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ABSTRACT 

 

Sasa Junuzovic: Towards Self-Optimizing Frameworks for Collaborative Systems 

(Under the direction of Prasun Dewan) 

 

Two important performance metrics in collaborative systems are local and remote 

response times. For certain classes of applications, it is possible to meet response time 

requirements better than existing systems through a new system without requiring hardware, 

network, or user-interface changes. This self-optimizing system improves response times by 

automatically making runtime adjustments to three aspects of a collaborative application.  

One of these aspects is the collaboration architecture. Previous work has shown that 

dynamically switching architectures at runtime can improve response times; however, no 

previous work performs the switch automatically.  

The thesis shows that (a) another important performance parameter is whether 

multicast or unicast is used to transmit commands, and (b) response times can be noticeably 

better with multicast than with unicast when transmission costs are high. Traditional 

architectures, however, support only unicast – a computer that processes input commands 

must also transmit commands to all other computers. To support multicast, a new bi-

architecture model of collaborative systems is introduced in which two separate architectures 

govern the processing and transmission tasks that each computer must perform.  

The thesis also shows that another important performance aspect is the order in which 

a computer performs these tasks. These tasks can be scheduled sequentially or concurrently 

on a single-core, or in parallel on multiple cores. As the thesis shows, existing single-core 
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policies trade-off noticeable improvements in local (remote) for noticeable degradations in 

remote (local) response times. A new lazy policy for scheduling these tasks on a single-core 

is introduced that trades-off an unnoticeable degradation in performance of some users for a 

much larger noticeable improvement in performance of others. The thesis also shows that on 

multi-core devices, the tasks should always be scheduled on separate cores.  

The self-optimizing system adjusts the processing architecture, communication 

architecture, and scheduling policy based on response time predictions given by a new 

analytical model. Both the analytical model and the self-optimizing system are validated 

through simulations and experiments in practical scenarios. 
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CHAPTER 1 

INTRODUCTION 
 

 

Performance can be the difference between life and death in the world of 

collaborative systems. To illustrate, consider the following scenario. During candidates’ day 

at UNC, the computer science department invites a number of students for demos of the 

research projects within the department. Unfortunately, some of these candidates are also 

invited to the candidates’ days at Duke and MIT, both of which happen on the same day as 

UNC’s candidates’ day. To give all of the invited students a taste of research at UNC, UNC 

shares the demo applications using an application-sharing system. Therefore, the students 

visiting the other schools can remotely try the applications as long as they have with them 

Internet-connected portable devices, such as laptops, netbooks, and smart phones. The 

interactivity of the demo is of the utmost importance. The shared application must respond to 

the operations by the students at Duke and MIT quickly and notify the students of any 

operations by other users in a timely fashion; otherwise, a student may get bored and quit the 

demo, which could result in the student not coming to UNC. Even worse, the student may 

end up going to Duke! 

In general, in computer science, the performance of a system is a function of the 

available resources. If resources are abundant, then the system always performs well. On the 

other hand, if resources are insufficient, then the system never performs well. These two 

boundary cases bracket the case in which resources are sufficient but scarce, called the 
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window of opportunity [55] (Figure 1-1). In the window of opportunity, it is possible for a 

system to have good performance, although new algorithms and implementations may be 

necessary to achieve it. To illustrate this idea, consider the multimedia networking discipline 

and its window of opportunity shown in Figure 1-2. When network bandwidth utilization is 

 

Figure 1-2. Window of opportunity in multimedia networking. 
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below some threshold, multimedia network systems perform well. When, on the other hand, 

the network utilization is above some other threshold, these systems suffer from poor 

performance. And if the maximum bandwidth utilization is between these thresholds, then 

clever network management techniques, such as jitter buffers and congestion control 

mechanisms, can make a poorly performing system perform well without requiring hardware 

or network changes.  

As in multimedia networking systems, a window of opportunity also exists for 

improving the performance of collaborative systems. Our work focuses on improving 

performance of collaborative systems when resources are sufficient but scarce, which brings 

us to our thesis: 

 

The thesis raises four questions:  

1. How is the performance of a shared application measured?  

2. What does it mean for one system to better meet performance criteria than 

another?  

3. What are the parameters of performance? 

4. How can the performance of a system be improved?  

THESIS 

For certain classes of applications, it is possible to meet performance criteria better 

than existing systems through a new collaborative framework without requiring 

hardware, network, or user-interface changes. 
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The answers to the first two questions are relatively brief; they are given in the next 

two subsections. The remainder of this chapter answers the third question. Finally, the 

remainder of this thesis is needed to answer to the fourth and final question.  

1.1 Performance Metrics 

One important performance metric illustrated in the above candidates’ day scenario is 

the local response time for an input command [80], which is defined as the time that elapses 

from the moment a user enters an input command to the moment that user sees the output for 

the command. Another, related performance metric illustrated is the remote response time for 

an input command [33], which is defined as the time that elapses from the moment a user 

enters an input command to the moment a different user sees the output for the command. 

Previous work has identified several other performance metrics, such as jitter [50], 

throughput [42], task completion time [22], and bandwidth consumption [51]. While all of 

these metrics are important, in this thesis, we focus on response times. 

 

1.2 Performance Comparisons 

Human-perception studies have shown that users cannot distinguish between response 

times below a certain threshold. For instance, Shneiderman [80] has shown that users cannot 

distinguish between local response times below 50ms. Jay et al. [54] complement these 

Our Focus: 

While response times, jitter, throughput, task completion time, and bandwidth 

consumption are all important performance metrics, we focus on response times. 
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results by showing that remote response times for visual and haptic operations above 50ms 

and 25ms, respectively, are noticeable. In addition, they found that 50ms increments in 

remote response times are noticeable for both kinds of operations.  

While no study has directly addressed noticeable changes in local response times, one 

can derive them indirectly from the study of acceptable local response times by Youmans 

[95]. To find acceptable response time thresholds, Youmans created a system in which users 

can request system speed-ups if the system appears slow. Each time a speed-up is requested, 

the response times improve by one eighth. For example, if a user requests a speed-up when 

the response times are 800ms, the response times decrease to 700ms. Youmans found that 

users requested system speed-ups until the response times reached the 300-500ms range. By 

working backwards from this range, it seems that participants requested system speed-ups 

when response times were in the 343-571ms range. While these results could imply that users 

can notice response time decreases between 343-300=43ms and 571-500=71ms, they could 

also imply that users did not notice the effect of the final speed-up and as a result stopped 

asking for further speed-ups. Therefore, we take another step backwards from the 343-571ms 

range and find that participants requested system speed-ups when the response times were in 

the 392-653ms range. These values imply that users can notice decreases in local response 

times between 392-343=49ms and 653-571=82ms. Based on these results of this study and 

studies by Shneiderman [80] and Jay et al. [54], we assume that a 50ms change in local or 

remote response times is noticeable to users. 

 

Assumption: 

A 50ms change in local or remote response times is noticeable to users. 
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Using the noticeable response time thresholds, we can compare the performances of 

two systems. A simplistic approach is to define the performance of system A to be better than 

that of system B if the number of users whose response times are noticeably better with 

system A than with system B is higher than the number of users whose response times are 

noticeably worse. One issue with this approach is that there is no way to distinguish between 

local and remote response times, which may be important in some scenarios. To illustrate, 

consider the candidates’ day scenario in which the professor is demoing an application to 

students at Duke and MIT. Since the professor is familiar with the application, the professor 

knows in advance what the result of performing a particular command will be. On the other 

hand, the students cannot anticipate exactly what will happen when a command is entered. In 

this case, it is more important for the students to see result of a professor’s command quickly 

than it is for the professor because the professor knows what the result will be while the 

students do not. In other words, the remote response times may be more important than 

remote response times. Therefore, if the remote response times are better with system B than 

with system A, then system B is better than system A even if system A is better than system 

B according to the simplistic definition. 

The problem with the simplistic definition arises because the response times are 

inherently partially ordered and external criteria must be used to create a total order. As our 

example shows, one useful external criterion is the users who input commands. Another 

useful criterion may be the identity of the users. For instance, if in our example, the professor 

is interested in recruiting a particular student more so than the other students, the remote 

response times of that student may be more critical than those of other students. In general, 
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infinitely many external criteria exist. To make the thesis tractable, we consider only two: the 

list of inputting users and the identities of the collaborators. 

The exact application of the external criteria depends on the users’ response time 

requirements. Therefore, what is needed is a user-defined function that accepts as parameters 

the response times of systems, the list of inputting users, and the identities of all users, and 

returns a total performance order of the systems. Therefore, the total performance order 

function is an expression of the users’ response time requirements. Given such a function, we 

define the performance of system A to be better than that of system B if the function ranks A 

as better than B. 

 

1.3 Performance Factors 

In order to improve performance, we first need to identify the parameters that impact 

performance. Previous work has shown that the collaboration architecture is a parameter 

[21][27][42]. Our thesis is that multicast and scheduling are also performance parameters. In 

this section, we derive six sub-theses regarding these three parameters. The proofs of the sub-

theses, when combined, serve as a proof of the main thesis. 

Definition: 

We say that system A better meets users’ response time requirements than system B 

if system A is given a higher rank than system B by a user-defined total 

performance order function expressing the requirements. 
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1.3.1 Collaboration Architecture 

One factor that impacts response times is the collaboration architecture used by the 

system [27]. A collaboration architecture defines the logical system components, their 

physical distribution, and the interaction between them. A well-known collaboration 

architecture model is Dewan’s general model [27], which represents an application as a stack 

of N layered components as shown in Figure 1-3. Each component in the stack provides an 

abstraction to and services requests from the component at the next lower layer. To share an 

application, a layer is selected to be logically shared. The part of the application contained in 

shared (non-shared) layers is called the program (user-interface) component. A program 

component may perform user-interface related tasks. For example, in a shared window 

system, all layers above the window system, such as the toolkit layer, are part of the program 

component. These two terms denote the fact that the shared (non-shared) layers are closer to 

the program (user-interface). The program component manages the object that is shared by 

all of the users of the application. The user-interface component allows interaction with the 

 

Figure 1-3. Program and user-interface component definition. 
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shared object by manipulating state that is not shared by the users. A separate user-interface 

component runs on each user’s machine. The program component, on the other hand, may or 

may not be replicated. Regardless of the number of program component replicas, each user-

interface component must be mapped to a program component to which it sends input 

commands and from which it receives outputs [21]. To keep the program component replicas 

synchronized in this many-to-one mapping of user-interfaces to program components, each 

program component must send input commands it receives from the user-interfaces mapped 

to it to all of the other program components. 

 Three popular mappings have been used in the past: centralized, replicated, and 

hybrid (Table 1-1). The centralized mapping maps all of the user-interface components to a 

single program component. The replicated mapping maps each user-interface to its local 

program component. All other mappings are hybrid mappings. To illustrate the three kinds of 

mappings, consider the above candidates’ day scenario in which six students, three from 

Duke and three from MIT, are using smart phones to remotely join the application-sharing 

session. The professor demoing the application is also in the session and is using a desktop 

computer. A centralized mapping in which the program component on the professor’s 

Table 1-1. Systems employing different collaborative architectures. 

Mapping System 

Centralized NetMeeting Application Sharing 

Live Meeting 

Webex Application Sharing 

VNC 

Google Wave 

Replicated NetMeeting Whiteboard 

Grove PowerPoint 

Webex PowerPoint 

GroupKit [21] 
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computer is used is shown in Figure 1-4 (top). The replicated mapping is shown in Figure 1-4 

(middle). A hybrid mapping in which the user-interfaces on the Duke smart phones are 

mapped to the program component on the UNC desktop and all of the other user-interfaces 

are mapped to their local program components is shown in Figure 1-4 (bottom). This thesis 

focuses on the centralized and replicated mappings. As the figure shows, the hybrid mapping 

consists of a mix of centralized and replicated mappings. Hence our centralized and 

Our Focus: 

We focus on the centralized and replicated mapping cases. 

 

Figure 1-4. Centralized, replicated, and hybrid mappings. 
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replicated results can be extended to cover the hybrid mapping case. We defer those 

arguments until the discussions chapter.  

The choice of mapping can impact the interactivity of the shared application. Suppose 

that the professor is demonstrating an exceptionally good but computationally expensive 

Checkers AI and is inviting the students at Duke and MIT to challenge it. What mapping 

should be used to provide good local response times to Checkers moves entered by the 

students? As UNC and Duke are near each other, the network latency between them is low. 

Suppose that the network latency between UNC and MIT is also low. Assume that the 

professor’s desktop is much more powerful than the smart phones. Since the AI algorithm is 

computationally heavy, a centralized mapping (Figure 1-4 (top)) in which the UNC desktop 

runs the program component may offer the best local response times. The reason is that it 

pays for the smart phones to incur the round-trip costs between them and UNC for using the 

desktop as a high-speed computation server. If the network latencies were high, then the high 

round-trip times between the smart phones and the desktop would annul the benefit of using 

the desktop as a high-speed server. In this case, the replicated mapping shown (Figure 1-4 

(middle)) could give optimal local response times. 

In general, there are infinitely many collaboration scenarios and choosing the 

architecture that best satisfies the users’ response time requirements on a case-by-case basis 

is a difficult task. This leads us to our first sub-thesis: 

 

SUB-THESIS I 

It is possible to develop a system that automatically switches to the architecture that 

satisfies any user-specified response time criteria better than existing approaches. 
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1.3.2 Unicast and Multicast 

In the centralized and replicated architectures, a computer running the program 

component is responsible for delivering input commands or outputs to multiple other 

computers: in the centralized architecture, it sends outputs to the user-interfaces running on 

all of the other computers, and in the replicated architecture, it sends input commands to the 

program components running on all of the other computers. One question left unanswered is 

whether the input commands and outputs are unicast or multicast. 

Previous work in operating systems and networking has shown that multicast can 

reduce the worst case remote response times in content-streaming systems [18][56]. The 

remote response times are improved by 1) minimizing the maximum sum of transmission 

delays and network latencies on a path from the source to any receiver (maximum end-to-end 

latency) and 2) respecting the bandwidth capabilities of the devices. In collaboration systems, 

optimizing these conditions can actually increase remote response times. To illustrate, 

consider again the candidates’ day scenario in which the professor is demonstrating the 

Checkers AI to the three students at Duke and three students at MIT. Suppose that the 

students at MIT have invited another student at MIT to remotely join the demo. As a result, 

there are now four remote participants from MIT and three from Duke.  The new student is 

using a laptop which is as powerful as the professor’s desktop. All of the other students are 

still using smart phones. The smart phones are not only less powerful than the laptop and the 

desktop but also have slower network connections than the laptop and the desktop. Assume 

that the centralized architecture is used, in which the professor’s desktop is running the 

program component. Finally, suppose that the network latencies are low. 
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With unicast, the professor’s desktop must transmit commands to all of the students’ 

devices, as shown in Figure 1-5 (top). The figure shows the transmission of an output for an 

input command entered by the professor. Therefore, the student to whose device the 

professor’s desktop transmits last has the highest remote response time. The student’s 

response time includes the time the desktop requires to transmit the output to all of the other 

devices first.  

An example of a multicast overlay that optimizes end-to-end latency and respects 

bandwidth capabilities, which are the two traditionally optimized conditions, is shown in 

Figure 1-5 (bottom). In this multicast overlay, the desktop first sends the output to the laptop 

at MIT, which then forwards the output to the smart phones at MIT. As Figure 1-5 (bottom) 

shows, multicast divides the transmission task between the desktop and the laptop and, 

hence, effectively parallelizes it. The net effect is that once the laptop receives the output, the 

multicast transmission speed becomes twice that of unicast. Since the output is transmitted to 

six of the seven destinations at the multicast speed, the maximum multicast remote response 

times will be approximately half of the maximum unicast remote response time. It is not 

exactly half because before multicast speed is achieved, the desktop must first transmit the 

output to the laptop. 

The construction of this multicast overlay ignores the impact of collaboration specific 

parameters, in particular, the order in which a device processes and forwards the output. To 

improve the response times to the local user, a device may first process the output and then 

forward it. In this case, the multicast remote response time to the smart phones at MIT 
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contain both the times that the desktop and the laptop require to process the output. On the 

other hand, the unicast remote response times do not contain the time the laptop requires to 

process the output. Hence, if the time the laptop requires to process the output is high, then 

the multicast overlay may actually increase remote response times compared to unicast.  

 As Figure 1-5 (bottom) illustrates, multicast requires the formation of 

communication overlays. But as discussed above, all of the existing collaboration 

architectures couple the processing of input commands with the distribution of input 

commands and outputs. As a result, these architectures do not support the distribution of 

input commands and outputs along arbitrary paths, which is required for multicast. To 

support multicast, a new bi-architecture model of collaborative systems is needed, which 

models collaboration systems as two separate sub-architectures: the processing architecture, 

 

Figure 1-5. Unicast and multicast overlays. 
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which governs the mapping of user-interface and program components, and the 

communication architecture, which governs the maintenance of communication overlays.  

This leads to our second and third sub-theses: 

 

 

 

1.3.3 Scheduling of Tasks 

The systems proposed in the previous two sections automatically maintain the 

processing and communication architectures. Each of these architectures mandates specific 

tasks that the users’ devices must perform. The processing architecture dictates which 

computers process input commands in addition to processing outputs, while the 

Definition: 

The bi-architecture collaborative systems model represents a system through two 

separate sub-architectures: the processing architecture, which governs the mapping 

of user-interface and program components, and the communication architecture, 

which governs the maintenance of communication overlays. 

SUB-THESIS III 

It is possible to develop a system that automatically switches to the communication 

architecture that satisfies any user-specified response time criteria better than 

existing approaches. 

SUB-THESIS II 

The communication architecture impacts response times. 
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communication architecture dictates the destinations to which a computer transmits 

commands. One question left unanswered is the relationship between the execution of the 

processing and transmission tasks, in particular, how these independent tasks are scheduled 

on the users’ devices. 

 The implementation and evaluation of scheduling schemes for these tasks depend on 

how many cores are available for scheduling. For example, if two or more cores are available 

for scheduling, it is possible to carry out processing and transmission tasks in parallel. We 

will consider both single-core and multi-core scheduling policies. 

Single-Core Scheduling Policies 

 One way of scheduling the processing and transmission tasks on a single core is to 

execute them sequentially. There are two sequential policies possible in which either the 

processing or the transmission task is performed first. The process-first policy provides better 

local response times than the transmit-first policy because, unlike the transmit-first policy, it 

does not delay the processing of a command until the transmission task completes. When the 

transmit-first policy is used, the local response time includes, in addition to the time required 

for the processing task, the time required to perform the transmission task. Comparing the 

remote response times of the two policies is more complicated. Transmitting first from a 

source seems to improve the remote response times of the destinations. However, as each 

destination may also forward commands to other computers, delaying processing of the 

received command can increase the response time seen by its user. In particular, if the time 

the destination computer requires for performing the transmission task is higher than the sum 

of the processing times of the computers on the path from the source to the destination, then 

the transmit-first policy provides worse response times than the process-first policy.  Based 
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on our experience with state-of-the-art multicast schemes, usually a small number of 

computers actually forward commands. Moreover, an even smaller number of computers 

forward commands to many destinations. Therefore, we expect the transmit-first policy to 

provide better response times than the process-first policy to most destinations when a state-

of-the-art multicast scheme is used. 

 An alternative to sequentially scheduling the processing and transmission tasks is to 

create separate threads for these tasks and schedule the threads using a round-robin policy. 

Intuitively, such a concurrent policy may seem to give response times in between those 

supported by the two sequential policies. In fact, with this policy, it is possible to get local 

response times that are as bad as those of the transmit-first policy. The reason is that when 

two tasks are scheduled concurrently, the shorter of the two tasks completes earlier than the 

longer task. Therefore, the longer task completes at the same time with the concurrent policy 

as it does with the sequential policy that schedules the longer task second. Thus, if the time 

the source computer requires to perform the processing task is larger than the time it requires 

to perform the transmission task, then the concurrent local response time is as bad as the 

transmit-first local response time. Similarly, the concurrent remote response times can be as 

bad as the process-first remote response times. Consider a destination computer which does 

not forward commands to other computers. If each computer on the path from the source to 

the destination, including the source but excluding the destination, completes the processing 

task before transmitting to the next computer down the path, then the concurrent remote 

response time is as bad as the process-first remote response time.  

 In summary, processing first tends to give the best local response times, transmitting 

first tends to give the best remote response times, and concurrent execution tends to give 
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local and remote response times that are in between those supported by the other two 

policies. 

 One issue with the previous policies is that there is no way to control the tradeoff 

between local and remote response times. Controlling the tradeoff is particularly attractive 

when an unnoticeable increase in one metric can result in a noticeable decrease in the other 

metric. Research in human-computer interaction has shown certain increases are indeed 

unnoticeable – users cannot distinguish between local response times below 50ms [80]. 

Therefore, we designed a new lazy scheduling policy that, like the process-first policy, gives 

precedence to the processing task, but delays its execution if the resulting increases in 

response times cannot be noticed by humans. By performing a part of the transmission task 

while the processing task is delayed, such a policy should be able to improve the remote 

response times of some users. More importantly, the reduction in remote response times does 

not result in a noticeable increase in the local response times. 

 

Multi-Core Scheduling Policies 

 Each single-core policy also has a multi-core equivalent. The multi-core transmit-first 

policy first uses all available cores for the transmission task. Once the transmission task is 

completed, the policy assigns a core for the processing task. The multi-core process-first 

policy initially uses one core to perform the processing task and the remaining core for the 

transmission task. Once the processing task completes, all cores perform the remainder of the 

Definition: 

The lazy scheduling policy gives precedence to the processing task but delays its 

execution if the resulting increases in response times cannot be noticed by humans. 
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transmission task. The multi-core concurrent policy runs the two tasks in parallel, using one 

core for the processing task and the rest of the available cores for the transmission task. 

Finally, the multi-core lazy policy initially uses all of the available cores for the transmission 

task. Once the processing task cannot be delayed further without the user noticing the delay, 

the policy assigns a core to perform the processing task and uses the remaining cores for the 

transmission task. 

 The above multi-core policies do not account for the case when the processing task is 

parallelizable. A parallelizable processing task is an attractive idea for the lazy policy. The 

reason is that by spreading the total processing time across multiple cores, the policy can 

delay the start of the processing task longer without the users noticing the delay. However, 

the above multi-core policies parallelize only the transmission task. The reason is that the 

nature of the task makes it easy to do so. For example, two cores can transmit to two different 

destinations at the same time. From a general framework perspective, the processing task is 

opaque – hence, the policies cannot parallelize it explicitly. Nevertheless, all of the above 

policies can be modified to handle a parallel processing task. With the transmit-first (process-

first) policy, all of the cores can be made available to the processing (transmission) task once 

the transmission (processing) task completes. In the concurrent policy, the cores can be 

evenly shared by the processing and transmission tasks. Finally, in the lazy policy, once the 

processing task cannot be delayed any longer without the user noticing, all of the cores can 

be made available to the processing task. To actually delay the processing task longer 

because it is parallelizable, the lazy policy will require a processing task time that takes into 

account the number of available cores.  
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We evaluate the impact on response times of the process-first, transmit-first, 

concurrent, and lazy scheduling policies for both the single-core and multi-core cases. This 

leads to our fourth and fifth sub-theses: 

 

 

1.3.4 Analytical Model 

So far, we have proposed a framework that can automatically switch to the processing 

architecture, communication architecture, and scheduling policy that best meet users’ 

response time requirements. In order to decide when to make a switch, the framework must 

invoke the user-defined total performance order function. As described earlier, that function 

takes as parameters the response times of the systems which it is supposed to order, the list of 

inputting users, and the identities of the users. Each combination of the processing 

architecture, communication architecture, and the scheduling policy defines a system. 

Therefore, to invoke the total order function, our framework must first be able to predict the 

response times for any combination of these factors. Therefore, what is needed is a model 

SUB-THESIS V 

It is possible to develop a system that automatically switches to the scheduling 

policy that satisfies any user-specified response time criteria better than existing 

systems. 

SUB-THESIS IV 

The scheduling policy used for executing the processing and transmission tasks 

impacts response times. 
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that can analytically evaluate the impact on performance for any of these combinations, 

which leads to our sixth and final sub-thesis: 

 

In order to apply the model, we need to develop algorithms that can perform runtime 

measurements and predictions of the values of collaboration conditions that impact response 

times. These algorithms can be based on the mechanisms used for similar purposes in other 

computer science disciplines. For example, in multi-processor systems, an algorithm is used 

to estimate the resource requirements of a job before the job is scheduled on a particular 

processor. This algorithm can serve as a basis for estimating the amount of work required to 

process an input command on a particular computer in the collaboration. Moreover, in 

server-farm systems, load balancing algorithms continuously estimate server loads so that 

when a request arrives, it is forwarded to the server with the lowest load. This algorithm can 

be reused to estimate the non-collaboration load on a computer. The system load and input 

command work estimates can be combined to get an estimate of how much time a computer 

requires to process an input command. 

The parameter estimation algorithms described will have to extend to the multi-core 

case. In particular, the algorithms will have to consider the fact that even though multiple 

cores can transmit to different destinations in parallel, the device typically has only one 

network connection. Hence, all of the commands are actually transmitted serially on the 

SUB-THESIS VI 

It is possible to develop a model that analytically evaluates the impact on response 

times of different processing architectures, communication architectures, and 

scheduling policies to the degree necessary to automate their maintenance. 
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physical link. Thus, using N cores to perform the transmission task may not actually result in 

a factor of N reduction in the total transmission time.  

New algorithms for measuring collaboration-specific parameters will also need to be 

developed. For example, think time, which is the amount of time a user thinks for about the 

last output before entering the next input command, can have an impact on performance: low 

think times can result in queuing and temporary system overload as new input commands 

arrive before the system has a chance to process those already in the system. Accurate think 

time predictions are therefore a key element for providing optimal performance. For 

example, they can help with preemptive architecture transitions if the current architecture is 

expected to be overloaded soon. 

1.4 Scope 

We have given one collaborative scenario so far, namely, the Checkers scenario in 

our example, but we have not qualitatively described the types of scenarios we consider. In 

this section, we present three driving problems that motivated the thesis and outline the 

design space of applications that the thesis considers. We carve the design space by 

specifying points along three dimensions of collaborative applications: program component 

type, user interface type, and collaborative functionality. As new points in the application 

design space are added to the thesis scope, we relate them to the applications in our three 

driving problems.  
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1.4.1 Driving Problems 

In general, collaborative scenarios can be classified along the time and place design 

space [33]. The thesis focuses on the same-time different-place part of the design space. 

Three driving problems from this part of the design space motivated the thesis: 

1. A distributed PowerPoint presentation 

2. A collaborative Checkers computer game 

3. Instant messaging 

These three problems are important examples of real collaborative scenarios. 

Distributed presentations are becoming common, instant messaging is pervasive, and 

collaborative games, such as checkers, chess, and online poker, are extremely popular. In 

fact, by itself, distributed PowerPoint presentations are an important scenario as an entire 

industry has been created around it. Microsoft LiveMeeting and Webex are just two of many 

commercial applications that allow users to give presentations to distributed audiences. The 

company whose product offers the best performance is going to have an advantage over all of 

the other companies.  

In addition to being important practical scenarios, a nice feature of the driving 

problems behind our work is that we have available to us a collaborative Checkers game, an 

instant messaging application, and a way to programmatically interact with PowerPoint. 

Moreover, we have been able to integrate these applications with our proposed systems, and 

hence we can perform experiments with the applications to evaluate the systems.  

While the driving problems are based on only three collaborative applications, the 

thesis applies to a much wider range of applications. In the next three sub-sections, we 

outline the parts of the design space of collaborative applications to which our work applies. 
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The discussion focuses on three orthogonal dimensions in the application design space. The 

first two are architecture related and the last one is implementation related. 

1.4.2 Program Component Type 

As mentioned above, collaboration architectures model a shared application as a set 

of layers as shown in Figure 1-3. To share the application, a layer is selected to be shared. 

The shared layer and the layers above it, which are also shared, form the program 

component. The layers below the shared layer, which are not shared, form the user-interface 

component. Here we focus on the program component. In the next sub-section, we focus on 

the user-interface component.  

The program component manages the object that is shared by all of the users of the 

application. Program components can be classified by whether or not they process 

computationally heavy input commands and whether or not they distribute large amounts of 

data. Based on these distinctions, four types of program components can be derived: logic-

centric: processes computationally heavy input commands; data-centric: distributes large 

amounts of data; logic-and-data-centric: both processes computationally heavy input 

commands and distributes large amounts of data; and stateless: neither processes 

computationally heavy input commands nor distributes large amounts of data.  

The type of program component affects the degree to which changing the processing 

architecture, communication architecture, and scheduling policies will impact response times. 

Scope: 

Three driving problems that motivated the thesis are 1) a distributed PowerPoint 

presentation, 2) a collaborative Checkers computer game, and 3) instant messaging. 
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For example, in a logic-centric application, the choice of processing architecture matters 

more than the choice of communication architecture or scheduling policy. In a data-centric 

application, the communication architecture matters the most. And in a logic-and-data centric 

application, not only do the processing and communication architecture matter but so does 

the scheduling policy. Finally, in stateless applications, the potential performance 

improvements that can be achieved by automating these three aspects of the application are 

lower than in the other cases. Therefore, it is important to consider applications from each of 

these categories when investigating performance.  

The thesis considers all four types of program components from a theoretical 

perspective. In particular, the analytical model proposed in sub-thesis VI applies to all four 

program component types. From an experimental perspective, which is used to validate the 

theoretical analysis, the types of program components considered are determined by the 

applications in our driving problems. As a result, the thesis considers three of the four types 

of program components from an experimental perspective: instant messaging, which is 

stateless; Checkers, which is logic-centric; and PowerPoint, which is data-centric. 

 

Scope: 

We theoretically analyze response times for applications with all four program 

component types, and we experimentally validate the theoretical analysis for three 

of the four program component types: instant messaging, which is stateless; 

checkers, which is logic-centric; and PowerPoint, which is data- centric. 
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1.4.3 User Interface Type 

While the program component manages the object that is shared by all of the users of 

the application, the user-interface component allows interaction with the shared object by 

manipulating state that is not shared by the users. Not all user commands need to be sent 

from the user-interface to the program component, that is, not all commands need to be 

shared. In particular, if a user command interacts with only the state on the local user’s 

device that is not shared with other users, then there is no reason to distribute the command 

to other users. The number and frequency of non-shared commands determines the thickness 

of the user-interface [42].  

Ideally, the analysis of response times should account for both the non-shared and 

shared commands. After all, non-shared commands should have good local response times. 

Moreover, these commands can impact the response times of shared commands and vice 

versa. To correctly analyze the interplay between the response times of these two types of 

commands, we need a model of the event flow of the non-shared commands. This event flow 

is application dependent. Therefore, we need a separate model for each application. As there 

are infinitely many applications, creating a model for each one of them is beyond the scope 

of a single work. In order to make the thesis tractable, the analysis presented does not 

account for non-shared commands.  

In the applications that we consider, non-shared commands either do not exist or their 

costs are negligible. For example, in PowerPoint and Checkers such commands do not exist. 

In instant messaging, such commands may exist if incremental sharing is not supported. In 

this case, when a user types a new character, a non-shared command is issued that updates 

the user’s display by showing the character. The cost of displaying text as it is being typed is 
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negligible on any device in use today. When incremental sharing is supported, as in Google 

Wave [39], then the typing commands are actually shared commands because the typed text 

is displayed incrementally to all collaborators. 

Of course, many popular applications, such as some massively multiplayer online 

games [42], have thick user-interface components in which non-shared commands have high 

processing costs. We return to the potential impact on response times of these commands in 

the discussions chapter. 

 

1.4.4 Collaborative Functionality 

In addition to classifying collaborative applications according to the type of program 

and user-interface components they have, we can also classify these applications by the type 

of collaborative functionality they provide. Some functionality, which we refer to as 

mandatory functionality, are common to all collaborative applications. For instance, the 

mandatory functions required to share an object are the processing of user commands 

invoked on the object and distributing the results of these commands to all users. In addition 

to the mandatory functions, there are optional collaborative functions that an application can 

provide which can increase response times [27]. Some of these functions, such as 

concurrency control, access control, merging (i.e. consistency maintenance), and awareness, 

Scope: 

We consider only the response times of shared commands, which interact with the 

shared state, in isolation of non-shared commands, which interact with only the 

local state. The impact of non-shared commands on the response times shared 

commands are not analyzed. 
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can increase response times. Concurrency control impacts performance because it can delay 

the execution of an action until it determines that the action does not conflict with other 

actions. Access control can increase response times because before the program component 

executes commands from a user, it must first verify that the commands are authorized. 

Merging algorithms impact performance because the merge result must be calculated when a 

command is merged with previous commands, which effectively increases the processing 

cost, and hence, the response time of the command. Finally, awareness mechanisms can 

increase response times as they increase the amount of data that has to be communicated 

between users’ machines, which can impact the transmission costs of the user commands.  

Ideally, analyzing the impact on response times of changing the processing 

architecture, communication architecture, and scheduling policies should account for all of 

collaborative functions that impact response times. However, each of these functions has a 

large design space. Moreover, each point in a function’s design space can have several 

implementations. The matter is further complicated by the fact the impact depends on the 

type of communication and collaboration architecture that is used [42]. To make the thesis 

tractable, we consider only the mandatory functions. The analysis can later be extended to 

support some of the optional functions.  

There are many applications that do not implement any of the optional functions. For 

instance, with the exception of the telepointers awareness mechanism in our Checkers 

application, the PowerPoint, Checkers, and instant messaging applications we consider do 

not provide these functionalities. Moreover, in many collaborative scenarios, these functions 

are not necessary. For example, in the PowerPoint scenarios we analyzed, there was only a 

single presenter. Hence, conflicting actions never occurred. In the Checkers scenarios we 
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analyzed, the users employed a social-protocol to prevent entering conflict commands. 

Finally, in instant messaging, simultaneous actions can occur, but no merging of commands 

is done. The result is that the local message histories for two users may be out of order. Thus, 

the users may have an inconsistent view of the chat history. Fortunately, in this and some 

other cases [43], the users do not care that their views are inconsistent. 

The lack of optional collaborative functions in the applications we consider does not 

mean that these functions are not important. On the contrary, these mechanisms are important 

in many applications. For example, concurrency control and merging are important in 

massively multiplayer online games [42] and multi-user editors [7][35]. Moreover, numerous 

user studies have shown the benefits of having awareness mechanisms [29][48][75]. We will 

return to the discussion regarding the impact on response times of these and other optional 

functions in the discussion chapter. 

 

1.4.5 Assumptions 

So far, we have outlined the scope of our thesis by pointing out the points in the 

design space of collaborative applications that the thesis considers. For the considered 

applications, the thesis makes one additional implementation assumption: 

 When an idle computer receives a command, it immediately begins 

performing the tasks for the command. In particular, there are no delays added 

Scope: 

We consider only the response times of mandatory commands in isolation of 

commands created by optional collaborative functions, such as concurrency control, 

access control, merging, and awareness. 
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in performing these tasks, such as the delays necessary for atomic broadcast or 

causal consistency. 

We make the assumption to keep response times low. As mentioned above, users can 

notice 50ms increments in response time and hence the processing of the commands cannot 

be delayed for long. This assumption can lead to several problems in practical scenarios. We 

will discuss these issues in the discussions chapter. 

 

In addition, the thesis makes two user assumptions: 

 Users interactively discuss each other’s actions. 

 Users communicate verbally through a pre-established channel, such as a 

telephone. 

The user-related assumptions are consistent with our driving problems. The 

interactive discussion assumption is satisfied by definition in a distributed PowerPoint 

presentation as the presenter is discussing the presentation while the presentation is being 

advanced. Moreover, other users may discuss among themselves the topic the presenter is 

currently presenting. The external communication channel assumption holds true in 

commercial in systems, such as LiveMeeting. 

The user-related assumptions dictate the types of scenarios considered by the thesis. 

Examples of scenarios that do not satisfy these criteria are streaming multimedia applications 

Assumption: 

When an idle computer receives a command, it immediately begins performing the 

tasks for the command. In particular, the computer does not delay these tasks to 

accommodate atomic broadcast or causal consistency requirements. 
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that playback pre-recorded audio and video streams, videoconferencing systems without a 

shared workspace, and shared file repositories and versioning systems. Our criteria also 

exclude systems which capture workspace interactions as a video stream and then stream the 

video to all of the other users. While such a system is interesting, it does not satisfy our 

criteria of allowing all users to interact with the shared workspace. In addition, the criteria 

exclude adding a large delay to commands before either sending them or when they are 

received. Such delays can be used to ensure that the changes to the shared state are shown at 

approximately the same time to all users or that all users have reached a consistent state when 

the inputting user changes. Unfortunately, delaying the display of the result to the inputting 

user may noticeably increase local response times. Thus, the delay in displaying the result 

should only be done on the receiver side. In this case, the user who performs an action will 

see the result of the action sooner than the other users. In fact the user may perform several 

other actions before the action is seen by others. As a result, these delays prevent other users 

from reacting in a timely fashion to the initial action. Timely reactions can be extremely 

important. Consider an online Checkers game that is being followed by a large audience. 

When the players make a good move against the computer, the audience will want to 

congratulate them by sending them a happy face or thumbs up in an instant message. If the 

Scope: 

We focus on collaboration scenarios in which users interactively discuss each 

other’s actions and communicate verbally through a pre-established channel, such 

as a telephone. Moreover, we consider scenarios in which an idle computer 

executes tasks for a command as soon as the command is received. 
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players receive such feedback much after they had performed the action, the feedback may 

not make any sense.  

1.5 Applicability of Results 

This dissertation shows that under certain conditions, specifically when processor and 

network resources are neither over-stressed nor under-stressed, the self-optimizing system 

can have clear performance benefits over traditional groupware systems. While we speculate 

that these conditions occur in actual scenarios, further analysis of network and processor 

bottlenecks is needed to determine whether they actually occur. At the same time, the thesis 

clearly states several simplifying assumptions. Moreover, the self-optimizing system is a 

complex prototype that may have high development costs. Therefore, the question is whether 

the costs of using the system are worth the benefits in actual scenarios. The simple answer is 

that the system is a realistic alternative to existing groupware; however, it cannot be applied 

blindly as it involves a series of tradeoffs and unknowns. We will return to the cost-benefit 

analysis in the discussion section. 

1.6 Summary  

In this chapter, we have presented 1) our thesis, 2) its six sub-theses, 3) its scope, and 4) its 

assumptions. Thus, we can state our thesis statement in full: 

Thesis 

For certain classes of applications, it is possible to meet user-specified response time 

requirements better than existing systems through a new collaborative framework without 

requiring hardware, network, or user-interface changes. In particular,  
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1. Given the result shown in previous work that the processing architecture impacts 

response times, it is possible to develop a system that automatically switches to the 

processing architecture that satisfies any user-specified response time criteria better 

than existing approaches. 

2. In addition to the processing architecture, the choice of communication architecture 

also impacts response times. 

3. It is possible to develop a system that automatically switches to the communication 

architecture that satisfies any user-specified response time criteria better than existing 

approaches. 

4. Not only do the processing and communication architectures impact response times 

but so does the scheduling policy used for executing the processing and transmission 

tasks. 

5. It is possible to develop a system that automatically switches to the scheduling policy 

that satisfies any user-specified response time criteria better than existing approaches. 

6. It is possible to develop a model that analytically evaluates the impact on response 

times of different processing architectures, communication architectures, and 

scheduling policies to the degree necessary to automate their maintenance. 

The analytical performance model proposed in the sixth sub-thesis is an important 

contribution of its own. First, like analytical models in other computer science fields, it 

increases our understanding of the subject analyzed. In the case of collaboration 

architectures, it helps us better understand and compare the event flow and performance of 

the centralized and replicated architectures with and without multicast using the transmit-

first, process-first, concurrent, lazy, and parallel scheduling policies. Moreover, it provides 
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guidance for users with varying degrees of choice regarding the combination of the 

processing architecture, communication architecture, and scheduling policy in the 

collaboration systems they use. It can be used by (a) users of adaptive systems to decide 

when to reconfigure the systems, (b) users who have a choice of systems with different 

configurations to choose the system most suited for a particular collaboration mode (defined 

by the values of the collaboration parameters), and (c) users locked into a specific 

configuration to decide how to change the hardware and other collaboration parameters to 

improve performance. The model is also necessary prove the first five sub-theses. As a result, 

we will develop the model incrementally as we prove the first five sub-theses.  

In the first five sub-theses, we consider three performance factors of collaborative 

systems: 1) processing architecture, 2) communication architecture, and 3) scheduling 

policies. Systems are proposed that automate the maintenance of each of the three factors. 

These three factors are independent of each other. If one or two of them are fixed, then those 

that are not fixed can still be changed. For instance, for any processing architecture, we can 

use either a unicast or multicast architecture. And for any processing and communication 

architecture pair, multiple scheduling policies can be used. Therefore, to prove the thesis, it is 

sufficient to show automating the maintenance of one of these factors in isolation of the 

others can improve response times. We first show that automating the processing architecture 

maintenance can improve response times when the communication architecture and 

scheduling policy are fixed. We then show that when the scheduling policy is fixed, 

automating the communication architecture maintenance can improve response times for any 

processing architecture. Finally, we show that automating the scheduling policy selection can 

improve response times for any combination of processing and communication architectures.  



35 

The rest of this thesis is organized as follows. Chapter 2 proves sub-thesis I. Chapter 

3 proves sub-theses II and III. Chapter 4 proves sub-theses IV and V. The proof of sub-thesis 

VI is given incrementally in chapters 2 through 4. Chapter 5 presents related work. Chapter 6 

discusses the applicability and limitations of our work. Finally, Chapter 7 presents 

conclusions and future work. 
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CHAPTER 2 

AUTOMATING PROCESSING ARCHITECTURE MAINTENANCE 
 

 

2.1 Overview 

As mentioned in the introduction chapter, previous work has shown that the choice of 

the architecture impacts the response times of the shared program. In general, choosing the 

architecture that provides the best response times is a difficult task. Therefore, Chung [21] 

developed an analytical model that can predict the architecture that gives the best response 

times. The model assumes two-user collaborations, a constant cost of processing each input 

command, zero cost of processing each output command, zero cost of transmitting inputs and 

outputs, constant think times before each command, and no type-ahead (no type-ahead means 

that users do not enter a command until they see the output for the previous commands). 

Chung showed both analytically and experimentally that (a) low network latency favors the 

centralized architecture and (b) asymmetric processing powers favor the centralized 

architecture. As these conditions can change dynamically, he developed a system that 

supports architecture changes at runtime. He also performed experiments showing that when 

a user with a powerful computer joins the collaboration, it is useful to dynamically centralize 

the shared program to the new user’s computer.  

One issue with Chung’s system is that the users have to select the architecture to use 

at start time and decide when to switch architectures at runtime. A system that automatically 
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maintains the architecture would be useful because it would relieve the users of performing 

these tasks. In this chapter, we present such a self-optimizing system for small-scale 

collaboration scenarios, where by small-scale, we mean two or three users. 

In the process of creating the self-optimizing system, we extended Chung’s work in 

two ways. First, we present a three-user version of Chung’s two-user model that relaxes three 

of the six assumptions made by the original model. In particular, the new model does not 

assume a constant cost of processing each input command, zero cost of processing each 

output command, or constant think time before each input command. The updated model still 

assumes negligible transmission costs and no type-ahead. Second, we present a system that 

can automatically gather the parameters of the three-user model and apply the model to 

decide which architecture should be used. By combining this new system with our own 

version of Chung’s system that can dynamically switch architectures at runtime, we create a 

self-optimizing system that automates the maintenance of the architecture. Therefore, our 

system consists of two-sub systems. The first is our version of Chung’s system, which we 

call the sharing sub-system to denote the fact that it is responsible for sharing the application. 

The second is the new system we develop, which we call the optimization sub-system to 

denote to the fact that it is responsible for improving response times. 

 

Chapter Scope: 

We analyze the impact of the collaboration architecture on response times. We 

consider small-scale collaboration scenarios involving two or three users in which 

the cost of transmitting commands is negligible and there is no type-ahead. 
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Each of the systems of the self-optimizing system raises several issues that must be 

addressed in order for the system to function correctly. A fundamental issue raised by the 

sharing sub-system is how it shares an application among the users. The system must 

somehow intercept users’ input commands and the corresponding outputs and send them to 

the appropriate computers. Ideally, it should do so in a manner transparent to the application. 

Moreover, the system needs to be configurable so that the same application can be shared 

using both centralized and replicated architectures.  

Another fundamental issue is how the sharing sub-system switches between 

replicated and centralized architectures dynamically at runtime. Whenever the system 

switches from a centralized to a replicated architecture, the system must bring the program 

components on the new master computers up to date; otherwise, these program components 

may be out of sync with the program component running on the computer which was the 

master in the centralized architecture. Moreover, if an architecture switch is not performed 

atomically with respect to user commands, then the shared application may be shared in a 

manner that is inconsistent with the notion of centralized and replicated architectures. To 

illustrate, suppose that the system switches from the replicated (centralized) to the centralized 

(replicated) architecture. Suppose that during the switch, an input (output) command was en-

route to the computer that is (was) a slave in the centralized architecture. Therefore, a slave 

Chapter Goals: 

We present our self-optimizing system that better meets response time requirements 

than existing systems by automating the maintenance of the architecture.  
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(master) user in the new architecture will receive an input (output) command from a remote 

user which is inconsistent with the notion of centralized (replicated) architectures.  

