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ABSTRACT
PHILIP L. HOLMAN: On the Implementation of Pfair-scheduled

Multiprocessor Systems.
(Under the direction of James H. Anderson.)

The goal of this dissertation is to extend the Pfair scheduling approach in order to enable

its efficient implementation on a real-time multiprocessor. At present, Pfair scheduling is the

only known means for optimally scheduling recurrent real-time tasks on multiprocessors. In

addition, there has been growing practical interest in such approaches due to their fairness

guarantees. Unfortunately, prior work in this area has considered only the scheduling of

independent tasks, which do not communicate with each other or share resources. The work

presented herein focuses both on adding support for these actions and also on developing

techniques for reducing various forms of implementation overhead, including that produced

by task migrations and context switches. The thesis of this dissertation is:

tasks can be efficiently synchronized in Pfair-scheduled systems and overhead due

to common system events, such as context switches and migrations, can be reduced.

This thesis is established through research in three areas. First, the pre-existing Pfair schedul-

ing theory is extended to support the scheduling of groups of tasks as a single entity. Second,

mechanisms for supporting both lock-based and lock-free synchronization are presented. Lock-

based synchronization coordinates access to shared resources through the use of semaphores.

On the other hand, lock-free operations are optimistically attempted and then retried if the

operation fails. Last, the deployment of Pfair scheduling on a symmetric multiprocessor is

considered.
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T.ê(`) The duration of the longest critical section of
T requiring ` . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
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CHAPTER 1

Introduction

The focus of this dissertation is the design of a real-time multiprocessor operating system that

uses Pfair scheduling algorithms. This chapter introduces real-time scheduling, articulates

the goals of this dissertation, and summarizes results presented in later chapters. The next

chapter discusses the Pfair scheduling approach in detail.

In Section 1.1, we discuss the research focus of this dissertation and the importance of

real-time multiprocessor systems. Section 1.2 summarizes models used to represent real-

time processes. In Section 1.3, we discuss issues that arise when sharing a processor among a

collection of real-time processes. This is followed by a discussion of multiprocessor approaches

in Section 1.4. We conclude the chapter by summarizing our goals (Section 1.5) and specific

contributions (Section 1.6).

1.1 Research Focus

Program correctness is defined by two requirements. Programs must exhibit logical correctness

and must eventually terminate. Informally, logical correctness requires that programs produce

expected results. Real-time constraints impose a third requirement: temporal correctness.

Temporal correctness strengthens these previous requirements by also imposing restrictions
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on the rate at which programs execute. For example, the most common real-time constraint

is a deadline, which is an absolute time by which the associated activity must complete.

Informally, temporal correctness requires that results must be produced on time.

A real-time system is one that imposes real-time constraints on at least one program. For

example, real-time systems are often used to control mechanical systems. Such control systems

typically consist of a uniprocessor and a static collection of programs, each of which must

complete within a fixed amount of time whenever invoked. For instance, consider how paper

currency (e.g., dollar bills) are printed. The printing press actually produces large sheets that

contain multiple bills laid out in a grid. These sheets are then fed into a second machine that

uses a press to cut the sheets into individual bills. When automated, this system requires

timing constraints to ensure that the movement of the mechanical parts is synchronized at

all times. For example, if the insertion and removal of sheets into the cutting press is not

synchronized with the lowering of the press, then bills will not be cut properly. Due to the cost

and potential danger associated with such malfunctions, control systems often require off-line

validation, i.e., operation must be analyzed to show that timing constraints are always met

under assumed operating conditions. Hence, predictability is paramount among all concerns.

The need for validation techniques in control systems has given rise to a considerable body

of research that focuses on the analysis of worst-case behavior.

Growing interest in providing quality-of-service (QoS) guarantees has expanded the scope

of real-time research from simply focusing on the worst-case performance to also considering

average and best-case performance. This interest stems largely from the widespread use of

multimedia applications and from the commercialization of the Internet. For instance, many

companies currently lease space on large web servers that is used by subscribers to host web
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sites. Ideally, these companies would like to impose strict limits on the quantity of resources

(e.g., network capacity, processor time, disk space, etc.) consumed by each subscriber. Al-

though existing techniques partially address this need (e.g., quota support in file systems),

the sharing of processor capacity continues to be achieved through the use of unreliable ad

hoc polices. Similarly, multimedia applications (e.g., audio and video players) are common in

modern computers. Optimum performance requires timely access to both storage media and

processors. Delaying this access can produce artifacts in the playback, such as audible pops

or clicks during a song. Hence, ensuring timely and predictable access to system resources,

including processor time, is a growing concern in many areas.

Dissertation focus. The focus of this dissertation is multiprocessor real-time systems. Our

interest in real-time techniques is based on their ability to provide predictable operation. We

consider multiprocessors for several reasons, which are summarized below.

First, real-time uniprocessor systems have been and continue to be widely studied, and

with much success. However, the use of real-time multiprocessor systems remains a largely

unexplored area. Indeed, real-time multiprocessor systems are typically controlled by a par-

titioning approach, in which each process (or task) is bound to a single processor. This

approach effectively treats a multiprocessor system as a collection of independent uniproces-

sor systems. Partitioning provides many practical benefits, including no migration1 overhead

and improved cache performance. In addition, uniprocessor techniques, which tend to be

more efficient than their multiprocessor counterparts, can be applied on each processor. Un-

fortunately, a change in the set of runnable tasks may necessitate an on-line re-partitioning

of the system. Since partitioning is a bin-packing problem, which is known to be NP-hard in

1For a task to execute on a processor, that processor must have access to the task’s runtime state (or
context). Here, migration refers to the act of moving a task’s context from one processor to another.
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the strong sense [25], timely re-partitioning requires the use of a suboptimal heuristic. Even

with such a heuristic, the overhead may be unacceptable. (A partitioning algorithm has Ω(N)

time complexity where N is the number of tasks.) Hence, alternative approaches are needed

for such systems.

Second, microprocessor-based multiprocessors are often less expensive and provide more

design flexibility than uniprocessors of equivalent power. For instance, in [29], Hennessy and

Patterson note that multiprocessors built from mass-produced microprocessors are highly

effective when used to share resources among multiple applications. In [69], Wolf echoes this

sentiment when comparing the use of multiprocessors to that of custom logic in embedded

systems. In both cases, the practicality of multiprocessor designs is attributed to the low

hardware costs provided by mass production and to the attention given to optimizing the

performance of mass-produced hardware, particularly processors.

Finally, some applications exceed the capabilities of a single processor. In such cases, the

use of a multiprocessor is unavoidable. For instance, processing the information produced

by a sensor network is quite time-consuming. In addition, such networks can be deployed in

situations where malfunctions endanger lives, such as military actions. This suggests a need

for off-line validation. Restricting attention to uniprocessor designs imposes limits on both

the size of the network and the complexity of the processing. In practice, such limitations

may be unacceptable. Exceeding these limits requires the use of either a multiprocessor or

a more powerful uniprocessor. Unfortunately, uniprocessor performance improvements are

increasingly the product of applying complex heuristics within the hardware, such as branch

prediction and out-of-order execution of instructions. Although these techniques improve

performance on average, their complexity makes runtime behavior more unpredictable, and
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hence necessitates the use of overly pessimistic assumptions when approximating worst-case

performance. Indeed, Hennessy and Patterson observed that performance improvements ob-

tained in this fashion appear to have already reached a point of diminishing returns [29].

Hence, it seems that the use of multiprocessors cannot be altogether avoided.

1.2 Real-time Process Models

In this and the next two sections, we present an overview of the issues involved when sharing

processors among a set of real-time tasks. We initiate this discussion in this section by pre-

senting common models for representing such tasks. These models drive both the discussion

in this chapter and the work presented in later chapters.

We define a task to be any finite-duration code segment that requires only one processor

and for which execution can be scheduled. Tasks can be either persistent or temporary : a

persistent task may be invoked any number of times while a temporary task is invoked only

a finite number of times. We refer to each invocation of a task as a job.

1.2.1 Representing Jobs

We now present notation that will be used to describe jobs. Two complications are common

when scheduling jobs in real systems. These complications must be taken into account by the

models described below.

First, a job may require exclusive access to a shared resource other than processor time

(e.g., a file, a data structure in shared memory, an external device, etc.) during its execution.

We refer to a region of code with such a requirement as a critical section. For instance, an

operation on a shared object that is represented by two words of memory may need to update
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both words. If exclusive access is not ensured while applying this operation, then a second

operation may read the object while it is in an inconsistent state, i.e., after performing the

first write but before performing the second. Jobs (and tasks) are said to be independent

when they have no critical sections.2

Second, a job may need to suspend its execution either for a fixed period of time or until

some specified event occurs. Informally, a suspension is a period of time during which the

task cannot make progress by executing and hence should not be granted processor time. For

instance, a job that writes a buffer’s contents to a disk may need to write multiple segments

of the buffer in a series of operations. To accomplish this, the job would initiate the write

of a segment and then request suspension until the disk controller signals completion of that

write. Once this signal is received, the next write is initiated, and so on.

Simple jobs. An independent job J that never suspends can be fully characterized by the

following three parameters.

• J.a, called J ’s arrival or release time, is the earliest time at which J can begin executing;

• J.e, called J ’s execution requirement , is the maximum processor time needed by J ;

• J.d, called J ’s relative deadline, is the maximum allowed difference of J ’s completion

time and its arrival time, i.e., J must complete by its absolute deadline at time J.a+J.d.

The shorthand J = J(a, e, d) will be used to denote a job J with J.a = a, J.e = e, and

J.d = d. A job with no timing constraint can be specified by letting J.d = ∞.

Figure 1.1 shows the execution of two such jobs. Job J1 arrives at time 24, requires 7

units of processor time, and must complete within 18 time units (i.e., by time 42). Job J2

2Dependencies among jobs also arise from precedence constraints, i.e., the execution of one job may need
to be postponed until another job has completed. Such a constraint typically arises from a producer-consumer
relationship, in which the first job produces data required by the second job.
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Figure 1.1: Two-job schedule with jobs J1 = J(24, 7, 18) and J2 = J(5, 13, 31). Neither job
contains critical sections or suspends. Each job is executed immediately upon arrival.

arrives at time 5, requires 13 units of processor time, and must complete within 31 time units

(i.e., by time 36). The figure illustrates one possible uniprocessor schedule, in which each job

is executed immediately upon arrival.

Complex jobs. A multi-phase representation will be used to describe jobs that either

suspend or include critical sections. This representation decomposes each job J into a sequence

of J.k phases. (When the range of a phase index i is not explicitly given, the range 1 ≤ i ≤ J.k

should be assumed.) Each phase J [i] is either an execution phase or a suspension phase.

An execution phase is described by two parameters. J [i].e (respectively, J [i].R) denotes

the execution requirement (respectively, resource) of phase J [i]. J [i].R indicates which (non-

processor) shared resource3 is required by J [i]. If J [i] is not a critical section, then J [i].R = ∅.

We let J [i] = C(R, e) denote an execution phase J [i] with J [i].R = R and J [i].e = e.

A suspension phase J [i] is characterized only by its maximum duration,4 denoted J [i].θ.

Suspension phases are assumed to never occur consecutively. (Consecutive suspensions can be

expressed as a single phase.) We let J [i] = I(θ) denote a suspension phase J [i] with J [i].θ = θ.

3The model considered here does not support nested critical sections. Adding support for such critical
sections is a topic for future work.

4Knowing the minimum duration is often useful also; however, for our purposes, the maximum duration is
sufficient. The reason for this will become more apparent in Chapter 3.
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Figure 1.2: Two-job schedule with jobs J1 = J(24, 7, 18) : C(`, 4) ;C(∅, 3) and J2 = J(5, 13, 31) :
C(∅, 9) ; I(11) ;C(`, 1) ;C(∅, 3). Job J2 is given priority over J1. However, due to J2’s suspension, J1
is able to execute and gain exclusive access to the resource ` needed by J2, which results in 3 time
units of blocking when J2’s suspension ends.

A multi-phase job will be represented by the combination of a simple job description, fol-

lowed by a colon and then a semicolon-separated list of phase descriptions, given in increasing

index order. For instance, a multi-phase job J that arrives at time 5, has a relative deadline

of 10 time units, and consists of phases C(∅, 5), I(1), and C(`, 1) (in order from earliest to

latest) would be expressed as J = J(5, 6, 10) : C(∅, 5) ; I(1) ;C(`, 1). (Note that the execution

requirement in the job description is the sum of the phase requirements.)

Figure 1.2 illustrates multi-phase jobs and both complicating behaviors (i.e., critical sec-

tions and suspensions). In this example, job J2 is given priority over J1. J2 executes its first

phase immediately upon arrival. It then initiates its suspension at time 14, which endures for

11 time units. In the meantime, J1 arrives at time 24 and is permitted to immediately begin

its first phase. Because J1 is granted exclusive access to ` at time 24, J2 cannot execute

when its suspension ends at time 25 since its next phase also requires `; J1 is said to block

J2 at this time. Consequently, J1 is allowed to continue executing. (Since this decision goes

against the priority assignment, a priority inversion is said to occur over the time interval
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[25, 28].) Once J1’s critical section (i.e., first phase) ends, J2 preempts J1 and executes until

completion. (To simplify the example, preemptions are assumed to incur no overhead.) After

J2 completes at time 32, J1 then executes until completing at time 35.

To facilitate the statement of results, let J [i] ∈ I denote that J [i] is a suspension phase.

Similarly, let J [i] ∈ C(`) denote that J [i] is an execution phase for which J [i].R = `.

1.2.2 Representing Tasks

One-shot model. The simplest form of temporary task is one that is invoked only once.

Such tasks are called one-shot (and sometimes aperiodic) tasks. Since the job representations

given above are sufficient to describe such a task, we introduce no additional notation.

Periodic model. The periodic task model [47] was proposed for control systems, in which

tasks are periodically invoked to sample data from external devices. A periodic task T is

specified by four parameters:

• T.φ, called T ’s offset , is the arrival time of T ’s first job;

• T.e is the per-job execution requirement of T ;

• T.p, called T ’s period , is the exact separation between consecutive job arrivals;

• T.d is the per-job relative deadline of T .

A periodic task T is said to be synchronous when T.φ = 0, and asynchronous otherwise. We

let T = P(φ, e, p, d) denote a periodic task T with T.φ = φ, T.e = e, T.p = p, and T.d = d.

In addition to the above parameters, a task is often characterized by its utilization, which is

defined to be T.u = T.e
T.p .
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Figure 1.3: Two-task schedule with periodic tasks T1 = P(0, 4, 10, 10) and T2 =
P(5, 10, 19, 18). The first five jobs of T1 and the first three jobs of T2 are shown. All
jobs are independent and never suspend. Task T1’s jobs are given priority over T2’s jobs.

Figure 1.3 shows a schedule consisting of two periodic tasks: a synchronous task T1 and

an asynchronous task T2. Task T1 is given priority over T2 in this schedule. Notice that

each task is invoked (i.e., a job is released) periodically. Specifically, the ith job of a periodic

task T , denoted T (i), is described by T (i) = J(T.φ + (i − 1)T.p, T.e, T.d). For example, the

third job of T1 = P(0, 4, 10, 10) is given by T1(3) = J(0 + (3 − 1) · 10, 4, 10) = J(20, 4, 10).

Sporadic model. The sporadic task model [49] was proposed to provide more flexibility

than that provided by the periodic model. Specifically, the assumption that task invocations

are evenly spaced may be unrealistic for some tasks. For instance, a single logical operation

may be performed in stages by jobs of different tasks. Such jobs must access the data in proper

sequence to ensure correctness of the operation, which gives rise to a producer-consumer

relationship. Since the releases of jobs may need to be delayed until their data becomes

available, the delay between consecutive releases may vary over time. To allow such variation,

the sporadic model relaxes the periodic model by interpreting each task’s period to be the

minimum separation between consecutive invocations rather than the exact separation. We

let T = S(φ, e, p, d) denote a sporadic task T with T.φ = φ, T.e = e, T.p = p, and T.d = d.
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Figure 1.4: Two-task schedule with tasks T1 = S(0, 4, 10, 10) and T2 = P(5, 10, 19, 18). The
first five jobs of T1 and the first three jobs of T2 are shown. All jobs are independent and
never suspend. Task T1’s jobs are given priority over T2’s jobs.

Figure 1.4 is the result of changing task T1 from a periodic to a sporadic task. Notice

that the separation between the second and third job arrivals of T1 exceeds the assumed

minimum. This is also true of the separation between the third and fourth job arrivals.

Multi-phase tasks. Since all jobs of a task share a common source code, they must be

identical. Hence, a multi-phase description that applies to one job must apply to all. To rep-

resent multi-phase tasks, the notation given previously for multi-phase jobs will be used with

the following modification: a task description replaces the simple job description. For exam-

ple, a task T = P(5, 6, 10, 10) in which each job consists of phases C(∅, 5), I(1), and C(`, 1)

(in order of occurrence) would be expressed as T = P(5, 6, 10, 10) : C(∅, 5) ; I(1) ;C(`, 1).

Furthermore, since each job is identical, we let T [i] and T.k denote the ith phase and the

phase count, respectively, of any job of T .

1.2.3 Selecting Parameters

A key problem when analyzing the behavior of real-time systems is the selection of parameters

(e.g., deadlines and execution requirements) that accurately describe the system. Techniques

for achieving this goal are often complex and vary depending upon what assumptions are
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appropriate. A full discussion of these techniques is outside the scope of this dissertation.

However, we give a brief overview of how each type of parameter is selected below.

Execution requirements. Two primary factors complicate the determination of execution

requirements. First, execution times are affected by virtually every aspect of a system, includ-

ing the structure of the source code, the processor architecture, the processor clock speed, the

memory architecture, the operating-system structure, and how often tasks are preempted and

migrated at runtime. Accurately determining the impact of each factor on a task’s execution

time is an incredibly complex problem. Second, the accuracy of tools designed to analyze

source code is fundamentally limited. This follows from the fact that the halting problem

has been shown to be unsolvable [68]. Informally, the goal of this problem is to produce an

algorithm capable of determining whether an arbitrary algorithm, given as input, will always

terminate. Since analyzing the execution time of a code segment (called timing analysis) also

involves solving the halting problem, clearly no general solution exists.

Despite these complexities, the importance of timing analysis has motivated a considerable

body of work. Research has shown that reasonably tight bounds can be obtained by restricting

the form of the source code. For instance, forbidding the use of complex looping structures

facilitates accurate analysis. Unfortunately, modern processor designs have made timing

analysis more difficult by using complex techniques like caching and instruction pipelining.

Under pipelining, multiple instructions are processed simultaneously by different parts of

the processor. On average, pipelining increases instruction throughput and hardware utiliza-

tion. Unfortunately, it also reduces predictability and makes context switching more complex.

Specifically, partially executed instructions in the pipeline must be nullified and the pipeline

must be flushed before the new task can begin executing. In addition, the instruction pointer
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of the preempted task may need to be set back so that nullified instructions are re-issued when

the task resumes execution. A more detailed explanation of pipelining and the complications

it introduces can be found in [28]. Examples of how such complexities are factored into timing

analysis can be found in [27, 36, 41, 43].

Deadlines and periods. Deadlines and periods are typically assigned values based upon

the purpose of the task. These values are commonly influenced by external factors, such as

the sampling rates of external sensors. For instance, consider a sensor with a sampling rate of

30 Hz (i.e., 30 samples are produced per second) and a task that processes those samples. To

avoid losing samples, the processing rate must equal or exceed the sampling rate. Hence, if

each job processes 6 samples, then the task period should be at most 200 milliseconds. With

exactly this period, the processing rate is 6 samples
0.2 seconds = 30 Hz.

When sensors that support multiple sampling rates are used, it may be reasonable to

consider reducing the sampling rates of sensors so that task periods and deadlines can be

increased. This action will likely produce a decline in the quality of results, but can potentially

reduce overhead as well. A simple example of such a sensor is a microphone that supports

audio recording at variable rates. Audio clips recorded at less than ideal rates may still

provide acceptable quality.

Suspensions. Techniques for bounding the duration of suspensions vary depending on

the cause. In an earlier example, we considered a task that suspends while waiting for a

write operation on a disk drive to complete. Such delays are called I/O suspensions. When

accessing disks, delays are a function of the number of bytes being accessed and the time

required to move the mechanical parts of the drive. Figure 1.2, discussed earlier, illustrates

the second common cause of suspensions: resource contention. Such suspensions are called
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blocking suspensions. The duration of a blocking suspension is determined by the number of

competing requests for the resource and the order in which these requests are granted.

1.3 Basics of Real-time Scheduling

When the number of tasks does not exceed the processor count, each task can simply be

assigned a dedicated processor. However, when this is not the case, at least one processor

must be shared among multiple tasks. In this section, we consider the design of a scheduler ,

which is the mechanism within an operating system that controls how processors are shared

among tasks. The set of rules that govern this behavior is called the scheduling policy of the

operating system. The goal of this section is to introduce concepts and notation that are

common to all scheduling problems of relevance to this dissertation. In the next section, we

discuss issues that are specific to multiprocessor scheduling.

1.3.1 Notation

We let M denote the processor count. Also, we use |S| to denote the number of elements

in the set S. We let τ denote the set of persistent tasks to be scheduled on the processors.

(Temporary tasks are typically handled by using persistent server tasks, which reside in τ .)

When considering periodic or sporadic tasks, the cumulative utilization of τ is given by

τ.u =
∑

T∈τ
T.u.

1.3.2 Task Prioritization

Scheduling consists of assigning priorities to all jobs that are eligible for execution and then

selecting those with the highest priorities. Efficient prioritization is achieved by assigning
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an initial priority to each task and then updating its priority as needed on-line. To avoid

re-sorting tasks unnecessarily, tasks are typically stored in a data structure that maintains

either a partial or total ordering by priority (e.g., a list or heap).

The choice of priority rules represents a trade-off between the effectiveness of scheduling

and runtime overhead. On-line priority changes incur overhead. However, restricting the

number of changes can prevent successful scheduling of some task sets. To characterize this

trade-off, scheduling policies can be divided into three classes [16], which are described below.

Static-priority scheduling. Under static-priority scheduling, priorities never change

once they are assigned. Hence, each job of a task inherits its initial priority. Static-priority

schedulers are inherently memoryless in that the prioritization of tasks is independent of

previous scheduling decisions. Rate-monotonic (RM) scheduling [47] is an example of such

a policy for periodic and sporadic tasks. Under the RM prioritization, tasks with shorter

periods are given higher priority. Figure 1.5 shows a sample schedule produced by applying

the RM policy to a set of four tasks on a uniprocessor.

Task-level dynamic-priority scheduling. Under task-level dynamic-priority schedul-

ing, each job can be assigned a unique fixed priority, i.e., job priorities cannot change once

assigned. (This class could also accurately be called job-level static-priority scheduling.)

First-in, first-out (FIFO) scheduling is probably the simplest and most well-known task-level

dynamic-priority policy. Under this policy, jobs are executed in arrival order. Earliest-

deadline-first (EDF) scheduling5 [47] is a task-level dynamic-priority policy often considered

when scheduling periodic and sporadic tasks. Under the EDF prioritization, jobs with earlier

absolute deadlines are given higher priority. Figure 1.6 shows the sample schedule produced

5Referred to as deadline-driven scheduling in [47].
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Figure 1.5: Four-task schedule with tasks T1 = P(8, 3, 13, 13), T2 = P(2, 5, 18, 18), T3 =
P(0, 2, 10, 10) and T4 = P(10, 5, 20, 20). Jobs are prioritized according to the RM policy.
The priority order (from highest to lowest) is as follows: T3, T1, T2, T4.

by applying the EDF policy to the same task set considered in Figure 1.5. These schedules

differ only in the execution order of T2(3), T3(5), and T4(2).

Job-level dynamic-priority scheduling. Under job-level dynamic-priority scheduling,

the frequency of priority changes is unrestricted. Least-laxity-first (LLF) scheduling6 [42, 49]

is an example of a job-level dynamic-priority policy for periodic and sporadic tasks. The

LLF prioritization is based on the concept of laxity , which is defined to be maximum amount

of time a job’s execution can be delayed without causing it to miss its deadline. Letting t

denote the current time and ε(t) denote the remaining execution requirement of job J at

time t, laxity can be formerly defined as (J.a + J.d) − t − ε(t). Under LLF, jobs with lower

laxities are given higher priority. Applying the LLF policy to the task set considered in

6Also called minimum-laxity-first and least-slack-time scheduling.
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Figure 1.6: Four-task schedule with tasks T1 = P(8, 3, 13, 13), T2 = P(2, 5, 18, 18), T3 =
P(0, 2, 10, 10) and T4 = P(10, 5, 20, 20). Jobs are prioritized according to the EDF policy.

previous examples produces a schedule identical to the EDF schedule shown in Figure 1.6.

However, in general, policies like LLF can be problematic due to excessive context switching.

Indeed, under a continuous time model, the LLF policy may require context switches to occur

arbitrarily close together.

Benefits. We illustrate the benefit of this classification scheme by a simple example.

In [47], Liu and Layland considered the problem of scheduling periodic tasks on a uniprocessor

using the RM and EDF policies when each task’s relative deadline equals its period. They

proved that the RM policy was optimal among static-priority policies, i.e., no other static-

priority policy could guarantee such periodic constraints if the RM policy could not. Similarly,

they proved that the EDF policy was optimal among all policies. Two implications follow

from these results. First, job-level dynamic-priority scheduling provides no benefit in such

situations. Since its use would needlessly incur additional overhead, attention should be
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restricted to static-priority and task-level dynamic-priority scheduling in this context. Second,

the relative power of these two classes can be determined by studying the RM and EDF

policies. For instance, Liu and Layland showed that any set of periodic tasks satisfying

τ.u ≤ 1 (1.1)

can be successfully scheduled by EDF. Similarly, any set satisfying

τ.u ≤ |τ | · (21/|τ | − 1) (1.2)

can be successfully scheduled by RM. Since the utilization bound in (1.2) approaches ln 2 (≈

0.69) from above as |τ | increases, these results suggest that the use of static-priority policies

sacrifices up to 30% of the processing capacity of a uniprocessor. Such analytical loss (i.e.,

loss resulting from techniques that require the use of weaker bounds during analysis) contrasts

the loss caused by the increased runtime overhead suffered under dynamic-priority policies.

1.3.3 Scheduling Model

The second aspect of a scheduling policy is deciding when to switch between tasks. We refer

to this aspect as the scheduling model . All previous examples have assumed a fully preemptive

model, i.e., a preemption occurs whenever a job with higher priority than an executing job

becomes ready. In practice, delaying preemptions (and hence permitting priority inversions)

can improve cache performance and can even reduce resource-sharing overhead. For instance,

preempting a task that is executing a critical section lengthens the amount of time that the

shared resource is unavailable to other tasks. By avoiding such preemptions, the maximum
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waiting time that a task experiences before gaining access to a resource can be reduced. In

this subsection, we discuss the two basic classes of scheduling models.

Event-driven scheduling. Under an event-driven model, a preemption may occur in

response to any event that changes task states (e.g., job arrivals, job completions, suspensions,

priority changes, etc.). Fully preemptive scheduling is a common example. Under a fully

preemptive model, a check is performed each time a state change occurs to determine whether

a preemption is necessary. If so, the preemption occurs immediately. The RM, EDF, and

LLF policies are typically considered under this model (e.g., [47]). Whenever the model is

not explicitly given in this dissertation, the fully preemptive model should be assumed.

Nonpreemptive scheduling is another common example of event-driven scheduling. Under

nonpreemptive scheduling, a job cannot be preempted once it has been scheduled. Hence,

a job will continue to execute until it either suspends or completes. Figure 1.7 shows the

previous EDF-scheduling example repeated under a nonpreemptive model. Notice that no

preemptions occur at any point within the schedule.

The primary advantages of event-driven scheduling are that it is both efficient and work-

conserving . A scheduler is said to be work-conserving if no processor idles while an unsched-

uled ready task exists. Efficiency follows from the fact that the scheduler is invoked only when

necessary. However, this property is also a disadvantage: the timing of scheduler invocations

depends on the runtime behavior of tasks and hence may be difficult to predict. Though

bounds on the total number of preemptions occurring within in interval can often be derived,

it may be difficult to predict which tasks will be preempted and how often.

Time-driven scheduling. Under a time-driven model, preemptions occur only at pre-

determined times that are independent of runtime behavior. Hence, time-driven scheduling
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Figure 1.7: Four-task schedule with tasks T1 = P(8, 3, 13, 13), T2 = P(2, 5, 18, 18), T3 =
P(0, 2, 10, 10) and T4 = P(10, 5, 20, 20). Jobs are prioritized according to the EDF policy
under a nonpreemptive model.

is based on a polling design, i.e., the system periodically checks the set of ready tasks to

determine whether a preemption should occur.

The most common example of (on-line) time-driven scheduling is quantum-based schedul-

ing. Under this approach, processor time is allocated in fixed-size chunks, called quanta.

We denote the quantum size by Q. If a task suspends or completes before its quantum is

exhausted, the processor idles for the remainder of the time, i.e., unused processor time is not

re-allocated.7 This approach has the effect of dividing time into a sequence of fixed-length

slots, one per quantum. In each slot, each processor can be assigned to at most one task.

Figure 1.8 shows the result of applying a quantum-based model in which Q = 3 to the pre-

vious example. Notice that a second timeline has been provided to explicitly show how the

7General-purpose operating systems often employ a variant of quantum-based scheduling that does re-
allocate unused processor time. Such a model is a hybrid between event- and time-driven scheduling since it
contains elements of both.



21

KEY

Arrival

Idling

Executing

Deadline

T2

0 10 20 30 40 50TIME

SLOTS

T1

T4

T3

0 10 155

Figure 1.8: Four-task schedule with tasks T1 = P(8, 3, 13, 13), T2 = P(2, 5, 18, 18), T3 =
P(0, 2, 10, 10) and T4 = P(10, 5, 20, 20). Jobs are prioritized according to the EDF policy
under a quantum-based model in which Q = 3.

use of a quantum divides time into slots. Also notice that context switches occur only on slot

boundaries, resulting in some processor idling.

The advantage of time-driven scheduling is the predictability of context switches, which

facilitates analysis like that needed by real-time systems. The primary disadvantages are that

processor time can be wasted by idling processors within quanta and by polling the state of

the task set unnecessarily. Both of these problems are illustrated by Figure 1.8. Nine units of

processor time are wasted due to idling in this example. In addition, the scheduler invocations

occurring at times 6, 18, 30, and 42 are unnecessary.8

8Although job arrivals do occur at time 30, the new jobs have lower priority than the executing job. Hence,
a scheduler invocation was unnecessary.
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1.3.4 Validation

As explained earlier, the goal of real-time analysis is to show that all timing constraints will

be met at runtime. We refer to the process of making this determination as validation. The

following terminology is needed to discuss validation precisely:

• A task set is schedulable under a scheduling policy σ if the use of that policy results in

a schedule in which all timing constraints are met.

• A task set is feasible under a set of scheduling policies Σ if there exists a policy σ ∈ Σ

such that the task set is schedulable under σ.

• A scheduling policy σ is optimal for the set of policies Σ if σ ∈ Σ and any task set that

is feasible under Σ is also schedulable under σ.

When Σ is not given in this dissertation, the set of all possible policies should be assumed.

Constraint strictness. Tasks can be classified according to the strictness of their timing

constraints. Constraints that must be satisfied are referred to as hard constraints; tasks with

such constraints are said to be hard tasks. A simple example of a hard task is the sample-

processing task discussed in the example on page 13. If deadlines are missed, then samples

can be lost, which may result in incorrect operation.

All weaker constraints are called soft constraints; tasks with these constraints are called

soft tasks. This class actually represents a wide variety of constraints. One simple form of soft

constraint that we consider throughout this dissertation is a tardiness bound. This bound

specifies the maximum amount by which a task is permitted to miss its deadlines.

To motivate interest in soft constraints, again consider the sample-processing task consid-

ered on page 13. If sample processing times vary significantly, it may be difficult to ensure
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that all samples in a batch are processed before the next batch arrives. This guarantee can

be provided at great expense by overprovisioning the processing task based on the worst-

case processing time of any batch. An alternative solution is to split sample processing into

two steps, each of which is handled by a different task. First, a hard task is used to obtain

the samples from the external device. However, instead of processing them, this task simply

stores them in a memory buffer for the second task. The second task then performs the actual

processing later. As before, the period of the processing task must be selected so that the

average processing rate is at least the sampling rate. However, the instantaneous rate can be

permitted to fluctuate at the expense of additional buffering. Hence, it is reasonable to treat

the second task as a soft task.

Validation tests. Timing guarantees are provided through schedulability and feasibility

tests. As the names suggest, these tests determine whether a given task set is schedulable or

feasible, respectively, under the conditions assumed by the test. Schedulability and feasibility

tests fall into two basic categories: exact and sufficient. Under both categories, any system

that is accepted by the test is guaranteed to meet its timing constraints. However, the

categories differ in the meaning of a rejection. Under exact tests, rejection implies that a

timing constraint can be violated. Under sufficient tests, rejection implies only that a timing

constraint may be violated, i.e., the test could not rule out the possibility of a violation.

Hence, a trivial test that is always sufficient is one that always rejects.

The tests given in (1.1) and (1.2) are examples of exact and sufficient schedulability

tests, respectively. Recall that these tests consider the use of the EDF and RM policies,

respectively, under a fully preemptive model. By definition, schedulability tests for a given

policy are sufficient feasibility tests for any class to which that policy belongs. If the policy
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is optimal for a class and its schedulability test is exact, then that test is an exact feasibility

test for that class. For instance, (1.1) is an exact feasibility test for the class of task-level

dynamic-priority policies.

1.4 Multiprocessor Real-time Scheduling

The previous sections summarized terminology and concepts common to processor scheduling.

In this section, we focus on multiprocessor scheduling. After discussing the basic approaches

(partitioning and global scheduling), we introduce Pfair scheduling, which is the focus of this

dissertation. The next chapter discusses Pfair scheduling in detail.

1.4.1 Partitioning

Under partitioning , the task set is divided into up to M subsets, each of which is statically

assigned to a unique processor. Each task can execute only on the processor to which it is

assigned, i.e., migration is forbidden. As a result, processors can be scheduled independently

using uniprocessor policies. Partitioning effectively reduces the multiprocessor scheduling

problem to multiple uniprocessor scheduling problems.

Advantages. The primary advantages of partitioning are improved runtime performance

and lower runtime overhead. These benefits stem from several sources. First, uniprocessor

techniques are often significantly simpler and more efficient than their multiprocessor coun-

terparts. Hence, their use results in less runtime overhead. Second, partitioning implicitly

respects processor affinity by preventing migration. Informally, processor affinity refers to

the property that tasks tend to execute quicker when not migrated. This improvement is

typically the result of better cache performance.
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Figure 1.9: Three-task, two-processor schedule in which all tasks are described by P(0, 2, 3, 3).
Migration is required to meet all constraints.

Disadvantages. Partitioning has two primary flaws. The first flaw is its inherent subop-

timalilty when scheduling periodic tasks. A well-known example is a two-processor system

consisting of the three P(0, 2, 3, 3) tasks. Since each task’s utilization is 2
3 , no two tasks can be

bound to the same processor without overutilizing it, i.e., 2
3 + 2

3 > 1. Hence, the partitioning

approach cannot schedule this task set on 2 processors. However, as shown in Figure 1.9, all

timing constraints can be met on 2 processors when migration is allowed. Therefore, this task

system is feasible. The second flaw is that assignment of tasks to processors is a bin-packing

problem, which is NP-hard in the strong sense [25]. Hence, assignment must be done either

off-line or using a suboptimal heuristic.

1.4.2 Global Scheduling

Under global scheduling , all tasks are stored in a single set and all processors are scheduled by

the same scheduler. Hence, the highest-priority task is always selected to execute whenever

the scheduler is invoked, regardless of which processor is being scheduled.
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Advantages. The primary advantage of global scheduling is that optimal scheduling is

possible since migration is permitted. In addition, global management of data structures can

facilitate recovery following a processor fault. The reason for this is that global scheduling

requires the ability to move data between processors quickly and efficiently. The mechanism

that provides this capability may also permit data to be retrieved from a faulty processor’s

local memory. Of course, fault recovery still involves many well-studied and difficult chal-

lenges, including reliable fault detection and the need for election protocols.9 Further study

is needed to determine what benefits global scheduling can provide in this area.

Disadvantages. Unfortunately, producing a conventional global scheduler suitable for

real-time systems has proved to be a daunting task. Dhall and Liu demonstrated that fully

preemptive global scheduling of periodic tasks using either EDF or RM priorities can result

in deadline misses whenever τ.u > 1 [23]. Furthermore, optimal scheduling requires job-level

dynamic priorities. Recall that such priorities produce the most runtime overhead of the three

classes discussed earlier. The need for these priorities is implied by the example considered

in Figure 1.9. At time 0, T2(1) has priority over T3(1). However, at time 1, T3(1) must

preempt T2(1), which implies a change in at least one of their priorities. Finally, under global

scheduling, task information must be stored in shared data structures, which must be updated

each time a task’s state changes. Hence, this information has the potential to become a point

of heavy contention in the operating system. In addition, accesses to this information must

be synchronized to avoid corruption and hence may incur significant overhead.

9When the faulty processor is responsible for coordinating the operation of other processors, this duty must
be re-assigned to one of the remaining processors. An election protocol identifies the remaining processors and
determines which should assume these responsibilities.
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1.4.3 Pfair Scheduling

Proportionate-fair (or Pfair) scheduling [11] is a global-scheduling approach proposed as a

means for optimally scheduling periodic tasks on a multiprocessor when each task’s deadline

equals its period. Pfair scheduling is unconventional in that it focuses on ensuring an approx-

imately steady rate of execution (relative to Q) for each task. Consequently, it is said to be

a rate-based approach. In addition, Pfair scheduling uses a quantum-based model.

Under Pfair scheduling, each task T is assigned a weight T.w in the range (0, 1] that

represents the fraction of a single processor entitled to that task. Quanta are then allocated

to these tasks in proportion to their weights so that each task receives approximately its fair

share (i.e., a fraction T.w of a single processor’s time) at all times. Due to this notion of

fairness, Pfair scheduling is said to be a fair policy.

When Q is sufficiently small, periodic tasks can be scheduled using a Pfair policy by

letting T.w = T.u for each task. Figure 1.10 shows the result of applying a Pfair policy to the

previous example when Q = 1. (We explain how Pfair scheduling works in greater detail in

the next chapter.) Notice that the Pfair policy distributes each task’s allocation evenly over

time, resulting in approximately uniform execution rates.

Although Pfair scheduling has been proved optimal [11], prior work has been limited to

the consideration of independent tasks. In addition, some aspects of Pfair scheduling are

unconventional. First, this approach uses the quantum-based model described earlier on

page 20. As illustrated in Figure 1.8, this model has a disadvantage in that suspensions

and completions can lead to processor idling. In Figure 1.10, idling is avoided by using very

short slots. Unfortunately, scheduling and context-switching overheads impose a practical

limit on how short slots can be. Second, executing tasks at uniform rates can produce a high
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Figure 1.10: Four-task schedule with tasks T1 = P(8, 3, 13, 13), T2 = P(2, 5, 18, 18), T3 =
P(0, 2, 10, 10) and T4 = P(10, 5, 20, 20). Tasks are prioritized by a Pfair policy using Q = 1.

frequency of context switches. For instance, compare the number of switches in Figure 1.10 to

that in Figure 1.6. Third, migrations are unrestricted and may occur frequently under Pfair

scheduling. Recall that optimal scheduling requires migration, as evidenced by Figure 1.9.

However, since migration induces additional overhead, it is still desirable to avoid it whenever

possible. The above problems combined have led to questions regarding the practicality of

Pfair scheduling. Our work addresses many of these concerns, as explained below.

1.5 Research Goals

The goal of this dissertation is to enable the use of Pfair scheduling in real systems by

developing techniques for supporting task synchronization and for reducing various overheads,

such as context-switching and migration overheads. Our interest in Pfair scheduling from

several observations, the most compelling of which are given below.
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First, Pfair scheduling is a relatively new approach and, unlike partitioning, has the

potential to improve substantially in the future. Many problems currently posed by Pfair

scheduling are likely not inherent to that approach, but rather are side effects of the lack

of development. Indeed, the unconventional aspects of Pfair scheduling (explained above)

suggest that unconventional, but effective, solutions to well-understood problems may be

possible. Hence, the study of this approach has the potential to not only produce an efficient

real-time multiprocessor design, but also to provide new insights into the fundamental trade-

offs present in all multiprocessor operating systems. On the other hand, partitioning has been

well-studied, which suggests that most (if not all) of the known limitations are fundamental.

It is unlikely that further attention will yield substantial improvements.

Second, growing interest in web-based and multimedia applications is increasing the de-

mand for rate-based scheduling and QoS guarantees. Recall, for instance, the web server

example discussed at the start of this chapter. Research into providing such guarantees under

Pfair scheduling has already produced promising results [2, 61, 62, 63], and suggests that

further attention is warranted.

Finally, although research into other global-scheduling approaches has produced interest-

ing results, none of these alternatives approach optimality. Much like EDF scheduling on

a uniprocessor, Pfair scheduling currently provides much better analytical bounds than ri-

val approaches, but at the cost of more runtime overhead. However, it is presently unclear

whether this overhead negates the benefits of Pfair scheduling. Until these overheads can

be quantified for Pfair scheduling and its alternatives, there is no reliable way to determine

which approach will produce the best results in practice.

Thesis statement. The thesis of this dissertation is:
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tasks can be efficiently synchronized in Pfair-scheduled systems and overhead due

to common system events, such as context switches and migrations, can be reduced.

Although proving the above thesis will not definitively prove the practicality of Pfair schedul-

ing, techniques that achieve the goals given in the statement are essential to demonstrating

that novel solutions do exist to many of the problems posed by this approach.

1.6 Contributions

The specific contributions of this dissertation are summarized in the subsections that follow.

1.6.1 Hierarchal Scheduling

Our first contribution is in the area of hierarchal scheduling. Under this approach, a collection

of tasks are grouped together and scheduled as a single entity. When the entity is scheduled,

one of the tasks in the collection is selected to execute according to an internal policy.

Hierarchal scheduling provides two primary benefits under Pfair scheduling. First, by

using an event-driven policy within the group (such as fully preemptive EDF), a processor

assigned to the group will idle only when no tasks in the group are ready. Second, assigning

tasks to the same group has the effect of serializing their execution. By preventing parallel

execution, contention for shared resources can be reduced.

The key problem when using hierarchal scheduling is selecting a weight for the group

such that all timing constraints of group members will be met. We solve this problem by

presenting a flexible analytical framework for deriving weight restrictions based on the task

requirements and the internal scheduling policy. We also present an efficient algorithm for

computing a weight that satisfies these restrictions.
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1.6.2 Task Synchronization

Our second major contribution is support for resource sharing under Pfair scheduling. We

consider both lock-free and lock-based synchronization. Recall that a disadvantage of Pfair’s

quantum-based model is that suspensions can lead to processor idling. For this reason, lock-

free techniques are better-suited to Pfair systems than lock-based synchronization, which in-

troduces the potential for blocking suspensions. Lock-free algorithms optimistically attempt

an operation; if interference occurs, then the operation is simply retried until successful. Un-

fortunately, efficient lock-free algorithms exist only for simple software-implemented objects,

like buffers and queues. Hence, lock-based synchronization is still needed to synchronize

access to hardware devices and complex objects.

For lock-free synchronization, we show how quantum-based scheduling enables tight bound-

ing of the number of retries required by a lock-free operation. We also discuss techniques for

reducing the worst-case execution times of lock-free algorithms, including the use of hierarchal

scheduling to reduce the number of retries.

For lock-based synchronization, we explore several alternatives. First, we consider the

use of inheritance to speed critical-section executions. Under this approach, a task can tem-

porarily adopt the characteristics of other tasks that it blocks, such as priorities. Though

inheritance is very effective under fully preemptive uniprocessor scheduling [54], we note sev-

eral disadvantages to using it under Pfair scheduling. Second, we present an approach based

on the observation that short critical sections will never be preempted if started sufficiently

early within a quantum. Such a guarantee is quite powerful because preemption of a crit-

ical section can increase the length of time that a resource is unavailable by several orders

of magnitude. Finally, to support longer critical sections, we present a simple server-based
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approach, under which a lock server executes critical sections remotely on behalf of the re-

questing task. We show how to account for resource-sharing contention under each of these

last two approaches when determining the schedulability of a task set.

1.6.3 Staggered Scheduling

Our third major contribution is to consider the compatibility of Pfair scheduling with a sym-

metric multiprocessor (SMP) architecture. Recall from Figure 1.10 that context switches and

migrations an occur frequently under Pfair scheduling. To keep these overheads reasonable,

tightly coupled processing is needed, i.e., it must be possible to move data between processors

and between a processor and memory quickly. SMPs provide this by using a central shared

memory, local processor caches, and a high-speed shared bus.

Unfortunately, we present evidence that Pfair scheduling actually promotes bus contention

on SMPs and that this contention can greatly degrade the performance of the tasks. Specifi-

cally, tasks may need to reload data into local caches at the start of each quanta, resulting in

a period of increased bus traffic. Under Pfair scheduling, quanta begin simultaneously on all

processors. Hence, these bursts of traffic are forced to also occur simultaneously, resulting in

heavy contention for the bus at the start of each quantum.

For such bus-based architectures, we propose an alternate staggered model for Pfair

scheduling. In this model, the start of the first slot on each processor is slightly delayed

relative to the starting point on the preceding processor. In addition to reducing bus con-

tention, this model allows scheduler overhead to be distributed across processors without

requiring the use of a parallel scheduling algorithm. Hence, scheduling overhead can also be

reduced. To enable the use of this model, we present an efficient scheduling algorithm for it

and discuss how existing techniques and results can be adapted for use under staggering.
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1.7 Organization

The rest of the dissertation is organized as follows. Chapter 2 introduces notation and sum-

marizes prior work on Pfair scheduling. Chapter 3 presents an overview of a Pfair system;

simple results and results that follow easily from prior work are explained in this chapter.

In Chapter 4, we present our work on supporting hierarchal scheduling under a global Pfair

scheduler. In Chapters 5 and 6, lock-free and lock-based synchronization, respectively, are dis-

cussed. Chapter 7 then considers deploying Pfair scheduling on a symmetric multiprocessor.

Chapter 8 concludes with a discussion of remaining challenges.



CHAPTER 2

Pfair Scheduling

In this chapter, Pfair scheduling and its variants are formally defined, and prior work is

summarized. This chapter serves two purposes. First, it introduces basic capabilities of Pfair

scheduling that will be act as a foundation for our work. Second, the summary of prior work

is intended to motivate interest in this approach by demonstrating its depth.

We begin by introducing the Pfairness timing constraint in Section 2.1. Scheduling policies

are then discussed in Section 2.2. Additional task models not discussed in these two sections

are discussed in Section 2.3, followed by a brief summary of other related work in Section 2.4.

2.1 Basics of Pfair Scheduling

This section explains the concepts underlying Pfair scheduling.

2.1.1 The Pfairness Constraint

Under Pfair scheduling, each task T is characterized by a weight T.w in the range (0, 1].

Conceptually, T.w is the fraction of a single processor to which T is entitled.1 T is said to be

light if T.w < 1
2 , and heavy otherwise. Under the task model proposed by Baruah, Cohen,

1This approach assumes an identical multiprocessor, i.e., processors share a common architecture and speed.



35

Plaxton, and Varvel [11], tasks are persistent, become ready at time 0, and are not allowed

to suspend. We let T = PF(w) to denote a Pfair task with T.w = w.

Pfair scheduling uses a quantum-based model. As in the previous chapter, we let Q denote

the quantum size. (In an ideal system like that considered in [11], Q = 1.) To simplify the

presentation, the slot length will be used as the basic time unit for all time parameters.

Formally, the interval of time in which the ith quanta is allocated is called slot i − 1. Since

scheduling begins simultaneously on all processors, slot i spans the time interval [i, i+1) across

processors. For instance, in Figure 2.1(b), task B is scheduled in slot 3, which corresponds

to the time interval [3, 4). (The rest of this figure is considered in detail below.) In each slot,

each processor can be assigned to at most one task, and each task can be assigned at most

one processor. Task migration is allowed. The sequence of scheduling decisions made in these

slots defines a schedule.

In a fluid schedule, each task T receives exactly its designated share of a processor (T.w)

at all times. Under ideal circumstances (i.e., when Q = 1), each processor provides t2 − t1

units of processor time over the interval [t1, t2). When per-slot overhead exists, only Q (< 1)

units of processor time are made available to tasks in each slot. Ideally, this processor time

would be provided at a uniform rate throughout each slot. Hence, each processor allocates

(t2 − t1) ·Q units of processor time to tasks over the interval [t1, t2) in an ideal schedule, and

T ’s share of this time is given by

fluid(T, t1, t2) = T.w · (t2 − t1) · Q. (2.1)

Pfair scheduling tracks the allocation of processor time in a fluid schedule; deviation is formally
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expressed as lag(T, t), which is defined below.

lag(T, t) = fluid(T, 0, t) − received(T, 0, t) (2.2)

In the above equation, received(T, t1, t2) denotes the amount of processor time received by

T over [t1, t2). Using this notion of lag, the Pfairness timing constraint for a task T can be

formally defined as shown below.

for all t, |lag(T, t) | < Q (2.3)

Informally, T ’s allocation must always be within one quantum of its fluid allocation. When

tasks are present at time 0 and always remain ready (as assumed in [11]), the above constraint

yields the property given below.

Pfairness (Pf): T receives either
⌊

fluid(T,0,t)
Q

⌋

or
⌈

fluid(T,0,t)
Q

⌉

quanta over [0, t).

Figure 2.1(a) shows fluid and Pfair uniprocessor schedules for a task set containing three

Pfair tasks: A = PF
(

1
4

)

, B = PF
(

1
4

)

, and C = PF
(

1
2

)

. In Figure 2.1(b), changes in each

task’s lag are shown across the top of the schedule.

Relationship to the periodic constraint. As explained earlier, Pfair scheduling was

initially proposed as a means to optimally schedule synchronous periodic task systems on a

multiprocessor [11]. Baruah et al. observed the following property:2

Periodicity (P): When a and b are integers satisfying b ≥ a > 0, the timing

constraints of a periodic task U = P(0, aQ, b, b) can be satisfied by executing it

2Property P slightly generalizes the property discussed in [11], which only considered the Q = 1 case.
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Figure 2.1: Sample schedules for τ = {A,B,C} where A = PF
(

1
4

)

, B = PF
(

1
4

)

, and

C = PF
(

1
2

)

. (a) Schedule produced by a fluid scheduler. (b) Schedule produced by a Pfair

lag-based scheduler.

within the processor time allocated to a Pfair task T = PF
(

a
b

)

.

To prove Property P, assume T ’s timing constraints are satisfied. By (2.1), fluid(T, 0, nb) =

(a
b

)

· (nb) · Q = naQ for all non-negative integers n. Since all such points fall on slot bound-

aries, Q | received(T, 0, nb) (i.e., received(T, 0, nb) is a multiple of Q) follows trivially since

processor time is allocated in units of Q. Hence, Q | lag(T, nb) holds also by (2.2). By (2.3),

Q | lag(T, nb) ⇒ lag(T, nb) = 0, and hence, received(T, 0, nb) = fluid(T, 0, nb) = naQ. There-

fore, kaQ− (k− 1)aQ = aQ units of processor time are allocated to T over the [(k − 1)b, kb),

which is sufficient to service U ’s kth job. Property P follows.
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2.1.2 Feasibility

Baruah et al. [11] showed that a schedule satisfying (2.3) exists on M processors for any set

τ of Pfair tasks if and only if the following condition holds.

∑

T∈τ

T.w ≤ M (2.4)

2.1.3 Using Deadlines to Support Rates

Although the Pfairness constraint is rate-based rather than deadline-based, the use of a

quantum-based model permits an equivalent deadline-based view. Specifically, tasks can be

decomposed into quantum-length subtasks, each of which is constrained by (2.3) to execute

within a specific interval of slots, called the subtask’s window . Although this view of Pfair

scheduling was suggested by the analysis presented in [11, 12], it was not formalized until [5].

Subtasks and windows. We let Ti denote the ith subtask of task T . Also, we let ω(Ti)

denote the window of subtask Ti. Figure 2.2(a) shows the window within which each subtask

of the task PF
(

3
10

)

must execute. For example, ω(T2) = [3, 7) in Figure 2.2(a).

ω(Ti) extends from Ti’s pseudo-release, denoted r(Ti), to its pseudo-deadline, denoted

d(Ti). (The “pseudo” prefix avoids confusion with job releases and deadlines. This prefix will

be omitted when the proper interpretation is clearly implied.) In Figure 2.2(a), r(T2) = 3

and d(T2) = 7. These values can be computed using the following equations [5].

r(Ti) =
⌊

i−1
T.w

⌋

(2.5)

d(Ti) =
⌈

i
T.w

⌉

(2.6)
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Figure 2.2: The windowing for a task with weight 3
10 is shown under the Pfair task model

and its variants. (a) Normal windowing under the Pfair task model. (b) Early releasing has
been used so that each grouping of three subtasks becomes eligible simultaneously. (In reality,
each subtask will not be eligible until its predecessor is scheduled.) (c) Windows appear as
in inset (b) except that T2’s release is now preceded by an intra-sporadic delay of six slots.
(T5 and T6 are not shown.) (d) Windows appear as in inset (c) except that T3’s window is
now absent.

A schedule satisfies Pfairness if and only if each subtask Ti executes in the interval [r(Ti) , d(Ti)).

It is straightforward to show that |ω(Ti) | equals either
⌈

1
T.w

⌉

or
⌈

1
T.w

⌉

+ 1 (see [5]).

To distinguish between the cases in which subtask windows overlap and do not overlap,

a successor bit (or b-bit) b(Ti) is associated with each subtask Ti, and is defined by b(Ti) =

d(Ti) − r(Ti+1) [5]. Informally, b(Ti) is the number of slots by which Ti overlaps with Ti+1.

Rational weights and cycles. Anderson and Srinivasan noted that the use of a rational

weight results in a repeating, symmetric series of windows [5]. We refer to each occurrence of

a series as a cycle. For instance, in Figure 2.2(a), each cycle consists of three windows that

span ten slots. Two cycles are shown: the first spans [0, 10) while the second spans [10, 20).
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Cycles of a task T are defined by two parameters: the per-cycle execution requirement

E(T ) and the cycle period P(T ). Given that T.w = a
b , where a and b are integers satisfying

b ≥ a > 0, E(T ) and P(T ) are defined as follows [5]:

E(T ) =
a

gcd (a, b)
P(T ) =

b

gcd (a, b)

For instance, in Figure 2.2(a), E(T ) = 3
gcd(3,10) = 3 and P(T ) = 10

gcd(3,10) = 10.

Interest in E(T ) and P(T ) stems from the fact that these values define the placement of

disjoint windows. More formally, these parameters satisfy Property WC, shown below.

Window Cycles (WC):

b(Ti) =



















0 , if E(T ) | i

1 , otherwise

Informally, Property WC states that the last subtask in each cycle does not overlap with its

successor, while all other subtasks within the cycle do. Hence, cycles do not overlap.

2.2 Scheduling Policies

In this section, we summarize scheduling policies proposed for the task model discussed in

the previous section. Since Pfair scheduling currently requires the use of a quantum-based

model, it remains only to consider the prioritization of subtasks.

2.2.1 EPDF

Due to the effectiveness of the EDF prioritization on uniprocessors, it is natural to consider

applying such a policy to subtask deadlines (i.e., to pseudo-deadlines). To avoid confusion,



41

this prioritization is called earliest-pseudo-deadline-first (EPDF).

Unfortunately, Srinivasan and Anderson proved that using EPDF alone results in optimal

scheduling only in systems of at most two processors [6, 63]. However, using EPDF along with

appropriate tie-breaking rules can result in optimal scheduling. Indeed, all known optimal

policies (described below) are extensions of the EPDF policy.

Despite its suboptimality, Srinivasan and Anderson [63] observed that the EPDF policy

may be preferable in some cases because it eliminates the overhead of maintaining tie-breaking

information. An additional benefit suggested by them is the ability to handle weight changes

more seamlessly than is possible under the known optimal policies. To support EPDF schedul-

ing in soft real-time systems, they derived the following parameterized condition,3 which

ensures a tardiness bound of k slots when M ≥ 2.

maxsumM−1 { T.w | T ∈ τ } ≤
kM + 1

k + 1
(2.7)

Later, Devi and Anderson presented an improved condition in the form of a per-task weight

restriction of M(k+1)−1
M(k+2)−2(k+1)−1 [21].4

In (2.7) given above, maxsumm {a1, . . . , an} denotes the maximum value produced by sum-

ming min(m,n) elements from the multiset {a1, . . . , an}. The following examples illustrate

this shorthand notation:

• maxsum2{2, 2, 1} = max{2 + 2, 2 + 1, 2 + 1} = 4;

• maxsum4{2, 2, 1} = max{2 + 2 + 1} = 5;

3A slightly improved, but more complex, condition is presented in [63].

4This restriction is a generalization of that presented in [22].
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• maxsum0{2, 2, 1} = max{0} = 0.

This notational convention will be used throughout this dissertation.

Figure 2.3(a) shows a five-task, two-processor schedule produced by the EPDF policy. In

this schedule (and the others shown in that figure), priority ties not resolved by the policy are

broken by favoring the lower-weight task. In slot 0, T1, U1, V1, W1, and X1 are eligible with

deadlines at times 2, 3, 3, 4, and 4, respectively. Since U1 and V1 have equal EPDF priorities,

the tie is broken in favor of V . Hence, T1 and V1 are scheduled in the slot, as shown.

2.2.2 PF

The PF policy, proposed by proposed by Baruah, Cohen, Plaxton, and Varvel [11], was the

first combination of EPDF and tie-breaking rules to be proved optimal. Under PF, the

relative priority of two subtasks is determined by applying the following rules in the stated

order. (The shorthand A ≺ B indicates that subtask A has priority over subtask B.)

Rule #1 (EPDF): Ti ≺ Uj if d(Ti) < d(Uj); Ti � Uj if d(Ti) > d(Uj).

Rule #2 (Overlap Bit): Ti ≺ Uj if b(Ti) > b(Uj); Ti � Uj if b(Ti) < b(Uj). If b(Ti) =

b(Uj) = 0 (i.e., both subtasks end cycles), Ti and Uj can be prioritized arbitrarily.

Rule #3 (Recursive): Ti ≺ Uj if Ti+1 ≺ Uj+1; Ti � Uj if Ti+1 � Uj+1.

Though optimal, the PF policy is inefficient due to its recursive third rule.

Figure 2.3(b) shows the schedule produced by the PF policy. In slot 1, V1, W1, and

X1 are eligible with deadlines at times 3, 4, and 4, respectively. Since W1 and X1 tie in

both Rules #1 and #2, the recursive rule must be applied. W2 and X2 also tie in Rule #1.

However, Rule #2 resolves the tie in favor of W2. Because of this, Rule #3 breaks the tie of

W1 and X1 in favor of W , as shown.
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Figure 2.3: Schedules produced by the (a) EPDF, (b) PF, (c) PD or PD2, and (d) WM
policies. Priority ties not resolved by the policies are broken in favor of the lower-weight task.

2.2.3 PD

Baruah, Gehrke, and Plaxton [12] later proposed a second optimal policy, called PD, that

produces less per-slot overhead than the PF policy. Under PD, the recursive Rule #3 shown

above is replaced by three rules that can be applied in constant time. Since the PD2 policy

described next is a simplified version of PD (i.e., some of PD’s tie-breaking rules proved to

be unnecessary), we forgo further discussion of the PD policy.
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Figure 2.4: Window positions are shown for (a) a heavy task PF
(

7
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)

and (b) the corre-

sponding inversely-weighted light task PF
(
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)

. Note that group deadlines of the heavy task,

each of which is denoted by a G, correspond to the pseudo-deadlines of the light task.

2.2.4 PD2

In [7], Anderson and Srinivasan proved that two of the PD rules were extraneous. The

resulting policy was called PD2 due to its use of two tie-breaking rules. PD2 is the most

efficient of the known optimal policies. Hence, we assume its use unless otherwise stated.

PD2 replaces PF’s recursive Rule #3 with a rule that compares the group deadlines of

subtasks in constant time. Formally, the group deadline of subtask Ti, denoted D(Ti), is the

earliest slot boundary at or after d(Ti) at which either no subtask deadline occurs or a cycle

ends. For tasks satisfying either T.w ≤ 1
2 or T.w = 1, the group deadline is set to zero.

The group deadline for tasks satisfying 1
2 < T.w < 1 can be determined by considering the

deadlines of an inverse-weight task, i.e., PF(1 − T.w), as illustrated in Figure 2.4. Given this

definition, PD2’s third rule is as shown below.

Rule #3 (Group Deadline): Ti ≺ Uj if D(Ti) > D(Uj); Ti � Uj if D(Ti) < D(Uj).

A more detailed description of the PD2 policy can be found in [7] and subsequent papers

[5, 6, 61, 62]. For our purposes, it is sufficient to know that PD2 is an optimal Pfair policy,

that subtask priorities can be calculated and compared in constant time, and that the per-slot

time complexity of PD2 is O(M log |τ |).
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Figure 2.3(c) shows the schedule produced by the PD2 policy. (This schedule would also

be produced by the PD policy.) In slot 1, V1, W1, and X1 are eligible with deadlines at times

3, 4, and 4, respectively. Since W1 and X1 tie in both Rules #1 and #2, the group deadlines

must be compared. However, since both tasks are light, the group deadlines are both zero.

Hence, these subtasks tie in Rule #3 as well. As a result, the tie is broken in favor of X.

2.2.5 WM

As with job scheduling, Pfair scheduling policies can be classified according to whether they

use static or dynamic subtasks priorities. All of the previous policies use dynamic priorities.

Presently, the weight-monotonic (WM) policy, proposed by Baruah [10], is the only static-

priority Pfair policy. Under WM, tasks with higher weights are given higher priority.

In [10], Baruah proved that WM correctly schedules Pfair task systems on a uniproces-

sor when
∑

T∈τ T.w ≤ ln 2. (This bound closely resembles that given for the RM policy.)

Ramamurthy and Moir later extended this uniprocessor condition into a sufficient multipro-

cessor condition [58]. Using the condition from [58], Andersson and Jonsson [8] proved the

utilization-based condition shown below.

∑

T∈τ

T.w ≤
M

2
(2.8)

As remarked in [8], no static-priority policy can provide a better utilization-based condition

than (2.8). Hence, the use of a static-priority Pfair policy sacrifices up to half of the total

processing capacity when compared to an optimal Pfair policy.

Figure 2.3(d) shows the schedule produced by the WM policy. By the task weights, the

priority order (from highest to lowest) is as follows: T , U , V , W , X. As shown, X (i.e., the
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lowest-priority task) misses each of its first four deadlines.

2.3 Other Task Models

All work discussed up to this point has focused on the Pfair task model. Unfortunately, this

model is far too restrictive in its assumptions. Srinivasan and Anderson [5, 61] addressed this

problem by proposing more task models that permit more flexibility in how tasks behave at

runtime. In this section, we summarize these task models.

2.3.1 Early-release Task Model

One unappealing aspect of Pfair scheduling is that it is not work-conserving with respect to

jobs, i.e., a ready job may not be permitted to utilize an idle processor because doing so would

violate the Pfairness constraint. Figure 1.10 (in Chapter 1) illustrates this shortcoming: at

time 1, the processor idles because T3 is considered ineligible.

To avoid such unnecessary idling, Anderson and Srinivasan [5] proposed the early-release

(ER) task model and proved that PD2 correctly schedules any ER task set satisfying (2.4).

Under this model, each subtask Ti has an eligibility time e(Ti) (≤ r(Ti)), which is the earliest

time at which Ti can be scheduled.5 A schedule respects ERfairness if and only if each

subtask Ti is scheduled in [e(Ti) , d(Ti)). This interval is called Ti’s IS-window , while the

interval [r(Ti) , d(Ti)) is called Ti’s PF-window .6

Figure 2.2(b) illustrates how early releasing may be used when each job requires three

quanta. Subtasks T2 and T3 become eligible when T1 is released. Similarly, subtasks T4, T5,

5e(Ti) is required to fall on a slot boundary.

6“IS” refers to the intra-sporadic task model, which is described next. Although ER-window would seem
more appropriate, these terms were not introduced until the IS task model was presented.
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and T6 all become eligible simultaneously. As with the models described below, early releasing

can be done reactively, i.e., eligibility times can be assigned on-the-fly.

2.3.2 Intra-sporadic Task Model

Another problem with the Pfair task model is its lack of support for suspensions. Recall that

suspensions can result both from blocking and device I/O. Substantial processor time can be

wasted if suspended tasks are required to compete for processor time.

In [61], Srinivasan and Anderson introduced the intra-sporadic (IS) task model to address

this need and proved that PD2 successfully schedules any IS task set satisfying (2.4). The IS

model extends the ER model by allowing subtasks to be delayed, provided that two restrictions

are respected. First, all subtask releases must occur on slot boundaries. Second, the relative

separation between each pair of windows must be at least that guaranteed under the Pfair

task model. Effectively, the IS model is an extension of the sporadic model [49] to subtasks.

A schedule respects ISfairness if and only if each subtask is scheduled in its IS-window.

