
Compression and Streaming of Polygon Meshes

by
Martin Isenburg

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in
the Department of Computer Science.

Chapel Hill
2005

Approved by:

Jack Snoeyink, Advisor

Craig Gotsman, Reader

Peter Lindstrom, Reader

Dinesh Manocha, Committee Member

Ming Lin, Committee Member

ii

iii

ABSTRACT
MARTIN ISENBURG: Compression and Streaming of Polygon Meshes

(Under the direction of Jack Snoeyink)

Polygon meshes provide a simple way to represent three-dimensional surfaces and

are the de-facto standard for interactive visualization of geometric models. Storing

large polygon meshes in standard indexed formats results in files of substantial size.

Such formats allow listing vertices and polygons in any order so that not only the mesh

is stored but also the particular ordering of its elements. Mesh compression rearranges

vertices and polygons into an order that allows more compact coding of the incidence

between vertices and predictive compression of their positions. Previous schemes were

designed for triangle meshes and polygonal faces were triangulated prior to compression.

I show that polygon models can be encoded more compactly by avoiding the initial

triangulation step. I describe two compression schemes that achieve better compression

by encoding meshes directly in their polygonal representation. I demonstrate that the

same holds true for volume meshes by extending one scheme to hexahedral meshes.

Nowadays scientists create polygonal meshes of incredible size. Ironically, com-

pression schemes are not capable—at least not on common desktop PCs—to deal with

giga-byte size meshes that need compression the most. I describe how to compress such

meshes on a standard PC using an out-of-core approach. The compressed mesh allows

streaming decompression with minimal memory requirements while providing seamless

connectivity along the advancing decompression boundaries. I show that this type of

mesh access allows the design of IO-efficient out-of-core mesh simplification algorithms.

In contrast, the mesh access provided by today’s indexed formats complicates sub-

sequent processing because of their IO-inefficiency in de-referencing (in resolving all

polygon to vertex references). These mesh formats were designed years ago and do not

take into account that a mesh may not fit into main memory. When operating on large

data sets that mostly reside on disk, the data access must be consistent with its layout.

I extract the essence of our compressed format to design a general streaming format

that provides concurrent access to coherently ordered elements while documenting their

coherence. This eliminates the problem of IO-inefficient de-referencing. Furthermore,

it allows to re-design mesh processing tasks to work as streaming, possibly pipelined,

modules on large meshes, such as on-the-fly compression of simplified mesh output.

iv

v

ACKNOWLEDGMENTS

Five years have passed since I arrived in Chapel Hill and each one of them has been

great. While I am super happy that my dissertation is now complete, I am also a little

bit sad that my time here is coming to an end. Whenever asked why I had not yet

defended my thesis, my supervisor would answer “Martin is just having too much fun.”

But he never mentioned that in fact he was to blame for that. After all, he was the one

who made sure that those years were so much fun. So let me set the record straight.

As a visiting student at UBC in 1996 I enrolled in the “Computational Geometry”

class that was taught by then associate professor Jack Snoeyink. He excited all of

us about the material and the final course project with Marie-Claude was my first

“real research experience” with polygon meshes. Shortly afterward, Jack took me,

academically speaking, under his wing. First, he helped me to get into the Masters

program at UBC, then became my thesis advisor, and eventually brought me along to

UNC, where he would ultimately guide me to complete my doctorate.

Jack gave me the best guidance a student could hope for. He always had an open

door when I needed advise but also let me do my thing when I was on a roll; yet he

was immediately available when I ran into an unforeseen obstacle, wanted to share an

exciting result, or simply needed reassurance that I was on the right track. He always

encouraged me to pursue all opportunities, be it working for a summer in industry,

spending time in other research labs, or attending academic meetings. He also knew to

motivate me with the occasional conference trip to more “exotic” places.

Jack always kept a good balance between hard work and good fun. There was

time for a game of foosball, an ultimate match, or an evening in the brew pub. His

support extended well beyond academic affairs. He helped me move from Vancouver to

Chapel Hill, sent someone to the airport to pick me up, registered and drove me to the

“unavoidable” GRE test in Greensboro, and much more. He also sprang into action to

save our SIGGRAPH 2000 presentation virtually in the last minute with a high-speed

cab ride back the hotel. Yes, I was having fun. Thank you for all this, Jack!

vi

There are two other people who directly contributed to the work presented here. Ste-

fan Gumhold single-handedly implemented the Out-of-Core Mesh described in Chap-

ter 7 and Peter Lindstrom wrote most of the streaming simplification algorithms de-

scribed in Chapter 8 and the out-of-core mesh re-ordering tools from Chapter 9.

I also want to thank Craig Gotsman who invited me to work for half a year with

Stefan Gumhold at the Technion in Haifa in 2000. This cooperation was quite synergetic

and resulted in a fun paper. I enjoyed many espressos that “Chaim” prepared for me

in his office with his high-tech coffee maker. I also thank Pierre Alliez and Olivier

Deviller who welcomed me to their group at INRIA Sophia-Antipolis and helped me in

a thousand ways to get settled there. They are ultimately to blame that I now speak

some basic French. I also thank Peter Lindstrom for being so excited about streaming

and for inviting me to California for six month of enjoyable joint-work. Peter also did

an excellent job in reviewing this manuscript and finding many little mistakes.

Big thanks go to Anveesh, Miguel, and Adrian who lived for six month with my

mattress in their hallway, to Michael North who stood with my name on a sign at RDU

airport when I first arrived, to Zachi Karni who was a good friend during my time in

Israel, to Ming for challenging me repeatedly with pointed questions during my defense,

to Dinesh for not being too angry about me reading the “Daily Tar Heel” during his

lectures, to Janet Jones for loaning me her antique furniture and for infinite patience

despite my chronic slack with filing paperwork, to my co-workers at EAI, Intel, and

Nvidia for making my work experiences in the “real-world” so enjoyable, to all the

baristas around town that kept my research going with numerous free coffee refills, to

my fellow students with whom I spent fun times in the department and in local coffee

shops, bars, and parties around Chapel Hill and Carrboro, to Scott who has been a true

friend and a great roommate in 20B Davie Circle for fun roadtrips and those “burned”

week-old Driade pastries that kept me going under SIGGRAPH submission stress, to

my childhood friends Marcus and Oliver for supplying me with hometown gossip, to

all my fellow hikers on backpacking and hot spring trips in California and Oregon, to

Henna who ironed the tie that made me look so distinguished during my defense talk,

and to the five highly-educated scientists that it took to get it properly tied.

And finally, big thanks go to my mom, my dad, and my sister for their everlasting

love and support from far away. Sometimes weeks went by without a note from me

during the crazy rush to meet some conference deadline. But they would always be

there for me to relieve some of that stress, to share joyous moments of accomplishment,

and to come for the occasional visit no matter where I happened to be.

vii

CONTENTS

LIST OF FIGURES xi

LIST OF TABLES xiii

1 Introduction 1

1.1 Compression . 3

1.2 Streaming . 5

1.3 Overview . 8

2 Mesh Compression 11

2.1 Preliminaries . 14

2.2 Arithmetic Coding . 14

2.3 Connectivity Compression . 15

2.4 Coding Planar Graphs . 17

2.5 Coding Triangle Mesh Connectivity . 20

2.6 Optimal Coding of Planar Triangulations 25

2.7 Extensions to Polygonal Connectivity 27

3 Edge-based Connectivity Coding 29

3.1 Encoding and Decoding . 30

3.2 Compression . 33

3.3 Quadrilateral Grids . 34

3.4 Coding Triangular and Quadrangular Meshes 35

3.5 Coding Stripified Triangle Meshes . 36

3.5.1 Triangle Strips . 37

3.5.2 Encoding Connectivity and Stripification 38

3.5.3 Encoding the Stripification separately 42

3.6 Summary . 42

viii

3.7 Hindsights . 45

4 Degree-based Connectivity Coding 47

4.1 Coding with Vertex and Face Degrees 48

4.2 Compressing with Duality Prediction 50

4.2.1 Compressing Face Degrees . 52

4.2.2 Compressing Vertex Degrees . 53

4.2.3 Compressing Offsets and Indices 53

4.3 Coding Non-Manifold Meshes . 53

4.4 Reducing the Number of Splits . 55

4.5 Counts and Invariants . 56

4.6 Results . 58

4.7 Splits and Split Offsets . 58

4.7.1 Splits can in general not be avoided 59

4.7.2 Split offsets are in general not redundant 60

4.8 Summary . 63

4.9 Hindsights . 63

5 Coding Geometry and Properties 65

5.1 Compressing Vertex Positions . 66

5.1.1 Predicting within Polygons . 67

5.1.2 Compressing Corrective Vectors 69

5.1.3 Results . 70

5.1.4 Discussion . 71

5.2 Compressing the Property Mapping . 73

5.2.1 Characterizing the Property Mapping 74

5.2.2 Encoding the Property Mapping 76

5.2.3 Predicting the Property Mapping 78

5.2.4 Stripified Triangle Meshes . 82

5.3 Compressing Texture Coordinates . 84

5.3.1 Discontinuities in the Texture Mapping 85

5.3.2 Previous Work . 87

5.3.3 Predicting Texture Coordinates 88

5.3.4 Results . 90

5.4 Summary . 91

5.5 Hindsights . 92

ix

6 Compression of Hexahedral Meshes 93

6.1 Introduction . 94

6.2 Related Work . 95

6.3 Preliminaries . 98

6.4 Coding Connectivity with Degrees . 99

6.5 Compressing the Connectivity . 101

6.5.1 Propagating the Border Information 103

6.5.2 Join Operations . 104

6.5.3 Reducing the Number of Join Operations 106

6.6 Compressing the Geometry . 106

6.7 Implementation and Results . 109

6.8 Summary . 111

6.9 Hindsights . 112

7 Out-of-Core Compression 113

7.1 Introduction . 114

7.2 Related Work . 115

7.3 Out-of-Core Mesh . 119

7.3.1 Half-Edge Data-Structure . 119

7.3.2 Clustering . 120

7.3.3 Building the Out-of-Core Mesh 121

7.3.4 Results . 125

7.4 Compression . 127

7.4.1 Connectivity Coding . 127

7.4.2 Geometry Coding . 129

7.4.3 Results . 131

7.5 Summary . 133

7.6 Hindsights . 134

8 Processing Meshes in Stream Order 135

8.1 Introduction . 136

8.2 Out-of-Core Processing . 137

8.3 Processing Sequences . 139

8.4 Large Mesh Simplification . 144

8.5 Boundary-Based Processing . 146

8.5.1 Results . 152

x

8.6 Buffer-Based Processing . 152

8.6.1 Results . 154

8.7 Summary . 155

8.8 Hindsights . 157

9 Streaming Meshes 159

9.1 Introduction . 160

9.2 Related Work . 162

9.3 Mesh Layouts . 164

9.3.1 Definitions . 165

9.3.2 Incoherent Layouts . 166

9.4 Streaming Meshes . 167

9.4.1 Definitions . 168

9.4.2 Working with Streaming Meshes 170

9.5 Generating Streaming Meshes . 171

9.5.1 Interleaving . 172

9.5.2 Reordering . 172

9.5.3 Results . 178

9.6 Compressing Streaming Meshes . 179

9.6.1 Compressing in Stream Order 179

9.6.2 Bounding-box less quantization 182

9.6.3 Results . 182

9.7 Summary . 185

9.8 Hindsights . 187

10 Conclusion 189

10.1 Contributions . 189

10.2 Limitations . 191

10.3 Future Work . 192

Bibliography 193

xi

LIST OF FIGURES

1.1 Indexed mesh format example . 1

1.2 Incoherence in indexed mesh formats 5

2.1 Workflow of a typical mesh compressor 11

2.2 Coding planar graphs with Turan’s method 18

2.3 Equivalence of Keeler Westbrook’s method and Rossignac’s Edgebreaker 20

2.4 Different approaches to connectivity coding by region-growing 21

2.5 Edgebreaker and Face Fixer’s labeling of a depth-first spanning tree . . 24

2.6 Poulalhon and Schaeffer’s labeling of a particular spanning tree 26

3.1 Meshes containing few triangles . 29

3.2 Face Fixer labels and their corresponding boundary updates 32

3.3 Meshes with quad grids and the QG label for encoding them 35

3.4 Labels TR, TL TB, and TE for encoding triangle strips 39

3.5 Stripified meshes used in experiments 41

3.6 Step-by-step encoding of a stripified mesh 43

3.7 Step-by-step decoding of a stripified mesh 44

4.1 Correlation in degree of neighboring vertices and faces 47

4.2 Possible scenarios when coding with vertex and face degrees 49

4.3 Step-by-step decoding of polygonal connectivity with degrees 51

4.4 Example proving the non-redundancy of split offsets 61

5.1 Polygonal faces are “fairly” planar and convex 65

5.2 Parallelogram predictions “across” and “within” polygons 68

5.3 Step-by-step decompression of vertices with different predictions 73

5.4 Definitions for “smooth” and “crease” property mappings 75

5.5 Simple rules to save vertex and corner bits 78

5.6 Example scenarios for vertex bit prediction 79

5.7 Example scenarios for corner bit prediction 80

5.8 Meshes with normal mapping used in our experiments 82

5.9 Discontinuities in the texture mapping of the “lion” model 85

5.10 Texture mappings of the “cat” and the “1510” model 86

xii

5.11 Possible scenarios when predicting texture coordinates 88

6.1 Traversal of hexahedral mesh during compression 93

6.2 Possible face-adjacent configurations between hexahedron and hull . . . 99

6.3 Edge-adjacencies and vertex-adjacencies with the hull 100

6.4 Encoding the first 15 tetrahedra of the “fru” mesh 101

6.5 Propagating the border information . 103

6.6 Freeze-frames showing the encoding process on the “test” mesh 105

6.7 Vertex prediction rules for different configurations 107

6.8 Data structures used for compression and decompression 109

6.9 Hexahedral example models used in our experiments 110

7.1 Visualization of out-of-core decompressing the “St. Matthew” 113

7.2 Out-of-core rendering of the 82 million triangle “Double Eagle” 118

7.3 Half-edge data structure used by Out-of-Core Mesh 119

7.4 Visualization of the clustering and its usage during compression 122

7.5 Sorting of half-edges into clusters . 123

7.6 Data structures for out-of-core compression and decompression 127

8.1 Mesh simplification using a fixed-size triangle buffer 135

8.2 Generation of triangles at the processing boundary 140

8.3 Example use of a processing sequence reader 141

8.4 Converting to processing sequences via a waiting-area 142

8.5 Using boundary-based processing for simplification 147

8.6 Multiple vertices per cell due to cell-dividing edges 150

8.7 Improving quality of vertex-clustering based simplifications 151

8.8 Using buffer-based processing for simplification 154

8.9 Adaptive simplification of the “David” statue 156

9.1 Layout of “Lucy” mesh before and after spectral sequencing 159

9.2 Visual illustrations of mesh layouts . 164

9.3 Small example mesh in three different layouts 166

9.4 Highlighting triangles with high vertex span 167

9.5 Simple examples for a streaming ASCII format 169

9.6 Four different reorderings for the “dragon” model 176

9.7 Example API for streaming mesh reader and writer 180

9.8 Potential configurations when writing a triangle 183

xiii

LIST OF TABLES

3.1 Changes in element counts for each Face Fixer label 31

3.2 Compression rates of Face Fixer on polygon meshes 34

3.3 Performance of Face Fixer on purely triangular meshes 36

3.4 Compression rates for triangle-stripped connectivity 40

4.1 Degree distributions in polygon meshes used in our experiments 54

4.2 Coding improvements due to adaptive traversal 56

4.3 Compression rates in comparison to those of other schemes 57

4.4 Number of non-unique offset-less degree encodings 62

5.1 Percentage of “within” predictions and difference in bit-rates 69

5.2 Improvement in compression due to polygonal predictions 70

5.3 Predictive compression of vertex positions at different precisions 71

5.4 Statistics on the normal mapping for our example meshes 79

5.5 Bit-rates for predictive coding of the property mapping 81

5.6 Arithmetic coding of discontinuity bits versus our predictive scheme . . 81

5.7 Bit-rates for coding the property mapping of stripified meshes 84

5.8 Differently predicted texture coordinates and corresponding bit-rates . 89

5.9 Predictive compression of texture coordinates at different precisions . . 90

6.1 Characterizing counts for adjacency between hexahedron and hull . . . 101

6.2 Degree distribution for border and interior edges 105

6.3 Bit-rates for compressed geometry at different quantization levels . . . 108

6.4 Mesh characteristics and compression results 109

7.1 Construction and performance measurements for out-of-core mesh . . . 126

7.2 Samples per millimeter at different quantization levels 130

7.3 Large models and their uncompressed/compressed size on disk 131

7.4 Bit-rates for connectivity and geometry at different precisions 132

7.5 Decompression and rendering times at different precisions 132

8.1 Characteristics of meshes used in our simplification experiments 146

8.2 Results for boundary-based, vertex-cluster simplification 150

xiv

8.3 Results for buffer-based, multiple-choice simplification 155

9.1 Stream quality of original and reordered mesh layouts 177

9.2 Timings for out-of-core creation of streaming meshes 178

9.3 Results for compressing in stream order 184

Chapter 1

Introduction

triceratops.obj
#
2832 vertices
2834 polygons
#
v 3.661 0.002 -0.738
v 3.719 0.347 -0.833
v 3.977 0.311 -0.725
v 4.077 0.139 -0.654
����������������

f 2806 2810 2815 2821
f 2797 2801 2811 2805
f 2789 2793 2802 2796
f 2783 2794 2788
����������������

Figure 1.1: Indexed mesh formats are commonly used for storing and distributing
polygon meshes. Shown is an excerpt of the OBJ file for the “triceratops” model.

Irregular polygon meshes are used to represent surfaces in many applications such as

geographic information systems, virtual reality, computer-aided design, finite element

analysis, and computer games. They provide a simple mechanism for describing three-

dimensional objects and are easily derived from other surface representations. The large

number of polygons that is required to accurately represent a smooth surface is a major

drawback as bandwidth to the rendering pipeline is the limiting factor of most graphics

applications. Nevertheless, polygon meshes remain the de-facto standard for interactive

visualization of geometric models. One one hand, this has put manufacturers of graphic

acceleration boards in fierce competition on the number of polygons per second that

their hardware can render. On the other hand, it has motivated researchers to find

suitably compact representations for polygon meshes.

The standard representation of a polygon mesh uses an array of floats to specify

the vertex positions and an array of integers containing indices into the vertex array

to specify the polygons. This is illustrated in Figure 1.1 at the example of the popular

“triceratops” model. The array of positions is called the geometry and the array of

2

indexed polygons is called the connectivity of the mesh. Optional properties (e.g. surface

normals, texture coordinates, ... that further refine the visual appearance of a model)

and how they are attached to the mesh are specified in a similar manner.

A number of indexed mesh formats have emerged over the past decades, such as

VRML, OBJ, PLY, or X3D just to name a few. They are simple to create and parse

and map almost directly to the graphics APIs commonly used for rendering. These

formats are basically identical and each graphics researcher has spent some quality

time converting models from one format to another. Unfortunately indexed formats

are not the most concise description for polygonal meshes. Large and detailed models

can result in files of substantial size that are slow to transmit and expensive to store.

The bloat of an indexed mesh representation becomes more pronounced as the mesh

becomes bigger because the storage costs for the indices increases super-linearly with

the number of vertices. While the per-vertex costs for specifying additional vertex

positions is constant, the per-vertex cost for referencing them increases logarithmically.

The most concise indexed format stores 3b bits per vertex for the geometry, where b

is a constant that stands for the number bits used to represent each coordinate, and

k log2(v) bits per vertex for the connectivity, where v is the number of vertices in the

mesh and k is the average number of times each vertex is referenced, which is about 6

for triangle meshes and about 4 for polygon meshes such as the “triceratops”. Hence,

for large meshes the connectivity quickly dominates the overall storing costs.

The particular order in which polygons and vertices appear in their array makes

no difference to the geometric shape that the polygon mesh describes. An indexed

format imposes no constraints on the order in which the polygons are listed. Neither

does it matter which of a polygon’s vertices is listed first, as long as they are listed

in a consistent, typically counterclockwise order around that polygon. Furthermore,

the vertices of a polygon may be located anywhere in the vertex array. Subsequent

polygons could potentially reference vertices at opposite ends of the array, whereas

the first and the last polygon could reference the same vertex. That this happens in

practice is apparent in Figure 1.1 where the first polygons of the “triceratops” reference

some of the last vertices.

Indexed formats are so expensive because of this ability to arrange polygons and

vertices pretty much at random. These formats accommodate an incredible number

of different descriptions for one and the same polygon model. For a mesh with p

polygons and v vertices there are p! possible ways in which the polygons can be arranged

and v! possible ways to permute the vertex array. Each arrangement of the polygons

3

can be combined with any permutation of the vertices which already gives us p! · v!

different descriptions for a particular polygon model. And that is before considering

the flexibility that the d indices of each individual polygon can be listed in d different

rotations. The large number of different descriptions that each single mesh has directly

leads to the bloat of an indexed format, because it not only specifies the mesh, but also

one of these many descriptions.

1.1 Compression

To reduce transmission times either between several networked computers or between

the main memory and the graphics card, a number of mesh compression schemes have

been proposed that reduce the amount of data needed to describe a particular polygonal

model. The more compact this description, the smaller the delay when transmitting it

across a network from one computer to another or when sending it across an internal

bus to the graphics adapter. Mesh compression is a relatively young research area that

was started by the pioneering work of (Deering, 1995).

Compression schemes completely ignore the original orderings of polygons and ver-

tices. Using deterministic ordering rules they reduce the exponential number of different

descriptions for a single mesh that an indexed format can accommodate to a linear num-

ber. By restricting the mesh elements to appear in a “somewhat” canonical order they

can replace global indices with a small set of symbols that stores the local incidence

relation between the mesh elements. Polygons are encoded in the order in which they

are encountered during the encoding of the connectivity graph of the mesh and vertices

are stored in the order in which they are first referenced by the re-ordered polygons.

This effectively correlates both the ordering of the polygons among each other as well as

the ordering of the vertices in respect to that of the polygons. Coding the connectivity

graph of a mesh can usually be done with a constant number of bits per vertex (bpv)

with bit-rates between 0.5 to 4.0 bpv being typical. In comparison, an indexed format

uses between 4 log2(v) and 6 log2(v) bpv for a mesh with v vertices.

Previously the focus has been on compressing fully triangulated data sets (Taubin

and Rossignac, 1998; Touma and Gotsman, 1998; Gumhold and Strasser, 1998; Li and

Kuo, 1998; Rossignac, 1999; Bajaj et al., 1999), a natural candidate for the lowest com-

mon denominator. However, many polygonal meshes contain only a small percentage

of triangles, like the “triceratops” model shown in Figure 1.1, for example. The “Pre-

mier Collection” from Viewpoint Datalabs—a well-known source of high quality 3D

models—consists mostly of meshes with relatively low triangular face counts. Likewise,

4

few triangles are found in the output formats of many geometric modeling packages.

The dominating element of these meshes is the quadrangle or quadrilateral, but pen-

tagons, hexagons and higher degree faces are also common.

To encode polygonal meshes, previously reported mesh compression schemes tri-

angulate all non-triangular faces prior to compression. Since there are many possible

ways to triangulate a polygon this can lead to bloat in the representation. First, this

approach does not encode the original polygonal connectivity but one of the many pos-

sible triangulations that was chosen to represent it. And second, in order to be able to

recover the original polygons, additional information needs to be stored that marks all

the edges that were added during the triangulation step for later removal. For maximal

compression it is beneficial to keep a mesh in its native polygonal representation and

delay the conversion to triangles until this becomes necessary.

(King et al., 1999) were first to report a compression scheme that the can represent

the connectivity information of quadrangular meshes with fewer bits than that of their

triangulated counterparts. Furthermore, knowledge about polygonal faces, which tend

to be fairly planar and convex, can also be useful for more accurate geometry predic-

tion. While a non-triangular face is usually not perfectly planar, major creases are

improbable to occur across it—otherwise it would likely have been triangulated when

the model was designed. The geometry predictor introduced by (Touma and Gots-

man, 1998), for example, is based on the assumption that four neighboring vertices

form a parallelogram. While the four vertices of two adjacent triangles can violate this

assumption quite drastically, the four vertices of a convex quadrangle can not.

The first part of my thesis is

Polygon models can be compressed more compactly by avoiding the initial

triangulation step and operating directly on polygonal connectivity.

In support of my thesis I have designed and implemented novel mesh compression

schemes, as well as improved and extended existing schemes. I present the main re-

sults of this work in Chapter3 3 through 6. I show that both the connectivity and the

geometry of polygon meshes can be compressed more efficiently by operating directly

on the polygonal representation of the mesh. I also describe techniques for efficient

compression of mesh properties, which have been somewhat neglected in previous work

on compression, but which are important for fast delivery of the property-rich 3D con-

tent of Web applications. Finally, I demonstrate how to generalize the most successful

techniques for compressing polygonal surface meshes to hexahedral volume meshes.

5

Figure 1.2: Illustration of incoherence in the element ordering of meshes stored in
indexed formats: (a) The “Stanford bunny” and (b) the 10,000 times more complex
“Atlas”. Renderings color-code triangles based on their position in the array. Layout
diagrams connect triangles that share the same vertex with horizontal line segments
(green) and vertices referenced by the same triangle with vertical line segments (gray).

1.2 Streaming

Modern scanning technology has enabled scientists to create polygonal meshes of in-

credible size. Recent examples include statues scanned for historical reconstruction,

isosurfaces displayed to understand scientific simulations, and terrain measured to pre-

dict flood impact. The large “Atlas” statue shown in Figure 1.2 from Stanford’s Digital

Michelangelo Project (Levoy et al., 2000), for example, has over 250 million vertices

and more than 500 million triangles. Ironically, current mesh compression schemes are

not capable—at least not on common desktop PCs—of dealing with meshes of the giga-

byte size that would benefit from compression the most. Currently, mesh compression

algorithms can be used only when connectivity and geometry of the mesh are small

enough to reside in main memory.

Storing polygon models that contain millions of vertices in a standard indexed

format not only has the disadvantage of requiring large amounts of disk space. The

more serious problem is that this representation does not scale well with increasing

model size. Today’s mesh formats were designed years ago, when meshes were orders

of magnitude smaller. They implicitly assume that it is possible to completely load

the mesh into the main memory. The most fundamental operation for any indexed

mesh format to support is dereferencing of the input mesh (i.e. resolving all triangle

to vertex references). To efficiently do this for large data sets that mostly reside on

the hard disk, the mesh format must take into account the memory hierarchy of a

computer. The order in which the data is accessed must be consistent with its layout

on disk in order to avoid frequent reloading of mesh data from slow external memory.

6

The flexibility of being able to randomly order vertices and triangles in their re-

spective array was convenient for working with smaller models such as the 70 thousand

triangle “Stanford bunny”. This polygon model has helped popularize the PLY format

and abuses the flexibility in laying out the mesh elements like no other data set. Its

mesh layout is highly incoherent, which we demonstrate visually with the help of two

illustrations in Figure 1.2. Storing the 500 million triangle “Atlas” statue in the same

format means that a six gigabyte array of triangles references into a three gigabyte

array of vertex positions. The visualizations reveal that some vertices are referenced

over spans of up to 550,000 triangles—equaling 700 MB of the triangle array. Because

common desktop PCs can not operate on nine gigabyte of indexed mesh data, the

“Atlas” statue is provided in twelve pieces in Stanford’s Webarchive.

One could argue that simply memory mapping the indexed mesh and having the

virtual memory functionality of the operating system swap in the relevant sections of

the vertex and triangle arrays would be sufficient. Such an approach is feasible if the

layout of the mesh is sufficiently coherent. Obviously, current mesh formats do not

prevent us from storing meshes in a coherent fashion. But they also do not reward

us for doing so. The problem is not only the potential lack of coherence but also

its unforeseeability. To operate robustly on large indexed meshes, an algorithm must

either be prepared to handle the worst possible input or make assumptions about their

coherence that are bound to fail on some inputs.

The second part of my thesis is

Ordering the elements of polygonal meshes in an interleaved and coherent

manner while also documenting their coherence in the file format enables

the design of IO-efficient processing modules that operate on the data in a

streaming, possibly pipelined, fashion.

In support of my thesis I have designed and implemented out-of-core techniques that

can convert large indexed meshes into a streaming representation schemes using only

limited memory resources. I have adapted several mesh processing tasks to consume,

operate on, and produce meshes in a streaming manner and have shown that this

improves run times, memory efficiency, and sometimes even processing quality (for

mesh simplification). The results of this work are presented in Chapters 7 through 9.

I describe how to compress gigantic meshes in one piece on a standard PC using an

out-of-core approach. The resulting compressed format allows streaming decompression

with a small memory foot-print at speeds that are CPU- and not IO-limited. The

7

particular type of streaming access to a mesh that is provided by our decompressor

makes simple operations on large meshes surprisingly easy. This promises potential

for using this type of out-of-core mesh access to also perform other, more complex

mesh processing tasks in a more efficient manner. I demonstrate that this is indeed

the case by adapting two simplification algorithms to take advantage of the IO-efficient

out-of-core mesh access that our compressed format provides.

The ease with which meshes in our compressed format can be processed suggests

that a streaming representation is better suited for storing large models than current in-

dexed mesh formats. I extract the essence of what makes our compressed format useful

to design a new, more general streaming mesh format. While conceptually simple, this

format eliminates once and for all the problem of de-referencing indexed meshes. Fur-

thermore it allows to re-design certain mesh processing algorithms to work as streaming,

possibly pipelined, modules on large meshes. I describe measures for different stream

qualities and how they impact processing. I present several re-ordering algorithms and

evaluate the stream quality of the meshes they produce. I also describe a scheme that

can compress streaming meshes on-the-fly in their particular stream order.

The availability of a streaming format enables us to consider a new breed of algo-

rithms that incorporate a streaming paradigm from ground up into their design, where

all processing happens in a small in-core buffer into which original vertices and tri-

angles stream from disk and out of which already processed elements stream back to

disk. Such algorithms have to adapt their computations to respect this new type of

mesh access. Doing so promises significant improvements in mesh processing speed and

scalability to meshes of arbitrarily large size. Future work will address which part of

the mesh processing pipeline can operate in a streaming fashion and which extensions

or specializations are needed to make it useful for other tasks.

A streaming mesh format is a better input format than a standard indexed format

for all large mesh processing tasks. But that does certainly not mean that all mesh

processing tasks can be implemented in a streaming manner. Stream-based process-

ing is mainly useful for time-consuming, off-line algorithms that operate on the entire

data set, such as simplification, remeshing, smoothing, or compression. Streaming is

not applicable for applications that support real-time interaction with large models or

require selective access to parts of the model. Examples for this include out-of-core

mesh editing, view-dependent level-of-detail rendering, interactive exploration of com-

plex structures or large terrains, visibility computations, and collision detection. Such

applications perform online as supposed to streaming processing and therefore need a

8

mesh representation that supports online rather than streaming mesh access. But at

preprocessing time it is still beneficial when the original data arrives in a streaming

format. These applications need to build data structures that support online access.

This typically involves partitioning the input mesh into a large number of smaller pieces

of which only a small number is later kept in memory with the majority residing on

disk. Building these initial on-disk representations can be done much more efficiently

when the input mesh is in a streaming format.

1.3 Overview

My contributions are collected in the following chapters. Each chapter ends with a

section that contains hindsights of what I would have done differently or what needs

further investigation. Over the last four years most of these works were made public

in form of conference and journal publications.

Chapter 2 gives a detailed overview of previous research in the area of mesh com-

pression and the graph theoretical roots of connectivity coding. I show the intimate

connections between the classic work on planar graph coding by Turan, recent schemes

like Edgebreaker, and the optimal coding method of Poulalhon and Schaefer by fitting

them into a common framework. This allows me to uncover simple improvements and

surprising similarities that were previously undetected. Furthermore, I form parallel

classifications of the main schemes into face-based, edge-based, and vertex-based and

into one-pass and multi-pass coders. The latter divides the existing body of compression

schemes into those that can be used out-of-core and those that can not.

Chapter 3 describes our edge-based ‘Face Fixer’ scheme, which is joint work with my

supervisor Jack Snoeyink that was published at the SIGGRAPH conference (Isenburg

and Snoeyink, 2000). It was the first scheme to encode mesh connectivity directly

in its polygonal representation and to improve compression rates for storing arbitrary

polygonal connectivity by avoiding the initial triangulation step. We also describe a

variation of this edge-based encoding scheme that allows to compress the connectivity of

triangle meshes together with information about pre-computed triangle strips. ‘Triangle

Strip Compression’ was first published as a single-authored paper at the Graphics

Interface conference (Isenburg, 2000) and appeared later as a longer journal version in

Computer Graphics Forum (Isenburg, 2001).

9

Chapter 4 shows that the degree-based coder for triangle mesh connectivity by

(Touma and Gotsman, 1998), which mainly stores a sequence vertex degrees, can also

be generalized to directly code polygonal connectivity by storing a separate sequence

of face degrees. This approach gives significantly better bit-rates than ‘Face Fixer’.

First, it can adapt to regularity in either degree sequence and second, it can exploit the

duality between these two degree sequences for mutual predictive coding. The ‘Degree

Duality Coder’ was published as a single-authored paper at the Graphics Interface con-

ference (Isenburg, 2002). We also prove the necessity of split operations and disprove

the suspected redundancy of split-offsets for degree-based coding.

Chapter 5 looks into various other aspects of mesh compression. I describe a sim-

ple trick for improving predictive compression of vertex positions of polygonal meshes,

which is joint work with Pierre Alliez that was published at the Visualization confer-

ence (Isenburg and Alliez, 2002b). In this chapter I also explain a novel predictive

technique for compressing per-corner mappings of mesh properties such as normals or

texture coordinates, which grew out of my work on a CAD mesh compression engine at

EAI Inc. and was published as a joint paper with Jack Snoeyink at the Pacific Graph-

ics conference (Isenburg and Snoeyink, 2001a) and also appeared as a longer journal

paper in Graphical Models (Isenburg and Snoeyink, 2002). Finally, I show how pre-

dictive compression of texture coordinates needs to be modified to avoid unreasonable

predictions in the presence of mapping discontinuities, which is also joint work with

my supervisor and was presented at Computer Graphics International (Isenburg and

Snoeyink, 2003).

Chapter 6 takes compression into the next dimension using hexahedral volume

meshes as the example. In particular, I show here that the concept of coding with

degrees can be extended to volume meshes by using edge degrees instead of vertex

degrees. This is joint work with Pierre Alliez and was done during my six month stay

at INRIA Sophia-Antipolis in France. It was initially published at the Pacific Graphics

conference (Isenburg and Alliez, 2002a) and appeared later in revised form as a journal

publication in Graphical Models (Isenburg and Alliez, 2003).

Chapter 7 is the first of three chapters where I start looking at larger data sets of up

to 500 million triangles. Such gigabyte sized data sets can no longer be processed with

standard approaches to mesh compression, at least not on a standard PC. I describe

how to compress gigantic polygon meshes using a dedicated external memory structure

10

and a compression scheme that queries that structure as coherently and as infrequently

as possible. This out-of-core compression scheme is joint work with Stefan Gumhold

that was published at the SIGGRAPH conference (Isenburg and Gumhold, 2003). The

results of this work gave me the initial insights on the benefits of a streaming mesh

representation, which is manifested in the following two chapters.

Chapter 8 shows that the order in which the decompressor decodes vertices and

triangles from the compressed representation described in the previous chapter is useful

for efficient out-of-core mesh processing. While at any time only a small portion of

the mesh needs to be kept in main memory, seamless connectivity can be maintained

between the active mesh elements of the traversal. For algorithms that can adapt their

computations to a fixed element ordering such processing sequences provide highly IO-

efficient out-of-core access to large meshes. The two abstractions that are naturally

supported by this representation are boundary-based and buffer-based processing. We

illustrate both abstractions by adapting two simplification methods to perform their

computation in processing sequence order. Both algorithms benefit in terms of improved

quality, more efficient execution, and smaller memory footprints. This is joint work

with Peter Lindstrom, Stefan Gumhold, and Jack Snoeyink that was published at the

Visualization conference (Isenburg et al., 2003).

Chapter 9 extracts the essence of what made our compressed format so useful to

design a new, more general streaming mesh format. When we originally designed our

compressed format we were aiming for maximal compression and efficient decompres-

sion, but without considering the potential needs of streaming processing. Here I

describe desirable qualities for a stream ordering of mesh elements and present met-

rics and diagrams that characterize them. This shows that the traversal heuristics of

our compressor in fact systematically creates poor orderings that are not suited for all

kinds of streaming processing. Furthermore, I present different methods for converting

meshes from a traditional to a streaming format and a novel technique for streaming

on-the-fly compression. This work was done at Lawrence Livermore National Labo-

ratory together with Peter Lindstrom and was the basis for a fully funded joint NSF

proposal with UC Berkeley where I will further work on this topic.

Chapter 10 summarizes my contributions, discusses the limitations of streaming

processing, and describes what should definitely be pursued in future work and what

may be worthwile to investigate.

Chapter 2

Mesh Compression

Connectivity
coding

[V6V5V5V6 …]

Geometry
prediction

[…]()-3
-2
1

()7
4
-3

[01101…]
Arithmetic

compression

Figure 2.1: Workflow of a typical mesh compressor: Connectivity is coded as sequence
of symbols and geometry is coded as a sequence of corrective vectors. Both sequences
are compressed into a compact bit-stream using, for example, an arithmetic coder.

A polygon mesh is the most widely used primitive for representing three-dimensional

geometric models. Such polygon meshes consists of mesh geometry and mesh connec-

tivity, the first describing the positions in 3D space and the latter describing how to

connect these positions together to form polygons that describe a surface. Typically

there are also mesh properties such as texture coordinates, vertex normals, or material

attributes that describe the visual appearance of the mesh at rendering time.

The standard representation of a polygon mesh uses an array of floats to specify the

positions and an array of integers containing indices into the position array to specify

the polygons. A similar scheme is used to specify the various properties and how they

are attached to the mesh. For large and detailed models this representation results

in files of substantial size, which makes their storage expensive and their transmission

slow. The need for more compact representations has motivated researchers to develop

efficient mesh compression techniques. Their research has aimed for three different

objectives: efficient rendering, progressive transmission, and maximum compression.

Efficient rendering: Encodings for efficient rendering try to reduce the amount of

data that needs to be sent to the graphics card. When each triangle of the mesh is

12

rendered individually the card must process every mesh vertex an average of six times.

Processing a vertex involves passing its data from the main memory to and through the

graphics pipeline. Besides the vertex coordinates this typically also includes normal,

color, or texture information. The most common technique to reduce the number of

times this data needs to be transmitted is to send long runs of adjacent triangles. Such

triangle strips (Woo et al., 1996) are widely supported by today’s graphics hardware

and can reduce the number of vertex repetitions by a factor of three.

In his pioneering work, (Deering, 1995) introduces techniques that further reduce

the amount of data that needs to be sent to the graphics card. These techniques

not only eliminate a much larger number of vertex repetitions but also reduce the

amount of data needed for representing each single vertex. His generalized triangle

mesh format is designed for a highly specialized graphics adapter that can cache sixteen

previously processed vertices and includes explicit information for managing this cache.

In addition, his mesh format specifies quantizations and encodings for coordinates,

normals, and colors that allow decompression to be implemented directly in hardware.

Progressive transmission: Encodings for progressive transmission use incremental

refinements of mesh connectivity and geometry so that partial data already represents

the entire mesh at a lower resolution. The ‘Progressive Mesh’ scheme by (Hoppe, 1996)

encodes a mesh by collapsing edges one by one. Decoding starts with a small base

mesh and expands the collapsed edges in reverse order. While this progressive scheme

was not designed for compression and used a large number of bits per vertex, more

recent schemes (Taubin et al., 1998a; Pajarola and Rossignac, 2000; Cohen-Or et al.,

1999; Alliez and Desbrun, 2001a) group the refinement operations into large batches

and achieve bit-rates that come close to those of non-progressive encodings. Even

though more bits are used for the connectivity information, the progressive nature of

the decoding allows more accurate geometry and property prediction.

For the special case of terrains models based on Delaunay triangulations, (Snoeyink

and van Kreveld, 1997) use ideas from the point location scheme of (Kirkpatrick, 1983)

to encode all topology information in a permutation of the vertices, from which the

mesh is progressively reconstructed. The work of (Denny and Sohler, 1997) extends

this scheme to arbitrary planar triangulations. Although the cost of storing the topol-

ogy is zero, the unstructured order in which the vertices are received and the absence

of adjacency information during their decompression prohibits predictive geometry en-

coding. This makes these schemes overall more expensive. Moreover, it is not clear

whether it is possible to extend this idea to general surface meshes.

13

Maximum compression: Encodings for maximum compression try to squeeze a

given mesh into as few bits as possible for faster network transmission and more compact

storage. Most efforts have focused on connectivity compression (Taubin and Rossignac,

1998; Touma and Gotsman, 1998; Li and Kuo, 1998; Gumhold and Strasser, 1998;

Rossignac, 1999; Bajaj et al., 1999; Kronrod and Gotsman, 2000). There are two

reasons for this: First, this is where the largest gains are possible, and second, the

connectivity coder is the core component of a compression engine and usually drives

the compression of geometry (Deering, 1995; Taubin and Rossignac, 1998; Touma and

Gotsman, 1998), of properties (Taubin et al., 1998b; Bajaj et al., 1999), and of how

properties are attached to the mesh (Taubin et al., 1998b). The connectivity is usually

compressed through a compact and often interwoven representation of two dual span-

ning trees: one tree spans the vertices, and its dual spans the polygons. The pair of

spanning trees is obtained by traversing the elements of the mesh with some determin-

istic strategy. The geometry and the property data are typically quantized before they

are compressed with a prediction based on local neighborhood information.

Finally, I should mention shape compression techniques that try to achieve these

three objectives not for a given mesh, but rather for the shape that it represents. Here

the input mesh is considered to be merely one particular instance of a geometric shape,

which may be changed as long as the shape is still represented faithfully. Such methods

re-mesh the input to construct a highly regular mesh that can be more compactly stored

and transmitted (Khodakovsky et al., 2000; Szymczak et al., 2002; Khodakovsky and

Guskov, 2004) or even more efficiently rendered (Gu et al., 2002).

The remainder of this chapter (and also the two following chapters) focuses on

maximum compression of mesh connectivity. Compression of mesh geometry, of mesh

properties, and of how properties attach to the mesh is covered in Chapter 5. After

reviewing some definitions in Section 2.1 and arithmetic coding in Section 2.2, I survey

the state of the art in non-progressive connectivity coding. In Section 2.3 I describe the

overall approach to connectivity coding. In Section 2.4 I go back to its graph theoreti-

cal roots and give a visual framework that I use to illustrate the intimate connections

between the classic work on planar graph coding by (Turan, 1984) and more recent

schemes. In Section 2.5 I describe the main compression schemes for triangular con-

nectivity and organize them into two parallel categories. In Section 2.6 I explain what

the scheme by (Poulalhon and Schaeffer, 2003) does differently to achieve optimality

in coding. In Section 2.7 I discuss how these schemes extend to polygonal connectivity

with my contributions being detailed further in Chapters 3 and 4.

14

2.1 Preliminaries

A triangle mesh or a polygon mesh is a collection of triangular or polygonal faces that

intersect only along shared edges and vertices. Around each face we find a cycle of

vertices and edges that we consider to have a counterclockwise orientation when seen

from the outside. Each appearance of a vertex in this cycle is called a corner. Each

appearance of an edge in this cycle is called an half-edge. It is oriented in the direction

of the cycle and therefore has an origin and a target vertex. An edge is manifold if it

is shared by two faces of opposite orientation or used only by one face, in which case it

is also a border edge. An edge shared by more than two faces is non-manifold and an

edge shared by two faces of identical orientation is not-oriented. A vertex is manifold

if all of its incident edges are manifold and connected across faces into a single ring. A

polygonal mesh is manifold if all of its edges and vertices are manifold.

Topologically, a manifold mesh is a graph embedded in a 2-manifold surface in

which each point has a neighborhood that is homeomorphic to a disk or a half-disk.

Points with half-disk neighborhoods are on the boundary. A mesh has genus g if one

can remove up to g closed loops without disconnecting the underlying surface; such a

surface is topologically equivalent to a sphere with g handles. A mesh is simple if it

has no handles and no border edges. Euler’s relation says that a graph embedded on

a sphere having f faces, e edges, and v vertices satisfies f − e+ v = 2. When all faces

have at least three sides, we know that f ≤ 2v − 4 and e ≤ 3v − 6, with equality if an

only if all faces are triangles. For a mesh with g handles (genus g) the relation becomes

f − e+ v = 2− 2g and the bounds on faces and edges increase correspondingly.

2.2 Arithmetic Coding

A mesh compressor typically encodes the connectivity of the mesh as a sequence of

symbols and the geometry of the mesh as a sequence of small corrective vectors. Rather

than uniformly mapping symbols and vectors to bit codes, one applies some sort of

entropy coding so that they can be stored using the least number of bits that information

theory allows. The entropy for a sequence of n symbols of t different types is

−n
t∑

i=1

(pi log2(pi)), (2.1)

where pi denotes the probability for a symbol of type i to occur. This simply corresponds

to the number of times this symbol occurs divided by the total number of symbols n.

15

An arithmetic coder can compress a symbol sequence in an information theoretically

optimal way. Given a sufficiently long input, the compression rate of arithmetic coding

converges to the entropy of the input. Often the exact symbol probabilities are not

known in advance, in which case an an adaptive version of arithmetic coding is used

that learns the probabilities during compression. It starts with uniform probabilities

for all symbols that are updated each time after a symbol was compressed.

Correlation among subsequent symbols can be exploited using a memory-sensitive

coding scheme that approximates the order-k entropy of the sequence. An order-k

arithmetic coder uses a different probability table for each combination of the preceding

k symbols. For a sequence of n symbols of t different types the order-k entropy is

−n
t∑

i=1

∑

α

(pi|α log2(pi|α)), (2.2)

where α denotes a particular combination of k symbols and pi|α the probability for a

symbol of type i to occur after the symbol combination α.

Often the likelihood of a particular symbol to occur is not only correlated to the

preceding symbols but also to some state information that is available to both the

encoder and the decoder. This can be exploited using a more general context-based

arithmetic coder that switches probability tables based on a context that is provided

together with each symbol. The context-based entropy for a sequence of n symbols of

t different types where each symbol is accompanied by one of c contexts is

−n
t∑

i=1

c∑

j=1

(pi|j log2(pi|j)), (2.3)

where pi|j is the probability for a symbol of type i to occur with a context of type j.

2.3 Connectivity Compression

The standard approach that represents the connectivity of a mesh with a list of vertex

indices requires at least kn log2 n bits, where n is the total number of vertices and k

is the average number of times each vertex is indexed. For a simple triangular mesh,

Euler’s relation tells us that k will be about 6. For typical non-triangular meshes that

contain a mix of polygons dominated by quadrangles, k tends to be about 4. One

disadvantage of this representation is that it does not directly store face adjacency,

which must be recovered by sorting around vertices. But the main problem is that the

16

space requirements increase super-linearly with the number of vertices, since log2 n bits

are needed to index a vertex in an array of n vertices.

Efficiently encoding mesh connectivity has been subject of intense research and

many techniques have been proposed. Initially most of these schemes were designed for

fully triangulated meshes (Taubin and Rossignac, 1998; Touma and Gotsman, 1998;

Gumhold and Strasser, 1998; Rossignac, 1999), but more recent approaches (Isenburg

and Snoeyink, 2000; Kronrod and Gotsman, 2000; Khodakovsky et al., 2002; Isenburg,

2002) handle arbitrary polygonal input. These schemes do not attempt to code the

vertex indices directly—instead they only code the connectivity graph of the mesh.

For a manifold polygon mesh, every face (i.e. every edge loop) in the connectivity

graph corresponds either to a polygon or a hole. For representing mesh connectivity,

it is sufficient to specify (a) the connectivity graph of the mesh and (b) which of its

faces are polygons/holes. The mapping from graph vertices to the 3D positions that are

associated with each mesh vertex can be established using an order derived from the

graph connectivity. Hence, mesh connectivity is compressed by coding the connectivity

graph (plus some additional information to distinguish polygons from holes) and by

changing the order in which the vertex positions are stored. They are arranged in

the order in which their corresponding vertex is encountered during some deterministic

traversal of the connectivity graph. Since encoding and decoding of the connectivity

graph also requires a traversal, the positions are often reordered as dictated by this

encoding/decoding process.

This reduces the number of bits needed for storing mesh connectivity to whatever

is required to code the connectivity graph. This is good news: the connectivity graph

of a polygon mesh with sphere topology is homeomorphic to a planar graph. It is well

known that such graphs can be coded with a constant number of bits per vertex (Turan,

1984) and exact enumerations exist (Tutte, 1962; Tutte, 1963). If a polygon mesh has

handles (i.e. has non-zero genus) its connectivity graph is not planar. Coding such

a graph adds per handle a number of bits that is logarithmic in the size of the input

mesh (Rossignac, 1999), but most meshes have only a small number of handles.

Encoding the connectivity of non-manifold polygon meshes requires additional at-

tention. The bounds on the bit-rate for planar graphs no longer apply and we can not

expect to do to this with similar efficiency. Coding non-manifold connectivity directly

is tricky and there are no elegant solutions yet. Most schemes either require the in-

put mesh to be manifold or use a preprocessing step that cuts non-manifold meshes

into manifold pieces (Guéziec et al., 1998). Cutting a non-manifold mesh replicates

17

all vertices that sit along a cut. Since it is generally not acceptable to modify a mesh

during compression, the coder also needs to describe how to stitch the mesh pieces

back together. (Guéziec et al., 1999) report two approaches for doing this in an effi-

cient manner. In Section 4.3 we describe a simpler scheme that is easily implemented

but may not achieve the same compression. While it was originally only intended for

smaller meshes with few non-manifold vertices we show in Section 7.4 that an improved

version of this scheme is sufficient to deal with large and highly non-manifold models.

2.4 Coding Planar Graphs

The early enumeration results by (Tutte, 1962; Tutte, 1963) imply that an unlabeled

planar graph can be represented with a constant number of 3.24 bits per vertex. Sim-

ilarly, (Itai and Rodeh, 1982) prove that a triangular graph with v vertices may be

represented by 4v bits. However, these existence proofs do not provide us with an ef-

fective procedure to construct such a representation. (Turan, 1984) is the first to report

an efficient algorithm for encoding planar graphs using a constant number of bits.

A planar graph with v vertices, f faces, and e edges can be partitioned into two

dual spanning trees. One tree spans the vertices and has v − 1 edges, while its dual

spans the faces and has f − 1 edges. Summing these edge counts results in Euler’s

relation e = (v − 1) + (f − 1) for planar graphs. Turan observed that the partition

into dual spanning trees can be used to encode planar graphs and reported an encoding

that uses 4 bits per edge (bpe) for general planar graphs. Applying his method to fully

triangulated graphs results in an encoding that uses 12 bits per vertex (bpv). This

bit-rate, which is often quoted in literature, is unnecessarily inflated. We can improve

the Turan’s bit-rate to 6 bpv simply by using of the fact that every face is a triangle.

The encoding method of Turan walks around a vertex spanning tree and records

four different symbols as illustrated in Figure 2.2. Two symbols “+” and “–” describe

walking down and up the edges of the vertex spanning tree. Two symbols “(” and

“)” describe walking across edges that are not part of the vertex spanning tree for

the first and for the second time. This information encodes both spanning trees and

is sufficient to reconstruct the original graph. There are v − 1 symbols each of type

“+” and “–”, one pair for each edge of the vertex spanning tree. There are e − v + 1

symbols each of type “(” and “)”, one pair for each edge not part of the vertex spanning

tree. Coding each symbol with 2 bits leads to an encoding for planar graphs that uses

4v − 4 + 4e− 4v + 4 = 4e bits.

18

5

1 2

3

7

4

6

8

9

(

(

))

(
(

)

)

(
(

(

(
(

)

+

+

+
+

+

+

+

+
–

–

–

–

–

–

–
–

)

)
)

)

)

)

((

))

(
(

start
sym #

v-1+
– v-1

2v-5(

12v-24 bits

2v-5)

code
00
01
10
11

1

2

3

7

4

6

8 9

4

8

7

4

9

5

9

7
+

+

+

+

+
+

+

+

(
(

((

((

(((

(
(

(
(

start

–

–
–

–

–

–

–
–sym #

v-1+
– v-1

2v-5(

6v-9 bits

code
00
01
1

Figure 2.2: To code planar graphs Turan performs a walk around a vertex spanning tree
during which he records four different symbols, “+”, “–”, “(”, and “)”. It’s not hard
to see that for fully triangulated graphs we may omit either all opening or all closing
brackets. The respective other brackets can be derived from the fact that all faces are
triangular. Turan’s illustrates his method by “pulling open” the graph along the path
a round the vertex spanning tree. We use this as a visual framework to illustrate how
recent connectivity coders manage to encode the same information with fewer bits.

The straight-forward application of Turan’s method to fully triangulated graphs

where e = 3v − 6 results in an encoding that uses 12v − 24 bits. However, when every

face is a triangle, we only need to include either all “(” symbols or all “)” symbols in

the code. The respective other can be omitted as it can be derived with simple book-

keeping during decoding. This observation leads to a much tighter bound of 6v − 9

bits by encoding the v − 1 occurrences of “+” and “–” with two bits and the 2v − 5

occurrences of either “(” or “)” with one bit.

Given the choice about which of the two brackets to omit we suggest to keep the

closing brackets because it leads to a more elegant implementation of the decoder. Using

opening brackets requires the decoder to check whether a triangle is to be formed after

each non-bracket symbol and after each formed triangle. Using closing brackets, we

always form a triangle when the decoder reaches a bracket symbol by connecting back

to the vertex that is reached when taking two backwards steps along the edges.