A related issue is how the system accommodates late-comers. When a late-comer 

joins as a master, the system must as above, bring the program components on the late-

comer’s computer up to date; otherwise, these program components may not be synchronized 

with the program components on other computers. Similarly, when a late-comer joins as a 

slave, the system must bring the user-interface component on the late-comer’s computer up 

to date; otherwise, future outputs may not make sense. 

Chung’s framework has provided solutions to all of these issues. Since our sharing 

sub-system is a version of Chung framework, for each issue, we will describe Chung’s 

solution. If in our system we use a different approach than Chung, then we will state the 

difference between ours and Chung’s systems. If we do not state a difference, it means that 

we have reused Chung’s solution. 

The optimization sub-system raises a different set of issues. One issue is how the 

system is organized. Implementations in which the system is organized in a client-server or 

peer-to-peer fashion on the users’ machines both seem promising. However, the former can 

overload the machine on which it is running and hence degrade the response times of the 

local user, while the latter must reach an agreement among the peer components, which is a 

version of the distributed consensus problem commonly found in distributed systems.  

Another important issue is how the optimization sub-system gathers values of the 

parameters in the analytical model, which it must do in order to apply the model. In 

particular, it must measure the input and output processing costs on each user’s computer and 

the network latencies among all of the users’ computers.  
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Once the system gathers the parameter values, it can use the analytical model to 

predict replicated and centralized architecture response times. The next issue is how it passes 

the predicted response times to the total order function and then invoke the functionality in 

the sharing sub-system for switching architectures to change to the architecture returned by 

the total order function.  

We address the issues raised by both the sharing and optimization sub-systems system 

when we describe them below. The rest of this chapter is organized as follows. We first 

derive our three-user version of Chung’s analytical model. We then describe our version of 

Chung’s system that can dynamically switch architectures at runtime. Following this, we 

discuss the upgrades to the system necessary to turn it into our self-optimizing system. Then, 

we describe experiments conducted with the self-optimizing system. Finally, we present 

discussions and a brief summary. 

2.2 Formal Analysis 

Developing an analytical model is a complex task. Therefore, like Chung [21], we 

make certain assumptions in our response time model of collaboration architectures: the 

collaboration involves at most three users, who we denote as user1, user2, and user3; the 

transmission costs are negligible; and there is no type-ahead. Because of the second 

assumption, whenever a computer must both send a command to the other computers and 

process the command, we assume that it first sends the command and then processes it.  

Unlike Chung, we do not assume a constant cost of processing each input command, 

zero cost of processing each output command, or constant think times. It is important to 

consider processing times because a computer must process commands before displaying 
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outputs to the local user. The impact of think times on response times is somewhat less 

apparent. Think times can impact response times because when think times of commands are 

low, slower computers may fall behind the faster computers in processing the commands. In 

particular, when a command reaches slower computers, these computers may not be ready to 

begin processing the command immediately if they are still busy processing previous 

commands. The delays in processing the commands increase the response times of the 

commands.   

In all of the small-scale collaborations we logged, the users’ think times were high 

enough that computers were always ready to process the next command whenever it arrived. 

These collaborations included commands that were generated fairly rapidly, such as those of 

telepointers. Telepointing actions are typically generated thirty times each second, that is, 

they have think times of 33ms. Even though these think times appear low, they are much 

higher than the processing times of telepointing commands, which were 1.5ms on a P3 

desktop, the slowest computer we used in our experiments. Thus, the think times are 

effectively high even for telepointing actions. Therefore, in this chapter, we present the 

analysis only for the case when think times are high. 

 

Analysis Scope: 

In this chapter, we present the analysis only for the case when think times are high 

because in all of the small-scale collaborations we observed, think times were 

always high. Separate analysis is needed for the case when think times are low. 
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We will introduce the remaining parameters of our model as we develop the 

equations. We start by considering the equations for the local response times in centralized 

architectures. 

2.2.1 Local Response Times in Centralized Architectures 

In a centralized architecture, the shared program executes on a computer belonging to 

one of the collaborators, receiving input from and broadcasting output to all users. The 

computer running the shared program is called the master while all other computers are 

called slaves.  

In cases where a master user inputs commands, the commands are processed by the 

local computer. It processes each input command immediately after the local user provides it, 

computes the output for the command, transmits the output to the slave users, and process the 

output to display the result to the local user. Let 𝑝𝑖,𝑗
𝐼𝑁  (𝑝𝑖,𝑗

𝑂𝑈𝑇) denote the time userj’s computer 

requires to process input (output) command 𝑖. Hence, if userm is the master in a centralized 

architecture, userm’s local response time is 𝑝𝑖,𝑚
𝐼𝑁 + 𝑝𝑖,𝑚

𝑂𝑈𝑇 .  

Now, consider the case where a slave user inputs command. The slave user’s 

computer must first transmit the command to the master, which must then travel to the master 

computer. When the master computer receives the command, it then processes the command 

without interruption, computes an output message, and transmits the output back to the slave 

user, which must then travel back to the slave’s computer. When the slave’s computer 

receives the output, it processes the output. Let 𝑑(𝑗, 𝑘) denote the network latency a 

command experiences as it travels from userj’s to userk’s computer. Therefore, if users1 

(users2) is a slave user in a centralized architecture in which userm is the master, then users1’s 
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(users2’s) local response time is 𝑑 𝑠1, 𝑚 + 𝑝𝑖,𝑚
𝐼𝑁 + 𝑑(𝑚, 𝑠1) + 𝑝𝑖,𝑠1

𝑂𝑈𝑇  (𝑑 𝑠2,𝑚 + 𝑝𝑖,𝑚
𝐼𝑁 +

𝑑(𝑚, 𝑠2) + 𝑝𝑖,𝑠2
𝑂𝑈𝑇 ). Hence, if userm is the master and users1 and users2 are slaves, we have 

 𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,𝑚𝑢𝑚 = 𝑝𝑖,𝑚
𝐼𝑁 + 𝑝𝑖,𝑚

𝑂𝑈𝑇     if userm is master 

  𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,𝑠1𝑢𝑚 = 𝑑 𝑠1, 𝑚 + 𝑝𝑖,𝑚
𝐼𝑁 + 𝑑(𝑚, 𝑠1) + 𝑝𝑖,𝑠1

𝑂𝑈𝑇   if userm is master 

  𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,𝑠2𝑢𝑚 = 𝑑 𝑠2, 𝑚 + 𝑝𝑖,𝑚
𝐼𝑁 + 𝑑(𝑚, 𝑠2) + 𝑝𝑖,𝑠2

𝑂𝑈𝑇  

We next derive the equations for the local response times in the replicated 

architecture. 

2.2.2 Local Response Times in Replicated Architectures 

In the replicated architecture, a separate replica of the program executes on the 

computer of each user, receiving input from all users and producing output for only the local 

user. Hence, all computers are masters in the replicated architecture. Thus, userj’s local 

response time in the replicated case is 𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 . Hence, 

  𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗 = 𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇    

2.2.3 Remote Response Times in Centralized Architectures 

Recall that a non-inputting user’s remote response time for a command is defined as 

the time that elapses from the moment the command is input to the moment the user sees its 

output. In centralized architectures, a user’s remote response time depends on whether the 

non-inputting and inputting users are both slaves or if one of them is the master. If the master 

user provides the input, a slave user will see the output once the input command is processed, 

the output traverses the network, and the slave user’s computer processes the output. Thus, 

we have 

  𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,𝑠1𝑢𝑚 = 𝑝𝑖,𝑚
𝐼𝑁 + 𝑑(𝑚, 𝑠1) + 𝑝𝑖,𝑠1

𝑂𝑈𝑇   if master userm inputs 

  𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,𝑠2𝑢𝑚 = 𝑝𝑖,𝑚
𝐼𝑁 + 𝑑(𝑚, 𝑠2) + 𝑝𝑖,𝑠1

𝑂𝑈𝑇   if master userm inputs 
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If a slave user provides the input, the master user will see the output once the input 

command reaches the master computer and the computer processes it and the corresponding 

output. The other slave user will see the output once the input command reaches the master 

computer, the master computer processes and transmits the output to the other slave, the 

output travels to the other slave’s computer, and finally the other slave’s computer processes 

it. Thus, 

  𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,𝑚𝑢𝑚 = 𝑑 𝑠1,𝑚 + 𝑝𝑖,𝑚
𝐼𝑁 + 𝑝𝑖,𝑚

𝑂𝑈𝑇  

  𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,𝑠2𝑢𝑚 = 𝑑 𝑠1,𝑚 + 𝑝𝑖,𝑚
𝐼𝑁 + 𝑑(𝑚, 𝑠2) + 𝑝𝑖,𝑠2

𝑂𝑈𝑇  

if slave users1 inputs, and  

  𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,𝑚𝑢𝑚 = 𝑑 𝑠2,𝑚 + 𝑝𝑖,𝑚
𝐼𝑁 + 𝑝𝑖,𝑚

𝑂𝑈𝑇  

  𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,𝑠1𝑢𝑚 = 𝑑 𝑠2,𝑚 + 𝑝𝑖,𝑚
𝐼𝑁 + 𝑑(𝑚, 𝑠1) + 𝑝𝑖,𝑠2

𝑂𝑈𝑇  

if slave users2 inputs. 

2.2.4 Remote Response Times in Replicated Architectures 

In the replicated architecture, the remote response time of a command includes the 

time the command requires to travel from the inputting user’s computer to the receiving 

user’s computer and the time the receiving user’s computer requires to process the command 

and its output. Thus, the userk’s remote response time of command 𝑖 entered by userj is given 

by 

  𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖,𝑘 = 𝑑 𝑗, 𝑘 + 𝑝𝑖,𝑘
𝐼𝑁 + 𝑝𝑖,𝑘

𝑂𝑈𝑇  

2.3 Self-Optimizing System Implementation 

Our self-optimizing collaboration framework can apply the analytical model to 

automatically switch the architecture at runtime to improve the performance. As mentioned 

above, the framework consists of two sub-systems. One sub-system, called the sharing sub-
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system, is a version of Chung’s system that provides the functionality necessary to switch 

architectures at runtime. The other sub-system, called the optimization sub-system, provides 

the functionality that decides when to invoke the architecture change functionality of the first 

system. In this section, we describe how we implemented these systems. Since our sharing 

sub-system is a version of Chung framework, we describe Chung’s solutions to any issues it 

raises. If there is a difference between how Chung system and our version of it handle an 

issue, we present the difference.  

2.3.1 Sharing Applications 

The fundamental issue with any collaboration framework is how it shares 

applications. As mentioned above, collaborative systems assume that the application is 

logically divided into a program and a user-interface component as shown in Figure 2-1 (top-

left). Chung’s framework makes use of this property to share the application. A part of the 

system, which we refer to as the sharing client-side component, is logically situated between 

the user-interface component and the (potentially inactive) local program component, as 

show in Figure 2-1 (top-right). The local program component is inactive if it is not mapped to 

any user-interface component, which happens, for instance, when the hosting computer is a 

slave. The actual application is not aware of the client-side component. From the user-

interface component’s perspective, the client-side component appears to be the program 

component, and from the program component’s perspective, the client-side component 

appears to be the user-interface component. In particular, (a) the user-interface sends input 

commands to and receives outputs from it, while (b) the program component receives input 

commands from and sends outputs to it. Meanwhile, the client-side component forwards 

received (a) input commands to the local program component, and (b) output commands to 
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the local user-interface component. The client-side components on the users’ computers 

communicate directly with each other. They act as a communication switch that can be 

configured to enforce replicated or centralized mappings of user-interface to program 

components shown in Figure 2-1 (bottom-left) and Figure 2-1 (bottom-right), respectively.  

2.3.2 Changing Architectures of Shared Applications 

To change an architecture dynamically at runtime, the framework must reconfigure 

the sharing client-side component mappings. To illustrate, consider a two-user scenario in 

which user1 and user2 are sharing an application using the replicated architecture shown in 

 

Figure 2-1. Client-Side Component of Self-Optimizing System. 
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Figure 2-1 (bottom-left). To switch from the replicated architecture to the centralized 

architecture in which user2’s computer is the master (Figure 2-1 (bottom-right)), the 

framework configures 1) the client-component on user1’s computer to forward input 

commands to the client-side component on user2’s computer and 2) the client-side 

component on user2’s computer to forward outputs to not only the local user-interface 

component but also to the client-side component on user1’s computer. Similarly, to switch 

back to the replicated architecture shown in Figure 2-1 (bottom-left), the framework 

configures 1) the client-component on user1’s computer to forward input commands to both 

the local program component and the client-side component on user2’s computer and 2) the 

client-side component on user2’s computer to forward inputs to not only the local program 

component but also to the client-side component on user1’s computer. 

One issue that arises when changing the mappings of the client-side components is 

that the computers may temporarily be configured in an inconsistent manner. In particular, 

the switch takes some time, and each computer may switch over at a different rate depending 

on the processing power of the computer.  Therefore, if the switch is not performed 

atomically with respect to users’ input commands, then during a switch, an input command 

and its output may be distributed to some users’ computers using mappings in the old and to 

others using mappings in the new architecture. Without extra precautionary measures, it 

could happen that during the switch, slave computers receive input commands and master 

computer receive output commands from other computers. Such messages are inconsistent 

with the notion of centralized and replicated architectures. One way of ensuring that this 

problem does not arise is to temporarily pause the processing and transmission of commands, 

perform the architecture switch, and then resume inputs. An issue with this approach is that 
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the response times of commands during the switch may appear high if the switch takes a long 

time. An approach that does not have this issue is to run the old and new architectures in 

parallel and then seamlessly switch all users to the new architecture once it is fully deployed. 

This is the approach taken by Chung. Since the focus of this thesis is not optimizing the 

architecture switch mechanism, we use the first approach as it easier. We leave the 

implementation of Chung’s solution in our system as future work.  

Another architecture switch mechanism issue is bringing the program component 

running on a new master to a state that is consistent with the other program components. This 

is an issue when a slave computer becomes a master because of an architecture switch. The 

reason is that the slave was not receiving input commands and, therefore, the shared object 

was not updated in the slave’s inactive program component. One way of bringing a new 

master up to date is to replay all of the input commands to the master. Unfortunately, such an 

approach is unbounded in terms of memory and time as the number of commands increases 

continually throughout a session. Chung presented an approach that does not suffer from this 

problem. He created a compressed logging approach which requires O(number of objects in 

shared state) memory space and time to bring a new master’s shared state up to date. 

However, this approach is more complicated to implement than the previous approach. Once 

again, as the focus of this thesis is not optimizing the time it takes to bring a latecomer or a 

new master up to speed, we use the easier approach. The client-side component of our system 

records all input commands which it has forwarded to its local program component. When 

there is a new master user, our system randomly picks one of the client-side components 

running on a master computer to send all of the input commands entered so far to the client-
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side component on the new master. In the future, we plan to implement Chung’s solution into 

our system. 

2.3.3 Accommodating Late-comers 

An issue that is related to problem of bringing the program component on a new 

master’s computer up to date is bringing a late-comers computer up to date. When a late-

comer joins, Chung maps the sharing client-side component running on the late-comers 

computer to the sharing client-side components of the users already in the system. The 

mapping is determined by the architecture currently being used. If the centralized 

architecture is currently being used, the late-comer joins as slave. Therefore, (a) the late-

comer’s client-side component is configured to forward input commands to the client-side 

component on the master computer and (b) the master user’s client-side component is 

configured to forward outputs to the late-comer’s client-side component. If the replicated 

architecture is currently being used, the late-comer joins as a master. Therefore, (a) the late-

comer’s client-side component is configured to forward input commands not only to the local 

program component but also to the client-side components running on all of the user’s 

computers and (b) the client-side component of each user that was already in the session is 

configured to forward inputs to the late-comer’s client-side component. 

Since the late-comer joins into a particular architecture, there is no issue of 

temporarily configuring the client-side components in an inconsistent manner. However, if 

the late-comer joins as a master, then the framework must still bring the late-comer’s 

program component up to date. We use the same mechanism as above. In addition, when the 

late-comer joins as a slave, the framework must bring the user-interface of a latecomer to a 

state that is consistent with all of the other user-interfaces. In this case, Chung replay a 
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compressed log of output commands while our system replays all of the output commands to 

the latecomer. In particular, the client-side component of our system records all outputs 

which it has forwarded to the local user-interface component. When a latecomer joins as a 

slave, our system randomly picks one of the client-side components on a different computer 

to send all of the output commands observed so far to the client-side component on the late-

comer’s computer. In the case when a master switches to a slave because of an architecture 

change, the user-interface is up-to-date and no replay is necessary. 

We have addressed the issues regarding the sharing sub-system. We next address the 

issues regarding the optimization sub-system, starting with its architecture. 

2.3.4 Optimization System Architecture 

The optimization sub-system is composed of two separate components. These 

components work together to gather the values of the response time parameters identified by 

the model and apply the model. The optimization client-side component runs alongside the 

sharing client-side component on each user’s computer as shown in Figure 2-2. The 

optimization client-side components are responsible creating performance reports for the 

local user and sending them to the server-side component of the system as shown in Figure 2-

2. The server-side component collects all of the reports. It uses the reports to estimate the 

parameter values, apply the analytical model, and reconfigure the sharing client-side 

components if necessary. In this section, we justify the architectural decisions of the system. 

In the next two sub-sections, we describe how the optimization client-side and server-side 

components generate performance reports and apply the analytical model, respectively. 

The server component can be centralized or distributed. One centralized approach is 

to run it on a computer belonging to one of the user’s in the session. We do not take this 



52 

approach, however, primarily because it can impact the response times on the user’s 

computer. The processing and networking resources required by our system can be high, 

especially in large-scale scenarios that we consider in the next chapter. An alternative 

approach to centralizing the system on one of the user’s machines is to use a distributed 

approach in which each user’s computer runs a server side component. The component on 

each user’s computer receives reports from a subset of all of the client-side components. It 

may or may not share reports with the component on other users’ systems. If components 

share performance data, they do not share all of it with all other components. Otherwise, this 

distributed approach does not offer any benefit over the earlier centralized approach. The 

distributed approach reduces the impact on response times of our system on any particular 

 

Figure 2-2. Server-Side Component of the Self-Optimizing System. 
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user. In general, however, such approaches suffer from a consensus issue. In particular, in 

can be difficult for all computers to agree on a particular architecture as each computer is 

making decisions based on potentially different data, that is, to reach distributed consensus. 

The approach we actually take is a version of the centralized approach. Our system runs on a 

dedicated (infrastructure) computer that is not being used by the users’ machines, as shown 

in Figure 2-2. For instance, the computer running the session manager can also run our 

system for all sessions. Such a computer exists even in most highly distributed peer-to-peer 

systems. It is typically called the bootstrapping node [90]. 

One issue with centralizing our system on a single machine is that it may take a long 

time to decide which architecture should be used when there are many sessions running in 

parallel. Fortunately, poor response times by our system do not degrade the response times of 

user commands. The worst that can happen if it does not decide on a new architecture 

quickly is that the response times of the users’ commands stay the same. Moreover, it system 

can be configured to periodically calculate whether an architecture switch would better 

satisfy user-provided response time requirements. As a result, it is unlikely that architecture 

calculations would be taking place for all sessions at exactly the same moment in time. The 

period can be triggered after either some user-specified amount of time elapses or the system 

receives a user-specified number of performance reports. The only exception is when the 

system configuration changes because of an external event, such as a new user joining the 

collaboration. In such cases, the system restarts the period. Whenever the period elapses, the 

system calculates whether or not a switch to a new architecture would be beneficial to 

response times. The system switches to a new architecture only if the architecture is different 

from the current architecture and is predicted to improve response times. By default, our 
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system is set to calculate whether or not an architecture switch would improve response times 

after every five user commands. Future studies are needed to determine what the best default 

value is, which may likely be application and scenario dependent. For now, the arbitrary 

value of five seems to work well in our experiments. 

2.3.5 Gathering Parameter Values 

In order to apply the equations in the model, the optimization sub-system must first 

gather the values of the response time parameters identified by the model: 

 The input and output processing times on each user’s computer 

 the network latencies between the users’ computers 

Processing Times 

As users join the session, each user’s computer registers with the server-side 

component of the optimization system. The registration is performed by the client-side 

component of the system. It sends the system a description of the local computer. This 

description consists of the name, family, and speed of the processor of the computer. To 

uniquely identify the type of computer processor, all three of these values are necessary. The 

name typically gives a description, such as “Intel(R) Core(TM)2 Duo CPU E4400 @ 

2.00Ghz.” Two CPUs can have the same name but belong to different families, such as “x86” 

or “Itanium.” Therefore, the CPU family is included in the description. Finally, the speed 

gives the clock speed of the CPU which may not necessarily be included in the name, 

although it may be as this example shows. The optimization system gathers parameters on a 

per computer description rather than a per user basis in order to be able to reuse of values 

collected during the current session. To illustrate, consider a latecomer user who has the 

same kind of computer as some user who has been in the session from the start. If the system 
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collected values on a per user basis, the system would have no information regarding the 

latecomer and would have to wait for more data in order to decide if an architecture switch 

would improve response times. But because the system collects values on a per computer 

description basis, it can reuse the parameter values gathered for the computer belonging to 

the user who has been in the session from the start as the parameter values of the latecomer’s 

computer since the two users’ computers are the same. Thus, the system can immediately 

apply the model and check if an architecture switch is needed.  

The optimization system gathers new processing times as users input commands 

during the session. Each time a computer completes processing a command, the client-side 

component sends a performance report to the server-side component. The report includes the 

time the computer required to process the command. By default, a report is sent after each 

command is processed; however, the users can configure the system to buffer the reports and 

send a cumulative report after a user-specified number of messages have been processed. The 

buffering option is provided to reduce communication overhead if the extra communication 

adversely affects response times.  

Network Latencies 

The network latency collection approach is the dual of the one used to collect 

processing and think times. Instead of waiting for users to report network latencies to hosts 

with which their computers have communicated, our system requests network latency 

measurements from the users’ computers to hosts specified by the system. The reason for this 

design decision is that the users’ computers may not necessarily be aware of all other 

computers. For example, in a centralized architecture, a slave user’s computer is aware of 

only the master’s computer because it sends commands to and receives commands from only 
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the master computer. In order to make informed architecture optimization decisions, our 

system needs to know the latencies between each pair of user’s computers. Therefore, it 

needs the latencies between the slave’s computer and all of the other slave computers in the 

session. Because each user’s computer registers with the optimization system when the user 

logs in, the system is aware of all computers. Therefore, when a new user registers, the 

system sends a list of IP addresses of all of the currently registered users’ computers to the 

client-side component on the new user’s computer. The client-side component then estimates 

the network latencies to the IP addresses in the list. It does so using the ubiquitous ping tool. 

In order to expedite the process, it creates a separate thread pings each destination and reports 

the latency measured by each thread back to our system. Since network latencies can change 

during the session, our system periodically asks each computer to repeat the measurements 

and report up-to-date network latency values. The polling period can be configured by users. 

By default, our system polls for new latency measurements every sixty seconds. We use the 

default polling period in our experiments. 

One issue with frequently asking the users’ computers to measure network latencies is 

that the measuring process may cause response times of collaborative commands to increase. 

To reduce the impact, the threads on the computer that perform the latency measurements are 

assigned a low priority. Moreover, our system can be configured to ask each computer to 

measure the network latencies to a random subset of the other computers. While this further 

reduces the potential impact of these measurements on response times, it increases the 

chances that our system has out-of-date parameter values of network latencies between some 

computers. In our experiments, a computer always measured latencies to all of the other 
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computers. Since we are focusing on two and three user scenarios, the maximum number of 

latencies a computer had to measure each time was two, which is low. 

2.3.6 Applying the Analytical Model 

Using the collected parameter values, the server-side component of the optimization 

sub-system could apply the analytical model as follows. First, estimate the values of 

processing times and network latencies based on the values reported by the client-side 

components. Second, use the estimates in the model and calculate the estimated response 

times of all users for a command entered by each inputting user in all possible centralized 

architectures and the replicated architecture. The number of centralized architectures depends 

on the number of users as each user can be a master in a centralized architecture. Since we 

are considering two and three user scenarios, there are at least two and at most three 

centralized architectures possible. Third, invoke the user-defined total order function passing 

the estimated response times, the list of inputting users, and the user identities as the 

parameters to the function. Finally, switch to the architecture that is ranked as the best by the 

total order function.  

The procedure requires that the server-side component is aware of who the inputting 

users are. One approach for determining the inputting users is to assume that a user is an 

inputting user only if the user has entered some command so far. An issue with this approach 

is that a user who may input in the future may not have yet input a command. An alternative 

approach, which is the one our system uses, is to require that the users specify who the 

inputting users will be at the start of the session.  

To illustrate the procedure, consider a three user scenario in which each user inputs 

commands. After estimating the values of the model parameters, our system crates the 4 x 3 x 
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3 response time matrix. The [x, y, z] entry in the matrix gives usery’s response for a 

command entered by userz when architecture x is used. Since there are four possible 

architectures, the first dimension is of size four. Since there are three users in the session, the 

second dimension is of size three. And since each of the three users is an inputting user, the 

third dimension is also of size three. The third dimension is sorted based on the inputting user 

index from lowest to highest. Our system then invokes the total order function, passing the 

response time matrix, the list of inputting user indices sorted from lowest to highest, and a 

list of the identities of the users as parameters. Our system keeps an architecture index map 

that maps an architecture to an index in the first dimension of the matrix. When the total 

order function returns, it simply returns an index of the architecture that best satisfied the 

users’ response time requirements. Our system uses the architecture index map to look up 

what architecture is the best and deploys it. 

Unfortunately, the procedure does not work in all cases. In particular, the values 

reported by the client-side component may not provide sufficient data to estimate the 

response times for all architectures. For example, in a centralized architecture, a client-side 

component running on a slave machine will report output but not input processing costs. The 

reason is that slave users do not process input commands. Therefore, if a slave user’s 

computer type is different from the master user’s computer type, then our system does not 

have input processing times for the computer type used by the slave. As a result, it cannot 

estimate the response times in the replicated architecture or a centralized architecture in 

which the slave’s computer is the master. 

There are several ways of handling the case when some parameter values are missing. 

One way of handling this issue is to simply not attempt any architecture switches. Under this 
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approach, our system cannot improve response times during the current session. As we will 

see in the next section, it can still help improve response times in future sessions.  

An alternative approach is to temporarily switch from a centralized architecture to the 

replicated architecture without considering the impact on response times. After receiving 

several input processing times from each computer, our system would have all of the 

parameters values it needs to predict the response times for all architectures. At that point, it 

can switch to the architecture that best satisfies the response time requirements. One issue 

with this approach is that the replicated architecture may provide worse response times than 

the current centralized architecture. In this case, the users’ could experience poor 

performance until our system eventually switches architectures again.  

A third approach, which is the one our system employs, is to estimate the missing 

parameter values and predict response times of potential architectures using the combined 

estimated and measured parameter values. The system estimates input processing times of a 

slave computer by calculating the ratio of the output processing costs on the master and the 

slave. It is always possible to compute this ratio because all computers process output 

commands. Then, assuming that the ratios of the master’s and slave’s input processing times 

is the same as the ratio of their output processing times, the system calculates the slave’s 

input processing times based on the master’s input processing times. One issue with this 

approach is that that the ratio of output processing times for two different types of computers 

may not be equal to the ratio of their input processing times. In fact, in our experience, these 

ratios are not identical. For example, we have found that the input to output processing cost 

of Checkers commands is 21.8 on a P3 desktop, 19.5 on a P4 desktop, and 40.7 on a Core2 

desktop. In the worst case, the incorrect estimates would result in incorrect response time 
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predictions, and thus, the architecture that the total order function ranks as the best may not 

actually be the best. Fortunately, the ratios do not have to be perfectly equal for the estimate 

to be useful. In general, a computer that takes longer to process an output to a command than 

another computer also takes longer to process the corresponding input command. Hence, by 

using the estimating procedure, the system should at least correctly deduce which computer 

takes less time to process input commands. If the estimate causes a switch to a suboptimal 

architecture, our approach reduces to the second approach above. The degradation in 

response times is only temporary as eventually our system will choose the optimal 

architecture. For example, suppose that the system switches from a centralized architecture to 

either the replicated architecture or a centralized architecture in which a user for whose 

computer the input processing times had to be estimated is the master. Once the switch is 

made, the former slave computer will report input processing times and our system will soon 

receive performance reports with input processing times for the computer. Then, our system 

can more accurately predict response times of all architectures and as a result, eventually, 

switch to a more optimal architecture. In our experiments, a suboptimal architecture switch 

never occurred.  

We can now summarize how our optimization system assigns values of the 

processing time parameters in the equation. It first calculates the average processing times for 

any computer type for which processing times have been reported. It can use either all of the 

reports or some user-specified number of the most recent reports to calculate the average 

processing times. By default, it uses all of them. When it is configured to use a subset of the 

reports, it can be further configured to apply a running average calculation using user-

specified weights for the average processing time calculated for the latest set of reports and 
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the average calculated during the previous iteration. Default values are 0.7 and 0.3, 

respectively. Further experiments are needed to determine the optimal values instead of using 

magic numbers. For now, we use these default values as they seemed to work well in our 

experiments. Once it has calculated average processing times based on received reports, it 

then estimates the remaining processing times.  

2.3.7 Re-using Parameter Values Across Sessions 

Whenever a session ends, our system saves the estimate values of the processing 

times for each computer type. Using saved values from previous sessions, it can make initial 

architecture decisions at the start of the next sessions as long as 1) the application shared in 

the next session is that same as the application that was shared in the earlier sessions, and 2) 

the computer types used in the next session were used during the previous sessions.  

As mentioned earlier, re-using parameter values across sessions makes the 

optimization system useful even if it is configured to not make architecture switches when 

measurements for some parameters are missing. In this case, our system still saves any 

parameter measurements it does receive. Saved values recorded for different collaborative 

sessions in which the same application was shared using different architectures are merged 

into one set of parameter values. The merged set is what is used as the initial values in future 

sessions. 

When initial parameter values are available, calculating the average values and 

estimating missing parameters values at runtime is done using the same approach as 

described above, with one small difference. The first time the values are computed or 

estimated during the session, the previous iteration values are set to be the estimate provided 
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to the system at start time. Thus, the running average calculation will include the parameter 

measurements from previous sessions. 

Of course, if any of the computers in the next session is a type our system has not 

encountered before, then accurate initial predictions are not possible even with merged 

parameter value sets. In this case, our waits to receive reports from the new computer type 

before deciding whether to switch away from the initial architecture.  

2.4 Evaluation 

We present two sets of experiments that illustrate the benefit of the self-optimizing 

system. In the first set of experiments, we will use the model to decide at runtime when to 

perform dynamic architecture changes and better satisfy user provided response time 

requirements. In the second set of experiments, we will use the model to pick an architecture 

at the start of the collaboration. Ideally, both sets of experiments should also show the 

practicality of our system. Therefore, the experimental data needs to be realistic. Our 

approach to gathering realistic experimental data is described in detail in Appendix A. For 

the results we present next, it suffices to say that we are using experimental data that is based 

on actual logs collected as collaborators used the distributed Checkers program used by 

Chung [21], which allows a group of users to play against the computer. We chose this 

program for two reasons. First, it is a computer-intensive task, allowing us to validate the 

effect of processing time differences. Second, the user study participants we used to collect 

logs knew the game rules, so no user training was needed. In the experiments we conducted 

to gather these logs, two users played together against the computer and both users made 

Checkers moves. 
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In Checkers, both the users and the computer make moves. The users perform a move 

when one of them moves a piece on the board. The computer then responds with its own 

move. The computer calculation of the next move depends on the piece positions, and is 

hence not constant. Thus, we report the average local and remote response times over all the 

moves in a single game. 

We used three computers, a Core2 2.0GHz desktop, a P4 1.7GHz desktop, and a P3 

500MHz desktop, which have processing power differences that can be expected when users 

collaborate. We use the P3 desktop to simulate next-generation mobile devices and current 

generation netbooks. The computers are connected on a local LAN. Based on Chung’s and 

Dewan’s experiments, we added 72, 162 and 370 ms to the LAN delays to estimate half the 

round-trip time from a U.S. East Coast LAN-connected computer to a German LAN-

connected computer, German modem-connected computer, and Indian LAN-connected 

computer, respectively. As LAN delays vary during an experiment, we performed it ten times 

and report the average performances for these ten trials. 

2.4.1 Dynamically Switching Architecture at Runtime 

Our three-user version of Chung’s analytical model makes several predictions 

regarding choice of architecture. It is important to test that our self-optimizing system picks 

the architecture that the model predicts. 

Analytical Model Predictions 

One prediction made by the model, which agrees with Chung’s original results, is that 

when processing powers of collaborators computers are asymmetric and the network 

latencies are low, it is useful to centralize the application on the fastest computer. To 

illustrate, suppose that two users are in the session, and that user1’s computer is more 
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powerful than user2’s computer. Suppose also that the computers are on the same LAN and 

hence the network latencies between them are low (i.e., 𝑑~0𝑚𝑠). In this case, user1’s and 

user2’s local response time differences between 1) the centralized architecture in which 

user1’s computer is the master and 2) the centralized architecture in which user2’s computer 

is the master and the replicated architecture are given by 

 𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,1𝑢1 − 𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,1𝑢2 = 𝑝𝑖,1
𝐼𝑁 + 𝑝𝑖,1

𝑂𝑈𝑇 −  𝑑 1,2 + 𝑝𝑖,2
𝐼𝑁 + 𝑑 1,2 + 𝑝𝑖,1

𝑂𝑈𝑇  

= 𝑝𝑖,1
𝐼𝑁 − 𝑝𝑖,2

𝐼𝑁 < 0 

 𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,1𝑢1 − 𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,1 = 𝑝𝑖,1
𝐼𝑁 + 𝑝𝑖,1

𝑂𝑈𝑇 −  𝑝𝑖,1
𝐼𝑁 + 𝑝𝑖,1

𝑂𝑈𝑇 = 0 

 𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,2𝑢1 − 𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,2𝑢2 = 𝑝𝑖,1
𝐼𝑁 − 𝑝𝑖,2

𝐼𝑁 < 0 

 𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,2𝑢1 − 𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,2 = 𝑝𝑖,1
𝐼𝑁 − 𝑝𝑖,2

𝐼𝑁 < 0 

As these equations show, the centralized architecture in which user1’s computer is the 

master provides user1 with local response times equal to those of the replicated architecture 

and better than those of the centralized architecture in which user2’s computer is the master. 

The equations also show that user2’s local response times are the lowest in the centralized 

architecture in which user1’s computer is the master. 

Consider now user1’s and user2’s remote response times differences between 1) the 

centralized architecture in which user1’s computer is the master and 2) the centralized 

architecture in which user2’s computer is the master and the replicated architecture. The 

response time differences are given by 

 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,1𝑢1 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,1𝑢2 = 𝑑 2,1 + 𝑝𝑖,1
𝐼𝑁 + 𝑝𝑖,1

𝑂𝑈𝑇 −  𝑝𝑖,2
𝐼𝑁 + 𝑑 2,1 + 𝑝𝑖,2

𝑂𝑈𝑇  

= 𝑝𝑖,1
𝐼𝑁 − 𝑝𝑖,2

𝐼𝑁 < 0 

 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,1𝑢1 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖,1 = 𝑑 2,1 + 𝑝𝑖,1
𝐼𝑁 + 𝑝𝑖,1

𝑂𝑈𝑇 −  𝑑 2,1 + 𝑝𝑖,1
𝐼𝑁 + 𝑝𝑖,1

𝑂𝑈𝑇 = 0 

 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,2𝑢1 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,2𝑢2 = 𝑝𝑖,1
𝐼𝑁 − 𝑝𝑖,2

𝐼𝑁 < 0 

 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,2𝑢1 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖,2 = 𝑝𝑖,1
𝐼𝑁 − 𝑝𝑖,2

𝐼𝑁 < 0 
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As these equations show, the centralized architecture in which user1’s computer is the 

master provides both user1 and user2 with better remote response times than those of than 

those of the centralized architecture in which user2’s computer is the master and those of the 

replicated architecture. Hence, overall, the centralized architecture in which user1’s computer 

hosts the application should be used to provide the users with the lowest response times. 

Another prediction by the model is that when a third user with a computer more 

powerful than user1’s and user2’s computers joins the collaboration late, the centralized 

architecture in which user3’s computer is the master should be used. The difference analysis 

used in the two-user case to deduce that the centralized architecture in which user1’s 

computer is the master should be used to provide the lowest response times to both user1 and 

user2 can be extended to the three-user case. In this case, the analysis would show that the 

centralized architecture in which user3’s computer is the master should be used. We will not 

present the analytical analysis for this case, however, because it similar to the difference 

analysis we used above and it is tedious to repeat it. 

Self-Optimization Experiments 

To verify that our self-optimizing system indeed selects 1) the centralized architecture 

in which user1’s computer hosts the application when only user1 and user2 are present and 2) 

the centralized architecture in which user3’s computer hosts the application when user3 joins 

late, we performed the following experiment with our distributed Checkers game. Initially, 

user1 and user2 play together against the computer. User1 is using the P4 desktop and user2 is 

using the P3 desktop. The P3 desktop is less powerful than the P4 desktop. Fifteen moves 

into the game (approximately one third of the game), user3 joins with the Core2 desktop, 
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which is more powerful than the P4 and the P3 desktops. User1 and user2 make all of the 

moves; user3 observes their moves. In total, user1 made 37 moves and user2 made 11 moves. 

The total order function used ranks one system better than another if the number of 

response times that were better with the first system is higher than the number of response 

times that were better with the second system. In the case of a tie, such as when one 

architecture provides better response times to one user while a different architecture provides 

better response times to the other user, the function randomly picked one of the architectures.  

We performed experiments with and without our system. For both cases, we 

performed three sets of tests. In the first set, the initial architecture was the one in which 

user1’s computer hosts the application. In the second set, the initial architecture was the one 

in which user2’s computer hosts the application. Finally, in the third set, the initial 

architecture was the replicated architecture. We added 0ms to the LAN latencies in all of 

these tests. 

For this experiment, we configured our system to check whether an architecture 

switch is useful every five user’s Checkers moves. Therefore, in the experiment cases in 

which our system is running, we expect an optimization to occur five moves into the game. 

Moreover, we expect another optimization to occur at the twentieth move as this is five 

moves after user3 joins. Other optimizations are also possible, although ideally, the system 

will only perform the two we expect. Any other optimization suggests some instability in our 

system. 

The benefit of using our system with each of the three initial architectures is shown in 

Figure 2-3 through 2-11. In all experiment runs, the optimizations happened twice, except 

when initial architecture was the centralized architecture in which user1’s computer hosts the 
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application. This is expected because the first optimization happens before user3 joins, and 

according to the model, user1’s computer should host the application in this case. If user1 is 

already hosting the application, no optimization is needed. Therefore, the current experiment 

did not reveal any instability in our system.  

 
Figure 2-3. User1’s response times starting with user1 hosting the application. 

 
Figure 2-4. User2’s response times starting with user1 hosting the application. 

 
Figure 2-5. User3’s response times starting with user1 hosting the application. 
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Figures 2-3, 2-4, and 2-5 show user1’s, user2’s, and user3’s response times, 

respectively, when the initial architecture is the centralized architecture in which user1’s 

computer hosts the application. As mentioned above, we will consider a change of 50ms in 

response times significant. At the same time, we will attribute a change of 5ms or less, which 

is an order of magnitude less than 50ms, to fluctuation in traffic in the network and processes 

running on the computers that are not related to our experiments. Thus, we consider two 

response times different by 5ms or less to be the same. For each user, the response times are 

the same for the first twenty moves regardless of whether or not our system is running. As 

mentioned above, this is expected as the optimal architecture until user3 joins is the 

centralized architecture in which user1’s computer hosts the application. Since user3 does not 

join until fifteenth move and our system requires five moves to occur before suggesting a 

new architecture, we do not expect to see any benefit of our system until after the twentieth 

move. After the twentieth move, the response times improve for all users when our system is 

running. The reason is that our system suggested that the centralized architecture in which 

user3’s computer hosts the application should be used and then switched to that architecture. 

The average response times before and after the twentieth move are given in Table 2-1. As 

we can see, while our system does improve response times, the improvements on average are 

less than 50ms, which is not noticeable to users. For the rest of the experiments, our system is 

able to improve response times significantly. 

Consider first the case when the initial architecture is the replicated architecture. The 

response times for experiment runs in which that was the case are shown in Figures 2-6, 2-7, 

and 2-8.  In these experiment runs, we can see a decrease in response times after not only the 

twentieth move but also after the fifth move. The reason is that after the fifth move, 
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our system switches the architecture from the replicated architecture to the centralized 

architecture in which user1’s computer hosts the application. Later, five moves after user3 

joins, the system performs another switch, this time to the centralized architecture in which 

user3’s computer hosts the application.  

The average response times for Checkers moves one through five, five through 

twenty, and twenty one and on are given in Table 2-1. As Table 2-1 shows, our system 

significantly improves response times for user2 after the first optimization because user2’s 

computer is now using user1’s computer as a fast computation server. User1’s response times 

do not improve since both before and after the first optimization, user1’s computer generated 

responses for user1. After the second optimization, the response times improve for all users 

although not significantly. 

Finally, consider the case when the initial architecture is the one in which user2’s 

computer hosts the application. The response times for these experiment runs are shown in 

Figure 2-9, 2-10, and 2-11. Note that we can analyze these graphs the same way as we 

analyzed the previous case. In this case, the response times are significantly improved for 

Table 2-1. Response times of users with and without the self-optimizing system. 

User 

 
Moves 

Initial Architecture 

Centralized on 

user1’s computer 

Centralized on 

user2’s computer 
Replicated 

No Opt With Opt No Opt With Opt No Opt With Opt 

1 

1 to 5 44.262 44.8494 127.6556 126.1352 43.835 43.9156 

6 to 20 74.01147 75.40013 217.1244 75.58087 74.70327 75.33527 

21 to 48 34.92927 23.415 104.116 22.77615 35.75545 23.68752 

2 

1 to 5 67.0922 64.0212 131.4488 130.4956 135.8504 133.4872 

6 to 20 88.41227 87.372 220.7997 87.75207 222.5123 88.87407 

21 to 48 50.52882 33.69236 109.761 34.18915 112.5713 33.65991 

3 

1 to 5       

6 to 20 61.8045 63.022 174.7638 62.03383 26.67233 62.56733 

21 to 48 35.914 21.36661 103.2056 21.12027 16.64103 21.58079 
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both user1 and user2 after the first optimization. They are improved again after the second 

optimization, although not significantly, as before. 

Interestingly, the response times for user3 were worse for moves six through twenty 

when the initial architecture used was the replicated architecture. While this may seem odd, it 

 
Figure 2-6. User3’s response times starting with the replicated architecture. 

 
Figure 2-7. User3’s response times starting with the replicated architecture. 

 
Figure 2-8. User3’s response times starting with the replicated architecture. 
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is actually expected. By the time user3 joins, the self-optimizing system had switched the 

architecture from replicated to the centralized architecture in which user1’s computer hosts 

the application. When user3 joins, user3’s computer joins as a slave. Since user1’s computer is 

less powerful than user3’s computer, until the system switches the architecture to the 

 
Figure 2-9. User3’s response times starting with the replicated architecture. 

 
Figure 2-10. User3’s response times starting with the replicated architecture. 

 
Figure 2-11. User3’s response times starting with the replicated architecture. 
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centralized architecture in which user3’s computer hosts the application, user3 is going to 

have worse with than without the self-optimizing system. The reason is that without the 

system, the architecture would have not changed from replicated to centralized before user3 

joined. Hence, user3’s computer would have joined as a master. 

2.4.2 Choosing Architecture at Start Time 

The analytical model can be used not only to drive dynamic architecture changes at 

runtime, but also to select the initial architecture at start time. In order to use the model in 

this fashion, our system needs to have values of processing costs and network delays before 

the collaboration starts. Network delays can be gathered just before the collaboration starts as 

users join the session. As for initial estimates of the processing costs, we can use the values 

our system saved at the end of the previous set of experiments. Given the values of the 

processing costs of and network latencies among collaborators’ computers at session start 

time, our system can apply our equations to deduce what architecture to use at start time. If 

the processing costs of the collaborators’ computers are asymmetric and network latencies 

are low, then the equations inform us to the centralized architecture in which the user with 

the most powerful computer hosts the application. 

We repeated the above experiments with the initial processing cost values. At start 

time, our system chose the centralized architecture in which user1’s computer is the master. 

Eventually, when user3 joined, the system switched to the centralized architecture in which 

user3’s computer is the master.  

The processing cost estimates we used are given in Table 2-2. To check the accuracy 

of the estimates, we compare them to the processing times measured for each computer type 

in a separate set of experiments, which are given in Table 2-3. As Table 2-2 and 



73 

Table 2-3 show the estimated costs are different from the actual measured costs. On the one 

hand, the relative order of the fastest to slowest computers is the same in both tables, which 

is one reason why our system was able to choose the correct architecture at start time. 