Suppose that T2’s release in Figure 2.2(b) is delayed for six slots, i.e., it is released at

time 9 as shown in Figure 2.2(c) instead of at time 3. Releasing T3 earlier than time 12

would result in a relative separation between T2 and T3 that is less than three slots. Since

the relative separation is three slots under the Pfair model (see Figure 2.2(a)), the separation

restriction will be violated unless r(T3) is delayed until at or after time 12. However, e(T3) is

still allowed to be earlier than 12, as shown.

2.3.3 Generalized Intra-sporadic Task Model

In [61], Srinivasan and Anderson also introduced the generalized intra-sporadic (GIS) task

model. This model extends the IS model by allowing subtasks to be omitted entirely. However,
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the minimum-separation restriction must still be satisfied for all windows that are present.

Unlike the previous models, the GIS task model was developed primarily to facilitate proofs

rather than to provide more flexible scheduling.

However, one important ability is provided by the GIS task model. When associating a

group of subtasks with a specific job of a task (as Property P suggests), there is a possibility

that the job may not require all of its subtasks. Indeed, since execution requirements of jobs

are often pessimistic estimates of worst-case requirements, it is likely that jobs will complete

earlier than expected. In such cases, continuing to release the remaining subtasks will both

lead to wasted processor time and delay the execution of other tasks. Allocating processor

time to such subtasks is no better than idling those processors. A more desirable solution is

to simply mark the unused subtasks as absent. Later, we discuss a mechanism that allows

such idle processor time to be safely consumed by other ready tasks.

Figure 2.2(d) shows how the window placement from Figure 2.2(c) appears when task T3

is marked absent. Notice that T4 cannot be released before time 16 without violating the

minimum separation between T2 and T4.

As with the previous models, Srinivasan and Anderson proved that the PD2 algorithm

correctly schedules any GIS task set satisfying (2.4). A schedule respects GISfairness if and

only if each present subtask is scheduled in its IS-window. Since this model generalizes the

ER and IS models, we consider only the GIS model in the remainder of the dissertation. A

GISfair task will be denoted by GIS(w).

2.4 Other Related Work

In this section, we summarize other prior results relating to Pfair scheduling.
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2.4.1 Dynamic Task Sets

In real systems, the composition of the task set may need to change at runtime in response

to events. For instance, monitoring software is often based on multiple modes of operation.

Different modes perform different operations, and hence require different tasks.

To support on-line mode changes, Srinivasan and Anderson [62] derived conditions under

which GIS tasks may dynamically join and leave a running system. A task may join as long

as (2.4) continues to hold. Leaving, however, is more complicated. A light task T may leave

at any time t ≥ d(Ti) + b(Ti), where Ti is the last-executed subtask of T . This rule also

applies to heavy tasks in the special case in which maxsumM−1 { T.w | T ∈ τ } ≤ 1 holds.

Otherwise, a heavy task cannot leave until its next group deadline, i.e., D(Ti).

2.4.2 Supertasking

In [48], Moir and Ramamurthy considered the problem of forcing tasks to execute on specified

processors. This work was motivated by the observation that some devices may be accessible

only from certain processors. Hence, tasks performing device I/O may not be migratable.

They further noted that binding tasks to specific processors can reduce migration overhead.

To support bound tasks, they proposed the use of supertasks. In this approach, each

supertask S replaces a set of component tasks, and is assigned the weight

S.w =
∑

T∈S

T.w.

(We let S denote both the supertask and component-task set.) Whenever a supertask is

scheduled, one of its component tasks is executed according to an internal scheduling policy.

Although Moir and Ramamurthy proved that EPDF is an optimal internal scheduling
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Figure 2.5: Sample supertasking schedule. Supertask S serves two component tasks, X with
weight 1/5 and Y with weight 1/45, and is assigned their cumulative weight. The PD2 policy
is used globally, while the EPDF policy is used within S. As shown, task X misses a deadline
at time 10.

policy for Pfair component tasks, they also demonstrated that component-task deadline misses

may occur when using supertasks with PF, PD, or PD2. Figure 2.5 illustrates such a miss. In

this example, a supertask S replaces two component tasks X and Y , and is assigned a weight

as described above. The PD2 policy is used to schedule tasks globally, while the EPDF policy

is used within S. Arrows show where S re-allocates its processor time to its component tasks.

As shown, a deadline miss occurs at time 10.

We extend supertasking into a general mechanism for hierarchal scheduling. Specifically,

in this context, supertasking refers to the act of scheduling a collection of persistent tasks

as a single entity. When using supertasks, we assume that the set of supertasks, denoted π,

covers τ , i.e., each task in τ must be assigned to exactly one supertask. Also, we assume that
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each supertask contains at least one component task. Notice that Pfair scheduling without

supertasks is analogous to assigning each task to a unique supertask.

2.4.3 Utilizing Idle Time

Idle time can arise from two sources. First, when the processors are underutilized, the unused

capacity will result in occasional idling. Second, even when all capacity has been reserved,

IS delays and absent subtasks can result in idle processors. In either case, this idle time can

be used to speed the execution of unscheduled ready tasks. We briefly summarize techniques

for consuming this time below.

The most obvious technique for consuming idle time is the use of early releases. Unfor-

tunately, early releasing has the effect of consuming future deadlines. Hence, tasks may be

penalized for consuming idle time using this technique. Figure 2.6(a) illustrates this problem

with a simple two-task uniprocessor schedule. Task U uses many subtasks in [0, 5) to consume

idle time. As a result, its next deadline is far into the future (at time 18) when T joins at

time 5, causing U to be treated unfairly over [5, 10).

To avoid this penalty, Anderson, Block, and Srinivasan proposed an alternative approach

called quick releasing [2]. In this approach, tasks are allowed to left-shift their subtask win-

dows so that they are released only one or two slots after a detected idle slot. The excess time

in the idle slot can then be consumed by a bounded early release. Figure 2.6(b) illustrates

this approach. Quick releasing provides an additional advantage in that a maximum weight

can be assigned to each task. Maximum weights are enforced by restricting how far subtask

windows can be shifted, thereby avoiding the need for additional accounting. The primary

disadvantage of this approach is that spare capacity may not always be distributed propor-

tionally among tasks. However, experimental results presented in [2] suggest that proportional



52

T 1/2

TIME 151050

U 1/3

TASKS SCHEDULE

(a) Early Release

U

1/2T

0TIME

1/3

15105

TASKS SCHEDULE

(b) Quick Release

Figure 2.6: Two approaches for consuming idle processor time. (a) Using early releases,
windows maintain their original position; tasks may be penalized for consuming time. (b)
Using quick releases, windows are permitted to shift earlier in time when an idle slot is
detected.

distribution occurs in all but a few pathological cases.

2.4.4 Best-effort Pfairness

In [18], Chandra, Adler, and Shenoy considered the use of Pfair scheduling in a general-

purpose system. They observed that the fairness and isolation guarantees provided by Pfair-

ness are ideal for multimedia applications. However, since only best-effort guarantees were

needed, worst-case predictability could be sacrificed to achieve more scheduling flexibility.

For such cases, they proposed the Deadline Fair Scheduling (DFS) policy, which is loosely

based on PD2. Several aspects of this policy are unique among Pfair policies. First, work-

conserving behavior is guaranteed by immediately re-assigning a processor when the executing

task yields. Second, an auxiliary scheduler is used to distribute idle time to unscheduled ready
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tasks.7 Third, priorities are biased in order to account for processor affinity.

This work is interesting for several reasons. First, it suggests that Pfair scheduling has

applications outside the real-time domain. Second, the experimental results presented in [18]

show only a marginal increase in scheduling overhead when using DFS (compared to the

default Linux policy). Since EPDF and PD2 are less complex than DFS, this study suggests

that their scheduling overhead should be reasonable in practice.

7This work pre-dated the development of the early-release and quick-release models.



CHAPTER 3

System Overview

In this chapter, we outline the design of a Pfair-based operating system. We begin by dis-

cussing practical aspects of quantum-based scheduling in Section 3.1. We then state our

assumptions concerning global scheduling and prove some basic properties of the system in

Section 3.2. Global scheduling of independent periodic and sporadic tasks is considered next

in Section 3.3. Finally, we discuss the use of server tasks in Section 3.4. Later chapters use

the results presented in this chapter when addressing more complex issues, including the use

of supertasks (Chapter 4) and support for task synchronization (Chapters 5 and 6).

3.1 Quantum-based Scheduling

In this section, we consider practical implications of quantum-based scheduling. As mentioned

in Chapter 1, practical overheads impose implicit bounds on the slot length. This section

discusses these overheads in more detail. An important implication of the discussion that

follows is that quantum sizes and slot lengths may vary at runtime, contradicting the view

(from Chapter 2) that these values are fixed. Toward the end this section, we explain how to

account for this variance when performing worst-case analysis.
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Figure 3.1: Illustration of basic slot structures. (a) Under a static structure, events mark
both the quantum and slot boundaries, thereby reserving a fixed portion of each slot for
scheduling. (b) Under a dynamic structure, only slot boundaries are marked; quanta begin
immediately after scheduling.

3.1.1 Basic Approaches

Quantum-based scheduling can be achieved using two approaches. Under both approaches,

an event (likely a timer interrupt) is needed to signal the end of each slot. We refer to this

event as the slot event. In the static approach, each slot is divided into a scheduling portion

and an execution portion by a second event that signals the start of the quantum. We refer

to this second event as the quantum event. Figure 3.1(a) illustrates the static approach. As

shown, this approach will likely result in processor idling since most scheduler invocations will

complete before the quantum event occurs. In the dynamic approach, each quantum begins

immediately after scheduling (i.e., as soon as possible), as shown in Figure 3.1(b).

The benefit of the dynamic approach is that more processor time is allocated to tasks on

average. Hence, this approach is more suitable for best-effort scheduling. On the other hand,

the static approach usually produces more uniform quanta, which makes it more predictable.

Hence, this approach is better suited to real-time scheduling.
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3.1.2 Complicating Factors

Several overheads contribute to the per-slot overhead under quantum-based scheduling, most

of which are illustrated by Figure 3.1. First, the scheduler consumes some processor time at

the start of each slot. We let ξmax and ξmin denote upper and lower bounds, respectively, on

the time consumed by the scheduler in each slot. Second, the quantum and slot events may

not occur exactly at the requested times. For instance, when using hardware interrupts to

produce these events, interrupt dispatching and signal delay can introduce a small amount of

latency. We let − and + denote the worst-case magnitude of this event jitter, i.e., an event

set to occur at time t will occur within [t − −, t + +].

Third, to avoid ill-timed preemptions, slot events on the local processor may sometimes

need to be temporarily postponed. The reason is that data structures used for scheduling are

shared resources. For instance, an operation that modifies task weights must update not only

the weights themselves, but also the current priority of each affected task. Hence, accesses

to these data structures must be synchronized to ensure correctness of both the operations

applied to this data and the scheduling decisions. Typically, a spin lock or similar mecha-

nism is used to prevent simultaneous access from multiple processors. However, because the

scheduler invocations are triggered automatically by slot events, this does not prevent such an

invocation from preempting a partially completed operation. To prevent such a preemption,

an operation can temporarily postpone the delivery of slot events, thereby delaying invoca-

tion of the scheduler.1 We let ϕ denote the maximum duration of a postponement. Finally,

interrupts can result in occasional unavoidable delays. Due to the complexity of this factor,

1This is a slight oversimplification since postponing events on the local processor does not prevent scheduler
invocations on other processors from accessing the data. Since scheduler invocations should occur simultane-
ously across processors, a software barrier can be used to delay all invocations whenever one is delayed.
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we discuss it in greater detail below.

To bound interrupt overhead, it is necessary to first understand interrupt handling. Most

modern systems limit the disruptiveness of interrupts by using split interrupt handling. When

an interrupt occurs, an immediate handler is dispatched to quickly clear the interrupt, to store

any necessary data, and to enqueue a request for further processing. Deferred handling (i.e.,

the execution of the enqueued request) is then scheduled as any other one-shot task would

be. Hence, the disruptions shown in Figure 3.1 are caused solely by immediate handlers.

To account for the execution of handlers, Jeffay and Stone [38] proposed treating handlers

like periodic or sporadic tasks. Ramamurthy [57] later considered applying this approach

under the WM policy. However, it is unclear whether interrupt periods and execution re-

quirements are sufficiently large for this approach to be effective. For instance, this approach

is not applicable when the period of the interrupt is shorter than the slot length. In addition,

immediate handlers are designed to operate quickly. Hence, the execution requirements of

these handlers are likely to be extremely small relative to the quantum size. Based on these

observations, it seems inappropriate to treat immediate handlers as periodic or sporadic tasks

under a quantum-based model.

Alternatively, interrupt overhead can be pessimistically bounded by computing the worst-

case per-slot overhead. Letting p denote the minimum separation between interrupts of

a particular type that must be handled by the same processor, the maximum number of

immediate handlers executing within a single slot is given by d1
pe+1. Multiplying this term by

the per-interrupt overhead yields a bound on the per-slot overhead induced by that interrupt

type. To simplify this discussion, we simply assume that ımin and ımax are the minimum

and maximum amount, respectively, of processor time consumed by all interrupts within each
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slot. Techniques for determining these bounds and for evenly distributing interrupt-handling

overhead across processors are left as future work.

3.1.3 Bounding Slot and Quantum Fluctuations

Using the terms introduced above, we now derive limits on the runtime slot lengths and

quantum sizes. At runtime, the slot length on a given processor is the time delay between

two consecutive slot events on that processor. In our analysis, we assume this delay is one

time unit, i.e., all time parameters are measured in units of the assumed slot length. Below,

we derive a lower (Smin) and upper (Smax) bound on the slot lengths that can be observed in

the running system. Similarly, we assume that exactly Q units of processor time are allocated

to tasks in each slot. However, in a real system, this quantity may also vary from slot to slot.

Again, we derive a lower (Qmin) and upper (Qmax) bound on the range of this quantity. In

the next subsection, we consider how these fluctuations impact the analysis presented later,

which is based on the assumption that both the slot and quantum lengths are fixed.

We begin with the slot length. We let t and t + 1 denote the expected starting and

ending times, respectively, of a slot, as illustrated in Figure 3.2. Due to jitter, the slot

event that begins the slot can occur at any time within [t − −, t + +]. Similarly, due to

event postponement and jitter, the slot event marking the end of the slot occurs within

[t + 1 − −, t + 1 + + + ϕ].2 Hence, actual slot lengths are bounded by the formulas given

below.

Smin = 1 − − − +

Smax = 1 + − + + + ϕ

(3.1)

2We assume that the time at which a slot event should occur is independent of the jitter experienced by
the previous events, i.e., jitter does not produce propagating error.
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Figure 3.2: Illustration of the minimum and maximum slot length that can occur at runtime.

Under the dynamic approach, the scheduling and interrupt-handling overheads consume

at least ξmin + ımin and at most ξmax + ımax additional units of processor time. Hence, the

quantum range under this approach is easily derived from (3.1), as shown below.

Qmin = Smin − ξmax − ımax = 1 − − − + − ξmax − ımax

Qmax = Smax − ξmin − ımin = 1 + − + + + ϕ − ξmin − ımin

(3.2)

Under the static approach, we must consider the impact of the quantum event. We let

t+ q denote the requested time of the quantum event, as shown in Figure 3.3. To ensure that

the scheduler completes before this event, q must be selected so that t+q− − ≥ t+ + +ξmax

holds. It follows that the minimum safe value of q is given by (3.3).

q = − + + + ξmax (3.3)

Using the above definition for q, the quantum begins within [t+++ξmax, t+−+2++ξmax].

Since the slot ends within [t+1− −, t+1+ + +ϕ] (as explained above), the quantum range

under the static approach is bounded by the formulas given below.

Qmin = (t + 1 − −) − (t + − + 2+ + ξmax) − ımax = 1 − 2− − 2+ − ξmax − ımax

Qmax = (t + 1 + + + ϕ) − (t + + + ξmax) − ımin = 1 + ϕ − ξmax − ımin

(3.4)
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Figure 3.3: Illustration of the minimum and maximum quantum sizes that can occur at
runtime under a static slot layout.

3.1.4 Accounting for Fluctuations

The key to accounting for slot and quantum fluctuations is to identify whether using the upper

or lower bounds (derived above) produces more pessimism in a given situation. (We are aware

of no analysis under which the worst case is not determined by one of these two extremes.)

For instance, the maximum number of quanta required to obtain at least C units of processor

time is given by
⌈

C
Q

⌉

under the assumption that Q is constant. In this case, replacing Q with

Qmin yields more pessimism. However, when estimating the number of interfering events

occurring within a single slot (as is commonly done when analyzing resource contention),

taking Smax to be the slot length produces more interference and hence more pessimism.

3.1.5 Quantifying Design Efficiency

We now explain how the efficiency of an implementation can be estimated based on the bounds

given above. Our goal is to derive a pessimistic lower bound on the total fraction of processor

time used to service tasks. This goal is achieved by determining the fraction of a slot that is

guaranteed to the task scheduled in that slot. A lower bound on this quantity then provides

an estimate of the total fraction of processor time made available to tasks.

First, consider a dynamic implementation. Let s1 and s2 denote the beginning and end,

respectively, of the slot under consideration, i.e., the times at which the corresponding slot
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events occur. Since the amount of processor time guaranteed to the scheduled task is lower

bounded by s2 − s1 − ξmax − ımax, the fraction of the slot granted to the scheduled task is

given by

s2 − s1 − ξmax − ımax

s2 − s1
= 1 −

ξmax + ımax

s2 − s1
≥ 1 −

ξmax + ımax

Smin
.

It follows from the inequality given above and (3.1) that the dynamic approach allocates at

least a fraction

1 −
ξmax + ımax

1 − − − +
(3.5)

of the processor time to tasks.

Now, consider a static implementation. Let q1 denote the time at which the quantum event

occurs. In this case, the processor time granted to the scheduled task is at least s2−q1− ımax,

resulting in the following lower bound.

s2 − q1 − ımax

s2 − s1
= 1 −

q1 − s1 + ımax

s2 − s1
≥ 1 −

q1 − s1 + ımax

Smin

As explained above, s1 ≥ t − − and q1 ≤ t + − + 2+ + ξmax, where t is the expected value

of s1. Hence, q1 − s1 ≤ (t + − + 2+ + ξmax) − (t − −) = 2− + 2+ + ξmax. It follows from

these two inequalities and (3.1) that the static approach allocates at least a fraction

1 −
ξmax + ımax + 2− + 2+

1 − − − +
(3.6)

of the processor time to tasks.

Although these formulas suggest that the dynamic approach provides a slightly higher

fraction of processor time to tasks, this benefit comes at the expense of more variation in the
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quantum sizes. As suggested in the previous subsection, increased variability translates into

increased pessimism when performing worst-case analysis.

3.2 Scheduling Overview

This section provides an overview of scheduling requirements and the guarantees that will be

provided to tasks by the scheduler. In Section 3.2.1, we summarize the different sets of tasks

that we consider supporting, and the approaches considered for each set. In Section 3.2.2,

we summarize parameters that we use to describe the timing constraints of tasks that were

not given in the previous chapters. Section 3.2.3 then discusses the scheduling guarantees

that we assume are provided by the global scheduler. In addition, to support soft real-time

tasks, we formally introduce a tardiness parameter that we assume is given for each task.

In Section 3.2.4, we derive basic scheduling properties based on the assumptions made in

Section 3.2.3. These properties provide a basis for the results presented later.

3.2.1 Supported Tasks

We consider support for the following three sets of tasks:

• recurrent real-time tasks (τ)

• one-shot real-time tasks

• non-real-time tasks

In the analysis that follows, τ is assumed to consist of only periodic and sporadic tasks,

though tasks with rate-based requirements are easily incorporated. Two approaches will be

considered for these tasks. First, we consider direct scheduling by the global scheduler. Since
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the global scheduler expects Pfair tasks, this approach requires that we map the periodic

and sporadic requirements onto GIS tasks. Property P, presented earlier in Chapter 2, is

an example of a mapping from a synchronous periodic requirement onto a Pfair task. We

extend this prior work by explaining how to map requirements when faced with suspensions

and with job releases and deadlines that do not fall on slot boundaries. These results are

presented later in this chapter. Second, we consider group scheduling of these tasks using the

supertasking approach [48]. Chapter 4 is devoted to this approach.

One-shot and non-real-time tasks are supported through the use of server tasks. We use

the term server to refer to any task that uses its allocated processor time to service requests

made by other tasks, called clients. In this context, the clients are the one-shot and non-

real-time tasks, and the requests are their jobs. To determine the order in which requests

are serviced, a server applies an internal policy. Later in this chapter, we discuss the use of

servers in more detail. Since any scheduling policy can be applied to non-real-time tasks,3

we do not consider this set beyond this section. Instead, we make the simplifying assumption

that the execution of non-real-time tasks does not impact the execution of tasks in the other

sets. Support for one-shot tasks with deadlines is discussed later in the chapter.

3.2.2 Task Requirements

To support soft real-time scheduling, we associated a tardiness threshold, denoted T.c (≥ 0),

with each task T in addition to the previously described parameters. T.c is the maximum

amount by which T is allowed to miss any deadline. The purpose in making these parameters

explicit is to maintain a distinction between the preferred requirements of tasks and those

that can actually be achieved, e.g., the tardiness threshold of a soft real-time task may need

3Though good performance is often desired for these tasks, no formal constraints are imposed.
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to be increased to make the task set schedulable.

For Pfair tasks, tardiness thresholds are associated with subtask deadlines. Since allowing

a subtask deadline to lie within a slot will result in the previous slot boundary being treated as

the actual deadline, we assume that such Pfair-based tardiness thresholds always correspond

to a slot boundary, i.e., we assume that T.c is an integer for all Pfair tasks T .

When performing deadline-based scheduling of a task T that has a non-zero miss threshold,

there are two basic approaches: prioritize according to preferred deadlines (i.e., T.d) or

prioritize according to effective deadlines (i.e., T.d+T.c). Because the latter approach results

in more effective scheduling, we focus on it when performing supertask analysis later in

Chapter 4. Intuitively, this approach suggests that guaranteeing miss thresholds of all tasks

is more important than guaranteeing the preferred deadlines of some tasks. Our results can

easily be adapted to the alternative approach.

3.2.3 Scheduling Guarantees

In most prior work on Pfair scheduling [5, 6, 7, 10, 11, 12, 48], Pfairness was considered

as a means to an end. Specifically, the task sets under consideration often do not require

this strong notion of fairness in order to satisfy their constraints. In such cases, imposing a

strong fairness constraint can increase overhead since more complex scheduling policies are

needed to satisfy the constraint. For instance, the EPDF policy incurs less overhead than

the optimal Pfair policies [63], making it more suitable when scheduling task sets that can

tolerate EPDF’s shortcomings.

In this dissertation, the scheduling policy is treated as a black box, i.e., we consider only

the guarantees provided by the scheduler and base our work on the properties that follow

from these guarantees. To describe the scheduler’s guarantees, we introduce a simple four-
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parameter model (described below). The purpose of this model is to allow each presented

result to be applied both under the current Pfair scheduling policies and under future policies

based on the same derivation. In addition, the use of this model when deriving properties

enables a quantitative comparison of using relaxed fairness (e.g., that provided by the EPDF

policy) instead of Pfairness.

Model. Our model consists of two pairs of parameters. First, we let β− (≥ 1) and β+ (≥ 1)

denote (real-valued) lower and upper lag scalers. These scalers are multiplied by −Q and Q,

respectively, to yield the actual lag bounds guaranteed by the scheduler, as shown below.

for all t, −Q · β− < lag(T, t) < Q · β+ (3.7)

To simplify the presentation, we let

β = β+ + β−. (3.8)

The constraint given by (3.7) generalizes (2.3), which corresponds to the β− = β+ = 1 case.

Relaxing lag bounds scales each subtask window. However, due to the use of quantum-

based scheduling, windows are clipped to slot boundaries, resulting in non-uniform scaling.

We refer to the windows defined by (3.7) as relaxed windows. Figure 3.4(b) shows the first

six relaxed windows for a task with weight 3
10 when β− = β+ = 1.5; Figure 3.4(a) shows the

corresponding Pfair window layout. Notice that ω(T2)’s release occurs two slots earlier in

Figure 3.4(b), while ω(T3)’s release occurs only one slot earlier.

The second parameter pair is εr and εd, which denote the number of slots by which each

pseudo-release and pseudo-deadline, respectively, is extended (beyond its lag-based place-



66

20151050

T1

T2

T3

T4

T5

T6

(a) Pfair Windows

20151050

T5

4T

2T

6T

3T

1T

(b) Relaxed Windows when β+ = β− = 1.5

20151050

5

4

T
T

T

2T

6

3T

1T

(c) Extended Windows when β+ = β− = 1.5, εr = 0, and εd = 1

Figure 3.4: The first six windows of a task with weight 3
10 are shown up to time 20. (a)

Windows defined by Pfairness constraint. (b) Relaxed windows defined by β+ = β− = 1.5.
(c) Extended windows defined by β+ = β− = 1.5, εr = 0, and εd = 1.

ment). More precisely, the scheduler treats a subtask with a relaxed window spanning [tr, td)

as having the window [tr − εr, td + εd). Figure 3.4(c) shows the window layout obtained by

β− = β+ = 1.5, εr = 0, and εd = 1. Notice that each deadline is extended by one slot, relative

to Figure 3.4(c), due to εd. Such windows are called extended windows. For example, T2 in
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Figure 3.4(c) has an extended deadline at time 10. We let

ε = εr + εd. (3.9)

3.2.4 Basic Properties

In this section, we derive some basic properties of global scheduling based on the parameters

described above. We use these properties as the basis for the work presented later.

Window placement. The first lemma and corollary, shown below, derive formulas for

relaxed and extended windows. These formulas represent only the guarantee provided by the

scheduler; we make no assumptions about how this guarantee is provided by the scheduler,

beyond those already stated above.

Lemma 3.1 The following formulas define the placement of relaxed windows:

r(Ti) =

⌊

i − β+

T.w

⌋

d(Ti) =

⌈

(i − 1) + β−

T.w

⌉

.

Proof. The derivations presented here extend those used to derive (2.5) and (2.6). These

formulas follow directly from (3.7), which implies that the release and deadline of a subtask

Ti satisfy the following constraints:

r(Ti) = min { k | k ∈ Z ∧ i · Q − fluid(T, 0, k + 1) < Q · β+ } ; and

d(Ti) = min { k | k ∈ Z ∧ (i − 1) · Q − fluid(T, 0, k) ≤ −Q · β− } .

In the constraints given above, Z denotes the set of all integers. Informally, the r(Ti) con-

straint identifies the earliest slot (k) such that the upper lag constraint (Q ·β+) is not violated
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when the ith quanta is received in that slot (i.e., in the interval [k, k + 1)). The subtask release

corresponds to the start of this slot, i.e., time k.4 On the other hand, the d(Ti) constraint

identifies the earliest time k such that the lower lag bound (−Q · β−) is violated when only

i−1 quanta are received by k. It follows that the ith quantum must be received in the interval

[k − 1, k), at the latest. Hence, the subtask deadline occurs at time k.

Applying (2.1) and rearranging terms to isolate k produces the following equivalent forms.

r(Ti) = min

{

k

∣

∣

∣

∣

k ∈ Z ∧ k >
i − β+

T.w
− 1

}

d(Ti) = min

{

k

∣

∣

∣

∣

k ∈ Z ∧ k ≥
(i − 1) + β−

T.w

}

The lemma follows. 2

Corollary 3.1 The following formulas define the placement of extended windows:

r(Ti) =

⌊

i − β+

T.w

⌋

− εr d(Ti) =

⌈

(i − 1) + β−

T.w

⌉

+ εd.

Observe that the above formulas may result in negative release times. Windows that

extend beyond zero are effectively truncated at zero at runtime.

Window overlap. The next lemma given below bounds the number of slots by which

consecutive subtask windows can overlap in the absence of IS delays.

4Notice that the release time may be negative. It is important to understand that time 0 is simply a
reference point that records when scheduling begins. Since no scheduling occurs prior to this point, windows
with negative release times are effectively truncated to begin at time 0.
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Lemma 3.2 Each pair of consecutive subtasks Ti and Ti+1 satisfy the inequality shown below.

⌈

β − 2

T.w

⌉

+ ε ≤ d(Ti) − r(Ti+1) ≤

⌈

β − 2

T.w

⌉

+ ε + 1

If Ti is the last subtask in a cycle, then

d(Ti) − r(Ti+1) = B(T )
def
=

⌈

β− − 1

T.w

⌉

+

⌈

β+ − 1

T.w

⌉

+ ε.

Proof. The following derivation establishes the upper bound.

d(Ti) − r(Ti+1)

=
(⌈

(i−1)+β−

T.w

⌉

+ εd

)

−
(⌊

(i+1)−β+

T.w

⌋

− εr

)

, by Corollary 3.1

≤
⌈

β++β−−2
T.w

⌉

+
⌊

i+1−β+

T.w

⌋

+ 1 −
⌊

i+1−β+

T.w

⌋

+ εr + εd , da + be ≤ dae + bbc + 1

=
⌈

β++β−−2
T.w

⌉

+ 1 + εr + εd , simplification

=
⌈

β−2
T.w

⌉

+ ε + 1 , by (3.8) and (3.9)

The following derivation establishes the lower bound.

d(Ti) − r(Ti+1)

=
(⌈

(i−1)+β−

T.w

⌉

+ εd

)

−
(⌊

(i+1)−β+

T.w

⌋

− εr

)

, by Corollary 3.1

≥
⌈

β++β−−2
T.w

⌉

+
⌊

i+1−β+

T.w

⌋

−
⌊

i+1−β+

T.w

⌋

+ εr + εd , da + be ≥ dae + bbc

=
⌈

β++β−−2
T.w

⌉

+ εr + εd , simplification

=
⌈

β−2
T.w

⌉

+ ε , by (3.8) and (3.9)

When Ti is the last subtask in a cycle, then i
T.w is an integer since E(T ) | i holds. This

leads to the derivation shown below.
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d(Ti) − r(Ti+1)

=
(⌈

(i−1)+β−

T.w

⌉

+ εd

)

−
(⌊

(i+1)−β+

T.w

⌋

− εr

)

, by Corollary 3.1

= i
T.w +

⌈

β−−1
T.w

⌉

− i
T.w −

⌊

1−β+

T.w

⌋

+ εr + εd , since i
T.w is an integer

=
⌈

β−−1
T.w

⌉

−
⌊

1−β+

T.w

⌋

+ εr + εd , simplification

=
⌈

β−−1
T.w

⌉

+
⌈

β+−1
T.w

⌉

+ εr + εd , b−ac = −dae

=
⌈

β−−1
T.w

⌉

+
⌈

β+−1
T.w

⌉

+ ε , by (3.9)

The above derivations establish the lemma. 2

The previous lemma introduces the new parameter B(T ), which is the number of slots by

which consecutive cycles of T overlap. Recall that B(T ) = 0 under Pfairness.

Window span. The next result bounds the number of slots crossed by a sequence of n

consecutive windows, which we refer to as an n-span of a task. For instance, the interval

[3, 13) in Figure 3.4(a) is a 3-span since r(T2) = 3 and d(T4) = 14. In general, each n-span

corresponds to an interval [r(Ti+1) , d(Ti+n)) for some integer i.

Lemma 3.3 Every sequence of consecutive subtasks Ti+1, . . . , Ti+n satisfies the following:

⌈

n + β − 2

T.w

⌉

+ ε ≤ d(Ti+n) − r(Ti+1) ≤

⌈

n + β − 2

T.w

⌉

+ ε + 1

When subtask i + 1 begins a cycle (i.e., E(T ) | i holds) and subtask i + n ends a cycle (i.e.,

E(T ) | (i + n) holds),

d(Ti+n) − r(Ti+1) =
n

T.w
+ B(T ) .

Proof. The following derivation establishes the upper bound in the first claim.
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d(Ti+n) − r(Ti+1)

=
(⌈

(i+n−1)+β−

T.w

⌉

+ εd

)

−
(⌊

(i+1)−β+

T.w

⌋

− εr

)

, by Corollary 3.1

≤
⌈

n+β++β−−2
T.w

⌉

+
⌊

i+1−β+

T.w

⌋

+ 1 −
⌊

i+1−β+

T.w

⌋

+ εr + εd , da + be ≤ dae + bbc + 1

=
⌈

n+β++β−−2
T.w

⌉

+ εr + εd + 1 , simplification

=
⌈

n+β−2
T.w

⌉

+ ε + 1 , by (3.8) and (3.9)

The following derivation establishes the lower bound in the first claim.

d(Ti+n) − r(Ti+1)

=
(⌈

(i+n−1)+β−

T.w

⌉

+ εd

)

−
(⌊

(i+1)−β+

T.w

⌋

− εr

)

, by Corollary 3.1

≥
⌈

n+β++β−−2
T.w

⌉

+
⌊

i+1−β+

T.w

⌋

−
⌊

i+1−β+

T.w

⌋

+ εr + εd , da + be ≥ dae + bbc

=
⌈

n+β++β−−2
T.w

⌉

+ εr + εd , simplification

=
⌈

n+β−2
T.w

⌉

+ ε , by (3.8) and (3.9)

When E(T ) | i and E(T ) | (i + n) both hold, it follows that both i
T.w and i+n

T.w are integers.

Hence, the derivation shown below establishes the second claim.

d(Ti+n) − r(Ti+1)

=
(⌈

(i+n−1)+β−

T.w

⌉

+ εd

)

−
(⌊

(i+1)−β+

T.w

⌋

− εr

)

, by Corollary 3.1

= i+n
T.w +

⌈

β−−1
T.w

⌉

− i
T.w −

⌊

1−β+

T.w

⌋

+ εr + εd , since i
T.w and i+n

T.w are integers

= n
T.w +

⌈

β−−1
T.w

⌉

−
⌊

1−β+

T.w

⌋

+ εr + εd , simplification

= n
T.w +

⌈

β−−1
T.w

⌉

+
⌈

β+−1
T.w

⌉

+ εr + εd , b−ac = −dae

= n
T.w +

⌈

β−−1
T.w

⌉

+
⌈

β+−1
T.w

⌉

+ ε , by (3.9)

= n
T.w + B(T ) , by Lemma 3.2

This completes the proof. 2
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3.3 Mapping Independent Tasks

In this section, we explain how to map an independent periodic or sporadic task T onto a GIS

task U . Recall that such a mapping enables the scheduling of T by the global scheduler. The

results presented here extend Property P from Chapter 2 by accounting for suspensions and

for job releases and deadlines that do not fall on slot boundaries. In this section, we consider

only independent tasks. In chapters 5 and 6, support for task synchronization is added.

Constraints. The mapping presented is based on the following constraints:5

1. Each job of T is associated with a unique group of k consecutive cycles of U ; each cycle

is associated with only one job of T .

2. The extended release of the first subtask associated with a job must occur on a slot

boundary at or after the job’s release.

3. The extended deadline of the last subtask associated with a job must occur on a slot

boundary at or before time td + T.c, where td denotes the job’s deadline.

4. All subtasks must satisfy the minimum separation imposed by the GIS task model.

If the above constraints are satisfied, then all jobs will meet their deadlines provided that a

sufficient amount of processor time is allocated to each job while it is not suspended.

Figure 3.5 demonstrates that these constraints are satisfied when applying Property P. By

this property, T = P(0, 3Q, 10, 10) maps to U = PF
(

3
10

)

. As shown, one cycle is associated

with each job of T , satisfying Constraint 1. In addition, each job release and deadline coincides

with the first subtask release of the associated cycle and last subtask deadline of the associated

5These constraints are not necessary, i.e., mappings that do not satisfy these constraints can still be correct.
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Figure 3.5: Mapping produced by applying Property P to the task T = P(0, 3Q, 10, 10).

cycle, respectively. For instance, T (1) .a = r(U1) and T (1) .d = d(U3). Hence, Constraints 2

and 3 are satisfied. Finally, the spacing of subtask windows satisfies the minimum separation

required by the Pfair task models, as shown. Hence, Constraint 4 is satisfied.

Mapping with no suspensions. First, consider the problem of scheduling a periodic task

when all jobs are released on slot boundaries. This case is very similar to that handled by

Property P, as the next lemma shows.

Lemma 3.4 If T is an independent periodic task that never suspends and both T.φ and T.p

are integers, then each job of T will complete within T.c of its deadline when executed within

the allocation of a GIS task U with weight

U.w =

⌈

T.e
Q

⌉

min (bT.d + T.cc − B(U) , T.p)
,

provided that U.w ∈ (0, 1].

Proof. First, since no suspensions occur, assigning
⌈

T.e
Q

⌉

subtasks to each job is sufficient

to ensure that the per-job execution requirement is satisfied. In the remainder of the proof,

we construct a window layout that ensures that each job receives its associated time by its

deadline, while respecting the four constraints given on page 72. We then use the properties
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proved earlier to determine a weight capable of providing the desired layout. Recall that if a

job completes while unused subtasks remain, then these subtasks are marked absent.

Because T.φ and T.p are integers, it follows that T.φ + k · T.p is an integer also for all

integers k ≥ 0. Hence, every job release coincides with a slot boundary. Consider a specific job

J that arrives at time a. We let the extended release of the first subtask associated with the

job occur at this time, which satisfies Constraint 2. Recall that the next job will be handled

by a separate cycle. By Lemma 3.2, consecutive cycles of U can overlap by up to B(U). Hence,

since the next job’s first cycle begins at a + T.p, the extended deadline of the last subtask

associated with J must occur at or before time a + T.p + B(U) to satisfy Constraint 4. In

addition, J ’s effective deadline occurs at time a+T.d+T.c. It follows that this same extended

deadline must occur before this time in order to satisfy Constraint 3. Therefore, the extended

deadline must occur at or before a+ min (bT.d + T.cc , T.p + B(U)). Hence, the total window

span of the cycle(s) associated with J must be at most min (bT.d + T.cc , T.p + B(U)).

We can now use previous results to select a weight such that exactly the span given above

is ensured. (A shorter span could be used instead, but would result in an unnecessarily high

weight.) Recall that
⌈

T.e
Q

⌉

subtask must be associated with each job. By Lemma 3.3, a

span of s can be ensured across one or more cycles consisting of n subtasks (combined) by

letting U.w = n
s−B(U) . Substituting s = min (bT.d + T.cc , T.p + B(U)) and n =

⌈

T.e
Q

⌉

into

this formula establishes the lemma. 2

Figure 3.6(a) shows the application of Lemma 3.4 to the task T = P(5, 3.2Q, 20, 18) when

T.c = 0 and the global scheduler is described by β− = β+ = 1, εr = 0, and εd = 1. Hence,

B(U) = 1. The other insets, which consider this same global scheduler with different tasks, are

considered later. By Lemma 3.4, U.w = d3.2e
min(b18c−1, 20) = 4

17 . Notice how IS delays are used
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(a) Periodic task with all releases on slot boundaries
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U

T

0

(b) Periodic or sporadic task

T
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U

0

(c) Multi-phase periodic task with all releases on slot boundaries

10 20 30 40 50TIME

U

T

0

(d) Multi-phase periodic or sporadic task

Figure 3.6: Examples of mapping a periodic or sporadic task T with T.c = 0 onto a GIS task
U when the global scheduler is described by β− = β+ = 1, εr = 0, and εd = 1. Examples
include (a) T = P(5, 3.2Q, 20, 18), (b) T = S(5, 3.2Q, 20, 18), (c) T = P(5, 3.2Q, 20, 18) :
C(∅, 2.1Q) ; I(3.2) ;C(∅, 1.1Q), and (c) T = S(5, 3.2Q, 20, 18) : C(∅, 2.1Q) ; I(3.2) ;C(∅, 1.1Q).
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to ensure that subtask windows properly align properly with the associated job’s interval.

The above lemma highlights a problem that is common under rate-based scheduling:

weight-assignment formulas are often functions of the task’s weight. In this case, the B(U)

term causes the problem. Applying the formula given in Lemma 3.2, the weight assignment

given by Lemma 3.4 becomes

U.w =

⌈

T.e
Q

⌉

min
(

bT.d + T.cc −
(⌈

β−−1
U.w

⌉

+
⌈

β+−1
U.w

⌉

+ ε
)

, T.p
) .

Notice that U.w now occurs on both sides of the formula. Due to the ceiling operators in

the right-hand side, these terms cannot be combined. In this case, this dependence can be

avoided by letting β+ = β− = 1, as is done in our example above. However, in general, some

parameters may require the use of iterative computation6 or similar techniques. Since these

techniques are a well-studied area of mathematics, we do not discuss them here.

The next lemma characterizes the cost of allowing jobs to be released off slot boundaries.

Lemma 3.5 If T is an independent periodic or sporadic task that never suspends, then each

job of T will complete within T.c slots of its deadline when executed within the allocation of

a GIS task U with weight

U.w =

⌈

T.e
Q

⌉

min (bT.d + T.cc − B(U) , bT.pc) − 1
,

provided that U.w ∈ (0, 1].

Proof. This proof closely resembles that of the previous lemma. Suppose a job release occurs

6Iterative computations search for a non-trivial value x at which x = f(x) for a given function f(x). The
process begins with a value x0 and iterates using xk+1 := f(xk) until xk+1 = xk holds.
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t∆ (< 1) time units before a slot boundary. In this case, the extended release of the first

subtask associated with the job will not occur until the next slot boundary. Following identical

reasoning to that given in Lemma 3.4, the span of the cycle(s) associated with each job can

be at most min (bT.d + T.c − t∆c , dT.p − t∆e + B(U)) ≥ min (bT.d + T.cc , bT.pc + B(U))−1.

The remainder of the proof follows as in the previous lemma. 2

Figure 3.6(b) shows the application of Lemma 3.5 to T = S(5, 3.2Q, 20, 18). In this case,

U.w = d3.2e
min(b18c−1,20)−1 = 4

16 = 1
4 , which implies that 4 cycles are associated with each job.

Mapping with suspensions. The next two lemmas generalize Lemmas 3.4 and 3.5 by

adding support for suspension phases. The key idea here is to insert a pessimistic IS delay

that prevents the task from being granted processor time while it may be suspended. The

proof of the following lemma explains this approach in more detail.

Lemma 3.6 If T is an independent multi-phase periodic task and both T.φ and T.p are

integers, then each job of T will complete within T.c of its deadline when executed within the

allocation of a GIS task U with weight

U.w =

∑

T [i]∈C(∅)

⌈

T [i].e
Q

⌉

min (bT.d + T.cc − B(U) , T.p) −
∑

T [i]∈I

(

⌈

T [i].θ
⌉

+
⌈

β−2
U.w

⌉

+ ε + 1
) ,

provided that U.w ∈ (0, 1].

Proof. The lemma will be proved by showing that a per-job static window layout is capable

of ensuring that each job complete on time. The idea here is very similar to that used in

the earlier proofs with one exception: in this case, we associate each subtask with only one

execution phase. When a suspension follows an execution phase, we insert an IS delay after
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the last subtask window of that phase to ensure that the next phase does not begin until after

the suspension has ended. We describe this approach in more detail below.

Consider T [1]. (Phase notation was defined earlier on pages 7 and 11.) For simplicity,

assume T [1] ∈ C(∅). This phase must be associated with at least
⌈

T [1].e
Q

⌉

subtasks. At some

point at or before the extended deadline of the last subtask dedicated to this phase, denoted

td, the suspension7 that follows (if one indeed exists) is initiated. This suspension ends at or

before time td + T [2].θ. Hence, the first subtask associated with J [3] should not be released

before time td +
⌈

T [2].θ
⌉

to ensure that allocated processor time is not wasted. Letting tr

denote the release of this successor subtask, this last restriction implies that tr = td +
⌈

T [2].θ
⌉

is desired. By Lemma 3.2, tr ≥ td −
(⌈

β−2
T.w

⌉

+ ε + 1
)

when the release is not delayed. It

follows that a delay of
⌈

T [2].θ
⌉

+
⌈

β−2
T.w

⌉

+ ε + 1 is sufficient to ensure the desired separation.

Using the above approach, we can insert IS delays to account for all suspensions. We now

explain how a weight can be selected for U when this approach is used. As in Lemma 3.4,

the windows associated with each job must span at most min (bT.d + T.cc , T.p + B(U)) slots.

However, this case differs from that in Lemma 3.4 in that this span reflects the span after

inserting all IS delays. To select a task weight, we must determine the maximum span when

no delays are present.

Inserting a delay has the effect of shifting all future releases and deadlines by the magni-

tude of the delay. Since the delay inserted for a specific suspension phase T [i] has a magni-

tude of
⌈

T [i].θ
⌉

+
⌈

β−2
U.w

⌉

+ ε + 1 (as explained above), it follows that the total expansion of

the span caused by all delays in a single job is given by
∑

T [i]∈I

(⌈

T [i].θ
⌉

+
⌈

β−2
U.w

⌉

+ ε + 1
)

.

Hence, the span without these delays must be at most min (bT.d + T.cc , T.p + B(U)) −

7Since critical sections are not considered, each execution phase must be followed by a suspension phase.
(Consecutive phases of the same type are assumed to be merged.)
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∑

T [i]∈I

(⌈

T [i].θ
⌉

+
⌈

β−2
U.w

⌉

+ ε + 1
)

. The remainder of the theorem follows as in Lemma 3.4.

2

Figure 3.6(c) shows the result of applying Lemma 3.6. In this example, T = P(5, 3.2Q, 20, 18) :

C(∅, 2.1Q) ; I(3.2) ;C(∅, 1.1Q). By Lemma 3.6, U.w = d2.1e+d1.1e
min(b18c−1,20)−(d3.2e+0+1+1) = 5

11 .

Lemma 3.7 If T is an independent multi-phase periodic or sporadic task, then each job of

T will complete within T.c slots of its deadline when executed within the allocation of a GIS

task U with weight

U.w =

∑

T [i]∈C(∅)

⌈

T [i].e
Q

⌉

min (bT.d + T.cc − B(U) , bT.pc) − 1 −
∑

T [i]∈I

(

⌈

T [i].θ
⌉

+
⌈

β−2
U.w

⌉

+ ε + 1
) ,

provided that U.w ∈ (0, 1].

Proof. This proof follows the same reasoning as Lemmas 3.5 and 3.6. Specifically, the

windows associated with each job must span no more than min (bT.d + T.cc , bT.pc + B(T ))−1

slots by reasoning identical to that in Lemma 3.5. As in Lemma 3.6, this span must be

shortened to account for inserted delays. The remainder of the proof follows as in Lemma 3.6.

2

In Figure 3.6(d), T = S(5, 3.2Q, 20, 18) : C(∅, 2.1Q) ; I(3.2) ;C(∅, 1.1Q). By Lemma 3.7,

U.w = d2.1e+d1.1e
min(b18c−1,20)−1−(d3.2e+0+1+1) = 5

10 = 1
2 .

Implications. As these last two lemmas demonstrate, suspensions are costly and should

be avoided whenever possible. The cost of suspensions under Pfair scheduling is actually not

surprising since this approach strives to sustain an approximately uniform rate of execution for

each task. When a task suspends, its rate is forced to zero for the duration of the suspension.
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Consequently, the scheduler must execute the task at a higher rate when ready in order to

compensate for these interruptions. For this reason, performance will degrade quickly as

the frequency and/or duration of suspensions (in the global schedule) increases. Providing

improved handling of special types of suspensions, such as I/O suspensions, is one of the most

crucial remaining challenges in this area.

3.4 Using Servers 8

In this section, we provide an overview of Pfair server tasks. Many extensions to Pfair

scheduling can be supported through the use of such servers, including the scheduling of one-

shot and time-sharing tasks. Indeed, the supertasking approach, which is considered later in

Chapter 4, is based on the use of servers. In addition, we consider using servers to provide

task synchronization later in Chapter 6.

3.4.1 Provisioning Servers

Each server maintains a request queue and services submitted requests using an internal policy.

Two decisions must be made when using a server: what weight to assign and how the server

should react to changes in its request queue. We discuss each of these issues below.

Assigning a weight. Two options are available when assigning a server weight. First, the

server can be assigned a fixed weight, which never changes once assigned. Second, the server

can vary its weight at runtime. Unfortunately, Srinivasan and Anderson’s work on dynamic

task sets suggests that instantaneous weight changes can lead to deadline misses [62].9 To

8Some of the work presented in this section was previously published in the following paper:
[64] A. Srinivasan, P. Holman, and J. Anderson. Integrating aperiodic and recurrent tasks on fair-scheduled
multiprocessors. In Proceedings of the 14th Euromicro Conference on Real-time Systems, pp. 19–28, 2002.

9A weight change can be viewed as a task leaving with the old weight and rejoining with the new weight.
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avoid such a miss, weight changes must be delayed. As a result, the second option will likely

be impractical in most cases unless weight changes are infrequent. For this reason, we restrict

attention to static weights when discussing servers in this dissertation.

Assigning static weights generally consists of four steps. First, requests are divided into

multiple groups, each of which should be serviced from a separate queue. Second, each group

is assigned a fraction of the available processor capacity. Third, one or more server tasks is

created to service requests in each queue. Finally, the processor capacity assigned to each

queue is divided among its associated servers.

We let W denote the processor capacity assigned to a specific queue, where 0 < W ≤ M .

Two basic assignment rules exist for creating servers and dividing this capacity among them:

• Minimize Latency (ML): Create bW c server tasks with unit weight and one server task

with weight W − bW c (if this value is non-zero).

• Maximize Parallelism (MP): Create n servers with weight min
(

W
n , 1

)

each, where k is

the maximum length10 of the queue and n = min(k,M).

The (ML) rule uses unit-weight server tasks to guarantee bW c quanta in each slot. The

disadvantage of this approach is that at most dW e requests can be simultaneously serviced.

Consequently, processors may idle even when unserviced requests exist. The (MP) rule guar-

antees that if a processor is unassigned in a slot, then all requests in the queue are being

serviced within that slot. However, due to the use of lower server weights, requests may

experience longer waiting times under this rule.

Server policies. A server policy defines the server’s reactions to changes in the request

queue. Specifically, a server policy defines the server’s behavior in the following two scenarios:

10This length is determined by the number of requests that can exist simultaneously in the queue.
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1. the server is scheduled while its request queue is empty;

2. the server is ineligible while its request queue is non-empty.

In the first scenario, three actions are currently supported by the Pfair task models.

Idle: the server accepts the allocated quantum, thereby consuming its subtask,

and idles the processor.

Stall: the server refuses the allocated quantum, which is allocated to some other

task, and sets the release of the associated subtask to the next slot boundary.

Drop: the server refuses the allocated quantum, which is allocated to some other

task, and marks the associated subtask as being absent.

Each of these behaviors reflects a task model. Specifically, Idle corresponds to the Pfair

model, Stall corresponds to the ISfair model, and Drop corresponds to the GISfair model.

Figure 3.7 illustrates each of the above policies.11 In this example, a server task S competes

for a single processor against two other tasks T and U . Five one-shot tasks (jobs) must be

serviced by S: J = J(3.5, 0.5Q, 8.5), K = J(10.25, 0.25Q, 13.75), L = J(2, 0.25Q, 10), M =

J(11, 0.25Q, 15), and N = J(11, 1.75Q, 40). These jobs are scheduled by a fully preemptive

EDF policy. (This scenario is also considered in Figure 3.8.)

At time 1, S is scheduled, but has an empty request queue. The Idle policy accepts

the quantum and simply idles, as shown in Figure 3.7(a). Although this seems wasteful, it is

possible that a request may be issued during that quantum. For instance, this occurs in slot 10:

S idles until K’s arrival at time 10.25. The Stall (respectively, Drop) policy avoids taking

11In these examples, the scheduling of subtasks is denoted by placing a square in the appropriate slot of each
subtask’s window. These squares denote quanta of processor time rather than the total processor time in the
slot, i.e., we do not explicitly show processor time consumed by scheduler invocations and other overheads.
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the quantum by delaying the subtask release until the next slot (respectively, by marking the

subtask absent). These actions are illustrated by insets (b) and (c) of Figure 3.7, respectively.

Two actions are supported by the Pfair task models for the second scenario (i.e., the

server is ineligible while its request queue is non-empty).

Wait: the server does nothing and waits for its next subtask release.

Early Release: the server early-releases subtasks when requests exist.

Again, each of these options represents a Pfair task model. Specifically, Wait corresponds to

the Pfair model, while Early Release (obviously) corresponds to the ERfair model.

All of the schedules shown in Figure 3.7 assume a Wait policy. Figure 3.8(a) illustrates

the use of early releasing with an Idle policy. At time 2, job L arrives and prompts S to

release S2 early. However, S2 is still not scheduled until time 4. On the other hand, early

releasing S4 and S5 speeds the servicing of both M and N in slots 11 and 13.

Idle capacity. Performance can be improved when idle capacity exists by allowing servers

to quick-release their subtasks. Quick-releasing is advisable as a supplementary measure since

it allows idle quanta to be utilized without penalizing the executing task to the same degree

as early-releasing. Figure 3.8(b) shows the result of applying an Idle/Wait policy when quick

releasing is permitted.

Alternatively, background scheduling can be used to assign idle processors to unserviced

requests without any penalty. The primary advantage of quick releasing over background

scheduling is that quick releasing allocates idle capacity more fairly on average and is capable

of enforcing maximum shares [2]. Figure 3.8(c) shows the result of applying an Idle/Wait

policy along with background scheduling. (The background scheduler is denoted BG .)
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Figure 3.7: Illustration of possible server reactions to being scheduled while the request queue
is empty. Insets show the (a) Idle, (b) Stall, and (c) Drop policies.
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Figure 3.8: Illustration of server behaviors that can be used to speed servicing of requests while
ineligible. Techniques include (a) early releasing, (b) quick releasing, and (c) background
scheduling.
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3.4.2 Worst-case Responsiveness

We now present a lemma and corollaries that characterize the worst-case responsiveness of a

server task. Here, “responsiveness” refers to the amount of time that elapses before a server

task receives a specified amount of processor time. To simplify the presentation of the results

below, we let span(T, n) denote the worst-case n-span of T , as shown below.

span(T, n) =

⌈

n + β − 2

T.w

⌉

+ ε + 1

The above formula follows trivially from Lemma 3.3. In addition, we say that a server S

is inactive at time t if S has postponed the release of a subtask until the slot after that

containing t. Otherwise, we say that S is active at t. (S can only be inactive under the Stall

policy.)

Lemma 3.8 If a Pfair-scheduled server task T is active at time t, then the amount of time

required for it to receive C units of processor time, provided the server remains active until

doing so, is upper-bounded by

span

(

T,

⌈

C

Q

⌉

+ 1

)

− 1 −

(⌈

C

Q

⌉

Q − C

)

.

Proof. The worst-case delay occurs when T ’s allocation is delayed as long as possible

without violating its constraints. This occurs when a subtask of T executes in the first slot of

its window, t corresponds to the end of that slot, and every subsequent subtask executes in

the latest possible slot. Figure 3.9 illustrates this scenario for the C = 3Q case. Under such

conditions, q quanta are received after a delay of at most span(T, q + 1) − 1. Hence, C units

of processor time will be received by time t + span
(

T,
⌈

C
Q

⌉

+ 1
)

− 1. This estimate rounds up



87

20

worst−case delay for C=3Q

maximum span of 4 consecutive windows

0 5 10 15

t

T

Figure 3.9: Illustration of the worst-case delay from t required for a server with weight 3
10 to

receive C = 3Q units of processor time when the server is active at t.

C to the next quantum multiple, which results in
⌈

C
Q

⌉

Q − C more units of processor time

than requested. The actual worst-case response time is obtained by subtracting this amount

off of the previous estimate, producing the formula stated in the lemma. 2

Lemma 3.9 If a Pfair-scheduled server task T is inactive at time t, then the amount of time

required for it to receive C units of processor time, provided the server remains active until

doing so, is upper-bounded by

span

(

T,

⌈

C

Q

⌉)

+ 1 −

(⌈

C

Q

⌉

Q − C

)

.

Proof. Again, the worst-case delay is produced by scheduling all subtasks of T scheduled

after t in the last slots of their respective extended windows. If T is inactive at t and receives

a request at that time, then it will release its next subtask at the next slot boundary, as

planned. Figure 3.10 illustrates this scenario for the C = 3Q case. Since this next slot

boundary must occur within one slot, T is guaranteed to receive C units of processor time

by t + span
(

T,
⌈

C
Q

⌉)

+ 1. As in the previous proof, this estimate overestimates the response

time by
⌈

C
Q

⌉

Q − C and is similarly adjusted. 2
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Figure 3.10: Illustration of the worst-case delay from t required for a server with weight 3
10

to receive C = 3Q units of processor time when the server is inactive at t.

Corollary 3.2 The amount of time required for a Pfair-scheduled server task T to receive C

units of processor time, provided it remains active until doing so, is upper-bounded by

span

(

T,

⌈

C

Q

⌉

+ 1

)

− 1 −

(⌈

C

Q

⌉

Q − C

)

.

Proof. Since the server must be either active or inactive at t, the worst-case delay before

receiving C units of processor time can be determined by taking the maximum of the bounds

given in Lemmas 3.8 and 3.9. The corollary follows. 2

3.4.3 Acceptance Test for One-shot Real-time Tasks

In this subsection, we present a simple approach by which one-shot real-time tasks can be

scheduled using server tasks. Upon arrival, each job (i.e., one-shot task) is subjected to an

acceptance test to determine whether all deadlines can be met if the job is allowed to join

the server queue. If so, the job is accepted and stored in the queue. Otherwise, the job is

rejected. Since the handling of rejections is a policy decision that is related to the purpose

of the job, we do not discuss this aspect of acceptance testing here. In the remainder of this
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subsection, we present a simple acceptance test to support one-shot tasks. This test assumes

that jobs that are ready to execute immediately upon arrival and are scheduled using a fully

preemptive EDF policy. Extending this test to other cases is straightforward.

Worst-case responsiveness. Although the responsiveness bounds given in the lemmas

above could be used to bound the response time of accepted jobs, more accurate accounting

is possible by considering the runtime state of the server. We assume each server task T

maintains the following state information:

• θ: the total IS delay of T experienced up to the current time.

• q: the amount of processor time remaining in T ’s current quantum, or zero if T is not

currently executing.12

• i: the index of T ’s next subtask, i.e., the lowest-indexed present subtask that has not

started executing.

The theorem that follows characterizes the worst-case responsiveness of a server as a function

of this runtime state.

Theorem 3.1 A server task T that is characterized by θ, q, and i at time t is guaranteed to

receive C units of processor time by time

θ + d

(

T
i+
⌈

C−q

Q

⌉

−1

)

−

(⌈

C − q

Q

⌉

Q + q − C

)

if C > q and by time

t + C

12This value can be approximated based on the current time, the time at which the current slot ends, and
an estimate of the maximum processor time lost to overhead in between. In practice, q would be computed
only when needed. We assume it is maintained only to simplify the test presented later.
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Figure 3.11: Illustration of the worst-case delay from t required for a server with weight 3
10 to

receive C = 3Q units of processor time. The estimate is based on the server’s runtime state.

if C ≤ q, provided the server remains active until doing so.

Proof. The C ≤ q case is trivial since T executes continuously. Hence, consider the C > q

case. Figure 3.11 illustrates the worst-case delay of a server with weight 3
10 for the C = 3Q,

θ = 3, i = 3, and q = 3
4Q case. The net effect of the θ parameter is to shift all future

extended deadlines (i.e., those with indexes at least i) to the right by θ slots. Therefore, T

is guaranteed to receive k full quanta by time θ + d(Ti+k−1), resulting in a total allocation of

k ·Q+q by that time. It follows that
⌈

C−q
Q

⌉

Q+q units of processor time are received by time

θ +d

(

T
i+
⌈

C−q

Q

⌉

−1

)

. However, since
⌈

C−q
Q

⌉

Q+ q ≥ C, only part of the last-received quantum

may be needed. Specifically, an excess of
⌈

C−q
Q

⌉

Q + q − C is received after the required C

units. Subtracting off this amount yields the bound given in the theorem. 2

Acceptance test. A simple on-line acceptance test based on the above theorem is shown in

Figure 3.12. This algorithm stores the one-shot tasks in a list jobset ordered non-decreasingly

by absolute deadline. When a new task T arrives, AdmissionTest is invoked on T to perform

the acceptance test. The test consists of checking T ’s deadline, denoted T.deadline , and all

later deadlines, in non-decreasing order, to ensure that the total processor time required by
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the one-shot tasks by each deadline does not exceed the amount of time guaranteed to the

server task. The required time is computed by summing the remaining execution time of

each task U , denoted U.execnow . If the invocation returns true, then T was accepted and

stored in the list during the invocation. Otherwise, T was rejected and the list is restored to

its original state.

In AdmissionTest, the server task is left implicit and Response represents the response-

time bound given in Theorem 3.1. All other procedures are list operations. A constant time

complexity is achievable for all procedures by implementing each list as a queue.

Detailed description. An invocation of AdmissionTest begins by calculating the total

processor time required by all requests with deadlines at or before T.deadline (lines 1–6). As

these requests are processed (lines 4–6), they are moved from jobset into before. Since these

requests were previously accepted, they do not require checking. In lines 7–8, T ’s execution

requirement is added to C, and D is initialized to T.deadline , which is the first deadline that

must be checked. Lines 9–14 then check that sufficient processor time is guaranteed by each

deadline of T and the previously accepted tasks. Specifically, the Response(C) ≤ D condition

in line 10 causes the loop in lines 10–14 to immediately terminate if it is determined that the

server cannot guarantee a deadline. When Response(C) ≤ D holds, the accepted task with

the next deadline is considered in lines 11–13 and then moved into the after list in line 14.

Line 15 then moves all unprocessed tasks into after so that all previously accepted tasks

reside in either before or after . (Unprocessed tasks exist at line 15 only when T is rejected.)

If the final comparison succeeds (line 16), then T is accepted in lines 17–19. Otherwise, T is

rejected in lines 20–21. Each routine invocation has time complexity O(|jobset |).

Remarks. The acceptance test presented here operates by allowing one-shot tasks to
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typedef nodetype
record

begin
deadline: real;
execnow : real

end

var
jobset , before, after : list of nodetype ordered by non-decreasing deadline;
T , U : nodetype; C, D: real

procedure AdmissionTest(jobset, T ) returns boolean
1: C := 0;
2: before := MakeList();
3: while Size(jobset) > 0 ∧ Head(jobset).deadline ≤ T.deadline do
4: U := RemoveFromHead(jobset);
5: C := C + node .execnow ;
6: InsertAtTail(before, U)

od;
7: C := C + T.execnow ;
8: D := T.deadline ;
9: after := MakeList();
10: while Size(jobset) > 0 ∧ Response(C) ≤ D do
11: U := RemoveFromHead(jobset);
12: C := C + U.execnow ;
13: D := U.deadline ;
14: InsertAtTail(after , U)

od;
15: after := Concatenate(after , jobset);
16: if Response(C) ≤ D then
17: Enqueue(before, T );
18: jobset := Concatenate(before, after);
19: return true

else
20: jobset := Concatenate(before, after);
21: return false

fi

Figure 3.12: Online acceptance test for one-shot real-time tasks.

consume slack time (i.e., excess processor time) that exists over an interval. This approach,

called slack stealing , is quite common under both time-driven and event-driven scheduling.
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For instance, similar algorithms are described by Liu in [45].

3.5 Summary

This chapter outlined the design of a Pfair-scheduled operating system and addressed some

of the simpler challenges posed by such a design. First, we discussed the implementation

of quantum-based scheduling and the impact it has on the assumptions underlying Pfair

scheduling. Second, we introduced a model for describing the guarantees provided by global

schedulers based on the Pfairness constraint and its relaxed variants. We then derived basic

properties of the global scheduler using the model’s parameters. This model permits work

presented here to be applied under all of the known Pfair policies without requiring re-

derivation of results. Third, we derived sufficient mapping rules for scheduling independent

periodic and sporadic tasks, both with and without suspensions. Later, Chapters 5 and 6

further extend these rules to support task synchronization. Finally, we discussed the use of

server tasks under Pfair scheduling and presented a simple acceptance test for one-shot tasks.

Chapter 4 continues the discussion of server tasks by extending the supertasking approach.



CHAPTER 4

Hierarchal Scheduling 1

In this chapter, we extend the supertasking approach proposed by Moir and Ramamurthy [48].

We present four primary contributions. First, we show that scheduling within a supertask

is analogous to scheduling on a dedicated uniprocessor. Second, we identify the cause of the

component-task timing violations observed in [48]. Third, we present a flexible framework

for selecting a supertask weight that guarantees the timeliness of its component tasks. We

demonstrate the utility of this framework by considering several common scenarios. Finally,

we compare and contrast Pfair scheduling with supertasks to partitioning. As we explain, the

two approaches are quite similar conceptually. Because of this, many benefits of partitioning

can also be obtained through the use of supertasks.

Organization. These results are presented in six sections. Section 4.1 provides insight into

supertasking and its relationship to other approaches. In Section 4.2, a sufficient schedulabil-

ity condition for the component tasks is derived. In Section 4.3, this last condition is used to

derive a “reweighting” condition, which is a sufficient schedulability condition in the form of a

1This chapter is derived from work previously published in the following papers:
[31] P. Holman and J. Anderson. Guaranteeing Pfair supertasks by reweighting. In Proceedings of the 22nd
IEEE Real-time Systems Symposium, pages 203–212, 2001.
[34] P. Holman and J. Anderson. Using hierarchal scheduling to improve resource utilization in multiprocessor
real-time systems. In Proceedings of the 15th Euromicro Conference on Real-time Systems, pages 41–50, 2003.
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collection of supertask weight restrictions. Section 4.4 focuses on selecting a “safe” supertask

weight, i.e., one that satisfies the reweighting condition and hence guarantees schedulability.