Improving on Turan’s work, (Keeler and Westbrook, 1995) report a 3.58 bpe encod-

ing for general planar graphs, which they specialize to a 4.6 bpv encoding if the graph is

triangulated. Again, a small oversight on the authors’ part results in the latter bit-rate

being unnecessarily inflated. We can improve their bit-rate to 4 bpv simply by chang-

19

ing their mapping from symbols to bit codes. This oversight has also helped obscure

the intimate similarities between Keeler and Westbrook’s method and the Edgebreaker

scheme by (Rossignac, 1999). For the case of encoding planar triangulations these

schemes perform exactly the same traversal and distinguish exactly the same five cases.

The only difference between them is how they map each case to a bit code.

The encoding method of Keeler and Westbrook and its equivalence to the Edge-

breaker method are illustrated in Figure 2.3. Keeler and Westbrook construct a triangle

spanning tree using a topological depth-first sort in the dual graph. It is the deter-

minism with which this triangle spanning tree and the corresponding vertex spanning

tree are created that allows them to improve on the bit-rates of Turan, which assumes

no particular vertex spanning tree. Each dual edge that is not part of the triangle

spanning tree crosses a primal edge that is part of the vertex spanning tree. Keeler and

Westbrook’s dual edges connect two nodes of the triangle spanning tree such that one

of these nodes is an ancestor of the other. They declare the ancestor node to have a

missing child where this dual edge connects (illustrated by a red square in the figure)

and attach a leaf node to where this edge connects at the other end (illustrated by a

green dot). The resulting tree has only five different types of non-leaf nodes and is

encoded through a pre-order traversal that maps them to different bit-codes. The type

of a non-leaf depends on its parenthood. A non-leaf node can either have:

1. two non-leaf children (S).

2. a non-leaf left child and a missing right child (C).

3. a non-leaf left child and a leaf right child (L).

4. a leaf left child and a non-leaf right child (R).

5. two leaf children (E).

Each of these node types corresponds to the indicated label of the Edgebreaker

encoding. Keeler and Westbrook observe that half of all nodes will have leaves, meaning

are of type L, R, and E. They devise a mapping from node types to bit codes that

represents C as 00, S as 01 and either of L, R, or E with 1. To that encoding they

append a bitstring that distinguishes between L, R, and E using log2(3) bits each. The

total results in the reported bitrate of 4.6 bpv. Would the authors have instead noticed

that half of all nodes have a missing child, meaning are of type C, they could have

just as easily proposed the more efficient 4 bpv encoding that was not discovered until

Rossignac formulated a more elegant version of this algorithm, terming it Edgebreaker.

20

1 2

3

7

4

6

8

9 5

3

3

3

1
2

3

4

5

6
7

8

9

10

11 12

13
14

1516

17

18
19

L E R S

type 1type 2 type 3 type 4type 5

C
1

2

3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

18

19
EE

R R

C

L

R

C

S

R

R

R

C

C

C

C

C

C

C

C
C

C

R

C

CR

C

C
C

C

S

R

R

R
R

E

E

L

Figure 2.3: To code a triangulated planar graph Keeler and Westbrook construct a
triangle spanning tree using a depth-first traversal and classify its nodes as types 1 to
5, which are identical to the five cases C, L, E, R, and S of the Edgebreaker scheme.

2.5 Coding Triangle Mesh Connectivity

These graph coding techniques were introduced to the graphics community for com-

pressing triangle meshes by (Taubin and Rossignac, 1998). Like Turan they encode

triangular connectivity using a pair of spanning trees, but unlike Turan they code the

two trees separately. When using run-length coding, this results in bit-rates of around

4 bpv in practice but leads to no guaranteed bounds. (Rossignac, 1998) later pointed

out that using a standard 2 bit per node encoding for each of the two trees also guar-

antees a 6 bpv bound. Most importantly, the work of (Taubin and Rossignac, 1998)

showed how to integrate topological surgery into the encoding process for dealing with

non-planar connectivity graphs. They do this by identifying pairs of triangles in the

triangle spanning tree that are glued together to recreate a handle, which can always

be done with O(log2(v)) bits per handle. Since most meshes have only a small number

of handles, no efforts have been directed at establishing tighter bounds.

More recent encoding schemes (Touma and Gotsman, 1998; Gumhold and Strasser,

1998; Li and Kuo, 1998; Rossignac, 1999; Isenburg and Snoeyink, 2000; Alliez and

Desbrun, 2001b) do not explicitly construct the two spanning trees. Instead they

traverse the connectivity graph using a region growing approach during which they

produce a symbol stream that implicitly encodes both trees in an interleaved fashion.

The schemes iteratively encode faces or edges that are adjacent to the already processed

region and produce a stream of symbols that describes the adjacency relation between

21

C R R

processed region

unprocessed
region

boundary

free
face

focus

T T R T R
focus

boundary

free
edge

V5 -- --

boundary
slots free

vertex

zero
slot

focus

zero
slot

Figure 2.4: Three different approaches to connectivity coding by region growing: face-
based (top), edge-based (middle), and vertex-based (bottom). Every iteration of the
face-based coder processes the free face and describes its adjacency relation to the
active boundary. Similarly every iteration of the edge-based coder processes the free
edge also describing its adjacency relation. These descriptions specify how processing
these elements changes the active boundary. The vertex-based coder only needs to
describe how the boundary changes when it processes a face that has a free vertex.

the processed element and everything processed previously. For this they maintain one

or more boundary loops that separate a single processed region of the mesh from the

rest. The edges and vertices of these boundaries are called boundary edges and boundary

vertices. Each boundary encloses an unprocessed region and in case the connectivity

graph has handles, boundaries can also be nested, in which case an unprocessed region

is enclosed by more than one boundary. Each boundary has a distinguished boundary

element that is called the focus or the gate. The schemes work on the focus of the active

boundary, while all other boundaries are kept in a stack. At each step they describe the

adjacency between a currently processed element at the focus and the active boundary.

For the case of non-zero genus meshes there will be one situation per handle in which

this involves a boundary from the stack.

One difference between these schemes is how the boundaries are defined and how

processing of a face or edge updates them. Depending on the mesh element that the

description of the boundary update is associated with, the schemes can be classified

as face-based, edge-based, and vertex-based, which is illustrated in Figure 2.4. Another

difference between these schemes is whether they use explicit “split offsets” or not.

22

Depending on this they can be classified into one-pass and multi-pass coders. We discuss

these differences for the case of pure triangular connectivity. To further simplify this

classification we assume a mesh of sphere topology without boundary, so that we can

ignore how to deal with holes and handles.

Face-based schemes (Gumhold and Strasser, 1998; Rossignac, 1999) describe all

boundary updates per face. The boundaries are loops of edges that separate the region

of processed faces from the rest. Each iteration grows the processed region by the

triangle adjacent to the focus of the active boundary. It is adjacent to the active

boundary in one of five ways. Edgebreaker (Rossignac, 1999) encodes the boundary

updates corresponding to these five configurations using the labels C, R, L, S, and E.

The Cut-Border Machine (Gumhold and Strasser, 1998) associates an additional split

offset with each label S that—from a coding point of view—is redundant if (and only

if) the traversal processes the faces in a recursive, depth-first manner.

Edge-based schemes (Li and Kuo, 1998; Isenburg and Snoeyink, 2000) describe

all boundary updates per edge. The boundaries are loops of half-edges that separate

the region of processed edges from the rest. Each iteration processes the edge that

is adjacent to the focus of the active boundary. This edge is either adjacent to an

unprocessed triangle or to the active boundary in one of four different ways. Our

Face Fixer scheme (Isenburg and Snoeyink, 2000), which is covered in great detail in

Chapter 3, describes the boundary updates corresponding to these five configurations

using the labels T, R, L, S, and E. The Dual Graph method (Li and Kuo, 1998) does

the same but also associates a split offset with each label S that is again redundant.

Note that the original Face Fixer algorithm described in Chapter 3 uses labels F3, F4,

F5, ... in place of label T because it was mainly designed to compress polygon meshes.

But when all faces are triangles we can simply write T instead of F3.

Vertex-based schemes (Touma and Gotsman, 1998; Alliez and Desbrun, 2001b),

also called degree-based or valence-based, describe all boundary updates per vertex. The

boundaries are loops of edges that separate the region of processed faces from the rest

and that maintain slot counts reflecting the number of unprocessed edges incident at

each boundary vertex. When the boundary has a zero slot there is an unprocessed

face that shares two edges with the boundary. The boundary update for including

this face does not need to be described. When the boundary has no zero slots there

is a face at the focus that shares only one edge with the boundary and that has a

free vertex. The boundary update for including this face needs to be described. Two

scenarios are possible: either the free vertex has not been visited, in which case its

23

degree is recorded, or is has been visited, in which case an offset in slots along the

active boundary is recorded and the active boundary is split. Unlike the split offsets in

face-based and edge-based coding, these offsets are not redundant (see Section 4.7.2 for

the proof). Since encoding the split operations and their associated offsets is expensive

(Alliez and Desbrun, 2001b) first move the focus to the least likely place for a split to

occur.

One-pass schemes (Gumhold and Strasser, 1998; Li and Kuo, 1998; Touma and

Gotsman, 1998) have explicit offsets associated with the symbols that encode split

operations. These offset values allow the decoder to perform an instant re-play of the

split operation that happened during encoding. This makes it possible both to compress

in a single pass over the mesh while immediately producing the final bit-stream, as well

as to decompress in a single pass over this bit-stream while immediately producing

vertices and triangles. This is crucial for out-of-core operation on large meshes and is

discussed further in Chapter 7. The use of explicit split offsets also makes it possible to

traverse the mesh triangles in a non-recursive, breadth-first manner. This is important

to create coherent triangles orderings, as we show in Chapter 9.

For coding schemes that use explicit offsets it is difficult to establish tight worst-case

bounds on the maximal code size. Assuming that the number of split operations of their

vertex-based coder is negligible small (Alliez and Desbrun, 2001b) claim that coding

with vertex degrees is optimal. They show the worst-case entropy of a vertex degree

distribution satisfying Euler’s relation asymptotically approaches the information the-

oretic minimum for coding triangulations due to (Tutte, 1962). However, (Gotsman,

2003) has since shown that Alliez and Desbrun’s analysis includes degree distributions

that do not correspond to actual triangulations. He incorporates additional constraints

on the vertex degree distribution that lowers its worst-case entropy below Tutte’s bound

implying that the splits must contribute a small fraction to the encoding. Since there is

no upper bound on the size of their contribution, Gotsman concludes that “the question

of optimality of valence-based connectivity coding is still open.”

Multi-pass schemes (Taubin and Rossignac, 1998; Rossignac, 1999; Isenburg and

Snoeyink, 2000) do not store explicit offsets. Instead they recover these offsets that are

implicit in their label sequences by decoding either in two passes (Taubin and Rossignac,

1998; Rossignac, 1999; Rossignac and Szymczak, 1999) or in reverse (Isenburg and

Snoeyink, 2000; Isenburg and Snoeyink, 2001b). This requires the compressor to always

complete one boundary part after a split operation before continuing on the other

part. Given such a recursive traversal, the symbols S and E form nested pairs in

24

C

sym #
v-3

v-2

4v-9 bits

code
1

0L E
R S

x x

+

–

–

–

–

–

–

–
+––

–

+

+

+

+

+

+
+ +

CCC +

R
C

C

R
C

C R

S

C

L

R

R

R

E

E

–

C

7

11

2

410

5

6

12

7

4

11

10

5

6

68

3

1

1

9

1

8

start

12
3

4

5

6

7

8

9
10

11

12

13

14

15

16

17

1819

+

–

–

–

–

–

–

–
+

––
–

+

+

+

+

+

+
+ +

+

–

TTT

T
R

T
T

T

R
T

T
T

R

T

T T
T R

T
R

L

T
T

T

R

T

R

L

7

11

2

410

5

6

12

7

4

11

10

5

6

68

3

1

1

9

1

8

123

4
56

7

8 9

10

11

12

13

14

15 16

17

18
19

20

21

22

23

24

25

26

27

28

29

30

T

sym #
2v-5

v-1

5v-8 bits

code
1

0L E
R S

x x

1 2

3

7

4

6

8

9 5

3

3

3

1

3

4

5

6

7

8

9
10

11

12

2

start
1

2
3

4

5

67

8

9
12

17

11

10

18

13
14

15

19

16

5

9

13
17

19

21
22

1

2
3

4

6

7

8

10

11
12 14

15

16 18
20

23
24

25
27 26

28
29

30

E
R

start

Figure 2.5: The Edgebreaker (left) and the Face Fixer (right) schemes traverse mesh
triangles in the same depth-first order thereby constructing the same two spanning
trees (middle). Because of the determinism in their construction, the labeling of these
spanning trees can be compressed more efficiently than Turan’s generic trees.

the label sequence that enclose subsequences of labels. For Edgebreaker and Face-

Fixer, these label subsequences are self-contained encodings of the regions of the mesh

enclosed by the boundary parts resulting from splits. Obviously this also determines

the length of these boundary parts, which is exactly what is specified by the explicit

split offsets. Having these offsets implicitly stored in the label sequence, however,

prevents decoding from being an instant replay of the encoding process, which makes

these coders unsuitable for out-of-core operation, as we point out in Chapter 7. The

required recursiveness in traversal is also a guarantee for incoherence in the triangle

ordering of the compressed mesh, as we illustrate in Chapter 9.

Because these schemes do not store offsets we can use a simple mapping from labels

to bit codes that quickly establish interesting bounds on the coding costs. With the help

of Figure 2.5 we give an intuitive explanation how recent offset-less schemes manage to

improve on Turan’s encoding method. Both Edgebreaker (Rossignac, 1999), the face-

based scheme that does not use offsets, and Face Fixer (Isenburg and Snoeyink, 2000),

the edge-based scheme that does not use offsets, can be looked upon as a labeling of

the two spanning trees just like Turan’s original method. These schemes manage to do

so with fewer bits because they use spanning trees with certain properties (e.g. that

are the result of recursively traversing the graph in a depth-first manner). The same

can be said about the method by (Keeler and Westbrook, 1995) since the symbols it

produces have exactly the same meaning as those produced by Edgebreaker.

Each Edgebreaker label C corresponds to a “+” and also marks an edge of the

25

triangle spanning tree. Labels R and L correspond to a “–” and also mark an edge

of the triangle spanning tree. S marks two edges of the triangle spanning tree and

E corresponds to two “–”. Marking the edges of the triangle spanning tree may be

thought of corresponding to either an opening or a closing bracket. There are two

reason why the Edgebreaker labels allow a tighter bound on the code size than the

Turan symbols: First, each of the five labels encodes a pair of Turan symbols, which—

encoded independently—could form nine different combinations. Second, each C label

pairs a “+” symbol with a bracket, which means that half of all labels are of type

C. Note that the up and down labels “+” and “–” around the vertex spanning tree

correspond exactly to the zip-directions used in the Wrap&Zip method (Rossignac and

Szymczak, 1999). This method decodes mesh connectivity from the Edgebreaker labels

by constructing the entire triangle spanning tree in a first pass and identifying edges

whose zip-direction points to the same vertex in a second pass.

Each Face Fixer label T marks an edge of the triangle spanning tree, which may

again be thought of representing either an opening or a closing bracket. Labels R, L,

S, and E correspond to nested pairs of symbols “+” and “–”. The reason that the

Face Fixer labels allow a tighter bound on the code size than the Turan symbols is that

pairs of “+” and “–” can be encoded with 3 bits whereas encoding them independently

requires 2 bits per symbols, which makes 4 bits per pair.

Recently, more complex encodings of the Edgebreaker labels have been proposed

(King and Rossignac, 1999; Szymczak et al., 2000; Gumhold, 2000; Gumhold, 2005).

They establish tighter bounds that come closer to the information theoretical minimum

without quite reaching it. Unlike Turan’s method that allows the use of any vertex

spanning tree and that does not only encode the connectivity, but also the particular

spanning tree that was used, Edgebreaker and Face Fixer construct their spanning trees

in a deterministic manner. This reduces the number of different descriptions that each

connectivity has and therefore lowers the number of bits required for representing them.

The next section describes a scheme that is even more deterministic in the choice of

the vertex spanning tree that it uses for encoding a triangulation.

2.6 Optimal Coding of Planar Triangulations

The field of graph theory has recently seen renewed efforts towards optimal coding of

planar graphs (He et al., 1999; Chiang et al., 2001). All these schemes make use of

specially ordered spanning trees inspired by the work of (Schnyder, 1990). (Poulal-

hon and Schaeffer, 2003) finally show that a particular Schnyder decomposition of a

26

–

7

2

1

4

5

6

3

7

8

9

10

11

12

13
14

15

17

16

+
+

+

–

+

+

+

–

+ – –
–

–

+

+

–

–

–

–

+
+ start

8

7
5

6

1

3

1

6

9

11 9
6

5

12

10

12

5

7

4

2

4

6

18

19

20

l2

v1

v2

v1

v0

v0

sym #
v-1+

– v-1
2v-5

~ 3.24…bpv

code
1
0
0

start

4

7

2

12
1

3

5

6

8

9
10

11

1

2

3

4

56

7

8

9

10

11

12

1314

15

16

17

18

19

v1 v2

v0

l2

Figure 2.6: Poulalhon and Schaeffer construct a very particular vertex spanning tree.
It has the property that a walk around it crosses at each node exactly two triangle
spanning tree edges for the second time. The visualization on the right shows that this
corresponds to a Turan-style labeling that uses closing brackets. The small numbers
indicate the order in which the decoder reconstructs the triangles. Note that the original
algorithm walks the opposite direction which corresponds to the use of opening brackets.

triangulation into three spanning trees can indeed be used for optimal coding.

Starting from a triangulation with an embedded maximal realizer (Schnyder, 1990)

Poulalhon and Schaeffer construct a very particular vertex spanning tree that is shown

in Figure 2.6. This vertex spanning tree has the property that a counterclockwise

walk that starts at the root crosses at each node (but the first three) exactly two non-

spanning tree edges for the second time. The original algorithm suggests walking in

clockwise direction with the similar result that at each node (but the first three) exactly

two non-spanning tree edges are crossed for the first time. An intuitive algorithm for

constructing the maximal realizer of a triangulation is described in (Brehm, 2000).

The right illustration in Figure 2.6 shows that this corresponds to a Turan-style

labeling that uses only closing brackets (or only opening brackets when using the walk

direction employed in the original algorithm). The reason that Poulalhon and Schaef-

fer’s encoding gives a tighter bound on the code size than the Turan symbols is that

they manage to get away using just a single bit for each symbol “+”, “–”, “)”. This

is because their algorithm knows that in a spanning tree with two closing brackets per

node, the first and the second occurrence of a zero bit at a node corresponds to a closing

bracket, whereas the third zero bit must signal the “–”. Therefore the one bit can be

reserved to exclusively express the “+” symbols.

27

The resulting bit string contains 4n bits of which 3n bits are zeros while the re-

maining n bits are ones. Since the probability for one of the 3n zero bits to occur is

0.75 and the probability for one of the n one bits to occur is 0.25, the entropy of this

bit string is −3n · log2(0.75)− n · log2(0.25) or log2(256n/27) or 3.24n. This coincides

with the optimal worst-case bounds for encoding a planar triangulation that can be

derived from the enumeration work of (Tutte, 1962). Intuitively speaking, the reason

why Poulalhon and Schaeffer are able to improve the worst-case bound for the code-size

to the optimum of 3.24 bpv is that their choice in vertex spanning tree is even more

special than that of Edgebreaker or Face Fixer.

2.7 Extensions to Polygonal Connectivity

Initially most connectivity compressionh schemes were only designed for purely tri-

angular meshes. Several authors have reported simple extensions to their schemes in

order to handle polygonal input. A naive approach arbitrarily triangulates the polygon

mesh and then uses one bit per edge to distinguish the original edges from those added

during the triangulation process. Marking every edge can be avoided by triangulat-

ing the polygons systematically. For the Topological Surgery method the extension

to polygonal meshes as reported by (Taubin et al., 1998b) first cuts the mesh along

a vertex spanning tree and then triangulates the tree of polygons that corresponds to

the dual polygon spanning tree. Only the edges interior to the resulting triangle tree

need to be marked. Obviously, all these edge-marking approaches will always require

more bits for encoding the original polygonal connectivity than for encoding the trian-

gular connectivity alone. However, (King et al., 1999) have shown that quadrangular

meshes can be compressed more efficiently than their triangulated counterparts by not

triangulating the mesh prior to compression.

The generalization of face-based coding to the polygonal case that was reported by

(King et al., 1999) describes how to let the Edgebreaker scheme guide the triangulation

process. When the encoding process encounters a polygonal face it systematically

converts it into a triangle fan such that no longer all combinations of labels can occur.

A quadrilateral face, for example, is systematically split into two triangles so that only

13 combinations are possible for assigning Edgebreaker labels to these triangles. They

also show that the number of possible label combinations for systematically splitting a

face of degree d equals the Fibonacci number F (2d− 1) and report a guaranteed 5 bits

per vertex (bpv) encoding for simple polygon meshes without holes or handles. The

28

same extension was reported by (Kronrod and Gotsman, 2001) with a more polygonal

mind-set. It directly enumerates the F (2d− 1) number of ways in which a polygon of

degree d can interact with the active boundary. For purely quadrilateral meshes they

report a mapping from enumerators to bit codes that guarantees a 3.5 bpv encoding.

For meshes containing mainly quadrangles but also a few triangles they give another

mapping that leads to rates of about four bits per polygon.

The generalization of our edge-based Face Fixer scheme to the polygonal case is

straight-forward. After all, to directly code polygonal connectivity was our original

motivation for developing this encoding scheme, which is described in detail in Chap-

ter 3. Whenever the free edge is adjacent to an unprocessed face we also record the

degree d of this face. This can simply be done by replacing the label T with a set of

labels F3, F4, F5, ... and including this face just as before into the boundary.

The generalization of the vertex-based coder of (Touma and Gotsman, 1998) to the

polygonal case is described in Chapter 4. This can be done by separately recording

a sequence of face degrees in addition to the sequence of vertex degrees and split

symbols used by the original scheme. Encoding a triangle mesh will then correspond

to the special case in which every face degree of this separately recorded face degree

sequence is three. Since the entropy of such a sequence is zero and can essentially be

encoded for free, our polygonal degree coder is a true generalization of the original

scheme. A similar generalization of degree-based coding was reported independently

by (Khodakovsky et al., 2002).

Recent work by (Fusy et al., 2005) extends the information theoretically optimal

encoding method for planar triangulation of (Poulalhon and Schaeffer, 2003) to the

polygonal case. We should point out, however, that from a practical point of view

these optimal schemes are not so useful. Although they guarantee to encode any planar

connectivity using no more bits than needed to distinguish between all connectivities,

they also guarantee to always use this many bits. But the practical value of a mesh

compression scheme is determined by its performance on typical mesh data. The mesh

connectivities encountered in practice are of high regularity and represent a tiny subset

of all connectivities. After all, these connectivities must allow a reasonable embedding

in 3D since they are not random but belong to polygon meshes that represent piece-wise

approximations of three-dimensional shapes. They can be encoded with bit-rates well

below the theoretic worst-case bounds with coders that can adapt to this regularity.

Chapter 3

Edge-based Connectivity Coding

Figure 3.1: Many popular polygon meshes such as the triceratops, the galleon, or the
cessna model contain a surprisingly small number of triangles, here shown in red.

Previous mesh compression techniques have focused on encoding fully triangulated

data sets. Triangle meshes are naturally the lowest common denominator that any

surface representation can be tessellated into. However, many models are represented

by polygonal meshes that contain a surprisingly small percentage of triangles as, for

example, the standard ‘triceratops’ and ‘galleon’ models shown in Figure 3.1, which are

initially not triangulated. The dominating element of these models is the quadrangle

or quadrilateral, but pentagons, hexagons and higher degree faces are also common.

Especially for storage purposes it is beneficial to keep a mesh in its native polygonal

representation and delay the conversion to triangles until this becomes necessary. In

this chapter we describe a simple scheme for encoding the connectivity of polygon

meshes that we call ‘Face Fixer’. In contrast to the face-based Edgebreaker scheme

by (Rossignac, 1999), which assigns a label to each mesh face, the Face Fixer scheme

assigns a label to each mesh edge and is therefore considered to be edge-based.

30

There is a small but crucial difference between our edge-based coding scheme and

the face-based Edgebreaker scheme of (Rossignac, 1999). When Edgebreaker processes

a face it immediately specifies the entire relationship between this face and the compres-

sion boundary. In the triangular case there are only five different configurations, which

leads to the elegant CLERS labeling of the triangles. However, for a non-triangular face

of degree d the number of ways the face can interact with the compression boundary

quickly increases with the Fibonacci number F (2d−1) (King et al., 1999; Kronrod and

Gotsman, 2001). To accommodate large faces this requires either the use of a gigantic

label set or the systematic break-down of larger faces into smaller ones.

Our method keeps the label set small by including faces into the active boundary

without immediately specifying their entire adjacency relation with the compression

boundary. This seems to make it a natural candidate for encoding polygonal con-

nectivity where all we have to do differently is to also write down the degree of the

polygon that is included. Later, in Section 3.5, we will see that having separate labels

for including a face and for specifying how it is adjacent to the boundary also makes it

possible to integrate triangle strip information into the encoding.

Face Fixer encodes polygonal connectivity as a sequence of labels Fn, R, L, S, E,

Hn, and Mi,k,l whose length is equal to the number of edges in the mesh. This sequence

represents an interwoven yet, compared to Edgebreaker, slightly de-coupled description

of a polygon spanning tree and its complementary vertex spanning tree. For every face

of n sides there is a label Fn and for every hole of size n there is a label Hn. Together

they label the edges of the polygon spanning tree. For every handle there is a label Mi,k,l

that has three integer values associated. These specify the two edges of the polygon

spanning tree that need to be ‘fixed’ together to re-create the handle. The remaining

labels R, L, S, and E label the edges of the vertex spanning tree and describe how to

‘fix’ faces and holes together. Finally, we use a standard adaptive, memory-sensitive

arithmetic coder to compress this label sequence into a compact bit-stream.

3.1 Encoding and Decoding

Starting with a polygon mesh of v vertices, e edges, f faces, h holes, and g handles,

the encoding process produces a sequence of e labels. This sequence contains f labels

of type Fn, h labels of type Hn, g labels of type Mi,k,l, and v − 2 + g labels of type R,

L, S, or E. The number of E labels equals the number of S labels minus the number of

M labels plus one. The connectivity of the polygon mesh can be reconstructed with a

single reverse traversal of the label sequence.

31

The algorithm maintains one or more loops of edges that separate a single processed

region of the mesh from the rest. Each of these boundary loops has a distinguished gate

edge. The focus of the algorithm is on the active boundary; all others are temporarily

buffered in a stack. The initial active boundary, defined clockwise around an arbitrary

mesh edge, has two boundary edges. The gate of the active boundary is the active gate.

In every step of the encoding process the active gate is labeled with either Fn, R,

L, S, E, Hn, or Mi,k,l. Which label the active gate is given depends on its adjacency

relation to the boundary. After recording the label, the boundary is updated and a new

active gate is selected. Depending on the label, the boundary expands (Fn and Hn),

shrinks (R and L), splits (S), ends (E), or merges (Mi,k,l). Table 3.1 summarizes the

changes to the processed region and its boundaries for each operation. The encoding

process terminates after exactly e iterations, where e is the number of mesh edges.

label
change to # of processed # of boundary

faces holes vertices edges handles loops edges

Fn +1 · · · · · · +1 · · · · · · +(n− 2)
Hn · · · +1 · · · +1 · · · · · · +(n− 2)

R, L · · · · · · +1 +1 · · · · · · −2
S · · · · · · · · · +1 · · · +1 −2
E · · · · · · +2 +1 · · · −1 −2

Mi,k,l · · · · · · · · · +1 +1 −1 −2

init = 0 = 0 = 0 = 0 = 0 = 1 = 2
final = f = h = v = e = g = 0 = 0

Table 3.1: The changes in number of processed faces, holes, vertices, edges, handles,
boundary components, and boundary edges that happen during encoding for each of
the different label types. Initial and final counts are listed at the bottom.

In Figure 3.2 we illustrate for each label the situation in which it applies and the

respective updates for gate and boundary. Both encoding and decoding are shown.

The details for encoding are:

label Fn The active gate is not adjacent to any other boundary edge, but to an unprocessed

face of degree n. The active boundary is extended around this face. The new active

gate is the rightmost edge of the included face.

label R The active gate is adjacent to the next edge along the active boundary. The gate

is ‘fixed’ together with this edge. The new active gate is the previous edge along the

active boundary.

label L The active gate is adjacent to the previous edge along the active boundary. The

32

offset1

offset2
gate inserted

into stack

offset1

offset2

gate removed
from stack

gate pushed
on stack

gate popped
from stack

gate popped
from stack

gate pushed
on stack

�������� ��������

��������
	
��������

	

������� �������

�������	
������� 	

������ �������

������� 	
������ 	

������� � �������

������� 	
������� �
	

hole

hole

Figure 3.2: The labels of our edge-based coding scheme: when they apply and the
corresponding updates to the compression boundary during encoding and decoding.

gate is ‘fixed’ together with this edge. The new active gate is the next edge along the

active boundary.

label S The active gate is adjacent to an edge of the active boundary which is neither the

next nor the previous. The gate is ‘fixed’ together with this edge, which splits the active

boundary. The previous edge and the next edge along the active boundary become gates

for the two resulting boundaries. The one that was the previous edge is pushed on the

stack and encoding continues on the other.

label E The active gate is adjacent to an edge of the active boundary which is both the next

33

and the previous. Then the active boundary consists of only two edges which are ‘fixed’

together. The encoding process terminates if the boundary stack is empty. Otherwise

it continues on the boundary popped from this stack.

label Hn The active gate is not adjacent to any other boundary edge, but to an unprocessed

hole of size n. The active boundary is extended around this hole. The new active gate

is the rightmost edge of the included hole.

label Mi,l,k The active gate is adjacent to a boundary edge which is not from the active

boundary, but from a boundary in the stack. ‘Fixing’ the two edges together merges

the two boundaries and the boundary is removed from the stack. Its former position i

in the stack and two offset values l and k (see Figure 3.2) are stored together with the

label. The new active gate is the previous edge along the boundary from the stack.

We use a simple half-edge structure (Guibas and Stolfi, 1985) during encoding and

decoding to store the mesh connectivity and to maintain the boundaries. Besides

pointers to the origin, to the next half-edge around the origin, and to the inverse half-

edge, we have two pointers to reference a next and a previous boundary edge. This

way we organize all edges of the same boundary into a cyclic doubly-linked list.

The decoding process reconstructs the connectivity of the polygon mesh with a

single reverse traversal of the label sequence. As illustrated in Figure 3.2, each label

has a unique inverse operation that does exactly the opposite of the gate and boundary

updates that happened during encoding. The time complexity for decoding is linear in

the number of mesh edges. An exception is the inverse operation for label Mi,k,l which

requires the traversal of k+ l edges. However, labels of this type correspond to handles

in the mesh, which are typically of rare occurrence.

3.2 Compression

The label sequence produced by the encoding process is subsequently mapped into a bit-

stream. The frequencies with which the different labels occur are highly non-uniform,

which invites some kind of entropy encoding. There is also a strong correlation among

subsequent labels, which can be exploited using a memory-sensitive encoding scheme.

Therefore we use a simple order-3 adaptive arithmetic coder (Witten et al., 1987) to

compress the symbols in the order they are produced during encoding.

For an adaptive arithmetic encoder with three label memory the space requirement

for the probability tables grows in O(t4) with the types of symbols t. Therefore we

limit the number of labels in the input sequence to eight: F3, F4, F5, Fc, R, L, S, and

34

E. This allows the implementation of the arithmetic order-3 entropy coder to be both

space and time efficient. The probability tables need only 4 KB of memory and we can

use fast bit operations to manage them. Labels Fn with n > 5 are expressed through

the combination of a label F5 and n− 5 subsequent labels of type Fc. We observe that

labels of type Fn are never followed by label L or label E. We exploit this to express

the typically infrequent appearing labels Hn and Mi,k,l using the combinations F4L

and F4E. The integer values associated with these labels are stored using a standard

technique for encoding variable sized integers with an arithmetic coder.

name vertices faces edges corners bpv

triceratops 2832 2834 (5660) 5664 (8490) 11328 (16980) 2.115
galleon 2372 2384 (4698) 4733 (7047) 9466 (14094) 2.595
cessna 3745 3927 (7446) 7650 (11169) 15300 (22338) 2.841
beethoven 2655 2812 (5030) 5327 (7545) 10654 (15090) 2.890
sandal 2636 2953 (4952) 5429 (7428) 10858 (14856) 2.602
shark 2560 2562 (5116) 5120 (7674) 10240 (15348) 1.670
al 3618 4175 (7152) 7751 (10728) 15502 (21456) 2.926
cupie 2984 3032 (5944) 6004 (8916) 12008 (17832) 2.307
tommygun 4171 3980 (8210) 8085 (12315) 16170 (24630) 2.611
cow 2904 5804 (5804) 8706 (8706) 17412 (17412) 2.213
teapot 1189 1290 (2378) 2479 (3567) 4958 (7134) 1.669

Table 3.2: The number of vertices, faces, edges, and corners together with the achieved
connectivity compression in bits per vertex (bpv) for the models shown in Table 4.1. In
parentheses are the corresponding numbers for the triangulated version of the model.

The compression scheme described above produces compact encodings for the label

sequence. In Table 3.2 we report connectivity compression results in bits per vertex

(bpv) for a set of popular polygonal models. These meshes are pictured in Table 4.1

where their topology is characterized further and where their polygonal composition is

described in detail. Our bit-rates are sometimes higher than those reported for other

schemes. For example, the vertex-based coder of (Touma and Gotsman, 1998) reports

a bit-rate of 2.1 bpv for the galleon model and a bit-rate of 2.4 bpv for the beethoven

bust. However, this coder triangulates these polygonal models prior to compression and

these reported bit-rates do not include the additional code that would be necessary to

recover the original polygonal connectivity.

3.3 Quadrilateral Grids

Instead of fixing together faces the Face Fixer scheme can also fix together patches of

faces. Then we have to describe in addition the interior of these patches. If a patch is

35

��������

right
left

height

Figure 3.3: The beethoven bust and the shark model with quad grids marked in yellow.
The label QG encodes a quad grid by specifying its left and right extend and its height.

a rectangular quadrilateral grid this can be done very efficiently through the number

of rows and columns in this grid. The beethoven bust and the shark model shown

in Figure 3.3 for example, contain large patches of quadrilateral grids. We introduce

the label QGr,l,h to include such quad grids into the active boundary. The associated

integer values r, l, and h count the number of quadrangles that this grid extends to the

right, to the left, and across as seen from the active gate.

Optimal selection of a set of non-overlapping quad grids on the model is not only

NP-hard, we also lack a well-defined optimality criterion. Including quad grids into the

active boundary breaks up the regularity of the label stream, which in turn hampers

subsequent arithmetic coding. However, using a simple greedy method for finding a

few large quadrilateral grids already leads to improved bit-rates: The connectivity of

the teapot, for example, compresses down to 1.069 bpv using 10 quad grids, for the

shark 1.374 bpv, for the galleon 2.190 bpv, and for the beethoven bust 2.591 bpv.

3.4 Coding Triangular and Quadrangular Meshes

A triangle/quadrangle mesh is a special kind of polygon mesh whose faces are all

triangles/quadrangles. Since all of their faces have the same degree we use label T as a

shorthand for label F3 and label Q as a shorthand for label F4. For simple connectivities

without holes and handles a simple mapping from labels to bits gives us encodings with

fixed bit-rates. A simple triangle mesh with v vertices has 3v − 6 edges and 2v − 4

triangles. Thus, 2v − 4 labels are of type T while the remaining v − 2 labels are R,

L, S, or E. A mapping that uses 1 bit for label T and 3 bits each for the other labels

36

guarantees a 5v− 10 bit encoding. Similarly, a simple quadrangle mesh with v vertices

has 2v − 4 edges and v − 2 quadrangles. Here v − 2 labels are of type Q while the

remaining v− 2 labels are R, L, S, or E. An encoding that uses 1 bit for label Q and 3

bits each for the other labels guarantees a 4v − 8 bit encoding.

The correlation among subsequent labels is easily exploited with an adaptive order-

k arithmetic coder that learns the probabilities with which each label type follows the

preceding k labels. Compression results for various fully triangulated meshes that are

achieved by applying an order-3 coder to the label sequence are listed in Table 3.3.

Employing an arithmetic coder is computationally much more com-
after TRLSE

T, R 1 2 4 3 4

L 1 4 2 4 3

S 1 4 3 4 2

E 1 2 4 4 3

plex than a simple mapping from labels to bits and may not always be

an option. However, the correlation among subsequent labels can also

be exploited by making the bit mapping dependent on one or more

preceding labels. For example, using 1 bit for label T and a varying

assignment of 2, 3, 4 and 4 bits for labels R, L, S, and E guarantees

a 6v− 12 bit encoding, while being in practice closer to 4v bits. The small table on the

right describes the bit assignment used for the results reported in Table 3.3.

The number of holes and handles of a mesh is generally small and so is the number

of labels Hn and Mi,k,l. Since a label T can never be followed by a label L or E, we can

encode labels H and M with the label combinations TL and TE without changing the

above bit assignment. Their associated integer values are stored as before.

mesh characteristics bit-rates (bpv)
name vertices triangles holes handles simple aac-3

bishop 250 496 - - 4.00 1.86
shape 2562 5120 - - 3.99 0.77
triceratops 2832 5660 - - 4.00 2.52
fandisk 6475 12946 - - 4.00 1.67
eight 766 1536 - 2 4.09 1.43
femur 3897 7798 - 2 4.16 3.05
skull 10952 22104 - 51 4.22 2.96
bunny 34834 69451 5 - 4.00 1.73
phone 33204 66287 3 - 4.05 2.70

Table 3.3: The compressed connectivity in bits per vertex for various fully triangulated
meshes with a simple bit assignment scheme and an order-3 adaptive arithmetic coder.

3.5 Coding Stripified Triangle Meshes

Using mesh compression allows faster distribution of 3D content in networked environ-

ments where transmission bandwidth is a limited resource. However, for distributed

37

interactive visualization not only the speed at which a triangle mesh can be received is

important, but also the speed at which it can be displayed. At this stage the bottleneck

becomes the rate at which the geometry data can be sent to the rendering engine. When

each triangle of the mesh is rendered individually by sending its three vertices to the

graphics hardware, then every mesh vertex is processed about six times, which involves

passing its three coordinates and optional normal, color, and texture information from

the memory to and through the graphics pipeline.

A common technique to reduce the number of times this data needs to be transmit-

ted is to send long runs of adjacent triangles. Such triangle strips (Woo et al., 1996) are

widely supported by today’s graphics software and hardware. Here two vertices from

a previous triangle are re-used for all but the first triangle of every strip. Depending

on the quality of the triangle strips this can potentially reduce the number of vertex

repetitions by a factor of three. Traditionally, an optimal stripification for rendering

purposes covers the mesh with as few triangle strips using as few swap operations as

possible. Computing such a set of triangle strips is NP-hard (Evans et al., 1996a) but

various heuristics for generating good triangle strips have been proposed by (Evans

et al., 1996b; Speckmann and Snoeyink, 1997; Xiang et al., 1999; Hoppe, 1999).

Given the difficulty of generating good triangle strips it would be desirable to do

this just once and store the computed stripification together with the mesh. Especially

for data sets with a larger distribution it would be worthwhile to provide a good pre-

computed stripification. However, currently available connectivity coding schemes do

not support the encoding of stripified meshes. Obviously one can enhance any existing

compression method by encoding the stripification separately and concatenating the

results. But such a two-pass technique adds unnecessary overhead—it does not exploit

the correlation between the connectivity and the stripification of a mesh. Next we

describe a simple extension of our edge-based encoding scheme that can compress the

connectivity and the stripification of a triangle mesh in an interwoven fashion while

fully exploiting the correlation between the two.

3.5.1 Triangle Strips

Supported in software and hardware, triangle strips allow more efficient rendering of

triangle meshes by reducing the data transfer rate between the main memory and

the graphics engine. A triangle strip is a sequence of m vertices (v0, ..., vm−1) that

represents the sets of triangles {(vi, vi+1, vi+2)} for even i and {(vi+1, vi, vi+2)} for odd

i with 0 ≤ i < m − 2. The distinction between odd and even assures a consistent

38

orientation of all triangles. A strip is called sequential when it turns alternating to the

right and to the left. A strip is is called generalized when it contains consecutive turns

in the same direction. To make a strip turn twice into the same direction a degenerate

zero-area triangle is inserted into the strip. The cost for such a swap operation is one

vertex, which is cheaper than a restart operation that costs two vertices.

We say that an edge is a strip-internal edge if it is shared by two triangles that

appear subsequently in a strip. The set of strip-internal edges marks either zero, one,

or two edges of every triangle. A triangle without a strip-internal edge is a triangle

strip by itself. A triangle with one strip-internal edge is either the start or the end of

a strip. A triangle with two strip-internal edges is in the middle of a triangle strip.

3.5.2 Encoding Connectivity and Stripification

Representing mesh connectivity with indexed triangle strips rather than with individ-

ually indexed triangles reduces the amount of data by a factor between two and three.

But the storage costs for indexed strips is still 2n log n bits whereas typical connectiv-

ity coding schemes typically only need somewhere between 2n and 4n bits. However,

current compression techniques have no means to preserve the information about how

the triangles are arranged into strips. The straight-forward approach would be to ap-

pend an encoding of the stripification to the encoding of the connectivity. This can

be done with one bit per edge or 3n bits by marking all strip-internal edges. It is

then still necessary to distinguish the start from the end of a generalized triangle strip,

because one direction sometimes needs one fewer swap operation than the other. This

can be determined in a single traversal of the triangle strip by counting the number of

necessary swap operations.

However, encoding connectivity and stripification of a mesh separately fails to ex-

ploit the redundancy between the two: Every strip expresses the edge adjacency for

each pair of subsequent triangles it contains. This local connectivity information also

needs to be captured by the mesh compression scheme. The extension of our edge-based

connectivity coding scheme for stripified triangle meshes specifies this information only

once. Instead of traversing a triangle spanning tree using a deterministic strategy we let

the underlying stripification be the guide. The adjacency information that is encoded

while walking along a strip means progress for both the compression of connectivity

and the compression of stripification. As before, the encoding process initially defines

the active gate and the active boundary around some edge of the mesh. However, now

this choice is not completely arbitrary. The edge must not be strip-internal.

39

��������

��������

�������	

�������
���������

�������

� �������

store gate
use stored gate

Figure 3.4: The labels TR, TL TB, and TE as used by the encoder. The black arrow
denotes the active gate, the dashed arrow denotes a stored gate. Strips are marked red.

Again the active gate is labeled at each step of the encoding algorithm. Instead of

label T we use the four labels TR, TL, TB, and TE. This subclassification captures

the stripification of the mesh. The four labels direct the way the encoding process

traverses the mesh triangles so that it follows the underlying strips. Once a triangle

strip is entered, it is processed in its entirety using these labels. The total number of

edges that receive labels TR, TL, TB, or TE is equal to the number of mesh triangles.

The labels R, L, S, E, H, and M are used and assigned as before.

Each of the four new label updates the boundary just like label T (or rather label

F3) from Figure 3.2. The difference—illustrated in Figure 3.4—lies in the way the

active gate is updated. They are as follows:

label TR The triangle strip leaves the included triangle through the right edge. The new

active gate is this right edge.

label TL The triangle strip leaves the included triangle through the left edge. The new

active gate is this left edge.

label TB The triangle strip leaves the included triangle through the right and the left edge,

which means we just entered this triangle strip somewhere in its middle. Both directions

need to be considered. Therefore the left edge is stored and the right edge is the new

active gate.

40

label TE (case 1) The triangle strip leaves the included triangle neither through the right

nor through the left edge and this is the last triangle of this strip. The new active gate

is the right edge.

label T∗E (case 2) The triangle strip leaves the included triangle neither through the right

nor through the left edge, but this is not the last triangle of this strip. Then there was

a preceding label TB. The edge that was stored with label TB is the new active gate.

strip characteristics corners of connectivity stripification interwoven
name strips swaps V/T triangles strips simple aac-3 simple aac-3 simple aac-3

bishop 1 72 1.15 1488 498 4.00 1.86 2.28 1.10 2.98 1.78
shape 2 220 1.04 15360 5124 3.99 0.77 2.08 0.45 3.09 0.62
triceratops 144 1424 1.30 16980 5948 4.00 2.52 2.64 2.05 4.12 3.49
fandisk 224 1630 1.16 38838 13394 4.00 1.67 2.28 1.35 3.61 2.25
eight 24 64 1.07 4608 1584 4.09 1.43 2.16 0.83 3.46 1.78
femur 237 1982 1.32 23394 8272 4.16 3.05 2.64 2.17 4.48 4.02
skull 600 6165 1.33 66312 23304 4.22 2.96 2.70 2.18 4.74 4.18
bunny 1229 10851 1.19 208353 71909 4.00 1.73 2.38 1.52 3.69 2.40
phone 1946 17519 1.32 198861 70179 4.05 2.70 2.65 2.13 4.42 3.88

Table 3.4: Triangle strip characteristics and compression results: # of strips, # of
swaps, and vertex per triangle ratio (V/T) of the stripified mesh; the achieved com-
pression rates in bits per vertex with a simple bit mapping scheme and an arithmetic
coder for the connectivity alone, for the stripification alone, and for the connectivity
interwoven with the stripification.

The decoder again processes the labels in reverse order by performing the inverse

of each label operation. However, one initial traversal of the labels in forward order is

necessary. For every label TB we count the number of encountered TR labels before the

first occurrence of a label TE. We add 2 to the count and associate this value w with the

respective label TE, marking it with a *. When during the decoding process a label T∗E
with associated value w is encountered, we walk from the active gate w edges along the

active boundary. The edge we arrive at is the new active gate and we continue normally.

This little variation becomes necessary to invert what happens during encoding: The

first occurrence of a label TE after a label TB marks the completion of one end of a

triangle strip. The active gate jumps to the edge that was stored with the preceding

label TB. The computed value expresses how many boundary edges were between the

active gate and the stored edge at the time this jump occurred. The time complexity

for decoding remains linear, since every triangle strip is traversed at most once. The

example in Figure 3.6 and 3.7 leads step by step through the encoding and decoding

process of a small mesh with two triangle strips.

41

Figure 3.5: Some of the stripified meshes used in our experiments with triangle strips
marked in white and rendered in different colors: triceratops, eight, fandisk, and skull.

While we have more label types to encode, the correlation among subsequent labels

is stronger than before. We observe long runs of labels R and L, and long sequences

of alternating labels TR and TL. The simple bit assignment scheme that is described

in the small table below exploits these dependencies and achieves bit-rates between 3.0

and 5.0 bpv. This bit allocation scheme is geared towards long triangle strips with

alternating left-right turns. The encodings are more compact for stripifications that

have fewer strips and fewer swaps.

The resulting compression rates for connectivity and
after TRTLTBTER L S E

TR,T∗E 2 1 – 2 – – – –

TL,TB 1 2 – 2 – – – –

TE 4 5 3 6 2 7 1 7

R, E 7 6 5 7 1 4 3 2

L, S 6 7 5 7 4 1 3 2

stripification increase by at most 0.6 bpv for the sim-

ple bit mapping and 1.3 bpv for the arithmetic coder

compared to the rates for connectivity alone. For very

regular meshes, like the bishop and the shape model,

the compression rates even decrease. This is because

the stripification software was able to decompose these

meshes into long, almost sequential triangle strips. The label sequences encoding them

are highly regular and have a lower entropy. The relation between the quality of

triangle strips and the achieved compression becomes apparent in Table 3.4. It is no-

ticeable that stripifications with a high vertex per triangle ratio do not compress as

42

well. Nevertheless, the compression rates we achieve for connectivity and stripifica-

tion are significantly better than those of previously reported compression schemes for

connectivity combined with an one bit per edge (3 bpv) encoding of the stripification.

3.5.3 Encoding the Stripification separately

While our scheme was designed to encode the connectivity together with the stripifica-

tion of a mesh, it can also be used to compress the stripification separately. Given that

the connectivity of the mesh is known, only the labels TR, TL, TB, and TE are needed

to reconstruct the stripification. The decoder simply performs an exact replay of the

interwoven encoding process. For this encoder and decoder also need to agree on the

edge around which the initial active boundary is defined. Only when the active gate

is adjacent to an unprocessed triangle, the next label is read and the mesh traversal

directed accordingly. Otherwise the active gate is adjacent to a hole or a boundary

edge and the applicable operation R, L, S, E, H, or M is carried out.

Compressing the subsequence of labels TR, TL, TB, and TE

after TRTLTBTE

TR,T∗E 2 1 – 2

TL,TB 1 2 – 2

TE 2 2 2 2

with the bit assignment scheme described in the table on the

right always outperforms the one bit per edge (3 bpv) needed

to mark all strip-internal edges (see Table 3.4). Especially

for stripifications with few swaps and restarts this symbol se-

quence compresses aggressively with an order-3 arithmetic encoder.

3.6 Summary

We have presented an edge-based compression algorithm that encodes the connectivity

of surface meshes directly in their polygonal representation. This has several benefits

compared to methods that compress pre-triangulated polygon meshes: The original

connectivity is preserved. Properties associated with faces and corners need not to

be replicated. Subsequent stripification algorithms have more flexibility for generating

better triangle strips. Predictive coding for geometry and property data can exploit

additional convexity and planarity constraints. Furthermore, this method improves

compression rates compared to approaches that triangulate meshes prior to compression

and recover the polygons by marking edges. While the freedom to triangulate polygons

on demand could lead to more compact encodings for the triangulated mesh, the number

of bits required to mark the added edges could be as high as 3 bpv.

For triangular meshes, we have extended edge-based coding to include information

about a pre-computed set of triangle strips into the compressed connectivity. This

43

1817 19 20

1413 15 16

65 7 8

21 3 4

109 11 12

�� � � � �

� �� � � �

�
�
��

�
�

�
�

�	

�

�

�
�

�
�

�

�
� �

�
�

�
�

�

�
�

�
�

�
�

Figure 3.6: An example run of the encoding algorithm on a small mesh with two
triangle strips. The interior of the active boundary is shaded dark, the active gate is
denoted by a black arrow, a gate in the stack by a grey arrow, and a stored gate by a
dashed arrow. The label(s) in the lower left corner of each frame express the performed
update(s) since the previous frame. (1) Initial active boundary. (2-4) Boundary is
expanded along the first triangle strip. (5) Reaching the last triangle of this strip. (6)
Entering the second triangle strip in its middle. (7-9) Expanding this strip into one
direction. (10) Finishing one side, the active gate jumps to expand other direction.
(11) Finishing the other side. (12) Including a hole of ten edges. (13-15) Fixing the
boundary with five R labels. (16) Splitting the boundary, one part is pushed on stack,
continuing on other part. (17) Fixing the boundary with two L labels. (18) Ending
this boundary, popping a boundary from stack. (19) Fixing the boundary with two R
labels. (20) Ending this boundary, stack is empty, terminate.

44

� �� � �

1817 19 20

1413 15 16

65 7 8

21 3 4

109 11 12

�
�

�� �
�

�
�

�
�

�
�
� �

�
�

�

�
�	

�� �
�
 �� ������

�� � � �

�
�

�
�

�
�

�
�

�
�

Figure 3.7: Reconstructing connectivity and stripification from the label sequence gen-
erated in Figure 3.6. The labels indicate the reversed operations since the previous
frame. A forward pass counts the number of TR labels between a TB and the next TE

and stores this count plus 2 with the now marked T∗E label. (1) Creating a boundary
of length two reverses the last E operation. (2) Expanding this boundary reverses two
R operations. (3) Pushing the boundary on the stack and creating a new boundary
reverses another E operation. (4-5) Expanding the boundary. (6) Merging the bound-
aries that were split by the S label. (7-9) Further expansion of the boundary. (10)
Recreating a hole of size ten. (11) Recreating a triangle that starts the first strip. (12)
Walking the offset associated with the marked label. (13) Recreating the first triangle
at the other end of the strip. (14-16) Recreating six more triangles of this strip. (17)
Finishing the first strip, by gluing its two sides together. (18) Recreating a triangle that
starts the next strip. (19-20) Recreating four more triangles of this strip, terminate.

45

approach can exploit the existing correlation between connectivity and stripification of

a mesh. This is especially useful for compressing models that are widely disseminated.

The computation of high quality stripifications is expensive and, in particular for tri-

angle meshes with corner attributes, not trivial. Once a good set of triangle strips has

been computed, our technique allows to store and distribute it together with the model

at little additional storage or processing cost. The recovered triangle strip information

can also be exploited for more efficient coding of the way per-corner properties are

attached to the mesh as we see in Section 5.2.4. Furthermore, it can be used to guide

predictive coding of vertex positions along the strips. Especially for CAD models that

have sharp creases this gives good results. Since triangle strips typically do not cross

creases in the model, predicting across discontinuities can easily be avoided.

3.7 Hindsights

Long after this work was completed, we realized that it is beneficial to compress the

labels in the order they are consumed by the decoder instead of in the order they are

produced by the encoder. On one hand this will eliminate the need to decompress and

reverse the label sequence before beginning the actual decoding. On the other hand

this will allow us to interleave the reconstruction of the mesh and the decompression

of the label sequence so that the partially decoded mesh can be used to predict the

next label, leading to better compression rates. It also allows improving compression

of the integers associated with labels Hn and Mi,k,l because their maximal possible

value can then be derived from the state of the decoder. In (Isenburg and Snoeyink,

2005a) we give further evidence that reverse decompression, which was first suggested

by (Szymczak, 2002) for the Spirale Reversi decoder of (Isenburg and Snoeyink, 2001b)

to improve Edgebreaker compression, consistently gives the best compression rates.

With the advent of newer graphics accelerators that support both transparent

caching of sixteen or more vertices in the pipeline and direct storage of vertex ar-

rays on the card, locality in the access pattern of triangle strips has become a more

important optimization criterion than maximal length and minimal number of swaps.

Having a large number of smaller strips ordered in a breadth-first manner with maximal

re-use of vertices between strips will usually lead to better rendering performance than

a few long triangle strips that spiral around the mesh. Unfortunately, our encoding

scheme neither preserves the ordering of the strips nor the information about the start-

ing triangle of each individual strip. As presented our scheme is therefore not suited to

46

compress stripified meshes for which the global locality among the triangle strips needs

to be preserved.