However, the absolute values of the costs in the two tables are different. The difference in the 

absolute values is an artifact of the fact that the costs of processing any two commands in a 

single Checkers game are different. For instance, the cost of processing the command 

depends on the number of pieces on the board and their positions, which changes throughout 

the game. In each of the cases in which our system is running, the three types of computers 

actually calculate a different set of computer moves. Since we use the costs of processing 

these sets of moves as a basis for our estimate, the estimate is going to be different than the 

value given by calculating all of the moves. However, as our system is able to gather costs 

from more scenarios, the cost estimates should also become more accurate. One way to 

gather more accurate estimates is to perform measurements during sessions in which the 

replicated architecture is used the entire time. After few such sessions, the estimated costs 

recorded by our system should be closer to the actual processing costs because when the 

Table 2-2. Average estimated Checkers processing costs. 

 P3 Desktop P4 Desktop Core2 Desktop 

Estimated Input 

Processing Costs 
106.278 61.447 11.147 

Estimated Output 

Processing Costs 
8.054 2.445 0.411 

 

Table 2-3. Average measured Checkers processing costs. 

 P3 Desktop P4 Desktop Core2 Desktop 

Measured Input 

Processing Costs 
122.219 42.238 17.158 

Measured Output 

Processing Costs 
5.597 2.161 0.421 
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replicated architecture is used, all computers report both input and output processing costs for 

all commands. Hence, the initial architecture picked based on these costs is more likely to be 

the best architecture to use. 

2.4.3 Impact on Response Times of Self-Optimizing System Overheads 

One issue left unaddressed in the discussion of the results is the impact on response 

times of the self-optimizing system as it gathers parameter values and switches architectures. 

As mentioned earlier, when switching between architectures, the system pauses the execution 

of processing and transmission tasks. As a result, if users enter commands during architecture 

switch time, they may notice an increase in response times for these commands. However, if 

the architecture switch can be completed during think time, then the users will not notice an 

increase in response times. In our experiments, the average and maximum times required to 

perform the first optimization (switch to centralized architecture in which user1’s computer 

hosts the application) were 286ms and 308ms, respectively. The average and maximum times 

required to perform the second optimization (switch to centralized architecture in which 

user3’s computer hosts the application) were 280ms and 360ms, respectively. On the other 

hand, the lowest think time we observed in the logs was 2134ms. Moreover, think times were 

below 4000ms a total of only 8 out of 48 moves. Since the maximum architecture switch 

time, 360ms, is less than the minimum think time, 2134ms, an architecture switch happened 

either in between two moves (during think time) or it overlapped with at most one move. 

Hence, in the above scenarios, users could notice increased response times for at most one 

command because of a switch. Finally, the average and maximum times required to bring 

user3 up to speed when user3 joins the session were 632ms and 638ms, respectively. The 

reason this time is higher than the architecture switch times is because the it includes not only 
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the time required to replay commands entered so far to user3’s computer but also setting up 

all of the initial data structures for user3.  

In general, the architecture switch time could take longer than it did in our 

experiments. In this case, response times may suffer for several commands. One way to 

handle this problem is to notify users that an architecture switch could be made, and then 

wait for the users to notify the system that it can go ahead with the switch. Users often need 

to stretch out, go to the bathroom, etc., and during these pauses in new input commands, the 

architecture switch could be performed.   

So far, we have only considered the impact on response times of the architecture 

maintenance mechanism. Response times can also be impacted by the mechanism that 

collects performance and network latency reports from the users. To check whether or not 

these mechanisms impacted response times, we must compare the response times of each 

users with and without our system. We compare the response times in the first set of 

experiments above. The response times for the first five commands should betray any impact 

of the parameter collection mechanisms on response times. The reason is that in the case 

when our system is running, it does not change the architecture during the first five 

commands but it is still collecting data. As Table 2-1 shows, the response times for the first 

five commands with and without our system are the same (within 5ms).  

2.4.4 Other Results 

In the presented experiments, we have considered only the case when the 

collaborators are all on the same LAN. While this is realistic in some scenarios, it is also 

realistic that they are on different LANs. In this case, network latencies among them will be 

higher than LAN latencies, that is, they will be higher than 0. Unfortunately, we do not have 
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access to computers on different LANs. As a result, we simulate delays between users to 

simulate them being on different LANs. Each user’s computer delays the processing of the 

command by the simulated network latency between the user’s computer and the sending 

user’s computer to simulate latencies between them. 

We have performed experiments with latencies other than LAN latencies, such as 

those between a U.S. East Coast LAN-connected computer to a German LAN-connected 

computer, German modem-connected computer, and Indian LAN-connected computer, 

respectively. The corresponding round-trip times are 144, 324, and 740ms. All of these 

round-trip times are larger than the processing cost differences of the machines used in our 

experiment. As a result, it does not pay for any computer to act as a high-speed computation 

server for another. Thus, the replicated architecture should always be used. When we ran 

these experiments, our system indeed switched to the replicated architecture regardless of the 

starting architecture in our experiments with non-LAN network latencies. 

2.5 Summary  

To summarize, we have presented an analytical response time model for centralized 

and replicated architectures in small-scale scenarios. The model extends the previous small-

scale model by Chung and relaxes some of its assumptions. We have presented a system that 

can automatically apply our model to automate the maintenance of the collaboration 

architecture. We have also presented experiments that show that our system can noticeably 

improve response times. Moreover, we have identified new implementation and policy issues 

that must be addressed by any system that automatically maintains the architecture. These 

results combined prove sub-thesis I and a part of sub-thesis VI, which we re-state here. 
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SUB-THESIS VI 

It is possible to develop a model that analytically evaluates the impact on response 

times of different processing architectures, communication architectures, and 

scheduling policies to the degree necessary to automate their maintenance. 

SUB-THESIS I 

It is possible to develop a system that automatically switches to the architecture that 

satisfies any user-specified response time criteria better than existing approaches. 
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CHAPTER 3 

AUTOMATING COMMUNICATION ARCHITECTURE MAINTENANCE 
 

3.1 Overview 

In the previous chapter, we focused on small-scale collaboration scenarios with two 

or three users. We presented an analytical model that can predict response times in such 

scenarios for both centralized and replicated architectures when transmission costs are 

negligible and there is no type-ahead. We also presented a new system that can automate the 

architecture maintenance under these conditions and better meet response time requirements 

than existing systems. 

An important limitation with our earlier results is that they do not apply to scenarios 

in which transmission costs of commands are high. When transmission costs are high, they 

impact remote response times because it takes time to send commands to the remote users. 

This occurs when commands carry large amounts of data. For example, the size of a 

PowerPoint command can be several megabytes if it contains a slide from a presentation or 

even an entire presentation.  

The limitation also implies that the results do not apply to large-scale scenarios 

involving hundreds or thousands of users. The reason is that when the number of users is 

high, the cost of transmitting a command to all of them can be high. This is true even if the 

command is small. It is especially true if the command is large. Some scenarios indeed 
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involve a large number of users. For instance, online chat rooms can have hundreds of people 

participating. Company-wide presentations given over Webex or LiveMeeting can have 

hundreds and even thousands of users. Online games can have audiences that reach even 

higher numbers. For example, the popular Starcraft game tournaments in South Korea can 

have millions of fans following the games. One can also imagine an online Checkers game 

that is being watched by thousands of people.  

An important issue that arises when commands are transmitted to many destinations 

is whether commands are unicast or multicast. Multicast has long been advocated as a more 

efficient data distribution scheme than unicast – and justifiably so. In particular, it can better 

utilize network resources, such as routers and physical links, by reducing the degree of 

packet duplication. However, there has been little work done in applying this idea to 

distributed collaboration. The T 120 protocol [24] advocated the use of a multicast tree to 

reduce the amount of data (audio, video, bitmaps) transmitted on the network.  How such a 

tree was built or the improvement in network usage in different kinds of collaboration 

scenarios was not studied. RMX [19] and SRM [35] have studied the use of multicast to 

improve the packet loss handling and fault tolerance of shared whiteboards. In this chapter, 

we extend this research by focusing on performance of the collaborative application rather 

than its reliability or network usage.  

The idea of multicast requires the construction, for each source of messages, a 

multicast overlay that defines the paths a message takes to reach the destinations. Intuitively, 

such multicast overlays can degrade performance. They can increase remote response times 

as data must pass through additional computers to reach the collaborators. However, we 
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show that because of the cost of transmission costs, multicast can actually improve remote 

response times.  

Existing collaboration architectures, however, do not support multicast. In particular, 

they couple the processing of input commands with the distribution of input commands and 

outputs. Master computers unicast input (output) commands to all other computers in the 

replicated (centralized) architecture. Thus, more than one computer is not involved in 

distributing data, which is inconsistent with the notion of multicast. Hence, we present a new 

bi-architecture model of collaborative applications that explicitly supports multicast. It 

represents a collaborative application using two separate sub-architectures: the processing 

sub-architecture dictates master-slave relationships, and the communication sub-architecture 

governs how the commands are distributed. The system presented in the previous chapter 

automates the maintenance of the processing architecture. In this chapter, we present a 

system that automates the maintenance of the communication sub-architecture.  

In the process of creating the system that automates the communication architecture 

maintenance, we extended our earlier work in two ways. First, we present a new N-user 

response time model that supports both unicast and multicast. The model handles any-scale 

scenarios, that is, both small-scale and large-scale scenarios. Moreover, it relaxes all of the 

assumptions made by our earlier model. In particular, it does not assume that transmission 

costs are negligible or that there is no type-ahead. Second, we extend our self-optimization 

framework to collect transmission costs and apply the new N-user model.  
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The system that automates the communication architecture maintenance raises several 

issues. One issue is how the system measures transmission costs. These costs depend on both 

the CPU and the network card: the CPU must queue a message for transmission by the 

network card and the network card must actually transmit the message onto the physical link. 

Measuring the CPU transmission costs can be done simply by timing how long the 

transmission loop takes. The same technique works for measuring the network card 

transmission costs when blocking communication is used. However, it does not work when 

non-blocking communication is used because the network card does not notify the 

application when transmission is completed. Hence, new techniques for measuring the 

network card transmission costs are needed when non-blocking communication is used. 

Chapter Goals: 

We show that the communication architecture impacts response times. We present 

an extension of our self-optimizing system that better meets response time 

requirements than existing systems by automating the maintenance of the 

communication architecture. 

Chapter Scope: 

We analyze the impact on response times of the communication architecture in 

isolation of the impact of the processing architecture. We consider any-scale 

collaboration scenarios involving both small and large numbers of users. We relax 

our earlier assumptions that transmission costs are negligible and that there is no 

type-ahead.  
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Once the transmission costs are measured, the next issue is whether the system 

calculates a shared communication overlay rooted used to distribute the commands of all 

users or a different communication overlay rooted at each inputting user. The latter can 

improve response times more than the former since the messages from a user do not have to 

reach the root of the shared overlay first. On the other hand, the overlay calculation takes 

time and thus, the calculation of the former is quicker than that of the latter. Therefore, with 

the latter, the response time improvements are more immediate than with the former.  

One the communication architecture is computed, the next issue is how the system 

deploys it. In the previous chapter, the system that automates the processing architecture 

maintenance pauses the processing of new commands during an architecture change. This 

has the undesirable effect of increasing the response times of commands entered during the 

change. Although we do not implement it, Chung presented a solution that does not require 

such a pause. His solution relies on running the old and the new processing architecture in 

parallel. The equivalent of such a system for changing the communication architecture would 

be desirable for the same reason. 

Another, related issue is how the system maintains the communication architecture as 

users join and leave the session. Although we have addressed this issue in the previous 

chapter, we must return to it because it poses new problems when multicast is used. In 

particular, in a multicast overlay, users become disconnected if the user who was forwarding 

messages to them in the multicast overlay leaves. Hence, these users must someone be 

reinserted into the overlay. Similarly, the system must insert late-comers into the overlay. 

As we describe the self-optimizing system, we will address all of the issues it raises. 

The rest of this chapter is organized as follows. We first present the bi-architecture model of 
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collaborative systems. Then, we develop the N-user analytical model for this architecture. 

Following this, we describe the self-optimizing system that automates the maintenance of the 

communication architecture. Then, we present experiments conducted with the extended 

version of our self-optimization system. Finally, we end with discussions and a brief 

summary.  

3.2 Bi-Architecture Model 

As mentioned above, multicast requires the formation of communication overlays. 

But all of the existing collaboration architectures couple the processing of input commands 

with the distribution of input commands and outputs. For example consider a collaborative 

scenario in which there are six people. The centralized and replicated architectures for this 

scenario are shown in Figure 3-1. As Figure 3-1 shows, in the centralized architecture, the 

 

Figure 3-1. Centralized (top) and replicated (bottom) architectures with six users. 
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master computer unicasts output commands to all slave computers, while in the replicated 

architecture, a master computer unicasts all input commands it receives from its local user to 

all other master computers. In other words, more than one computer is not involved in 

distributing data, which is inconsistent with the notion of multicast. 

To support multicast, we define a new bi-architecture collaborative systems model 

that decouples the processing and distribution tasks. The processing architecture governs the 

master-slave relationships and the communication architecture dictates how input (output) 

commands are distributed from one master computer to other master (slave) computers. In 

the model, every computer may perform some part of the transmission task. For example, if 

multicast is used in the centralized architecture, then a slave computer, in addition to 

processing any outputs that it receives, may also need to forward the outputs to other slaves 

 

Figure 3-2. Bi-architecture model with a multicast communication architecture a (top) 

centralized and (bottom) the replicated processing architectures with six users. 
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as illustrated in Figure 3-2 (top). Figure 3-2 (top) shows the transmission after user1’s 

computer, which is the master, computes the output for a command entered by user1. The 

master transmits the output only to (computers belonging to) user2, user3, and user4. User4’s 

computer, which is a slave, then forwards the output to user5 and user6. Similarly, if multicast 

is used in the replicated architecture, a master computer that receives an input command from 

another master, may, in addition to processing the command, forward it to other masters as 

shown in Figure 3-2 (bottom). Figure 3-2 (bottom) shows the transmission of an input 

command entered by user1. User1’s computer transmits the command only to user2, user3, and 

user4. User4’s computer forwards the command entered by user1 to user5 and user6. By 

definition, when a unicast communication architecture is used, the bi-architecture model 

degenerates to that of traditional collaboration architectures. 

3.2.1 Implementation Issues 

The main question of in this chapter is whether a unicast or a multicast 

communication architecture should be used to optimize the performance of a given 

processing architecture. To answer the question, we must first define certain implementation 

aspects of the bi-architecture model.  

Scheduling of Transmission and Processing Tasks 

The first of these aspects is whether processing and transmission tasks are carried out 

in a single thread, or in separate threads. In this chapter, we assume that both processing and 

data distribution tasks are carried out by a single thread. Multi-threaded implementations of 

program components, of course, have the potential of improving performance, especially on 

a multi-core or a multiprocessor computer. We leave the nature and impact on performance 

of such implementations for the next chapter. 
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When all operations are carried out by a single thread, one must determine the order 

in which they are carried out. Two scheduling policies, based on the operation kind, are 1) 

process-first, which favors local response times by postponing transmission tasks until 

pending processing tasks complete and the output produced by these tasks is displayed to the 

local user, and 2) transmit-first, which favors remote response times by giving precedence to 

transmission over processing and display. In this chapter, we assume a transmit-first 

scheduling policy. The process-first policy will be discussed in the next chapter when we 

consider the impact of scheduling. By fixing the scheduling policy, we are able to focus, in 

this chapter, on the difference between unicast and multicast communication. 

In the unicast architectures, the scheduling policies are relevant only to master 

computers. The reason is that the slave computers do not participate in the data distribution 

task. When multicast is used, this is no longer true; in particular, a slave computer may be 

responsible for forwarding output commands that it receives to other computers. Thus, the 

scheduling policies must distinguish between masters and slaves. Table 3-1 shows the steps 

Table 3-1. Order of processing and transmission tasks. 

Centralized Processing Architecture Replicated Processing Architecture 

If (master computer) 

      Wait for next input cmd 

      Process input command 

Else 

      Wait for next output cmd 

Transmit output cmd to (zero  

   or more) slave users 

Process output cmd 

Repeat  

Wait for next input cmd 

Transmit input cmd to (zero  

   or more) master users 

Process input cmd 

Process output cmd 

Repeat 
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taken by master and slave computers with multicast and transmit-first scheduling. The key 

difference between these steps and those taken in the unicast case is as follows. In the unicast 

case, a master computer transmits an input (output) command to all other computers in the 

replicated (centralized) architecture, respectively. In the multicast case, on the other hand, the 

set of destinations to which the inputting user’s master computer transmits a command is 

determined by the multicast overlay. There must be at least one destination in the set; 

otherwise the system cannot be collaborative. Moreover, the multicast overlay determines the 

set of destinations to which a non-inputting user’s computer transmits received commands. 

Depending on the multicast overlay, the destination set is empty for some computers and 

non-empty for others.  

Blocking vs. Non-Blocking Communication 

The final issue we must address is the whether a computer forwards commands using 

blocking or non-blocking communication. The difference between the two communication 

modes is whether or not the thread that makes a send call blocks until the network card 

transmits the command on the physical wire. Since typically the network card is much slower 

than the CPU, it seems that non-blocking communication should always be used, especially 

when the transmission task is given priority over the processing task. The reason is that the 

processing task is delayed less with non-blocking (than with blocking) communication, and 

hence the response times to the local user are better with non-blocking communication. 

However, a subtle but important issue arises when a large command is transmitted to a large 

number of destinations in a non-blocking fashion – the network card buffers can overflow! 

Hence, there are scenarios in which blocking communication should be used instead of non-

blocking communication.  
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As both blocking and non-blocking communication are useful, our system supports 

both. From an implementation point of view, supporting both communication modes is a 

matter of setting a flag at system start time. From an analytical point of view, however, 

supporting both complicates the analysis as we will see when we develop our formal model.     

3.2.2 Choice of Multicast Algorithm 

In this first-cut effort at investigating the bi-architecture model, we did not want to 

develop a new algorithm for creating a multicast tree. Instead, we wanted to analyze the 

performance of an existing algorithm. There are two classes of such algorithms, namely, IP 

and application-layer multicast. IP multicast assumes that network level routers support 

multicast and can be organized into multicasting overlays. Hence, the source host sends only 

a single copy of a message and the routers make sure that the message reaches the desired 

destinations. In other words, the routers perform the actual packet duplication and forwarding 

of messages. In contrast, application-layer multicast assumes no multicast support at the 

network layer; instead, it organizes the end-user hosts into multicast overlays. In such 

overlays, the hosts are connected by logical links, which map to physical paths in the 

underlying network. Unfortunately, even though multicasting is a mature field, because of a 

lack of a practical approach to upgrading legacy backbone routers to include multicast 

functionality, a lack of a scalable inter-domain routing protocol, and other deployment issues 

[28], IP multicast is not widely available.  For this reason, we analyze an existing 

application-layer multicast scheme. 

In general, there are many approaches to create application-layer multicast overlays. 

Most of these approaches model the network as a graph in which the hosts are the vertices 

and the logical links between these hosts are the edges. Each host is assigned a set of 
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constraints, which acts as knobs for controlling resource usage. For example, the degree 

constraints can specify the available outgoing bandwidth of each host. Each link is assigned a 

cost, which is incurred each time the link is traversed. For instance, the cost can specify the 

latency of a link. Using this network model, traditional multicast schemes focus on 

minimizing the diameter of the multicast overlay while satisfying the host constraints. A 

typical optimization function that is used 1) minimizes the maximum sum of transmission 

delays, which is a function of bandwidth, and network latencies, which are also known as 

propagation delays, on a path from the source to any receiver (maximum end-to-end latency) 

and 2) respects the bandwidth capabilities of the devices.  The implicit assumption in this 

approach is that the diameter of the overlay determines the largest end-to-end cost. 

Recently, Brosh and Shavitt [13] argued that traditional delay and bandwidth oriented 

optimization functions are valid for network-layer but not application-layer overlays. They 

state that such functions assume network-layer data distribution capabilities at the 

application-layer, even though the data distribution capabilities at the two layers are 

fundamentally different. This difference can make the cost of the transmitting data to 

multiple destinations significant at the application layer (What we call transmission costs, 

they called processing costs. We use a more specific term as there are other kinds of 

processing tasks in our domain, such as those for processing input and output commands).  

For instance, network level routers are optimized for duplicating packets. Moreover, they 

have multiple physical outgoing links and can therefore transmit packets in parallel. 

Therefore, the key aspect of a router’s transmission costs is its bandwidth, and the 

transmission cost is simply calculated as “size of message/bandwidth.” Bandwidth, however, 

is not the only transmission cost factor on end-user machines. In particular, these machines 
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are neither optimized for duplicating packets nor do they typically have multiple network 

connections. Before the command reaches the network interface, the operating system must 

traverse the network stack and copy data buffers along the way, which takes time. Moreover, 

the operating system must perform these steps for each destination. Study by Abdelkhalek et 

al. [1] of the server for Quake, a popular multi-player first-person shooter game, found that 

these costs can be significant in practice. They found that the server spent 50% of CPU time 

on transmitting commands to clients. In addition, end-user machines typically do not have 

multiple network connections. Therefore, the network-layer transmission cost calculation is 

invalid at the application layer because it accounts only for the transmission costs at the 

network interface. It must also account for the speed at which the CPU can duplicate 

messages and write them to a memory location from which the network card can read them. 

Hence, both CPU transmission costs and network card transmission costs should be 

accounted for in the transmission cost of an end-user computer. As a result, Brosh and 

Shavitt define a new algorithm for creating application-layer multicast trees, which explicitly 

considers application-layer transmission times. They showed that the optimal multicast 

problem is NP-Complete for their network model and developed a heuristic multicast 

algorithm, called HMDM. They compared its end-to-end delays with the end-to-end delays 

produced by Dijkstra’s Shortest Path Tree algorithm, which does not consider transmission 

times. Their simulations of these two algorithms show that the HMDM scheme provides 

better end-to-end delays than Dijsktra’s scheme. 

In summary, while other application-layer multicast schemes exist [8], HMDM is the 

only approach that considers the time end-hosts require for duplicating and transmitting 

messages on the network in the building of such a tree. As our motivation for applying 
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multicast to collaboration was based on the assumption that transmission costs are 

significant, we decided to use HMDM as the basis for our multicast architecture. 

3.3 Formal Analysis 

In the previous chapter, we presented a three-user formal model of response times in 

collaborative systems. The model assumed three-user collaborations, a zero cost of 

transmitting inputs and outputs, unicast communication, and no type-ahead. As a result, the 

model does not handle the impact on response times of transmission costs or a multicast 

communication architecture. We next present a formal model that (a) relaxes all of the 

assumptions of the previous chapter model and (b) supports both unicast and multicast 

communication. Regardless of whether unicast or multicast is used to distributed commands, 

either blocking or non-blocking communication can be used. As mentioned earlier, it makes 

more sense to use non-blocking than blocking communication because the CPU does not 

block waiting for the network card with the former while it does block with the latter. Thus, 

we present the analytical model for the case when non-blocking communication is used. 

 

We present the model starting with remote response time equations for the replicated 

architecture. The rest of the model can be derived directly from these equations. We start by 

considering the response times of commands entered once all of the computers have 

completed processing and transmission tasks for all of the previous commands – that is, 

Analysis Scope: 

Although both blocking and non-blocking communication can be used to transmit 

messages, we focus only on the non-blocking communication case. 
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when the collaborative system has entered a quiescent state. We then analyze the response 

times of a command entered by a user before the output for the user’s previous command has 

been processed on all machines. Finally, we consider the response times of simultaneous 

commands entered by different users.  

3.3.1 Quiescent State Commands 

Let us start by considering the remote response times of commands entered during a 

quiescent state. 

Replicated Remote Response Time 

We first consider an input command entered by a master user. To reach a particular 

user’s computer, which we refer to as the destination computer, the command must travel 

from the source computer to the destination computer along some path. The path may consist 

of additional computers as shown in Figure 3-3. We refer to the source computer and these 

additional computers as intermediate computers. The terms destination and intermediate are 

relative to a particular path. An intermediate computer on one path is a destination computer 

on a different path as all users see the output of an input command. Let 𝜋 denote the path 

from the source to the destination, 𝑚 denote the number of computers on the path including 

the source and destination computers, and 𝜋𝑘 , 1 ≤ 𝑘 ≤ 𝑚, denote the 𝑘𝑡ℎcomputer on the 

path 𝜋, where 𝜋1 is the source and 𝜋𝑚  the destination computer. 

 The replicated remote response time of command 𝑖 to computer 𝑗 along path 𝜋 is 

given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖,𝑗 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑚   
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where 𝑑 𝜋𝑘 , 𝜋𝑘+1  is the network latency between the 𝑘𝑡ℎ  and 𝑘 + 1𝑠𝑡  computers on path 𝜋, 

𝑖𝑛𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑘  is the delay command 𝑖 experiences on the 𝑘𝑡ℎ  intermediate computer on the 

path, and 𝑑𝑒𝑠𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑚   is the delay command 𝑖 experiences on the destination computer. 

The destination and intermediate computers contribute different delays because the former 

contributes to the remote response time of the local user while the latter contribute to the 

remote response time of a remote user. This results in a fundamental difference between the 

equations for the intermediate and destination computers. In the case of an intermediate 

computer, we must determine when the computer transmits to the downstream computer. In 

the case of the destination computer, we must determine when the input and output 

processing complete. 

 The first component of the remote response time equation is independent of the 

processing and transmission tasks, as it is a sum of the network latencies on the path from the 

source to the destination. 

 Consider first the delay of 𝜋𝑘 , the 𝑘𝑡ℎ  intermediate computer on path 𝜋. Its delay is 

equal to the time that it requires to transmit the command to the next computer along the 

path, 𝜋𝑘+1. By transmit, we mean to have placed the entire message destined to 𝜋𝑘+1 on the 

physical wire. The transmit time depends on two factors: 1) the CPU transmit time, which is 

 

Figure 3-3. An example path of length m from source to destination. 

 

1 2 3 m-1 m

Path  of length m

Source Destination

k = 1 k = 2 k = 3 k = m-1 k = m

Intermediate
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the amount of time the CPU requires to copy the message data buffers from application space 

to the memory location from which the network card reads data for transmission, and 2) the 

network card transmit time, which is the amount of time the network card requires to read the 

message data buffers from memory and send it on the physical wire. We denote the CPU 

transmit time by 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁  and the network card transmit time by 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝐼𝑁 . Note that 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝐼𝑁  

is not simply the inverse of the bandwidth of the system because it includes the time the 

network card requires to read data from the memory.  

In general, computer 𝜋𝑘  may have to transmit to more than one destination. 

Therefore, its delay depends on the number of other computers to which it transmits before 

transmitting to computer 𝜋𝑘+1.  Consider the case when computer 𝜋𝑘  transmits first to 

computer 𝜋𝑘+1 To transmit a message to the first destination, computer 𝜋𝑘’s CPU must 

queue the message for transmission, which requires 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁  time, and then computer 𝜋𝑘’s 

network card must transmit the message, which requires 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝐼𝑁  time. Therefore, the delay is 

equal to 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 + 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝐼𝑁 , as shown in Figure 3-4.  

When computer 𝜋𝑘+1 is not the first destination to which computer 𝜋𝑘  forwards 

commands, the analysis is slightly more complicated. Let 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1  denote the position 

of computer 𝜋𝑘+1 in computer 𝜋𝑘’s list of destinations. The delay is not simply equal to 

𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1  times the delay to the first destination, that is, 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ (𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 +

𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝐼𝑁 ). The reason is that once the CPU transmits to the first destination, the CPU and the 

network card work in parallel, and the equation does not capture the parallelism. Since they 

are performing the transmission in parallel, the slower one determines the delay. In theory, 

either of the two can be the bottleneck.  However, in all of our experiments, we found it was 
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always the network card. In particular, in our experiments, 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝐼𝑁 > 2 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘

𝐼𝑁 . 

Therefore, we consider only the case when the network card is the bottleneck. In this case, 

the delay is equal to the time the network card requires to transmit the command to 

𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1  destinations plus the time the CPU requires to queue the message for a single 

transmission, as shown in Figure 3-4.  

We can generalize the delay to the first and non-first destinations as follows:  

𝑖𝑛𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑘 =  𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝐼𝑁  

 

Figure 3-4. Non-blocking transmission of four messages in which the network card 

(left) and the CPU (right) is the bottleneck. 

 

time

CPU NIC

xCPU

xNIC
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xCPU + xNIC

xCPU + 2xNIC

xCPU + 3xNIC

xCPU + 4xNIC

Delay to 1st, 2nd, 3rd, 
and 4th destinations:

Analysis Scope: 

Although in theory both the CPU and the network card can be transmission 

bottlenecks, we found that the network card was always the bottleneck in all of the 

collaboration logs we recorded. Therefore, we focus on the case when the network 

card is the bottleneck. 
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The delay of the destination computer 𝜋𝑚  also depends on the number of computers 

to which it forwards commands because it must first transmit the command to all of them 

before processing the input command and its output. Unlike for intermediate computers, 

where the delay depended on the network card, in this case, the delay depends only on the 

CPU. The reason is that once the CPU queues messages in the network card’s transmission 

queue, the work done by the network card does not take any CPU time. Let 𝑝𝑖,𝜋𝑚  
𝐼𝑁  (𝑝𝑖,𝜋𝑚  

𝑂𝑈𝑇 ) 

denote the time computer 𝜋𝑚  requires to process input (output) command 𝑖, and let 𝑓𝑎𝑛𝜋𝑚   

denote the number of destinations to which the computer forwards commands, that is, the fan 

out from the computer. Thus, the delay of the destination computer equals 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑚  =  𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚
𝐼𝑁 + 𝑝𝑖,𝜋𝑚

𝐼𝑁 + 𝑝𝑖,𝜋𝑚
𝑂𝑈𝑇  

Replicated Local Response Time 

So far, we have presented only the equations for the replicated remote response times. 

We next present the equations for replicated local response times for commands entered by a 

master user. Recall that the local response time is the time that elapses from the moment a 

user enters an input command to the moment the user sees the output for the command, 

which is equivalent to the time that elapses from the moment the inputting user’s computer 

receives the command to the moment the computer completes processing the output of the 

command. Therefore, the local response time is exactly the delay of the destination computer 

defined above. This makes sense because the inputting user’s computer is both the source 

and the destination. Thus, the local response time equations for command 𝑖 entered by userj 

are given by 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗 = 𝑑𝑒𝑠𝑡𝑅𝐸𝑃 𝑖, 𝑗 = 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇  
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Centralized Architecture 

The equations we have presented have considered the case in which the processing 

architecture is replicated. As a result, each input command is entered by a master user. Let us 

next consider the centralized architecture, with both master and slave commands. 

 We can obtain the centralized architecture equations for commands entered by master 

users from the above replicated architecture equations by adjusting them for the two main 

differences in the two architectures. First, in the centralized architecture, only the master 

computer processes input commands, while all computers process output commands. 

Therefore, when calculating the delays of the computers on the path from the source to the 

destination, the processing times in the delays are equal to the time needed to process only 

output commands. Second, instead of transmitting input commands, the computers transmit 

output commands. Based on these two differences, the centralized architecture general 

remote response time equation is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,𝑗 = 𝑝𝑖,𝜋1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇 𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇 𝑖, 𝜋𝑚   

The first term, 𝑝𝑖,𝜋1

𝐼𝑁 , for which there is no equivalent in the replicated case, accounts 

for the fact that the master computer must process the input command before it can send the 

output.  The second term 𝑑 𝜋𝑘 , 𝜋𝑘+1 
𝑚−1
𝑘=1 ,is the exactly the same as in the replicated case. 

The last two terms are the delays created by the computers on the path from a source to a 

destination. The centralized delay on an intermediate computer 𝜋𝑘  is 

𝑖𝑛𝑡𝐶𝐸𝑁𝑇 𝜋𝑘 =  𝑥𝐶𝑃𝑈𝑖,𝜋𝑘
𝑂𝑈𝑇 + 𝜎 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝑂𝑈𝑇  

And, similarly, the centralized delay on the destination computer is 

𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇 𝜋𝑚 =  𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚
𝑂𝑈𝑇 + 𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇  
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These equations capture the fact that in the centralized architecture, the destination 

and intermediate computers do not process input commands. Moreover, they transmit outputs 

instead of inputs. 

The centralized architecture local response time equation can be derived in a similar 

manner. Since, the master user’s computer is both the source and the destination, the local 

response time is given by 

𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,𝑗 = 𝑝𝑖,𝑗
𝐼𝑁 + 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇(𝑖, 𝑗) 

As was the case for the remote response time equation, the first term in the local 

response time equation, 𝑝𝑖,𝑗
𝐼𝑁, accounts for fact that the master must accounts for the fact that 

the master computer must process the input command before it can send and process the 

output. 

We can also obtain the equations for input commands entered by slave users by 

morphing the above equations for input commands entered by master users. The only 

difference between the two kinds of input commands is that a command entered by a slave 

must first reach the master computer. Once the command reaches the master, the problem 

reduces to that of calculating the remote response time from the master to the slave, which 

we have already done above. The time the command takes to reach the master computer is 

equal to the time the slave computer requires to transmit the command to a single destination 

(i.e. the master) plus the time the command takes to traverse the network between the slave 

and master computers. Therefore, we can obtain the equations for the local and remote 

response time of command 𝑖 entered by slave usera whose master is userb by adding the term 

𝑥𝐶𝑃𝑈 𝑖,𝑎
𝐼𝑁 + 𝑥𝑁𝐼𝐶

𝑖,𝑎

𝐼𝑁
+ 𝑑 𝑎, 𝑏  to the response time equations. 
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3.3.2 Implications for Quiescent State Commands 

 The analysis above helps us better understand the nature of multicast and how it 

differs from unicast. It also helps us formally confirm intuitive expectations and, more 

interesting, derive some unintuitive results about multicast. 

Local Response Times 

So far, our motivation for using multicast has been to reduce remote response times. 

Our equations predict that multicast can also improve local response times. Consider first the 

centralized architecture local response times of a master user. The difference in the local 

response times with and without multicast is given by  

 𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 = 𝑝𝑖,𝑗
𝐼𝑁 + 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇

𝑢𝑛𝑖𝑐𝑎𝑠𝑡 (𝑖, 𝑗) −  𝑝𝑖,𝑗
𝐼𝑁 + 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 (𝑖, 𝑗) 

= 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑢𝑛𝑖𝑐𝑎𝑠 𝑡(𝑖, 𝑗) − 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 (𝑖, 𝑗)

=  𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑓𝑎𝑛𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝑂𝑈𝑇  

The number of destinations to which a master transmits when unicast (multicast) is 

used, 𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡  (𝑓𝑎𝑛𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎 𝑠𝑡 ,), is equal (less than or equal) to the number of users minus 

onethe number of users minus one. Therefore, the above equation is always less than or equal 

to zero. As a result, the local response time of the master user in the centralized architecture 

is no worse with multicast than with unicast. In fact, since the nature of multicast is to 

distribute the transmission task among multiple computers, usually the number of computers 

to which the master transmits with unicast is larger than with multicast, that is,  

𝑓𝑎𝑛𝑗
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 <  𝑓𝑎𝑛𝑗

𝑢𝑛𝑖𝑐𝑎𝑠𝑡 . Thus, the local response time of a master user in a centralized 

architecture is expected to be better with multicast.  

 Similarly, the difference in the local response times with and without multicast for the 

replicated architecture is given by the following equation  
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𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 = 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 (𝑖, 𝑗) − 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝑢𝑛𝑖𝑐𝑎𝑠𝑡 (𝑖, 𝑗)

=  𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑓𝑎𝑛𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁  

 As with the centralized case, 𝑓𝑎𝑛𝑗
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 ≤ 𝑓𝑎𝑛𝑗

𝑢𝑛𝑖𝑐𝑎𝑠𝑡 . Moreover, usually, 

𝑓𝑎𝑛𝑗
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 <  𝑓𝑎𝑛𝑗

𝑢𝑛𝑖𝑐𝑎𝑠𝑡 . Therefore, the local response time of a master user in the 

replicated architecture should be lower with multicast than with unicast. 

To illustrate the difference equations, consider user1’s local response time in the 

replicated-unicast and replicated-multicast architectures shown in Figure 3-1 (bottom) and 

Figure 3-2 (bottom), respectively, with the following additional properties: (a) with unicast, 

user1’s computer transmits commands first to user4, then to user2, user3, user5, and finally 

user6; (b) with multicast, user1’s computer transmits commands first to user4, then to user2, 

and finally to user3, while user4’s computer forwards the commands first to user5 and then to 

user6; (c) user1 enters all of the commands; and (d) the users all have the same computers. 

Whenever we use the example, we omit the user index terms from the transmission and 

processing parameters because we assume that all of the computers are the same. 

The local response time for user1 is given by 𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,1 = 𝑓𝑎𝑛1 ∗ 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 𝑝𝑖

𝐼𝑁 +

𝑝𝑖
𝑂𝑈𝑇 . When unicast is used, user1’s computer transmits the command to five destinations. 

When multicast is used, it transmits commands to only three destinations. Therefore, the 

unicast local response time is 2 ∗ 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁  higher than the multicast local response time, which 

agrees with the difference equation,  𝑓𝑎𝑛1
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑓𝑎𝑛1

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  ∗ 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 =  5 − 3 ∗

𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 = 2 ∗ 𝑥𝐶𝑃𝑈 𝑖

𝐼𝑁 .  
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Remote Response Times 

 As the above analysis shows, our model shows that multicast can only improve 

response times. On the other hand, our model predicts that multicast may improve or degrade 

remote response times. Consider the remote response time of slave user, 𝑏, in the centralized 

architecture for a command 𝑖 entered by master 𝑗. The difference in the remote response 

times with and without multicast is given by the following equation 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡

=  𝑝𝑖,𝑗
𝐼𝑁 + 𝑑 𝑗, 𝑏 + 𝑖𝑛𝑡𝐶𝐸𝑁𝑇

𝑢𝑛𝑖𝑐𝑎𝑠𝑡  𝑖, 𝑗 + 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑢𝑛𝑖𝑐𝑎𝑠𝑡  𝑖, 𝑏  

−  𝑝𝑖,𝑗
𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  𝑖, 𝜋𝑚   

=  𝑑 𝑗, 𝑏 + 𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑢𝑛𝑖𝑐𝑎𝑠𝑡  𝑖, 𝑗 + 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇

𝑢𝑛𝑖𝑐𝑎𝑠𝑡  𝑖, 𝑏  

−   𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑚𝑢𝑙𝑡𝑖𝑐 𝑎𝑠𝑡  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  𝑖, 𝜋𝑚    

 The first and second brackets give the remote response times with unicast and 

multicast, respectively. The first sub-term in each bracket gives the network latency delays 

an output experiences as it travels from the source to the destination. With unicast, it includes 

only the delay from the source to the destination. With multicast, on the other hand, it 

includes all of the network latencies on the path from the source to the destination in the 

multicast overlay. The second sub-term in each equation gives the total delay an output 

experiences on the intermediate computers as it travels from the source to the destination. 

With unicast, it experiences intermediate delays only on the source computer. With multicast, 

it experiences intermediate delays on all computers on the path from the source to the 

destination other than the destination computer. The two sub-terms combined give the time at 
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which the output reaches the destination. By design, the HMDM scheme reduces this time 

compared to unicast, that is,  

𝑑 𝑗, 𝑏 + 𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑢𝑛𝑖𝑐𝑎𝑠𝑡  𝑖, 𝑗 <  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

 

The third and final sub-term gives the delay the output experiences at the destination 

computer. With unicast, a destination never has to forward commands to other computers. 

Thus, the delay includes only the time the destination computer requires to process the output 

and is equal to 𝑝𝑖,𝑏
𝑂𝑈𝑇 . With multicast, on the other hand, each destination may have to 

forward outputs to other computers. Thus, the delay includes the time the destination’s CPU 

requires to transmit the output plus the time it takes to process the output, which is equal to 

𝑓𝑎𝑛𝑏 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑏
𝑂𝑈𝑇 + 𝑝𝑖,𝑏

𝑂𝑈𝑇 .  

Comparing all of the sub-terms in above difference equation shows that if the time 

CPU on the destination computer requires to forward the output with multicast, 

𝑓𝑎𝑛𝑏
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑏

𝑂𝑈𝑇 , is greater than the reduction in the time at which the output reaches 

the destination with multicast compared to unicast, then multicast increases remote response 

times. Otherwise, multicast decreases remote response times. This analysis illustrates how 

the that fact that multicast algorithms, such as HMDM, do not consider collaboration specific 

parameters can lead increases in response times when multicast is used. In particular, because 

they do not consider neither the order in which a computer performs the processing and 

transmission tasks nor the processing costs, multicast algorithms can increase remote 

response times in collaborative systems. 
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The same reasoning can be applied to the replicated remote response times. 

Therefore, we simply state the replicated remote response time difference equation with 

unicast and multicast. 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡

=  𝑑 𝑗, 𝑏 + 𝑖𝑛𝑡𝑅𝐸𝑃
𝑢𝑛𝑖𝑐𝑎𝑠𝑡  𝑖, 𝑗 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝑢𝑛𝑖𝑐𝑎𝑠𝑡  𝑖, 𝑏  

−   𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑚𝑢𝑙𝑡𝑖 𝑐𝑎𝑠𝑡  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  𝑖, 𝜋𝑚    

 To illustrate both how multicast can improve and degrade remote response times 

compared to unicast, consider user4’s and user6’s remote response times in Figure 3-1 

(bottom) and Figure 3-2 (bottom). The reason we consider user4 and user6 instead of other 

users is because user4 is the only non-source intermediate computer in our example and user6 

is the “farther” from the source than any other user. As Figure 3-2 (bottom) shows, the path 

from user1 to user6 is longer than the path from user1 to any other user, except user5. The 

paths from user1 to user5 and user6 both go through user4. Since user4 transmits first to user5 

and then to user6, we consider user6 to be farther away than user5 is from user1.  

Consider the remote response time of user6. When unicast is used, the path 𝜋 from 

user1 to user6 computer is of length 𝑚=2 and 𝜋1 and 𝜋2 are user1’s and user6’s computers, 

respectively. According to our replicated architecture intermediate delay equation, user1’s 

computer’s delay is equal to the time it requires to transmit the command to five destinations, 

𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 5 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 , (since it transmits to user6’s computer last). According to our 

destination delay equation, user6’s computer’s delay is equal to the time it requires to process 

the input and the corresponding output command, 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 . The total network delay is 

equal to the time the command requires to traverse the network from user1 to user6, 𝑑(1,6). 
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Thus, user6’s unicast remote response time is equal to 𝑑(1,6) + 𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 5 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 +

𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 . When multicast is used, the path 𝜋 from user1 to user6 is of length 𝑚=3 and 𝜋1, 

𝜋2, and 𝜋3 are user1’s, user4’s, and user6’s computers, respectively. According to our model, 

user1’s computer’s delay is equal to the time it requires to transmit the command to a single 

destination, 𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 , since it transmits to user4 first. Similarly, user4’s 

computer’s delay is equal to the time it requires to transmit the command to two destinations, 

𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 2 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 , since it transmits to user6 last. User6’s computer’s delay is equal to 

the time the computer requires to process the input and the corresponding output command, 

𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 . Finally, the network delay is equal to the amount of time the command requires 

to traverse the network from user1 to user4 and then from user4 to user6, 𝑑 1,4 + 𝑑(4,6). 

Since all of the users have the same computers, user6’s remote response time is equal to 

𝑑 1,4 + 𝑑(4,6) + 𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 2 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 + 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 =

𝑑 1,4 + 𝑑(4,6) + 2 ∗ 𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 3 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 + 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 . Subtracting the unicast 

response times from those of multicast gives  𝑑 1,4 + 𝑑 4,6 − 𝑑(1,6) + 𝑥𝐶𝑃𝑈 𝑖,1
𝑂𝑈𝑇 − 2 ∗

𝑥𝑁𝐼𝐶 𝑖,1
𝑂𝑈𝑇 . Thus, if the difference in the multicast and unicast network delays plus the time the 

CPU requires to transmit to a single destination, 𝑑 1,4 + 𝑑 4,6 − 𝑑(1,6) + 𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 , is 

greater than time the network card requires to transmit the command to two destinations, 

2 ∗ 𝑥𝑁𝐼𝐶 𝑖
𝑂𝑈𝑇 , then user6’s response times are better with unicast than with multicast, and vice 

versa.  

Consider now the remote response time of user4. When unicast is used, the path 𝜋 

from user1 to user4 computer is of length 𝑚=2 and 𝜋1 and 𝜋2 are user1’s and user4’s 

computers, respectively. According to our model, user1’s computer’s delay is equal to the 
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time it requires to transmit the command to a single destination, 𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 . Also, 

user4’s computer’s delay is equal to the time it requires to process the command, 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 . 

The total network delay is equal to the time the command requires to traverse the network 

from user1 to user4, 𝑑(1,4). Thus, user4’s unicast remote response time is equal to 𝑑(1,4) +

𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 + 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 . When multicast is used, the path 𝜋 from user1 to user4 is 

of length 𝑚=2 and 𝜋1 and 𝜋2 are user1’s and user4’s computers, respectively. According to 

our model, user1’s computer’s delay is the same as with unicast. It is equal to the time it 

requires to transmit the command to a single destination, 𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 . User4’s 

computer’s delay is different than with unicast, however. Based on our equations, the delay 

with multicast is equal to the time it requires to transmit the command two destinations, 

𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 2 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 , plus the time it requires to process the command, 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 . The 

total network delay is equal to the time the command requires to traverse the network from 

user1 to user4, 𝑑(1,4). Thus, user4’s multicast remote response time is equal to 𝑑(1,4) +

𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 2 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇 + 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 . Thus, user4’s multicast remote 

response times are 𝑥𝐶𝑃𝑈 𝑖
𝑂𝑈𝑇 + 2 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝑂𝑈𝑇  higher than those of unicast. This analysis 

illustrates how collaboration-specific factors, such as the processing time of commands, can 

actually make remote response times for a user higher with multicast than with unicast.  