Section 4.5 then presents and proves basic properties of an algorithm for selecting safe super-

task weights. Section 4.6 presents the results of an experimental evaluation of supertasking.

4.1 Understanding Supertasking

Supertasking is actually a natural extension of Pfair scheduling. Baruah, Cohen, Plaxton,

and Varvel [11] observed that a task set τ consisting of independent synchronous tasks that

never suspend can be successfully scheduled by assigning each task a dedicated processor that

executes at exactly the rate needed by that task. Under such a system, processor speeds vary.

Pfair scheduling, by design, simulates such a system by time-sharing “virtual” processors

(i.e., the Pfair tasks) among M identical processors. Each Pfair task effectively acts as a

dedicated processor for the periodic task that it executes.

Virtual processors differ from dedicated processors in that the amount of processor time

available to the task set varies over time. Proper analysis requires that these variations be

bounded and predictable. Under Pfair scheduling, this variance is a function of the assigned

weight and the guaranteed lag bounds, as we later show. When a unit weight is assigned, a

virtual processor perfectly imitates a dedicated processor.

Related concepts. Using server tasks (i.e., virtual processors) to multiplex several ap-

plications onto a single platform is a relatively old idea. For instance, in 1989, Tucker and

Gupta suggested using virtual processors to more seamlessly support workload changes when

multiplexing parallel applications onto a multiprocessor [67]. In addition, thread packages,

which are now commonly available, are a direct application of the virtual-processor concept.
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For instance, Java programs are executed on a virtual processor referred to as the Java virtual

machine (or JVM) [14].

Using servers as virtual processors is a central concept in work on open systems. In

open systems, independently developed applications share one or more physical processors

and must be isolated from each other. Server approaches, such as Abeni and Buttazzo’s

constant-bandwidth server (CBS) [1], are ideal for this purpose because they provide a layer

of abstraction between the application and the underlying operating system. Not surprisingly,

a substantial body of work has focused on the use of CBS and related approaches in open

systems (e.g., [40, 15]). The primary difference between the CBS and supertasking approaches

is the task model of the server; the CBS approach is based on the periodic and sporadic models

while supertasking is based on the Pfair task models.

Supertasking and partitioning. Supertasking extends the one-to-one relationship be-

tween virtual processors and tasks (considered in [11]) into a one-to-many relationship. In

doing so, a new problem is introduced: how should tasks be grouped? In practice, tasks may

not always be implicitly grouped. In such cases, tasks can be artificially grouped in order

to reduce contention and overhead. Notice that dividing tasks among groups bears a strong

resemblance to partitioning approaches (discussed earlier in Chapter 1).

The primary difference between supertasking and partitioning is that partitioning binds

tasks to physical processors, while supertasking binds tasks to virtual processors. Under

partitioning, exactly M processors are available, each with unit capacity. Neither of these

values (i.e., the processor count and processor capacity) can be varied. On the other hand,

the number of supertasks is unrestricted and capacities (i.e., weights) can be assigned after

making task assignments. Hence, the assignment of tasks to supertasks can be accomplished
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through an algorithm of the following form:

1. Compute initial weights for all tasks in τ .

2. Create a set π of |τ | empty supertasks.

3. Assign S.w = 1 to each supertask S ∈ π.

4. Apply a heuristic to assign all tasks in τ to supertasks in π.

5. Remove all empty supertasks from π.

6. Update parameters for all tasks in τ (e.g., weights, blocking estimates, etc.)

based on assignments.

7. Update weights for all supertasks in π based on assignments.

8. If any supertask weight exceeds unity, discard π and return to Step 2.

Step 7 in the above algorithm is the primary difference between supertasking and parti-

tioning. In this step, supertask capacities are effectively “shrunk” down to the size of the

assigned component task set. Such an action is clearly not possible when assigning tasks

directly to physical processors.

4.1.1 Benefits of Supertasking

The benefits of supertasking vary with the internal scheduling policy. In this chapter, we

consider both quantum-based and fully preemptive policies. In addition, we assume that all

supertasks use either an Idle-and-Wait or a Drop-and-Wait server policy2 (see Chapter 3).

Quantum-based supertasking. When using a quantum-based policy with a supertask, we

assume that the supertask slot size matches that of the global scheduler. Hence, component

2The presented analysis works for either policy.
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tasks are also subdivided into subtasks, just like Pfair tasks. Figure 2.5, shown earlier,

illustrates such a policy. When considering this supertasking approach, we assume that T.c

(i.e., T ’s tardiness threshold) is an integer for each component task T . (If not, bT.cc can be

substituted in place of the actual value.)

The advantages and disadvantages of quantum-based supertasking are basically the same

as for any form of quantum-based scheduling. As explained earlier in Chapter 1, the primary

advantage is predictability, while the primary disadvantage is the potential for wasted proces-

sor time due to both partially used quanta and unnecessary scheduler invocations. However,

quantum-based supertasking provides an additional advantage: at most one component task

executes within each slot. Consequently, supertasking can be used to reduce the worst-case

per-slot contention for a shared resource by restricting parallelism. We discuss this application

of supertasking in more detail later in Chapters 5 and 6.

Fully preemptive supertasking. The second form of supertasking that we consider is the

use of supertasks that use fully preemptive policies internally. Figure 4.1 illustrates the use

of fully preemptive EDF scheduling. This schedule is derived from that shown in Figure 2.5

by replacing the two Pfair component tasks with periodic tasks. Notice that the quantum

allocated to the supertask in slot 1 is divided among two different tasks, which implies a

context switch within that slot.

The primary advantage of fully preemptive supertasking is that its performance more

closely resembles that of traditional fully preemptive scheduling. For example, global quantum-

based scheduling wastes less processor time when scheduling fully preemptive supertasks.

Processor time allocated to a fully preemptive supertask is wasted only when no component

task is ready. For example, in Figure 4.1, idling was avoided in slot 1 by switching to Y(1)
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Figure 4.1: Sample supertasking schedule. Supertask S serves two periodic component tasks,

X = P
(

0, 3
4Q, 6, 6

)

and Y = P
(

1, 1
2Q, 10, 7

)

. The PD2 policy is used globally, while the EDF

policy is used within S.

upon the completion of X(1). (Recall that T (i) denotes the ith job of task T .) In general,

as the size of the component task set increases, partially used quanta occur less frequently.

Furthermore, as the weight of the supertask approaches unity, the supertask is preempted less

frequently in the global schedule. Hence, context switching and caching behavior approaches

that obtained by partitioning.

The primary disadvantages of this approach are the increased overhead and unpredictabil-

ity caused by allowing scheduler invocations within slots. However, using an EDF policy

somewhat compensates for these problems due to the depth of existing research, i.e., tech-

niques exist for analyzing a fully preemptive EDF policy on a dedicated uniprocessor. As

the work in this chapter demonstrates, it is often straightforward to adapt these uniprocessor
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techniques for use within fully preemptive supertasks.

4.1.2 The Cost of Supertasking

In order to quantify the cost of using supertasks, it is necessary to first define an ideal form

to use as a baseline for comparison. We define such an ideal form for both quantum-based

and fully preemptive supertasks below.

Quantum-based supertasking. As observed by Moir and Ramamurthy [48], a quantum-

based supertask would ideally be granted a weight equal to the cumulative weight of its

component tasks. Letting S.IQ denote this ideal weight results in the definition given below.

S.IQ
def
=

∑

T∈S

T.w (4.1)

Hence, the overhead resulting from the use of a quantum-based supertask is given by S.w −

S.IQ. We refer to this overhead as inflation or reweighting overhead.

Fully preemptive supertasking. The ideal supertask weight is similarly defined for fully

preemptive supertasks. However, in this case, we must first consider the relationship between

weight and utilization, due to the fact that component tasks are not characterized by weights.

Over an interval of length L, a task with weight w is allocated approximately w · L quanta,

which results in a total allocation of (w · L) · Q. Hence, the utilization of the task over the

interval is given by (w·L)·Q
L , which simplifies to w · Q. It follows that a utilization of u is

achieved by a weight of u
Q .

We now use this relationship to define the ideal weight. Ideally, a supertask would be

assigned the smallest weight necessary to ensure the total utilization of its component tasks.
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Figure 4.2: Two-processor schedule with a (a) normal and (b) reweighted supertask S.

This utilization is given by

S.u
def
=
∑

T∈S

T.u.

Using the relationship between weight and utilization, the ideal weight, denoted S.IP , is

defined as shown below.

S.IP
def
=

S.u

Q
(4.2)

Hence, the overhead produced by a fully preemptive supertask is given by S.w − S.IP .

4.1.3 Understanding Failures

To see why supertasking (as proposed by Moir and Ramamurthy [48]) can fail, consider

the two-processor Pfair schedule shown in Figure 4.2. The task set consists of four Pfair

tasks (V = PF
(

1
2

)

, W = PF
(

1
3

)

, X = PF
(

1
3

)

, and Y = PF
(

2
9

)

) and one supertask

S that represents the two component tasks T = PF
(

1
5

)

and U = PF
(

1
45

)

(shown in the
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lower region). All tasks have miss thresholds of zero and Pfair global scheduling is assumed.

In Figure 4.2(a), S competes with its ideal weight, i.e., S.w = S.IQ = 1
5 + 1

45 = 2
9 . All

scheduling decisions in the upper region are consistent with the PD2 policy. In the lower

region, allocations within S are shown, which are made according to the EPDF policy.

As the schedule shows, T misses a pseudo-deadline at time 10. This is because no quan-

tum is allocated to S in the interval [5, 10). In general, component tasks may violate their

timing constraints whenever there exists an interval [t1, t2) over which the total processor time

required by the component tasks, denoted demand(S, t1, t2), exceeds the minimum amount

of processor time guaranteed to the supertask, denoted supply(S, t1, t2). Observe that [5, 10)

is such an interval since demand(S, 5, 10) = Q due to T2, while supply(S, 5, 10) = 0. To

ensure the timeliness of component tasks, it is sufficient (though not necessary in most cases)

to guarantee that supply(S, t1, t2) ≥ demand (S, t1, t2) over all intervals in which a violation

could potentially occur. Selecting a supertask weight that provides such a guarantee, called

reweighting , is the goal of this chapter.

Figure 4.2(b) illustrates how reweighting can ensure timeliness. In this schedule, S.w has

been increased to 2
5 , resulting in an inflation of 2

5 − 2
9 = 8

45 . As shown, no component task

violates its timing constraints. However, an unfortunate side effect of reweighting is that

a supertask will inevitably be allocated more processor time than its component tasks can

utilize; quanta marked with an “X” are allocated to the supertask but cannot be used.

4.1.4 Example Scenarios

One advantage of the reweighting methodology presented here is the ease with which it can

be adapted to new scheduling scenarios. Unfortunately, since each scenario typically requires

unique reasoning, it is not possible to derive formulas that can be universally applied in all
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scenarios. To facilitate the presentation, we have tried to use variable and function definitions

to isolate scenario-specific details from the parts of the methodology that are common to all

scenarios.

However, explaining the methodology without providing any concrete examples to illus-

trate each step can also be confusing. As a compromise, we have chosen five example scenarios

that will be used to illustrate the application of our methodology (i.e., we demonstrate the

derivation of the scenario-specific details for each of these five scenarios). These examples

have been selected to highlight common problems and to provide a reasonable coverage of the

issues involved when reweighting. Specifically, we consider the following scenarios:

Scenario 1: Quantum-based EPDF scheduling (QB-EPDF)

Component tasks are GIS tasks and are scheduled by a quantum-based supertask.

Hence, this scenario applies to both rate-based tasks and mapped tasks produced by

Lemmas 3.4–3.7. Subtasks are prioritized by the EPDF policy. The global scheduler is

assumed to respect Pfairness, i.e., β− = β+ = 1 and εr = εd = 0.

Scenario 2: Quantum-based EDF scheduling (QB-EDF)

Under this scenario, tasks are characterized by weights and are scheduled by a quantum-

based supertask. However, unlike the previous scenario, subtasks are not assigned

releases and deadlines based upon lag constraints. Instead, each T.J consecutive subtask

cycles are taken to represent a logical job of T , called a pseudo-job; the release and

deadline of each subtask is set to coincide with that of the pseudo-job with which it

is associated. (The term “pseudo-job” is used to avoid confusion with jobs of periodic

and sporadic tasks.) As in the sporadic task model, the release of a pseudo-job can be

delayed. However, releases are constrained to occur on slot boundaries.
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Figure 4.3 illustrates the relationship between jobs, subtasks with lag-based windows,

and subtasks with pseudo-job-based windows. Task T is a sporadic task, while task U

is a Pfair task, i.e., windows of U are defined by the Pfair lag constraint. Task U was

derived from T by using the mapping given by Lemma 3.4 on page 73. By this mapping,

two window cycles service each job of T, as shown. Consider subtasks U1–U4. Notice

that enforcing the deadlines of subtasks U1–U3 and the releases of subtasks U2–U4

is not necessary to satisfying the job constraints of T . In short, U is over-constrained

relative to T. As we later show, these additional constraints imposed by U translate

into increased inflation. This inflation can be reduced by setting all subtask releases

and deadlines to the earliest and latest times, respectively, that do not produce a timing

violation. In this example, the releases cannot be set before time 5, while the deadlines

must occur at or before time 23. Hence, we say that V has a pseudo-job spanning

[5, 23). As shown in Figure 4.3, all four subtasks associated with this pseudo-job have

releases and deadlines corresponding to that of the pseudo-job. (Subtasks must still

be executed in order and cannot execute in parallel.) Since each pseudo-job spans two

cycles, V.J = 2 in this example.

Scenario 3: Fully preemptive EDF scheduling (FP-EDF)

Component tasks are independent sporadic tasks that never suspend; these tasks are

scheduled by a fully preemptive EDF policy within the supertask.

Scenario 4: EDF scheduling with nonpreemptable code segments (FP-EDF-NP)

This scenario extends Scenario 3 by providing support for nonpreemptable execution

within the supertask.3 We let U.υ denote an upper bound on the execution requirement

3We do not consider making the supertask nonpreemptable since that would also impact global scheduling.
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Figure 4.3: Illustration of the three different models for the sporadic task T = S(5, 4Q, 18, 18)
considered in the example scenarios. Job releases are constrained to fall on slot boundaries.
Both task U and task V have weights of 2

9 . However, the windows of task U are assigned
based on lag constraints, while those of task V are assigned according to V ’s pseudo-jobs,
where V.J = 2.

of any nonpreemptable code segment of task U . This scenario is a generalization of

fully nonpreemptive scheduling (within the supertask), which can be achieved by letting

U.υ = U.e for all U ∈ S.

Scenario 5: EDF scheduling with locking synchronization (FP-EDF-CS)

This scenario extends Scenario 3 by providing support for locking synchronization within

the supertask. The use of a locking protocol that satisfies the following behavioral

properties is assumed:

• Locks are granted to jobs according to scheduling priority.

• A lock is granted only when the requesting job is capable of immediately executing,

i.e., the task must have the highest scheduling priority in the supertask and the

supertask must have a processor.

• When a job holds no locks, it executes using its normal priority.4

4The normal priority of a job is the priority assigned to it by the scheduling policy. In this case, the
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• When a job holds a lock, it executes at a priority level that is at least that of each

job that it blocks.

Both the priority-inheritance protocol (PIP) and the priority-ceiling protocol (PCP) [54]

satisfy these constraints. Under priority inheritance, a job that blocks a higher priority

job “inherits” that job’s priority until the lock is released. Unfortunately, the PIP does

not avoid deadlock in the presence of nested critical sections.5 The PCP is based on a

more static notion of priority inheritance in which a task’s priority is boosted as soon

as it obtains any lock that may block a higher priority task. As a result, the PCP does

avoid deadlock.

To simplify these example scenarios, we assume that all periodic and sporadic tasks have

relative deadlines equal to their periods.

4.2 Deriving a Schedulability Condition

We next derive a sufficient schedulability condition for a set of component tasks. To accom-

plish this, we present a framework for analysis based on uniprocessor demand-based analysis

(DBA). When discussing DBA, we use the term request to refer to any request for processor

time issued by a task (i.e., either a job or a subtask depending on the scenario).

DBA on a dedicated uniprocessor. We begin by illustrating the ideas underlying

DBA with an example. Figure 4.4 shows a schedule in which four independent, synchronous

periodic tasks are scheduled on a dedicated uniprocessor using a fully preemptive EDF policy.

As shown, a timing violation (i.e., deadline miss) occurs at time 24.

scheduling policy is that used within the supertask.

5Actually, the PIP does avoid deadlock when tasks are constrained to request locks in a specific order.
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Figure 4.4: Sample DBA schedule consisting of four synchronous periodic tasks: T1 =
P(0, 1, 3, 3), T2 = P(0, 1, 4, 4), T3 = P(0, 2, 6, 6), and T4 = P(0, 3, 19, 19). The task set is
scheduled using a fully preemptive EDF policy and experiences its first violation at time 24,
as shown.

The goal of DBA is to characterize the state of the system leading up to the timing

violation. Let R denote the request (job) that experiences the violation. (We will refer to

R repeatedly throughout the chapter.) R = T2(6) in Figure 4.4. Let td and tr denote the

times at which the violation occurs and at which R was released, respectively. In Figure 4.4,

td = R.d = 24 and tr = R.a = 20.

Now, consider the state of the system over [tr, td). First, due to the existence of R and

the EDF-based prioritization of tasks, no idling occurred within [tr, td) and every job that

executed in the interval had a deadline at or before td. Hence, Property BP, shown below,

held throughout [tr, td).

Busy Period (BP): A ready or executing job exists that has priority at least that of R.
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Unfortunately, characterizing the state of the system at tr is difficult. Under DBA, this

problem is addressed by simply moving the start of the interval under observation to an

earlier point at which the state is known. Specifically, let tP denote the earliest time within

the interval [0, tr] for which a given property P holds throughout [tP , tr).
6 In the DBA

example, Property BP is P . It is often necessary to modify P to account for events that may

occur at runtime, such as task suspensions. Indeed, we necessarily consider a different choice

of P below to account for the scheduling of the supertask. Since tP = tr trivially satisfies the

requirement when no other points do, some valid choice of tP always exists. In Figure 4.4,

tP = 0. Based on the selection criteria for tP , [tP , td) also satisfies the properties stated above

for [tr, td). In addition, the fact that Property BP does not hold immediately prior to tP

implies that all jobs executing in [tP , td) are released at or after time tP .

It follows from the above observations that all processor time in [tP , td) was consumed by

job with releases at or after tP and with deadlines at or before td. The total processor time

required to complete all such jobs is called the demand and is denoted demand(τ, tP , td). The

available processor time in [tP , td) is then called the supply and is denoted supply(τ, tP , td).

On a dedicated uniprocessor, the supply is simply determined by the interval length, i.e.,

supply(τ, tP , td) = td − tP . The fact that a deadline miss occurs implies the following rela-

tionship (and a necessary condition for a deadline miss).

demand(τ, tP , td) > supply(τ, tP , td)

In Figure 4.4, demand(τ, tP , td) = 25 and supply(τ, tP , td) = 24.

6Typically, P is selected to be a property that holds over [tr, td). However, this approach does not necessarily
produce the best results. Unfortunately, effective selection of P requires insights into the scenario under
consideration and some degree of intuition, i.e., we are aware of no systematic method for selecting P .
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Formalizing the condition. The goal of DBA is to derive a necessary condition for a

timing violation to occur, i.e., to find a condition C that satisfies

a violation occurs ⇒ C.

Restating the relationship between supply and demand more formally produces the following

definition for C:

C
def
= (∃tP , td : td − tP ≥ min { T.p | τ } : demand(τ, tP , td) > supply(τ, tP , td)).

The constraint td − tP ≥ min { T.p | τ } follows from the fact that [tP , td), defined above,

always contains [tr, td). (The inequality td − tr ≥ min { T.p | τ } follows from the fact that

td − tr = R.d and each task’s relative deadline equals its period.) Taking the contrapositive

of a violation occurs ⇒ C produces the sufficient schedulability condition

¬C ⇒ no violation occurs .

Hence, no deadline misses can occur if the following condition is satisfied:

(∀tP , td : td − tP ≥ min { T.p | τ } : demand(τ, tP , td) ≤ supply(τ, tP , td)). (4.3)

Generalizing DBA for supertasking. Applying DBA to supertasks follows the same

steps given above. However, several modifications are necessary. First, timing violations

under supertasking are tardiness violations rather than deadline misses. Second, Property BP

cannot be applied effectively because it does not account for the scheduling of the supertask.
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For the five example scenarios considered here, we consider Property SBP, shown below.

Supertask Busy Period (SBP): Whenever S is scheduled, an eligible or executing request

of a component task exists that has normal priority at least that of R.

Notice that the only significant difference between Property SBP and Property BP is that

attention is restricted to times at which S is executing. To the best of our knowledge,

all properties proposed for DBA on a dedicated uniprocessor can be similarly adapted to

supertasking with relative ease. Third, since component tasks can only execute when S is

scheduled, it follows that supply(S, tP , td) = received(S, tP , td).

Bounding demand. The most difficult part of DBA is deriving bounds on the demand

generated by the tasks. In the DBA example given in Figure 4.4, all demand was manda-

tory in the sense that the jobs contributing to the demand existed only within the interval

[tP , td). Hence, successful scheduling required that all such jobs, called mandatory jobs, be ex-

ecuted within [tP , td). For instance, no combination of scheduling policy and synchronization

protocols can successfully schedule the task set without executing job T3(3) within [0, 24).

Real task systems are typically more complex, which results in additional demand being

introduced into each interval. We refer to such demand as circumstantial demand . Circum-

stantial demand is generated by dependencies between requests (e.g., precedence constraints,

resource sharing, etc.) and the use of suboptimal policies (e.g., using RM on a uniprocessor,

allowing non-preemptable execution, etc.).

The circumstantial demand stemming from the latter source is the result of how policy

choices can the impact the difficulty of scheduling. For instance, if a fully preemptive RM

policy is used on a dedicated uniprocessor, then a job J with a later deadline than R may be

prioritized over R. Hence, the choice of scheduling policy imposes the unnecessary constraint
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that J be executed before R (if both requests are pending). When the goal of scheduling is to

meet deadlines, such a constraint is simply illogical. Indeed, this policy choice actually makes

scheduling more difficult due to the fact that more processor time is needed to guarantee

that R’s deadline is met (as compared to that required when an optimal prioritization is

used). Since it is not necessary to schedule J in [tP , td), the demand contributed by J is

circumstantial demand. Similarly, a job J can contribute to the circumstantial demand by

holding a lock that is needed by a mandatory job or by initiating a non-preemptive code

segment immediately prior to tP .

To distinguish between these two forms of demand, we decompose demand(S, tP , td)

into mandatory demand, denoted demandM (S, tP , td), and circumstantial demand, denoted

demandC(S, tP , td). Hence, demand(S, tP , td) = demandM (S, tP , td) + demandC(S, tP , td).

Since requests in the QB-EPDF, QB-EDF, and FP-EDF scenarios are prioritized by an EDF

rule and these scenarios consider only independent tasks that never suspend, attention can

be restricted to mandatory demand. However, circumstantial demand does exist and must

be accounted for in the FP-EDF-NP and FP-EDF-CS scenarios due to the inclusion of non-

preemptable code segments and critical sections, respectively.

Schedulability condition. We now state the schedulability condition that will be used to

drive the reweighting process, which is discussed later in Section 4.3. The condition, which

generalizes (4.3), is shown below.

(∀t, L : L ≥ L0 : demandM (S, t, t + L) + demandC(S, t, t + L) ≤ supply(S, t, t + L)). (4.4)

(4.4) is derived from (4.3) by replacing tP and td with t and t+L, respectively. (The purpose
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of this substitution is to make the interval length, L, an explicit parameter.) L0 is used to

denote the shortest interval over which a request can be released and experience a violation.

As explained above, [t, t + L) must always contain these two points. All terms in (4.4) are

scenario-specific. In the subsections that follow, we derive bounds for these terms for each of

the five scenarios.

Additional notation. For the FP-EDF-CS scenario, let Γ(T ) =
{

T [i].R
∣

∣

∣ 1 ≤ i ≤ T.k
}

.

Informally, Γ(T ) is the set of locks requested by task T .

4.2.1 Defining L0

Deriving L0 is straightforward as it depends only on the shortest interval that can contain a

release and the associated effective deadline.

Scenario 1 (QB-EPDF). This scenario focuses on subtasks with Pfair windows. Hence,

by the n = 1 case of Lemma 3.3 on page 70, L0 can be defined as shown below.

L0 = min

{ ⌈

1

U.w

⌉

+ U.c

∣

∣

∣

∣

U ∈ S

}

(4.5)

Scenario 2 (QB-EDF). This scenario focuses on subtasks with windows defined by pseudo-

jobs. Recall that each pseudo-job of a task U consists of U.J cycles, each of which has length

P(U). Hence, L0 is defined as shown below.

L0 = min { U.J · P(U) + U.c | U ∈ S } (4.6)

Scenarios 3–5 (FP-EDF, FP-EDF-NP, FP-EDF-CS). Under these scenarios, each
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request is a job. Since periods are assumed to equal deadlines, L0 is defined as shown below.

L0 = min { U.p + U.c | U ∈ S } . (4.7)

4.2.2 Defining supply(S, t, t + L)

We now derive a bound on the minimum amount of processor time guaranteed to a task over

any interval of length L. Since a supertask behaves like any other Pfair task, supply(S, t, t + L)

can be defined using such a bound. We begin by proving the following theorem, which bounds

the allocation granted to any Pfair task over the interval [0, t).

Theorem 4.1 The amount of processor time received by a task T that does not delay any

subtask releases over the interval [0, t), where t is an integer, under scheduling characterized

by β−, β+, εr, and εd, is bounded as shown below.

(bT.w · (t − εd) − β+c + 1) · Q ≤ received(T, 0, t) ≤ (dT.w · (t + εr) + β−e − 1) · Q

Proof. The proof consists of two parts. First, we restrict attention to the impact of relaxed

lag constraints. After addressing this impact, we then consider the impact of εr and εd.

Combining (2.1) on page 35, (2.2) on page 36, and (3.7) on page 65 produces

−β− · Q < Q · T.w · t − received(T, 0, t) < β+ · Q,
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which must hold for all values of t. Dividing all terms in the previous inequality by Q and

rearranging terms to isolate 1
Q · received(T, 0, t) yields the following inequality.

T.w · t − β+ <
1

Q
· received(T, 0, t) < T.w · t + β−

By the statement of the lemma, t is an integer, and hence Q | received(T, 0, t) holds since

processor time is allocated in units of Q. It follows that 1
Q · received(T, 0, t) is an integer.

When a
b is an integer, then x < a

b < y ⇔ bxc+1 ≤ a
b ≤ dye−1 ⇔ (bxc+1)·b ≤ a ≤ (dye−1)·b.

This property implies that the previous inequality can be rewritten as

(bT.w · t − β+c + 1) · Q ≤ received(T, 0, t) ≤ (dT.w · t + β−e − 1) · Q.

Intuitively, bT.w · t − β+c+1 (respectively, dT.w · t + β−e−1) is the number of subtasks with

relaxed deadlines at or before (respectively, with relaxed releases before) time t.

We now consider the impact of εr and εd on the above allocation bounds. A subtask

with a relaxed deadline at time td may not complete until its extended deadline at time

td + εd. Hence, the lower bound may be smaller than that given above. For instance, consider

Figure 4.5, which shows the relaxed and extended windows for a task T = PF
(

3
10

)

when

β− = β+ = 1, εr = 1, and εd = 2. The lower bound of received(T, 0, 10) with respect to

relaxed windows includes T3 since its relaxed deadline occurs at time 10. However, when

considering extended windows, T3 cannot be counted in the lower bound since it may be

executed after time 10. In general, the number of subtasks with extended deadlines at or

before time t equals the number with relaxed deadlines at or before time t− εd. By the lower

bound derived above for relaxed windows, bT.w · t − β+c+ 1 subtasks have relaxed deadlines
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Figure 4.5: The figure shows the task PF
(

3
10

)

when β− = β+ = 1 (i.e., with Pfair lag

bounds). The window layouts show the impact of εr and εd.

at or before time t. It follows that the lower bound with respect to extended windows is given

by (bT.w · (t − εd) − β+c + 1) · Q.

Similarly, subtasks with relaxed releases before t + εr may be scheduled before t when

using extended windows. Hence, the upper bound of received(T, 0, t) may be larger than

that given above. Again, consider received(T, 0, 10) in Figure 4.5. T4 has a relaxed release at

time 10. Hence, it must be excluded from the upper bound when considering relaxed windows.

However, when using extended windows, the window release occurs at time 9. In general, the

number of extended windows with releases at or after time t equals the number of relaxed

windows with releases at or after time t + εr. By the upper bound derived above for relaxed

windows, dT.w · t + β−e − 1 subtasks have relaxed releases at or after time t. It follows that

the upper bound with respect to extended windows is (dT.w · (t + εr) + β−e − 1) · Q. 2

The next theorem extends the above result to an arbitrary interval [t, t + L).

Theorem 4.2 The amount of processor time received by a task T that does not delay any

subtask releases over the interval [t, t + L), where t and L are integers, under scheduling
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characterized by β−, β+, εr, and εd, is bounded as shown below.

(bT.w · (L − ε) − βc + 1) · Q ≤ received(T, t, t + L) ≤ (dT.w · (L + ε) + βe − 1) · Q

Proof. Due to the absence of IS delays over the interval [t, t + L), it is sufficient to consider

the allocation that is guaranteed to a task that never experiences IS delays. Since t and L

are integers, Theorem 4.1 can be applied to derive the lower bound, as shown below.

received(T, t, t + L)

= received(T, 0, t + L) − received(T, 0, t)

, by definition

≥ (bT.w · ((t + L) − εd) − β+c + 1) · Q − (dT.w · (t + εr) + β−e − 1) · Q

, by Theorem 4.1

= b(T.w · (L − εd − εr) − β+ − β−) + (T.w · (t + εr) + β−)c · Q

− dT.w · (t + εr) + β−e · Q + 2 · Q

, by rewriting

≥ dT.w · (t + εr) + β−e · Q + (bT.w · (L − εd − εr) − β+ − β−c − 1) · Q

− dT.w · (t + εr) + β−e · Q + 2 · Q

, ba + bc ≥ dae + bbc − 1

= (bT.w · (L − εd − εr) − β+ − β−c + 1) · Q

, simplification

= (bT.w · (L − ε) − βc + 1) · Q

, by definition of ε and β

Similarly, the derivation given below establishes the upper bound.
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received(T, t, t + L)

= received(T, 0, t + L) − received(T, 0, t)

, by definition

≤ (dT.w · ((t + L) + εr) + β−e − 1) · Q − (bT.w · (t − εd) − β+c + 1) · Q

, by Theorem 4.1

= d(T.w · (L + εd + εr) + β+ + β−) + (T.w · (t − εd) − β+)e · Q

− bT.w · (t − εd) − β+c · Q − 2 · Q

, by rewriting

≤ (dT.w · (L + εd + εr) + β+ + β−e + 1) · Q + bT.w · (t − εd) − β+c · Q

− bT.w · (t − εd) − β+c · Q − 2 · Q

, da + be ≤ dae + bbc + 1

= (dT.w · (L + εd + εr) + β+ + β−e − 1) · Q

, simplification

= (dT.w · (L + ε) + βe − 1) · Q

, by definition of ε and β

The combination of these bounds establishes the theorem. 2

Using the above results, we now bound supply(T, t, t + L) in a series of corollaries given

below. Each corollary corresponds to a case that can arise under supertasking. Specifically,

the interval under inspection can align to slot boundaries on both ends (Corollary 4.1), on

only one end (Corollary 4.2), or on neither end (Corollary 4.3). Only Corollaries 4.1 and 4.3

apply to the examples considered in this chapter. The benefit of using Corollaries 4.1 and 4.2

instead of Corollary 4.3 is that the estimate of the supply is higher, which results in lower

reweighting overhead. Consequently, imposing artificial restrictions on the component tasks,
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such as requiring all releases to occur on slot boundaries, can reduce reweighting overhead.

(We consider the use of such a restriction when performing experiments later.) Since we

assume no such restrictions in the example scenarios, Scenarios 3–5 (FP-EDF, FP-EDF-NP,

FP-EDF-CS) must use Corollary 4.3. However, under Scenarios 1 (QB-EPDF) and 2 (QB-

EDF), intervals align to slot boundaries on both ends due to quantum-based scheduling.

Hence, Corollary 4.1 applies in these cases.

Corollary 4.1 The supply of a supertask S that does not delay any subtask releases over the

interval [t, t + L), where t and L are integers, while executing under scheduling characterized

by β−, β+, εr, and εd, satisfies

supply(S, t, t + L) ≥ (bS.w · (L − ε) − βc + 1) · Q.

Proof. Since supply(S, t, t + L) = received(S, t, t + L), the corollary follows trivially from

Theorem 4.2. 2

Corollary 4.2 The supply of a supertask S that does not delay any subtask releases over

the interval [t, t + L), where either t or t + L is an integer, while executing under scheduling

characterized by β−, β+, εr, and εd, satisfies

supply(S, t, t + L) ≥ (bS.w · (bLc − ε) − βc + 1) · Q.

Proof. If either t or t + L is an integer, then the subinterval [dte , bt + Lc) has length bLc

and aligns to slot boundaries on both ends. The corollary follows from Theorem 4.2. 2
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Corollary 4.3 The supply of a supertask S that does not delay any subtask releases over

any interval [t, t + L), while executing under scheduling characterized by β−, β+, εr, and εd,

satisfies

supply(S, t, t + L) ≥ (bS.w · (bLc − 1 − ε) − βc + 1) · Q.

Proof. The subinterval [dte , bt + Lc) always has length at least bLc − 1 and aligns to slot

boundaries on both ends. Hence, the corollary follows from Theorem 4.2. 2

4.2.3 Defining demandM(S, t, t + L)

In this subsection, we derive bounds on the mandatory demand of a component task set. One

advantage to separating demand into its mandatory and circumstantial components is that

bounds on mandatory demand depend only the timing constraint (e.g., job deadline, pseudo-

job deadlines, subtask deadlines, etc.) used. Hence, bounds are universal across scheduling

policies. Our five example scenarios require consideration of three cases: subtask demand

(QB-EPDF), pseudo-job demand (QB-EDF), and job demand (FP-EDF, FP-EDF-NP, FP-

EDF-CS). These cases are addressed by Corollaries 4.4, 4.5, and 4.6, respectively, which are

given below.

Scenario 1 (QB-EPDF). Subtask demand is bounded by the following theorem and corol-

lary.

Theorem 4.3 When scheduling subtasks of tasks described by the Pfair task model and its

variants, the mandatory demand generated by a task T , over the interval [t, t + L), where t
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and L are integers, is upper-bounded by

demandM (T, t, t + L) ≤ bT.w · (L − T.c)c · Q

when T satisfies T.c ≤ L. When T.c > L, T generates no mandatory demand.

Proof. It is sufficient to bound the maximum demand generated by a Pfair task over any

interval of length L. The T.c > L case is trivial since any subtask released by T within

[t, t + L) cannot be required to complete by the end of the interval. Hence, T generates no

mandatory demand.

When T.c ≤ L, the mandatory demand of T over [t, t + L) can be computed as the

difference between T ’s minimum allocation at t+L less its maximum allocation at t. Applying

Theorem 4.1 with β+ = β− = 1, εr = 0, and εd = T.c produces the following formula:

demandM (T, t, t + L) = (bT.w · (t + L − T.c)c − dT.w · te) · Q.

Rewriting the first term yields the following formula.

demandM (T, t, t + L) = (bT.w · t + T.w · (L − T.c)c − dT.w · te) · Q

Since ba + bc ≤ dae + bbc, it follows that

demandM (T, t, t + L) ≤ (bT.w · (L − T.c)c + dT.w · te − dT.w · te) · Q.

Simplifying this bound establishes the theorem. 2
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Corollary 4.4 When scheduling subtasks of tasks described by the Pfair task model and its

variants, the following formula gives a series of progressively looser upper bounds on the total

mandatory demand generated by the component task set of the supertask S over the interval

[t, t + L), where t and L are integers, and SL = { T | T ∈ S ∧ T.c ≤ L }.

demandM (S, t, t + L) =
∑

T∈S

demandM (T, t, t + L)

≤ Q
∑

T∈SL

bT.w · (L − T.c)c

≤ Q









∑

T∈SL

(T.w · (L − T.c))









≤ Q
∑

T∈SL

(T.w · (L − T.c))

Proof. The first inequality follows trivially from Theorem 4.3. The second and third

inequalities follow from the properties bac + bbc ≤ ba + bc and bac ≤ a, respectively. 2

Scenario 2 (QB-EDF). The next theorem and corollary bound mandatory demand gen-

erated by subtasks with windows defined by pseudo-jobs.

Theorem 4.4 When scheduling subtasks with parameters defined by pseudo-jobs, the manda-

tory demand generated by a task T over the interval [t, t + L), where t and L are integers, is

upper-bounded by

demandM (T, t, t + L) ≤

⌊

L − T.c

T.J · P(T )

⌋

· T.J · E(T ) · Q

when T satisfies T.c ≤ L. When T.c > L, T generates no mandatory demand.

Proof. When a job spans T.J subtask cycles, it follows that the per-job execution require-
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ment and period of T are T.J · E(T ) · Q and T.J · P(T ), respectively. (Recall that E(T ) and

P(T ) are the per-cycle execution requirement in quanta and cycle period of T , respectively.)

Furthermore, an interval of length L, where L ≥ T.c, contains at most
⌊

L−T.c
T.J ·P(T )

⌋

jobs that

are released and must complete their execution within the interval. Multiplying this count

by the per-job execution requirement produces
⌊

L−T.c
T.J ·P(T )

⌋

· T.J · E(T ) · Q, which establishes

the theorem. 2

Corollary 4.5 When scheduling subtasks with parameters defined by pseudo-jobs, the follow-

ing formula gives a series of progressively looser upper bounds on the total mandatory demand

generated by the component task set of the supertask S over the interval [t, t + L), where t

and L are integers, and SL = { T | T ∈ S ∧ T.c ≤ L }.

demandM (S, t, t + L) =
∑

T∈S

demandM (T, t, t + L)

≤ Q
∑

T∈SL

(⌊

L − T.c

T.J · P(T )

⌋

· T.J · E(T )

)

≤ Q
∑

T∈SL

bT.w · (L − T.c)c

≤ Q









∑

T∈SL

(T.w · (L − T.c))









≤ Q
∑

T∈SL

(T.w · (L − T.c))

Proof. All inequalities are derived as in the proof of Corollary 4.4, except for the first two.

The first inequality follows from Theorem 4.4. The second then follows from the fact that

bacn ≤ ba · nc whenever n is an integer, as is the case with T.J · E(T ). 2

Scenarios 3–5 (FP-EDF, FP-EDF-NP, FP-EDF-CS). Finally, the next theorem and

corollary bound the mandatory demand produced by jobs.
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Theorem 4.5 When scheduling jobs of a periodic or sporadic task, the mandatory demand

generated by a task T over the interval [t, t + L) is upper-bounded by

demandM (T, t, t + L) ≤

⌊

L − T.c

T.p

⌋

· T.e

when T satisfies T.c ≤ L. When T.c > L, T generates no mandatory demand.

Proof. The reasoning here is identical to that in the proof of Theorem 4.4. 2

Corollary 4.6 When scheduling jobs of a periodic or sporadic task, the following formula

gives a series of progressively looser upper bounds on the total mandatory demand gener-

ated by the component task set of the supertask S over the interval [t, t + L), where SL =

{ T | T ∈ S ∧ T.c ≤ L }.

demandM (S, t, t + L) =
∑

T∈S

demandM (T, t, t + L)

≤
∑

T∈SL

(⌊

L − T.c

T.p

⌋

· T.e

)

≤
∑

T∈SL

(T.u · (L − T.c))

Proof. The first inequality follows from Theorem 4.5. The second follows from bac ≤ a. 2

4.2.4 Defining demandC(S, t, t + L)

Unfortunately, bounding circumstantial demand requires unique reasoning for each scenario.

(Indeed, this is why we use the term “circumstantial.”) We now bound this demand for

each of the five example scenarios. All analysis presented in this section assumes the use of

Property SBP on page 110. As before, let [t, t + L) denote the interval under consideration.
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Scenarios 1–3 (QB-EPDF, QB-EDF, FP-EDF). In Scenarios 1–3, this step is trivial due

to the fact that all tasks are independent and never suspend. Because requests are processed

in deadline order, the mandatory demand is always serviced before all other requests. Hence,

no circumstantial demand exists.

Scenario 4 (FP-EDF-NP). Under Scenario 4, a job of some task U with priority lower than

the job experiencing the violation (i.e., R) can begin nonpreemptable execution immediately

before t and, consequently, avoid preemption at t. By Property SBP, such a job, if one indeed

exists, does not need to complete until after t + L. Since this job must have been released

and executed prior to t to initiate its nonpreemptable execution, it follows that U.p+U.c > L

holds. Furthermore, at most one such job can execute within [t, t + L) since two component

tasks cannot be executing nonpreemptably at the same time. Hence, circumstantial demand

under Scenario 4 is upper bounded as shown below.

demandC(S, t, t + L) ≤ max{ U.υ | U ∈ S ∧ U.p + U.c > L } (4.8)

Observe that demandC(S, t, t + L) = 0 for all L ≥ max{ U.p + U.c | U ∈ S }. As the next

example also demonstrates, circumstantial demand tends to vanish with increasing L. We

refer to such terms as transient demand.

Scenario 5 (FP-EDF-CS). Consider a job K that has priority lower than R. If K holds a

lock at time t that is required by some mandatory job J , then J will block on that lock at some

point within [t, t + L). Under the locking-protocol assumptions stated earlier on page 105,

the priority of K must be increased to at least the level of J . Due to this, K will be allowed to

complete its critical section at some point within [t, t + L) (so that J can obtain the lock and
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make progress). As a result, K’s critical section contributes to the circumstantial demand.

(Since K’s priority returns to its normal level when the lock is relinquished, only the critical

section contributes to the demand.)

We now derive a bound on the amount of circumstantial demand generated by all such

critical sections in [t, t + L).To simplify the discussion, we use the term obstacle to refer to

such a critical section of a low-priority job. (This term is simply a shorthand expression.)

For an obstacle to be introduced, a low-priority job must hold a lock at t that is needed by

a mandatory job within [t, t + L). Since two tasks cannot hold the same lock at time t, it

follows that each obstacle must be associated with a unique lock. In addition, since we do

not consider nested critical sections, each obstacle must also belong to a unique task. (This

follows from the fact that each task can be holding at most one lock at t.)

Unfortunately, identifying the worst-case combination of obstacles is difficult. Indeed,

variants of this problem are known to be NP hard [54]. Since bounding worst-case blocking

is not the focus of this chapter, we simply use a loose bound here to illustrate the idea. In

expressing this bound, the following notation is used:

• Let ΓL =
⋃

U.p+U.c≤L
Γ(U).

• Let µ(`, L) = max
{

U [i].e
∣

∣

∣ U ∈ S ∧ U [i] ∈ C(`) ∧ U.p + U.c > L
}

.

Informally, ΓL is the set of locks that may be requested by mandatory jobs over the interval

[t, t + L), while µ(`, L) is an upper bound on the amount of circumstantial demand intro-

duced into any interval of length L as a result of lock `. A loose upper bound on the total

circumstantial demand is easily computed from these values, as shown below.

demandC(S, t, t + L) ≤
∑

`∈ΓL

µ(`, L) (4.9)



126

The above bound is loose because it only considers one of the two restrictions mentioned

above, i.e., each obstacle must require a unique lock. The bound in (4.9) does not prevent

multiple obstacles from being associated with the same task.

4.2.5 Summary

The table shown below summarizes which of the results presented in the previous subsections

define the component parts of (4.4) under each scenario.

Scenario L0 supply demandM demandC

1 (4.5) Corollary 4.1 Corollary 4.4 N/A

2 (4.6) Corollary 4.1 Corollary 4.5 N/A

3 (4.7) Corollary 4.3 Corollary 4.6 N/A

4 (4.7) Corollary 4.3 Corollary 4.6 (4.8)

5 (4.7) Corollary 4.3 Corollary 4.6 (4.9)

4.3 Deriving a Reweighting Condition

In this section, we use the schedulability condition derived in the Section 4.2 to derive a

reweighting condition. A reweighting condition consists of a set of weight restrictions (i.e.,

lower bounds on the supertask’s weight) such that satisfying all restrictions ensures the time-

liness of component tasks. A reweighting condition takes the following abstract form:

S.w ≥ max{ ∆(S, L) | L ∈ L } . (4.10)
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Condition (4.10) consists of two elements: the reweighting function ∆(S, L) and the testing

set L. ∆(S, L) is the minimum weight needed to ensure that no timing violation occurs over

any interval of length L, i.e., ∆(S, L) is the weight restriction imposed by all intervals of

length L. Let S.wopt denote the smallest weight satisfying (4.10), as shown below.

S.wopt
def
= max{ ∆(S, L) | L ∈ L } (4.11)

As in the previous section, we consider the derivation of each element in a separate sub-

section. Specifically, the three subsections of this section address the following issues:

1. deriving ∆(S, L);

2. defining L;

3. efficient generation of L values from L.

To speed the presentation, only Scenarios 1 (QB-EPDF) and 4 (FP-EDF-NP) are consid-

ered in this section. Other scenarios can be similarly handled. Scenarios 1 and 4 are each

considered because they represent quantum-based and fully preemptive supertasking, respec-

tively. For fully preemptive supertasking, we consider the FP-EDF-NP scenario instead of

the FP-EDF scenario to illustrate the handling of circumstantial demand.

4.3.1 Deriving ∆(S, L)

We begin by deriving the reweighting formula.

Scenario 1 (QB-EPDF). Filling in the terms of the inequality in (4.4) using Corollary 4.1

and the tightest bound provided by Corollary 4.4 yields the inequality shown below (after
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canceling the common Q term on both sides).

∑

T∈SL

bT.w · (L − T.c)c ≤ bS.w · (L − ε) − βc + 1

By the property bxc ≤ byc ⇔ bxc ≤ y, the above inequality is equivalent to

∑

T∈SL

bT.w · (L − T.c)c ≤ S.w · (L − ε) − β + 1.

Rearranging to isolate S.w yields the following weight restriction (and definition of ∆(S, L)).

S.w ≥

∑

T∈SL

bT.w · (L − T.c)c + β − 1

L − ε
def
= ∆(S, L) , (4.12)

where L0 is required to satisfy

L0 > ε. (4.13)

Constraint (4.13) ensures that L − ε > 0 for all L ≥ L0. When this constraint does not hold,

it is not possible to reweight the supertask using the technique presented here. By (4.5), the

constraint given in (4.13) can also be stated as shown below.

min

{ ⌈

1

U.w

⌉

+ U.c

∣

∣

∣

∣

U ∈ S

}

> ε (4.14)

Since periods are expected to be much larger than the slot size and ε is expected to be small,

(4.14) should seldom, if ever, not hold.

Scenario 4 (FP-EDF-NP). Again, filling in the terms of (4.4) using Corollary 4.3, (4.8),
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and the tightest bound provided by Corollary 4.6 yields the inequality shown below.

∑

T∈SL

(⌊

L − T.c

T.p

⌋

· T.e

)

+ υL ≤ (bS.w · (bLc − 1 − ε) − βc + 1) · Q

where

υL
def
= max{ U.υ | U ∈ S ∧ U.p + U.c > L } . (4.15)

Rewriting this inequality yields the equivalent form shown below.

∑

T∈SL

(⌊

L − T.c

T.p

⌋

·
T.e

Q

)

+
υL

Q
− 1 ≤ bS.w · (bLc − 1 − ε) − βc

This condition is satisfied if









∑

T∈SL

(⌊

L − T.c

T.p

⌋

·
T.e

Q

)

+
υL

Q









− 1 ≤ S.w · (bLc − 1 − ε) − β

is satisfied. Notice that this latter condition is slightly stronger. Rewriting this inequality to

isolate S.w produces the following weight restriction (and definition of ∆(S, L)):

S.w ≥

⌈

∑

T∈SL

(⌊

L−T.c
T.p

⌋

· T.e
Q

)

+ υL

Q

⌉

+ β − 1

bLc − 1 − ε
def
= ∆(S, L) , (4.16)

which requires

L0 ≥ ε + 2. (4.17)

Again, the above restriction ensures that bLc − 1 − ε > 0 for all L ≥ L0. By (4.7), this
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constraint is equivalent to that given below.

min { U.p + U.c | U ∈ S } ≥ ε + 2. (4.18)

As with (4.14), (4.18) should seldom, if ever, be violated.

The impact of the mandatory-demand bound. Both derivations given above are based

on the tightest bounds on mandatory demand provided by Corollaries 4.4 and 4.6. Alterna-

tively, one of the looser bounds provided by these corollaries could have been used. The

benefit of using a looser bound is that it speeds the reweighting process. This is due to the

fact that the running time of the reweighting algorithm (presented later in the chapter) is pro-

portional to the reweighting overhead. Since looser mandatory-demand bounds overestimate

demand, they produce more inflation. Consequently, reweighting requires less time.

Unfortunately, using looser bounds is a poor method for reducing the execution time of

the reweighting algorithm because the impact of the bound on both the execution time and

the reweighting overhead is difficult to predict. For this reason, we do not recommend the use

of looser bounds or consider their use beyond this point. As an alternative, the reweighting

algorithm has been equipped with several input parameters that allow manipulation of the

speed-versus-accuracy trade-off in a controlled and predictable way.

4.3.2 Defining L

As a starting point, consider letting L = { L | L ≥ L0 ∧ L ∈ N } when using quantum-based

supertasking and L = { L | L ≥ L0 } when using fully preemptive supertasking. (In the first

set definition, N denotes the set of natural numbers.) These definitions ensure the correctness

of the reweighting condition, but include an unnecessarily high number of points in L.
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Scenario 1 (QB-EPDF). Consider the reweighting function given in (4.12) and a range

L ∈ [L1, L2) over which the numerator remains constant. Due to the L parameter in the

denominator, the function’s value can only decrease as L takes on larger values within [L1, L2).

Hence, a search for the maximum value requires only that the smallest L value from the testing

set in [L1, L2) need be checked. In (4.12), changes are caused by the argument to the floor

operation; the kth increase of T ’s term in the summation occurs at the following value of L.

L(k) = min { L | T.w · (L − T.c) ≥ k } =
k

T.w
+ T.c

However, L(k) may not be in N . Applying this additional restriction produces the set

{ dL(k)e | k ≥ 1 }, which can also be expressed as

{ ⌈

k

T.w

⌉

+ T.c

∣

∣

∣

∣

k ≥ 1

}

.

(Recall that T.c is assumed to be a non-negative integer under quantum-based supertasking.)

The definition of L for Scenario 1 is then the result of unioning these per-task testing sets, as

shown below.

L =
⋃

T∈S

{ ⌈

k

T.w

⌉

+ T.c

∣

∣

∣

∣

k ≥ 1

}

(4.19)

Scenario 4 (FP-EDF-NP). In Scenario 4, the process of defining L follows the same steps.

Specifically, the numerator of the reweighting function given in (4.16) changes only due to

changes in either a floor term of the summation or the υL term.

First, consider the floor terms. As before, we compute the value of L corresponding to
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the kth increase in the term’s value, as shown below.

L(k) = min

{

L

∣

∣

∣

∣

L − T.c

T.p
≥ k

}

= k · T.p + T.c.

Since L is not required to be an integer when using fully preemptive scheduling, the per-task

sets { L(k) | k ≥ 1 } are simply unioned to obtain the following definition of L.

L =
⋃

T∈S

{ k · T.p + T.c | k ≥ 1 } (4.20)

It remains to account for changes in the numerator caused by υL. Consider the definition

of υL given in (4.15). It follows from the U.p + U.c > L condition in the set definition that if

υL differs from υL−ε, for arbitrarily small ε, then U.p + U.c = L for the task U that defines

υL−ε, i.e., U is eliminated from consideration at L but is still being considered at L − ε.

Hence, the set of L values at which the υL term may change its value is given by

{ T.p + T.c | T ∈ S } .

Since this set is a subset of the previous definition of L, it follows that the definition given

in (4.20) is sufficient in this scenario. (This subset property also holds for the circumstantial

demand bound derived for Scenario 5.)

4.3.3 Generating L Values from L

In this subsection, we present an efficient algorithm for generating a monotonically increasing

sequence of L values from L such that no values in L are skipped. This algorithm is used as

a subroutine by our reweighting algorithm (presented later).



133

typedef nodetype
record

begin
L: real;
k: integer;
f(n: integer): real function

end

var
H: min-ordered heap of nodetype ordered by L;
node: nodetype

procedure InitGenerator(S)
1: H := MakeHeap();
2: for each T ∈ S do
3: node := MakeNode(T );
4: node.k := 1;
5: node.L := node.f (node.k);
6: Insert(H,node)

od

procedure Generate() returns real
7: L := Min(H).L;
8: while Min(H).L = L do
9: node := ExtractMin(H);
10: node.k := node.k + 1;
11: node.L := node.f (node.k);
12: Insert(H,node)

od;
13: return L

Figure 4.6: Algorithm for generating L values in sequence based from a definition of L.

The generator pseudo-code is shown in Figure 4.6. The algorithm consists of two routines:

InitGenerator and Generate. InitGenerator initializes the generator, while Generate

generates the next L value in the sequence. A detailed description follows.

Data structures. The set of L values generated by a specific task T are represented by

a nodetype record. The f(n) function field defines the L-value generating function, i.e., the
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function implied by either (4.19) or (4.20). For instance, under Scenario 4, f(n) = n·T.p+T.c,

as suggested by (4.20). The value field stores the next L value in T ’s sequence. The minimum

of these candidate values is determined by storing the records in a min-ordered heap by value.

Detailed description. The generator is initialized by a call to InitGenerator. In line 1,

the heap is created. In line 3–5, each task’s record is created and fields are initialized; the

record is then stored in the heap in line 6.

Generate retrieves the smallest L value in L that has not been previously retrieved. Line 7

identifies this value. Lines 8–12 then update the heap entry of each task that has the selected

L value. The selected value is returned in line 13. For both routines, O(|S| log |S|) time

complexity can be achieved by using a binomial heap.

4.4 Selecting a Safe Weight

The L definitions given above imply that reweighting may require an unbounded number of

computations. In this section, we address this issue by presenting a technique for detecting

when the process can safely terminate. The solution presented here not only detects termi-

nation, but also provides a means for forcing termination at the expense of a predictable

amount of extra inflation.

Concept. Our approach is based on examining the behavior of a bounding function φ(S, L)

of ∆(S, L). Specifically, φ(S, L) must satisfy the following constraints:

Bounding Constraint (BC): (∀L : L ≥ Lφ : φ(S, L) ≥ ∆(S, L)).

Monotonicity Constraint (MC): φ(S, L) is a monotonic function of L.

Property BC ensures that φ(S, L) upper bounds ∆(S, L) for all values of L at and after
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Lφ, which is called the activation point . Hence, if this property holds and L ≥ Lφ, then

S.w ≥ φ(S, L) ⇒ S.w ≥ ∆(S, L). As explained below, Lφ allows φ(S, L) to more tightly

bound ∆(S, L) by skipping over smaller L values at which transient demand exists. We

postpone a discussion of Property MC until after the derivation of φ(S, L) is presented.

4.4.1 Deriving φ(S, L)

φ(S, L) and Lφ can typically be defined using the following rules of thumb:

Rule 1: Let Lφ be the maximum of the following values:

• L0 (i.e., the smallest L value considered when reweighting);

• max{ T.c | T ∈ S };

• the smallest L value such that no transient demand exists in intervals of length

L′ ≥ L.

The second value ensures that SL = S holds for all L ≥ Lφ. (Recall that SL is the set

of component tasks of S with miss thresholds at most L.) The third value then ensures

that transient demand in ∆(S, L) can be ignored when applying Rule 2.

Rule 2: Derive φ(S, L) from ∆(S, L) by replacing all non-continuous terms in ∆(S, L) with

continuous upper bounds. For instance, x and x + 1 are continuous upper bounds of

bxc and dxe, respectively.

Scenario 1 (QB-EPDF). In Scenario 1, no circumstantial demand exists. Hence, transient

demand never exists and can be ignored. Applying Rule 1 yields

Lφ
def
= max(L0,max{ T.c | T ∈ S }). (4.21)
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Applying Rule 2 to (4.12) produces the following upper bound:

∑

T∈S
T.w · (L − T.c) + β − 1

L − ε
.

Reorganizing the terms produces the following equivalent form.

∑

T∈S

T.w +

(

∑

T∈S
T.w

)

· ε + β − 1 −
∑

T∈S
T.w · T.c

L − ε

Applying (4.1) produces the following equivalent form:

S.IQ +

S.IQ · ε + β − 1 −
∑

T∈S
T.w · T.c

L − ε

This leads to the following definition:

φ(S, L)
def
= S.IQ +

Ψ(S)

L − ε
, (4.22)

where

Ψ(S)
def
= S.IQ · ε + β − 1 −

∑

T∈S

T.w · T.c. (4.23)

By (4.13), the denominator of the second term in (4.22) is always positive. Hence, the behavior

of φ(S, L) as L (≥ Lφ) increases is determined by the value of Ψ(S). We refer to Ψ(S) as the

characteristic function of φ(S, L). Specifically, φ(S, L) is decreasing when Ψ(S) > 0, constant

when Ψ(S) = 0, and increasing when Ψ(S) < 0. Since Ψ(S) is independent of L, its value

can be pre-computed prior to reweighting.
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Scenario 4 (FP-EDF-NP). By Rule 1 and (4.15), Lφ is defined as shown below.

Lφ
def
= max(L0,max{ T.c | T ∈ S } ,max{ T.p + T.c | T ∈ S ∧ T.υ > 0 }) (4.24)

By (4.15), L = max{ T.p + T.c | T ∈ S ∧ T.υ > 0 } is the smallest L value at which circum-

stantial demand no longer exists, i.e., υL becomes 0.

Removing υL from (4.16) and applying Rule 2 produces the upper bound shown below.

∑

T∈S

(

T.u·L−T.u·T.c
Q

)

+ β

L − ε − 2

Reorganizing the terms produces the equivalent form shown below.

1

Q
·
∑

T∈S

T.u +

1
Q ·

(

∑

T∈S
T.u

)

· (ε + 2) + β − 1
Q ·

∑

T∈S
T.u · T.c

L − ε − 2

Applying (4.2) produces the following equivalent form:

S.IP +

S.IP · (ε + 2) + β − 1
Q ·

∑

T∈S
T.u · T.c

L − ε − 2
.

This leads to the following definition:

φ(S, L)
def
= S.IP +

Ψ(S)

L − ε − 2
, (4.25)

where

Ψ(S)
def
= S.IP · (ε + 2) + β −

1

Q
·
∑

T∈S

T.u · T.c. (4.26)
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Again, the behavior of φ(S, L) is determined by the characteristic function Ψ(S).

4.4.2 Termination

We now explain how Property MC is used to detect and to force termination.

Decreasing monotonicity. The following theorem and corollary characterize how decreas-

ing monotonicity allows the unbounded reweighting search space to be truncated (possibly at

the cost of increased inflation) by considering a single value of φ(S, L).

Theorem 4.6 If φ(S, L) is decreasing and w ≥ φ(S, L) for some L ≥ Lφ, then

w ≥ max
{

∆
(

S, L′)
∣

∣ L′ ≥ L
}

.

Proof. Since φ(S, L) is a decreasing function, Property MC implies that if w ≥ φ(S, L)

for some L ≥ Lφ, then w ≥ φ(S, L′) for all L′ ≥ L. It follows from Property BC that

w ≥ ∆(S, L′) for all L′ ≥ L. Hence, the theorem holds. 2

Corollary 4.7 If φ(S, L) is decreasing, w ≥ max{ ∆(S, L′) | L > L′ ≥ L0 }, and w ≥

φ(S, L) for some L ≥ Lφ, then w ≥ S.wopt.

Proof. Follows trivially from Theorem 4.6. 2

Non-decreasing monotonicity. The next theorem and corollary consider the case in which

φ(S, L) is non-decreasing with increasing L. These results are based on the limit of φ(S, L) as

L → ∞, which is denoted S.wφ. By Property MC7 and the fact that φ(S, L) cannot approach

7Specifically, Property MC guarantees that φ(S , L) does not oscillate.
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∞ in the limit,8 this limit always exists. When φ(S, L) tightly bounds ∆(S, L), S.wφ typically

equals the ideal weight of the supertask, which is the case when applying Rules 1 and 2 to

all five of the example scenarios. For instance, consider (4.25). As L → ∞, the second term

(i.e., Ψ(S)
L−ε−2) goes to zero. Hence, S.wφ = S.IP .

Theorem 4.7 If φ(S, L) is non-decreasing and w ≥ S.wφ, then

w ≥ max
{

∆
(

S, L′)
∣

∣ L′ ≥ Lφ

}

.

Proof. Since φ(S, L) is a non-decreasing function, the value S.wφ upper bounds φ(S, L′)

for all L′ ≥ Lφ. It follows from Property BC that the theorem holds. 2

Corollary 4.8 If φ(S, L) is non-decreasing, w ≥ max{ ∆(S, L′) | Lφ > L′ ≥ L0 }, and w ≥

S.wφ, then w ≥ S.wopt.

Proof. Follows trivially from Theorem 4.7. 2

Ensuring termination. The results presented above demonstrate how comparing a candi-

date weight to a single value of φ(S, L) is sufficient to draw conclusions about an unbounded

number of comparisons to ∆(S, L) values. Forcing termination is equally trivial: we can

ensure that the candidate weight w upper bounds either φ(S, L) or S.wφ by assigning w :=

max(w,φ(S, L)) or w := max(w,S.wφ), respectively. In the next section, we present a general

reweighting algorithm based on the properties described in this section.
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procedure Reweight(S, wmin, wmax, Lmax, nmax) returns boolean
1: n := 0;
2: InitGenerator(S);
3: L := Generate();
4: S.w := wmin;
5: while (L < Lφ) ∧ (S.w ≤ wmax) do
6: CheckWeight(S, L, n)

od;
7: if Ψ(S) ≤ 0 then
8: S.w := max(S.w,S.wφ)

else
9: while (L < Lmax) ∧ (n < nmax) ∧ (S.w < φ(S, L)) ∧ (S.w ≤ wmax) do
10: CheckWeight(S, L, n)

od;
11: S.w := max(S.w, φ(S, L))

fi;
12: return (S.w ≤ wmax)

procedure CheckWeight(S, L, n)
13: S.w := max(S.w,∆(S, L));
14: n := n + 1;
15: L := Generate()

Figure 4.7: Algorithm for selecting a safe supertask weight.

4.5 The Reweighting Algorithm

Using the results of the last section, a supertask weight can be selected using the algorithm

shown in Figure 4.7. This algorithm takes five parameters and returns a boolean value. The

return value is true if and only if an acceptable weight was found, where “acceptable” is

defined by the parameters, as described below.

8Such behavior would imply that demand is unbounded. However, unbounded demand cannot be produced
by a finite number of tasks.
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4.5.1 Parameter Descriptions

The first and most obvious parameter is the supertask S for which a weight should be selected.

wmin and wmax define the range of acceptable supertask weights, i.e., an algorithm invocation

returns true if and only if S.w ∈ [wmin, wmax] upon termination and S.w ensures the timeliness

of the component tasks. These parameters are assumed to satisfy 0 ≤ wmin ≤ wmax ≤ 1. Our

algorithm is conservative in that a failure (i.e., a return value of false) does not preclude the

existence of a weight in the range [wmin, wmax] that is capable of ensuring timeliness.

Lmax and nmax are the length limit and computation limit, respectively. Lmax specifies

the largest value of L to consider before forcing the invocation to terminate. Similarly,

nmax specifies the maximum number of ∆(S, L) values to check before forcing termination.

Termination is forced using the approach described in the previous section.

Special cases. In addition to searching for safe supertask weights within a range of values,

three special cases of reweighting are common in practice. First, the optimal9 weight (i.e.,

S.wopt) can be sought by invoking Reweight(S, 0, 1, ∞, ∞). (As discussed below, it may

not be possible to identify the optimal weight in bounded time.) Second, the safety of a given

weight w can be determined by invoking Reweight(S, w, w, ∞, ∞). Third, an upper bound

on inflation can be computed by the call Reweight(S, 0, 1, 0, ∞). This call immediately

forces termination of line 9. As a result, the return value is the most pessimistic solution that

can be generated by Reweight and equals max(max{ ∆(S, L) | Lφ ≤ L < L0 } , φ(S, L0)).

When Lφ = L0, this bound is simply φ(S, L0) and can be computed with invoking Reweight.

9This solution is optimal with respect to the presented approach. This weight is not guaranteed to be the
smallest weight for which timeliness is guaranteed.
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4.5.2 Algorithm Description

Reweight begins by initializing variables in lines 1–4. In line 5 and 6, each L ∈ L that satisfies

L < Lφ is checked to ensure that S.w ≥ max{ ∆(S, L′) | Lφ > L′ ≥ L0 } holds at line 7. The

remaining values are then handled by either line 8 or lines 9–11, based on whether φ(S, L) is

non-decreasing or decreasing, respectively. In the former case, Corollary 4.8 implies that if

S.w ≥ S.wφ, then S.w is guaranteed to be safe. Line 8 ensures that S.w ≥ S.wφ holds. In

the latter case, weight restrictions must be checked (lines 9–10) until either a user-provided

limit is reached (checked by the first two conditions given in line 9) or an value L is found

that satisfies the conditions set forth in Corollary 4.7 (checked by the third condition given

in line 9). In the event that termination is forced, line 11 ensures that the conditions set

forth in Corollary 4.7 still hold and hence that S.w is a safe weight. (Note that if the while

loop terminates due to the third condition in line 9, then line 11 has no effect.) Line 12 then

reports whether the invocation was successful (see below).

