not an object. The framework I propose should be applicable

to both capture of a material sample’s BTF and an object’s BTF. However, more general

models that relate incident radiance at a point si to a more distant point sr would be

difficult to handle in this dissertation’s framework.

Nicodemus et al. go on to define a more familiar notion by assuming a homogeneous

surface and a large enough area (i.e., no edge effects) with uniform radiance such that

the reflectance can be characterized without reference to position on the surface. This

results in the bidirectional reflectance-distribution function, or BRDF, which depends

only on direction, and not on position. The relationship between incident radiance, exitant

radiance, and the BRDF is

Lr(ωr) =
∫

Ωi

fr(ωi,ωr)Li(ωi)cos(θi)dωi, (2.7)

where Li(ωi) is the radiance incident on a surface with reflectance fr(ωi,ωr), resulting in
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exitant radiance Lr(ωr). The BRDF has units of inverse steradians (unit solid angle).

The SBRDF extends the notion of a BRDF to describe spatial variation in the BRDF

on the surface of the object (McAllister et al., 2002; McAllister, 2002). It is a discrete

sampling of a surface, assigning an independent BRDF to each sample point. Implied is

the assumption that each sample lies in a region where the BRDF model is appropriate:

fs j(ωi,ωr). (2.8)

Again, I have employed the j subscript to indicate a discrete sampling of the surface.

This is the underlying notion for the SBRDF, which is discussed further in Section 2.5.

The SBRDF is analogous to the point-sampled representation for radiance models given

in Equation 2.4.

There is also a notion of patch size associated with reflectance models. Increased

patch size is often used to achieve sufficient angular sampling when there are only a few

images available. This is achieved by assuming that the shape of the reflectance function

is constant over fairly large areas, so that many image pixels can be used as samples

for the same function. Early work that used this approach includes that of Sato et al.

(Sato et al., 1997), Marschner (Marschner, 1998), and Yu et al. (Yu and Malik, 1998; Yu

et al., 1999). A signal-processing approach (Ramamoorthi and Hanrahan, 2001) gives

us a formal explanation of the relationship between sampling frequency and the credible

frequency in the reconstructed model. The other case where a larger patch size occurs is

in the case where BTFs are compressed using matrix factorization. This is analogous to

LFM (Section 2.4).

The important difference between models of radiance and models of reflectance is

that radiance models, models of Lr(ωr), do not allow for relighting, since they are only a

function of the outgoing angle, ωr. Reflectance models, models of fr(ωi,ωr), allow for

relighting, although they require known incident radiance, Li(ωi), in order to compute
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the exitant radiance via Equation 2.7. LFM is an example of a radiance model; as such,

an LFM model is only valid for the original lighting environment under which it was

captured. The SBRDF technique (Section 2.5), by contrast, is a reflectance model, and is

designed to accommodate arbitrary lighting environments.

2.3 Decomposition and Analytic Models

My goal in choosing LFM and SBRDF models for case studies was to cover a fair range

of different TIMs. In the above sections, we have covered some of the differences: The

LFM model is a radiance model, whereas the SBRDF model is a reflectance model. The

LFM model is broken down into patches with local surface parameterization, whereas the

SBRDF uses a point-sampled approach. The last distinction, discussed here, is that the

LFM is built through decomposition, whereas the SBRDF is built by fitting to an analytic

BRDF model. Each of these terms is discussed next.

The raw image data are often too large to be used efficiently at runtime for image

synthesis. One approach to image-based modeling is to use data analysis, finding a struc-

ture or decomposition of the data to enable effective compression. An example is LFM,

which is a statistical model that is built through dimensionality reduction. I use the term

decomposition for this kind of approach.

Another approach is to choose a function based on the physics or observed charac-

teristics of a material. An analytic model assumes some functional form for the BRDF

or radiance. The choice of function and parameters of the model are often determined

experimentally, which can be a time-consuming and tedious process itself. An analytic

model is typically a more compact representation, but tends to be more limiting with re-

spect to the kinds of materials a single choice of function can adequately represent. The

SBRDF formulation is built on analytic models to store per-texel BRDFs.
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(a) Bust (b) Star

Figure 2.2: Light Field Mapping example models.

2.4 Light Field Mapping

Light Field Mapping (LFM) encodes the view-dependent appearance of an object (Chen

et al., 2002a; Chen, 2002). It does not encode light-dependence; in other words, it as-

sumes fixed lighting conditions that cannot be changed. Diffuse effects are treated as

constants and are subtracted from the light-field before creating the LFM approximation.

Details on how this diffuse component is derived are outlined in Section 5.8, as it is not

an LFM-specific process. The remainder of this discussion assumes the constant term

has already been subtracted.

The LFM approximation is designed for use with a triangular mesh and partitions

the surface light field data (Equation 2.2) around each vertex. This is analogous to the

lighting and texturing model used by OpenGL, where the Phong model is applied to each

vertex, and its interpolated results are either added to, or modulated by the texture of the

triangles surrounding it (Segal and Akeley, 1999).
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Figure 2.3: The finite support of the hat functions Λv j around vertex v j, j = 1,2,3. Λ
v j
4t

denotes the portion of Λv j that correspond to triangle 4t . Functions Λv1 , Λv2 , and Λv3

add up to one inside4t . This figure is from Chen’s dissertation (Chen, 2002).

The light field unit corresponding to each vertex is called the vertex light field and for

vertex v j is denoted as f j(s,ω), where s refers to surface location in the neighborhood of

the vertex, and ω refers to the view direction in a coordinate system associated with the

vertex.

Partitioning is achieved by weighting the radiance function

f j(s,ω) = Λ
v j(s) f (s,ω) (2.9)

where Λv j is the barycentric weight of each point in the ring of triangles relative to vertex

v j. Rendering a triangle is accomplished by summing the contributions of the three vertex

light fields of the triangle’s vertices as shown in Figure 2.3.

Consider the case where the function f j(s,ω) is tabulated for a fixed set of surface

locations and viewing directions. We can write this table as a matrix by considering each

row to be a surface location (texel), and each column to be a view direction. The matrix
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for m surface locations and n views would then look like this:

Fj =


f j(s1,ω1) · · · f j(s1,ωn)

... . . . ...

f j(sm,ω1) · · · f j(sm,ωn)

 . (2.10)

For adequate coverage, there will typically be on the order of m = 1000 and n = 1000.

The primary means of compression in light-field mapping is to approximate this large

matrix using outer products of vectors. The approximation is

f j(s,ω)≈ m j(p,x) =
K

∑
k=1

gv j
k (s)hv j

k (ω) (2.11)

where surface maps gv j
k (s) and view maps hv j

k (ω) can be thought of as lookup functions

into the outer product vectors. The vector x = (s,ω) is the vector of inputs to the model

function. The parameters p are the elements of the vectors in gv j
k (s) and hv j

k (ω). The

distinction between inputs and parameters will be made clear in Section 2.6.

You can see that if K is small enough, and indeed K ≤ 3 is typically quite sufficient

in practice, this achieves considerable compression. In other words, instead of storing a

1000 × 1000 = 1,00,000 element matrix, it is sufficient to store three vectors of length

1000 and three vectors of length 1000 for a total of 3 × 1000 + 3 × 1000 = 6000 ele-

ments.

The factorization is performed by using either principal component analysis (PCA)

(Bishop, 1995) or non-negative matrix factorization (NMF) (Lee and Seung, 1999). PCA

is performed by using the power iteration algorithm in order to get the dominant eigen-

vectors after subtracting the mean, resulting in some negative values (Golub and Loan,

1991). By contrast, NMF results in non-negative surface and view map elements, as

suggested by the technique’s name. Note that although not necessary, the minimum is

typically subtracted from the light field before computing an NMF, as subtracting the
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(a) Diffuse (bottom) and surface

maps

,

(b) View maps

Figure 2.4: Light Field Mapping breaks surface light fields down into lower dimensional,
principal components called surface maps and view maps, which are stored in textures.

(a) Pillow (b) Teapot

Figure 2.5: Renderings using SBRDF material samples

minimum makes for better approximation. Although not relevant to this dissertation,

it should be noted that PCA generates a better approximation than NMF for the same

number of approximation terms.

The surface map and view map are treated as vectors with respect to the mathematics,

but are eventually stored in 2D texture maps (2.4). g(s) and h(ω) are evaluated through

conventional texture mapping using s ∈ℜ2 and ω ∈ℜ2 as texture coordinates.
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(a) Diffuse albedo (b) Lobe albedo (c) Shape (d) Exponent

Figure 2.6: SBRDF models encode spatially-varying reflectance by storing the parame-
ters of analytical BRDF models in texture maps. The diffuse albedo is ρd , the lobe albedo
is ρs, j, the shape is [Cx, j,Cy, j,Cz, j], and the exponent is n j.

2.5 SBRDF

A BRDF describes how light reflects from a point on the surface of an object, and is

a function of lighting and viewing conditions. McAllister et al. developed a system

to capture and render spatially varying reflectance by taking a discrete sampling of the

surface, and applying an independent BRDF at each sample point (McAllister et al., 2002;

McAllister, 2002). The discrete sampling corresponds to texel locations in a texture map.

They call this type of model a spatial bidirectional reflectance-distribution function or

SBRDF.

They chose the Lafortune model (Lafortune et al., 1997) to approximate the BRDF at

each texel. It consists of the sum of a single diffuse term and a number of specular lobes.

fr(x)≈ m(p,x) = ρd +∑
j

ρs, j(Cx, j ux vx +Cy, j uy vy +Cz, j uz vz)n j (2.12)

The parameters p in the above function are ρd and ρs, j, which define the diffuse and spec-

ular albedo, Cx, j, Cy, j, Cz, j, which define the specular peak direction, and n j, the specular

exponent. The input variables, x, are ux, uy, uz, vx, vy, and vz. They are projections of the

viewing and lighting directions on the local coordinate system. This model is discussed

further in Chapter 8.
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Although the reflectance function allows for any kind of lighting environment, the

data used to construct the model are typically acquired in a controlled environment with

a single light source approximating a point light source. The integral in the reflectance

equation (2.7) reduces to

Lr(ωr) = fr(ωi,ωr)Lc cos(θi)/r2, (2.13)

where Lc is a constant, and r is the distance from the light to the point on the surface.

McAllister et al. collected SBRDFs from material samples. This dissertation looks

at collecting SBRDFs from objects, which introduces further complications that are dis-

cussed in Chapter 5. Lensch et al. also fit spatially-varying Lafortune models to 3D

objects (Lensch et al., 2001). Rather than starting with per-texel models, they start with

a single model and split as necessary according to the co-variance matrix that arises in

their fitting process.

In more recent work (Lensch et al., 2003) they explore how to adaptively measure the

spatially-varying BRDF of an object. Here they use graphics hardware to compute error

and gradient information on the texture atlas of the object, similar to the approach taken in

this dissertation, although all other optimization-related computations are performed on

the CPU. By contrast, this dissertation is focused on techniques where all computations

can be performed on graphics hardware.

2.6 Image-Based Modeling as Nonlinear Optimization

This section describes the link between image-based modeling and nonlinear optimiza-

tion. The goal of image-based modeling is to compute parameter values of a mathemat-

ical model that best fit the image data. The model should synthesize new images from

novel views, but it should also reproduce the reference images with minimal error. An
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image-based model requires choice of an appropriate representation; then a computation

is required to construct the model in this representation. We can express this as a function

fitting process, where the image-based model’s representation is our function, and the im-

ages contain the data to which we want to fit our function. An image-based model can

be expressed as a function of two vectors: m(p,x). The vector x is the vector of inputs to

our function. For LFM, the x are the texture coordinates and view direction. For SBRDF

it would be the view and light directions. The vector p is the vector of parameters used

to fit the model to the images.

A residual is the difference between the ith datapoint and the function’s approximation

for the data point

ri(p) = m(p,xi)− yi. (2.14)

The ith datapoint consists of sample radiance yi, and the corresponding inputs, xi. A

measure of the function fit is the Euclidian or L2 norm:

E(p) =
1
2

S

∑
i=1

ri(p)2, (2.15)

where S denotes the number of samples (datapoints). The goal is to find the set of para-

meters, p, that minimizes this error function. With the exception of the Lambertian model

of reflection, model functions, m(p,x) are typically nonlinear with respect to p. Nonlin-

ear models imply a nonlinear error function; therefore, this dissertation adopts nonlinear

optimization to solve the problem.

The nonlinear optimization techniques considered in this dissertation are limited in

that they only work for functions that are continuous, differentiable, and have a contin-

uous derivative (C1). This limitation can be met by a proper choice of model, m(p,x).

The appearance functions used in image-based modeling generally meet this criterion.

The nonlinear optimization techniques adopted in this work are only guaranteed to find a

local minimum. This second limitation must be addressed by careful choice of an initial
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guess, possibly trying a number of initial guesses.

The next chapter covers nonlinear optimization techniques that can be applied to make

this fit in order to construct an image-based model.
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Chapter 3

Nonlinear Optimization

Our goal is to find the vector p that minimizes f (p)1, which is known in the literature

as the minimization problem. The function f is called the objective function. Later,

we will look more specifically at an objective function that measures error of an image-

based model with respect to reference images, but for now there is no need to get that

specific. This chapter, and indeed this dissertation, only considers functions with first

order continuity (C1). Constrained optimization will not be considered except that a

penalty term will be used to steer the solution into the feasible region.

The goal of this chapter is to give a brief introduction to nonlinear optimization, with

a focus on nonlinear objective functions. Further details on the concepts discussed here

can be found in a textbook on numerical nonlinear optimization such as Numerical Opti-

mization by Nocedal and Wright (Nocedal and Wright, 1999) or Numerical Methods for

Unconstrained Optimization and Nonlinear Equations by Dennis and Schnabel (Dennis

and Schnabel, 1996), and Practical Optimization by Gill, Murray and Wright (Gill et al.,

1981).

1Nonlinear optimization literature conventionally uses x where I have used p. The rationale for my
choice was to use x to indicate inputs to the model such as view direction, light direction and surface
parameterization, and to use p to indicate parameters of the model such as specular coefficients and specular
exponents.



3.1 Necessary Conditions

Ideally, the objective function would be convex. The nice characteristic of convex func-

tions is that the local minimum is also the global minimum. In general, this is not the

case, even though the techniques discussed here work on the basis of convexity. In other

words, these techniques find a local minimum, which may or may not be the global mini-

mum. A local minimum is a vector p∗ such that f (p∗)≤ f (p) for all p in a neighborhood

of p∗.

The most important conditions for a minimum, called the first order necessary condi-

tions, are

If p∗ is a local minimizer and f (p) is continuously differentiable in an

open neighborhood of p∗, then ∇ f (p∗) = 0 (Nocedal and Wright, 1999).

These are not sufficient, as it is also true for a local maximum or a local saddle point, for

example. However, they are the primary conditions used in finding a minimum.