3.3.3 Consecutive Commands by a Single User 

So far, we have assumed that a user enters a command when the system is in a 

quiescent state. In this section, we relax this assumption by considering the case when a user 

enters a command before all users’ devices have completed the processing and transmission 

tasks of all commands entered previously by the user. Thus, we are considering the case 
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when think times are low or there is type-ahead and only one user is entering commands. In 

this case, a command may arrive at a computer early, that is, before the computer has 

completed the processing and transmission tasks of a previous command. When this happens, 

the new command must wait until the computer completes the transmission and processing 

task of the previous commands. Hence, the analysis presented so far does not apply because a 

command can be delayed on a user’s computer for longer than the time accounted for in the 

above response time equations. We next present an analysis that accounts for this additional 

delay. We present first the analysis for input commands entered by a master user in the 

replicated architecture.  

Replicated Local Response Time 

Consider first the local response times of commands entered by a master user. The 

response time equation for the first command 𝑖 entered by master 𝑗 user when the system is 

in a quiescent state is repeated from above 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗 = 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇  

Suppose that user 𝑗 enters command 𝑖 + 1 𝑡𝑖+1 time after entering command 𝑖 and 

that 𝑡𝑖+1 < 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇 . Therefore, after command 𝑖 + 1 arrives, the CPU 

on userj’s computer still requires 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇 − 𝑡𝑖+1 time to complete the 

transmission and processing tasks of command 𝑖. The response time of command 𝑖 + 1 

includes this additional delay, and is given by 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+1,𝑗 = 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇 − 𝑡𝑖+1 + 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖+1,𝑗

𝐼𝑁 + 𝑝𝑖+1,𝑗
𝐼𝑁 + 𝑝𝑖+1,𝑗

𝑂𝑈𝑇  

Suppose that user 𝑗 enters command 𝑖 + 2 𝑡𝑖+2 time after entering command 𝑖. If the 

command is entered after userj’s computer completes all tasks for command 𝑖, this is the 

same case as for the local response time of command 𝑖 + 1. If, on the other hand, userj’s 
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computer is still carrying out tasks for command 𝑖, then the local response time of command 

𝑖 + 2 includes the time the computer requires to complete the tasks for command 𝑖, 𝑓𝑎𝑛𝑗 ∗

𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇 − 𝑡𝑖+2, plus the time it requires to complete the tasks for command 

𝑖 + 1, 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖+1,𝑗
𝐼𝑁 + 𝑝𝑖+1,𝑗

𝐼𝑁 + 𝑝𝑖+1,𝑗
𝑂𝑈𝑇 , plus the time it requires to perform the task for 

command 𝑖 + 2, 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖+2,𝑗
𝐼𝑁 + 𝑝𝑖+2,𝑗

𝐼𝑁 + 𝑝𝑖+2,𝑗
𝑂𝑈𝑇 . More generally, the local response time 

of command 𝑖 + 𝑧 entered 𝑡𝑖+𝑧  time after the CPU on userj’s computer begins transmitting 

command 𝑖 but before it completes processing command 𝑖 is given by 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗 =   𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝑂𝑈𝑇 

𝑖+𝑧

𝑐=𝑖

− 𝑡𝑖+𝑧  

As described above, userj’s computer’s destination delay for command 𝑖 entered in a 

quiescent state is equal to 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇 . Therefore, the above equation can 

be stated equivalently as  

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗 =  𝑑𝑒𝑠𝑡(𝑐, 𝑗)

𝑖+𝑧

𝑐=𝑖

− 𝑡𝑖+𝑧  

 

Replicated Remote Response Times 

The remote response time analysis is more complicated. The reason is that a 

command may arrive early at more than one computer from the path to the destination. In 

particular, even if userj enters command 𝑖 + 1 after the computer 𝑗 completed the tasks for 

command 𝑖, an intermediate or the destination computer may not have completed tasks for 

command 𝑖 by the time command 𝑖 + 1 reaches it. To illustrate how this can happen, 

consider the remote response times of userb for command 𝑖 + 𝑧 entered by userj. Let 

computer 𝑠 , the 𝑠𝑡ℎ  computer on the path from  𝑗 to 𝑏, be the computer on the path that 
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takes the longest to perform tasks of commands. We call 𝑠  the critical computer on the path. 

If 𝑠  is idle when command 𝑖 + 𝑧 reaches it, then all computers must be idle when the 

command reaches them. Therefore, response times reduce to those of commands entered in a 

quiescent state. Thus, we consider the case when 𝑠  is busy performing tasks for previous 

commands when command 𝑖 + 𝑧 reaches it. Let command 𝑖 entered by userj be the last 

command that 𝑠  received when it was in an idle state. Since it was idle when command 𝑖 

reached it, then all computers were idle when the command reached them; otherwise, 𝑠  

would not be the critical computer on the path. Moreover, command 𝑖 + 𝑧 reaches all 

computers downstream from 𝑠  when they are in an idle state; otherwise, again,  𝑠  would 

not be the critical computer on the path.  

 

Figure 3-5. Critical computer on path from source to destination. 
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We illustrate the notion of a critical computer through an example of a path of length 

five shown in Figure 3-5. As Figure 3-5 shows, three commands, 𝑖, 𝑖 + 1, and 𝑖 + 2, are 

entered consecutively. The total transmission and processing time for each for each 

command on the five computers is shown by the sizes of the boxes in the diagram. The total 

times spent on a command by each computer ordered from lowest to highest are 1 <  2 =

4 < 5 < 3. As Figure 3-5 shows, the source user inputs commands quicker than the 

source computer 1 can complete the transmission and processing tasks. Hence, commands 

arrive early at the source computer. Since 2, the next computer on the path, takes longer to 

complete the tasks for each command, they arrive early also at 2. Since 3 is takes even 

longer than 2 the second computer, they also arrive early at 3 . However, they do not arrive 

early at 4 and 5, the destination computer. The reason is that these computers are able to 

complete the tasks for each command faster than 3 the third computer. Hence, in this case, 

3 is the critical computer. 

We can use the notion a critical computer to derive the remote response time of 

command 𝑖 + 𝑧. The critical computer may be an intermediate computer or the destination 

computer. When it is an intermediate (destination) computer, then userb’s remote response 

time of command 𝑖 + 𝑧 is equal to 1) the amount of time that elapses from the moment 

command 𝑖 is entered to the moment it reaches the critical computer, 2) plus the amount of 

time that elapses from the moment the critical computer receives command 𝑖 to the it 

transmits command 𝑖 + 𝑧 to the next computer on the path (completes processing of 

command 𝑖 + 𝑧), 3) plus the amount of time that elapses from the moment the critical 

computer transmits command 𝑖 + 𝑧 to the next downstream computer to the moment userb 

sees its output, 4) minus the amount of time that elapses from the moment command 𝑖 is 
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entered to the moment command 𝑖 + 𝑧 is entered. The case when an intermediate computer 

other than the source is the critical computer is illustrated in Figure 3-5. Since the critical 

computer is idle when command 𝑖 reaches it, then by the definition of the critical computer, 

all computers are idle when command 𝑖 reaches them, as shown in Figure 3-5. Thus, the first 

is term is equal to the sum of network latencies on the part of the path from the source to the 

critical computer plus the intermediate delays for command 𝑖 of computers on this part of the 

path, that is,  𝑑 𝜋𝑘 , 𝜋𝑘+1 
𝑠−1
𝑘=1 +  𝑖𝑛𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑘 

𝑠−1
𝑘=1 . Note that if the critical computer is the 

same as the source computer, then the first term is equal to zero. The second term is more 

complicated and we return to it momentarily. The third term is similar to the first term. By 

the definition of the critical computer, all computers downstream from the critical computer 

are idle when command 𝑖 + 𝑧 reaches them, as shown in Figure 3-5. Thus, the third term is 

equal to sum of the network latencies along the part of the path from the critical to the 

destination computer, plus the intermediate delays for command 𝑖 + 𝑧 of all non-destination 

computers on this part of the path, plus the delay command 𝑖 + 𝑧 on the destination 

computer, that is,  𝑑 𝜋𝑘 , 𝜋𝑘+1 
𝑚−1
𝑘=𝑠 + 𝑖𝑛𝑡𝑅𝐸𝑃 𝑖 + 𝑧, 𝜋𝑘 

𝑚−1
𝑘=𝑠+1 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃 𝑖 + 𝑧, 𝜋𝑚  . Note that 

if the critical computer is the same as the destination computer, then the third term is equal to 

zero. The fourth term is a constant. Therefore, the first, third, and fourth terms are 

independent of the number of consecutive commands that have been entered.  

The second term, which we refer to as the critical computer time, is more complex 

than the others because it depends on the number of commands that have been entered 

consecutively. When the critical computer is an intermediate computer, then the time it 

requires to complete the tasks of consecutive commands is a function of both the network 

card and CPU costs. It is a function of CPU costs because until the CPU completes tasks for 
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a command, the network card cannot begin transmitting the next command even if it is idle 

because the CPU must first transmit it. It is a also function of transmission times because 

until the network card completes transmitting a command to all destinations, it cannot begin 

transmitting the next command even if the CPU has completed the processing and 

transmission tasks for it. In one extreme case, the total network card transmission time is 

higher than the CPU processing time for each command. In this case, the network card falls 

further behind the CPU with each command, as shown in Figure 3-6 (left). The other extreme 

case is that the CPU processing time is higher than the total network card transmission time 

for each command. In this case, the network card keeps up with the CPU, as shown in Figure 

3-6 (right). In all other cases, when neither the total network card transmission time nor the 

CPU processing time dominate each other, then for any one command, the network card 

either falls further behind or makes up ground on the CPU. Therefore, on average, the 

 

Figure 3-6. Critical computer time for completing tasks of consecutive commands. 
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network card keeps up with the CPU. Hence, all non-extreme cases are equivalent to the 

second extreme case. Thus, we analyze the response times only for the two extreme cases.  

Let us first consider the extreme case when the total network card transmission times 

dominate the CPU processing times. The critical computer time is equal to (1) the amount of 

time that elapses from the moment the critical computer receives command 𝑖 to the moment 

the CPU transmits 𝑖 to the first destination, plus (2) the amount of time that elapses from the 

moment the network card begins to transmit 𝑖 to the first destination to the moment it 

transmits 𝑖 + 𝑧 − 1 to the last destination, plus (3) the amount of time that elapses from the 

moment the network card begins transmitting 𝑖 + 𝑧 to the moment it transmits it to the next 

downstream computer. The first term is equal to 𝑥𝐶𝑃𝑈 𝑖,𝑠
𝐼𝑁 . The second term is equal to 

  𝑓𝑎𝑛𝑠 ∗ 𝑥𝑁𝐼𝐶𝑘,𝑠
𝐼𝑁  𝑖+𝑧−1

𝑘=𝑖  because once the network card begins transmitting 𝑖, it does not 

stop until it finishes transmitting 𝑖 + 𝑧. The third term is equal to 𝑝𝑜𝑠 𝑠 , 𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝑠
𝐼𝑁 .  

Thus, we can finally state userb’s remote response time of command 𝑖 + 𝑧 entered by 

userj by adding the critical computer time to the other three components of the remote 

response time, which we had derived earlier. In particular, when an intermediate computer is 

the critical computer and the total network transmission times dominate the CPU processing 

time the remote response time is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑠
𝐼𝑁 +   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶𝑐,𝜋𝑠

𝐼𝑁  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝐼𝑁

+  𝑖𝑛𝑡𝑅𝐸𝑃 𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃 𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧  
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At first, this equation may appear quite different from the general remote response time 

equation for commands entered in a quiescent state. There are two differences in these two 

equations. The first difference is that there are two intermediate delay sums instead of one 

because in the consecutive command case, we have to separately consider the delays of 

computers upstream and downstream from the critical computer. The other, major difference 

is the critical computer time, 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑠
𝐼𝑁 +   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶𝑐,𝜋𝑠

𝐼𝑁  𝑖+𝑧−1
𝑐=𝑖 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗

𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝐼𝑁 , that is included in the equation for consecutive commands. However, a closer 

look at the two differences shows that the consecutive command equation “stretches out” the 

delay of the intermediate computer 𝜋𝑠 in the quiescent state equation. Therefore, the remote 

response time equation of consecutive commands indeed resembles the response time 

equation of commands entered in a quiescent state. 

The other extreme case is when the CPU processing time dominates the total network 

card transmission for each command. In this case, the critical computer time is equal to (1) 

the amount of time that elapses from the moment the CPU begins to perform tasks for 

command 𝑖 to the moment the CPU completes that task for command 𝑖 + 𝑧 − 1, plus (2) the 

amount of time that elapses from the moment the CPU begins to perform tasks for command 

𝑖 + 𝑧 to the moment the network transmits it to the next downstream computer. The first term 

is equal to   𝑓𝑎𝑛𝑠 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝐼𝑁 + 𝑝𝑐,𝑠
𝑂𝑈𝑇 𝑖+𝑧−1

𝑐=𝑖 . The second term is equal to 

𝑥𝐶𝑃𝑈 𝑖+𝑧,𝑠
𝐼𝑁 + 𝑝𝑜𝑠 𝑠 , 𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝑠

𝐼𝑁 . Thus, we can state userb’s remote response time of 

command 𝑖 + 𝑧 entered by userj when an intermediate computer is the critical computer and 

the CPU processing time dominate the total network transmission times as follows 
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𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+   𝑓𝑎𝑛
𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝐼𝑁 + 𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈𝑖+𝑧,𝑠
𝐼𝑁 + 𝑝𝑜𝑠 𝑠, 𝑠+1 ∗ 𝑥𝑁𝐼𝐶𝑖+𝑧,𝑠

𝐼𝑁

+  𝑖𝑛𝑡𝑅𝐸𝑃 𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃 𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧 

This equation, like the one before it, also resembles the general remote response time 

equation for commands entered in a quiescent state. The differences between this and the 

quiescent state equations are the same as the differences between the previous and quiescent 

state equations. 

When the critical computer is the destination, the critical computer time is not a 

function of the network card transmission times. Hence, the second term on the destination 

computer is equal to the time the CPU requires to transmit and process all of the commands, 

that is, to   𝑓𝑎𝑛𝑚 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑚
𝐼𝑁 + 𝑝𝑐,𝑚

𝐼𝑁 + 𝑝𝑐,𝑚
𝑂𝑈𝑇 𝑖+𝑧

𝑐=𝑖 . Thus, when the destination computer is 

the critical computer, the response time equations are given by  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+  𝑓𝑎𝑛
𝑚
∗ 𝑥𝐶𝑃𝑈𝑐,𝑚

𝐼𝑁 + 𝑝𝑐,𝜋𝑚
𝐼𝑁 + 𝑝𝑐,𝜋𝑚

𝑂𝑈𝑇  

𝑖+𝑧

𝑐=𝑖

− 𝑡𝑖+𝑧 

This equation is similar the general remote response time equation of quiescent state 

commands. This makes sense because command 𝑖 must traverse the path from the source to 

the destination regardless of whether the user enters consecutive commands after it. The only 
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difference is that the destination delay term is more complex in the consecutive command 

equation because of the extra delay command 𝑖 + 𝑧 experiences at the destination. 

Centralized Response Times 

So far, we have presented only the response times of consecutive commands entered 

by master users in the replicated architecture. Next, we give the equations for the response 

times of such commands entered by master and slave users in the centralized architecture. 

Consider first the remote response times of commands entered by the master user. As in the 

analysis of commands entered in the quiescent state, we can derive these equations from the 

replicated architecture equations as long as we account for the two main differences in the 

centralized and replicated architectures. First, in the centralized architecture, only the master 

computer processes both input and output commands, while other computers process only 

output commands. Therefore, when calculating the delays of the computers on the path from 

the source to the destination, the processing times in the delays are equal to the time needed 

to process only output commands. Second, instead of transmitting input commands, the 

computers transmit output commands.  

When the destination is the critical computer, the response time is given by  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗 = 𝑝𝑖,𝜋1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇 𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+  𝑓𝑎𝑛
𝑚
∗ 𝑥𝐶𝑃𝑈𝑐,𝑚

𝑂𝑈𝑇 + 𝑝𝑐,𝜋𝑚
𝑂𝑈𝑇  

𝑖+𝑧

𝑐=𝑖

− 𝑡𝑖+𝑧 

The first term, 𝑝𝑖,𝜋1

𝐼𝑁 , for which there is no equivalent in the replicated case, accounts for the 

fact that the master computer must process input command 𝑖 before it can send its output. 

This processing time must be included in the amount of time that elapses from the moment 

command 𝑖 is entered to the moment it reaches the critical computer, which as described in 
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the replicated discussion above, is the first component of the remote response time equation 

for command 𝑖 + 𝑧. As mentioned above, the same term had to be included in the centralized 

equations for commands entered in a quiescent state.   

Obtaining the centralized equations when the critical computer is not the destination 

is slightly more complicated. The reason is that when processing times dominate the total 

network card transmission times, we have to separately consider the source and non-source 

critical computer cases because the source computer processes inputs while other computers 

do not. If the total network card transmission times dominate the processing times, then it 

does not matter that the source computer performs extra processing (i.e. processes the input) 

than the other computers. Thus, in this case, the centralized response time equations can be 

obtained from the corresponding replicated equations by adjusting for the two differences 

between the centralized and replicated architectures. Thus,  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗 = 𝑝𝑖,𝜋1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇 𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑠
𝑂𝑈𝑇 +   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶 𝑐,𝜋𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇 𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇 𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧 

As above, the first term, 𝑝𝑖,𝜋1

𝐼𝑁 , accounts for the fact that the master computer must process 

input command 𝑖 before it can send its output, which contributes to the remote response time 

of command 𝑖 + 𝑧.  

However, when the processing times dominate the total network card transmission 

time, then we need separate equations for the case when the critical computer is or is not the 

source. When the critical computer is neither the source nor the destination, another 
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computer must exist on the path from the source to the destination, which implies multicast 

communication. It also implies that the critical computer is a slave. Hence, we obtain the 

centralized equation from the replicated equation by adjusting for the differences in the two 

architectures 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗 = 𝑝𝑖,𝜋1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇 𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+   𝑓𝑎𝑛
𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝑂𝑈𝑇 + 𝑝𝑐,𝑠
𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈𝑖+𝑧,𝑠
𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝑠, 𝑠+1 ∗ 𝑥𝑁𝐼𝐶𝑖+𝑧,𝑠

𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇 𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇 𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧 

On the other hand, when the critical computer is the source, then the critical computer is the 

master. Thus, we can obtain the centralized equation from the replicated equation by 

adjusting for the fact that outputs are transmitted instead of inputs. Hence,  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛
𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝑂𝑈𝑇 + 𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈𝑖+𝑧,𝑠
𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝑠,𝑠+1 ∗ 𝑥𝑁𝐼𝐶𝑖+𝑧,𝑠

𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇 𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇 𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧 

Unlike in the previous centralized architecture equations, the first term is not 𝑝𝑖,𝜋1

𝐼𝑁 . The 

reason is that the time required to process the inputs is accounted for in,   𝑓𝑎𝑛
𝑠
∗𝑖+𝑧−1

𝑐=𝑖

𝑥𝐶𝑃𝑈𝑘,𝑠
𝑂𝑈𝑇 + 𝑝𝑐,𝑠

𝐼𝑁 + 𝑝𝑐,𝑠
𝑂𝑈𝑇 , in particular, the   𝑝𝑐,𝑠

𝐼𝑁  𝑖+𝑧−1
𝑐=𝑖  part of the sum. It must be a sum of 

all of the input processing times instead of just the processing time of input command 𝑖 

through 𝑖 + 𝑧 because the critical computer is the master, and the master processes all input 

commands. 
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Obtaining the centralized local response time equation is simpler than deriving the 

remote response time equations. The reason is that there is only one case for the local 

equation. Moreover, we can derive it directly from the replicated local response time 

equation 

𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗 =  𝑝𝑖,𝜋1

𝐼𝑁

𝑖+𝑧

𝑐=𝑖

+  𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑗
𝑂𝑈𝑇 + 𝑝𝑐,𝑗

𝑂𝑈𝑇 

𝑖+𝑧

𝑐=𝑖

− 𝑡𝑖+𝑧

=  𝑝𝑖,𝜋1

𝐼𝑁

𝑖+𝑧

𝑐=𝑖

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇 𝑐, 𝑗 

𝑖+𝑧

𝑐=𝑖

− 𝑡𝑖+𝑧  

As in the final remote response time case, the first term,  𝑝𝑖,𝜋1

𝐼𝑁𝑖+𝑧
𝑐=𝑖 , accounts for the 

fact that the master computer must process all input commands in addition to outputs.  

Finally, we can also obtain the equations for input commands entered by slave users 

by morphing the equations for input commands entered by master users. The only difference 

between the two kinds of input commands is that a command entered by a slave must first 

reach the master computer. Therefore, as was the case with the case with commands entered 

by slave commands in a quiescent state, we can obtain the equations for the local and remote 

response time of consecutive commands entered by slave usera whose master is userb by 

adding the term 𝑥𝐶𝑃𝑈 𝑖,𝑎
𝐼𝑁 + 𝑥𝑁𝐼𝐶

𝑖,𝑎

𝐼𝑁
+ 𝑑 𝑎, 𝑏  to the response time equations. 

3.3.4 Implications for Consecutive Commands by a Single User 

We can compare the response times of consecutive commands with unicast and 

multicast by analyzing the difference in the respective equations. We can make two 

comparisons. We can compare the absolute response times of consecutive commands with 

unicast and multicast. We can also compare how much worse do response times of 

consecutive commands become with unicast and multicast. The result of either one 
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comparison can be used to derive the results for the other. In particular, we can obtain the 

former by adding the latter to the response times of commands entered in a quiescent state, 

and we can obtain the latter by subtracting the response times of commands entered in a 

quiescent state from the former. We do the former because the difference equations are 

cleaner: we have to consider only the terms in the equations that are a function of the number 

of consecutive commands. 

Local Response Times 

Let us start with the local response times of commands in the replicated architecture. 

The difference is given by  

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡

=    𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝑂𝑈𝑇 

𝑖+𝑧

𝑐=𝑖

− 𝑡𝑖+𝑧 

−    𝑓𝑎𝑛𝑗
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝑂𝑈𝑇 − 𝑡𝑖+𝑧

𝑖+𝑧

𝑐=𝑖

 

=   𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑓𝑎𝑛𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  ∗ 𝑥𝐶𝑃𝑈𝑐,𝑗
𝐼𝑁

𝑖+𝑧

𝑐=𝑖

 

Recall from above that the number of destinations to which the source computer 

transmits with multicast is less than or equal to that with unicast. For this reason, multicast 

was beneficial to the local response times of quiescent state commands. As the above 

difference equation shows, the benefit of multicast is additive for consecutive commands. In 

fact, with multicast, the local response times may not increase at all! For instance, if 

command 𝑖 + 1 is entered at time 𝑡𝑖+1 and 𝑓𝑎𝑛𝑗
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝑂𝑈𝑇 ≤ 𝑡𝑖+1 <

𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝑂𝑈𝑇 , then with multicast, the local computer is ready to begin 
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carrying out tasks for command 𝑖 + 1 as soon as the command is entered, while with unicast, 

it is not ready.  

The equation for the centralized architecture difference for master and slave 

commands, when simplified, is  

𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 =   𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑓𝑎𝑛𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  ∗ 𝑥𝐶𝑃𝑈𝑐,𝑗
𝑂𝑈𝑇

𝑖+𝑧

𝑐=𝑖

 

The same reasoning applies for this difference as for the replicated difference. Hence, 

multicast provides the same benefit over unicast to local response times in the centralized and 

the replicated architectures. 

Remote Response Times 

We can also compare the remote response times of consecutive commands with 

unicast and multicast by analyzing the difference in the respective equations. The only terms 

in the equations that depend on the number of consecutive commands are those that give the 

critical computer time. Thus, as we will see, the difference in the equations boils down to the 

differences in the critical computer terms.  

Let us start with the response times of commands in the replicated architecture. 

Consider first the case when the critical computer is not the destination computer. There are 

two cases to consider: when the total network transmission time for each command 

dominates the processing time of the command, and vice versa. Consider first the case when 

the network card transmission tasks are high and processing times are low. The difference in 

the response times is given by 
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𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 =  𝑑 𝑗, 𝑏 + 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 +   𝑓𝑎𝑛𝑗

𝑢𝑛𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝑁𝐼𝐶 𝑐,𝑗
𝐼𝑁 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝑗, 𝑏 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝑗
𝐼𝑁 + 𝑝𝑖+𝑧,𝑏

𝐼𝑁 + 𝑝𝑖+𝑧,𝑏
𝑂𝑈𝑇 − 𝑡𝑖+𝑧 −   𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑠
𝐼𝑁 +   𝑓𝑎𝑛𝑠

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝑁𝐼𝐶 𝑐,𝜋𝑠
𝐼𝑁  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝐼𝑁 +  𝑖𝑛𝑡𝑅𝐸𝑃 𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃 𝑖 + 𝑧, 𝜋𝑘 − 𝑡𝑖+𝑧  

In the difference equation, all of the terms except the   𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝑁𝐼𝐶 𝑐,𝑗

𝐼𝑁 𝑖+𝑧−1
𝑐=𝑖  term in the 

first bracket and the   𝑓𝑎𝑛𝑠
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝑁𝐼𝐶 𝑐,𝜋𝑠

𝐼𝑁  𝑖+𝑧−1
𝑐=𝑖  term in the second bracket are 

independent of the number of consecutive commands. Therefore, the difference equation for 

response times of consecutive commands reduces to  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 =   𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑓𝑎𝑛𝑠

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  

𝑖+𝑧−1

𝑐=𝑖

∗ 𝑥𝑁𝐼𝐶𝑐,𝑗
𝐼𝑁  

Since we are comparing non-destination computers, the unicast critical computer must be the 

source. With multicast, it can be the source or any other intermediate computer. If the 

multicast critical computer is not the source, the difference equation does not inform us of 

anything since we are comparing transmission times of different computers. Hence, we 

consider only the case when the multicast critical computer is the source. In this case, we can 

expect the difference to be positive. The reason is that multicast divides the transmission task 

across multiple computers, while with unicast, the source computer must transmit commands 

to all other computers, and thus, 𝑓𝑎𝑛𝑠
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 ≤ 𝑓𝑎𝑛𝑗

𝑢𝑛𝑖𝑐𝑎𝑠𝑡 . Therefore, the multicast remote 

response times increase less than those of unicast. Moreover, the benefit of multicast is 
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additive. As the number of consecutive commands increases, the multicast response times are 

increasingly better than those of unicast. One implication of this result is that deep multicast 

trees will have a larger additive benefit than shallow trees, which in turn will have larger 

benefits than unicast, which is effectively the shallowest multicast tree possible. The reason 

is that the transmission task is divided among more computers in deep than in shallow trees. 

Of course, deep multicast trees imply more network hops from the source to a destination 

computer, which can increase absolute remote response times.  

When processing times are higher than the network card transmission times, the 

difference in unicast and multicast response times is given by  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 =  𝑑 𝑗, 𝑏 +   𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝑗
𝐼𝑁 + 𝑝𝑜𝑠 𝑗, 𝑏 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝑗

𝐼𝑁 + 𝑝𝑖+𝑧,𝑏
𝐼𝑁 + 𝑝𝑖+𝑧,𝑏

𝑂𝑈𝑇 − 𝑡𝑖+𝑧 

−   𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+   𝑓𝑎𝑛𝑠
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝐼𝑁 + 𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝑠
𝐼𝑁

+ 𝑝𝑜𝑠 𝑠 , 𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝑠
𝐼𝑁 +  𝑖𝑛𝑡𝑅𝐸𝑃

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

𝑧

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠 𝑡 𝑖 + 𝑧, 𝜋𝑚 − 𝑡𝑖+𝑧  

As was the case with the previous difference equation, there is only a single term in each of 

the bracketed terms that depends on the number of consecutive commands. Hence, the 

difference equation boils down to the difference in these terms 
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𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡

=   𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

−   𝑓𝑎𝑛𝑠
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝐼𝑁 + 𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

 

As above, we can discuss the difference only when the multicast critical computer is the 

source. In this case, the difference equation further reduces to  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 =   𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑓𝑎𝑛𝑠

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  

𝑖+𝑧−1

𝑐=𝑖

∗ 𝑥𝐶𝑃𝑈𝑐,𝑗
𝐼𝑁  

 

Thus, the differences is greater than or equal to zero because with multicast the number of 

destinations to which the source computer transmits to is less than or equal to that with 

unicast. Hence, multicast remote response times can be better than those of unicast.  

The final case to consider is when the destination computer is the both the multicast 

and unicast critical computer. The response time difference is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡

=  𝑑 𝑗, 𝑏 + 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 + 𝑝𝑜𝑠 𝑗, 𝑏 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝑗

𝐼𝑁 +  𝑝𝑐,𝑏
𝐼𝑁 + 𝑝𝑐,𝑏

𝑂𝑈𝑇 

𝑖+𝑧

𝑐=𝑖

− 𝑡𝑖+𝑧 

−   𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+  𝑓𝑎𝑛
𝑚

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡
∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚

𝐼𝑁 + 𝑝𝑐,𝜋𝑚
𝐼𝑁 + 𝑝𝑐,𝜋𝑚

𝑂𝑈𝑇  

𝑖+𝑧

𝑐=𝑖

− 𝑡𝑖+𝑧  

Once again, there is only a single term in each of the bracketed terms that depends on the 

number of consecutive commands. Hence, the difference equation boils down to the 

difference in these terms 
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𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡

=   𝑝𝑐,𝑏
𝐼𝑁 + 𝑝𝑐,𝑏

𝑂𝑈𝑇 

𝑖+𝑧

𝑐=𝑖

−  𝑓𝑎𝑛𝑚
𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚

𝐼𝑁 + 𝑝𝑐,𝜋𝑚
𝐼𝑁 + 𝑝𝑐,𝜋𝑚

𝑂𝑈𝑇  

𝑖+𝑧

𝑐=𝑖

 

This difference can never be positive. In fact, whenever the destination computer also 

forwards commands with multicast, the differences is negative. Hence, multicast remote 

response times are worse than those of unicast when the destination computer is the critical 

computer.  

We can repeat the above replicated difference analysis for the centralized equations. 

As in the replicated case, each difference equation reduces to the differences in the unicast 

and multicast critical computer times. Consider first the case when both the multicast and 

unicast critical computer is the source. When the network card transmission tasks are high 

and processing times are low, the difference in the response times is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 =   𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡− 𝑓𝑎𝑛

𝑠

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡
 

𝑖+𝑧−1

𝑐=𝑖

∗ 𝑥𝑁𝐼𝐶𝑐,𝑗
𝑂𝑈𝑇 

Otherwise, the difference in response times is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 =   𝑓𝑎𝑛𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡− 𝑓𝑎𝑛

𝑠

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡
 

𝑖+𝑧−1

𝑐=𝑖

∗ 𝑥𝐶𝑃𝑈𝑐,𝑗
𝑂𝑈𝑇 

Finally, if both the unicast and multicast critical computers are the destination, the difference 

in response times is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑢𝑛𝑖𝑐𝑎𝑠𝑡 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 =   𝑝𝑐,𝑏
𝑂𝑈𝑇 

𝑖+𝑧

𝑐=𝑖

−  𝑓𝑎𝑛
𝑚

𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 ∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚
𝑂𝑈𝑇 + 𝑝𝑐,𝜋𝑚

𝑂𝑈𝑇  

𝑖+𝑧

𝑐=𝑖

 

As we see, the centralized difference equations look the same as the replicated difference 

equations only adjusted for the two differences in the replicated and centralized architectures: 

in the centralized architecture, 1) only the master computer processes inputs and 2) the 



126 

computers distribute outputs instead of inputs. Therefore, the replicated architecture results 

hold for the centralized architecture.    

In summary, when type-ahead is allowed or think times are low, the response time of 

each consecutive command from the same user can be worse than the response time of the 

previous command. With multicast, the amount of time the response time increases with each 

consecutive command is lower than with unicast. Moreover, in some cases, local response 

times with multicast may not increase at all even if they increase with unicast. The effect of 

multicast on the remote response times of these commands is less obvious. When the 

destination is the critical computer with both multicast and unicast, the remote response times 

increase more with multicast than with unicast. On the other hand, when the source is the 

critical computer with both multicast and unicast, we expect that the remote response times 

increase less with each consecutive command when multicast is used instead of unicast. 

However, when the multicast and unicast critical computers are not the same computer, the 

remote response times may increase more with either multicast or unicast. 

3.3.5 Response Times of Simultaneous Commands 

We have considered the remote response times of commands entered by the same 

user in a quiescent or a non-quiescent state. The final case to consider is the remote response 

times of simultaneous commands entered by different users.  

When simultaneous commands are entered by different users, the worst possible 

remote response times for 𝑖 command entered by userj occurs when (a) it arrives at the 

critical computer at the same time as commands entered by other users, and (b) the critical 

computer performs the tasks for command 𝑖 last. Therefore analysis of the remote response 

times of command 𝑖 is almost the same as the analysis of the commands entered 
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consecutively by the same user. The only difference is that the critical computer term 

includes the time required to perform tasks of commands entered by all of the other users.   

3.4 Self-Optimizing System Implementation 

Recall from the previous chapter that we have developed a system that can select at 

start time or dynamically switch at runtime to a processing architecture that best meets user-

provided response time requirements. We have extended that system to do the same for the 

communication architecture.  

3.4.1 Gathering Parameter Values 

To make decisions regarding the communication architecture, the system applies the 

analytical model of response times for large-scale scenarios. In order to apply the model, the 

system must collect values of all of the response time parameters identified by the model. 

The system described in the previous for optimizing the processing architecture collects some 

of these parameters, such as the network latencies and the input and output processing times. 

Therefore, to optimize the communication architecture, the system must also collect: 

 Transmission times of input and output commands for each user’s computer, 

including the CPU transmit times and network card transmit times 

 Think times of all commands 

CPU Transmission Times 

As described in the previous chapter, our system gathers processing times by 

collecting performance reports that contain these times from each user’s computer. More 

specifically, whenever a user’s computer completes the transmission and processing tasks for 

a command, the client-side component of the optimization system sends a performance 
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report, which includes the time required to process the command, to the server-side 

component of the system. Our system uses the same mechanism to collect CPU transmission 

costs. Whenever a client-side component sends a report, the component includes the CPU 

transmission costs of the command in addition to the processing costs. When the server-side 

component receives a performance report, it looks up the number of destinations to which the 

user’s computer transmitted the command. This information is available to our system since 

it controls the processing and communication architectures. Then, our system divides the 

transmission time reported by the computer by the number of destinations to which the 

computer transmitted to obtain the cost of transmitting the command to a single destination. 

Network Card Transmission Times 

Collecting network card transmission times is more complicated. In particular, when 

non-blocking communication is used, it is difficult to tell from the application layer when the 

network card actually completes transmitting a message. One approach is to use a network 

monitoring application, such as WireShark [91], to monitor packets as they leave the network 

card. Such applications can inform the client-side component of optimization system when 

the last packet of the message destined to a particular destination leaves the network card. 

Since the component is aware of when the CPU finished the transmission of the message to 

the destination, it can subtract this time from the time at which the last packet was 

transmitted as reported by the network monitoring application and get the network card’s 

transmission time.  

One issue with using a network monitoring application to compute network card 

transmission times is that running the network monitoring application together with the 

collaborative application can impact the timing information reported by the application. To 
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reduce the perturbation caused by measurements, the approach we take instead relies on the 

final destination to which a computer transmits to report to our system when it receives the 

message. Then, our system can subtract the time at which the final destination received the 

message from the time the network card at the source computer started transmitting the 

message to the first destination, divide that time by the number of destinations to which the 

source computer transmitted, and finally obtain the network card transmission time of the 

source computer.  

For our approach to work, the three computers, the source, the final destination, and 

the one on which our optimization system is running, must have a common notion of time. 

One solution is 1) for the source computer to send a start transmission report to our system 

just before the transmission actually starts, 2) for the final destination to send a received 

transmission report as soon as it receives a command (before the destination begins to 

perform the processing and transmission tasks for the command), and 3) our system to 

timestamp each of these reports with the local timestamp as soon as these reports are 

received. Then our system could compute how much time the source computer’s network 

card required to transmit the message to all destinations (assuming that our system can adjust 

for network latencies between the three computers). Unfortunately, this approach does not 

work with non-blocking communication because the start and receive transmission reports 

may be queued up behind other messages, such as transmissions of user commands. When 

such queuing occurs, our system cannot deduce when exactly the reports were sent.  

An approach that does not have this problem is to synchronize the clocks of our 

system and the users’ computers. With this approach, the source and the final destination 

computers record the local time at which the message is sent and received, respectively, and 
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include these times in the performance report that contains the processing and CPU 

transmission times. Since the clocks on all machines are synchronized, our system can 

subtract the start transmission time in the source’s report from the receive transmission time 

in the destination’s report to calculate how long the network card on the source computer 

required to transmit the command to all the destinations. For this approach to work, we need 

to synchronize the clocks.  

In general, distributed clock synchronization has been solved to within ten 

milliseconds over the Internet and within a few milliseconds on a local LAN [65]. 

Unfortunately, the setup in our department does not allow us to use NTP on machines 

running Windows. Since all of our machines are Windows-based, we used a custom 

approach. Whenever a user registers with our system, the user’s computer sends thirty 

messages to the server-side component of the optimization system containing the current 

value of the clock on the user’s machine. The messages are sent at one hundred millisecond 

intervals. The server-side component timestamps each message as soon as it is received with 

the local timestamp. When all messages are received, our system 1) computes the average 

difference between the remote and local timestamps in the middle ten messages, and 2) 

records the final value as the difference between the local clock and the clock on the user’s 

machine. The clocks are still not synchronized, however, because the difference calculation 

does not account for the network latencies the messages experience. To account for the 

latencies, as soon as the client-side component finishes sending the messages with the 

timestamp, it immediately measures network latency between itself and the computer on 

which the server-side component is running using the ping tool and then sends the measured 

value to the server-side component. When the server-side component receives the network 
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latency measurement, it adjusts the calculated clock difference between itself and the 

computer which sent the report to account for the latency.  Based on our experience, the 

standard deviation of the timestamp differences for these ten messages is less than 2 

milliseconds. Since 2ms is more than an order of magnitude smaller than 50ms, the value we 

consider significant, we consider the clocks synchronized when this approach is taken. This 

approach makes two assumptions. First, it assumes that the clock drift on each user’s 

machine is the same for the duration of the collaborative session. Second, it assumes that the 

network latency value was the same during the period the timestamp messages are sent and 

the period immediately after during which the latency was measured. These assumptions 

were true in our experiments. 

Think Times 

The final parameter left to collect are the think times, which are gathered as follows. 

Whenever a user enters a command, the user’s processing report for the command also 

includes its think time. Other computers do not report think times for it in their performance 

reports because it was not entered by their users. The system collects think times on a per 

user basis. Thus, whenever a user’s processing report includes a think time value, the system 

adds the think time to the think time values reported so far by the user.  

3.4.2 Applying the Analytical Model 

Using the collected values of network latencies and processing and transmission 

costs, our system could apply the analytical model as follows. First, for each computer type, 

calculate the average processing and transmission times. Second, use the calculated values 

and the network latencies in the model equations to calculate the estimated response times of 

commands by each inputting user for the current processing architecture with and without 
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multicast. Third, invoke the user-defined total order function using the estimated response 

times for each system and the user identities as the parameters of the function. Fourth, switch 

to the processing and communication architecture that is ranked as the best by the total order 

function. 

To illustrate the procedure, consider a three user scenario in which each user inputs 

commands. After estimating the values of the model parameters, our system crates the 2 x 3 x 

3 response time matrix. The [1, y, z] and [2,y,z] entries in the matrix gives usery’s response 

for a command entered by userz when unicast and multicast is used, respectively. Since there 

are three users in the session, the second dimension is of size three. It then invokes the total 

order function, passing the response time matrix, the list of inputting user indices sorted from 

lowest to highest, and a list of the identities of the users as parameters. When the total order 

function returns, it simply returns an index of the communication architecture that best 

satisfied the users’ response time requirements. 

Unfortunately, as described in the previous chapter, values of some parameters may 

never be reported. In the previous chapter, there was just one parameter for which our system 

may not have any reported values – the input processing times of slave computers. Now, 

input and output transmission times may not be reported for some computer types. In 

particular, our system will not receive any transmission related reports for any computer that 

does not forward messages. Therefore, as before, we have to estimate the missing parameter 

values.  

Consider CPU output transmission costs and suppose that for some computer A, the 

CPU input transmission but not CPU output transmission reports were received. In this case, 

to estimate the CPU output transmission cost for computer A, our system checks if both CPU 
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input and output transmission reports have been received for any other computer. Such a 

computer may or may not exist. Consider first the case when such a computer exists. Let B 

denote the computer. First, the system uses the reports to calculate the CPU input and output 

transmission costs for computer B by averaging the values that have been reported. As 

described in the previous chapter, the system can use some number of the most recent reports 

or all of the reports in the average. Then, it computes the input-output ratio of costs for 

computer B. Finally, it calculates the input transmission cost of A, and divides the calculated 

value by B’s ratio to estimate the CPU output transmission costs of A. In the case there is no 

computer for which both CPU input and output transmission reports have been received, the 

system calculates the input transmission cost for A and estimates that the CPU output 

transmission cost for A is the same.  

When neither CPU input nor CPU output transmission costs have been received for 

A, a different procedure must be used. In this case, the system finds some computer C for 

which either the CPU output transmission have been reported or can be estimated using the 

above procedure. Note that some computer must have reported either CPU input or CPU 

output transmission costs; otherwise, there would be no collaborative session. The above 

procedure can be used to estimate whichever one is missing. Hence, computer C exists. The 

system then calculates the output processing costs for A and C. Output processing costs are 

reported by all machines so the calculation is possible. It then computes the A-C output 

processing cost ratio. It uses the ratio and the calculated or estimated value of the CPU output 

transmission costs for C to estimate the CPU output transmission costs for A.  

The procedure used to estimate missing CPU transmission costs can be repeated for 

missing network card transmission costs. Moreover, in the previous chapter, we have 
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described a procedure for estimating missing processing costs. Hence, the system can 

estimate any missing processing or transmission costs. Whether or not these estimates are 

correct is a separate issue. As mentioned earlier, if they lead to an architecture switch that 

degrades response times, the degradation is temporary because the system will eventually 

receive true values for the parameters it had to estimate. Therefore, the system will 

eventually choose the optimal processing and communication architecture that the total order 

function ranks as the best. 

3.4.3 Multiple Multicast Trees 

An important performance issue when switching to a multicast is the number of 

multicast trees that are created. There are three reasonable choices for the number of trees. 

First, a tree can be created for every inputting user. This approach has the benefit of 

optimizing the communication architecture for each inputting user. When the number of 

inputting users is small this is the optimal approach. However, when many users can input 

commands, calculating and deploying multicast trees for all of them could take a long time. 

In particular, the HMDM algorithm runtime is O((number of users)
3
). An alternative 

approach is to create a single multicast tree that is shared by all inputting users. Which user is 

at the root of the tree depends on the response time requirements. It could be rooted at the 

user who is inputting the most commands or the user who is the most important. Regardless 

of which user is the root of the multicast tree, the commands from all other inputting users 

must either be unicast or first have to travel from the inputting user’s computer to the user’s 

computer who is at the root of the tree. Thus, in this case, the response times of these 

commands may not be as good as when each inputting user has a dedicated multicast tree. 
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Yet another approach is to combine the first two approaches and deploy a separate multicast 

tree for each “important” user.  

In general, the approach that should be used depends on the response time 

specifications. Our system deploys as many multicast trees as returned by the total order 

function. If the function does not return a multicast tree rooted at each inputting user, then it 

must specify whether the user’s commands are to be unicast or the index of the user who is at 

the root of the multicast tree that should be used. In our experiments, we used total order 

functions that return a multicast tree for each inputting user since the number of inputting 

users was at most two. We need to modify the return value of total order function to support 

multiple multicast trees. For each inputting user, the function returns a pair of values. The 

first value indicates whether the user’s input commands (the corresponding output 

commands) in the replicated (centralized) processing architecture should be unicast or 

multicast. If it indicates multicast, then the second value gives the index of the user who is at 

the root of the multicast tree that should be used. In a centralized processing architecture, this 

could only be the master computer.  

One issue that arises when multiple multicast trees are deployed is that some 

computers may be intermediate computers in more than one tree. In this case, they decide 

which multicast tree to use based on the user who input the command. 

3.4.4 Communication Architecture Switch Mechanism 

Once the total order function returns the communication overlay that should be used, 

our system must deploy it. Recall from our discussion in the previous chapter that when our 

self-optimizing system switches processing architectures dynamically, it temporarily pauses 

the acceptance of new input commands. As a result, if users entered input commands during 
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the pause, the response times of these commands would be higher than usual. The same 

approach works for dynamically switching communication architectures. However, we use a 

more clever approach, one that does not require any pauses in acceptance of new input 

commands. Our system deploys the new communication architecture in the background using 

low priority threads on each user’s computer. During the deployment, commands are 

distributed using the communication architecture that was used before the switch. 