CheckWeight is invoked to compare the current supertask weight to the ∆(S, L) restric-

tion, which is done in line 13. Line 14 then updates the computation counter to reflect the

comparison. Finally, L is advanced to the next highest value of L ∈ L in line 15.

Correctness of the return value. An important property of Reweight is that S.w is

non-decreasing after line 4, as implied by lines 8, 11, and 13. As a result, both S.w ≥ wmin

and S.w > wmax are invariant once established. Since line 4 establishes the S.w ≥ wmin, it

follows S.w ≤ wmax ⇔ S.w ∈ [wmin, wmax] at line 12. To avoid unnecessary computation,

both loops terminate immediately if failure (S.w > wmax) is detected (see lines 5 and 9).
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4.5.3 Properties

We now state and prove basic properties of Reweight. First, a lower bound on S.w following

the successful completion of a Reweight invocation is proved in the theorem given below. This

theorem also establishes a lower bound on the inflation factor produced when reweighting a

supertask using the approach described here.

Theorem 4.8 If an invocation of Reweight on S terminates, then upon termination, S.w ≥

S.wφ holds if Ψ(S) ≤ 0 and S.w > S.wφ holds if Ψ(S) > 0.

Proof. The Ψ(S) ≤ 0 case follows trivially from line 8 of Reweight. When Ψ(S) > 0,

φ(S, L) approaches S.wφ from above in the limit. Hence, φ(S, L) > S.wφ holds for all L.

Thus, S.w > S.wφ holds after the eventual execution of line 11. It follows that S.w > S.wφ

holds upon termination also. 2

Theorem 4.8 raises the question of whether termination is guaranteed. When Ψ(S) ≤ 0

holds, termination obviously occurs. However, termination may not occur when Ψ(S) > 0

holds. The following lemma, theorem, and corollary characterize the circumstances under

which termination does not occur.

Lemma 4.1 If S.w > S.wφ is established during an invocation of Reweight, then termina-

tion is guaranteed.

Proof. Termination can only be avoided by taking the code branch leading to line 9,10

which only occurs when Ψ(S) > 0. In this case, φ(S, L) decreases as L increases. Because

φ(S, L) approaches S.wφ in the limit, the value of φ(S, L) will eventually drop (and remain)

below any weight in the range (S.wφ, 1].

10Since Lφ is required to be finite, the loop at line 5 must eventually terminate due to its first condition.
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Figure 4.8 illustrates this property. In this example, S.wφ = 0.603. Suppose that S.w =

0.615 (> 0.603) is established during an invocation of Reweight. As shown, the value of

φ(S, L) drops below S.w around L = 2200. Hence, S.w ≥ φ(S, L) holds for all L ≥ 2200 since

φ(S, L) is a decreasing function. It follows that the loop at line 9 must eventually terminate

due to its third condition. The lemma follows. 2

Theorem 4.9 An invocation of Reweight on S does not terminate if and only if all of the
following conditions hold:

1. Ψ(S) > 0;

2. wmin ≤ S.wφ;

3. S.wopt ≤ S.wφ;

4. S.wopt ≤ wmax;

5. Lmax = nmax = ∞.
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Proof. By the algorithm’s code listing, termination can be avoided only by becoming

trapped in the while loop at line 9. To prove sufficiency, we show that the conditions given

above guarantee that the loop is reached and that the four conditions in line 9 always hold

(and hence that the loop never terminates). Condition 1 is sufficient to ensure that the loop

is reached via line 7. Now consider the four conditions in line 9. By Condition 5, the first

two conditions in line 9 always hold. It remains to show that the third and fourth conditions

always hold.

To show that the third condition in line 9 holds, we show that S.w ≤ S.wφ is invariant

after the execution of line 4. We begin by explaining why S.w ≤ S.wφ ⇒ S.w < φ(S, L).

By Condition 1, φ(S, L) is decreasing. Hence, φ(S, L) approaches (but never equals) S.wφ

in the limit. For instance, consider the definition of φ(S, L) given in (4.22). In this case,

S.wφ = S.IQ and φ(S, L) = S.wφ + Ψ(S)
L−ε . The term Ψ(S)

L−ε approaches (but never equals) zero

as L → ∞. Hence, if S.w ≤ S.wφ is invariant, then it follows that S.w < φ(S, L) holds for

all L (and that the third condition in line 9 always holds).

We now prove that S.w ≤ S.wφ is invariant after line 4. It follows from Condition 2 that

S.w ≤ S.wφ holds immediately after line 4. By (4.11), ∆(S, L) ≤ S.wopt for all L. Hence,

by Condition 3, S.w ≤ S.wφ holds after each execution of line 13. Hence, S.w ≤ S.wφ is

invariant after line 4.

Similarly, we show that the fourth condition in line 9 always holds by showing that S.w ≤

wmax is invariant after line 4. By Condition 2 and the property wmin ≤ wmax, S.w ≤ wmax

holds immediately after line 4. By Condition 4, S.w ≤ wmax holds after each execution of

line 13. Hence, S.w ≤ wmax is invariant after line 4. This completes the proof of sufficiency.
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Now, consider necessity. If Condition 1 does not hold, then the loop in line 9 is never

executed and hence cannot prevent termination. We now argue that negating each of the

remaining conditions guarantees termination. First, if Condition 5 does not hold, then one of

the first two conditions in line 9 will eventually cause termination. If Condition 4 does not

hold, then S.w > wmax is eventually established by line 13 (unless it is established sooner by

line 4), which results in termination of the loop by its fourth condition. Similarly, if either

Condition 2 or 3 does not hold, then S.w > S.wφ is eventually established by either line 4

or 13, respectively. By Lemma 4.1, termination is ensured once S.w > S.wφ is established.

This completes the proof of necessity. 2

Corollary 4.9 If Reweight is invoked on S, then termination is guaranteed whenever either

wmin > S.wφ or Ψ(S) ≤ 0 holds.

Proof. Follows trivially from Theorem 4.9. 2

4.5.4 Balancing Speed and Inflation

Reweight provides three methods for controlling the speed-versus-accuracy trade-off, each of

which involves the use of one of wmin, Lmax, or nmax. Each method discussed here provides

a predictable lower bound on reweighting overhead and an upper bound on the amount of

computation performed. For the initial description of each method (given below), we assume

that only one of wmin, Lmax, or nmax is set to a non-trivial value.11 When two or more

parameters are used simultaneously, the speed and accuracy of the process is determined by

the parameter that implies the smallest number of computations.

11Lmax and nmax are set to ∞ when not used; wmin can be set to any value in [0,S .wφ].
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First, the reweighting process can be seeded with a non-ideal minimum weight, i.e., wmin

can be assigned a value larger than S.wφ. The benefit of such an assignment can be seen

in Figure 4.8. Specifically, φ(S, L) crosses larger weights at lower values of L. It is straight-

forward to calculate the smallest L value for which φ(S, L) is less than wmin (and hence, for

which the third condition at line 9 is guaranteed to hold). Let Llast denote this derived value.

It follows that using wmin produces the same result as passing Llast as the Lmax parameter.

Second, the Lmax parameter can be used to bound the search space of the reweighting

process. As in the previous case, the wmin parameter can be used to achieve the same result.

Specifically, the use of Lmax achieves the same result as passing φ(S, Lmax) as the wmin

parameter. Hence, the accuracy and speed bounds are computed as in the previous case.

Finally, the nmax parameter can be used to bound the number of ∆(S, L) computations.

Unfortunately, it is difficult to characterize how nmax relates to using the Lmax parameter

due to the fact that only a subset of the L values are actually checked. Under the pessimistic

assumption that every L value is tested, Llast = L0 + nmax − 1. (Here, we assume that

termination is forced.) Using this relationship, nmax can be related to both Lmax and wmin

as described above.

4.6 Experimental Results

In this section, we present the results of an experimental evaluation of Reweight. This

evaluation consisted of two studies. The first study focused on the reweighting overhead

produced by scheduling periodic tasks with each of the QB-EPDF, QB-EDF, and FP-EDF

approaches.12 The goal of this study was to determine both the relative inflation produced

12For the QB-EPDF and QB-EDF scenarios, task parameters must first be mapped to weights using Lem-
mas 3.4–3.7. See pages 73–79.
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by each approach and which approach is likely to provide the lowest overhead. Since the

FP-EDF-NP and FP-EDF-CS scenarios produce the same reweighting overhead as FP-EDF,

they were not considered. Experimental studies that consider the synchronization overhead

(with and without supertasking) are presented later in Chapters 5 and 6.

The second study focused on the speed-versus-accuracy trade-off. Again, the QB-EPDF,

QB-EDF, and FP-EDF scenarios were considered. The primary goal of this study was to

approximate the relationship between inflation and the amount of computation performed.

Specifically, the objective of this study was to determine the number of computations that

must be performed to produce a solution that approximately equals S.wopt. A secondary

goal of this study was to determine whether this point of diminishing returns is stable, i.e.,

whether the location of the point is reasonably constant across task sets.

4.6.1 Study 1: Reweighting Overhead

In this section, we present the details and results of the first study. This study was designed

to approximate the inflation produced by each of the QB-EPDF, QB-EDF, and FP-EDF

scenarios. In addition, this study considers both cases in which jobs do and do not align with

slot boundaries. Recall that alignment reduces both reweighting (see page 118) and mapping

overhead (see pages 73–79). The purpose of including alignment in this study is to determine

whether the degree of this benefit is significant.

Sample space. Both studies presented in this chapter are based on comparing randomly

generated component task sets uniformly drawn from a sample space. For this study, the

sample space was defined as follows:

• |S| is in the range 2, . . . , 40;
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• S.u is in the range 0.02, . . . , 0.9;

• T.p is in the range 100, . . . , 5000;

• the minimum T.p is in the range 5, . . . , 250.

Sampling. To ensure that the random samples provided reasonable coverage of this sample

space, the following parameters were systematically chosen as described below:

• |S| was set to each value in the range 2, . . . , 40;

• S.u was set to each value in the set { 0.02x | 1 ≤ x ≤ 45 };

• the minimum T.p was set to each value in the set { 5x | 1 ≤ x ≤ 50 }.

For each combination of the above parameter assignments, four component task sets were

generated and reweighted.

Relevance. This experimental methodology (i.e., defining a sample space and then generat-

ing samples so that reasonably uniform coverage is ensured) is used throughout the disserta-

tion. The benefit of this approach is that it reveals how inflation is impacted by changing each

systematically chosen parameter. The primary disadvantage is that such a study illustrates

only general performance trends and the relative performance of the alternative approaches.

Since it is not clear where real task sets lie within the sample space, it is not possible to draw

conclusions concerning the amount of inflation that is likely to occur in practice.

Measurement. The following four measurements were taken during the experimental runs.

No Supertasks: a baseline measurement of the total weight of all tasks before reweighting;

this measurement reflects mapping overhead alone.13

13Mapping overhead results from the use of Lemmas 3.4–3.7 to map periodic and sporadic tasks to weights.
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QB-EPDF: the weight assigned to the supertask under the QB-EPDF scenario; this mea-

surement reflects both mapping and reweighting overhead.

QB-EDF: the weight assigned to the supertask under the QB-EDF scenario; this measure-

ment reflects both mapping and reweighting overhead.

FP-EDF: the weight assigned to the supertask under the FP-EDF scenario; this measure-

ment reflects reweighting overhead alone since fully preemptive supertasking does not

require parameter mapping.

To ensure termination, S.wφ + 10−5 was passed as wmin when invoking Reweight. The

quantity 10−5 was used because we consider such a small degree of inflation to be negligible.

Only samples which were schedulable under all approaches were considered. We refer to such

samples as valid . When invalid samples were generated, they were simply discarded and

replaced by a new sample. We consider the implications of this action below.

Sampling validity. Restricting attention to valid samples is necessary to enable quantita-

tive comparison of the approaches, i.e., a task set that is schedulable cannot be compared to

one that is not schedulable. Unfortunately, filtering samples in this way can produce results

that reflect only the performance of a subset of the sample population. To estimate the im-

pact of filtering, the random task set studies presented in this dissertation include estimates

of the sampling validity . We define sampling validity for each sample mean as follows:

sampling validity =
number of valid samples

total number of generated samples
.

Sampling validity is an estimator of the fraction of the sample population represented by the

sample mean. This measurement carries the additional implication that the unrepresented
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Aligned Mean Standard Deviation Halflength Best

No Supertasks 0.017711 0.014587 0.00006342 N/A
QB-EPDF 0.023027 0.028324 0.00012315 0.034%
QB-EDF 0.017732 0.014678 0.00006381 0.065%
FP-EDF 0.000173 0.004108 0.00001786 99.901%

Not Aligned Mean Standard Deviation Halflength Best

No Supertasks 0.018957 0.015318 0.00006660 N/A
QB-EPDF 0.024224 0.028523 0.00012401 0.040%
QB-EDF 0.018987 0.015574 0.00006771 0.043%
FP-EDF 0.000215 0.005332 0.00002318 99.918%

Figure 4.9: Summary of the results of the first reweighting experiment when job releases and
deadlines aligned to slot boundaries (upper) and did not align (lower).

fraction of the population consists of samples that are not schedulable under at least one of

the considered approaches.

Ideally, sampling validity should be unity. Indeed, the sampling validity of all means

presented in this section are approximately unity, i.e., the difference is negligibly small. For

this reason, we omit graphs of the sampling validity estimates here. However, in later chapters,

it is not always possible to achieve high sampling validity in all cases. Hence, considering the

sampling validity of a mean will be essential to the proper interpretation of the experimental

results.

Overall Performance. The tables shown in Figure 4.9 summarize the overall results of

the experiments. Separate summaries are given for the use of aligned and unaligned jobs.

Consider the aligned results first. The second column gives the mean inflation (i.e.,

S.w − S.u) observed over all collected samples. As shown, FP-EDF provided two orders of

magnitude improvement by avoiding mapping overhead. QB-EDF shows very little reweight-

ing overhead on average, i.e., its mean is approximately equal to that of the “No Supertasks”

case. QB-EPDF, on the other hand, performs the worst, but still wastes only around 2.3% of
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a processor on average.

The second column shows the standard deviation of samples. These measurements seem

to suggest that variation tracks the mean reasonably well, i.e., higher means seems to be

accompanied by more variation in the samples. Notice that the standard deviation of FP-

EDF is more than an order of magnitude greater than the mean. The low mean suggests

that the vast majority of samples showed small inflation. However, the high variance suggests

that some samples showed a significant degree of inflation. Hence, these results suggest that

FP-EDF performs poorly in some pathological cases.

The halflength14 of a 99% confidence interval is given in the fourth colum. As shown, the

halflengths are negligibly small compared to the means for all measurements except FP-EDF.

For this sole exception, however, the magnitude of the halflength is of no importance due to

the (negligibly) small magnitude of the mean.

The fifth column reports the percentage of sample task sets that favored each approach.

Specifically, 0.034% of the sample sets showed no advantage to using the QB-EDF or FP-EDF

approaches instead of the QB-EPDF approach. Similarly, 0.065% of the sets favored using

QB-EDF instead of QB-EPDF, but did not improve further when using FP-EDF. Finally,

99.901% of the sample sets favored using FP-EDF instead of either QB-EPDF or QB-EDF.

Finally, consider the non-aligned results. The trends in this data match those in the

aligned results. As shown, using non-aligned jobs does increase the mean inflation. How-

ever, the magnitude of this increase does not appear to be significant on average, i.e., the

improvement produced by using aligned jobs represents less than 0.25% of a single processor.

Impact of the task count. We now consider how inflation varied as each of the three

14The halflength is the absolute difference between the mean and either endpoint of the interval.
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parameters used to define the sample space was varied. Consider the task count first. Fig-

ures 4.10 and 4.11 show how inflation varies as the task count changes when using aligned

and non-aligned jobs, respectively. As shown, the impact of aligned jobs appears negligi-

ble. Notice also that the QB-EDF and “No Supertasking” curves are virtually co-linear. We

summarize relationships suggested by these graphs below.

Observation 4.1 The overhead of quantum-based supertasking increases linearly with the

task count.

Explanation: Mapping overhead is a per-task overhead. Hence, overhead must increase

linearly when applying quantum-based supertasking to periodic or sporadic tasks due to

the mapping overhead. (Notice that the “No Supertasking” measurement shows this same

relationship.) Since mapping overhead depends on the task parameters, no conclusions can

be drawn concerning the rate at which this overhead increases.

Observation 4.2 Reweighting overhead under QB-EPDF is high for very low task counts,

but this overhead diminishes quickly.

Explanation: The fact that inflation under QB-EPDF is higher than under QB-EDF and

FP-EDF follows simply from the fact that pseudo-deadlines impose additional constraints that

the scheduler must satisfy. Hence, scheduling is inherently more difficult under QB-EPDF

than under QB-EDF and FP-EDF, which do not impose these intermediate deadlines.

The property that reweighting overhead is higher for smaller task counts follows from

the mandatory demand bound given in Corollary 4.4. Letting T.c = 0 for all tasks, Q = 1,

and SL = S, the tightest bound from the corollary simplifies to
∑

T∈S
bT.w · Lc. The observed

tendency follows from the use of the floor operator. Because this operator decreases the value
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Figure 4.10: Plots show how inflation scales with increasing task count when jobs are con-
strained to align to slot boundaries. The figure shows (a) the sample means and (b) the 99%
confidence interval for each mean.
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Figure 4.11: Plots show how inflation scales with increasing task count when jobs are not
constrained to align to slot boundaries. The figure shows (a) the sample means and (b) the
99% confidence interval for each mean.
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of its argument, increasing the number of such operators tends to produce lower demand

estimates on average. Lower demand estimates then translate into less inflation. Since the

number of floor operators in the summation equals the number of tasks, it follows that higher

task counts tend to produce less inflation. In addition, since the mandatory demand bounds

used by QB-EDF and FP-EDF also utilize such floor operators, these approaches should

also exhibit this tendency. (Due to the very low reweighting overhead produced by these

approaches, the trend is not visible in the graphs presented here.)

Observation 4.3 For practical purposes, the task count has a negligible impact on the reweight-

ing overhead of the job-based supertasking approaches.

Explanation: Intuitively, all forms of supertasking should exhibit increased inflation at low

task counts, as QB-EPDF does. Apparently, the reweighting overhead under QB-EDF and

FP-EDF is simply too small in magnitude for this behavior to be observed.

Observation 4.4 Reweighting overhead appears to be negligible on average for all approaches

when the task count is 7 or more.

Impact of the minimum period. Figures 4.12 and 4.13 show plots of the mean inflation

against the minimum period for aligned and non-aligned jobs, respectively. Again, the QB-

EDF and “No Supertasking” cases are virtually co-linear. Unlike the previous graphs, these

graphs show some benefit (up to around 0.005) to using aligned jobs, but only when periods

can be very small.

Observation 4.5 The reweighting overhead of the QB-EPDF approach is approximately in-

dependent of the minimum period.
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Figure 4.12: Plots show how inflation scales with minimum period when jobs are constrained
to align to slot boundaries. The figure shows (a) the sample means and (b) the 99% confidence
interval for each mean.
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Figure 4.13: Plots show how inflation scales with the minimum period when jobs are not
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Explanation: The inflation produced by the QB-EPDF approach is approximately 0.005

higher than that of the “No Supertasks” case at all points.

Observation 4.6 Constraining job arrivals and deadlines to lie on slot boundaries provides

minor benefit to the QB-EPDF and QB-EDF approaches on average when the smallest period

is at most ten slots, but only negligible benefit otherwise.

Observation 4.7 Both reweighting and mapping overheads are inversely proportional to the

minimum task period.

Explanation: Consider mapping overhead first. When rounding an execution requirement

up to the next quantum multiple, the impact on the amount of processor time requested by

the task in the limit depends on the task period. Specifically, the rounding impacts tasks

with higher periods to a lesser degree. The observed relationship follows.

Now, consider the reweighting overhead. A simple upper bound on inflation is given by

φ(S, L0). As demonstrated by (4.22) and (4.25), φ(S, L) ≈ I + Ψ(S)
L where I denotes the

ideal weight of the supertask (i.e., either S.IQ or S.IP ). Hence, reweighting overhead is

bounded (approximately) by Ψ(S)
L0

. By (4.7) and (4.6), L0 scales directly with periods when

scheduling jobs or subtasks defined by pseudo-jobs. By (4.5), L0 scales with windows sizes

under EPDF scheduling. Window sizes decrease with increasing weight. By Lemmas 3.4–3.7,

weights increase as periods decrease. Hence, L0 tends to scale proportionally to periods under

EPDF as well. As a result, the worst-case and average-case reweighting overhead tends to

decrease as periods are increased.

Impact of the utilization. Figures 4.14 and 4.15 show plots of the inflation against utiliza-

tion for aligned and non-aligned jobs, respectively. Again, the QB-EDF and “No Supertask-
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ing” cases are virtually co-linear in these graphs. These graphs suggest that an improvement

of up to 0.005 is produced by job alignment for higher utilizations.

Observation 4.8 Constraining job arrivals and deadlines to lie on slot boundaries provides

minor benefit under the QB-EPDF and QB-EDF approaches on average when the utilization

exceeds approximately 0.25, but only negligible benefit below that threshold.

Observation 4.9 Both reweighting and mapping overheads increase as the utilization de-

creases below 0.15.

Explanation: When utilization is low, execution requirements tend to be small relative

to the slot size. As a result, task execution requirements are much less than one quantum.

Such parameters increase the mapping overhead. This same problem occurs for supertasks,

but takes a slightly different form. Specifically, suppose that a supertask requires 3
4Q units of

processor time to satisfy the demand over a given interval length. In this case, the supertask

must still request a full quantum due to quantum-based scheduling.

The behavior of QB-EPDF with respect to utilization was unexpected. Specifically, the

shape of QB-EPDF’s curve was expected to more closely resemble that of QB-EDF, as it does

on the previous graphs. Further study is apparently needed to determine whether inflation

under QB-EPDF is somehow dependent on the utilization.

4.6.2 Study 2: Speed Versus Accuracy

In this section, we present the details and results of the second study. This study was designed

to evaluate the speed-versus-accuracy trade-off. Specifically, two experiments were conducted.

In the first experiment, the value of nmax was varied and the impact on the inflation was
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Figure 4.14: Plots show how inflation scales with increasing utilization when jobs are con-
strained to align to slot boundaries. The figure shows (a) the sample means and (b) the 99%
confidence interval for each mean.



162

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Total Utilization

Inflation vs. Total Utilization (Not Aligned)

No Supertasking
QB-EPDF

QB-EDF
FP-EDF

(a) Sample Means

-0.005

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Total Utilization

Inflation vs. Total Utilization (Not Aligned)

No Supertasking
QB-EPDF

QB-EDF
FP-EDF

(b) 99% Confidence Intervals

Figure 4.15: Plots show how inflation scales with increasing utilization when jobs are not
constrained to align to slot boundaries. The figure shows (a) the sample means and (b) the
99% confidence interval for each mean.
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observed. In the second experiment, the value of wmin was varied and the impact on the

number of computations performed was observed. Since the impact of Lmax depends on the

task periods (due to L), the impact of setting this parameter to a specific value will certainly

not impact all task sets equally. Hence, this parameter was not considered in this experiment.

Sample space. For this study, the sample space was defined as follows:

• nmax is in the range 1, . . . , 100000; (first experiment only)

• the difference wmin − S.wφ is in the range 0.00001, . . . , 0.1; (second experiment only)

• |S| is in the range 2, . . . , 40;

• S.u is in the range 0.02, . . . , 0.9;

• T.p is in the range 100, . . . , 2000;

• the minimum T.p is in the range 5, . . . , 250.

Sampling. For these experiments, component task sets were randomly generated while

respecting the following constraints:

• nmax was set to each value in the set
{

10
x
4

∣

∣

∣ 2 ≤ x ≤ 18
}

; (first experiment only)

• the difference wmin − S.wφ was set to each value in the set
{

10
x
4

∣

∣

∣ − 20 ≤ x ≤ −5
}

;

(second experiment only)

• |S| was set to each value in the set { 4x | 1 ≤ x ≤ 10 };

• S.u was set to each value in the set { 0.05 + 0.1x | 0 ≤ x ≤ 8 };

• the minimum T.p was set to each value in the set { 5x | 1 ≤ x ≤ 50 }.
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For each combination of these parameter assignments, one component task set was generated

and reweighted.

Per-computation execution time. To place the estimates of computation in perspective,

we ran the reweighting algorithm on a 1.4 GHz Pentium 4 desktop computer and measured

the resulting mean per-computation execution time, i.e., the total execution time divided

by the value of n upon termination of the algorithm. Since several computations within the

algorithm have time complexity O(|S|), we varied |S| to determine how the execution time

scales. The collected data suggests that the per-computation execution time in microseconds

is approximately 1.32 + 0.1357 · |S|, i.e., on the order of a few microseconds. Hence, a single

task set can be reweighted in at most a few seconds, even when high precision is desired.

Using nmax with QB-EPDF. Figure 4.16 shows the impact of nmax under the QB-EPDF

scenario. (In this and later cases, both aligned and non-aligned jobs were tested and found

to produce very similar results. Because of this, only the graphs for the non-aligned case are

presented.) As shown in Figure 4.16(a), the mean inflation produced by reweighting stabilizes

at approximately nmax = 1000. Unfortunately, the variance of the observed samples was

relatively high, as Figure 4.16(b) shows. This suggests that the location of the stabilizing

point will likely vary significantly between task sets.

Using nmax with QB-EDF. Figure 4.17 shows the impact of nmax under the QB-EDF

scenario. In this case, the mean inflation stabilizes very quickly, i.e., around nmax = 101.5 ≈

32. Unfortunately, the variance of the observed samples was high, as in the QB-EPDF case

(see Figure 4.17(b)).

Using nmax with FP-EDF. Figure 4.18 shows the impact of nmax under the FP-EDF
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Figure 4.16: Plots show how the inflation varies as the computation limit is increased under
the QB-EPDF scenario. The figure shows (a) the sample means and (b) the interval defined
by one standard deviation.
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Figure 4.17: Plots show how the inflation varies as the computation limit is increased under
the QB-EDF scenario. The figure shows (a) the sample means and (b) the interval defined
by one standard deviation.
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scenario. As in the QB-EPDF case, the mean does not appear to stabilize until approximately

nmax = 1000. However, the mean is reasonably stable much earlier, i.e., around nmax =

100. Also, the variance in the samples appears to be smaller under FP-EDF than under the

quantum-based scenarios (see Figure 4.18(b)). This is likely due to the small magnitude of the

inflation. Unfortunately, the variance is still sufficiently high to suggest that the stabilizing

point may vary significantly between task sets.

Using wmin with QB-EPDF. Figure 4.19 shows the impact of using an inflated wmin

value under the QB-EPDF scenario. Surprisingly, the relationship between wmin −S.wφ and

the number of computations performed appears to be approximately linear15 throughout the

graph (see Figure 4.19(a)). By extrapolation, the line segment over the x range [0.00001, 0.1]

appears to fit the equation y = 10−0.5 1
x . The cause of this behavior is not immediately obvious;

further study is needed to better understand the relationship between these quantities. For

larger wmin values, this relationship does not hold. We speculate that the reason for this

is that the wmin parameter is set so high that φ(S, L0) > wmin holds initially. When this

happens, the invocation terminates after performing only minimal computation and leaves

n = 0. (In these experiments, Lφ = L0. Hence, the loop in line 5 performs no computation.)

As a result, the mean is skewed toward zero. As in the first experiment, the observed samples

exhibit a high degree of variance (see Figure 4.19(b)). The strange behavior of the standard

deviation range is due solely to the use of log scale. This range is actually symmetric around

the mean. Because the means are close to zero for high values of wmin, the lower points of

the ranges are below zero. Hence, the ranges extend beyond the bottom of the graph.

15By linear, we mean only that the graph depicts a straight line. Because the graph is presented in log scale,
this does not suggest that the relationship can be expressed as a linear equation.
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Figure 4.18: Plots show how the inflation varies as the computation limit is increased under
the FP-EDF scenario. The figure shows (a) the sample means and (b) the interval defined
by one standard deviation.
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Figure 4.19: Plots show how the number of computations performed varies as the initial
inflation (i.e., wmin −S.wφ) is increased under the QB-EPDF scenario. The figure shows (a)
the sample means and (b) the interval defined by one standard deviation.
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Using wmin with QB-EDF. Figure 4.20 shows the impact of using an inflated wmin value

under the QB-EDF scenario. Again, the relationship between wmin − S.wφ and the number

of computations performed appears to become approximately linear for x < 0.001 (see Fig-

ure 4.20(a)). By extrapolation, the line segment over the x range [0.00001, 0.001) appears to

fit the equation y = 10−1.5 1
x . Notice also that the QB-EDF scenario shows an order of mag-

nitude reduction in computation when compared to the QB-EPDF scenario. Unfortunately,

the variance of samples does not show improvement, as can be seen in Figure 4.20(b).

Using wmin with FP-EDF. Figure 4.21 shows the impact of using an inflated wmin value

under the FP-EDF scenario. As with previous approaches, Figure 4.21(a) shows an ap-

proximately linear relationship over the range [0.00001, 0.001]. Again, by extrapolation, this

relationship appears to fit the equation y = 10−1 1
x . Remarkably, the curve depicted in Fig-

ure 4.21(a) appears to fall directly between those produced by the quantum-based scenarios.

Again, the nature of this relationship is unclear and requires further study. The observed

sample variance is also strikingly similar, as shown in Figure 4.21(b).

4.6.3 Conclusions

In this section, we presented the results of two experimental studies that consider the relative

performance of the QB-EPDF, QB-EDF, and FP-EDF scenarios. The first study suggests

that the FP-EDF scenario is, by far, the most likely to produce the minimum overhead. In

addition, this study suggests that the benefit of using aligned jobs, as it relates to reweighting

overhead, is quite small on average. When considering how inflation varied across the sample

space, several relationships were noted, most of which were not surprising. One notable

exception was the inflation fluctuations observed for the QB-EPDF scenario when utilization
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Figure 4.20: Plots show how the number of computations performed varies as the initial
inflation (i.e., wmin − S.wφ) is increased under the QB-EDF scenario. The figure shows (a)
the sample means and (b) the interval defined by one standard deviation.
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Figure 4.21: Plots show how the number of computations performed varies as the initial
inflation (i.e., wmin − S.wφ) is increased under the FP-EDF scenario. The figure shows (a)
the sample means and (b) the interval defined by one standard deviation.
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was varied. Further study is needed to determine whether this behavior is a by-product of

the experimental methodology used here or rather some dependency between reweighting

parameters that is not yet understood.

In the second study, the speed-versus-accuracy trade-off was characterized by two ex-

periments. In the first experiment, the nmax parameter was varied to estimate the point of

diminishing returns for each supertasking scenario. For the QB-EPDF, QB-EDF, and FP-

EDF scenarios, this point was estimated to be approximately nmax = 1000, 32, and 1000,

respectively. (However, the FP-EDF scenario shows little improvement after the nmax = 100

point.) Unfortunately, the variance of the observed samples suggests that this point is likely

to vary significantly between task sets. In the second experiment, the impact of the difference

wmin − S.wφ on the number of computations performed was estimated. When the differ-

ence is at most 0.001, the relationship between wmin − S.wφ (denoted x) and the number

of computations (denoted y) appears to be estimated with reasonable accuracy by the equa-

tion y = 10−k 1
x , where k = 0.5, 1.5, 1 for QB-EPDF, QB-EDF, and FP-EDF, respectively.

It is currently unclear why this equation (seemingly) relates these values. Further study is

warranted.

4.7 Summary

In this chapter, we have presented a general framework for assigning supertask weights based

on the characteristics of the internal scheduling policy and the component tasks. We have also

illustrated the use of the framework by considering five example scenarios. To facilitate use of

these results, we presented an efficient reweighting algorithm that supports manipulation of

the speed-versus-accuracy trade-off through its arguments. We concluded by presenting the



174

results of two experimental studies. The first study compared the overhead experienced when

supporting periodic tasks under each of the basic supertasking approaches considered in the

chapter and the mapping approach considered in Chapter 3. The second study evaluated the

speed-versus-accuracy trade-off by fixing the number of computations and then observing the

impact on inflation, and vice versa.

4.8 Related Work

As explained earlier, the concepts underlying supertasking have been applied in several areas.

However, the most closely related work at present appears to be the resource partition model

of Mok and Feng [60, 44, 24, 50, 51]. This model is intended to provide a system-independent

description of a server and the guarantees that it provides. Effectively, this model imposes

a second level of indirection between the underlying system and the server. Analysis under

this model closely parallels that presented in this chapter (see [60, 44] for examples).

As with CBS (discussed earlier), the primary difference between supertasks and resource

partitions is the server task’s model. Indeed, a supertask could be expressed as a resource par-

tition. However, assuming the use of Pfair scheduling enables the use of stronger assumptions

when reweighting, resulting in lower weights. Interestingly, resource partitions can be easily

supported under Pfair scheduling by simply defining a mapping from partition parameters to

a supertask weight, as was done earlier with periodic parameters in Chapter 3. Hence, Pfair

scheduling can be used to implement open systems that are based on this model.



CHAPTER 5

Lock-free Synchronization 1

In this and the next chapter, we add support for task synchronization under Pfair scheduling.

Synchronization raises two issues. First, it entails additional overhead, which must be taken

into account when determining schedulability [4, 9, 53, 54, 55, 59]. Second, blocking prevents

tasks from executing at a consistent rate, thereby making rate-based guarantees more difficult

to provide. Unfortunately, prior work on real-time synchronization has been directed at

uniprocessor systems, or systems implemented using non-rate-based scheduling policies (or

both), and thus cannot be directly applied to Pfair-scheduled multiprocessors.

In this chapter, we consider a method of synchronization that is particularly well-suited to

rate-based scheduling: lock-free algorithms. Under lock-free synchronization, shared objects

are implemented without critical sections or related mechanisms. Instead, operations are

optimistically attempted; if an operation fails, then it is simply retried until successful. As a

result, tasks never suspend and hence do not waste processor time. (Recall that suspensions

can produce processor idling under quantum-based scheduling.) Lock-based synchronization

is considered in the next chapter.

1This chapter is derived from work previously published in the following paper:
[32] P. Holman and J. Anderson. Object sharing in Pfair-scheduled multiprocessor systems. In Proceedings of
the 14th Euromicro Conference on Real-time Systems, pp. 111-120, 2002.
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This chapter presents two primary contributions. First, we explain how to account for

retry overhead when assigning task weights under Pfair scheduling. Second, we demonstrate

how quantum-based supertasking can be applied to reduce retry overhead. Recall that a

supertask is merely a collection of tasks that are scheduled as a single entity; when a supertask

is scheduled, it selects one of its component tasks for execution. In addition to reducing

contention for a shared resource, supertasking can also enable to use of less-costly uniprocessor

lock-free algorithms (as explained later). We use a case study to illustrate this last benefit.

We begin by briefly describing the concept of lock-free synchronization in Section 5.1. In

Section 5.2, we explain how to bound the overhead induced by the use of lock-free algorithms

and account for this overhead when assigning task weights, both with and without supertask-

ing. Two implementations of a shared queue are then presented in Section 5.3 to demonstrate

the algorithmic benefits that can be obtained by using supertasks. We end the chapter by

presenting and experimentally evaluating a simple heuristic for assigning tasks that share

lock-free objects to supertasks in Sections 5.4 and 5.5, respectively.

5.1 Lock-free Object Sharing

Lock-free algorithms are an alternative to traditional semaphore-based techniques when im-

plementing software-based shared objects. These algorithms work particularly well for simple

objects like buffers, queues, and lists. Lock-free algorithms avoid locking by using retry loops.

Figure 5.1 depicts a lock-free enqueue operation with such a loop. In this example, an

&x operation returns the address at which the variable x is stored in memory, while the

∗x operation returns the data stored at the memory address given by x. The queue is

implemented as a singly linked list, where the next field acts as the inter-node link.
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typedef Qtype:
record data: valtype; next : pointer to Qtype

shared var Head , Tail : pointer to Qtype
private var old , new : pointer to Qtype ; input: valtype;

addr : pointer to pointer to Qtype

procedure Enqueue(input)
∗new := (input, nil);
do old := Tail ;

if old 6= nil then addr := &((∗old).next )
else addr := &Head fi

while ¬CAS2(&Tail , addr , old ,nil ,new ,new )

Figure 5.1: Lock-free enqueue

An item is enqueued by using a two-word compare-and-swap (CAS2) instruction2 to atom-

ically update both the tail pointer and either the next pointer of the last node or the head

pointer, depending on whether the queue is empty. This loop is executed repeatedly until

the CAS2 instruction succeeds. An important property of lock-free implementations such as

this is that operations may interfere with each other. In this example, an interference results

when a successful CAS2 call by one task causes another task’s CAS2 call to fail.

We also consider the use of wait-free algorithms, which are stricter forms of lock-free algo-

rithms. Wait-freedom strengthens lock-freedom by requiring that each operation eventually

makes progress, i.e., starvation must be avoided. To provide such a guarantee, wait-free

algorithms must consist only of code segments with a bounded number of loop iterations.

5.1.1 Requirements of Analysis

When lock-free objects are used in real-time systems, bounds on loop retries must be computed

for scheduling analysis. On uniprocessors, aspects of priority schedulers can be taken into

2The first two parameters of CAS2 specify addresses of two shared variables, the next two parameters are
values to which these variables are compared, and the last two parameters are new values to assign to the
variables if both comparisons succeed. Although CAS2 is uncommon, it makes for a simple example here.
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account to determine such bounds [4]. On real-time multiprocessors, lock-free algorithms have

been viewed as being impractical, because deducing bounds on retries due to interferences

across processors3 is difficult. However, as we later show, the predictability of quantum-based

scheduling can be exploited to help bound interferences more tightly than is possible under

fully preemptive scheduling.

5.1.2 Limitations

Although lock-free algorithms are ideal for rate-based scheduling, they are not always appro-

priate. Specifically, lock-free techniques tend to produce efficient implementations only for

simple objects, such as queues and buffers, and often rely on the use of strong synchronization

primitives, such as the CAS2 instruction described above. For complex objects, overhead (both

time and space) can be prohibitive. In such cases, locking synchronization is more suitable.

Furthermore, lock-free synchronization can only be applied to software-based shared objects.

Locking must be used to synchronize accesses to external devices. Hence, support for locking

synchronization (discussed in the next chapter) is a necessity in many systems.

5.2 Analysis

We now describe how to account for lock-free synchronization when performing schedulability

analysis. To the best of our knowledge, this is the first work to consider the use of lock-free

objects in real-time multiprocessors. The efficient use of lock-free algorithms is made possible

by the quantum-based model underlying Pfair scheduling, as explained below.

3An interference is said to occur across processors if the interfering task resides on a different processor
than the task experiencing the failed retry-loop attempt.
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5.2.1 Definitions and Assumptions

Let Γ denote the set of lock-free shared objects. We do not assume that only lock-free syn-

chronization is used by the tasks. Instead, our analysis in this section consists of showing how

each lock-free execution phase C(`, e), where ` is a lock-free shared object, can be treated

as an equivalent phase C(∅, e′) for the purpose of applying the mapping lemmas from Chap-

ter 3. This conversion is accomplished by defining e′ so that it includes not only the actual

execution requirement of the phase, but also the worst-case retry overhead. The analysis of

locking synchronization presented in the next chapter uses this same approach.

We define the following additional notation to simplify the statement of results:

• Let A(T, `) be the maximum number of accesses to object ` in a single quantum.4 When

using supertasks, let A(S, `) = max{ A(T, `) | T ∈ S }.

• Let N(`) denote min(M, |{ T | A(T, `) > 0 }|) when not using supertasks, and let it

denote min(M, |{ S | A(S, `) > 0 }|) when using supertasks. Informally, N(`) is the

maximum number of processors that may try to access ` in a single slot.

• Let eB(`) and eR(`) denote the base and retry overhead of an operation on `, i.e., an

operation that retries k times consumes at most eB(`)+k ·eR(`) units of processor time.

• Let e
[m]
B (`) and e

[m]
R (`) denote the overheads of an m-processor implementation of `. In

the analysis considered below, we assume that eB(`) = e
[N(`)]
B (`) and eR(`) = e

[N(`)]
R (`)

To simplify the analysis, we consider only a single bound for all operations on a given object `.

The analysis presented here is easily extended to support a separate bound for each operation.

We make the following assumptions regarding retries and interferences.

4Timing analysis is needed to obtain these bounds.
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Interference Assumption (IA): Any pair of concurrent accesses to the same

object may potentially interfere with each other.

Retry Assumption (RA): A retry can be caused only by the completion of

an operation on the same object. (Hence, the number of retries is at most

the number of concurrent accesses to the object.)

Preemption Assumption (PA): Each operation spans at most two quanta

and hence can be preempted at most once.

(PA) stems from the observation that lock-free loop iterations are typically very short

relative to Q [3]. Determining whether this assumption holds is straightforward.

The remaining notations are defined as shown below.

• Let I(T, `) = maxsumM−1 { A(U, `) | U ∈ τ/{T} }. Informally, I(T, `) is the maximum

number of retries that T can experience in a single quantum without supertasking.

• Let I(S, `) = maxsumM−1 { A(T , `) | T ∈ π/{S} }. Informally, I(S, `) is the maximum

number of retries that T ∈ S can experience in a single quantum.

5.2.2 Analysis without Supertasks

In this subsection, we consider the conversion of phases when supertasks are not used.

Theorem 5.1 Given a phase T [i] ∈ C(`) where ` is a lock-free object, T [i] is equivalent to

C(∅, eB(`) + (2 · I(T, `) + 1) · eR(`))

when supertasking is not used.
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Proof. By (PA), a single access to ` is preempted at most once before completion. In

the worst case, this access experiences the maximum number of retries during the quantum

preceding the preemption and during the quantum in which the access completes. By (RA),

the worst-case number of retries in a single quantum is bounded by the number of concurrent

accesses to ` within that quantum. Since there are at most M − 1 tasks executing in parallel

with T ’s job and each concurrent task U makes at most A(U, `) accesses to ` within the

quantum, it follows that I(T, `) is an upper bound on the number of retries that T will perform

in each quantum due to parallel interference. (Note that (PA) implies that I(T, `) · eR(`) is

much smaller than Q.) Therefore, at most 2 · I(T, `) + 1 retries are performed before the

access completes. (At most I(T, `) retries are needed for each quantum in which T executes.

In addition, if T is preempted during an attempt, then one additional retry may be needed

due to accesses performed while T was not executing.) Therefore, eB(`)+(2·I(T, `)+1)·eR(`)

is an upper bound on the total processor time required to complete phase T [i]. 2

5.2.3 Analysis with Supertasks

Supertasking can improve performance in the following two ways.

• A supertask can prevent potentially-interfering tasks from executing in parallel. By

doing so, the number of retries needed to complete an operation can be reduced.

• By (PA), if all tasks that share an object are component tasks of the same supertask,

then a retry is necessary only if the access is preempted. As a result, a simpler wait-free

algorithm can often be used.

When supertasks are used, the worst-case number of interferences experienced in a single

quantum changes from I(T, `) to I(S, `), where T ∈ S. In addition, algorithmic gains may be
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obtained by a reduction in N(`), which impacts eB(`) and eR(`). As observed earlier, when

N(`) = 1, ` can be implemented using a uniprocessor algorithm. We demonstrate the benefit

of such an implementation later with a case study.

Theorem 5.2 Given a phase T [i] ∈ C(`) where ` is a lock-free object, T [i] is equivalent to

C(∅, eB(`) + (2 · I(S, `) + 1) · eR(`))

when using quantum-based supertasks.

Proof. The proof is virtually identical to that of Theorem 5.1. However, since T can be

scheduled in parallel with at most one component task from each of the other supertasks, the

worst-case number of retries that can occur during each quantum is I(S, `). 2

5.2.4 Examples

We now use the above theorems to derive weights for a sample task set in which all shared

objects use lock-free implementations. Let J (T, `) =
∣

∣

∣

{

T [i]
∣

∣

∣ T [i] ∈ C(`)
}
∣

∣

∣. Informally,

J (T, `) is the number of accesses to lock-free object ` made by each job of T .

To simplify the example, assume that all tasks are synchronous periodic tasks with periods

equal to relative deadlines that satisfy the conditions given in Lemma 3.4. Also, let Q = 1.

Under these assumptions, Lemma 3.4 can be used to compute weights for all tasks in the task

set after converting the lock-free accesses. Consider the example four-processor task set shown

in Figure 5.2(a)–(b). The value given in the e column is the total execution requirement of

all execution phases that do not access lock-free objects. This example considers only two

implementations for each object `: a uniprocessor implementation (used when N(`) = 1) and
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T e p, d A(`1) A(`1) A(`2) A(`2)

T1 10 100 2 1 0 0
T2 15 100 1 1 0 0
T3 15 100 0 0 1 1
T4 25 100 0 0 2 2
T5 25 200 2 1 1 1
T6 30 200 1 1 0 0
T7 20 200 0 0 1 1
T8 40 300 3 2 0 0
T9 65 500 0 0 2 1
T10 50 700 5 2 12 3

(a)

` e
[1]
B (`) e

[1]
R (`) e

[M ]
B (`) e

[M ]
R (`)

`1 0.012 0.08 0.05 0.16
`2 0.005 0.075 0.017 0.11

(b)

T I(`1) I(`2) λ(`1) λ(`2) Λ(`1) Λ(`2) w

T1 5 6 1.81 1.447 3.62 0.0 14/100
T2 5 6 1.81 1.447 1.81 0.0 17/100
T3 5 6 1.81 1.447 0.0 1.447 17/100
T4 5 5 1.81 1.227 0.0 2.454 28/100
T5 5 6 1.81 1.447 3.62 1.447 30/200
T6 5 6 1.81 1.447 1.81 0.0 32/200
T7 5 6 1.81 1.447 0.0 1.447 22/200
T8 4 6 1.49 1.447 4.47 0.0 45/300
T9 5 6 1.81 1.447 0.0 2.894 68/500
T10 4 4 1.49 1.007 7.45 12.084 70/700

(c)

Figure 5.2: (a) A sample task set τ on M = 4 processors with two lock-free objects `1 and `2.
All parameters are expressed in units of quanta. (b) Parameters of `1 and `2. (c) Summary
of all values computed when applying Theorem 5.1 and Lemma 3.4. The λ and Λ values are
temporary values that represent the results of particular stages in the calculation.

a multiprocessor implementation (used when N(`) > 1). We use the above theorems to select

task weights for this set below.

Without supertasks. Figure 5.2(c) summarizes the values that are computed when

applying Theorem 5.1 and Lemma 3.4. We explain each column in turn by stepping through
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the computation of T10’s weight. First, we must bound the number of retries for each of

T10’s object accesses. Consider `1. Applying the definition of I(T10, `1) yields I(T10, `1) =

maxsumM−1 { A(U, `1) | U ∈ τ/{T10} } = maxsum3{2, 1, 1, 1, 1, 0, 0, 0, 0} = 4. This is shown

in the column labeled I(`1) in Figure 5.2(c). Next, we compute the worst-case execution cost

of a single access to object `1 by T10, labeled λ(`1) in the table. Since N(`1) = min(4, 6) = 4,

eB(`1) = e
[M ]
B (`1) = 0.05 and eR(`1) = e

[M ]
R (`1) = 0.16. From these values and the expression

λT10(`1) = eB(`1)+ (2 · I(T10, `1)+1) · eR(`1), we get λT10(`1) = 0.05+ (2 · 4+1) · 0.16 = 1.49.

We can now determine the total execution overhead of T10’s accesses to `1 in a single job,

labeled Λ(`1) in the table, by simply multiplying the value in the λ(`1) column by that in

the A(`1) column. Doing so yields ΛT10(`1) = 5 · 1.49 = 7.45. In a similar manner, it can

be shown that ΛT10(`2) = 12.084. Hence, the execution requirement of an entire job of T10 is

upper-bounded by 50 + 7.45 + 12.084 = 69.534. Applying Lemma 3.4 to T10 then yields the

weight d69.534e
700 = 70

700 , as shown in the last column of the table. Since the calculated weights

of all tasks are upper-bounded by unity and their sum is upper-bounded by M , (2.4) implies

that this task set is schedulable under any optimal Pfair scheduling policy.

With supertasks. Figure 5.3(a) shows one possible partitioning of the example task set

from Figure 5.2(a). This partitioning assigns all tasks accessing `2 to S2 and then assigns all

remaining tasks to S1. By doing so, we permit the use of the more efficient uniprocessor algo-

rithm for `2 in place of the multiprocessor version. Therefore, eB(`2) = e
[1]
B (`2) = 0.005 and

eR(`2) = e
[1]
R (`1) = 0.075. However, notice that the multiprocessor version of `1’s algorithm

must still be used. Hence, eB(`1) = e
[M ]
B (`1) = 0.05 and eR(`1) = e

[M ]
R (`1) = 0.16. Since the

computations in Theorem 5.2 are similar to those already demonstrated, we do not explain

them here. The values resulting from each step can be seen in Figure 5.3(b). Notice that
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S Components A(`1) A(`2) I(`1) I(`2)

S1 T1, T2, 2 0 2 3
T6, T8

S2 T3, T4, T5, 2 3 2 0
T7, T9, T10

(a)

T I(`1) I(`2) λ(`1) λ(`2) Λ(`1) Λ(`2) w

T1 2 3 0.85 0.53 1.70 0.0 12/100
T2 2 3 0.85 0.53 0.85 0.0 16/100
T3 2 0 0.85 0.08 0.0 0.08 16/100
T4 2 0 0.85 0.08 0.0 0.16 26/100
T5 2 0 0.85 0.08 1.70 0.08 27/200
T6 2 3 0.85 0.53 0.85 0.0 31/200
T7 2 0 0.85 0.08 0.0 0.08 21/200
T8 2 3 0.85 0.53 2.55 0.0 43/300
T9 2 0 0.85 0.08 0.0 0.16 66/500
T10 2 0 0.85 0.08 4.25 0.96 56/700

(b)

Figure 5.3: (a) Parameters for the partitioning π = {{T1, T2, T6, T8}, {T3, T4, T5, T7, T9, T10}}.
(b) Summary of all values computed when applying Theorem 5.2 and Lemma 3.4.

many of the task weights are smaller than in the previous example. In addition, the total

weight has reduced from 1.57 to 1.45. Unfortunately, as discussed earlier in Chapter 4, the

use of supertasks produces some loss, which counters this improvement.

Remarks. In a later section, we present experimental results that suggest that supertasking

often improves schedulability, even with reweighting overhead. However, in a system with

relatively few processors, the benefit of supertasking is often negated by its cost. This is

because of the limited parallelism in such systems. Recall that the most significant component

of the retry overhead is caused by the parallel execution of tasks. Hence, this overhead scales

with M and may be insignificant for small values of M . For this reason, it is always advisable

to calculate the weights of task sets both with and without supertasks in order to determine
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whether supertasking is beneficial.

5.3 Case Study: Queues

In this section, we illustrate the algorithmic benefits that can be obtained by enabling the use

of a uniprocessor object implementation instead of a multiprocessor implementation. This is

accomplished by presenting two lock-free queue implementations and comparing the number

of primitive operations performed by each.

5.3.1 Variable Tagging

Lock-free algorithms often use the compare-and-swap (CAS) primitive to update shared vari-

ables. CAS is similar to the CAS2 primitive (used in Figure 5.1), but accesses only one memory

location. Unlike CAS2, CAS (and similar primitives) are fairly common. The primary benefit

of CAS is that it can avoid the late-write problem. This problem occurs when a task T ’s next

instruction updates a shared variable, but another update on that variable occurs first. If T ’s

update succeeds, then the result of the earlier update will be overwritten.

To illustrate why late writes can be undesirable, consider a simple shared counter that

supports only an increment operation. To perform the increment, a task must make a local

copy of the current value, increment that local value, and then overwrite the shared value

with the local value. Now, suppose two tasks simultaneously invoke the increment operation

and read the value 2 from the shared variable, resulting in a local value of 3. Once the first

operation updates the counter, the second operation becomes invalid due to the fact that its

update is based on an out-of-date counter value (i.e., the increment is based on the counter

value 2, but the current value is 3). Hence, the second update, which is called an enabled late
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write, must fail to ensure correctness.

By using CAS, we can ensure that the value being overwritten is equal to the value read

by the task. Such a guarantee would be sufficient for the above example because the shared

variable’s value monotonically increases;5 hence, each value is uniquely associated with only

one successful increment operation. Unfortunately, when multiple operations may successfully

write the same value, simply comparing the current value to that read earlier is not sufficient

to determine whether other updates occurred after that read.

The CAS primitive can be used to detect modification by subdividing a word of memory

into two sets of bits. One set stores the current value of the variable, while the second stores

a counter like that discussed above. This counter field is called the variable’s tag . Each time

an update is attempted, an increment operation is applied to the tag. By the same reasoning

given above, each value of the tag is uniquely associated with a single operation. Hence,

updates of the variable can be detected by checking the tag. Since the tag and value comprise

a single word of memory, a CAS operation can be used to atomically compare and update

both values simultaneously. Both implementations presented here use tagged variables.

template tagged(T ): record tag : integer; value: T

Our algorithms use the template definition shown above to define tagged variables. As

stated above, each tagged variable is assumed to require only one memory word. Though

accounting for the bounded range of the tags is an important issue, we ignore this complication

here since such advanced issues are outside the scope of this discussion. Instead, we make the

simplifying assumption that tag ranges are unbounded.

5We ignore the possibility of rollover.
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5.3.2 Algorithms

Our multiprocessor and uniprocessor queue implementations are shown in Figures 5.5 and 5.6,

respectively. (A correctness proof for the multiprocessor version can be found in Appendix A.)

Both implementations are based on a linked list, in which each list node consists of a value

field, value, and a tagged pointer to the next list node, next . In addition, the tagged pointers

Head and Tail record the start and end, respectively, of the list. To allow safe concurrent

enqueue and dequeue operations, the linked list contains a dummy head node. The structure

of the queue is illustrated in Figure 5.4.

DUMMY

Tail Head

HeadTail

Representation
Physical

Representation
Logical

Figure 5.4: Physical and logical representation of the shared queue.

The next and Tail pointers are tagged to support multiple enqueuers (writers). For the

single-enqueuer case, the enqueue procedure simplifies to Enqueue 1W, shown below Enqueue MW

in Figure 5.5, and these tag fields can be safely removed. Similarly, the tag field in Head sup-

ports multiple dequeuers (readers) and can be safely removed in the single-dequeuer case. In

this case, Dequeue MR simplifies to the procedure Dequeue 1R in Figure 5.5. Enqueue 1W and

Dequeue 1R are common to both implementations, and thus are not repeated in Figure 5.6.

Multiprocessor algorithm. In the multiprocessor implementation, an enqueue operation

invokes Enqueue MW and passes a node (in) containing the value to be enqueued. The next

field is initialized in lines 1–2 and the done flag cleared in line 3. The next field of the last
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template tagged(T ):
record

tag : integer;
value: T

typedef node:
record

value: element;
next : tagged(pointer to node)

private var
x, h, t : tagged(pointer to node);
done: boolean; out : element;
in: pointer to node

procedure Enqueue MW(in)
1: x := *(in).next ;
2: *(in).next := (x.tag+1,nil);

do
3: done := false;
4: t := Tail ;
5: x := *(t .value).next ;
6: if t = Tail then
7: done := CAS(&(*(t .value).next),

(x.tag ,nil),(x.tag+1,in));
8: x := *(t .value).next ;
9: CAS(&Tail , t , (t .tag+1,x.value))

fi
10: while ¬done

procedure Enqueue 1W(in)
11: x := *(in).next ;
12: *(in).next := (x.tag+1,nil);
13: t := Tail ;
14: x := *(t .value).next ;
15: *(t .value).next := (x.tag+1,in);
16: Tail := (t .tag+1,in)

shared var
Head , Tail : tagged(pointer to node)

procedure Dequeue MR()
returns pointer to node
do

17: done := false;
18: h := Head ;
19: if h.value = Tail .value then
20: if h = Head then
21: return nil

fi
else

22: x := *(h.value).next ;
23: if x.value 6= nil then
24: out := *(x.value).value;
25: done := CAS(&Head , h,

(h.tag+1,x.value))
fi

fi
26: while ¬done;
27: *(h.value) := (out ,(x.tag+1,nil));
28: return h.value

procedure Dequeue 1R()
returns pointer to node

29: h := Head ;
30: if h.value = Tail .value then
31: return nil

else
32: x := *(h.value).next ;
33: out := *(x.value).value;
34: Head := (h.tag+1,x.value);
35: *(h.value) := (out ,(x.tag+1,nil));
36: return h.value

fi

Figure 5.5: Multiprocessor (lock-free) shared queue.

node is then read in lines 4–5. If the comparison at line 6 fails, then another enqueue has

completed and a retry occurs. Otherwise, an update of the next field is attempted (line 7). If

successful, then the new node has been chained onto the end of the list and it remains only

to update Tail . This is done in lines 8–9. If the CAS at line 7 is not successful, then another
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node, call it X, has already been chained onto the end of the list by another task, in which

case the operation must be retried. Lines 8–9 ensure that Tail is correctly updated before

the retry is performed. (The task enqueuing X may not have updated Tail yet.)

The Dequeue MR procedure returns either a pointer to a node that contains the dequeued

value or nil to signify an empty queue. Since Head always points to a dummy node, the node

following the dummy node, if one exists, contains the value at the head of the queue. Thus,

Dequeue MR seeks to remove the dummy head node and return the data stored in the node

after it. This latter node then becomes the new dummy head node. The operation begins by

initializing the done flag at line 17 and then reading address of the dummy node at line 18.

This address is compared to Tail at line 19. If equal, then either the list is empty or the

node referenced by h has been dequeued and re-enqueued by other concurrent operations. In

the latter case, h 6= Head must hold due to tagging. Thus, line 20 correctly distinguishes

between these possibilities. If the test at line 19 is not successful, then either an interference

has occurred, or the list is non-empty. In either case, an attempt is made to dequeue the

head node in lines 22-25. (If an interference has indeed occurred, then this dequeue attempt

will fail. Attempting the operation is the simplest way to detect the interference.) If x.value

is nil at line 23, then an interference has occurred, and the operation is retried. In line 24,

the data value in the node after the dummy node is read, as explained above. In line 25, an

attempt is made to advance the Head pointer past the (old) dummy node. If this attempt

fails, then the operation is retried. (If the CAS at line 25 succeeds, then no other enqueue

could have completed between lines 18 and 25.) Line 27 simply stores the dequeued value

into the removed node so that it can be returned at line 28.

Uniprocessor algorithm. The uniprocessor wait-free queue implementation is obtained
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template tagged(T ):
record

tag : integer;
value: T

procedure Enqueue MW(in)
1: pm := false;
2: x := *(in).next ;
3: *(in).next := (x.tag+1,nil);
4: t := Tail ;
5: x := *(t .value).next ;
6: if x.value 6= nil then
7: if CAS(&Tail , t ,

(t .tag+1,x.value)) then
8: t := (t .tag+1,x.value);
9: x := *(t .value).next ;
10: pm := (x.value 6= nil)

else
11: pm := true

fi
fi;

12: if ¬pm ∧ t = Tail then
13: if CAS(&(*(t .value).next),x,

(x.tag+1,in)) then
14: CAS(&Tail , t , (t .tag+1,in))

else
15: pm := true

fi
fi;

16: if pm then
17: t := Tail ;
18: x := *(t .value).next ;
19: if x.value 6= nil then
20: Tail := (t .tag+1,x.value);
21: t := (t .tag+1,x.value);
22: x := *(t .value).next

fi;
23: *(t .value).next := (x.tag+1,in);
24: Tail := (t .tag+1,in)

fi

typedef node:
record

value: element;
next : tagged(pointer to node)

shared var
Head , Tail : tagged(pointer to node)

private var
x, h, t : tagged(pointer to node);
in: pointer to node; out : element;
pm: boolean

procedure Dequeue MR()
returns pointer to node

25: h := Head ;
26: if h.value = Tail .value then
27: if h = Head then
28: return nil

fi
else

29: x := *(h.value).next ;
30: if x.value 6= nil then
31: out := *(x.value).value;
32: if CAS(&Head , h,

(h.tag+1,x.value)) then
33: *(h.value) := (out ,(x.tag+1,nil));
34: return h.value

fi
fi

fi;
35: h := Head ;
36: if h.value = Tail .value then
37: return nil

else
38: x := *(h.value).next ;
39: out := *(x.value).value;
40: Head := (h.tag+1,x.value);
41: *(h.value) := (out ,(x.tag+1,nil));
42: return h.value

fi

Figure 5.6: Uniprocessor (wait-free) shared queue.
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by unrolling the loop in the multiprocessor version a constant number of times and then

simplifying the code listing. The result is shown in Figure 5.6.

The loop in Enqueue MW (Figure 5.5) is unrolled three times to produce the procedure

shown in Figure 5.6. The need for three loop iterations is illustrated by task B in Figure 5.7.

In this scenario, task A begins an operation close to the slot boundary and is preempted

between lines 8 and 9. As a result, it leaves its node linked to the tail of the queue (see the tA

state shown in the lower portion of Figure 5.7). Suppose no other operations occur until B

initiates its operation. Because the next pointer in the node referenced by Tail is not nil (i.e.,

it references A’s node), the first CAS call in line 7 fails and line 9 updates Tail to reference

A’s node. B is then preempted immediately before line 7 during the second iteration, and

some other task (C) performs an operation while B is preempted. In this case, B’s second

execution of line 7 also fails (when B resumes) because the information stored in x and t

is out-of-date. Hence, a third iteration is performed. This last iteration is guaranteed to

succeed. It follows that three loop iterations occur in the worst case.6

In Figure 5.6, the first loop iteration, which checks for a partially completed operation,

produces lines 6–11. The second iteration, which attempts to perform the enqueue operation,

produces lines 12–15. If preemption occurs during either of these two “iterations,” then (PA)

ensures that the next iteration is effective non-preemptable. Therefore, the third iteration

can be simplified, as shown in lines 16–24.

By (PA), the multiprocessor version of Dequeue MR iterates at most twice on a unipro-

cessor. The first loop iteration corresponds to lines 25–34 in Figure 5.6. If the operation is

preempted, then a second iteration is performed, which corresponds to lines 35–42.

6Notice that only one of these iterations was caused by a preemption. Thus, although there are three loop
iterations, there is only one retry. Hence, this scenario is not a violation of (PA).
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Figure 5.7: Illustration of the worst-case scenario when using the multiprocessor lock-free
queue implementation on a quantum-based uniprocessor. This same worst case applies to the
use of this implementation within a supertask.

5.3.3 Comparison

One simple method of comparing the relative efficiency of these algorithms is to count the

number of shared-memory reads and writes (denoted R and W , respectively) and the number

of CAS invocations (denoted CAS ) that occur in the worst case. This comparison must

necessarily be made on a uniprocessor. For the multiprocessor version of Enqueue MW, the
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M Procedure Path R W CAS 1×R 1×W 3.5×CAS Total

> 1 Enqueue MW 13 1 6 13 1 21 35
> 1 Dequeue MR 10 2 2 10 2 7 19

1 Enqueue MW preempted 8 4 2 8 4 7 19
1 Enqueue MW not preempted 5 1 3 5 1 10.5 16.5
1 Dequeue MR 8 3 1 8 3 3.5 14.5

Figure 5.8: Shared-memory instruction counts along worst-case code paths for both queue
algorithms.

worst-case path under uniprocessor execution includes three loop iterations, with six CAS

calls being made in lines 7 and 9. In addition, lines 1–2 contribute one read and write, and

each loop iteration contributes four reads. Therefore, in the worst case, the multiprocessor

Enqueue MW algorithm has R = 13, W = 1, and CAS = 6.

A similar analysis can be applied the other procedures with the exception of Enqueue MW

in Figure 5.6. It is unclear which code path produces the worst-case behavior in this proce-

dure. For this reason, we consider two paths through the code. Figure 5.8 summarizes the

instruction counts along all considered paths.

The cost of synchronization primitives. Synchronization primitives usually require

more cycles than uncached reads and writes. For example, LaMarca [39] noted that the load-

linked/store-conditional instruction pair (which provides functionality similar to CAS) on a

DEC 3000-400 with a 130 MHz Alpha 2 21064 CPU requires approximately 3.5 times the

number of cycles as an uncached shared-memory read. Though it is not a modern processor,

this and other older architectures are still being used today, particularly in embedded systems.

Comparison. An admittedly simple method for approximating the relative performance of

these algorithms is to compare the weighted sums of the previous instruction counts based on

LaMarca’s observations. Though this comparison is far from exact, it nevertheless provides
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some insight into the relationship between these implementations. Figure 5.8 shows the

resulting weighted sums produced by the worst-case code paths. These sums suggest that

using the uniprocessor algorithm provides an improvement in Enqueue MW and Dequeue MR of

around 84% (35
19 ≈ 1.84) and 31% ( 19

14.5 ≈ 1.31), respectively.