In retrospect, we generally advise against the use of recursive, depth-first compres-

sion schemes that need to maintain a stack of compression boundaries in order to encode

the connectivity of polygon meshes such as the Face Fixer scheme presented here or

the Edgebreaker scheme of (Rossignac, 1999). These schemes systematically create

compressed meshes with incoherent element orderings, which especially as meshes be-

come larger has practical disadvantages, as we learn in Chapter 9. In the next chapter

we present a coding scheme for polygon mesh connectivity that not only has better

compression rates, but also allows implementing coherent traversal strategies.

Chapter 4

Degree-based Connectivity Coding

Figure 4.1: Low-degree vertices of a polygon mesh are usually surrounded by high-
degree faces and vice-versa. The two plots show that this is generally the case. They
report the average degree of faces (vertices) that surround vertices (faces) of degree d.

In this chapter I present a scheme for coding polygonal mesh connectivity that de-

livers the best connectivity compression rates reported to date. This coder is an exten-

sion of the vertex-based coder for triangle mesh connectivity by (Touma and Gotsman,

1998). Their scheme codes the connectivity of triangle meshes mainly as a sequence

of vertex degrees. Our scheme codes the connectivity of polygon meshes by storing in

addition a separate sequence of face degrees. Furthermore, we exploit the correlation

between neighboring vertex and face degrees for mutual predictive compression of the

two sequences. Because low-degree vertices are likely to be surrounded by high-degree

faces and vice versa as illustrated in Figure 4.1, we predict vertex degrees based on

neighboring face degrees and vice-versa.

While we use an adaptive traversal heuristic to improve compression by reducing the

number of “split” operations, we also give a simple proof that such heuristics cannot

guarantee to avoid “splits” altogether. Finally we put an end to the speculations

whether the offset values that are associated with each “split” symbol are redundant

or not. We show that split offsets are not redundant by giving example encodings that

have two different decodings if the split offsets are not specified.

48

4.1 Coding with Vertex and Face Degrees

The vertex-based coder by (Touma and Gotsman, 1998) encodes the connectivity graph

of a manifold triangle mesh as a sequence of vertex degrees. We describe how to extend

their approach to encode the connectivity graph of a manifold polygon mesh using

a sequence of vertex degrees and a separate sequence of face degrees. As for triangle

meshes, an occasional split or merge symbol is needed in addition to the vertex degrees.

Encoding: Starting with a connectivity graph of v vertices and f faces, the encoder

produces two symbol sequences: one is a sequence of face degrees Fd and the other is

a sequence of vertex degrees Vd, split symbols Sj that have an associated offset j, and

merge symbols Mi,k that have both an associated index i and an associated offset k.

If the encoding process performs s split operations and m merge operations then the

first sequence contains f − 1− s+m face degrees and the second sequence contains v

vertex degrees, s split symbols, and m merge symbols. The connectivity graph can be

reconstructed by simultaneously working on both symbol sequences.

The coder maintains one or several loops of boundary edges that separate a single

processed region from all unprocessed regions. Furthermore, it stores for every boundary

vertex the number of free degrees or slots, which are unprocessed edges incident to the

respective vertex. Each of these boundaries encloses an unprocessed region; its faces,

vertices, and edges are called unprocessed. In the presence of handles one boundary

can contain another, in which case they enclose the same unprocessed region. Each

boundary has a distinguished boundary edge called the focus. The algorithm works on

the focus of the active boundary, while the other boundaries are kept in a stack.

The initial active boundary is defined counterclockwise around an arbitrary edge and

one of its two boundary edges is defined to be the focus. Each iteration of the algorithm

processes the face adjacent to the focus of the active boundary. This involves recording

its degree and processing its free vertices as illustrated by three example scenarios A, B,

and C in Figure 4.2. Since including a face consumes two boundary slots, we sometimes

need to widen the focus until there is a start slot and an end slot for the face. The

number of focus vertices is called the width of the focus. In scenarios A, B, and C the

focus has a width of 3, 2, and 4 respectively. The free vertices are those vertices of the

processed face that are not part of the widened focus.

The free vertices are processed in clockwise order starting from the start slot. Three

different cases can arise. In accordance with the original reference (Touma and Gots-

man, 1998) we call them add, split, and merge (see Figure 4.2). By far the most frequent

49

B

A

C

focus

focus focus

1

2
3

4
5

6

23

4

processed region

processed region

unprocessed region

boundary

boundary slots

boundary edges

merge offset
for B

split offset
for C 1

66

545

4

4
4 4

4
3

C

B

A
3

3

4

5 4

3

M

4

6

start slot

start slot

4 4

end slot

focus
(widened)

free
vertices

V3V4F5

exit focus

F4
4 V4 M

merge
slot

exit
focusend

slot
free

vertices

3
focus

(widened)

start
slot

end slot
split
slot

free vertices
S

stack
focus

S

stack boundary

exit
focus

stack
boundary

F6 S V3

3

Figure 4.2: The three frame sequences A, B, and C illustrate different scenarios that
can arise when processing a face. A is the most common one: The free vertices of the
face have not been visited before, we add them to the boundary and record their degree.
B only occurs for meshes with handles: A free vertex that has already been visited is
on a boundary in the stack. The active boundary merges with this stack boundary. We
record its stack index and the number of slots between the stack focus and the merge
slot. C happens occasionally: A free vertex that has already been visited is on the
active boundary. The active boundary splits. We record the number of slots between
the new stack focus and the split slot.

case is add, which happens whenever the free vertex has not been previously visited.

In this case we record the vertex degree d using the symbol Vd. When we encounter

a free vertex that has already been visited we either have either a split or a merge. A

merge can occur only for meshes with handles (i.e. with non-zero genus). In this case

the free vertex is on a stack boundary, which causes the active boundary to merge with

the respective stack boundary. We remove this boundary from the stack and record

50

the index i that the boundary had in the stack and the number of slots k between the

focus of the stack boundary and the merge slot, denoted by symbol Mi,k. In the other

case the free vertex is on the active boundary, which causes the active boundary to split

into two. We push one part on the stack and record the number of slots j between the

new stack focus and the split slot, denoted by symbol Sj.

After processing all free vertices, we exit the face and move to the next focus (see

Section 4.4). This repeats until all faces have been processed. Notice that we do

not need to record the degree of the very last face for each boundary. At this point

a boundary has no slots left and wraps around this face. Therefore the number of

recorded face degrees Fd equals at most the number of faces f minus one. Each split

increases and each merge decreases the number of boundaries by one. Thus the exact

number of face degrees recorded, given that we have s split and m merge operations,

is f − 1− s+m. This is discussed further in Section 4.5.

A hole in the mesh is processed like a large polygon. The encoder includes a face

whose degree equals the size of the hole and processes the free vertices around the hole.

Face degrees that correspond to holes in the mesh are marked so that the decoder does

not mistake them for regular polygons.

Decoding: The decoder exactly replays what the encoder does by performing the

boundary updates described by the two symbol sequences. A detailed example run that

leads step by step through the decoding process is shown in Figure 4.3.

Complexity: We assume that the mesh genus is a small constant, so that there

are only a constant number of merge operations. Each face is processed once. The cost

of processing a face is proportional to its degree plus the cost for processing its free

vertices. The sum of face degrees is linear in the number of vertices and each vertex is

added once. This leaves us with the critical split operations that require walking the

offset along the boundary. Since we know the length of the boundary we can always

walk the shorter way. In the worst case the boundary consists of all v vertices and

is recursively split into half, resulting in a time complexity of O(v log2(v)). However,

typically there are few split operations that split the boundary in a unbalanced manner

so that in practice we can expect the run-time to be linear in the number of vertices.

4.2 Compressing with Duality Prediction

The two symbol sequences are compressed into a bit-stream using a adaptive arithmetic

coding with multiple contexts (Witten et al., 1987). Whenever a face is processed we

51

3

exit
focus

5
exit

focus

5

4

focus

4

exit
focus

4

V4 F3V6
focus

6

6

3

V6 F5

exit
focus

4

5

V3V3 V4

focus
3

3

F4

4

V4V5

focus
(widened)

V5F4
focus

(widened)

4

V4F4 4

focus
(widened)

F6 V4V2 V4

focus
(widened) exit

focus

6

exit
focus

2

4

4

F5 V4

V4
exit

focus
focus

4

4 F3

a b c d e f g

h i j k l m

n o p q r

s t

5

4

u v ...

end
slot

start
slot

Figure 4.3: Decoding is an exact replay of encoding: (a) Create the initial boundary by
uncompressing the first two vertex degrees. (b) Uncompress the first face degree. The
average focus vertex degree of 5.0 determines which face-degree context (fdc) is used.
(c) Uncompress the degree of the free vertex. The face degree of 3 determines which
vertex-degree context (vdc) is used. The focus remains at the exit focus because there
is no boundary vertex with 0 or 1 slots. (d) Uncompress the next face degree. The
average focus vertex degree determining the fdc is 5.0. (e) Uncompress the degrees
of the three free vertices. The face degree determining the vdc is 5. (f) The focus
moves counterclockwise to the boundary vertex, which has just 1 slot. (g) Uncompress
the next face degree. The average focus vertex degree 3.5 is the fdc. (h) Uncompress
the degrees of the two free vertices. The face degree 4 is the vdc. (i) Move focus
counterclockwise to the boundary vertex with 0 slots and widen it such that there is a
start slot and an end slot for the next face to process. (j) Uncompress the next face
degree (fdc = 3.6) and uncompress the degree of its free vertex (vdc = 4). (k) Move
the focus counterclockwise to the vertex with 0 slots and widen it. (l) Uncompress the
next face degree (fdc = 4.6). (m) Uncompress the degree of its free vertex (vdc = 4)
and move focus. (n) Uncompress the next face degree (fdc = 5.0). (o) Uncompress
the degree of its free vertex (vdc = 3). (p) Move and widen the focus. (q) Uncompress
the next face degree (fdc = 4.0). (r) Uncompress the degree of its three free vertices
(vdc = 6). (s) Move and widen the focus. (t) Uncompress the next face degree
(fdc = 3.5). The focus has a width of 4, therefore the face degree is at least 4. Disable
the entry of the chosen context that represents the impossible degree 3. (u) Uncompress
the degree of its free vertex (vdc = 5). (v) And so on ...

52

need to specify if it represents a polygon or a hole in the mesh. Using the arithmetic

coder we code this with a separate context of two symbols. Similarly, whenever a free

vertex is processed we need to specify if an add, a split or a merge operation was used.

We distinguish between the three possible operations using three different symbols that

are also encoded with a separate arithmetic context.

What remains to be done is compressing the face degrees, the vertex degrees, and

the offsets and indices associated with split and merge operations. The basic idea is to

exploit the fact that high-degree faces tend to be surrounded by low-degree vertices,

and vice versa, for predictive compression. For every vertex we know the degree of

the face that introduces it. For every face we know the degrees of all vertices of the

(widened) focus. We found that using four different prediction contexts each way is

sufficient to capture the correlation in the duality of vertex and face degrees. Offsets

and indices, on the other hand, are compressed with the minimal number of bits needed

based on their known maximal range.

4.2.1 Compressing Face Degrees

When a face is processed the degrees of all vertices on the (widened) focus are known.

The lower their average degree, the more likely this face has a high degree and vice-

versa (see Figure 4.1). This can be exploited by using different contexts for entropy

coding the face degrees, dependent on this vertex degree average. In practice the use

of four such face-degree contexts seems to capture this correlation quite well. We have

different contexts for an average vertex degree (a) below 3.3, (b) between 3.3 and 4.3,

(c) between 4.3 and 4.9, and (d) above 4.9. These numbers were first chosen based on

the plot in Figure 4.1 and then corrected slightly based on experimental results.

Each of the four face-degree contexts contains 4 entries: The first three entries repre-

sent face degrees 3, 4, and 5 and the last entry represents higher degree faces. These are

subsequently compressed with a special large-face-degree context. This special context

is also used for faces that correspond to holes in the mesh. All contexts are initialized

with uniform probabilities that are adaptively updated. Four bits at the beginning of

the code specify face degrees that do not occur in the mesh. Their representing entries

are disabled in all contexts. For our set of example meshes, predictive coding of face

degrees improves the bit-rates on average by 12.2 %.

There is another small improvement possible: The minimal degree of the face equals

the width of the focus. If the focus is wider than 3 we can improve compression further

by disabling those entries of the chosen arithmetic context that represents impossible

53

degrees. Although this improves the compression rates by only 1 or 2 percent, it was

rather simple to integrate into the arithmetic coding process.

4.2.2 Compressing Vertex Degrees

When a free vertex is processed, the degree of the respective face is known. The lower its

degree, the more likely this vertex has a high degree and vice-versa. Again we exploit

this for better compression by using four different contexts. We switch the vertex-

degree context depending on whether the face is a triangle, a quadrangle, a pentagon,

or a higher degree face.

Each of the four vertex-degree contexts contains 9 entries: The first eight entries

represent vertex degrees 2 to 9 and the last entry represents higher degree vertices.

These are subsequently compressed with a special large-vertex-degree context. All con-

texts are initialized with uniform probabilities that are adaptively updated. Nine bits

at the beginning of the code specify vertex degrees that do not occur in the mesh. Their

representing entry is disabled in all contexts.

For our set of example meshes, predictive coding of vertex degrees improves the

bit-rates on average by 6.4 %. Predictive coding of vertex degrees does not improve

the compression rates as much as predictive coding of face degrees, because we use less

information for each prediction. While each face degrees is predicted by an average of

two or more vertex degrees, each vertex degree is only predicted by a single face degree.

4.2.3 Compressing Offsets and Indices

An integer number that is known to be between 0 and n can be encoded with exactly

log2(n+1) bits. We use this for compressing the offsets and indices associated with the

split and the merge operation. Whenever a split offset j, a merge index i, or a merge

offset k is encoded or decoded, the maximal possible value of this number is known.

For the split offset j it equals the number of slots on the active boundary, for the merge

index i it equals the size of the stack, and for the merge offset k it equals the number

of slots on the indexed boundary in the stack.

4.3 Coding Non-Manifold Meshes

Compared to (Guéziec et al., 1999) our coder implements a much simpler stitching

scheme to recover non-manifold connectivity that allows a robust, minimal-effort im-

plementation at the expense of less efficiency. However, the number of non-manifold

54

mesh
name

vertex degree distribution face degree distribution part, hole
& handles2 3 4 5 6 7 8 9 9 3 4 5 6 6

triceratops – 8 2816 8 – – – – – 346 2266 140 63 19 1 – –
galleon 7 430 1595 270 66 4 1 – – 336 1947 40 18 43 12 – –
cessna 8 642 2470 384 178 41 18 1 3 900 2797 180 27 23 11 – –
beethoven 21 279 1925 295 99 20 14 – 2 680 2078 44 4 6 8 10 –
sandal – 280 1857 329 95 18 7 12 38 961 1985 7 – – 9 14 12
shark – – 2560 – – – – – – 188 2253 83 29 9 1 – –
al 2 538 1999 720 268 69 15 1 6 1579 2505 44 11 36 21 – –
cupie 16 272 2405 234 37 12 8 – – 384 2506 114 10 18 6 – –
tommygun – 1557 2002 395 152 21 18 8 18 992 2785 84 21 98 39 – 6
cow – 7 87 514 1796 364 98 23 15 5804 – – – – 1 – –
teapot 2 14 1022 125 18 5 1 – 2 215 1070 3 1 1 1 – 1

Table 4.1: The vertex count v and the polygon count p, the vertex and face degree dis-
tribution, and the number of holes and handles of the models used in our experiments.

55

vertices is typically small, which justifies the use of a simpler scheme. Whenever a

free vertex is processed by an add operation we simply specify if this indeed is a new

position or not using arithmetic coding. If it is a new position we increment the po-

sition counter. Otherwise it is an old position and its index needs to be compressed

as well. We can do this with log2(n) bits where n is the number of positions already

encoded/decoded. A more efficient variation of this scheme that is geared towards large

meshes with many non-manifold vertices is described in Section 7.4.

4.4 Reducing the Number of Splits

After processing a face, we could continue with the exit focus as the next focus. This

is the strategy of the original coder for triangle meshes as proposed by (Touma and

Gotsman, 1998). However, (Alliez and Desbrun, 2001b) propose a more sophisticated

strategy for picking the next focus that can significantly reduce the number of splits.

This is beneficial, because split operations are expensive to code: On one hand we need

to specify where in the sequence of vertex degrees they occur and on the other hand

we need to record their associated split offset. Since the decoding process has to follow

this strategy, the quest for this better focus can only use information that is available

to the decoder. Therefore (Alliez and Desbrun, 2001b) suggest moving the focus to

the boundary vertex with the lowest number of slots. When there is more than one

such vertex, they choose the least dense region by averaging over a wider and wider

neighborhood. This strategy makes keeping track of the next candidate an expensive

operation. Using a dedicated priority queue, for example, would require O(log(b)) per

boundary update, where b is the number of vertices on the active boundary.

Nevertheless, to reduce the number of splits is especially important in polygonal

meshes, because here a split operation can pinch off parts of the boundary that do not

enclose unprocessed vertices and that can be as small as a single unprocessed face. This

does not happen in the pure triangular case where triangles that share two edges with

the compression boundary (e.g. that “fill” a zero slot) are immediately included. We

suggest a heuristic for picking the next focus that is similar to the one by (Alliez and

Desbrun, 2001b) but does not affect the asymptotic complexity of the decoder.

The focus is moved to the boundary vertex with the smallest number of slots in

counterclockwise direction as seen from the current focus. This current focus is usually

the exit focus of the face processed last or the stack focus if a new boundary was just

popped of the stack. However, we only move the focus if the smallest number of slots

is 0 or 1, otherwise the focus remains where it is. Table 4.2 reports the success of

56

mesh current 0 or 1 slot coding 0 slot only coding
name # splits bpv # splits bpv gain # splits bpv gain

triceratops 53 1.311 25 1.189 9.3 % 47 1.262 3.7 %
galleon 78 2.309 18 2.093 9.4 % 22 2.122 8.1 %
cessna 172 2.882 28 2.543 11.8 % 58 2.637 8.5 %
beethoven 99 2.431 15 2.102 13.5 % 27 2.155 11.4 %
sandal 85 2.295 25 2.115 7.8 % 33 2.173 5.3 %
shark 24 0.818 13 0.756 7.6 % 12 0.759 7.2 %
al 92 2.616 14 2.429 7.1 % 15 2.418 7.6 %
cupie 56 1.786 15 1.640 8.2 % 15 1.637 8.3 %
tommygun 131 2.449 32 2.258 7.8 % 37 2.251 8.1 %
cow 154 2.313 13 1.781 23.0 % 19 1.811 21.7 %
teapot 10 1.167 3 1.127 3.4 % 3 1.102 5.6 %

average 9.9 % 8.7 %

Table 4.2: The number of splits and the resulting bit-rate using the current focus com-
pared to an adaptive strategy that moves the focus either to the next counterclockwise
0 or 1 slot or to the next 0 slot only and the coding improvement in percent.

this strategy in reducing the number of splits and the bit-rate. Starting a brute-force

search along the boundary for the vertex with the smallest number of slots would mean

a worst-case time complexity of O(n2). Instead we keep track of the next 0 and the next

1 slot by organizing them into two cyclic linked lists. In each list we always point to

the slot that is closest in counterclockwise direction and perform the necessary updates

as the boundary changes. This data structure can be maintained without affecting the

asymptotic complexity of the decoder.

4.5 Counts and Invariants

For a manifold mesh without boundary, the sum of all v vertex degrees and the sum of

all f face degrees both equal twice the number of edges e. That means the two sums

are equal.
f∑

k=1

deg(fk) =
v∑

k=1

deg(vk) = 2e (4.1)

If we know all vertex degrees and all face degrees but one we can compute it as the one

completing the equality.

ff =
v∑

k=1

deg(vk)−
f−1∑

k=1

deg(fk) (4.2)

57

mesh versus polygon coding versus triangle coding
name ff dd gain tg dd gain

triceratops 2.115 1.189 43.8 % 2.167 1.189 45.1 %
galleon 2.595 2.093 19.3 % 2.088 2.093 -0.5 %
cessna 2.841 2.543 10.5 % 2.489 2.543 -2.2 %
beethoven 2.890 2.102 27.3 % 2.389 2.102 12.0 %
sandal 2.602 2.115 18.7 % 2.121 2.115 0.3 %
shark 1.670 0.756 54.7 % 1.513 0.756 50.0 %
al 2.926 2.429 17.0 % 2.105 2.429 -15.4 %
cupie 2.307 1.640 28.9 % 2.102 1.640 21.9 %
tommygun 2.611 2.258 13.5 % 2.066 2.258 -9.4 %
cow 2.213 1.781 19.5 % 1.879 1.781 5.1 %
teapot 1.669 1.127 32.5 % 1.063 1.127 -6.3 %

average 26.0 % 9.1 %

Table 4.3: The compression rates of the proposed Degree Duality coder (dd) in com-
parison to those of another polygon mesh coder, Face Fixer (ff), and those of a triangle
mesh coder, the TG coder (tg), for the example models shown in Table 4.1. Reported
are the achieved bit-rates in bits per vertex and the corresponding coding gain in per-
cent. The TG coder compresses a triangulated version of these models and its bit-rates
do not include the extra information necessary to reconstruct the polygons.

Furthermore we have the following invariants: The sum of degrees of all unprocessed

faces minus the number of all boundary edges b equals twice the number of unprocessed

edges u. And also the sum of degrees of all unprocessed vertices plus the number of all

boundary slots s equals twice the number of unprocessed edges u.

∑

fk⊂B
deg(fk)− b =

∑

vk⊂B
deg(vk) + s = 2u (4.3)

where ⊂ B means unprocessed (or enclosed by some boundary). Furthermore, this

invariant is true for the face and vertex degree count of every unprocessed region to-

gether with the edge and slot count of the respective boundaries that enclose it. In the

moment a split occurs, one such equation E is split into two new equations E ′ and E ′′
that are related with s = s′ + s′′, b = b′ + b′′, u = u′ + u′′, and the sums of unprocessed

face degrees and vertex degrees are split correspondingly. The offset associated with

the split operation specifies s′′ and b′′. Together with the two degree sequences they

specify implicitly when each boundary ends. This explains why we can omit one face

degree for every split operation—each split creates a new equation just like (4.2) that

can be solved for a single face degree.

58

4.6 Results

On the set of example models shown in Table 4.1 the presented coder delivers compres-

sion rates that improve between 10 % to 55 % over those of the Face Fixer coder with

an average improvement of 26 % as documented by the bit-rates reported in Table 4.3.

Often the original polygonal connectivity is cheaper to encode than a triangulated ver-

sion of it as evidenced by the bit-rate comparisons with the TG coder, in particular

for connectivities that have strong regularity in both degree sequences, such as the

“triceratops” or the “shark” model.

But degree coding does not always outperform other coders. We can construct

pathological examples where other coders perform better. Using the cow model from

Table 4.1 we generated a triangle mesh and a quadrangle mesh to demonstrate this. We

generated the triangle mesh by placing a new vertex into every triangle of the original

mesh and by connecting it to its three vertices. All new vertices have degree three, while

the degree of every vertex of the original mesh doubles. This connectivity compresses

to 0.988 bpv using my implementation of Edgebreaker (Rossignac, 1999) with adaptive

order-3 arithmetic compression of the labels, whereas the Degree Duality coder needs

1.569 bpv. Similarly, we generated the quadrangle mesh by placing a new vertex into

every original triangle and by connecting it to three new vertices that are placed on

every original edge. All new vertices have either degree three or degree four, while

the degree of the original vertices remains unchanged. This connectivity compresses to

1.376 bpv using Face Fixer (Isenburg and Snoeyink, 2000), whereas the Degree Duality

coder needs 1.721 bpv. However, such pathological cases rarely occur in practice.

4.7 Splits and Split Offsets

There have been attempts to establish a guaranteed bound on the coding costs of a

degree coder. However, the infrequently occurring “split” symbols make this a difficult

task. For triangle meshes, the adaptive traversal heuristic of (Alliez and Desbrun,

2001b) significantly lowered the number of split operations and the remaining number

of “splits” seemed negligible small. Therefore the authors restricted their worst case

analysis to the vertex degrees. Surprisingly, the maximal entropy of a distribution of

n vertex degrees whose sum fulfills Euler’s relation for planar triangulations coincides

with the information theoretic minimum of 3.24 bits per vertex that is due to Tutte’s

enumeration work (Tutte, 1962). Alliez and Desbrun’s work has been extended by

59

(Khodakovsky et al., 2002) to show that the summed entropies of the face degree

and the vertex degree sequences also converge to the corresponding bound for planar

graphs (Tutte, 1963). They claimed that this would indicate that degree coding is

in some sense optimal. However, all this is based on the assumption that the split

operations can be neglected.

4.7.1 Splits can in general not be avoided

The obvious question is whether it is possible to avoid split operations altogether. If

we can find some traversal heuristic that can guarantee that no split operations occur,

then degree coding would indeed be optimal. However, we can easily prove that splits

cannot be avoided with a strategy that only uses the already encoded/decoded part of

the mesh. Given any such strategy we can always construct a mesh that is guaranteed

to result in a split. This proof uses the fact that the connectivity of a non-zero genus

mesh will have at least as many splits as the mesh has handles.

Imagine your favorite mesh of torus topology. The encoder eventually has to use

the merge operation to code the handle. Every merge operation is preceded by a split

operation. In the moment this split operation is performed, we pause the encoding

process, perform an edge cut in the unprocessed region that opens the handle, insert

two large polygons or holes into the cut, and continue the encoding process on the mesh

(which now has sphere topology). The coder of course did not notice what happened,

because the edge cut was performed in the region it has not yet seen. But now the

coder has produced a split for a mesh of genus zero.

The occasional occurrence of split operations does not disprove the optimality claim

of (Alliez and Desbrun, 2001b; Khodakovsky et al., 2002) since their number could be

constant. However, (Gotsman, 2003) has shown that the entropy analysis for triangular

connectivities of Alliez and Desbrun is slightly off, because it includes many vertex

degree distributions that do not correspond to actual triangulations. He incorporates

additional constraints on the distribution that lower the worst-case entropy of the

vertex degree distribution below Tutte’s bound. This means that there are fewer valid

permutations of vertex degrees than triangulations and that additional information

is necessary to distinguish between them. So the split information does contribute a

small but necessary fraction to the encoding and is therefore not negligible. Obviously

Gotsman’s findings also prove that split operations can in general not be avoided.

60

4.7.2 Split offsets are in general not redundant

Since splits are a necessary part of the encoding, calculations for a guaranteed bound

on the coding costs of a degree coder must take them into account. This is difficult, not

only because their number is unpredictable but also because of their associated offset

values. There has been speculation that it might be possible to modify the TG coder to

operate without explicitly storing the offset values that are associated with each “split”

symbol. Such speculations are motivated by the fact that Edgebreaker (Rossignac,

1999) manages to avoid storing such offsets, whereas the otherwise almost identical

Cut-border Machine (Gumhold and Strasser, 1998) explicitly includes them. Similarly,

Face-Fixer (Isenburg and Snoeyink, 2000) avoids storing offsets, whereas the Dual-

Graph Method (Li and Kuo, 1998) includes them.

In an information theoretic sense, the split offsets used by the Cut-border Machine

and the Dual-Graph Method are redundant because they are implied in their symbol

sequence. Edgebreaker and Face Fixer recreate these offsets by decoding either in two

passes (Rossignac, 1999; Rossignac and Szymczak, 1999) or in reverse (Isenburg and

Snoeyink, 2000; Isenburg and Snoeyink, 2001b). In both schemes, each “split” symbol

S has a corresponding “end” symbol E that signals the completion of a compression

boundary. For a traversal that always completes one boundary part before continuing

on the “split off” parts, the symbols S and E form nested pairs, each of which encloses

a subsequence of symbols. In Edgebreaker and Face-Fixer, such a symbol subsequence

is a self-contained encoding of the portion of the mesh enclosed by that boundary part.

Obviously, this subsequence also determines the length of that boundary part, which

is exactly what is specified by the split offset.

It was less clear whether the split offsets used by the TG coder would also be

redundant. For one thing, the symbol sequences produced by the TG coder do not

contain explicit “end” symbols because the completion of a compression boundary is

automatically detected. Therefore it is not easy to identify the subsequences of symbols

that complete a particular boundary part. But simply adding “end” symbols does not

make things much easier, because the split offsets of the TG coder cannot be derived

from a subsequence of symbols alone.

Unlike the symbol subsequences of Edgebreaker and Face Fixer, the symbol subse-

quences of the TG coder are not self-contained encodings of some portion of a mesh.

Decoding also depends on the state of the compression boundary at the beginning of

the subsequence. The TG coder stores significantly more state information on the

61

compression boundary than Edgebreaker or Face Fixer. It maintains slot counts that

specify how many unprocessed edges are still incident to each boundary vertex. The

split offsets also specify how to split the slot counts, not just the boundary vertices.

The value of each count and their order around the boundary depends on all preced-

ing symbols. Therefore is it impossible to derive the split offsets with computations

restricted to subsequences of symbols or by processing the symbols in reverse.

For simple triangulations, we have implemented a decoding scheme that “tries out”

all possible split offsets in a brute-force manner, backtracking as soon as it notices that

it cannot complete a triangulation. This is slow due to the exponentially increasing

search space and therefore impractical as a decoding algorithm. But this approach does

find the counter-examples shown in Figure 4.4 that establish the non-redundancy of

the offsets—namely, vertex degree sequences with “split” and “end” symbols that lead

to more than one valid decoding if different split offsets are used.

4

3

3
4 4

34

3

… S 4 3 E 4 3 E
i1 = 2

d1 = 7
i2 = 2

d2 = 7

6 6 5 6 6 5 6 … 5 7 5 6 6 6 5 …

b = 6 s = 16

gate

focus

i = 4 d = 14

t = 12

Figure 4.4: The smallest scenario where degree coding with “split” and “end” symbols
but without offsets is not unique. This first occurs in triangulations with 11 vertices.

In practice, our implementation finds that only few sets of split offsets actually lead

to valid decodings and that many offset-less encodings correspond to only one unique

triangulation. For example, of the 290, 898 possible encodings of the well-known “horse”

model (see Table 4.4), 290, 889 are unique when both “split” and “end” symbols are

stored, and the remaining 9 have only two valid decodings each. For those we could

replace the entire set of split offsets (on average 15 in case of the “horse” model) with

a single bit that specifies which one of the two decodings it is. Furthermore there are

many small triangle meshes—among them the popular “cow” and “fandisk” models—

for which split offsets are redundant when both “split” and “end” symbols are stored.

Unfortunately we do not have an efficient algorithm for finding all possible valid

decodings. We currently achieve this by exhaustive search through all potential splits

62

meshes splits non-unique
name vertices encodings min max avg encodings

cow 2,904 17,412 13 22 16.8 0
fandisk 6,475 38,838 0 12 3.3 0
horse 48,485 290,898 7 29 15.4 9
dinosaur 56,194 337,152 27 56 40.4 10
rabbit 67,039 402,222 0 27 9.0 56
armadillo 172,974 1,037,832 36 76 55.2 146

Table 4.4: The table lists for each mesh the number of vertices and the number of
different encodings. The illustrations show which percentage of encodings has what
number of splits. The minimum, the maximum, and the average number of splits are
given in the table. Most importantly, we report the number of encodings that are not
unique because they have valid decodings for two different sets of split offsets

and the complexity of this search increases quickly. Although we can significantly prune

the search tree and even solve even relatively large triangulations in reasonable time,

the high search costs mean that offset-less degree encodings are mainly of theoretical

interest and do not lead to new practical compression algorithms. Further details of

this work will be published in a forth-coming paper (Isenburg and Snoeyink, 2005b).

We must mention that there are incentives to include explicit split offsets in the

encoding. Split offsets allow decoding in a single forward pass over the symbol sequence,

which makes it possible to decompress in a streaming fashion (see Chapter 7). They give

the freedom to choose a mesh traversal that is not recursive. The Cut-Border Machine

and the TG coder can easily be modified to operate in a breadth-first manner, which

leads to more coherent mesh layouts (see Chapter 9). Finally, explicit split offsets can

result in better overall compression rates because they allow incorporating heuristics

for predictive compression of the vertex degrees (Isenburg and Snoeyink, 2005a).

63

4.8 Summary

The main contribution of this chapter is the extension of degree coding to polygonal

connectivity using a sequence of vertex degrees and a sequence of face degrees that are

compressed separately. Also of importance is the observation that the correlation in

the duality of the degrees can be used for mutual predictive compression. The coder

that we have described here delivers the best connectivity compression rates reported

for polygon mesh connectivity so far. We should mention that a similar coder was

developed independently and during the same time period by a group of researchers at

CalTech and USC (Khodakovsky et al., 2002). Furthermore, we proved that there is no

traversal heuristic that can guarantee to avoid split operations and we also disproved

the long suspected redundancy of split-offsets.

4.9 Hindsights

The use of an adaptive strategy that “jumps” around on the compression boundary in

the attempt to reduce the number of splits typically lowers the compression rates, but

it also tends to create incoherent triangle orderings. Sending the triangles in this order

to the graphics hardware will have a negative impact on the success of the transparent

vertex caching schemes employed on modern cards. Depending on the distance of these

“jumps” this may also lead to incoherent memory accesses to the vertex array. We

advice against moving the focus to the next 1 slot or the use of the strategy by (Alliez

and Desbrun, 2001b). Instead we suggest a strategy that only moves the focus to a 0

slot and in case there are multiple such 0 slots to choose the “oldest” 0 slot that was

least recently created. Pathological cases excluded, this will only require a tiny “hop”

along the boundary, while already leading to good improvements in compression as

documented in Table 4.2. For reasons of coherence we strongly recommend a breadth-

first approach for advancing the focus in the absence of 0 slots rather than the depth-

first approach described here. The problems with incoherent mesh layouts are discussed

further in Chapter 9.

In retrospect we also advocate a different strategy for dealing with holes in the

mesh. Our original approach treats a hole just like large polygon and simply marks

it as a hole. However, that means that all the vertices around the hole need to be

processed. In Section 5.1 we use the order in which the connectivity coder processes

the vertices to compress their vertices with predictive coding. Especially for meshes

64

with large holes this results in poor vertex predictions around the hole. Therefore we

suggest marking boundary edges that are adjacent to a hole and stopping the growth

of the boundary there, as in (Gumhold and Strasser, 1998).

Chapter 5

Coding Geometry and Properties

“highly”
non-convex

“highly”
non-planar

“fairly”
planar & convex

Figure 5.1: Two adjacent triangles are more likely to be in a non-convex or non-planar
configuration than a polygonal face, which tends to be “fairly” planar and convex.

In the previous chapters we have looked at different ways to encode the connectivity

of polygon meshes. In this chapter we look into the compression of vertex coordinates

and the compression of mesh properties. For compressing vertex coordinates we de-

scribe a simple improvement to the prediction scheme by (Touma and Gotsman, 1998)

for meshes that are not fully triangulated. We let the polygon information dictate

where to apply the parallelogram rule that they use to predict vertex positions. Since

polygons tend to be fairly planar and fairly convex, it is beneficial to make predictions

“within” a single polygon rather than “across” two polygons. This, for example, avoids

poor predictions due to a crease angle between polygons.

For compressing properties, such as shading normals, colors, and texture coordinates

that can be associated with the vertices, faces or corners of the mesh, there really are

two distinct kinds of information to compress. One describes how the properties are

attached to the mesh—the property mapping, for which we introduce a novel predictive

compression scheme. The other specifies each individual property—the property values,

for which we report a compression technique that takes mapping discontinuities into

account at the example of texture coordinates.

66

5.1 Compressing Vertex Positions

Recently we have seen a number of innovative approaches for compressing mesh geom-

etry. There are spectral methods (Karni and Gotsman, 2000) that perform a global

frequency decomposition of the surface, there are space-dividing methods (Devillers

and Gandoin, 2002) that compress vertex positions without the aid of the connectiv-

ity, there are remeshing methods (Khodakovsky et al., 2000; Szymczak et al., 2002)

that compress a regularly re-sampled version instead of the original geometry, there are

angle-based methods (Lee et al., 2002) that represent geometry through the dihedral

and internal angles of the mesh triangles, there are model-space methods (Lee and Ko,

2000) that compress prediction errors in a local coordinate frame using vector quantiza-

tion, there are feature-based methods (Shikhare et al., 2001) that find and instantiate

repeated geometric features in a model, and there are high-pass methods (Sorkine et al.,

2003) that quantize coordinates after a basis transformation with the Laplacian ma-

trix. We do not attempt to improve on these—rather complex—schemes. Instead we

generalize the simple and popular triangle mesh geometry predictor by (Touma and

Gotsman, 1998) to achieve better compression performance on polygonal meshes.

Predictive geometry compression schemes work as follows: First the floating-point

positions are uniformly quantized using a user-defined precision of for example 8, 10, 12,

or 16 bits per coordinate. This introduces a quantization error as some of the floating-

point precision is lost. Then a prediction rule is applied that uses previously processed

positions to compute an estimation for the next position. Only a corrective vector

is stored that describes the difference between the predicted and the actual position.

The values of these corrective vectors tend to spread around zero. This reduces the

variation and thereby the entropy of the sequence of numbers, which means they can

be efficiently compressed with, for example, an arithmetic coder.

The first prediction method for geometry compression was suggested by (Deering,

1995). It simply predicts the next position as the last position. While this technique,

which is also known as delta coding, makes systematic prediction errors, it can easily be

implemented in hardware. A more sophisticated scheme is the spanning tree predictor

by (Taubin and Rossignac, 1998). A weighted linear combination of two, three, or more

parent vertices in a vertex spanning tree is used for prediction. The weights used in this

computation can be optimized for a particular mesh but need then to be stored as well.

While such an optimization can be expensive, it is only performed by the encoder and

not by the decoder. However, by far the most popular scheme is the parallelogram pre-

67

dictor by Touma and Gotsman. A position is predicted to complete the parallelogram

that is spanned by three previously processed vertices of a neighboring triangle. This

predictor gives the best overall trade-off between computational efficiency and achieved

compression and has remained the accepted benchmark that recent approaches com-

pare themselves with. Better compression rates have been reported, but it is often

questionable whether these gains are justified given the sometimes immense increase in

algorithmic and asymptotic complexity of the coding schemes.

Good predictions are close to the actual position of a vertex. In the triangle mesh

case the parallelogram rule gives good predictions if used across pairs of triangles that

are fairly planar and convex. It gives bad predictions if used across triangles that are

highly non-planar and/or non-convex (see Figure 5.1 on page 65). Two approaches

were proposed to increase the number of good parallelogram predictions. Instead of

processing the vertices in the order encountered by the connectivity coder, (Kronrod

and Gotsman, 2002) first locate good triangle pairs for parallelogram prediction and

then try to use a maximal number of them. For this, they construct a prediction

tree that directs the traversal to good predictions. Since these directives have to be

encoded too, they devise a scheme that traverses the prediction tree while simultane-

ously encoding the mesh connectivity. Especially on meshes with many sharp features,

such as CAD models, they achieve significant improvements in geometry compression.

However, this scheme is considerably more complex than the original method.

Instead of using a single parallelogram prediction, (Cohen-Or et al., 2002) propose

to average over multiple predictions. They define the prediction degree of a vertex to be

the number of triangles that can be used to predict its position with the parallelogram

rule. For typical meshes the average prediction degree of a vertex is two. In order

to have as many multi-way predictions as possible, their geometry coder traverses the

mesh vertices using a simple heuristic that always tries to pick a vertex with a predic-

tion degree of two or higher. This approach slightly improves the compression rates,

but at the same time increases the complexity of the encoding and the decoding algo-

rithms, since connectivity and geometry need to be processed in two separate passes.

In contrast, our generalization of the TG coder to the polygonal case only requires an

extra if ... else ... statement and a second set of arithmetic probability tables.

5.1.1 Predicting within Polygons

The first vertex position of each mesh component has no obvious predictor. We simply

predict it as the center of the bounding box. There will be only one such center

68

prediction per mesh component. The second and the third vertex positions cannot yet

be predicted with the parallelogram rule since at least three vertices are needed for

this. We predict them as a previously decoded position to which they are connected

by an edge. This is simple delta coding and makes a systematic prediction error, but

there will be only two such last predictions per mesh component. All following vertex

positions use the parallelogram predictor. We distinguish two cases: a within and an

across prediction that are illustrated in Figure 5.2.

within predictionacross prediction

Figure 5.2: The parallelogram used for prediction is shown in dark grey and the correc-
tive vectors are shown in red. Imagine the green shaded edges symbolize a sharp crease
in the model: then across predictions will perform a lot worse than within predictions.

Polygonal faces tend to be fairly planar and convex. Although they might not be

perfectly planar, major discontinuities are improbable to occur across them—otherwise

they would likely have been triangulated when the model was designed. Furthermore,

a quadrilateral, for example, is usually convex while two adjacent triangles easily form

a non-convex shape. Therefore predicting within a polygon is preferred over predicting

across polygons. At least three vertices of a (non-triangular) polygon must already be

known before a within prediction is possible.

A simple greedy strategy for maximizing the number of within predictions grows

the already processed mesh region by continuing (a) with a polygon that shares three

or more vertices with the processed region or (b) with a polygon that creates (a) for

the next iteration. Coincidentally, the traversal order of the connectivity coder that

was described in Chapter 4 qualifies as such a strategy. In the attempt to improve

connectivity compression rates it traverses the mesh with a heuristic that aims at

reducing the number of split operations, which are expensive to encode. Whenever

possible, this strategy continues with a polygon that completes a boundary vertex,

which gives us (a). Otherwise, it continues with a polygon that brings a boundary

vertex closer to completion, which gives us (b). The results in Table 5.1 illustrate the

success of this strategy: on average 84 % of the vertices can be within-predicted.

69

mesh predicted % of bpv
name total within across last center within within other

triceratops 2832 2557 272 2 1 90 14.1 20.5
galleon 2372 2007 329 24 12 85 16.9 26.8
cessna 3745 3091 621 22 11 83 11.0 19.8
beethoven 2655 2305 326 16 8 87 21.0 24.2
sandal 2636 2084 525 18 9 79 14.1 22.8
shark 2560 2348 209 2 1 92 9.8 18.7
al 3618 2672 883 42 21 74 18.6 23.6
cupie 2984 2623 343 12 6 88 17.0 21.5
tommygun 4171 3376 678 78 39 81 10.9 19.5
cow 2904 0 2901 2 1 0 – 20.6
cow poly 2904 2391 510 2 1 82 18.0 21.6
teapot 1189 1016 170 2 1 85 14.9 22.7

average 84 15.1 22.0

Table 5.1: This table reports how many vertices are predicted each way and the per-
centage of within prediction. The compression rates in bits per vertex (bpv) for within-
predicted versus otherwise predicted vertices are given for a precision of 12 bits.

5.1.2 Compressing Corrective Vectors

The parallelogram prediction produces a sequence of correctors that has less variation

than the sequence of positions. Specifically, the corrective vectors are expected to

spread around the zero vector. The correctors produced by within predictions tend to

be smaller than those produced by across, last, and center predictions. This implies

that the entropy of the within correctors will be lower than that of the others. For

entropy coding it is beneficial not to spoil the lower entropy of the within correctors with

the higher entropy of the other correctors. Therefore we use two different arithmetic

contexts depending on whether a corrector is the result of a within prediction or not.

The results in Table 5.1 confirm the benefit of this approach: the correctors of within

predictions compress on average 30 percent better than the others.

For quantization with k bits of precision we map the position coordinates to a

number between 0 and 2k − 1. Instead of using corrective values ranging from −2k − 1

to +2k − 1 we use correctors that express the shortest distance between the predicted

and the actual position modulo 2k, which essentially folds the correctors into a range

between −2k−1 − 1 and +2k−1. These values are expected to be spread around zero

without preference for either sign. Hence, the high-order bits of their absolute value

are more likely to be zero than the low-order bits. The highest order bit, for example,

will only be set if the prediction error is half the extend of the bounding box or more.

70

It benefits from almost all predictions. The lowest order bit, on the other hand, can be

set whenever there is a prediction error.

For memory-efficient arithmetic compression we break the sequence of corrector bits

into smaller sequences. This prevents the probability tables from becoming too large.

For a precision of k = 12 bits, for example, we break the sequence of 11 value bits into

sequences of 5, 3, 2, and 1 bits, plus one sign bit. In our experiments we initialized the

arithmetic tables with uniform probabilities and used an adaptive coder that learned

the actual distribution. An additional coding gain could potentially be achieved by

initializing the table with the expected distribution.

mesh connectivity geometry (8 bits) geometry (10 bits) geometry (12 bits)
name TG IA gain TG IA gain TG IA gain TG IA gain

triceratops 767 421 45 2990 2362 21 4936 3798 23 7095 5226 26
galleon 619 621 0 3666 2555 30 5436 3920 28 7396 5470 26
cessna 1165 1191 -2 3776 2269 40 6075 3824 37 8943 5856 35
beethoven 793 698 12 3589 3247 10 5607 5119 9 8072 7106 12
sandal 699 697 0 2996 2364 21 4648 3692 21 6709 5253 22
shark 484 242 50 2345 1515 35 3859 2346 39 5703 3384 41
al 952 1099 -1 4732 3957 16 7413 6369 14 10344 8997 13
cupie 784 612 22 3003 2505 17 5017 4361 13 7315 6535 11
tommygun 1077 1178 -9 4415 3076 30 7040 4653 34 10197 6517 36
cow 682 647 5 3096 3244 -5 5153 5316 -3 7397 7487 -1
cow poly 667 554 17 3114 2673 14 5178 4628 11 7417 6776 9
teapot 158 168 -6 1392 981 30 2209 1650 25 3127 2387 24

average 10 24 24 23

Table 5.2: The table reports compression rates in bytes for connectivity and geometry
for the Touma and Gotsman coder (TG) and our coder (IA). The coding gains of our
coder over the TG coder are reported in percent. Geometry compression rates are given
for three different precision levels of 8, 10, and 12 bits. For the cow, a purely triangular
model, we get roughly the same bit-rates as the Touma and Gotsman coder. This
validates that our improvement really comes from using the polygonal information.

5.1.3 Results

Aside from an additional switch statement and a second set of probability tables, our

algorithm has the same simple implementation as the original TG coder. However,

the results listed in Table 5.2 show that our generalization to polygon meshes gives an

immediate improvement of more than 20 percent in the geometry compression rates.

Note that for a purely triangular model (e.g. the cow model) we get roughly the same

71

bit-rates as the Touma and Gotsman coder. This validates that our improvement really

comes from using the polygonal information.

Our approach improves on the TG coder similarly at 8, 10, and 12 bits of precision.

This demonstrates that the coding gains are independent from the chosen level of quan-

tization. However, the relative percentage of compression achieved by a geometry coder

is strongly dependent on the number of precision bits. This is clearly demonstrated

in Table 5.3, which reports relative geometry compression gains (i.e. the achieved re-

duction in size in proportion to the uncompressed size) at different quantization levels:

with increasing precision the achieved compression gain decreases.

mesh 8 bit 10 bit 12 bit 14 bit 16 bit
name bpv gain bpv gain bpv gain bpv gain bpv gain

triceratops 6.7 72 10.7 64 14.8 59 19.0 55 23.0 52
galleon 8.6 64 13.2 56 18.4 49 23.8 44 28.9 40
cessna 4.8 80 8.2 73 12.5 65 17.3 59 22.3 54
beethoven 9.8 59 15.4 49 21.4 41 27.4 35 33.4 30
sandal 7.2 70 11.2 63 15.9 56 21.4 49 26.9 44
shark 4.7 80 7.3 76 10.6 71 13.9 67 17.3 64
al 8.7 64 14.1 53 19.9 45 25.8 39 31.7 34
cupie 6.7 72 11.7 61 17.5 51 23.5 44 29.6 39
tommygun 5.9 75 8.9 70 12.5 65 16.7 60 20.7 57
cow 8.9 63 14.6 51 20.6 43 26.6 37 32.7 32
cow poly 7.4 69 12.7 58 18.7 48 24.6 41 30.7 36
teapot 6.6 73 11.1 63 16.1 56 21.2 50 26.2 46

average 7.2 70 11.5 62 16.6 54 21.8 48 27.0 44

Table 5.3: This table reports geometry compression rates in bits per vertex (bpv) at
different quantization levels and the corresponding gain compared to the uncompressed
geometry. The latter is simply three times the number of precision bits per vertex.

This means that predictive compression does not scale linearly with different levels

of precision. Such techniques mainly predict away the high-order bits. If more precision

(= low bits) is added, the achievable compression gain decreases. In order to make a

meaningful statement about the average compression rates of a geometry coder it is

necessary to clarify at which quantization they were achieved. In Table 5.3 we report the

performance of our geometry compression scheme at commonly used levels of precision.

5.1.4 Discussion

The geometry compression schemes that are used in industry-strength triangle mesh

coders are those with simple and robust implementations. The most popular of those

is Touma and Gotsman’s linear parallelogram predictor. We have described a simple

72

technique that exploits information about polygonal faces for improving the predictive

compression rates achieved with the parallelogram rule.

Can we further improve the polygonal geometry compression rates using only a

simple linear predictor? Assume a parallelogram prediction is performed within a

regular polygon (i.e. a planar and convex polygon with unit-edge lengths) of degree d.

The prediction within regular quadrilaterals (d = 4) is perfect, but for higher-degree

polygons (d > 4) the prediction error grows with the degree. Measurements on our test

meshes show a similar behavior: predictions within quadrilaterals have the smallest

average prediction error and the error becomes larger as the degree increases.

This observation suggests two ways of improvement: On one hand one could traverse

the mesh such that a larger number of vertices are predicted within a quadrilateral or

a low-degree polygon. On the other hand one could change the linear prediction rule

depending on the degree of the polygon a vertex is predicted within. The parallelogram

rule can be written as the linear combination P = α ∗ A + β ∗ B + γ ∗ C where

α = γ = 1 and β = −1. It has the advantage that it can be implemented with pure

integer arithmetic. If we allowed α, β, and γ to be floating point numbers, we could

formulate a pentagon rule or a hexagon rule. Such rules would not be limited to base

their predictions on only three vertices. The prediction of the last unknown vertex

within a hexagon, for example, could use a linear combination of all five vertices.

The challenge is then to find generic coefficients that improve compression on all

typical meshes. We tried to compute such coefficients for various polygonal degrees by

minimizing the Euclidean error over all possible predictions in our set of test meshes.

During compression we then switched the coefficients α, β, and γ based on the degree

of the polygon we predicted within. This approach slightly improved the compression

rates on all meshes; even on those that were not part of the set used to compute the

coefficients. Also predictions across polygons can be improved this way by switching

between different floating point coefficients based on the degrees of the two polygons

involved. Initial experiments show that such degree-adapted prediction rules result

in small but consistent improvements in compression. In particular for pure triangle

meshes we found that our optimized coefficients always gave coding gains of a few

percents because they would less often “over-shoot” in their predictions. However, for

polygon meshes these gains are bound to be moderate because on average more than 70

percent of the vertices are predicted within a quadrilateral. Our experiments confirmed

that the best linear predictor for these vertices is the standard parallelogram rule.

73

0

1

2

3

4
5

6

7

b de

0 0

1
0 1

0

2

0

1

2 3

0

1

2

0

1

2

3

0

1

2

3

0

1

2

3

4

4

0

1

2

3

4

5

0

1

2

3

4
5

across

0

1

2

3

4
5

6

0

1

2

3

4
5

6

7

0

1

2

3

4
5

6

7

0

1

2

3

4
5

6

7

8

8

lastlastcenter

within

1

within across

0

1

2

3

4
5

6

within within 0

1

2

4
5

6

7

8
3

9

within 0

1

2

4
5

6

7

8
3

9 ...

0

Figure 5.3: This example demonstrates the order in which the connectivity decoder
traverses the vertices and which parallelogram predictions the geometry decoder uses
to decode their position. The parallelogram used for prediction is shown in dark grey
and the corrective vectors are shown in red. The light-grey arrows stand for one or more
steps of the connectivity decoder, which are described in Figure 4.3. The black arrows
with numbers denote a step of the geometry coder. They are described here: (0) The
decoder predicts vertex 0 as the center of the bounding box. (1) The decoder predicts
vertex 1 as vertex 0. (2) The decoder predicts vertex 2 as vertex 1. (3) The decoder
across-predicts vertex 3 as completing the parallelogram spanned by vertices 0, 1, and
2. (4) The decoder within-predicts vertex 4 as completing the parallelogram spanned
by vertices 0, 2, and 3. (5) The decoder within-predicts vertex 5 as completing the
parallelogram spanned by vertices 2, 3, and 4. (6) The decoder across-predicts vertex
6 as completing the parallelogram spanned by vertices 5, 0, and 4. (7) The decoder
within-predicts vertex 7 as completing the parallelogram spanned by vertices 5, 4, and
6. (8) The decoder within-predicts vertex 8 as completing the parallelogram spanned
by vertices 6, 4, and 3. (9) The decoder within-predicts vertex 9 as completing the
parallelogram spanned by vertices 8, 3, and 2. And so on ...

5.2 Compressing the Property Mapping

Mesh properties are used to refine the visual appearance of the mesh. Rather than

directly specifying the color with which to display each polygon, they usually describe

shading normals and material attributes that are attached to the polygon mesh, which

are then used at run-time to compute colors in dependance on the view directions and

the lights in the scene. In addition, a polygon mesh can have texture coordinates that

further refine the appearance through references into an image or a light map.

74

The compression of mesh properties involves two kinds of information: the property

values and the property mapping. The property values specify each individual property,

such as the r, g, and b components for a color or the u and v components for a texture

coordinate and we describe how to compress these in the next section. The property

mapping specifies how these properties are attached to the mesh and we now describe

how to encode this efficiently. (Deering, 1995) initiated research on compressing prop-

erty values and was followed by others. These works, however, pay little attention to

the problem of compressing the mapping. The few existing techniques (Taubin et al.,

1998b; Gumhold and Strasser, 1998; Isenburg and Snoeyink, 2000) are fairly basic and

use between 1.5 to 6 bits per vertex (bpv). This is surprisingly inefficient, especially

given the abundance of works on mesh connectivity coding that scramble for improve-

ments of compression rates that are already as low as 2 to 3 bpv.