The communication architecture change is performed in two steps. First, our system 

sends to each computer the (a) destinations to which the computer will need to forward 

commands in the new communication architecture, and (b) the version number of that 

communication architecture. As mentioned above, each computer may be an intermediate 

computer on multiple multicast trees in which case it must know which tree to use for 

commands entered by each user. The destination data sent to each computer includes this 

information. Once this data is sent, our system then waits for each computer to report back 

that it has established the connections needed for the new communication architecture before 

it begins the second step. When all computers report back, it sends a command to each 

computer that switches the current communication architecture version number from the 

previous version to the new version. 

With this dual stage approach, any commands entered during the communication 

architecture change are distributed using the old communication architecture. Eventually, all 

commands are distributed using the new communication architecture. After a user’s 

computer receives commands only with the new version number for some time, it can close 

the connections required for the old communication architecture. The amount of time to wait 

can be configured in our system. The amount of time needs to be no higher than the largest 
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possible response time of a command. In our experience, response times are usually on the 

order of. Therefore, several minutes is likely sufficient. If the user’s are unsure what value to 

use, they can configure our system to close the connections at the end of the session. 

Another issue with our approach is how the users’ computers decide whether to use 

the current or new communication architecture. To solve the problem, we tag each 

communication architecture with a version number. The version number of the initial 

communication architecture created at start time is zero and the version number of each new 

communication architecture deployed dynamically is incremented by one. Each user’s 

computer is told the current communication architecture version, which is zero initially. 

When a computer receives an input command from the local user, it tags the input command 

with the current version of the communication architecture. Whenever a computer needs to 

forward a command to other computers, it first checks the version number with which the 

command is tagged and then it forwards the command according to the communication 

architecture with that version number. 

3.4.5 Users Leaving and Joining 

The final issue with communication architecture maintenance is how our system 

handles the joining and leaving of users in a collaborative session. When unicast is used for 

communication, the connections for a leaving (joining) user can simply be torn down 

(established) between the user’s computer and the computers belonging to all other users. 

When multicast is used for communication, the process is more complicated, especially when 

a user leaves. To illustrate, suppose that a user whose computer is an intermediate computer 

on some path leaves. In this case, all computers downstream from the leaving user become 
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disconnected from upstream computers. To reconnect the users, our system calculates and 

deploys a new communication architecture. A joining user is handled in the same fashion.  

3.5 Evaluation 

We have presented an analytical model of response times for large-scale 

collaborations. Using the model, we have shown theoretical results about the benefit of 

multicast in collaborative systems. In addition, we have created a self-optimizing system that 

uses the model to automatically select the communication architecture that best meets 

response-time requirements. While these results are a contribution on their own, it is 

important to see whether or not (a) the theoretical differences given by the model can be 

significant in practical scenarios and (b) the self-optimizing system can better meet response 

time requirements than existing systems in these scenarios. Since the self-optimizing system 

applies the analytical model, we can accomplish both evaluation goals by checking whether 

or not the system significantly improves response times in practical scenarios.  

We verify only the part of the model that predicts absolute response times for 

commands entered in a quiescent state. Similarly, we verify only the part of our system that 

automatically improves the response times of such commands. We do not evaluate the other 

parts of the model or the system – specifically the parts regarding the response time 

predictions of consecutive and simultaneous commands – because in our logs, commands 

were always entered in a quiescent state. This was somewhat surprising to us since our logs 

contained telepointer actions and these actions are generated at a much faster pace than 

Checkers, PowerPoint, and IM commands. But even these commands were always entered in 

a quiescent state. To illustrate, consider a telepointer motion. The motion will appear smooth 
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if the telepointer commands are generated and processed at a rate of thirty per second (or one 

every 33ms). We have found that on a P4 desktop, the CPU processing and network card 

transmission times of a telepointer command are 0.83 and 0.06ms, respectively. Thus, if the 

application generates a telepointer command every 33ms, then a P4 desktop has 32.17ms to 

perform the transmission task. When unicast is used, the command can be transmitted to as 

many as 536 destinations. When multicast is used, the number of users supported is even 

higher because each P4 computer that forwards commands can forward to as many as 536 

destinations. Although the telepointer costs, as well as costs of other continuous motions 

(such as a drag-and-drop), are going to be different on other processors, we expect that they 

are still low. Thus, even telepointer actions are entered in a quiescent state in our logs. Of 

course, in some collaborations, users may actually enter consecutive and simultaneous 

commands. Therefore, an important future work direction for us is to verify our model and 

system for such application.  

In general, in computer science, there are two possible ways to evaluate a system in a 

particular scenario: simulations and experiments. Simulations estimate the performance of a 

system in the scenario by using an analytical model of the system. Compared to a pure 

theoretical application of the model, which gives trends and implications, simulations 

provide quantitative theoretical performance results in practical scenarios. Experiments, on 

the other hand, measure the actual performance of the system while it is being used.  

Whenever it is practical to do so, experiments should be used instead of simulations 

because simulations estimate performance while experiments measure actual performance. 

Unfortunately, it is not always practical to run experiments. There are two issues with 

running experiments. The first issue is repeatability. In some cases, it may be impossible to 
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ensure the same conditions across experiments. For example, in network systems research, if 

an anomaly happens while measuring the impact of some network congestion algorithm on 

real Internet traffic, that anomaly may never happen again. Thus, if the algorithm is updated 

to handle the anomaly, it may be impossible to test the update. The other issue is the 

resources required to run experiments. For instance, network systems researchers may not 

have resource available to them to setup a large networking experiment with many routers 

and computers.  

When it is not practical to run experiments, simulations are used instead. For instance, 

in order to test network management schemes, network researchers often rely on the popular 

network simulator (NS) application that can simulate the impact of these schemes on network 

traffic. In this case, it is important to validate that the analytical model used in the 

simulations accurately represents the system being evaluated. Otherwise, simulated 

performance may not reflect actual performance. Once the simulations are validated, they 

may in fact completely replace experiments even when experiments are practical. The reason 

is that in general it is easier and quicker to setup and run simulations than it is experiments.  

It turns out that to evaluate the self-optimizing system, it is not practical for us to run 

experiments. In the discussion that follows, we describe why this is the case. Following this, 

Note: 

Simulations estimate the performance of a system in a particular scenario by using 

an analytical model of the system. Compared to a pure theoretical application of the 

model, which gives trends and implications, simulations provide quantitative 

theoretical performance results in practical scenarios.  
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we explain how we use simulations instead. Finally, we show how we validated our 

simulations. 

3.5.1 Experiments  

To evaluate the self-optimizing system through experiments, we also have to handle 

the repeatability and resource issues that arise when running experiments. Consider the 

repeatability issue first. In ideal experiments, we would measure performance with and 

without our system under different collaboration conditions while users collaborate live. 

However, users cannot be counted on performing the same sequences of actions in different 

experiments. Thus, we do not have repeatability. As a result, accurate comparison of 

performance across experiments is not possible. For this reason, we replay logs of previously 

recorded actions as explained in Appendix A.  

When we replay recorded logs, ideally, each user in the experiment is running on a 

separate machine. The reason is that running multiple instances of the shared application on a 

single machine 1) is unrealistic, given that users no longer share time-sharing systems, and 2) 

can affect the timing information due to the operating system’s scheduling of tasks. Since we 

are focusing on large-scale collaborations, we would require a large number of computers. 

Unfortunately, the total number of computers we have available for an experiment is ten. 

Hence, it is not possible for us to run ideal experiments with hundreds or thousands of users 

on our computers. Instead of using our computers, we could use computers in a public cluster 

such as PlanetLab [69]. It is a network of several hundred computers distributed around the 

world that can be used by researchers for free. However, there are several reasons why we do 

not use it. One reason is that a PlanetLab machine can be used by multiple researchers at the 

same time. Since we are collecting timing information, it would be difficult to understand 
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results because the machines we use may be overloaded with tasks other researchers are 

performing. Another reason we do not use PlanetLab is because it does not provide any 

control over the computers used in a particular experiment – it chooses them at random. 

Therefore, it would be difficult to perform multiple experiments in which we vary the 

processing and communication architecture only, which is necessary to measure their impact 

on response times. Also, PlanetLab machines are Linux-based and we are restricted to 

Windows-based computers because Windows the only platform on which we know how to 

interact programmatically with PowerPoint. Another cluster of machines is Amazon’s EC2 

service [5]. It suffers from the same issues as PlanetLab and in addition, it is not free. 

Therefore, we have to use our equipment, which means that we must run simulations instead 

of experiments.  

3.5.2 Simulations 

As mentioned above, from a performance perspective, multicast has been used to 

reduce end-to-end delays. Also as mentioned above, in collaboration systems, end-to-end 

delays are related to remote response times. Therefore, we expect that in at least some 

practical scenarios, the self-optimizing system can improve remote response times by 

automating the maintenance of the communication architecture. To theoretically verify that 

the self-optimizing system can improve response times in a practical scenario, we consider a 

PowerPoint scenario in which the presentation is being given to 100, 200, 300, 400, and 500 

audience members around the world.  

The self optimizing system decides which communication architecture to use for this 

scenario in five steps. First, it gathers the parameters of the analytical model presented in this 

chapter. These parameters include (a) the PowerPoint processing and transmission costs 
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contained in performance reports sent by the users’ computers and (b) the network latency 

measurements performed by each computer. Second, the system must create the multicast 

tree using the HMDM algorithm. Third, the system applies the model. In particular, it plugs 

the measured parameter values into the model to calculate the response times to commands 

by each inputting user with and without multicast. Fourth, it passes these response times to 

the total order function which then informs it which communication architecture to deploy. 

Fifth, it deploys the architecture.  

In a simulated scenario, the first step is not possible because there are no computers 

that send performance reports and network latency measurements. Therefore, the simulation 

must provide these values. Based on the published network latency data between 1740 

computers [67], we set the network latencies between all users equal to those between a 

random subset of 100, 200, 300, 400, 500 of the 1740 computers. One issue with randomly 

selecting the subset is whether the subset preserves properties, such as triangle inequality and 

latency distributions, of the entire set. Zhang et al. [96] analyzed random subsets taken from 

latencies measured between 3997 computers and found that they were representative of the 

overall measurements. Moreover, we have measured realistic PowerPoint processing and 

transmission costs for the netbook, P3 desktop, P4 desktop, Core2 desktop as described in 

Appendix A. Hence, in our scenario, the lecturer is assigned a netbook, and we randomly 

assign the computers used by the remaining users to be a P3 desktop, P4 desktop, Core2 

desktop, or a netbook. Moreover, the users are organized in a centralized architecture in 

which the lecturer’s computer is the master. The presenter’s computer is using unicast to 

distribute messages to all users. Finally, we use a total order function that ranks the system 

with lowest maximum remote response times as the best. 
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Once the values are provided, the next step is to calculate the HMDM multicast tree. 

To perform this calculation, the values of all parameters used by the HMDM model must be 

known. It turns out that these parameters are the network card transmission costs and the 

network latencies, both of which are provided by the simulation. Hence, the HMDM 

algorithm can be simulated. The next two steps are executed in the same manner regardless 

of how the analytical model parameter values provided and the multicast tree is calculated. 

Therefore, these steps are the same whether the system is being simulated or used in an 

experiment. The fourth and final step, which deploys the optimal communication 

architecture, like the first step, needs actual computers. The reason is that the architecture is 

deployed by sending messages to the users’ computers informing them how to establish 

communication channels with each other. For now, however, we do need the fourth step; our 

goal is to show that in theory, choosing the communication architecture can better meet 

response time requirements, which can be done in the first three steps.  

For each scenario, we ran 40 simulations, for which we report the average results 

along with a 95% confidence interval. In most cases, we omitted graphing the interval 

because the interval was two or three orders of magnitudes less than the average. 

Results 

The the maximum remote response time of an audience member and the local 

response time for the lecturer are shown in Figures 3-7 and 3-8, respectively. The maximum 

remote response times increase much faster with unicast than with multicast as the number of 

collaborators grows as shown in Figure 3-7. For example, as the number of collaborators 

increased from 100 to 500, the maximum unicast remote response time grows by 5104.53s. 

The multicast remote response times grow only by 54.31ms – a two orders of 
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magnitude difference. As was the case with local response times, the remote response times 

are significantly better with multicast than with unicast for all sizes of collaborations: with 

100 collaborators, they are 1052.25ms better; with 500 users, they are 6102.47ms better. 

Therefore, the self-optimizing system would have switched from unicast to multicast and 

significantly lowered the maximum remote response times. 

 
Figure 3-7. Max remote response time of observer of PowerPoint presentation. 

 

Figure 3-8. Local Response Times of PowerPoint presenter. 
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As Figure 3-8 shows, the presenter’s local response time increases linearly with the 

number of users when unicast is used (427.6ms), while when multicast is used, it increases 

slightly (2.03ms). This is expected as multicast relieves the source computer from 

transmitting to all the destinations. More importantly, local response times are significantly 

better with multicast than with unicast for all sizes of collaborations: with 100 collaborators, 

they are 82.41ms better; with 500 collaborators, they are 508.98ms better. Therefore, the self-

optimizing system would have also significantly lowered the local response times. 

The simulation shows that our purely theoretical results that multicast will help 

reduce remote response times apply to practical scenarios. Moreover, it also helps reduce 

local response times in such scenarios.  

3.5.3 Validating Simulations 

As mentioned above, if we are going to accept our simulation results, we must 

validate our simulations. For this, we need to run experiments and simulations for the same 

scenario and compare the results. Unfortunately, as mentioned above, we cannot run 

experiments for large scenarios because we do not have enough machines. This was the 

reason to use simulations in the first place. It seems that this is a-chicken-and-an-egg 

problem.  

Fortunately, even with as few as ten machines, we can, in fact, run some limited 

large-scale experiments. To do so, we use a virtualization-like approach in which we treat 

each user’s computer as a virtual computer that is mapped to one of the physical computers. 

One physical computer may have multiple virtual computers mapped to it. In fact, in 

experiments involving hundreds of users, there can be a large number of virtual computers 

mapped to a single physical computer since we have only ten of them. We could use off-the-
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shelf virtualization software to accomplish this. However, since we are using Windows 

machines and we may need to virtualize many users on a single computer, we cannot do this 

since a single Core2 desktop with 1Gb of memory can run only several virtual Windows 

machines because of memory restrictions. Instead, we use added virtualization-like 

functionality in our collaborative framework approach that is able to map up to one hundred 

users onto a single computer before memory becomes an issue.  

To illustrate how virtualization-like solutions can help us run experiments, consider 

an experiment with 100 users. Suppose that (a) user1 inputs all the commands and the 

remaining 99 users observe them, (b) suppose that unicast is used to transmit commands, (c) 

user1’s computer transmits to user100’s computer last, and (d) we are interested in user1’s 

local response times and user100’s remote response times. As explained above, to properly 

measure the response times we are interested in, we must run user1 and user100 on dedicated 

machines. As a result, we are left with eight machines on which to run the remaining 98 

users. We can evenly divide, to within a few users, these 98 users on eight machines. 

Therefore, a machine may run as many as 13 users. While we cannot accurately measure the 

response times of these users, user1’s computer will still require time to transmit to them. 

Therefore, we are able to run certain near-ideal large-scale experiments. 

Experiments when multicast is used instead of unicast are more difficult. The reason 

is that our system dynamically measures performance parameters based on which it 

dynamically deploys multicast overlays. As a result, the multicast overlay that our system 

deploys may be one in which the path from user1 to user100 contains one or more of the 98 

users running on 8 machines as intermediate users. For the same reason we could not rely on 

response times reported by these 98 users, we cannot rely on response times reported by any 
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user to which these users forward commands. Once again, it seems impossible to validate 

through experiments the predictions made by our analytical model.  

Fortunately, a work-around is possible that will allow us to run some large-scale 

experiments with multicast. Unfortunately, the workaround requires us to impose even more 

limits on the scenario we can use. Recall that our system can use previously measured 

parameter values to make architectural decisions at start time. Because of this functionality, 

we can force our system to deploy a multicast tree in which the path from user1 to user100 

contains only users running on separate dedicated physical machines. We do this by fixing 

the values of some performance parameters that are provided to our system at start time. 

Moreover, we configure our self-optimizing system to not measure the values of the fixed 

parameters at runtime. Then, we compare the actual performance measurements with 

simulated performance. Note that because we are fixing some values and ignoring their 

actual values at runtime, the experiment is less realistic than one in which the values are 

measured dynamically. However, fixing these values is the only way we can run experiments 

using the resources available us. We next describe how we used this approach to validate our 

simulations. 

Simulation 

 Consider the same 100 user scenario above, in which one user is giving a PowerPoint 

presentation to 99 other users in which we fix the parameter values as follows. Suppose that 

user1, user2, and user100 are using a netbook, a P4 desktop, and a Core2 desktop, respectively, 

and that all of the other users are using Core2 desktops. Moreover, suppose that 1) user1 can 

communicate directly with all users except user100, 2) user2 can communicate directly with 

user1 and user100, and 3) no other direct communication between any users is possible. Since 



149 

we are running all of our computers on the same LAN, these communication restrictions do 

not reflect reality in our experiments as all computers, and hence all users, can communicate 

directly with each other. Nevertheless, we can trick our system into believing in these 

communication restrictions by providing it with the following network latencies: 0ms 

latencies from user1 to all other users except user100; 0ms latencies from user99 to user1 and 

user100; 1000000ms (effectively infinite) network delays between from any other users to all 

other users. By doing this, we force the HMDM multicast scheme to create a multicast tree in 

which (a) user1 transmits first to user2 and then to the user3 through user99 and (b) user2 

transmits only to user100 as shown in Figure 3-9. The rest of the parameters values provided 

to the system at start time, such as processing and transmission costs, are assigned realistic 

values using the approach described in Appendix A. This scenario will enable us to validate 

our simulations because we have a path from user1 to user100 that has only one intermediate 

node, user2. Moreover, we have a netbook, a P4 desktop, and a Core2 desktop on which we 

can run user1, user2, and user100, respectively. Hence, we have 1) isolated a path in the 

 

Figure 3-9. Local Response Times of PowerPoint presenter. 
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multicast overlay that our system would create if the conditions matched those we setup and 

2) an overlay which we can map onto our ten computers.  

We performed both simulations and an experiment for this scenario. Since we were 

interested in not only whether or not the simulations predict absolute performance correctly 

but also whether or not they predict trends correctly, we actually performed two sets of 

simulations and experiments with 3 and 100 users, respectively We report user1’s local 

response times for both sets, and user3’s and user100’s remote response times for the 3 and 

100 user set, respectively. 

We configured our system to calculate a new communication architecture only once, 

immediately after the presenter advances the presentation to the second slide. Moreover, 

since we are interested in whether or not our system can perform communication architecture 

changes dynamically, we configured our system to optimize only the communication 

architecture. In particular, we configured the system to keep the initial processing 

architecture - the centralized architecture in which the presenter’s computer is the master - 

throughout the session. Finally, we used a total order function that optimizes response times 

for as many users as possible. 

The simulated and experiment response times for user1 and the user3 and user100 with 

unicast are shown in Figure 3-10. The simulated and experiment response times for these 

users with multicast are shown in Figure 3-11. We ran the experiment ten times and report 

the average response times. The simulations needed to be run only once since the values of 

all parameters are constant. This was not the case in our previous result in which we 

simulated the performance of our system without fixing any parameter values. In that result, 

the computer types used by users other than the presenter were randomly assigned for each 
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simulation. Moreover, the network latencies among the computers were assigned random, 

real values. Therefore, we ran forty simulations and reported the average.  

We do not expect the simulated and measured response times to be exactly the same 

for two reasons. First, the values of parameters used in our simulations are average values as 

explained in Appendix A. Hence, these values can be slightly off from the values during a 

 
Figure 3-10. Simulation and experiment unicast response time comparison. 

 

Figure 3-11. Simulation and experiment multicast response time comparison. 
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particular experiment. Second, inherent to any experiment with distributed computers are 

fluctuations in network traffic and non-collaborative processes, such as those of the operating 

system and anti-virus software. These fluctuations can impact performance experiment to 

experiment. In our experience, reporting the average of ten experiments helps reduce but 

does not completely eliminate the fluctuations.  

 As Figures 3-10 and 3-11 show, the simulated response times are close to the 

experiment response times. The largest difference was for the unicast remote response time 

of user100. The simulated value is was 79.077ms less than the measured value. The next 

highest difference between any other simulated and experiment value is 10.667ms. 

Therefore, even though most values are close, our simulations can be noticeably wrong. 

Nevertheless, even with the differences in simulated and measured values, the simulation 

shows that the self-optimizing system would have selected multicast instead of unicast which 

would have improved remote response times of user100 by 1276.31ms according to the 

experiments.  

3.5.4 Cost of Switching Communication Architecture  

The above comparisons do not consider the impact of our system on response times 

as it gathers parameter values and switches communication architectures. Since we do not 

pause the inputting of commands during a communication architecture change, the cost of 

changing the communication is less important than the cost of a processing architecture 

change. Nevertheless, the change does require some CPU time and network communication 

from each user’s computer, and hence it can affect response times. While we did not measure 

these costs directly, we also did not observe any differences in response times during the 

change because the change always happened during think time. In the experiment that 
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validated our simulations, the communication architecture change took an average of 2074ms 

in the ten experiment runs with a standard deviation of 309ms. The maximum time was 2741 

and the minimum time was 1859ms. The think times from the log of PowerPoint actions we 

replayed during the experiment were higher than 2741ms 80% of time. Therefore, it is 

possible that the architecture change can occur completely during think time. When it does 

not, it will occur concurrently with user’s commands. To minimize the impact on response 

times, the threads used to execute them are assigned a low priority as mentioned above. 

Moreover, the messages used during the constructions are small. Therefore, we expect the 

impact on response times to be low. However, future studies are needed to determine the 

exact impact, and more importantly, if it is noticeable.   

A related issue is the amount of time required to calculate the overlay. The time 

required to calculate the overlay does not directly impact response times. The reason is that 

our system runs on a machine different from the user’s machines, such as a server that hosts 

the session manager. Nevertheless, when the time taken to calculate the overlay is high, 

response times are impacted indirectly because many commands may be entered during that 

time and the response times for commands would not benefit from the optimized 

communication architecture that is returned by the calculation. Even worse, the parameters 

used to calculate the overlay may change during the long calculation. In the extreme case, if 

the calculation takes really long, the collaboration session may finish before the calculation 

does!  

The amount of time required to calculate the overlay depends on two factors: the 

number of users and the number of multicast trees created. The number of users is a factor 

because the HMDM multicast algorithm requires O((number of users)
3
) time to calculate a 



154 

single multicast tree for these users. On a Core2 desktop, calculating a multicast tree for 100 

users requires only 12.275ms on average. However, had there been 500 users, the time 

required to calculate a multicast tree would have been 1.616s.  

The second factor that determines the amount of time required to create the overlay is 

the number of multicast trees that form the overlay. As described earlier, the number depends 

on the total order function. If the function returns N trees, it takes N times as longer to 

calculate them than it does a single tree.  

3.5.5 Limitations 

While the discussion so far has focused on our system, we now address a computer 

architecture issue independent of our work that is nevertheless important. We found that 

when non-blocking communication is used and a command is transmitted to multiple 

destinations, there is no guarantee that the destination order that the CPU uses is the same as 

the destination order that the network card uses. This is an issue since both HMDM and our 

work assume that the CPU and network card transmission orders are the same. The issue 

arises because some network cards in use today have multiple transmission queues and the 

scheduling algorithm used by these cards is controlled by the network card driver. We are 

currently working on a way to configure the network card to either use a single transmission 

queue or a scheduling algorithm of our choosing, which should allow us to solve the 

problem. Meanwhile, we keep the default network card settings and validate our simulations 

as follows. A computer transmitting a command to multiple destinations pauses for 1) one 

second after transmitting to the first destination and 2) twenty seconds after transmitting to 

the second last destination. The first pause ensures that the destination to which the CPU 

transmits first is also the destination to which the network card transmits first. The second 
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pause is to ensure the same for the last destination. In all our experiments, the network card 

completed the transmission to all destinations regardless of the number of destinations in less 

than twenty seconds. Hence, a twenty second pause is sufficient to ensure that the last 

destination to which the CPU transmits to is the last destination to which the network card 

transmit. Clearly, the local response time on the sending computer and the remote response 

time on the final destination computer are off by twenty-one seconds. Therefore, we adjusted 

the reported values to cancel out the pauses.  

3.6 Summary  

To summarize, we have considered response times in any-scale collaboration 

scenarios with and without multicast. Traditional models of collaborative systems do not 

support multicast. Thus, we have introduced the bi-architecture model that encapsulates the 

traditional models and adds support for multicast. We have presented an analytical model of 

response times with and without multicast. The analytical model extends the one presented in 

the previous chapter: the new model is an N-user version of the old one; it does not assume 

negligible transmission costs; and it does not assume that there is no type-ahead. We have 

updated our self-optimizing system to use the bi-architecture and the new analytical model. 

As a result, the system is able to automate not only the processing but also the 

communication architecture. We have validated our model through simulations, which show 

that multicast can noticeably improve response times. We have also validated our simulations 

through experiments with our system. Finally, we have identified new implementation and 

policy issues that must be addressed by any system that automatically maintains the 

communication architecture. These results serve as proof of sub-thesis II and III and partial 
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proof of sub-thesis VI, which we re-state below. As a concluding remark, the results 

presented in this chapter show that the benefits of dynamic communication architecture 

changes exceed their costs. 
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SUB-THESIS VI 

It is possible to develop a model that analytically evaluates the impact on response 

times of different processing architectures, communication architectures, and 

scheduling policies to the degree necessary to automate their maintenance. 

SUB-THESIS III 

It is possible to develop a system that automatically switches to the communication 

architecture that satisfies any user-specified response time criteria better than 

existing approaches. 

SUB-THESIS II 

The communication architecture impacts response times. 



CHAPTER 4 

AUTOMATING SCHEDULING POLICY MAINTENANCE 
 

4.1 Overview 

In the previous two chapters, we have focused on improving response times by 

automating the maintenance of the processing and communication architectures. More 

specifically, in the second chapter, we presented (a) an analytical response time model for 

centralized and replicated small-scale collaborations, (b) a self-optimizing system that uses 

the model to automatically choose the processing architecture that best meets response times 

requirements, and (c) experimental results that show the system can improve response times 

in practical scenarios. In the following chapter, we (a) extended the analytical model from 

chapter two to large-scale collaboration scenarios, (b) used the extended model to show 

theoretical benefits of a multicast communication architecture for response times, (c) 

extended the self-optimizing system to automatically select the communication architecture 

that best meets response time requirements, and (d) presented simulations and experiments 

that show the extended system can improve response times in practical scenarios.  

Both the processing and the communication architecture mandate specific tasks that 

the users’ devices must perform. The processing architecture determines which computers 

process input commands in addition to processing outputs, while the communication 

architecture dictates the destinations to which a computer transmits commands. One issue 
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with our results so far is that they assume a fixed scheduling policy, in which the tasks were 

carried out on a single-core and precedence was given to the transmission task. In this 

chapter, we analyze the impact on response times of this and the other scheduling policies.  

The implementation and evaluation of scheduling schemes for these tasks depend on 

how many cores are available for scheduling. For example, if two or more cores are available 

for scheduling, it is possible to carry out processing and transmission tasks in parallel. In this 

chapter, we will consider both single-core and multi-core scheduling policies. Regardless of 

the number of cores available for performing processing and transmission tasks, how these 

tasks are scheduled can influence response times.  

When a single-core is available for scheduling, one approach is to create separate 

threads for these tasks and schedule the threads using a round-robin policy. An alternative to 

this concurrent policy is to schedule the tasks in a serial order, either processing or 

transmitting first. Intuitively, processing first tends to give the best local response times, 

transmitting first tends to give the best remote response times, and concurrent execution 

tends to give response times that are in between those supported by the other two policies. 

One issue with the three existing policies is that there is no way to control the tradeoff 

between local and remote response times. Controlling the tradeoff is particularly attractive 

when an unnoticeable increase in one metric can result in a noticeable decrease in the other 

metric. As mentioned in the introduction chapter, human-perception studies have shown that 

certain increases are indeed unnoticeable – users cannot distinguish between local response 

times below 50ms [80] and visual and haptic remote response times below 50ms and 25ms, 

respectively [54]. On the other hand, users can notice 50ms changes in local [95] and remote 

response times [54]. Based on these observations and the principles in real-time scheduling, 
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we have devised a new lazy process-first scheduling policy that, like the process-first policy, 

gives precedence to the processing task, but delays its execution if the resulting increase in 

local response times cannot be noticed by humans. We can imagine a dual of this policy, lazy 

transmit-first scheduling, that like the transmit-first policy, gives precedence to the 

transmission task, but delays its execution if the resulting increases in remote response times 

are not noticeable. In this first cut at the idea of lazy scheduling of collaboration tasks, we 

have only considered lazy process-first scheduling, which we shall refer to as simply lazy 

scheduling. 

The general idea of scheduling tasks so that they complete “just in time” is not new. 

In real-time systems, for example, there are both real-time tasks, which need to complete 

within some absolute deadline, and non-real-time tasks, which need to complete as soon as 

possible. Since in these systems a) there is no benefit to completing a real-time task before its 

deadline and b) real-time tasks typically have processing times that are shorter than their 

deadlines, a real-time task can be delayed by the difference between its deadline and 

processing time while still being able to complete in time. The amount of time the task can be 

delayed is called slack time. To improve the performance of non-real-time tasks, some slack-

stealing scheduling algorithms schedule the non-real-time tasks during the slack times of the 

real-time tasks. By doing so, the non-real-time tasks can complete earlier. The idea of lazy 

scheduling, however, raises two questions that have not been answered by slack-stealing 

algorithms. First, how is it implemented in various kinds of distributed collaborative systems 

that exist today? Previous slack-stealing algorithms cannot be used because neither the 

processing nor the transmission tasks have so far been modeled as tasks with deadlines, 

which leads to the second question. How are deadlines incorporated into these tasks? 
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When more than one core is available for scheduling, one approach is to perform the 

processing and transmission tasks on different cores in parallel. This is the multi-core 

equivalent of the concurrent policy on a single-core machine. The remaining single-core 

policies also have multi-core equivalents. The lazy policy can be adapted to multi-core 

scenarios by delaying the processing task on all of the cores on which it executes. If the 

processing task is not parallelizable, then it executes on only one core regardless of the 

number of cores. Moreover, the sequential schemes would simply use all cores for one and 

then for the other task.  

Scheduling tasks on multiple cores raises three additional issues. One issue is whether 

a task is statically assigned to a core at start time or dynamically mapped to a core at runtime 

based on availability. Dynamic scheduling is more flexible because it can make decisions at 

runtime based on current state. As a result, it can offer better performance. An orthogonal 

issue is whether a core can begin performing tasks of a command while other cores are still 

performing tasks for previous commands. It makes sense to allow this because it may 

improve performance. For instance, when think times are low, performing the transmission 

task of a command on one core even though another core is still performing the processing 

task of previous commands may improve the remote response time of the command. 

However, parallel execution can also hurt remote response times. For example, if one core 

begins to transmit a command while another core is transmitting a previous command, the 

remote response times of the previous command may increase. The reason is that when 

computer has a single network card, the latter command may be transmitted to some 

destinations before the earlier command is transmitted to all destinations. The final issue is 

whether or not there is any benefit to using multiple cores to perform transmission tasks. 
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After all, as mentioned in the previous chapter, the CPUs on the netbook, the P3 desktop, and 

the P4 desktop, which are all single-core, can transmit commands faster than the network 

cards on these computers can. Thus, using multiple cores may not make a difference.  

In this chapter, we address these issues and present a system that better meets 

response time requirements than existing systems by automating the scheduling policy 

selection for any processing and communication architecture pair. In the process of creating 

the system, we extend our previous results in two ways. First, we present a new analytical 

model that can predict the impact of single-core and multi-core scheduling on response times. 

Second, we extend our self-optimizing framework to apply the new model. Since the basic 

question of this chapter is what scheduling policy should be used to best meet response time 

requirements, we analyze the impact of scheduling policy on response times in isolation of 

the impact of processing and communication architectures. 

  

 

Chapter Goals: 

We show that the scheduling policy impacts response times. We present an 

extension of our self-optimizing system that better meets response time 

requirements than existing systems by automating the selection of scheduling 

policies. 

Chapter Scope: 

We analyze the impact of scheduling policies on response times in isolation of the 

impact of processing and communication architectures. We consider any-scale 

collaboration scenarios involving both small and large numbers of users.  
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The system that automates the selection of the scheduling policy raises several issues. 

One issue is how the client-side component of our system measure CPU transmission and 

processing times of a command when non-sequential scheduling policies are used, such as 

concurrent and lazy. With these policies, the tasks interfere with each other and hence, 

measuring their duration from start to end does not give their actual costs as it does when 

sequential policies are used. A related issue is how the server-side component processes 

reported values when non-sequential policies are used.  

Once the system gathers parameters values, it can apply the analytical model. The 

next question is how the system switches scheduling policies. Ideally, as in the case when 

switching communication architectures, it should not pause the execution of tasks of new 

input commands because such an approach degrades the response times of those commands. 

We address these issues as we describe the self-optimizing system below. The rest of 

this chapter is organized as follows. We first define the single-core scheduling policies. Then, 

we present an analytical model for evaluating the impact on response times of the single-core 

polices. Following this, we extend both the single-core policy definitions and the analytical 

model to the multi-core case. We then extend our self-optimizing system to automatically 

choose the scheduling policy for any combination of the processing and communication 

architectures. Then, we present simulations and experiments conducted with the extended 

version of our self-optimization system in practical scenarios. Finally, we end with 

discussions and a brief summary. 
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4.2 Single-Core Scheduling Policies 

As mentioned above, we consider four single-core scheduling policies: process-first, 

transmit-first, concurrent, and lazy. The definition of the first three policies is 

straightforward. With the transmit-first and process-first policies, a single thread carries out 

both the processing and transmission task one after the other starting with the processing and 

transmission tasks, respectively. With the concurrent policy, a separate thread is used for 

each task and the two threads are interleaved by the underlying thread management system. 

While the concurrent and the two sequential policies are the de facto approaches to 

scheduling tasks on a single core, the lazy policy is new. Thus, we define it precisely next. 

4.2.1 Lazy Policy Approach 

The idea behind the lazy policy is to delay the processing task for as long as possible 

without the user noticing the delay. This idea can lead to several different lazy policy 

implementations. One approach is to delay the processing task of a command by no more 

than the noticeable threshold from the moment the command was entered. Thus, before 

delaying the processing task, each computer would calculate the amount of time that has 

elapsed from the moment the command was entered to the moment it reached the computer. 

If the elapsed time is greater than or equal to the threshold, processing is not delayed; 

otherwise, it is delayed by the difference between the threshold and the elapsed time. One 

issue with this approach is that when the network latencies and transmission costs are high, 

most computers would not delay processing since both of these times are counted toward the 

delay. Therefore, this version of the lazy policy may not be very useful. An alternative 

approach, which does not have this problem, is to always delay the processing of a command 

by no more than the noticeable threshold from the moment the command was received. The 
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amount of time that processing is delayed is independent of the network latencies and 

transmission times so it does not matter if they are high. One issue with this approach, 

however, is that it favors downstream computers instead of upstream computers even though 

it is the response times of the users on the latter that are sacrificed to improve the response 

times of the users on the former. This was not an issue with the previous approach because 

eventually, computers would not delay processing at all. Therefore, we use a third approach 

that is a hybrid of the two and combines their good properties. Before delaying the 

processing task, each computer first calculates the amount of time that has elapsed from the 

moment a command is entered to the moment it is received by the computer. Then it 

subtracts from the calculated value the sum of the network latencies the command 

experienced on the way from the source to the computer. Processing is delayed only if the 

final value is less than the noticeable threshold. Like the first approach, it is fairer than the 

second approach, because eventually computers stop delaying processing completely. And 

like the second approach, it is more useful than the first approach, because high network 

latencies do not affect the decision whether or not to delay the processing task. 

4.2.2 Lazy Policy Implementation 

Our lazy scheduling algorithm works for both the centralized and replicated 

processing architectures and unicast and multicast communication architectures. It delays the 

execution of the processing task on a computer without allowing the local user to notice the 

delay. The pseudo-code for the algorithm is shown in Figure 4-1. As the figure shows, the 

algorithm accepts two parameters, namely, the local and remote response time degradation 

thresholds (Line 0). The algorithm supports different values of these thresholds because, as 
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mentioned above, previous work has shown that noticeable local and remote response time 

degradations can be different. 

The starting point of the policy, the Main function, is a loop which waits for the next 

command, C, which may be received from the local user or a remote computer. The first task 

is to compute from C the command CtoTrans to be actually transmitted to other computers 

(Lines 3-5). In all scheduling policies, this processing subtask is never delayed as it is 

necessary to define the transmission task. If the centralized architecture is being used and C 

0: INPUT: LOCAL_THRESH and REMOTE_THRESH response time 

          degradation thresholds 

DESTS     // this computer’s destinations 

Main() 

1: loop ( forever ) 

2:     wait for command C 

 

3:     if( centralized && C.isInput ) 

4:         CtoTrans = Process( C ) 

5:     else CtoTrans = C 

6:     startTime = now 

7:     for( each dest in DESTS ) dest.sentTo = false 

8:     if( ( C.isInput && C.isFromLocalUser ) || 

              ( C.isOutput && C.isOutputToCmdByLocalUser ) ) 

9:         maxTransTime = LOCAL_THRESH – C.prevDelay 

10:    else maxTransTime = REMOTE_THRESH - C.prevDelay 

11:    Transmit( CtoTrans, maxTransTime ) 

12:    if(centralized) Process( CtoTrans ) 

13:    else Process( Process( C ) ) 

14:    Transmit( CtoTrans, INIFINITY ) 

 

Transmit( CtoTrans, maxTransTime ) 

15: for( each dest in DESTS ) 

16:     estTimeFromStart = now – startTime + EstTransTime(CtoTrans) 

17:     if( estTimeFromStart >= maxTransTime ) 

            return 

18:     if( dest.sentTo == false ) 

19:         CtoTrans.prevDelay += estTimeFromStart 

20:         dest.send( CtoTrans ) 

21:         dest.sentTo = true 

 
Figure 4-1. Lazy scheduling algorithm for single-core machines. 
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is an input command, then the transmitted command is the output command corresponding to 

the received command; otherwise it is simply the received command. 

The next step is to compute the amount of time, maxTransTime, by which the 

(remaining) processing can be delayed, which depends on whether C is entered by or is a 

response to a command entered by the local or remote user (Lines 8-10). When C is an input 

command from the local user, the command has not experienced any delays and thus, 

C.prevDelay is zero. Therefore, the processing of the command can be delayed by as much 

as the time specified in the local response time degradation threshold (Line 9). Hence, 

maxTransTime is set to this threshold. When C is an output to a command entered by the 

local user, however, the command can be delayed for some time at the master for reasons 

given later. The delay is stored in prevDelay property of the command. Thus, 

maxTransTime is set to the difference between the local response time threshold and 

prevDelay. In all other cases, processing can be delayed by as much as the remote response 

time degradation threshold. Since the computers on the path from the source to the current 

computer contribute to the remote response times of the computer, the processing can be 

delayed only if the total previous delay for the command, which is stored in prevDelay, is 

less than the remote response time threshold. Thus, maxTransTime is set to the difference 

between this threshold and the total previous delay of the command. 

Once maxTransTime has been calculated, the algorithm calls the Transmit 

function (Line 11). The Transmit function returns if it estimates that it will execute for 

longer than maxTransTime if it transmits to another destination (Line 17). To approximate 

the cost of the next transmission, the Transmit calls the EstTransTime function. To 

provide the estimate, the EstTransTime function could use data from previous 
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collaborations or can dynamically determine transmission costs based on transmission times 

of previous commands. If the Transmit function does not return, it transmits the command 

to the next destination. Because it can be called twice for the same command, once before 

and once after the processing task is performed, the function keeps track of destinations to 

which it has already sent the command and does not send to those destinations again when it 

is called the second time (Lines 18-21). For each transmitted command, it stores the delays 

the command has experienced so far in prevDelay (Line 19), which the next computer on 

the path reads (Lines 8-10). 

After the Transmit method is called the first time, the processing of the command 

completes at the local computer (Lines 12-13), which depends on the processing architecture. 

In the centralized case, only the output command is processed. In the replicated case, the 

input and its computed output are processed. Then, the Transmit method is called again, 

this time with maxTransTime set to INIFINITY, which allows the transmission to 

complete. 

4.3 Single-Core Response Time Analysis 

We evaluate our lazy algorithm by comparing it with the existing sequential and 

concurrent policies. We present and illustrate an analytical model for the response times for 

all four policies and use the model to predict their relative performances. As in the previous 

chapter, we consider only non-blocking communication. 

 

Analysis Scope: 

As in the previous chapter, we focus on the non-blocking communication case. 
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In the analysis that follows, we recap the earlier analysis as the same style of 

reasoning can be used to analyze the response times of the other policies. As before, we first 

present an analysis of a command entered when the system is in a quiescent state. Following 

this, we present the analysis for consecutive commands entered by the user when the system 

is not in a quiescent state. Finally, we present the analysis for simultaneous commands 

entered by multiple users. Also, as in the previous chapter, we first develop the equations for 

replicated architecture remote response times for input commands entered by a master user.  

4.3.1 Replicated Remote Response Time 

As mentioned in the previous chapter, to reach a particular destination computer, a 

command must travel from the source computer to the destination computer along some path. 

The path may consist of additional computers. We refer to the source computer and these 

additional computers as the intermediate computers. The terms destination and intermediate 

are relative to a particular path. An intermediate computer on one path is a destination 

computer on a different path as all users see the output of an input command. Let 𝜋 denote 

the path from the source to the destination, 𝑚 denote the number of computers on the path 

including the source and destination computers, and 𝜋𝑘 , 1 ≤ 𝑘 ≤ 𝑚, denote the 𝑘𝑡𝑕computer 

on the path 𝜋, where 𝜋1 is the source and 𝜋𝑚  the destination computer. 

 Therefore, as in the previous chapter, the replicated remote response time of 

command 𝑖 to computer 𝑗 along path 𝜋 is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖,𝑗 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑚   
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where 𝑑 𝜋𝑘 , 𝜋𝑘+1  is the network latency between the 𝑘𝑡𝑕  and 𝑘 + 1𝑠𝑡  computers on path 𝜋, 

𝑖𝑛𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑘  is the delay of command 𝑖 on the 𝑘𝑡𝑕  intermediate computer on the path, and 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑚   is the delay of command 𝑖 on the destination computer.  

The first component of the remote response time equation is independent of the 

scheduling policy as it is a sum of the network latencies on the path from the source to the 

destination. The other two terms are scheduling policy dependent.  

Transmit-First Policy Delays  

Consider first the delay of command 𝑖 on computer 𝜋𝑘 , the 𝑘𝑡𝑕  intermediate computer 

on path 𝜋. The delay is equal to the time that the computer requires to transmit the command 

to the next computer along the path, 𝜋𝑘+1. In general, computer 𝜋𝑘  may have to transmit to 

more than one destination. Therefore, its delay depends on the number of other computers to 

which it transmits before transmitting to computer 𝜋𝑘+1. As described in the previous 

chapter, the transmit time is a function of the 1) the CPU transmit time, 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 , which is the 

amount of time the CPU requires to copy the message data buffers from application space to 

the memory location from which the network card reads data for transmission, and 2) the 

network card transmit time, 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝐼𝑁 , which is the amount of time the network card requires 

to read the message data buffers from memory and send it on the physical wire. Either the 

Analysis Scope: 

Although in theory both the CPU and the network card can be transmission 

bottlenecks, we found that the network card was always the bottleneck in all of the 

collaboration logs we recorded. Therefore, as in the previous chapter, we focus on 

the case when the network card is the bottleneck. 
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CPU or the network card can be the bottleneck during transmission. As mentioned in the 

previous chapter, we focus on the case when the network card is the bottleneck because in all 

of our experiments, it always was.  

Hence, the delay of computer 𝜋𝑘  is equal to  

 𝑖𝑛𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖, 𝜋𝑘 = 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘

𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝐼𝑁  

where 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1  the position of computer 𝜋𝑘+1’s in computer 𝜋𝑘’s list of destinations. 

The first term in the equation, 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 , accounts for the fact that before the network card can 

begin transmitting a command to the first destination, the CPU must first queue the command 

for transmission to the destination. 

The delay of command 𝑖 on the destination computer 𝜋𝑚  also depends on the number 

of computers to which computer 𝜋𝑚  forwards commands because computer 𝜋𝑚  must first 

transmit the command to all of them before processing the input command and its output. 