Improvement trends. For simple lock-free operations that update only one variable, a

uniprocessor implementation may provide only a marginal improvement. However, for more

complex operations that update multiple variables, significant improvement is likely. This is

demonstrated by Enqueue MW, which shows significant improvement despite the fact that it

updates only two variables.

Operations that perform multiple updates can be greatly simplified by using a multi-

word compare-and-swap (MWCAS). This primitive generalizes both CAS and CAS2 by making

the number of words involved in the operation an argument. Though it is impractical to

provide a MWCAS primitive in hardware, it can be efficiently implemented in software on a

uniprocessor [3]. In contrast, no efficient implementation is known for multiprocessors. For

this reason, the class of objects that have efficient uniprocessor lock-free implementations is

far larger than the class that can be efficiently implemented on multiprocessors.

5.4 Assigning Tasks to Supertasks

In this section, we present a simple heuristic for assigning tasks to quantum-based supertasks

in order to reduce lock-free overhead. In the next section, we present the results of an exper-

imental study that compares the overhead experienced under several approaches, including

the use of the heuristic presented here. The purpose of this section and the experimental

study is to demonstrate that supertasking can be an effective means of reducing lock-free
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overhead, even when reweighting overhead is considered. Since reducing lock-free overhead

is but one benefit of supertasking, the heuristic considered here is too simplistic for most

systems. Indeed, provisioning supertasks so that total overhead is minimized is one of the

prominent unsolved optimization problems in this area.

5.4.1 The Heuristic

Since supertask assignment is a variation of partitioning, we consider the use of a heuristic.

(Recall from Chapter 1 that the partitioning problem is NP-hard in the strong sense.) A

pseudo-code version of our heuristic is shown in Figure 5.9. Tasks are prioritized based upon

the number of accesses made to each object and the degree of contention for that object. We

define the weighted contention for object ` by the value e
[M ]
R (`) ·

∑

T∈τ

J(T,`)
T.p . In this expression,

∑

T∈τ

J(T,`)
T.p gives the frequency of accesses to ` by all tasks in τ . e

[M ]
R (`) then represents the

interference penalty. All tasks that access the object ` with the highest weighted contention

are assigned to supertasks first. Since each task T ’s interference depends on A(T, `), tasks

are assigned in non-increasing order by A(T, `). After these tasks are assigned, the remaining

objects are considered in non-increasing order by weighted contention.

Assignment rules. The act of assigning selected tasks to supertasks is delegated to an

assignment rule. We consider the use of two rules, which are taken from prior work on

partitioning [19, 23]. The Next Fit (NF) rule begins by assigning tasks to the first (lowest-

indexed) supertask. Whenever a supertask is unable to accept a task, the rule moves to the

supertask with the next higher index and continues. Once a supertask fails to accept a task,

no further attempts are made to assign to that supertask. This rule intuitively matches the

goal of the heuristic due to the fact that tasks that are consecutively assigned are likely to be
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Create |τ | empty supertasks and add them to π;
τ ′ := τ ;
Γ′ := Γ;
while |Γ′| > 0 ∧ |τ ′| > 0 do

Select ` ∈ Γ′ with largest e
[M ]
R (`) ·

∑

T∈τ

J(T,`)
T.p value;

Γ′ := Γ′/{`};
while there exists T ∈ τ ′ with A(T, `) > 0 do

Select T ∈ τ ′ with largest A(T, `);
τ ′ := τ ′/{T};
Assign T to a non-full supertask using the assignment rule

od
od;
Remove all empty supertasks from π

Figure 5.9: Heuristic algorithm for assigning tasks to supertasks.

assigned to the same supertask.

The First Fit (FF) rule, on the other hand, always assigns a task to the lowest-indexed

supertask that can accept the task. The advantage of this rule is that it may use fewer

supertasks on average, which results in less reweighting overhead. However, the fact that

supertasks are not considered in sequence, as is done under the NF rule, implies that the

FF rule will be less effective at preventing object sharing across multiple supertasks. Hence,

using the FF rule may reduce reweighting overhead, but is also likely to increase lock-free

overhead (relative to that experienced when using the NF rule).

5.4.2 Implementation

Unfortunately, implementing this heuristic is a non-trivial task. The problem that arises is

that the lock-free overhead depends on the assignment of tasks to supertasks. Hence, the

ultimate weight of each task is not known at the time of the assignment. Effectively, each

task’s weight may expand or contract after being assigned to a supertask. If the total weight
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of a component task set after these weight changes exceeds unity, then the task assignments

are not valid. In such a case, another round of assignments must be performed.

We address the dependency between task weights and supertask assignments by applying

the heuristic iteratively. Specifically, an initial round of assignments is conducted using “ideal”

weights7 and an acceptance test of the form

∑

T∈S

T.w ≤ α,

where α is set to unity. Once assignments are made, the weights of the component tasks are

updated and each supertask is checked to ensure that the cumulative weight does not exceed

unity. If this requirement is satisfied, then the assignment phase ends and the supertasks are

reweighted. Otherwise, the supertask assignments are nullified, α is decremented by 0.01,

and another round of assignments are conducted using the task weights computed at the end

of the previous round.

The benefit of decreasing α (and hence increasingly underestimating the maximum capac-

ity of supertasks) each time a new round begins is that a fraction 1 − α of each supertask’s

maximum capacity is effectively reserved to account for the inflation of task weights. The

disadvantage of such compensation is that lowering α can result in an unnecessarily high

number of supertasks, thereby increasing reweighting overhead. For this reason, we use a

relatively small step size (i.e., 0.01) when decreasing α. We found that termination typically

occurs after only two or three rounds when using this step size.

7Ideal weights are based on the assumption that no retries occur.
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5.5 Experimental Results

In this section, we present the results of two experimental studies that measure the inflation

experienced when lock-free synchronization is used. Since we are unable to reasonably esti-

mate the impact of algorithmic improvements obtained through the use of supertasks, such

improvements were not considered in either of these studies.

The goal of the first study was to identify the approach that is likely to produce the

lowest inflation. Both the QB-EPDF and QB-EDF forms of supertasking (see Chapter 4)

were considered; each form was tested using the heuristic proposed in the previous section

with each of the FF and NF rules. The resulting inflation was compared to that experienced

when no supertasks are used.

The second study focused on the relationship between inflation and the A(T, `) values.

Specifically, the upper limit imposed on A(T, `) values was systematically increased, thereby

increasing the worst-case contention for the lock-free objects. The goal of this study was to

determine how the performance of each approach scales as contention increases.

5.5.1 Study 1: Retry Overhead

In this section, we present the details and results of the first study. This study was designed

to evaluate the efficacy of using supertasks to reduce retry overhead. Though the use of

supertasks can reduce worst-case contention, it also introduces reweighting overhead.

Sample space. For this study, the sample space was defined as follows:

• M is in the range 2, . . . , 16;

• |τ | is in the range 5 · log2 M, . . . , 30 · log2 M ;
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• τ.u is in the range 0.2 · M, . . . , 0.8 · M ;

• |Γ| is in the range log2 M, . . . , 10 · log2 M ;

• T.p is in the range 100, . . . , 5000;

• A(T, `) is in the range 1, . . . , 3;

• J (T, `) is in the range A(T, `), . . . , 8;

• eB(`) is in the range 0.001, . . . , 0.05;

• eR(`) is in the range 0.001, . . . , 0.025.

These ranges were selected rather arbitrarily so that values that seemed likely to occur in

practice would be included in the experiments. For instance, the 0.025 upper bound on eR(`)

reflects our expectation that retry loops should seldom, if ever, require more than 2.5% of

a quantum. (If retry loops are too lengthy, then the use of lock-free synchronization will

provide no advantage over the use of lock-based synchronization.) Similarly, we expect retry

loops to require at least 0.1% of a quantum. These expectations are based on the prior work

of Ramamurthy [56]. We scale |τ | and |Γ| logarithmically relative to M because contention

(and hence inflation) tends to increases quickly as M is increased.

Sampling. To provide fairly uniform coverage, samples were collected as follows:

• M was set to each value in the set { 2x | 1 ≤ x ≤ 4 };

• |τ | was set to each value in the set { x · log2 M | 5 ≤ x ≤ 30 };

• τ.u was set to each value in the set { 0.025x · M | 8 ≤ x ≤ 32 };

• |Γ| was set to each value in the set { x · log2 M | 1 ≤ x ≤ 10 }.
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For each combination of the above parameter assignments, ten valid component task sets were

generated and evaluated. Recall that a valid task set is one that is schedulable under every

approach considered by the experiment. As discussed in Chapter 4, we estimate the fraction

of the sample population represented by each computed mean by the fraction of generated

samples that were determined to be valid. (As explained earlier, we refer to this latter fraction

as the sampling validity .)

Relevance. As discussed earlier, the performance of random task sets is a questionable

indicator of actual performance due to the fact that the relationship between random task

sets and real task sets is unknown. However, such experiments can provide insight into

performance trends. Unfortunately, random task-set experiments are even more difficult to

utilize when studying complex behaviors, such as suspensions and resource sharing. This

follows from the fact that the patterns of behavior within a task set significantly impact

performance. Hence, to estimate performance reliably, it is necessary to accurately recreate

the expected behavior. However, without knowledge of which patterns of behavior are likely

to occur, this is not possible.

For simplicity, these experiments generated resource accesses in a uniform fashion. Specif-

ically, when randomly generating a resource access, the resource being accessed was chosen

from a uniform distribution of all shared resources. Consequently, the task sets considered in

these experiments tended to exhibit widespread object sharing, i.e., if sharing dependencies

between tasks were represented using a graph in which nodes represent tasks, then the graph

would resemble a large web containing all nodes. Such a scenario may reflect cases in which

a multiprocessor is dedicated to a single large-scale, multithreaded application. However, it

does not reflect cases in which several applications are multiplexed onto a single multiproces-
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Figure 5.10: Graphs of resource-sharing dependencies between a set of twelve tasks. Scenarios
include (a) widespread sharing, and (b) clustered sharing.

sor. In such a situation, resource sharing would likely be localized to clusters of tasks, each of

which represents a single application or some part of an application. Figure 5.10 illustrates

these two scenarios. Unfortunately, as with studies of sharing behavior in general, a proper

study of clustered sharing requires some prior knowledge of the characteristics of real clusters.

Hence, we leave experiments that focus on clustered sharing as future work.

Measurement. The following measurements were taken during the experimental runs.

Ideal: the sum of the ideal weights8 of all tasks (a baseline measurement); this measurement

reflects mapping overhead alone.

No Supertasks: the total weight of all tasks when object accesses are considered and

supertasks are not used; this measurement reflects mapping and retry overhead.

Ideal QB (FF): the sum of the ideal weights of all supertasks created by the FF form of

the assignment heuristic (a baseline measurement); this measurement reflects mapping

8A task’s ideal weight is based on the assumption that no retries are needed for object accesses.
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and retry overhead.

Ideal QB (NF): the sum of the ideal weights of all supertasks created by the NF form of

the assignment heuristic (a baseline measurement); this measurement reflects mapping

and retry overhead.

QB-EPDF (FF): the sum of the assigned weights of all supertasks created by the FF form

of the assignment heuristic under the QB-EPDF scenario; this measurement reflects

mapping, retry, and reweighting overhead.

QB-EPDF (NF): the sum of the assigned weights of all supertasks created by the NF form

of the assignment heuristic under the QB-EPDF scenario; this measurement reflects

mapping, retry, and reweighting overhead.

QB-EDF (FF): the sum of the assigned weights of all supertasks created by the FF form of

the assignment heuristic under the QB-EDF scenario; this measurement reflects map-

ping, retry, and reweighting overhead.

QB-EDF (NF): the sum of the assigned weights of all supertasks created by the NF

form of the assignment heuristic under the QB-EDF scenario; this measurement reflects

mapping, retry, and reweighting overhead.

To ensure termination when reweighting, S.wφ + 10−4 was passed as wmin when invoking

Reweight (presented earlier in Figure 4.7). When discussing the supertasking approaches,

trends in the reweighting overhead will not be noted. (A discussion of reweighting overhead

can be found in Chapter 4.) The sampling validity was consistently around unity for the two-

and four-processor cases. For this reason, we omit graphs of sampling validity for those cases.
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Overall Performance. The tables shown in Figures 5.11–5.14 summarize the overall results

of this study. Separate summaries are given for each value of M . As in Chapter 4, these tables

consist of five columns. The first (leftmost) column identifies the approach associated with

each row. The second (“Mean”) column shows the mean inflation experienced under each

approach. The third (“Standard Deviation”) column gives the standard deviation of the

samples used to compute that mean. The fourth (“Halflength”) column gives the halflength

of a 99% confidence interval. A confidence interval is defined to be [m − h,m + h], where

m denotes the mean and h denotes the halflength. Finally, the fifth column reports what

fraction of the sample sets favored the use of each approach. In this comparison, attention

was restricted to only a few of the tested approaches. N/A is used to signify which approaches

were omitted from the comparison. A more detailed pairwise comparison of approaches was

also conducted; the results can be found in Appendix B.

Notice that the fifth column includes a “QB-EDF (Both)” measurement that was not

described above. This case refers to samples for which QB-EDF is the favored approach and

both the NF and FF rules produced identical results. For low processor counts, the NF and

FF rules often produce identical results, which implies that the choice of assignment rule is of

little importance. However, as the processor count increases, more supertasks are needed on

average, and the likelihood that these rules provide identical performance drops. We include

this special measurement primarily to gauge the importance of the assignment rule.

Consider the M = 2 results first, which are shown in Figure 5.11. In this case, the QB-

EDF approach produced the lowest inflation on average. (Recall that the Ideal entries reflect

baseline measurements and not actual approaches.) In addition, the QB-EPDF approach

performs much worse than not using supertasks. This relationship is the result of two factors.



205

M = 2 Mean Standard Deviation Halflength Best

Ideal 0.010632 0.006481 0.00006548 N/A
No Supertasks 0.022861 0.015684 0.00015847 2.791%
Ideal QB (FF) 0.013820 0.009000 0.00009093 N/A
Ideal QB (NF) 0.013897 0.009055 0.00009149 N/A
QB-EPDF (FF) 0.042780 0.060778 0.00061408 N/A
QB-EPDF (NF) 0.038047 0.056036 0.00056616 N/A
QB-EDF (FF) 0.014029 0.009000 0.00009093 7.517%
QB-EDF (NF) 0.014088 0.009055 0.00009149 3.903%

QB-EDF (Both) N/A N/A N/A 85.789%

Figure 5.11: Summary of the results of the first lock-free experiment for the M = 2 case.

First, the QB-EPDF approach is the most costly with respect to reweighting overhead (ac-

cording to the studies presented in Chapter 4). Second, worst-case interference is determined

by considering M − 1 interfering tasks. Consequently, for small values of M , such as M = 2,

interference is already limited. As a result, the reduction in retry overhead obtained by using

supertasks is often outweighed by reweighting overhead.

The variance of samples does not appear to significantly differ from that observed in the

reweighting experiments presented in Chapter 4. Again, QB-EPDF shows significantly more

variance than the other approaches. Indeed, the fact that the performance of the supertasking

approaches strongly resembles that observed earlier in the reweighting experiments suggests

that the retry overhead did not significantly impact this case. (An obvious exception is the

“No Supertasks” mean.)

The rightmost column relates the fraction of the valid task sets that favored each approach.

Because QB-EPDF cannot improve upon QB-EDF, we considered only the “No Supertasks”

and QB-EDF approaches in this comparison. As shown, 2.791% of the sets showed no benefit

to using either form of the QB-EDF approach. For 85.789% of the task sets, both forms of

the QB-EDF approach performed indentically and provided some improvement. Finally, the
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FF (respectively, NF) form of QB-EDF provided the lowest inflation for 7.517% (respectively,

3.903%) of the sample sets. This last result suggests that neither the NF nor FF assignment

rules can be assumed to always produce better results than the other. However, this result

does suggest that the FF rule will likely be the better choice. Notice, however, that the FF

rule appears to produce worse results than the NF rule when used with QB-EPDF.

Next, consider the M = 4 results, which are shown in Figure 5.12. Due to the increased

parallelism, the worst-case interference increases as well, relative to the previous case. As

a result, both QB-EPDF and QB-EDF improved upon “No Supertasks” in this case. (This

suggests that improvement is likely to occur for more than four processors as well.) Indeed,

the fraction of task sets that favor not using supertasks has dropped below 0.1%, as shown

in the last column. As before, QB-EDF provides a significant improvement over QB-EPDF.

In addition, the relationship between the NF and FF rules observed for the M = 2 case

continues to hold here, i.e., the FF rule likely provides the lowest inflation, though the NF

rule may provide better results for a significant fraction of the task sets. Again, the use of

the FF rule with QB-EPDF appears to be an exception. In this and the remaining cases, the

variance of samples is unremarkable, i.e., the standard deviation appears to track the sample

means relatively closely for each approach. Because of this, we do not remark on the sample

variance beyond this point. Finally, notice that (according to the fifth column) the choice

of assignment rule more significantly impacts results in this case. Whereas around 85% of

the tested sets showed no preference for either rule in the M = 2 case, only 47% showed no

preference in this case. Instead, the FF rule appears to be the prefered approach.

The results of the M = 8 case are shown in Figure 5.13. These results show basically the

same trend as the M = 4 case. Specifically, QB-EDF continued to perform better than QB-
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M = 4 Mean Standard Deviation Halflength Best

Ideal 0.026062 0.014900 0.00015054 N/A
No Supertasks 0.134587 0.101213 0.00102261 0.029%
Ideal QB (FF) 0.057995 0.047864 0.00048360 N/A
Ideal QB (NF) 0.059094 0.049122 0.00049631 N/A
QB-EPDF (FF) 0.093600 0.084012 0.00084882 N/A
QB-EPDF (NF) 0.090789 0.085212 0.00086094 N/A
QB-EDF (FF) 0.058327 0.047875 0.00048370 41.088%
QB-EDF (NF) 0.059407 0.049143 0.00049651 11.615%

QB-EDF (Both) N/A N/A N/A 47.268%

Figure 5.12: Summary of the results of the first lock-free experiment for the M = 4 case.

M = 8 Mean Standard Deviation Halflength Best

Ideal 0.046311 0.026363 0.00026636 N/A
No Supertasks 0.531052 0.423021 0.00427401 0.009%
Ideal QB (FF) 0.219781 0.203902 0.00206013 N/A
Ideal QB (NF) 0.227022 0.212299 0.00214497 N/A
QB-EPDF (FF) 0.295368 0.241692 0.00244194 N/A
QB-EPDF (NF) 0.319000 0.288635 0.00291623 N/A
QB-EDF (FF) 0.220359 0.203941 0.00206053 72.594%
QB-EDF (NF) 0.227624 0.212325 0.00214523 15.111%

QB-EDF (Both) N/A N/A N/A 12.286%

Figure 5.13: Summary of the results of the first lock-free experiment for the M = 8 case.

EPDF, while the performance gap between the “No Supertasks” and supertask approaches

widened further. In addition, the FF rule is increasingly favored over the NF rule when using

QB-EDF. However, one aspect of these results that differs from those of previous cases is

that the QB-EPDF now favors the FF rule rather than the NF rule. The M = 16 case,

summarized in Figure 5.14, appears to simply continue these trends.

Impact of the task count. We now consider how inflation varied with the task count,

task set utilization, object count, and weighted contention. Consider the task count first.

Figures 5.15, 5.16, 5.17, and 5.18 show how inflation varies with the task count on two, four,

eight, and sixteen processors, respectively. In all graphs, the “Ideal QB (FF)” and “QB-EDF
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M = 16 Mean Standard Deviation Halflength Best

Ideal 0.069839 0.038872 0.00039274 N/A
No Supertasks 1.466354 1.180997 0.01193224 0.211%
Ideal QB (FF) 0.648293 0.579701 0.00585702 N/A
Ideal QB (NF) 0.678701 0.612468 0.00618809 N/A
QB-EPDF (FF) 0.905877 0.657126 0.00663929 N/A
QB-EPDF (NF) 1.079902 0.860122 0.00869027 N/A
QB-EDF (FF) 0.649586 0.579636 0.00585637 85.772%
QB-EDF (NF) 0.680260 0.612297 0.00618636 12.894%

QB-EDF (Both) N/A N/A N/A 1.123%

Figure 5.14: Summary of the results of the first lock-free experiment for the M = 16 case.

(FF)” lines are all virtually co-linear. This is also true of the “Ideal QB (NF)” and “QB-EDF

(NF)” curves. Graphs of the sampling validity for the eight- and sixteen-processor cases are

shown in Figure 5.19. We summarize the relationships suggested by these graphs below.

Observation 5.1 The QB-EPDF approach provides no benefit on two, four, eight, and six-

teen processors when task counts are approximately less than 20, 20, 30, and 40, respectively.

Explanation: Lower task counts tend to produce low component task counts within the

supertasks. As shown in the experiments in Chapter 4, low component task counts produce

more reweighting overhead, particularly under QB-EPDF.

Observation 5.2 Retry overhead increases linearly with the task count.

Explanation: This relationship is most apparent by comparing the “Ideal,” “No Super-

tasks,” and “Ideal QB” curves. Although all curves are linear, the slopes of the “No Super-

tasks” and “Ideal QB” curves are steeper than that of “Ideal.” This implies that the retry

overhead is increasing linearly.

This behavior is the result of the random generation process. The number of objects

accessed by each task is randomly chosen from the range 1, . . . , |Γ|. As a result, an increase in
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Figure 5.15: Plots show how inflation varies as the task count is increased when using lock-
free synchronization on two processors. The figure shows (a) the sample means and (b) the
99% confidence interval for each mean.
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Figure 5.16: Plots show how inflation varies as the task count is increased when using lock-
free synchronization on four processors. The figure shows (a) the sample means and (b) the
99% confidence interval for each mean.



211

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  30  40  50  60  70  80  90

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Task Count

Inflation vs. Task Count (8 Processors)

Ideal
No Supertasks
Ideal QB (FF)
Ideal QB (NF)

QB-EPDF (FF)
QB-EPDF (NF)

QB-EDF (FF)
QB-EDF (NF)

(a) Sample Means Only

 0

 0.2

 0.4

 0.6

 0.8

 1

 20  30  40  50  60  70  80  90

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Task Count

Inflation vs. Task Count (8 Processors)

Ideal
No Supertasks
Ideal QB (FF)
Ideal QB (NF)

QB-EPDF (FF)
QB-EPDF (NF)

QB-EDF (FF)
QB-EDF (NF)

(b) 99% Confidence Interval

Figure 5.17: Plots show how inflation varies as the task count is increased when using lock-
free synchronization on eight processors. The figure shows (a) the sample means and (b) the
99% confidence interval for each mean.
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Figure 5.18: Plots show how inflation varies as the task count is increased when using lock-
free synchronization on sixteen processors. The figure shows (a) the sample means and (b)
the 99% confidence interval for each mean.
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Figure 5.19: Plots show the sampling validity for the graphs showing inflation plotted against
the task count. The figure shows (a) the M = 8 and (b) the M = 16 cases. The validity was
approximately unity throughout the M = 2 and M = 4 cases. Hence, graphs of those cases
are not shown.
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either the task count or the object count will produce more sharing, and hence more inflation.

Notice that the relative performance of the FF and NF forms of the QB-EPDF approach

is inconsistent. For lower M values, the FF rule performs worse than the NF rule. However,

for larger M values, the FF rule performs better. The cause of this behavior is not clear.

Also, notice that the sampling validity curve for the M = 16 case, shown in Figure 5.19(b),

has an unusual shape. This shape is easily explained by considering the graph of inflation

given in Figure 5.18. Specifically, the first drop in sampling validity, which occurs when the

task count is in the range [20, 40], is caused by the reweighting overhead of the QB-EPDF

approach. As the task count increases, this overhead reduces, which results in increasing

sampling validity. However, the sampling validity drops off again for task counts above 50

due to the increasing retry overhead experienced under the “No Supertasks” approach.

Impact of the object count. Figures 5.20, 5.21, 5.22, and 5.23 show how inflation

varies with the object count on two, four, eight, and sixteen processors, respectively. Again,

the “Ideal QB” and QB-EDF lines are all virtually co-linear. The sampling validity for

the eight- and sixteen-processor cases is plotted in Figure 5.24. As shown, the sampling

validity is close to unity for the eight-processor case, but decreases approximately linearly

in the sixteen-processor case. Figure 5.23 suggests that this decline is due to the high retry

overhead experienced under the “No Supertasks” approach. We summarize other relationships

suggested by these graphs below.

Observation 5.3 Retry overhead increases linearly with the object count.

Explanation: As explained above, this behavior is the result of the random generation

process. Specifically, each task is randomly chosen to access between 1 and |Γ| objects.
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Figure 5.20: Plots show how inflation varies as the object count is increased when using lock-
free synchronization on two processors. The figure shows (a) the sample means and (b) the
99% confidence interval for each mean.
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Figure 5.21: Plots show how inflation varies as the object count is increased when using lock-
free synchronization on four processors. The figure shows (a) the sample means and (b) the
99% confidence interval for each mean.
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Figure 5.22: Plots show how inflation varies as the object count is increased when using lock-
free synchronization on eight processors. The figure shows (a) the sample means and (b) the
99% confidence interval for each mean.
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Figure 5.23: Plots show how inflation varies as the object count is increased when using lock-
free synchronization on sixteen processors. The figure shows (a) the sample means and (b)
the 99% confidence interval for each mean.
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Figure 5.24: Plots show the sampling validity for the graphs showing inflation plotted against
the lock count. The figure shows (a) the M = 8 and (b) the M = 16 cases. The validity was
approximately unity throughout the M = 2 and M = 4 cases. Hence, graphs of those cases
are not shown.
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Hence, as |Γ| increases, contention and inflation increases as well.

Observation 5.4 Performance of the FF and the NF rules diverges as |Γ| and M increase.

The NF rule slightly improves on the FF rule under QB-EDF, but this relationship is inverted

for the QB-EPDF approach.

Explanation: There is no obvious reason for either of these trends. This behavior warrants

further study.

The only other trend of interest is the poor performance of QB-EPDF in the M = 2 case.

This trend was already discussed earlier on page 204.

Impact of utilization. Figures 5.25, 5.26, 5.27, and 5.28 show how inflation varies with the

task set utilization on two, four, eight, and sixteen processors, respectively. Again, the “Ideal

QB (FF)” and “QB-EDF (FF)” lines (respectively, the “Ideal QB (NF)” and “QB-EDF (NF)”

lines) are virtually co-linear. The sampling validity for the eight- and sixteen-processor cases

is plotted in Figure 5.29. As shown in both graphs, the sampling validity is fairly consistent

(though not ideal in the M = 16 case) at low utilizations, but drops off steeply around the

high end of the range. This is not surprising since task sets with higher utilizations leave

less spare processor capacity to be consumed by retry overhead. This decrease in sampling

validity is the cause of the skew that can be seen at these high utilizations in Figures 5.27

and 5.28

The most obvious trend in these graphs is the seemingly erratic behavior of QB-EPDF.

Comparing these curves to the “Ideal QB” curves implies that reweighting overhead is the

cause of this behavior. Recall that an unexpected dependency between utilization and

reweighting overhead was previously noted earlier in Chapter 4. We believe that the behavior
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Figure 5.25: Plots show how inflation varies as the task set utilization is increased when using
lock-free synchronization on two processors. The figure shows (a) the sample means and (b)
the 99% confidence interval for each mean.
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Figure 5.26: Plots show how inflation varies as the task set utilization is increased when using
lock-free synchronization on four processors. The figure shows (a) the sample means and (b)
the 99% confidence interval for each mean.
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Figure 5.27: Plots show how inflation varies as the task set utilization is increased when using
lock-free synchronization on eight processors. The figure shows (a) the sample means and
(b) the 99% confidence interval for each mean.
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Figure 5.28: Plots show how inflation varies as the task set utilization is increased when using
lock-free synchronization on sixteen processors. The figure shows (a) the sample means and
(b) the 99% confidence interval for each mean.
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Figure 5.29: Plots show the sampling validity for the graphs showing inflation plotted against
the task set utilization. The figure shows (a) the M = 8 and (b) the M = 16 cases. The
validity was approximately unity throughout the M = 2 and M = 4 cases. Hence, graphs of
those cases are not shown.
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observed here is a by-product of the same dependency. We summarize other relationships

suggested by these graphs below.

Observation 5.5 Retry overhead is independent of the task set utilization when not using

supertasks. However, this overhead is dependent on the utilization when using supertasks.

Explanation: The independence property follows simply from the fact that the utilization

does not impact the formulas used to bound retry overhead. A dependency is introduced

when using supertasks because the utilization dictates the number of supertasks needed to

service the task set. Larger numbers of supertasks tend to result in increased worst-case

interference, and hence more inflation.

Observation 5.6 Retry overhead is worse under the NF rule than the FF rule for high

utilizations.

Explanation: For higher total utilizations, individual task utilizations and the range of

task utilizations tend to be larger. Because the NF rule abandons a supertask on the first as-

signment failure, it tends to create more supertasks than the FF rule. To understand why this

leads to more overhead, suppose that each component task set has a total utilization of 0.92

(on average) under the FF rule, but a total utilization of only 0.8 under the NF rule. When

the total task set utilization is 16, the FF rule can be expected to create around
⌈

16
0.92

⌉

= 18

supertasks. On the other hand, the NF rule should produce around
⌈

16
0.8

⌉

= 20 supertasks.

Because, the NF rule produces more supertasks on average, it incurs more reweighting over-

head. Furthermore, as task weights increase, the mean utilization of supertasks decreases

(on average) more rapidly under the NF rule than under the FF rule. Hence, higher task

utilizations favor the use of the FF rule.
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Impact of weighted contention. In the last set of graphs from the first study, inflation

is plotted against the weighted object contention. Recall that weighted object contention is a

weighted measure of the access frequency to the shared objects. Hence, larger values suggest

heavier usage of the shared objects. Consequently, retry overhead is expected to increase with

weighted object contention. Unlike the previous graphs, the sample means in these graphs do

not represent uniform coverage of the sample space. In addition, the number of samples used

to produce each mean varies across the graph. (Each mean is based on at least 100 samples.)

Figures 5.30, 5.31, 5.32, and 5.33 show the graphs for the two-, four-, eight-, and sixteen-

processor cases, respectively. As before, the “Ideal QB (FF)” and “QB-EDF (FF)” lines

(respectively, the “Ideal QB (NF)” and “QB-EDF (NF)” lines) are virtually co-linear. The

sampling validity for the eight- and sixteen-processor cases is plotted in Figure 5.34.

Although the sampling validity is consistent and relatively close to unity in the M = 8

case, neither property holds in the M = 16 case. In addition, the shape of the sampling

validity curve in the M = 16 case does not appear to be consistent with the plot of the

sample means in Figure 5.33 either. For instance, there is no obvious reason for the dip in

sampling validity that occurs around x = 0.038. The cause of this inconsistency is not clear

and requires further study. (The mean in question is based on approximately 1800 samples;

hence, inadequate sampling does not appear to be the cause of this inconsistency.)

Observation 5.7 Reweighting overhead under the QB-EPDF approach is high when weighted

contention is low, but drops off quickly as weighted contention increases.

Explanation: This is an artifact of non-uniform sampling. Low weighted contention more

frequently occurs in small task sets. (This tendency likely holds in practice as well.) Hence,

the behavior shown in these graphs is actually the same as that shown earlier in the graphs
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Figure 5.30: Plots show how inflation varies as the weighted contention is increased when
using lock-free synchronization on two processors. The figure shows (a) the sample means
and (b) the 99% confidence interval for each mean.
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Figure 5.31: Plots show how inflation varies as the weighted contention is increased when
using lock-free synchronization on four processors. The figure shows (a) the sample means
and (b) the 99% confidence interval for each mean.
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Figure 5.32: Plots show how inflation varies as the weighted contention is increased when
using lock-free synchronization on eight processors. The figure shows (a) the sample means
and (b) the 99% confidence interval for each mean.
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Figure 5.33: Plots show how inflation varies as the weighted contention is increased when
using lock-free synchronization on sixteen processors. The figure shows (a) the sample means
and (b) the 99% confidence interval for each mean.
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Figure 5.34: Plots show the sampling validity for the graphs showing inflation plotted against
the weighted contention. The figure shows (a) the M = 8 and (b) the M = 16 cases. The
validity was approximately unity throughout the M = 2 and M = 4 cases. Hence, graphs of
those cases are not shown.
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of inflation plotted against the task count.

Observation 5.8 As weighted contention increases, the performance of all supertasking ap-

proaches appears to converge.

Explanation: As weighted contention increases, reweighting overhead becomes insignificant

relative to the retry overhead. In addition, the scale of the retry overhead makes the difference

between the supertasking approaches appear insignificant by comparison. For instance, in

the M = 16 graph, the inflation of the supertasking approaches at x = 0.05 spans a range

of approximately 0.2. On the other hand, the difference between the inflation when using

supertasks and not using supertasks is around 2, which is an order of magnitude larger.

5.5.2 Study 2: Per-Quantum Access Count

In this section, we present the details and results of the second study. This study was

designed to show how the performance of each approach scales as the A(T, `) values increase.

To accomplish this, the upper bound imposed on these values, denoted B, was systematically

increased and measurements were taken as in the previous study.

Sample space. Because this study allowed for higher contention than the previous one,

a more constrained sample space was considered. This was necessary to ensure that the

sampling validity of the computed means was sufficiently high to make the results interesting.

The sample space was defined as follows:

• |τ | is in the range 6 · log2 M, . . . , 15 · log2 M ;

• τ.u is in the range 0.2 · M, . . . , 0.6 · M ;

• |Γ| is in the range log2 M, . . . , 5 · log2 M ;
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• B is in the range 1, . . . , 8;

• A(T, `) is in the range 1, . . . , B.

All other aspects of the sample space matched those in the previous study. The above ranges

were selected through trial and error so that approximately unit sampling validity could be

achieved by at least two of the means computed for the M = 16 case.

Sampling. Samples were collected as follows:

• B was set to each value in the range 1, . . . , 8;

• |τ | was set to each value in the set { x · log2 M | 6 ≤ x ≤ 15 };

• τ.u was set to each value in the set { 0.025x · M | 8 ≤ x ≤ 24 };

• |Γ| was set to each value in the set { x · log2 M | 1 ≤ x ≤ 5 }.

For each combination of the above parameter assignments, two valid component task sets

were generated and evaluated. Measurement was performed as in the previous study.

Results. Figures 5.35, 5.36, 5.37, and 5.38 show the inflation plotted against B for two,

four, eight, and sixteen processors, respectively. As expected, the “Ideal QB (FF)” and “QB-

EDF (FF)” lines (respectively, the “Ideal QB (NF)” and “QB-EDF (NF)” lines) are again

virtually co-linear. The sampling validity for the eight- and sixteen-processor cases is shown

in Figure 5.39. As shown, sampling validity drops off after B = 6 when M = 8 and after

B = 3 when M = 16. The resulting skew is apparent in Figures 5.37 and 5.38. Overall, these

results agree with those of the first study.

Observation 5.9 When M = 2, the impact of B on the supertasking approaches is negligible.
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Figure 5.35: Plots show how inflation varies as the bound on the per-quantum number of
object accesses is increased when using lock-free synchronization on two processors. The
figure shows (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 5.36: Plots show how inflation varies as the bound on the per-quantum number of
object accesses is increased when using lock-free synchronization on four processors. The
figure shows (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 5.37: Plots show how inflation varies as the bound on the per-quantum number of
object accesses is increased when using lock-free synchronization on eight processors. The
figure shows (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 5.38: Plots show how inflation varies as the bound on the per-quantum number of
object accesses is increased when using lock-free synchronization on sixteen processors. The
figure shows (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 5.39: Plots show the sampling validity for the graphs showing inflation plotted against
the bound on the per-quantum number of object accesses. The figure shows (a) the M = 8
and (b) the M = 16 cases. The validity was approximately unity throughout the M = 2 and
M = 4 cases. Hence, graphs of those cases are not shown.
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Explanation: On two processors, typically only one or two supertasks are needed. Assigning

tasks in any reasonable fashion results in little to no sharing between supertasks. As a result,

retry overhead is insignificant relative to other overheads.

Observation 5.10 When B < 3, the reweighting overhead experienced under QB-EPDF

tends to outweigh the reduction in retry overhead.

Explanation: As explained earlier, QB-EPDF introduces the most reweighting overhead of

the approaches considered here. The benefit of using supertasks is determined by the relative

magnitudes of the retry overhead and the reweighting overhead introduced by the supertasks.

For small B, retry overhead is fairly low. As a result, the reweighting overhead introduced

by QB-EPDF exceeds the retry overhead avoided by the use of supertasks.

5.5.3 Conclusions

As for the relative performance of the tested approaches, both studies clearly indicate that

QB-EDF supertasking is the best choice for reducing inflation. On average, the reweighting

overhead introduced by this approach appears negligible compared to the reduction in retry

overhead. These studies also suggest that this is not necessarily the case for QB-EPDF

supertasking, particularly when the component task counts are low.

As for the assignment heuristic, these studies do not clearly indicate whether using an

FF assignment rule or an NF assignment rule will produce the best results. Indeed, the

presented results suggest that each performs best for a significant fraction of the sample space.

However, the fraction for which the FF rule provides better performance is consistently larger

throughout the study. In addition, the FF rule’s performance appears to scale better as M

increases. Based on these observations, the FF rule appears to be the better overall choice,
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though the NF rule may outperform it in some cases.

5.6 Summary

In this chapter, we considered the use of lock-free shared objects in a Pfair-scheduled sys-

tem. After explaining how lock-free synchronization works, we presented a straightforward

analysis that uses the structure of Pfair systems to yield tighter bounds on retry overhead

than can typically be obtained on multiprocessors. We then explained how quantum-based

supertasking can further reduce the retry overhead while also enabling the use of simpler

algorithms. To demonstrate the benefits of supertasking, we considered the implementation

of a lock-free queue as a case study and conducted an experimental evaluation of a simple

assignment heuristic intended to reduce lock-free overhead. As expected, the experimental

evaluation suggests that the use of quantum-based supertasking can significantly reduce the

inflation experienced by task sets.



CHAPTER 6

Locking Synchronization 1

In this chapter, we complete the discussion of task synchronization by considering lock-based

(or locking) synchronization. Under this form of synchronization, access to each shared re-

source (or group of shared resources) is controlled by a lock . Specifically, in order to access

a resource, a task is required to obtain the associated lock and maintain ownership of that

lock for the duration of the access. Recall that operations that must access a shared resource

are called critical sections. In this chapter, we consider only the use of mutex semaphores (or

mutexes). At most one task can own a mutex at any time. Hence, mutexes ensure mutual

exclusion2 among all tasks, i.e., a task that owns the mutex is ensured exclusive access to the

resources guarded by that mutex. Consideration of other types of locks is left as future work.

Locking synchronization complicates scheduling because it leads to blocking, i.e., a state

in which a task is unable to make progress because it is waiting to access a shared resource. In

part, this added complexity stems from the fact that blocking occurs reactively in response to

changes in the runtime environment and hence is difficult to characterize off-line. The impact

1This chapter is derived from work previously published in the following papers:
[32] P. Holman and J. Anderson. Object sharing in Pfair-scheduled multiprocessor systems. In Proceedings of
the 14th Euromicro Conference on Real-time Systems, pp. 111-120, 2002.
[33] P. Holman and J. Anderson. Locking in Pfair-scheduled multiprocessor systems. In Proceedings of the
23nd IEEE Real-time Systems Symposium, pages 149–158, 2002.

2Indeed, the term “mutex” is an abbreviation of “mutual exclusion.”
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of blocking is worse under rate-based scheduling than under many other approaches because

blocking disrupts the execution rates of tasks. Effectively, blocking forces the execution rate

of a task to zero for the duration of the blocking. Hence, the primary focus of this chapter

is bounding the duration of blocking and compensating for the rate reductions caused by

blocking. We refer to weight inflation stemming from blocking as blocking overhead .

This chapter is organized as follows. After summarizing our assumptions in Section 6.1,

we briefly discuss the need for locking protocols in rate-based systems in Section 6.2. We then

consider the viability of using locking protocols based on inheritance3 in Section 6.3. Such

protocols (e.g., the PIP and its variants [54, 15]) are very effective on uniprocessors. However,

as we later explain, they are problematic under Pfair scheduling because their use imposes

a dependency between task weights and blocking overhead. In Section 6.4, we present two

protocols designed for short critical sections. For the more general case, we present a third

protocol in Section 6.5 that places no restrictions on the critical-section lengths. We then

present an experimental comparison of these protocols in Section 6.6.

6.1 Assumptions

A lock-requesting task T issues a request for a lock ` by invoking RequestLock. Until ` is

granted, T ’s request is pending . Pending requests for each lock ` are assumed to be prioritized

using a FIFO policy.4 Once ` is granted to T , we refer to T as the lock-holding task until

it completes the corresponding call to ReleaseLock. If a task U has a pending request for

3Recall that “inheritance” occurs when a task temporarily adopts characteristics of tasks that it blocks.

4Locking protocols typically prioritize requests by the scheduling priorities of the requesting tasks. However,
this is not practical under Pfair scheduling because priorities are not fixed during critical sections. We consider a
FIFO prioritization because it facilitates analysis and avoids request starvation. Consideration of other request
prioritizations is left as future work.



244

` while T holds `, then T is said to block U . Similarly, if tasks T and U both have pending

requests for `, then these requests are competing and T and U are competitors. Finally, we

assume that the overhead of the RequestLock and ReleaseLock calls are factored into the

execution requirements of the appropriate phases of each task.

6.2 Blocking in Rate-based Systems

To motivate the need for locking protocols under Pfair scheduling, consider a task T with

a long critical section that always executes at its normal rate, i.e., no attempt is made to

speed its critical section. Let C denote the amount of processor time required by the critical

section. Since T ’s average execution rate is given by Q · T.w, the execution of its critical

section will make the associated lock unavailable to other tasks for approximately C
Q·T.w time

units. Hence, tasks with low weights can potentially make locks unavailable for very long

durations, which suggests a need for techniques that speed the execution of critical sections.

6.3 Viability of Inheritance-based Protocols

The most common approach to designing locking protocols is to rely on inheritance to speed

the execution of lock-holding tasks [9, 15, 20, 53, 54, 55, 59]. Under such an approach, a

lock-holding task takes on (i.e., “inherits”) the characteristics of tasks that it either blocks

or has the potential to block. The lock-holding task then executes with these characteris-

tics until releasing the associated lock. Unfortunately, the characteristics of Pfair scheduling

complicate the use of such techniques (for reasons explained below). Consequently, the pro-

tocols presented in later sections intentionally avoid the use of inheritance. In this section,

we discuss both the different forms of inheritance that are available under Pfair scheduling
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and what problems can arise from their use.

6.3.1 Inheritance in Rate-based Systems

Although conventional inheritance protocols are not directly applicable in Pfair systems,

many of the concepts underlying them are applicable. Since tasks are characterized only by

weights, two obvious classes of inheritance-based protocols exist. The first class consists of

static-weight inheritance protocols, under which weight changes are not permitted. Scheduling

disruptions caused by blocking can be ameliorated under this restriction by decoupling the

choice of which task executes in a slot, and which task is actually charged for the quantum.

More specifically, critical sections can be executed more quickly by temporarily re-routing

quanta from a blocked task to the task that is causing the blocking. The second class consists

of dynamic-weight inheritance protocols, under which weight changes are permitted. Below,

we describe some of the more obvious inheritance protocols and the characteristics of each.

Simple locking. Figure 6.1(a) provides a concrete example of how low-weight tasks can

cause significant disruptions in Pfair systems. During slot 2, task W obtains a lock that is

needed to execute a critical section requiring two quanta. When S, T , and U request this lock

in slots 3–4, they are forced to wait until the lock is released by W . Due to W ’s low weight,

this does not happen until sometime after slot 14. In the meantime, all quanta allocated to S,

T , and U are wasted (because they are waiting for the lock).5 We will use this same scenario

to illustrate the protocols described below.

Rate inheritance. Rate inheritance is based on priority inheritance [59]. Under this

protocol, a lock-holding task T inherits the highest execution rate (i.e., weight) of the tasks

5In practice, IS delays would be used to prevent scheduling of the blocked tasks. This is not done in the
examples given in this section so that the magnitude of disruptiveness will be apparent.
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Figure 6.1: A series of two-processor Pfair schedules for task set consisting of five tasks with
weights 1

2 , 1
3 , 1

3 , 1
5 , and 1

10 , respectively, that may request locks. The insets illustrate the
following static-weight locking scenarios: (a) simple locking, (b) rate inheritance, and (c)
deadline/allocation inheritance.

that it blocks (if that weight is higher than its normal weight). This protocol is easily

implemented by swapping the association of weights to tasks, i.e., the lock-holding task and

the blocked task with the highest weight temporarily swap identities (scheduling parameters).

Figure 6.1(b) illustrates rate inheritance. In slot 3, W swaps with T and then with S in

slot 4. As a result, W executes within S’s quanta in slots 6 and 8.

One problem with rate inheritance is that the task with the highest weight may not have

the highest priority at a given instant. For instance, in Figure 6.1(b), the priority of task U
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is higher than that of task S in slot 7. The next form of inheritance addresses this concern.

Deadline inheritance. Under deadline inheritance, a lock-holding task swaps identities

with whichever blocked task has the highest priority at each time instant. This strategy

improves upon rate inheritance, but at the expense of more swapping overhead. Specifically,

both approaches may perform a swap when a task is initially blocked, but deadline inheritance

may perform additional swaps each time a lock-holding task consumes a quantum.

Figure 6.1(c) illustrates deadline inheritance. In slot 3, W swaps with T . However, this

swap is undone in slot 4 when W swaps with S. When W is executed in slot 6 (within S’s

quantum), U becomes the highest priority task, causing W to take on U ’s identity.

Allocation inheritance. An alternative form of inheritance that achieves the same result

as deadline inheritance is allocation inheritance (which closely resembles bandwidth inheri-

tance, as described in [40]). To avoid the additional swapping overhead produced by deadline

inheritance, the quanta allocated to all blocked tasks can be redirected to the lock-holding

task for the duration of its critical section, i.e., multiple sets of scheduling parameters may

be mapped to the same task at a given instant. Although this approach reduces swapping

overhead, it requires support for many-to-one mappings from parameter sets to tasks. In

addition to the overhead required to maintain such a mapping, care must also be taken to

ensure that each lock-holding task utilizes only one quantum in each slot.

Figure 6.1(c) also illustrates the schedule as it would appear under allocation inheritance.

In slot 3, the allocations of both U and V are redirected to W . S’s allocation is then redirected

to W in slot 4. Hence, at the start of slot 6, W is actually associated with four different sets

of parameters (i.e., those normally associated with S, U , V , and W ). In slot 6, two of these

sets are scheduled. However, W can only utilize one of the two quanta.
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The potential for parallel allocation of quanta is a fundamental shortcoming of all forms of

static-weight inheritance. To avoid this problem, subtask releases can be selectively postponed

using IS delays. Unfortunately, such a reactive approach is difficult to analyze. Alternatively,

a dynamic-weight scheme like that described next could be used.

Weight inheritance. Under weight inheritance, the lock-holding task adds to its weight the

weight of each task that it blocks. (Weight inheritance also bears resemblance to bandwidth

inheritance.) By changing its weight, the lock-holding task is able to effectively serialize its

quanta in that it avoids the simultaneous allocation of multiple quanta. Weight inheritance

is not illustrated in Figure 6.1 for reasons explained in the next section.

6.3.2 Problems of Inheritance-based Protocols

There are two primary problems that limit the effectiveness of inheritance-based schemes in

Pfair systems. First, as explained in the previous section, dynamic-weight inheritance is the

most effective form of inheritance in concept, due to the ability to serialize inherited processor

time. Unfortunately, under Pfair scheduling (and likely under any other real-time rate-based

approach), instantaneous weight changes must be forbidden to ensure schedulability [62]. Al-

though improved reweighting techniques have been proposed [2, 63], these approaches either

lack worst-case predictability [2] or place additional restrictions on the system [63]. Account-

ing for delayed weight changes complicates worst-case analysis and necessitates the use of

overly conservative weights.

Unfortunately, even static-weight schemes are somewhat impractical due to the depen-

dency between blocking overhead and task weights. Consider two tasks, T and U , that share

a common lock. To account for the possibility that T blocks U , U.w must be increased
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based on the worst-case blocking that can occur, which is determined by T.w. However,

changing U.w changes the worst-case duration for which U can block T , which necessitates a

compensatory change in T.w. Hence, assigning weights under an inheritance protocol is an

optimization problem. Finding an optimal solution is almost certainly an intractable problem.

Despite these issues, inheritance-based schemes remain an interesting avenue for future

study, particularly for soft real-time systems. In addition, recent work [13] on a “fast”

reweighting approach for Pfair scheduling, called PROfairness, shows considerable improve-

ment over existing techniques. Unfortunately, due to significant differences between the sys-

tem model considered in [13] and that considered here, it is unclear whether PROfairness

(or the concepts underlying it) can be used to produce an effective dynamic-weight locking

protocol for hard real-time systems.

6.4 Supporting Short Critical Sections

In this section, we present locking protocols for use with locks that guard short (relative to

Q) critical sections. In experiments conducted by Ramamurthy [56] on a 66 MHz processor,

critical-section durations for a variety of common objects (e.g., queues, linked lists, etc.) were

found to be in the range of tens of microseconds. On modern processors, these operations

will likely require no more than a few microseconds. Since quantum sizes typically range from

hundreds of microseconds to milliseconds, we expect the protocols described in this section

to be widely applicable. In the next section, we consider support for longer critical sections.



250

6.4.1 Concept

When some task T is granted a lock `, each task U with a pending request for ` is necessarily

delayed for the duration of T ’s critical section. However, this unavoidable delay may be

amplified drastically if T is preempted. Any such preemption effectively lengthens T ’s critical

section. As explained earlier, this is particularly problematic under Pfair scheduling because

each task is executed at an approximately uniform rate. Hence, if T has a low weight and its

critical section is preempted before completing, then a lengthy delay is likely.

Fortunately, when using quantum-based scheduling with a sufficiently long quantum, the

preemption of lock-holding tasks is avoidable. In particular, when T ’s critical-section duration

is shorter than Q, its execution may span at most two quanta, which implies that T can be

preempted at most once before relinquishing the lock. On the other hand, if T ’s critical

section always begins sufficiently early within a quantum, then T will always release the lock

before the next slot boundary. In practice, critical sections can be forced to start “sufficiently

early” within a quantum by automatically blocking lock requests for critical sections that are

at risk of being preempted. Whereas a task can only be blocked due to the unavailability of

the requested lock in a traditional system, a task may be blocked due to either unavailability

or the timing of the request under this approach.

To illustrate this approach, consider a lock request made by some task T , for which the

associated critical section has worst-case duration e (< Q). The proposed approach introduces

an interval of automatic blocking (of the lock request in question) at the end of each quantum,

as illustrated below. We refer to this interval as a blocking zone and denote its length by B.

Q−B

Q

B
Blocked

Normal

� �
� �
� �
� �QUANTUM � � �

� � �
� � �

� � �
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� � �
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T ’s request is safe if the quantum is not within a blocking zone of that request, and unsafe

otherwise. Additionally, T ’s request is said to be active if T is currently scheduled, and inac-

tive otherwise. As long as B ≥ e, T ’s critical section can be guaranteed to execute completely

within a single quantum by simply granting the requested lock only if T ’s request is both safe

and active. In this way, the nonpreemptivity inherent under quantum-based scheduling can

be exploited to support short critical sections. Indeed, this approach is applicable under any

scheduling policy that uses a quantum-based model.

6.4.2 Zone Placement

There are several ways to apply the previous concept when designing a locking protocol. We

refer to all protocols based on this concept as zone-based protocols. In this section, we briefly

discuss some of the different rules for determining the placement of zones.

Request-based zones. The most aggressive approach is to provide supplementary infor-

mation with each issued lock request. Whether the request is within its blocking zone at a

given time can then be determined based upon this information and the state of the system.

This approach introduces additional overhead into the lock-management algorithms, but also

provides the most flexibility at runtime and ensures that no critical section is delayed longer

than necessary to ensure safety. For these latter reasons, we focus on this approach when

performing analysis later.

Group-based zones. Rather than associating a unique blocking zone with each request,

each blocking zone be associated with a group of critical sections. Under such an approach,

B must be sufficiently long to prevent the preemption of each critical section in the group.

The primary benefit of using such groupings is to simplify runtime accounting and to reduce
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the memory overhead of the protocol. To illustrate the former benefit, consider two of the

most obvious groupings: group according to the requesting task or group according to the

requested lock. In both cases, it is possible to mark the start of a blocking zone by simply

setting a bounded number of interrupts to occur within each quantum, as explained below.

First, consider using a single blocking zone for all critical sections of a given task. When

a task is scheduled, an interrupt6 that marks the start of that task’s blocking zone can also

be scheduled to occur on the assigned processor. Accounting for the overhead of the blocking

zone is simplified in this case since each quantum requires only one such interrupt.

Now, consider using a single blocking zone for all critical sections guarded by a given lock.7

Under this approach, up to |Γ| interrupts are needed in each quantum to signal the start of

each lock’s blocking zone.8 Although the use of more interrupts produces more overhead,

the degree of unnecessary automatic blocking will likely be lower than when using task-based

groups. This follows from the fact that locks are often used to synchronize operations of

comparable complexity (and hence duration). On the other hand, the durations of critical

sections of a given task may vary considerably.

Impact of timer precision. Real timers typically cannot generate interrupts at arbitrary

times. Instead, expiration times (or delays) must be given as multiples of a timer-specific

time unit. This unit defines the precision9 of the timer.

Due to this practical restriction, it may be necessary to start blocking zones prematurely.

6We do not consider whether a hardware or software interrupt (or some other form of signaling mechanism)
is most appropriate here, since this will likely depend on the target architecture.

7We previously considered this approach in [33].

8Only locks that may be requested by the scheduled task need to be considered. Unnecessary interruptions
can be avoided by providing the operating system with a list of locks that each task may request.

9This is also called the resolution or granularity of the timer.
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Specifically, each zone that is initiated by an interrupt should be started at the latest possible

timer expiration time that occurs before the ideal starting time of the zone. This conservative

placement is always guaranteed to be within u of the ideal placement, where u denotes the

timer’s minimum time unit. Despite this, when u reflects a significant fraction of a quantum,

timer error may be prohibitively high.

Indeed, there are several more issues relating to the use of realistic timers, including jitter10

and the handling of interrupts. Because we primarily focus on the use of request-based zones

in the remainder of the chapter, we forgo further discussion of these issues and leave them as

topics for future work.

6.4.3 Requirements and Additional Notation

In the sections that follow, we present two protocols based on the notion of blocking zones.

These protocols differ only in their handling of delayed requests found at slot boundaries.

The first protocol maintains these requests, while the second protocol discards them, forcing

the requesting tasks to re-issue the requests later. Hence, inactive requests may exist under

the first protocol, but not under the second protocol. To demonstrate that these protocols

can be efficiently implemented, we present a sample implementation (in pseudocode) for each

protocol. In this section, we begin by describing the base requirements of these protocols and

by defining notational conventions used in the analysis presented later.

Requirements. The following requirements must be satisfied by a zone-based protocol.

(R1) A requesting task must eventually be granted the lock.

(R2) Each critical section must execute completely within a single quantum.

10The impact of jitter on the timing of an interrupt was discussed earlier in Chapter 3, in the context of the
quantum interrupt. This issue can be similarly addressed here.
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(R2) requires that the zone associated with each request be at least the maximum duration

of the request’s critical section.

Notation. First, let T [i].B denote the length of the blocking zone associated with the

request of a locking phase T [i]. This length is assumed to be sufficiently long to satisfy (R2).

The following shorthand notations bound the worst-case blocking caused by each task and

each supertask within a single quantum.

• Let T.ê(`) = max
{

T [i].e
∣

∣

∣ T [i].R = `
}

. T.ê(`) is the duration of the longest critical

section of T requiring `. This value is also an upper bound on the duration of blocking

caused by T ’s requests for ` in a single quantum.

• Let S.ê(`) = max { T.ê(`) | T ∈ S }. S.ê(`) is the duration of the longest critical

section of any task T in supertask S requiring `. This value is also an upper bound

on the duration of blocking caused by requests for ` issued from within S in a single

quantum.

• Let Qm(T, `) = maxsumm(M−1) { U.ê(`) | U 6= T }. Qm(T, `) is an upper bound on the

amount of time required to service competing requests of a single request of task T

across m quanta while respecting a FIFO prioritization.

• Let Qm(S, `) = maxsumm(M−1) { T.ê(`) | T 6∈ S }.11 Qm(S, `) replaces Qm(T, `) when

quantum-based supertasks are used.

• Let I(T, `) =
∑

U 6=T
U.ê(`). I(T, `) is an upper bound on the amount of time required

to service all competing requests of a single request of task T while respecting a FIFO

11Owing to an editing error, the definition of Qm(S , `) given in [33] is incorrect. However, this error does
not impact the results presented in that paper since the formula is stated but never used.
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prioritization. Notice that lim
m→∞

Qm(T, `) = I(T, `).

• Let I(S, `) =
∑

T 6∈S
T.ê(`). I(S, `) replaces I(T, `) when quantum-based supertasks are

used. Again, notice that lim
m→∞

Qm(S, `) = I(S, `).

The definition given above for Qm(S, `) is actually conservative, owing to the fact that

quantum-based supertasking imposes the following two restrictions:

1. Each supertask can have at most one active interfering request in each quantum.

2. Tasks in a supertask cannot interfere with each other.

Although the above bound does consider Restriction 2, Restriction 1 is ignored because its

consideration would not produce a simple formula. Alternatively, a polynomial-time algorithm

like that sketched in Figure 6.2 can be used to compute the exact values of Qm(S, `).

In the analysis that follows, a lock-requesting task T may be blocked due to two sources.

First, T is actively blocked when one of its competitors is granted the lock before T and

executes its critical section while T ’s request is both safe and active. A lock cannot be

granted during a blocking zone (i.e., when T is unsafe), even if no competing requests are

present. Blocking caused solely by blocking zones is called automatic blocking .

6.4.4 Skip Protocol: Description and Analysis

Under the Skip Protocol (SP), delayed requests for locks are retained across slot boundaries,

thereby ensuring that the FIFO prioritization is respected across slots. Due to this latter fact,

the SP ensures that each competing task can block a request at most once. The primary cost

of this approach is that the scheduler must either save and later restore the state of delayed

requests at slot boundaries (i.e., as the set of executing tasks changes), or simply ignore (i.e.,
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for each T 6= S do
Create an empty list for T ;
for each T ∈ T such that T.ê(`) > 0 do

Add T.ê(`) to T ’s list
od;
Sort T ’s list so that values are in non-increasing order

od;
k := 1;
q := 0;
while non-empty lists exist do

h := 0;
Let L denote the number of non-empty lists;
Select the min(M − 1, L) non-empty lists with largest head values;
for each selected list do

Add head value to h;
Remove head value from the list

od;
q := q + h;
Qk(S, `) := q ;
k := k + 1

do;
Set Qm(S, `) = q for all m ≥ k

Figure 6.2: Algorithm for computing Qm(S, `).

skip over) inactive requests when deciding which task will be granted a lock. In either case,

this extra work translates into increased runtime overhead.

Due to FIFO prioritization and the fact that locks are not held across slot boundaries,

request starvation is not possible. Hence, (R1) holds under the SP as long as T [i].e < Q also

holds for each locking phase T [i]. To ensure that (R2) is satisfied, T [i].B > T [i].e must also

hold for each such locking phase to ensure that each critical section completes by the slot

boundary that follows its start. Hence, we assume that the following relationship holds for

each such locking phase T [i].

Q > T [i].B > T [i].e (6.1)
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(The Q > T [i].B inequality is a trivial requirement that is needed to ensure that T [i] is

considered safe at the start of each quantum.)

Basic analysis. As in the previous chapter, we present theorems and proofs that equate

locking phases, assumed to execute under specified conditions, to non-locking phases, which

can then be used with Lemmas 3.4–3.7. The next theorem handles the use of the SP.

Theorem 6.1 Given a phase T [i] ∈ C(`), where ` is managed by the Skip Protocol and all

blocking zones of ` satisfy (6.1), phase T [i] is equivalent to

C

(

∅, T [i].e + I(T, `) +

(⌊

I(T, `)

Q − T [i].B

⌋

+ 1

)

· T [i].B

)

in a system that does not include supertasks.

Proof. Due to the FIFO prioritization being respected across slots, I(T, `) is a trivial upper

bound on the active blocking experienced by T [i]. In the worst case, competitors of T execute

for at least Q − T [i].B time units within each quantum in which T is scheduled, and hence

hold the lock until at least the start of T ’s blocking zone. In this case, which is depicted in

Figure 6.3, T is preempted no more than
⌊

I(T,`)
Q−T [i].B

⌋

times after issuing the request before ` is

granted. (Since the blocking zone in the slot in which T is granted the lock is not counted, we

use a floor expression rather than a ceiling.) In addition, if T ’s request is initiated at the start

of a blocking zone, then T is blocked by an additional blocking zone. Hence, the duration of

phase T [i] is at most the sum of the durations of (i) T [i]’s critical section, (ii) I(T, `) units of

active blocking, and (iii)
(⌊

I(T,`)
Q−T [i].B

⌋

+ 1
)

· T [i].B units of automatic blocking. 2

Improved analysis. Stronger restrictions, like (R3) given below, produce less overhead.



258

� �
� �
� �
� �

�
�
�
��

�
�
� �

�
�
��

�
	
	 




�
�

� � �
� � �


 


 


Blocking zone
marker

Critical section

Normal
BLOCKING

ACTIVE

AUTOMATIC

EXECUTION OF
COMPETITORS

5 10 15 200

Blocking

BLOCKING

Wasted

TIME

T

lock
granted

lo
ck

re
qu

es
te

d

Figure 6.3: Worst-case blocking under the SP for a lock-requesting phase T [i] when I(T, `) =
4.239Q and T [i].B = 0.1Q. T ’s request is initiated at the start of a blocking zone and
competing requests execute only when T is both scheduled and not within a blocking zone.
The blocking of each form experienced by T is shown with black bars at the top of the figure.
The number of blocking zones crossed (while scheduled) is 1 + b 4.239Q

Q−0.1Qc = 1 + b4.71c = 5.

(R3) All active requests present at the start of a slot are serviced within that slot.

Notice that (R3) is a stronger requirement than both (R1) and (R2). Unlike (R1) and (R2),

this restriction bounds the total time required by any combination of competing requests

(up to M) that are serviced within the same slot. The measurements of Ramamurthy, cited

earlier, suggest that (R3) can be expected to hold in many cases.

For (R3) to be satisfied with respect to a request for ` made by a locking phase T [i], the

total processing time required by T ’s worst-case mix of M − 1 competing requests for ` (i.e.,

Q1(T, `)), must be strictly less than the length of time over which T ’s request is safe (i.e.,

Q − T [i].B). The condition given below is sufficient to ensure that (R3) holds for a lock `:

(

∀T : T.ê(`) > 0 : Q1(T, `) ≤ Q − max
{

T [i].B
∣

∣

∣ T [i].R = `
})

(6.2)

The T.ê(`) > 0 constraint in the above condition simply restricts attention to tasks with
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critical sections that require `.

Unfortunately, some systems may not satisfy the condition given in (6.2). However, for

such systems, it is still possible to apply a less-strict condition to individual critical sections in

order to produce blocking estimates tighter than those provided by Theorem 6.1. Theorem 6.2,

given next, considers

1

m
Qm(T, `) ≤ Q − T [i].B, (6.3)

which focuses on a specific phase T [i] of a task T that requires `. This condition generalizes

(6.2) by providing an integer parameter m (≥ 1) that determines the strictness of the con-

dition. Informally, m denotes the maximum number of blocking zones that can be crossed

(while scheduled) before a task is granted the requested lock. Increasing m has the effect of

weakening the condition. Condition (6.2) corresponds to the strictest case in which all critical

sections satisfy (6.3) for m = 1. Theorem 6.1 then reflects the limiting behavior as m → ∞.

Theorem 6.2 Given a phase T [i] ∈ C(`) that satisfies (6.3) for some m ≥ 1, where ` is

managed by the Skip Protocol and all blocking zones of ` satisfy (6.1), phase T [i] is equivalent

to

C
(

∅, T [i].e + Qm+1(T, `) + m · T [i].B
)

in a system that does not include supertasks.

Proof. Condition (6.3) implies that Qm(T, `) ≤ m
(

Q − T [i].B
)

holds. Informally, this

condition states that the amount of processing time required by the competitors of T [i] across

m slots cannot consume all of the processor time available outside of T ’s blocking zones in

those slots. Hence, T is guaranteed to receive the lock within the mth slot in which it is
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Figure 6.4: Worst-case blocking under the SP for a lock-requesting phase T [i] when Q5(T, `) =
4.25Q and T [i].B = 0.1Q. Since 1

5Q5(T, `) = 0.85Q, (6.3) holds for m = 5. The resulting
worst-case scenario is depicted. The number of blocking zones crossed (while scheduled) is 5
(i.e., m), while active blocking occurs within 6 (i.e., m + 1) quanta.

scheduled after issuing the lock request, if not sooner. This scenario is depicted in Figure 6.4.