The second order necessary conditions are

If p∗ is a local minimizer of f (p) and ∇2 f (p) is continuous in an open

neighborhood of p∗, then ∇ f (p∗) = 0, and ∇2 f (p∗) is positive semidefinite

(Nocedal and Wright, 1999).

The condition involving the second derivative essentially requires the curve to be bowed

upward. The second derivative is a matrix, as it involves all combinations of partial

derivatives with respect to two variables. It is called the Hessian of f (p), and is often

written as H f (p). Positive semi-definite means that vT H f (p)v ≥ 0 for any non-zero

vector v.
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3.2 Line Search Approaches

Numerical techniques for nonlinear optimization are iterative in nature. They begin with

some initial guess, p0, and progress at each iteration to a better guess, pk, that decreases

the function. I have chosen to concentrate on the class of techniques referred to as line-

search approaches. There are two parts to finding the next guess in a line-search approach:

choosing a direction, and performing a line-search along that direction. The expression

for this is

pk+1 = pk +αkdk, (3.1)

where αk is the scalar used in the search along the direction dk. Section 3.3 discusses

how to choose a direction, and Section 3.4 discusses how to choose a stepsize.

3.3 Direction Choices

A descent direction is defined mathematically as any direction d that satisfies:

dT
∇ f (p)≤ 0 (3.2)

If the function and its derivative are continuous, a small enough step along this direction

must generate a decrease in the function. This condition leaves considerable leeway in

a specific choice for the direction of the line search. This section describes a number of

algorithms for choosing a particular direction.

3.3.1 Steepest Descent

The safest choice is the steepest descent or gradient descent direction, −∇ f (p), but this

can result in slow convergence in many cases. Nonetheless, it is used fairly often be-

cause of its ease of use and robustness. Often there is a trade-off between robustness and
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performance, and steepest descent represents the robust end of the spectrum.

3.3.2 Conjugate Gradient Method

The conjugate gradient differs from the steepest descent method in that it takes into con-

sideration properties of previous search directions. It is based on the idea that once a

search has been made along some direction of a convex, quadratic function, the com-

ponent of the gradient in that direction is zero, and should remain so. Any successive

points should not have a gradient with a component in the direction already minimized.

In fact, if a quadratic function has n dimensions, the conjugate gradient method is guar-

anteed to achieve the minimum after n direction searches (barring roundoff error issues).

In practice, the algorithm converges in much less than n steps for problems where n is

large.

The conjugate gradient method was originally developed for solving linear systems,

and is still a popular technique for this application today. However, this dissertation

focuses on the application of conjugate gradient to nonlinear systems. The linear conju-

gate gradient method can be viewed as a special case of the nonlinear conjugate gradient

method, but this work does not address the specifics of the linear case.

The first step in the conjugate gradient method is in the direction of the negative

gradient, just as in steepest descent. Subsequent directions are computed as a weighting

of the previous search direction and the negative of the current gradient:

dk+1 =−∇ f (pk)+βk dk. (3.3)

The weighting factor, βk, is computed as:

βk =
‖∇ f (pk)T ∇ f (pk)‖
‖∇ f (pk−1)T ∇ f (pk−1)‖

. (3.4)
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Polak and Ribière proposed another form of this function that seems to perform better

based on numerical experience:

βk =
‖∇ f (pk)T (∇ f (pk)−∇ f (pk−1))‖
‖∇ f (pk−1)T ∇ f (pk−1)‖

. (3.5)

The conjugate gradient method generally has better convergence properties than steep-

est descent. Although more powerful techniques exist, they cost more in terms of mem-

ory. The conjugate gradient requires storage only for the current and previous directions

and gradients, which means that it is O(n) in storage requirements. For this reason, it is

often the technique of choice for large problems.

3.3.3 Newton’s Method

Neither of the above methods use second-order derivative information. The Newton

method, which is described here, is considered the golden standard in terms of conver-

gence. It uses second-order derivative information to solve a quadratic approximation,

thus achieving a quadratic convergence for functions that are C3.

The goal is to find p∗ such that ∇ f (p∗) = 0. We can write the first order Taylor

expansion for ∇ f (p) by expanding around ∇ f (pk):

∇ f (p) = ∇ f (pk)+J∇ f (pk)(p−pk)+ ε1(p;pk), (3.6)

where ε1(p;pk) represents the remaining terms in the Taylor expansion and therefore

represents the error in the approximation. J is the Jacobian operator. The Jacobian of the

gradient of a function is the Hessian of the function. Using this substitution, as well as

defining d = (p−pk), the first-order Taylor expansion tells us that the gradient is zero

where

H f (pk)d =−∇ f (pk). (3.7)
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H is the Hessian operator. The solution to this system, d, is the vector that takes us to the

minimum in this quadratic approximation of the function f (p).

3.3.4 BFGS and Limited Memory BFGS

Newton’s method has two critical short-comings: it requires evaluation of the Hessian at

each iteration, which can be quite expensive, and it is only robust when the iterate is near

the minimum. One popular set of alternatives are the quasi-Newton methods. The secant

condition is similar to Equation (3.7):

Bk f (pk) (pk−pk−1) = ∇ f (pk)−∇ f (pk−1). (3.8)

Here, the assumption is that pk and pk−1 are two iterates already computed. The goal

is to choose a Bk that satisfies this condition in the same way that the Hessian would

as pk− pk−1 → 0. Once Bk is generated from pk and pk−1, it can be used to compute

the next iterate. Since Bk is n× n, but there are only n equations, there are a number of

choices for Bk. It can be chosen to be positive definite (and non-singular) so that the next

direction computed from dk = −B−1
k ∇ f (pk) is a descent direction. Another goal is that

Bk approach H f (pk) as k→ ∞.

Although the formulation above only mentions two iterations in the generation of

Bk, it is quite possible to build Bk incrementally over all iterations. In other words,

Bk+1 = Bk + Ek, where Ek represents the update computed at each iteration. The most

popular update is called the Broyden-Fletcher-Glodfarb-Shanno, or BFGS update. Since

the update dk = −B−1
k ∇ f (pk) requires a matrix inversion, Ak = B−1

k is often kept and

updated instead.

In the limited-memory BFGS (L-BFGS) method, this idea of building Bk or Ak across

all iterations is relaxed. This reduces space requirements, at the expense of slower con-

vergence to the solution. Rather than storing either a full matrix Bk or Ak, which are
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each n× n in size, the L-BFGS method stores a few vectors of size n that can be used

to approximate Bk or Ak. This reduces storage requirements quite drastically for large

problems.

Remember that Ak is multiplied by the gradient to get a new search direction. L-

BFGS works by never creating a matrix, but by calculating the next direction through

a series of operations involving only vectors. Algorithm 1 describes how the search

direction, dk = −Ak∇ fk is computed from a set of vectors kept from the previous m

calculations. To simplify notation, it uses the following shorthand and definitions: fk =

f (pk), ∇ fk = ∇ f (pk), sk = pk+1−pk, yk = ∇ fk+1−∇ fk, and ρk = yT
k sk. It is taken from

the textbook by Nocedal and Wright (Nocedal and Wright, 1999). Note that A0
k is the

Algorithm 1 L-BFGS Computation of the Search Direction

Require: inputs: m > 0, k ≥ 0, si, yi, where i = k−m, . . . ,k−1
q← ∇ fk
for i = k−1,k−2,. . . ,k−m do

ηi← ρisT
i q

q← q−ηiyi
end for
r← A0

kq
for i = k−m, k−m+1,. . . ,k−1 do

β ← ρiyT
i r

d← d+ si(ηi−βi)
end for{The search direction is d =−r =−Ak∇ fk}

only matrix in Algorithm 1. By choosing a particular sparsity pattern, say a diagonal

matrix, A0
k can have both a O(n) storage and a matrix-vector product that costs O(n). A

typical choice is to compute A0
k at each iteration using:

A0
k = γkI (3.9)

where:

γk =
(sk−1)T yk−1

(yk−1)T yk−1
(3.10)
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The description of L-BFGS (Algorithm 2) includes mention of the Wolfe conditions

for testing the stepsize. They are discussed in Section 3.4.

Algorithm 2 L-BFGS

Require: Starting point p0, integer m > 0
k← 0
repeat

Choose A0
k (for example, by using (3.9))

Compute dk←−Ak∇ fk from Algorithm1
pk+1← pk +αkdk, where αk is chosen to satisfy the Wolfe conditions (Section 3.4)
if k > m then

Discard sk−m and yk−m from storage;
end if
Compute and save sk← pk+1−pk, yk = ∇ fk+1−∇ fk.
k← k +1

until Convergence

3.4 Line Search

Once we have chosen a direction, we have a choice in how far we want to move along that

direction in hopes of finding a better guess for the minimum. It would seem that as long

as the function value decreases, the sequence will eventually converge to the minimum.

This is actually not always true if too little progress is made at each step, either with

regards to the stepsize, or the amount of decrease in the function. The Wolfe conditions

give stronger criteria for how much the function should decrease, as well as a minimum

stepsize to avoid this problem.

The Wolfe conditions use two fixed parameters 0 < σ1 < σ2 < 1. According to No-

cedal and Wright (Nocedal and Wright, 1999), σ1 is often chosen to be quite small, giving

a typical value of 10−4, and σ2 is 0.9 for Quasi-Newton, or 0.1 for nonlinear conjugate
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gradient. The Wolfe conditions are:

f (pk +αkdk)≤ f (pk)+σ1αk∇ f (pk)T dk, (3.11)

∇ f (pk +αkdk)T dk ≥ σ2∇ f (pk)T dk. (3.12)

The first condition ensures adequate decrease in the function at each step, and the second

condition keeps the stepsizes from getting too small. Notice that there is no prescription

on how to choose a specific α; the Wolfe conditions only provide an evaluation of a

candidate α once it is chosen. The remainder of this section describes algorithms for

choosing a candidate α .

3.4.1 Backtracking

The Backtracking method is the simplest approach for choosing a specific stepsize. A

choice must be made for the first α . At each subsequent iteration, the first Wolfe condition

(3.11) is checked. If the first condition is met, the step is taken. If it is not, α is replaced

by λα , where λ is some factor less than one, until the first condition is met. Note that

this method does not explicitly check the second condition, where a derivative evaluation

at the trial step would be required. The only control on the stepsize with respect to the

second condition is that a failed step with respect to the first condition will be followed

with a candidate step is at least within some constant factor (λ ) of a stepsize large enough

not to satisfy the first condition.

3.4.2 One-Sided Quadratic Approximation Using the Hessian

There is an analytic expression for the stepsize using a quadratic approximation:

αk =− ∇ f (pk)T dk

dT
k H f (pk)dk

(3.13)
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Since this is based on an approximation of the minimum, it needs to be checked against

the Wolfe conditions in practice. It is “one-sided” in the sense that it only uses informa-

tion from a single point, pk. The next technique uses information from two points.

Note that this expression involves the Hessian of the objective function, which in

general is impractical to compute, particularly for large problems. However, for TIMs

the cost of using the Hessian in this context is not much more than the gradient. In the

case of LFM, for example, each data sample contributes two values to the gradient and

four values to the Hessian. Section 4.3.3 shows how this stepsize can be used in practice

by building the denominator in an incremental fashion.

3.4.3 Two-Sided Quadratic Approximation

In this case, the quadradic fit is constructed from the gradient and two function evalua-

tions along the line, therefore avoiding need of the Hessian. It is written in terms of the

one-dimensional line search: φ(α) = f (p+αd). Here we consider the quadratic approx-

imation using φ(0) = f (p), φ ′(0) = ∇ f (p)T d and the function value at some other point,

φ(α̂) = f (p+ α̂d). The quadratic function defined by these values is:

q(α) = (
φ(α̂)−φ ′(0)α̂−φ(0)

α̂2 )α2 +φ
′(0)α +φ(0). (3.14)

The α that corresponds to the minimum of this function is:

αmin =− φ ′(0)α̂2

2[φ(α̂)−φ ′(0)α̂−φ(0)]
(3.15)

Note that this is only a minimum if q′′(0) > 0. However, since q′(0) < 0, we know that

the function at least decreases as α → 0 in this case, which motivates Algorithm 3.
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Algorithm 3 Quadratic Line Search

Require: α̂ = 1 and γ < 1.
repeat

Compute αmin as per (3.15) above.
If αmin ∈ (0, α̂), set α̂ = αmin; else set α̂ = γα̂

until The first Wolfe condition (3.11) is satisfied for α̂ .
Set αk = α̂ .

3.5 Function Fitting

Up to this point, the discussion has been about general nonlinear optimization problems.

Now we move to a more particular form of objective function typically used in fitting a

function to a set of empirical data. As discussed in Section 2.6, the goal is to find the set

of parameters, p, that minimize the error function:

E(p) =
1
2

ns

∑
i=1

ri(p)2, (3.16)

where

ri(p) = m(p,xi)− yi. (3.17)

is the residual, or difference, between the model function m(p,xi) and the data, which

consists of (xi,yi) pairs. The function E(p) constitutes the objective function in the min-

imization process, which we have previously denoted as f (p) in the general case.

Minimizing the above error function is a nonlinear least-squares problem, for which

there are special-purpose techniques. A well known method is the Levenburg-Marquardt

method, which is a trust-region method. It has been used in the field of image-based

modeling in the past. For example, it has been used in fitting to the model proposed

by Lafortune (Lafortune et al., 1997) in a number of papers (Lafortune et al., 1997;

McAllister, 2002; Lensch et al., 2001). Unfortunately, this technique is O(n2) in stor-

age requirements, and due to its unsuitability for solving large systems, is not discussed

further.
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In this work I consider solving the nonlinear least-squares using the nonlinear opti-

mization techniques already discussed: steepest descent, conjugate gradient and L-BFGS.

In the next section, the error function will be augmented by penalty terms to constitute a

new objective function.

3.6 Penalty Method

Both hard and soft constraints are considered for this framework. A hard constraint is

a condition on the model parameters that must be met. A soft constraint might bias the

solution towards a desirable condition, but does not form a strict requirement. Both of

these kinds of constraints can be handled by a penalty method, which adds an additional

penalty term to the unconstrained objective function. The total objective function is

f (p) = E(p)+ µP(p), (3.18)

where P(p) is the penalty term and µ is used to weight the penalty term. I have used

E(p) to denote the original, unconstrained objective function, as this work concentrates

on fitting data according to some error metric.

For hard constraints, the standard approach using the penalty method is to start by

solving the unconstrained problem (µ = 0). If the solution is within the feasible set,

then the solution is also the solution to the constrained problem. If it is not, then the

penalty term is added, and the process is continued. As long as the solution is outside of

the feasible region, µ is increased, and the unconstrained problem with penalty term is

solved again.

The original penalty method is not a preferred technique for solving problems with

hard constraints. Even so, I have found this to be sufficient, and do not consider other ap-

proaches. In this framework, the parameter µ is set once, and the unconstrained problem
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is solved with the penalty term a single time. If a given constraint is intended to be strictly

enforced, the associated parameter is simply clamped to the feasible region as needed.