Unlike for intermediate computers, where the delay depended on the network card, in this 

case, the delay depends only on the CPU. The reason is that once the CPU queues messages 

in the network card’s transmission queue, the work done by the network card does not take 

any CPU time. As in the previous chapter, let 𝑝𝑖,𝜋𝑚
𝐼𝑁  (𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇 ) denote the time computer 𝜋𝑚  

requires to process input (output) command 𝑖. Let 𝑓𝑎𝑛𝜋𝑚  denote the number of destinations 

to which computer 𝜋𝑚  forwards commands, that is, the fanout degree from 𝜋𝑚 . Thus, the 

delay of the destination computer equals 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖, 𝜋𝑚  =  𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚

𝐼𝑁 + 𝑝𝑖,𝜋𝑚
𝐼𝑁 + 𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇  

 To illustrate the remote response time equations for this policy, consider the 

replicated-multicast architecture shown in Figure 4-2. The figure shows the transmission of a 

command entered by user1. User1’s computer transmits only to computers belonging to 
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user2, user3, user4, user5, and user6, while user2’s computer transmits to computers belonging 

to user7, user8, user9, and user10. Suppose the architecture has the following additional 

properties: 1) user1 enters all of the commands; 2) user1’s computer’s transmission order is 

user2, user3, user4, user5, and user6, and user2’s transmission order is user7, user8, user9, and 

user10; 3) all of the users have the same computers; and 4) the local and remote response time 

thresholds are the same. We will use this theoretical example as a running example for 

illustrating our response time equations. Whenever we use the example, we will omit the user 

index terms from the transmission and processing parameters because we assume that all of 

the computers are the same. 

 Consider the remote response time of user10. The path 𝜋 from user1’s to user10’s 

computer is of length 𝑚=3 and 𝜋1, 𝜋2, and 𝜋3 are user1’s, user2’s, and user10’s computers, 

respectively. According to our equations, user1’s delay is equal to 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 𝑝𝑜𝑠 1,2 ∗

𝑥𝑁𝐼𝐶 𝑖
𝐼𝑁 . Since user1’s computer transmits to user2 first, user1’s delay is equal to 𝑥𝐶𝑃𝑈 𝑖

𝐼𝑁 +

𝑥𝑁𝐼𝐶 𝑖
𝐼𝑁 . Similarly, since user2’s computer transmits to user10 only after transmitting to three 

other destinations first, that is, 𝑝𝑜𝑠 1,2 = 4, user2’s delay is equal to 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 4 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝐼𝑁  . 

User10’s computer’s delay is equal to the time the computer requires to process the input and 

the corresponding output command, 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 . But if user10’s computer had to also 

 
 

Figure 4-2. Replicated-multicast architecture with ten users. 
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forward the command to other computers, then the delay would include the time the 

computer requires to transmit the input command to them. Therefore, user10’s remote 

response time is equal to 𝑑 1,2 + 𝑑(2,10) + 2 ∗ 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 5 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝐼𝑁 + 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 . 

Process-First Policy Delays  

 The equations for the process-first policy delays of the computers on the path 𝜋 from 

the source to the destination are similar. Recall that in this policy, the computer starts the 

transmission task after it completes the processing task. Therefore, unlike the transmit-first 

delay, the process-first delay on an intermediate computer includes the time the computer 

requires to process the input and the corresponding output command. The process-first delay 

of an intermediate computer 𝜋𝑘  is given by 

𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖, 𝜋𝑘 =  𝑝𝑖,𝜋𝑘

𝐼𝑁 + 𝑝𝑖,𝜋𝑘
𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘

𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝐼𝑁  

 In our example, user1’s and user2’s delays are equal to the time their computers 

require to process the input and output command, 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 , plus the time they require to 

transmit the input to one and four destinations, 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 𝑥𝑁𝐼𝐶 𝑖

𝐼𝑁 and 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 4 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝐼𝑁 , 

respectively. 

 The process-first delay of the destination 𝜋𝑚  computer is simply the time the 

computer requires to process the input and the corresponding output command. 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖, 𝜋𝑚  =  𝑝𝑖,𝜋𝑚

𝐼𝑁 + 𝑝𝑖,𝜋𝑚
𝑂𝑈𝑇  

Concurrent Policy Delays  

 The delay equations for the concurrent policy are more complicated. The reason is 

that when the processing and transmission tasks execute concurrently, they interfere with 

each other’s execution times. More precisely, the CPU transmission task interferes with the 
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processing task. We assume that the processing task does not block because it is difficult to 

predict their behavior, otherwise. The non-blocking task assumption is consistent with 

assumptions made in real-time systems when tight performance bounds are required. While 

results exist for blocking tasks, the upper-bounds for the performance in this case are loose. 

In addition, we consider context switch times negligible as we have found that they are no 

more than a few microseconds on modern operating systems running Pentium 4 desktops, 

which is several orders of magnitude lower than processing and transmission costs we have 

observed in real collaboration scenarios. Given these assumptions and our earlier assumption 

that a single core is available for scheduling, then the time required to complete 1) the shorter 

of the transmission and processing tasks is equal to twice the time required to complete it 

standalone and 2) the longer of the two tasks is equal to the time required to complete the two 

tasks sequentially. Both of these results are illustrated in Figure 4-3, which shows two tasks 

A and B executing concurrently. Task A is shorter than task B. As Figure 4-3 shows, the time 

required to complete the shorter task A is equal to twice the time required to complete it 

when it runs standalone. On the other hand, the longer task B completes in the amount of 

time required to complete the two tasks separately. This result is captured by the function 

𝑐𝑜𝑛𝑐 𝑎, 𝑏 =  
2𝑎 𝑖𝑓 𝑎 ≤ 𝑏

𝑎 + 𝑏 𝑖𝑓 𝑎 > 𝑏
  

 
 

Figure 4-3. Concurrent execution time on a single processor. 
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where 𝑎 and 𝑏 are execution times of the two tasks.  

 The above function captures when the CPU completes transmitting. To analyze the 

time at which the network card completes the transmission, we must determine whether or 

not the network card is ready to transmit a command when the CPU begins a transmission 

quantum. Since we are considering the case in which the network card transmission cost is 

higher than that of the CPU, it cannot keep up with the CPU during a transmission quantum. 

Hence, during the upcoming processing quantum, it will be transmitting to destinations to 

which the CPU transmitted during the transmission quanta. If the network card completes 

transmitting to these destinations during the processing quantum, then it is ready to transmit 

to the destinations to which the CPU transmits in the next transmission quantum. If, on the 

other hand, it does not catch up to the CPU, then the response times of the destinations to 

which the CPU transmits to in the next transmission quantum include the time the network 

card requires to complete transmitting to the destinations to which the CPU transmitted in 

 
 

Figure 4-4. Concurrent transmission time on a single processor. 
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prior quanta. Both cases are illustrated in Figure 4-4. If the CPU transmit time is less than or 

equal to one half of the network transmit time, that is, if 2 ∗ 𝑥𝐶𝑃𝑈 ≤ 𝑥𝑁𝐼𝐶 , then the network 

card will catch up; otherwise, it will not as shown in Figure 4-4 (right). As mentioned in the 

previous chapter, the CPU transmission cost was in fact less than half of the network card 

transmission cost. Therefore, we consider only the case when the network card does not catch 

up. In this case, once it starts transmitting a command, it does so continuously until it 

transmits the command to all destinations. Therefore, we can state the concurrent delay of an 

intermediate computer 𝜋𝑘  as 

𝑖𝑛𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶 𝑖, 𝜋𝑘 =  𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘

𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝐼𝑁  

 In our example, user2’s delay is equal to 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 𝑝𝑜𝑠 2,10 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝐼𝑁 . Since 

𝑝𝑜𝑠 2,10 = 4, user2’s delay is equal to 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 4 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝐼𝑁. 

 The delay of the destination computer 𝜋𝑚  is similar except that it captures how long 

the CPU takes to complete the processing task rather than how long the CPU and the network 

card take to complete the transmission task. Thus, the concurrent delay of the destination 

computer is given by the concurrent execution time function defined above 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶 𝑖, 𝜋𝑚  =  𝑐𝑜𝑛𝑐  𝑝𝑖,𝜋𝑚

𝐼𝑁 + 𝑝𝑖,𝜋𝑚
𝑂𝑈𝑇 , 𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚

𝐼𝑁   

Lazy Policy Delays  

 The equations for the lazy policy delays of the computers along the path 𝜋 from the 

source to the destination must account for the local and remote response time degradation 

thresholds. 

 Consider the delay of an intermediate computer 𝜋𝑘 . This delay depends on two 

factors: 1) whether the CPU transmits to the next computer on the path, 𝜋𝑘+1, before or after 

the processing task and 2) whether or not the network card catches up to the CPU 
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transmission while the CPU performs the processing task. The first factor depends on the 

difference between the sum of the delays the command has experienced so far and the 

amount of time by which the computer can delay the processing task without the local user 

noticing the delay, which is the local (remote) response time degradation threshold if the 

computer is (not) the source. Let 

𝑡𝑕𝑟𝑒𝑠𝑕𝜋𝑘 =  
𝑙𝑜𝑐𝑎𝑙 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 𝑖𝑓 𝜋𝑘  𝑖𝑠 𝑡𝑕𝑒 𝑠𝑜𝑢𝑟𝑐𝑒

𝑟𝑒𝑚𝑜𝑡𝑒 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑡𝑖𝑚𝑒 𝑡𝑕𝑟𝑒𝑠𝑕𝑜𝑙𝑑 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

 Therefore, the maximum amount of time by which 𝜋𝑘  can delay the processing of a 

command is the difference between 𝜋𝑘’s threshold value and the total delays the command 

has experienced before reaching 𝜋𝑘 . The difference is given by 

𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋  𝑖, 𝜋𝑘 = 𝑚𝑎𝑥  0, 𝑡𝑕𝑟𝑒𝑠𝑕𝜋𝑘 − 𝑖𝑛𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑙 

𝑘−1

𝑙=1

  

Thus, the intermediate computer 𝜋𝑘  delays processing by a maximum of 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋  𝑖, 𝜋𝑘 . 

The second factor depends on whether 𝜋𝑘  transmits to the next downstream computer 𝜋𝑘+1 

before or after processing. Consider first the case when it transmits before processing. The 

delay of 𝜋𝑘   is equal to the time its CPU requires to transmit to a single destination, 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 , 

plus the amount of time its network card requires to transmit to the next downstream 

computer, 𝑝𝑜𝑠(𝜋𝑘 , 𝜋𝑘+1) ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝐼𝑁 . When the 𝜋𝑘  transmits to the next downstream computer 

after processing, the delay depends on whether or not the network card catches up with the 

CPU during the time the CPU is processing the command. When the network card does not 

catch up to the CPU, then the delay is the same as when 𝜋𝑘  transmits to the 𝜋𝑘+1 before 

processing, as shown in Figure 4-5 (left). The reason is that once the network card starts to 

transmit, it does so continually until it transmits to 𝜋𝑘+1. Hence, the delay is equal to 
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𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 + 𝑝𝑜𝑠(𝜋𝑘 , 𝜋𝑘+1) ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝐼𝑁 . When the network card catches up with the CPU during 

the time the CPU processes the command, then the network card is idle for some amount of 

time while the CPU processes the command, as shown in Figure 4-5 (right). If the CPU does 

not delay processing at all, then the network card is idle the entire time the CPU processes 

the command. If on the other hand, the CPU transmits to at least one destination before 

processing, then the network card idle time is equal to the amount of time processing was 

delayed, 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋  𝑖, 𝜋𝑘 , plus the amount of time it required to process the command, 

𝑝𝑖,𝜋𝑚
𝐼𝑁 + 𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇 , minus the amount of time that elapsed from the moment 𝜋𝑘  began performing 

tasks for the command to the moment the network card became idle. This final term depends 

on the number of destinations to which the CPU transmitted to before processing, which is 

given by 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋  𝑖, 𝜋𝑘 /𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘

𝐼𝑁 . Thus, the final term is equal to 

𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 + (𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃

𝑀𝐴𝑋  𝑖, 𝜋𝑘 /𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 ) ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝐼𝑁 . Therefore, the lazy delay of an 

intermediate computer 𝜋𝑘  is given by 

 
 

Figure 4-5. Lazy delay on a single processor. 
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𝑖𝑛𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝜋𝑘 

=

 
 
 
 

 
 
 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘

𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝐼𝑁                𝑖𝑓 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘

𝐼𝑁 ≤ 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋

 𝑖, 𝜋𝑘 

𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝐼𝑁 + 

        𝑚𝑎𝑥  

0

𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋 𝑖, 𝜋𝑘 + 𝑝𝑖,𝜋𝑚

𝐼𝑁 + 𝑝𝑖,𝜋𝑚
𝑂𝑈𝑇 −  

𝑑𝑒𝑙𝑎𝑦
𝑅𝐸𝑃
𝑀𝐴𝑋

 𝑖, 𝜋𝑘 

𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁

 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝐼𝑁   𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

 Consider the delay on user1’s computer in our theoretical example. Instead of 

analyzing all possible cases, we will analyze only the case when (a) user1’s computer delays 

processing before transmitting to user2 and (b) user2’s computer does not delay processing at 

all. If 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 ≤ 𝑡𝑕𝑟𝑒𝑠𝑕, then according to the lazy policy algorithm, user1’s computer will 

transmit to user2 before performing the processing task since it transmits to user2 first and 

then to the other users. Therefore, user1’s delay is equal to 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 + 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝐼𝑁 . Suppose that 

𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 + 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝐼𝑁 > 𝑡𝑕𝑟𝑒𝑠𝑕. Then, user2’s computer will immediately begin performing the 

processing task in order to meet the remote response time threshold because 

𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋  𝑖, 2 = 0. Therefore, user2’s delay is equal to the time user2’s computer requires to 

process the input and output command, 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 , plus the time it requires to transmit the 

command to four destinations, 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 4 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝐼𝑁. 

 The delay on the destination computer is slightly different as it tries to forward the 

command to as many other computers as possible while satisfying the remote response time 

threshold. Hence, if the time the computer requires to complete the transmission task plus the 

amount of time the command has already been delayed is less than the amount of time by 

which the computer can delay the processing time without the local user noticing the delay, 

then it will complete the transmission task before performing the processing task. Otherwise, 
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the computer will transmit for only as long as it can delay the processing task, 

𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋 𝑖, 𝜋𝑚  . Hence, the delay of the destination computer is 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝜋𝑚  

=  
𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚

𝐼𝑁 + 𝑝𝑖,𝜋𝑚
𝐼𝑁 + 𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇  𝑖𝑓 𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚
𝐼𝑁 ≤ 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃

𝑀𝐴𝑋  𝑖, 𝜋𝑚  

𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋  𝑖, 𝜋𝑚  + 𝑝𝑖,𝜋𝑚

𝐼𝑁 + 𝑝𝑖,𝜋𝑚
𝑂𝑈𝑇  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

 In our example, since user10’s computer does not forward the command to other 

computers, its delay is the processing time, 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 . 

4.3.2 Replicated Local Response Time 

So far, we have presented only the equations for the replicated remote response times. 

We next present the equations for replicated local response times. Recall that the local 

response time is the time that elapses from the moment a user enters an input command to the 

moment the user sees the output for the command, which is equivalent to the time that 

elapses from the moment the inputting user’s computer receives the command to the moment 

the computer completes processing the output of the command. Therefore, the local response 

time is exactly the delay of the destination computer defined above. This makes sense 

because the inputting user’s computer is both the source and the destination. Thus, the 

transmit-first, process-first, concurrent, and lazy local response time equations for command 

𝑖 entered by userj are given by 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗
𝑇𝐹 = 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝑇𝐹  𝑖, 𝑗 = 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇  

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗
𝑃𝐹 = 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝑃𝐹  𝑖, 𝑗 = 𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇  

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗
𝐶𝑂𝑁𝐶 = 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝐶𝑂𝑁𝐶 𝑖, 𝑗 = 𝑐𝑜𝑛𝑐  𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 , 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁  
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𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗
𝐿𝐴𝑍𝑌 = 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝐿𝐴𝑍𝑌 𝑖, 𝑗  
𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇  𝑖𝑓 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 ≤ 𝑡𝑕𝑟𝑒𝑠𝑕𝑗

𝑡𝑕𝑟𝑒𝑠𝑕𝑗 + 𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

4.3.3 Centralized Architecture 

The equations we have presented so far have considered the case in which the 

processing architecture is replicated and the input command is entered by a master user. Let 

us next consider the centralized architecture and slave commands. 

As in the previous chapter, we can obtain the centralized architecture equations for 

commands entered by master users from the above replicated architecture equations by 

adjusting them for the two main differences in the two architectures. First, in the centralized 

architecture, only the master computer processes input commands, while all computers 

process output commands. Therefore, when calculating the delays of the computers on the 

path from the source to the destination, the processing times in the delays are equal to the 

time needed to process only output commands. Second, instead of transmitting input 

commands, the computers transmit output commands. Based on these two differences, the 

centralized architecture general remote response time equation is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,𝑗 = 𝑝𝑖,𝜋1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇 𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇 𝑖, 𝜋𝑚   

The new term, 𝑝𝑖,𝜋1

𝐼𝑁 , accounts for the fact that the master computer must still process 

the input command. This is the equation that applies to all scheduling policies. 

Based on the two differences between the centralized and replicated architectures, we 

can also derive the policy-specific delays created by the computers on the path from a source 

to a destination. The intermediate delays are given by 

𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖, 𝜋𝑘 =  𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘

𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝑂𝑈𝑇  
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𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖, 𝜋𝑘 =  𝑝𝑖,𝜋𝑘

𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝑂𝑈𝑇  

𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶 𝑖, 𝜋𝑘 =  𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘

𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝑂𝑈𝑇  

𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌  𝑖, 𝜋𝑘 

=

 
 
 
 

 
 
 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘

𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝑂𝑈𝑇                𝑖𝑓 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘

𝑂𝑈𝑇 ≤ 𝑑𝑒𝑙𝑎𝑦𝐶𝐸𝑁𝑇
𝑀𝐴𝑋

 𝑖, 𝜋𝑘 

𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝑂𝑈𝑇 + 

        𝑚𝑎𝑥  

0

𝑑𝑒𝑙𝑎𝑦𝐶𝐸𝑁𝑇
𝑀𝐴𝑋

 𝑖, 𝜋𝑘 + 𝑝𝑖,𝜋𝑚
𝑂𝑈𝑇 −  

𝑑𝑒𝑙𝑎𝑦𝐶𝐸𝑁𝑇
𝑀𝐴𝑋  𝑖, 𝜋𝑘 

𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝑂𝑈𝑇

 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝑂𝑈𝑇                  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

  

and the destination delays are given by 

𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖, 𝜋𝑚  =  𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚

𝑂𝑈𝑇 + 𝑝𝑖,𝜋𝑚
𝑂𝑈𝑇  

𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖, 𝜋𝑘 =  𝑝𝑖,𝜋𝑘

𝑂𝑈𝑇  

𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶 𝑖, 𝜋𝑚  =  𝑐𝑜𝑛𝑐  𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇 , 𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚
𝑂𝑈𝑇   

𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌  𝑖, 𝜋𝑚  

=  
𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚

𝑂𝑈𝑇 + 𝑝𝑖,𝜋𝑚
𝑂𝑈𝑇  𝑖𝑓 𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚

𝑂𝑈𝑇 ≤ 𝑑𝑒𝑙𝑎𝑦𝐶𝐸𝑁𝑇
𝑀𝐴𝑋  𝑖, 𝜋𝑚  

𝑑𝑒𝑙𝑎𝑦𝐶𝐸𝑁𝑇
𝑀𝐴𝑋  𝑖, 𝜋𝑚  + 𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
  

We can also derive the local response time equation in the same manner as the remote 

response time one to get 

𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖,𝑗 = 𝑝𝑖,𝑗
𝐼𝑁 + 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇 𝑖, 𝑗  

The new term, 𝑝𝑖,𝜋1

𝐼𝑁 , again accounts for the fact that the master computer must still 

process the input command.  

As in the previous chapter, we can also obtain the equations for input commands 

entered by slave users by morphing the above equations for input commands entered by 
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master users. The only difference between the two kinds of input commands is that a 

command entered by a slave must first reach the master computer. Once the command 

reaches the master, the problem reduces to that of calculating the remote response time from 

the master to the slave, which we have already done above. The time the command takes to 

reach the master computer is equal to the time the slave computer requires to transmit the 

command to a single destination (i.e. the master) plus the time the command takes to traverse 

the network between the slave and master computers. Therefore, we can obtain the equations 

for the local and remote response time of command 𝑖 entered by slave usera whose master is 

userb by adding the term 𝑥𝐶𝑃𝑈 𝑖,𝑎
𝐼𝑁 +  𝑥𝑁𝐼𝐶 𝑖,𝑎

𝐼𝑁 + 𝑑 𝑎, 𝑏  to the response time equations. 

4.3.4 Implications 

The analysis above helps us better understand the nature of the four single-core 

scheduling policies and how they differ from each other. It also helps us formally confirm 

intuitive expectations and, more interesting, derive some unintuitive results about the 

policies, especially about the lazy policy.  

The lazy policy takes slack time in processing to transmit commands to other 

destinations. Thus, it gives processing less priority than process-first and more priority than 

concurrent and transmit-first policies. Intuitively, processing early (late) favors local (remote) 

response times, so, this seems to imply that, in comparison to (a) process-first, the local 

should be worse and remote response time better and (b) concurrent and transmit-first, the 

local should be better and remote response time worse. Our equations show that the 

differences are more subtle because the algorithm is run on each computer. We show the 

differences only for the replicated architecture and master commands. The results, however, 

apply to other cases also and can be derived similarly. 
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Lazy vs. Process-First  

The difference in the lazy and process-first local response times is 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗
𝐿𝐴𝑍𝑌 − 𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗

𝑃𝐹 = 𝑚𝑖𝑛  𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 , 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃

𝑀𝐴𝑋  𝑖, 𝑗   

By definition, the difference is never more than the local response time degradation 

threshold since 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋 𝑖, 𝑗 = 𝑡𝑟𝑒𝑠𝑕𝑗  at the source. Thus, the equations predict that the 

lazy local response times are never noticeably worse than the process-first local response 

times. 

To illustrate, consider user1’s local response time in our example. When the lazy 

policy is used, user1’s computer delays the processing task by the minimum of the local 

response time threshold, 𝑡𝑕𝑟𝑒𝑠𝑕, and the amount of time its CPU requires to transmit a 

command to five destinations, 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 +  5 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝐼𝑁. Since the computer requires 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇  

time for the processing task, user1’s local response time is equal to 𝑚𝑖𝑛 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 +  5 ∗

𝑥𝑁𝐼𝐶 𝑖
𝐼𝑁 , 𝑡𝑕𝑟𝑒𝑠𝑕 + 𝑝

𝑖
𝐼𝑁 + 𝑝

𝑖
𝑂𝑈𝑇. With the process-first policy, the computer immediately 

processes the command, resulting in a local response time of 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇  to user1. Thus, the 

lazy local response time is worse than that of the process-policy, but not by more than the 

local response time degradation threshold. 

To derive the differences in the remote response times, we must compare both the 

intermediate and destination delays for the lazy and process-first policies. Consider first an 

intermediate computer. If the accumulated delays are such that this computer processes the 

command before transmitting to the downstream computer, then the difference in the delays 

is given by 

𝑖𝑛𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌  𝑖, 𝜋𝑘 − 𝑖𝑛𝑡𝑅𝐸𝑃

𝑃𝐹  𝑖, 𝜋𝑘 = 0 
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The reason is that in this case the lazy policy behaves like the process-first policy. In 

the other case, when the computer transmits to the downstream computer before processing, 

the difference in the delays is given by 

𝑖𝑛𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝜋𝑘 − 𝑖𝑛𝑡𝑅𝐸𝑃

𝑃𝐹  𝑖, 𝜋𝑘 = − 𝑝𝑖,𝜋𝑘
𝐼𝑁 + 𝑝𝑖,𝜋𝑘

𝑂𝑈𝑇  

Let us now consider the destination computer. If the destination computer does not 

delay processing, the lazy policy reduces to process-first. Hence, in this case 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝜋𝑚  − 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝑃𝐹  𝑖, 𝜋𝑚  = 0 

Otherwise, the difference in the delays is 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝜋𝑚  − 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝑃𝐹  𝑖, 𝜋𝑚  = 𝑚𝑖𝑛  𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚
𝐼𝑁 , 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃

𝑀𝐴𝑋  𝑖, 𝜋𝑚    

The difference is greater than equal to zero; however, it can never be more than the 

remote response time threshold by definition. Therefore, the destination delays with the lazy 

policy are never noticeably worse than with the process-first policy. On the other hand, 

processing costs can be significant. Therefore, the lazy delays on intermediate computers can 

be significantly better than the process-first delays. Therefore, overall, the lazy policy remote 

response times can be significantly better than the process-first remote response times. 

To illustrate, consider user10’s remote response time in our example. In this case, 

user1’s and user2’s computers are the intermediate computers. Since the lazy policy has 

multiple cases for intermediate and destination delays, let us as before consider one 

combination of these cases, in which user1’s computer delays processing long enough to 

transmit to user2 and user2’s computer does not delay processing at all. User1 and user2 delays 

are equal to 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 𝑥𝑁𝐼𝐶 𝑖

𝐼𝑁 and 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈𝑖
𝐼𝑁 + 4 ∗ 𝑥𝑁𝐼𝐶𝑖

𝐼𝑁, respectively, with the 

lazy policy, and 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈𝑖
𝐼𝑁 + 𝑥𝑁𝐼𝐶𝑖

𝐼𝑁 and 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈𝑖
𝐼𝑁 + 4 ∗ 𝑥𝑁𝐼𝐶𝑖

𝐼𝑁, 
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respectively, with the process-first policy. User10’s delays are 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇  because user10 

does not forward commands. Thus, user10’s remote response time is 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇  less with the 

lazy than with the process-first policy. If processing costs are high, the difference is 

significant. 

These results show some fundamental differences between lazy and process-first 

scheduling. The intermediate computers on the path that delay processing have an additive 

effect on the improvement in the remote response time. On the other hand, the destination 

computer does not degrade the remote response time by more than the remote response time 

threshold. Thus, like local response times, lazy remote response times can never be 

noticeably worse than those of process-first. More important, if processing costs are high, an 

unnoticeable increase in the remote response time of each intermediate computer that delays 

processing can result in a noticeable decrease in the remote response time of the destination 

computer. 

Lazy vs. Transmit-First  

The differences in the local response times of the lazy and transmit-first policies is 

given by 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗
𝐿𝐴𝑍𝑌 − 𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗

𝑇𝐹 = 𝑚𝑖𝑛  𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 , 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃

𝑀𝐴𝑋  𝑖, 𝑗  − 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁  

The difference is always less than or equal to zero. When the total CPU transmission 

time at the source is high, then the difference is also large. Hence, the lazy local response 

times can be significantly better than the transmit-first local response times, as one would 

expect intuitively. 
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To illustrate, in our example, user1’s local response time is equal to 𝑚𝑖𝑛  5 ∗

𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 , 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃

𝑀𝐴𝑋  𝑖, 𝑗  + 𝑝𝑖
𝐼𝑁 + 𝑝𝑖

𝑂𝑈𝑇  with the lazy policy. With the transmit-first policy, 

the local response time is equal to 5 ∗ 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 𝑝𝑖

𝐼𝑁 + 𝑝𝑖
𝑂𝑈𝑇 since user1’s computer transmits 

to five destinations. Thus, the lazy local response time is less than or equal to the transmit-

first local response time. If the local response time threshold is equal to the amount of time 

the CPU requires to transmit the command to a single destination, that is 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 = 𝑡𝑕𝑟𝑒𝑠𝑕, 

then the lazy local response time is 4 ∗ 𝑥𝐶𝑃𝑈𝑖
𝐼𝑁 less.  

A comparison of the delay added to the remote response time by an intermediate node 

is somewhat counterintuitive. If the node processes before transmitting to the downstream 

computer, the difference in the delay is 

𝑖𝑛𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝜋𝑘 − 𝑖𝑛𝑡𝑅𝐸𝑃

𝑇𝐹  𝑖, 𝜋𝑘 

= 𝑚𝑎𝑥  

0

𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋  𝑖, 𝜋𝑘 + 𝑝

𝑖,𝜋𝑚

𝐼𝑁 + 𝑝
𝑖,𝜋𝑚

𝑂𝑈𝑇 −  
𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃

𝑀𝐴𝑋  𝑖, 𝜋𝑘 

𝑥𝐶𝑃𝑈𝑖,𝜋𝑘
𝐼𝑁

 ∗ 𝑥𝑁𝐼𝐶𝑖,𝜋𝑘
𝐼𝑁   

If the computer does not delay processing at all, then the difference is equal to 

𝑝𝑖,𝜋𝑚
𝐼𝑁 + 𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇 . If the computer transmits the message to some destinations before processing 

but not to the downstream computer, then there are two cases to consider. First, if the 

processing time of the computer is high, then the difference is equal to 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋  𝑖, 𝜋𝑘 +

𝑝
𝑖,𝜋𝑚

𝐼𝑁 + 𝑝
𝑖,𝜋𝑚

𝑂𝑈𝑇 −  𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋  𝑖, 𝜋𝑘 /𝑥𝐶𝑃𝑈𝑖,𝜋𝑘

𝐼𝑁  ∗ 𝑥𝑁𝐼𝐶𝑖,𝜋𝑘
𝐼𝑁 . However, if the processing time of the 

computer is low and the network card transmission costs are high, then the difference is equal 

to zero. Thus, in this case, the lazy delay of the computer is the same for the lazy and 

transmit-first policies, even though the computer processed the message before queuing the 

message for transmission to the next downstream computer. 
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Thus, in this case, transmit-first performs better than or the same as the lazy policy. 

When the transmit-first performs better, the difference can be noticeable. Of course, if the 

intermediate node delays processing, the delays for the two policies are identical 

𝑖𝑛𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌  𝑖, 𝜋𝑘 − 𝑖𝑛𝑡𝑅𝐸𝑃

𝑇𝐹  𝑖, 𝜋𝑘 = 0 

The results are also interesting when we consider the destination. If it does not delay 

processing, then the delay difference is 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝜋𝑚  − 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝑇𝐹  𝑖, 𝜋𝑚  =  −  𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚
𝐼𝑁   

Thus, if the sum of the processing times on all of the intermediate computers on the 

path from the source to the destination is greater than the total transmission time of the 

destination computer, then the transmit-first remote response times are better than those of 

the lazy policy. If the destination delays processing, on the other hand, then the difference in 

the delay is given by 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌  𝑖, 𝜋𝑚  − 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝑇𝐹  𝑖, 𝜋𝑚  =  𝑚𝑖𝑛  𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚
𝐼𝑁 , 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃

𝑀𝐴𝑋  𝑖, 𝜋𝑚   

− 𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚
𝐼𝑁  

The difference is always less than or equal to 0. When it is less than 0 and the 

intermediate delay difference is equal to 0, then the lazy remote response time will be better 

than the transmit-first remote response time. Hence, remote response times to some users can 

be better with the lazy than with the transmit-first policy, even through transmit-first policy 

gives higher priority to the transmission task. 

To illustrate, consider user2’s remote response time in our example. Consider the 

case, as above, when user1’s computer transmits to user2 before processing. Hence, user1’s 

transmit-first and lazy delays are both equal to 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 𝑥𝑁𝐼𝐶 𝑖

𝐼𝑁 because in both cases, user1’s 

computer transmits to user2’s computer before processing. User2’s lazy delay is equal to 
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𝑚𝑖𝑛 4 ∗ 𝑥𝐶𝑃𝑈𝑖
𝐼𝑁, 𝑑𝑒𝑙𝑎𝑦

𝑅𝐸𝑃
𝑀𝐴𝑋(𝑖, 𝑗) + 𝑝𝑖

𝐼𝑁 + 𝑝𝑖
𝑂𝑈𝑇   and user2’s transmit-first delay is equal to 

4 ∗ 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 𝑝𝑖

𝐼𝑁 + 𝑝𝑖
𝑂𝑈𝑇 since user2’s computer transmits to four other computers. Thus, 

user2’s lazy remote response time can be 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁 + 4 ∗ 𝑥𝑁𝐼𝐶 𝑖

𝐼𝑁 less than the transmit-first 

remote response time. If the remote response time threshold, 𝑡𝑕𝑟𝑒𝑠𝑕, is less than the CPU 

transmission time, 4 ∗ 𝑥𝐶𝑃𝑈 𝑖
𝐼𝑁, the lazy remote response time is significantly less. 

Lazy vs. Concurrent  

Finally, let us compare the response times of the lazy and concurrent policies. The 

differences in the local response times of these two policies is given by  

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗
𝐿𝐴𝑍𝑌 − 𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗

𝐶𝑂𝑁𝐶

= 𝑚𝑖𝑛  𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 , 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃

𝑀𝐴𝑋  𝑖, 𝑗  + 𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇

− 𝑐𝑜𝑛𝑐  𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 , 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁  

When the processing time is greater than the total CPU transmission time, then 

𝑐𝑜𝑛𝑐  𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 , 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 = 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 . Thus, the difference is 

this case is equal to 𝑚𝑖𝑛  𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 , 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃

𝑀𝐴𝑋  𝑖, 𝑗  − 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 , which is less 

than or equal to zero. If the total CPU transmission time is high, then the lazy local response 

time is significantly better than the concurrent one. When the total CPU transmission time is 

greater than the processing time, then 𝑐𝑜𝑛𝑐  𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 , 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 = 2 ∗ (𝑝𝑖,𝑗

𝐼𝑁 +

𝑝𝑖,𝑗
𝑂𝑈𝑇). In this case, the difference is equal to 𝑚𝑖𝑛  𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗

𝐼𝑁 , 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃
𝑀𝐴𝑋  𝑖, 𝑗  − 𝑝𝑖,𝑗

𝐼𝑁 +

𝑝𝑖,𝑗
𝑂𝑈𝑇 . If processing times are low, then the difference is greater than zero. However, it is 

never more than the response time threshold. Therefore, the lazy local response time is never 
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noticeably worse than the concurrent local response time. If, on the other hand, the 

processing time is high, then the lazy local response time is significantly better.  

A comparison of the delay added to the remote response time by an intermediate node 

is the same as when comparing the lazy and transmit-first policies. The reason is that 

𝑖𝑛𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶 𝑖, 𝜋𝑘 = 𝑖𝑛𝑡𝑅𝐸𝑃

𝑇𝐹  𝑖, 𝜋𝑘 .  

Comparing the destination delays is more interesting. If the destination computer does 

not delay processing, the difference is given by  

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝜋𝑚  − 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝐶𝑂𝑁𝐶 𝑖, 𝜋𝑚 

= 𝑝𝑖,𝜋𝑚
𝐼𝑁 + 𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇 −  𝑐𝑜𝑛𝑐  𝑝𝑖,𝜋𝑚
𝐼𝑁 + 𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇 , 𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚
𝐼𝑁   

The difference is always less than or equal to zero. When, the destination computer’s 

processing time is less than the total CPU transmission time, the difference is equal to 

−(𝑝𝑖,𝜋𝑚
𝐼𝑁 + 𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇); otherwise, it is equal to −(𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚
𝐼𝑁 ). Hence, as was the case 

when we compared lazy and transmit-first policies, the lazy delay can be noticeably better 

than the concurrent delay if the processing time and the total CPU transmission time are high 

in the former and the latter cases, respectively. If the destination computer delays processing, 

the difference is given by 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝜋𝑚  − 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝐶𝑂𝑁𝐶 𝑖, 𝜋𝑚  

= 𝑚𝑖𝑛  𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚
𝐼𝑁 , 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃

𝑀𝐴𝑋  𝑖, 𝜋𝑚   + 𝑝𝑖,𝜋𝑚
𝐼𝑁 + 𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇

−  𝑐𝑜𝑛𝑐  𝑝𝑖,𝜋𝑚
𝐼𝑁 + 𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇 , 𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑚
𝐼𝑁   

Compared to the previous response time equation, the only new term is 

𝑚𝑖𝑛  𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈𝑖,𝜋𝑚
𝐼𝑁 , 𝑑𝑒𝑙𝑎𝑦𝑅𝐸𝑃

𝑀𝐴𝑋  𝑖, 𝜋𝑚    which is less than or equal to the response time 

threshold. Therefore, the lazy destination delay can never be noticeably worse than the 



190 

concurrent destination delay. Hence, remote response times to some users can be better with 

the lazy than with the concurrent policy.  

In summary, the lazy 1) local response times can be significantly better and never 

noticeably worse and 2) remote response times are sometimes better and sometimes worse 

than those of the concurrent policy. Thus, as was the case when we compared the lazy and 

transmit-first polices, even though the lazy policy gives higher priority to the transmission 

task compared to the concurrent policy, the lazy remote response times can be better.  

4.3.5 Consecutive Commands by the Same User 

So far, we have considered response times of commands entered when the system is 

in a quiescent state. In this section, we consider the case when a user enters consecutive 

commands, by which we mean commands entered when the system is not in a quiescent 

state. The issue that arises in this situation, as mentioned in the previous chapter, is that the 

non-first commands may arrive at a computer before the computer has completed 

transmitting and processing the previous commands. As a result, the response time of these 

commands include an additional delay that is equal to the amount of time the computer 

requires to complete the tasks for the previous commands. Next, we derive the response 

times for consecutive commands for each single-core scheduling policy. We start with the 

response times of commands entered by a user in the replicated architecture. 

Replicated Local Response Times 

Consider first the local response times of master userj . Suppose the user enters 

command 𝑖 + 1 𝑡𝑖+1 time after entering command 𝑖. Suppose also that 𝑡𝑖+1 is less than the 

time the CPU on userj’s computer requires to transmit and process command 𝑖. In this case, 

computer 𝑗 delays tasks for command 𝑖 + 1 until its CPU completes the tasks for command 𝑖. 
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The amount of time the CPU on computer 𝑗 requires to complete tasks for command 𝑖 is the 

same for all scheduling policies. The reason is that regardless of the order in the CPU carries 

out parts of the processing (transmission) task, the total amount of time required to carry out 

all parts of the task is equal to the time it requires to carry out the processing (transmission) 

task all at once, as illustrated in Figure 4-6. As Figure 4-6 shows, regardless of the 

scheduling policy, the CPU completes the tasks for command 𝑖  at the same time. Therefore, 

regardless of scheduling policy, the time the CPU requires to perform the tasks for command 

𝑖 is given by 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇. Thus, regardless of scheduling policy, computer 𝑗 

delays tasks for command 𝑖 by 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇 − 𝑡𝑖+1. The amount of time that 

elapses from the moment the computer begins to perform tasks for command 𝑖 + 1 to the 

 
 

Figure 4-6. Local response times of consecutive commands under each scheduling 

policy. 

 

time

i+1

i

i+2
i

i
i tasks 

complete

i+1 tasks 
complete

i+2 tasks 
complete

Transmit 
First

Process 
First

Concurrent Lazy

A

B

A

B

A

B

A

B

ti+1

ti+2

i+1

i+1

i+2

i+2

i

i

i+1

i+1

i+2

i+2

i
i

i
i

i

i

i+1
i+1

i+1
i+1

i+1

i+1

i+2
i+2

i+2
i+2

i+2

i+2

i

i

i

i+1

i+1

i+1

i+2

i+2

i+2

TransmissionProcessing



192 

moment the user sees the output to 𝑖 + 1 is equal to the user’s response time of 𝑖 + 1 had it 

been entered in a quiescent state. Thus, the local response time of command  𝑖 + 1 is equal to  

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+1,𝑗
𝑇𝐹 = 𝑓𝑎𝑛

𝑗
∗ 𝑥𝐶𝑃𝑈𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 − 𝑡𝑖+1 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖, 𝑗  

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗
𝑃𝐹 = 𝑓𝑎𝑛

𝑗
∗ 𝑥𝐶𝑃𝑈𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 − 𝑡𝑖+1 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖, 𝑗  

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗
𝐶𝑂𝑁𝐶 = 𝑓𝑎𝑛

𝑗
∗ 𝑥𝐶𝑃𝑈𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 − 𝑡𝑖+1 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶 𝑖, 𝑗  

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖,𝑗
𝐿𝐴𝑍𝑌 = 𝑓𝑎𝑛

𝑗
∗ 𝑥𝐶𝑃𝑈𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 − 𝑡𝑖+1 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝑗  

Suppose that user 𝑗 enters command 𝑖 + 2 𝑡𝑖+2 time after entering command 𝑖. If the 

command is entered after userj’s computer completes all tasks for command 𝑖, then this is the 

same case as for the local response time of command 𝑖 + 1. If, on the other hand, userj’s 

computer is still carrying out tasks for command 𝑖, then the local response time of command 

𝑖 + 2 is equal to (a) the amount of time the CPU requires to complete tasks for command 𝑖, 

𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇 − 𝑡𝑖+2, (b) plus the amount of time the CPU requires to complete 

tasks for command 𝑖 + 1, which is equal to 𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈 𝑖+1,𝑗
𝐼𝑁 + 𝑝𝑖+1,𝑗

𝐼𝑁 + 𝑝𝑖+1,𝑗
𝑂𝑈𝑇  regardless of 

scheduling policy, (c) plus the local response time of command 𝑖 + 2 as if it had been entered 

in a quiescent state. Thus, the local response time of command 𝑖 + 2 is higher than the 

response time of command 𝑖 + 1 by the amount of time the CPU requires to perform tasks 

for command 𝑖 + 1 minus difference in their think times, 𝑡𝑖+2 − 𝑡𝑖+1, as illustrated in Figure 

4-6. In Figure 4-6, the local response time of command 𝑖 + 1 is labeled as 𝐴 while that of 

command 𝑖 + 2 is labeled as 𝐵. As the figure shows, for all four scheduling policies, 𝐴 − 𝐵 

is equal to the amount of time the CPU needs to perform the processing and transmission 

tasks for command 𝑖 + 1. 
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More generally, the local response time of command 𝑖 + 𝑧 entered 𝑡𝑖+𝑧  time after the 

CPU on userj’s computer begins performing tasks for command 𝑖 but before it completes 

them is given by 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑇𝐹 =   𝑓𝑎𝑛

𝑗
∗ 𝑥𝐶𝑃𝑈𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝑂𝑈𝑇

𝑖+𝑧−1

𝑐=𝑖

 − 𝑡𝑖+𝑧 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹 (𝑖 + 𝑧, 𝑗) 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐹 =   𝑓𝑎𝑛

𝑗
∗ 𝑥𝐶𝑃𝑈𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝑂𝑈𝑇

𝑖+𝑧−1

𝑐=𝑖

 − 𝑡𝑖+𝑧 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐹 (𝑖 + 𝑧, 𝑗) 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝐶𝑂𝑁𝐶 =   𝑓𝑎𝑛

𝑗
∗ 𝑥𝐶𝑃𝑈𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝑂𝑈𝑇

𝑖+𝑧−1

𝑐=𝑖

 − 𝑡𝑖+𝑧 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶(𝑖 + 𝑧, 𝑗) 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝐿𝐴𝑍𝑌 =   𝑓𝑎𝑛

𝑗
∗ 𝑥𝐶𝑃𝑈𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝑂𝑈𝑇

𝑖+𝑧−1

𝑐=𝑖

 − 𝑡𝑖+𝑧 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌(𝑖 + 𝑧, 𝑗) 

The first term in all four equations is scheduling policy independent. It is the total 

amount of time the CPU on userj’s computer requires to transmit and process commands 𝑖 

through 𝑖 + 𝑧 − 1. The last term is the time the amount of time that elapses from the moment 

the computer begins performing tasks for command 𝑖 + 𝑧 to the moment it completes 

processing command 𝑖 + 𝑧. Finally, we must subtract the amount of time, 𝑡𝑖+𝑧 , the computer 

had been performing tasks for command 𝑖 when command 𝑖 + 𝑧, is entered as this time does 

not contribute to the local response time of command 𝑖 + 𝑧. As this equation shows, the 

response time is a function of the number of consecutive commands. Moreover, the response 

time is scheduling policy dependent. However, somewhat counter intuitively, the difference 

in response times among the four scheduling policies is independent of the number of 

consecutive commands. The reason is that, as mentioned above, the amount of time the CPU 
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requires to perform the tasks for commands 𝑖 through 𝑖 + 𝑧 − 1 is the same for all scheduling 

policies. 

 The transmit-first case above gives the same result as the local response time equation 

given in the previous chapter, which is not surprising because in the previous chapter, we 

assumed that transmit-first scheduling is used. In particular, the amount of time the CPU 

requires to transmit then process a command is equal to the destination delay for the 

command if it had been entered in the quiescent state 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹  𝑐, 𝑗 =𝑓𝑎𝑛𝑗 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝑂𝑈𝑇  

Substituting this equation into the above general equation gives 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑇𝐹 =   𝑓𝑎𝑛𝑐 ∗ 𝑥𝐶𝑃𝑈𝑐,𝑗

𝐼𝑁 + 𝑝𝑐,𝑗
𝐼𝑁 + 𝑝𝑐,𝑗

𝑂𝑈𝑇

𝑖+𝑧−1

𝑐=𝑖

 − 𝑡𝑖+𝑧 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹 (𝑖 + 𝑧, 𝑗)

=   𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹  𝑐, 𝑗 

𝑖+𝑧−1

𝑐=𝑖

 − 𝑡𝑖+𝑧 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹 (𝑖 + 𝑧, 𝑗)

=   𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹  𝑐, 𝑗 

𝑖+𝑧

𝑐=𝑖

 − 𝑡𝑖+𝑧  

which is the equation we derived for the transmit-first local response time for command 𝑖 + 𝑧 

in the previous chapter.  