Including the quantum in which T issues the lock request, T is actively blocked across at

most m + 1 quanta. Hence, the total duration of active blocking cannot exceed Qm+1(T, `)

time units. In addition, T may be automatically blocked in each of these quanta except for

the last one, in which the lock is finally granted. Therefore, the request spans at most m

blocking zones. Hence, the duration of phase T [i] is at most the sum of the durations of (i)

T [i]’s critical section, (ii) Qm+1(T, `) units of active blocking, and (iii) m · T [i].B units of

automatic blocking. 2

6.4.5 Skip Protocol: Sample Implementation

To characterize the relative implementation overhead of the zone-based protocols, we now

present a pseudocode implementation of the SP. To simplify the implementation, thereby ex-
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posing the underlying structure more clearly, we make the following (unrealistic) assumptions:12

• All processors share a common global clock.

• Tick interrupts occur with perfect timing (i.e., no interrupt delay).

• All procedures execute instantaneously (i.e., require zero time).

Despite the last assumption, the presented procedures do explicitly show where synchroniza-

tion is needed in order to facilitate the removal of these assumptions.

The implementation is shown in Figure 6.5. We explain this listing in detail below.

Data structures. At each slot boundary, the kernel is assumed to store the time of

the next slot boundary in slot end . The lock, request, processor, and task records store

information maintained by the kernel for each lock, pending lock request, processor, and task,

respectively. (The code listing only shows fields used by the protocol; other fields will likely be

needed in practice to manage other aspects of the system, such as I/O services.) We discuss

the fields within each record below.

A lock record consists of at least the following four fields:

owner : identifies the task that currently holds the lock.

pending : count of unserviced requests for the lock.

processed : flag denoting whether a lock-granting decision has been applied yet.

next : current value of service counter, which enforces FIFO ordering of requests.

A request record consists of at least the following four fields:

lock : identifies which lock is currently requested or nil if no request is pending.

12As long as bounds on the clock error and interrupt delay on each processor can be determined, the presented
algorithm can be easily adapted to real systems by simply modifying the implementation of IsSafe.
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typedef lock:
record

owner : pointer to task initially nil ;
pending: 0...N initially 0;
processed : boolean initially false;
next : integer initially 0

private var
T , U , V : pointer to task; L: pointer to lock;
e: real; C: pointer to processor

procedure RequestLock(T , L, e)
1: T→req.B := e;
2: T→req.lock := L;
3: AllowScheduling(false);
4: LockKernel();
5: if L→owner = nil ∧ IsSafe(T) then
6: L→owner := T

else
7: if L→pending = 0 then
8: L→next := 0 fi;
9: T→req.tag := L→next ;
10: L→next := L→next + 1;
11: L→pending := L→pending + 1;
12: T→assigned→csreq := T ;
13: T→req.grant := false fi;
14: UnlockKernel();
15: AllowScheduling(true);
16: while T→req.grant = false do od

procedure ReleaseLock(T , L)
17: T→req.B := 0;
18: T→req.lock := nil ;
19: LockKernel();
20: U := nil ;
21: for i := 1 to M do
22: V := GetCPU(i)→csreq;
23: if V 6= nil ∧ IsSafe(V )

∧ V →req.lock = L then
24: if U = nil

∨ U→req.tag > V →req.tag then
25: U := V fi fi od;
26: L→owner := U ;
27: if U 6= nil then
28: L→pending := L→pending − 1;
29: U→assigned→csreq := nil fi;
30: UnlockKernel();
31: if U 6= nil then
32: U→req.grant := true fi

typedef request:
record

lock : pointer to lock initially nil ;
B: real initially 0;
tag: integer initially 0;
grant : boolean initially true

typedef task:
record

assigned : pointer to processor;
req: request

typedef processor:
record

csreq: pointer to task initially nil ;
scheduled : pointer to task

shared var
slot end : integer

procedure IsSafe(T) returns boolean
33: return Time() + T→req.B ≤ slot end

procedure DeactivateRequests()
34: for i := 1 to M do
35: GetCPU(i)→csreq := nil od

procedure ActivateRequests()
36: for i := 1 to M do
37: C := GetCPU(i);
38: T := C→scheduled ;
39: if T 6= nil ∧ T→req.lock 6= nil

∧ T→req.grant = false then
40: C→csreq := T ;
41: L := T→req.lock ;
42: L→processed := false;
43: if L→owner = nil ∨

L→owner→req.tag > T→req.tag
then

44: L→owner := T fi fi od;
45: for i := 1 to M do
46: T := GetCPU(i)→csreq;
47: if T 6= nil then
48: L := T→req.lock ;
49: if L→processed = false then
50: U := L→owner ;
51: U→req.grant := true;
52: U→assigned→csreq := nil ;
53: L→pending := L→pending − 1;
54: L→processed := true fi fi od

Figure 6.5: Sample implementation of the Skip Protocol.
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B: duration of the request’s blocking zone.

tag : service-counter value assigned to the request.

grant : flag denoting whether the request has been granted the lock.

A task record consists of at least the following two fields:

req : the task’s pending lock request, or nil if no request is pending.

assigned : the processor assigned to the task, or nil if the task is not executing.

A processor record consists of at least the following two fields:

csreq : the request issued by this processor’s task, or nil if no request exists.

scheduled : the task assigned to this processor, or nil if the processor is idle.

The assigned fields of task records and the scheduled fields of processor records are

assumed to be updated by the scheduler as scheduling decisions are made.

Detailed description. Code is not provided for the following procedures: LockKernel,

UnlockKernel, AllowScheduling, Time, and GetCPU. A call to LockKernel obtains the spe-

cial lock that guards the kernel data structures, while a call to UnlockKernel releases this

lock. AllowScheduling(boolean) controls whether slot interrupts are delayed on the pro-

cessor from which it is invoked, i.e., invoking AllowScheduling(false) causes slot interrupts

to be postponed until AllowScheduling(true) is called. (Recall that we discussed such in-

terrupt postponement previously in Chapter 3.) A call to Time returns the current value of

the shared global clock. Finally, GetCPU(i) returns a pointer to the processor record of the

processor with index i, where 0 ≤ i < M .

IsSafe(T ) determines whether task T ’s pending request is safe. (This procedure should

not be invoked when no request is pending.) Due to the assumptions stated earlier, Figure 6.5
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gives only a trivial implementation that compares the time remaining in the current slot to

the blocking-zone length (line 33). Bounded clock error and interrupt delays can be accounted

for by biasing either the comparison in line 33 or the B-values associated with the requests.

RequestLock(T ,L, e) is invoked by task T to acquire lock L for at most e time units. In

lines 1–2, the request parameters are stored in T ’s request record. (The assignment of B in

line 1 is too simplistic for real systems since it does not account for practical issues, such as

event jitter. We intentionally ignore such issues here since our goal is only to gain insight into

the protocol’s runtime overhead.) Following this, slot interrupts are postponed (line 3) and

the kernel lock is obtained (line 4) to ensure that lines 5–13 execute atomically. If the lock is

available and the request is safe (line 5), T is immediately granted the lock (line 6). Otherwise

T takes a number from the service counter (lines 7–13) and then spins until granted the lock

(line 16). Before taking its service number, T first checks whether any numbers are currently

in use (line 7). If not, the counter is reset to 0 (line 8) to prevent rollover. The request

is then assigned its service number (line 9) and both the service counter’s value (line 10)

and count of pending requests (line 11) are updated. The request is then stored in the local

processor’s record (line 12) and grant is cleared (line 13). Following this, the kernel lock is

released (line 14) and slot interrupts are re-enabled (line 15). T then spins in line 16 until

granted the lock. If the branch at line 5 is taken to line 6, then no spinning occurs at line 16.

This is due to the fact that grant = true always holds when the procedure is invoked. Hence,

it must also hold at line 16 if its value is not changed during the procedure. Notice that the

call to RequestLock is a synchronous call, i.e., it does not return until the lock is granted.

ReleaseLock(T ,L) is invoked by task T to release lock L at the end of T ’s critical section.

By design, this invocation is guaranteed to complete by the next slot interrupt. Hence, calls
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to AllowScheduling are unnecessary. Lines 17–18 clear the fields that record T ’s request

information. The kernel lock is then obtained in line 19 to ensure the atomicity of lines 20–

29. In lines 20–25, U is set to the request that should receive the lock next, or nil if no

pending safe requests exist. The new owner of L is then recorded in line 27. If the lock was

granted, then the count of pending requests (line 28) and processor’s request marker (line 29)

are updated. After releasing the kernel lock (line 30), the waiting task that was granted L, if

any, is released from its spin (lines 31–32).

DeactivateRequests is automatically invoked by the kernel at slot boundaries, prior to

making scheduling decisions for the new slot. This procedure simply consists of a loop that

clears the request marker of each processor (lines 34-35).

ActivateRequests is automatically invoked by the kernel at slot boundaries after schedul-

ing decisions have been made for the upcoming slot. This routine restores the request state of

delayed requests and selects which of these requests are initially granted. In lines 37–38, the

records for the processor and task scheduled on that processor are retrieved. If a scheduled

task has a pending request (line 39), then the processor’s marker is set (line 40), and the

ownership of the lock is tentatively determined in lines 41–44. (Recall that all requests are

safe at the start of a slot.) Once all scheduled tasks have been considered in the loop at

line 36, these tentative ownership decisions are committed in the loop at line 45. Since M

is expected to be smaller that |Γ| in practice, the algorithm checks to see which locks are

requested by scheduled tasks instead of checking each lock. Specifically, the loop checks the

processor markers for pending requests (lines 46–48) rather than checking the owner field

of every lock. However, since two scheduled tasks may request the same lock, care must be

taken to ensure that each lock is processed only once. The processed flags are used for this
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purpose (lines 49 and 54). Committing an ownership decision consists of releasing the owner

from its spin (line 51), clearing the request marker of the associated processor (line 52), and

decrementing the count of pending requests for the lock (line 53).

Remarks. All of these routines, except RequestLock and ReleaseLock have an O(M) time

complexity. Since RequestLock and ReleaseLock depend on the kernel-locking procedures

and AllowScheduling, their time complexities cannot be determined based on the provided

details. As demonstrated by ActivateRequests, use of the SP does require a significant

increase in the per-slot overhead in order to retain requests across slot boundaries. Indeed,

the actions of the SP closely resemble those of a scheduler performing context switches.

6.4.6 Rollback Protocol: Description and Analysis

Under the Rollback Protocol (RP),13 delayed requests are discarded (failed) at slot boundaries

and must be re-issued by the requesting tasks when they resume execution. Hence, FIFO

prioritization only applies to requests issued within the same slot. The RP sacrifices the

guarantee that a request will be blocked by at most one request of each competing task

in order to avoid the additional overhead of maintaining requests across multiple slots. A

side effect is that preventing starvation (i.e., guaranteeing (R1)) becomes more difficult. To

guarantee starvation avoidance, we restrict consideration of the RP to cases in which (R3)

holds. (Notice that (R3) mirrors the assumption made in Chapter 5 for lock-free operations.)

The next theorem characterizes the worst-case duration of a locking phase under the RP.

Theorem 6.3 Given a phase T [i] ∈ C(`), where ` satisfies (6.2), ` is managed by the Rollback

13The term rollback refers to the fact that a requesting task may need to re-issue a discarded request. This
should not be confused with the “undo” processes commonly found in transaction-based systems.
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Protocol, and all blocking zones of ` satisfy (6.1), phase T [i] is equivalent to

C
(

∅, T [i].e + 2 · Q1(T, `) + T [i].B
)

in a system that does not include supertasks.

Proof. The case considered here is almost identical to the m = 1 case of Theorem 6.2. How-

ever, since a requesting task T can have its request rejected due to crossing a slot boundary, its

request can potentially be blocked by the same group of competitors in each slot. From (R3)

and this observation, it follows that T ’s request can be delayed due to active (respectively,

automatic) blocking for no more than 2 · Q1(T, `) (respectively, T [i].B) time units. 2

6.4.7 Rollback Protocol: Sample Implementation

The sample implementation of the RP is shown in Figure 6.6. This implementation is based

on the same assumptions and mostly the same data structures as the SP implementation.

We now briefly describe the few exceptions. First, the maximum value of pending is now

M . Since requests are no longer carried across slot boundaries at most M tasks (i.e., the

tasks that are scheduled) can have pending requests at any given time. (Under the SP, the

value was bounded by the task count.) Second, each request record now has a released flag.

In the SP implementation, the grant flags serve as both the triggers that release requesting

tasks from their spins and as flags that denote when the lock has been granted. Only a single

variable was needed for this purpose due to the fact that tasks were released from there spins

only upon receiving the requested lock. Under the RP, a task may be released from its spin

without receiving the lock, which implies that two flags are now needed. The released flag
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typedef lock:
record

owner : pointer to task initially nil ;
pending : 0...M initially 0;
next : integer initially 0

typedef request:
record

lock : pointer to lock initially nil ;
B: real initially 0;
tag : integer initially 0;
released : boolean initially true;
grant : boolean initially true

procedure RequestLock(T , L, e)
1: T→req .B := e;
2: T→req .lock := L;

do
3: AllowScheduling(false);
4: LockKernel();
5: if L→owner = nil ∧ IsSafe(T ) then
6: T→req .grant := true;
7: L→owner := T

else
8: if L→pending = 0 then
9: L→next := 0 fi;
10: T→req .tag := L→next ;
11: L→next := L→next + 1;
12: L→pending := L→pending + 1;
13: T→assigned→csreq := T ;
14: T→req .released := false;
15: T→req .grant := false fi;
16: UnlockKernel();
17: AllowScheduling(true);
18: while T→req .released = false do od
19: while T→req .grant = false

procedure ReleaseLock(T , L)
20: T→req .B := 0;
21: T→req .lock := nil ;
22: LockKernel();
23: U := nil ;
24: for i := 1 to M do
25: V := GetCPU(i)→csreq ;
26: if V 6= nil ∧ IsSafe(V )

∧ V →req .lock = L then
27: if U = nil ∨

U→req .tag > V →req .tag
then

28: U := V fi fi od;
29: L→owner := U ;
30: if U 6= nil then
31: L→pending := L→pending − 1;
32: U→assigned→csreq := nil ;
33: U→req .grant := true fi;
34: UnlockKernel();
35: if U 6= nil then
36: U→req .released := true fi

procedure DeactivateRequests()
37: for i := 1 to M do
38: C := GetCPU(i);
39: T := C→csreq ;
40: C→csreq := nil ;
41: if T 6= nil then
42: T→req .lock→pending := 0;
43: T→released := true fi od

Figure 6.6: Sample implementation of the Rollback Protocol.

acts as the spin-release variable in this implementation.

Detailed Description. Since request contexts do not need to be saved and restored, this

implementation has no ActivateRequests procedure. The implementations of IsSafe, Time,

AllowScheduling, LockKernel, UnlockKernel, and GetCPU are common to both the SP and
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RP implementations, as are the purpose, timing, and assumptions made of the remaining

three procedures. We describe each of these three procedures below.

As before, an invocation of RequestLock begins by storing the request parameters in T ’s

record (lines 1–2). Following this, the retry loop for the request is entered. The request is

made as before in lines 3–18 (corresponding to lines 3–16 in Figure 6.5), with a few minor

exceptions. Since grant = true may not hold at line 3, the flag’s value is now explicitly set

to true if T immediately takes ownership of L (in the branch spanning lines 6-7). Similarly,

two flags (grant and released ) are now initialized (lines 14–15) when setting up the request,

instead of one. Finally, a task that is released from its spin may have been released due to

a failure. Hence, following its release from line 18, T checks the value of grant (line 19) to

determine whether the lock was granted. If not, the request is retried by executing lines 3–18

again. Notice that the call to RequestLock is still synchronous.

ReleaseLock is virtually identical to that used by the SP. Indeed, the only difference is

the need to set the grant flag (line 33) so that, when released by line 36, the lock-holding task

is able to determine whether it has been granted the lock.

DeactivateRequests has two purposes under the RP. First, as in the SP, the processor

request markers are cleared (line 40). Second, if a request is found to be pending on a processor

at the slot boundary (lines 39 and 41–43), then it must be failed. This is accomplished by

resetting the count of pending requests for the requested lock to zero (line 42) and releasing

the requesting task from its spin (line 43) so that a retry will occur when the task resumes.

Since pending = 0 for locks for which no request is pending, it follows from line 42 that

pending = 0 for all locks upon completion of this call. This implies both that the pending-

request counter is correctly re-initialized at slot boundaries, and that the first request for each
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lock in a slot is guaranteed to reset the service counter to zero at lines 8–9.

Remarks. The time complexity of these routines match the corresponding routines in the SP

implementation. However, DeactivateRequests is almost certain to introduce significantly

less per-slot overhead than the combination of ActivateRequests and DeactivateRequests

in the SP implementation. This decreased per-slot overhead somewhat offsets the extra

locking overhead caused by using the RP instead of the SP. (Recall that the worst-case

blocking scenario is usually worse under the RP than under the SP because requests are

discarded at slot boundaries.) Hence, neither protocol provides an obvious advantage over

the other. (Indeed, this is the reason why we present both protocols.)

6.4.8 The Impact of Supertasking

Both the SP and RP exploit characteristics inherent under quantum-based scheduling. Hence,

this approach is compatible with quantum-based supertasking, but not with fully preemptive

supertasking. The adaptation of Theorems 6.1, 6.2, and 6.3 for cases in which all competing

tasks are members of quantum-based supertasks is straightforward: Qm(T, `) and I(T, `) are

replaced by Qm(S, `) and I(S, `), respectively, where T ∈ S.

6.5 Supporting Long Critical Sections

In this section, we present a simple server-based protocol to support critical sections of ar-

bitrary length. The design of this protocol focuses on avoiding the problems associated with

inheritance-based approaches. The resulting protocol is simple to use and analyze, but is

expected to yield only mediocre performance in practice. The primary purpose of this pro-

tocol is to provide a baseline performance measurement that can be used to evaluate the
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performance of the SP, RP, and other protocols. The specific goals of the design are listed

below.

1. Blocking durations should be independent of the weights of requesting tasks.

2. Requesting tasks should not be required to change weights.

3. Modifying task parameters should impact performance in a predictable way.

4. The protocol should not introduce substantial per-slot overhead.

6.5.1 Static-weight Server Protocol

When using lock servers, a server task V executes all critical sections guarded by ` in place

of the requesting tasks. Such servers are actually quite common in practice. In addition

to implementing critical section and kernel calls, such special processes are often used to

implement basic communication services, such as remote-procedure calls (RPCs).

Issues. The primary issue when using server tasks is the scheduling of the server. Many

approaches have been proposed to exploit the structure of the system in which the servers will

execute. For instance, in fixed-priority systems, servers can be scheduled as normal tasks and

inherit the priority of the requesting tasks while servicing requests. This policy, called priority

tracking , addresses the potential for priority inversion caused by the server’s processing of

requests on behalf of low-priority tasks. For example, kernel threads in the LynxOS use this

approach [70]. Similarly, in reservation-based systems (e.g., see [15, 20]), the reservation14

of the requesting task can be passed to the server. This ensures that the processor time

consumed by the server is properly charged against the requesting tasks.

14A reservation is a form of rate-enforcement mechanism. Specifically, tasks are assigned processor time
budgets that are consumed as the tasks execute. When the budgets are exhausted, the tasks become ineligible
to execute. Additional rules define when and how budgets are replenished.
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Figure 6.7: Illustration of the behavior of a five-phase task T with weight 7/19 when all
locking phases use the SWSP. Phases T [1], T [3], and T [5] do not require locks, and hence
are executed locally by T while phases T [2] and T [4] are executed remotely by lock servers.
Phase transitions are shown across the top of the figure and time is shown across the bottom.
Arrows show when each request begins and ends. Unshaded boxes show where T executes
locally while boxes containing X’s denote unutilized processor time.

To satisfy Restriction 1 (on page 271), we consider only the use of server tasks with

statically defined weights. When using servers, the duration of a locking phase is determined

by the worst-case responsiveness of the associated server task. This responsiveness, in turn,

depends on the scheduling of the server and the amount of processor time required to complete

the operations. Hence, the use of static server weights satisfies Restriction 1. We refer to the

server protocol considered here as the Static-weight Server Protocol (SWSP).

Detailed description. Let V (`) denote the server task that implements lock `. Each

server is assumed to maintain a FIFO-ordered request queue, WAIT (`). As long as WAIT (`)

is non-empty, V (`) releases subtasks as early as is permitted under the GIS task model. On

the other hand, if V (`) finds that WAIT (`) is empty, then it delays the release of its next

subtask until WAIT (`) becomes non-empty again. Stated more precisely, we assume that the

SWSP servers use an early-release-and-stall server policy (as described in Chapter 3). We

further assume that a requesting task T issues its request via a synchronous call with behavior

similar to an RPC, i.e., T is suspended until the response is received.
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Figure 6.7 illustrates the behavior of one job of a five-phase task T when all locking phases

use the SWSP. As shown, server delays can be treated just as any other form of suspension

with one exception: the local processing required to initiate the request and process the

response must be factored into the execution-time estimates of the phases that precede and

succeed, respectively, the locking phase. (When using the SP and the RP, this overhead can

be factored into the locking phase’s requirements.)

Analysis. Before continuing, we define additional shorthand expressions unique to the

SWSP analysis. First, let δ (A,w) denote the shortest interval of time over which a task with

weight w that does not experience intra-sporadic delays is guaranteed to receive at least A

quanta, where A is a positive integer. By Lemma 3.3,

δ (A,w) =

⌈

A + β − 1

w

⌉

+ ε.

Informally, δ (A,w) is one slot less than the worst-case span of any A+1 consecutive windows,

as illustrated in Figure 6.8.

The following lemma and corollary equates an SWSP locking phase to a non-locking

phase for the purpose of selecting a task weight and determining schedulability of the system.

(Recall that I(θ) denotes a suspension phase of maximum duration θ.)

Theorem 6.4 Given a phase T [i] ∈ C(`), where ` is managed by the SWSP, phase T [i] is

equivalent to

I

(

δ

(⌈

T [i].e + I(T, `)

Q

⌉

, V (`).w

))

in a system that does not include supertasks.

Proof. Since I(T, `) is a trivial upper bound on the time required by competing requests,
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w=3/8
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Figure 6.8: The marked interval shows the interval that defines δ (A,w) when w = 3
8 , A = 2,

β = 2, and ε = 0. In this case, δ (A,w) = d(2 + 2 − 1)8
3e + 0 = 8. As shown, δ (A,w) is one

slot shorter than the longest span of any A + 1 consecutive windows.

the server cannot consume more than
⌈

T [i].e+I(T,`)
Q

⌉

quanta without completing T ’s critical

section. Since the server remains active while T ’s request is pending, it follows that the server

completes T ’s critical section after a delay of at most δ
(⌈

T [i].e+I(T,`)
Q

⌉

, V (`).w
)

slots. 2

Assigning server weights. We now describe a simple algorithm for assigning weights

to servers. Our algorithm focuses on dividing a fixed fraction of the processor bandwidth

reserved for servers, denoted ∂, among those servers in proportion to their requirements. Let

U(T, `) =

∑

T [i]∈C(`)

T [i].e

T.p
.

Informally, U(T, `) is T ’s utilization of lock `. Also, let

U(`) =
∑

T∈τ

U(T, `),

which is the total utilization of lock ` by all tasks in τ . (We also refer to this quantity as the

lock utilization of `.) ∂ can be proportionally distributed among the servers by using lock



275

utilizations like relative weights,15 as suggested by the formula below.

V (`).w =
U(`)
∑

`′∈Γ
U(`′)

· ∂

Impact of supertasking. The SWSP is compatible with quantum-based supertasks.

However, because critical sections execute remotely, the use of supertasks does not impact the

worst-case blocking overhead. (We assume that lock servers are not assigned to supertasks.)

6.6 Experimental Results

In this section, we present the results of four experimental studies that cover the range of

locking alternatives discussed in this chapter. As in previous chapters, these studies focus on

measuring the performance of the different alternatives when applied to randomly generated

task sets taken from a structured sample space. In particular, we restrict attention to task

sets in which each task requires at least one lock during its job and each job has between two

and twenty-four phases. Critical sections occur in consecutive phases with probability 1
4 . In

addition, each study imposes an upper limit on the duration of each critical section, which is

denoted C. Specific details are provided for each study below.

Supertask assignment. These studies consider the use of quantum-based supertasking

with the SP and the RP. Tasks are assigned to supertasks using a modified version of the

heuristic presented in Section 5.4. That heuristic selects lock-free objects in non-increasing

order by weighted contention. For each object `, tasks that access ` are then assigned to

supertasks in non-increasing order by A(T, `). When using locks, U(`) replaces the weighted

15In the presented formula, we ignore the unit upper limit on weights. An algorithm for dividing bandwidth
while respecting such a restriction can be found in [17].
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contention as the criteria for selecting `,16 and T.ê(`) replaces A(T, `) as the criteria for

selecting tasks. As in Chapter 5, we consider each of the FF and NF assignment rules.

6.6.1 Study 1: Performance under (R3)

In this section, we present the details and results of the first study. This study focused on

measuring the relative performance of each applicable locking approach when (R3) holds.

Sample space. For this study, the sample space was defined as follows:

• M is in the range 2, . . . , 16;

• |τ | is in the range 5 · log2 M, . . . , 30 · log2 M ;

• τ.u is in the range 0.2 · M, . . . , 0.8 · M ;

• |Γ| is in the range log2 M, . . . , 10 · log2 M ;

• T.p is in the range 50, . . . , 2000;

• C equals 0.025, i.e., 2.5% of a quantum.

These ranges were chosen rather arbitrarily based on values that seemed reasonably likely to

occur in practice. C was selected so that (R3) was likely to hold for the generated task sets.

Sampling. Samples were collected as follows:

• M was set to each value in the set { 2x | 1 ≤ x ≤ 4 };

• |τ | was set to each value in the set { x · log2 M | 5 ≤ x ≤ 30 };

16Though both the lock utilization and weighted contention are reasonable predictors of contention, these
quantities are not analogous. Lock utilization reflects the amount of processor time consumed by the execution
of critical sections in the limit. Weighted contention is the frequency of access to an object in the limit multiplied
by the object’s retry cost.
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• τ.u was set to each value in the set { 0.025x · M | 8 ≤ x ≤ 32 };

• |Γ| was set to each value in the set { x · log2 M | 1 ≤ x ≤ 10 }.

For each combination of the above parameter assignments, ten valid task sets were generated

and evaluated. In this context, a task set must satisfy several constraints to be considered

valid. First, under the zone-based protocols, all locks must satisfy (R3) and the task set must

be schedulable on M processors. (Since the analysis presented earlier for the SP and the RP

is based on M , we must verify that the task set is actually schedulable on M processors for

the analysis to be correct.) Second, the task set must be feasible under the SWSP when using

an unlimited number of processors. Feasibility can be checked by computing task weights for

the special case in which each lock server is assigned a unit weight. Such a case is guaranteed

to produce the lowest possible task weights under the SWSP due to the fact that each server

exhibits the best possible responsiveness. Hence, if a task weight exceeds unity under these

conditions, then the task set is not schedulable under the SWSP, regardless of the processor

count. Recall that sampling validity is not related directly to feasibility or schedulability. It

is only a measure of the fraction of generated samples that could be quantitatively compared.

Since the analysis of the SWSP is independent of M , it is not necessary to discard samples

that are not schedulable on M processors under the SWSP.

Measurement. The following measurements were taken during the experimental runs.

Ideal: the sum of the ideal weights17 of all tasks (a baseline measurement); this measurement

reflects mapping overhead alone.

SWSP: the total weight of all tasks when all locks use the SWSP and supertasks are not

17A task’s ideal weight is computed by treating critical sections as if they require no shared resources.
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used; this measurement reflects mapping and locking overhead.

SP: the total weight of all tasks when all locks use the SP and supertasks are not used; this

measurement reflects mapping and locking overhead.

SP/Ideal QB (FF): the sum of the ideal weights of all supertasks created by the FF form

of the assignment heuristic when using the SP for all locks (a baseline measurement);

this measurement reflects mapping and locking overhead.

SP/Ideal QB (NF): the sum of the ideal weights of all supertasks created by the NF form

of the assignment heuristic when using the SP for all locks (a baseline measurement);

this measurement reflects mapping and locking overhead.

SP/QB-EPDF (FF): the sum of the ideal weights of all supertasks created by the FF

form of the assignment heuristic under the QB-EPDF scenario when using the SP for

all locks; this measurement reflects mapping, reweighting, and locking overhead.

SP/QB-EPDF (NF): the sum of the ideal weights of all supertasks created by the NF

form of the assignment heuristic under the QB-EPDF scenario when using the SP for

all locks; this measurement reflects mapping, reweighting, and locking overhead.

SP/QB-EDF (FF): the sum of the ideal weights of all supertasks created by the FF form

of the assignment heuristic under the QB-EDF scenario when using the SP for all locks;

this measurement reflects mapping, reweighting, and locking overhead.

SP/QB-EDF (NF): the sum of the ideal weights of all supertasks created by the NF form

of the assignment heuristic under the QB-EDF scenario when using the SP for all locks;

this measurement reflects mapping, reweighting, and locking overhead.
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RP: the total weight of all tasks when all locks use the RP and supertasks are not used;

this measurement reflects mapping and locking overhead.

RP/Ideal QB (FF): the sum of the ideal weights of all supertasks created by the FF form

of the assignment heuristic when using the RP for all locks (a baseline measurement);

this measurement reflects mapping and locking overhead.

RP/Ideal QB (NF): the sum of the ideal weights of all supertasks created by the NF form

of the assignment heuristic when using the RP for all locks (a baseline measurement);

this measurement reflects mapping and locking overhead.

RP/QB-EPDF (FF): the sum of the ideal weights of all supertasks created by the FF

form of the assignment heuristic under the QB-EPDF scenario when using the RP for

all locks; this measurement reflects mapping, reweighting, and locking overhead.

RP/QB-EPDF (NF): the sum of the ideal weights of all supertasks created by the NF

form of the assignment heuristic under the QB-EPDF scenario when using the RP for

all locks; this measurement reflects mapping, reweighting, and locking overhead.

RP/QB-EDF (FF): the sum of the ideal weights of all supertasks created by the FF form

of the assignment heuristic under the QB-EDF scenario when using the RP for all locks;

this measurement reflects mapping, reweighting, and locking overhead.

RP/QB-EDF (NF): the sum of the ideal weights of all supertasks created by the NF form

of the assignment heuristic under the QB-EDF scenario when using the RP for all locks;

this measurement reflects mapping, reweighting, and locking overhead.

To ensure termination when reweighting, S.wφ + 10−4 was passed as wmin when invoking
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Reweight (see Section 4.5). When discussing results, we ignore trends in the reweighting

overhead; a discussion of these trends can be found in Chapter 4.

Overall performance. The tables shown in Figures 6.9–6.12 summarize the overall results

of this study. Separate tables are given for each value of M considered in the study. These

tables report the mean inflation experienced under each approach along with related statistics

using the same format as the tables presented in previous chapters. Since all halflengths are

negligible relative to the associated means, we ignore them in the discussion that follows. In

addition, the standard deviation measurements show no trends other than those discussed

in earlier chapters. Hence, we focus primarily on the Mean and Best columns of the tables

in the discussion that follows. Notice that the inflation under the SWSP often exceeds M .

Recall that task sets are not required to be schedulable on M processors under the SWSP

since this is not necessary to enable a quantitative comparison. (The criteria for sampling

validity was discussed in detail earlier on page 277.) The SWSP analysis effectively calculates

the minimum number of processors needed by the task set (which may exceed M).

Consider the M = 2 results, which are shown in Figure 6.9. As expected, the zone-

based approach performs much better than the server approach. Indeed, the mean inflation

produced by the SWSP is two orders of magnitude greater than all other means. In this case,

the average performance of the SP and the RP are effectively the same, which suggests that

the RP is likely preferable since it introduces less per-slot overhead.

The supertasking trends closely resemble those observed earlier in Chapter 5. Specifically,

the benefit of using supertasks is limited for low processor counts. As a result, the reweighting

overhead is prohibitively large under QB-EPDF. Even under QB-EDF, the overhead was

observed to be unacceptably high for a significant fraction (10.582%) of the tested task sets.
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M = 2 Mean Standard Deviation Halflength Best

Ideal 0.017054 0.010149 0.00010254 N/A
SWSP 3.400218 2.275139 0.02298694 0.000%

SP 0.031534 0.018193 0.00018382 10.582%
SP/Ideal QB (FF) 0.023252 0.014283 0.00014431 N/A
SP/Ideal QB (NF) 0.023492 0.014422 0.00014572 N/A
SP/QB-EPDF (FF) 0.052283 0.060166 0.00060789 N/A
SP/QB-EPDF (NF) 0.047581 0.055227 0.00055799 N/A
SP/QB-EDF (FF) 0.023562 0.014248 0.00014395 8.672%
SP/QB-EDF (NF) 0.023755 0.014422 0.00014572 2.437%

SP/QB-EDF (Both) N/A N/A N/A 78.309%
RP 0.031838 0.018221 0.00018410 N/A

RP/Ideal QB (FF) 0.023842 0.014629 0.00014780 N/A
RP/Ideal QB (NF) 0.023987 0.014731 0.00014883 N/A
RP/QB-EPDF (FF) 0.052756 0.060324 0.00060949 N/A
RP/QB-EPDF (NF) 0.047996 0.055362 0.00055936 N/A
RP/QB-EDF (FF) 0.024151 0.014629 0.00014780 N/A
RP/QB-EDF (NF) 0.024250 0.014697 0.00014849 N/A

Figure 6.9: Summary of the M = 2 results of the first locking experiment in which all locks
respect (R3).

Finally, neither the FF nor NF assignment rules always produces the best results, though the

FF rule produced less inflation in the majority of the tested sets.

The remaining tables in Figures 6.10–6.12 show the same basic trends. A notable exception

is that the locking overhead progressively increases as M increases. As a result, the benefit

of using supertasks increases with M . Despite this, QB-EPDF supertasking continues to

provide only negligible benefit, if any. (As M increases, more supertasks are typically needed,

and hence reweighting overhead increases also.) QB-EDF supertasking, on the other hand,

consistently reduces inflation throughout. Finally, notice that no tested sets favored the use

of the SWSP instead of the SP. (See Appendix B for a more detailed summary of which

approach was favored by the tested samples.)

In the remainder of this section, we present graphs to show how inflation scales with
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M = 4 Mean Standard Deviation Halflength Best

Ideal 0.033922 0.017635 0.00017818 N/A
SWSP 7.357997 4.515327 0.04562074 0.000%

SP 0.101851 0.056321 0.00056904 0.971%
SP/Ideal QB (FF) 0.062335 0.036892 0.00037274 N/A
SP/Ideal QB (NF) 0.063476 0.037577 0.00037966 N/A
SP/QB-EPDF (FF) 0.098554 0.079448 0.00080271 N/A
SP/QB-EPDF (NF) 0.095652 0.079568 0.00080391 N/A
SP/QB-EDF (FF) 0.062775 0.036878 0.00037260 35.465%
SP/QB-EDF (NF) 0.063865 0.037563 0.00037952 7.785%

SP/QB-EDF (Both) N/A N/A N/A 55.780%
RP 0.107083 0.056675 0.00057261 N/A

RP/Ideal QB (FF) 0.064867 0.038013 0.00038407 N/A
RP/Ideal QB (NF) 0.065953 0.038665 0.00039066 N/A
RP/QB-EPDF (FF) 0.100987 0.080075 0.00080904 N/A
RP/QB-EPDF (NF) 0.098063 0.080218 0.00081049 N/A
RP/QB-EDF (FF) 0.065307 0.038000 0.00038393 N/A
RP/QB-EDF (NF) 0.066342 0.038652 0.00039052 N/A

Figure 6.10: Summary of the M = 4 results of the first locking experiment in which all locks
respect (R3).

the task set parameters. In all cases, the “Ideal QB (FF)” and “SP/QB-EDF (FF)” curves

(respectively, the “Ideal QB (NF)” and “SP/QB-EDF (NF)” curves) were virtually co-linear.

To simplify the graphs, the “Ideal QB (FF)” and “Ideal QB (NF)” curves have been omitted.

In addition, all curves representing the use of the SP with supertasks are almost co-linear to

the corresponding RP curve. For example, the “SP/QB-EPDF (NF)” and “RP/QB-EPDF

(NF)” curves are co-linear or close to being co-linear in all graphs.

Impact of the task count. Since inflation under the SWSP is two orders of magnitude

larger than that under the other approaches, each set of measurements is shown using two

graphs. Figures 6.13, 6.14, 6.15, and 6.16 show how inflation varies with the task count on

two, four, eight, and sixteen processors, respectively, at the scale of the SWSP’s inflation.

Figures 6.17, 6.18, 6.19, and 6.20 show inflation at the scale of the SP and the RP. Plots of
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M = 8 Mean Standard Deviation Halflength Best

Ideal 0.050873 0.024980 0.00025239 N/A
SWSP 11.543613 6.711607 0.06781092 0.000%

SP 0.234618 0.144966 0.00146466 1.589%
SP/Ideal QB (FF) 0.134715 0.083349 0.00084212 N/A
SP/Ideal QB (NF) 0.138098 0.085674 0.00086561 N/A
SP/QB-EPDF (FF) 0.210349 0.170830 0.00172599 N/A
SP/QB-EPDF (NF) 0.228375 0.226486 0.00228831 N/A
SP/QB-EDF (FF) 0.135430 0.083295 0.00084157 64.783%
SP/QB-EDF (NF) 0.138831 0.085604 0.00086490 11.715%

SP/QB-EDF (Both) N/A N/A N/A 21.912%
RP 0.271631 0.150256 0.00151812 N/A

RP/Ideal QB (FF) 0.144974 0.087898 0.00088808 N/A
RP/Ideal QB (NF) 0.148815 0.090366 0.00091301 N/A
RP/QB-EPDF (FF) 0.220535 0.172612 0.00174399 N/A
RP/QB-EPDF (NF) 0.239380 0.228189 0.00230551 N/A
RP/QB-EDF (FF) 0.145690 0.087852 0.00088762 N/A
RP/QB-EDF (NF) 0.149550 0.090311 0.00091246 N/A

Figure 6.11: Summary of the M = 8 results of the first locking experiment in which all locks
respect (R3).

the sampling validity can be seen in Figures 6.21 and 6.22.

Consider the graphs of sampling validity first. For low processor counts, the sampling

validity linearly decreases as the task count increases. According to Figures 6.17, 6.18, 6.19,

and 6.20, the RP is the likely cause of this gradual decline (since it produces the highest

inflation). For higher processor counts, a dip also occurs for low task counts. As the graphs

of inflation show, the high reweighting overhead suffered by QB-EPDF is the apparent cause

of this drop. Though Figure 6.19 does not appear to be impacted by the sampling validity,

the “SP/QB-EPDF (NF)” and “RP/QB-EPDF (NF)” measurements shown in Figure 6.20

do appear to be lower than expected around task counts of 20. In such cases, we say that the

measurements are skewed by the sampling validity. In this case, the measurements appearing
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M = 16 Mean Standard Deviation Halflength Best

Ideal 0.067556 0.032527 0.00032864 N/A
SWSP 16.151387 9.012471 0.09105778 0.000%

SP 0.418817 0.317556 0.00320844 5.663%
SP/Ideal QB (FF) 0.256111 0.174459 0.00176265 N/A
SP/Ideal QB (NF) 0.263267 0.181058 0.00182933 N/A
SP/QB-EPDF (FF) 0.509596 0.467962 0.00472806 N/A
SP/QB-EPDF (NF) 0.646442 0.727375 0.00734906 N/A
SP/QB-EDF (FF) 0.257800 0.173954 0.00175755 75.072%
SP/QB-EDF (NF) 0.265356 0.180178 0.00182043 15.072%

SP/QB-EDF (Both) N/A N/A N/A 4.192%
RP 0.570231 0.365531 0.00369315 N/A

RP/Ideal QB (FF) 0.293139 0.191669 0.00193653 N/A
RP/Ideal QB (NF) 0.303522 0.199722 0.00201790 N/A
RP/QB-EPDF (FF) 0.548215 0.472258 0.00477148 N/A
RP/QB-EPDF (NF) 0.689126 0.729944 0.00737501 N/A
RP/QB-EDF (FF) 0.294834 0.191196 0.00193176 N/A
RP/QB-EDF (NF) 0.305629 0.198887 0.00200946 N/A

Figure 6.12: Summary of the M = 16 results of the first locking experiment in which all locks
respect (R3).

to be skewed toward zero, which means that they are lower than expected.18

Observation 6.1 Locking overhead increases approximately linearly with the task count un-

der all approaches.

Explanation: Consider the performance of the SWSP in Figures 6.13–6.16 first. Under the

SWSP, blocking estimates assume that one request of each competitor executes before the

request in question. Increasing the task count increases the number of competitors. Hence,

the observed behavior is not surprising.

Now consider the performance of the zone-based protocols in Figures 6.17–6.20. (The

high inflation at low task counts under the QB-EPDF-based measurements are the result of

18It is impossible to prove that unexpected behavior is the result of sample filtering. We are careful to
consider sampling validity as an explanation of unexpected behavior only when the observed behavior (i.e.,
the shape of the curve) appears to be correlated with the sampling validity curve.
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Figure 6.13: Plots show how inflation varies as the task count is increased when using locking
synchronization on two processors and when all locks satisfy (R3). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.14: Plots show how inflation varies as the task count is increased when using locking
synchronization on four processors and when all locks satisfy (R3). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.15: Plots show how inflation varies as the task count is increased when using locking
synchronization on eight processors and when all locks satisfy (R3). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.16: Plots show how inflation varies as the task count is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R3). The figure shows (a)
the sample means and (b) the 99% confidence interval for each mean.



289

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 5  10  15  20  25  30

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Task Count

Inflation vs. Task Count (2 Processors)

Ideal
SP

SP/QB-EPDF (FF)
SP/QB-EPDF (NF)

SP/QB-EDF (FF)
SP/QB-EDF (NF)

RP
RP/QB-EPDF (FF)
RP/QB-EPDF (NF)

RP/QB-EDF (FF)
RP/QB-EDF (NF)

(a) Sample Means Only

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 5  10  15  20  25  30

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Task Count

Inflation vs. Task Count (2 Processors)

Ideal
SP

SP/QB-EPDF (FF)
SP/QB-EPDF (NF)

SP/QB-EDF (FF)
SP/QB-EDF (NF)

RP
RP/QB-EPDF (FF)
RP/QB-EPDF (NF)

RP/QB-EDF (FF)
RP/QB-EDF (NF)

(b) 99% Confidence Interval

Figure 6.17: Plots show how inflation varies as the task count is increased when using locking
synchronization on two processors and when all locks satisfy (R3). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.18: Plots show how inflation varies as the task count is increased when using locking
synchronization on four processors and when all locks satisfy (R3). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.19: Plots show how inflation varies as the task count is increased when using locking
synchronization on eight processors and when all locks satisfy (R3). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.20: Plots show how inflation varies as the task count is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R3). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.21: Plots show the sampling validity for the graphs showing inflation plotted against
the task count when (R3) holds. The figure shows (a) the M = 2 and (b) the M = 4 cases.
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Figure 6.22: Plots show the sampling validity for the graphs showing inflation plotted against
the task count when (R3) holds. The figure shows (a) the M = 8 and (b) the M = 16 cases.
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reweighting overhead.) Under these protocols, blocking estimates are based upon either the

M−1 or 2(M −1) worst competitors, depending on the protocol. As the task count increases,

more critical sections are introduced. As a result, the blocking produced by the worst-case

subset of competitors tends to increase also. The reason for this is easily illustrated by an

example. Suppose that n values are randomly selected from the integer range 1 · · · 50 and the

largest value of the n is selected. When n = 1, the selected value is not likely to exceed 45.

However, when n = 100, this is likely to be the case. In general, the selected value is likely

to be higher for larger values of n. By similar reasoning, locking overhead tends to increase

with the task count, at least when task sets are randomly generated.

Observation 6.2 The RP scales worse with M than the SP.

Explanation: This trend is predicted by the analysis presented earlier and can be seen

in Figures 6.17–6.20. Specifically, recall that the SP enforces FIFO prioritization of requests

across slots, while the RP does not. Because of this, a request can be blocked twice by the

same worst-case collection of M − 1 competing requests under the RP, but only once by the

worst-case collection of 2(M − 1) competing requests under the SP. The observed property

follows from the fact that these counts are both functions of M .

Observation 6.3 QB-EPDF supertasking provides a benefit on average on two, four, eight,

and sixteen processors when the task count exceeds 20, 25, 40, and 70, respectively.

Explanation: Figures 6.17–6.20 show that the performance of QB-EPDF supertasking

varies significantly. Apparently, the mediocre performance suggested by the table summaries

can largely be attributed to the high reweighting overhead suffered at low task counts.

Impact of the lock count. Figures 6.23, 6.24, 6.25, and 6.26 show how inflation varies
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with the lock count on two, four, eight, and sixteen processors, respectively, at the scale of the

SWSP’s inflation. Figures 6.27, 6.28, 6.29, and 6.30 show the remaining approaches. Plots of

the sampling validity are shown in Figures 6.31 and 6.32.

Observation 6.4 Locking overhead increases with increasing lock count under the SWSP.

Explanation: Based on Figures 6.23–6.26, the most significant overhead under the SWSP

is the server weights. Since one server was created for each lock in this study, the inflation

suffered under the SWSP increases approximately linearly with the lock count.

Observation 6.5 Locking overhead decreases with increasing lock count under the zone-based

protocols.

Explanation: This trend, shown in Figures 6.27–6.30, reflects the cost of locking granularity.

Consider a task set that uses multiple locks. Suppose that this set of locks is replaced by a

single universal lock that guards all critical sections. By imposing such coarse-grained locking,

contention is made worse because parallel execution of critical sections is more constrained.

Hence, in these graphs, the lock count reflects the granularity of locking, and not the number

of critical sections or degree of sharing. The high inflation at low lock counts is likely the

cause of the drop in sampling validity observed in the M = 8 and M = 16 cases.

Observation 6.6 On eight or more processors, the use of supertasking appears to improve

scalability with respect to the granularity of locking.

Explanation: This trend can be seen by comparing the SP and RP curves to the super-

tasking curves in Figures 6.29 and 6.30. Since the supertasking approaches focus on reducing

contention, this trend was expected.
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Figure 6.23: Plots show how inflation varies as the lock count is increased when using locking
synchronization on two processors and when all locks satisfy (R3). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.24: Plots show how inflation varies as the lock count is increased when using locking
synchronization on four processors and when all locks satisfy (R3). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.25: Plots show how inflation varies as the lock count is increased when using locking
synchronization on eight processors and when all locks satisfy (R3). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.26: Plots show how inflation varies as the lock count is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R3). The figure shows (a)
the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.27: Plots show how inflation varies as the lock count is increased when using locking
synchronization on two processors and when all locks satisfy (R3). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.28: Plots show how inflation varies as the lock count is increased when using locking
synchronization on four processors and when all locks satisfy (R3). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.29: Plots show how inflation varies as the lock count is increased when using locking
synchronization on eight processors and when all locks satisfy (R3). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.30: Plots show how inflation varies as the lock count is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R3). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.31: Plots show the sampling validity for the graphs showing inflation plotted against
the lock count when (R3) holds. The figure shows (a) the M = 2 and (b) the M = 4 cases.
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Figure 6.32: Plots show the sampling validity for the graphs showing inflation plotted against
the lock count when (R3) holds. The figure shows (a) the M = 8 and (b) the M = 16 cases.
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Impact of utilization. Figures 6.33, 6.34, 6.35, and 6.36 show how inflation varies with the

total utilization on two, four, eight, and sixteen processors, respectively, at the scale of the

SWSP’s inflation. Figures 6.37, 6.38, 6.39, and 6.40 show the remaining approaches. Plots of

the sampling validity are shown in Figures 6.41 and 6.42.

With the exception of the SP, RP, and SWSP trends, all trends shown in these graphs

have been discussed previously in Chapters 4 and 5. Hence, we restrict attention to these

three curves when considering trends below.

Observation 6.7 Inflation increases linearly, but slowly, under the SWSP with increasing

utilization.

Explanation: This trend can be seen by comparing the far left and far right sample means

in Figures 6.33–6.36. The cause of the trend is not immediately apparent. This is likely an

artifact of the rule used to assign weights to lock servers. Further study is needed.

Observation 6.8 Locking overhead is independent of utilization under the SP and the RP.

Explanation: This observation is based on Figures 6.37–6.40. (The odd behavior of the QB-

EPDF-based measurements reflects changes in the reweighting overhead and was discussed

earlier in Chapter 4.) Nothing in the analysis presented earlier suggested that locking overhead

should vary with utilization. Hence, this behavior was expected.

Observation 6.9 QB-EPDF supertasking tends to benefit the SP and the RP only when the

utilization is below M
2 .

Explanation: This observation is also based on Figures 6.37–6.40. Higher utilizations tend

to produce tasks with larger weights. As a result the number of tasks that can be placed in the
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Figure 6.33: Plots show how inflation varies as utilization is increased when using locking
synchronization on two processors and when all locks satisfy (R3). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.34: Plots show how inflation varies as utilization is increased when using locking
synchronization on four processors and when all locks satisfy (R3). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.35: Plots show how inflation varies as utilization is increased when using locking
synchronization on eight processors and when all locks satisfy (R3). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.36: Plots show how inflation varies as utilization is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R3). The figure shows (a)
the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.37: Plots show how inflation varies as utilization is increased when using locking
synchronization on two processors and when all locks satisfy (R3). The figure shows a close-
up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.38: Plots show how inflation varies as utilization is increased when using locking
synchronization on four processors and when all locks satisfy (R3). The figure shows a close-
up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.39: Plots show how inflation varies as utilization is increased when using locking
synchronization on eight processors and when all locks satisfy (R3). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.40: Plots show how inflation varies as utilization is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R3). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.41: Plots show the sampling validity for the graphs showing inflation plotted against
utilization when (R3) holds. The figure shows (a) the M = 2 and (b) the M = 4 cases.
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Figure 6.42: Plots show the sampling validity for the graphs showing inflation plotted against
utilization when (R3) holds. The figure shows (a) the M = 8 and (b) the M = 16 cases.
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same supertask decreases with increasing utilization. As observed earlier, low component task

counts produce high reweighting overhead. The observed trend is the result of this property.

Impact of lock utilization. Figures 6.43, 6.44, 6.45, and 6.46 show how inflation varies

with the lock utilization on two, four, eight, and sixteen processors, respectively, at the scale

of the SWSP’s inflation. Figures 6.47, 6.48, 6.49, and 6.50 show the remaining approaches.

Plots of the sampling validity are shown in Figures 6.51 and 6.52.

Unlike the previous graphs, those based on lock utilization do not represent uniform

sampling. Recall that the sample space was systematically sampled from with respect to

parameters like the task count and lock count. However, no attempt was made to control the

lock utilization. As a result, the number of samples associated with each sample mean varies

from point to point.

In Chapter 5, we noted a strong resemblance between the task count graphs and the

weighted contention graphs. It appears that a similar relationship exists between the task

count graphs and the lock utilization graphs shown here. Again, we speculate that these

quantities are correlated due to random generation. A correlation likely exists in real task

sets also, though the degree of the correlation may differ. (This expectation is based on the

assumption that adding tasks to a task set is likely to introduce more resource sharing.) Since

the explanation of trends shown in these graphs were given previously in the context of the

task count graphs (see page 282), we forgo further discussion of these graphs.

6.6.2 Study 2: Performance under (R1)

In this section, we present the details and results of the second study. This study focused on

measuring the relative performance of the locking approaches when (R1) holds. Since the RP
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Figure 6.43: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on two processors and when all locks satisfy (R3). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.44: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on four processors and when all locks satisfy (R3). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.45: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on eight processors and when all locks satisfy (R3). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.46: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R3). The figure shows (a)
the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.47: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on two processors and when all locks satisfy (R3). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.48: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on four processors and when all locks satisfy (R3). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.49: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on eight processors and when all locks satisfy (R3). The figure shows a close-
up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.50: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R3). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.51: Plots show the sampling validity for the graphs showing inflation plotted against
lock utilization when (R3) holds. The figure shows (a) the M = 2 and (b) the M = 4 cases.
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Figure 6.52: Plots show the sampling validity for the graphs showing inflation plotted against
lock utilization when (R3) holds. The figure shows (a) the M = 8 and (b) the M = 16 cases.
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requires (R3) to hold, this approach was not considered in this study.

Sample space. For this study, the sample space was defined as follows:

• M is in the range 2, . . . , 16;

• |τ | is in the range 5 · log2 M, . . . , 20 · log2 M ;

• τ.u is in the range 0.2 · M, . . . , 0.6 · M ;

• |Γ| is in the range log2 M, . . . , 10 · log2 M ;

• T.p is in the range 50, . . . , 2000;

• C equals 0.25, i.e., 25% of a quantum.

Recall that C is the maximum allowed critical section length. The above C value was selected

arbitrarily. (The next study focuses on how performance scales with C.) Because locks that

satisfy (R1) instead of (R3) tends to produce more locking overhead, the sample space had to

be more restricted in this study than in the previous one. Specifically, the upper bounds on

|τ | and τ.u were decreased. This was necessary to produce reasonably high sampling validity.

Sampling. Samples were collected as follows:

• M was set to each value in the set { 2x | 1 ≤ x ≤ 4 };

• |τ | was set to each value in the set { x · log2 M | 5 ≤ x ≤ 20 };

• τ.u was set to each value in the set { 0.025x · M | 8 ≤ x ≤ 24 };

• |Γ| was set to each value in the set { x · log2 M | 1 ≤ x ≤ 10 }.
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M = 2 Mean Standard Deviation Halflength Best

Ideal 0.011659 0.006782 0.00010594 N/A
SWSP 3.389903 2.257611 0.03526242 0.000%

SP 0.313764 0.259619 0.00405508 0.011%
SP/Ideal QB (FF) 0.044573 0.041110 0.00064211 N/A
SP/Ideal QB (NF) 0.046804 0.046594 0.00072777 N/A
SP/QB-EPDF (FF) 0.074769 0.076085 0.00118841 N/A
SP/QB-EPDF (NF) 0.072638 0.073335 0.00114544 N/A
SP/QB-EDF (FF) 0.044931 0.041219 0.00064381 10.636%
SP/QB-EDF (NF) 0.047097 0.046648 0.00072861 0.849%

SP/QB-EDF (Both) N/A N/A N/A 88.504%

Figure 6.53: Summary of the M = 2 results of the second locking experiment in which all
locks respect (R1).

For each combination of the above parameter assignments, ten valid task sets were generated

and evaluated. The sampling validity criteria is identical to that used by the previous study

except for the fact that locks were only required to satisfy (R1) in this study.

Measurement. This study is based on the same measurements as the previous study,

except for the omission of RP measurements. Since the SWSP’s behavior does not depend

on (R1) or (R3), its trends should resemble those already observed in the previous study. For

this reason, we primarily focus on the performance of the SP and its variants. (The SWSP

measurement was taken to provide a reference point that links the (R3) and (R1) studies.)

Overall Performance. The tables shown in Figures 6.53–6.56 summarize the overall results

of this study. Again, halflength and standard deviations measurements appear unremarkable.

Hence, we ignore them in the discussion that follows.

In the M = 2 case, results resemble those given in the (R3) experiment in all aspects

except the SP measurement. The inflation produced by the SP is an order of magnitude

higher than in the previous study. The fact that changing C impacted the SWSP and the
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M = 4 Mean Standard Deviation Halflength Best

Ideal 0.022880 0.011000 0.00017181 N/A
SWSP 7.429091 4.458942 0.06964580 0.423%

SP 0.796303 0.609360 0.00951782 0.000%
SP/Ideal QB (FF) 0.395274 0.413159 0.00645327 N/A
SP/Ideal QB (NF) 0.412658 0.426754 0.00666562 N/A
SP/QB-EPDF (FF) 0.428270 0.409922 0.00640272 N/A
SP/QB-EPDF (NF) 0.439943 0.423876 0.00662067 N/A
SP/QB-EDF (FF) 0.395724 0.413243 0.00645459 65.140%
SP/QB-EDF (NF) 0.413041 0.426811 0.00666652 7.860%

SP/QB-EDF (Both) N/A N/A N/A 26.577%

Figure 6.54: Summary of the M = 4 results of the second locking experiment in which all
locks respect (R1).

M = 8 Mean Standard Deviation Halflength Best

Ideal 0.034526 0.015297 0.00023893 N/A
SWSP 11.798888 6.601403 0.10310966 2.283%

SP 1.381273 1.121643 0.01751933 0.000%
SP/Ideal QB (FF) 1.078198 0.980108 0.01530865 N/A
SP/Ideal QB (NF) 1.099338 0.992138 0.01549655 N/A
SP/QB-EPDF (FF) 1.151648 0.962305 0.01503058 N/A
SP/QB-EPDF (NF) 1.188704 0.992338 0.01549967 N/A
SP/QB-EDF (FF) 1.078965 0.980205 0.01531016 81.853%
SP/QB-EDF (NF) 1.100113 0.992318 0.01549937 13.460%

SP/QB-EDF (Both) N/A N/A N/A 2.404%

Figure 6.55: Summary of the M = 8 results of the second locking experiment in which all
locks respect (R1).

supertasking approaches much less has two implications. First, the most significant source of

inflation under the SWSP is apparently not a function of C. Since the only other source of

inflation is the server weights, it follows that these weights are the primary source of inflation

under the SWSP (at least when M = 2). Second, increasing C by an order of magnitude

should significantly impact the performance of each approach. The fact that this change does

not appear to impact the SWSP significantly (compare Figures 6.9 and 6.53) suggests that

the impact of active blocking is being minimized by the use of supertasks, which can only be
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M = 16 Mean Standard Deviation Halflength Best

Ideal 0.045768 0.019647 0.00030687 N/A
SWSP 16.471846 8.689446 0.13572355 3.426%

SP 2.006823 1.767475 0.02760682 0.246%
SP/Ideal QB (FF) 1.775394 1.653127 0.02582078 N/A
SP/Ideal QB (NF) 1.796558 1.665604 0.02601566 N/A
SP/QB-EPDF (FF) 2.034739 1.607010 0.02510046 N/A
SP/QB-EPDF (NF) 2.226956 1.696965 0.02650549 N/A
SP/QB-EDF (FF) 1.776957 1.653090 0.02582019 81.493%
SP/QB-EDF (NF) 1.798841 1.665892 0.02602015 14.695%

SP/QB-EDF (Both) N/A N/A N/A 0.140%

Figure 6.56: Summary of the M = 16 results of the second locking experiment in which all
locks respect (R1).

the case if sharing between supertasks is rare.

As M increases, supertasking becomes increasingly less effective. Indeed, QB-EPDF su-

pertasking performs worse than SP alone in the M = 16 case. In addition, the performance

of the SP also degrades. This trend is indicated not only by the inflation measurements, but

also by the Best percentages. In the M = 4, 8, and 16 cases, the fraction of task sets favoring

the use of the SWSP over all variants of the SP was 0.423%, 2.283%, and 3.426%, respectively.

Although the majority of samples continue to favor the use of the SP (with supertasks), this

increasing minority of samples clearly indicates that zone-based protocols are not always a

better choice than server-based protocols. (See Appendix B for a more detailed summary of

which approach was favored by the tested samples.)

In the remainder of this section, we present graphs to show how inflation scales with the

task set parameters. In all graphs, the “Ideal QB (FF),” “Ideal QB (NF),” “SP/QB-EDF

(FF),” and ‘SP/QB-EDF (NF)” curves are virtually co-linear.

Impact of the task count. Figures 6.57, 6.58, 6.59, and 6.60 show how inflation varies

with the task count on two, four, eight, and sixteen processors, respectively, at the scale of the
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SWSP’s inflation. Figures 6.61, 6.62, 6.63, and 6.64 show the remaining approaches. Plots of

the sampling validity can be seen in Figures 6.65 and 6.66.

Observation 6.10 The benefit of supertasking appears to diminish quickly as M increases,

but the reliability of this observation is uncertain.

Explanation: Figures 6.61–6.64 clearly show that using supertasks with the SP provides

less improvement for larger values of M . However, the decline of sampling validity as M

increases, shown in Figures 6.65 and 6.66, could be increasingly skewing the means as M

increases. Since the evidence does not clearly indicate which of these possible explanations is

correct, further study is needed.

Impact of the lock count. Figures 6.67, 6.68, 6.69, and 6.70 show how inflation varies

with the lock count on two, four, eight, and sixteen processors, respectively, at the scale of the

SWSP’s inflation. Figures 6.71, 6.72, 6.73, and 6.74 show the remaining approaches. Plots of

the sampling validity are shown in Figures 6.75 and 6.76.

These graphs simply repeat trends that have already been observed. Specifically, the

benefit of supertasking diminishes as M increases (see Observation 6.10). In addition, these

graphs clearly show that coarse-grained locking is more costly than fine-grained locking (see

Observation 6.5).

Impact of utilization. Figures 6.77, 6.78, 6.79, and 6.80 show how inflation varies with the

total utilization on two, four, eight, and sixteen processors, respectively, at the scale of the

SWSP’s inflation. Figures 6.81, 6.82, 6.83, and 6.84 show the remaining approaches. Plots of

the sampling validity are shown in Figures 6.85 and 6.86.
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Figure 6.57: Plots show how inflation varies as the task count is increased when using locking
synchronization on two processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.58: Plots show how inflation varies as the task count is increased when using locking
synchronization on four processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.59: Plots show how inflation varies as the task count is increased when using locking
synchronization on eight processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.60: Plots show how inflation varies as the task count is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R1). The figure shows (a)
the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.61: Plots show how inflation varies as the task count is increased when using locking
synchronization on two processors and when all locks satisfy (R1). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.62: Plots show how inflation varies as the task count is increased when using locking
synchronization on four processors and when all locks satisfy (R1). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.63: Plots show how inflation varies as the task count is increased when using locking
synchronization on eight processors and when all locks satisfy (R1). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.64: Plots show how inflation varies as the task count is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R1). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.65: Plots show the sampling validity for the graphs showing inflation plotted against
the task count when (R1) holds. The figure shows (a) the M = 2 and (b) the M = 4 cases.
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Figure 6.66: Plots show the sampling validity for the graphs showing inflation plotted against
the task count when (R1) holds. The figure shows (a) the M = 8 and (b) the M = 16 cases.
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Figure 6.67: Plots show how inflation varies as the lock count is increased when using locking
synchronization on two processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.68: Plots show how inflation varies as the lock count is increased when using locking
synchronization on four processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.69: Plots show how inflation varies as the lock count is increased when using locking
synchronization on eight processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.70: Plots show how inflation varies as the lock count is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R1). The figure shows (a)
the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.71: Plots show how inflation varies as the lock count is increased when using locking
synchronization on two processors and when all locks satisfy (R1). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.72: Plots show how inflation varies as the lock count is increased when using locking
synchronization on four processors and when all locks satisfy (R1). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.73: Plots show how inflation varies as the lock count is increased when using locking
synchronization on eight processors and when all locks satisfy (R1). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.74: Plots show how inflation varies as the lock count is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R1). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.75: Plots show the sampling validity for the graphs showing inflation plotted against
the lock count when (R1) holds. The figure shows (a) the M = 2 and (b) the M = 4 cases.
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Figure 6.76: Plots show the sampling validity for the graphs showing inflation plotted against
the lock count when (R1) holds. The figure shows (a) the M = 8 and (b) the M = 16 cases.
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Figure 6.77: Plots show how inflation varies as utilization is increased when using locking
synchronization on two processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.78: Plots show how inflation varies as utilization is increased when using locking
synchronization on four processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.79: Plots show how inflation varies as utilization is increased when using locking
synchronization on eight processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.80: Plots show how inflation varies as utilization is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R1). The figure shows (a)
the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.81: Plots show how inflation varies as utilization is increased when using locking
synchronization on two processors and when all locks satisfy (R1). The figure shows a close-
up view of (a) the sample means and (b) the 99% confidence interval for each mean.



359

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Total Utilization

Inflation vs. Total Utilization (4 Processors)

Ideal
SP

SP/Ideal QB (FF)
SP/Ideal QB (NF)

SP/QB-EPDF (FF)
SP/QB-EPDF (NF)

SP/QB-EDF (FF)
SP/QB-EDF (NF)

(a) Sample Means Only

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.8  1  1.2  1.4  1.6  1.8  2  2.2  2.4

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Total Utilization

Inflation vs. Total Utilization (4 Processors)

Ideal
SP

SP/Ideal QB (FF)
SP/Ideal QB (NF)

SP/QB-EPDF (FF)
SP/QB-EPDF (NF)

SP/QB-EDF (FF)
SP/QB-EDF (NF)

(b) 99% Confidence Interval

Figure 6.82: Plots show how inflation varies as utilization is increased when using locking
synchronization on four processors and when all locks satisfy (R1). The figure shows a close-
up view of (a) the sample means and (b) the 99% confidence interval for each mean.



360

 0

 0.5

 1

 1.5

 2

 2  2.5  3  3.5  4  4.5

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Total Utilization

Inflation vs. Total Utilization (8 Processors)

Ideal
SP

SP/Ideal QB (FF)
SP/Ideal QB (NF)

SP/QB-EPDF (FF)
SP/QB-EPDF (NF)

SP/QB-EDF (FF)
SP/QB-EDF (NF)

(a) Sample Means Only

 0

 0.5

 1

 1.5

 2

 2  2.5  3  3.5  4  4.5

T
ot

al
 W

ei
gh

t -
 T

ot
al

 U
til

iz
at

io
n

Total Utilization

Inflation vs. Total Utilization (8 Processors)

Ideal
SP

SP/Ideal QB (FF)
SP/Ideal QB (NF)

SP/QB-EPDF (FF)
SP/QB-EPDF (NF)

SP/QB-EDF (FF)
SP/QB-EDF (NF)

(b) 99% Confidence Interval

Figure 6.83: Plots show how inflation varies as utilization is increased when using locking
synchronization on eight processors and when all locks satisfy (R1). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.84: Plots show how inflation varies as utilization is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R1). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.85: Plots show the sampling validity for the graphs showing inflation plotted against
utilization when (R1) holds. The figure shows (a) the M = 2 and (b) the M = 4 cases.