There are basically two kinds of penalty terms of interest in this work, and are the

subject of the next two subsections. Bounds constraints were applied as both soft and

hard constraints. Regularization, on the other hand, only makes sense in terms of a soft

constraint.

3.6.1 Bounds Constraints

A bounds constraint is one in which a parameter is restricted to some range, specified as

li ≤ pi ≤ ui, where li is the lower bound and ui the upper bound for parameter pi. An

example of this kind of constraint is that exponents be non-negative, i.e. li = 0, ui = ∞.

Bounds constraints are handled using a quadratic penalty term in this work:

P(p) = ∑
i
(max(li− pi,0))2 +(max(pi−ui,0))2. (3.19)

Other penalty functions, such as a logarithmic barrier function, would also work in

this framework, but I did not test any others.

3.6.2 Regularization

The other major constraint considered in this work is regularization. It is, by nature, a

soft constraint. McCool et al. used regularization in constructing BRDF factorizations in

order to ensure a measure of conditioning of the system, as well as to control smoothness

of the solution (McCool et al., 2001). This work follows suit. Regularization is primarily

intended to accommodate under-sampled regions of the data space by interpolation and

extrapolation in the parameter space. A negative side-effect is that regularization tends to
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filter out high frequencies. A regularization constraint is expressed as

Lp = 0. (3.20)

For the one-dimensional case, the matrix L is



1 −1 0 · · · 0

−1 2 −1 0 · · · 0

0 −1 2 −1 0 · · · 0
... . . . . . . . . . . . . . . . . . . . . . ...

0 · · · 0 −1 2 −1 0

0 · · · 0 −1 2 −1

0 · · · 0 −1 1


For a two-dimensional case, the pattern in the matrix L depends on the mapping of p to

two dimensions. However, we can at least write the basic operator in the two-dimensional

case. I have included the one-dimensional operator as well in order to see how this relates

to the matrix L.

One-dimensional operator:
[
−1 2 −1

]

Two-dimensional operator:


0 −1 0

−1 4 −1

0 −1 0


Using the penalty method, we need to incorporate this constraint into the objective func-

tion. A quadratic penalty term is formed using:

P(p) = (Lp)T (Lp). (3.21)
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3.7 Summary

The goal of this chapter was to provide the necessary background to understand the next

chapter, where I present the image-streaming implementation of nonlinear optimization

for solving the image-based modeling problem. This chapter started with a discussion of

the nonlinear optimization techniques I have considered. Function fitting was reviewed

in terms of this background. The discussion of penalty methods was geared towards the

kinds of constraints that arise in image-based modeling and the implementation discussed

in the next chapter.
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Chapter 4

Image-Streaming

Chapters 2 and 3 both ended with a description of function fitting. In Chapter 2 the

purpose was to show the link between image-based modeling and function fitting. In

Chapter 3 the purpose was to provide background on nonlinear optimization and relate

it to function fitting. This chapter brings these ideas together in an image-streaming

context.

The streaming model of computation was designed for applications where data can be

classified into two sets: the data that are local, small and reused often, and the data that are

large, and for all practical purposes, never reused. This later data form the stream. I will

discuss this data in terms of local and streaming bandwidth and memory requirements.

In the streaming model, the set of operations performed on each element of the stream

is called a kernel. The output stream from one kernel can be used as the input stream to

another kernel.

This model for computation is not new. In 1961, one copy of the IBM Stretch (IBM

7030) supercomputer was equipped with a streaming coprocessor called the IBM Har-

vest (IBM 7950) (Buchholz, 1962). It was to set up to apply a short set of instructions

to each element of a long string of characters. Since then, the streaming model has been

the driving factor behind other architectures: video processors, DSPs and GPUs are con-

temporary classes of architectures that are designed to work on streams of data. Khailany

et al. designed Imagine, a more general architecture designed to work on streams of

data (Khailany et al., 2001). They have shown that this single architecture performs



well on a number of different media processing tasks of a streaming nature. Their work

includes empirical and theoretical evidence of how a stream processing architecture per-

forms much better than general purpose processor (CPU) on data-streaming applications.

In the case of GPUs, the input stream is a set of triangles, and the output stream is a

set of pixels. Multiple triangles and multiple pixels are processed in parallel. Purcell et al.

(Purcell et al., 2002; Purcell et al., 2003) treated graphics hardware as a stream processor

in terms of the inputs and outputs to the fragment processing and raster operation unit

of the GPU. In their case, kernels were implemented using fragment programs and raster

operations. The output stream from one kernel, which would be written into the frame-

buffer, would become the input stream for another kernel by rebinding the contents of

the framebuffer as a texture in a subsequent pass. They implemented global illumination

renderers using graphics hardware.

In addition to the multi-pass streaming paradigm of Purcell et al., I use a higher

abstraction of streaming. The input stream in this dissertation is a set of images, and

the output is an appearance model described by a set of textures. There are two levels of

local memory in this model: the internal registers of the GPU, and the attached external

memory of the GPU. The images form the stream data and are typically read from disk.

This is why I seek to minimize stream bandwidth requirements.

4.1 Image Streaming

The choice to pursue an image-streaming approach is partly built on a few observations

of the data and model sizes involved, which are listed next.

1. The image-based model is designed to have a memory footprint that fits easily into

local memory.

2. The stream data, i.e. images, have a large memory footprint that will not typically

fit into local memory.
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3. The model for an object is broken down into independent patches on the surface of

the model. Given that the model of the complete object is designed to easily fit into

local memory, a single patch is quite small in total size.

Using these assumptions, I will show where I would expect an image-streaming ap-

proach to be more efficient. This section begins by outlining both the conventional ap-

proach and the image-streaming approach, and wrapping up this section with an analysis

of stream bandwidth for each method, which is assumed to be the most precious com-

modity.

I have limited my analysis with respect to some further possible optimizations, par-

ticularly those that are system and model dependent, for the sake of clarity.

4.1.1 Conventional Approach

This section gives an overview of the conventional approach for generating image-based

models (Algorithm 4). The process is usually broken down into two stages. In the first

stage, data points are extracted from the images. This is what I have called the distribution

step, which is described more fully in Chapter 5.2. The second stage is typically handled

as an abstract computational stage where the image-based model is actually generated,

such as through nonlinear optimization (Chapter 3).

In the first stage, the data are expanded to include the input vector, xi, which includes

information such as view direction and surface parameterization, along with each data

sample, yi, which is radiance or pixel color. Keep in mind that yi is not necessarily an

original image pixel, as it is typically resampled according to the surface sampling of the

model (Section 5.2).

Note that in the first stage, each image is processed once for each patch. For ex-

ample, if there were a thousand patches, each image would be touched one thousand

times. This represents a substantial amount of stream bandwidth. To reduce the amount
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Algorithm 4 Conventional Approach to Building Image-Based Models

{Distribution}
for all patches do

for all images do
for all surface elements in patch do

extract data pair (xi,yi)
end for

end for
end for
{Optimization}
for all patches do

for all iterations do
for all data pairs, enumerated by i do

accumulate error and gradient
end for

end for
end for

of image reads, some trade-off is often made by processing batches of patches. The ex-

treme version of batching is to process all the patches at once, which closely resembles

the image-streaming approach described in the next section. However, maintaining the

assumption that the image data are too large to fit into local memory, it’s clear that not

all of the patches can be processed at once. Analysis of blending this approach with the

image-streaming approach would be the subject of future work (Chapter 9).

The second stage, as already mentioned, can be considered an abstract solution process.

There is no notion of images or rendering at this stage. The working set of the model

consists only of the one patch, which is typically quite small in relation to the complete

model (Assumption 3 at the start of Section 4.1). This is another important difference

between the conventional approach and the image-streaming approach proposed in this

dissertation. One salient feature of the conventional approach is that during the second

stage only the data for a single patch needs to be used at a time, which might mean that

all the data could be kept in local memory after the data has been read from disk a single

time.
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The end result is that in the first stage the images will be read a number of times equal

to the number of patches. Then, in the second stage, the resampled image data will be

read again, but this time each resampled image pixel will be augmented by the vector x.

If this augmented data set is larger than fits into local memory, then the number of reads

from disk (stream memory) will be multiplied again by the number of iterations. This is

summarized in Table 4.1.

4.1.2 Image Streaming Approach

The image-streaming framework proposed in this dissertation combines the two stages of

the conventional approach, and the loop over patches is moved from the outside loop to

the inside loop (Algorithm 5).

Algorithm 5 Image-Streaming Approach to Building Image-Based Models

for all iterations do
for all images do

for all patches do
for all surface elements in patch do

extract data pair (xi,yi) {Distribution}
accumulate error and gradient {Optimization}

end for
end for

end for
end for

The data size is presumed to be too large to be considered part of the active work-

ing set. Instead, the entire model is used as part of the active working set. The images

will be read a number of times corresponding to the number of iterations. Table 4.1

provides a summary of streaming bandwidth requirements for both the conventional and

image-streaming approaches. The image-streaming approach will result in lower stream-

ing bandwidth requirements when the number of iterations is less than the number of

patches. Considering that models of interest typically have 10,000 or more patches, and

require less than 100 iterations, this certainly seems a reasonable approach.
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Approach Image Reads Resampled Data Reads
Conventional n 1 or nI*

Image Streaming nI 0

Table 4.1: Stream bandwidth scaling in terms of the number of patches (n) and the
number of iterations (nI). * The second value represents the case when not all of the
resampled and augmented data for a single patch can be stored in fast memory.

A drawback of the image-streaming approach is that all patches are run for the same

number of iterations, and the extraction of the model inputs and outputs is repeated for

every iteration, even though they are the same in every iteration. Therefore, stream-

ing bandwidth is saved at the cost of higher computational cost. However, the distrib-

ution step is essentially a rendering computation, and constitutes a small fraction of the

processing time at each iteration when performing the computation on graphics hardware.

Furthermore, the additional computational cost is hidden by the pipelined nature of the

computation, which works well for the long streams of data that are processed in this

framework.

4.2 Streaming Nonlinear Optimization

Migdalas et al. compiled a survey of parallelization techniques in nonlinear optimiza-

tion (Migdalas et al., 2003). They begin by repeating the three avenues of parallelization

that were suggested by Schnabel (Schnabel, 1995), and are repeated again here:

1. parallelization of the function and/or derivative evaluations in the algorithm;

2. parallelization of the linear algebra kernels;

3. modifications of the basic algorithms which increase the degree of intrinsic paral-

lelism, for instance, by performing multiple function and/or derivative evaluations.

In the specific case of nonlinear least squares, there is a particular opportunity for

parallelism that is important to this work: computation of the terms in the error function.
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This falls under the first item in Schnabel’s list. Each term requires the evaluation of

the model function, a differencing of the model results with the target output data, and

the squaring of this difference. Each term can be computed independently, and therefore

represents a straightforward opportunity for parallelism. This is also true for evaluation

of gradients.

With patch-based models, there is an additional opportunity for parallelism: each

patch is independent of the others. This could loosely be described as falling under

the third item in Schnabel’s list. The image-streaming framework described here takes

advantage of this parallelism as well, as all patches could be processed in parallel.

This work includes implementation of both the conjugate gradient algorithm and the

steepest descent algorithm. This framework also applies to limited-memory BFGS, al-

though it has not been implemented. The computationally intensive operations are com-

puting the error function and the gradient of the error function. These functions can be

written as a sum over all samples. As an example, the error function can be written as:

E(p) =
S

∑
i=1

ri(p)2, (4.1)

where S is the number of radiance samples and ri is the residual in radiance sample i.

The model parameters are typically stored in texture maps for rendering. Since the

model is intended for realtime rendering, the number of texture reads must be limited to

a small number, which means that even in models with a large number of parameters,

only a small number are required to synthesize each pixel. This means that the first and

the second derivatives of each residual with respect to the model parameters p will have

a small number of nonzero entries. This becomes an important issue in discussing the

gradient computation in Section 4.3.2.

The observation that the error function and its gradient can be expressed as a sum over

data samples leads naturally to the formulation of optimization as a stream process. In
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this formulation, the data samples are continuously streamed through the processor, while

the fragment unit updates the optimization information based on the contribution of each

sample. The model parameters are updated only after all the data samples are processed.

Algorithm 6 outlines the image-streaming implementation of nonlinear optimization for

image-based modeling.

Algorithm 6 Image-Streaming Algorithm for Building Image-Based Models using Non-
linear Optimization

1: Compute initial guess for the model parameters p0
2: k← 0
3: repeat
4: E(pk)← 0{E is the error function}
5: ∇E(pk)← 0{∇E is the gradient of error}
6: for i = 1 to S, the number of image data samples do
7: {Here we increment error and gradient according to the term from sample i}
8: E(pk)+ = Ei(pk) (Section 4.3.1)
9: ∇E(pk)+ = ∇Ei(pk) (Section 4.3.2)

10: end for
11: { f is the objective function, Pm are the penalty functions}
12: f (pk) = E(pk)+∑m Pm(pk) (Section 4.4)
13: ∇ f (pk) = ∇E(pk)+∑m ∇Pm(pk) (Section 4.4)
14: if k = 1 or the Wolf Conditions are met (Section 4.5.2) then
15: k← k +1
16: end if
17: Compute search direction dk (Section 4.5.1)
18: Compute stepsize αk
19: pk+1← pk +αkdk
20: until User is satisfied

The error function is not necessarily the complete objective function. This approach

allows for a set of penalty terms that together with the error function, constitutes the

complete objective function. This is reflected in Lines 12 and 13 of Algorithm 6. Penalty

terms are discussed in Section 4.4.
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4.3 Incremental Computation

This section focuses on the quantities that are computed incrementally while looping over

images in an image-streaming framework. There are two quantities that are always built

incrementally: the error function, and the gradient. It is also possible to use the Hessian to

compute a second order model for the stepsize estimate (Equation 3.13) in an incremental

fashion.

4.3.1 Evaluating the Error Function

The objective function is the sum of the error function and any applicable penalty terms.

The error function is itself a summation:

E(p) =
1
2

S

∑
i=1

ri(p)2. (4.2)

This is the most straightforward incremental computation when streaming images. The

error is a per-patch quantity, meaning that in a case such as LFM there is a scalar value

for error for each vertex of the model, and for the SBRDF model there is a scalar for each

texel. As each image is processed, the error terms from the image are accumulated into

the appropriate error space.

4.3.2 Evaluating the Gradient

The gradient of the error function is a vector for each patch. Using the chain rule, the

gradient of the error term can be written as

∇E(p) = JT R =
S

∑
i=1

ri(p)∇ri(p). (4.3)
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J is the Jacobian matrix, and R is the vector of residuals. As you can see, the gradient

can also be computed in an incremental fashion.

One nice characteristic of the image-based models intended for rendering is that there

can only be a few parameters used for a single function evaluation (Section 4.2). This

translates into a small upper bound on the number of non-zero entries in each row of the

Jacobian. For example, a single term of LFM rendered with nearest-filtering has no more

than two non-zeros in each row of the Jacobian.