Replicated Remote Response Times 

 As in the previous chapter, the remote response times of consecutive commands by 

the same user are more complicated. The reason is that as a command traverses a path from a 

source to a destination in the communication overlay, it may suffer additional delays on any 

computer on the path.  
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Recall that in the previous chapter, we have already shown that the unicast and 

multicast remote response time degradation experienced by the destination computer for 

consecutive messages depends on the computer on the path that requires the most time to 

process and transmit commands, where by transmit we mean the time at which the network 

card completes transmitting commands. We called this computer the critical computer. More 

formally, the critical computer is defined with respect to userb’s response times of 

consecutive commands 𝑖 through 𝑖 + 𝑧 entered by userj. A critical computer is the slowest 

computer on the path from userj to userb such that (a) command 𝑖 is the last command it 

received in an idle state, (b) it has since then been continuously performing tasks for 

commands 𝑖 though 𝑖 + 𝑧 − 1, and (c) it is still performing them when command 𝑖 + 𝑧 

arrives.  

Using the notion of a critical computer, we compared the differences in the remote 

response times of consecutive commands with unicast and multicast. First, we derived the 

remote response times of command 𝑖 + 𝑧 as follows. Let computer 𝑠 , the 𝑠𝑡𝑕  computer on 

the path from  𝑗 to 𝑏, be the critical computer. The critical computer may be an intermediate 

computer or the destination computer. When it is an intermediate (destination) computer, 

then userb’s remote response time of command 𝑖 + 𝑧 is equal to 1) the amount of time that 

elapses from the moment command 𝑖 is entered to the moment it reaches the critical 

computer, 2) plus the amount of time that elapses from the moment the critical computer 

receives command 𝑖 to the moment 𝑖 transmits command 𝑖 + 𝑧 to the next computer on the 

path (completes processing of command 𝑖 + 𝑧), 3) plus the amount of time that elapses from 

the moment the critical computer transmits command 𝑖 + 𝑧 to the next downstream computer 

to the moment userb sees its output, 4) minus the amount of time that elapses from the 
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moment command 𝑖 is entered to the moment command 𝑖 + 𝑧 is entered. Note that the first 

(third) term is equal to 0 if the critical computer is the source (destination). As explained in 

the previous chapter, the definition of the critical computer implies that all computers must 

be idle when command 𝑖 reaches them because 𝑠  is the critical computer, and it is idle when 

command 𝑖 reaches it. Similarly, the definition of the critical computer also implies that all of 

the computers downstream from 𝑠  must be idle when command 𝑖 + 𝑧 reaches them.  

Of the terms contributing to the remote response time of command 𝑖 + 𝑧, only the 

second term, which we refer to as the critical computer time, depends on the number of 

consecutive commands. In particular, the first term accounts for parts of the response time 

during which the critical computer and computers upstream from it are idle when they 

receive command 𝑖, the third term accounts for parts of the response times during which 

computers downstream from the critical computer are idle when they receive command 𝑖 + 𝑧, 

and the fourth term is a constant. Therefore, when we analyzed the difference in the 

equations for unicast and multicast response times, the difference boiled down to the 

difference in the second term. As we will show, comparing the response times for different 

scheduling policies will amount to the same.  

In the previous chapter, we had derived the first, third, and fourth terms when the 

transmit-first policy is used. The first term is equal to  𝑑 𝜋𝑘 , 𝜋𝑘+1 
𝑠−1
𝑘=1 +  𝑖𝑛𝑡𝑅𝐸𝑃

𝑇𝐹  𝑖, 𝜋𝑘 
𝑠−1
𝑘=1 , 

the third term is equal to  𝑑 𝜋𝑘 , 𝜋𝑘+1 
𝑚−1
𝑘=𝑠 +  𝑖𝑛𝑡𝑅𝐸𝑃

𝑇𝐹  𝑖 + 𝑧, 𝜋𝑘 
𝑚−1
𝑘=𝑠+1 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝑇𝐹  𝑖 + 𝑧, 𝜋𝑚  , 

and the fourth term is simply equal to 𝑡𝑖+𝑧 . Therefore, the same derivation holds for other 

scheduling policies as long as we replace the intermediate and destination delay terms with 

those of each policy.  
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Let us now consider the critical computer time term. When the critical computer is 

the destination computer, the critical computer time depends on how long the CPU requires 

to process and transmit commands 𝑖 through 𝑖 + 𝑧 − 1 plus the amount of time the CPU 

requires for displaying the result of command 𝑖 + 𝑧 to the local user once it starts to perform 

tasks for it. In particular, the network card transmission times on the destination computer do 

not contribute the response times because the CPU never waits on the network card. 

Therefore, the response time equations are given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑇𝐹 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚
𝐼𝑁 + 𝑝𝑐,𝜋𝑚

𝐼𝑁 + 𝑝𝑐,𝜋𝑚
𝑂𝑈𝑇  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹 (𝑖 + 𝑧, 𝜋𝑚) − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐹 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚
𝐼𝑁 + 𝑝𝑐,𝜋𝑚

𝐼𝑁 + 𝑝𝑐,𝜋𝑚
𝑂𝑈𝑇  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐹 (𝑖 + 𝑧, 𝜋𝑚) − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝐶𝑂𝑁𝐶 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶 𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚
𝐼𝑁 + 𝑝𝑐,𝜋𝑚

𝐼𝑁 + 𝑝𝑐,𝜋𝑚
𝑂𝑈𝑇  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶(𝑖 + 𝑧, 𝜋𝑚) − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝐿𝐴𝑍𝑌 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚
𝐼𝑁 + 𝑝𝑐,𝜋𝑚

𝐼𝑁 + 𝑝𝑐,𝜋𝑚
𝑂𝑈𝑇  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌(𝑖 + 𝑧, 𝜋𝑚) − 𝑡𝑖+𝑧  
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The transmit-first equation presented in this chapter is equivalent to the transmit-first 

equation presented in the previous chapter. In particular, 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖 + 𝑧, 𝑗 = 𝑓𝑎𝑛𝜋𝑚 ∗

𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑚
𝐼𝑁 + 𝑝𝑖+𝑧,𝜋𝑚

𝐼𝑁 + 𝑝𝑖+𝑧,𝜋𝑚
𝑂𝑈𝑇 . Substituting this into the above transmit-first equation gives 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃 𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛
𝑚
∗ 𝑥𝐶𝑃𝑈,𝑐,𝑚

𝐼𝑁 + 𝑝𝑐,𝜋𝑚
𝐼𝑁 + 𝑝𝑐,𝜋𝑚

𝑂𝑈𝑇  

𝑖+𝑧

𝑐=𝑖

− 𝑡𝑖+𝑧 

When the critical computer is an intermediate computer, then the time it requires to 

complete the tasks of consecutive commands is a function of both the network card and CPU 

costs. It is a function of CPU costs because until the CPU completes tasks for a command, 

the network card cannot begin transmitting the next command even if it is idle because the 

CPU must first transmit it. The time is a also function of transmission times because until the 

network card completes transmitting a command to all destinations, it cannot begin 

transmitting the next command even if the CPU has completed the processing and 

transmission tasks for it. As in the previous chapter, we consider two cases. In one case, the 

total network card transmission time is higher than the total amount of time the CPU spends 

on each command. In this case, the network card falls further behind the CPU with each 

command, as shown in Figure 4-7. In the other case, the amount of time the CPU spends on 

each command is higher than the total network card transmission time of the command. In 

this case, the network card keeps up with the CPU, as shown in Figure 4-8. All other cases 

reduce to these two as explained in the previous chapter. 

Let us first consider the extreme case when the network card time spent on each 

command dominates the CPU processing time. As in the previous chapter, the critical 

computer time is equal to (1) the amount of time that elapses from the moment the critical 
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computer receives command 𝑖 to the moment the CPU transmits 𝑖 to the first destination, plus 

(2) the amount of time that elapses from the moment the network card begins to transmit 𝑖 to 

the first destination to the moment it transmits 𝑖 + 𝑧 − 1 to the last destination, plus (3) the 

amount of time that elapses from the moment the network card begins transmitting 𝑖 + 𝑧 to 

the moment it transmits it to the next downstream computer. The first term is scheduling 

policy dependent. We return to it momentarily. The second term is equal to   𝑓𝑎𝑛𝑠 ∗
𝑖+𝑧−1
𝑐=𝑖

𝑥𝑁𝐼𝐶𝑐,𝑠
𝐼𝑁   because once the network card begins transmitting 𝑖, it does not stop until it finishes 

transmitting 𝑖 + 𝑧. The third term is equal to 𝑝𝑜𝑠 𝑠 , 𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝑠
𝐼𝑁 . Therefore, only the 

first term is scheduling policy dependent. When the process-first policy is used, the first term 

is equal to 𝑝𝑖,𝑠
𝐼𝑁 + 𝑝𝑖,𝑠

𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈 𝑖,𝑠
𝐼𝑁  as the computer must first process command 𝑖 before it 

begins transmitting. When the transmit-first policy is used, the first term is equal to 

 
 

Figure 4-7. Critical computer time when the total network card transmission time of 

each command dominates the processing time for the command. 
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simply 𝑥𝐶𝑃𝑈 𝑖,𝑠
𝐼𝑁 . When the concurrent policy is used, the first term is equal to 𝑥𝐶𝑃𝑈 𝑖,𝑠

𝐼𝑁 . The 

lazy policy is slightly more complicated because one part of the CPU transmission happens 

before and the other after processing. In the worst case, the CPU does not delay processing. 

Thus, the first-term is equal to that of the process-first policy, 𝑝𝑖,𝑠
𝐼𝑁 + 𝑝𝑖,𝑠

𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈 𝑖,𝑠
𝐼𝑁 . In the 

best case, the CPU completes transmitting before processing. Thus, the first-term is equal to 

that of the transmit-first policy, 𝑥𝐶𝑃𝑈 𝑖,𝑠
𝐼𝑁 . Therefore, we can state the response time equations 

when the critical computer is not the destination computer and the total network card 

transmission times dominate processing times as 

 
 

Figure 4-8. Critical computer time when the processing time of each command 

dominates the total network card transmission time for the command. 
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𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑇𝐹 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑠
𝐼𝑁 +   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶 𝑐,𝜋𝑠

𝐼𝑁  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝐼𝑁

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐹 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑝𝑖,𝑠
𝐼𝑁 + 𝑝𝑖,𝑠

𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈 𝑖,𝑠
𝐼𝑁 +   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶𝑐,𝜋𝑠

𝐼𝑁  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝐼𝑁

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑚 − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝐶𝑂𝑁𝐶 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑠
𝐼𝑁 +   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶 𝑐,𝜋𝑠

𝐼𝑁  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝐼𝑁

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶 𝑖 + 𝑧, 𝜋𝑚 − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝐿𝐴𝑍𝑌 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+  
𝑥𝐶𝑃𝑈 𝑖,𝜋𝑠

𝐼𝑁  𝑖𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑑𝑒𝑙𝑎𝑦𝑒𝑑

𝑝𝑖,𝑠
𝐼𝑁 + 𝑝𝑖,𝑠

𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈 𝑖,𝑠
𝐼𝑁  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 

+   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶 𝑐,𝜋𝑠
𝐼𝑁  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝐼𝑁

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧  
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The transmit-first equation is the same as the equation given in the previous chapter 

when the critical computer is not the destination and the total network card transmission 

times dominate processing times.  

The other extreme case is when the time the CPU requires to process a command 

dominates the total network card transmission time of the command. In this case, the critical 

computer time is equal to (1) the amount of time that elapses from the moment the CPU 

begins to perform tasks for command 𝑖 to the moment the CPU completes that task for 

command 𝑖 + 𝑧 − 1, plus (2) the amount of time that elapses from the moment the CPU 

begins to perform tasks for command 𝑖 + 𝑧 to the moment the network transmits it to the next 

downstream computer. The first term is scheduling policy independent because as explained 

above, the total amount of time the CPU spends on a command is independent of the 

scheduling policy. The second term depends on the scheduling policy. When the transmit-

first and concurrent scheduling policies are used, the network card is idle when the CPU 

beings to perform tasks for command 𝑖 + 𝑧. The reason is that the network card completes 

transmitting command 𝑖 + 𝑧 − 1 before the CPU finishes processing command 𝑖 + 𝑧 − 1. 

Therefore, for these two policies, the second term is equal to 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗

𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝐼𝑁 . When the process-first policy is used, the network card is not idle when the CPU 

begins to process command 𝑖 + 𝑧. However, it is idle by the time the CPU begins to transmit 

command 𝑖 + 𝑧 because the network card catches up to the CPU while the CPU processes 

command 𝑖 + 𝑧. Therefore, for this policy, the second term is equal to 𝑝𝑖+𝑧,𝑠
𝐼𝑁 + 𝑝𝑖+𝑧,𝑠

𝑂𝑈𝑇 +

𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝐼𝑁 .  

The lazy policy is more complicated because the network card may or may not be idle 

when the CPU begins to transmit command 𝑖 + 𝑧 is the lazy policy. Consider first the case 
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when the network card catches up with the CPU. One way this happens is that the CPU does 

not delay the processing of either command 𝑖 + 𝑧 − 1 or 𝑖 + 𝑧. In this case, the lazy policy 

performs the same as the process-first policy. Another way this happens is when the CPU 

completes transmitting command 𝑖 + 𝑧 − 1 and 𝑖 + 𝑧 before processing them. Here, the lazy 

policy performs the same as the transmit-first policy. The only way the network card does not 

catch up to the CPU is when the CPU performs most of the transmission task for command 

𝑖 + 𝑧 − 1 after processing command 𝑖 + 𝑧 − 1 and it performs a part of the transmission task 

for command 𝑖 + 𝑧 before processing command 𝑖 + 𝑧, then the network card does not have a 

chance to catch up to the CPU. In the worst case, the CPU transmits command 𝑖 + 𝑧 − 1 to 

all but one destination after processing and transmits command 𝑖 + 𝑧 to the next downstream 

computer before processing. In this case, command 𝑖 + 𝑧 suffers an additional delay equal to 

 𝑓𝑎𝑛𝜋𝑠 − 1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧−1,𝜋𝑠
𝐼𝑁 −  𝑓𝑎𝑛𝜋𝑠 − 2 ∗ 𝑥𝐶𝑃𝑈 𝑖+𝑧−1,𝜋𝑠

𝐼𝑁 − 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝐼𝑁 . We subtract the CPU 

transmission time terms because during these times, the network card was catching up with 

the CPU.  

Hence, we can finally state the response time equations when the critical computer is 

not the destination computer and processing times dominate the total network card 

transmission times. 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑇𝐹 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+   𝑓𝑎𝑛
𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝐼𝑁 + 𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝐼𝑁

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧 
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𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐹 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+   𝑓𝑎𝑛
𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝐼𝑁 + 𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑖+𝑧,𝑠
𝐼𝑁 + 𝑝𝑖+𝑧,𝑠

𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝐼𝑁

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑚 − 𝑡𝑖+𝑧 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝐶𝑂𝑁𝐶 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶 𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+   𝑓𝑎𝑛
𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝐼𝑁 + 𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝐼𝑁

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶 𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐶𝑂𝑁𝐶 𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧 

And finally the more complicated lazy equation is 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝐿𝐴𝑍𝑌 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+   𝑓𝑎𝑛
𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝐼𝑁 + 𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝐼𝑁

+  
𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝐼𝑁  𝑖𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖𝑠 𝑑𝑒𝑙𝑎𝑦𝑒𝑑

𝑝𝑖+𝑧,𝑠
𝐼𝑁 + 𝑝𝑖+𝑧,𝑠

𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝐼𝑁  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

 

+  
0 𝑖𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑎𝑟𝑑 𝑐𝑎𝑢𝑔𝑕𝑡 𝑢𝑝 𝑤𝑖𝑡𝑕 𝐶𝑃𝑈;  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒 𝑖𝑡 𝑖𝑠 

 𝑓𝑎𝑛𝜋𝑠 − 1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧−1,𝜋𝑠
𝐼𝑁 −  𝑓𝑎𝑛𝜋𝑠 − 2 ∗ 𝑥𝐶𝑃𝑈 𝑖+𝑧−1,𝜋𝑠

𝐼𝑁 − 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝐼𝑁   

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐿𝐴𝑍𝑌 𝑖 + 𝑧, 𝜋𝑚 − 𝑡𝑖+𝑧 
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The transmit-first equation is exactly the same as the equation given in the previous chapter 

when the critical computer is not the destination and processing times dominate the total 

network card transmission times.   

Centralized Response Times 

We can derive the centralized equations from the replicated equations using the same 

approach as in all of the other instances we had to do so. We start with the replicated 

equations and modify them to account for the two main differences in the centralized and 

replicated architectures. One, in the centralized architecture only the master computer 

processes input commands and all computers process outputs, while in the replicated 

architecture all computers process both inputs and outputs. Two, in the centralized 

architecture computers distribute outputs, while in the replicated architecture they distribute 

inputs. Since we have performed this modification procedure for 1) both quiescent state and 

continuous commands in the previous chapter and 2) quiescent state commands in this 

chapter, here we state the centralized equations for consecutive commands without derivation 

or explanation. The local response times of master user commands are given by 

𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑇𝐹 =  𝑝𝑖,𝜋1

𝐼𝑁

𝑖+𝑧

𝑐=𝑖

+   𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑐, 𝑗 

𝑖+𝑧

𝑐=𝑖

 − 𝑡𝑖+𝑧  

𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑃𝐹 =  𝑝𝑖,𝜋1

𝐼𝑁

𝑖+𝑧

𝑐=𝑖

+   𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑐, 𝑗 

𝑖+𝑧

𝑐=𝑖

 − 𝑡𝑖+𝑧  

𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝐶𝑂𝑁𝐶 =  𝑝𝑖,𝜋1

𝐼𝑁

𝑖+𝑧

𝑐=𝑖

+   𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶 𝑐, 𝑗 

𝑖+𝑧

𝑐=𝑖

 − 𝑡𝑖+𝑧  

𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝐿𝐴𝑍𝑌 =  𝑝𝑖,𝜋1

𝐼𝑁

𝑖+𝑧

𝑐=𝑖

+   𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌  𝑐, 𝑗 

𝑖+𝑧

𝑐=𝑖

 − 𝑡𝑖+𝑧  
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The equations for the remote response times of master user commands when the critical 

computer is the destination are given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑇𝐹 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚
𝑂𝑈𝑇 + 𝑝𝑐,𝜋𝑚

𝑂𝑈𝑇  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑇𝐹 (𝑖 + 𝑧, 𝜋𝑚 ) − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑃𝐹 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚
𝑂𝑈𝑇 + 𝑝𝑐,𝜋𝑚

𝑂𝑈𝑇  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑃𝐹 (𝑖 + 𝑧, 𝜋𝑚 ) − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝐶𝑂𝑁𝐶 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚
𝑂𝑈𝑇 + 𝑝𝑐,𝜋𝑚

𝑂𝑈𝑇  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶(𝑖 + 𝑧, 𝜋𝑚) − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝐿𝐴𝑍𝑌 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚
𝑂𝑈𝑇 + 𝑝𝑐,𝜋𝑚

𝑂𝑈𝑇  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌 (𝑖 + 𝑧, 𝜋𝑚 ) − 𝑡𝑖+𝑧  

The equations for the remote response times of master user commands when the critical 

computer is not the destination and the total network cart transmission times dominate the 

processing times are given by 



207 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑇𝐹 = 𝑝𝑖,𝜋1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑥𝐶𝑃𝑈𝑖,𝜋𝑠
𝑂𝑈𝑇 +   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶𝑐,𝜋𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸 𝑁𝑇
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑃𝐹 = 𝑝𝑖,1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑝𝑖,𝑠
𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈 𝑖,𝑠

𝑂𝑈𝑇 +   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶𝑐,𝜋𝑠
𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝐶𝑂𝑁𝐶 = 𝑝𝑖,1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶 𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑠
𝑂𝑈𝑇 +   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶𝑐,𝜋𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶 𝑖 + 𝑧, 𝜋𝑚 − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝐿𝐴𝑍𝑌 = 𝑝𝑖,1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+  
𝑥𝐶𝑃𝑈 𝑖,𝜋𝑠

𝑂𝑈𝑇  𝑖𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑑𝑒𝑙𝑎𝑦𝑒𝑑

𝑝𝑖,𝑠
𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈 𝑖,𝑠

𝑂𝑈𝑇  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 

+   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶 𝑐,𝜋𝑠
𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌  𝑖 + 𝑧, 𝜋𝑚 − 𝑡𝑖+𝑧  



208 

The equations for the remote response times of master user commands when the critical 

computer is neither the source nor the destination and the processing times dominate the total 

network cart transmission times are given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑇𝐹 = 𝑝𝑖,𝜋1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+   𝑓𝑎𝑛𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝑂𝑈𝑇 + 𝑝𝑐,𝑠
𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑚 − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑃𝐹 = 𝑝𝑖,𝜋1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+   𝑓𝑎𝑛𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝑂𝑈𝑇 + 𝑝𝑐,𝑠
𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑖+𝑧,𝑠
𝑂𝑈𝑇

+ 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑚 − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝐶𝑂𝑁𝐶 = 𝑝𝑖,𝜋1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶 𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+   𝑓𝑎𝑛𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝑂𝑈𝑇 + 𝑝𝑐,𝑠
𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶 𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧 
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𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝐿𝐴𝑍𝑌 = 𝑝𝑖,𝜋1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+   𝑓𝑎𝑛𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝐼𝑁 + 𝑝𝑐,𝑠
𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇

+  
𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝑂𝑈𝑇  𝑖𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖𝑠 𝑑𝑒𝑙𝑎𝑦𝑒𝑑

𝑝𝑖+𝑧,𝑠
𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝑂𝑈𝑇  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 

+  
0 𝑖𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑎𝑟𝑑 𝑐𝑎𝑢𝑔𝑕𝑡 𝑢𝑝 𝑤𝑖𝑡𝑕 𝐶𝑃𝑈; 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑡 𝑖𝑠 

 𝑓𝑎𝑛𝜋𝑠 − 1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧−1,𝜋𝑠
𝑂𝑈𝑇 −  𝑓𝑎𝑛𝜋𝑠 − 2 ∗ 𝑥𝐶𝑃𝑈 𝑖+𝑧−1,𝜋𝑠

𝑂𝑈𝑇 − 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇  

 

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌  𝑖 + 𝑧, 𝜋𝑚 − 𝑡𝑖+𝑧  

Finally, the equations for the remote response times of master user commands when the 

critical computer is the source and the processing times dominate the total network cart 

transmission times are given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑇𝐹 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝑂𝑈𝑇 + 𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑃𝐹 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝑂𝑈𝑇 + 𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+𝑝𝑖+𝑧,𝑠
𝐼𝑁 + 𝑝𝑖+𝑧,𝑠

𝑂𝑈𝑇 + 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧  
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𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝐶𝑂𝑁𝐶 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝑂𝑈𝑇 + 𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶 𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐶𝑂𝑁𝐶 𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝐿𝐴𝑍𝑌 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+   𝑓𝑎𝑛𝑠
∗ 𝑥𝐶𝑃𝑈𝑐,𝑠

𝐼𝑁 + 𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑖+𝑧,𝑠
𝐼𝑁 + 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠

𝑂𝑈𝑇 +  
𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝑂𝑈𝑇  𝑖𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔 𝑖𝑠 𝑑𝑒𝑙𝑎𝑦𝑒𝑑

𝑝𝑖+𝑧,𝑠
𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠

𝑂𝑈𝑇  𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒
 

+  
0 𝑖𝑓 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑐𝑎𝑟𝑑 𝑐𝑎𝑢𝑔𝑕𝑡 𝑢𝑝 𝑤𝑖𝑡𝑕 𝐶𝑃𝑈; 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒, 𝑖𝑡 𝑖𝑠

 𝑓𝑎𝑛𝜋𝑠 − 1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧−1,𝜋𝑠
𝑂𝑈𝑇 −  𝑓𝑎𝑛𝜋𝑠 − 2 ∗ 𝑥𝐶𝑃𝑈 𝑖+𝑧−1,𝜋𝑠

𝑂𝑈𝑇 − 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇  

 

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐿𝐴𝑍𝑌  𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧  

4.3.6 Implications for Consecutive Commands by a Single User 

We can compare the response times of consecutive commands with different 

scheduling policies by analyzing the difference in the respective equations. As in the 

previous chapter, when we compared unicast and multicast equations, we can make two 

comparisons. We can compare the absolute response times of consecutive commands with 

each scheduling policy. We can also compare how much worse do response times of 

consecutive commands become with each scheduling policies. Both comparisons will give 

the same answers. The reason is that we can obtain the former by adding the latter to the 

response times of commands entered in a quiescent state, and we can obtain the latter by 

subtracting the response times of commands entered in a quiescent state from the former. 

Unlike in the previous chapter, in which we did the former comparisons because the 
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difference equations were simpler, in this chapter, we do the latter because it gives cleaner 

difference equations. Moreover, we present the simplified difference equations, in which 

only the terms that matter are shown. 

Local Response Times 

Let us start with the local response times. The difference in the increase in response 

times of consecutive commands for any two policies A and B in the replicated and 

centralized architectures is given by  

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝐴 − 𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝐵 = 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐴  𝑖 + 𝑧, 𝑗 − 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝐵 (𝑖 + 𝑧, 𝑗) 

𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝐴 − 𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝐵 = 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐴  𝑖 + 𝑧, 𝑗 − 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇

𝐵 (𝑖 + 𝑧, 𝑗) 

As these difference equations show, the difference in the response times of consecutive 

commands for any two scheduling policies is equal to the local response time difference 

provided by these two policies for command 𝑖 + 𝑧 when it is entered in a quiescent state. 

This does not mean that the absolute response times is at most this difference. All of the 

individual local response time equations have terms which are a function of the amount of 

time needed to perform the tasks for all of the commands. Hence, the absolute response times 

of consecutive commands can be high. However, the extent to which one scheduling policy 

can provide better response times over another is given by the above difference equations. 

Therefore, when choosing the scheduling policy, we need to analyze only the local response 

times of quiescent state commands and the results apply to consecutive commands also.  

Remote Response Times 

The remote response time comparisons are more complicated as we have several 

cases to consider. Consider the case when the destination computer is the critical computer. 
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In this case, the difference in the increase in response times of consecutive commands for any 

two policies A and B in the replicated and centralized architectures is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝐴 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝐵 =  𝑖𝑛𝑡𝑅𝐸𝑃
𝐴  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐴  𝑖 + 𝑧, 𝜋𝑚  

−  𝑖𝑛𝑡𝑅𝐸𝑃
𝐵  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

− 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝐵 (𝑖 + 𝑧, 𝜋𝑚 ) 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝐴 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝐵 =  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐴  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐴  𝑖 + 𝑧, 𝜋𝑚  

−  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝐵  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

− 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝐵 (𝑖 + 𝑧, 𝜋𝑚) 

As these difference equations show, the absolute difference in the response times of 

consecutive commands between any two scheduling policies is independent of the number of 

consecutive commands. Also, the difference equations contain only the terms which we have 

already compared above for the quiescent state commands. The analysis for quiescent state 

commands may not apply directly, however. The reason is that the intermediate delays are 

for command 𝑖 while the destination delay is for command 𝑖 + 𝑧. If the two commands have 

different processing and transmission costs, then the quiescent state analysis does not apply 

directly. We can still make some inferences, however, based on the quiescent state analysis. 

For instance, if the two commands have similar processing and transmission costs, then we 

can use the quiescent state analysis for command 𝑖 directly. Otherwise, we can separately 

compare the destination delays and the sum of the intermediate delays. If both are larger 

(smaller) for one policy than for another, then the differences illustrated for the quiescent 

state commands are magnified; otherwise, the differences are reduced.  
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Consider now the case when the critical computer is not the destination and the total 

network transmission times dominate processing times. In this case, the difference equations 

for the transmit-first and process-first response times are given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑇𝐹 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝑃𝐹

=   𝑖𝑛𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑚  

−   𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑝𝑖,𝑠
𝐼𝑁 + 𝑝𝑖,𝑠

𝑂𝑈𝑇 +  𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑚    

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑇𝐹 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝑃𝐹

=   𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑚  

−   𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑝𝑖,𝑠
𝐼𝑁 + 𝑝𝑖,𝑠

𝑂𝑈𝑇 +  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑚    

As in the previous case, these difference equations show that the absolute difference in the 

response times of consecutive commands between any two scheduling policies is 

independent of the number of consecutive commands. The difference equations essentially 

capture the transmit-first and process-first response time differences of quiescent state 

commands. The delay terms of all of the computers except the critical computer do so by 

definition. Moreover, the difference between transmit-first and process-first of an 

intermediate computer 𝑠 is exactly 𝑝𝑖,𝑠
𝐼𝑁 + 𝑝𝑖,𝑠

𝑂𝑈𝑇 , which is equal to the difference in the 

transmit-first and process-first delays of computer 𝑠 when command 𝑖 is entered in a 

quiescent state. Therefore, as in the case when the destination was the critical computer, we 

can use the quiescent state analysis to deduce which of these two policies provides better 
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response times for consecutive commands. We have to apply the analysis separately for the 

delays of upstream from the critical computer as they are for command 𝑖 and of the critical 

computer and the computers downstream from it as they are for command 𝑖 + 𝑧. 

The difference equations between the transmit-first and other policies give similar 

results. The only new twist is the difference in the critical computer delay. More specifically, 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑇𝐹 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝐶𝑂𝑁𝐶 = 0, and 0 ≤ 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑇𝐹 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝐿𝐴𝑍𝑌 ≤ 𝑝
𝑖,𝑠

𝐼𝑁 +

𝑝
𝑖,𝑠

𝑂𝑈𝑇. The differences in the critical computer delay when it is an intermediate computer for 

any two scheduling policies is at most 𝑝𝑖,𝑠
𝐼𝑁 + 𝑝𝑖,𝑠

𝑂𝑈𝑇 . That result is encapsulated in the analysis 

of response times for quiescent state commands. Thus, again, we can reuse the analysis of 

quiescent state commands suffices to deduce differences in response times of consecutive 

commands. 

Consider now the case when the critical computer is not the destination and the 

processing times dominate the total network transmission times. When we derived the 

response time equations, we had to separately consider the cases when the critical computer 

is and is not the source in the centralized architecture. However, the differences in the 

response time equations are the same in both cases. The difference equation for the transmit-

first and process-first response times are almost identical to the difference equation from the 

previous case.  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑇𝐹 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝑃𝐹

=   𝑖𝑛𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑚   

−   𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑝𝑖+𝑧,𝑠
𝐼𝑁 + 𝑝𝑖+𝑧,𝑠

𝑂𝑈𝑇 +  𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑚   
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𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑇𝐹 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝑃𝐹

=   𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑇𝐹  𝑖 + 𝑧, 𝜋𝑚   

−   𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑝𝑖+𝑧,𝑠
𝐼𝑁 + 𝑝𝑖+𝑧,𝑠

𝑂𝑈𝑇 +  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑃𝐹  𝑖 + 𝑧, 𝜋𝑚    

The only difference between these difference equations and those from the previous case is 

that the intermediate computer delay difference is equal to 𝑝𝑖+𝑧,𝑠
𝐼𝑁 + 𝑝𝑖+𝑧,𝑠

𝑂𝑈𝑇  instead of 

𝑝𝑖,𝑠
𝐼𝑁 + 𝑝𝑖,𝑠

𝑂𝑈𝑇 . But 𝑝𝑖+𝑧,𝑠
𝐼𝑁 + 𝑝𝑖+𝑧,𝑠

𝑂𝑈𝑇  is exactly the difference the transmit-first and process-first 

response times of command 𝑖 + 𝑧 when it is entered in a quiescent state. Therefore, we can 

use the quiescent state analysis to deduce which of these two policies provides better 

response times for consecutive commands.  

The difference equations between the transmit-first and other policies give similar 

results. As in the previous case, the only new twist is the difference in the critical computer 

delay. More specifically, 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑇𝐹 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝐶𝑂𝑁𝐶 = 0, and 0 ≤ 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑇𝐹 −

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝐿𝐴𝑍𝑌 ≤ 𝑝

𝑖,𝑠

𝐼𝑁 + 𝑝
𝑖,𝑠

𝑂𝑈𝑇 +  𝑓𝑎𝑛
𝜋𝑠
− 1 ∗ 𝑥𝑁𝐼𝐶𝑖+𝑧−1,𝜋𝑠

𝐼𝑁 −  𝑓𝑎𝑛
𝜋𝑠
− 2 ∗ 𝑥𝐶𝑃𝑈𝑖+𝑧−1,𝜋𝑠

𝐼𝑁 −

𝑥𝐶𝑃𝑈𝑖+𝑧,𝜋𝑠

𝐼𝑁 . Thus, the differences in the critical computer delay when it is an intermediate 

computer for any two of the transmit-first, process-first, and concurrent scheduling policies is 

at most 𝑝𝑖,𝑠
𝐼𝑁 + 𝑝𝑖,𝑠

𝑂𝑈𝑇 . That result is encapsulated in the analysis of response times for 

quiescent state commands. Thus, the analysis of quiescent state commands suffices to deduce 

differences in response times of consecutive commands for these three policies. However, 

there is a new result that is not captured by the quiescent state analysis when we consider 

lazy response times. In particular, the quiescent state analysis shows that compared to 

transmit-first response times, lazy response times can never be more than 𝑝𝑖,𝑠
𝐼𝑁 + 𝑝𝑖,𝑠

𝑂𝑈𝑇 ; 
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however, as the above difference equations show, the difference can be as high as 𝑝𝑖,𝑠
𝐼𝑁 +

𝑝𝑖,𝑠
𝑂𝑈𝑇 +  𝑓𝑎𝑛𝜋𝑠 − 1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧−1,𝜋𝑠

𝐼𝑁 −  𝑓𝑎𝑛𝜋𝑠 − 2 ∗ 𝑥𝐶𝑃𝑈 𝑖+𝑧−1,𝜋𝑠
𝐼𝑁 − 𝑥𝐶𝑃𝑈 𝑖+𝑧,𝜋𝑠

𝐼𝑁  for consecutive 

commands.  

4.3.7 Simultaneous Commands 

We have considered the remote response times of commands entered by the same 

user in a quiescent or a non-quiescent state. The final case to consider is the remote response 

times of simultaneous commands entered by different users. 

As in the previous chapter, when simultaneous commands are entered by different 

users, the worst possible remote response times for 𝑖 command entered by userj occurs when 

(a) it arrives at the critical computer at the same time as commands entered by other users, 

and (b) the critical computer performs the tasks for command 𝑖 last. Therefore analysis of the 

remote response times of command 𝑖 is almost the same as the analysis of the commands 

entered consecutively by the same user. The only difference is that the critical computer term 

includes the time required to perform tasks of commands entered by all of the other users. 

4.4 Multi-Core Scheduling Policies 

The single-core scheduling policies we have analyzed also have multi-core 

equivalents. The multi-core equivalent of the concurrent policy schedules the transmission 

and processing tasks on different cores. The lazy policy can be adapted to multi-core 

scenarios by delaying the processing task on all of the (one of the) cores if the processing 

task is (is not) parallelizable. Moreover, the sequential schemes would simply use all cores 

for one and then for the other task.  
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From a general framework perspective, the processing task is opaque – hence, the 

policies cannot parallelize it explicitly. As a result, our analysis assumes that the processing 

task is always scheduled on one core. The CPU transmission task, on the other hand, is 

parallelizable by nature. For example, two cores can transmit to two different destinations in 

parallel. More importantly, as our framework defines the transmission tasks on each 

computer, it can explicitly parallelize it.  

Static vs. Dynamic Scheduling 

There are two ways of selecting cores for performing the transmission and processing 

tasks. One approach is to statically assign these tasks to cores (this technique is also known 

as static or partitioned scheduling in real-time systems). When a command is received, the 

processing and transmission tasks are performed only by the cores assigned to them. One 

issue with this approach is that cores may be idle even if there are tasks ready for execution. 

To illustrate, consider a dual-core system in which the processing and transmission tasks are 

mapped to different cores. In this case, if the processing core finishes before the transmission 

core, it will idle even though the transmission task can be completed quicker overall if the 

remainder of the transmission task is evenly divided among the two cores. An alternative 

approach that does not have this problem is dynamically choosing the cores on which the 

tasks execute as cores become available. This technique is also known as dynamic or global 

scheduling in real-time systems. In our example, a dynamic scheduler would divide the 

transmission task among the two cores once the processing core became available. Therefore, 

the transmission task would complete sooner.  
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One issue with dynamic scheduling is that there is a cost associated with task 

migration between cores. However, if these costs are low, then, overall, a dynamic scheduler 

would offer better performance in collaborative systems.  

In our system, we use static scheduling, even though dynamic scheduling may offer 

better performance. One reason we do this is because with dynamic scheduling it becomes 

difficult to model and predict response times. To illustrate, consider the transmit-first delay 

of the intermediate computer 𝜋𝑘  which has 𝑐 = 2 cores that can be used for performing the 

transmission and processing tasks. Suppose that the computer forwards command to two 

destinations and that it transmits to computer 𝜋𝑘+1 second, that is, 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 = 2. 

Suppose the dynamic scheduler uses both cores to perform the transmission task. An 

important issue that arises when multiple cores perform the transmission task in parallel is 

that the order in which the network card transmits a message to the destinations is 

unpredictable. The reason is that when cores run in parallel, they create a race-condition for 

sharing the bus between the memory and the cores, and either core can win. This 

unpredictability is problematic because it makes it impossible to accurately predict the delay 

of 𝜋𝑘 . If the two cores in parallel copy the message for transmission to the first and second 

destination, then the core that transmits to the second destination, that is, computer  𝜋𝑘+1 

may or may not win the race condition for the bus. As a result, we cannot rely on the 

destination order to accurately predict when 𝜋𝑘’s network card actually transmits the copy of 

the message to 𝜋𝑘+1. One potential solution is to apply some sort of probabilistic model for 

the order in which the cores will queue the messages for transmission. Unfortunately, we are 

not aware of a model that provides this information.  
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Since the multi-core versions of the transmit-first, process-first, and lazy policies may 

all dynamically assign multiple cores to perform the transmission task, we cannot predict the 

performance for any of them. The only multi-core policy for which we can accurately 

calculate remote response times is the concurrent policy. Moreover, we can only do so for 

when a single core is used for transmission. When the concurrent policy is used on a dual-

core computer, one of the cores is used for processing and the other for transmission. On 

computers with more than two cores, once again more than one core can be used for 

transmission even with the concurrent policy, and hence accurately calculating remote 

response times is not possible. Therefore, we only consider the multi-core scheduling policy 

when the processing and transmission tasks are performed by two different cores. We refer to 

this policy as the parallel policy. 

Another other reason we use static instead of dynamic scheduling is that when non-

blocking communication is used and the network card is the bottleneck, increasing the 

number of cores that perform the transmission task in parallel does not improve remote 

response times. In all of the collaboration logs we recorded, regardless of message size or the 

number of destinations to which a message is transmitted to, the CPU transmission cost was 

lower than the network card transmission cost. This was true on all the single-core devices 

we tested, including the P3 desktop, P4 desktop, and the netbook. Moreover, it was true when 

a single-core was used for the transmission task on the dual-core Core2 desktop.  

One performance drawback of not using dynamic scheduling is that we do not 

support parallel processing of an output for command 𝑖 with the processing of input 

command 𝑖 + 1. This requires a dynamic scheduler as it would parallelize them when the 

transmission task completes. Such a migration is useful, for example, for a master computer 
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when both input and output processing are computationally expensive because it could 

perform the input processing task of command 𝑖 + 1 in parallel while performing the output 

processing task of command 𝑖. This would in turn reduce the response time to the local user 

of command 𝑖 + 1. However, in the applications we consider, the input and output processing 

costs are never both high. In fact, if one is high, usually the other is negligible. Thus, we 

expect the benefit of performing input and output processing of different commands in 

parallel to be low for the applications we consider. 

 

Work-Conserving Scheduling 

An important issue with the parallel policy is whether or not it is work-conserving 

[37]. A work-conserving scheduler does not idle a processor or a core if it can be used to 

perform some task. All of our single-core analysis has assumed work-conserving scheduling. 

Such scheduling is consistent with our assumption that whenever a command arrives at an 

idle computer, the computer immediately begins performing tasks for the command. When 

multi-core devices are considered, a work-conserving algorithm would require that we 

support task migration and use multiple cores to perform the transmission task whenever it is 

Parallel Scheduling Policy: 

We only consider the parallel scheduling policy in which the processing and 

transmission tasks are performed by two different cores. We do not consider other 

policies, such as those in which task migration is supported, because it is not 

possible to predict remote response times for them. Moreover, based on the 

collaboration logs we used to collect processing and transmission times, it is not 

clear that these policies offer any performance benefit over the parallel policy. 
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possible to do so. Since we do not support either of these, we cannot support work-

conserving scheduling. We do, however, have work-conserving scheduling on a per core 

basis. In our scheduling policy, one core performs the transmission task while another core 

performs the processing task. When a core completes the processing (transmission) tasks of 

command 𝑖, it does not wait for the other core to complete the transmission (processing) 

tasks of command 𝑖 when command 𝑖 + 1 has already been received. In particular, the 

transmission core can perform the transmission task of command 𝑖 + 1 while the processing 

core is performing the processing tasks of command 𝑖, and vice versa. Hence, we still satisfy 

our assumption of not delaying tasks of a command once the command has been received. 

4.5 Multi-Core Performance Analysis 

We can derive the response times for the parallel multi-core scheduling policy using 

the same approach as for the response times with single-core policies. In particular, we need 

to derive the delays of the intermediate and destination computers on the path from the 

source to the destination. As before, we will derive the delays for the replicated architecture 

first. The delays for the centralized architecture follow directly from those of the replicated 

architecture.  

4.5.1  Replicated Remote Response Time 

Recall from above that the replicated remote response time of command 𝑖 to 

computer 𝑗 along path 𝜋 is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖,𝑗
𝑃𝐴𝑅𝐴 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑚   
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where 𝑑 𝜋𝑘 , 𝜋𝑘+1  is the network latency between the 𝑘𝑡𝑕  and 𝑘 + 1𝑠𝑡  computers on path 𝜋, 

𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑘  is the delay of the 𝑘𝑡𝑕  intermediate computer on the path, and 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑚   is the delay of the destination computer. Since the first term is a sum of 

network latencies on the path, it is independent of scheduling policy.  

The derivation of the delay terms is easier with the multi-core than the single-core 

policies because the transmission and processing tasks do not interfere with each other. 

Consider the parallel delay of the intermediate computer 𝜋𝑘  which has 𝑐 = 2 cores that can 

be used for performing the transmission and processing tasks. Its delay is equal to 

𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑘 =  𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝐼𝑁  

 Consider the parallel delay of the destination computer 𝜋𝑚 . The destination delay is 

equal to 

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑚  =  𝑝𝑖,𝜋𝑚

𝐼𝑁 + 𝑝𝑖,𝜋𝑚
𝑂𝑈𝑇  

4.5.2 Replicated Local Response Time 

Recall from above that the replicated local response time of command 𝑖 entered by 

computer 𝑗 is equal to computer 𝑗’s destination delay. Thus, the local response time is given 

by 

𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃
𝑃𝐴𝑅𝐴  𝑖, 𝑗 =  𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇  

4.5.3 Centralized Response Times 

We can obtain the centralized architecture equations from the replicated equations 

using the same approach we have used before: adjust the equations for the two differences in 

the two architectures. As we have done this several times already for other equations in this 
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and the previous chapter, we just state the equations. The local response time of commands 

entered by a master user is given by 

𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇
𝑃𝐴𝑅𝐴  𝑖, 𝑗 =  𝑝𝑖,𝑗

𝑂𝑈𝑇  

The remote response time for commands entered by the master user is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖,𝑗
𝑃𝐴𝑅𝐴 = 𝑝𝑖,𝑗

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑚   

𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑘 =  𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝑂𝑈𝑇 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘
𝑂𝑈𝑇  

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑚  =  𝑝𝑖,𝜋𝑚

𝑂𝑈𝑇  

Finally, we can obtain the equations for the local and remote response time of command 𝑖 

entered by slave usera whose master is userb by adding the term 𝑥𝐶𝑃𝑈 𝑖,𝑎
𝐼𝑁 + 𝑥𝑁𝐼𝐶

𝑖,𝑎

𝐼𝑁
+ 𝑑 𝑎, 𝑏  

to the response time equations. 

4.5.4 Consecutive and Simultaneous Commands 

The benefit of the per-core work-conserving aspect of the parallel policy increases 

when we consider the response times of commands entered in a non-quiescent state.  

Replicated Local Response Times 

Based on the above properties of the parallel policy, we can derive the replicated 

local response time of command 𝑖 + 𝑧 entered by userj 𝑡𝑖+𝑧  time after entering command 𝑖, 

where 𝑡𝑖+𝑧  is less than the time userj’s computer requires to process command 𝑖. The 

response time of command 𝑖 + 𝑧 is equal to the time userj’s computer requires to process 

commands 𝑖 through 𝑖 + 𝑧 minus the amount of time that elapses from the moment command 

𝑖 is entered to the moment command 𝑖 + 𝑧 is entered, 𝑡𝑖+𝑧 . The response time is given by 
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𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 =   𝑝𝑖,𝑗

𝐼𝑁 + 𝑝𝑖,𝑗
𝑂𝑈𝑇 

𝑖+𝑧−1

𝑘=𝑖

− 𝑡𝑖+𝑧 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴  𝑖 + 𝑧, 𝑗 

=   𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 

𝑖+𝑧

𝑘=𝑖

− 𝑡𝑖+𝑧  

Remote Response Times 

Consider now replicated remote response times of command entered in a non-

quiescent state. As mentioned above, deriving the remote response time equations is more 

complicated than deriving the local ones because the commands may suffer additional delays 

on any computer from the source to the destination. As in the single-core case, we can derive 

the general remote response time equation userb’s response time of command 𝑖 + 𝑧 entered 

by userj is using the notion of a critical computer, which we defined earlier as the computer 

that takes the longest to complete the tasks for the consecutive commands. When the critical 

computer is an intermediate (destination) computer, then userb’s remote response time of 

command 𝑖 + 𝑧 is equal to 1) the amount of time that elapses from the moment command 𝑖 is 

entered to the moment it reaches the critical computer, 2) plus the amount of time that 

elapses from the moment the critical computer receives command 𝑖 to the moment 𝑖 transmits 

command 𝑖 + 𝑧 to the next computer on the path (completes processing of command 𝑖 + 𝑧), 

3) plus the amount of time that elapses from the moment the critical computer transmits 

command 𝑖 + 𝑧 to the next downstream computer to the moment userb sees its output, 4) 

minus the amount of time that elapses from the moment command 𝑖 is entered to the moment 

command 𝑖 + 𝑧 is entered. The first, third, and fourth terms derived for the single-core 

policies can be adapted to the parallel multi-core policy in a straightforward fashion. The first 

term is equal to  𝑑 𝜋𝑘 , 𝜋𝑘+1 
𝑠−1
𝑘=1 +  𝑖𝑛𝑡𝑅𝐸𝑃

𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑘 
𝑠−1
𝑘=1 , the third term is equal to 
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 𝑑 𝜋𝑘 , 𝜋𝑘+1 
𝑚−1
𝑘=𝑠 +  𝑖𝑛𝑡𝑅𝐸𝑃

𝑃𝐴𝑅𝐴  𝑖 + 𝑧, 𝜋𝑘 
𝑚−1
𝑘=𝑠+1 + 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝑃𝐴𝑅𝐴  𝑖 + 𝑧, 𝜋𝑚 , and the fourth term is 

simply equal to 𝑡𝑖+𝑧 .  