363

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 2  2.5  3  3.5  4  4.5

S
am

pl
in

g 
V

al
id

ity

Total Utilization

Sampling Validity (8 Processors)

(a) M = 8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4  5  6  7  8  9

S
am

pl
in

g 
V

al
id

ity

Total Utilization

Sampling Validity (16 Processors)

(b) M = 16

Figure 6.86: Plots show the sampling validity for the graphs showing inflation plotted against
utilization when (R1) holds. The figure shows (a) the M = 8 and (b) the M = 16 cases.
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In terms of performance trends, these results resemble those of the first study. (Again,

recall that the supertasking measurements vary with the utilization due to reweighting over-

head, which was already discussed in Chapter 4.) The only substantial difference between

these graphs and those of the first study is that the SP measurement skews toward zero as

the utilization increases (compare Figures 6.37–6.40 to Figures 6.81–6.84). Since the SP mea-

surement is the largest measurement (other than the SWSP measurement) in this study, it

is the most likely cause of low sampling validity, and hence the measurement that is likely

to be most affected by sample filtering. The shape of the sampling validity curves shown

in Figures 6.85 and 6.86 appears to correspond to the skew in the SP measurement, which

further supports this conclusion.

Impact of lock utilization. Figures 6.87, 6.88, 6.89, and 6.90 show how inflation varies

with the lock utilization on two, four, eight, and sixteen processors, respectively, at the scale

of the SWSP’s inflation. Figures 6.91, 6.92, 6.93, and 6.94 show the remaining approaches.

Plots of the sampling validity are shown in Figures 6.95 and 6.96.

As can be seen in Figures 6.95 and 6.96, the sampling validity is quite unusual for these

graphs. The cause of the large drops in sampling validity is unclear. With respect to in-

terpreting the results, the dips in sampling validity appear to correspond to the regions over

which inflation increases most rapidly. The sampling validity suggests that the actual increase

in inflation is even more rapid than the graphs suggest. However, it is also unclear why the

sampling validity increases again as the lock utilization increases. Further investigation is

needed to better understand this unusual behavior.
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Figure 6.87: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on two processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.88: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on four processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.89: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on eight processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.90: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R1). The figure shows (a)
the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.91: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on two processors and when all locks satisfy (R1). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.92: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on four processors and when all locks satisfy (R1). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.93: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on eight processors and when all locks satisfy (R1). The figure shows a close-
up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.94: Plots show how inflation varies as lock utilization is increased when using locking
synchronization on sixteen processors and when all locks satisfy (R1). The figure shows a
close-up view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.95: Plots show the sampling validity for the graphs showing inflation plotted against
lock utilization when (R1) holds. The figure shows (a) the M = 2 and (b) the M = 4 cases.
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Figure 6.96: Plots show the sampling validity for the graphs showing inflation plotted against
lock utilization when (R1) holds. The figure shows (a) the M = 8 and (b) the M = 16 cases.
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6.6.3 Study 3: Performance under (R1) as a Function of C

In this section, we present the details and results of the third study. This study measured the

performance of each locking approach while varying C. As in the previous study, only task

sets satisfying (R1) were considered.

Sample space. For this study, the sample space was defined as follows:

• M is in the range 2, . . . , 16;

• |τ | is in the range 5 · log2 M, . . . , 15 · log2 M ;

• τ.u is in the range 0.2 · M, . . . , 0.5 · M ;

• |Γ| is in the range 4 · log2 M, . . . , 16 · log2 M ;

• T.p is in the range 50, . . . , 2000;

• C is in the range 0.1, . . . , 0.9.

Because this study allows for more contention and hence more inflation, the sample space is

again more restricted than in the previous study. Specifically, the upper bound of |τ | and τ.u

have been increased. In addition, the |Γ| range has been shifted to larger counts in order to

avoid cases in which only one or two locks are shared by a large number of tasks.

Sampling. Samples were collected as follows:

• M was set to each value in the set { 2x | 1 ≤ x ≤ 4 };

• |τ | was set to each value in the set { x · log2 M | 5 ≤ x ≤ 15 };

• τ.u was set to each value in the set { 0.025x · M | 8 ≤ x ≤ 20 };
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• |Γ| was set to each value in the set { x · log2 M | 4 ≤ x ≤ 16 };

• C was set to each value in the set { 0.05x | 2 ≤ x ≤ 18 }.

For each combination of the above parameter assignments, one valid task set was generated

and evaluated. The sampling validity criteria is identical to that used by the previous study.

Measurement. This study is based on the same measurements as the previous study.

Results. Figures 6.97, 6.98, 6.99, and 6.100 show how inflation varied with C on two,

four, eight, and sixteen processors, respectively, at the scale of the SWSP’s inflation. Fig-

ures 6.101, 6.102, 6.103, and 6.104 show the remaining approaches. Sampling validity is shown

in Figures 6.105 and 6.106.

As shown in Figures 6.105 and 6.106, sampling validity is relatively high until around

C = 0.5, at which point it begins dropping off. This drop off appears to produce a slight skew

toward zero in the SWSP measurement shown in Figures 6.97–6.100 over the C range [0.7, 0.9].

Since mean inflation should always increase as the critical-section durations increase, any

decrease in the mean inflation under any approach must be caused by sample filtering. The

other measurements do not appear to be affected as strongly as the SWSP by the decreasing

sampling validity. However, it is likely that these measurements are also skewed toward zero

since filtering is primarily controlled by the zone-based approaches. Hence, it is likely that

these the mean inflation increases at a faster rate than is suggested by Figures 6.101–6.104.

Due to the obvious skew in the SWSP curve, it appears that the SWSP provides the

best scalability with C, though its mean inflation is very high. Due to this latter fact,

the SWSP will likely perform better than the alternative approaches only in special cases.

Supertasking appears to improve scalability when M is low, though performance converges
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Figure 6.97: Plots show how inflation varies as C is increased when using locking synchro-
nization on two processors and when all locks satisfy (R1). The figure shows (a) the sample
means and (b) the 99% confidence interval for each mean.
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Figure 6.98: Plots show how inflation varies as C is increased when using locking synchro-
nization on four processors and when all locks satisfy (R1). The figure shows (a) the sample
means and (b) the 99% confidence interval for each mean.
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Figure 6.99: Plots show how inflation varies as C is increased when using locking synchro-
nization on eight processors and when all locks satisfy (R1). The figure shows (a) the sample
means and (b) the 99% confidence interval for each mean.
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Figure 6.100: Plots show how inflation varies as C is increased when using locking synchro-
nization on sixteen processors and when all locks satisfy (R1). The figure shows (a) the
sample means and (b) the 99% confidence interval for each mean.
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Figure 6.101: Plots show how inflation varies as C is increased when using locking synchro-
nization on two processors and when all locks satisfy (R1). The figure shows a close-up view
of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.102: Plots show how inflation varies as C is increased when using locking synchro-
nization on four processors and when all locks satisfy (R1). The figure shows a close-up view
of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.103: Plots show how inflation varies as C is increased when using locking synchro-
nization on eight processors and when all locks satisfy (R1). The figure shows a close-up view
of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.104: Plots show how inflation varies as C is increased when using locking synchro-
nization on sixteen processors and when all locks satisfy (R1). The figure shows a close-up
view of (a) the sample means and (b) the 99% confidence interval for each mean.
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Figure 6.105: Plots show the sampling validity for the graphs showing inflation plotted against
C when (R1) holds. The figure shows (a) the M = 2 and (b) the M = 4 cases.
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Figure 6.106: Plots show the sampling validity for the graphs showing inflation plotted against
C when (R1) holds. The figure shows (a) the M = 8 and (b) the M = 16 cases.
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to that of the SP without supertasking for higher M . However, as in the previous study,

this apparent convergence may be misleading since skew in the SP measurement due to low

sampling validity could produce the same relationship. Again, this apparent convergence

warrants further study.

6.6.4 Study 4: Locking within Supertasks

In this section, we present the results of the fourth and final locking study. This study focused

on the special case in which a lock is shared only by component tasks of a common supertask.

In such cases, one alternative is to use fully preemptive supertasking along with a uniprocessor

locking protocol, such as the PCP [54]. In addition to the efficiency of uniprocessor techniques,

this approach provides an advantage in that mapping overhead is avoided. To evaluate the

performance of this approach relative to those proposed earlier in this chapter, we repeated

the third study, but modified the sample space so that the PCP could be used.19

Sample space. For this study, the sample space was defined as follows:

• |τ | is in the range 4, . . . , 12;

• τ.u is in the range 0.05, . . . , 0.5;

• |Γ| is in the range 1, . . . , 10;

• T.p is in the range 50, . . . , 2000;

• C is in the range 0.05, . . . , 0.95.

Sampling. Samples were collected as follows:

19We used an exhaustive search when calculating the worst-case blocking under the PCP. Hence, the results
of this study reflect the minimum inflation produced by the PCP.
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• |τ | was set to each value in the range 4, . . . , 12;

• τ.u was set to each value in the set { 0.05x | 1 ≤ x ≤ 10 };

• |Γ| was set to each value in the range 1, . . . , 10;

• C was set to each value in the set { 0.05x | 1 ≤ x ≤ 19 }.

For each combination of the above parameter assignments, two valid component task sets was

generated and evaluated.

Measurement. The following measurements were taken during the experimental runs.

SWSP: the total weight of all tasks when all locks use the SWSP and supertasks are not

used; this measurement reflects mapping and locking overhead.

Zone Protocol (ZP): the total weight of all tasks when all locks use a zone protocol20 and

supertasks are not used; this measurement reflects mapping and locking overhead.

ZP/Ideal QB: the sum of the ideal weights of all tasks (a baseline measurement); this

measurement reflects mapping and locking overhead.

ZP/QB-EPDF: the weight of the supertask when using QB-EPDF supertasking along with

a zone protocol; this measurement reflects mapping, reweighting, and locking overhead.

ZP/QB-EDF: the weight of the supertask when using QB-EDF supertasking along with a

zone protocol; this measurement reflects mapping, reweighting, and locking overhead.

PCP/FP-EDF: the weight of the supertask when using FB-EDF supertasking along with

the PCP; this measurement reflects reweighting and locking overhead.

20Active blocking cannot occur when all tasks reside in a common supertask. As a result, both the RP and
SP produce identical results.



389

These measurements differ from those in previous studies in two ways. First, both the SP and

the RP experience the same worst-case blocking in this special case. The ZP measurement

reflects the inflation of both the SP and the RP. Second, only individual component task sets

are tested in this study. Hence, there is no need to assign tasks to supertasks. To ensure

termination when reweighting, S.wφ + 10−5 was passed as wmin when invoking Reweight. A

smaller value of wmin was used for this study because the PCP/FP-EDF measurements were

expected to be very small.

Results. Figures 6.107 and 6.108 show the results of this study. Figure 6.107 shows the

results on the scale of the SWSP’s inflation, while Figure 6.108 shows only the supertask-

ing approaches. (The “ZP/Ideal QB” and “ZP/QB-EDF” curves are virtually identical in

Figure 6.108.) Sampling validity is shown in Figure 6.109.

As shown, the PCP/FP-EDF approach far outperforms the other approaches. Indeed,

the inflation under this approach is actually even lower than this study suggests. Due to our

choice of parameters when invoking Reweight, inflation must be at least 10−5 for each sample.

The PCP/FP-EDF samples consistently reported inflations around 10−5, which suggests that

the true inflation is likely lower. (Of course, inflation on this scale is negligible. Hence, there

is little point in trying to lower it further.) These results clearly indicate that the PCP/FP-

EDF approach is the best choice of the approaches that were tested. Again, Figure 6.109

and the fact that some means actually decrease with increasing C suggest that the samples

of the other approaches are increasingly skewed toward zero after the C = 0.3 point. This

skew is clearly visible in the ZP/QB-EPDF and ZP/QB-EDF curves in Figure 6.108. Finally,

although the PCP/FP-EDF approach is clearly the favored approach, some samples (less

than 0.1%) did favor the use of the zone-based protocols in conjunction with quantum-based
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Figure 6.107: Plots show how inflation varies as C is increased when using locking synchro-
nization within component task sets. The figure shows (a) the sample means and (b) the
99% confidence interval for each mean.
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Figure 6.108: Plots show how inflation varies as C is increased when using locking synchro-
nization within component task sets. The figure shows a close-up view of (a) the sample
means and (b) the 99% confidence interval for each mean.
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Figure 6.109: Plots show the sampling validity for the graphs showing inflation plotted against
C when measuring locking overhead in component task sets.

supertasking. This suggests that the PCP/FP-EDF approach performed poorly in at least a

few cases.

6.6.5 Conclusions

These studies showed the same supertasking trends as those presented in Chapter 5. Specifi-

cally, supertasking can provide a significant reduction in inflation, though QB-EPDF super-

tasking tends to provide benefit only to large task sets. As before, task sets were observed

that favored the use of each of the NF and FF rules. Hence, neither rule is the best choice in

all cases. Despite this, the FF rule was again favored by the majority of the tested sets.

These studies clearly suggest that using the PCP with FP-EDF supertasking tends to

produce the least inflation in the majority of the cases in which this approach is applicable.
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The SP appears to be the next best choice. However, for low task counts, the SP provides

only marginal improvement over the RP when (R3) is satisfied. Since the RP introduces

less per-slot overhead, it may be the preferred approach in such cases. Finally, the SWSP

consistently produces much more inflation than the zone-based protocols. These studies

suggest that the SWSP should be avoided when (R3) is satisfied. However, when (R3) did

not hold, up to around 4% of the tested sets did favor the use of the SWSP instead of the SP.

In addition, recall that the SWSP provides an additional advantage in that it supports long

critical sections. The only other approach that provides this capability is the PCP, which is

applicable only in special cases.

6.7 Summary

In this chapter, we discussed techniques for supporting locking synchronization in Pfair-

scheduled systems. We began by considering the viability of inheritance-based protocols,

which are the predominant approach on uniprocessors. Next, we presented two protocols

based on the concept of blocking zones. These protocols avoid the preemption of critical

sections by exploiting the inherent structure of quantum-based scheduling. Unfortunately, this

approach can only be employed when all critical sections are short relative to the scheduling

quantum. To support long critical sections, we presented a server-based approach, which is

designed to avoid the problems that can arise from more complex locking protocols. In the

last section, we compared the proposed approaches both to each other and to the use of the

PCP within supertasks.



CHAPTER 7

Pfairness and Symmetric Multiprocessing 1

In the previous chapters, we have focused on the problem of scheduling tasks using an ab-

stract view of the hardware. Though obviously unrealistic, such a view is beneficial because it

exposes inherent limitations in the solutions and leads to the development of techniques that

can be applied in a wide range of systems. Despite this abstract view, several universal com-

plicating factors2 introduced by the hardware have been discussed, e.g., interrupt handling,

context switching, signal jitter, and signal postponement.

In this chapter, we embark on a more concrete discussion of the impact of hardware

by considering the deployment of Pfair scheduling onto a symmetric multiprocessor (SMP)

architecture. SMPs differ from other multiprocessor architectures in that each processor must

have identical capabilities: if a task can perform some action on one processor, then it can

perform that same action on any processor.

In practice, SMPs typically consist of only a small number of tightly coupled processors

that share a centralized memory. Due to symmetry and tight coupling, SMPs appear to

be an ideal platform for Pfair scheduling. However, to ensure predictability and reasonable

1This chapter is derived from work previously published in the following paper:
[35] P. Holman and J. Anderson. Implementing Pfairness on a symmetric multiprocessor. In Proceedings of
the 10th IEEE Real-time Technology and Applications Symposium, pages 544–553, 2004.

2By “universal,” we mean that these factors are expected to be present in any system.
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performance, the challenges posed by the architecture must be addressed. These challenges

are the focus of this chapter.

Compatibility. We consider an SMP architecture for three reasons. First, symmetric pro-

cessing is inherent under Pfair scheduling, as each task is assumed to be able to execute on any

processor.3 Second, the frequency of context switches and migrations under Pfair scheduling

suggests that tightly coupled processing is needed to keep these overheads reasonable. Third,

the use of a central shared memory with coherent caches4 provides an efficient and transpar-

ent mechanism for migrating data between processors. In addition, the worst-case migration

cost under such a memory system is effectively no different than that of a preemption. This

follows from the fact that the worst-case migration overhead occurs when a task is scheduled

and assigned to a processor with a cold cache. When an executing task T is preempted, its

cached data can be replaced in the cache by the data of tasks that execute after T on that

processor. Hence, a task can experience a cold cache when it resumes after a preemption,

even if it resumes on the same processor.

Incompatibility. Unfortunately, SMPs suffer from one major incompatibility with Pfair

scheduling: synchronized quantum-based scheduling promotes bus contention. Due to the

small processor count, processors in an SMP typically access the centralized memory using

a shared high-speed bus. Per-processor caches are used to minimize memory accesses, and

hence to keep bus contention reasonable. Under Pfair scheduling, contention arises from the

fact that a preempted task may encounter a cold cache when it resumes. Since bus traffic

3Moir and Ramamurthy’s work on “fixed” tasks is an exception [48].

4Real-time systems are often cacheless due to the need for reliable timing analysis. Though caches can
improve performance, it is often difficult to accurately predict the degree of improvement a priori . One
advantage of quantum-based scheduling, and hence Pfair scheduling, is that it ensures a minimum separation
between preemptions. As a result, caching provides a more predictable benefit in such systems.
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increases while reloading data into the cache, scheduling all processors simultaneously can

result in very heavy contention at the start of each quantum. The worst-case duration of this

contention grows with both the processor count and working-set sizes.5

Figure 7.1(a) illustrates this contention on eight processors. The number of pending bus

requests across three slots are shown. In this experiment, each task was given an array

that matched the cache’s size and simply wrote to each cache line iteratively. (The setup

of this experiment is explained in greater detail later in the chapter.) As shown, heavy

contention occurs at the start of each quantum. Other results, presented later, suggest that

such contention can significantly lengthen the execution times of tasks.

Focus. The primary focus of this chapter is a new staggered model for Pfair scheduling

that more uniformly distributes these predictable bursts of bus traffic. Results of simulations

and experimental measurements obtained from a prototype system suggest that this model

can significantly reduce bus contention and hence improve performance. This model provides

the additional benefit that scheduling overhead can be distributed across processors, thereby

reducing the per-processor overhead. To support the use of staggering, we present an efficient

distributed scheduling algorithm and a performance evaluation. Finally, we characterize the

impact of the new model on previous Pfair results, including those presented in previous

chapters, and explain how these results can be modified for use under the new model.

Models. Figure 7.2(b) shows the proposed staggered model alongside the traditional aligned

model. Repeating the earlier experiment using the staggered model results in dramatically

lower contention, as shown in Figure 7.1(b). Under the aligned model, all scheduling decisions

are made by processor 1 (see Figure 7.2(a)). As a result, cycles are lost due to stalling the

5The term working set refers to the data required by a task to perform its function.
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Figure 7.1: Each graph shows the bus load across three slots in an eight-processor system
using blocking caches. Graphs show contention (a) under the aligned model, the (b) under
the (proposed) staggered model.
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Figure 7.2: (a) Under the aligned model, processors are simultaneously scheduled and all
decisions are made on a single processor. (b) Under the staggered model, scheduling points
are uniformly distributed and each processor can make its own scheduling decision.

other processors. Under the staggered model, each processor can make its own scheduling

decision (see Figure 7.2(b)). By avoiding processor stalls, both the worst-case and average-

case scheduling overhead is reduced.

Before continuing, we formally define the placement of slot boundaries under each of the

two models illustrated in Figure 7.2. Let t(i, k) denote the time at which the ith slot boundary

occurs on processor k, where 0 ≤ k < M . The aligned model is then defined by the expression

t(i, k) = i, while the staggered model is defined by t(i, k) = i + k
M .

Relevance. The problem of bus contention will obviously not be addressed solely by

adopting this new model. If task behaviors are not restricted, then bus contention can also

arise on-the-fly due to working-set changes that naturally occur within any task. Although

we restrict attention in this chapter to preemption-related bursts of bus traffic, we briefly

sketch a more complete strategy for addressing the broader problem of bus contention below.

One approach for managing the bus that has already received much attention is time-
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division multiplexing. Under this approach, each processor is guaranteed exclusive access

to the bus during statically chosen intervals of time. For instance, processor k could be

guaranteed exclusive access to the bus at the start of each slot by reserving the interval

[

i + k
M , i + k+1

M

)

for all i ≥ 0. However, this also implies that processor k cannot access the

bus for the remainder of each slot because the bus is reserved for other processors during that

time. Under such a division, the interval
[

i + k
M , i + k+1

M

)

acts as a loading phase for the ith

slot of processor k, during which the scheduled task should load the data it requires into the

local processor cache. The remainder of the slot, i.e., the interval
[

i + k+1
M , i + 1 + k

M

)

, then

acts as a work phase, during which the task is permitted to manipulate only the cached data.

The primary disadvantage of this approach is that performance depends heavily on whether

tasks can be restructured to respect such a restriction without wasting processor time. If a

task is within its slot’s work phase but requires uncached data to make further progress,

then the task will be stalled until the next loading phase. As a result, the remainder of the

current quantum will be wasted. Determining the degree of waste that is likely to occur is a

daunting task since it requires fairly extensive knowledge of how real task sets are structured.

As in previous chapters, we necessarily leave work that requires such knowledge as a topic for

further investigation.

Another complication that impacts this approach is that performance will depend on the

cache structure and coherence policy. Since bus traffic should not be generated during a work

phase, a write back or similar policy is clearly necessary for this approach to be successful.

Furthermore, low associativity is undesirable since it may prevent two segments of memory

that map to the same cache line from co-existing in the cache, even if some lines in the cache

are unused. Such restrictions reduce the amount of data that can be used during the work
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phase, and hence will likely increase waste.

In practice, it may be impractical to restrict bus access to a single processor. Due to

operating system activities, such as the scheduling, it may be necessary to allow more than

one processor to access the bus. However, such activities differ from task activities because the

algorithms used by the operating system are known prior to runtime. Due to this increased

knowledge, we expect the pessimism in the analysis to remain reasonable as long as access

to the bus is restricted to at most one task at a given time. However, further study is

certainly needed to determine if this expectation is accurate and to investigate the related

issues discussed above. In addition, the compatibility of Pfair scheduling with multiprocessors

that use other types of interconnection networks is another important topic for further study.

Related work. Unfortunately, little (if any) prior work has considered techniques for im-

proving performance in multiprocessor systems that require worst-case predictability. Con-

sequently, available techniques are typically heuristic in nature and lack supporting analysis.

Affinity-based scheduling algorithms are one common example. Such algorithms boost the

priorities of currently executing tasks to make preemption less likely. By resisting preemp-

tion, these algorithms tend to improve cache performance, and hence reduce task execution

times. Although the use of such techniques does improve average-case performance, the com-

plexity of the algorithms makes worst-case analysis difficult. As a result, these techniques

are not appropriate for hard real-time systems.6 Though we are interested in average-case

performance and soft real-time systems, our primary focus is on determining the inherent cost

of guaranteeing predictable operation in multiprocessor systems. Techniques for optimizing

Pfair scheduling for a general-purpose environment in which worst-case predictability is not

6Later, we consider a more limited use of processor affinity when assigning scheduled tasks to processors.
This limited use differs from that described here in that task priorities are not dependent on processor affinity.
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required were previously proposed by Chandra, Adler, and Shenoy [18].

7.1 Scheduling Algorithm

In this section, we present an efficient scheduling algorithm for the staggered model.

7.1.1 Safety and Assignment Affinity

Unfortunately, staggered scheduling is slightly more complicated than traditional Pfair schedul-

ing. Under staggering, quanta from different slots can overlap, as the A3 and B1 quanta illus-

trated in Figure 7.2(b). Hence, the scheduler must ensure that tasks scheduled back-to-back

(i.e., in consecutive slots) do not execute within overlapping quanta.

Affinity-based processor assignment. Safety can be ensured by employing an affinity-

based policy when assigning scheduled tasks to processors. A variety of policies can be

implemented by maintaining the small amount of scheduling history summarized below.

Previous Processor (PP): the most recent processor on which a task executed;

Previous Slot (PS): the most recent slot in which a task executed;

Previous Task (PT): the most recent task to execute on a processor.

Each of the above fields can be maintained by the scheduling algorithm at the cost of only a

trivial increase in scheduling overhead. All of the following affinity-based policies, except for

the last, can be implemented using one or more of the above fields.

Back To Back (BTB): When scheduled in consecutive slots, a task must be granted the

same processor. Requires the PP and PS fields.
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Last Scheduled (LS): Each processor must be assigned to the task to which it was last

assigned, if that task is selected. Requires the PT field.

Most Recent Processor (MRP): Each selected task is assigned to the processor to which

it was most recently assigned; if multiple tasks should be assigned the same processor,

the tie is broken in favor of the task that most recently executed. Requires the PP and

PS fields.

Most Recent Available Processor (MRAP): An extension of the MRP policy that

considers processors beyond the most recently assigned processor. Specifically, when a

task loses a tie for its desired processor, the task tries to execute on the processor on

which it executed prior to the unavailable processor. This continues until the task is

assigned a processor or its scheduling history is exhausted. This policy can be efficiently

implemented by maintaining a list of processors in affinity order for each task, i.e., the

assigned processor is moved to the head of the list each time the task is scheduled.

By using a doubly linked list, this list update can be implemented with constant time

complexity.

Unfortunately, assignment policies are more difficult to implement under staggering, as we

explain below. However, at least the BTB and LS policies can be implemented with minimal

effort. Since the BTB policy is sufficient to prevent the allocation of overlapping quanta, we

focus on it for the remainder of the chapter.

In addition to ensuring safety under staggered scheduling, these policies are desirable

because they can improve cache performance. When used with supertasks, the benefits of

such a policy can be substantial, i.e., the cache performance of a group of EDF-scheduled

component tasks in a heavily weighted, fully preemptive supertask resembles that of using
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EDF scheduling on a dedicated uniprocessor. Indeed, when using any of the policies described

above, a unit-weight supertask effectively becomes a dedicated uniprocessor.

7.1.2 Concept

Before presenting the algorithm, we consider the problem of distributed scheduling with

assignment affinity abstractly. By doing so, we intend to motivate the design of the algorithm

presented later. Consider scheduling slot k on the first processor after executing task T on

that processor in slot k − 1. To be computationally efficient, the scheduler must require only

O(log |τ |) time on each processor. (PD2 schedules all M processors in O(M log |τ |) time [61].)

In addition, the decision must respect the BTB policy described above to ensure safety of

the executing task, i.e., if T is selected to execute in slot k, then it must execute on the

first processor. However, simply identifying all tasks that are selected for slot k is an Ω(M)

operation.

The implication is that the tasks scheduled in slot k must be identified before invoking the

scheduler at the start of slot k. This can be achieved by dividing scheduling into two steps:

(i) up to M tasks (if that many are eligible) are selected to execute in slot k and stored in k’s

scheduling set , and (ii) each processor (later) selects a task to execute in its local slot k from

those in k’s scheduling set. To ensure that k’s scheduling set is known before slot k begins

on any processor, Step (i) can be performed one slot early (i.e., by the scheduler invocations

associated with slot k − 1). Specifically, processor p’s scheduler invocation in slot k − 1 first

selects a task to execute on processor p in slot k − 1 from that slot’s scheduling set, and then

selects a task to add to the scheduling set of slot k (if an eligible task exists).

Necessity. Safety can actually be ensured by using a weaker policy than BTB. Specifically,
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the policy described below is both necessary and sufficient to ensure safety.

Directed Migration (DM): When scheduled back-to-back, a task that executed on pro-

cessor p in the earlier slot must execute on a processor with index at least p in the later

slot. Requires the PP and PS fields.

Under staggered scheduling, this policy provides an advantage over the BTB policy in that

look-ahead scheduling, like that described above, is not necessary. However, because we are

also interested in improving cache performance, we consider only the BTB policy here.

7.1.3 Basic Algorithm

We begin by presenting procedures (shown in Figure 7.3) needed to support Pfair or ER-

fair scheduling of static task sets. Later, we present additional procedures to support the

remaining extensions to Pfair scheduling.

Data structures. Scheduling sets are implemented by the SchedNow , ReschedNow , Sched-

Next , and ReschedNext heaps. When scheduling slot k , tasks scheduled in slot k (respectively,

k + 1) are stored in the Now (respectively, Next) heaps. The Sched (respectively, Resched)

heaps store tasks that are not (respectively, are) scheduled back-to-back. The Eligible heap

stores all remaining tasks that are eligible in slot k + 1. All heaps are ordered according

to task priorities. (The � and � relations, which define this ordering, are defined below.)

In addition, the Incoming [k ] heap stores tasks that will not be eligible to execute until slot

k . (We present these heaps as an unbounded array solely to simplify the presentation.) We

assume that each task is initially stored in the appropriate Incoming heap.

Each task is represented by a record that contains (at least) the earliest slot in which

the task may next execute (elig) and the task’s current priority (prio). We assume that
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typedef task:
record

elig: integer;
prio: ADT

shared var
k : integer initially −1;
SchedCount : integer initially M ;
Running: array 1 . . . M of task ∪ {⊥}

initially ⊥;
SchedNow : min-heap of task initially ∅;
ReschedNow : min-heap of task initially ∅;
SchedNext : min-heap of task initially ∅;
ReschedNext : min-heap of task initially ∅;
Eligible: max-heap of task initially ∅;
Incoming: array 0 . . . ∞ of max-heap

private var
p: 1 . . . M ; T : task ∪ {⊥}

procedure Initialize()
1: Eligible := Eligible ∪ Incoming[0];
2: while |Eligible | > 0 ∧ |SchedNext | < M do
3: SchedNext :=

SchedNext ∪ {ExtractMax(Eligible)}
do

procedure SelectTask(T)
4: if T ∈ Sk then
5: ReschedNext := ReschedNext ∪ {T}

else
6: SchedNext := SchedNext ∪ {T}

fi

procedure Schedule(p)
7: if SchedCount = M then
8: k := k + 1;
9: Eligible := Eligible ∪ Incoming[k + 1];
10: Swap(SchedNow , SchedNext);
11: Swap(ReschedNow , ReschedNext)

fi;
12: if Running[p] ∈ ReschedNow then
13: T := Running[p];
14: ReschedNow := ReschedNow / {T}
15: else if |SchedNow | > 0 then
16: T := ExtractMin(SchedNow)

else
17: T := ⊥

fi;
18: Running[p] := T ;
19: if T 6= ⊥ then
20: UpdatePriority(T);
21: if T .elig ≤ k + 1 then
22: Eligible := Eligible ∪ {T}

else
23: Incoming[T .elig] :=

Incoming[T .elig] ∪ {T}
fi

fi;
24: if |Eligible | > 0 then
25: SelectTask(ExtractMax(Eligible))

fi;
26: SchedCount := (SchedCount mod M ) + 1

Figure 7.3: Basic staggered scheduling algorithm.

task priorities are implemented as an abstract data type that supports the ≺, �, �, and �

comparisons, where ρ1 ≺ ρ2 (respectively, ρ1 � ρ2) implies that priority ρ1 is strictly higher

than (respectively, at least as high as) priority ρ2. We further assume that UpdatePriority

encapsulates the algorithm for updating prio and elig .

The remaining variables include two counters (k and SchedCount) and the Running array.

k is the index of the current slot. SchedCount indicates the number of scheduler invocations

that have been performed for slot k . Finally, the Running array indicates which task is
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currently executing on each processor.

To simplify the presentation, some branches test for set inclusion (∈) and the branch at

line 4 uses S k to denote the set of tasks selected to execute in slot k , i.e., the scheduling

set of k . All of these tests can be implemented in O(1) time complexity and O(|τ |) space

complexity by associating a few additional variables with each task.

Detailed description. Initialize is invoked before all other procedures to create slot

0’s scheduling set. First, tasks present at time 0 are merged into the Eligible heap at line 1.

Lines 2–3 then make the scheduling decisions.

SelectTask schedules a task T in slot k + 1. Line 4 determines whether T is scheduled

back-to-back. T is then stored in the proper heap in lines 5–6.

Schedule(p) is invoked to schedule processor p. Lines 8–11 initialize a round of scheduler

invocations by incrementing k , by merging newly eligible tasks into Eligible, and by initializing

SchedNow , ReschedNow , SchedNext , and ReschedNext . Lines 12–18 select the task to execute

on processor p and record the decision. The task is then updated and stored according to the

priority of its successor subtask in lines 20–23. Lines 24–25 then select a task to execute in

the slot k + 1. Finally, progress is recorded by updating SchedCount at line 26.

Example. Figure 7.4 shows a sample schedule produced by the staggered algorithm. To

illustrate the operation of the algorithm, a trace of task T3’s heap-membership changes is

presented in Figure 7.5.

7.1.4 Extensions

We now present the procedures needed to support tasks leaving and joining the system (shown

in Figure 7.6). Systems consisting of dynamic task sets and those supporting ISfair and
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Figure 7.4: Four tasks (T1–T4) are executed on two processors (P1–P2) under the staggered
model. The schedule is shown from two different views.

GISfair tasks require such support. In addition, systems that permit tasks to change weights

at runtime will also require this support.7

Concerns. Two problems arise from tasks leaving and joining. First, these actions require

modification of the scheduler’s data structures. Hence, access to these structures must be

synchronized.8 Second, adding and removing tasks can lead to incorrect scheduling decisions.

7As explained earlier in Chapter 2, one simple technique for supporting weight changes is to require the
task to leave with the old weight and re-join with the new weight.

8The need for explicit synchronization can potentially be avoided by postponing handling of all leave and
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Schedule(P1): Slot 0 decisions committed.

Initialize(): T3 selected to execute in slot 0.

Initialize(): T3 is eligible to execute in slot 0.Eligible

SchedNext

SchedNow

Incoming[2]

T3’s HEAP TRANSITIONS

E
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H Eligible

SchedNow

SchedNext

Eligible

Schedule(P1): Slot 3 decisions committed.

Schedule(P1): T3 is eligible to execute in slot 2.

Schedule(P1): T3 is selected to execute in slot 3.

I Schedule(P1): T3 is selected to execute in slot 4ReschedNext

J

K

ReschedNow Schedule(P1): Slot 4 decisions committed.

Incoming[6]

L

M

N

Eligible

O

SchedNext

SchedNow

Incoming[8]

Schedule(P1): T3 is eligible to execute in slot 6.

Schedule(P1): T3 is selected to execute in slot 6.

Schedule(P1): Slot 6 decisions committed.

CAUSE OF TRANSITION

Schedule(P1): T3 begins executing on P1 and its

Schedule(P1): T3 begins executing on P1 and its

Schedule(P1): T3 begins executing on P1 and its

Schedule(P1): T3 begins executing on P1 and its

priority is updated (next eligible at time 4).

priority is updated (next eligible at time 2).

and will execute back-to-back.

priority is updated (next eligible at time 6).

priority is updated (next eligible at time 8).

Figure 7.5: Scheduling events affecting task T3 are summarized in the table. Event labels
correspond to those shown on the timeline in the upper inset of Figure 7.4.

To avoid this potential problem, the presented procedures are designed to ensure that one of

the two conditions given below holds after the execution of every procedure.

(I1) |SchedNext | + |ReschedNext | = SchedCount and, for all T ∈ (SchedNext ∪

ReschedNext) and U ∈ Eligible, T.prio � U.prio.

(I2) |SchedNext | + |ReschedNext | < SchedCount and |Eligible| = 0.

join requests until the next slot boundary. However, this approach has its own disadvantages in that postponed
processing may lead to unnecessary idling and will also increase the per-slot overhead.
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private var
H: pointer to min-heap of task

procedure Deactivate(T)
27: if T ∈ SchedNext ∪ ReschedNext then
28: if T ∈ ReschedNext then
29: ReschedNext := ReschedNext / {T}

else
30: SchedNext := SchedNext / {T}

fi;
31: if |Eligible | > 0 then
32: SelectTask(ExtractMax(Eligible))

fi
33: else if T ∈ SchedNow ∪ ReschedNow then
34: if T ∈ ReschedNow then
35: ReschedNow := ReschedNow / {T}

else
36: SchedNow := SchedNow / {T}

fi;
37: UpdatePriority(T)
38: else if T ∈ Eligible then
39: Eligible := Eligible / {T}

else
40: Incoming[T .elig] :=

Incoming[T .elig] / {T}
fi

procedure Activate(T)
41: if T .elig ≤ k + 1 then
42: if |SchedNext | + |ReschedNext |

< SchedCount then
43: SelectTask(T)

else
44: if |SchedNext | = 0 ∨ (|ReschedNext | > 0

∧ Min(SchedNext).prio �
Min(ReschedNext).prio) then

45: H := &ReschedNext
else

46: H := &SchedNext
fi;

47: if Min(*H).prio ≺ T .prio then
48: SelectTask(T);
49: T := ExtractMin(*H)

fi;
50: Eligible := Eligible ∪ {T}

fi
else

51: Incoming[T .elig] := Incoming[T .elig] ∪ {T}
fi

Figure 7.6: Extensions to support task departures (left) and task arrivals (right).

Since SchedCount records the number of completed scheduler invocations in the current

round of decisions, it should be the case that SchedCount tasks have been scheduled in the

upcoming slot after each invocation. Informally, (I1) states that SchedCount tasks have been

tentatively scheduled in the upcoming slot (first clause) and that each scheduled task has

higher priority than each unscheduled task (second clause). In the event that too few eligible

tasks exist, (I1) cannot be satisfied. This possibility is addressed by (I2). Informally, (I2)

states that less than SchedCount tasks have been tentatively scheduled (first clause), which

suggests an idle processor in the upcoming slot, and that no other tasks are eligible for that

slot (second clause). We explain how our algorithm guarantees that either (I1) or (I2) always

holds by exhaustively considering all possible scenarios below.
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Detailed description. Invoking Deactivate(T) in slot k causes task T to be ignored

when scheduling slots at and after k + 1. If T has been selected to execute in slot k but has

not been granted a processor, then the decision to execute T is nullified; however, T is still

charged as if it did execute. (This is analogous to having a task suspend immediately after

it is granted the processor: the entire quantum is wasted.) When removing T , three cases

must be considered to ensure that either (I1) or (I2) holds after execution: (i) T is scheduled

in slot k + 1 (it is in either SchedNext or ReschedNext), (ii) T is scheduled in slot k but has

not been granted a processor (it is in either SchedNow or ReschedNow), and (iii) T is not

scheduled in slot k +1 (but may be currently executing in slot k). Lines 28–32 handle Case (i)

by locating and removing T from either SchedNext or ReschedNext at lines 28–30 and then

scheduling a replacement task at lines 31–32. Lines 33–37 handle Case (ii) by locating and

removing T from either SchedNow or ReschedNow at lines 33–36 and then charging T for the

unused quantum at line 37. Lines 38–40 handle Case (iii).

Invoking Activate(T) within slot k causes task T to be considered when scheduling slots

at and after k + 1. Again, three cases must be considered to ensure that either (I1) or

(I2) holds after execution: (i) T is not eligible to execute in slot k + 1, (ii) T is eligible to

execute in slot k + 1 and a processor will idle in that slot, and (iii) T is eligible to execute

in slot k + 1 but no processor will idle in that slot. Lines 51 and 42–43 handle Cases (i) and

(ii), respectively. Lines 44–50 handle Case (iii). Specifically, lines 44–46 determine which of

SchedNext and ReschedNext contains the lowest-priority task that is scheduled in slot k + 1.

If this task’s priority is lower than T ’s priority, then it is removed and replaced by T at

lines 47–49. Whichever task is not scheduled in slot k + 1 is then stored in Eligible at line 50.

Usage. Observe that Deactivate neither halts executing tasks nor modifies Running .
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The presented procedures are designed to be used as subroutines when implementing more

complex services. Consequently, each procedure takes only those actions that are essential

to achieving its goals. Indeed, it is not possible to present universal procedures for most

services because their designs are based, at least in part, on policy decisions. For instance,

a policy must be adopted to define how the system reacts to weight changes that cannot be

immediately applied. Such policies are outside the scope of this discussion.

7.1.5 Time Complexity

Since task priorities can be updated and compared in constant time, the only significant

complexity results from heap operations. Each procedure performs a constant number of

heap operations and a constant number of calls to other procedures. Therefore, the time

complexity of each procedure is O(log |τ |) when using binomial heaps and PD2 task priorities,

and the aggregate time complexity of M scheduler invocations is O(M log |τ |). Hence, the

presented algorithm is computationally efficient.

Recall that under the aligned model, all scheduling decisions are made on a single proces-

sor, resulting in O(M log |τ |) time complexity on that processor. The per-processor overhead

under the staggered model is proportional to the time required by one invocation of Schedule,

which has only O(log |τ |) time complexity. This suggests that the staggered model can pro-

vide up to a factor-of-M improvement with respect to scheduling overhead. (The actual

improvement will depend on the system architecture, as we later show.)
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7.2 Impact on Analysis

The most problematic aspect of shifting from an aligned to a staggered model is the impact

on prior results. Though supporting the new model is reasonably straightforward (as we

demonstrated in the last section), we must also consider the impact of staggering on analytical

results and mechanisms proposed for Pfair scheduling. Unfortunately, it would be impractical

to consider each prior result in detail here. For brevity, we discuss this issue more broadly

in this section by focusing on the side effects produced by staggering. We then illustrate

the adaptation of prior results by explaining the impact of these side effects on the results

presented earlier in this dissertation.

Side effects. A staggered slot extends up to ∆
def
= M−1

M beyond the placement of the corre-

sponding slot under the aligned model. Hence, slot k on a processor may overlap slots k + 1

and k − 1 on other processors, leading to the following side effects.

(E1) An event occurring at time t under the aligned model may be delayed until time t+∆

under staggering.

(E2) Each slot overlaps M − 1 other slots when aligned, but 2(M − 1) when staggered.

7.2.1 Independent Tasks

We begin by considering independent-task scheduling. Independent tasks are oblivious to the

concurrent execution of other tasks and, hence, are unaffected by (E2). (E1), on the other

hand, has two implications, which are discussed below.

First, deadlines guaranteed under the aligned model may be missed by up to ∆ under

staggering. We expect such misses, which are bounded by the slot length, to be acceptable in
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Figure 7.7: Illustration of how event timing differs between (a) the aligned model and (b)
the staggered model. An event in slot t is no longer guaranteed to occur before time t + 1
under the staggered model. Due to this, a task may have already been scheduled in the next
slot before a suspension request is issued, as shown in (b).

many cases. For instance, such a guarantee is inherent under proportional-share uniprocessor

scheduling [66]. As Strict deadlines can be enforced simply by treating task deadlines as if

they are ∆ units earlier than they actually are. The resulting loss depends on the task’s

parameters: a task T requiring a quanta every b slots will need T.w ≈ a
b under the aligned

model, but T.w ≈ a
b−1 under staggering. (This overhead can be more precisely characterized

for specific tasks by adapting the analysis presented earlier in Chapter 3.)

Second, events (such as suspension requests) occurring in slot k may occur after time k+1,

at which point the scheduling decisions for slot k+1 are committed. As a result, a suspending

task may occasionally cause a quantum to be wasted, as illustrated in Figure 7.7. (Recall

that a quantum is wasted when a scheduled task leaves before being assigned a processor.)

Server tasks that suspend when no requests are pending will likely be most impacted by

this property since worst-case analysis must pessimistically assume that a quantum is wasted

each time the server suspends. Figure 7.8 depicts the worst-case scenario for a single request

and response pair. Under the aligned model (see Figure 7.8(a)), task T sends a request to

server S in slot 0. S then becomes active at time 1, services the request in slot 1, sends the

response before time 2, and then suspends at time 2. Having received the request, T becomes
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Figure 7.8: Illustration of how staggering adversely impacts client/server designs. The ser-
vicing of one request is shown (a) under the aligned model and (b) under the staggered
model.

ready at time 2 and is immediately scheduled in slot 2.
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On the other hand, under the staggered model (see Figure 7.8(b)), T is scheduled on pro-

cessor 2 in slot 0. As a result, its request is sent after time 1, at which point the scheduling

decisions for slot 1 are committed. Because of this, T is scheduled in slot 1 even though it

cannot make progress, and S remains suspended until time 2. T ’s suspension is finally pro-

cessed at time 2. Upon becoming active, S is scheduled in slot 2 and executes on processor 3.

S’s response is then sent after time 3. As a result, T remains suspended until time 4, while

S is re-scheduled in slot 3 and idles. T finally resumes at time 4.

In the staggering scenario, both the requesting task and the server waste a quantum (in

slots 1 and 3, respectively). In addition, notice that the delay between the request and re-

sponse is longer under staggering. Though unlikely, this worst-case scenario must be assumed

to occur (under worst-case analysis) each time a request is issued unless other restrictions are

placed on the runtime behavior of tasks.

7.2.2 Supertasking

Recall (from Chapter 4) that a supertask weight is chosen by comparing the least amount

of processor time guaranteed to a supertask (i.e., the supply) to the maximum requirement

of all component tasks (i.e., the demand). Only the first of these two quantities requires

adjustment due to staggering. In addition, this quantity is unaffected by (E2).

The primary impact of (E1) is that the amount of processor time guaranteed to the

supertask is slightly lower under staggering. In this case, the delay suggested by (E1) can be

accounted for by reducing the estimate of each supertask’s supply by ∆. Figure 7.9 shows

how (E2) can impact the supply in this way. However, notice that this impact only occurs

when the supertask is scheduled in the last slot of the interval, as depicted in Figure 7.9.

Hence, staggering only affects estimates of supply that are based on such intervals. By taking
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Figure 7.9: The interval that defines the supply of a supertask (i.e., minimum guaranteed
allocation) when M = 4 (and hence ∆ = 3

4 = 0.75) and L = 14 is shown (a) under the
aligned model and (b) under the staggered model. Due to staggering, the supply under the
staggered model is ∆ units lower than that under the aligned model.

this fact into account when deriving the supply function, tighter bounds can be obtained.

7.2.3 Lock-free Synchronization

Recall (from Chapter 5) that lock-free operations are optimistically attempted and retried

until successful. Under the aligned model, it is sufficient to assume that the worst-case mix of

M − 1 interfering tasks when determining the worst-case number of retries. By (E2), similar

reasoning can still be applied under staggering; however, 2(M − 1) tasks must be considered,

which potentially doubles the overhead. It is possible to derive tighter bounds by considering

that only a fraction of each of those 2(M − 1) overlapping slots actually overlaps the slot in
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question. However, the resulting analysis would be much more complex (and time-consuming)

than that presented in Chapter 5.

7.2.4 Zone-based Lock Synchronization

Both the SP and RP (from Chapter 6) delay lock requests to prevent the preemption of

critical sections. As in the lock-free case, this analysis assumes that each task T can be

preempted at most once before an operation completes when the lock in question satisfies

(R3). Hence, the situation is quite similar to that discussed above: bounds on T ’s worst-

case blocking overhead are computed by considering the interference of M − 1 tasks under

the aligned model and 2(M − 1) tasks under the staggered model. Unlike the lock-free case

discussed above, there is little benefit provided by the property that only a fraction of each

overlapping slot actually overlaps. This follows from the fact that each task that executes in

parallel with the requesting task can interfere with (i.e., block) the lock request only once.

(Under lock-free analysis, consideration of fractional quanta would be beneficial primarily

because it would enable the use of tighter bounds on the number of interferences that occur

within the quantum.) The results based on (R1) can be similarly adapted.

7.2.5 Server-based Lock Synchronization

Since analysis of the SWSP (from Chapter 6) assumes that every competing task has its

critical-section request executed before that of the requesting task T , the worst-case time

required to process T ’s request is unaffected by (E1) and (E2). However, since both the

requesting task and lock server may suspend under this protocol, they can suffer from the

suspension-related problems mentioned earlier in Section 7.2.1. For the server, this problem

translates into slightly inflated worst-case response times.
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7.2.6 Evaluating the Trade-off

Staggering represents a trade-off between off-line schedulability and on-line performance.

Based on the above discussion, staggering introduces additional overhead in four areas: map-

ping, reweighting, suspensions, and synchronization. We consider each below.

First, consider mapping overhead. Based on the observations made in Section 7.2.1, the

increase in mapping overhead for a periodic or sporadic task T is approximately a
b−1−

a
b , where

a ≈ T.e
Q and b ≈ T.p. (These quantities are approximate because tasks may need to request

slightly more processor time than they can actually use to ensure that deadlines are met

under quantum-based scheduling, as implied by Lemmas 3.4–3.7.) This estimate simplifies

to T.u
Q(T.p−1) . It follows that mapping overhead is most impacted when T.p is small, i.e.,

comparable to the slot size. However, quantum-based scheduling cannot efficiently support

tasks for which period sizes are comparable to the slot size because many forms of overhead

(including mapping and reweighting overhead) are prohibitively high in such cases. For such

cases, alternative scheduling approaches must be considered.9 Hence, such small periods

should occur rarely, if at all, in practice.

Second, consider reweighting overhead. To estimate the impact of staggering on reweight-

ing overhead, we repeated the first study from Chapter 4 and restricted attention to the

FP-EDF scenario. The results of this study are given in Appendix C. (The QB-EDF and

QB-EPDF scenarios suffer from both mapping and reweighting overhead, while the FP-EDF

scenario suffers from only reweighting overhead.) These results suggest that staggering in-

creases the reweighting overhead by a factor of approximately 2.5. Since reweighting overhead

9Fully preemptive supertasking may be a viable alternative in such cases since mapping is unnecessary.
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is very low under both the FP-EDF and QB-EDF10 approaches (see Chapter 4), it will likely

remain reasonably low under staggered scheduling. On the other hand, the reweighting over-

head may become prohibitively high under the QB-EPDF approach. However, since the

QB-EDF approach will likely be used instead of the QB-EPDF approach, the total reweight-

ing overhead is not expected to increase significantly due to staggering.

Third, consider the overhead introduced by suspensions. As explained earlier in Chap-

ter 1, a task that yields before the next scheduling point under quantum-based scheduling is

still charged for the unused processor time. Hence, frequent suspensions lead to both poor

task performance and low processor utilization. To achieve good performance, tasks exhibit-

ing such behaviors should not be included in the global schedule, if it can be avoided. Indeed,

this observation was a driving motivation behind our consideration of fully preemptive su-

pertasking, which allows such tasks to be scheduled as a group rather than individually. The

benefit of this approach is that the global scheduler must handle only the supertask, which

never suspends. In addition, component tasks can be scheduled using a uniprocessor algo-

rithm that is more flexible with respect to suspensions. Given the availability of mechanisms

that avoid this problem, suspensions are expected to occur infrequently in the global schedule

and, hence, should contribute little to the actual cost of staggering.

Finally, consider synchronization overhead. To optimize performance, synchronization

at the global level should be limited to lock-free and zone-based locking synchronization, if

possible. As illustrated in earlier chapters, these approaches tend to produce low overhead

in most cases. Since staggering at most doubles this overhead, the cost of synchronization

should remain reasonable under staggering.

10QB-EDF primarily suffers from mapping overhead.
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Based on the above reasoning, staggering is expected to produce only a small increase

in overhead in most systems. Indeed, it seems that staggering introduces significant over-

head primarily in situations in which Pfair scheduling is likely to perform poorly anyway.

More importantly, experimental results presented in the next section suggest that substantial

performance gains can be achieved through staggering. These gains translate into decreased

execution times, which are beneficial in both the average and worst cases. We expect the

losses considered in this section to be exceeded by the gains provided by these decreased

execution requirements.

7.3 Experimental Results

In this section, we present the results of an experimental evaluation of staggering and of the

proposed scheduling algorithm.

7.3.1 Simulations

In this subsection, we present a simulation-based comparison of the Pfair models. The ad-

vantage of simulation over direct measurement is that the processor count can be varied and

the cache characteristics can be set arbitrarily. The latter trait was used to test performance

on a simple blocking cache.

Experimental setup. These experiments used the Limes [37] simulator. Limes simulates

execution close to the hardware level. As such, it provides no process management. However,

Limes permits hardware-level aspects of the system to be more easily controlled than more

complex simulators. Due to the limitations of Limes, preemption effects were only simulated.

Specifically, caches were initially filled with dirty lines. Each task then performed writes to a
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local array until a “preemption” was detected. Tasks reacted to preemptions by exchanging

their arrays for other uncached local ones. Hence, the cold-cache effect of preemptions was

simulated using working-set changes.

We considered processor counts in the range 1, . . . , 16 and reported behavior across three

slots. The system consisted of 200 MHz i86 processors using a 10 millisecond quantum.

Caching consisted of blocking, direct-mapped caches with 256 KB capacity and 32-byte lines.

The MESI coherency protocol11 [52] was used. Since our goal was to measure only preemption-

related contention, both actual and false data sharing was avoided.12

Bus contention was measured by counting pending bus requests at each cycle. Since only

one request could be serviced in each cycle, the presence of i requests implied that i− 1 tasks

wasted that cycle waiting for bus access. Cycles required to service a task’s bus requests were

not counted as wasted cycles.

Relevance. These simulations focused on simultaneously scheduled tasks that process

large data sets. Consideration of this scenario is motivated by the fact that many real-time

multiprocessor systems consist of significant numbers of such tasks. Signal-processing and

virtual-reality systems are two examples. Hence, we believe that these scenarios do represent

situations that can arise in practice.

Worst-case contention under the aligned model. The first experiment estimated the

worst-case bus contention under the aligned model (when working sets are fully cacheable).

(This experiment does not characterize the worst case for staggering.) The worst case occurs

when each task writes to each cache line in its working set at the start of each quantum.

11Also known as the Illinois protocol. MESI is an acronym based on the four possible states of a cache line:
modified, exclusive, shared, and invalid.

12False sharing occurs when two or more tasks access a common cache line, but do not share any data.
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Figure 7.10: Cycles lost to bus contention under each of the aligned and staggered models.
Each working set completely fills the cache and lines are systematically written.

Figure 7.10 shows the average number of cycles lost per task.

Notice that both curves converge as the processor count increases; this indicates an over-

load of the bus. When tasks fail to completely load their working sets within a single quantum,

the resulting traffic pattern is approximately uniform across every quantum. As a result, stag-

gering provides no benefit. Hence, increasing the volume of bus traffic must eventually cause

performance under both models to converge.

Random-access contention. Our second experiment measured performance under a

random-access pattern when working-set sizes vary. Each task randomly selected cells to

access from a fraction α of the full array. This behavior results in a burst of bus traffic at the

start of each slot, followed by a gradual decline as the probability of referencing an uncached

line decreases. The value of α was chosen from { 0.2k | 1 ≤ k ≤ 5 }.
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Results are shown in Figure 7.11. As shown, staggering produces significantly less loss in

all cases. This experiment was repeated several times, producing virtually identical results.

(These simulations were unfortunately too long to produce confidence intervals.)

7.3.2 Prototype Measurements

In this subsection, we present a comparison of the staggered and aligned models using a simple

prototype of a Pfair system.

Experimental setup. The prototype microkernel executes as a thread package within QNX

Neutrino 6.2.13 The system consisted of four 200 MHz Pentium Pro processors, each of which

had a 4-way, 512 KB L2 cache. These processors provide several latency-hiding features,

including out-of-order execution, branch prediction, non-blocking caches, and support for

multiple pending bus operations. Hence, this experiment will demonstrate whether staggering

can improve upon simply applying common hardware-based techniques. Staggering should

provide a much greater benefit to systems with fewer latency-hiding features.

Both experiments described in the previous section were conducted on the prototype. Due

to the hardware complexity, performance was measured at the user level by calculating the

average number of cycles per write operation in each quantum.

Results. Figure 7.12 (respectively, Figure 7.13) shows the average number of cycles per

write under the linear-access (respectively, random-access) reference pattern. 99% confidence

intervals were computed, but are omitted due to scale. (Marked intervals show the observed

sample range.) As shown, staggering provides an increasing improvement until the array size

13The prototype takes control of the system when running. The underlying kernel activates only to process
timer interrupts and generate the signals that drive the prototype kernel. Neutrino was selected specifically
to support this design.
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Figure 7.11: Cycles lost to bus contention under each of the (a) aligned and (b) staggered
models. Random writes are performed and working-set sizes are varied.
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reaches approximately 150 KB, at which point overload occurs.

Figure 7.14 shows the ratios of corresponding sample means from the previous graphs. As

shown, up to 7 (respectively, 2.5) times more writes were performed under the staggered model

with the linear-access (respectively, random-access) pattern. Recall that this comparison is

on a platform with latency-hiding features: improvement should be more dramatic without

such features.

7.3.3 Scheduling Overhead

In the final series of experiments, the per-slot scheduling overhead of our staggered algorithm

was compared to that of the master/slave PD2 algorithm from [5].

Experimental setup. Each experiment described below tested 1,000 randomly generated

sets of independent tasks for each pairing of |τ | ∈ { 10n | 1 ≤ n ≤ 50 } and M ∈ {2, 4, 8, 16}.

From the execution-time measurements, the ratio of the average per-slot overhead of the mas-

ter/slave algorithm to that of the staggered algorithm was computed. Again, 99% confidence

intervals were computed, but are omitted due to scale.

Warm cache. In the first experiment, we considered performance when scheduler invo-

cations are performed iteratively on a uniprocessor (a 700-MHz Dell PC running Red Hat

Linux 2.4). After a warm-up delay, all memory references hit in cache. This experiment ap-

proximates the best-case performance of each algorithm. Architectures with highly effective

latency-hiding features should provide comparable performance on average. Figure 7.15(a)

shows the results from this experiment. As shown, the staggered algorithm approaches, and

often matches, the factor-of-M improvement suggested by its time complexity.

Cold cache. Due to idealized cache behavior, the previous experiment provides no insight
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Figure 7.12: Results of prototype linear-access experiment for the (a) aligned and (b) stag-
gered models.
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Figure 7.13: Results of prototype random-access experiment for the (a) aligned and (b)
staggered models.
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Figure 7.14: Ratios of write throughput under staggering to that under the aligned model for
the (a) linear- and (b) random-access prototype experiments.
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into how the algorithms perform on simpler architectures or in worst-case situations. To pro-

vide more realistic estimates, we performed a second comparison on an SGI Reality Monster

with 32 300-MHz R10000 processors in which multiple copies of the scheduler were distributed

on the processors. Control was then transfered between these copies at appropriate points

so that the scheduler would encounter a (somewhat) cold cache.14 Under master/slave (re-

spectively, staggered) scheduling, these transfers occurred after each scheduler (respectively,

Schedule) invocation. Figure 7.15(b) shows the results from this experiment. Caching effects

close the performance gap substantially compared to the previous experiment. Despite this,

staggering still provides a significant improvement. Indeed, since each invocation of Schedule

makes fewer memory references than the master/slave algorithm, staggered scheduling should

never produce more overhead, regardless of the platform. However, the magnitude of the im-

provement may vary significantly, as these experiments suggest.

7.4 Summary

In this chapter, we discussed architectural concerns that arise when deploying Pfair scheduling

on an SMP. Although SMPs are well-suited to Pfair scheduling in many ways, experimental

results presented herein suggest that preemption-related bus contention can significantly de-

grade performance. To address this problem, we proposed and demonstrated the effectiveness

of a staggered model under which preemption-related bus traffic is more evenly distributed

over time. We also developed and experimentally evaluated an efficient scheduling algorithm

to support this model that also produces less scheduling overhead than current Pfair algo-

rithms. To facilitate the use of this new model, we explained how prior results, including those

14There is no way to accurately predict the cache states that a scheduler will encounter in a real system.
We chose this approach because it seemed reasonable and straightforward to implement.
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presented in earlier chapter, can be modified to support the proposed model. We concluded

the chapter by presenting an experimental evaluation of both the staggered model and the

proposed scheduling algorithm.



CHAPTER 8

Conclusions and Future Work

Prior work on Pfair scheduling has suggested many advantages over alternative approaches [2,

5, 6, 7, 10, 12, 18, 22, 48, 58, 61, 62, 63, 64, 65]. The most striking by far is that Pfair scheduling

is capable of optimally scheduling recurrent and rate-based tasks on a multiprocessor. The

strong notion of scheduling fairness provides an additional benefit in that scheduling is highly

predictable. Indeed, we expect this to be the case even under overload conditions. For

real-time systems, this predictability translates into temporal-isolation guarantees that are

essential when multiplexing independently developed applications on a multiprocessor.

Unfortunately, prior work has limited attention to independent tasks and idealized hard-

ware. Consequently, many open questions remained as to the practicality of Pfairness. In this

dissertation, our goal was to address questions concerning resource sharing and common sys-

tem overheads. In this chapter, we summarize the results presented in the previous chapters.

Following this summary, we discuss directions for future work.

8.1 Summary

Chapter 3 outlined the design of a Pfair system. First, we considered the problem of im-

plementing quantum-based scheduling and its implications to the assumptions underlying



433

Pfair analysis. Included in this discussion was the impact of overhead introduced by context

switching, scheduling, interrupt handling, signal delay, and data sharing within the operating

system. Second, we derived basic formulas that characterize relaxed Pfair scheduling, in-

cluding formulas that map the requirements of independent periodic and sporadic tasks onto

weights. Overhead resulting from the use of such mappings was included in this discussion.

Third, we discussed the use of server tasks under Pfair scheduling and proved basic proper-

ties of such tasks. To support servicing of one-shot tasks with deadlines, we also presented a

simple on-line acceptance test.

Chapter 4 extended prior supertasking work by Moir and Ramamurthy [48]. Specifically,

we presented a flexible analytical framework that supports the use of supertasking under a

wide variety of scenarios. We focused on two forms of supertasking: quantum-based and

fully preemptive. Quantum-based supertasking can be used to selectively prevent groups of

tasks (i.e., the component tasks) from executing in parallel while respecting quantum-based

scheduling. Such restrictions can be used not only to limit the number of migrations, as

suggested by Moir and Ramamurthy, but also to reduce the worst-case resource contention.

(This latter use was discussed in Chapters 5 and 6.) Fully preemptive supertasking, on

the other hand, provides a scheduling environment that resembles that found in traditional

uniprocessor systems. Tasks that are ill-suited to quantum-based scheduling can be more

efficiently handled by scheduling them as a group within such an environment. In addition,

such environments permit the use of uniprocessor techniques and protocols designed for fully

preemptive scheduling, such as the PCP. (For example, we considered the use of the PCP

under these conditions in the last experiment of Chapter 6.) To enable the use of both forms

of supertasking, we presented a flexible reweighting algorithm that can be used both to assign
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weights to supertasks and also to determine whether a given weight is safe. This work included

a discussion of reweighting overhead, which results from the need to use inflated supertask

weights in order to ensure the timeliness of component tasks.

In Chapter 5, we considered the use of lock-free algorithms under Pfair scheduling. Such

algorithms are well-suited to quantum-based scheduling because they avoid blocking and

hence suspensions. Instead, these algorithms retry failed operations until successful. Although

this approach is typically considered impractical on multiprocessors, we showed how Pfair’s

inherent structure facilitates the derivation of a bound on the number of retries performed

by an operation. We also showed how quantum-based supertasking can be used to reduce

lock-free overhead. Under special conditions, this approach can even enable the use of more

efficient uniprocessor, wait-free object implementations.

Locking synchronization was the focus of Chapter 6. First, we considered several forms

of inheritance that can easily be supported under Pfair scheduling. (Since inheritance is the

predominant approach taken on uniprocessors, this was the obvious starting point.) Un-

fortunately, we noted several limitations of such protocols; most problematic among these

was the interdependence between task weights and worst-case blocking durations. Next, we

presented two zone-based protocols (i.e., the Skip and Rollback Protocols). These protocols

exploit Pfair’s quantum-based structure to prevent critical sections from being preempted.

This approach was motivated by the observation that preemption of a lock-holding task ef-

fectively extends the duration of the associated critical section. Empirical data presented in

that chapter suggests that these protocols perform quite well. Unfortunately, the zone-based

approach is only applicable when critical-section durations are shorter than Q. To support

longer critical sections, we investigated the use of a simple server protocol. Although this
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approach provides only mediocre performance, it is easy to use and avoids many of the com-

plications that can arise from more complex protocols. In addition, this approach was found

to occasionally outperform the zone-based approaches in random task-set experiments.

In Chapter 7, we turned our attention to the issue of deployment. Based on the charac-

teristics of Pfair scheduling, SMP-based architectures seem to be ideal candidates for the use

of Pfair scheduling. Unfortunately, we noted an incompatibility between the quantum-based

model of Pfair scheduling and the use of a shared memory bus. Specifically, tasks tend to

produce high volumes of bus traffic while reloading data into the local processor cache at the

start of each quantum. Due to the alignment of slots under Pfair scheduling, heavy contention

arises during this reload period. To more evenly distribute preemption-related bus traffic, we

proposed a new staggered model for Pfair scheduling under which slots do not align across

processors. This new model provides an additional benefit in that it permits scheduling over-

head to be more evenly distributed across processors. To enable the use of this new model, we

proposed an efficient distributed scheduling algorithm and explained how results derived from

the aligned model can be adapted to the staggered model. Finally, we presented empirical

data to show the improvement that can be obtained by using the proposed model.