4.3.3 Computing the Stepsize using the Hessian

Section 3.4.2 gave the analytic expression for the stepsize. This is the only stepsize

method discussed in this work that requires per-image incremental computation. The

expression for the Hessian-based stepsize is

αk =
−∇ f (p)T d
dT H f (p)d

. (4.4)

Recall that the objective function is the sum of the error function and any applicable

penalty terms. Separating these terms, the Hessian is written as

H f (p) = HE(p)+H∑
m

Pm(pk), (4.5)

where Pm is the mth penalty function. The error term in the Hessian can be computed

incrementally by using the fact that it is a summation.

HE(p) = H
S

∑
i=1

ri(p)2 =
S

∑
i=1

Hri(p)2. (4.6)

Of course, it is not practical to store the complete Hessian, as it is O(n2), but since

only the product of the Hessian with the direction vector is required, the denominator can
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be built incrementally using

dT HE(p)d =
S

∑
i=1

dT Hri(p)2 d. (4.7)

The catch is that d must be computed before building dT HEd in this fashion. There-

fore, all images are processed a second time for each iteration in order to complete this

stepsize calculation. In other words, line 18 in Algorithm 6 would include another loop

over all images to compute the stepsize in this case.

4.4 Penalty Terms

Regularization and bounds constraints are handled via the penalty method as described in

Section 3.6. The penalty method adds an additional term to the objective function. The

difference in calculating penalty terms as opposed to the error terms is that the penalty

terms depend only on the parameters, not the image data. This is why they are added

outside of the loop over images in Algorithm 6. As this is essentially in an outer loop,

it is not as critical for efficient implementation. However, implementing this outer loop

on the graphics card avoids the need for moving data across the bus between the host and

the graphics card.

4.4.1 Bounds Constraints

Bounds constraints were discussed in Section 3.6.1. The quadratic penalty function for

bounds constraints is:

P(p) = ∑
i
(min(li− pi,0))2 +(max(ui− pi,0))2 (4.8)
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Each term corresponds to each parameter of the model. The sum is simply a sum reduc-

tion.

The ith component of the gradient vector is

∇P(p)i = 2 min(li− pi,0) max(ui− pi,0). (4.9)

The Hessian of the bounds constraints penalty function is a diagonal matrix. The

penalty term in the denominator for the stepsize in the conjugate gradient algorithm is

dT HP(p)d =
n

∑
i=1

d2
i Θ, (4.10)

where di is the ith element of the direction vector d and

Θ =


−2, if pi < li;

2, if pi > ui;

0, otherwise.

(4.11)

4.4.2 Regularization

Regularization was discussed in Section 3.6.2. The penalty function is:

P(p) = (Lp)T (Lp). (4.12)

The matrix L is not stored explicitly, as it can be constructed in a procedural manner

on-the-fly. As an example, consider a template for the two-dimensional case:


0 −1 0

−1 4 −1

0 −1 0


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Regularization is typically not enforced across different model subspaces. If the pa-

rameters are already laid out in their two-dimensional space, evaluating this template for

each model parameter pi simply involves reading the neighboring parameters, multiply-

ing by their corresponding weight, and summing the results to get the total for element i

in Lp. The penalty function is evaluated by squaring each term, followed by summation.

The above template is not appropriate for parameters at the edge of the subspace. For

example, if a parameter is at the top of the subspace, it’s template would be

 −1 3 −1

0 −1 0


where the 3 lies over the parameter in question. The view map in Figure 5.6 is a good

example to illustrate where the border case comes into play. Notice that there is a circle

of model parameters, and anything outside of this circle is empty texture, and should

not factor into the regularization term. The validity of a neighboring texel can be tested

by either a check of the coordinates against the circle center and radius, or by marking

invalid texels in some way, e.g. putting a mask in the alpha channel. Algorithm 7 shows

how the template is built procedurally.

The gradient of the regularization penalty term is

∇P(p) = 2LT Lp. (4.13)

This is implemented by applying the regularization operator to the parameter set twice

and multiplying by two. In other words, running Algorithm 7 twice, but with a multipli-

cation by two instead of the square in the last step, and without the summation.

Again, the Hessian is only used to compute a term in the denominator for the stepsize
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Algorithm 7 Procedural evaluation of the two-dimensional regularization penalty term

(i, j) = coordinates of the output term.
T = texture map of model parameters
w← 0 {This will be the center weight}
f ← 0 {This will be the output}
if (i+1, j) is valid then

f ← f +(−1)T (i+1, j)
w← w+1

end if
if (i−1, j) is valid then

f ← f +(−1)T (i−1, j)
w← w+1

end if
...
f ← f +wT (i, j)
f ← f 2{This takes care of the squaring in Equation 4.12, leaving only the summation
to finish}

using a one-sided quadratic approximation. The expression for this term is

dT HP(p)d = 2dT LT Ld, (4.14)

which is the same as the function for P(p), including the square and summation, but the

direction vector d that appears in Equation 4.14 takes the place of the parameter vector p

that appears in equation 4.12, and there is an additional factor of two.

4.5 Computation of the Next Guess

Once all the images have been processed, we will have the complete gradient and er-

ror. This information is used to compute the next guess in the nonlinear optimization

process. Again, since this is essentially an outer loop, it is not as critical for efficient

implementation.

Recall that a step pk+1 is tried to see if it meets the criteria for acceptance, e.g. the

Wolfe conditions (Equations 3.11 and 3.12). If it does not, then the stepsize will be
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modified to find another candidate pk+1. In the conventional approach (Algorithm 8), the

error for a step is computed first, and the gradient is only computed if the step is accepted,

thus saving a gradient evaluation when the step is not accepted.

Algorithm 8 Conventional Line Search: Deferred Gradient Computation

repeat
Choose a new pk+1
Compute E(pk+1)

until E(pk+1) meets the first Wolfe condition (Equation 3.11)
Compute ∇E(pk+1)
Accept pk+1 as the new iterate, i.e. k← k +1

In an image-streaming approach, any data that must be gleaned from an image should

be collected while the image is available. Therefore, the gradient for a step is computed

regardless of whether the step is accepted (Algorithm 9). As a consequence, the second

Wolfe condition (Equation 3.12) can be evaluated with little additional cost.

Algorithm 9 Line Search With Concurrent Error and Gradient Computation

repeat
Choose a new pk+1
Compute E(pk+1)
Compute ∇E(pk+1)

until E(pk+1) meets the Wolfe conditions (Equations 3.11 and 3.12)
Accept pk+1 as the new iterate, i.e. k← k +1

4.5.1 Direction

The direction for steepest descent is straightforward, as it is the negative gradient. The

conjugate gradient direction is slightly more sophisticated. It is a weighted average of

the negative gradient and the previous search direction (Equation 3.3). The weighting

is determined by the dot products of gradients from two iterations (Equation 3.5). This

requires additional storage for the extra gradient and direction history. The computa-

tion itself is relatively straightforward to implement using the sum reduction operations

outlined in Section 5.1.
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The L-BFGS computation for direction is quite a bit more complex than either of

the previous methods. Like conjugate gradient, it requires storage of information from

previous iterations. In the case of conjugate gradient, only information from the previous

iteration is required. In the case of L-BFGS, information from some constant number

of previous iterations, m > 1 is required. This is fine, as long as memory allows. Also,

the computation of the direction requires two loops over these previous iterations (Al-

gorithm 1 in Chapter 3). This results in a substantial increase in cost for computing a

direction relative to conjugate gradient and steepest descent. This will, however, be small

relative to the computation of the error and gradient itself.

The direction can be tested to insure that it is a descent direction, which is partic-

ularly important in the conjugate gradient method where the computed direction is not

guaranteed to be a descent direction. The test is:

∇ f (p)T d
‖∇ f (p)‖‖d‖

<−γ (4.15)

where γ is set to some small positive number. If this test does not pass, the direction is

set to the negative gradient. This is easily expressed as a conditional assignment (Algo-

rithm 10), which is amenable to implementation on current graphics hardware.

Algorithm 10 Implementation of the direction computation

Compute candidate direction d′k
dk← if ∇ f (pk)T dk

‖∇ f (pk)‖‖dk‖
<−ε assign d′k else assign −∇ f (pk)

4.5.2 Line Search

In Algorithm 6, step 12 is expressed as an increment of the variable k. In practice this

is implemented by conditional assignment, not unlike the direction test (Algorithm 10).

The condition is that the step is “good enough”, e.g. satisfies the Wolfe conditions. There
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are a number of quantities that are conditionally assigned. Algorithm 11 lists a few of

those involved in the steepest descent method as an example. Although all patches are

Algorithm 11 Implementation of the Line Search (k← k +1).

Boolean b← result of the Wolfe conditions (Equations 3.11 and 3.12)
pk← if b assign pk+1 else assign pk
f (pk)← if b assign f (pk+1) else assign f (pk)
∇ f (pk)← if b assign ∇ f (pk+1) else assign ∇ f (pk)

evaluated in parallel, each patch will have a different result when evaluating the Wolfe

condition. This means they do not progress at the same speed in terms of number of

accepted steps.

4.6 Summary

This completes the description of the image-streaming framework. The next chapter

discusses the resampling issue that arises due to the fact that the original data (image

pixels) are sampled at regular intervals in image space, but the image-based model is

expressed in terms of regular intervals in texture space. The other major topic of the next

chapter is detail related to implementation on programmable graphics hardware. Further

details on specific case studies are given for LFM (Chapter 7) and SBRDF (Chapter 8).
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Chapter 5

Texture Space Transformations

Chapter 4 laid out the operations required to construct an image-based model in an image-

streaming context. The details of how to perform some fundamental math operations

were not discussed. That is the subject of this chapter, which also focuses on an imple-

mentation for graphics hardware.

Most GPGPU work concentrates on operations on data in a single, abstract space:

vectors, matrices, or perhaps sparse matrices. By contrast, I need to take into account

various spaces related to the geometry of the model, such as patches, triangles, vertices,

surface parameterization, and view direction. These spaces must be expressed in terms

of textures. For example, error is a per-patch value, and therefore requires a texture laid

out such that each texel corresponds to a patch.

This chapter outlines the basic transformations that must occur in the image-based

modeling process. The first section describes the basic limitations of graphics hardware,

motivating the choices of how transformations are implemented. Some common trans-

formations are described next. Particular attention is given to the first transformation:

moving from image space to the space of surface parameterization, which I call surface

location space or SLS, following the nomenclature adopted in our SIGGRAPH paper

(Hillesland et al., 2003). This is actually the only transformation required for a model

like SBRDF, where each texel in SLS represents a complete patch. The remaining trans-

formations are necessary for models with larger patch sizes, such as LFM. They form part

of the mathematical operations that are necessary for the nonlinear optimization process,



such as sum reductions to gather information across an entire patch of the model.

In constructing a reflectance model, there is an additional operation to convert radi-

ance to reflectance using lighting information. This is discussed in Section 5.7. Many

image-based models treat view-independent effects separately, and so Section 5.8 is a

brief discussion of the issues relating to the meaning and treatment of view-independent

effects.

5.1 Basic Limitations of Graphics Hardware

At the start of the traditional hardware graphics pipeline the vertices are transformed into

screen space. In the rasterization stage, per-vertex quantities are interpolated to gener-

ate per-fragment values. The fragment engine takes inputs from rasterization, performs

lookups into textures, and outputs resulting colors and depths. Raster operations and z-

buffering are performed on fragments to generate the final pixels. The first key restriction

is that the output address is determined in the vertex processing and rasterization stages.

The second restriction is that the number of outputs from the fragment stage is fixed. This

means that operations implemented in the fragment stage cannot use a scatter, which is

an operation describing the distribution of information from one location (the fragment

processor) to a number of output locations (pixels). Instead, fragment programs need to

be described in terms of gathers and reductions, which are described next.

A gather refers to the operation of gathering data from a number of locations to a

single place. A combination of these data to a smaller dimensionality is referred to as a

reduction. An example is a sum reduction, where elements are combined by summation.

The terms scatter, gather, reduction and sum reduction are from the parallel comput-

ing community. These are operations included in the Message Passing Interface (MPI),

for example, which is a popular API for parallel computing (Message Passing Interface

Forum, 1995). The implementation of a reduction for general computation on graphics
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View MapSurface Map
Conventional Layout of a Vector

The Layout of a Vector in LFM model space
Figure 5.1: This shows the difference between the conventional notion of how a vector
is laid out, and how the vector of model parameters, p, is laid out in LFM model space
for a single patch. Each texel represents a parameter, and texture coordinates are used
to address the parameters in this space. For example, a model input of view direction is
a coordinate in view map space that returns a view map parameter.

hardware is well understood. The typical approach is described in an article on “A Toolkit

for Computation on GPUs” in the GPU Gems collection (Buck and Purcell, 2004).

Now that we are talking about graphics hardware implementation, we can relate

model constructs to their representations in this implementation. Model spaces can be

thought of as texture coordinates, and model parameters as texels.

Some models have parameters arranged in a number of different subspaces. The

LFM model has parameters organized according to surface location in the surface map,

and according to view direction in the view map as illustrated in Figure 5.1. A vector in

the complete model space is a composite of vectors in each of these subspaces; therefore,

reductions across the model parameter space requires reductions in each of it’s subspaces,

and then a final gather across spaces. An example is a dot product:

∑
S∈modelsubspaces

sum-reduce(pS.pS) (5.1)
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The lowered dot in the above expression indicates a component-wise multiplication. The

vector pS represents the components of the model parameters p that are in the subspace

S. This gather is part of the evaluation of the bounds constraints penalty function, for

example (Equation 4.8).

Returning to the LFM example, the sum reduction must occur across the surface patch

(triangle ring) as well as the viewmap. The surface map is implemented in two stages:

first a sum reduction that collects data in each triangle to a single scalar per-triangle.

Then, a sum reduction that collects the scalars from each triangle into a single scalar for

the triangle ring.

The next few sections give a more complete view of transforming between spaces

with more of a focus on implementation issues with respect to graphics hardware. This

constitutes one of the basic toolsets for the framework in this dissertation.

5.2 The Distribution Step: From Image Space to Surface

Location Space

The images are a parameterization of the radiance data according to their position in im-

age space. With each image, there is associated information that describes the camera

settings, such as the field of view, the resolution, and the transformation from the world

reference frame to the camera reference frame. In order to generate the image-based

model, these data must be reparameterized according to the image-based model’s coor-

dinate system. For example, the view direction in a local coordinate system is typically

needed for each image pixel. In other words, it is necessary to translate what happens in

the image space of the original reference images back to the space of the model. This

section concentrates on the distribution step, which refers to the process of sorting image

pixels according to their coordinates in some model subspace. This is conventionally

handled as a pre-process, but with image-streaming it is performed on-the-fly.
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Figure 5.2: Before any model fitting can occur, the image data must be transformed into
model space. This includes operations such as transformation, rasterization, filtering,
and visibility determination. The image on the left is resampled into surface location
space in the figure on the right.