We show how a set of simple predictions can be used to efficiently compress the

property mapping of polygon meshes. Our predictive compression scheme results in

bit-rates between 0.1 and 2 bpv, which improves by a factor of 2 to 10 over previous

methods. After characterizing property mapping, we first discuss previously proposed

methods for its compression, before we describe our predictive approach. Finally we

consider the efficiency of this scheme for the special case of stripified triangle meshes.

5.2.1 Characterizing the Property Mapping

In the literature a property mapping is often classified as either per-vertex, per-face,

or per-corner with the first two being special cases of the last. In the per-vertex case

the properties are attached to the mesh vertices; a common property is shared by all

corners around a vertex. In the per-face case the properties are attached to the mesh

faces; a common property is shared by all corners around a face. In the per-corner case

the properties are attached to the mesh corners; although each corner could have a

different property, typically a common property is shared by a set of adjacent corners.

For shading normals, colors and texture coordinates there is usually a one-to-one

mapping between the properties and the mesh elements. A per-vertex mapping has

as many properties as vertices and each property is used by one vertex. Similarly

a per-face mapping has as many properties as faces and each property is used by

one face. For a per-corner mapping there are at least as many properties as vertices

and at most as many properties as corners. Here each property is used by a set of

adjacent corners that all sit around the same vertex. An exception is the mapping

of material attributes, which are usually attached to the faces of the mesh. They are

75

mapped differently because each material attribute is used by many faces. All faces

that represent the same real-world surface are given the same material attribute.

A per-vertex mapping for shading normals, colors, and texture coordinates results in

a completely smooth shaded mesh when interpolated shading (e.g. Gouraud shading)

is applied. It is smooth along each edge because the properties attached to the vertices

at its ends are interpolated. It is smooth across each edge because the same properties

are interpolated on both sides of the edge. Shading discontinuities may be introduced

by cutting the mesh along a discontinuity and duplicating the affected vertices. These

duplicates are given the same vertex location but different properties, which creates

the shading discontinuity. A per-face mapping of shading normals or colors gives the

mesh a faceted appearance unless it is highly tessellated. An example for a face-based

property assignment is a pre-computed radiosity solution where each face is assigned the

amount of light it emits or transmits. A per-corner mapping is an elegant way to specify

shading discontinuities in otherwise smooth shaded meshes. Each vertex in a smooth

region of the mesh has a single property that is shared by all its corners. Vertices along

a discontinuity, however, have multiple properties each of which is shared by a set of

adjacent corners. This avoids having to cut the mesh and deal with multiple copies of

vertices. We make the following definitions to characterize the different configurations

that can arise for a per-corner property mapping.

blend
edge

crease
edge

smooth
corner

crease
vertex

corner
vertex

smooth
vertex

smooth
edge

crease
corner

Figure 5.4: Different shaded corners have different properties associated. A smooth
corner uses the same property as the previous corner, while a crease corner (a crease)
uses a different one. Smooth vertices have no crease, crease vertices have two creases,
and corner vertices have three or more creases. Smooth edges have no crease, crease
edges have creases on both ends, while blend edges only have a crease at one end.

Around every vertex is a cycle of corners and edges. In this paper we use a counter-

clockwise order to talk about a next/following and a previous/preceding edge or corner.

76

A vertex can be visited through any of its edges. For each edge there is a unique

traversal of the corners surrounding the vertex. The traversal starts with the corner

following the respective edge and ends with the corner preceding it. We say a corner

is a smooth corner if it uses the same property as the previous corner, otherwise we

have a crease and consequently call it a crease corner (see also the illustrations in

Figure 5.4). A smooth vertex uses the same property for all adjacent corners—it has

no crease. A crease vertex uses two different properties each associated with a set of

adjacent corners—it has two creases. A corner vertex uses three or more properties

each associated with a set of adjacent corners—it has more than two creases. A smooth

edge has no property discontinuity on either end. The two corners that are next around

the respective vertices are both smooth corners—this edge has no crease. A crease edge

has a property discontinuity on each end. The two corners that are next around the

respective vertices are both crease corners—this edge has two creases. And finally, a

blend edge has a property discontinuity on only one end—it has one crease.

A mesh with a per-vertex mapping has no creases; all its corners are smooth corners,

all its vertices are smooth vertices, and all its edges are smooth edges. Such meshes

have a one-to-one mapping from vertices to properties. A mesh with a per-face mapping

has only creases; all its corners are crease corners, all its vertices are crease or corner

vertices, and all its edges are crease edges. Such meshes have a one-to-one mapping from

faces to properties. A mesh with a per-corner mapping is somewhere between these

two. Such meshes do not have a one-to-one mapping from corners to properties but

instead a one-to-one mapping from smooth vertices plus crease corners to properties.

5.2.2 Encoding the Property Mapping

Neither a per-vertex nor a per-face property mapping need to be stored explicitly.

The property values are simply stored in the order in which the vertices and faces

that they are associated with are encountered during the traversal of the mesh. Every

property is stored only once because of the one-to-one mapping between vertices/faces

and properties. An exception is the mapping of material attributes. Since a material

attribute is used by many faces it would be stored many times. In this case it is cheaper

to store the property mapping from faces to materials explicitly but therefore each

material attribute only once. This type of mapping can be efficiently encoded using

super faces as suggested in (Isenburg and Snoeyink, 2000). A per-corner property

mapping also needs to be stored explicitly. If every property is to be stored only once,

we must specify which corners share a property. So far three different methods for

77

compressing per-corner mappings of properties have been proposed.

(Gumhold and Strasser, 1998) describe how to include this mapping information into

the bit-stream of their one-pass coder. During the traversal of the mesh, all edges are

classified as either smooth edges or as crease/blend edges using one bit. The latter are

distinguished using two additional bits that specify, for each end of the edge, whether it

is a crease or not. Encoding three possible configurations (i.e. the case that both ends

have no crease cannot occur) with two bits is slightly wasteful and could be improved.

For triangle meshes this approach requires at least 3 bpv (e.g. all edges are smooth)

and at most 9 bpv (e.g. no edge is smooth). In praxis bit-rates range between 3 and

5.5 bpv. (Taubin et al., 1998b) store a discontinuity bit at the moment their mesh

traversal reaches a corner for the first time. This bit is “0” for a smooth corner and

a “1” for a crease corner. The property data that is associated with crease corners

is then stored in the order in which the corresponding corners marked with “1” are

encountered. This approach requires exactly as many bits as the mesh has corners,

which implies a bit-rate of 6 bpv for triangular meshes.

Since meshes often have a significant fraction of smooth vertices we proposed in

(Isenburg and Snoeyink, 2000) a simple improvement on Taubin et al.’s scheme that

uses vertex bits and corner bits. One bit per vertex distinguishes smooth vertices (“1”)

from crease and corner vertices (“0”). The corners around a crease or corner vertex are

marked as before, while the corners around a smooth vertex need no further treatment.

The property data associated with smooth vertices and crease corners is again stored in

the same order as the corresponding “1” bits appear in the bit sequence. For triangle

meshes this approach requires at least 1 bpv (e.g. all vertices are smooth) and at most

7 bpv (e.g. no vertex is smooth). The performance gain/loss over (Taubin et al., 1998b)

depends on the fraction of smooth vertices. For polygon meshes with an average vertex

degree of d the break-even point is reached when this fraction is approximately 1/d

with the gain increasing as the fraction gets larger. With an initial pass over the mesh

we could always choose the better of the two methods. Otherwise, the bit-rate is at

most 1 bpv above, but potentially 5 bpv below the bit-rates of (Taubin et al., 1998b).

Four simple rules, which are illustrated in Figure 5.5, can further reduce the number

of vertex and corner bits needed:

rule R1 Vertices that have only one corner do not need a vertex bit. Such vertices are by

definition smooth vertices.

rule R2 Crease vertices that have only two corners do not need corner bits. The vertex bit

already determines whether it is a smooth vertex and both corners are smooth corners,

78

?
0 0

0
? 0

00
?

0
?

0

?
0

1
00

0 1
0

? 0
0

? ?
0

?
?0

??

rule R1

rule R2

rule R3

0
if a vertex has only one
corner, then it must be a
smooth vertex

if a crease vertex has
only two corners, then
both of them must be
crease corners

each crease vertex must
have at least two crease
corners, this has only one
so far

saves 1 vertex bit

saves 2 corner bits

saves 1 corner bit

rule R4
each crease vertex must
have at least two crease
corners, this has none so
far

saves 2 corner bits

marks current vertex
and corner

vertex bit
corner bits

already
processed
corners

currently
processed

bit (s)

Figure 5.5: Simple rules to save vertex and corner bits. Using rule R1 avoids unnecessary
vertex bits, rules R2, R3, and R4 avoid unnecessary corner bits.

or whether it is a crease vertex and both corners are crease corners.

rule R3 If all but one corner of a vertex have been marked and there has been only one

crease corner, then there is no need for the last corner bit. Because corner bits are only

used for crease/corner vertices and such vertices have at least two crease corners, the

last corner must be a crease corner.

rule R4 Similarly, if all but two corners of a vertex have been marked and there has been

no crease corner, then there is no need for the last two corner bits.

The rules R1 and R2 rarely apply for meshes without holes or boundary, since usually

only vertices on the boundary have as few as one or two corners. However, these rules

are very effective for compressing the property mapping of stripified triangle meshes.

5.2.3 Predicting the Property Mapping

Although heavily used for other aspects of mesh compression, predictive coding has

previously not been used for compressing the property mapping. We predict since

vertex bits and corner bits based on two simple observations that are also reflected

in the statistics on the per-corner shading normal mapping given in Table 5.4. First,

most edges are either smooth edges or crease edges, and second, most vertices are either

smooth vertices or crease vertices. Using a set of eight simple predictions we exploit

the correlation implied by these statistics. We have two predictions P1 and P2 for the

vertex bits and six prediction P3 to P8 for the corner bits. Two example configurations

for each of the two vertex bit predictions are illustrated in Figure 5.6. They are as

follows:

prediction P1 If the vertex connects to any previously processed vertex at a crease then

we predict this vertex to be a crease or corner vertex because we assume that the

79

corners edges vertices
name

button 66 34 66 34 — — 100 —
dragknob 66 34 66 34 — — 100 —

handle 60 40 60 40 — — 70 30
handle1 66 34 66 34 — — 100 —
handle2 98 2 98 2 — 92 6 —
part1 66 34 66 34 — — 98 2
part4 83 17 83 17 — 50 50 —
part5 66 34 66 33 <1 1 94 3
spool 81 19 81 19 — 43 57 —
rotor 83 17 83 17 — 49 51 —

oilfilter 77 23 77 23 — 33 61 6
galleon 70 30 70 30 — 48 38 14
sandal 76 24 76 23 <1 56 33 11

Table 5.4: Statistics on the normal mapping for the meshes shown in Figure 5.8. Re-
ported are the percentages of smooth and crease corners, and of smooth , crease

, and blend edges, and also of smooth , crease , and corner vertices.

connecting edge is a crease edge and not a blend edge.

prediction P2 In all other cases we make no assumption.

?
1

0
1

0
0

?

0
0

1
0

?

0
1

?

0
1 0

0
0 1

0

1

prediction P1 prediction P2
some edge connects to
a previously processed
vertex along a crease

in all other cases

���� predict vertex bit: 0
� assume a crease edge � assume nothingpreviously

processed vertex

Figure 5.6: Two example scenarios for each of the two cases used to predict vertex bits.

Two example configurations for each of the six corner bit predictions are illustrated

in Figure 5.7. They are as follows:

prediction P3 If the current edge connects to a processed vertex at a crease, we predict the

next corner to be a crease corner, because we assume the edge is a crease edge.

prediction P4 If the current edge connects to a processed vertex not at a crease, we predict

the next corner to be a smooth corner, because we assume the edge is a smooth edge.

prediction P5 If there have been already two (or more) crease corners, we predict the next

corner to be a smooth corner because we assume this vertex is a crease vertex.

prediction P6 If there has been already one crease corner and if there have been less than

b(degree− 1)/2c smooth corners since then, we predict the next corner to be a smooth

corner because we assume this vertex is a crease vertex.

80

prediction P7 If there have been b(degree− 1)/2c or more smooth corners, we predict the

next corner to be a crease corner because we assume this vertex is a crease vertex.

prediction P8 In all other cases we make no assumption.

?
0

0
00

0 1
0

?
0

prediction P7
there have been already

preceding smooth
corners

���� predict corner bit: 1

degree-1
2

� assume a crease vertex

���� predict corner bit: 0

? 1
0?

0 1
00

prediction P6
there has been one crease
but since then less than

smooth cornersdegree-1
2

� assume a crease vertex

1

1
?0

0
0 1

1 ?

1

0

? 1

0
1

0
0

0

0
0

?

0

1
0

1

1
0

0
1 0

0
0 1

0

?
0 1

0
1 0

0 ?
0

00
?

0

0

0

prediction P3

prediction P4

the current edge connects
to a previously processed
vertex along a crease

the current edge connects to
a previously processed
vertex, but not along a crease

���� predict corner bit: 1

���� predict corner bit: 0

?

prediction P5
there have been already two
(or more) crease corners

���� predict corner bit: 0

prediction P8
in all other cases

� assume a crease edge

� assume a smooth edge

� assume a crease vertex � assume nothing

0 1

previously
processed vertex

current
edge

crease
corners

smooth
corner

currently
processed

bit

Figure 5.7: Two example scenarios for each of the six cases used to predict corner bits.

We use arithmetic coding with different probability tables for each of the eight pre-

dictions P1 to P8. Every probability table has two entries, one predicting the likelihood

of a “0” bit and the other predicting the likelihood of a “1” bit. Initially we set these

probabilities to roughly express our predictions. We use an adaptive version of an

arithmetic coder that updates the respective probability table after every prediction.

Typical bit-rates for compressing the property mapping using this approach are

reported in Table 5.5. For comparison we also give the bit-rates achieved using discon-

tinuity bits as proposed by (Taubin et al., 1998b), using crease edge bits as proposed by

(Gumhold and Strasser, 1998), and simply using vertex and corner as proposed earlier

in (Isenburg and Snoeyink, 2000). The comparison between coders that simply store

sequences of bits and a coder that applies context-based arithmetic coding to these bits

is unfair. Obviously there is correlation among subsequent bits in the discontinuity

bit sequence of (Taubin et al., 1998b) that could easily be exploited using a standard

memory-sensitive entropy coding scheme such as an adaptive order-k arithmetic coder,

which uses a different probability table for each combination of the preceding k bits.

In Table 5.6 we give compression rates that are the result of applying adaptive

arithmetic coding of orders 0 to 5 to the sequence of discontinuity bits generated by the

method of (Taubin et al., 1998b) and compare them with the compression rates achieved

by our predictive coder. There are sudden improvements in the compression rates of

81

mesh characteristics bits per vertex
name vertices normals T+ GS IS pred

button 99 198 6.0 4.9 6.6 1.2
dragknob 161 322 6.0 5.0 6.8 1.3

handle 100 236 6.0 5.3 6.3 2.1
handle1 128 256 6.0 5.0 6.6 1.5
handle2 1165 1235 6.0 3.1 1.3 0.1
part1 166 336 6.0 5.0 6.4 1.6
part4 330 495 6.0 4.0 3.8 0.9
part5 175 355 6.0 5.0 6.5 1.9
rotor 600 905 6.0 4.0 4.0 1.0
spool 649 1018 6.0 4.1 3.8 1.1

oilfilter 860 1484 6.0 4.4 4.7 1.5
galleon 2372 3974 4.0 3.2 2.8 1.0
sandal 2636 4096 4.1 3.0 2.7 0.9

Table 5.5: Compression results for the property mapping using discontinuity bits as
proposed by Taubin et al. (T+), using crease edge bits as proposed by Gumhold and
Strasser (GS), using vertex and corner bits as proposed by Isenburg and Snoeyink (IS)
for mainly smooth mappings, and finally the predictive version of the latter (pred).

mesh bits per vertex
name T+ aac0 aac1 aac2 aac3 aac4 aac5 pred

button 6.0 5.5 4.9 2.7 2.6 2.6 2.6 1.2
dragknob 6.0 5.5 4.6 2.5 2.5 2.5 2.5 1.3

handle 6.0 5.7 5.3 5.0 4.6 4.6 4.5 2.1
handle1 6.0 5.5 4.8 2.6 2.6 2.6 2.6 1.5
handle2 6.0 0.9 0.9 0.8 0.4 0.3 0.3 0.1
part1 6.0 5.5 5.0 3.5 3.3 3.3 3.3 1.6
part4 6.0 3.9 3.8 3.7 2.1 1.9 1.9 0.9
part5 6.0 5.5 4.7 4.1 4.1 4.1 4.1 1.9
rotor 6.0 4.2 4.0 3.6 1.3 1.1 1.1 1.0
spool 6.0 4.0 3.8 3.8 2.3 2.2 2.1 1.0

oilfilter 6.0 4.7 4.6 4.6 4.0 3.5 3.4 1.5
galleon 4.0 3.5 3.4 2.5 2.3 2.3 2.2 1.0
sandal 4.1 3.3 3.3 2.4 2.2 2.2 2.2 0.9

Table 5.6: The discontinuity bit sequence for coding the property mapping (T+) com-
pressed with adaptive arithmetic coding of orders 0 to 5 (aac0 to aac1) in comparison
to our predictive coder (pred).

the discontinuity bit sequence. The biggest jumps occur when the coder increases its

memory to either 2 or 3 bits. The order-2 coder has learned the likelihood of two smooth

corners being followed by a crease corner around a crease vertex. The order-3 coder

has learned the likelihood of three smooth corners being followed by another smooth

82

corner around a smooth vertex. However, our predictive scheme always outperforms

any arithmetic order-k coding of the discontinuity bit sequence. First of all, an order-k

coder has no means to learn predictions P1 and P2 from the discontinuity bit sequence,

because they involve neighboring vertices. Moreover, this coder is constantly mislead.

It processes a continuous sequence of discontinuity bits and does not know whether

consecutive bits are from corners of the same or of different vertices. This causes it to

predict and to learn from k-bit strings that contain corner bits from different vertices

and therefore have little or no correlation.

Figure 5.8: The example meshes above are courtesy of Engineering Animation Inc. All
except the last are part of a fishing reel assembly: a) button, b) dragknob, c) handle,
d) handle1, e) handle2, f) part1, g) part4, h) part5, i) rotor, j) spool, and k) oilfilter.
Not shown here are the galleon and the sandal mesh courtesy of Viewpoint Datalabs.

5.2.4 Stripified Triangle Meshes

Generating good triangle strips is a difficult task. This was motivation in Section 3.5

to devise a compression technique that includes pre-computed triangle strip informa-

tion into the encoding the mesh connectivity. Once such triangle strip information is

available it can be used to further improve the coding of the property mapping.

83

Triangle strips arrange the mesh into long runs of adjacent triangles. When ren-

dering a triangle strip, the vertices shared among subsequent triangles are stored on

the graphics board. This way two vertices from a previous triangle are re-used for all

but the first triangle of every strip. Re-using a vertex not only includes its coordi-

nates, but also shading normals, colors, or texture coordinates. However, not every

pair of triangles shares these properties across the common edge. When triangles are

connected along a crease or blend edge they uses a different property at both or one

of their common vertices. Therefore a triangle strip generator must ensure that strips

do not run across such discontinuities. All corners of a vertex that are adjacent in a

triangle strip must share all properties attached to them.

This complicates the process of creating triangle strips, but it reduces the number of

bits needed to compress the property mapping. Since a property will always be shared

by all corners of a vertex that are adjacent in a triangle strip, the property mapping can

be thought of per strip corner rather than per corner. The number of different corners

for a mesh with t triangles is 3t. However, for a mesh decomposed into s strips we need

to distinguish only t+ 2s strip corners for the mapping from properties to corners.

The bit-saving rules R1 to R4 are now applicable to strip corners instead of to

corners. Since the number of strip corners per vertex is much lower than the number

of corners, these rules apply much more often and save many more bits. We continue

to predict vertex bits using P1 and P2 but predict strip corner bits instead of corner

bits using P3 to P8. In Table 5.7 we list the compression rates achieved by simply

storing the sequence of vertex and strip corner bits (i.e. without predictive compression)

and the compression rates after applying the predictions. These results show that the

availability of triangle strip information makes the compression of the property mapping

a lot cheaper. However, this information is only available if it was encoded with the

mesh in such a way that it can be decoded prior to decoding the property mapping.

Compressing the mesh connectivity together with triangle strips makes its encoding

more expensive. But the savings we get from the improved compression of the property

mapping is often sufficient to offset this expense.

The predictions P6 and P7 involve comparisons that make use of the degree of the

processed vertex. In experiments we replaced them with simpler predictions that are

based only on absolute counts of preceding smooth and crease corners. The increase

in bit-rates was less than 5 percent. This is not surprising, since most of our coder’s

efficiency results from predictions P1 to P5. It might be possible to improve compression

further by directing the traversal to places where we expect the most correct predictions.

84

mesh characteristics bits per vertex
name t s (t+ 2s)/3t IS pred

button 194 4 0.35 1.1 0.2
dragknob 318 6 0.35 1.1 0.2

handle 196 24 0.42 2.0 0.5
handle1 252 5 0.35 1.1 0.2
handle2 2326 125 0.37 1.0 0.1
part1 328 6 0.35 1.1 0.2
part4 656 34 0.37 1.1 0.3
part5 346 9 0.35 1.2 0.2
rotor 1200 41 0.36 1.1 0.3
spool 1294 24 0.35 1.1 0.2

oilfilter 1716 135 0.39 1.4 0.5

Table 5.7: Compressing the property mapping of stripified triangle meshes using a bit
sequence of vertex and strip corner bits (IS) and the predictive version of this scheme
(pred). Also reported are the number of triangles t and strips s for each mesh and the
ratio (t+ 2s)/3t between strips corners and corners.

A traversal order that follows the discontinuities on the mesh, for example, should make

sure that most vertex bits are predicted correctly.

5.3 Compressing Texture Coordinates

The problem of compression of texture coordinates has received little attention. In

this section we rigorously investigate texture coordinate compression in a quantitative,

in-depth manner. Some papers on geometry compression (Taubin et al., 1998b; Ba-

jaj et al., 1999) suggest that texture coordinates could be compressed with the same

predictive scheme that is already used for vertex positions, but give no further details

and report no experimental results. Although the predictors for vertex positions are

in general suited for texture coordinates, the presence of discontinuities in the texture

mapping can result in completely unreasonable predictions. The close-up views of the

“lion” model shown in Figure 5.9 illustrate such discontinuities: Neighboring texture

coordinates around the nose, the mouth, and the ear address distant locations in the

texture image. Predictive schemes for compressing vertex positions assume that ver-

tices that are topologically close are also geometrically close. This means, for example,

that two vertices connected by an edge are assumed to have nearby positions in 3D

space. The same assumption also holds for texture coordinates—unless there is a dis-

continuity. Instead of performing an unreasonable prediction near a discontinuity, our

scheme switches to a less promising but at least reasonable predictor.

85

Figure 5.9: The lion model and its texture atlas. The close-ups show mapping discon-
tinuities where neighboring texture coordinates address distant locations in the atlas.

The parallelogram rule predicts the position of a vertex to complete a parallelogram

defined by the three vertices of a neighboring triangle. Intuitively it makes sense to

apply this rule also to texture coordinates. Usually the texture coordinates of two

adjacent triangles also form two adjacent triangles in texture space. But if the edge

connecting the two triangles coincides with a discontinuity in the texture mapping, the

parallelogram rule gives a completely “random” prediction. In this case it is better to

fall back to a simpler but more meaningful prediction.

5.3.1 Discontinuities in the Texture Mapping

Texture images are a simple way to increase the realism of polygonal meshes. The

process of applying a texture image to a mesh is called texture mapping. It consists of

putting every polygon of the 3D mesh into correspondence with a polygon in the 2D

texture image. Although each polygon could be mapped independently, it is usually

beneficial to map neighboring polygons in the mesh into neighboring polygons in texture

space. The problem of finding a suitable mapping or parameterization for texturing a

polygonal surface is a much studied problem (Maillot et al., 1993; Sander et al., 2001;

Desbrun et al., 2002; Levy et al., 2002; Gu et al., 2002; Sorkine et al., 2002).

Vertices whose surrounding polygons are mapped into neighboring polygons in tex-

ture space appear at a single location in the texture image. They have a single texture

coordinate that is used by all their surrounding polygons. In order to flatten a mesh

without boundary or of non-trivial topology it is often cut open. Such cuts introduce

discontinuities or seams in the texture mapping. Vertices along these seams appear at

several locations in the texture image. Therefore they have multiple texture coordinates

86

each of which is used by a subset of their surrounding polygons.

To minimize distortion in the texture-mapped image, the mapping between the

polygons in 3D and the polygons in 2D is often sought to preserve angles and dis-

tances. Usually, it is impossible to flatten an entire mesh in one piece without creating

overlapping or extremely distorted polygons. Distortion can be reduced by introducing

additional cuts (Gu et al., 2002) or by cutting the mesh into several parts that are then

parameterized separately (Maillot et al., 1993; Sander et al., 2001; Levy et al., 2002;

Sorkine et al., 2002). The latter results in the parameterization being broken up into

several charts, which are then assembled into a single texture image called an atlas.

Both approaches create additional discontinuities in the texture mapping.

Figure 5.10: The closeup views show the texture mapping discontinuities of the “cat”
model from the animal set and the “1510” model from the archaeological artifact set.
These can also be inferred from their corresponding texture atlas.

There are also other reasons to perform a piece-wise texture mapping: From an

artist’s perspective it is often convenient to cut a mesh into several parts in order to

paint each of them separately, as it was done for the “cat” model from Figure 5.10. Also,

87

commercial software packages for automated generation of texture maps sometimes

create a lot of seams. The “1510” model from Figure 5.10 was generated from a scan

of an archaeological artifact. Its parameterization is broken into a many small squares

that are tightly packed into a space-efficient atlas. This creates an immense number of

discontinuities in the texture mapping.

In our experiments we use two sets of meshes with differently generated texture

mappings. One set consists of hand-crafted polygon models of animals that were care-

fully textured by a skilled artist. Their texture mappings are relatively smooth with

only a small number of seams that either coincide with “natural” discontinuities or

hide in the least conspicuous regions. The other set consists of automatically gener-

ated triangle models of scanned archaeological artifacts that were textured using an

automated method. Their texture mappings are not smooth at all.

5.3.2 Previous Work

There are only a few papers that mention texture coordinate compression. Most au-

thors employ their position predictor to compress mesh properties. (Deering, 1995) uses

delta-coding for compressing quantized RBG colors. Similarly, (Taubin et al., 1998b)

apply their spanning predictor to compress various quantized mesh properties. Al-

though they capture discontinuities in the mapping with discontinuity bits, they do not

use this information to prevent unreasonable predictions near discontinuities. (Bajaj

et al., 1999) limit their linear predictor to meshes with perfectly smooth property map-

pings and perform all computations in spherical coordinates. For RGB colors quantized

to 4, 6, and 8 bits per component they report surprisingly disappointing compression

gains of merely 12, 11, and 10 percent.

A completely different approach for texture coordinate compression was proposed

by (Sorkine et al., 2002). They completely re-texture a mesh by first computing a new

piece-wise parameterization that is implicitly defined by the mesh and by then warping

the texture image accordingly. This eliminates the need to explicitly store the texture

coordinates as they can be computed from the mesh. However, the requirement to

warp the texture image makes this method unsuitable as a general purpose compressor.

Another approach that avoids explicit texture coordinates re-samples the mesh onto a

regular grid in texture space (Gu et al., 2002). However, this method should be thought

of as a different and more compact representation for geometric shapes rather than a

mesh compression scheme.

88

(a) (b) (c)

(d) (e)

16

17

11

13

29

30

42

p2

p3

p4

83

82
57

crease edges

crease edge

41

3633

50
81

80
74

21

19
20

22

25 26

smooth edge

p1

processed vertex ring

Figure 5.11: These five example scenarios illustrate the four different predictions that
are used for compressing texture coordinates. The processed vertex ring and the edge
through which it was encountered are marked with a green flag. Corners from the same
vertex that are shaded with the same color use the same texture coordinate. Corners
from different vertices that are shaded with the same color use a texture coordinate from
the same chart. Corners that are shaded with different colors use texture coordinates
from different charts. (a) a smooth vertex. Its texture coordinate T17 is used by four
corners. It is within-predicted as T16 − T11 + T13. (b) a crease vertex. Its texture
coordinates T29 and T30 are each used by two corners. T29 is across-predicted as T22 −
T25 + T26 by involving polygon p1, which connects to the vertex ring via a smooth
edge. T30 is within-predicted as T20−T19 +T21. (c) another smooth vertex. Its texture
coordinate T42 is used by six corners. It is across-predicted inside the vertex ring as
T33 − T36 + T41. The two across-predictions involving the polygons marked p2 and p3

are forbidden as they connect to the vertex ring via a crease edge. (d) again a smooth
vertex. Its texture coordinate T57 is used by four corners. It is nearby predicted as T50.
An across-prediction involving the neighboring polygon marked p4 is forbidden because
of the crease edge. (e) a crease vertex. Its texture coordinates T82 and T83 are used by
two and three corners respectively. T82 is center-predicted as the center of the texture
image. There is no reasonable prediction for T82 because it could address any location
in the image. T83 is within-predicted as T81 − T74 + T80.

5.3.3 Predicting Texture Coordinates

We compress both the texture coordinate mapping and the texture coordinates by pro-

cessing the vertex rings in the order they are encountered by the connectivity coder.

The texture coordinate mapping is coded with vertex and corners bits, which are com-

pressed with the predictive scheme described in the last section. Subsequently we

predict the texture coordinate(s) associated with each vertex ring using one of four

89

prediction rules and compress the resulting corrective vectors with an arithmetic coder.

Whenever possible, we predict a texture coordinates using the parallelogram rule. For

polygonal meshes we again try to perform the parallelogram prediction within a poly-

gon rather than across polygons. The intuition is that four texture coordinates from a

single polygon are more likely to be in a parallelogram-shaped configuration in texture

space than four texture coordinates from two adjacent polygons.

mesh predicted [%] bit-rate [bpt]
name within across nearby center within across nearby center

lion 82 14 3 1 5.6 8.5 9.7 20.2
wolf 84 14 2 0.6 5.9 9.1 11.1 20.2

raptor 76 18 5 1 5.5 8.4 8.9 19.5
fish 90 10 0.3 0.1 6.6 10.6 14.6 20.1

snake 91 8 1 0.2 3.5 7.9 9.5 20.4
horse 86 11 3 0.5 4.3 7.4 10.1 20.4
cat 80 15 4 0.7 4.3 7.1 8.4 19.6
dog 59 37 4 0.7 6.2 7.2 10.0 20.6

average 81 16 3 0.6 5.2 8.3 10.3 20.1

mesh predicted [%] bit-rate [bpt]
name within across nearby center within across nearby center

“1398” – 55 35 10 – 7.5 9.8 18.9
“1412” – 49 39 12 – 8.3 10.3 19.0
“1510” – 53 36 11 – 7.3 10.7 18.3
“1568” – 51 38 11 – 8.4 10.5 19.0
“17” – 58 33 9 – 8.2 10.4 17.7

“1814” – 52 38 10 – 7.5 10.7 15.9
“1823” – 52 37 11 – 7.6 10.4 19.1
“2441” – 49 38 13 – 8.3 10.2 19.2

average – 52 37 11 – 7.9 10.4 18.4

Table 5.8: These tables report which percentage of texture coordinates is predicted
within a polygon, across polygons, as a nearby texture coordinate, and as the center
of the bounding box. The corresponding bit-rates at a precision of 10 bits confirm the
different success of these predictions.

Parallelogram predictions across polygons are only used when the four texture co-

ordinates belong to the same chart. This is the case when the edge connecting the

two polygons is smooth. Applying the parallelogram rule to texture coordinates from

different charts (e.g. across a crease edge) would result in a completely random predic-

tion. Instead of performing an unreasonable prediction we fall back to a less successful

but at least reasonable predictor. We simply use a nearby texture coordinate from the

same chart that is connected by an edge as the prediction. If there is no such texture

90

coordinate, then no reasonable prediction is possible. In this case we predict it to lie

in the center of the texture image. In Figure 5.11 the possible scenarios are illustrated.

mesh characteristics 8 bit 10 bit 12 bit
name c v t bpt gain bpt gain bpt gain

lion 120 16302 16652 3.8 77 6.3 69 9.7 60
wolf 35 7068 7234 3.8 76 6.6 67 10.3 57

raptor 79 7454 6984 3.7 77 6.3 68 10.0 58
fish 7 4685 4685 4.2 73 7.0 65 10.7 55

snake 6 11137 11610 2.3 85 3.9 80 6.5 73
horse 5 9199 9988 2.9 82 4.9 76 8.2 66
cat 39 9627 10350 3.0 81 5.0 75 8.2 66
dog 19 6650 6522 3.9 76 6.8 66 10.6 56

average 3.5 78 5.9 71 9.3 61

mesh characteristics 8 bit 10 bit 12 bit
name c v t bpt gain bpt gain bpt gain

“1398” 1 1487 3133 6.3 61 9.5 53 13.5 44
“1412” 1 1180 2712 7.0 56 10.4 48 14.4 40
“1510” 1 644 1422 6.7 58 9.9 51 13.8 43
“1568” 1 1394 2999 7.2 55 10.5 48 14.4 40
“17” 1 1178 2354 6.6 59 9.9 51 13.8 43

“1814” 1 1145 2475 6.4 60 9.6 52 13.4 44
“1823” 1 1202 2700 6.8 57 10.0 50 14.0 42
“2441” 1 1204 2727 7.0 56 10.5 48 14.5 40

average 6.8 58 10.0 50 14.0 42

Table 5.9: These tables list for each model the number of connected components c,
of vertices v, and of texture coordinates t. The achieved compression rates in bits
per texture coordinate (bpt) are given at the three common quantization levels of 8,
10, and 12 bits and the compression gain (%) in comparison to uncompressed texture
coordinates is reported. The bit-rate for uncompressed texture coordinates is simply
the number of quantization bits times two.

5.3.4 Results

It is crucial to the success of our method to compress the correctors with different arith-

metic contexts depending on which prediction was performed. Using a single context

for all correctors would spoil the potentially low entropy of correctors that are result

of more promising within and across predictions with the anticipated poor outcome of

the fall-back predictions. In Table 5.8 we list the percentages with which the different

prediction rules were used. Note that within-predictions can occur only in polygonal

meshes. Furthermore the tables report separate bit-rates for the different prediction

91

rules, which—as expected— confirm their varying success. In Table 5.9 we reports

the performance of our compression scheme at different quantization levels. Since pre-

dictive compression mainly predict away the high-order bits, the relative compression

gains decrease if more precision (= low bits) is added. The average compression gain

achieved by our method is 71 % for our polygonal and 50 % for our triangular test set

for texture coordinates quantized at 10 bits of precision.

A similar technique can also be used to compress RGB colors. However, on our test

set of colored meshes the parallelogram predictor continuously “over-shot” the variation

in color and was outperformed by the simpler nearby predictor. We achieved the best

rates of 5.7 (11.4) bits per color at quantization levels of 4 (6) bit per color component

by using an average of all possible nearby predictions—this equals a compression gain

of 52 (37) % respectively.

It would be worthwhile to investigate whether previously decoded vertex positions

can aid the prediction of texture coordinates. Many techniques for (semi-)automatic

texture map generation take mesh geometry into account to compute texture coordi-

nates that minimize some distortion metric. The correlation between vertex positions

and texture coordinates is high when shape preserving metrics are used that minimize

geometric stretch (Sander et al., 2001), angle distortion (Levy et al., 2002), or other

intrinsic measures (Desbrun et al., 2002). (Sorkine et al., 2002) establish complete cor-

relation between the two, because they define the texture coordinate mapping through

the mesh geometry. Instead of using mesh geometry to define the texture coordinates,

we can use it to predict them. This predictor works best if the shape of a polygon in 3D

space is similar to its shape in texture space. Although initial results are promising we

have to evaluate if the achievable gains are always worth the additional computational

effort. For example space-optimized texture maps as proposed by (Balmelli et al., 2002)

can have a fairly low correlation between texture coordinates and vertex positions.

5.4 Summary

We have presented a simple technique for exploiting polygonal information to improve

predictive geometry compression with the parallelogram rule. This scheme is a natural

generalization of the geometry coder by (Touma and Gotsman, 1998) to polygon meshes

and gives compression improvements of up to 40 percent.

We have also introduced a predictive method for compressing the mapping from

corners to properties. Our compression rates improve by a factor of 2 to 10 on previously

92

reported methods. We have described that information about triangle strips can be

used to improve compression so significantly that it can potentially offset the expense

of including this triangle strip information with the mesh.

Finally, we have introduced simple prediction rules for efficient compression of tex-

ture coordinates that take into account discontinuities in the texture mapping. The

average compression gain achieved by our method is 71 % for our polygonal and 50 %

for our triangular test set for texture coordinates quantized at 10 bits of precision.

To our knowledge this is the first work that rigorously investigates texture coordinate

compression in a quantitative, in-depth manner.

5.5 Hindsights

The predictive compressors described in the last three sections make heavy use of arith-

metic coding in order to achieve the reported compression rates. In later chapters the

model size will increase significantly and we noticed that the careless use of arithmetic

coding quickly becomes the computational bottleneck of compression and decompres-

sion. There is a reasonable payoff in reducing the number of calls to the arithmetic

coder by combining code symbols into larger correlation contexts and compressing them

with a single call to the arithmetic coder. Instead of, for example, calling the arithmetic

coder for every corner bit individually, it would be more efficient to compress corner

bits in groups and combine their correlations into larger probability tables.

The worst investment in computing time is the expensive predictive compression

of the low-order bits of the corrective vectors for positions and texture coordinates.

While this technique gets nearly all its coding gains from removing the redundancy

in correctly predicted high-order bits, it spends most of its time writing down the

incompressible low-order bits. The computation times are amplified by our practice

of breaking the sequence of corrector bits into smaller chunks to keep the probability

tables small, which increases the number of calls to the arithmetic coder. In a recent

paper on lossless floating point compression we describe a way of using fewer calls to

the arithmetic coder for encoding the correctors (Isenburg et al., 2005a).

Chapter 6

Compression of Hexahedral Meshes

Figure 6.1: An unstructured hexahedral volume mesh during compression.

Unstructured hexahedral volume meshes are of particular interest for visualization

and simulation applications. They allow regular tiling of the three-dimensional space

and show good numerical behavior in finite element computations. Beside such appeal-

ing properties, volume meshes take up huge amounts of space when stored in a raw

format. In this chapter we present a technique for encoding connectivity and geometry

of unstructured hexahedral volume meshes.

For connectivity compression, we extend the idea of coding with degrees to volume

meshes. Hexahedral connectivity is coded as a sequence of edge degrees. This naturally

exploits the regularity of typical hexahedral meshes. We achieve compression rates of

around 1.5 bits per hexahedron (bph) that go down to 0.18 bph for regular meshes.

On our test meshes the average connectivity compression ratio is 1 : 163. For geom-

etry compression, we perform simple parallelogram prediction on uniformly quantized

vertices within the side of a hexahedron. Tests show an average geometry compression

ratio of 1 : 3.7 at a quantization level of 16 bits. These results are significantly better

than compression ratios achieved on typical tetrahedral meshes. This has to do with

the “natural irregularity” of a tetrahedral mesh whose elements —in contrast to those

of a hexahedral mesh—do not permit a regular tiling of the 3D domain.

94

6.1 Introduction

Unstructured volume meshes can be found in a broad spectrum of scientific and indus-

trial applications including fluid mechanics, thermodynamics and structural mechanics,

where such volumetric data is used for both computation and visualization. Tradition-

ally unstructured volume meshes were composed of tetrahedral elements, but recently

also other polyhedra have become popular. Especially hexahedral volume meshes are

often used, because of their numerical advantages in finite element computations.

The generation of hexahedral meshes turned out to be much more complex than

that of tetrahedral meshes, but the research efforts of the last years have produced

several efficient techniques (Tautges and Mitchell, 1995; Schneider et al., 1996; Sheffer

et al., 1998; Eppstein, 1999; Mueller-Hannemann, 2001). At the same time researchers

have proposed strategies for efficient visualization of unstructured volume meshes using

screen-based ray-casting (Garrity, 1990; Bunyk et al., 2000; Yang et al., 2000) or object-

based sweeping (Wilhelms et al., 1996; Farias et al., 2000; Levy et al., 2001) (see (Farias

and Silva, 2001) for a survey about rendering unstructured volume grids).

The basic ingredients of unstructured hexahedral volume meshes are are mesh con-

nectivity, which is the incidence relation among the vertices, edges, faces, and hex-

ahedra, mesh geometry, which is the 3D position associated with each vertex, and

application-specific mesh properties, which are the density or pressure values that are

typically attached to the vertices. The standard representation for hexahedral meshes

uses three floating-point coordinates per vertex to store geometry and eight integer in-

dices per hexahedron to store connectivity. For hexahedral meshes of v vertices and h

hexahedra, this requires 96v bits for the geometry and 256h bits for the connectivity, if

standard 4 byte data types are used. The mesh c1 from our test set has 78, 618 vertices

and 71, 572 hexahedra. The storage requirements for geometry and connectivity of this

mesh can be estimated as 3.23 megabytes.

For archival and fast transmission of the data more compact representations are

beneficial. In order to represent mesh geometry more compactly, each coordinate can

be quantized with, for example, 16 bits. For data sets destined to be used in exact

computations a loss in precision is obviously not acceptable. Care must be taken to use

at least as many precision bits as present in the data without preserving precision that

is not there. For volume mesh visualization, quantization is generally not a problem

as long as visual artifacts are avoided. In order to represent mesh connectivity more

compactly, each index can be specified with dlog2 ve bits by crossing the byte bound-

95

aries. For the mesh c1 this more compact representation still requires 1.69 megabytes.

Using the compression technique proposed here, this mesh can be represented at the

same quality with less than 84 kilobytes—a compression by a factor of twenty.

Although we only focus on compression of connectivity and geometry, the same

technique that is used to compress vertex positions can also be applied to efficiently

compress properties. There have been several publications concerning the compression

of tetrahedral volume meshes (Szymczak and Rossignac, 1999; Gumhold et al., 1999;

Pajarola et al., 1999; Yang et al., 2000), but we are not aware of a compression scheme

that can handle hexahedral volume meshes.

Degree-based connectivity coding has previously only been used for surface meshes.

It was first proposed by (Touma and Gotsman, 1998) for purely triangular meshes and

in Chapter 4 we have described its generalization to polygonal connectivity. In this

chapter we show that degree coding can also be extended to volume mesh connectivity.

We code the connectivity of a hexahedral mesh mainly as a sequence of edge degrees

that is subsequently compressed with an arithmetic coder (Witten et al., 1987). We

code the geometry of a hexahedral mesh as a sequence of corrective vectors that are also

compressed with arithmetic coding. Whenever possible, we predict a vertex position

“within” the side of a hexahedron using a single parallelogram prediction.

6.2 Related Work

Compared to the number of publications on compression of polygonal surface meshes (Deer-

ing, 1995; Taubin and Rossignac, 1998; Touma and Gotsman, 1998; Gumhold and

Strasser, 1998; Mitra and Chiueh, 1998; Rossignac, 1999; Bajaj et al., 1999; Isenburg

and Snoeyink, 2000; Karni and Gotsman, 2000; Alliez and Desbrun, 2001b; Isenburg,

2002; Khodakovsky et al., 2002; Kronrod and Gotsman, 2002; Lee et al., 2002) there are

relatively few on compression of polyhedral volume meshes (Szymczak and Rossignac,

1999; Gumhold et al., 1999; Pajarola et al., 1999; Yang et al., 2000). Reason for this

is probably that volume meshes are not as widely used as surface meshes. Volumetric

data sets are mostly found in scientific and industrial applications.

The immense amount of data required to represent polyhedral volume meshes makes

compression even more worthwhile than in the surface case. This is especially true

for the connectivity: The standard indexed representation uses 6 indices per vertex

for triangular surface meshes, but approximately 12 indices per vertex for tetrahedral

volume meshes. And it uses 4 indices per vertex for quadrilateral surface meshes, but

96

approximately 8 indices per vertex for hexahedral volume meshes.

The challenge to compress the connectivity of tetrahedral volume meshes has first

been approached by (Szymczak and Rossignac, 1999). Their “Grow&Fold” technique

codes tetrahedral connectivity using only slightly more than 7 bits per tetrahedron

for meshes with a manifold border surface. The encoding process builds a tetrahedral

spanning tree that is rooted in an arbitrary border triangle. This tree is encoded

with 3 bits per tetrahedron that indicate for all faces but the entry face whether the

spanning tree will continue growing. The boundary of the tetrahedron spanning tree,

a triangular surface mesh, has an associated a folding string that is represented with

4 bits per tetrahedron. This string describes how to “fold” and occasionally “glue”

the boundary triangles of the spanning tree to reconstruct the original connectivity.

The indices associated with the “glue” operations lift the bit-rate above 7 bits per

tetrahedron, but their rare occurrence introduces only a small overhead.

(Gumhold et al., 1999) have extended their connectivity coder for triangular surface

meshes (Gumhold and Strasser, 1998) to tetrahedral volume meshes. Their algorithm

performs a space growing process that maintains a cut-border, a (possibly non-manifold)

triangle surface mesh, that separates at any time the processed tetrahedra from the

unprocessed ones. Each iteration of the algorithm processes a triangle on the cut-

border either by declaring it a “border” face or by including its adjacent tetrahedron

into the cut-border. The latter requires to specify the fourth vertex of the tetrahedron:

Either it is a “new vertex” or it is already on the cut-border, in which case a “connect”

operation is needed. This operation uses a local indexing scheme to specify the fourth

vertex on the cut-border. Because of the order in which the cut-border triangles are

processed, the fourth vertex is often very close to the processed triangle, which results in

small local indices. The average bit-rate for connectivity is about 2 bits per tetrahedron,

a result that has not been challenged since.

Besides coding the mesh connectivity, the authors also describe two approaches to

compress mesh geometry. Vertex coordinates are compressed when a vertex is encoun-

tered for the first time (e.g. during the “new vertex” operation). The first approach

uses pre-quantized vertices, predicts their position as the center of the currently pro-

cessed cut-border triangle, and codes only a corrective vector. The second approach

quantizes a vertex after expressing it in a local coordinate frame whose z-axis is the

normal of the currently processed cut-border triangle. In both approaches the resulting

16-bits correction vectors are split into four packages of 4 bits, which are then entropy

encoded with separate arithmetic contexts. The authors report that more sophisticated

97

prediction schemes failed, essentially because “tetrahedral meshes are too irregular to

predict vertex coordinates much better than with the proximity information of the

connectivity alone.” For vertex coordinates that are uniformly quantized to 16 bits of

precision, they report an average geometry compression ratio of 1 : 1.6.

(Yang et al., 2000) propose a compression technique for tetrahedral meshes that

allows to streamline decoding and rendering of a volume mesh. Their technique can

significantly reduce the memory requirements of a ray-casting-based volume mesh ren-

derer. The contribution of tetrahedra to the intersected rays is incrementally compos-

ited as they are decompressed. As soon as a decoded tetrahedron is no longer needed

it is discarded and its memory is de-allocated. This allows to render compressed tetra-

hedral meshes without ever having to store a completely uncompressed mesh.

First, they encode the surface formed by the border triangles using a triangle mesh

compression scheme (Mitra and Chiueh, 1998). Then, they grow the border surface

inwards by processing the adjacent tetrahedra using a breadth-first traversal. Similar

to (Gumhold et al., 1999) a tetrahedron is encoded by specifying its fourth vertex. In

case the fourth vertex was already visited they specify it using one of three different

operations instead of the universal “connect” from (Gumhold et al., 1999). When the

fourth vertex is connected across a “face” or an “edge”, they use a local index into an

enumeration of adjacent faces or adjacent edges. Otherwise they use a global “index”

into the list of all already visited vertices. The resulting connectivity compression rates

are slightly above those of (Gumhold et al., 1999).

Simplification techniques for tetrahedral meshes have been proposed independently

by (Staadt and Gross, 1998) and (Trotts et al., 1998). An iterative process collapses

edge after edge, thereby removing all tetrahedra incident to them. At each stage it picks

the edge whose collapse results in the minimal error according to some cost function.

This simplification technique can be used to create a single mesh of a certain resolution,

but it also allows to construct a progressive multi-resolution representation from which

meshes at various levels of resolution can be extracted on the fly. The latter requires to

store a sequence of inverse edge collapse operations, often referred to as vertex splits.

A compact and progressive encoding of the sequence of vertex splits was proposed by

(Pajarola et al., 1999). Instead of coding each vertex split individually, their Implant

Spray technique codes entire batches of independent refinement operations at once.

This reduces the average cost for identifying a split vertex from O(log2 v) to O(1).

Additionally the skirt of each split vertex has to be encoded, which specifies the set

of faces that are split. The bit-rates for this progressive representation of tetrahedral

98

mesh connectivity are reported to be less than 6 bits per tetrahedron. The authors

note that the progressive nature of the connectivity encoding suggests that efficient

geometry compression should be possible, but no experimental results are given.

6.3 Preliminaries

A hexahedral mesh or a hexahedralization is a collection of hexahedra that intersect only

along shared faces, edges, or vertices. A hexahedron is a polyhedron that has six faces,

eight vertices, and twelve edges, where each edge is adjacent to two faces, each vertex

is adjacent to three faces and each face is a quadrilateral. A face is an interior face

if it is shared by two hexahedra, otherwise it is a border face. Around each edge we

find a cycle of faces and hexahedra. An edge is an interior edge if all its surrounding

faces are interior faces, otherwise it is a border edge. A vertex is an interior vertex if

all its incident edges are interior edges, otherwise it is a border vertex. In the following

we denote the number of hexahedra with h, the number of faces with f = fi + fb, the

number of edges with e = ei + eb, the number of vertices with v = vi + vb, where i

stands for interior and b for border. A volume mesh has genus g if one can perform

cuts through g closed border loops without disconnecting the underlying volume; such

a volume is topologically equivalent to a sphere with g handles.

A volume mesh is manifold if each edge has a neighborhood that is homeomorphic to

a cylinder or a half-cylinder and each vertex has a neighborhood that is homeomorphic

to a sphere or a half-sphere. Edges with half-cylinder neighborhoods and vertices with

half-sphere neighborhoods are on the border. The border of a manifold volume mesh

is a manifold surface mesh.

The degree of an edge is the number of faces adjacent to the edge. For interior edges

this corresponds exactly to the number of hexahedra that are adjacent to the edge.

For border edges this corresponds to the number of hexahedra that are adjacent to the

edge plus the number of border openings. In the manifold case a border edge has only

one border opening. The degrees of interior edges tend to have a different distribution

(e.g. tend to be higher) than the degrees of border edges.

Two hexahedra are face-adjacent if they share a face, edge-adjacent if they share an

edge but no face, and vertex-adjacent if they share only a vertex. A hexahedral mesh

may consist of one or more connected components. A component is face-connected if

there is a path of face-adjacent hexahedra between any two hexahedra. A component

is still edge-connected if there is at least a path of face- and edge-adjacent hexahedra

99

roof

stephut bridge

corner

gap pit den

tunnel

Figure 6.2: The nine different configurations in which a hexahedron (blue) can be face-
adjacent to the hull (green). The characteristics of each configuration are summarized
in Table 6.1. The faces of the hexahedron that are not adjacent to the hull are its free
faces, the edges of the hexahedron that are adjacent to two free faces are its free edges,
and the vertices of the hexahedron that are adjacent to three free faces are its free
vertices. The focus face is the face on the hull that contains the arrow. It has no zero-
slots for the configurations “hut” and “roof”, one zero-slot for “step”, two zero-slots
for the “corner”, “bridge”, and “tunnel”, three zero-slots for “gap”, and four zero-slots
for “pit” and “den”.

between any two hexahedra. Otherwise the component is only vertex-connected.

6.4 Coding Connectivity with Degrees

The concept of coding connectivity with degrees was introduced by (Touma and Gots-

man, 1998) for the case of triangular surface meshes, which can be coded through a

sequence of vertex degrees and occasional “split” symbols. The achieved bit-rates are

mainly dictated by the distribution of vertex degrees. This automatically adapts to

regularity in the mesh, which we loosely define as how regular it tiles the domain it

lives in. A surface mesh consisting of only equilateral triangles constitutes a perfectly

100

regular tiling of the 2D domain. Since the degree of all vertices of such a mesh is 6, the

vertex degree distribution has an entropy of zero.

Degree coding was generalized to polygonal connectivity (Isenburg, 2002; Kho-

dakovsky et al., 2002) by using both, a sequence of vertex degrees and a sequence

of face degrees. The adaptivity of these coding schemes naturally extends to the other

two regular tilings of the 2D domain: using squares, all face and all vertex degrees are

4; and using regular hexagons, all face degrees are 6 and all vertex degrees are 3.

hut step bridge

Figure 6.3: The shown “hut” configuration has a local edge-adjacency and also a vertex-
adjacency with the hull (both marked in red), the “step” configuration has a global
edge-adjacency, and the “bridge” configuration has a known edge-adjacency.

In the following we show that the concept of degree coding can be extended to com-

press the connectivity of hexahedral meshes using its edge degrees. Going from surface

meshes to volume meshes we can think of polygons getting stretched into polyhedra,

edges getting stretched into polygons, and vertices getting stretched into edges; what

was a vertex degree in the surface mesh, becomes an edge degree in the volume mesh.

Hexahedral meshes allow a regular tiling of the 3D domain. A cube is a hexahedron

whose six faces are square and meet each other at right angles. It is the only of the

five platonic solids that regularly tiles the 3D domain. The interior edges of a perfectly

regular hexahedral mesh all have degree 4. Fortunately, many hexahedral meshes found

in practice are fairly regular and exhibit a low dispersion in edge degrees. The equi-

lateral tetrahedron, on the other hand, does not permit a tiling of 3D space. In fact,

tetrahedral meshes seem irregular by nature. Although degree coding can be adapted

for tetrahedral connectivity, initial measurements on the edge degree distributions of

various tetrahedral meshes suggests that the achievable compression rates will be lower

than those of (Gumhold et al., 1999; Yang et al., 2000).