8.2 Future Work

We now describe a few of the several challenges remaining in this research area. Indeed, there

are too many remaining challenges to list them all here. For this reason, we restrict attention

to challenges that are closely related to the work presented in this dissertation.
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8.2.1 Optimization Problems

Two optimization problems are apparent from the results presented earlier. First, the slot

size impacts several overheads differently. Extremely small values are impractical due to

scheduling overhead. Similarly, extremely large values are likely to produce excessive loss due

to partially used quanta. Selecting an optimal slot size given the constraints of the system is

undoubtedly a non-trivial problem. Second, supertasking provides many potential benefits,

but at the cost of reweighting overhead. To determine the optimal system configuration,

these benefits and the reweighting overhead must be quantified and related. This daunting

task is further complicated by the fact that some benefits are difficult to quantify, such as the

algorithmic benefits obtained by using lock-free synchronization with supertasking.

8.2.2 Variable-size Quanta

Under proportional-share scheduling [66], partially used quanta are truncated to avoid idling

the processor. This action provides two benefits: tasks are not penalized for yielding within

a quantum and a new quantum can be immediately started. Such behavior is an interesting

alternative to the strict form of quantum-based scheduling considered in this dissertation.

Unfortunately, direct incorporation of this behavior under Pfair scheduling sacrifices opti-

mality, as illustrated by Figure 8.1. This figure shows a system in which tasks are still charged

for unused processor time,1 but a new quantum is allowed to begin immediately after the ex-

ecuting task yields. In the first slot, both scheduled tasks yield early, causing the processors

to be immediately granted to the remaining two tasks. As a result, the unit-weight task

misses its second deadline. This scenario can easily be generalized to an arbitrary number of

1Not charging tasks for unused processor time is a more complex issue since Pfair scheduling does not
support requests for fractional quanta. Adding this capability is another interesting direction for future work.
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Figure 8.1: Counterexample that shows how the use of variable-length quanta leads to deadline
misses. Four tasks are scheduled on two processors. In the first slot, both tasks T and W
finish early. The next quanta begin immediately and are granted to U and V . As a result,
W misses its next deadline.

processors by using one task with unit weight and 2M − 1 tasks with weight 1
k . Notice that

the total weight of such a task set approaches unity as k → ∞.

Indeed, it may not be possible to support variable-size quanta in an optimal scheduler.

Proportional-share scheduling only guarantees a deadline-miss threshold of one quantum.

Interestingly, the counterexample shown above does not preclude the existence of a similar

guarantee for variants of Pfair scheduling that support the use of variable-size quanta.

8.2.3 Overload Guarantees

Because Pfairness ensures proportional allocation, the share of the system guaranteed to each

task should always be predictable, even under overload conditions. However, overload has

the effect of changing the interpretation of task weights. Under normal conditions, weights

represent a fixed fraction of a single processor to which the associated task is entitled. Under
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overload conditions, weights effectively become relative measures of the task’s share. For

instance, a task with weight w in an overloaded system of total weight W should still receive

approximately a fraction w
W · M of a processor. Hence, a general formula for the fraction of

a processor to which a task is entitled is given by w · min
(

1, M
W

)

. (A system is overloaded

when M
W < 1, fully loaded when M

W = 1, and underloaded when M
W > 1.)

Providing bounds on each task’s guaranteed share during overload is of interest in at

least two situations. First, transient processor failures may result in temporary periods of

overload. For systems in which such failures are a concern, the impact of an overload must

be determined in order to verify that fault-tolerance requirements will always be met. This

concern highlights another interesting problem. It is possible that Pfair scheduling is self-

stabilizing, i.e., a system that is normally underloaded may, given sufficient time, return to a

state in which no deadlines are being missed following a transient period of overload.

Second, when scheduling soft-real-time tasks, weights can be assigned according to the de-

sired average-case performance. When the total weight of the task set exceeds the number of

processors, the system must either reduce weights or continue to operate under overload. The

former option is undesirable since updating weights and priorities at runtime can introduce

substantial overhead [2, 63]. However, it is presently unclear whether using a single weight

with each task is desirable when working with soft-real-time tasks. The work of Anderson,

Block, and Srinivasan [2] on QRfair scheduling suggests that two weights, which represent

the minimum and maximum share needed by each task, may provide more predictable per-

formance without introducing significantly more overhead.2 When using only one weight per

task, understanding the impact of overload would be invaluable in soft real-time systems.

2To the best of our knowledge, the use of multiple weights per task is a largely unexplored approach. Hence,
this would also be an interesting topic for future work in both the hard and soft real-time areas.
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8.2.4 Supertasking

There are two obvious directions for future work in this area. First, all prior work on super-

tasking has focused on the use of either an Idle-and-Wait or a Drop-and-Wait server policy.

One benefit of these policies is that analysis is straightforward. However, it is possible that

a more elaborate server policy may achieve a significant reduction in reweighting overhead.

Hence, consideration of other server policies is one obvious direction of future work.

Second, the experimental studies in Chapters 5 and 6 suggest that a substantial reduc-

tion in synchronization overhead can be obtained by using supertasks to restrict the parallel

execution of tasks that share resources. However, these studies consider only the use of static

supertasks, i.e., supertasks in which the component task set is fixed at runtime. An alter-

native approach that may reduce synchronization overhead even further is to associate each

lock or lock-free object with a specific supertask and then require tasks to migrate3 into that

supertask before accessing the shared object. In this way, synchronization overhead would

be minimized. However, the migration of a task may need to be delayed in order to prevent

timing violations within the supertask. Hence, this approach trades synchronization overhead

for overhead resulting from migration delay.

To support intersupertask migration, rules are needed to determine when a task may

safely leave and join a supertask. In addition, it may also be desirable to change the weight of

each supertask on-the-fly to prevent it from consuming an unnecessarily large fraction of the

processor time. Hence, rules for safely changing the supertask’s weight may also be needed.

Indeed, this last observation raises an additional issue: How can a supertask be reweighted

at runtime? There are two obvious solutions. The first would be to utilize the reweighting

3Here, migration refers to intersupertask migration, and not to interprocessor migration.
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algorithm from Chapter 4. The input parameters provided by the algorithm can be used to

control the duration of reweighting. The disadvantage of this approach is that the selected

weight may be very pessimistic. Alternatively, each such supertask could be restricted to take

on one of a discrete set of weights. For instance, a supertask’s weight could be constrained

to be in the set { 0.2, 0.4, 0.6, 0.8, 1.0 }. In this case, rules for handling each allowed weight

to be derived a priori , thereby avoiding the need for on-the-fly reweighting.

8.2.5 Synchronization

Several challenges remain in the area of synchronization. For instance, efficient I/O support

is needed. I/O-based critical sections differ from software-based critical sections in two ways.

First, these critical sections are typically much longer, particularly when mechanical devices

like disk drives are involved. Second, these critical sections do not require processor occupancy.

Indeed, processor time should not be granted to lock-holding tasks performing I/O-based

critical sections. Since this last characteristic also describes server-based synchronization,

techniques designed to improve I/O handling can likely be applied in that context as well.

The techniques presented in this dissertation address only sharing between persistent

real-time tasks. In real systems, resources may be shared by hard-real-time, soft-real-time,

non-real-time, and one-shot tasks. Since the runtime behavior of many of these tasks will

not be known a priori or even be predictable, off-line analysis like that presented for locking

protocols may not be possible. For instance, Real-time Java (RTJ) is required to support

communication between real-time and non-real-time tasks [14], despite the fact that the be-

havior of non-real-time tasks is not predictable. To resolve this problem, RTJ requires the

use of wait-free queues as communication channels between such tasks. This choice sacrifices

generality and design flexibility in order to guarantee timeliness.
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Finally, this dissertation focuses on non-nested critical sections. Nested critical sections

are undesirable because they greatly complicate analysis, particularly on multiprocessors [54].

However, they may be unavoidable in some cases, and hence should be supported.

8.2.6 Interrupt Handling

Although a few simplistic techniques like that given in Chapter 3 have been proposed to

account for interrupt overhead, it is unclear whether these approaches are efficient or even

reasonable. For instance, trying the model interrupts as periodic or sporadic events may not

be appropriate for some interrupts. As with tasks, it is unlikely that a single model can

effectively describe all interrupts. To enable proper analysis, more extensive studies of real

systems are needed to provide models for the different components of interrupt handling and

baseline measurements for the model parameters. Such information is a necessary first step

toward providing adequate handling for interrupts.

8.2.7 Other Services

Systems consist of more than scheduling and synchronization services. Applications require

network access, file systems, interactive shells, etc. Support for such services is key to the

creation of a full-featured Pfair system. Although many approaches to providing these services

have been proposed, few (if any) are directly applicable under Pfair scheduling.

8.2.8 Implementation

Conventional event-driven schedulers can usually be tested by replacing the schedulers in

conventional operating systems, such as Linux or FreeBSD. However, due to its time-driven

nature, forcing a Pfair scheduler into a conventional system will almost certainly produce
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both poor performance and measurements that are not reflective of a from-scratch implemen-

tation. Accurate assessment is essential to making an unbiased comparison to partitioning

and other alternative approaches. Hence, mechanisms that exploit strengths and compensate

for weaknesses are an important factor in accurately evaluating the worth of each tested ap-

proach. Unfortunately, many such mechanisms are yet to be developed for Pfair scheduling,

as is likely apparent from the previous sections.

Although a full-featured Pfair system cannot be implemented at present, a Pfair micro-

kernel can be. Indeed, we developed a microkernel with limited functionality as a thread

package for the experiments presented in Chapter 7. For a comparison against partitioning,

a from-scratch Pfair prototype that executes directly on the hardware would be preferable.

Such a prototype is also essential to measuring the performance and implementation overhead

of the various extensions that have been and will be proposed for Pfair scheduling.
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APPENDIX A

Correctness Proof

In this appendix, we present a proof of correctness for the multiprocessor lock-free queue

implementation shown in Figure A.1. A slightly more complicated version of this algorithm

appeared previously in the case study presented in Chapter 5.

A.1 Design Assumptions

The version of the algorithm considered here is based on the following (unrealistic) assump-

tions, which are intended to simplify the proof:

(A1) Each tag field has an unbounded range.

(A2) Each queue node is used only once.

In addition, rather than re-using the local variable x, this version of the algorithm uses extra

variables y and z. Avoiding the re-use of variables and nodes simplifies the proofs without

changing the nature of the algorithm. Finally, the value field of a queue node has been

renamed from value to elem to avoid confusion with the value field of a tagged variable.

Due to (A2), the enqueue and dequeue algorithms shown in Figure A.1 accept and return,

respectively, the element type used by the queue, rather queue nodes. (The version presented

earlier in Chapter 5 handles nodes instead.) In addition, the special symbol ⊥ has been

introduced at line 15 to signal an empty queue.
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template tagged(T ):
record

tag : integer;
value: T

private var
x, y, z, h, t : tagged(pointer to node);
done: boolean; out , in: element;
n: pointer to node

procedure Enqueue MW(in)
1: n := MakeNode();
2: *n:= (in, (0, nil));

do
3: done := false;
4: t := Tail ;
5: x := *(t .value).next ;
6: if t = Tail then
7: done := CAS(&(*(t .value).next),

(x.tag ,nil), (x.tag+1,n));
8: y := *(t .value).next ;
9: CAS(&Tail , t , (t .tag+1,y.value))

fi
10: while ¬done

typedef node:
record

elem: element;
next : tagged(pointer to node)

shared var
Head , Tail : tagged(pointer to node)

procedure Dequeue MR() returns element
do

11: done := false;
12: h := Head ;
13: if h.value = Tail .value then
14: if h = Head then
15: return ⊥

fi
else

16: z := *(h.value).next ;
17: if z.value 6= nil then
18: out := *(z.value).elem;
19: done := CAS(&Head , h,

(h.tag+1,z.value))
fi

fi
20: while ¬done;
21: return out

Figure A.1: Simplified code listing for multiprocessor (lock-free) shared queue.

A.2 Notation

In this section, we summarize notation that will be used when discussing the algorithm and

its correctness. An enqueuing (respectively, dequeuing) task will be denoted by either e or e′

(respectively, d or d′). The notation T.x will be used to denote the local variable x of task

T . The condition T@k holds if and only if task T will execute line k next. Similarly, T@S

holds if and only if T@k holds for some k ∈ S. The notation n.T will be used to specify the

execution of line n by task T .
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A.3 Operational Assumptions

The queue is assumed to be initialized as follows:

(I1) The dummy node D is initialized so that D.next = (0,nil ).1

(I2) Head = Tail = (0,&D).

(I3) e@1 holds for each enqueuer e.

(I4) d@11 holds for each dequeuer d.

For simplicity, we assume that each enqueuer (respectively, dequeuer) performs enqueue (re-

spectively, dequeue) operations in an unbounded loop. Hence, after executing line 10, each

enqueuer is assumed to transition back to line 1. Similarly, after executing line 20, each

dequeuer is assumed to transition back to line 11.

A.4 Basic Properties

The following properties are derived directly from the program code (as explained below) and

will be used in the proof arguments that follow.

(P1) The node that is modified in line 2 is not shared (when line 2 is executed).

(P2) For any tagged variable v and copy2 of that variable v′, v.tag ≥ v′.tag holds.

Property P1 follows trivially from (A2). Specifically, since nodes are not re-used, each

node is effectively private to the enqueuing task until the node is added to the data structure

at line 7. The initialization of the node at line 2 occurs before this point.

1The initial value of D.value is unimportant since it is never used.

2For this to be the case, the most recent write to v′ must have assigned a value to v′ that was returned by
a previous read of v.
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Property P2 follows trivially from the program code. Each update of a tagged variable

increments its tag field. (Indeed, when initialized to zero, the tag effectively serves as a

counter for the number of updates performed.) Since (A1) ensures that the range of each tag

field is unbounded, all previous reads of a tagged variable must have returned tag values that

are at most the current tag value. Property P2 follows.

A.5 Input Correctness

In this section, we derive properties of the algorithm to prove that enqueue operations are

performed correctly. Enqueue operations are operationally more complex than dequeue oper-

ations because they require the modification of two shared variables. Consequently, the queue

must temporarily be placed into an intermediate state during the interval of time spanning

the first modification and the second.

A.5.1 Queue States and Safety Criteria

Figure A.2 shows the normal and intermediate (or extended) queue states. An enqueue

operation first appends the new node onto the end of the queue, which places the queue in

the extended state. This is accomplished by line 7. The Tail pointer is then updated to point

to the appended node, thereby returning the queue to the normal state. This step is achieved

by line 9. To ensure proper operation, we must ensure that line 9 can succeed only when the

queue is in the extended state. Similarly, we must also ensure that line 7 can succeed only

when the queue is in the normal state. This criteria is expressed formally by conditions (S1)

and (S2), respectively, shown below.

(S1) e@9 ∧ Tail = e.t ⇒ e.y = ∗(e.t .value).next ∧ e.y.value 6= nil
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Figure A.2: Illustrations of the queue states that occur during an enqueue operation.

(S2) e@7 ∧ ∗(e.t .value).next = (e.x.tag ,nil) ⇒ e.x = ∗(e.t .value).next ∧ e.t = Tail

Informally, (S1) states that if the CAS call at line 9 succeeds, then Tail is advanced to

the node immediately after the previous tail node (first clause of the consequent) and such a

successor node must exist (second clause of the consequent). The latter implication ensures

that the queue is in the extended state whenever line 9 is successfully executed. Similarly,

(S2) states that a successful execution of line 7 can only occur if e.x is an up-to-date copy

of ∗(e.t .value).next (first clause of the consequent) and e.t is an up-to-date copy of Tail

(second clause of the consequent). By the second clause, ∗(e.t .value).next is equivalent to

∗(Tail .value).next . The fact that this pointer is nil (by the second clause of the antecedent)

implies that the queue is in the normal state whenever line 7 is successfully executed.

When proving invariants that do not depend on Head , dequeue operations can be ignored.

This follows trivially from the fact that such operations only change the value of Head .

Correctness of dequeue operations is the subject of the next section.
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A.5.2 Proof of (S1)

In this section, we prove a series of invariants that lead up to the proof of (S1). Specifically,

(S1) corresponds to A.4, which appears at the end of this section.

Invariant A.1 e@{5 . . . 9} ∧ e′@{9} ∧ e′.t = Tail

⇒ e.t 6= (e′.t .tag + 1, e′.y.value)

Proof. Property P2 implies that e.t .tag ≤ Tail .tag . When the antecedent holds, it follows

that e.t .tag ≤ e′.t .tag holds also. In this case, e.t 6= (e′.t .tag + 1, e′.y.value) must also hold

since e.t .tag ≤ e′.t .tag implies that e.t .tag < e′.t .tag + 1. 2

Invariant A.2 e@{6 . . . 7} ∧ e.t = Tail ⇒ ∗(Tail .value).next .value 6= nil ∨ e.x =

∗(Tail .value).next

Proof. By (I3), e@1 holds initially, and thus A.2 is true. A.2 may be falsified only by 5.e

(which establishes e@{6 . . . 7}), 2.e′ (which may change the value of ∗(Tail .value).next), 7.e′

(which may change the value of ∗(Tail .value).next), and 9.e′ (which may establish e.t = Tail).

Here, e′ refers to an enqueuer other than e.

Consider 5.e. This line establishes the antecedent if and only if e.t = Tail holds. When

this is the case, the execution of 5.e establishes e.x = ∗(Tail .value).next also. Thus, A.2 is

maintained.

Consider 2.e′. Property P1 implies that the node being initialized is effectively private

when this line is executed. Hence, Tail .value cannot be a pointer to that node, and thus A.2

remains true.

Consider 7.e′. To modify the value of ∗(Tail .value).next , this line must also establish

∗(Tail .value).next .value 6= nil . Thus, A.2 remains true.
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Consider 9.e′. By A.1, the execution of this line can only falsify e.t = Tail . Therefore,

A.2 remains true. 2

Invariant A.3 e@{8 . . . 9} ∧ e.t = Tail ⇒ ∗(Tail .value).next .value 6= nil

Proof. By (I3), e@1 holds initially, and thus A.2 is true. A.2 may be falsified only by 7.e

(which establishes e@{8 . . . 9}), 2.e′ (which may change the value of ∗(Tail .value).next), 7.e′

(which may change the value of ∗(Tail .value).next), and 9.e′ (which may establish e.t = Tail).

Here, e′ refers to an enqueuer other than e.

Consider 7.e. This line establishes the antecedent if and only if e.t = Tail holds. By A.2,

e.x = ∗(Tail .value).next ∨ ∗(Tail .value).next .value 6= nil must hold prior to the execution

of 7.e in this case. Hence, A.3 can be falsified only if e.x = ∗(Tail .value).next holds. Assume

(toward a contradiction) that this is the case. Since e.t = Tail holds, e.x = ∗(e.t .value).next

must also hold in this case. If ∗(e.t .value).next .value = nil , then the CAS call will succeed

and establish the consequent. Therefore, A.3 cannot be falsified when the CAS call succeeds.

On the other hand, if ∗(e.t .value).next .value 6= nil , then the CAS call will fail. However,

∗(Tail .value).next .value 6= nil must hold in this case both before and after the call (since

e.t = Tail holds). Therefore, A.3 cannot be falsified when the CAS call fails either. This

contradicts our earlier assumption that ∗(Tail .value).next .value 6= nil does not hold after the

execution of 7.e. Thus, A.3 is true.

By the same arguments given earlier in the proof of A.2, A.3 cannot be falsified by 2.e′,

7.e′, or 9.e′. 2

Invariant A.4 e@9 ∧ Tail = e.t ⇒ e.y = ∗(e.t .value).next ∧ e.y.value 6= nil
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Proof. By (I3), e@1 holds initially, and thus A.4 is true. A.4 may be falsified only by 8.e

(which establishes e@9), 2.e′ (which may change the value of ∗(Tail .value).next), 7.e′ (which

may change the value of ∗(Tail .value).next), and 9.e′ (which may establish e.t = Tail). Here,

e′ refers to an enqueuer other than e.

Consider 8.e. The execution of 8.e establishes e.y = ∗(e.t .value).next . To establish the an-

tecedent, e.t = Tail must also hold prior to the execution. By A.3, ∗(Tail .value).next .value 6=

nil holds prior to the execution of 8.e. Therefore, 8.e also establishes e.y.value 6= nil when

the antecedent is established. Thus, A.4 is maintained.

Consider 7.e′. Since this line cannot establish the antecedent, it can falsify A.4 only by

falsifying the consequent when both the antecedent and consequent held prior to its execution.

Assume (toward a contradiction) that this is the case. Since 7.e′ cannot falsify the second

clause of the consequent, it follows that e.y 6= ∗(e.t .value).next was established by 7.e′,

and hence that the CAS call must have succeeded. However, since both the antecedent and

consequent held prior to the execution of 7.e′, ∗(e.t .value).next .value 6= nil held also, which

implies that the CAS call must have failed. Hence, we have reached a contradiction, which

implies that 7.e′ maintains A.4.

By the same arguments given earlier in the proof of A.2, A.4 cannot be falsified by 2.e′ or

9.e′. 2

A.5.3 Proof of (S2)

In this section, we prove that (S2) is invariant.

Invariant A.5 e@7 ∧ ∗(e.t .value).next = (e.x.tag ,nil) ⇒ e.x = ∗(e.t .value).next ∧ e.t =

Tail
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Proof. By (I3), e@1 holds initially, and thus A.5 is true. A.5 may be falsified only by 6.e

(which may establish e@7), 2.e′ (which may change the value of ∗(e.t .value).next), 7.e′ (which

may change the value of ∗(e.t .value).next), and 9.e′ (which may establish e.t 6= Tail). Here,

e′ refers to an enqueuer other than e.

Consider 6.e. For 6.e to establish the antecedent, both e.t = Tail and ∗(e.t .value).next =

(e.x.tag ,nil) must hold. Hence, e.t = Tail holds when the antecedent is established, which

by A.2, implies that ∗(Tail .value).next .value 6= nil ∨ e.x = ∗(Tail .value).next also holds.

Since ∗(e.t .value).next = (e.x.tag ,nil) implies that ∗(Tail .value).next .value = nil holds (since

e.t = Tail holds), it follows that e.x = ∗(Tail .value).next holds. Hence, when the antecedent

is established, e.x = ∗(e.t .value).next also holds. Thus, A.5 is maintained.

Consider 7.e′. If the value of ∗(e.t .value).next is modified, then the value field must change

to a non-nil value. Hence, the execution of this line cannot modify ∗(e.t .value).next without

also falsifying ∗(e.t .value).next = (e.x.tag ,nil). Thus, A.5 is maintained.

Consider 9.e′. Since 9.e′ cannot establish the antecedent, A.5 can be falsified only if

both the antecedent and consequent hold prior to the execution of 9.e′, and its execution

establishes e.t 6= Tail . Assume (toward a contradiction) that this is the case. By A.4, the

CAS call succeeds only if e.y = ∗(e.t .value).next ∧ e.y.value 6= nil holds. Since e.t = Tail

holds prior to the execution of 9.e′, it follows that ∗(Tail .value).next .value 6= nil holds also.

However, if e.t = Tail and ∗(e.t .value).next = (e.x.tag ,nil) both hold prior to execution of

9.e′, then so does ∗(Tail .value).next .value = nil . Hence, we have reached a contradiction,

and thus A.5 is maintained by 9.e′.

By the same argument given earlier in the proof of A.2, A.5 cannot be falsified by 2.e′. 2
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A.6 Output Correctness

In this section, we argue the correctness of dequeue operations. Since these operations re-

quire the modification of only one variable, they are much simpler than enqueue operations.

Because of this, we argue correctness more informally in this section by considering necessary

conditions for a return at each of lines 15 and 19. Specifically, we argue that a return can

occur from each line only when the conditions required to ensure correctness are met. The

primary difficulty in this context lies in ensuring that an empty queue is properly detected

and handled. Line 15 handles this case.

Dequeue operations use the Head pointer both to detect an empty queue and to synchro-

nize concurrent dequeuers. Specifically, Head is set to point to a dummy head node, i.e., a

head node that does not contain a queue element. At any given instant, the elements con-

sidered to be in the queue are those in the chain of nodes ranging from the node after the

dummy head node to the node referenced by Tail . (See Figure 5.4.) When this chain (and

hence the queue) is empty, both Head and Tail reference the dummy node. Otherwise, the

head element of the queue is stored in the node after the dummy node.

An element is claimed by the first dequeuer to advance the Head pointer to the node

containing that element. This action has the effect of converting the element’s node into the

dummy node of the queue. (Hence, the identity of the dummy node changes as elements are

dequeued.) By advancing Head using a CAS call (at line 19), we ensure that only one dequeuer

can claim each element. The correctness of dequeue operations is discussed in detail in the

sections that follow.
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A.6.1 Detecting an Empty Queue

First, we argue the correctness of operations that return at line 15. These operations indicate

that the queue was empty, and hence require that Head .value = Tail .value held at some

point during the operation. Hence, it must be shown that a return at line 15 implies that

Head .value = Tail .value held at some point between the execution of lines 11 and 15.

Suppose that line 15 is reached. By the comparison at line 14, Head did not change

between lines 12 and 14. Consequently, the result of the comparison h.value = Tail .value at

line 13 was equivalent to that of Head .value = Tail .value . The correctness of the return at

line 15 follows.

A.6.2 Dequeuing an Element

We now argue the correctness of operations that return at line 21. Specifically, we show that

each operation returns the head element of the queue and correctly updates the Head pointer,

which ensures that no other dequeue operation can return the same element.

Suppose an operation returns at line 21. By line 20, done = true, which implies that the

CAS call in line 19 succeeded. Since h = Head must have held at line 19, it must have held

at all other points between the execution of lines 12 and 19. It follows from lines 16 and 18

that z and out store the address of the node after the dummy node and the element value

stored in that node, respectively.3 Recall that the element value stored in that node is the

head element. It follows that the execution of line 19 advanced Head to point to the node

after the (old) dummy node. In addition, the value returned at line 21 was the head element

in the queue when line 19 was executed. The correctness of returns at line 21 follows.

3A node that is already in the queue could only be removed by advancing the Head pointer. Hence, the fact
that h = Head still holds at line 19 implies that no other dequeuer removed the node referenced by z between
the execution of lines 16 and 19.
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A.7 Liveness

In this section, we argue that liveness is guaranteed by the algorithm. To satisfy the require-

ments of lock-freedom, it must be shown that the group of all enqueuers and dequeuers must

be capable of making progress at all times, though individual tasks may still be starved.

A.7.1 Enqueue Operations

Given the properties used to establish the correctness of enqueue operations, arguing liveness

is straightforward. Specifically, we argue that at least one change4 in the queue’s state must

occur during each enqueue loop iteration by some task. Since each pair of consecutive state

changes represents the addition of a new element into the queue, it follows that some enqueue

operations must be completing (and hence, making progress).

First, suppose a loop iteration begins when the queue is in the normal state. In this case,

the queue must transition to an extended state at or before line 7 is executed, unless Tail is

changed first. However, by (S2), no execution of line 9 can succeed while the queue is in the

normal state. Since Tail is only updated at line 9, it follows that line 7 can only be avoided

by an earlier transition to the extended state. In either case, the transition must occur before

the end of the loop iteration.

Now, suppose a loop iteration begins when the queue is in the extended state. In this

case, the queue must return to the normal state at or before line 9. This line can only be

avoided by the condition at line 6. However, if Tail changes between lines 4 and 6, then some

task must have successfully executed line 9, in which case the queue has already returned to

the normal state. It follows that the queue must return to the normal state before the end of

4Specifically, a state change refers to the queue toggling between the normal and extended states.
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the loop iteration.

A.7.2 Dequeue Operations

The liveness of dequeue operations is easily proved. Specifically, a dequeue attempt fails only

if Head changes after line 12, resulting in a failed comparison at lines 14 or 19.5 However,

such a change implies that some dequeuer successfully claimed an element by executing line 19

(and hence, made progress).

A.8 Linearization

In [30], Herlihy and Wing proposed linearizability as a correctness condition for concurrent

object implementations. For an object to be linearizable, it must be possible to define a lin-

earization point for each operation. This point is required to correspond to the execution of

a specific line that occurred during the operation.6 In addition, the result of each operation

must be identical to the result that would be achieved by applying each operation atomi-

cally in the order implied by the operations’ linearization points. Hence, linearization points

effectively define a total ordering of operations.

A.8.1 Enqueue Operations

Since the queue is considered empty whenever Head .value = Tail .value holds, an enqueued

value first becomes “visible” to other tasks when the queue transitions from the extended state

5When nodes are not recycled, the comparison at line 17 cannot fail. Specifically, the dummy node’s pointer
is nil only when the queue is empty. In that case, the branch consisting of lines 14–15 is taken and line 17 is
never reached. When nodes are recycled, a failure at line 17 implies that the node has already been removed
from the queue, and hence that another dequeue operation completed.

6The linearization point can be the execution of a line by a task other than the one performing the operation,
provided that the line’s execution occurred during the operation in question.
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to the normal state, i.e., when the Tail pointer is updated at line 9. Hence, the linearization

point of an enqueue operation of task e is the execution of line 9 that updates Tail to point

to e.n. This point may correspond to the execution of line 9 by an enqueuer other than e.

Once e succeeds in appending e.n onto the queue at line 7, it must attempt to update Tail

at line 9 to ensure that the linearization point occurs during the operation. Specifically, e

can only fail to update Tail at line 9 if some other enqueuer updates Tail first. Hence, the

linearization point must occur while e@{8 . . . 9} holds.

A.8.2 Dequeue Operations

For a dequeue operation, two cases must be considered. The first case corresponds to oper-

ations that return at line 15. As explained above, an operation can return at this line only

if Head .value = Tail .value held when line 13 was executed. Hence, the queue was empty at

this point and the execution of line 13 is the linearization point of these operations.

The second case corresponds to operations that return at line 21. Again, by the correctness

arguments given earlier, a return at line 21 can only occur if the CAS call at line 19 succeeds.

This call, in turn, succeeds only if the value of the dequeuer’s local variables reflect the state of

the queue when line 19 is executed. Hence, the execution of line 19 serves as the linearization

point when operations return at line 21.
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APPENDIX B

Pairwise Comparison

This appendix provides additional information obtained from the synchronization studies

discussed earlier in Chapters 5 and 6. In addition to the previously presented results, three

of these studies included a pairwise comparison of approaches. Specifically, for each pair of

approaches A and B, the fraction of the samples for which A outperforms B, B outperforms

A, and both A and B produce the same performance were calculated. (In this context, A

outperforms B if it produces less inflation.) We now present the results of these pairwise

comparisons.

B.1 Lock-free Studies

The first study that included a pairwise comparison was the lock-free study presented earlier

in Section 5.5.1. (See Section 5.5.1 for a detailed description of the study.) Figures B.1, B.2,

B.3, and B.4 summarize the pairwise comparison results for the M = 2, 4, 8, and 16 cases.

The proper interpretation of table data will be explained using Figure B.1 as an example.

Each table shown in Figure B.1 gives a 5-by-5 matrix of percentages. Notice that row and

column indexes (from 1 to 5) are given to the left and above these percentages. To simplify

this discussion, let I and E denote the upper (inset (a)) and lower (inset (b)) matrices of

percentages, respectively. In addition, let Ir,c (respectively, Er,c) denote the value in row

r and column c of matrix I (respectively, matrix E). For instance, I3,2 = 20.948% while
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M = 2 # 1 2 3 4 5

No Supertasks 1 N/A 35.258% 31.135% 3.140% 2.949%
QB-EPDF (FF) 2 64.742% N/A 2.877% 0.000% 2.266%
QB-EPDF (NF) 3 68.865% 20.948% N/A 0.708% 0.000%
QB-EDF (FF) 4 96.858% 48.395% 46.443% N/A 7.549%
QB-EDF (NF) 5 97.049% 47.797% 43.674% 4.092% N/A

(a) Inequality (<)

M = 2 # 1 2 3 4 5

No Supertasks 1 N/A 0.000% 0.000% 0.002% 0.002%
QB-EPDF (FF) 2 0.000% N/A 76.175% 51.605% 49.937%
QB-EPDF (NF) 3 0.000% 76.175% N/A 52.849% 56.326%
QB-EDF (FF) 4 0.002% 51.605% 52.849% N/A 88.358%
QB-EDF (NF) 5 0.002% 49.937% 56.326% 88.358% N/A

(b) Equality (=)

Figure B.1: Pairwise comparison of the number of tested samples favoring each approach
in the M = 2 case of the first lock-free synchronization study. Tables summarize the (a)
inequality and (b) equality relationships.

M = 4 # 1 2 3 4 5

No Supertasks 1 N/A 35.258% 31.135% 3.140% 2.949%
QB-EPDF (FF) 2 64.742% N/A 2.877% 0.000% 2.266%
QB-EPDF (NF) 3 68.865% 20.948% N/A 0.708% 0.000%
QB-EDF (FF) 4 96.858% 48.395% 46.443% N/A 7.549%
QB-EDF (NF) 5 97.049% 47.797% 43.674% 4.092% N/A

(a) Inequality (<)

M = 4 # 1 2 3 4 5

No Supertasks 1 N/A 0.000% 0.000% 0.000% 0.000%
QB-EPDF (FF) 2 0.000% N/A 37.783% 46.145% 26.800%
QB-EPDF (NF) 3 0.000% 37.783% N/A 28.912% 50.892%
QB-EDF (FF) 4 0.000% 46.145% 28.912% N/A 47.286%
QB-EDF (NF) 5 0.000% 26.800% 50.892% 47.286% N/A

(b) Equality (=)

Figure B.2: Pairwise comparison of the number of tested samples favoring each approach
in the M = 4 case of the first lock-free synchronization study. Tables summarize the (a)
inequality and (b) equality relationships.
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M = 8 # 1 2 3 4 5

No Supertasks 1 N/A 17.102% 17.008% 0.022% 0.045%
QB-EPDF (FF) 2 82.898% N/A 52.983% 0.000% 37.489%
QB-EPDF (NF) 3 82.992% 37.415% N/A 6.082% 0.000%
QB-EDF (FF) 4 99.978% 63.394% 85.569% N/A 72.600%
QB-EDF (NF) 5 99.955% 54.862% 59.155% 15.114% N/A

(a) Inequality (<)

M = 8 # 1 2 3 4 5

No Supertasks 1 N/A 0.000% 0.000% 0.000% 0.000%
QB-EPDF (FF) 2 0.000% N/A 9.602% 36.606% 7.649%
QB-EPDF (NF) 3 0.000% 9.602% N/A 8.349% 40.845%
QB-EDF (FF) 4 0.000% 36.606% 8.349% N/A 12.286%
QB-EDF (NF) 5 0.000% 7.649% 40.845% 12.286% N/A

(b) Equality (=)

Figure B.3: Pairwise comparison of the number of tested samples favoring each approach
in the M = 8 case of the first lock-free synchronization study. Tables summarize the (a)
inequality and (b) equality relationships.

M = 16 # 1 2 3 4 5

No Supertasks 1 N/A 22.040% 24.942% 0.248% 0.557%
QB-EPDF (FF) 2 77.960% N/A 73.742% 0.000% 37.482%
QB-EPDF (NF) 3 75.058% 25.394% N/A 3.725% 0.000%
QB-EDF (FF) 4 99.752% 81.852% 95.525% N/A 85.934%
QB-EDF (NF) 5 99.443% 61.892% 80.283% 12.943% N/A

(a) Inequality (<)

M = 16 # 1 2 3 4 5

No Supertasks 1 N/A 0.000% 0.000% 0.000% 0.000%
QB-EPDF (FF) 2 0.000% N/A 0.865% 18.148% 0.626%
QB-EPDF (NF) 3 0.000% 0.865% N/A 0.751% 19.717%
QB-EDF (FF) 4 0.000% 18.148% 0.751% N/A 1.123%
QB-EDF (NF) 5 0.000% 0.626% 19.717% 1.123% N/A

(b) Equality (=)

Figure B.4: Pairwise comparison of the number of tested samples favoring each approach
in the M = 16 case of the first lock-free synchronization study. Tables summarize the (a)
inequality and (b) equality relationships.
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E3,2 = 76.175%. Finally, the labels shown in the first column of each table (to the left of the

row indexes) identify which approach is associated with each index. For instance, the “No

Supertasks” approach is assigned index 1 in Figure B.1.

The I matrix is based on a < comparison. Specifically, the percentage Ir,c reflects the

fraction of the tested samples for which the approach with index r produced strictly less infla-

tion than the approach with index c. For instance, consider comparing the “No Supertasks”

and “QB-EPDF (NF)” approaches, which are associated with 1 and 3, respectively. By I1,3,

the “No Supertasks” approach produced less inflation than the “QB-EPDF (NF)” approach

in 31.135% of the samples. Similarly, by I3,1, the “QB-EPDF (NF)” approach produced less

inflation than the “No Supertasks” approach in 68.865% of the samples.

One possibility is not directly presented in the I matrix: both approaches could have

produced the same inflation. Actually, the fraction of the samples associated with this third

possibility is easily calculated using the formula 100% − Ir,c − Ic,r. For convenience, we have

provided these values in the E matrix. Specifically, the percentage Er,c reflects the fraction

of the tested samples for which the approach with index r produced the same inflation as the

approach with index c. Since this matrix is based on equivalence, it is symmetric about its

diagonal, i.e., Er,c = Ec,r.

Since comparing an approach to itself is uninteresting, the diagonal in each matrix was

simply filled by N/A. (By the definitions given above, Ir,r = 0% and Er,r = 100% for all r.)

B.2 Locking Studies

The first two locking studies, discussed earlier in Sections 6.6.1 and 6.6.2, also included

pairwise comparisons. Figures B.5, B.6, B.7, and B.8 summarize the comparison results for
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the M = 2, 4, 8, and 16 cases of the first study. This study focuses on the performance of the

locking approaches when locks satisfy the (R3) property. The second study then considered

the case in which (R3) does not hold. Figures B.9, B.10, B.11, and B.12 summarize the

comparison results for the M = 2, 4, 8, and 16 cases of the second study.
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M = 2 # 1 2 3 4 5 6

SWSP 1 N/A 0.000% 0.062% 0.060% 0.000% 0.000%
SP 2 100.000% N/A 39.140% 36.045% 11.071% 12.292%

SP/QB-EPDF (FF) 3 99.938% 60.860% N/A 3.528% 0.000% 2.618%
SP/QB-EPDF (NF) 4 99.940% 63.955% 20.000% N/A 0.248% 0.000%
SP/QB-EDF (FF) 5 100.000% 88.929% 48.160% 46.282% N/A 8.778%
SP/QB-EDF (NF) 6 100.000% 87.708% 46.897% 43.508% 3.145% N/A

RP 7 100.000% 0.000% 38.351% 35.086% 9.371% 10.323%
RP/QB-EPDF (FF) 8 99.938% 58.845% 0.694% 1.483% 0.012% 0.666%
RP/QB-EPDF (NF) 9 99.940% 61.682% 18.543% 0.280% 0.060% 0.000%
RP/QB-EDF (FF) 10 100.000% 84.122% 45.143% 42.177% 0.057% 2.722%
RP/QB-EDF (NF) 11 100.000% 83.051% 44.574% 40.771% 2.105% 0.006%

M = 2 # 7 8 9 10 11

SWSP 1 0.000% 0.062% 0.060% 0.000% 0.000%
SP 2 14.572% 41.155% 38.318% 15.878% 16.949%

SP/QB-EPDF (FF) 3 61.649% 19.006% 14.074% 5.895% 6.882%
SP/QB-EPDF (NF) 4 64.914% 30.217% 16.788% 5.472% 6.866%
SP/QB-EDF (FF) 5 90.629% 51.028% 49.386% 21.234% 23.878%
SP/QB-EDF (NF) 6 89.677% 49.962% 47.637% 18.614% 18.912%

RP 7 N/A 40.229% 37.138% 13.638% 14.471%
RP/QB-EPDF (FF) 8 59.771% N/A 2.426% 0.000% 1.611%
RP/QB-EPDF (NF) 9 62.862% 20.589% N/A 0.231% 0.000%
RP/QB-EDF (FF) 10 86.362% 48.043% 45.205% N/A 5.795%
RP/QB-EDF (NF) 11 85.529% 47.308% 43.454% 3.537% N/A

(a) Inequality (<)

M = 2 # 1 2 3 4 5 6

SWSP 1 N/A 0.000% 0.000% 0.000% 0.000% 0.000%
SP 2 0.000% N/A 0.000% 0.000% 0.000% 0.000%

SP/QB-EPDF (FF) 3 0.000% 0.000% N/A 76.472% 51.840% 50.485%
SP/QB-EPDF (NF) 4 0.000% 0.000% 76.472% N/A 53.471% 56.492%
SP/QB-EDF (FF) 5 0.000% 0.000% 51.840% 53.471% N/A 88.077%
SP/QB-EDF (NF) 6 0.000% 0.000% 50.485% 56.492% 88.077% N/A

RP 7 0.000% 85.428% 0.000% 0.000% 0.000% 0.000%
RP/QB-EPDF (FF) 8 0.000% 0.000% 80.300% 68.300% 48.960% 49.372%
RP/QB-EPDF (NF) 9 0.000% 0.000% 67.383% 82.932% 50.554% 52.363%
RP/QB-EDF (FF) 10 0.000% 0.000% 48.962% 52.351% 78.709% 78.665%
RP/QB-EDF (NF) 11 0.000% 0.000% 48.545% 52.363% 74.017% 81.082%

M = 2 # 7 8 9 10 11

SWSP 1 0.000% 0.000% 0.000% 0.000% 0.000%
SP 2 85.428% 0.000% 0.000% 0.000% 0.000%

SP/QB-EPDF (FF) 3 0.000% 80.300% 67.383% 48.962% 48.545%
SP/QB-EPDF (NF) 4 0.000% 68.300% 82.932% 52.351% 52.363%
SP/QB-EDF (FF) 5 0.000% 48.960% 50.554% 78.709% 74.017%
SP/QB-EDF (NF) 6 0.000% 49.372% 52.363% 78.665% 81.082%

RP 7 N/A 0.000% 0.000% 0.000% 0.000%
RP/QB-EPDF (FF) 8 0.000% N/A 76.985% 51.957% 51.082%
RP/QB-EPDF (NF) 9 0.000% 76.985% N/A 54.565% 56.546%
RP/QB-EDF (FF) 10 0.000% 51.957% 54.565% N/A 90.668%
RP/QB-EDF (NF) 11 0.000% 51.082% 56.546% 90.668% N/A

(b) Equality (=)

Figure B.5: Pairwise comparison of the number of tested samples favoring each approach
in the M = 2 case and (R3) holds. Tables summarize the (a) inequality and (b) equality
relationships.
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M = 4 # 1 2 3 4 5 6

SWSP 1 N/A 0.000% 0.008% 0.005% 0.000% 0.000%
SP 2 100.000% N/A 28.340% 25.192% 1.308% 1.394%

SP/QB-EPDF (FF) 3 99.992% 71.660% N/A 23.275% 0.000% 17.663%
SP/QB-EPDF (NF) 4 99.995% 74.808% 33.675% N/A 1.863% 0.000%
SP/QB-EDF (FF) 5 100.000% 98.692% 54.023% 63.943% N/A 35.634%
SP/QB-EDF (NF) 6 100.000% 98.606% 50.854% 49.477% 8.038% N/A

RP 7 100.000% 0.000% 26.503% 23.286% 0.169% 0.180%
RP/QB-EPDF (FF) 8 99.992% 70.546% 1.848% 10.198% 0.089% 5.022%
RP/QB-EPDF (NF) 9 99.995% 73.611% 27.365% 0.625% 0.157% 0.000%
RP/QB-EDF (FF) 10 100.000% 96.969% 45.957% 46.745% 0.205% 10.406%
RP/QB-EDF (NF) 11 100.000% 96.332% 44.125% 41.157% 2.023% 0.012%

M = 4 # 7 8 9 10 11

SWSP 1 0.000% 0.008% 0.005% 0.000% 0.000%
SP 2 85.688% 29.454% 26.389% 3.031% 3.668%

SP/QB-EPDF (FF) 3 73.497% 57.237% 47.217% 31.335% 36.145%
SP/QB-EPDF (NF) 4 76.714% 60.269% 56.331% 27.108% 33.943%
SP/QB-EDF (FF) 5 99.831% 77.209% 79.095% 61.569% 68.291%
SP/QB-EDF (NF) 6 99.820% 71.309% 75.095% 50.329% 60.718%

RP 7 N/A 27.388% 24.258% 0.440% 0.517%
RP/QB-EPDF (FF) 8 72.612% N/A 20.186% 0.000% 14.800%
RP/QB-EPDF (NF) 9 75.742% 34.152% N/A 1.911% 0.000%
RP/QB-EDF (FF) 10 99.560% 53.906% 60.771% N/A 31.755%
RP/QB-EDF (NF) 11 99.483% 51.149% 49.309% 7.755% N/A

(a) Inequality (<)

M = 4 # 1 2 3 4 5 6

SWSP 1 N/A 0.000% 0.000% 0.000% 0.000% 0.000%
SP 2 0.000% N/A 0.000% 0.000% 0.000% 0.000%

SP/QB-EPDF (FF) 3 0.000% 0.000% N/A 43.049% 45.977% 31.483%
SP/QB-EPDF (NF) 4 0.000% 0.000% 43.049% N/A 34.194% 50.523%
SP/QB-EDF (FF) 5 0.000% 0.000% 45.977% 34.194% N/A 56.328%
SP/QB-EDF (NF) 6 0.000% 0.000% 31.483% 50.523% 56.328% N/A

RP 7 0.000% 14.312% 0.000% 0.000% 0.000% 0.000%
RP/QB-EPDF (FF) 8 0.000% 0.000% 40.915% 29.532% 22.702% 23.669%
RP/QB-EPDF (NF) 9 0.000% 0.000% 25.418% 43.045% 20.748% 24.905%
RP/QB-EDF (FF) 10 0.000% 0.000% 22.708% 26.148% 38.226% 39.265%
RP/QB-EDF (NF) 11 0.000% 0.000% 19.731% 24.900% 29.686% 39.269%

M = 4 # 7 8 9 10 11

SWSP 1 0.000% 0.000% 0.000% 0.000% 0.000%
SP 2 14.312% 0.000% 0.000% 0.000% 0.000%

SP/QB-EPDF (FF) 3 0.000% 40.915% 25.418% 22.708% 19.731%
SP/QB-EPDF (NF) 4 0.000% 29.532% 43.045% 26.148% 24.900%
SP/QB-EDF (FF) 5 0.000% 22.702% 20.748% 38.226% 29.686%
SP/QB-EDF (NF) 6 0.000% 23.669% 24.905% 39.265% 39.269%

RP 7 N/A 0.000% 0.000% 0.000% 0.000%
RP/QB-EPDF (FF) 8 0.000% N/A 45.662% 46.094% 34.051%
RP/QB-EPDF (NF) 9 0.000% 45.662% N/A 37.318% 50.691%
RP/QB-EDF (FF) 10 0.000% 46.094% 37.318% N/A 60.489%
RP/QB-EDF (NF) 11 0.000% 34.051% 50.691% 60.489% N/A

(b) Equality (=)

Figure B.6: Pairwise comparison of the number of tested samples favoring each approach
in the M = 4 case and (R3) holds. Tables summarize the (a) inequality and (b) equality
relationships.
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M = 8 # 1 2 3 4 5 6

SWSP 1 N/A 0.000% 0.002% 0.011% 0.000% 0.000%
SP 2 100.000% N/A 27.600% 26.469% 1.962% 2.608%

SP/QB-EPDF (FF) 3 99.998% 72.400% N/A 46.537% 0.000% 31.860%
SP/QB-EPDF (NF) 4 99.989% 73.531% 38.849% N/A 3.600% 0.000%
SP/QB-EDF (FF) 5 100.000% 98.038% 63.475% 82.634% N/A 65.686%
SP/QB-EDF (NF) 6 100.000% 97.392% 55.888% 58.862% 12.232% N/A

RP 7 100.000% 0.000% 22.128% 21.397% 0.089% 0.163%
RP/QB-EPDF (FF) 8 99.998% 69.974% 3.802% 22.938% 0.083% 4.971%
RP/QB-EPDF (NF) 9 99.989% 70.760% 27.495% 1.374% 0.058% 0.002%
RP/QB-EDF (FF) 10 100.000% 91.548% 46.371% 48.877% 0.142% 10.632%
RP/QB-EDF (NF) 11 100.000% 89.694% 43.538% 42.323% 0.731% 0.020%

M = 8 # 7 8 9 10 11

SWSP 1 0.000% 0.002% 0.011% 0.000% 0.000%
SP 2 99.886% 30.026% 29.240% 8.452% 10.305%

SP/QB-EPDF (FF) 3 77.872% 83.235% 67.631% 48.142% 52.329%
SP/QB-EPDF (NF) 4 78.603% 69.926% 84.028% 43.734% 51.557%
SP/QB-EDF (FF) 5 99.911% 94.443% 95.586% 91.246% 93.745%
SP/QB-EDF (NF) 6 99.837% 88.685% 93.883% 78.966% 91.048%

RP 7 N/A 23.523% 22.883% 0.378% 0.671%
RP/QB-EPDF (FF) 8 76.477% N/A 45.055% 0.000% 30.618%
RP/QB-EPDF (NF) 9 77.117% 38.583% N/A 3.478% 0.000%
RP/QB-EDF (FF) 10 99.622% 63.357% 80.768% N/A 65.246%
RP/QB-EDF (NF) 11 99.329% 55.382% 58.960% 11.308% N/A

(a) Inequality (<)

M = 8 # 1 2 3 4 5 6

SWSP 1 N/A 0.000% 0.000% 0.000% 0.000% 0.000%
SP 2 0.000% N/A 0.000% 0.000% 0.000% 0.000%

SP/QB-EPDF (FF) 3 0.000% 0.000% N/A 14.614% 36.525% 12.252%
SP/QB-EPDF (NF) 4 0.000% 0.000% 14.614% N/A 13.766% 41.138%
SP/QB-EDF (FF) 5 0.000% 0.000% 36.525% 13.766% N/A 22.082%
SP/QB-EDF (NF) 6 0.000% 0.000% 12.252% 41.138% 22.082% N/A

RP 7 0.000% 0.114% 0.000% 0.000% 0.000% 0.000%
RP/QB-EPDF (FF) 8 0.000% 0.000% 12.963% 7.135% 5.474% 6.345%
RP/QB-EPDF (NF) 9 0.000% 0.000% 4.874% 14.598% 4.355% 6.115%
RP/QB-EDF (FF) 10 0.000% 0.000% 5.488% 7.389% 8.612% 10.402%
RP/QB-EDF (NF) 11 0.000% 0.002% 4.132% 6.120% 5.525% 8.932%

M = 8 # 7 8 9 10 11

SWSP 1 0.000% 0.000% 0.000% 0.000% 0.000%
SP 2 0.114% 0.000% 0.000% 0.000% 0.002%

SP/QB-EPDF (FF) 3 0.000% 12.963% 4.874% 5.488% 4.132%
SP/QB-EPDF (NF) 4 0.000% 7.135% 14.598% 7.389% 6.120%
SP/QB-EDF (FF) 5 0.000% 5.474% 4.355% 8.612% 5.525%
SP/QB-EDF (NF) 6 0.000% 6.345% 6.115% 10.402% 8.932%

RP 7 N/A 0.000% 0.000% 0.000% 0.000%
RP/QB-EPDF (FF) 8 0.000% N/A 16.362% 36.643% 14.000%
RP/QB-EPDF (NF) 9 0.000% 16.362% N/A 15.754% 41.040%
RP/QB-EDF (FF) 10 0.000% 36.643% 15.754% N/A 23.446%
RP/QB-EDF (NF) 11 0.000% 14.000% 41.040% 23.446% N/A

(b) Equality (=)

Figure B.7: Pairwise comparison of the number of tested samples favoring each approach
in the M = 8 case and (R3) holds. Tables summarize the (a) inequality and (b) equality
relationships.
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M = 16 # 1 2 3 4 5 6

SWSP 1 N/A 0.000% 0.032% 0.162% 0.000% 0.000%
SP 2 100.000% N/A 40.048% 40.332% 6.035% 7.962%

SP/QB-EPDF (FF) 3 99.968% 59.952% N/A 64.732% 0.000% 27.785%
SP/QB-EPDF (NF) 4 99.838% 59.668% 33.155% N/A 3.702% 0.000%
SP/QB-EDF (FF) 5 100.000% 93.963% 80.945% 94.052% N/A 79.723%
SP/QB-EDF (NF) 6 100.000% 92.038% 70.402% 77.908% 16.054% N/A

RP 7 100.000% 0.000% 28.866% 30.394% 0.569% 1.115%
RP/QB-EPDF (FF) 8 99.966% 52.180% 6.686% 38.134% 0.031% 2.534%
RP/QB-EPDF (NF) 9 99.826% 51.205% 17.954% 2.214% 0.008% 0.008%
RP/QB-EDF (FF) 10 100.000% 71.083% 54.100% 56.451% 0.042% 7.231%
RP/QB-EDF (NF) 11 100.000% 66.969% 50.449% 50.478% 0.095% 0.011%

M = 16 # 7 8 9 10 11

SWSP 1 0.000% 0.034% 0.174% 0.000% 0.000%
SP 2 99.998% 47.820% 48.795% 28.917% 33.031%

SP/QB-EPDF (FF) 3 71.134% 86.080% 81.815% 45.632% 49.434%
SP/QB-EPDF (NF) 4 69.606% 61.208% 89.092% 42.818% 49.185%
SP/QB-EDF (FF) 5 99.431% 99.703% 99.869% 99.438% 99.722%
SP/QB-EDF (NF) 6 98.885% 96.937% 99.655% 91.697% 99.468%

RP 7 N/A 31.126% 32.702% 2.312% 3.549%
RP/QB-EPDF (FF) 8 68.874% N/A 66.111% 0.000% 30.037%
RP/QB-EPDF (NF) 9 67.298% 31.551% N/A 3.232% 0.000%
RP/QB-EDF (FF) 10 97.688% 80.832% 94.409% N/A 84.063%
RP/QB-EDF (NF) 11 96.451% 67.932% 78.046% 12.018% N/A

(a) Inequality (<)

M = 16 # 1 2 3 4 5 6

SWSP 1 N/A 0.000% 0.000% 0.000% 0.000% 0.000%
SP 2 0.000% N/A 0.000% 0.000% 0.002% 0.000%

SP/QB-EPDF (FF) 3 0.000% 0.000% N/A 2.112% 19.055% 1.814%
SP/QB-EPDF (NF) 4 0.000% 0.000% 2.112% N/A 2.246% 22.092%
SP/QB-EDF (FF) 5 0.000% 0.002% 19.055% 2.246% N/A 4.223%
SP/QB-EDF (NF) 6 0.000% 0.000% 1.814% 22.092% 4.223% N/A

RP 7 0.000% 0.002% 0.000% 0.000% 0.000% 0.000%
RP/QB-EPDF (FF) 8 0.000% 0.000% 7.234% 0.658% 0.266% 0.529%
RP/QB-EPDF (NF) 9 0.000% 0.000% 0.231% 8.694% 0.123% 0.337%
RP/QB-EDF (FF) 10 0.000% 0.000% 0.268% 0.731% 0.520% 1.072%
RP/QB-EDF (NF) 11 0.000% 0.000% 0.117% 0.337% 0.183% 0.522%

M = 16 # 7 8 9 10 11

SWSP 1 0.000% 0.000% 0.000% 0.000% 0.000%
SP 2 0.002% 0.000% 0.000% 0.000% 0.000%

SP/QB-EPDF (FF) 3 0.000% 7.234% 0.231% 0.268% 0.117%
SP/QB-EPDF (NF) 4 0.000% 0.658% 8.694% 0.731% 0.337%
SP/QB-EDF (FF) 5 0.000% 0.266% 0.123% 0.520% 0.183%
SP/QB-EDF (NF) 6 0.000% 0.529% 0.337% 1.072% 0.522%

RP 7 N/A 0.000% 0.000% 0.000% 0.000%
RP/QB-EPDF (FF) 8 0.000% N/A 2.338% 19.168% 2.031%
RP/QB-EPDF (NF) 9 0.000% 2.338% N/A 2.358% 21.954%
RP/QB-EDF (FF) 10 0.000% 19.168% 2.358% N/A 3.918%
RP/QB-EDF (NF) 11 0.000% 2.031% 21.954% 3.918% N/A

(b) Equality (=)

Figure B.8: Pairwise comparison of the number of tested samples favoring each approach in
the M = 16 case and (R3) holds. Tables summarize the (a) inequality and (b) equality
relationships.
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M = 2 # 1 2 3 4 5 6

SWSP 1 N/A 1.904% 0.022% 0.015% 0.000% 0.000%
SP 2 98.096% N/A 10.254% 9.555% 0.015% 0.011%

SP/QB-EPDF (FF) 3 99.978% 89.746% N/A 3.518% 0.000% 2.290%
SP/QB-EPDF (NF) 4 99.985% 90.445% 7.787% N/A 0.074% 0.000%
SP/QB-EDF (FF) 5 100.000% 99.985% 40.022% 40.033% N/A 10.636%
SP/QB-EDF (NF) 6 100.000% 99.989% 37.816% 39.566% 0.849% N/A

(a) Inequality (<)

M = 2 # 1 2 3 4 5 6

SWSP 1 N/A 0.000% 0.000% 0.000% 0.000% 0.000%
SP 2 0.000% N/A 0.000% 0.000% 0.000% 0.000%

SP/QB-EPDF (FF) 3 0.000% 0.000% N/A 88.695% 59.978% 59.893%
SP/QB-EPDF (NF) 4 0.000% 0.000% 88.695% N/A 59.893% 60.434%
SP/QB-EDF (FF) 5 0.000% 0.000% 59.978% 59.893% N/A 88.515%
SP/QB-EDF (NF) 6 0.000% 0.000% 59.893% 60.434% 88.515% N/A

(b) Equality (=)

Figure B.9: Pairwise comparison of the number of tested samples favoring each approach
in the M = 2 case and (R1) holds. Tables summarize the (a) inequality and (b) equality
relationships.

M = 4 # 1 2 3 4 5 6

SWSP 1 N/A 2.871% 0.467% 0.548% 0.423% 0.515%
SP 2 97.129% N/A 8.809% 8.140% 0.000% 0.000%

SP/QB-EPDF (FF) 3 99.533% 91.191% N/A 49.673% 0.000% 41.426%
SP/QB-EPDF (NF) 4 99.452% 91.860% 24.062% N/A 4.074% 0.000%
SP/QB-EDF (FF) 5 99.577% 100.000% 63.415% 81.746% N/A 65.548%
SP/QB-EDF (NF) 6 99.485% 100.000% 44.423% 58.930% 7.875% N/A

(a) Inequality (<)

M = 4 # 1 2 3 4 5 6

SWSP 1 N/A 0.000% 0.000% 0.000% 0.000% 0.000%
SP 2 0.000% N/A 0.000% 0.000% 0.000% 0.000%

SP/QB-EPDF (FF) 3 0.000% 0.000% N/A 26.265% 36.585% 14.151%
SP/QB-EPDF (NF) 4 0.000% 0.000% 26.265% N/A 14.180% 41.070%
SP/QB-EDF (FF) 5 0.000% 0.000% 36.585% 14.180% N/A 26.577%
SP/QB-EDF (NF) 6 0.000% 0.000% 14.151% 41.070% 26.577% N/A

(b) Equality (=)

Figure B.10: Pairwise comparison of the number of tested samples favoring each approach
in the M = 4 case and (R1) holds. Tables summarize the (a) inequality and (b) equality
relationships.
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M = 8 # 1 2 3 4 5 6

SWSP 1 N/A 3.544% 2.456% 2.706% 2.283% 2.430%
SP 2 96.456% N/A 16.125% 17.540% 0.000% 0.015%

SP/QB-EPDF (FF) 3 97.544% 83.875% N/A 63.945% 0.000% 42.518%
SP/QB-EPDF (NF) 4 97.294% 82.460% 33.757% N/A 5.401% 0.000%
SP/QB-EDF (FF) 5 97.717% 100.000% 81.015% 93.824% N/A 84.092%
SP/QB-EDF (NF) 6 97.570% 99.985% 56.724% 80.805% 13.504% N/A

(a) Inequality (<)

M = 8 # 1 2 3 4 5 6

SWSP 1 N/A 0.000% 0.000% 0.000% 0.000% 0.000%
SP 2 0.000% N/A 0.000% 0.000% 0.000% 0.000%

SP/QB-EPDF (FF) 3 0.000% 0.000% N/A 2.298% 18.985% 0.757%
SP/QB-EPDF (NF) 4 0.000% 0.000% 2.298% N/A 0.776% 19.195%
SP/QB-EDF (FF) 5 0.000% 0.000% 18.985% 0.776% N/A 2.404%
SP/QB-EDF (NF) 6 0.000% 0.000% 0.757% 19.195% 2.404% N/A

(b) Equality (=)

Figure B.11: Pairwise comparison of the number of tested samples favoring each approach
in the M = 8 case and (R1) holds. Tables summarize the (a) inequality and (b) equality
relationships.

M = 16 # 1 2 3 4 5 6

SWSP 1 N/A 3.923% 3.739% 4.415% 3.426% 3.478%
SP 2 96.077% N/A 37.062% 47.460% 0.287% 1.213%

SP/QB-EPDF (FF) 3 96.261% 62.938% N/A 74.974% 0.000% 19.743%
SP/QB-EPDF (NF) 4 95.585% 52.540% 24.857% N/A 3.301% 0.000%
SP/QB-EDF (FF) 5 96.574% 99.713% 94.739% 96.688% N/A 85.099%
SP/QB-EDF (NF) 6 96.522% 98.787% 80.246% 95.312% 14.761% N/A

(a) Inequality (<)

M = 16 # 1 2 3 4 5 6

SWSP 1 N/A 0.000% 0.000% 0.000% 0.000% 0.000%
SP 2 0.000% N/A 0.000% 0.000% 0.000% 0.000%

SP/QB-EPDF (FF) 3 0.000% 0.000% N/A 0.169% 5.261% 0.011%
SP/QB-EPDF (NF) 4 0.000% 0.000% 0.169% N/A 0.011% 4.688%
SP/QB-EDF (FF) 5 0.000% 0.000% 5.261% 0.011% N/A 0.140%
SP/QB-EDF (NF) 6 0.000% 0.000% 0.011% 4.688% 0.140% N/A

(b) Equality (=)

Figure B.12: Pairwise comparison of the number of tested samples favoring each approach
in the M = 16 case and (R1) holds. Tables summarize the (a) inequality and (b) equality
relationships.
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APPENDIX C

Reweighting under the Staggered Model

To evaluate the impact of using staggered slots (discussed in Chapter 7) on the amount of

reweighting overhead experienced under the FP-EDF supertasking scenario (see Chapter 4),

we repeated the first study from Chapter 4 using only the FP-EDF scenario.1 Inflation was

measured under each of the aligned and staggered scheduling models. All aspects of this

study are identical to that of the corresponding study in Chapter 4, except that the number

of samples collected for each combination of parameters was increased from four to ten.

C.1 Measurement under the Staggered Model

As explained in Chapter 7, the reweighting framework presented in Chapter 4 can be (pes-

simistically) adapted for use under the staggered model by simply reducing the supply esti-

mate by ∆
def
= M−1

M (see Section 7.2). For this study, the supertask supply was actually reduced

by one rather than ∆ so that the reweighting process would not depend on M . In addition,

this enables the use of the selected weight in systems consisting of any number of processors.

(This property follows from the fact that ∆ < 1 holds for all M .)

The following definition of ∆(S, L) for the staggered model follows easily from the deriva-

1We focus on FP-EDF because the QB-EPDF and QB-EDF scenarios include other forms of overhead,
while inflation under the FP-EDF is due solely to reweighting overhead.
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tions presented earlier in Section 4.3.1.

∆(S, L)
def
=

⌈

∑

T∈SL

(⌊

L−T.c
T.p

⌋

· T.e
Q

)

⌉

+ β

bLc − 1 − ε

C.2 Results

Figures C.1, C.2, and C.3 show how inflation varies with the task count, total utilization, and

minimum task period, respectively. Sampling validity was approximately unity for all sample

means. Because of this, the graphs of sampling validity are omitted.

In all graphs, the staggered model appears to increase the reweighting overhead by a

factor of approximately 2.5. Indeed, the mean inflation based on all samples was 0.000220783

under the aligned model and 0.000536318 under the staggered model, which implies a factor of

2.43 increase. However, notice that the mean inflation is still consistently low (i.e., less than

1.5% of a single processor’s capacity) throughout. Because of this, staggering is not expected

to increase reweighting overhead substantially under the QB-EDF and FP-EDF approaches,

under which reweighting overhead is typically very low.2 However, since reweighting overhead

is significantly higher under QB-EPDF, staggering may produce prohibitively high inflation.

2Recall that inflation under QB-EDF primarily consists of mapping overhead.
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Figure C.1: Plots show how inflation varies with the task count under the FP-EDF scenario
when using each of the aligned and staggered models. The figure shows (a) the sample means
and (b) the 99% confidence interval for each sample mean.
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Figure C.2: Plots show how inflation varies with the utilization under the FP-EDF scenario
when using each of the aligned and staggered models. The figure shows (a) the sample means
and (b) the 99% confidence interval for each sample mean.
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Figure C.3: Plots show how inflation varies with the minimum task period under the FP-
EDF scenario when using each of the aligned and staggered models. The figure shows (a)
the sample means and (b) the 99% confidence interval for each sample mean.
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