A key assumption of this work is that the object has some sort of surface parameteriza-

tion. Any transformation from image space to model space begins with a transformation

from image space to surface location space (SLS). This task is not unique to my frame-

work; however, it is a process that is not usually covered in much detail elsewhere. I

have chosen to give more detail here because it is a critical phase for the framework’s

effectiveness.

The first subsection describes the most straightforward technique for making this

transformation, but it requires a scatter operation. The second subsection shows how

to accomplish this transformation by using gathers instead of scatters.

5.2.1 Mimicking the Rendering Process

In rendering, the inputs to the shading model are quantities such as view direction and

light direction in a local coordinate system. The easiest approach to recovering the var-

ious model inputs for each image pixel is to simply mimic the rendering process and
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write the model inputs to the framebuffer. Figure 5.3 shows an example where the model

inputs form a set of images corresponding to the original photograph. Typically, more

than one image is required for each photograph because the number of model inputs is

often greater than the number of framebuffer channels. This corresponds to Step 4 in

Algorithm 12.

The complication arises in Step 9. The information computed for each photograph

pixel must be distributed according to texel addresses used in the filtering process. This

is a scatter operation which, as discussed in Section 5.1, is not currently available in

the programmable fragment stage of graphics hardware. To implement this operation on

current graphics hardware would require writing the texel address into the framebuffer,

and then using this information as vertex coordinates in a second pass. Instead, we can

organize this computation in terms of a gather by replacing the loop over image pixels by

a loop over model texels. This is the subject of the next section.

5.2.2 From Image-Space to SLS Using Gather

Algorithm 13 is an outline of how the distribution step may be implemented in terms

of gathers rather than scatters. It’s helpful to compare Algorithm 12 to Algorithm 13. One

difference is that the inner-most loop is over pixels in the Algorithm 12, and SLS texels

in Algorithm 13. This inner loop defines the space of rasterization, thus defining the

sampling of the model function and the organization of the output. The second difference

is where visibility is determined. The results of visibility determination are actually used

in the construction of the filter weights, not to determine which fragments are present in

the final output.

The filter weight choice is different than for the rendering case. Instead of choosing

weights to apply to texels in order to generate an image pixel, we must choose weights

to apply to image pixels in order to generate a texel. One option is to choose a filter

weight proportional to distance in image space. This is the filtering function FI in Al-
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(a) Reference image (b) Surface map parametrization

(c) View direction parametrization

Figure 5.3: It is necessary to find the inputs that correspond to each reference image
pixel. The most straight forward technique is to modify the renderer to write out the
inputs as is shown here for some LFM inputs of the star model.
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Algorithm 12 From Image-Space to SLS Using Scatter

1: for all images do
2: for all triangles do
3: for all Image pixels in the triangle called PI do
4: P← Compute texture coordinates for PI .
5: (T,w)← F(P)
6: yi = pixel in the photograph.
7: if PI passes the Z-test then
8: for j = 1 . . .n, where n is the number of elements in T. do
9: Send element w j and yi to address Tj for further processing

10: end for
11: end if
12: end for
13: end for
14: end for

Line 4 In the case of SBRDF, this would only be a single texture coordinate. In general, this is
a vector because there will be more than one texture coordinate for an image-based model.
For LFM, there would be a texture coordinate in the surface map and view map for each of
the triangle’s three vertices.

Line 5 F represents the texture filtering function. It returns both the addresses of texels that are
used in the filter (T) and the weights of the filter (w).

Line 9 This is a scatter operation, which is not possible on current graphics hardware.

Algorithm 13 From Image-Space to SLS Using Gather

1: for all images do
2: VI ← rasterize and z-buffer from camera view, storing visibility information.
3: for all triangles do
4: for all SLS texels with address T and 3D location Txyz do
5: TI = Projection of Txyz to image-space.
6: (A,w)← FI(TI,VI) or FT (T,VI)
7: c← color values in image pixels addressed by A.
8: yi← c ·w
9: Store yi for texel T

10: end for
11: end for
12: end for

Line 5 FI is a texture filtering function operating in image space. FT is a texture filtering function
in texture space.
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gorithm 13, and is the approach taken in LFM work (Chen et al., 2002a; Chen, 2002),

SBRDF work (McAllister, 2002), and by Marschner (Marschner, 1998). The difficulty in

this kind of approach is that there is a nonlinear relationship between image and texture

space. Points that are adjacent in image space can be arbitrarily distant in texture space.

The most extreme case is where a polygon is viewed at a near-grazing angle. To compen-

sate for this effect, Chen and McAllister simply throw out samples from polygons that are

at near-grazing angles. Marschner weights the importance of the sample by a function of

the dot product between the viewing direction and the normal. FT will be discussed after

taking a look at visibility.

One or more of the pixels surrounding PI in image space could be from completely

different parts of the object, or not part of the object at all. This is because visibility is

not continuous. For pixels far from PI in model space, the weights of the filter should

be zero. When the models are simple enough, for example when analyzing a material

sample (McAllister, 2002), where the geometry is simply a single polygon, this is fairly

straightforward to determine.

One possible approach for more complex models is to determine visibility using a

geometric technique, although this is rather computationally intensive. The approach

used in the OpenLF software (Chen et al., 2002b), which is an implementation of LFM,

is an analytic approach of this nature. Although it makes some approximating simplifica-

tions to speed this process, it is fundamentally an O(n2) approach that is not suitable for

large models.

Another approach is to use ray-casting. This is a convenient approach because it does

not rely on regular sampling in image-space. The ray is simply cast from the point on the

surface to the appropriate point in the image plane. This is the approach that Marschner

took (Marschner, 1998).

For rasterization, the visibility problem is a bit more complicated to handle, but with

the use of graphics hardware can be quite fast. This technique is closely associated with
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shadow mapping (Williams, 1978), where one rasterizes from the point of view of the

camera, while looking up into a shadow map that was generated from the point of view

of the light source.

The first step is to render the model from the perspective of the camera in order to

resolve visibility in image-space using conventional z-buffering. The visibility informa-

tion is used when it is time to compute filter weights. Either the resulting depth map

can be consulted in a manner similar to shadow mapping, or an item buffer can be used.

Lensch et al. (Lensch et al., 2003) used the depth comparison approach in their work.

They were evaluating the error and gradient in a spatially-varying Lafortune model, sim-

ilar to the work in this dissertation.

In the conventional item buffer algorithm, a unique identifier (number) is assigned to

each triangle. The identifier number is rasterized in image space, rather than color. In

a later pass, the visibility of the triangle can be determined by looking for its identifier

in the item buffer. Another way of looking at an item buffer, is that it is an image that

specifies what triangle is visible at each pixel.

I used an approach resembling the item buffer approach. Instead of rasterizing item

numbers, I rasterized texture coordinates (Cignoni et al., 1998; Apodaca et al., 1999;

Carr and Hart, 2002). Consider a texture atlas for the entire model: a coordinate in that

space can only belong to a single triangle. If the texture coordinate of each fragment is

written to the framebuffer, then the resulting texture coordinate buffer specifies not only

what triangle is visible at each pixel, but what specific point on that triangle is visible at

each pixel in texture space. This additional information becomes useful in constructing

filter weights for resampling. With access to the texture coordinates of each pixel, I was

able to use a linear filter with a fixed size in texture space and avoid some of the problems

associated with interpolation in image space. This is also consistent with texture mapping

in conventional rendering, where the filter is also linear in texture space.
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Figure 5.4: Transforming from SLS to a space of a single scalar per model triangle. In
particular, this figure shows a sum-reduction. The left image is a simplified view of the
SLS texture, and is equivalent to the right image in Figure 5.2. The right image here is
per-triangle space, which means that each texel corresponds to a triangle.

5.3 Surface Location Space to Per-Triangle Space

Per-triangle space refers to a layout where each texel corresponds to a triangle in the

geometric model. I’m using the term ‘triangle’ a bit loosely here, as any polygon could

be used. Any model that has a patch defined in terms of polygons, such as a quadrilateral

in the case of typical BTF models, or a triangle ring as is the case of LFM.

In moving from SLS to a per-triangle space we are gathering results across an entire

triangle of the model. This is relatively straight forward, as it resembles the conventional

sum reduction, but with the additional complication of gathering from a triangular region

instead of the rectangular region that is more common in other GPGPU work. In my case,

I laid surface location space out in a regular fashion to make this transformation relatively

straight-forward. This can be seen in Figure 5.4. With this regular layout, the rendering

primitives can either be the model triangles, which will be sub-pixel sized in the output

space, or a screen-filling quad if masking or procedural address computation is used to

read only from the triangle region in the input space.
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Triangle Ring List Triangle Ring List (encoded in texture)(encoded in texture)Triangle SpaceTriangle Space Patch SpacePatch Space
V1 V2

V1V2

Figure 5.5: Gathering from all triangles in a patch requires indirection. For an imple-
mentation on graphics hardware, an additional texture has a list of triangles for each
patch. In this figure, v1 is a patch consisting of two triangles, and so the triangle ring
list has coordinates for two triangles, likewise for v2. Each output pixel corresponds to a
patch.

5.4 Per-Triangle Space to Per-Patch Space

In some cases, a patch is made up of a number of geometric primitives. The LFM model,

for example, consists of patches made up of triangles sharing a single vertex. In this case,

it is necessary to gather information across the patch. Unlike the gathers discussed so far,

this is typically handled by indirection.

For the example of the LFM model, indirection is accomplished by creating a tex-

ture that contains a list of pointers to triangles that share each vertex. The pointers are

addresses into the per-triangle texture. This is an example of how mesh connectivity is

encoded in texture maps. To gather information for a patch, a single screen-filling quadri-

lateral is rendered to the framebuffer. Each output fragment corresponds to a vertex of

the model. There are two textures. The first is in per-triangle space (Section 5.3). The

second is the indirection texture just described, which is organized by model vertex, but

has a number of texels (pointers) devoted to each one. Each texel contains the address in
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triangle space of a triangle in the ring around the vertex. The fragment program executes

for each patch, reading a texture to get the addresses of the triangles in the ring, and

gathering the data from these triangles.

5.5 Per-Patch Space to View Space

Image-based models usually include a parameterization of the view direction in some

local reference frame attached to each patch. View direction is two-dimensional, and

therefore maps naturally to a two-dimensional texture. Chen et al. used a view map for

each vertex (Chen et al., 2002a; Chen, 2002), using the Nusselt analog. In short, the

Nusselt analog is a two dimensional cartesian coordinate parameterization of the direc-

tion hemisphere projected down onto the plane (Figure 5.6) (Nusselt, 1928; Cohen and

Wallace, 1993). Chen et al. used the same square resolution for each view map, and had a

coordinate system associated with each vertex. The view maps for all vertices were tiled

into a single texture as illustrated in Figure 2.4b. I followed this same approach in my

implementation. Therefore, the view space can be described as being laid out according

to vertex at the top level, and according to a local Nusselt parameterization within the

space of each vertex.

The eyepoint has a discrete position in space, and therefore corresponds to a single

point in the view space of the local reference frame. Since there is one view direction for

each local reference frame, a single point would be rendered into each view map. Note,

however, that a view map is a discrete sampling of view directions, so we again have a

resampling issue. In my implementation, the point was placed in the closest discrete view

location.
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Figure 5.6: The Nusselt analog is a mapping of view direction into a cartesian coordinate
system. Each local coordinate system has an associated center position (xc,yc) in the
view map texture. This image is from Chen’s Dissertation (Chen, 2002)

5.6 Composite Transformation Example: From SLS to

View Space

A transformation from SLS to view space serves as an example of a composite transfor-

mation. First I describe what it means to go from SLS to view space. The goal is to move

data stored according to surface parameterization to a position parameterized according

to view direction. In this case, I’m really talking about a number of texels in a surface

parameterization, and ending up with a scalar, so there must be a reduction of some sort.

This is actually the process that is required to compute part of the gradient in LFM, and

will be mentioned in that context in Chapter 7.

The view direction is typically parameterized in a local reference frame, as discussed

in Section 5.5. In LFM, the local reference frame is attached to a vertex. This transfor-

mation can be accomplished by a sequence of transformations:

1. Transform data from SLS to per-triangle space.

2. Transform data from per-triangle space to per-vertex (per-patch) space.

3. Transform data from per-vertex space to per-view space.
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There’s an implied approximation in this example: all points in a triangle ring are

presumed to have the same view direction. This approximation is manifested in the first

two steps. The gather in the first step implies the approximation that all view directions

within a triangle are the same. The gather in the second step implies the approximation

that all triangles in a triangle ring share the same view direction.

5.7 From Radiance to Reflectance

Images capture radiance. When working with reflectance models, the radiance must

be converted to reflectance. Reflectance models are usually captured under controlled

lighting conditions, typically with a light approximating a single point-light source. Since

I specifically looked at the SBRDF, this section proceeds with the lighting model used by

McAllister (McAllister, 2002), Equation 2.13:

Lr(ωr) = fr(ωi,ωr)Lc cos(θi)/r2, (5.2)

where Lc is a constant, and r is the distance from the light to the point on the surface.

Radiance can be converted to reflectance by simply solving the above equation for fr.

As the light position and intensity are preseumed to be known, the resulting equation is

straightforward to implement on graphics hardware. Also known on a per-fragment basis

is the surface normal and position. The cosine term is simply the dot product of the light

direction with the normal, and the distance is simply the length of the vector between the

point on the surface and the light position.

5.8 Extracing the Diffuse Component

Most image-based models treat view-independent radiance differently from view-dependent

radiance. The view-independent portion is often referred to as the “diffuse” component.
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The view-independence allows for the diffuse component to be treated as a constant. In

the case of a reflectance model, the diffuse term is a constant reflectance.

Actually, this discussion applies to constant terms in general. What is often called the

“diffuse” term in image-based modeling often does not correspond to the physical notion

of diffuse reflection. An example is the constant term in Light Field Mapping when using

PCA, which actually finds the best zero-mean approximation to a matrix. Since data will

not have a zero-mean, it must first be processed by subtracting out the mean. This mean

becomes the constant term that Chen et al. call the “diffuse” term (Chen et al., 2002a;

Chen, 2002). When they use NMF, the “diffuse” term is the minimum, which is closer to

what we typically think of as a diffuse term.

The diffuse term is often constructed from assuming the minimum of the radiance

or reflectance. McAllister notes that noise in the system sometimes makes this assump-

tion problematic. He instead chose a particular percentile of the reflectance (McAllister,

2002). It is also possible to include the diffuse parameter as part of the minimization

process. In working with us on the SIGGRAPH paper (Hillesland et al., 2003), Sergey

Molinov used a minimum for the initial guess, and included the diffuse term in the mini-

mization process in solving for the SBRDF model.