101

6.5 Compressing the Connectivity

The encoder and the decoder perform the same space growing process to compress

and uncompress a connected component of a hexahedral mesh. Each iteration of the

algorithm processes a hexahedron that is adjacent to one or more previously processed

hexahedra. In face-connected components this hexahedron is always face-adjacent;

in edge-connected or vertex-connected components this hexahedron is sometimes only

edge-adjacent or vertex-adjacent. In order to simplify the description of our compres-

sion method we assume face-connected components. The two necessary extensions for

dealing with components that are only edge-connected or vertex-connected are straight-

forward.

Figure 6.4: A close-up on the fru mesh at the beginning of the encoding process. Final
faces are dark blue, incomplete faces are light blue, the focus face is pink, the slots are
red, and all hexahedra face-adjacent to the hull are shown in green: The leftmost frame
shows the initial hull. The next two frames show the hull after processing the first two
tetrahedra. The rightmost frame shows the hull after processing 15 tetrahedra.

of hut roof step corner bridge tunnel gap pit den

adjacent faces 1 2 2 3 3 4 4 5 6
zero-slots 0 0 1 2 2 2 3 4 4

free faces 5 4 4 3 3 2 2 1 -
free vertices 4 - 2 1 - - - - -

free edges 8 4 5 3 2 - 1 - -
(global) 4 - 1 - - - - - -
(local) 4 - 4 3 - - - - -
(known) - 4 - - 2 - 1 - -

Table 6.1: This table characterizes the nine configurations in which a hexahedron can
be face-adjacent to the hull (see Figure 6.2). It lists the number of adjacent faces, the
number of zero-slots of the focus face, and the number of free vertices, free faces, and
free edges. The free edges are further classified into the number of potential candidates
for global, local, or known edge-adjacency with the hull (see Figure 6.3).

Four arithmetic contexts (Witten et al., 1987) are used for compressing the symbols

102

that encode hexahedral connectivity. One for border edge degrees, one for interior edge

degrees, and two binary contexts. One of the two binary contexts distinguishes border

elements from interior elements, and the other marks the infrequent occurrences of

“join” operations discussed below.

The algorithm maintains a hull that encloses at any time all processed hexahedra.

This hull is a quadrilateral surface mesh, possibly non-manifold, whose edges and faces

are called hull edges and hull faces respectively. The hull faces are classified as final faces

and incomplete faces. A final face is a border face whose corresponding hexahedron

has already been processed. An incomplete face is an interior face that has a processed

hexahedron on one side and an unprocessed hexahedron on the other side. Each hull

edge maintains a slot-count that specifies the remaining number of faces still to be

added between its two adjacent hull faces. A hull edge is a zero-slot if its two hull

faces are incomplete and its slot-count is zero. A hull edge is a border-slot if one of its

hull faces is final and the other incomplete and its slot-count is one. The number of

zero-slots and border-slots around an incomplete face is always between 0 and 4.

The initial hull is defined around a border face by recording the degrees of its four

border edges. It has one final face, one incomplete face, and four hull edges. The slot-

count of the hull edges is initialized to their degree minus one. In each iteration the

algorithm selects an incomplete face as the focus face and processes the unprocessed

hexahedron it is adjacent to (see Figure 6.4). Processing of a (face-adjacent) hexahedral

mesh component is completed, when the hull consists only of final faces.

The currently processed hexahedron can be in one out of nine configurations face-

adjacent to the hull; these are shown in Figure 6.2 and characterized in Table 6.1. Both,

encoder and decoder, can determine the actual configuration based on the number of

zero-slots in the vicinity of the focus face. Only when the focus face has no zero-

slots, the ambiguity between the “hut” and the “roof” configuration needs to be coded

explicitly. In case of the latter the encoder also needs to specify the incomplete face

that the “roof” is formed with. Processing the hexahedron involves:

• recording if its free faces are border or interior faces;

• recording if its free edges are border or interior edges;

• recording the degrees of its free edges;

• predicting the positions of its free vertices;

• and updating the hull and the slot-counts appropriately.

103

The edge degree distribution of border edges is different from that of interior edges.

While border edge degrees typically have a spread around 3, interior edge degrees

average around 4 as documented in Table 6.2. It is therefore beneficial to compress

them with different arithmetic contexts.

6.5.1 Propagating the Border Information

The proposed algorithm only needs to distinguish border faces from interior faces. Using

this information all edges can eventually be classified as border or interior. However,

in order to compress an edge degree with the appropriate arithmetic context, we need

know this in the moment its degree is encoded. By using simple rules and by selecting

a suitable focus face (see Subsection 6.5.3) we can propagate the information about the

border. Most of the time encoder and decoder can deduce whether faces or edges are

on the border without explicitly encoding this. The rules are:

rule R1 A free face is a border face if it connects to a border face across an edge that has a

slot-count of zero.

rule R2 A free face is an interior face if any adjacent edge is known to be an interior edge.

rule R3 A free edge is a border edge if any adjacent face is known to be a border face.

Figure 6.5: Propagating the border information in the “step” configuration: The free
face at the top is a border face because of rule R1. All other free faces are interior faces
because of rule R2. The two free edges at the top are border edges because of rule R3.
For the remaining three free edges this needs to be specified explicitly. Usually these
would all be interior edges, but this example shows a rare scenario where one of them
is a border edge, along which the included hexahedron “touches” the border.

The example in Figure 6.5 illustrates these rules. Whenever none of the rules applies

a binary arithmetic context is used to encode explicitly if an edge or a face is on the

border or not. Using the three rules on our test meshes classifies approximately 99

104

percent of all border elements correctly, so that the arithmetic coder is mainly used to

repeatedly specify that an edge or a face is interior. This requires only few bits because

the same symbol will be coded again and again.

6.5.2 Join Operations

For every “roof” configuration it is necessary to specify the incomplete face on the hull

that forms the “roof”. Furthermore, sometimes free edges are edge-adjacent or free

vertices are vertex-adjacent to the hull as illustrated in Figure 6.3. Instead of recording

the degree of such an edge or predicting the position of such a vertex, the encoder has

to specify how they are adjacent to the hull such that the decoder can replay exactly

the same updates. We use the following “join” operations for this:

Joining free vertices is done by identifying the respective vertex with an index

between 0 and the current count of vertices vcc minus one, which can be coded with

log2(vcc) bits. In theory we could improve compression slightly by excluding all in-

terior vertices that have already left the hull from consideration. This would require

to maintain all vertices that are eligible for a “join” in some kind of indexable data

structure. But due to the regular nature of hexahedral meshes there are relatively few

“join” operations, so that the improvement in compression would be small.

Joining free edges is done by identifying the respective hull edge, which has at least

two slots, and by specifying how the “join” divides its slot-count.

We identify the respective hull edge in three different ways, depending on the type

of edge-adjacency: known, local, or global (see Figure 6.3). For the known type we know

the two vertices in whose linked lists the respective hull edge must appear. In most

cases this will leave us with a unique candidate. For the local type we know only one

vertex in whose linked list the respective hull edge must appear. Its position in this

list is addressed with an index between 0 and the current number of edges es>=2 of this

list that have a slot-count of 2 or higher minus one, which is coded with log2(es>=2)

bits. For the global type we must furthermore explicitly address one of the vertices in

whose linked list the respective hull edge appears using log2(vcc) bits. Specifying how

the “join” divides the s slots of the respective hull edge can be coded with log2(s− 2)

bits, as 2 slots are consumed during the “join”.

Joining the “roof” is done by identifying one of the hull edges of the respective

incomplete face. We specify this edge, which has at least one slot, by addressing the

105

vertex in whose linked list it appears and its position in this list. Addressing the vertex

is again coded with log2(vcc) bits. The position of the respective hull edge in this list is

addressed with an index between 0 and the current number of edges es>=1 of this list

that have a slot-count s of 1 or higher minus one, which is coded with log2(es>=1) bits.

mesh border edge degrees interior edge degrees
name total 2 3 4 >4 total 2 3 4 5 >5

hanger 768 .17 .77 .06 – 149 – .01 .98 .01 –
ra 792 .17 .79 .04 – 856 – .03 .95 .02 –

bump2 1780 .08 .88 .03 .01 2708 – .04 .94 .01 –
test 2928 .12 .87 .01 – 5774 – – 1.0 – –

mdg-1 3004 .06 .94 – – 9676 – .01 .98 .01 –
c2 3924 .07 .91 .02 – 10247 – .02 .96 .02 –
fru 2872 .04 .97 – – 11689 – .03 .96 .02 –

shaft 8788 .08 .90 .02 .01 16392 .01 .03 .95 .02 .01
warped 4800 .05 .95 – – 21660 – – 1.0 – –
hutch 2336 .03 .94 .02 – 23381 – .01 .98 .01 –

c1 27428 .03 .97 .01 – 201190 – .01 .98 .01 –

average .08 .90 .02 .00 .00 .02 .97 .01 .00

Table 6.2: This table reports the degree distribution for border and interior edges in our
data sets. Border edge degrees spread around 3; interior edge degrees spread around 4.

Figure 6.6: Six freeze-frames from the encoding process of the test mesh. Final faces
are dark blue, incomplete faces are light blue, the focus is pink, and the slots are red.
Furthermore all hexahedra face-adjacent to the hull are illustrated in green. Between
frames d) and e) the handle of the mesh is processed with a “roof” configuration.

106

6.5.3 Reducing the Number of Join Operations

Coding “join” operations requires local or even global indexing. This is expensive and

we would like to do this as seldom as possible. If the mesh has handles then there will

always be at least one “roof” configuration, one global edge-adjacency, or one vertex-

adjacency per handle (see Figure 6.6). Unfortunately these can also happen otherwise

and the frequency of their occurrences is strongly dependent on the strategy used for

selecting the next focus face. This problem is very similar to the occurrences of “split”

operations in surface mesh connectivity coding (Touma and Gotsman, 1998; Gumhold

and Strasser, 1998). Adaptive traversal strategies have been proposed that successfully

reduce the number of these operations (Alliez and Desbrun, 2001b; Isenburg, 2002).

Such adaptive traversal strategies try to pick a focus that avoids the creation of

“cavities” on the compression boundry during the region growing process. They use

heuristics that move the focus to vertices on the boundary that are nearly completed

(e.g. that have a low slot-count). We use a similar heuristic for avoiding the creation

of “cavities” on the hull during our space growing process. Our heuristic moves the

focus to the incomplete face with the highest number of zero-slots. This strategy is very

successful on our set of hexahedral meshes. Only for one data set, the hutch mesh, we

need a “join” operation that is not due to a handle. This happens because, as shown

in Figure 6.9, during encoding the hull has temporarily the topology of a torus, while

subsequent hexahedra completely fill and remove this handle.

In case there is no face with zero-slots, a face with border-slots is selected as the

focus face. This increases the success rate of the border propagation described earlier.

If there is also no face with border-slots, an arbitrary incomplete face is selected in

some way that encoder and decoder agree upon.

6.6 Compressing the Geometry

We use the traversal order on the vertices induced by the connectivity coder to compress

their associated positions with a predictive coding scheme. In order to use such a

scheme the floating-point positions are first uniformly quantized using a user-defined

precision of for example 10, 12, 14, 16, or even 18 bits per coordinate. This introduces

a quantization error as some of the floating-point precision is lost. Then a prediction

rule is applied that represents each quantized position as an offset vector that corrects

the predicted position to the actual position. The values of these corrective vectors

107

tend to spread around zero, which means they can be efficiently compressed with, for

example, an arithmetic coder (Witten et al., 1987). If for some reason it is absolutely

not possible to uniformly quantize the floating-point coordinates, a lossless compression

scheme can be used instead (Isenburg et al., 2005a).

For predicting the vertex positions of triangle meshes several different methods

have been proposed. The simplest prediction method, which predicts the next position

as the last position, was suggested by (Deering, 1995). This is also known as delta

coding. A more sophisticated scheme is the spanning tree predictor by (Taubin and

Rossignac, 1998) that uses a weighted linear combination of previously decoded vertices;

the particular coefficients used can be optimized for each mesh. A similar, but much

simpler scheme is the parallelogram predictor introduced by (Touma and Gotsman,

1998). This is the predictor we will use.

init

hut

0

4

12

3

56

7

8

0

12

3

v0 0
v1 v0
v2 v1
v3 v0 - v1 + v2
v4 2v0 – v8 (or v0)
v5 v1 – v0 + v4
v6 v2 – v1 + v5
v7 v3 – v2 + v6

vertex prediction rule

step

2 1

0

4

3

56

7

Figure 6.7: This figure illustrates how vertex positions are predicted: The rules for v0

to v3 are only used for the vertices of the initial hull. All other vertices are predicted
during a “hut”, a “step, or a “corner” configuration using the rules for v4 to v7. The
first “hut” configuration uses a different prediction rule for v4, since v8 does not exist.

This scheme predicts vertex positions to complete a parallelogram spanned by the

three previously processed vertices. Good predictions are those that predict a position

close to its actual location. In the triangle mesh case the parallelogram predictor gives

good predictions if used across two triangles that are in a fairly planar and convex

position to each other. Consequently, the parallelogram predictor gives poor predictions

if used across triangles that are in a highly non-planar and/or non-convex position.

When compressing polygonal meshes it is possible to improve the number of good

predictions by letting the polygons dictate where to apply the parallelogram predictor

as we saw in Section 5.1. Since polygons tend to be fairly planar and fairly convex, it

is beneficial to make predictions within a polygon rather than across polygons. This,

108

for example, avoids poor predictions due to a crease angle between polygons.

In similar spirit we predict most vertex positions within the side of a hexahedron

in the moment they are first encountered using the rules illustrated in Figure 6.7. Four

vertices are encountered during initialization of the hull, all others are encountered as

free vertices of a “hut”, “step”, or “corner” configuration. The first vertex v0 has no

obvious predictor and is predicted as 0. Also the next two vertices v1 and v2 cannot

yet use parallelogram prediction and are predicted as a previously processed position.

This makes a systematic prediction error, but there will be only two such predictions

per mesh component. For most following vertex positions we use the parallelogram

predictor. An exception is vertex v4 of the “hut” configuration, which is predicted by

extending the ray from v8 to v0 (if vertex v8 exists).

Predictive geometry compression does not scale with increasing precision. The

achievable compression ratio is strongly dependent on the number of precision bits.

Since this technique mainly predict away the high-order bits, the compression ratios

decrease if more precision (= low bits) is added. This is clearly demonstrated by the

results in Table 6.3, which reports the performance of our geometry compression scheme

at different levels of precision.

mesh 10 bits 12 bits 14 bits 16 bits 18 bits
name bpv ratio bpv ratio bpv ratio bpv ratio bpv ratio

hanger 11.2 2.7 15.4 2.3 19.6 2.1 23.2 2.1 26.5 2.0
ra 14.5 2.1 19.9 1.8 25.2 1.7 30.8 1.6 36.2 1.5

bump2 9.5 3.1 14.2 2.5 19.1 2.2 24.4 2.0 29.8 1.8
test 1.8 17.0 3.3 11.0 4.3 9.8 5.9 8.2 6.5 8.3

mdg-1 5.3 5.6 7.7 4.7 10.1 4.2 12.3 3.9 14.4 3.8
c2 5.0 6.0 7.5 4.8 10.7 3.9 14.2 3.4 17.6 3.1
fru 7.1 4.2 12.0 3.0 17.1 2.5 23.1 2.1 29.1 1.9

shaft 6.8 4.4 10.6 3.4 15.2 2.8 19.9 2.4 24.8 2.2
warped 3.4 8.8 5.1 7.1 7.9 5.3 10.5 4.6 13.2 4.1
hutch 8.1 3.7 11.6 3.1 16.1 2.6 19.9 2.4 23.9 2.3

c1 1.5 19.7 2.7 13.3 4.1 10.2 5.9 8.1 8.0 6.8

average 7.0 5.2 4.3 3.7 3.4

Table 6.3: This table reports bit-rates for compressed geometry in bits per vertex (bpv)
at different quantization levels and gives the corresponding compression ratio compared
to uncompressed geometry. The bit-rate for uncompressed geometry is simply three
times the number of precision bits.

109

class SpinEdge { class Vertex {
Vertex* vertex; int index;

SpinEdge* next; SpinEdge* edge list;

SpinEdge* inv; float p[3];

SpinEdge* spin; }
SpinEdge* list;

int on border; SpinEdge* face list[5];

int slots; Vertex* permutation[];

}

Figure 6.8: The data structures used for compression: The connectivity of the hexahe-
dral mesh is captured by the next, inv, and spin pointers. The geometry is attached
by the vertex pointer. The list pointer is used for all linked-lists: One list per ver-
tex, starting at the edge list pointers, links all incomplete edges incident to a vertex.
Furthermore five lists, starting at the face list pointers, link incomplete faces that
have either border-slots, or one, two, three, or four zero-slots.

mesh mesh characteristics connectivity (bph) geometry (bpv)
name g h v e fb/h raw coded ratio raw coded ratio

hanger 2 171 382 917 2.25 72.0 5.30 13.6 48.0 23.19 2.1
ra 0 408 635 1648 0.97 80.0 2.89 27.7 48.0 30.83 1.6

bump2 1 1189 1665 4480 0.75 88.0 2.10 41.9 48.0 24.41 2.0
test 1 2386 3198 8702 0.61 96.0 0.87 110.3 48.0 5.85 8.2

mdg-1 0 3710 4510 12680 0.40 104.0 0.77 135.1 48.0 12.30 3.9
c2 0 4046 5099 14171 0.48 104.0 1.31 79.4 48.0 14.24 3.4
fru 0 4360 5124 14561 0.33 104.0 0.98 106.1 48.0 23.12 2.1

shaft 0 6883 9218 25180 0.64 112.0 1.70 65.9 48.0 19.93 2.4
warped 0 8000 9261 26460 0.30 112.0 0.18 622.2 48.0 10.45 4.6
hutch 0 8172 8790 25717 0.14 112.0 0.31 361.3 48.0 19.88 2.4

c1 0 71572 78618 228618 0.19 136.0 0.60 226.7 48.0 5.91 8.1

average 0.48 101.8 1.55 162.7 48.0 17.28 3.7

Table 6.4: The table lists the genus g and number of hexahedra h, vertices v, edges e
for each of the models shown in Figure 6.9. Furthermore, the number of border faces
per hexahedra fb/h is given as an indicator of the mesh’s compacity. The bit-rates for
uncompressed and compressed connectivity are reported in bits per hexahedron (bph).
The bit rates for uncompressed and compressed geometry at 16 bits of precision are
reported in bits per vertex (bpv). The corresponding compression ratios are also listed.

6.7 Implementation and Results

The data structures used by encoder and decoder are shown in Figure 6.8. The spin-

edges that store mesh connectivity are a straight-forward extension of standard twin-

edges and are similar to those used in (Levy et al., 2001). Each hexahedron uses 24

110

Figure 6.9: The set of example models used to evaluate our compression algorithm.
The bump2 model is used in the teaser on the first page and the test model is shown in
Figure 6.6. The c1 model is a much finer tessellated version of the c2 model.

spin-edges, 4 per face, and also border faces are represented explicitly. This means that

every face has two sets of 4 spin-edges, whose list pointers are used to maintain two

kinds of single-linked lists during encoding and decoding. One set is used to link all

spin-edges a vertex has on the hull to its edge list pointer. These lists are used to

address an edge during a “join” operation. The other set is used to link spin-edges on

the hull that either have border-slots, or one, two, three, or four zero-slots into five

priority lists. These five lists are used to select the next focus face. Spin-edges are

inserted into and removed from a list at most once. After leaving the hull they are not

111

explicitly deleted, but marked invalid and removed the next time encountered. Hence,

maintaining these lists has a linear time complexity.

This data structure has the advantage that it can represent general volume meshes

containing arbitrary elements, such as prisms, pyramids, tetrahedra, or any other poly-

hedra. For volume meshes that are limited to one element type, like hexahedra in

our case, the storage requirements for the data structure can be significantly reduced

by storing the 24 spin-edges in of a hexahedron in a pre-defined order in the array of

spin-edges. Then the next and inv pointers can be replaced by a fixed mapping within

each block of 24 spin-edges. For the same reason the total number of vertex pointers

can then be reduced to 8 per hexahedron.

Compression results for connectivity and geometry for a set of eleven test meshes

are listed in Table 6.4. The bit-rates for connectivity are strongly dependent on the

compacity of the mesh, which can be characterized by the ratio of border elements. The

fraction of border vertices vb/v and border edges eb/e, for example, but also the number

border faces per hexahedron fb/h can be used as a measure of compactness. The less

compact a mesh, the bigger the impact of the costs for encoding its border. The hanger

mesh, for example, is closer to a surface mesh than to a volume mesh. Although its

bit-rate of 5.30 bits per hexahedron seems high, expressed as 2.65 bits per vertex it is

comparable to results in surface connectivity compression.

6.8 Summary

We have introduced the first scheme for compressing hexahedral volume meshes. The

connectivity is coded using an edge-degree based approach that naturally adapts to

the regularity typically found in hexahedral meshes. For regular meshes the bit-rates

go down to 0.18 bits per hexahedron while averaging at around 1.5 on our test set of

eleven meshes, which corresponds to a compression ratio of 1 : 163. The geometry is

compressed by parallelogram prediction within a hexahedron, leading to a compression

ratio of 1 : 3.7 at a quantization level of 16 bits. Furthermore, we describe a data

structure well suited to efficiently implement the selection strategy for the focus face

and maintain the hull during encoding and decoding.

We should point out that this compressor could be adapted to work out-of-core in a

similar way as we will do it for surface meshes in the next chapter. In order to compress

large volume meshes that are too large to fit in main memory an external memory data

structure would be required that provides similar functionality as the out-of-core mesh

112

for surfaces that is described in Section 7.3. This would also require to separate the

part of data structure from Figure 6.8 that is used to store hexahedral connectivity

from the part that is used to maintain the hull. Such an approach would then allow to

implement the decoder such that at any time during decompression only the hull is kept

in memory. Decompressed hexahedra could, for example, be immediately rendered like

it was proposed by (Yang et al., 2000) for tetrahedral meshes.

In the future we plan to generalize the degree-based approach to unstructured vol-

ume meshes containing arbitrary polyhedra. The final goal is an universal degree-based

coder for irregular surface and volume meshes that obtains bit-rates competitive to

those of a specialized coder. However, it seems that this will not be possible for tetra-

hedral meshes due to their notoriozus irregularity. The high entropy of their edge degree

distribution suggests that the coder of (Gumhold et al., 1999) will always outperform

a degree-based approach.

6.9 Hindsights

The described data structure for compression is unnecessarily bloated. A more efficient

implementation—even for in-core operation—separates the data structure into a static

part that stores hexahedral connectivity and a dynamic part that maintains the hull. In

order to keep the dynamic part as small as possible, hull edges and hull vertices would

then be de-allocated as soon possible. However, the current implementation does not

allow us to safely deallocate vertices along the mesh border as they could potentially

be referenced again later by hexahedra that are vertex-adjacent to the border in a non-

manifold way. This could be fixed by explicitly marking all those border vertices where

hexahedra meet in a vertex-adjacent, non-manifold manner.

In Chapter 9 we will see that the strategy with which the focus face is selected should

take into account how it affects the global order of the hexahedral mesh elements. In

particular, it should avoid giving vertices drastically varying “life times” on the hull.

The current traversal strategy does not account for this and leads to coherent orderings

only by chance. For the shaft model shown in Figure 6.9, for example, the space growing

process will eventually stop growing the hull on the left and first complete the right

half of the model, giving some hull vertices disproportionally long “life times”.

Chapter 7

Out-of-Core Compression

Figure 7.1: (a) - (g) Visualization of the decompression process for the St. Matthew
statue. The in-core boundary is shown in green. (h) Example Out-of-Core Rendering.

Polygonal models acquired with emerging 3D scanning technology or from large scale

CAD applications easily reach sizes of several gigabytes and do not fit in the address

space of common 32-bit desktop PCs. In this chapter we describe an out-of-core mesh

compression technique that converts such gigantic meshes into a streamable, highly

compressed representation. During decompression only a small portion of the mesh

(the green decompression boundaries shown in Figure 7.1) needs to be kept in memory

at any time. As full connectivity information is available along these boundaries, this

provides seamless mesh access for incremental in-core processing on gigantic meshes.

Decompression speeds are CPU-limited and exceed one million vertices and two million

triangles per second on a 1.8 GHz Athlon processor.

A novel external memory data structure provides our compression engine with trans-

parent access to arbitrary large meshes. This out-of-core mesh was designed to accom-

modate the access pattern of our region-growing single-pass mesh compressor, which -

in return - performs mesh queries as seldom and as localized as possible by remembering

previous queries as long as needed and by adapting its traversal slightly. The achieved

compression rates are state-of-the-art.

114

7.1 Introduction

Storing large and detailed models using standard indexed polygon mesh formats re-

sults in files of gigantic size that consume large amount of disk space. The St. Matthew

model from Stanford’s Digital Michelangelo Project (Levoy et al., 2000), for example,

has over 186 million vertices resulting in more than six gigabytes of data. Transmission

of such gigantic models over the Internet consumes hours and even loading them from

the hard drive takes minutes. A number of efficient mesh compression schemes have

been proposed, but ironically none of these schemes is capable—at least not on com-

mon desktop PCs—to deal with meshes of the gigabyte size that would benefit from

compression the most. Current compression algorithms and some of the corresponding

decompression algorithms can only be used when connectivity and geometry of the

mesh are small enough to reside in main memory. Realizing this limitation, (Ho et al.,

2001) propose to cut gigantic meshes into manageable pieces and encode each sepa-

rately using existing techniques. However, partitioning the mesh introduces artificial

discontinuities. The special treatment required to deal with these cuts not only lowers

compression rates but also significantly reduces decompression speeds.

Up to a certain mesh size, the memory requirements of the compression process can

be satisfied using a 64-bit super-computer with vast amounts of main memory. Re-

search labs and industries that create gigabyte sized meshes often have access to such

equipment. But to decompress on common desktop PCs, at least the memory foot-

print of the decompression process needs to be small. In particular, it must not have

memory requirements in the size of the decompressed mesh. This eliminates a number

of popular multi-pass schemes that either need to store the entire mesh for connectiv-

ity decompression (Taubin and Rossignac, 1998; Rossignac, 1999) or that decompress

connectivity and geometry in separate passes (Isenburg and Snoeyink, 2000; Szymczak,

2002). This leaves us with all one-pass coders that can perform decompression in a sin-

gle, memory-limited pass over the mesh. Such schemes (de-)compress connectivity and

geometry information in an interwoven fashion. This allows streaming decompression

that can start producing mesh triangles as soon as the first few bytes have been read.

There are several schemes that could be implemented as one-pass coders (Touma and

Gotsman, 1998; Gumhold and Strasser, 1998; Li and Kuo, 1998; Lee et al., 2002).

In this chapter we describe how to compress meshes of gigabyte size in one piece

on a standard PC using an external memory data structure that provides transparent

access to arbitrary large meshes. Our out-of-core mesh uses a caching strategy that

accommodates the access pattern of the compression engine to reduce costly loads of

115

data from disk. Our compressor uses degree coding for the connectivity (see Chapter 4)

and linear prediction coding for the geometry (see Chapter 5) to achieve state-of-the-art

compression rates. The resulting compressed format allows streaming, small memory

foot-print decompression at speeds of more than 2 million triangles a second.

The snap-shots in Figure 7.1 illustrate the decompression process on the St. Matthew

statue. For steps (a) to (g) we displayed every 1000th decompressed vertex and the

decompression boundaries, while (h) is an example out-of-core rendering. Using less

than 10 MB of memory, this 386 million triangle model loads and decompresses from a

456 MB file off the hard-drive in only 174 seconds. At any time only the green decom-

pression boundaries need to be kept in memory. Decompressed vertices and triangles

can be processed immediately, for example, by sending them to the graphics hardware.

The out-of-core rendering took 248 seconds to complete with most of the additional

time being spent on computing triangle normals. These measurements were taken on a

standard PC with a 1.8 Ghz AMD Athlon processor and an Nvidia Geforce 4200 card.

This compressed format has benefits beyond efficient storage and fast loading. It is

a better representation of the raw data for performing certain out-of-core computations

on large meshes. Indexed mesh formats are inefficient to work with and often need

to be de-referenced in a costly pre-processing step. The resulting polygon soups are

at least twice as big and, although they can be efficiently batch-processed, provide

no connectivity information. Our compressed format streams gigantic meshes through

limited memory and provides seamless mesh access along the decompression boundaries,

thereby allowing incremental in-core processing on the entire mesh.

The next section summarizes relevant work on out-of-core processing, out-of-core

data structures, and mesh compression. In Section 7.3 we introduce our out-of-core

mesh and describe how to build it from an indexed mesh. Then, in Section 7.4, we

describe the compression algorithm and report resulting compression rates and de-

compression speeds on the largest models that were available to us. The last section

summarizes our contributions and evaluates their benefits for other algorithms that

process gigantic polygon meshes.

7.2 Related Work

Out-of-core or external memory algorithms that allow to process vast amounts of data

with limited main memory are an active research area in visualization and computer

graphics. Recently proposed out-of-core methods include isosurface extraction, surface

reconstruction, volume visualization, massive model rendering, and—most relevant to

116

our work—simplification of large meshes. Except for (Ho et al., 2001), out-of-core

approaches to mesh compression have so far received little attention.

The main computation paradigms of external memory techniques are batched and

online processing: For the first, the data is streamed in one or more passes though

the main memory and computations are restricted to the data in memory. For the

other, the data is processed through a series of (potentially random) queries. To avoid

costly disk access with each query (e.g. thrashing) the data is usually re-organized

to accommodate the anticipated access pattern. Online processing can be accelerated

further by caching or pre-fetching of data that is likely to be queried (Silva et al., 2002).

Out-Of-Core Simplification methods typically make heavy use of batch-processing.

(Lindstrom, 2000) first creates a vertex clustering in the resolution of the output mesh

and stores one quadric error matrix per occupied grid cell in memory. Indexed in-

put meshes are first dereferenced into a polygon-soup and then batch-processed one a

triangle at a time by adding its quadric to all cells in which it has a vertex. Later,

(Lindstrom and Silva, 2001) showed that the limitation of the output mesh having to

fit in main memory can be overcome using a series of external sorts.

A different approach for simplifying huge meshes was suggested by (Hoppe, 1998)

and (Bernardini et al., 2002): The input mesh is partitioned into pieces that are small

enough to be processed in-core, which are then simplified individually. The partition

boundaries are left untouched so that the simplified pieces can be stitched back together

seamlessly. While the hierarchical approach of Hoppe automatically simplifies these

boundaries at the next level, Bernardini et al. simply process the mesh more than

once—each time using a different partitioning.

The methods discussed so far treat large meshes different from small meshes as

they try to avoid performing costly online processing on the entire mesh. Therefore the

output produced by an out-of-core algorithm is usually of lower quality than that of

an in-core algorithm. Addressing this issue, (Cignoni et al., 2003) propose an octree-

based external memory data structure that provides algorithms with transparent online

access to huge meshes. This makes it possible to, for example, simplify the St. Matthew

statue from 386 to 94 million triangles using iterative edge contraction.

Albeit substantial differences, our out-of-core mesh is motivated by the same idea:

it provides the mesh compressor transparent access to the connectivity and geometry

of gigantic meshes. Therefore our compressor will produce the same result, no matter

if used with our out-of-core mesh or with the entire mesh stored in-core.

117

Out-Of-Core Data Structures for Meshes have also been investigated by (Mc-

Mains et al., 2001). They reconstruct complete topology information (e.g. including

non-manifoldness) from polygon soups by making efficient use of virtual memory. Their

data structure provides much more functionality than our compressor needs and so its

storage requirements are high. Also, using virtual memory as a caching strategy would

restrict us to 4 GB of data on a PC and we will need more than 11 GB for the

St. Matthew statue. The octree-based external memory mesh of (Cignoni et al., 2003)

could be adapted to work with our mesh compressor. It has roughly the same build

times and stores only slightly more data on disk. However, their octree nodes do not

store explicit connectivity information, which has to be built on the fly. While this is

acceptable for a small number of loads per node, the query order of our compressor

might require to load some nodes more often—especially if we used their octree-based

mesh: its clustering is created through regular space partitioning, which is insensitive

to the underlying connectivity, while our clusters are more compact along the surface.

Mesh Compression techniques have always overlooked the memory requirements of

the decompression process. So far meshes were moderately sized and memory usage is

at most linear in mesh size. However, today’s meshes most in need of compression are

those above the 10 million vertex barrier. The memory limitation on common desktop

PCs allows the decompression process only a single, memory-limited pass over such

meshes. This eliminates all schemes that need to store the entire mesh for connectiv-

ity decompression (Taubin and Rossignac, 1998; Rossignac, 1999) or that decompress

connectivity and geometry in separate passes (Isenburg and Snoeyink, 2000; Szymczak,

2002). Naturally, this constraint also prohibits the use of progressive approaches that

require random mesh access for refinement operations during decompression (Taubin

et al., 1998a; Cohen-Or et al., 1999; Pajarola and Rossignac, 2000; Alliez and Desbrun,

2001a). And finally, the sheer size of the data prohibits computation-heavy techniques

such as traversal optimizations (Kronrod and Gotsman, 2002), vector quantization (Lee

and Ko, 2000), or expensive per-vertex computations (Lee et al., 2002).

This leaves all those methods whose decompressor can be restricted to a single,

memory-limited, computation-efficient pass over the mesh. This coincides with all

those methods whose compressor can be implemented as a fast one-pass coder (Touma

and Gotsman, 1998; Gumhold and Strasser, 1998; Li and Kuo, 1998). These com-

pression algorithms require access to explicit connectivity information, which is usually

constructed in a pre-processing step. However, if the mesh does not fit into main mem-

ory this is already not possible. Therefore, (Ho et al., 2001) suggest to cut large meshes

118

Figure 7.2: Less than 1 MB of memory is used by the out-of-core process that loads,
decompresses, and renders this 82 million triangle “Double Eagle” model in 78 seconds
from a 180 MB file. We do not store triangles in memory, but immediately render
them with one call to glNormal3fv() and three calls to glVertex3iv(). Loading and
decompression alone takes only 63 seconds. Most of the additional 15 seconds are
spent on computing triangle normals. This frame was captured in anti-aliased 2048x768
dual-monitor mode on a 1.8 Ghz AMD Athlon processor with an Nvidia Geforce 4200.

into smaller pieces that can be dealt with in-core. They process each piece separately

by first constructing explicit connectivity, which is then compressed with the two-pass

coder of (Rossignac, 1999), before compressing the vertex positions with the parallelo-

gram predictor of (Touma and Gotsman, 1998) in a third pass. They record additional

information that specifies how to stitch the pieces back together after decoding.

The compression scheme we describe in this chapter has several advantages over that

of (Ho et al., 2001). As we do not break up the model, our compression rates are 20 to 30

percent better. As we can decode the entire model in a single pass, our decompression

speeds are about 100 times faster. Finally, as our decompressor streams the entire mesh

through main memory with a small memory foot-print, our compressed representation

is useful beyond reduced file sizes and shortened download times. It supports efficient

batch-processing for performing computation on large meshes while at the same time

providing seamless access to mesh connectivity.

We should also mention shape compression methods (Khodakovsky et al., 2000;

Gu et al., 2002; Szymczak et al., 2002; Khodakovsky and Guskov, 2004) as they are

especially well suited for converting detailed scanned datasets into highly compressed

representations. These approaches remesh prior to compression under the assumption

that not a particular mesh but rather the geometric shape that it represents is of

interest. Currently such scheme can only operate on models small enough to fit in

memory, although the approaches to out-of-core processing presented here and in the

following two chapters may change this in the future. However, remeshing methods are

not applicable to CAD data such as the “Double Eagle” model (shown in Figure 7.2).

119

7.3 Out-of-Core Mesh

We use a half-edge data structure (Mantyla, 1988) as foundation for our out-of-core data

structure, because it gives us the functionality needed by the compression algorithm

at minimal storage space consumption. A static data structure with an array V of

vertices and an array of half-edges H is basically sufficient. We provide the compression

algorithm with the following (see also Figure 7.3):

1. enumeration of all half-edges and ability to mark them as visited

2. access to the next and the inverse half-edge, and to the origin vertex

3. access to the position of a vertex and whether it is non-manifold

4. knowledge of border edges

next

invorigin

next

struct IndexPair {
int ci : 15;
int li : 17;

};

struct HalfEdge {
Index origin;
Index inv;
Index next;
Index myself;

};

Figure 7.3: At each edge (black lines) of the mesh two directed half-edges (blue arrows)
are incident, one for each incident face (light grey background). From each half-edge
the next and inverse half-edges and the origin vertex are accessible. At the border
additional border edges (red arrows) are created. Following their next pointers (dark
red) cycles around the border loop. On the right is the syntax of an index-pair and of
a half-edge. The next index-pair is used in explicit mode and for all border edges. The
myself index-pair is only used for crossing half-edges.

7.3.1 Half-Edge Data-Structure

In order to efficiently support pure triangular meshes but also accommodate gen-

eral polygonal meshes we have two modes for the out-of-core data structure: The

implicit mode is designed for pure triangular meshes. Each internal half-edge con-

sists of an index of its inverse half-edge and an index of its origin vertex. The three

half-edges of a triangle are stored in successive order in the half-edge array H, such

that the index of the next half-edge can be computed from the half-edge index i via

next(i) = 3 ∗ (i/3) + (i + 1)%3. The explicit mode is used for polygonal meshes. A

next index is explicitly stored with each half-edge, which means they can be arranged

120

in any order in H. The vertex array V contains the three coordinates x, y and z of

each vertex in floating point or as a pre-quantized integer. In addition to V and H,

a bit array for each vertex and each half-edge are necessary to maintain the status of

manifoldness and visitation respectively. Border edges are also kept in a separate array.

They always store an explicit index to the next border edge.

7.3.2 Clustering

The maximally used in-core storage space of the out-of-core mesh is limited to a user

defined number of Sincore bytes. For efficient access to the mesh data during compres-

sion, a flexible caching strategy is necessary. For this we partition the mesh into a set

of clusters. The total number of clusters ctotal is

ctotal =
ccache

Sincore

· Svtx · v, (7.1)

where ccache is the maximal number of simultaneously cached clusters, v is the number

of mesh vertices, and Svtx the per vertex size of our data structure. There are about six

times as many half-edges as vertices, so Svtx sums up to 60 bytes per vertex in implicit

mode. For the St. Matthew model compressed with Sincore = 384MB and ccache = 768

this results in ctotal = 21381 clusters.

Index-Pairs After clustering vertices and half-edges they are re-indexed into so-

called index-pairs (ci, li) consisting of a cluster index ci and a local index li. If possible,

the index-pair (ci, li) is packed into one 32-bit index to reduce the required storage

space for the half-edge data structure. The number of bits needed for the cluster index

is simply dlog2 ctotale. For the St. Matthew example this is 15 bits, which leaves 17 bits

for the local indices. A perfectly balanced clustering needs about 6 · v/ctotal different

local indices for the half-edges. For the St. Matthew model this would be 52, 482. As we

would like to use no more than 217 = 131, 072 local indices, a sophisticated clustering

approach that achieves well-balanced cluster sizes is inevitable.

Caching Strategy For efficient access to the out-of-core mesh we cache the clusters

with a simple LRU strategy. The vertex data, the half-edge data, and the binary flag

data of a cluster are kept in separate files because they are accessed differently: The

vertex data—once created—is only read. The half-edge data is both read and written

when the out-of-core mesh is built, but only read when later queried by the compressor.

The only data that needs to be read and written at compression time are the binary

flags that maintain the visitation status of half-edges. We maintain separate caches

121

for this data, each having ccache entries. For a given mesh traversal the quality of the

caching strategy can be measured as the quotient Qread/Qwrite of read/written clusters

over the total number of clusters. For a full traversal the minimum quotient is one.

7.3.3 Building the Out-of-Core Mesh

Given the input mesh in an indexed format, we build the out-of-core mesh in six stages,

all of them restricted to the memory limit Sincore:

1. vertex pass: determine the bounding box

2. vertex pass: determine a spatial clustering

3. vertex pass: quantize and sort the vertices into the clusters

4. face pass: create the half-edges and sort them into the clusters

5. matching of incident half-edges

6. linking and shortening of borders, search for non-manifold vertices

First Vertex Pass Each of the three vertex passes reads and processes the vertex

array one time sequentially. In the first pass we only determine the number of vertices

and the bounding box of the mesh. It can be skipped if this information is given. The

required in-core storage for this pass is negligible.

Second Vertex Pass In this pass we compute a balanced, spatial clustering of the

vertices into ctotal clusters similar as (Ho et al., 2001). We subdivide the bounding

box into a regular grid of cubical cells and count for each cell the number of vertices

falling into it. Only for non-empty cells we allocate counters and keep them in a hash

map. This ensures linear storage space consumption in the number of occupied cells.

Then we partition the non-empty cells are into ctotal compact clusters of balanced vertex

counts using a graph partitioning package (MeTiS, v 40). As input we build a k−nearest

neighbor graph on the centroids of occupied cells using an approximate nearest neighbor

package (ANN, v 02) (with k = 6 and 1% precision) and weigh its vertices using the

vertex counts of the associated cells. (Ho et al., 2001) derive the graph by connecting

cells that are shared by a face. This could potentially give better cluster locality along

the surface but would require an additional—expensive—face pass.

The second block in Table 7.1 shows results of cluster balancing. The time to build

and cluster the graph is negligible. The standard deviation of the cluster sizes is fairly

122

Figure 7.4: Visualization of the clustering and its usage during compression on the Lucy
statue with Sincore = 64MB and ccache = 128. Already encoded regions are rendered
with points while the rest is rendered with triangles. Cached clusters are colored.

small and the minimum and maximum are within 10% of the average, which is sufficient

for our needs. Figure 7.4 illustrates an example clustering on the Lucy statue.

Third Vertex Pass In the final pass over the vertices we sort the vertices into

clusters and determine their index-pairs (ci, li) using the cell partitioning generated in

the last pass. Since the vertices of each cluster are stored in separate files, we use

a simple buffering technique to avoid opening too many files at the same time. If a

vertex falls into cluster ci, which already contains k vertices, we assign it index-pair

(ci, k), increment k, and store its position in the respective buffer. If a buffer is full, its

contents are written to disk. The mapping from vertex indices to index-pairs is stored

in a map file that simply contains an array of index-pairs. For the St. Matthew model

the map file is 729 MB and cannot be stored in-core.

Face Pass There is only one pass over the faces. We read a face and map its vertex

indices to vertex index-pairs according to the map file. Then we create one half-edge

for each of its edges, determine a suitable cluster, store them in this cluster, and—if

necessary—also store them in some other cluster.

For each cluster ci we create two files of half-edges. The primary half-edge file stores

the half-edges sorted into cluster ci within which they are locally indexed with li in the

same way as vertices. The secondary half-edge file is only temporary. It stores copies of

123

half-edges from other clusters that are needed later to match-up corresponding inverse

half-edges. These so called crossing half-edges are incident to a half-edge of cluster ci

but reside in a different cluster. They are augmented by their own myself index-pair

(see Figure 7.3) that is used later for matching the inv index-pairs.

As the map file is too large to be stored in-core, we split it into segments that

are cached with a LRU strategy. For our test meshes the vertex indices of the faces

were sufficiently localized, such that the read quotients Qread of the map file cache was

between 1 and 1.5. Cache thrashing will occur when the indices of the faces randomly

address the vertex array. Then the mapping from indices to index-pairs needs to be

established differently. One possibility is to perform several face passes, while each

time storing a different chunk of the map file in memory and mapping only the stored

indices. For the St. Matthew model three face passes would be sufficient when a chunk

size of 256 MB is used. Another possibility would be to re-index the faces with three

external sorts as proposed by (Lindstrom and Silva, 2001).

Before writing the half-edges to file, we store the index-pair of its origin vertex in

the origin field and the index-pair of its target vertex in its inv field. The latter is

only temporary and will be used during matching. Depending on the mesh mode we

sort the half-edges differently into the primary and secondary half-edge files. In both

modes, crossing half-edges receive their myself index-pair based on the cluster in which

they are stored.

a) b)

0

1

2

A

B

Figure 7.5: The sorting of the half-edges into the clusters. a) In explicit mode each
half-edge is sorted into the cluster of its origin vertex. b) In implicit mode all half-edges
of a triangle have to be in the same cluster, which is the cluster in which two or more
vertices reside or any of three clusters otherwise.

In explicit mode the half-edges can be arranged arbitrarily within a cluster. We sort

each half-edge into the cluster of its origin vertex. In this mode a half-edge is crossing

when it has its target vertex in a different cluster. As they potentially have a matching

inverse half-edge there, we insert them into the secondary file of that cluster. A small

example is given in Figure 7.5a. The colors of the half-edges show in which of the three

clusters they are sorted.

124

In implicit mode all three half-edges of a triangle must be in successive order in the

same cluster. They are placed into the cluster in which the triangle has two or three of

its vertices. In case all three vertices fall into different clusters we simply select one of

them. Figure 7.5b shows an example, where the dashed triangle spans three clusters.

The so called external half-edges, like the one from vertex A to vertex B, will require

special attention later, because they are stored in a different cluster than either of their

incident vertices. Again, a half-edge is crossing when its origin vertex and its target

vertex are in different clusters. However, in implicit mode it is not obvious in which

cluster its potential inverse match will be located. Therefore the secondary files are

created in two stages. First we write crossing half-edges into a temporary file based

on the smaller cluster index of their end vertices. Then we read these temporary files

one by one and sort the contained crossing half-edges using their origin and target

index-pairs ordered by increasing cluster index as key. Remember, the index-pair of

the target vertex was stored in their inv field. Now all potential inverse matches among

crossing half-edges are in successive order. Finally, all matching half-edges are entered

into the secondary file of the cluster of their inverse, which can be determined from

their myself index-pairs.

Matching of Inverse Half-Edges For each cluster we read the half-edges from the

primary and the crossing half-edges from the secondary half-edge file. With the target

vertex index-pairs in the inv fields, we again use the sorting strategy for matching

inverse half-edges. We reduce the run time for sorting the half-edges with a single

bucket-sort over all edges followed by a number of quick-sorts over the edges of each

bucket. This results in a sort time of O(n log dmax), where n is the number of half-edges

and dmax is the maximum vertex degree—usually a small constant. If origin and target

vertex of an edge are both from the current cluster, the key used in the bucket-sort is

the smaller of their local indices. Otherwise it is the local index from whichever vertex

is in the current cluster. The key used in the quick-sorts is the index-pair of the vertex

not used in the bucket-sort. External edges constitute a special case as they do not

have any vertex in the current cluster necessary for the bucket-sort. These very rare

external edges are gathered in a separate list and matched in the end using a single

quick-sort.

All half-edges with the same vertex index-pairs have subsequent entries in the sorted

array of half-edges. Looking at their number and orientation, we can distinguish four

different types of edges:

125

1. border edge: an unmatched half-edge

2. manifold edge: two matched half-edges with opposite orientation

3. not-oriented edge: two matched half-edges with identical orientation

4. non-manifold edge: more than two matched half-edges

In case of a manifold edge we set the inverse index-pairs. In all other cases we

pair the half-edges with newly created border edges, thereby guaranteeing manifold

connectivity. This is similar to the cutting scheme proposed by (Guéziec et al., 1998).

Border Loops and Non-Manifold Vertices The final three steps in building the

out-of-core mesh consists of linking and shortening border loops and of detecting non-

manifold vertices. First we cycle for each border half-edge via inv and next around the

origin vertex until we hit another border half-edge. Its next field is set to the half-edge

we started from. This links all border loops.

The second step can shorten border loops that are the result of cutting non-manifold

edges. We iterate again over all border half-edges, this time checking if a sequence of

next, next, and origin addresses the same vertex as origin. In this case we can match

the inv fields of their incident half-edges and discard the border half-edges. This can

shorten or even close a border loop.

The third and last step detects and marks non-manifold vertices using two binary

flags per vertex and one binary flag per half-edge. Each flag is administered in one

LRU-cached file per cluster with a bit container holding as many bits as there are

vertices/half-edges in the cluster. The first vertex flag specifies whether a vertex was

visited before, the second whether a vertex is non-manifold, while the half-edge flag

marks visited half-edges. For each non-manifold vertex we also maintain an occurrence

counter. We iterate over all half-edges. If the current edge has not been visited before,

we cycle via inv and next around its origin and mark all out-going edges as visited

until we come back to the edge we started. Then we check if the visited flag of the

origin vertex has already been set. If yes, we mark this vertex as non-manifold using

the second flag and create or increase its occurrence counter. If no, we set its visited

flag. This way we mark all types of non-manifold vertices including those, which cannot

be found along non-manifold edges.

7.3.4 Results

Performance results of the out-of-core mesh are gathered in Table 7.1 for Lucy, David

(1mm), and St. Matthew. The in-core memory was restricted to 96/192/384 MB and

126

mesh name lucy david (1mm) st. matthew

vertices 14,027,872 28,184,526 186,836,665

in-core storage limit 96 MB 192 MB 384 MB

cached clusters 192 384 768

clusters 1,605 3,225 21,381

out-of-core size 871 MB 1.7 GB 11.2 GB

counter grid resolution [283,163,485] [340,196,856] [409,1154,373]

ANN nearest neighbor 0:00:02 0:00:05 00:00:18

METIS graph partitioning 0:00:03 0:00:08 00:00:33

min vertices per cluster 8,569 8,550 8,360

max vertices per cluster 8,922 8,907 9,223

std over all clusters 0.00583 0.00529 0.01232

first vertex pass 0:00:14 0:00:34 0:03:24

second vertex pass 0:00:20 0:00:49 0:04:34

third vertex pass 0:00:51 0:02:04 0:53:56

face pass 0:05:22 0:11:01 2:09:20

matching 0:08:39 0:14:06 2:31:46

border link & shorten 0:00:01 0:00:39 0:09:06

non-manifold marking 0:03:26 0:06:36 1:02:06

total build time 0:18:57 0:35:52 6:54:17

compression time 0:48:46 0:13:42 3:36:24

Qread half-edges 11.0 1.3 2.1

precision 20 bits 20 bits 20 bits

compressed size 47 MB 77 MB 456 MB

Table 7.1: Four blocks of measurements that characterize the out-of-core mesh: global
parameters, performance of clustering stage, timings for different building steps, com-
pression statistics. Times are in h:mm:ss taken on a Windows PC with 1 GB of memory
and a 2.8 GHz Pentium IV processor. The system cache was software disabled.

we allowed 192/384/768 clusters to be cached simultaneously. The resulting out-of-core

meshes consumed 0.8/1.7/11.2 GB on disk with the build times being dominated by

the face pass and the inverse half-edge matching.

The best compression times are achieved when enough clusters are cached to cover

the entire compression boundary. But since its maximal length is not known in advance,

this cannot be guaranteed. If too few clusters are cached, the compression process

becomes heavily IO-limited. However, even then compression times are acceptable

given the small in-core memory usage. Lucy, for example, has a poor cache quality

factor Qread of 11.0. Although Qread for Lucy is much better with ccache = 384, handling

the larger number of files results in an overall longer running time. Twice the number

of clusters as MB of in-core storage seemed a good trade-off between the two. When

127

increasing Sincore to 128 MB and caching 256 clusters, then Qread is 2.1 and it takes

only about 5 minutes to compress the Lucy model.

7.4 Compression

In order to enable fast out-of-core decompression with small memory foot-print, our

mesh compressor performs a single pass over the mesh during which both connectivity

and geometry are compressed in an interleaved fashion. It grows a region on the

connectivity graph by including faces adjacent to its boundaries one by one. Whenever

a previously unseen vertex is encountered, its position is compressed with a linear

prediction. The decompressor can be implemented such that at any time it only needs

to have access to the boundaries of this region. In order to decompress out-of-core

these boundaries are equipped with some additional information. Maintaining such

extra information also at compression time reduces the number of required queries to

the out-of-core mesh.

origin edge

next
struct Boundary {

BoundaryEdge* gate;
int length;
int zero_slots;
int one_slots;

};

prev

across

2

2
2

2

struct BoundaryEdge {
BoundaryEdge* prev;
BoundaryEdge* next;
Index edge;
bool border;
Index origin;
Index across;
int slots;

};

Figure 7.6: The minimal data structures required for out-of-core compression and de-
compression: The prev and next pointers organize the boundary edges into double-
linked loops. The edge index refers to the mesh edge that a boundary edge coincides
with. The origin index refers to the vertex at the origin of this edge. The across in-
dex is used for (de-)compressing vertex positions with the parallelogram rule. It refers
to the third vertex of an adjacent and already (de-)compressed triangle. For an out-
of-core version of the decompressor, the indices origin and across are replaced with
vectors containing copies of the actual positions. The slots counter and the border

flag are required for (de-)compressing the mesh connectivity with degree coding. The
Boundary struct is used to store information about boundaries on the stack.

7.4.1 Connectivity Coding

Our connectivity coder is based on the degree coder by (Touma and Gotsman, 1998)

that was extended to polygon meshes in Chapter 4. Starting from an arbitrary edge

128

it iteratively grows a region by including the face adjacent to the gate of the active

boundary. This boundary is maintained as loop of boundary edges that are doubly-linked

through a previous and a next pointer. Each boundary edge maintains a slot count that

specifies the number of unprocessed edges incident to its origin. The boundary edges

also store an index to their corresponding half-edge in the mesh, which is used for

queries. If the compressor is used in conjunction with the out-of-core mesh we want

to make as few queries as possible. Therefore each boundary edge keeps a copy of the

index to the origin and the across vertex as illustrated in Figure 7.6.

The face to be included shares one, two, or three edges with the active boundary. If

it shares three edges, the boundary ends and a new boundary is popped from the stack.

If the stack is empty we iterate over the half-edges of the mesh to find any remaining

components. If there are none, compression is completed. If the face shares two edges

with the active boundary, no explicit encoding is needed. Otherwise it shares only one

edge and has a free vertex, which can lead to three different cases: add, split, or merge.