5.9 Summary

This concludes the description of the resampling issues and various space transformations

necessary to implement the image-streaming framework. In Chapters 7 and 8, we will

see how these tools are applied in practice. Although this concludes a description of the

general framework and its implementation on graphics hardware, the limited precision

of graphics hardware warrants further exploration in terms of its implications for this

framework. Chapter 6 takes a closer look at issues related to precision and roundoff

error.
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Chapter 6

Error Analysis

Up until now, we have used the term “error” to describe how well the model function fits

the data. This chapter addresses a different kind of error: roundoff error. The goal is to

address the limited precision available on graphics hardware by looking more closely at

the computations of the error function and the gradient, where roundoff error buildup is

most detrimental. Before proceeding with this, however, we begin with a brief note on

the convergence conditions for the nonlinear optimization techniques investigated in this

work.

If a limit point exists, then it is fairly easy to guarantee either

lim
k→∞
‖∇ fk‖= 0 (6.1)

or at least

liminf
k→∞

‖∇ fk‖= 0 (6.2)

for the optimization techniques we have covered. The first case is possible for steepest

descent and quasi-Newton methods with a well conditioned and positive semi-definite

Bk (see Section 3.3.4 for the definition of Bk). The second case is the best that can be

guaranteed for conjugate gradient. The condition for convergence is that the directions



never be too close to orthogonality with the gradient, or in other words

∇ f (pk)T dk

‖∇ f (pk)‖‖dk‖
<−γ (6.3)

for every step k and for some positive constant γ . The second condition is that the step-

sizes satisfy the Wolfe condtions (Section 3.4). Proofs for this can be found in Numerical

Optimization (Nocedal and Wright, 1999), for example. Note that this does not guarantee

convergence to a minimum, only to a critical point. Second order conditions are required

to guarantee convergence to a minimum; however, they are difficult to establish, partic-

ularly for large problems. There is also no guarantee that the iterates will converge to a

global minimum. These issues are often handled by performing the minimization process

multiple times with different starting conditions.

We begin by investigating the roundoff error in evaluating the model function, then

the error function, and finally the derivative of the error function. This essentially covers

the steepest descent method. For other methods, global convergence is achieved by any

algorithm for which (1) every iteration produces a decrease in the objective function, and

(2) every mth iteration is a steepest descent step, with step length chosen to satisfy the

Wolfe conditions (Nocedal and Wright, 1999). All discussion is focused on floating-point

representation. Concepts such as error in summation are introduced as needed.

6.1 Error in the Model Function

Although we might think of the model function as a mathematical function with con-

ventional definitions of mathematical operations, it is really being executed on a finite-

precision computing device, with all of its accompanying implications. For example, the

single term LFM function is

f (s,ω) = g(ss)h(ω), (6.4)

84



whereas what is actually computed is

f̃ (s,ω) = g(s)⊗h(ω). (6.5)

The ⊗ indicates an operation that only approximates true multiplication. The result will

have to fit into some finite representation. The exact result would require precision equal

to the sum of the number of bits in the operands. If the result is to be stored at the

same precision as the operands, then some sort of rounding must occur. The difference

g(s)h(ω)−g(s)⊗h(ω) is referred to as roundoff error.

Recall that the goal is to find an approximation to the data as evaluated by the com-

puting device. Therefore, it is precisely the second function ( f̃ ) that we are really trying

to fit to the data, not the first ( f ). Of course, we would like the finite computational ver-

sion of the function to match the abstract definition well in order to make the analysis

easier. We also want the computed gradient to be consistent with the computed function

values, and having the function and its gradient match their abstract definitions is one

way to accomplish this. Discussion of numerical error in computing the gradient will be

addressed in Section 6.3. It is also desirable that the fit be suitable for multiple systems,

which is another incentive to look for a fit to f rather than the f̃ for a particular system.

Finally, we need to ask what numerical error is acceptable. For example, if the final

data will be stored in 8-bit fixed point format, then there is no need to reduce the error

below about 0.5%. This is the precision that was used in the original LFM and SBRDF

work.

6.2 Roundoff Error in the Error Function

The fitting process involves minimizing the error function, as well as any additional cost

functions corresponding to additional objectives, such as regularization and bounds con-
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straints. This analysis concentrates on the error function, since it constitutes a much

larger set of operations relative to constraints.

As previously described, the goal is to fit a parametric model to sample data through

nonlinear optimization. The approach assumes the data are generated by an unknown

function, and so defines a model to approximate the original function and tries to mini-

mize the difference between the model and the data by adjusting the model’s parameters.

The difference in terms of an L2 norm is

E(p) =
1
2

S

∑
i=1

(m(p,xi)− yi)2, (6.6)

where E(p) is the function we wish to minimize, and S is the number of data samples

used in the fit. The model function is m(p,xi) and the data we wish to match are the yi.

The vector p contains the parameters we are free to adjust in order to minimize the error

function.

The critical operation here is addition. The sum of two numbers in finite precision

can be written as

z = x⊕ y = (x+ y)(1+ ε) (6.7)

The ε represents the difference between the true sum of x and y and the computed sum

of x and y. The difference includes any approximations made in the summation process,

and any rounding that occurs in order to fit the result into finite precision (roundoff error).

We will assume that ε is bound by some constant. For example, with exact rounding and

32 bit IEEE 754 format, this constant would be 2−24 (IEEE, 1987). This number is not

always readily available. Graphics hardware vendors do not provide information from

which ε can be surmised. Therefore, I have developed a technique to measure ε , which

is given in Appendix A.

Unfortunately, computing the total error requires that we make a number of successive
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sums, say ∑
n
i xi. What would actually be computed is

n

∑
i=1

xi(1+δi) (6.8)

where |δi|< (n− i)ε . Derivation of this bound can be found in many books on numerical

analysis. The book by Wilkinson includes derivation of this bound and many others

(Wilkinson, 1963).

If all the terms are positive then we can derive a simpler expression; although it

introduces another level of conservatism:

n

∑
i=1

xi δi < δ

n

∑
i=1

xi (6.9)

where δ < nε is the relative error with respect to the true solution. This is a common

model for assessing roundoff error: that each operation (excepting catastrophic cancella-

tion) results in an accumulation of ε in the relative error. However, this is a conservative

bound, and in order to be achieved would require that every intermediate value have a cer-

tain worst-case mantissa. For example, in a scheme where all values are rounded down

this worst case bound is based on assuming that all mantissas are an infinite sequence of

repeating ones. If instead we assume an evenly distributed set of mantissas the relative

error grows as
√

n.

The standard approach to handle the summation of a large number of terms is to

compute the sum in double precision. If, for example, the summation is done using a

floating point representation with 53 bits of precision and exact rounding, and the results

are to be stored in a format that has 24 bits of precision, up to 253−24 = 229 operations

may be performed without losing precision in the result.

Some architectures, such as graphics hardware, do not support double precision, in-

stead relying on 10 to 23 bits of mantissa. Since adding 256 terms will result in the

potential loss of about eight bits of precision, this creates a potential problem in perform-
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ing long calculations.

One tactic used to alleviate precision problems is to sort the terms from smallest to

largest before adding. This can be time consuming and, in fact, is not practical in the

streaming framework. On the other hand, Kahan summation (Algorithm 14) requires

no re-ordering, and reduces relative error to only 2ε in each term (Kahan, 1965). More

specifically, Kahan summation results in

n

∑
i=1

xi(1+δi)+O(nε
2)∑ |xi| (6.10)

where |δi| < 2ε . This is derived in (Knuth, 1998). Kahan summation subtracts a “cor-

rection” with each term of the summation. The correction value is actually the error that

was incurred in adding the previous term.

Algorithm 14 Kahan Summation
1: sum = x1
2: correction = 0
3: for i = 2 . . .n do
4: Y = x j - correction
5: temp = sum + Y
6: correction = (temp - sum) - Y
7: sum = temp
8: end for

Line 5 introduces error due to roundoff. Line 6 recovers this error to be used as a correction in the
next iteration.

Roundoff error restricts how small of an improvement in the error function is measur-

able. For naive summation, worst case bounds tell us we cannot discern any improvement

in the error function by less than a factor of nε . For Kahan summation, this becomes 2ε .

This condition could be added to the Wolfe conditions in a line search.
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6.3 Gradient Error

The gradient for the error function is

∇E(p) = JT R = ∑
S

(m(p,xi)− yi)∇m(p,xi), (6.11)

where J is the Jacobian and R is the vector of residuals. For convenience, I will discuss a

single element of the gradient vector, which is a partial derivative. I also exclude the tilde

notation, which was previously used to distinguish the value computed in finite precision.

∂

∂ p j
E(p) =

c j

∑
i=1

(m(p,xi)− yi)
∂

∂ p j
m(p,xi) (6.12)

where c j is the number of non-zeros in column j of the Jacobian. This is important

because it can be far less than the number of samples. For example, LFM data would

have no more than approximately 28 non-zeros in a column, even though the total number

of samples would be roughly 216.

6.3.1 Catastrophic Cancellation

The difference in computing the gradient as opposed to computing the error function, is

that the terms in the summation can be both positive and negative. The terms are the

result of multiplying the residual by the derivative of the model function (m(p,xi)−

yi) ∂

∂ p j
m(p,xi)). Since the terms are computed quantities, there is cause to consider

catastrophic cancellation. Catastrophic cancellation occurs when two computed quan-

tities have nearly the same magnitude but are of opposite sign, such that when they are

added together most of the digits of precision are lost, leaving only questionable digits.

Now we look again at the terms in the derivative. If the residual is small, then the

term should become unimportant in computing the derivative. The danger is that the

gradient of the model function may be large. Unfortunately, this depends on the model
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function. However, there are some measures that can be taken to alleviate this problem.

The simplest solution is to simply drop all terms where the residual is small. Another

option is to use bounds constraints to keep the derivative bounded. For example, LFM

parameters can be restricted to the range of [0,1], resulting in a term of the derivative

restricted to being in [0,1] as well.

In cases where there is cancellation between terms with large residuals, the solution

can be more difficult. Since each term is the product of a residual and a derivative, there

are two cases to consider: (1) the residuals have opposite sign, but the derivatives have

the same sign and (2) the residuals are of the same sign, but the gradients are of opposite

sign. These situations occur in cases where the model function is ill-suited to match the

data, or as a result of choosing an initial guess that is ill-suited for the model function.

6.3.2 Summation

In the previous subsection, we approached the problem by looking at each term of the

summation. Here we look at accumulation of error in the summation process. The com-

puted sum using the shorthand xi = (m(p,xi)− yi) ∂

∂ p j
m(p,xi) is

∂

∂ p j
E(p) =

c j

∑
i=1

xi(1+δi) (6.13)

where |δi| < (c j − i)ε for naive summation, and |δi| < 2ε for Kahan summation. Al-

though we cannot make the same simplification as we did for the error function, we can

define |xmax| as the summand with largest absolute value, and use the Cauchy-Schwarz

inequality to claim the following:

∣∣∣∣∣
c j

∑
i=1

xiδi

∣∣∣∣∣ < |xmax|
c j

∑
i=1
|δi| (6.14)
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|xmax|
c j

∑
i=1
|δi|= |xmax|ε

c j

∑
i=1

i = |xmax|εK (6.15)

where K = c j(c j +1)/2 for naive summation, and K = 2c j for Kahan summation. Bounds

on the parameter values and function range helps to bound the size of this error. Even

assuming |xmax| ≤ 1, as would be the case for LFM, this error model tells us that a cal-

culation involving 16 bits could be corrupted with as little as c j ≈
√

216 = 28 = 256

summands using naive summation. Coincidentally, this is approximately the number of

terms in the case of a typical LFM model. However, we’ve made some fairly conservative

assumptions. For Kahan summation, it would require approximately 215 terms, which is

much more reasonable. As we will see in Chapter 7, precision was not actually an issue

in practice; in fact, fair convergence was achieved with only 10 bits of precision in the

mantissa using the naive summation.

Note that the sequence of iterates will converge as long as

∇ f (p)T d
‖∇ f (p)‖‖d‖

<−γ (6.16)

and the stepsize satisfies the Wolfe conditions. The parameter γ can be adjusted according

to confidence in the computation of the search direction. More conservative choices of

γ can result in slower convergence, as it will result in more frequent fall-backs to the

steepest descent direction.

6.4 Summary

The critical computations are the evaluation of the error function and its gradient. Round-

off error can corrupt these calculations, particularly because they involve large sums. I

have given some guidelines on the bounds on errors caused by roundoff. Since graphics

hardware supports limited precision, I have included a description of Kahan summation,

which greatly reduces roundoff error over the naive approach. To wrap up this chapter,
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remember that convergence depends only on a descent direction and a stepsize that meets

the Wolfe conditions.
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Chapter 7

Case Study: Light Field Mapping

This chapter documents the results of applying the image-streaming framework to Light

Field Mapping (Chen et al., 2002a), a decomposition-based model for radiance. Results

with the image-streaming framework were first reported in the SIGGRAPH paper (Hilles-

land et al., 2003). Both steepest descent and conjugate gradient implementation results

are included. The goals in this chapter are to:

1. measure the error of the models in reproducing the reference images,

2. test the effects of limited GPU numerical precision and accuracy,

3. evaluate time efficiency of implementations under this framework, and

4. measure bandwidth and computational utilization.

The first task is to provide details on how LFM is implemented using the image-

streaming framework proposed. This is the subject of the first section.

7.1 Implementation

Chapter 2 introduced Light Field Mapping (LFM). The implementation included a single

term (K = 1 in Equation 2.11), therefore each model is expressed as

m(p,x) = g(s)h(ω), (7.1)



(a) Bust (b) Star

Figure 7.1: The bust model and the star model are used for the light field mapping
approximation experiments.

where g is the surface map with parameterization s and h is the view map with parame-

terization ω . There is an independent model for each color channel. First, note that s

and ω constitute the inputs such that x = [sω]. The functions g(s) and h(ω) are texture

lookup functions. The texel values are the parameters, p. To distinguish between surface

map and view map texels, I will write them as ps and pω . A complete model is made up

of on the order of thousands of LFM patches corresponding to vertices of the model.

From Equation 2.9 and Figure 2.3 it follows that each light field mapping approxima-

tion uses three surface maps per triangle and one view map per vertex. We tiled the view

maps into one texture map and the surface maps into another texture map. The typical

resolution of individual surface maps and view maps used in our experiments was 8×8

pixels.

We now need to think about how this fits into the idea of an optimization problem.
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For review, I write the error function again:

E(p) =
1
2

S

∑
i=1

(m(p,xi)− yi)2, (7.2)

where S is the number of data samples used in the fit, and where each data sample consists

of an input set (xi) and an output (yi).

LFM can be thought of as a sequence of optimizations, one per vertex of the model.

Each optimization corresponds to finding the view map and the surface map texels that

best approximate the portion of the surface light field for the triangle ring of the given

vertex.

g(s) and h(ω) are texture lookups. We implemented a model with nearest neighbor

texture filtering. This means that only a single texel (parameter) is used for each texture

lookup. Let’s define T (u) : ℜ2→ Z as the nearest filter lookup into a texture that takes

a 2D texture coordinate u and returns an integer Z for indexing into the set of texels in

the texture map. Assume the texture lookup function is the same for both the surface and

view maps. We will express the surface map texels as a vector g, with the jth element

being g j.