In the most common case the free vertex is not on any boundary. Here we add

the vertex to the boundary, record its degree, and update the slot counts. A more

complex case arises if the free vertex is already on some boundary. If it is on the

active boundary it splits this boundary into two loops that will be processed one after

the other. A stack is used to temporarily buffer boundaries. We record the shorter

direction and the distance in vertices along the boundary to reach the free vertex. If,

however, the free vertex is on a boundary from the stack it merges two boundaries.

This happens exactly once for every topological handle in the mesh. In addition to

how the free vertex can be reached starting from that boundary’s gate, we record the

index of this boundary in the stack. The compressor does not query the out-of-core

mesh to search for a free vertex along the boundaries. It uses the origin indices, which

are stored (mainly for this purpose) with each boundary edge, to find this vertex.

The resulting code sequence contains the degree of every vertex plus information

associated with the occurrence of split and merge operations. While it is not possible

to avoid splits altogether, their number can be significantly reduced using an adaptive

region growing strategy (Alliez and Desbrun, 2001b). Instead of continuing the mesh

traversal at the current gate, one selects a gate along the boundary that is less likely to

produce a split. We implemented the simpler heuristic proposed in Section 4.4, which

picks a boundary edge with a slot count of 1 if one exists, or stays where it is otherwise.

However, we restrict this adaptive conquest to +/- 10 edges along the boundary, as

moving the gate to a more distant location could cause a cache-miss on the next query

129

to the out-of-core mesh. By keeping track on the number of these one-slots currently

on the boundary we avoid searching for them unnecessarily.

Continuing compression on the smaller of the two boundary loops resulting from a

split operation keeps the boundary stack shallow and the number of allocated boundary

edges low. This helps further lowering the memory foot-print of the decoding process.

Holes in the mesh require special treatment. in Section 4.1 we suggested to include

a hole into the active boundary in the same way it is done for faces. However, this

requires immediate processing of all vertices around the hole. Since holes can be as

large as, for example, the hole at the base the St. Matthew statue shown in Figure 7.1,

this would result in an bad access pattern to the out-of-core mesh—potentially causing

many cache-misses. Furthermore, it would lead to poor geometric predictions for all

vertices around the hole since the parallelogram rule could not be applied.

Instead, similar to (Gumhold and Strasser, 1998), we record for every edge whether

it is a border edge or not in the moment it joins the active boundary using a binary

arithmetic context. If an edge has a slot count of zero on either end, we do not need

to record this information explicitly. In this case the edge will be of the same type as

the boundary edge it connects to via this zero-slot.

Non-manifold vertices are present when the neighborhood of a vertex is not home-

omorphic to a disk or a half-disk. The out-of-core mesh provides our compressor with

manifold connectivity and marks multiple occurrence of originally non-manifold ver-

tices. We encode how to stitch these vertices back together using a slightly more

involved variation of the simple approach that was outlined in Section 4.3. Whenever

a vertex is processed with an add operation we record whether it is manifold or not

with a binary arithmetic context. For non-manifold vertices we specify whether this

is its first appearance using a second arithmetic context. Only the first time a non-

manifold vertex is encountered its position is compressed. These first-timers are then

inserted into an indexable data structure. Each subsequent time this vertex makes a

non-manifold appearance it is addressed with log2 k bits among the k entries of that

data structure. Then a third binary context is used to specify whether this was its last

appearance or not. If yes, it is deleted from this indexable data structure.

7.4.2 Geometry Coding

Quantization of the vertex positions into integer values is needed before they can be

efficiently compressed with predictive coding. But especially for large datasets any

130

mesh number of samples per millimeter
name extent [m] 16 bit 18 bit 20 bit 22 bit 24 bit

happy buddha 0.2 327 1311 5243 20972 83886
lucy 1.6 41 164 655 2621 10486
david 5.2 13 50 202 807 3226
double eagle 195 0.3 1.4 5.4 22 86
st. matthew 2.7 24 97 388 1553 6214

Table 7.2: This table reports the length of the longest bounding box size of a model in
meters and the resulting number of samples per millimeter for different quantizations.

loss in precision is likely to be considered unacceptable. Vertex positions are usually

stored as 32-bit IEEE floating point numbers. In this format the least precise (e.g. the

widest spaced) samples are those with the highest exponent. Within the range of an

exponent all points have at most 24 bit of precision: 23 bit in the mantissa and 1 bit

in the sign. Once the bounding box (e.g. the highest exponent) is fixed we can capture

the uniform precision of the floating point samples by uniform quantization with 25

bits. The extra bit of comes from all numbers with smaller exponent whose combined

range equals exactly that of the highest exponent. Of course, quantization is not an

option for data with non-uniform precision that was specifically aligned with the origin

to provide higher precision in some areas. In this case we would have to compress the

floating-point numbers in a lossless manner as proposed in (Isenburg et al., 2005a). But

in general we can assume that the sampling within the bounding box is uniform.

For scanned datasets it is often not necessary to preserve the full floating point

precision. The samples acquired by the scanner are typically not that precise, in which

case the lowest-order bits contain only noise and not actually measured data. A rea-

sonable quantization level keeps the quantization error just below the scanning error.

In Table 7.2 we lists the resulting sample spacings per millimeter for different levels

of quantization. For the 20 cm tall “Buddha” statue even 16 precision bits seem an

overkill, whereas the 195 meter long “Double Eagle” may make use of all 24 bits.

The quantized vertices are compressed with the parallelogram rule (Touma and

Gotsman, 1998) in the moment they are first encountered. A vertex position is pre-

dicted to complete the parallelogram formed by the vertices of a neighboring triangle.

The resulting corrective vectors are subsequently compressed with arithmetic coding.

Vertices are always encountered during an add operation. The first three vertices of

each mesh component cannot be compressed with the parallelogram rule. While the

first vertex has no obvious predictor, the second and third can be predicted with delta-

coding (Deering, 1995). To maximize compression it is beneficial to encode correctors

131

of less promising predictions with different arithmetic contexts (Isenburg and Alliez,

2002b). For meshes with few components this hardly makes a difference, but the “Power

Plant” and the “Double Eagle” model each consist of millions of components.

Other properties such as colors or confidence values can be treated similarly to

vertex positions. However, for models of this size one might consider to store properties

in separate files. Not everybody is interested, for example, in the confidence values

that are stored for every vertex with all of Stanford’s scanned datasets. Despite being

in separate files, the decoder can add them on-the-fly during decompression, if the

appropriate file is provided.

mesh name
number of

vertices triangles components holes handles non-manifold

happy buddha 543,652 1,087,716 1 0 104 0
david (2mm) 4,129,614 8,254,150 2 1 19 4
power plant 11,070,509 12,748,510 1,112,199 1,221,511 10 37,702
lucy 14,027,872 28,055,742 18 29 0 64
david (1mm) 28,184,526 56,230,343 2,322 4,181 137 1,098
double eagle 75,240,006 81,806,540 5,100,351 5,291,288 1,534 3,193,243
st. matthew 186,836,665 372,767,445 2,897 26,110 483 3,824

mesh name
size of raw and compressed files on disk [MB] load time foot-print
ply 16 bit 18 bit 20 bit 22 bit 24 bit [sec] [MB]

happy buddha 20 1.6 1.9 2.2 2.5 3.0 0.68 0.7
david (2mm) 150 7 10 12 15 17 4.1 1.3
power plant 285 19 23 28 32 35 8.9 0.7
lucy 508 28 37 47 58 70 14.6 1.5
david (1mm) 1,020 44 61 77 93 108 27 2.8
double eagle 1,875 116 146 180 216 244 63 0.7
st. matthew 6,760 236 344 456 559 672 174 9.4

Table 7.3: This table lists vertex, triangle, component, hole, handle, and non-manifold
vertex counts for all meshes. Furthermore, the size of a binary ply file containing
three floats per vertex and three integers per triangle is compared to our compressed
representation at 16, 18, 20, 22, and 24 bits of precision. Also the total time in sec-
onds required for loading and decompressing the 20 bit version on a 1.8 GHz AMD
Athlon processor is reported. Finally, we give the maximal memory foot-print of the
decompression process in MB.

7.4.3 Results

The compression gains of our representation over standard binary PLY are listed in

Table 7.3. Depending on the chosen level of precision the compression ratios range from

1 : 10 to 1 : 20. Comparing measurements on the same models to (Ho et al., 2001),

132

mesh name
compression rates [bpv]

conn 16 bits 18 bits 20 bits 22 bits 24 bits

happy buddha 2.43 21.79 26.44 32.15 36.92 43.95
david (2mm) 1.50 12.54 17.81 23.22 28.37 34.13
power plant 2.50 11.57 15.26 18.54 21.48 24.23
lucy 1.88 14.60 20.41 26.51 32.87 39.08
david (1mm) 1.79 11.32 16.50 21.20 25.99 30.43
double eagle 3.39 9.58 12.92 16.66 20.67 23.84
st. matthew 1.84 8.83 13.71 18.86 23.63 28.61

Table 7.4: This table details compression results on all our example models. The
achieved bit-rates are reported in bits per vertex (bpv) separately for connectivity and
for geometry that was quantized with 16, 18, 20, 22, and 24 bits of precision.

our bit-rates are about 25% better. Another advantage of our compressed format is

the reduced time to load a mesh from disk. Decompression speeds are CPU-limited

and exceed one million vertices and two million triangles per second on a 1.8 GHz

Athlon processor. The compression rates for connectivity and for geometry at different

precision levels are detailed separately in Table 7.5. One immediate observation is that

an additional precision of 2 bits increases some geometry compression rates by about 6

bits per vertex (bpv) or more. While predictive coding is known not to scale well with

increasing precision, here this is likely a sign for the precision of quantization being

higher than that of the data samples. In this case the additional two bits only add

incompressible noise to the data.

mesh name
decompression time [sec] (decompression + rendering time [sec])

16 bits 18 bits 20 bits 22 bits 24 bits

happy buddha .75 (1.15) .81 (1.21) .97 (1.37) 1.13 (1.53) 1.38 (1.79)
david (2mm) 4.9 (7.7) 5.3 (8.0) 5.7 (8.5) 6.2 (9.0) 7.1 (10.3)
power plant 11.1 (14.9) 11.8 (15.7) 12.5 (16.5) 13.4 (17.4) 15.1 (19.2)
lucy 17.8 (26.7) 18.9 (28.0) 21.1 (30.2) 22.8 (32.1) 27.3 (36.7)
david (1mm) 33 (51) 35 (53) 38 (56) 41 (60) 45 (64)
double eagle 77 (94) 81 (105) 88 (110) 94 (119) 113 (134)
st. matthew 215 (327) 228 (351) 242 (363) 259 (384) 294 (419)

Table 7.5: This table details decompression and rendering times on our example mod-
els. Timings are reported both for loading/decompression alone as well as for load-
ing/decompression and out-of-core rendering. Timings are taken on a Dell Inspiron
8100 laptop with a 1.1 Ghz Mobile Pentium III processor and a Geforce2go card.

133

7.5 Summary

We presented a technique that is able to compress very large models such as the gigantic

St. Matthew statue in one piece on standard desktop PCs. Our compression rates

are about 25% lower and our decompression speeds about 100 times faster than the

technique by (Ho et al., 2001) that processes such models by cutting them in pieces.

For this, we introduced an external memory data structure, the out-of-core mesh,

that provides our compressor with transparent access to large meshes. We described

how to efficiently build this data structure from an indexed mesh representation using

only limited memory. Our out-of-core mesh may also be useful to other algorithm

that process large meshes. To use it efficiently the order of mesh queries should be

localized, but most traversal-based processing is readily accommodated. While our

current implementation only allows index-pairs to use a combined maximum of 32 bits,

this data structure can theoretically handle arbitrary large meshes. Storing more bits

per index-pair, however, will increase in-core and on-disk storage and make its build-

up/usage more IO-limited.

Our compressed format has benefits beyond efficient storage and fast loading. It

provides better access to large meshes than indexed formats or polygon soup by al-

lowing to stream gigantic meshes through limited memory while providing seamless

connectivity information along the decompression boundary. This streaming mesh rep-

resentation offers a new approach to out-of-core mesh processing that combines the

efficiency of batch-processing with the advantages of explicit connectivity information

as it is available in online-processing. This suggests the concept of sequenced or stream-

ing processing where access to the mesh is restricted to a fixed traversal, while at the

same time full connectivity for the active elements of this traversal is provided.

Traversing mesh triangles in a particular order is already used for fast rendering

on modern graphics cards. The number of times a vertex needs to be fetched from

the main memory is reduced by caching previously received vertices on the card. The

triangles are sent to the card in a rendering sequence that tries to minimize cache

misses (Hoppe, 1999). Misses cannot be avoided altogether due to the fixed size of

the cache (Bar-Yehuda and Gotsman, 1996). In a similar spirit our compressed format

provides a processing sequence for more efficient mesh processing—but at a much larger

scale. With the main memory as the “cache” we usually have more than enough storage

space for all active elements throughout the traversal of a mesh. Therefore the analogue

of a “cache miss” does not exist. Any algorithm that requires a complete mesh traversal

without being particular about its order can perform computations at decompression

134

speed—we can envision an entire breed of mesh processing algorithms adapted to this

kind of mesh access. In the next chapter we show that mesh simplification algorithms

can indeed be implemented to take advantage of this type of processing.

7.6 Hindsights

When we started this work our main goal was to gain the ability to compress gigantic

meshes with an out-of-core method into a highly compressed format from which they

could then be decompressed with a small memory foot-print. For this we designed

a mesh traversal that would keep the number of accesses to the out-of-core mesh to

a minimum while driving the achieved compression to a maximum and—just like all

previous works on mesh compression—we paid no attention what that would do to the

ordering of triangles. In Chapter 9 we will see that traversing the mesh triangles in

a depth-first manner produces highly incoherent mesh layouts (see Figure 9.6 for an

illustration). To prevent this we advocate in Chapter 9 that a mesh compressor should

give all vertices a similarly long “life-time” on the compression boundary.

To achieve coherence in the layout of the compressed mesh requires three changes to

the traversal order of our out-of-core compressor. First, the traversal needs to advance

along all boundaries simultaneously instead of operating exclusively on one boundary.

One possible way of achieving this is to continue on the least recently advanced bound-

ary whenever completing a loop around a boundary. Second, the adaptive traversal

that jumps around the boundary in an attempt to avoid split operation needs to be

replaced with the coherence-preserving strategy suggested in Section 4.9. And third,

once a non-manifold vertex has made its first appearance we can no longer just wait un-

til the traversal runs into its other appearances. This can leave such vertices “hanging”

for a long time, especially if they re-appear in separate mesh components that are not

edge-connected. To reduce their “life-time” requires the start of additional compression

boundaries, making this probably the most complex change.

Chapter 8

Processing Meshes in Stream Order

Figure 8.1: Illustration of mesh simplification using a fixed-size triangle buffer (pink)
in main memory. Via processing sequences, original triangles (gray) stream into the
buffer and simplified triangles (gold) stream out.

In this chapter I show that mesh processing algorithms can be adapted to perform

their computations based on the processing sequence paradigm envisioned in the previ-

ous chapter, using mesh simplification as an example. We believe that this processing

concept will also prove useful for other tasks, such as smoothing, parameterization, or

remeshing, for which currently only in-core solutions exist.

A processing sequence represents a mesh as a particular interleaved ordering of

indexed triangles and vertices. This representation allows streaming very large meshes

through main memory while maintaining information about the visitation status of

edges and vertices. At any time, only a small portion of the mesh is kept in-core, with

the bulk of the mesh data residing on disk. Mesh access is restricted to a fixed traversal

order, but full connectivity and geometry information is available for the active elements

of the traversal. This provides seamless and highly efficient out-of-core access to very

large meshes for algorithms that can adapt their computations to this fixed ordering.

The two abstractions that are supported by this representation are boundary-based

and buffer-based processing. We illustrate both abstractions by adapting two different

simplification methods to perform their computation using a prototype of our mesh

processing sequence API. Both algorithms benefit from using processing sequences in

terms of improved quality, more efficient execution, and smaller memory footprints.

136

8.1 Introduction

Polygonal models acquired with modern 3D scanning technology easily reach sizes of

gigabytes—the most prominent examples are the detailed scans of Michelangelo’s sculp-

tures generated by teams at IBM (Bernardini et al., 2002) and Stanford (Levoy et al.,

2000). Similarly large polygonal data sets result from extracting dense isosurfaces from

volumetric data. A polygon mesh with hundreds of millions of vertices requires giga-

bytes of raw data, making subsequent processing difficult. The sheer amount of data

not only exhausts the main memory resources of common desktop PCs, but also exceeds

the 4 gigabyte address space of 32-bit machines.

A straightforward approach for processing meshes that are too large to fit in main

memory is to cut them into pieces small enough to be processed in-core. However,

mesh cutting tends to introduce processing artifacts along the cut boundaries. Another

approach is to design computations to work in increments of single triangles. This allows

efficient batch processing, as the CPU can be kept busy by loading and processing

triangles as fast as possible. However, the absence of explicit mesh connectivity makes

many mesh processing tasks either impossible or results in a lower quality outputs.

Finally, there are approaches that use external memory data structures that provide

transparent access for online processing of arbitrarily large meshes. However, building

and using such complex data structures is typically inefficient.

In the previous chapter we envisioned a new processing paradigm for out-of-core

computations on large meshes that combines the efficiency of batch processing with

the advantage of explicit mesh connectivity that is available in online processing. The

idea of sequenced processing was to restrict access to the mesh to a fixed traversal

order, but to support access to full connectivity and geometry information for the

active elements of this traversal. In this representation only a small fraction of the

mesh is kept in main memory at any time with the bulk of the mesh data residing on

disk. While the mesh streams through memory, we provide seamless mesh access for

algorithms that can respect a fixed traversal order. This idea of processing sequences

grew out of the particular mesh access provided by our compressed format. It supports

two computational abstractions: boundary-based processing and buffer-based processing.

In the previous chapter we have seen examples of simple operations on large meshes

that are naturally supported by these abstractions, including loading, decompression,

rendering, and connectivity reconstruction. In this chapter we show that they can be

used for more complex tasks using out-of-core mesh simplification as an example.

137

The remainder of this chapter is organized as follows: The next section summa-

rizes current approaches to out-of-core mesh processing. In Section 8.3 we describe

how processing sequences provide access to large meshes. In Section 8.4 we detail

current techniques for the simplification of large meshes. Then we adapt two differ-

ent mesh simplification schemes to sequenced processing: In Section 8.5 we adapt the

non-adaptive OoCS simplification algorithm of (Lindstrom, 2000) to boundary-based

processing. Similarly, in Section 8.6, we map the adaptive stream simplification algo-

rithm of (Wu and Kobbelt, 2003) to buffer-based processing. Both algorithms benefit

from using processing sequences in terms of improved quality, more efficient execution,

and smaller memory footprints. The last section concludes with a summary and an

outlook on other types of mesh processing.

8.2 Out-of-Core Processing

There are three main approaches for processing meshes that are too large to fit in main

memory (Silva et al., 2002): cutting the mesh into pieces, batch processing of polygon

soups, and online processing using external memory data structures.

Mesh cutting is a straightforward approach for processing large meshes: cut the

mesh into pieces small enough to fit in main memory and then process each piece

separately while giving special treatment to the cut boundaries. This strategy has

successfully been used to, for example, simplify (Hoppe, 1998; Prince, 2000; Bernardini

et al., 2002) and compress (Ho et al., 2001) very large polygon models. Despite the

apparent simplicity of this approach, the initial cutting step can be expensive when

the input mesh is given in an indexed representation, as we will see later. Because

mesh cutting typically lowers the quality of the output, many out-of-core algorithms

try instead to process the data as a whole.

Batch processing aims to keep the memory footprint low and the processor busy

by streaming the mesh data through main memory in one or more passes, and by

restricting computations to the amount of data that is resident in memory at any time.

This makes batch processing computationally very efficient.

Examples include a number of mesh simplification methods (Lindstrom, 2000; Lind-

strom and Silva, 2001; Shaffer and Garland, 2001; Garland and Shaffer, 2002), which

batch-process the input mesh as a sequence of individual triangles. If indexed meshes

138

are used that exhibit no locality in referencing the vertex array (e.g. where vertex

indices of subsequent triangles address vertex array entries at random) an initial de-

referencing step is required (Lindstrom and Silva, 2001). This can be computationally

expensive and the resulting immediate mesh (i.e. polygon soup) requires at least twice

the storage of an indexed mesh, and more if there are additional per-vertex properties

such as texture coordinates or surface normals. The output of a batch simplification

pass either is small enough to fit in memory, so that the remaining computation can be

done in-core (Lindstrom, 2000; Shaffer and Garland, 2001; Garland and Shaffer, 2002),

or is directly written to a file, which is then used as input for subsequent passes (Lind-

strom and Silva, 2001).

Online processing accesses the data through a series of (potentially random) queries.

In order to avoid costly disk seeks with each query (resulting in thrashing) the data

is usually re-organized to accommodate an anticipated access pattern. Queries can be

accelerated by caching or pre-fetching data that is likely to be accessed. Some schemes

simply use the virtual memory functionality of the operating system and try to or-

ganize the data accesses such that the number of page faults is minimized (McMains

et al., 2001; Choudhury and Watson, 2002). The performance of such schemes is op-

erating system dependent and their input data is restricted to 4 gigabytes on a 32-bit

machine. Going beyond that limit requires dedicated external memory data structures

that explicitly manage a virtual address space for the data.

Such external memory data structures enable traditional in-core algorithms to be

applied to large data sets. (Cignoni et al., 2003), for example, propose an octree-

based external memory data structure that makes it possible to simplify a model of

Michelangelo’s St. Matthew statue (Levoy et al., 2000) from 386 to 94 million triangles

using iterative edge contraction (Garland and Heckbert, 1997). Similarly, the out-

of-core mesh that we have described in the last chapter allowed us to compress the

St. Matthew statue from over 6.5 GB to 344 MB of data using a compressor based on

region growing (Touma and Gotsman, 1998).

For comparison, out-of-core algorithms based on batch processing do their work

on polygon soups without explicit connectivity information. Thus, they can perform

their computations efficiently, but their output tends to be of lower quality than that

of algorithms with access to explicit connectivity information. Out-of-core algorithms

based on online processing, on the other hand, have explicit connectivity available.

However, building these data structures is expensive in time and space, and using them

139

significantly slows down the computations. In the following we will show that we can

combine the efficiency of batch processing with the advantages of explicit connectivity

information available in online processing. Using a processing sequence we restrict the

access to the mesh to a fixed traversal order, but support access to the full connectivity

and geometry information for the active elements during this traversal.

Rearranging mesh triangles into a particular order is already used for improving

rendering performance on modern graphics cards. The number of times a vertex needs

to be fetched from main memory is reduced by caching previously received vertices on

the card. The triangles are sent to the card in a rendering sequence in an attempt to

minimize cache misses (Deering, 1995; Evans et al., 1996b; Hoppe, 1999; Bogomjakov

and Gotsman, 2001). Due to the fixed size of a vertex cache, misses cannot be avoided

completely (Bar-Yehuda and Gotsman, 1996). Our processing sequences exploit a sim-

ilar strategy for more efficient mesh processing—but at a much larger scale. However,

the main memory as a “cache” is much more flexible. The amount of storage necessary

to maintain the active elements of a mesh traversal is usually small enough to fit in

main memory. Therefore the analogue of a “cache miss” fortunately does not exist.

8.3 Processing Sequences

A processing sequence presents a mesh as a fixed interleaved sequence of indexed ver-

tices and triangles that grow a region. The mesh edges that separate already processed

triangles from unprocessed ones form the processing boundary. Mesh triangles generated

by the processing sequence are either edge-adjacent to the processing boundary or start

a new region. With each triangle, the processing sequence provides vertex information

such as indices, coordinates, first and last time referenced, and non-manifoldness. Sim-

ilarly, the topological type of edges and their relationship to the processing boundary

are made available. Finally, a processing sequence supports storage and retrieval of

user data on the evolving processing boundary.

Triangles can change the processing boundary in one of the five ways illustrated in

Figure 8.2. A “start” triangle creates a new component of a processing boundary with

three new vertices and edges. A new edge may be entering the processing boundary,

to be paired with an incident triangle later in the sequence, or it may be part of the

surface border, the topological boundary of the mesh. An “add” triangle completes a

boundary edge and connects a new vertex with two new edges. The completed edge

leaves the processing boundary. A “fill” completes two edges, replacing them and

140

start add

fill

previously generated triangles

unprocessed region

end

join

new
edge

leaving
edges

border
edge

entering
edge

leavingedge

leavingedge

entering
edges

new
edges

leaving
edges

current triangle

processing boundary

mesh border

new vertex

Figure 8.2: The five different ways generated triangles relate to the processing boundary.

the vertex reference between them with a new edge. A “join” completes one edge,

adds two new edges, and either merges two components of the processing boundary

into one (sometimes forming a handle), or splits one component into two. An “end”

completes three edges. Given a “somewhat” compactly growing processing sequence,

this representation allows streaming very large meshes through main memory. At any

time only the processing boundary needs to be kept in-core. Yet, as explicit connectivity

information can be maintained along the processing boundary, this provides seamless

access to large meshes. We have only defined the allowable triangle sequences, which

neither determines a particular triangle ordering, nor a particular file format. But

whatever the underlying representation, a processing sequence reader, for example, will

provide functionality similar to that of the API outlined in Figure 8.3.

Connectivity reconstruction is supported by letting users store their own data

with the first appearance of any edge or vertex on the processing boundary. This data

is made available when these mesh elements later reappear as part of another triangle,

enabling full recovery of mesh connectivity in constant time per element. The pseudo

code in Figure 8.3 illustrates how a typical application would reconstruct connectivity.

141

class PSreader {
int open(FILE* file);

int get num vertices();

int get num triangles();

bool has triangles();

int generate triangle();

int close();

int get vertex index(int i);

float* get vertex position(int i);

vtype get vertex type(int i);

etype get edge type(int i);

void set vertex data(int i, void* vdata);

void* get vertex data(int i);

void set edge data(int i, void* edata);

void* get edge data(int i);

}

struct Vertex {
int index;

float pos[3];

}

struct HalfEdge {
Vertex* origin;

HalfEdge* next;

HalfEdge* prev;

HalfEdge* inv;

}

PSreader ps = new PSreader();

ps.open(file);

while (ps.has triangles()) {
HalfEdge he[0] = new HalfEdge();

HalfEdge he[1] = new HalfEdge();

HalfEdge he[2] = new HalfEdge();

he[0].next = he[1]; he[0].prev = he[2];

he[1].next = he[2]; he[1].prev = he[0];

he[2].next = he[0]; he[2].prev = he[1];

ps.generate triangle();

for (int i = 0; i < 3; i++) {
if (ps.get edge type(i) == ENTER) {

ps.set edge data(i, (void*)he[i]);

} else if (ps.get edge type(i) == LEAVE) {
HalfEdge tmp = (HalfEdge*)ps.get edge data(i);

tmp.inv = he[i];

he[i].inv = tmp;

} else {
he[i].inv = 0;

}
if (ps.get vertex type(i) == NEW) {

Vertex v = new Vertex();

v.index = ps.get vertex index(i);

v.pos = ps.get vertex position(i);

ps.set vertex data(i, (void*)v);

he[i].origin = v;

} else {
he[i].origin = (Vertex*)ps.get vertex data(i);

}
}

}

Figure 8.3: An outline of an API for a processing sequence reader and example code for
reconstructing mesh connectivity using a simple half-edge structure. This is achieved
by maintaining user data per-vertex and per-edge along the processing boundaries.

If processing sequences are read and written at the same time there are two pro-

cessing boundaries: one is the input boundary, along which triangles are added, and

one is the output boundary, where triangles are removed. The region between the two

boundaries is the called the triangle buffer, which contains those triangles that are

currently in memory. The triangle order of the input and the output sequence does

not need to be identical. In particular, the two sequences can contain a completely

different set of triangles and vertices, for example, if remeshing or simplification is

performed on the triangle buffer. When the order in which an application outputs

triangles and vertices does not immediately correspond to a processing sequence, we

use a processing sequence converter that temporarily accumulates triangles and vertices

in a small waiting area and reorders them appropriately, as illustrated in Figure 8.4.

Processing sequences provide two useful computational abstractions: boundary-based

and buffer-based processing.

142

Figure 8.4: An illustration of how a waiting
area is used to on-the-fly convert the triangle
and vertex ordering produced by the simplifica-
tion method described in Section 8.5 into a pro-
cessing sequence. After processing the triangle
marked in gray, the simplifier turns the quadric
Q2 into a vertex and places it into the waiting
area. In this moment the vertex becomes eli-
gible for output, as do the two triangles in the
waiting area marked in red that are connected
to it. Furthermore, this also finalizes the vertex,
in the sense that no triangles other than those
already in the waiting area reference it.

8

7

Q5

5

Q7

7

Q4

Q2

4

2

Q8

output
boundary

waiting
area

written
region

unprocessed
region

4

input
boundary

Boundary-based processing performs its computations directly on the input bound-

ary. It immediately processes the triangles generated at the input boundary and stores

intermediate results only along these boundaries. Example applications are simplifi-

cation methods using vertex clustering, non-iterative smoothing methods, gradient or

surface normal computations, etc.

Buffer-based processing performs its computations on the triangle buffer between

input and output boundary (see Figure 8.1 for an illustrating visualization). It generates

triangles at the input boundary to fill the buffer and at the output boundary to empty

the buffer. Example applications are simplification methods that use edge contraction,

iterative smoothing methods, remeshing methods, etc. We can think of buffer-based

processing as bridging the conceptual gap between boundary-based processing and in-

core processing. Restricting the buffer size to a single triangle is equivalent to boundary-

processing. A buffer size that is large enough to contain the entire mesh is equivalent

to in-core processing. Any buffer size in between these extremes provides a compromise

that “adapts” to the available resources.

Implementations of either abstraction can perform their computation in a single

pass or in multiple passes over the data. For multiple passes, the output sequence

of a previous pass becomes the input sequence of the next. Instead of sequentially

performing multiple passes, a multi-stage approach streams the results of one pass

directly to the next by making the output boundary of one the input boundary of the

other. Immediate compression of the output of a simplification algorithm, for example,

could be implemented using such a multi-stage approach.

143

Generating processing sequences can be done in a number of different ways, as

the definition neither imposes a specific traversal order, nor a data format. The input

sequences used for simplification experiments in this chapter were generated in a pre-

processing step using the out-of-core compressor described in the last chapter. For now

this compression scheme can be thought of as the means to obtain the triangle and

vertex ordering that allows traversing the entire mesh with small memory footprint.

Most one-pass compression schemes naturally generate orderings that conform to the

definition of a mesh processing sequence. In fact, it was the memory-efficient decom-

pression order of the decoder that originally inspired processing sequences. Although

these particular processing sequences are compact and fast to load, their generation is

not trivial and they are currently created offline. Furthermore their “stream quality”

is far from optimal as we will see in the next chapter.

The processing sequence converter, mentioned earlier, provides an efficient mech-

anism for on-the-fly creation of processing sequences. It accepts indexed vertices and

triangles ordered in some loosely localized form, temporarily accumulates them in a

waiting area, where they are re-ordered into a proper processing sequence. A vertex

from the waiting area becomes eligible for output when its first triangle is to be output.

A triangle from the waiting area becomes eligible for output when all its vertices are

already output and it conforms to one of the five configurations shown in Figure 8.2.

The sole requirement, besides some locality in the input, is that the converter is told

when a vertex is finalized, i.e., used for the last time. This information is needed to cor-

rectly recover connectivity around vertices, as well as to safely deallocate the memory

of mesh elements that are no longer used. For our output sequences, the simplifica-

tion process tells the converter when a vertex is finalized. The converter automatically

buffers as many triangles as needed to produce a valid processing sequence. Increas-

ing the size of the waiting area beyond the minimum gives the converter freedom to

choose among several potential output triangles. This allows, for example, sequences

with fewer “start” or “join” configurations to be generated. Initially we stored output

sequences in a verbose textual format, but in the next chapter we describe a scheme

for on-the-fly compression of arbitrary output sequences.

This converter also provides an alternative to the out-of-core compressor for gen-

erating processing sequences “from scratch”: First we create two spatially ordered

sequences, one of vertices and one of triangles. Vertices are sorted together with their

index i using one coordinate, for example x, as the sort key k. Triangles are sorted

in indexed form using the minimal key k of their three vertices as the sort key. This

144

can be implemented using a few external sorts (Lindstrom and Silva, 2001). In a final

pass over the two sorted sequences we load vertices and triangles into the waiting area.

We read from the triangle sequence as long as the next triangle key is less than or

equal to the next vertex key. Eventually the key of the next triangle is larger than

that of the next vertex and we read from the vertex sequence. This vertex can now be

finalized as all its triangles are already in the waiting area. The vertices and triangles

leave the waiting area in processing sequence order, as described earlier. Other ways of

generating such orderings are reported in the next chapter together with an in-depth

investigation of the criteria that make orderings “good” for processing.

Non-manifold meshes are turned into manifold meshes simply by cutting along

non-manifold vertices and edges. However, vertices and edges are not replicated, but

re-appear multiple times as new mesh elements. This makes it possible to represent

non-manifold meshes using only the five operations allowed for generating triangles. To

accommodate processing tasks that require special treatment of non-manifold elements,

the processing sequence API provides an additional flag per vertex and per edge. This

flag informs whether an element is non-manifold and whether there are still future

non-manifold occurrences of the element remaining.

8.4 Large Mesh Simplification

Early methods for simplifying large meshes were based on mesh cutting (Hoppe, 1998;

Prince, 2000; Bernardini et al., 2002). In mesh cutting, the input mesh is partitioned

into pieces small enough to be processed in-core, which are then simplified individu-

ally. The partition boundaries are left untouched such that the simplified pieces can

be stitched back together seamlessly. The hierarchical approaches of (Hoppe, 1998)

and (Prince, 2000) automatically simplify these boundaries at the next level, whereas

(Bernardini et al., 2002) process the mesh more than once—each time using a differ-

ent partitioning. Later, out-of-core simplification methods based on batch processing

became popular. (Lindstrom, 2000) performs vertex clustering (Rossignac and Borrel,

1993) on a uniform grid and stores one quadric error matrix (Garland and Heckbert,

1997) per occupied grid cell in memory. Indexed input meshes are first dereferenced

into polygon soups and then batch-processed one triangle at a time, adding each trian-

gle’s quadric matrix to the cells in which the triangle has a vertex. The output triangles

are those that connect three different grid cells. Each cell is represented by a vertex

145

whose position minimizes the quadric error accumulated in the cell. In more recent

work (Lindstrom and Silva, 2001) show that the limitation of the output mesh having

to fit in main memory can be overcome using a series of external sorts.

Although the vertex clustering approach to simplification allows efficient out-of-

core implementations, it delivers lower quality results than a typical in-core algorithm.

Vertex clustering can not retain details smaller than a grid cell and lacks the adaptivity

of an implementation based on, for example, iterative edge contraction. Addressing

this issue, (Shaffer and Garland, 2001; Garland and Shaffer, 2002) suggest using batch

processing to accumulate error quadrics with a vertex cluster resolution that is higher

than that of the output mesh, but still fits in-core. From there a simplified mesh can

be created in-core either top-down, using a variation of R-simp (Brodsky and Watson,

2000), or bottom-up, using QSlim (Garland and Heckbert, 1997). The accumulated

quadrics pass information about the original surface to the in-core algorithm. This

allows higher quality simplifications with an exact vertex budget, provided that the

available memory is a constant factor larger than the output mesh.

As we will see in Section 8.5, processing sequences allow efficient implementations

of simplification algorithms based on vertex clustering. As the processing boundary

sweeps over the entire mesh, visiting every triangle exactly once, we can store, update,

and propagate quadric error matrices along these boundaries only. This will signifi-

cantly reduce the memory footprint, improve the quality of the simplified mesh, and

enable pipelined processing by immediately feeding the output to another application.

The simplification methods discussed so far treat large meshes differently from small

meshes as they try to avoid performing costly online processing on the entire mesh.

Therefore the output produced by an out-of-core algorithm is usually of lower quality

than that of an in-core algorithm. (Cignoni et al., 2003) propose an octree-based

external memory data structure that provides algorithms with transparent online access

to huge meshes. This makes it possible to, for example, simplify the St. Matthew

statue from 386 to 94 million triangles using iterative edge contraction (Garland and

Heckbert, 1997). However, the run times for both constructing an external memory

data structure and using it during simplification are significantly longer than the run

times of simplification methods based on batch processing.

(Wu and Kobbelt, 2003) propose an out-of-core simplification technique that is

similar to the buffer-based abstraction of processing sequences. Starting with polygon

soup as input, they keep a large in-core buffer of triangles on which they perform edge

collapses. Since the input mesh is not indexed, connectivity between triangles must be

146

mesh name
number of

vertices triangles components holes handles n.-m. v. p. b. v.

buddha 544 K 1.1 M 1 0 104 0 2.3 K
blade 883 K 1.8 M 295 0 165 0 7.3 K
david (2mm) 4.1 M 8.3 M 2 1 19 4 21 K
lucy 14 M 28 M 18 29 0 64 23 K
david (1mm) 28 M 56 M 2.3 K 4.2 K 137 1.1 K 59 K
st. matthew 187 M 373 M 2.9 K 26 K 483 3.8 K 223 K
ppm isosurface 235 M 469 M 168 K 6.2 K 168 K 0 1.6 M

Table 8.1: Vertex, triangle, component, hole, handle, and non-manifold vertex counts,
as well as maximum number of the vertices on the processing boundary in thousands
(K) and millions (M) for all meshes used in our simplification experiments.

reconstructed by matching up the coordinates of their vertices. Their method assumes

that the polygon soup is spatially ordered so that the triangles in the in-core buffer

form connected regions. Thus, an input mesh may need to be pre-sorted using external

sorting (Lindstrom and Silva, 2001).

One drawback of Wu and Kobbelt’s method is that it can not distinguish actual

mesh borders from the input boundary of the buffer. As borders cannot be recognized

and simplified until the entire mesh has been read, they must keep all triangles along the

mesh borders in the buffer. For a mesh with many small holes, which is common in large

range scans, this can considerably inflate the memory requirements and may reduce the

quality of the output. Processing sequences provide an ideal input to Wu and Kobbelt’s

stream-based method: The incoming triangles that populate the buffer are maximally

connected. The mesh borders are known, which allows immediate simplification of

holes. The connectivity reconstruction is either already provided by the API or can be

done more efficiently as triangles are in an indexed format. Finally, their stream-based

algorithm maps exactly to the abstraction of buffer-based processing, which is discussed

further in Section 8.6.

8.5 Boundary-Based Processing

In this section we show how the out-of-core simplification method OoCS by (Lindstrom,

2000) can be adapted to mesh processing sequences using boundary-based processing.

Capitalizing on the coherent geometric or topological ordering provided by processing

sequences, as well as the connectivity information made available, we improve upon

OoCS in a number of ways.

147

unprocessed
region

Q
5

Q
9

Q
7

processed
region

5 7

8
8

9
Q

8

unprocessed
region

Q
5

Q
9

Q
7

processed
region

5

5 7

8
8

9
Q

8

unprocessed
region

Q
5

Q
4

Q
7

processed
region

5

5 7

8
8 Q

8

unprocessed
region

Q
5

Q
4

Q
7

processed
region

5

5 7

4

8

Q
8

unprocessed
region

Q
5

Q
4

Q
7

processed
region

5

5 7

4
4

8

Q
8

unprocessed
region

Q
5

Q
4

Q
7

processed
region

5

5 7

4
4

a)
b)

c)

d)
e)

f)
border
edge

quadric turns into vertex

quadrics
m

erge

processing boundary
vertex

clustering
grid

new
edge

new
vertex

F
igu

re
8.5:

A
2D

illu
stration

of
u

sin
g

b
ou

n
d

ary
-b

ased
p

ro
cessin

g
for

vertex
clu

sterin
g

b
ased

sim
p

lifi
cation

:
Q

u
ad

rics,
h

ere
d

ep
icted

as
colored

ellip
soid

s,
are

allo
cated

on
ly

for
grid

cells
th

at
con

tain
p

ro
cessin

g
b

ou
n

d
ary

vertices.
E

ach
q
u

ad
ric

m
ain

tain
s

a
cou

n
ter

for
th

e
n
u

m
b

er
of

vertices
it

is
asso

ciated
w

ith
.

T
h

e
cou

n
ted

vertices
are

m
arked

w
ith

sm
aller

colored
ellip

soid
s.

In
every

fram
e

th
e

trian
gle

m
arked

in
gray

is
p

ro
cessed

:
a→

b
)

A
n

ew
q
u

ad
ric

Q
8

is
allo

cated
b

ecau
se

th
e

n
ew

vertex
falls

in
to

a
d

iff
eren

t
grid

cell.
T

h
e

q
u

ad
ric

of
th

e
trian

gle
is

com
p

u
ted

an
d

ad
d

ed
to

Q
4

an
d

Q
8.

T
h

is
trian

gle
is

n
ot

ou
tp

u
t

as
tw

o
of

its
vertices

fall
in

to
th

e
sam

e
grid

cell.
b→

c)
T

h
e

trian
gle

q
u

ad
ric

is
com

p
u

ted
an

d
ad

d
ed

to
Q

4,
Q

5,
an

d
Q

8.
T

h
is

trian
gle

is
ou

tp
u

t
as

all
its

vertices
fall

in
to

d
iff

eren
t

grid
cells.

c→
d
)

T
h

e
q
u

ad
ric

of
th

e
trian

gle
is

com
p

u
ted

an
d

ad
d

ed
to

Q
4

an
d

Q
8.

B
ecau

se
of

th
e

b
ord

er
ed

ge
a

b
ord

er
error

q
u

ad
ric

is
also

ad
d

ed
to

Q
4

an
d

Q
8.

N
o

trian
gle

is
ou

tp
u

t.
A

s
th

e
cou

n
ter

of
Q

4
d

rop
s

to
zero,

w
e

com
p

u
te

an
d

ou
tp

u
t

its
rep

resen
tative

vertex
,

an
d

d
eallo

cate
th

e
q
u

ad
ric.

d→
e
)

A
n

ew
q
u

ad
ric

Q
9

is
allo

cated
b

ecau
se

th
e

n
ew

vertex
falls

in
to

a
d

iff
eren

t
grid

cell
from

th
ose

it
is

con
n

ected
to.

T
h

e
q
u

ad
ric

of
th

e
trian

gle
is

ad
d

ed
to

Q
5

an
d

Q
9.

N
o

trian
gle

is
ou

tp
u

t.
e→

f)
T

h
e

n
ew

ed
ge

con
n

ects
tw

o
vertices

of
th

e
sam

e
grid

cell
th

at
h

ave
d

iff
eren

t
q
u

ad
rics.

T
h

erefore,
q
u

ad
rics

Q
8

an
d

Q
9

are
m

erged
.

T
h

e
trian

gle
q
u

ad
ric

is
ad

d
ed

to
Q

5
an

d
Q

8/Q
9.

F
irst,

w
e

m
ake

u
se

of
ex

p
licit

m
esh

con
n

ectiv
ity

to
d

etect
an

d
p

reserve
su

rface

b
ou

n
d

aries.
T

h
is

is
triv

ially
accom

p
lish

ed
u

sin
g

p
ro

cessin
g

seq
u

en
ces,

alth
ou

gh
it

is

an
im

p
ortan

t
im

p
rovem

en
t.

S
econ

d
,

w
e

avoid
th

e
com

m
on

“p
in

ch
in

g”
p

rob
lem

th
at

resu
lts

w
h

en
tw

o
or

m
ore

(p
ossib

ly
u

n
con

n
ected

)
layers

of
th

e
su

rface
p

ass
th

rou
gh

th
e

sam
e

grid
cell

an
d

are
p

in
ch

ed
.

T
h

is
p

rob
lem

is
p

articu
larly

n
oticeab

le
w

h
en

sim
p

li-

fy
in

g
“d

en
se”

m
esh

es
w

ith
m

an
y

th
in

stru
ctu

res,
su

ch
as

C
A

D
m

o
d

els
an

d
com

p
lex

148

isosurfaces (see, for example, Figure 8.7(a)). Finally, because of spatial coherence, we

do not need to maintain the entire simplified mesh in memory, but output vertices and

triangles whenever possible as the processing boundary advances through space. As

a result, we require in-core storage only on the order of the length of the processing

boundary. We will describe two extensions to the original clustering method—one sim-

ple and one somewhat more involved—and begin by explaining the general idea behind

the two new techniques.

In both of our extensions, quadric error matrices are allocated, updated, and eval-

uated only along the processing boundaries, which sweep over the entire mesh, visiting

every triangle exactly once. As in (Lindstrom, 2000), triangles add their quadric error

to the respective matrices the moment they are processed. However, the life-time of

each of these matrices is limited to the duration that a processing boundary pierces the

grid cell associated with the matrix. More precisely, a grid cell is active whenever it con-

tains vertices from the processing boundary and quadric matrices are stored only with

currently active grid cells, thus obviating the need to explicitly store the entire sparse

grid. Similar to the original method, but much more efficient since only the active

subset of the cells intersected by the surface are stored, this sparse grid representation

is implemented using a hash table.

With each active cell, we also store a counter that is incremented whenever a new

vertex falls into this cell and decremented whenever a vertex from this cell is used for the

last time (Figure 8.5). Thus, the active cells are those with non-zero vertex counters.

When the value of the counter drops to zero, we compute the cell’s representative

vertex from the accumulated quadric matrix and place it on the output. The grid cell,

including the counter and the quadric matrix, is then deallocated (i.e. removed from

the hash table). Notice that the processing boundary may enter and leave any given

cell several times when multiple layers of the mesh pass through the cell. Therefore we

will often generate one representative vertex for each layer. This is in contrast to the

original approach that represents all mesh layers passing through a grid cell with a single

vertex. This difference becomes especially noticeable for aggressive simplification, as

illustrated by the simplified blade model in Figure 8.7. The original approach collapses

many layers into one vertex, which modifies the underlying topology and leads to poor

positioning of the representative vertex.

The framework just described is the basis of our first extension to OoCS. As should

be evident, it involves a minor change to the original algorithm—an additional per-

cell counter and the ability to remove cells—yet it can have a dramatic impact on the

149

topological quality of the output mesh. For example, disconnected components are

guaranteed not to be merged if the processing sequence traverses the mesh one com-

ponent at a time. Nevertheless, it is still possible for pinching to occur, e.g. if the

processing boundary wraps around and re-enters an already active cell, or if multiple

boundaries simultaneously pass through a cell. Ideally, we would like to further par-

tition each cluster of vertices within a cell into connected components, which would

eliminate pinching altogether. This is accomplished in our second and more elaborate

extension.

Conceptually, we construct connected components within a cell by initially assigning

each new vertex introduced in the processing sequence to a unique cluster. Then, for

each triangle processed, we collapse clusters that both share an edge of the triangle and

are part of the same grid cell. As a result, vertices from the input mesh are merged

only if they share an edge, which in effect renders our vertex clustering algorithm as

an edge collapse method. That is, our method is functionally equivalent to collapsing

all edges whose vertices are contained in the same grid cell. Indeed, for simplicity, our

implementation explicitly makes use of edge collapse and a conventional mesh data

structure for the partially simplified mesh near the processing boundary. Contrary

to conventional edge collapse methods, however, we do not have access to the entire

input mesh. In the context of processing sequences, this implies maintaining which

cluster each of the vertices on the processing boundary belongs to, merging clusters

(i.e. collapsing edges), and keeping track of when a single cluster (as opposed to all

clusters) within a cell becomes inactive. We accomplish the latter by adding the vertex

counters of two partial clusters when merging them.

Occasionally this approach can even generate more than one vertex per layer for a

single cell. This happens each time that an edge with no endpoint in the cell divides the

layer passing through the cell into two parts that both contain vertices in this cell (see

Figure 8.6). Such additional vertices are generally beneficial since they serve to unfold

what would otherwise become non-manifold mesh pieces. A single additional vertex

can sometimes untangle multiple non-manifold vertices, as evidenced by Table 8.2.

The order in which triangles and vertices are finalized does not directly result in a

proper output sequence. This is because output triangles are usually generated before

their vertices are ready for output, i.e. before their clusters become inactive. Therefore,

output triangles are first put into a waiting area, as illustrated earlier in Figure 8.4.

Whenever a vertex is output, we check whether waiting triangles that reference the ver-

tex are eligible for output, i.e. whether all three of their vertices have been output, and

150

Figure 8.6: The presence of cell-dividing edges
(shown stippled) results in more than one rep-
resentative vertex per grid cell for a single mesh
layer. Here they prevent Q8 and Q9 from merg-
ing. This is beneficial as it prevents the output
triangles {Q7,Q8,Q2} and {Q2,Q9,Q7} (shown
in red) from collapsing into a pair of oppositely
oriented triangles with non-manifold edges. The
grid cell on the right illustrates another example
of a cell-dividing edge.

cell-dividing
edges

Q9Q8

Q7

5
5

9

9

7

Q5

2
Q2

Q4

4

8

Tout method Vout Vnm
∆Vnm
∆Vout

RAM time speed
(MB) (s) (Tin/s)

70,546
original 33,053 3,366 – 10.7 5.62 314 K
active cells 34,682 1,665 104% 7.3 5.78 305 K
connected 35,134 897 119% 3.4 6.18 285 K

122,470
original 59,675 3,103 – 11.0 6.97 253 K
active cells 60,618 2,008 116% 8.0 7.07 250 K
connected 61,109 1,172 135% 3.4 7.10 249 K

230,642
original 113,961 3,472 – 21.9 9.02 196 K
active cells 114,695 2,436 141% 13.8 9.13 193 K
connected 115,238 1,360 165% 3.5 9.15 193 K

Table 8.2: Results of simplifying the blade model using the original OoCS algorithm
and our “active cells” and “connected layers” extensions based on processing sequences.
The fifth column lists the change in number of non-manifold vertices (∆Vnm) over the
change in total number of output vertices (∆Vout) relative to the original method.
Note that, on average, each added vertex generally makes more than one previously
non-manifold vertex manifold. The last column reports the simplification speed as
number of input triangles processed per second.

if so output and deallocate the triangle. Because the generated vertices and triangles

can be written (almost) directly to disk, the memory requirements of this approach are

independent of the size of the output mesh. Rather, the memory usage depends solely

on the maximal length of the processing boundary.

The information on border edges available during sequenced processing further im-

proves the quality of the simplified mesh. Instead of adding tangential error terms

for every edge that completely neutralize each other only across coplanar triangles, as

suggested in (Lindstrom and Silva, 2001), we explicitly penalize deviation from surface

borders using the specialized quadric error matrices of (Garland and Heckbert, 1997).

151

(a) original algorithm: 33,053 vertices, 3,366 non-manifold

(b) with active cells: 34,682 vertices, 1,665 non-manifold

(c) with connected layers: 35,134 vertices, 897 non-manifold

Figure 8.7: Semitransparent and opaque views of the turbine blade model, simplified
using the original OoCS algorithm and our extensions to it. Notice the severe pinching
in 8.7(a) as interior and exterior layers of the surface pass through single grid cells and
are collapsed. The grid dimensions are 57× 96× 44 in all three cases.

152

8.5.1 Results

Figure 8.7 and Table 8.2 highlight the results of using our boundary-based process-

ing methods to simplify the turbine blade model. Notice the large reduction in non-

manifold vertices relative to the small increase in total number of vertices (in all cases a

higher than 100% efficiency). As can be seen in Figure 8.7, many of these non-manifold

vertices are the result of pinching. These models were simplified on a 2 GHz Pentium 4

Windows 2000 PC with 1 GB of RAM.

In addition to higher quality meshes, our “connected layers” method is also more

memory efficient than the original method, which requires storing the entire simplified

mesh in-core. We simplified the St. Matthew model from 373 million triangles to 23

million using these two methods on a 250 MHz SGI Onyx2 with 40.5 GB of RAM. The

original OoCS took 67 minutes and used 3,282 MB of RAM, while the boundary-based

method took 83 minutes and used only 121 MB of RAM; a reduction in memory usage

by a factor of 27.

8.6 Buffer-Based Processing

In this section we show how an adaptive simplification method based on iterative edge

contraction (Garland and Heckbert, 1997) can use processing sequences. We modify

the algorithm by (Wu and Kobbelt, 2003), which uses a buffering mechanism based

on a geometric triangle ordering that directly maps to the buffer-based computation

abstraction of processing sequences.

Their algorithm uses three operations, READ triangle, DECIMATE triangles, and

WRITE triangle, to maintain an active portion of the mesh that is memory-resident

and eligible for simplification. It stores a quadric error matrix with each active vertex.

READ inputs the next triangle in the triangle ordering, hooks it into the active mesh,

and adds the quadric error of the triangle to the quadric matrices of its three vertices.

DECIMATE chooses an edge with minimal quadric error that is eligible for collapse,

merges its two active vertices and their quadric matrices, and eliminates the triangles

that share the edge. Constant-time complexity is achieved by choosing this edge from

only a small, fixed-size set of random candidates.

153

WRITE chooses a triangle with maximal quadric error that has an edge on the

output boundary and outputs it. Again, the search is restricted to a random set of

potential output triangles for constant-time selection. When all triangles incident on a

vertex have been written, the vertex is deleted together with its quadric.

Wu and Kobbelt READ triangles to keep an in-core buffer full, and interleave

batches of WRITE and DECIMATE operations to maintain a simplified mesh whose

resolution corresponds to a user-specified percentage reduction of the original mesh.

Figure 8.8 illustrates Wu and Kobbelt’s algorithm adapted to the processing se-

quence paradigm. The unprocessed region is shown at the top. Shown in black is the

processing boundary of the input sequence, where new triangles are read and where

vertices accumulate the quadric error of incoming triangles in their quadric matrices.

Furthermore, the input sequence provides information about connectivity and bor-

der edges to the in-core buffer (shown in the middle). Edge collapse operations are

disallowed for edges that have vertices on the input or the output boundary. After dec-

imation, the surviving triangles are output in the form of a second processing sequence.

Again connectivity and border information is stored along the boundary of the output

sequence, allowing for further processing such as on-the-fly compression.

In order to output a processing sequence, we slightly modify Wu and Kobbelt’s

method to select triangles to output. As in the original method, we try to minimize the

number of “start” operations (compare with Figure 8.2) for output triangles in order

to keep the output boundary as short and the triangle buffer as connected as possible.