Before writing the derivative, let’s define indices returned by texture lookup functions

to simplify notation. A texture lookup function T (si) will return the index of a surface

map texel, which we will call is, and a texture lookup function T (ωi) will return the index

of the view map texel iω . Note that there is a surface map texture coordinate and view

map texture coordinate for each sample i.

If we write the derivative with respect to a surface map parameter, g j, we have

∂

∂g j
m(p,x) =

S

∑
i=1

(
gis

∂

∂g j
hiω +hiω

∂

∂g j
gis

)
= ∑
{i:is= j}

hiω (7.3)

The product rule for derivatives is used here. Because hiω does not depend on g j, the term
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involving its derivative is zero. i : is = j means “for all i such that a nearest texture lookup

using si results in returning index j”. This comes from the derivative of the surface map

function:

∂

∂g j
gis =

1 if is = j

0 if is 6= j
(7.4)

Although, we began with a sum over all data points i, only a subset result in nonzero

partial derivatives, which is why c j, the number of nonzero terms, was mentioned in

Chapter 6.

To compute the derivative with respect to a surface parameter requires a sum reduction

across view map parameters indexed by i : is = j, as indicated in Equation 7.3. This is

accomplished by virtue of the fact that only one view direction is used for each image. In

other words, the condition is = j corresponds to the condition that the texel is is visible

in the image.

Similarly, the derivative with respect to a view map parameter would be

∂

∂v j
m(p,x) = ∑

{i:iω= j}
gis) (7.5)

To compute the derivative with respect to the view map parameter requires a sum

reduction across the surface map. This must occur on a per-image basis. Since there is

only one view per image for a given patch, the single scalar that results from the reduction

is rendered into the appropriate place in the view map. This is the process described in

Section 5.6.

There is an important distinction in the model used in this process in contrast to how

the model is actually used once it is complete. In each image, the view direction is com-

puted at the vertex, and this single view direction is used across the entire patch. In ren-

dering the final model, the view direction is computed at each vertex, but it is interpolated

across the entire patch, such that each surface patch element uses a potentially different
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Poly. Param. Param. Image ImageModels
Count Count Tex. Size Count Size

Bust 7228 0.91MT 1.64MT 339 161MB
Star 6093 0.69MT 1.23MT 282 159MB

Table 7.1: Models used in the experiments. The 3rd column shows the model parameter
count, the 4th column shows the count of pixels used to store the model parameters. The
counts are given in megatexels [MT].

view direction. This is exactly the same system used in the original LFM work (Chen

et al., 2002a; Chen, 2002).

Rather than using the Wolfe conditions, we found that simply checking for sufficient

decrease using

f (p+αd) < f (p) (7.6)

was adequate in our test cases.

7.2 Models

Figure 7.1 shows the bust and the star models from (Chen et al., 2002a) that were used

for the LFM experiments. Table 7.1 lists the pertinent information about the datasets:

the polygon count, the model parameter count, the size of the radiance dataset and the

number of images.

The total number of model parameters used for each model is given in Table 7.1.

Textures used to store the model parameters are slightly larger because of the extra space

required for packing. (We were not using a very efficient packing scheme; half of the

space for surface maps was unused.) The size of the textures allocated to the model

parameters is also given in the table. The implementation uses fixed-size surface maps

for all triangles, each having 32 texels. View map resolution is 8× 8 texels for the 2π

hemisphere of directions.
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Error Convergence for Conjugate Gradient
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Error Convergence for Steepest Descent
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Figure 7.2: The left graph shows the converge rate of the conjugate gradient method on
three randomly selected optimization problems from the bust dataset. The right graph
shows the convergence rate for the steepest descent method on the same three problems.
Note that the conjugate gradient method included a quadratic model for computing a
stepsize (Section 3.4.2).

7.3 Steepest Descent vs. Conjugate Gradient

The conjugate gradient method (Section 3.3.2) with a quadratic stepsize estimate (Sec-

tion 3.4.2) achieves much better convergence than the steepest descent method (Sec-

tion 3.3.1) with a backtracking line search (Section 3.4.1). It often requires an order of

magnitude fewer iterations to converge and usually finds a better local minimum. The

comparison is shown in Figure 7.2. The left graph has the convergence rate for the conju-

gate gradient method on 3 randomly selected optimization problems from the star dataset.

The right graph has the rate for the steepest descent method on the same 3 problems.

The conjugate gradient method converges significantly faster. For example, “Optim 2”

reaches the minimum in about 25 iterations using the first method and it takes about

250 iteration to get down to the same error level using the second method. This ratio

is consistent across different optimizations and different datasets. This comparison was

performed using a CPU implementation.
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Figure 7.3: Execution time comparison between the CPU and the GPU implementations
of the light field mapping approximation running on the star model. We compare the
performance of the conjugate gradient (CG) and the steepest descent (SD) methods.

7.4 CPU and GPU Implementation Comparison

To evaluate performance relative to a CPU implementation, we implemented a CPU ver-

sion of the light field mapping approximation using nonlinear optimization following the

approach discussed in Section 4.1.1 and compared it against the GPU implementation.

The distribution step for the CPU implementation writes out the following informa-

tion to the disk for each radiance sample falling on a given triangle: target value, residual

value, surface map coordinate and 3 view map coordinates. The distribution step in this

case is still computed on the GPU—implementing the whole renderer in software would

require substantial effort. Once data distribution is finished, the algorithm sequentially

solves each individual optimization on the CPU.

Figure 7.3 compares the computational performance of the GPU and the CPU im-

plementations. For the CPU, the total run time is divided into the distribution step and

the optimization step. For the GPU, it is divided into image streaming, computation and

overhead for context switches. The numbers are given for the full star model running for
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exactly 100 iterations. We used ATI’s All-In-Wonderr RadeonTM 9700 to run the GPU

implementation and Intel’s 2GHz Pentiumr 4 for the CPU implementation.

Image data were stored on the disk in uncompressed format. Streaming images to the

graphics card consumes approximately 20% of the run time. The raw image data was no

more than about 160MB in size. Therefore, this time could be reduced by reading the

images into the host memory and streaming them to the GPU from there. In the CPU

implementation, this would not be possible, as it works with resampled data that would

not fit into host memory.

In both cases, the GPU performance is more than five times better than the CPU

performance. The GPU implementation of the steepest descent method spends approxi-

mately half the total execution time on context switches. For the same implementation of

the conjugate gradient this portion of execution time goes up to almost 66%. Section 7.7

proposes ideas on how this might be reduced.

7.5 Memory Requirements

An image-streaming approach uses memory efficiently, since it only requires O(n) of

storage, where n is the number of model parameters. However, texture sizes become

larger when using floating-point texels. Memory on the graphics card is approximately

an order of magnitude smaller than on the CPU. Although host memory is also accessible

to the graphics processor, the data path is much slower; also, host memory cannot be used

directly as a render target.

Since the Radeon 9700 has only about 110MB of video memory available for the

textures, we were limited in the size of the models we could process. For example, the

conjugate gradient algorithm running on the full star model uses about 7.8 megatexels for

the data structures related to the surface maps and 1.1 megatexels for the data structures

related to the view maps. Since each 32-bit floating-point RGBA texel requires 16 bytes,
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this translates to 142MB of texture memory. Therefore, to solve the full star model, we

had to use fairly low resolution light field maps and 16-bit floating-point numbers. The

use of 16-bit floating-point numbers did not have a negative impact on the convergence

as shown in Section 7.6.

Better tiling and distribution of texels according to the projected triangle screen size

would have allowed for more efficient use of this limited resource, but we did not imple-

ment these features.

7.6 Convergence and Error Analysis

To compare the error of the original light field mapping approximation algorithm with

the nonlinear optimization implementation, we computed a one-term approximation of

the star model using principal component analysis (Chen et al., 2002a) and the CPU

version of nonlinear optimization. In both cases, we used high resolution surface maps

(144 texels on average) and view maps (256 texels).

The errors reported in Figure 7.4 are computed based on the difference between the

input image and the rendered image using both APE (average pixel error) and PSNR

(pixel signal-to-noise ratio) for the foreground pixels only. The errors for the two meth-

ods described above indicate that, when using the same resolution light field maps, the

nonlinear optimization algorithm yields a better approximation than the original algo-

rithm based on matrix factorization. The most likely cause of this is that the new method

does not perform the extensive resampling required by the matrix factorization approach.

To compare the error of nonlinear optimization running on the CPU and the GPU, we

had to use low resolution light field maps and 16-bit floating-point numbers on the GPU.

The errors reported in Figure 7.4 for these two methods, although much higher than in

the first experiment, are very similar to each other. This indicates that the use of 16-bit

floating-point numbers on the GPU did not have a detrimental effect on the convergence
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Figure 7.4: Convergence and error analysis for four different approximation methods.
Each value is an average across three 8-bit channels. APE is in the range of [0-255].

of the algorithm and that when we have more memory available on the card, we will be

able to achieve the high quality of approximation that the light field mapping method

provides.

7.7 Computation and Bandwidth Requirements

We calculated the computation and the memory bandwidth requirements of our algo-

rithms by counting the number of instructions of each fragment program and the number

of memory reads and writes, and multiplying them by the number of times each fragment

program is executed. Figure 7.5 shows computation and memory bandwidth utilization

for the star model. The Radeon 9700 Pro is capable of a peak 2.6 Gops of arithmetic

operations in the fragment unit and 0.65 Gops of 64-bit wide texture reads in parallel.

Image data are stored on the disk in uncompressed format. As shown in Section 7.4,
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Figure 7.5: Computation and memory bandwidth utilization for LFM generation using
the steepest descent method.

streaming the reference images to the graphics card consumes about 20% of run time.

This time could be reduced by reading the images into the host memory and streaming

them to the GPU from there.

The 29% utilization rate for the LFM approximation experiment could become much

higher in the future. The two most obvious improvements are: (1) streaming images from

the host memory instead of the disk; (2) combining rendering passes by using multiple

render targets and by having longer fragment programs. Combining passes would im-

prove the performance by reducing the effects of the synchronization that happens with

each context switch and by eliminating redundant texture reads. This latter change would

shift the utilization towards the arithmetic maximum by reducing texture operations. We

used only a fraction of the available memory bandwidth between the GPU and video

memory.
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Chapter 8

Case Study: Spatially-Varying BRDFs

This chapter shows how this framework has been applied to an SBRDF model based

on per-texel Lafortune reflectance functions, which is a parametric BRDF model. The

results were first reported in the SIGGRAPH paper (Hillesland et al., 2003). There was

no reference CPU implementation available, so this case study was focused on simply

demonstrating that the SBRDF model does fit into the proposed framework, and to look

at its computational efficiency.

8.1 Implementation

The SBRDF model represents a simpler model to implement in this framework in the

sense that the texel-sized patch does not require sophisticated gathers. The texel-sized

patch means there are far more independent patches to be solved relative to the LFM

model, but requires fewer parameters for each patch. The main difficulty of the SBRDF

model is that it is more highly nonlinear than the LFM model due to an exponent para-

meter.

We followed McAllister et al. (McAllister et al., 2002; McAllister, 2002) in adopting

the Lafortune model:

m(p,x) = ρd +∑
j

ρs, j(Cx, j ux vx +Cy, j uy vy +Cz, j uz vz)n j .



The parameters p in the above function are ρd , ρs, j, Cx, j, Cy, j, Cz, j, and n j. The input

variables, x, are ux, uy, uz, vx, vy, and vz. They are projections of the viewing and lighting

directions on the local coordinate system.

We assume isotropic reflection (Ckx = Cky) modeled by a single (K = 1) forward-

reflective term (no retro-reflection). Additionally, we use just one m for all color chan-

nels; therefore, the model function actually returns a three-vector of red, green and blue

values. This means that the model parameter vector p uses nine independent parame-

ters to describe the BRDF at a given surface location: [ρRd ρGd ρBd], [ρRs ρGs ρBs] and

[Cxy Cz n], where the k index has been dropped, and I have defined Cxy = Cx = Cy. The

diffuse parameters [ρRd ρGd ρBd] were included in the optimization process for the first

several iterations; the parameters were fixed after this point for the remainder of the

process.

Stating the error function again:

E(p) =
1
2

S

∑
i=1

(m(p,xi)− yi)2, (8.1)

where S is the number of data samples used in the fit and where each data sample consists

of an input set (xi) and an output (yi). Since the model covers all three color channels,

one difference between this case study and the case of LFM is that the sum over samples

includes a sum across color channels. The other difference is that every parameter is

used for each data sample, so that c j = S, where c j is the number of nonzero values in the

Jacobian. c j was introduced in Chapter 6.

Texture filtering is not directly part of the SBRDF model. The resampling from image

space to SLS (discussed in Section 5.2.2) is what decouples the texture filtering issue from

the model fitting process.

The lighting model is a single point light source. Therefore, the radiance can be
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expressed as

Lr(ωr) = m(p,x)Lc cos(θi)/r2, (8.2)

where Lc is a constant, and r is the distance from the light to the point on the surface. The

light was far enough from the object that 1/r2 could be considered a constant and can be

absorbed into Lc.

The final issue is that it was necessary to convert radiance to reflectance, which was

computed on the fly. One drawback of fitting to reflectance is that the data samples

become unbounded after dividing out the cosine; therefore, we rejected samples where

the light hit the surface at a grazing angle. In particular, we chose to throw out all samples

where cos(θi) < 0.1. With both incident and exitant radiance in [0,1], this bounds the

value of the reflectance data sample to [0,10].

The gradient with respect to [ρRd ρGd ρBd] is simply a constant vector of ones. In

other words,
∂

∂ρRd

m(x,p) =
∂

∂ρRg

m(x,p) =
∂

∂ρRb

m(x,p) = 1. (8.3)

Its simple linear nature is what drove the decision to only include it in the first several

iterations. This is in contrast to previous work, where either a minimum (Lafortune et al.,

1997; Lensch et al., 2003) or constant factor (McAllister et al., 2002; McAllister, 2002)

were used.

The derivatives with respect to [ρRs ρGs ρBs] are

∂

∂ρRs

m(x,p) =
∂

∂ρRs

m(x,p) =
∂

∂ρRs

m(x,p) = (Cxy (ux vx +uy vy)+Cz uz vz)n (8.4)

The derivatives with respect to Cxy and Cz are

∂

∂Cxy

m(x,p) = n (ux vx +uy vy) (Cxy (ux vx +uy vy)+Cz uz vz)n−1 (8.5)

∂

∂Cz

m(x,p) = n uz vz (Cxy (ux vx +uy vy)+Cz uz vz)n−1 (8.6)
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Poly. Param. Param. Image ImageModels
Count Count Tex. Size Count Size

Ornament 3690 0.86MT 1.73MT 1760 0.98GB

Table 8.1: SBRDF Model Statistics. The 3rd column shows the model parameter count,
the 4th column shows the count of pixels used to store the model parameters. The counts
are given in megatexels [MT].