This is achieved by choosing an output triangle only from triangles incident to an edge

of the output boundary, and allowing “start” operations only if no such triangle is

available. Furthermore, we favor outputting triangles whose three vertices are on the

output boundary, i.e. “end,” “fill,” and “join” operations (in that order), since its

vertices can no longer be involved in an edge collapse. When no such triangle exists,

we choose (using multiple choice selection) some triangle with one vertex between the

input and output boundaries, i.e. we perform an “add” operation. To determine which

such triangle to output from a set of multiple choice candidates, we choose the one

with the largest quadric error at the non-boundary vertex rather than evaluating the

quadric error for the entire triangle, as in Wu and Kobbelt’s method. We decided on

this approach since, in our method, vertices on the output boundary have no impact

on the error involved in future potential edge collapses.

When a new vertex is encountered in the input, a corresponding vertex is allocated

in the in-core mesh data structure. The processing sequence API optionally maintains

154

unprocessed
region

partly
simplified

hole

hole

simplified
hole

triangle
buffer

written
region

input
boundary

output
boundary

C

A

C
C

C

C C

C

C

C

C

C

C
C

C
C

C
C

C

AA

A
A

A

A

A A
A A

collapsible

accumulating

candidates

Figure 8.8: A 2D illustration of buffer-based computation using processing sequences.
Such an algorithm, here the simplification algorithm of (Wu and Kobbelt, 2003), oper-
ates on a triangle buffer between an input and an output boundary. Triangles generated
at the input boundary are read from disk. They are not immediately processed, but
used to (re-)fill the buffer in which the actual processing takes place. Their quadric er-
ror is added to the accumulating error quadrics of vertices on the input boundary. Edge
collapse operations are restricted to those edges (shown dashed) that are not incident
to vertices on either boundary. They merge collapsible quadrics. Triangles adjacent to
the output boundary empty the buffer and are written to disk. The next candidate for
output is the triangle with all three vertices on the output boundary (shown in gray).

a mapping between the vertices it knows to be on the boundary and corresponding

client-side vertices. This eliminates the need for the client to establish this mapping,

e.g. via hashing on global vertex indices, for each previously visited vertex in the se-

quence, which gives us connectivity reconstruction essentially for free. Furthermore,

using processing sequences, the mesh border edges are not (mis-)classified as input

boundary edges, as in (Wu and Kobbelt, 2003). This allows border edges and nearby

incident edges to be directly involved in decimation; we need not set aside precious

space in the fixed-size mesh buffer to hold such edges until the entire input mesh has

been read.

8.6.1 Results

Table 8.3 lists the results of running our adaptive simplification method on several

meshes. The majority of these meshes were simplified on an 800 MHz Pentium 3 with

880 MB of RAM, running Red Hat Linux 7.1 (allowing a fair comparison with several

155

mesh name Tin Tbuf Tout
p RAM time speed

(%) (MB) (h:m:s) (Tin/s)

happy buddha 1,087,716
400 K 21,754 2 41 27 40,663
400 K 217,544 20 41 26 42,434

blade 1,765,388
400 K 35,308 2 41 41 43,292
400 K 353,078 20 42 45 39,396

david (2mm) 8,254,150
400 K 82,541 1 43 3:06 44,491
400 K 825,415 10 44 3:50 35,915

lucy 28,055,742
400 K 280,557 1 43 10:05 46,408
400 K 1,402,788 5 43 10:45 43,502

david (1mm) 56,230,343
400 K 562,303 1 48 14:40 63,898
400 K 2,811,517 5 48 16:07 58,149

st. matthew 372,767,445
800 K 559,152 0.15 104 1:30:32 68,624
800 K 1,863,837 0.5 105 1:33:00 66,804

ppm isosurface 467,614,855 4 M 2,346,907 0.5 776 2:25:11 53,883

Table 8.3: Results of buffer-based simplification. Tbuf specifies the size (in number of
triangles) of the in-core buffer, and p is the simplification ratio. For these results, we
used 8 multiple choice candidates. The top four models were simplified on an 800 MHz
Linux PC, while the bottom three were simplified on a 2 GHz Windows PC.

other methods, including (Wu and Kobbelt, 2003; Lindstrom and Silva, 2001; Cignoni

et al., 2003)). The larger meshes were simplified on the same PC that was described in

Section 8.5.1. Except for lower memory requirements and higher speed, these results

generally agree with those published by Wu and Kobbelt. The performance differences

may be attributed in part to our method not requiring hashing, but may also be the

result of a more efficient implementation. Finally, Figure 8.9 shows a simplified mesh

produced by our method.

8.7 Summary

In this chapter we have demonstrated that the mesh access provided by processing

sequences allows highly efficient out-of-core computations on large meshes. We have

illustrated this by adapting two simplification algorithms to access the mesh through a

prototype of our processing sequence API: one using boundary-based, the other using

buffer-based processing. In both cases using processing sequences was beneficial.

Boundary-based processing significantly reduces the memory-requirements of the

vertex clustering based simplification method of (Lindstrom, 2000), enabling it to pro-

duce very large output meshes in a single pass. Furthermore, the quality of the simpli-

156

Figure 8.9: Adaptive simplification of David (2mm) to 1% of the input mesh with a
stream-based simplifier using processing sequences and buffer-based processing.

157

fied mesh improves significantly—especially in the case of aggressive simplification—as

multiple mesh layers that pierce one grid cell are no longer collapsed into a single ver-

tex. Finally, information about border edges supports dedicated error quadrics that

better preserve surface boundaries.

Buffer-based processing readily accommodates the stream-based simplification method

of (Wu and Kobbelt, 2003), providing it with a triangle ordering that keeps the buffer

maximally connected. Furthermore, the indexed nature of processing sequences re-

moves the overhead associated with polygon soups. Additional speed-ups are gained

through assistance in reconstructing connectivity. Finally, information about border

edges solves the issue of uncollapsible triangles clogging the triangle buffer.

The maximal length of the processing boundary directly impacts the memory foot-

print of the simplification process. For the “ppm isosurface” data set of Table 8.1 this

length is 1.6 million vertices, far above the theoretical worst-case bound of O(
√
n) that

was established by (Bar-Yehuda and Gotsman, 1996). The processing sequences we

have used in this chapter were generated by the compression scheme described in the

previous chapter. This scheme traverses the mesh with a heuristic that primarily aims

at lowering the bit rate and does not attempt to keep the maximal boundary length

small. In the next chapter we investigate how to create processing sequences that have

a smaller maximal memory footprint. Using different re-ordering strategies, we can eas-

ily reduce the maximal processing boundary length of the “ppm isosurface” to around

one hundred thousand vertices (see Table 9.1).

In the future we would like to see these two computational abstractions applied

to other types of mesh processing, in particular parameterization and remeshing algo-

rithms. The needs of these processing tasks may result in improvements or changes to

the definitions of processing sequences. Among other things, the next chapter addresses

on-the-fly compression of processing sequences that are either output of an algorithm or

created from scratch. When compressing processing sequences in a traversal order that

is dictated by an application rather than deterministically chosen by the compressor

we can expect lower compression rates. However, the benefits of such a scheme is that

it will allow both the input and the output sequences to be in compressed form.

8.8 Hindsights

The idea of sequenced processing grew out of the streaming, small memory-footprint

mesh access provided by our compressed format. However, it turns out that the depth-

158

first fashion in which our original scheme was decompressing triangles and vertices

resulted in orderings that were far from optimal for some processing tasks. In our

case such poorly ordered input sequences can have a negative impact on the quality of

buffer-based simplification. When the processing boundary advances in a highly non-

uniform manner, some mesh elements spend considerably more time in the triangle

buffer than others. The randomized way in which edge-collapse operations are applied

to this triangle buffer is likely to simplify those elements more heavily than those of

areas where the processing boundary passes through more quickly.

But even if the input sequence is ordered more coherently, the buffer-based simplifi-

cation method, as described in Section 8.6, tends to output highly incoherent sequences.

The reason is that the WRITE operation, which decides in which order the mesh el-

ements are output, takes only the maximal quadric error, but not the time spend in

the triangle buffer into account. This results in newer mesh elements of slightly higher

quadric error being repeatedly favored for output, which can leave behind many small

islands of older elements that remain in the buffer for a long time. When we chose to

follow a mainly error-driven output strategy as proposed by (Wu and Kobbelt, 2003)

we did not yet have a clear understanding of the concept of coherent streaming. This

is investigated in detail in the next chapter.

Finally, our definitions about which triangle sequences are allowable processing se-

quences were overly restrictive. Apart from the fact that growing the mesh in an

edge-connected manner results in a smaller maximal footprint as it streams through

memory, there is really no good reason to categorically disallow triangles that are only

vertex-adjacent to the processing boundary. These restrictions grew out of the triangle

orderings of our original compressed format that seemed ideal for processing, but that

unnecessarily complicate creating and working with processing sequences. The main

advantage of our compressed format was the coherent order of elements, the information

on vertex finalization, the additional information about the topological type of vertices

and edges, and the ability to store information along the evolving boundary. But we

can provide the same functionality for a less restricted ordering of mesh elements as,

for example, supported by the general streaming mesh format that we describe in the

next chapter. In this sense, processing sequences really can be seen as an abstraction

of the functionality that any streaming mesh format can provide.

Chapter 9

Streaming Meshes

Figure 9.1: Illustrations of the coherence in the layout of the “Lucy” mesh: The orig-
inal layout (left); the layout after reordering vertex and triangle arrays with spectral
sequencing (right). Renderings color-code triangles based on their array position. Lay-
out diagrams connect triangles sharing the same vertex with horizontal line segments
(green) and vertices used by the same triangle with vertical line segments (gray).

Today’s gigabyte-sized polygon models can no longer be completely loaded into the

main memory of common desktop PCs. Unfortunately, current mesh formats were

designed years ago and do not account for this. Using such formats to store large

meshes is inefficient and unduly complicates all subsequent processing. In this chapter

we describe a streaming format for polygon meshes that is simple enough to replace

current mesh formats and more suitable for working with large data sets. Furthermore,

it is an ideal input and output format for IO-efficient out-of-core algorithms that process

meshes in the streaming, possibly pipelined, fashion discussed in the previous chapter.

The central theme in this chapter is the issue of coherent and compatible orderings

of the mesh vertices and polygons. We present metrics and diagrams that characterize

the coherence of a mesh layout and suggest appropriate strategies for improving its

“streamability”. To this end, we outline several out-of-core algorithms for reordering

meshes with poor coherence, and present results for a menagerie of well known and gen-

erally incoherent surface meshes. We also describe novel technique that can compress

streaming meshes on-the-fly and in their particular stream-order.

160

9.1 Introduction

The advances in computer speed and memory size are matched by the growth of data

and model sizes. Modern scientific technologies enable the creation of digital 3D models

of incredible detail and precision. Recent examples include statues scanned for historical

reconstruction, isosurfaces visualized to understand the results of scientific simulation,

and terrain measured to predict flood impact. These polygonal data sets easily reach

sizes of several gigabytes. Such large amounts of data often exceed the main memory

resources of the computing environment that is at a scientist’s disposal, which makes

the subsequent study of the produced data a challenging task.

In order to process geometric data sets that do not fit in main memory, one resorts

to out-of-core algorithms. These arrange the mesh so that it does not need to be kept in

memory in its entirety, and adapt their computations to operate mainly on the loaded

parts. Such algorithms have been studied in several contexts, including visualization,

simplification, and compression. A major problem for all these algorithms is to deal with

the initial format of the input. Current mesh formats were designed in the early days

of mesh processing when models like the Stanford bunny, with less than 100,000 faces,

were considered complex. They use an array of floats to specify the vertex positions

followed by an array of indices into the vertex array to specify the polygons. The order

in which vertices and polygons are arranged in these arrays is left to the discretion

of the person creating the mesh. This was convenient when meshes were relatively

small. In the meantime, however, our data sets have grown in size by four orders of

magnitude. Storing such large meshes in the same format means that a gigabyte-sized

array of vertex data is indexed by a gigabyte-sized block of triangle data. This unduly

complicates all subsequent processing.

Most processing tasks need to dereference the input mesh (e.g. resolve all triangle to

vertex references). Memory mapping the vertex array and having the operating system

swap in the relevant sections is only practical given a coherent mesh layout. The lack

of coherence in the layout of the “Lucy” model is illustrated on the left in Figure 9.1.

Loosely speaking, the farther the green and grey line segments are from the diagonal,

the less coherent is the layout. In order to operate robustly on large indexed meshes

an algorithm either needs to be prepared to handle the worst possible inputs or make

assumptions that are bound to fail on some models.

In this chapter we present a streaming format for large polygon meshes that solves

the problem of dereferencing. In addition, it enables the design of new IO-efficient

algorithms for out-of-core stream-processing. The basic idea is to interleave indexed

161

vertices and triangles and to provide information when vertices are referenced for the

last time. We call such a mesh representation a streaming mesh.

The terms “progressive” and “streaming” are often used synonymously in computer

graphics. We point out that our streaming meshes are fundamentally different from the

multi-resolution representations used for progressive geometry transmission. Progres-

sive streaming adds more and more detail to a coarse approximation of a mesh stored

in-core, possibly until exhausting the available memory (Hoppe, 1996). In our stream-

ing model original triangles and vertices are added to, or removed from, a partial but

seamless reconstruction of the mesh that is kept in a finite, fixed-size memory buffer (a

“sliding window” over the full resolution mesh).

The advantage of a streaming representation for meshes was already identified in

Chapter 7 where we proposed a compressed mesh format that allowed streaming de-

compression. During compression a set of boundaries was sweeping once over the entire

mesh, which was accessed through a complex external memory data structure. The pay-

off for that initial work was that during decompression only those boundaries needed

to be maintained in memory. In the previous chapter we confirmed that the streaming

access provided by the decompressor are indeed useful for IO-efficient out-of-core pro-

cessing of meshes. We showed that simplification algorithms can be adapted to operate

in a streaming manner on a mesh. But in these two chapters we payed little attention

to what makes good stream orders. In fact, the streaming meshes produced by our

out-of-core compressor are not suitable for all types of stream-processing. Although

they are reasonably low in width they have maximally poor span.

In this chapter we extract the essence of streaming to define a simple input and

output format. We propose definitions and metrics that give us a language for talking

about streaming meshes. We identify two fundamental stream characteristics, the width

and the span of streaming meshes, and describe the practical impact of these metrics on

stream processing. Some algorithms for stream-processing will require meshes with low

span, while others will only be width-limited. We report the stream characteristic for

a number of different mesh orderings and describe out-of-core techniques for creating

such orders using limited memory. Furthermore, we describe a scheme for streaming

compression. In contrast to previous schemes that dictate the order in which a mesh is

compressed, we encode meshes in their stream order. While this does not achieve the

same rate of compression, it allows immediate on-the-fly compression without cutting

the mesh in smaller pieces, as suggested by (Ho et al., 2001) and without resorting to

the complex external memory data structure we described in Chapter 7.

162

The remainder of this chapter is organized as follows: The next section summarizes

related work in out-of-core algorithms and how they deal with incoherent mesh layouts.

We also mention other work in mesh and graph re-ordering. In Section 9.3 we give use-

ful measures for the coherence of a mesh layout that characterize how streamable a

given mesh ordering is. These measures tell us how much work is needed to convert

this mesh into a streaming format. In Section 9.4 we define streaming meshes, describe

the tiny bit of extra information that needs to be included to turn a standard mesh

format into a streaming format, and illustrate the big pay-off that this small change has

on the workflow in large mesh processing. Although meshes are naturally generated in

a streaming manner there are many incoherent data sets around. In Section 9.5 we look

into approaches such as geometric sorting and spectral sequencing for creating stream-

ing meshes from incoherent legacy data . We report their success and evaluate their

complexity in an out-of-core setting. Finally, in Section 9.6 we describe how streaming

meshes can be compressed on-the-fly. The last section summarizes our contributions

and discusses potential future work such as spatial streaming, streaming in multiple

resolutions, and extensions to regular and irregular volume meshes.

9.2 Related Work

While models from 3D scanning or iso-surface extraction have become too large to fit in

the main memory of commodity PCs, storing the models on hard disk is always possible.

Out-of-core algorithms are designed to efficiently operate on large data sets that mostly

reside on disk. To avoid constant reloading of data from slow external memory, the

order in which they access the mesh must be consistent with the arrangement of the

mesh on disk. Currently the main approaches are: cutting the mesh into pieces, using

external memory data structures, working on dereferenced triangle soup, and operating

on a streaming representation. All these approaches have to go through great efforts

to create their initial on-disk arrangement when the input mesh comes in a standard

indexed format.

Mesh cutting methods partition large meshes into pieces that are small enough to

fit into main memory and then process each piece separately. This strategy has been

successful for distribution (Levoy et al., 2000), simplification (Hoppe, 1998; Bernardini

et al., 2002), and compression (Ho et al., 2001). The initial cutting step requires

dereferencing, which is expensive for standard indexed input.

In hindsight, once meshes became so large that it became impractical to store them

in standard indexed formats, one should have designed a more scalable format instead

163

of cutting up the data. The practice of mesh cutting is also responsible for some of the

poor mesh layouts that we have to deal with.

Approaches that use external memory data structures also partition the mesh,

but into a much larger number of smaller pieces often called clusters. At run-time

only a small number of clusters is kept in memory with the majority residing on disk

from where they are paged in as needed. (Cignoni et al., 2003), for example, use such

an external memory mesh to simplify large models with iterative edge contraction. In

a similar manner we have used an out-of-core mesh in Chapter 7 to compress large

models with region growing. Building these data structures from a standard indexed

mesh involves additional dereferencing passes over the data.

One approach to overcome the problems associated with indexed data is not to use

indices. Abandoning indexed meshes as input, such techniques work on dereferenced

triangle soup, which streams from disk to memory in increments of single triangles

with the processor operating at full capacity. (Lindstrom, 2000) showed how to im-

plement vertex-clustering based simplification this way. Although his algorithm does

not use indices, his input meshes usually come in an indexed format. Ironically, in

this case an initial dereferencing step (Chiang and Silva, 1997) becomes necessary that

does exactly what the algorithm itself later avoids: it resolves all triangle to vertex

references. In order to take full advantage of this type of processing, the input must

already be streamable.

While the entire mesh may not fit into main memory, one can easily store a work-

ing set of several million triangles. (Wu and Kobbelt, 2003) simplify large models

by streaming coherent triangle-soup into a fixed-sized memory buffer, in which they

perform randomized edge collapses. Connectivity between triangles is reconstructed

through geometric hashing on vertex positions. Only vertices surrounded by a closed

ring of triangles are deemed eligible for simplification. Mesh borders can not simplified

until the entire mesh was read, which implies that border triangles and vertices remain

in the buffer until the end. For meshes with borders their simplified output meshes are

therefore guaranteed to have an incoherent layout. In the previous chapter we have

shown that the processing sequence abstraction of our compressed format provides ex-

actly the kind of information that Wu and Kobbelt’s algorithm needs: finalization of

vertices. Instead of the algorithm having to guess when a vertex is final, our com-

pressed format informs when this is indeed the case. However, their simplified meshes

will still be incoherent unless their output strategy is modified to also take coherence

into account (see also Section 8.8).

164

Figure 9.2: Visual illustrations of mesh layouts: (a) The “bunny” and (b) the 10,000
times more complex “Atlas” model. Successive triangles are rendered with smoothly
changing colors. Layout diagrams intuitively illustrate incoherence in the meshes.

Coherence in reference has previously been investigated in the context of efficient

rendering. Modern graphic cards use a vertex cache to buffer a small number of vertices.

In order to make good use of the cache it is imperative for subsequent triangles to re-

reference the same vertices. (Deering, 1995) stores triangles together with explicit

instructions that tell the cache which vertices to replace. (Hoppe, 1999) produces

coherent triangle orderings optimized for a particular cache size, while (Bogomjakov

and Gotsman, 2001) create orderings that work well for all cache sizes.

An on-disk layout that is good for streaming seems similar to an in-memory layout

that is good for rendering. But there are differences: For the graphics card cache it is

expected that at least some vertices are loaded multiple times. In our case, each vertex

is loaded only once as main memory can hold all required vertices for any reasonable

traversal. Once a vertex is expelled from the cache of a graphics card, it makes no

difference how long it takes until it is loaded again. In our case, the duration between

first and last use of a vertex does matter. While local coherence is of crucial importance

for a rendering sequence, it has little significance for streaming. What is of big practical

difference here is whether the layout has global coherence or not. While the triangle

orderings that (Bogomjakov and Gotsman, 2001) create with recursive graph partition-

ing are good for rendering, they have global incoherence and are therefore not good

for all types of stream processing. Vice-versa, a geometric sort of the mesh triangles

produces a good stream ordering but constitutes a rather poor rendering sequence.

9.3 Mesh Layouts

Indexed mesh formats impose no constraints on the order of either vertices or triangles.

In particular, the three vertices of a triangle can be located anywhere in the vertex

165

array. They need not even be close to each other. And while subsequent triangles

may reference vertices at opposite ends of the array, the first and the last triangle

can use the same vertex. This flexibility was enjoyable as long as meshes were small

or moderately sized. However, with the arrival of gigabyte-sized data sets this has

become a major headache. Today’s mesh formats have originated from a smorgasboard

of legacy formats (e.g. PLY, OBJ, IV, OFF, VRML). They were designed in the early

days of computer graphics when the polygon models were of the size of the Stanford

bunny. This model, which has helped popularize the PLY format, abuses this flexibility

like no other. Its layout is highly incoherent in every respect, which is illustrated in

the form of a layout diagram in Figure 9.2.

A layout diagram intuitively visualizes the coherence in reference between vertices,

which are indexed along the vertical axis, and triangles, which are indexed along the

horizontal axis. Both are numbered in the order they appear in the file. We draw for

each triangle a point (violet) for each of its three vertices and a vertical line segment

(grey) that connects them. Similarly, we draw for each vertex a horizontal line segment

(green) that connects the first and last triangle that reference it. Loosely speaking, the

closer that points and lines group around the diagonal the more coherent is the layout.

Nowadays the PLY format is used to archive the scanned statues that were created

by Stanford’s Digital Michelangelo Project (Levoy et al., 2000). For the “Atlas” statue

of 507 million triangles this means that a six gigabyte array of triangles references

into a three gigabyte array of vertex positions. Its layout diagram, which is shown in

Figure 9.2, reveals that vertices are used over spans of up to 550,000 triangles—equaling

700 MB of the triangle array. Since an indexed mesh of this size cannot be dealt with

on commodity PCs, the statue is provided in twelve pieces.

9.3.1 Definitions

The layout of a mesh is defined by the ordering of its vertices and the ordering of its

triangles. The following definitions are helpful to characterize the quality of a particular

mesh layout (see Figure 9.3):

The triangle span of a vertex is the number of triangles between and including its first

and last use. It corresponds to the green horizontal segments in a layout diagram. The

triangle span of a layout is the maximal triangle span of any of its vertices. The vertex

span of a triangle is the maximal index difference (plus one) amongst its vertices. It

corresponds to the grey vertical segments in a layout diagram. The vertex span of a

layout is the maximal vertex span of any of its triangles. The vertex width of a layout is

166

5

7

9

0

4

3

6

2

8

1

10
4

3 5
2

7
8

9
6 10

… and three different layouts for it.A small example mesh …

triangles

ve
rt

ic
es

0 1 2 3 4 5 6 7 8 9 10

0
1

2
3

4
5

6
7

8
9

v-width = 7

t-span = 10

v-span = 7

skip = 2

a)

t-width = 9

0 1 2 3 4 5 6 7 8 9 10

4
1

2
5

0
6

8
7

3
9

t-width = 9

t-span = 10

triangles

ve
rt

ic
es

v-span = 8

b)

v-width = 7

2 4 9 0 3 1 5 7 6 8 10

0
6

2
1

8
4

5
3

7
9

v-width = 4

t-span = 7

triangles

ve
rt

ic
es

v-span = 5

c)

t-width = 6

Figure 9.3: A small example mesh in three different layouts: (a) The vertex order is not
compatible with the triangle order resulting in a skip. (b) Reordering the vertices can
eliminate the skip but does not affect the triangle span or the vertex width. (c) Triangle
span and vertex width can only be reduced by also changing the triangle ordering.

the maximal number of green segments that can be cut by a vertical line; the triangle

width is the maximal number of gray segments cut by a horizontal line. The skip of

a layout is the maximal number of “concurrently” skipped vertex indices. An index

is skipped as long as its vertex is not referenced while a vertex with a higher index

has already been referenced. When the skip of a layout is large we say that its vertex

ordering is incompatible with its triangle ordering.

Three different layouts for a small example mesh are shown in Figure 9.3. The vertex

ordering of the first layout is not compatible with its triangle ordering. The layout has

a skip of 2 because vertex #8 is already used by triangle #3, while the vertices #3

and #7 are still unused. In the second layout we have re-ordered the vertices, which

corresponds to vertically rearranging the green line segments. This neither changes

the vertex width nor the triangle span of the layout, but affects the skip, the triangle

width, and the vertex span. To reduce the vertex width and the triangle span we have

to also reorder the triangles, which is illustrated by the third layout.

9.3.2 Incoherent Layouts

The incoherence in a mesh layout can often be explained by how the mesh was produced.

The “horse”, for example, is zipped together from multiple pieces that are result of

167

Figure 9.4: Highlighting triangles with high vertex span often reveals something about
how the mesh was created or modified.

scanning from different viewpoints. While the zipping algorithm sorted the triangles

spatially along one axis, it simply concatenated the vertex arrays—thereby creating

triangles with high vertex spans along the zips. The “dinosaur” has its triangles ordered

along one axis and its vertices along another axis. This projects the model along the

third axis into vertex and triangle indices such that they capture a distorted 2D view

of the shape. This layout is low in width and span, but has a high skip. For the most

part, the “dragon” has its vertices and triangles loosely ordered along the z-axis. But

there are a small number of vertices at the very end of the vertex array that are used all

across the triangles array, leading to high vertex span. This is due to a post-processing

operation for topological cleanup of holes in the mesh.

The large Stanford statues were extracted block by block from a large volumetric

representation. The resulting surfaces were then stitched together on a supercomputer

by concatenating triangle and vertex arrays and identifying vertices between neighbor-

ing blocks, which is evidenced by high vertex spans in Figure 9.4. For the two largest

statues the vertex and triangle spans were somewhat reduced when their “blocky”

layouts were multiplexed into several files by spatially cutting the statues into twelve

horizontal slices.

9.4 Streaming Meshes

A streaming mesh format interleaves the vertices and the triangles that use them and

provides explicit information about when vertices are no longer used. Such a format can

be as simple as the ASCII examples in Figure 9.5. Despite its simplicity, a streaming

mesh format has tremendous advantages over standard formats. Because the format

tells us which vertices to keep in memory, the problem of repeated, possibly incoher-

ent look-up of vertex data in a gigantic array does not exist. Furthermore, the fact

168

that a streaming mesh format contains information about when vertices are no longer

used allows streaming, possibly pipelined, processing. Envision a scenario where one

algorithm extracts an isosurface and pipes it as a streaming mesh to a simplification

process, which in turn streams the simplified mesh to a compression engine that en-

codes it and immediately transmits the resulting bit-stream to a remote location where

triangles are rendered as they decompress. In fact, we now have all components of this

pipeline. The streaming format makes it possible to pipe them all together.

Simply put, a streaming mesh format makes operating on even the largest of all data

sets a feasible tasks. For example, all images in this paper are interactively rendered

on a laptop with 512 MB of memory by simplifying the full resolution input on-the-fly

with vertex clustering: Read vertices are accumulated in a sparse uniform grid. The

mapping from original vertex indices to grid cells is stored in a hash where it is looked

up by incoming triangles. The fact that a hash entry can be removed as soon as its

corresponding vertex is finalized keeps the overall memory requirements low.

Finally, a streaming format will make creators of large data sets aware of the mesh

layouts they produce. It will encourage them to output large meshes into streaming

rather than indexed formats and to take coherence in the output into consideration.

Anyone who went through the pain of stitching together the “Atlas” statue from the

twelve pieces that it is provided in, will appreciate this as an important contribution.

9.4.1 Definitions

A streaming mesh is a logically interleaved sequence of indexed vertices and triangles

plus information about when vertices are introduced and when they are finalized. A

vertex is either explicitly introduced when it appears in the stream or implicitly in-

troduced if a triangle references the vertex before it appears. Vertices become active

when they are introduced and cease to be active when they are finalized. We call the

evolving set of active vertices the front Fi, which at time i partitions the mesh into

finalized (i.e. processed) vertices and vertices not yet encountered in the stream. The

front width (or simply the width) is the maximal size maxi{|Fi|} of the front, i.e. the

maximal number of concurrently active vertices. The width gives a lower bound on the

memory footprint as any stream process must maintain the front. The front span (or

simply the span) is the maximal index difference maxi{maxFi−minFi + 1} of vertices

on the front, and intuitively measures the longest duration a vertex remains active.

We place no restriction on whether vertices precede triangles (as would normally be

the case in a standard indexed mesh) or follow them. Streaming meshes are pre-order

169

1
2

3
4

5
1 2 3 4

standard .obj

v 0.3 1.1 0.2
v 0.4 0.4 0.5
v 1.4 0.8 1.2
v 0.9 0.5 0.7
v 1.0 0.1 1.1
f 2 4 1
f 2 5 4
f 3 1 4
f 4 5 3

1
2

3
4

5

1 2 3 4

pre-order

v 0.3 1.1 0.2
v 0.4 0.4 0.5
v 1.4 0.8 1.2
v 0.9 0.5 0.7
f 2 4 1
v 1.0 0.1 1.1
f 4 5 4
f 3 5 4
f 2 1 3

-
-

- - -

1
2

3
4

5

1 2 3 4

post-order

f 2 4 1
f 2 5 4
f 3 1 4
v 0.3 1.1 0.2
v 0.4 0.4 0.5
f 4 5 3
v 1.4 0.8 1.2
v 0.9 0.5 0.7
v 1.0 0.1 1.1

1
2

3
4

5

1 2 3 4

standard .obj

v 0.4 0.4 0.5
v 0.3 1.1 0.2
v 0.9 0.5 0.7
v 1.0 0.1 1.1
v 1.4 0.8 1.2
f 1 3 2
f 1 4 3
f 5 2 3
f 3 4 5

1
2

3
4

5

1 2 3 4

pre-order

v 0.4 0.4 0.5
v 0.3 1.1 0.2
v 0.9 0.5 0.7
f 1 3 2
v 1.0 0.1 1.1
f 4 4 3
v 1.4 0.8 1.2
f 5 2 3
f 3 4 5

-

-

- - -

1
2

3
4

5

1 2 3 4

post-order

f 1 3 2
f 1 4 3
v 0.4 0.4 0.5
f 5 2 3
v 0.3 1.1 0.2
f 3 4 5
v 0.9 0.5 0.7
v 1.0 0.1 1.1
v 1.4 0.8 1.2

1
3

4
2
4

5

3

2

1

1
3

4
2
3

4

5

1

2

compatibleincompatiblea) b)

Figure 9.5: Simple ASCII examples illustrating two streaming mesh format in compar-
ison to the standard OBJ format. Streaming pre-order format: finalization is explicitly
coded through negative relative indices for the last vertex use, introduction implicitly
corresponds to appearance. Streaming post-order format: all information is implicit,
finalization given implicitly by appearance of a vertex, while introduction is detected
as vertex first use. (a) The incompatible layout forces us to introduce vertex #3 earlier
than necessary in pre-order and to finalize vertex #2 later than necessary in post-order.
(b) By changing the order of the vertices the mesh can be streamed more efficiently.

if each vertex precedes all triangles that reference it, and are post-order if each vertex

succeeds all triangles that reference it; otherwise they are in-order. The introduction

of a vertex does not necessarily coincide with its appearance in the stream as triangles

can reference and thus introduce vertices before they appear.

The latest that a vertex can be introduced is just before the first triangle that

references it, and the earliest that a vertex can be finalized is just after the last triangle

that references it. We can keep the front small in a pre-order mesh by delaying the

appearance (introduction) of a vertex as much as possible, i.e. such that each vertex

when introduced is referenced by the next triangle in the stream. Conversely, in a

post-order mesh each finalized vertex would be referenced by the previous triangle. We

say that a stream is vertex-compact if each vertex is referenced by the previous or the

next triangle in the stream. Vertices can always be made compact with respect to

the triangles by rearranging them, which eliminates the skip and causes front width to

equal vertex width. Similarly, we say that a stream is triangle-compact if each triangle

references the previous or the next vertex in the stream. For a pre-order mesh this

means that each triangle appears immediately after its last vertex has appeared; for a

post-order mesh each triangle appears just before its first vertex is finalized. Note that

170

vertex-compactness does not imply triangle-compactness, and vice versa. It is always

possible to rearrange the triangles to make them compact with respect to a given vertex

layout, which causes front span to equal vertex span (since the oldest active vertex could

be finalized if it were not waiting on a neighbor). Finally, a streaming mesh is compact

if it is both vertex- and triangle-compact (see Figure 9.5).

9.4.2 Working with Streaming Meshes

Streaming meshes are ideally suited for the type of processing that was introduced in

the previous chapter. In this model, the mesh streams through an in-core stream buffer,

which is large enough to hold all active mesh elements, i.e. its size is at least the front

width. For straightforward tasks that simply need to dereference the vertices, such as

rendering a flat shaded mesh, a minimal stream buffer is needed. For more elaborate

processing tasks, a larger stream buffer is used that may hold as many additional mesh

elements as there are memory resources available. We call the loops of edges that

separate already read triangles from those not yet read an input stream boundary. For

applications that write meshes, there is an equivalent output boundary.

Streaming meshes allow pipelined processing, where multiple tasks run concurrently

on separate pieces of the mesh. One module’s output boundary then serves as the down-

stream input boundary for another module. Because the mesh is only operated on in a

single pass and because the streamed data is accessed sequentially, we can create fast

out-of-core stream modules, for compression, simplification, or similar batch processing

tasks, each with processing speeds on the order of 100,000 triangles per second.

The width of a streaming mesh is of particular interest as it is a lower bound for

the minimal amount of memory required to seamlessly process a mesh, so in general

we like the width to be as low as possible. But many processing tasks are inherently

span-limited. Any process that requires maintaining the same order between input and

output triangles while doing computation on them that involve neighboring elements

must buffer a number of elements that is at least as large as the span. For example,

conversion between pre-order and post-order streaming meshes is a span-limited oper-

ation if the triangle order is to be preserved. The same holds true for converting from

non-compact to compact streaming meshes. These are common operations on stream-

ing meshes as algorithms like to consume compact pre-order input but often produce

non-compact post-order output. Although not inherently span-limited, randomized al-

gorithms, such as the simplification algorithm described in Section 8.6 for example, can

benefit from low span input meshes. When all processing boundaries advance at the

171

same speed, no complictated mechanism is needed to assure each mesh element roughly

the same probability of being considered for processing.

Streaming meshes are a light-weight mesh representation that does not provide

information such as manifoldness, valence, incidence relationships, and other useful

topological attributes. But we can easily convert them to processing sequences, which

provide this information and also let the user store data along the stream boundaries.

We have an automated process for converting streaming meshes to processing sequences

that was already mentioned in Section 8.5. It temporarily buffers vertices and triangles

in a waiting area within which triangles await the finalization of their vertices. In

practice, this buffer does not need to be much larger than the stream width. As a

result we can read and write simple streaming meshes but retain the option to process

them through the more powerful processing sequence API.

9.5 Generating Streaming Meshes

Many applications that generate large meshes can easily produce streaming meshes.

They only need to interleave the output of vertices and triangles and provide infor-

mation when vertices are no longer used. Even if this information is not exact, some

conservative bounds often exist. For example, a marching cubes implementation for

extracting iso-surfaces from a large regular volume grid could output all vertices of

one volume layer, followed by a set of triangles, and then finalize the vertices before

moving on to the next layer. This is the technique we used to produce the coherent

“ppm” mesh from Table 9.1 that was extracted from a gigantic regular volume grid of

size 2048× 2048× 1920. Here, even implicit finalization in the form of a bound on the

maximum number of vertices per layer would be sufficient to finalize vertices.

In this sense, streaming meshes are often the natural output of existing applica-

tions. Given limited memory resources, it is quite difficult to produce totally incoherent

meshes as the mesh generating application can only hold and work on small pieces of

the data at any time—unless, of course, this mesh generating application has plenty of

main memory at its disposal. The reason that the large statues from Stanford’s Digital

Michelangelo Project (Levoy et al., 2000) are so incoherent is that they were generated

on a supercomputer with gigabytes of main memory. But with such powerful equipment

at hand it would have been simple enough to apply a post-processing step for bringing

the mesh elements into a more coherent order before distributing these large data sets.

Since there is a large body of incoherent meshes that are stored in various legacy for-

mats, we now outline several out-of-core algorithms that are mainly based on external

172

sort and that can be used to convert these meshes from standard indexed formats to a

streaming format. These algorithms may also be used to improve the layout of existing

streaming meshes that either introduce/finalize vertices too early/late or that have an

overly incoherent triangle ordering.

9.5.1 Interleaving

If the mesh layout is reasonably coherent, we can construct a streaming mesh from

an indexed mesh by interleaving vertices and triangles to the greatest extend possible

without reordering them. The interleaving step is straightforward given independent

access to vertex and triangle arrays. The non-trivial step of the algorithm lies in

computing when to finalize the vertices. We here sketch an out-of-core algorithm that

outputs a pre-order streaming mesh.

In an initial pass over the input mesh we write vertices and triangles to separate

temporary files. We also output all corners of the mesh to a temporary corner file, i.e.

for each triangle t = {i, j, k} we output 〈i, t〉, 〈j, t〉, 〈k, t〉. We then externally sort the

corner file on the vertex field, which groups a vertex’s incident corners together. Next,

we scan the sorted corner file. We fetch all corners of a vertex, determine the triangle

tmax with the last reference to this vertex, and store it to a temporary reference file. In

a final pass, we scan the triangle file. For the current triangle we advance in parallel

on the vertex and the reference files to the largest indexed vertex. For each read vertex

v we output the coordinates to the streaming mesh and insert the record 〈v, tmax〉 into

an in-core hash indexed by v. Then we look up each of the current triangle’s vertices

{i, j, k} in the hash to see if their tmax equals the current triangle index. If so, we

include finalization information when outputting this triangle to the streaming mesh.

Before continuing with the next triangle, we remove all finalized vertices from the hash.

This algorithm uses in-core storage (for the hash table) proportional to the width

of the created mesh. This dependence is not particular restrictive as there is no benefit

in creating streaming meshes with high front width. It makes little sense to apply

interleaving to meshes with high skip such as the “dinosaur” or the “Lucy” model. To

stream these meshes we need to change either their vertex or triangle order or both.

9.5.2 Reordering

All of the streaming mesh reorderings tools that are described in the following rely on

the on the same basic steps. To create a streaming mesh in pre- or post-order, we need:

a vertex layout, a triangle layout, and finalization information.

173

Layout In an initial pass over the input mesh we write vertices and triangles to

separate temporary files. We store with each vertex its original index so that after

reordering it can be identified by its triangles. Usually we will specify only one layout

explicitly and ensure the other layout is made compatible. Each explicit layout is

specified as an array of unique sort keys, one for each input vertex or triangle, which

we merge with the input elements into their temporary files and on which we perform

an external sort (on increasing key value) to bring the elements into their desired order.

For a specified triangle layout, we assign (not necessarily unique) sort keys k to

vertices v based on their new incident triangle indices t: for pre-order meshes we use

kv = minv∈t t; for post-order kv = maxv∈t t. Conversely, if a vertex layout is specified,

we compute pre-order triangle keys kt = maxv∈t v and post-order keys kt = minv∈t v.

These keys are based on the indices in the reordered layout. Thus, when an explicit

vertex order is specified we must first dereference triangles and update their vertex

indices. For a conventional indexed mesh, we accomplish this dereferencing step via

external sorts on each vertex field (Chiang and Silva, 1997). If the input is already

a streaming mesh, we can accomplish this step much faster by dereferencing (active)

vertices, whose keys are maintained in-core, on-the-fly as the input is first processed.

Finalization For nonstreaming input we compute implicit finalization information

by first writing all corners 〈v, t〉 to a temporary file and sorting it on the vertex field v.

We then compute the degree d = |{t : v ∈ t}| for each vertex, which will later be used

as a reference count. For streaming input, degrees are computed on-the-fly.

Output We now have a file with vertex records 〈kv, v, d, x, y, z〉 and a file with triangle

records 〈kt, v1, v2, v3〉 that we externally sort on the k fields. We then output a streaming

mesh by scanning these files in parallel. Pre-order output is driven by triangles: for

each triangle we read and output vertices one at a time until all three vertices of the

triangle have been output (possibly also outputting skipped vertices not referenced by

this triangle). Conversely, for a post-order mesh we drive the output by vertices: for

each vertex we tap the triangle file until all incident triangles have been output. We

maintain for each active vertex a degree counter that is decremented each time the

vertex is referenced. Once the counter reaches zero the vertex is finalized and removed.

Compaction

We can always eliminate the skip in a mesh layout by reordering the vertices. To

avoid skips, we must ensure that vertices appear in the order they are first referenced.

We always can do this with pre-order vertex compaction by fixing the triangles and

174

reordering the vertices using the pre-order vertex sort keys defined above. Hence, during

output each triangle’s vertices have either already been output or appear next in the

vertex file. As in the case of interleaving, this algorithm is width-limited. Note that the

corresponding algorithm for post-order is span-limited (unless we allowed reordering of

triangles) and either requires O(span) memory or additional external sorts.

If the vertex layout is already coherent but the triangle layout is not, triangle com-

paction is worthwhile. For each vertex, in pre-order triangle compaction we immediately

output all triangles that can be formed with this and previous vertices; in post-order

compaction we output all triangles formed with this and later vertices. Because triangle

compaction can shorten the spans of up to three vertices for each reordered triangle,

it has the potential to be more effective at improving the streamability of a mesh than

vertex compaction, for which moving a vertex only affects its own span.

Because of inter-dependencies creating streams that are fully compact is more chal-

lenging than ensuring vertex- or triangle-compactness alone. Given a triangle sequence

we output a compact pre-order mesh as follows. For each remaining triangle t in the

sequence, we output its vertices one at a time if they have not yet been output (thus

ensuring vertex-compactness). For each newly output vertex v, we also output any

triangle (other than t) incident on v whose other vertices have also been output (thus

ensuring triangle-compactness). We then output t and continue with the next triangle.

This (possibly rearranged) triangle order is therefore induced by the vertex-compact

vertex order given by the original triangle order, i.e. kt = maxv∈t minv∈s s.

Spatial Sorting

If the vertex and triangle orders are both inherently incoherent, then compacting ver-

tices or triangles is futile if we seek to reduce both width and span. Such meshes need

to be reordered from scratch. Perhaps the simplest method for doing this is to linearly

order its elements along a spatial direction such as its maximal x, y, or z extent. We

first “rank” the vertices by sorting them in geometric order and use the rank both as

the new (unique) index and sort key. Once vertices and triangles have been sorted, we

drive the output by triangles (vertices) to produce a vertex-compact (triangle-compact)

mesh. Because the sorted vertex order is close to but not guaranteed vertex-compact,

we maintain a delay buffer for vertices that would be skipped if output immediately.

We also examine layouts based on space-filling curves. For simplicity, we chose the

(Morton order) z-curve, for which we can compute sort keys by quantizing the vertex

coordinates and interleaving their bits, e.g. as xnynznxn−1yn−1zn−1 · · · x1y1z1.

175

Topological Sorting

An alternative to spatial sorting is topological traversal of the mesh. In Table 9.1 we

report results for breadth-first vertex sorts and depth-first triangle sorts. Breadth-

first traversals naturally lead to a low span as they always continue with the “oldest”

element. One detail worth noting is that a breadth-first traversal must consider tri-

angles that are only vertex-adjacent (e.g. triangles around non-manifold vertices) to

avoid leaving such vertices “hanging,” which would result in large triangle spans. A

depth-first traversal by definition leaves mesh elements hanging and therefore guaran-

tees layouts with high span as evidenced in Table 9.1. It also results in considerably

higher width—especially for high genus meshes such as the “ppm” surface. For each

topological handle in the mesh, the front elements of a traversal eventually split into

two unconnected groups. A depth-first traversal leaves one group hanging on the stack

until reaching it from the other side.

Our breadth-first sort has been designed to output fully compact meshes. The

output is vertex-driven, thus ensuring triangle compactness. We use as primary sort

key for each vertex the index of its least recently output neighboring vertex. To break

ties among neighbors, we use as secondary key whether or not the vertex forms one

or more triangles with already output vertices, which eliminates skips and guarantees

vertex compactness. Finally, as tertiary key we use the most recently output neighbor,

which results in coherent “walks” around each stream boundary.

We currently do not have out-of-core algorithms for these topological sorts. The

results in Table 9.1 were obtained with an in-core algorithm on a supercomputer with

large memory capacity. However, these topological traversals are readily accommodated

by our out-of-core mesh, the external memory data structure that was described in

Section 7.3. Alternatively, we can also use the clustering approach that we implemented

for spectral sequencing (which is described next) to create these topological orderings.

Spectral Sequencing

For many meshes, geometric or topologic sorting will produce sufficiently coherent

layouts. However, if the mesh is “curvy” (such as the “dragon” model) with changing

principal direction or if the mesh is “spongy” (such as the “ppm” surface) with complex

topology and space-filling geometry, these strategies produce orderings that are far from

the best possible. The traversal shown in Figure 9.6, for example, follows the winding

body of the “dragon” and achieves a much lower front width. Intuitively speaking,

we want a rubber band to sweep over the connectivity graph so that it has the least

176

Figure 9.6: The “dragon” mesh reordered by (a) a depth-first sort compressor, (b) a
breadth-first sort compressor, (c) spatial sort, and (d) spectral sequencing.

maximal expansion. We now describe a method particularly aimed at generating low-

width orderings. Because stream boundaries have to turn corners to be as short as

possible and do not advance uniformly, the span will suffer in favor of the width.

We first note that in a triangle-compact mesh the triangle order is “induced” by

the vertex order, and we can therefore without loss of generality focus only on ordering

vertices and treat this as a graph layout problem since triangle compaction can only

further reduce the width and span. In a triangle-compact mesh front span equals

vertex span, which in turn is equivalent to graph bandwidth (Dı́az et al., 2002), while

front width, also known in the finite element literature as wavefront (Scott, 1999), is

equivalent to vertex separation (Dı́az et al., 2002).

Both bandwidth and vertex separation are known to be NP-hard, and hence heuris-

tics are needed. Intuitively, breadth-first sorting is a good heuristic for bandwidth, and

is often used as an initial guess in iterative bandwidth minimization methods. One

popular heuristic for vertex separation is spectral sequencing, which minimizes the sum

of squared edge lengths in a linear graph arrangement. Spectral sequencing amounts to

finding a particular eigenvector (the Fiedler vector) of the graph’s Laplacian matrix. To

solve this problem efficiently, we use the ACE multiscale method (Koren et al., 2002).

To make the problem more tractable for large meshes, we presimplify the input

using a variation of the streaming edge collapse technique from (Isenburg et al., 2003),

and contract vertices into clusters based purely on topological criteria aimed at creat-

ing uniform and well-shaped clusters. Clusters are maintained in a memory-mapped

array as circular linked lists of vertices, using one index per vertex. We then apply

ACE to order the clusters in-core, and finally order the mesh cluster by cluster, with

177

mesh description original layout spectral sequencing

geo.
sort

topo.
sort

inter-
leaved

v-com-
pacted

t-com-
pacted

linear
width
span

z-order
width
span

breadth
width
span

depth
width
span

name skip
genus v-width

layout diagram snapshots snapshots
comp. t-width width width width width

vertices v-span span span span span
triangles t-span

bunny 34,569 413
1,502

583
22,999

334
354

405
21,704

0 9,133
1 11,135 34,813 9,133 3,924 228

35,947 35,742 34,834 34,549 34,641 785
69,451 69,181

horse 40,646 419
2,563

482
23,728

443
466

440
47,446

0 550
1 4,272 40,653 550 2,070 303

48,485 48,471 48,485 3,167 48,471 3,286
96,966 6,204

dinosaur 55,196 568
1,825

991
42,083

357
383

409
51,315

0 496
1 2,048 55,331 496 1,028 241

56,194 4,353 55,680 1,083 4,353 1,382
112,384 2,017

armadillo 171K 1,042
3,796

1,160
124K

1,115
1,199

1,457
171K

0 51,951
1 40,529 172K 51,951 17,873 638

172,974 172K 172K 172K 172K 4,405
345,944 345K

dragon 434K 1,274
9,243

1,713
252K

1,680
2,015

8,583
435K

46 4,586
151 7,147 434K 4,586 3,918 668

437,645 434K 434K 54,825 434K 11,617
871,414 109K

buddha 94,080 1,556
12,682

1,688
205K

1,975
2,335

14,639
543K

104 5,037
1 6,907 98,121 5,037 3,472 883

543,652 24,889 111K 102K 24,889 6,993
1,087,716 205K

thai statue 0 6,003
43,970

4,989
1.93M

7,051
7,897

35,461
4.99M

3 53,416
1 54,832 53,416 53,416 29,337 3,761

4,999,996 4.70M 4.70M 4.70M 4.70M 150K
10,000,000 9.41M

lucy 11.5M 4,985
20,362

11,654
5.63M

5,904
6,547

12,904
12.4M

0 255K
18 231K 11.6M 255K 113K 5,841

14,027,872 13.5M 13.5M 13.5M 13.5M 200K
28,055,742 26.8M

david1mm 1,568 8,919
36,421

10,705
6.30M

8,282
8,971

35,770
28.1M

137 26,383
2,322 52,515 26,405 26,383 26,375 7,862

28,184,526 15.8M 15.8M 15.8M 15.8M 752K
56,230,343 31.5M

st. matthew 2,121 33,207
157K

23,858
32.8M

23,602
25,554

110K
185M

483 31,931
2,897 58,916 31,932 31,931 31,895 33,029

186,836,665 29.1M 29.1M 29.1M 29.1M 3.85M
372,767,445 58.3M
ppm 306K 114K

290K

148K
125M

99,410
112K

3.07M
206M

167,636 311K
167,584 813K 616K 311K 381K 56,179

234,901,044 617K 617K 462K 617K 27.0M
469,381,488 924K
atlas 139 22,638

64,354

37,469
94.8M

29,923
32,156

246K
254M

5,496 28,701
38 58,281 28,705 28,701 28,701 45,998

254,837,027 30.6M 30.6M 30.6M 30.6M 28.5M
507,512,682 61.2M

Table 9.1: Layout and stream measures for the meshes used in our experiments. We
report the skip, vertex span, and triangle width of the original vertex order, and the
vertex width and triangle span of the original triangle order (which can be quite in-
coherent). Starting from the original layout, we report the front width and span of
pre-order streaming meshes created by interleaving, vertex compaction, and triangle
compaction, and include snapshots of these layouts. The rightmost columns highlight
the improvements of vertex-compact streams obtained by reordering triangles and ver-
tices using spectral sequencing, geometric sorting along the axis of maximum extent and
along a z-order space-filling curve, and topological breadth- and depth-first traversals.
We also list the genus and component, vertex, and triangle counts for each mesh.

178

no particular vertex order within each cluster. While the intra-cluster order can be

improved, the reduction in width is bounded by the cluster size.

A few implementation details: To keep track of triangle clusters, we use a memory

mapped array containing one 32-bit index per triangle. Ultimately this array will report

the position of each triangle in the reordered mesh. Initially this array represents

circular linked lists that join triangles into clusters. When an edge collapse joins two

clusters, their corresponding lists can be merged in constant time. Each in-core cluster

has an index to one of its triangles in this list. Since both the input mesh and the

resulting clusters are fairly coherent, accesses to the memory mapped array will be too.

Once the clusters have been ordered in-core, the triangle links are replaced with the

final triangle positions, which is done one cluster at a time. To ensure evenly-sized and

well-shaped clusters, we use the following metric: the cost of an edge collapse equals

the perimeter (in number of primal edges) of the resulting cluster. To avoid high spans

associated with non-manifold vertices, we “glue” the disjoint triangle loops around such

vertices together.

mesh name
inter-

leaving
com-

paction
spatial sorting spectral sequencing

ranking total ranking total

buddha 0:05 0:09 0:02 0:13 0:27 0:33
lucy 4:36 5:11 1:03 11:33 3:41 6:59
st. matthew 1:41:29 2:08:36 21:18 4:09:52 45:42 2:31:47

Table 9.2: Timings (h:m:s) including compressed I/O on a 3.2 GHz PC.

9.5.3 Results

We have measured the performance of our mesh reordering tools on a 3.2 GHz Intel

XEON PC running Linux with 2 GB of RAM. Table 9.2 summarizes the performance

on a few example meshes. Interleaving takes gzipped PLY as input and writes a binary

streaming mesh. We use this as input to compaction, which outputs a compressed

streaming mesh for input to spatial sorting, and so on. Interleaving and compaction

achieve an overall throughput of 60–100 thousand triangles per second (Ktps). Spatial

sorting and spectral sequencing are broken down into the vertex ranking phase and the

triangle compaction sorting phase. Spatial sorting is somewhat slower at 25–50 Ktps

because it assumes the input layout is highly incoherent. Spectral is faster with at

70–100 Ktps because is takes advantage of coherent streaming input; hence the large

speedup in the reordering phase. These timings include reading the original mesh from

gzipped PLY input and writing the final output as a compressed streaming mesh.

179

9.6 Compressing Streaming Meshes

Current mesh compression schemes do not preserve the ordering of the vertices and tri-

angles of a mesh. The impressive reductions in file size are mainly achieved by encoding

mesh connectivity with on average only two bits per vertex. By comparison, standard

indexed formats need at least 6 log2(v) bits per vertex for the connectivity of meshes

with v vertices because because they store not only the mesh but also the particular or-

dering of its elements. Compression schemes completely disregard the original ordering

and rearrange mesh elements in an order they see best fit for compression, which gen-

erally means as encountered during a deterministic traversal of the connectivity graph.

Hence, for current compression schemes the layout of the compressed mesh is dictated

by the traversal strategy employed by the compression scheme.