The derivative with respect to n is

∂

∂n
m(x,p) = an ln(a) (8.7)

where a = Cxy (ux vx +uy vy)+Cz uz vz.

Note that there are a number of constraints worth establishing. The first is the forward-

reflective constraint. This was enforced by throwing out all samples that correspond to

retro-reflection, i.e. throwing out all samples where ux vx + uy vy > 0 and constraining

Cxy ≤ 0. Back-face culling removes all samples where uz < 0. By throwing out samples

where vz < 0 and constraining Cz ≥ 0 we keep the Cz term positive as well. Most of these

constraints were maintained by clamping, rather than using the penalty method.

The SBRDF model was solved using steepest descent for direction, and the back-

tracking method for stepsize.

8.2 Model

The ornament model, shown in Figure 8.1, was used to compute the Lafortune fit to

SBRDF data. The dataset for it was generated synthetically in 3D Studio Maxr. The

surface consists of 3 distinct materials produced using 2 reflectance models: Oren-Nayar-

Blinn (white) and Lafortune (gold and green). Table 8.1 lists the pertinent information

about the dataset: the polygon count, the model parameter count, the size of the radiance

dataset and the number of images.
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Figure 8.1: The ornament model is used for the Lafortune fit to SBRDF data.

As explained in Section 8.1, the Lafortune fit to SBRDF data uses nine parameters

per surface location, which we store in three texture maps. We use fixed-size textures for

all triangles, each having 128 texels.

The total number of model parameters used for the model is given in Table 8.1. Just

as in the case for LFM, textures used to store the model parameters are slightly larger

because of the extra space required for packing. The size of the textures allocated to the

model parameters is also given in the table.

8.3 Memory Requirements

The same issues with respect to memory requirements were also encountered with the

SBRDF model. Again, we used a fairly inefficient tiling scheme, and chose to use the

same number of texels for every triangle of the model rather than choosing a resolution

according to screen-space projection size. We also resorted to using 16-bit floating point

textures, but these proved to be sufficient for adequate convergence.
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(a) Original Image (b) Model Image

Figure 8.2: Visualization of the results for the Ornament.

8.4 Convergence and Error Analysis

As already mentioned, there was no CPU implementation available to us. Another com-

plication was that the dataset was somewhat poor in the sense that the image format could

not capture the high dynamic range caused by specularities, and therefore, the data had

clamped specular peaks. However, one of the advantages of the image-streaming ap-

proach using graphics hardware is that the solution process can be directly visualized.

We were able to observe that the model did indeed converge to a reasonable solution by

visual inspection. The solution included a distinction between highly specular and more

diffuse regions, as well as correct colors.

8.5 Computation and Bandwidth Requirements

We calculated the computation and the memory bandwidth requirements by counting

the number of instructions of each fragment program and the number of memory reads

and writes and multiplying them by the number of times each fragment program is exe-

cuted. Figure 8.3 shows computation and memory bandwidth utilization for the ornament
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Figure 8.3: Computation and memory bandwidth utilization for the ornament model
using the steepest descent method.

model. The Radeon 9700 Pro is capable of a peak 2.6 Gops of arithmetic operations in

the fragment unit and 0.65 Gops of 64-bit wide texture reads in parallel. For the SBRDF

experiment, streaming images from the disk constituted about 70% of the execution time.
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Chapter 9

Conclusions and Future Work

I have proposed an image-streaming framework for generating image-based models. This

framework differs from previous approaches in that it keeps the complete model as the

working set, and processes the raw images. The image-streaming framework is described

in Chapter 4. As the technique is described, I show why this approach works nicely for

building image-based models using nonlinear optimization. Section 4.1 shows where this

approach has its advantage: in reducing the bandwidth requirements for the data stream.

Chapter 5 describes the tools to implement this framework on programmable graphics

hardware.

This technique should apply to shading models that store parameters in textures, par-

ticularly those that include spatial variation. Chapter 2 lays out the characteristics of

both analytic and decomposition models and show that they can both be handled under

the framework of a function fitting process. Therefore, the framework proposed in this

dissertation will apply to a fairly wide class of models.

Many numerical techniques rely on access to double precision support, which is not

available on modern GPUs. Chapter 6 addresses the issue of roundoff error in a limited

precision context, particularly with respect to summation, which is especially problem-

atic. I apply this analysis to nonlinear optimization for image-based modeling to identify

where problems may occur in my proposed framework. I also discuss some of the mea-

sures that can be taken to alleviate these problems.

Modern GPUs do not conform to IEEE floating-point operation standards even for



single precision, nor do vendors document their behavior. Appendix A shows that floating-

point behavior can be measured, and that current graphics hardware exhibits reasonable

behavior compared to what is called for in the IEEE standard.

The above concepts are brought together in two case studies: one for constructing

LFM models (Chapter 7) and one for constructing an SBRDF model (Chapter 8), which

represent two diverse image-based model types.

In summary, I have shown that the technique is widely applicable (Chapter 2), pro-

duces correct results (Chapter 6), and shows favorable performance (Chapter 4). I also

back up these arguments with empirical evidence (Chapters 7 and 8). I have therefore

demonstrated the thesis.

An image-streaming approach to nonlinear optimization is a widely applica-

ble and efficient technique for image-based model construction.

9.1 Limitations

The limitations of this framework bear repeating.

• I have assumed known geometry and viewing conditions. To handle relighting,

only models with known point light sources have been tested.

• Nonlinear optimization can be a tricky process, requiring a good initial guess to

obtain a reasonable solution. This is because the techniques explored in this work

are only designed to find a local minimum. Furthermore, the error function must

be at least C1.

• The effectiveness of the technique relies on the number of iterations being less

than the number of patches, and concentrates on reducing bandwidth requirements

in exchange for additional computational cost.
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9.2 Future Work

There are two main aspects to the image-streaming framework that motivate future work.

The first is its wide applicability. The first two suggestions for future work build on this

by suggesting how to simplify the process further with the goal of making it possible to

simply plug in different image-based model functions without much effort. This would

allow for relative ease in exploring different representations for a given data set.

The conventional approach to image-based modeling uses a pre-process that relies on

fixed geometry and iteration over a fixed set of images. By contrast, the image-streaming

approach makes no such assumptions, while maintaining favorable performance. This

is the second main aspect that motivates future work. The second two suggestions are

ways in which the framework can be adapted for applications that are not possible in the

conventional pre-processing approach.

9.2.1 Finite Differencing and Automatic Differentiation

Evaluating the gradient can sometimes be difficult. In the case of LFM, for example, the

gradient required a number of gathers in various spaces, as determined by the analytic

form of the gradient. In contrast, a finite differencing approach only requires the objective

function in an analytic form; which in this case, is mostly just the rendering function

itself. Therefore, I see two possible advantages to using a finite differencing technique.

First, the rendering function is specifically constructed to run quickly in hardware, and

should presumably be quite fast to compute. Second, it should be relatively easy to

implement new models using a finite differencing approach, once the framework is in

place.

Automatic differentiation refers to techniques that automatically generate analytical

expressions for the gradient. This would be much more difficult to implement than finite

differencing, but would produce a more accurate derivative evaluation. Automatic differ-
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entiation breaks the function down into elementary math operations, and applies the chain

rule to build the analytic derivative. This is accomplished by either analyzing the source

code, or by tracking the calculation as it progresses. Since the rendering algorithms are

implemented by a combination of code on the host, which are traceable, and vertex and

fragment shaders which are not directly traceable, a hybrid approach would perhaps be

appropriate: code analysis for the shader, and runtime tracking using a combination of

readbacks and analysis of execution on the host.

9.2.2 Hybrid Models

Many objects are often best represented by more than one kind of shader; however,

image-based modeling typically focuses on a single model at a time. With a general

approach, particularly one using finite differencing such as the one mentioned above,

it becomes much more feasible to try different shader models in different areas of the

object. In fact, shader selection could become part of the solution process.

9.2.3 Online Methods

The idea behind a stream is that the data can be thrown away once it has been processed.

This was not particularly the case of nonlinear optimization, as it was important to use the

same set of data at each iteration. However, the image-streaming framework is already in

place for an online method. By this I mean a method where there is a continuous stream

of new data. An examples is an online SVD method proposed by Brand et al. (Brand,

2003), which could be used to construct an LFM model from a continuous stream of data -

for example a continuous image stream from a tracked video camera. Another advantage

of an online method is that it can continuously adapt to a changing environment as well.
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9.2.4 Geometry

Another limitation of this work is that is assumes known geometry. However, it would

be interesting to introduce geometric parameters in the image-based modeling process.

Others have already begun to pursue the simultaneous recovery of shape and non-specular

surface reflectance models (Lee and Kuo, 1997; Yang et al., 2003; Hertzmann and Seitz,

2003; Jin et al., 2003; Yu et al., 2004), but have each chosen a particular reflectance

model, typically an analytical model like the Phong or Torrance-Sparrow models. In the

image-streaming framework, moving vertices of the model incurs no cost, as there is

no preprocess as in the conventional approach. Therefore, I am proposing research for

simultaneous recovery of shape and parameters of a shading model, but allowing for a

greater variance in the kind of shading models applied.
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Appendix A

Measuring Error in GPU
Floating-Point Operations

Up until the late eighties, each computer vendor was left to develop their own conventions

for floating-point computation as they saw fit. As a result, programmers needed to famil-

iarize themselves with the peculiarities of each system in order to write effective software

and evaluate numerical error. To alleviate this problem, a standard was established for

floating-point computation, and CPU vendors now design to this standard (IEEE, 1987).

Today there is an interest in the use of graphics processing units, or GPUs, for non-

graphics applications such as scientific computing. GPUs have floating-point represen-

tations similar to, and sometimes matching, the IEEE standard. However, GPUs do not

adhere to IEEE standards for floating-point operations, nor do the vendors give the infor-

mation necessary to establish bounds on error for these operations. Another complication

is that floating-point behavior seems to be in a constant state of flux due to the dependence

on the hardware, drivers, and compilers of a rapidly changing industry.

The goal is to determine the error bounds on floating-point operation results for

quickly evolving graphics systems. I have created a tool to measure the error for four

basic floating-point operations: addition, subtraction, multiplication and division. This

work was originally presented as a poster at the ACM Workshop on General Purpose

Computing on Graphics Processors in 2004, and is available in its proceedings (Hilles-

land and Lastra, 2004).
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A.1 IEEE Standard Floating Point

Ideally, GPUs would follow the IEEE standard for floating-point operations. The IEEE

standard provides a guarantee on error bounds for certain operations, including addition,

subtraction, multiplication and division. It does so by requiring that these operations fol-

low the exact rounding convention. Under this convention, the result of an operation must

be the same as a result computed exactly, and then rounded according to an unambiguous

rounding convention. In this discussion I focus on the default rounding mode, which is

to round to nearest, which rounds the result to the nearest representable number, or to the

closest even number in the case of a tie. This means a bound of [-0.5 , 0.5] in units of the

last bit of the significand for the nearest rounding case.

A.2 Paranoia

Paranoia (Karpinski, 1985), originally written by William Kahan in the 1980’s, explores

a number of aspects of floating-point operation. I have adopted Paranoia’s guard bit and

rounding mode tests for subtraction, multiplication, and division. Of the GPUs I tested,

all operations use guard bits.

Paranoia looks for two kinds of rounding: round to nearest, and chopping. Chopping

could also be called “round to zero”. The GPUs I tested did not follow either of these

models. In order to obtain a bound on error, I turned to a more empirical approach, which

I describe next.

A.3 GPUBench

GPUBench is a set of tests to evaluate the performance and precision characteristics of

graphics hardware. It was also presented at the ACM Workshop on General Purpose

Computing on Graphics Processors both as a poster and as described in an invited speech
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Significand patterns:

• 1.00...010... (all zeros except a single one, or Schryer’s “Type 1”)

• 1.10...010... (same as previous, but with additional leading one)

• 1.11...101... (all ones except a single zero)

• 1.00...01... (zeros then ones)

• 1.10...01... (same as previous, but with additional leading one)

• 1.11...10... (ones then zeros, or Schryer’s “Type 2”)

Relative exponents: 0, -1, -(significand bits / 2), -significand bits

Table A.1: Floating-Point Test Patterns.

by Patrick Hanrahan in 2004. Precision was only measured for some unary transcendental

functions. GPUBench tests the precision of transcendental functions by trying a vector of

evenly spaced values in some range. It does not target particularly problematic values as

was done for the more elementary functions tested here or in Paranoia (Karpinski, 1985),

or in the work of Schryer (Schryer, 1981), which is described in the next section.

A.4 Measuring Floating-Point Error

To ensure complete error bounds in an empirical test would require exhaustive tests of

all combinations of all floating-point numbers. Since this is impractical, I chose a subset

of floating-point numbers that I believe does a reasonable job of characterizing the entire

set. This is an approach used by others for testing correct operation of floating-point

hardware. I used a superset of significands suggested by Schryer (Schryer, 1981). The

test combinations include all the test cases in Paranoia, as well as cases that push the

limits of round-off error and cases where the most work must be performed, such as

extensive carry propagation. The significands and exponents used are given in Table A.1.

Table A.2 gives results for some example systems. For comparison, the IEEE-754

standard for floating-point operations using the round-to-nearest convention would have

121



Operation R300/arbfp NV30/fp30
Addition [-1.000, 0.000] [-1.000, 0.000]

Subtraction [-1.000, 1.000] [-0.750, 0.750]
Multiplication [-0.989, 0.125] [-0.782, 0.625]

Division [-2.869, 0.094] [-1.199, 1.375]

Table A.2: Floating-Point Error in ULPs (Units in Last Place). Note that the R300 has
a 16 bit significand, whereas the NV30 has 23 bits. Therefore one ULP on an R300
is equivalent to 27 ULPs on an NV30. Division is implemented by a combination of
reciprocal and multiply on these systems. Cg version 1.2.1. ATI driver 6.14.10.6444.
NVIDIA driver 56.72. arbfp and fp30 are architectures targetted by the Cg compiler,
and represent the most sophisticated architectures supported for the respective hardware
under Cg.

error bars of [-0.5, 0.5] for all operations.

A.5 System Considerations

Results are for specific configurations of graphics card, driver, operating system, CPU,

chipset, compiler version, and other factors. The tool is intended to be run each time any

of these items change.

Semantics for programming GPUs currently allow for considerable leeway in how a

program is implemented. Instructions can be re-ordered, subexpressions involving con-

stants or “uniform” parameters may be evaluated on the CPU, and associative and dis-

tributive properties, which do not hold for floating-point operations, may be applied in

optimization. The tool does not take into consideration the kinds of optimizations possi-

ble in larger program contexts.

A.6 Conclusion

The goal is to give the developer a tool to characterize GPU floating-point error in order to

aid them in developing compute-intensive applications. An empirical approach is adopted
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to establish error bounds for addition, subtraction, multiplication and division. This tool

has been applied to two contemporary graphics hardware systems, showing that although

not perfect, they provide reasonable accuracy relative to the IEEE standard for floating-

point operations within their limited precision support.
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