Compressing an initially incoherent mesh will generally improve its layout. In the

resulting order subsequent triangles often share an edge and vertices appear in the

order they are referenced by the triangles. After all, it was the element odering of

the compression scheme from Chapter 7 that inspired this work. However, the traver-

sal heuristic used by current compression schemes really aim at lowering the bit-rates

with good output layouts being coincidental and not part of the design. Most com-

pression schemes traverse meshes in depth-first order and thereby generate triangle

orderings with maximal span. The layout artifacts of such compressors are shown in

Figure 9.6. They also produce orderings of unnecessary high width—especially for

meshes with many topological handles. While one-pass schemes (Touma and Gotsman,

1998; Gumhold and Strasser, 1998) can easily be modified to operate in a breadth-first

manner, multi-pass schemes (Taubin and Rossignac, 1998; Rossignac, 1999; Isenburg

and Snoeyink, 2000) cannot. So far nobody paid attention to what a compressor does

to the layout of a mesh—maximum compression and algorithmic elegance were the sole

design criteria.

9.6.1 Compressing in Stream Order

To preserve the ordering of mesh elements we have to depart from the traditional

approaches to mesh compression and use a scheme that can encodes meshes in their

particular stream order. Obviously such a scheme will not achieve the same rate of

compression as schemes that are allowed to reorder the mesh as they please. However,

the benefit of encoding in stream order is that streaming mesh output can be imme-

diately compressed while it is written to disk or piped across a network. In contrast,

previous schemes require loading the complete mesh and constructing a representation

180

that allows traversing its connectivity graph—before the compression process can even

begin. In order to do this for large meshes that can not be loaded into memory they

either need to cut the mesh into smaller pieces as suggested by (Ho et al., 2001) or need

to build complex external memory data structures as we described in Chapter 7. In-

stead we now have a streaming mesh writer and a corresponding reader through which

on-the-fly compressed streaming meshes can be written and read in increments of single

vertices and triangles. An example API is outlined in Figure 9.7.

class SMwriter smc {
// specifies optional quantization

bool open(FILE* file, int bits);

// may optionally be set if known in advance

void set bounding box(float* min, float* max);

void set num verts(int nverts);

void set num faces(int nfaces);

bool write vertex(float* v pos);

// finalize indices used for the last time

bool write triangle(int* t idx, bool* t final);

bool close();

}

typedef Type enum {SM VERTEX, SM TRIANGLE};

class SMreader smc {
int bits;

// only optionally known

float *bb min, *bb max;

int nverts, nfaces;

bool open(FILE* file);

Type read element();

bool close();

// position of read vertex

float* v pos;

// indices of read triangle ...

int* t idx;

// ... and their finalization

bool* t final;

}

Figure 9.7: An example API for reading and writing compressed streaming meshes.

For efficiency reasons, our compressor writes only vertex-compact pre-order meshes

with immediate vertex finalization. In order to compress meshes that are not pre-

order or that do immediate finalize vertices they only need to be piped through the

appropriate converter. While the streaming mesh input does not need to be vertex-

compact, it will be compressed in a vertex-compact manner. Out-of-order vertices are

delayed and will not be compressed until actually referenced by a triangle. Whenever

a vertex is written it is simply inserted into a hash using its index as key. Only when a

triangle is written actual compression takes place. In this moment both the connectivity

between this triangle and all previously written triangles and also the positions of all

vertices that are referenced for the first time are output in compressed form.

The compressor maintains a set of active vertices and a set of active half-edges. The

active vertices have been referenced by previously written triangles but have not yet

been finalized. The active half-edges are oriented and connect two active vertices. They

are part of a previously written triangle and their counterpart of opposite orientation

has either not yet appeared or does not exist. With each active vertex the compressor

keeps a list to all its incident active half-edges.

181

When a triangle is written the compressor checks whether any of the triangle’s

vertices or any of the counterparts of the triangle’s half edges are already active. There

are eight different configurations that can arise, namely start0, start1, start2, start3,

add, join, fill, and end, which are illustrated in Figure 9.8. The compressor encodes the

configuration of the current triangle with an arithmetic using four different symbols:

START, ADD, JOIN, FILL END. For reasons of efficiency it uses only one symbol

for all four starti configurations as they are typically of infrequent occurance. The i

is subsequently compressed with a separate contexts. The fill and end configurations

only need one symbol because they can be distinguished at the decoding end.

Unless the current triangle is in the start0 configuration, the appropriate active

vertices are then referenced. This could be done using log2(w) bits per vertex, where w

is the current number of active vertices (i.e. the width). However, since subsequently

written triangles often share vertices we first check whether the active vertex under

consideration was either v0, v1, or v2 of the previously written triangle. We use an

arithmetic context to encode if this is indeed the case, which often saves us those

log2(w) bits that are the single most expensive item in our connectivity encoding.

In case of an add, join, fill, or end configuration the current triangle is also adjacent

to one or more active half-edges. After having referenced the first active vertex (either

with log2(w) bits or as a vertex from the previous triangle) we can reference other active

vertices using the list of half-edges maintained with each active vertex. Since this list

often contains only one half-edge with the correct orientation, we usually avoid having

to store any further information. Only vertex v2 of a join configuration can obviously

not be referenced this way, making them the most expensive configurations to encode.

The positions of newly introduced vertices are predicted with the parallelogram

rule (Touma and Gotsman, 1998) in case of an add configuration or as a neighboring

vertex in case of a starti configuration and only a corrective vector is stored. For the

first vertex of a start0 configuration there is no known neighbor. Here we simply use

the most recent vertex that was compressed as the prediction.

Finalization information is encoded by specifying for all three vertices whether the

current triangle finalizes them or not. These binary flags can be efficiently compressed

with context-sensitive arithmetic coding. The context is chosen based on the number of

triangles and active half-edges around this vertex. As most vertices are finalized when

they are surrounded by a closed ring of triangles there is a strong correlation between the

moment a vertex no longer has active half-edges and its finalization. Border vertices,

which will still have one or two such edges but tend to be surrounded by a smaller

182

number of triangles. The triangle and half-edge counts are shown in Figure 9.8 in the

small box associated with vertex.

The vertices are maintained in two data structures: a hash table and a dynamic

vector. The hash table is used to look up the vertices by their index. A vertex is

added to the hash when it is written, it is looked up in the hash when a triangle is

written that references it, and it is removed from the hash when it is finalized. The

dynamic vector is used to address previously encoded vertices with an index between 0

and w − 1. A vertex is added to the dynamic vector when the triangle that references

it for the first time is written. Subsequently the encoder looks up the current index

that a vertex has in this dynamic vector whenever it needs to encode a reference to

this vertex. These indices can then be encoded with log2(w) bits. The dynamic vector

implements constant time insertion and removal of vertices and constant time lookup

for vertex indices simply by moving the last entry to a deleted position. This means

that the indices with which vertices are addressed in that data structure will change

over time, but they do this in a consistent manner at both encoder and decoder.

9.6.2 Bounding-box less quantization

To support quantization of floating-point geometry for streaming meshes whose bound-

ing box is not known in advance, we use a scheme that quantizes conservatively using

a bounding box that is learned as the mesh streams by. We perform predictions in

floating-point and encode separate correctors for sign, exponent, and mantissa. For

compressing them, we switch between multiple arithmetic contexts as the success of

predictions in floating-point varies with the exponent. Although initial experiments

indicate that this approach works well in practice, we still need to analyze its perfor-

mance. In addition our streaming mesh writer supports lossless floating-point compres-

sion (Isenburg et al., 2005a), which will obviously be less efficient but allows the use of

compression when quantization—for whichever reason—is not an option.

9.6.3 Results

In Table 9.3 reports results for compressing meshes in different stream-orders. We list

what percentage of triangles is written in which configuration and what percentage of

active vertices is referenced as a vertex from a previous triangle. Whenever this is the

case we do not have to store an explicit reference to that active vertex. The detailed

break-down of connectivity coding costs show that the references are, as expected,

the single most expensive item, whereas the finalization information is basically free.

183

add

v0 v1

v2

fill

v0

v1

v2

join

v0
v1

v2

v0

v1

v2

fill

start2

v0

v1

v2

start1

v0

v1

v2

start0

v0

v1

v2

start3

v0
v1

v2

5/2

4/2

1/2

2/2

4/2

2/2

3/2

1/2

2/2

1/2

1/2
2/2

2/2
3/2

3/4
3/2

1/2

1/2

1/2

3/2
3/2

2/4

3/2
4/4

3/23/2

2/2

2/2 2/2

2/2

3/4

5/2

3/4

2/2 3/4

3/4

3/4

5/2

3/2
4/2

2/2

4/2
5/2

2/2

3/2
3/2 3/2

2/2

2/2

4/2
4/2 3/2

3/4

2/2

4/2

3/4

4/2 3/2

2/2

4/2

4/2

5/2 3/2

3/2

end

v0

3/4 v2

v1

3/2
6/2

5/2

4/2

3/2

add

v0 v1

v2

3/2
4/1

1/2

4/2

1/1

processed region

unprocessed region

written triangle

introduced

finalized

active vertex

active edge

neither
number of triangles / number of active edges

mesh border

1/2

Figure 9.8: The different adjacency configurations that occur between the written tri-
angle and the active vertices and edges maintained by the compressor: a start triangle
is not adjacent to an active edge, but may be adjacent to one, two, or even three active
vertices; an add triangle is only adjacent to one active edge with the third vertex being
a newly introduced; for the similar join configuration this third vertex is already active;
a fill triangles is adjacent to two edges and an end triangle is adjacent to three edges.
Vertices are usually finalized by fill and end triangles, but for meshes with borders
or non-manifold vertices this also happens in other configurations. Small boxes show
counts for number of triangles and number of active half-edges.

Compared to the results of Table 7.4, we achieve almost the same geometry compression

rates, while our connectivity compression rates are ususally much higher.

Most interesting is the drastically different performance of connectivity compression

on the two (almost identical) topological orderings. While topornd performs a slightly

184

mesh operations [%] use details for conn [bpv] totals [bpv] time mem
(ordering) s a j f e [%] fig pre exp adj fin conn geom [sec] [MB]

buddha
(vcompact) 15 25 9.6 37 14 49 3.9 3.9 13.5 .82 .00 22.08 21.28 2.8 1.5

(spatial) 1.3 48 4.2 43 4.2 56 2.5 2.4 8.9 .15 .00 13.65 21.49 2.3 0.9
(topornd) 6.8 37 2.3 50 3.3 60 2.8 2.7 8.8 .36 .00 14.64 21.63 2.8 1.0
(topoord) .0 50 .3 49 .3 97 1.9 1.3 0.7 .02 .00 3.98 21.72 2.5 0.9

lucy
(vcompact) 1.6 47 8.1 34 8.7 77 2.5 2.2 8.6 .35 .00 13.60 14.70 77 37

(spatial) .5 49 2.1 46 2.1 53 1.9 1.9 11.3 .07 .00 15.18 14.58 65 1.6
(topornd) 3.1 44 1.0 50 1.5 62 2.2 2.6 9.2 .15 .00 14.22 14.42 65 1.8
(topoord) .0 50 .0 50 .0 99 1.7 0.8 0.3 .00 .00 2.83 14.59 61 1.8

david1mm

(vcompact) 12 28 5.8 44 9.4 66 2.8 2.6 9.9 .60 .02 15.94 10.95 126 4.8
(spatial) .8 49 2.0 47 2.0 67 1.9 2.8 8.0 .07 .02 12.71 11.63 131 2.4

st. matthew
(vcompact) 11 31 6.2 44 8.5 67 2.7 2.4 10.0 .53 .02 15.62 8.22 15 m 5.2

(spatial) .9 48 2.2 46 2.3 69 1.9 2.9 8.6 .08 .02 13.60 8.97 15 m 4.0

Table 9.3: For compressing in stream order we report the percentages of start, add,
join, fill, and end configurations that occur and of subsequent triangles that re-use
vertices. We give itemized coding costs for triangle configuration, previous and explicit
references, edge adjacency, and vertex finalization. Total bit-rates for connectivity
and geometry (quantized at 16 bits) and both the time and the maximum memory
footprint for reading, compressing, and writing the streaming meshes are listed.

randomized version of a breadth-first traversal that “jumps” around on the boundary,

topoord tries to maximize the edge-connectedness of subsequent triangles during the

breadth-first traversal. The resulting high re-use of vertices between subsequent tri-

angles almost always saves us from using explicit references. This already hints at a

possible variation of this coder that can lead to significantly better compression rates:

Instead of strictly following the original triangle order, we could allow the compressor

to keep a small triangle buffer within which it could locally reorder triangles to bring

them into a more edge-connected order without affecting the global stream quality.

Nevertheless, even following the dictated triangle order we get reasonable compres-

sion rates considering the high speeds and the low memory use. Compared to the

out-of-core compressor, which required gigabytes of temporary disk space and about

7 hours time to create an 11 GB data structure on disk and then needed another 4

hours and 384 MB of main memory to produce the compressed mesh, we can now

compress the compacted “St. Matthew” statue directly in only 15 minutes while using

less than 6MB of main memory. The drawback is that we currently only achieve half

185

the overall compression rate and decompression is three times slower. However, in the

meantime we have shown that we are able to improve compression by integrating the

local reordering strategy we just mentioned. Using a delay buffer of a few hundred to

a few thousand triangles within which the compressor greedily brings triangles into an

edge-connected order leads to connectiviy compression of around 4 to 5 bits per vertex,

nearly independent from the original input order (Isenburg et al., 2005b).

9.7 Summary

In this chapter we have identified a major headache in large mesh processing—poor

mesh layouts—and suggested how to avoid this pain—keeping the mesh in a streamable

layout. We have both established a theoretical framework that characterizes the quality

of a layout and presented out-of-core tools that can improve poor layouts.

Compatible mesh layouts can be streamed by interleaving vertices and triangles in

their original order and adding finalization information. Incompatible yet low-width

layouts can be made streamable by compacting, meaning reordering either only the

vertices or only the triangles. The width and span of a vertex-compacted mesh are

proportional to the vertex width and triangle span of its layout. Vertex compaction

can create low-span streams when only the vertex span is high (e.g. horse and dragon).

The width and span of a triangle-compacted mesh are proportional to the triangle

width and vertex span of its layout. Triangle compaction can create low-span streams

for layouts where only the triangle span is high (e.g. the buddha). Layouts that are

both high in width and span always require reordering both vertices and triangles.

Breadth-first traversals naturally are low in span—and hence width—since the “old-

est” vertex introduced tends to be finalized first. Depth-first traversals, on the other

hand, leave the oldest vertices hanging and therefore guarantee high-span layouts. The

z-order layouts are by definition high in span, although of bounded length and fre-

quency, which results in a lower width. Linear spatial sorts produce layouts that are

sufficiently low in width and span for practial purposes. Spectral orderings can achieve

the lowest width but often at the expense of a higher span. For the large statues, even

the width suffers due to coarse granularity clustering (we used at most one million

clusters), which leaves the front increasingly ragged as it winds around the clusters.

Documenting coherence in the file format makes processing large meshes consid-

erably more efficient. It solves the main problem of dereferencing that complicates

almost every mesh application, from rendering an initial image to get an idea of what

data one is dealing with to the construction of complex hierarchical mesh structures.

186

While we presented simple backwards-compatible extensions to existing file formats,

our streaming meshes are not limited to a particular mesh format. One may even stick

to standard formats such as PLY or OBJ without explicit finalization information. As

long as we are guaranteed that the triangle ordering has low span and comes with a

compatible vertex ordering we can always “guess” finalization using a buffer that delays

vertices by a duration proportional to the maximal span.

We argue that stack-based approaches to large mesh compression are bad because

they systematically create meshes of maximal span and because they cannot efficiently

handle high-genus models where the stack can grow very deep—thereby also creating

meshes with high width. Instead a mesh compressor should be designed to perform some

sort of a breadth-first traversal that attempts to give vertices a similar “lifetime” on

the compression boundary. This means that some of the most celebrated compression

algorithms, such as the Edgebreaker scheme by (Rossignac, 1999) and the Topological

Surgery method of (Taubin and Rossignac, 1998), are poor choices for compressing

larger meshes because they can not be modified to breadth-first operation.

Finally we described a new scheme for compressing streaming meshes in their partic-

ular stream order. While it does not achieve state-of-the-art connectivity compression,

the sacrifice in bit-rate is well spent because we can now write compressed meshes on-

the-fly. This allows transparent integration of compressed mesh input and output for

mesh consuming and producing applications, which makes compression a more usable

feature in a typical mesh processing pipeline. Contrast this with previous schemes

that first spend several hours of constructing external memory data structures that use

gigabytes of auxiliary disk space—even when the mesh already had a nice layout.

Naturally, the question arises whether there are triangle orderings that are not only

good for streaming, but also good for rendering. We believe that such sequences exist

and that they will look similar to those generated by the scheme of (Hoppe, 1999). They

would essentially be short strips with generous overlaps that are grown in a breadth-

first manner such that no vertex is left hanging behind. For gigabyte sized data sets,

rendering sequences are probably not useful for the sake of image generation. However,

graphics hardware is more and more used for intensive numerical computations. Due

to current restrictions these computations are mainly implemented as pixel programs

and can not involve irregular connectivities. But as soon as there are mechanisms for

vertex programs to access local mesh connectivity, such sequences may be the most

band-width efficient way to stream large amounts of mesh data in a cache coherent way

from the harddisk through RAM and CPU onwards to the buffers on the graphics unit.

187

In the future we would like to investigate concurrent streaming at multiple res-

olutions, multiplexing of streaming meshes for parallel processing, and extensions to

volume meshes. We also envision that some sort of ‘space finalization’ would be useful

for processing tasks that require a spatially—as opposed to a strictly topologically—

coherent traversal, for example algorithms that check the mesh for self-intersections.

For better compression, future versions of the streaming mesh writer will have the

option to allow the compressor to do local reorderings (Isenburg et al., 2005b).

9.8 Hindsights

After this chapter was written, we realized that there was a large body of literature

on heuristics on graph reorderings that seemed largely ignored in the graph-theoretical

literature, namely algorithms for sparse matrix reordering to allow more efficient solv-

ing of linear systems. The pioneering works in this area were mainly published in

engineering journals, usually accompanied by an implementation in FORTRAN. It is

quite surprising how few cross references there are between the graph theory commu-

nity and the engineering community. In the engineering papers is virtually no mention

of the close relation between objectives in matrix reordering and the classic problem

of computing a minimal linear arrangement for a graph. Vice-versa there is no men-

tion in graph theory papers of the Sloan-like approaches, which are discussed below,

that seem to be good heuristics for generating arrangements with small cut-width. We

briefly survey the matrix reordering methods that are used in engineering so they can

be considered in follow-up works on mesh reordering.

Traditionally, there have been two different objectives for reordering matrices. Ei-

ther to create matrices with low bandwidth which are then used by fixed-band solvers,

or to create matrices with low wavefront (also called frontwidth) and profile (basically

the same as envelope), which are then used by profile methods (or variable-band or

skyline) solvers or frontal method solvers. The frontal method is due to (Irons, 1970)

and the profile method is due to (George, 1971).

The original reordering algorithms are based on level set structures from (Cuthill and

McKee, 1969), (Gibbs et al., 1976), or (Lewis, 1982) and all concerned with bandwidth

reduction, since at that time mainly fixed-band solvers were in use. In our terms, low

bandwidth translates to low span. The first improvement over the level set methods

for better wavefront reduction was the algorithm by (Sloan, 1986) that adds a global

component to the priority function directing the traversal. The algorithm was then

improved and integrated into the HSL package by (Duff et al., 1989). However, in

188

general this algorithm result in higher bandwidth, since the nodes are now longer

traversed with breadth-first style like in (Cuthill and McKee, 1969) or (Gibbs et al.,

1976). Since wavefront (or frontwidth) pretty much translates into what we call width,

these results are in accordance with ours—attempts to minimize the wavefront (i.e. the

width) inflate the bandwidth (i.e. the span).

Later, (Paulino et al., 1994) and (Barnard et al., 1995) realized that the order

induced by the Fiedler vector of the Laplacian connectivity matrix results is a good

heuristic for reducing the profile and the wavefront. In contrast to previous approaches

that use only the two end nodes of a pseudodiameter of the graph as the global infor-

mation for directing the traversal, these spectral approaches exclusively use the global

information of the Fiedler vector to position the nodes in the sequence. This is more or

less what we did in our spectral sequencing approach for reordering the mesh vertices.

The state of the art combines the globally good information of the Fiedler vector

used by (Barnard et al., 1995) with the locally optimal decisions of the improved Sloan

method by (Duff et al., 1989). This is due to (Kumfert and Pothen, 1997) who use a

Sloan type algorithm that incorporates the Fielder vector as the global component of its

priority function. This spectral/Sloan hybrid, which is also called “Fast Sloan”, almost

always outperforms the individual algorithms. Again, this hybrid algorithm was later

improved and included into the HSL package by (Reid and Scott, 1999; Scott, 1999).

It seems that a similar hybrid strategy could also be used to further improve on the

orderings created by our spectral sequencing approach.

In order to speed up the reordering of large matrices, there have been two multi-

level approaches (Boman and Hendrickson, 1996; Hu and Scott, 2001) that get close

to the performance of the hybrid Sloan algorithm by (Kumfert and Pothen, 1997). In

particular, they do not require the expensive computation of a Fiedler vector which is

a major obstacle for using the hybrid Sloan on large matrices. In contrast, our spectral

sequencing uses an out-of-core version of (Koren et al., 2002) to efficiently compute an

approximation of the Fiedler vector with a multi-level method.

Finally, there is the exchange method by (Hager, 2002) that can further reduce

the profile of matrices already reordered with, for example “Fast Sloan”. While the

original version of this algorithm seemed prohibitively slow, (Reid and Scott, 2002) have

shown how to implement it such that becomes practical. Other approaches we should

mention include simulated annealing which was investigated for bandwidth, profile and

wavefront reduction by (Armstrong, 1985) and for profile and fill reduction by (Lewis,

1993), but these methods are too slow for practical purposes.

Chapter 10

Conclusion

Layout diagrams for various meshes. Guess which is which. From top left to bottom
right these are ahddub yppah, elam, edalb, woc, nogard, elamef, ollidamra, and esroh.

In this dissertation I have shown two things. First, that polygon meshes can be

encoded more efficiently than triangle meshes by avoiding the initial triangulation step

and by operating directly on the polygonal connectivity. Second, that a coherent and—

more importantly—documented ordering of mesh elements gives IO-efficient access to

large polygon meshes that enables the design of new out-of-core algorithms that orga-

nize their operations to follow a stream-based paradigm.

10.1 Contributions

The main results of my dissertation work are as follows.

• I have shown that both the classic works on graph coding as well as recent con-

nectivity compression schemes represent mesh connectivity as an encoding of two

dual spanning trees. I have given intuitive illustrations that explain how being

more and more particular about the used pair of spanning trees allows recent

schemes to improve their worst-case bounds. (Chapter 2)

190

• I have organized the existing body of compression schemes into one-pass and

multi-pass schemes. This is of practical importance for designing compression

engines as multi-pass schemes do not scale with increasing model size. (Chapter 2)

• I have designed an edge-based method for encoding mesh connectivity that is

similar to Edgebreaker because also avoids explicit split offsets but different be-

cause it stores one label per edge instead of per triangle. This scheme has a

straight-forward extension to polygonal mesh connectivity and also allows in-

cluding pre-computed triangle strip information into the encoding. (Chapter 3)

• I have generalized the degree-based coder of (Touma and Gotsman, 1998) to

polygonal meshes and thereby achieved the currently lowest reported bit-rates for

polygonal connectivity. I have also given a simple proof that adaptive traversals

cannot guarantee to avoid split operations and have disproved the long suspected

redundancy of the split offsets used in degree coding. (Chapter 4)

• I have extended the most successful compression techniques for polygonal surface

meshes to hexahedral volume meshes. The presented coder is the first encode

hexahedral meshes directly and achieves bit-rates for connectivity and geometry

that are clearly superior to those reported for tetrahedral meshes. This is not sur-

prising. Hexahedral meshes are naturally more regular than tetrahedral meshes

because only hexahedral elements allow a regular tiling of space. (Chapter 6)

• I have shown how to compress gigantic polygon models that are much larger

than the available main memory on standard PCs. I have described an exter-

nal memory data structure that provides efficient out-of-core mesh access, how to

construct this data structure using only limited memory, and a one-pass compres-

sor that accesses this data structure as coherently and as infrequently as possible.

This allowed me to compress the largest models that were available to me in one

piece while achieving state-of-the-art compression rates. (Chapter 7)

• I have demonstrated that the particular mesh access provided by our compressed

format allows the implementation of highly IO and memory efficient simplification

algorithms. I have defined two processing abstractions, namely boundary-based

and buffer-based processing, that are supported by the order in which mesh ele-

ments are decompressed and by the availability of vertex finalization information.

I have adapted out-of-core simplification methods to each abstraction and shown

that this leads to improvements in in terms of more efficient execution, smaller

memory footprints, and even improved quality. (Chapter 8)

191

• I have extracted what made our compressed format so useful to design a new

streaming format to replace traditional mesh formats that are difficult to work

with when meshes are large. As an added benefit, a streaming mesh format

allows some mesh processing tasks (but not all) to perform in less time and with

less memory and disk overhead by adapting a stream-based approach. This is an

attractive alternative in situations where operating on polygon soup is insufficient

and where building external memory data structures is an overkill. (Chapter 9)

• I have described a compression scheme that can compress a streaming mesh in

its particular stream order. While this is obviously less efficient as a compression

schemes that pick their own traversal order, it makes compression more useful in

an actual mesh processing pipeline, as meshes can be compressed on-the-fly as

they are written out to disk or streamed across a network. (Chapter 9)

10.2 Limitations

The one big concern that I have heard from both paper reviewers and committee mem-

bers is in respect to my claim of a streaming mesh format being a better format for

large meshes. The usual argument is that a streaming format is no universal solu-

tion to all problems in out-of-core mesh processing. That is a true statement but a

somewhat unfair criticism. My supervisor tried to console me, saying “Give a bicy-

cle to someone who has been walking all his life and he will come back complaining

that it is not a jetplane”. I never claimed that a streaming mesh format is a suitable

on-disk representation for every type of out-of-core processing. The main intention of

our streaming mesh format is to replace traditional mesh formats (e.g. indexed meshes

like PLY and OBJ) that are cumbersome to work with when the meshes are large. In

this respect, streaming meshes are merely a more appropriate representation for storing

large meshes. But it does solve the problem of de-referencing, which is the first problem

that every out-of-core mesh processing must face with current formats. It also gives a

vocabulary and framework to analyze streaming processing as a potential alternative.

Streaming meshes neither solves nor attempt to solve the problem of accessing

large data sets for the purpose of efficient out-of-core visualization. For this various

techniques have been proposed (Lindstrom, 2003; Cignoni et al., 2004; Yoon et al.,

2004) that arrange the data based on some sort of spatial clustering usually at multiple

resolutions. These approaches try to ensure that the on disk storage of the data set

reflects its spatial distribution or more importantly the anticipated access pattern. But

192

visualization application are an inherently interactive application that require an online

processing paradigm that is quite different from our stream processing paradigm.

10.3 Future Work

So far we only have shown how to change compression and simplification algorithms

to work on streaming data. But also algorithms for surface reconstruction, remeshing,

parameterization, etc. seem suited to operate on streaming meshes. We hope that

experts in their respective research area will consider whether their algorithms can be

adapted to streaming processing. By defining both attributes and limitations within

which streaming approaches can operate with high efficiency, we create a potential for

inspirations to design new algorithms that can work within these parameters.

The presented streaming mesh format is just as flexible as traditional indexed for-

mats that rewards coherence in the ordering of the mesh elements without imposing

rigid constraints on it. But some algorithms may not only require topologic coher-

ence but also spatial coherence if they are to be adapted to streaming processing. To

check a mesh for self-intersections, for example, a stream-based algorithm would need

a spatially streaming mesh. Our reordering results in Table 9.1 illustrate that spatially

sorting a mesh along one axis usually gives sufficient topological coherence. But such

an algorithm would also need knowledge about when a mesh will no longer intersect a

piece of space. It remains to be investigated if some kind of “space finalization” would

be useful and how it could be realized without overly constraining the format.

Finally, extending the streaming paradigm to other types of geometric data such as

points clouds, scalar fields, and irregular as well as regular volume meshes seem obvious,

but useful extensions. Streaming isosurface extraction, for example, requires the volume

mesh that interpolates the function of interest to be arranged in a streamable layout.

For the case of regular volume grids we have already investigated one particular way

to arrange the grid cells that allows IO-efficient streaming extraction (Mascarenhas

et al., 2004). Another example is streaming surface reconstruction from point clouds

where we try to compute an approximation of a surface for which we have points that

were scanned by a laser range finder. If we had a “streaming Delaunay triangulator”

this should be a simple matter to implement. However, whether adapting a Delaunay

tessellator to streaming out-of-core operation is possible and in which order the points

should be streamed are interesting challenges.

193

Bibliography

Alliez, P. and Desbrun, M. (2001a). Progressive encoding for lossless transmission of
3D meshes. In SIGGRAPH’01 Conference Proceedings, pages 198–205.

Alliez, P. and Desbrun, M. (2001b). Valence-driven connectivity encoding for 3D
meshes. In Eurographics’01 Conference Proceedings, pages 480–489.

ANN (v 0.2). A library for approximate nearest neighbor searching by D. Mount and
S. Arya. University of Maryland.

Armstrong, B. (1985). Near-minimal matrix profiles and wavefronts for testing nodal
resequencing algorithms. International Journal for Numerical Methods in Engi-
neering, 21:1785–1790.

Bajaj, C., Pascucci, V., and Zhuang, G. (1999). Single resolution compression of
arbitrary triangular meshes with properties. In Data Compression Conference’99
Conference Proceedings, pages 247–256.

Balmelli, L., Taubin, G., and Bernardini, F. (2002). Space-optimized texture maps. In
Eurographics’02 Conference Proceedings, pages 411–420.

Bar-Yehuda, R. and Gotsman, C. (1996). Time/space tradeoffs for polygon mesh ren-
dering. ACM Transactions on Graphics, 15(2):141–152.

Barnard, S., Pothen, A., and Simon, H. (1995). A spectral algorithm for envelope re-
duction of sparse matrices. Numerical Linear Algebra with Applications, 2(4):317–
334.

Bernardini, F., Martin, I., Mittleman, J., Rushmeier, H., and Taubin, G. (2002). Build-
ing a digital model of Michelangelo’s Florentine Pieta. IEEE Computer Graphics
and Applications, 22(1):59–67.

Bogomjakov, A. and Gotsman, C. (2001). Universal rendering sequences for transpar-
ent vertex caching of progressive meshes. In Graphics Interface’01 Conference
Proceedings, pages 81–90.

Boman, E. and Hendrickson, B. (1996). A multilevel algorithm for reducing the envelope
of sparse matrices. Technical Report SCCM-96-14, Stanford University.

Brehm, E. (2000). 3-orientations and Schnyder 3-tree-decompositions. Technical Report
Diploma Thesis, Freie Universitt Berlin.

Brodsky, D. and Watson, B. (2000). Model simplification through refinement. In
Graphics Interface’00 Conference Proceedings, pages 221–228.

194

Bunyk, P., Kaufmann, A., and Silva, C. (2000). Simple, fast, and robust ray casting of
irregular grids. In Proceedings of Dagstuhl’97, pages 30–36.

Chiang, Y. and Silva, C. (1997). I/O optimal isosurface extraction. In Visualization’97
Proceedings, pages 293–300.

Chiang, Y.-T., Lin, C.-C., and Lu, H.-I. (2001). Orderly spanning trees with appli-
cations to graph encoding and graph drawing. In Proceedings of Symposium on
Discrete Algorithms (SODA), pages 506–515.

Choudhury, P. and Watson, B. (2002). Completely adaptive simplification of massive
meshes. Technical Report CS–02–09, Northwestern University.

Cignoni, P., Ganovelli, F., Gobbetti, E., Marton, F., Ponchio, F., and Scopigno, R.
(2004). Adaptive tetrapuzzles: Efficient out-of-core construction and visualiza-
tion of gigantic multiresolution polygonal models. In SIGGRAPH’04 Conference
Proceedings. to appear.

Cignoni, P., Montani, C., Rocchini, C., and Scopigno, R. (2003). External memory
management and simplification of huge meshes. IEEE Transactions on Visual-
ization and Computer Graphics, 9:525–537.

Cohen-Or, D., Cohen, R., and Irony, R. (2002). Multi-way geometry encoding. Tech-
nical report, Department of Computer Science, Tel Aviv University.

Cohen-Or, D., Levin, D., and Remez, O. (1999). Progressive compression of arbitrary
triangular meshes. In Visualization’99 Conference Proceedings, pages 67–72.

Cuthill, E. and McKee, J. (1969). Reducing the bandwidth of sparse symmetric matri-
ces. In Proceedings of the 24th National Conference of the ACM, pages 157–172.

Deering, M. (1995). Geometry compression. In SIGGRAPH’95 Conference Proceedings,
pages 13–20.

Denny, M. and Sohler, C. (1997). Encoding a triangulation as a permutation of its point
set. In Proceedings of 9th Canadian Conference on Computational Geometry,
pages 39–43.

Desbrun, M., Meyer, M., and Alliez, P. (2002). Intrinsic parameterizations of surface
meshes. In Eurographics’02 Conference Proceedings, pages 209–218.

Devillers, O. and Gandoin, P.-M. (2002). Progressive and lossless compression of ar-
bitrary simplicial complexes. In SIGGRAPH’02 Conference Proceedings, pages
372–379.

Dı́az, J., Petit, J., and Serna, M. (2002). A survey of graph layout problems. ACM
Computing Surveys, 34(3):313–356.

195

Duff, I., Reid, J., and Scott, J. (1989). The use of profile reduction algorithms with
a frontal code. International Journal for Numerical Methods in Engineering,
28:2555–2568.

Eppstein, D. (1999). Linear complexity hexahedral mesh generation. Computational
Geometry Theory and Applications, 12:3–16.

Evans, F., Skiena, S. S., and Varshney, A. (1996a). Completing sequential triangulations
is hard. Technical report, Department of Computer Science, State University of
New York at Stony Brook.

Evans, F., Skiena, S. S., and Varshney, A. (1996b). Optimizing triangle strips for fast
rendering. In Visualization’96 Conference Proceedings, pages 319–326.

Farias, R., Mitchell, J., and Silva, C. (2000). Zsweep: An efficient and exact pro-
jection algorithm for unstructured volume rendering. In Proceedings of Volume
Visualization Symposium’00, pages 91–99.

Farias, R. and Silva, C. (2001). Out-of-core rendering of large unstructured grids. IEEE
Computer Graphics and Applications, 21(4):42–50.

Fusy, E., Poulalhon, D., and Schaeffer, G. (2005). Dissections and trees, with appli-
cations to optimal mesh encoding and to random sampling. In Proceedings of
Symposium on Discrete Algorithms (SODA). to appear.

Garland, M. and Heckbert, P. (1997). Surface simplification using quadric error metrics.
In SIGGRAPH’97 Conference Proceedings, pages 209–216.

Garland, M. and Shaffer, E. (2002). A multiphase approach to efficient surface simpli-
fication. In Visualization’02 Conference Proceedings, pages 117–124.

Garrity, M. (1990). Raytracing irregular volume data. Computer Graphics, 24(5):35–40.

George, A. (1971). Computer implementation of the finite element method. Technical
Report Dissertation, Stanford University.

Gibbs, N., Poole, W., and Stockmeyer, P. (1976). An algorithm for reducing the
bandwidth and profile of a sparse matrix. SIAM Journal of Numerical Analysis,
13:236–250.

Gotsman, C. (2003). On the optimality of valence-based connectivity coding. Computer
Graphics Forum, 22(1):99–102.

Gu, X., Gortler, S., and Hoppe, H. (2002). Geometry images. In SIGGRAPH’02
Conference Proceedings, pages 355–361.

Guéziec, A., Bossen, F., Taubin, G., and Silva, C. (1999). Efficient compression of non-
manifold polygonal meshes. In Visualization’99 Conference Proceedings, pages
73–80.

196

Guéziec, A., Taubin, G., Lazarus, F., and Horn, W. (1998). Converting sets of polygons
to manifold surfaces by cutting and stitching. In Visualization’98 Conference
Proceedings, pages 383–390.

Guibas, L. and Stolfi, J. (1985). Primitives for the manipulation of general subdivisions
and the computation of Voronoi Diagrams. ACM Transactions on Graphics,
4(2):74–123.

Gumhold, S. (2000). New bounds on the encoding of planar triangulations. Technical
Report WSI–2000–1, Wilhelm-Schikard-Institut für Informatik, Tübingen.

Gumhold, S. (2005). Optimizing Markov models with applications to triangular con-
nectivity coding. In Proceedings of Symposium on Discrete Algorithms (SODA).
to appear.

Gumhold, S., Guthe, S., and Strasser, W. (1999). Tetrahedral mesh compression with
the cut-border machine. In Visualization’99 Conference Proceedings, pages 51–58.

Gumhold, S. and Strasser, W. (1998). Real time compression of triangle mesh connec-
tivity. In SIGGRAPH’98 Conference Proceedings, pages 133–140.

Hager, W. (2002). Minimizing the profile of a symmetric matrix. SIAM Journal on
Scientific Computing, 23(5):1799–1816.

He, X., Kao, M.-Y., and Lu, H. (1999). Linear-time succint encodings of planar graphs
via canonical orderings. Discrete Applied Mathematics, 12(3):317–325.

Ho, J., Lee, K., and Kriegman, D. (2001). Compressing large polygonal models. In
Visualization’01 Conference Proceedings, pages 357–362.

Hoppe, H. (1996). Progressive meshes. In SIGGRAPH’96 Conference Proceedings,
pages 99–108.

Hoppe, H. (1998). Smooth view-dependent level-of-detail control and its application to
terrain rendering. In Visualization’98 Conference Proceedings, pages 35–42.

Hoppe, H. (1999). Optimization of mesh locality for transparent vertex caching. In
SIGGRAPH’99 Conference Proceedings, pages 269–276.

Hu, Y. and Scott, J. (2001). A multilevel algorithm for wavefront reduction. SIAM
Journal on Scientific Computing, 23(4):1352–1375.

Irons, B. M. (1970). A frontal solution program for finite element analysis. International
Journal for Numerical Methods in Engineering, 2:5–32.

Isenburg, M. (2000). Triangle Strip Compression. In Graphics Interface’00 Conference
Proceedings, pages 197–204.

197

Isenburg, M. (2001). Triangle Strip Compression. Computer Graphics Forum, 20(2):91–
101.

Isenburg, M. (2002). Compressing polygon mesh connectivity with degree duality pre-
diction. In Graphics Interface’02 Conference Proceedings, pages 161–170.

Isenburg, M. and Alliez, P. (2002a). Compressing hexahedral volume meshes. In Pacific
Graphics’02 Conference Proceedings, pages 284–293.

Isenburg, M. and Alliez, P. (2002b). Compressing polygon mesh geometry with paral-
lelogram prediction. In Visualization’02 Conference Proceedings, pages 141–146.

Isenburg, M. and Alliez, P. (2003). Compressing hexahedral volume meshes. Graphical
Models, 65(4):239–257.

Isenburg, M. and Gumhold, S. (2003). Out-of-core compression for gigantic polygon
meshes. In SIGGRAPH’03 Conference Proceedings, pages 935–942.

Isenburg, M., Lindstrom, P., Gumhold, S., and Snoeyink, J. (2003). Large mesh simpli-
fication using processing sequences. In Visualization’03 Conference Proceedings,
pages 465–472.

Isenburg, M., Lindstrom, P., and Snoeyink, J. (2005a). Lossless compression of pre-
dicted floating-point geometry. Computer-Aided Design, 37(8):869–877.

Isenburg, M., Lindstrom, P., and Snoeyink, J. (2005b). Streaming compression of
triangle meshes. submitted for publication.

Isenburg, M. and Snoeyink, J. (2000). Face Fixer: Compressing polygon meshes with
properties. In SIGGRAPH’00 Conference Proceedings, pages 263–270.

Isenburg, M. and Snoeyink, J. (2001a). Compressing the property mapping of polygon
meshes. In Pacific Graphics’01 Conference Proceedings, pages 4–11.

Isenburg, M. and Snoeyink, J. (2001b). Spirale reversi: Reverse decoding of the
Edgebreaker encoding. Computational Geometry: Theory and Applications, 20(1-
2):39–52.

Isenburg, M. and Snoeyink, J. (2002). Compressing the property mapping of polygon
meshes. Graphical Models, 64(2):114–127.

Isenburg, M. and Snoeyink, J. (2003). Compressing texture coordinates with selective
linear predictions. In Proceedings of Computer Graphics International’03, pages
126–131.

Isenburg, M. and Snoeyink, J. (2005a). Early-split coding of triangle mesh connectivity.
pages 1–8. submitted for publication.

198

Isenburg, M. and Snoeyink, J. (2005b). On the non-redundancy of split offsets in degree
coding. pages 1–8. submitted for publication.

Itai, A. and Rodeh, M. (1982). Representation of graphs. Acta Informatica, 17:215–219.

Karni, Z. and Gotsman, C. (2000). Spectral compression of mesh geometry. In SIG-
GRAPH’00 Conference Proceedings, pages 279–286.

Keeler, K. and Westbrook, J. (1995). Short encodings of planar graphs and maps. In
Discrete Applied Mathematics, pages 239–252.

Khodakovsky, A., Alliez, P., Desbrun, M., and Schroeder, P. (2002). Near-optimal
connectivity encoding of 2-manifold polygon meshes. Graphical Models, 64(3-
4):147–168.

Khodakovsky, A. and Guskov, I. (2004). Compression of normal meshes. Geometric
Modeling for Scientific Visualization, pages 189–206.

Khodakovsky, A., Schroeder, P., and Sweldens, W. (2000). Progressive geometry com-
pression. In SIGGRAPH’00 Conference Proceedings, pages 271–278.

King, D. and Rossignac, J. (1999). Guaranteed 3.67v bit encoding of planar triangle
graphs. In Proceedings of 11th Canadian Conference on Computational Geometry,
pages 146–149.

King, D., Rossignac, J., and Szymczak, A. (1999). Connectivity compression for ir-
regular quadrilateral meshes. Technical Report TR–99–36, GVU Center, Georgia
Tech.

Kirkpatrick, D. G. (1983). Optimal search in planar subdivisions. SIAM Journal of
Computing, 12(1):28–35.

Koren, Y., Carmel, L., and Harel, D. (2002). ACE: A fast multiscale eigenvector
computation for drawing huge graphs. In IEEE Information Visualization, pages
137–144.

Kronrod, B. and Gotsman, C. (2000). Efficient coding of non-triangular meshes. In
Proceedings of Pacific Graphics, pages 235–242.

Kronrod, B. and Gotsman, C. (2001). Efficient coding of non-triangular meshes. Graph-
ical Models, 63(4):263–275.

Kronrod, B. and Gotsman, C. (2002). Optimized compression of triangle mesh geom-
etry using prediction trees. In International Symposium on 3D Data Processing
Visualization and Transmission, pages 602–608.

Kumfert, G. and Pothen, A. (1997). Two improved algorithms for envelope and wave-
front reduction. BIT, 37(3):1–32.

199

Lee, E. and Ko, H. (2000). Vertex data compression for triangular meshes. In Proceed-
ings of Pacific Graphics, pages 225–234.

Lee, H., Alliez, P., and Desbrun, M. (2002). Angle-analyzer: A triangle-quad mesh
codec. In Eurographics’02 Conference Proceedings, pages 198–205.

Levoy, M., Pulli, K., Curless, B., Rusinkiewicz, S., Koller, D., Pereira, L., Ginzton, M.,
Anderson, S., Davis, J., Ginsberg, J., Shade, J., and Fulk, D. (2000). The digital
michelangelo project. In SIGGRAPH’00 Conference Proceedings, pages 131–144.

Levy, B., Caumon, G., Conreaux, S., and Cavin, X. (2001). Circular incident edge list:
A data structure for rendering complex unstrucutred grids. In Visualization’01
Conference Proceedings, pages 191–198.

Levy, B., Petitjean, S., Ray, N., and Maillot, J. (2002). Least squares conformal maps
for automatic texture atlas generation. In SIGGRAPH’02 Conference Proceed-
ings, pages 362–371.

Lewis, B. (1993). Simulated annealing for profile and fill reduction of sparse matrices.
International Journal for Numerical Methods in Engineering, 37:905–926.

Lewis, J. (1982). Implementation of the Gibbs-Poole-Stockmeyer and Gibbs-King al-
gorithms. ACM Transactions on Mathematical Software, 9(2):180–189.

Li, J. and Kuo, C. C. (1998). A dual graph approach to 3D triangular mesh compression.
In Proceedings of ICIP’98, pages 891–894.

Lindstrom, P. (2000). Out-of-core simplification of large polygonal models. In SIG-
GRAPH’00 Conference Proceedings, pages 259–262.

Lindstrom, P. (2003). Out-of-core construction and visualization of multiresolution
surfaces. In Symposium on Interactive 3D Graphics, pages 93–102.

Lindstrom, P. and Silva, C. (2001). A memory insensitive technique for large model
simplification. In Visualization’01 Conference Proceedings, pages 121–126.

Maillot, J., Yahia, H., and Verroust, A. (1993). Interactive texture mapping. In SIG-
GRAPH’93 Conference Proceedings, pages 27–34.

Mantyla, M. (1988). An Introduction to Solid Modeling. Computer Science Press.

Mascarenhas, A., Isenburg, M., Pascucci, V., and Snoeyink, J. (2004). Encoding vol-
umetric grids for streaming isosurface extraction. In Proceedings of 2nd Inter-
national Symposium on 3D Data Processing, Visualization, and Transmission,
pages 665–672.

McMains, S., Hellerstein, J., and Sequin, C. (2001). Out-of-core build of a topological
data structure from polygon soup. In Proceedings of the 6th ACM Symposium on
Solid Modeling and Applications, pages 171–182.

200

MeTiS (v 4.0). A software package for partitioning unstructured graphs by G. Karypis
and V. Kumar. University of Minnesota.

Mitra, T. and Chiueh, T. (1998). A breadth-first approach to efficient mesh traversal.
In Proceedings of Eurographics Workshop on Graphics Hardware, pages 31–38.

Mueller-Hannemann, M. (2001). Shelling hexahedral complexes for mesh generation.
Journal of Graph Algorithms and Applications, 5(5):59–91.

Pajarola, R. and Rossignac, J. (2000). Compressed progressive meshes. IEEE Trans-
actions on Visualization and Computer Graphics, 6(1):79–93.

Pajarola, R., Rossignac, J., and Szymczak, A. (1999). Implant sprays: Compression
of progressive tetrahedral mesh connectivity. In Visualization’99 Conference Pro-
ceedings, pages 299–306.

Paulino, G., Menezes, I., Gattas, M., and Mukerjee, S. (1994). Node and element
resequencing using the laplacian of a finite element graph. International Journal
for Numerical Methods in Engineering, 37:1511–1555.

Poulalhon, D. and Schaeffer, G. (2003). Optimal coding and sampling of triangula-
tions. In 30th International Colloquium on Automata, Languages and Program-
ming (ICAZLP), pages 1080–1094.

Prince, C. (2000). Progressive meshes for large models of arbitrary topology. Technical
Report Master Thesis, University of Washington.

Reid, J. and Scott, J. (1999). Ordering symmetric sparse matrices for small profile and
wavefront. International Journal for Numerical Methods in Engineering, 45:1737–
1755.

Reid, J. and Scott, J. (2002). Implementing Hagers exchange methods for matrix profile
reduction. ACM Transactions on Mathematical Software, 28(4):377–391.

Rossignac, J. (1998). Just-in-time upgrades for triangle meshes. In 3D Geometry
Compression, Course Notes 21, SIGGRAPH’98, pages 18–24.

Rossignac, J. (1999). Edgebreaker: Connectivity compression for triangle meshes. IEEE
Transactions on Visualization and Computer Graphics, 5(1):47–61.

Rossignac, J. and Borrel, P. (1993). Multi-resolution 3d approximation for rendering
complex scenes. In Modeling in Computer Graphics, pages 455–465.

Rossignac, J. and Szymczak, A. (1999). Wrap&zip: Linear decoding of planar triangle
graphs. The Journal of Computational Geometry, Theory and Applications.

Sander, P., Snyder, J., Gortler, S., and Hoppe, H. (2001). Texture mapping progressive
meshes. In SIGGRAPH’01 Conference Proceedings, pages 409–416.

201

Schneider, R., Schindler, R., and Weiler, F. (1996). Octree-based generation of hexahe-
dral element meshes. In Proceedings of the 5th International Meshing Roundtable,
pages 205–215.

Schnyder, W. (1990). Embedding planar graphs on the grid. In Proceedings of Sympo-
sium on Discrete Algorithms (SODA), pages 138–148.

Scott, J. (1999). On ordering elements for a frontal solver. Communications in Numer-
ical Methods in Engineering, 15:309–323.

Shaffer, E. and Garland, M. (2001). Efficient adaptive simplification of massive meshes.
In Visualization’01 Conference Proceedings, pages 127–134.

Sheffer, A., Etzion, M., Rappoport, A., and Bercovier, M. (1998). Hexahedral mesh
generation using the embedded voronoi graph. In Proceedings of the 7th Interna-
tional Meshing Roundtable, pages 347–364.

Shikhare, D., Bhakar, S., and Mudur, S. (2001). Compression of 3D engineering mod-
els using automatic discovery of repeating geometric features. In Proceedings of
Vision Modeling and Visualization’01, pages 233 – 240.

Silva, C., Chiang, Y., El-Sana, J., and Lindstrom, P. (2002). Out-of-core algorithms for
scientific visualization and computer graphics. In Visualization’02 Course Notes.

Sloan, S. (1986). An algorithm for profile and wavefront reduction of sparse matrices.
International Journal for Numerical Methods in Engineering, 23:1315–1324.

Snoeyink, J. and van Kreveld, M. (1997). Linear-time reconstruction of Delaunay
triangulations with applications. In Proceedings of 5th European Symposium on
Algorithms, pages 459–471.

Sorkine, O., Cohen-Or, D., Goldenthal, R., and Lischinski, D. (2002). Bounded-
distortion piecewise mesh parametrization. In Visualization’02 Conference Pro-
ceedings, pages 355–362.

Sorkine, O., Cohen-Or, D., and Toledo, S. (2003). High-pass quantization for mesh
encoding. In Proceedings of Symposium on Geometry Processing’03, pages 42–51.

Speckmann, B. and Snoeyink, J. (1997). Easy triangle strips for TIN terrain models.
In Proceedings of 9th Canadian Conference on Computational Geometry, pages
239–244.

Staadt, O. and Gross, M. (1998). Progressive tetrahedralizations. In Visualization’98
Conference Proceedings, pages 397–402.

Szymczak, A. (2002). Optimized edgebreaker encoding for large and regular meshes.
In Data Compression Conference’02, page 472.

202

Szymczak, A., King, D., and Rossignac, J. (2000). An Edgebreaker-based efficient
compression scheme for connectivity of regular meshes. In Proceedings of 12th
Canadian Conference on Computational Geometry, pages 257–264.

Szymczak, A. and Rossignac, J. (1999). Grow & fold: Compression of tetrahedral
meshes. In Proceedings of the 5th ACM Symposium on Solid Modeling and Ap-
plications, pages 54–64.

Szymczak, A., Rossignac, J., and King, D. (2002). Piecewise regular meshes: Construc-
tion and compression. Graphical Models, 64(3-4):183–198.

Taubin, G., Guéziec, A., Horn, W., and Lazarus, F. (1998a). Progressive forest split
compression. In SIGGRAPH’98 Conference Proceedings, pages 123–132.

Taubin, G., Horn, W., Lazarus, F., and Rossignac, J. (1998b). Geometry coding and
VRML. Proceedings of the IEEE, 86(6):1228–1243.

Taubin, G. and Rossignac, J. (1998). Geometric compression through topological
surgery. ACM Transactions on Graphics, 17(2):84–115.

Tautges, T. and Mitchell, S. (1995). Whisker weaving: A connectivity-based based
method for constructing all-hexahedral finite element meshes. In Proceedings of
the 4th International Meshing Roundtable, pages 115–127.

Touma, C. and Gotsman, C. (1998). Triangle mesh compression. In Graphics Inter-
face’98 Conference Proceedings, pages 26–34.

Trotts, I., Hamann, B., Joy, K., and Wiley, D. (1998). Simplification of tetrahedral
meshes. In Visualization’98 Conference Proceedings, pages 287–295.

Turan, G. (1984). Succinct representations of graphs. Discrete Applied Mathematics,
8:289–294.

Tutte, W. (1962). A census of planar triangulations. Canadian Journal of Mathematics,
14:21–38.

Tutte, W. (1963). A census of planar maps. Canadian Journal of Mathematics, 15:249–
271.

Wilhelms, J., Gelder, A. V., Tarantino, P., and Gibbs, J. (1996). Hierarchical and
parallelizable direct volume rendering for irregular and multiple grids. In Visual-
ization’96 Conference Proceedings, pages 57–64.

Witten, I. H., Neal, R. M., and Cleary, J. G. (1987). Arithmetic coding for data
compression. Communications of the ACM, 30(6):520–540.

Woo, M., Neider, J., and Davis, T. (1996). Open GL Programming Guide. Addison
Wesley.

203

Wu, J. and Kobbelt, L. (2003). A stream algorithm for the decimation of massive
meshes. In Graphics Interface’03 Conference Proceedings, pages 185–192.

Xiang, X., Held, M., and Mitchell, J. (1999). Fast and efficient stripification of polygonal
surface models. In Proceedings of Interactive 3D Graphics, pages 71–78.

Yang, C., Mitra, T., and Chiueh, T. (2000). On-the-fly rendering of losslessly com-
pressed irregular volume data. In Visualization’00 Conference Proceedings, pages
101–108.

Yoon, S., Salomon, B., Gayle, R., and Manocha, D. (2004). Quick-VDR: Interac-
tive view-dependent rendering of massive models. In Visualization’04 Conference
Proceedings. to appear.