As above, deriving the second term, the critical computer time, is more complicated. 

Unlike for the single-core scheduling policies, where the critical computer time was a 

function of both CPU processing and CPU transmission times, with the parallel multi-core 

policy, it is function of only the CPU transmission time. The reason is that even if the 

transmission core is falling behind the processing core, the critical computer time is not 

impacted by the CPU transmission times. In particular, the critical computer time depends on 

how long the CPU requires to process commands 𝑖 through 𝑖 + 𝑧 − 1 plus the amount of time 

the CPU requires for displaying the result of command 𝑖 + 𝑧 to the local user once it starts to 

perform tasks for it. Therefore, the response time equation is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+   𝑝𝑐,𝜋𝑚
𝐼𝑁 + 𝑝𝑐,𝜋𝑚

𝑂𝑈𝑇  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴 (𝑖 + 𝑧,𝜋𝑚) − 𝑡𝑖+𝑧  

When the critical computer is not the destination computer, the critical computer term 

depends on how long the network card requires to transmit commands 𝑖 through 𝑖 + 𝑧 − 1 

plus the amount of time it requires to transmit command 𝑖 + 𝑧 to the next downstream 

computer once to perform tasks for it. In particular, it does not depend on the CPU 

processing times. Thus, unlike for the single-core scheduling case, it does not matter whether 

the total network card transmission time and the CPU processing times dominate each other. 

As above, the critical computer time is equal to (1) the amount of time that elapses from the 

moment the critical computer receives command 𝑖 to the moment the CPU transmits 𝑖 to the 

first destination, plus (2) the amount of time that elapses from the moment the network card 
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begins to transmit 𝑖 to the first destination to the moment it transmits 𝑖 + 𝑧 − 1 to the last 

destination, plus (3) the amount of time that elapses from the moment the network card 

begins transmitting 𝑖 + 𝑧 to the moment it transmits it to the next downstream computer. The 

first term is equal to 𝑥𝐶𝑃𝑈 𝑖,𝑠
𝐼𝑁  , the second term is equal to   𝑓𝑎𝑛𝑠 ∗ 𝑥𝑁𝐼𝐶𝑐,𝑠

𝐼𝑁  𝑖+𝑧−1
𝑐=𝑖 , and the 

third term is equal to 𝑝𝑜𝑠 𝑠 , 𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝑠
𝐼𝑁 . Therefore, the response time equation is 

given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑠
𝐼𝑁 +   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶 𝑐,𝜋𝑠

𝐼𝑁  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝐼𝑁

+  𝑖𝑛𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴 𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐴𝑅𝐴  𝑖 + 𝑧, 𝜋𝑚  − 𝑡𝑖+𝑧  

Centralized Response Times 

We can derive the centralized equations from the replicated equations by adjusting 

the replicated equations for the two differences between the two architectures. We do not 

derive the centralized equations; we simply state them. The local response time equation for 

commands entered by a master user is given by 

𝑙𝑜𝑐𝑎𝑙𝐶𝑂𝑁𝐶,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 =  𝑝𝑖,𝑗

𝐼𝑁

𝑖+𝑧−1

𝑘=𝑖

− 𝑡𝑖+𝑧 + 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑃𝐴𝑅𝐴  𝑖 + 𝑧, 𝜋𝑚  

=   𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 

𝑖+𝑧

𝑘=𝑖

− 𝑡𝑖+𝑧  

The remote response time for commands entered by a master user when the critical computer 

is the destination is given by 
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𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 = 𝑝𝑖,𝜋1

𝐼𝑁 +  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑘 

𝑚−1

𝑘=1

+  𝑝𝑐,𝜋𝑚
𝑂𝑈𝑇

𝑖+𝑧−1

𝑐=𝑖

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑃𝐴𝑅𝐴 (𝑖 + 𝑧,𝜋𝑚) − 𝑡𝑖+𝑧  

Unlike in the single-core case, we do not need separate centralized equations for when the 

critical computer is and is not the source. Separating the cases was important for the single-

core policies since the source computer performs input processing in addition to output 

processing. The additional processing time impacted the critical computer time when it was 

the source. However, for the parallel policy, the processing time of any kind does not impact 

the critical computer time. Therefore, the response time when the critical computer is not the 

destination is given by  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 =  𝑑 𝜋𝑘 , 𝜋𝑘+1 

𝑚−1

𝑘=1

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐴𝑅𝐴  𝑖, 𝜋𝑘 

𝑠−1

𝑘=1

+ 𝑥𝐶𝑃𝑈 𝑖,𝜋𝑠
𝑂𝑈𝑇 +   𝑓𝑎𝑛𝜋𝑠 ∗ 𝑥𝑁𝐼𝐶𝑐,𝜋𝑠

𝐼𝑁  

𝑖+𝑧−1

𝑐=𝑖

+ 𝑝𝑜𝑠 𝜋𝑠 , 𝜋𝑠+1 ∗ 𝑥𝑁𝐼𝐶 𝑖+𝑧,𝜋𝑠
𝑂𝑈𝑇

+  𝑖𝑛𝑡𝐶𝐸𝑁𝑇
𝑃𝐴𝑅𝐴  𝑖 + 𝑧, 𝜋𝑘 

𝑚−1

𝑘=𝑠+1

+ 𝑑𝑒𝑠𝑡𝐶𝐸𝑁𝑇
𝑃𝐴𝑅𝐴  𝑖 + 𝑧, 𝜋𝑚 − 𝑡𝑖+𝑧  

4.6 Single-Core vs. Multi-Core  

We can now compare the response time and response times of single-core and multi-

core scheduling.  

4.6.1 Quiescent State Commands 

The difference between the local response times of the single-core process-first policy 

and the parallel multi-core scheduling policy is given by 
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𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃
𝑃𝐹  𝑖, 𝑗 − 𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃

𝑃𝐴𝑅𝐴  𝑖, 𝑗 =   𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 −  𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 = 0 

Therefore, the local response times are the same with the two policies. Since the process-first 

local response times are as good or better than those of any other single-core scheduling 

policy, multi-core scheduling response times are as good as or better than those of single-

core scheduling. 

Moreover, the difference between delays on the intermediate computers with the 

transmit-first and parallel policies is given by   

𝑖𝑛𝑡𝑅𝐸𝑃
𝑇𝐹  𝑖, 𝑘 − 𝑖𝑛𝑡𝑅𝐸𝑃

𝑃𝐴𝑅𝐴  𝑖, 𝑘 =   𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝐼𝑁  

−  𝑥𝐶𝑃𝑈 𝑖,𝜋𝑘
𝐼𝑁 + 𝑝𝑜𝑠 𝜋𝑘 , 𝜋𝑘+1 ∗ 𝑥𝑁𝐼𝐶 𝑖,𝜋𝑘

𝐼𝑁  = 0 

Therefore, the intermediate delays with these two policies are the same. Since the transmit-

first intermediate delays are as good as or better than those of any other single-core policy, 

multi-core scheduling intermediate delays are as good as or better than those of single-core 

scheduling.  

Similarly, the difference between delays on the destination computers with the 

process-first and parallel policies is given by  

𝑑𝑒𝑠𝑡𝑅𝐸𝑃
𝑃𝐹  𝑖, 𝑚  − 𝑑𝑒𝑠𝑡𝑅𝐸𝑃

𝑃𝐴𝑅𝐴  𝑖, 𝑚  =   𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 −  𝑝𝑖,𝑗
𝐼𝑁 + 𝑝𝑖,𝑗

𝑂𝑈𝑇 = 0 

Therefore, the destination delays with these two policies are the same. Since the process-first 

destination delays are as good as or better than those of any other single-core policy, multi-

core scheduling destination delays are as good as or better than those of single-core 

scheduling. 

Based on these three difference results, we conclude that if a computer has multiple 

cores available for performing the processing and transmission tasks, then the parallel multi-



229 

core scheduling policy should always be used. In particular, the local response times are as 

good as the best local response times provided by any of the single core scheduling policies. 

Moreover, the remote response times are as good as or better than the remote response times 

provided by any of the single-core scheduling policies. The reason they can be better is that 

the delays on intermediate computers consists of the transmission time only and the delays on 

the destination computer consist of the processing time only. The delays of all single-core 

scheduling policies have additional times contributing to either the intermediate or 

destination delays or even both of them. 

4.6.2 Consecutive and Simultaneous Commands 

We compare the single-core and multi-core response times of consecutive commands 

by analyzing the difference in the respective equations. We compare the differences in the 

increase in response times of such commands. If we compared the absolute response times, 

like we did for the response times of consecutive commands for the four single-core policies, 

we would get difference equations with intermediate and destination delays of the multi-core 

and single-core policies. We already know based on the above discussion that the parallel 

policy delays are as good as or better than the best single-core policy delays. Therefore, the 

comparison of absolute response times would not provide us with any new insights. But as 

we will see, a comparison of the increases in the response times of consecutive commands 

does give us new insights, so that is the comparison we make next. Moreover, we present the 

simplified difference equations, in which only the terms that matter are shown. 

Local Response Times 

Let us start with the comparison of the parallel and any single-core policy A local 

response times of commands. The difference is given by  
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𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 − 𝑙𝑜𝑐𝑎𝑙𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝐴 = 0 

𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 − 𝑙𝑜𝑐𝑎𝑙𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝐴 = 0 

Thus, the local response time increases are the same for the parallel and any single-

core policy.  Next, we compare the increases in the remote response times of the parallel 

policy and the single-core policies. 

Remote Response Times 

Consider first the case when the critical computer is the destination. The response 

time difference in the increases in remote response times of consecutive commands of the 

parallel policy and any single-core policy A is given by  

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝑇𝐹 = −   𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚
𝐼𝑁  

𝑖+𝑧−1

𝑐=𝑖

 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝑇𝐹 = −   𝑓𝑎𝑛𝜋𝑚 ∗ 𝑥𝐶𝑃𝑈𝑐,𝜋𝑚
𝑂𝑈𝑇  

𝑖+𝑧−1

𝑐=𝑖

 

Thus, if the critical computer is the destination, the parallel policy gives lower 

increases remote response times of consecutive commands than any single-core policy. 

Moreover, the benefit of the parallel policy over the transmit-first policy is additive: as the 

number of consecutive commands increases, the difference between the response times of the 

two policies also increases. 

When the critical computer is not the destination, there is only one case for the 

parallel policy and three cases for the single-core policy, one of which matches the parallel 

case. When the network transmission times dominate the processing times, the difference in 

the increase in remote response times of the parallel policy and any single-core policy A is 

given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝐴 = 0  
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𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝐴 = 0  

Hence, in this case, the parallel and single-core policies behave the same. The reason is that 

the single-core policies are not hurt by processing times because the CPU can both process 

and transmit all commands before the network card can transmit all the commands. When the 

when the critical computer is neither the source nor the destination and processing times 

dominate the total network card transmission times, the response time difference is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝐴 = −   𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

  

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝐴 = −𝑝𝑖,𝜋1

𝐼𝑁 −   𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

  

As the difference equations show, the increases in remote response times given by the 

parallel policy are lower than those of any single-core policy. And once again, the benefits of 

the parallel policy are additive. Finally, when the when the critical computer is the source 

and processing times dominate the total network card transmission times, the response time 

difference is given by 

𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 − 𝑟𝑒𝑚𝑜𝑡𝑒𝑅𝐸𝑃,𝑖+𝑧,𝑗

𝐴 = −   𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

 

𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗
𝑃𝐴𝑅𝐴 − 𝑟𝑒𝑚𝑜𝑡𝑒𝐶𝐸𝑁𝑇,𝑖+𝑧,𝑗

𝐴 = −   𝑝𝑐,𝑠
𝐼𝑁 + 𝑝𝑐,𝑠

𝑂𝑈𝑇 

𝑖+𝑧−1

𝑐=𝑖

 

As above, the increases in remote response times given by the parallel policy are lower than 

those of any single-core policy. In addition, the benefits of the parallel policy are additive. 

As the difference equation show, the parallel policy should always be used on a 

multi-core computer. There are two reasons why the increases in the local and remote 

response times of the parallel policy are as good as or better than those of the single-core 
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policies.. First, when the critical computer is an intermediate computer, then with single-core 

policies, this time is a function of both the processing and network card transmission times, 

while with the multi-core policy, on the other hand, it is a function of only the network card 

transmission times. Second, when the critical computer is the destination computer, then with 

single-core policies, this time is a function of both the CPU processing and CPU transmission 

times, while with the multi-core policy, it is a function of only the processing time.  

4.7 Self-Optimizing System Implementation 

In the previous two chapters, we have developed a system that can select at start time 

or dynamically switch at runtime to the processing and communication architectures that best 

meet user-provided response time requirements. We have extended that system to do the 

same for the scheduling policy. The extended system applies the analytical model presented 

in this chapter to decide which scheduling policy to use. The model itself is an extension of 

the model presented in the previous chapter that assumed a fixed scheduling policy. The new 

model extends the old one by considering scheduling policies and their impact on response 

times. 

4.7.1 Gathering Parameter Values 

To make decisions regarding the scheduling policy, the self-optimizing system 

applies the new analytical model presented in this chapter. In order to apply the model, the 

system must collect values of all of the response time parameters identified by the model. It 

may seem that the system presented in the previous chapter already gathers all of the 

necessary parameters because the new model does not introduce any new parameters. Indeed, 
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the new system does not need to gather any additional parameters; however, it has to gather 

the previous parameters in a slightly different fashion. 

CPU Transmission and Processing Costs 

The method used in the earlier versions of the system to collect CPU processing and 

transmission costs does not work when the concurrent or lazy policies are considered. The 

client-side components in those systems measured the CPU processing (CPU transmission) 

time by measuring the amount of time that elapses from the moment processing 

(transmission) starts to the moment it completes. This method assumes that once a task 

begins, it runs without interruption until it completes. Since the previous chapters assumed 

transmit-first scheduling, the assumption was true. It is also true when process-first or 

parallel scheduling is used. However, it is not true when concurrent or lazy scheduling is 

used because the tasks do not run sequentially. 

When concurrent scheduling is used, the operating system interleaves the processing 

and transmission task threads. One way of measuring the durations of each task is to record 

the total amount of CPU time for each task. It is difficult to do so accurately since the 

operating system may schedule and un-schedule the threads at any time without notice. An 

alternative approach, which is the one we use, is to measure the task durations using the same 

method as before, then apply the concurrent scheduling analytical model to estimate what the 

actual durations were, and finally report the estimated durations to the server-side 

component. The client-side component can use the model analytical models follows. The 

model states that when concurrent scheduling is used, (a) the shorter of the two tasks 

executes in twice the time it requires to execute when it runs sequentially and (b) the longer 

task executes in time it requires to execute both tasks sequentially. Therefore, the client-side 



234 

component can estimate that the amount of CPU time required for the task whose measured 

duration was shorter is actually only half of its measured duration. Similarly, the amount of 

CPU time needed for the task whose measured duration was longer is equal to its measured 

duration minus the estimated CPU time of the shorter task.  

When the lazy policy is used, the processing task runs sequentially but it may divide 

the transmission task into two parts, each of which runs sequentially. Therefore, the client-

side component measures how long the processing task and each part of the transmission task 

requires to complete and reports those values. Since the server-side component needs to 

know how many destinations the CPU transmits to in a given amount of time to estimate the 

transmission cost per destination, the client-side also reports the number of destinations to 

which the CPU transmitted during each part of the transmission task.  

Network Card Transmission Costs 

The method used to collect the network card transmission costs in previous versions 

of the self-optimizing system also needs to be modified in order to work with the lazy policy. 

In these earlier systems, the client-side component on the source computer reported the time 

at which the transmission of a command began and the client-side component on the final 

destination computer reported when the command is received. The difference in these two 

times divided by the number of destinations to which the source computer transmits gives the 

network card transmission time per destination. This method assumes that once the network 

card begins to transmit a command, it does so continuously without idle periods until it 

transmits to the last destination. This assumption holds for transmit-first and process-first 

policies because once the CPU begins the transmission task, it completes it without 

interruption. In fact, it also holds for the concurrent policy even though the CPU transmission 
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task is interleaved with the processing task. The reason it holds is that the CPU transmission 

costs are less than one half of the network card transmission costs as mentioned above. 

Therefore, the network card does not catch up to the CPU during the quanta the CPU is 

performing the processing task. Unfortunately, the assumption does not hold for the lazy 

policy. In particular, if a computer performs a part of the transmission task before processing, 

the network card may catch-up to the CPU while the CPU performs the processing task. In 

this case, the time reported by the final destination will include the network card idle time 

and hence, the network card costs will be overestimated. One way of solving the problem is 

the use the analytical model to estimate the idle time on the network card and adjust the 

network card cost calculations for it. A better, more accurate approach, which is the one we 

use, is to apply the technique from the previous systems, but only for the first part of the 

transmission task. The source computer still reports when the transmission begins. However, 

instead of the final destination reporting the reception time, the destination to which the CPU 

transmits last during the first part of the transmission task reports it. Moreover, the source 

computer reports the number of destinations to which it transmits in the first part of the 

transmission task. Then, as before, the server-side component estimates the network card 

transmission time by calculating the difference between the transmission start and reception 

times and then dividing the difference by the reported number of destinations. 

4.7.2 Applying the Analytical Model 

Using the collected values of the analytical model parameters, our system applies the 

model as follows. First, for each computer type, it calculates the average processing and 

transmission times. Second, it uses the calculated values and the network latencies in the 

model equations to calculate the estimated response times of commands by each inputting 
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user for each scheduling policy. Third, it invokes the user-defined total order function using 

the estimated response times for each system and the user identities as the parameters of the 

function. Fourth, it switches to the scheduling policy that is ranked as the best by the total 

order function. 

To illustrate the procedure, consider a three user scenario in which each user inputs 

commands. After estimating the values of the model parameters, our system crates the 4 x 3 x 

3 response time matrix. The [x, y, z] entries in the matrix gives usery’s response for a 

command entered by userz when a single-core scheduling policy x is used. The reason that 

the first dimension is not of size five to accommodate the parallel multi-core policy is that the 

parallel multi-core policy should always be used on a multi-core computer, regardless of 

what scheduling policy is used on single-core computers. Therefore, when calculating the 

response time matrix, our system assumes that the parallel multi-core scheduling policy is 

used on multi-core computers, regardless of the single-core policy used on other computers. 

Since there are three users in the session and each one inputs commands, the second and third 

dimensions are of size three. It then invokes the total order function, passing the response 

time matrix, the list of inputting user indices sorted from lowest to highest, and a list of the 

identities of the users as parameters. When the total order function returns, it simply returns 

an index of the single-core policy that best satisfied the users’ response time requirements. 

When our system changes the scheduling policy, it makes all of the single-core computers 

use the policy returned by the total order function and all the multi-core computers use the 

parallel policy. 

As in the previous chapters, the values of some parameters may not be reported for a 

computer type. In those cases, the self-optimizing system estimated the missing parameter 
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values using the parameter values that have been reported. Since the model presented in this 

chapter did not introduce any new parameters, there are no new estimates that are required in 

addition to those already implemented in the previous versions of the self-optimizing system. 

4.7.3 Scheduling Policy Switch Mechanism 

Once the total order function returns the scheduling policy that should be used, our 

system must deploy it. In general, it takes time to switch to a different scheduling policy on 

all of the computers. The same was true when switching processing architectures. Recall that 

because of this, the processing architecture switch had to be done atomically with respect to 

user commands; otherwise, some commands may be shared in a manner that is inconsistent 

with the notion of centralized and replicated architectures. However, this is not an issue when 

switching scheduling policies because the scheduling policies do not define the semantics of 

the architecture. In particular, the scheduling policy does not determine the destinations to 

which a computer forwards inputs and outputs. Therefore, if during the switch, some 

computers use the old and some the new scheduling policy, no inconsistency issues arise. 

Thus, we do not pause the execution of tasks for new user commands during the scheduling 

policy switch. Instead, the server-side component simply instructs each user’s computer to 

switch to the new scheduling policy.  

While there are no inconsistency issues when different computers use different 

scheduling policies during a switch, some performance issues may arise. In particular, the 

response time calculations were predicted for the old and the new scheduling policy. They 

were not predicted for the case when the computers use a mix of these policies. Thus, it may 

happen that during the switch, the users experience worse response times than those they 

experienced before the switch. Fortunately, the response time degradation is temporary. As 
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soon as all of the computers switch to the new policy, the new response times will be better 

than those before the switch.  

4.7.4 Lazy Policy Implementation 

So far, we have shown how our self-optimizing system can decide when to use the 

lazy policy and also continue to receive performance information when the policy is used. 

One issue left unaddressed is how exactly a user’s computer estimates the amount of time by 

which it can delay the processing task when the lazy policy is being used. As described 

above, the delay is equal to the noticeable threshold, minus the total amount of time that has 

elapsed from the moment the source computer begins transmitting a command to the moment 

the user’s computer receives it, plus the network latencies on the path from the source to the 

user’s computer. The reason network latencies are added back is because they are included in 

the second term. For reasons given earlier, we do not determine the processing task delay 

based on network latencies.  

Our approach for calculating the possible delay on each user’s computer is as follows. 

When sending a command, the source computer includes the time at which the command was 

entered. Then, a receiving computer 1) subtracts that time from the time at which it begins to 

perform the tasks for the command, 2) adds the network latencies the command experienced 

as it travelled from the source, and 3) finally subtracts the value from the response time 

threshold to determine how long it can delay the processing task. For this approach to work, 

the clocks on the source and the user’s computers must be synchronized, and the user’s 

computer must know the latencies the command has experienced as it travelled from the 

source. As explained in the previous chapter, each user’s computer synchronizes its clock 

with the computer on which the server-side component is running. The algorithm used for 
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this clock synchronization can be applied between each pair of users’ computers. A less 

resource and time intensive approach, which is the one we use, is for the server-side 

component to calculate the clock synchronization between each pair of computers and send 

that information to them. The server-side component calculates the clock difference between 

two computers by adding up the clock differences between each computer and the computer 

on which it is running on. The component is also aware of the path from the source to the 

user’s computer because it controls the communication architecture. Moreover, it is aware of 

the network latencies on each link along the path because it asks each computer on the path 

to measure the network latency to the upstream and downstream computers. Therefore, the 

component calculates the total network latency that a command experiences from the source 

to the user’s computer and sends it to the computer. As network latencies change, it 

periodically re-measures them as explained in the previous two chapters. Thus, whenever the 

measured network latencies change, it sends to each user’s computer the updated network 

latencies a message experiences from a source to the user’s computer.  

4.8 Evaluation 

We have presented an analytical model of response times for large-scale 

collaborations. Using the model, we have shown theoretical results about the benefit of each 

scheduling policy in collaborative systems. It helped us formally confirm intuitive 

expectations and, more interesting, derive some unintuitive results about the lazy policy and 

multi-core scheduling. In particular, the analysis derived the unintuitive multi-core result that 

even when more than two cores are available for scheduling these tasks, using only two – one 

for the transmission and one for the processing task – is sufficient to get the maximum 
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response time benefit. In addition, we have created a self-optimizing system that uses the 

model to automatically select the scheduling policy that best meets response-time 

requirements. While these results are a contribution on their own, it is important to see 

whether or not (a) the theoretical differences given by the model can be significant in 

practical scenarios and (b) the self-optimizing system can better meet response time 

requirements than existing systems in these scenarios. Since the self-optimizing system 

applies the analytical model, we can accomplish both evaluation goals by checking whether 

or not the system significantly improves response times in practical scenarios.  

As in the previous chapter, we verify only the part of the model that predicts absolute 

response times for commands entered in a quiescent state. Similarly, we verify only the part 

of our system that automatically improves the response times of such commands. The reason 

we do not evaluate the other parts of the model or the system – specifically the parts 

regarding the response time predictions and improvements of consecutive and simultaneous 

commands – is because in our logs, commands were always entered in a quiescent state. As 

described in the prior chapter, even telepointer actions are entered in a quiescent state in our 

logs. Of course, in some collaborations, users may actually enter consecutive and 

simultaneous commands. Therefore, an important future work direction for us is to verify our 

model and system for such application. 

Ideally, we would perform experiments that show the significance of the predictions. 

However, as described in the previous chapter, our resources limit experiments we can 

perform. As a result, we use the same approach as in the previous chapter. We first show 

simulation results for response times given by each scheduling policy in a practical scenario. 
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We then validate the simulations through “fixed” experiments which we can actually perform 

using our limited set of resources. 

4.8.1 Single-Core Simulations 

Our theoretical results predict that in theory, the choice of scheduling policy can 

improve the response times. To check if these improvements can be significant in practical 

circumstances, we consider a scenario in which a PowerPoint presentation is being given to 

600 audience members around the world.  

The self optimizing system decides which scheduling policy to use for this scenario in 

five steps. First, it gathers the parameters of the analytical model presented in this chapter. 

These parameters include (a) the PowerPoint processing and transmission costs contained in 

performance reports sent by the users’ computers and (b) the network latency measurements 

performed by each computer. Second, the system applies the model. In particular, it plugs the 

measured parameter values into the model to calculate the response times to commands by 

each inputting user with each scheduling policy. Third, it passes these response times to the 

total order function which then informs it which scheduling policy to use. Fifth, it deploys 

the scheduling policy. 

As in the previous chapter, it is not possible to simulate the first step because in a 

simulation there are no computers that send these reports. Thus, the simulation must be 

provided these values, along with the response time thresholds. As before, based on the 

published network latency data between 1740 computers [67], we set the network latencies 

between all users equal to those between a random subset of 600 of the 1740 computers. One 

issue with randomly selecting the subset is whether the subset preserves properties, such as 

triangle inequality and latency distributions, of the entire set. Zhang et al. [96] analyzed 



242 

random subsets taken from latencies measured between 3997 computers and found that they 

were representative of the overall measurements. Moreover, we have measured realistic 

PowerPoint processing and transmission costs for the netbook, P3 desktop, P4 desktop, 

Core2 desktop as described in Appendix A. In our simulated scenario, the lecturer is using a 

netbook and all of the other users are using either netbooks, a P4 desktop, or a P3 desktop. 

Also, as mentioned before, users can notice 50ms degradations in local [80] and remote [54] 

response times. Thus, we set both response time degradation thresholds to 50ms. 

Once the values are provided, the next two steps are executed in the same manner 

regardless of how the analytical model parameter values provided. Therefore, these steps are 

the same whether the system is being simulated or used in an experiment. The fourth and 

final step, which deploys the optimal scheduling policy, like the first step, needs actual 

computers. The reason is that the policy is deployed by sending messages to the users’ 

computers informing them how to establish communication channels with each other. For 

now, however, we do not need the fourth step; our goal is to show that in theory, choosing 

the scheduling policy can better meet response time requirements, which can be done in the 

first three steps. 

As mentioned in the introduction of the chapter, we are optimizing the scheduling 

policy for a given processing and communication architecture. Therefore, in the simulations, 

we consider the centralized architecture in which the lecturer’s computer is the master. Also, 

we consider the communication architecture in which the presenter’s computer and five more 

of the 600 computers forward commands to all of the other computers. The source multicasts 

commands to these six computers, and each of these six computers unicasts commands to 99 
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of the remaining 594 computers. We fixed the latencies among the six forwarding computers 

to be low (i.e., 0ms).  

The architecture we have outlined is a Webex-like architecture. In Webex, a user 

joining a session connects to one of several infrastructure computers. These computers, 

which are connected by high-bandwidth low-latency connections, serve as forwarders of 

commands. In our scenario, the six users, including the presenter, which forward commands 

to all of the other computers are like the dedicated Webex forwarders. However, unlike the 

Webex forwarders which only forward commands, the computers’ belonging to these six 

users also process commands.  

Results 

In this scenario, the differences between the remote response times are shown in 

Figure 4-9. As Figure 4-9 shows, the lazy remote response times are either significantly 

better than (604ms) or equal to the process-first transmission times, as predicted by the 

theoretical analysis. More importantly, the lazy remote response times can be as much as 

158ms better for some users than both the transmit-first and concurrent remote response 

times. On the other hand, the lazy remote response times are worse by as much as 240ms 

than those of the transmit-first and concurrent policies. These results show that for some 

users, the lazy policy provides significantly better remote response times than other policies.  

Overall, the lazy policy remote response times are better than those of process-first 

for 598 of the 599 audience members. However, they are only noticeably better for 5 

audience members than those of the transmit-first and concurrent policies. For 407 other 

users, they are the same as those of transmit-first and concurrent policies. And for the 

remaining 187, they are significantly worse. These results raise two issues: 1) is it worth it to 
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sacrifice the performance of 187 users for improving performance of only 5 other users and 

2) why are the performances under the three policies the same for more than two thirds of the 

users? The answer to the first question is revealed by a closer look at the remote response 

times of the users whose computers forward the presenter’s commands. The lazy policy 

 

 
Figure 4-9. Remote response times of all audience members. 

 

Figure 4-10. Remote response times of forwarding audience members. 
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provides significantly better remote response times than the transmit-first or concurrent 

policies to 4 of the 5 users whose computers are forwarding the presenter’s commands 

(158,151,137, and 114ms) as shown in Figure 4-10. Therefore, compared to the transmit-first 

and concurrent policies, the lazy policy is more fair to users who help improve the 

performance of other users. The answer to the second question is given by the fact that non-

blocking communication is being simulated. In our experience, when non-blocking 

communication is used, a computer’s CPU can transmit commands much faster than the 

network card can. Thus, with the lazy policy, during the time the CPU is processing a 

command, the network may not finish transmitting the command to the destinations to which 

the CPU queue the command for transmission before the CPU began processing the 

command. For the same reason, when the concurrent policy is used, the network card may 

not finish transmitting commands queued in one quantum by the CPU before the CPU begins 

queuing messages again in the next transmission quantum. When this is the case, the 

computers downstream receive messages at the same time with all three of these policies, as 

shown by the simulation results.   

As a final note regarding remote response times, Figure 4-10 shows that for 3 of these 

5 forwarding users, the process-first remote response times are noticeably better than those of 

the transmit-first and concurrent policies (101,99, and 56ms) but noticeably worse than those 

of the lazy policy (58, 58, and 50ms). These results also agree with the somewhat 

counterintuitive prediction made by the equations that process-first remote response times 

can be noticeably better than those of the transmit-first and concurrent policies. 

The lazy policy local response time, 107ms, is 49ms worse than the process-first local 

response times, 58ms, which is within the local response time degradation threshold. The 
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transmit-first local response times are 177ms, which is significantly worse than those of the 

lazy policy. Finally, the concurrent policy local response times, 118ms, are not noticeably 

worse than the lazy response times. On the other hand, they are noticeably worse than the 

process-first response times, 58ms, since the difference is above the local response time 

degradation threshold.  

The simulation shows that our purely theoretical results that scheduling policies 

impact response times apply to practical scenarios. Moreover, they show that depending on 

the total order function, our system can choose the scheduling policy that improves response 

times. For instance, if a total order function that chooses the system that provides the best 

absolute local response times is specified, it would return the process-first scheduling policy. 

If on the other hand, the function chooses the system that provides the best remote response 

times, it would return the transmit-first or the concurrent scheduling policy because the 

performance of these policies was identical in this particular scenario. Finally, if the function 

chooses a system that provides the best remote response times without increasing the local 

response times more than what is noticeable, it would return the lazy policy. Of course, the 

function would need to be aware of what the response time thresholds are. Since these are 

anyway provided by the users as a parameter to our system, the users can incorporate these 

thresholds in the function when they create it. Whatever policy the function returns, our 

system switches to that policy. 

4.8.2 Multi-Core Simulations 

Our theoretical analysis also predicts that when multiple cores are available for 

scheduling, the parallel scheduling policy can provide significantly better response times than 

the single-core policies. To evaluate whether these differences can be noticeable in practical 
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scenarios, we performed simulations which considered the scenario used in the single-core 

simulations with the following differences: 1) there are 1200 instead of 600 users including 

the presenter, 2) each of the six forwarding computers forwards to 199 of the remaining 1194 

computers, 3) all of the users use the Core2 desktop, 4) instead of the single-core concurrent 

scheduling policy, the computers use the multi-core parallel policy.  

Results 

For this scenario, the remote response times are shown in Table 4-1. We give tables 

instead of graphs for these results as the graphs have too many points and as a result are 

difficult to read. As Table 4-1 shows, the parallel policy provides noticeably better remote 

response times than the process-first policy to 999 of the 1199 audience members, while the 

remote response time differences to the remaining 200 users are not noticeable. Moreover, 

compared to the remote response times of the transmit-first policy, the parallel policy 

provides noticeably better response times to only 5 users and provides unnoticeably different 

response times to the remaining 1194 users. The five users whose response times are 

improved are those who forward the presenter’s commands to other computers. This makes 

sense as the processing on these computers is delayed until transmission completes when the 

Table 4-1. Parallel vs. Single-core Policy Remote Response Time Statistics  

 PARA - TF PARA – PF PARA – LAZY 

MAX -1.792 -9.876 0 

MIN -69.328 -311.224 -28 

0 0 0 1198 

>= 50 0 0 0 

<= 50 5 999 0 

REST 1194 200 1 

Table 4-2. Parallel vs. Single-core Local Response Times  

TF PF LAZY PARA 

78.868 9.876 59.716 9.876 
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transmit-first policy is used, while the processing is not delayed when the parallel policy is 

used. Finally, the parallel policy remote response times are the same as those of the lazy 

policy for 1198 users. The reason is because, as explained above, when non-blocking 

communication is used, the network card does not catch up to the CPU in terms of 

transmission during the time the CPU performs the processing task. The remote response 

times for the remaining user are not noticeably different for the two policies.  

The local response times for the simulation are given in Table 4-2. As Table 4-2 

shows, the parallel policy gives the same local response times as the process-first policy. This 

makes sense as in both cases, some core immediately begins the processing task. Moreover, 

the transmit-first policy gives significantly worse local response times than these two 

policies. Finally, the lazy policy gives worse, but not noticeably worse local response times 

than the parallel and process-first policies. 

Therefore, the combination of the local and remote response time results suggests that 

in practical scenarios involving multi-core computers, it can be actually better to use the lazy 

or even the transmit-first policy on a single core than to use a parallel policy on multiple 

cores. The reason is that the performance is comparable with all three policies, but using just 

a single core for the collaborative application implies that the computer can use the 

remaining cores to perform other tasks and improve their performance, such as OS tasks or 

tasks of other applications the user is using at the same time while collaborating. 

4.8.3 Experiments 

While the simulation results are a contribution on their own, it is also important to 

validate if they reflect what happens in reality. As explained in the previous chapter, 

simulations can be validated through experiments. However, we used simulations because we 
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did not have sufficient resources to run all experiments. Nevertheless, we can run some 

limited set of experiments with our resources to validate the simulations. 

Single-Core Results 

To validate our simulations for the single-core scheduling policies, we used a 

scenario that is one “part” of the scenario used in the single-core simulations. As when we 

validated the multicast simulations in the previous chapter, we focused on a single path in the 

communication overlay used in the simulations and measured the response times of the 

computers on that path. The path we chose to evaluate was the path from the source 

computer to one of the five other computers that forward messages. Moreover, as we wanted 

to evaluate how the lazy policy behaves in an actual experiment as a command traverses a 

long path, we chose to evaluate a path in which each of the remaining four computers that 

forwards commands is an intermediate node. To remove any issues with the order in which 

the network card actually transmits commands, the computers only forwarded commands to 

the next computer down the path. Therefore, there were a total of six users in our experiment. 

As explained in the previous chapter, to ensure the timing data we measure for these 

users is accurate, each user’s computer on the path must run on a dedicated physical 

machine. The presenter was running on the netbook, and each of the other five users was 

running on a Core2 desktop on which a single core was used to perform both the processing 

and transmission tasks. We then provided our self-optimizing system the following 

performance parameters at start time. To ensure that our system creates a path from the 

source to one of the five other users on which the remaining four users were intermediate 

nodes, we provided our system with the following simulated network latencies: the latency 

between useri and userj, where 1 ≤ 𝑖 ≤ 5 and 2 ≤ 𝑖 ≤ 6 , is that of a LAN plus 0ms, while 
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the remaining latencies were all the LAN latencies plus 100000ms. The values of other 

parameters are several orders of magnitude less than these high latencies and therefore the 

latencies would drive the creation of the communication overlay. The remaining parameters 

provided to our system were 1) the input and output processing costs of master and slave 

computers and 2) the CPU and network card transmission times of output commands. We 

used the same values as those in the above single-core simulations. The parameters were 

provided for both the netbook and the Core2 desktop type of computer. 

To compare the simulation and experimental results for this scenario, we ran our 

system four times, each time configuring it to use a different single-core scheduling policy. 

In addition, we performed a simulation of response times for each of these policies. The 

remote response times measured during the experiment and those predicted by the 

simulations are shown in Figures 4-11 and 4-12, respectively. As the experimental results in 

Figure 4-11 show, the remote response time of the computers significantly degrades with 

each hop when the process-first policy is used. The reason is that on average, the Core2 

computers require 75ms to process the output, and hence each computer on the path 

contributes at least 75ms of time to the remote response time of the downstream computers. 

Moreover, the remaining three policies give the same remote response times for all but one 

computer. In particular, with the lazy policy, the destination computer’s remote response 

time is significantly worse than with the transmit-first and concurrent policies. The reason is 

that by the time the second last computer on the path receives the command, the sum of the 

transmission times on the upstream computers grows above 50ms, which is the remote 

response time degradation threshold. Thus, the second last computer on the path does not 

delay processing before transmitting even to a single destination. As a result, the destination 
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computer’s remote response time includes the processing time on the second-last computer. 

Also, note that some of the Core2 computers require slightly more than others to process the 

output command. This is the reason why with the transmit-first, concurrent, and lazy policies, 

the jump in response times from the second to the second-last computer on the path is not 

even.  

 
Figure 4-11. Measured remote response times. 

 
Figure 4-12. Simulated remote response times. 
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The remote response times predicted by the simulations are given in Figure 4-12. 

While they are not identical to the experimental values, they exhibit all of the same 

properties. In particular, the simulated process-first remote response times grow significantly 

with each hop, while the lazy policy remote response times grow significantly only on the 

last hop. Note that the uneven increase in remote response times under the non process-first 

policies is not displayed by the simulations. The reason is that the simulations are given the 

average parameter values of the Core2 desktops which do hide the small differences in 

performance across these machines. The absolute difference between the predicted and 

measured values is never noticeable. The highest value we observed was 48ms, which was 

for the second last user under the lazy scheduling policy. One reason for the differences is 

that, as mentioned above, the simulations are running based on average values for the type of 

computer rather than using individually measured values for each computer. Another reason 

may be that either our system has overheads or there are some parameters which are not 

being considered in the simulations. Regardless, however, of what we have missed, our 

simulations are accurate enough to predict trends in using each policy. Moreover, while the 

simulations are always predicting response times to be lower than they actually are, they are 

doing so consistently across all policies. Moreover, in this set of simulation and experiments, 

they are never noticeably incorrect. 

The local response times predicated by the experiments and simulations are shown in 

Figures 4-13 and 4-14, respectively. As these figures show, our simulations predicted almost 

identical response times as those that were measured in all cases except when the concurrent 

policy is used. Since with the concurrent policy, we have the least control over 



253 

how the operating system actually schedules threads, the difference in simulation and 

measured values is somewhat expected. Note, however, that the difference is not significant.  

Therefore, as the simulations and experimental results match, our system is able to 

correctly predict the response times given by single-core policies. Thus, when it provides 

 
Figure 4-13. Measured local response times. 

 
Figure 4-14. Simulated local response times. 
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these response times to the total order function, the scheduling policy returned by the 

function will best satisfy the response time requirements. 

Multi-Core Results 

To validate our simulations for the multi-core parallel scheduling policy, we used a 

Checkers scenario in which a single player is playing against the computer and a large 

number of users are observing. Ideally, we would like to evaluate both local and remote 

response times of the parallel policy. Unfortunately, in our multi-core experiments, we are 

not able to measure remote response times properly. The reason is that, as mentioned in the 

previous chapter, the network card does not transmit commands in the order in which the 

CPU transmits them. We cannot add delays during the transmission, which is the approach 

we used before to ensure some order in the transmission. Adding a one second break after the 

first transmission means that the processing and transmission tasks will not actually run in 

parallel because the processing task does not take one second. Therefore, we focus only on 

the local response times. Overall, there were 601 users in our experiment: the user who is 

playing against the computer and the 600 users who are observing. We had to use a large 

number of users because the Checkers transmission costs to a single destination are low – 

transmitting to 600 destinations requires only about 12ms of CPU time on the Core2 

machines. 

As explained in the previous chapter, to ensure the timing data we measure is 

accurate, the presenter’s computer must run on dedicated physical machine. The remaining 

600 users were mapped to only two physical machines. All of the machines we used were the 

Core2 desktops. We then provided our self-optimizing system the following performance 

parameters at start time. The replicated-unicast architecture should be used. Since we are 
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measuring only the local response times, the network latencies do not matter. Hence, we 

assumed that all of the users are on the same LAN. Moreover, since we are using a unicast 

architecture, we do not need to force our self-optimizing system to deploy a particular 

multicast architecture. Therefore, unlike in the above experiment, we do not have to override 

some of the network latency values.  

To compare the simulation and experimental results for this scenario, we ran our 

system with four different scheduling policies: the transmit-first, process-first, lazy, and 

parallel. When we used the single-core policies, a single core was used for both of the tasks. 

For each policy, we ran ten experiments. We report the average measured response times. In 

addition to the experimental results, we performed a simulation of response times for each of 

these three policies. The remote response times for the forwarding user predicted by the 

simulations and measured during the experiments are shown in Table 4-3. As Table 4-3 

shows, the simulation and experimental results match for all four policies. More 

interestingly, the experimental results show, and the simulation agrees, that the parallel 

policy can provide as good local response times as any of the single-core policies. These 

results agree with our theoretical predictions. 

While we were not able to show the benefit of the parallel policy for remote response 

times, we make the following observation. The parallel policy can at most improve the 

response time of a command for a user by the amount of time the user’s computer’s CPU 

requires to transmit the command to downstream computers. Based on the CPU transmission 

Table 4-3. Parallel vs. Single-core Policy Local Response Times  

 PF TF LAZY PARA 

Simulated 17.58 29.58 29.58 17.58 

Measured 18.13 28.83 29.86 18.48 
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costs we collected, we know that the Core2 desktop requires only about 12ms to transmit a 

Checkers command to 600 destinations, and only about 21ms to transmit a PowerPoint 

command to 100 destinations. Therefore, whether the transmission task runs in parallel with 

the processing task, as with the parallel policy, or whether it runs before the processing task, 

as in the transmit-first policy, the difference in response times may not be noticeable in fairly 

large scale scenarios. Hence, it may pay to use the single-core policies instead of the multi-

core policy on a multi-core machine because the single-core policies free all cores but one for 

use by applications other than the application being shared. 

4.8.4 Cost of Switching Scheduling Policies  

The above comparisons do not consider the impact of our system on response times 

as it gathers parameter values and switches scheduling policies. Since the analytical model 

presented in this chapter did not introduce any new parameters, the impact of gathering 

parameter values should be the same as it was in the previous two chapters – unnoticeable in 

our experiments. In addition, since we do not pause the inputting of commands during a 

scheduling policy change, the cost of changing the scheduling policy is less important than 

the cost of a processing architecture change. Moreover, carrying it out requires both less 

transmitted information and less CPU time than a communication architecture switch. In 

particular, to change the scheduling policy, the server-side invokes on each computer a 

method with a single parameter, the scheduling policy to be used, and that method simply 

changes the variable on the computer whose value indicates the policy that should be used 

for future commands. To change the communication architecture, on the other hand, the 

server-side component has to send to each computer a list of destinations to which the 

computer forwards inputs and outputs, and that computer must update all of its transmission 
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data structures, establish new connections, and eventually close old connections. As 

mentioned in the previous chapter, the cost of switching communication architectures did not 

impact response times. Thus, the same should be true for switching scheduling policies. 

Indeed it was. The average time required to change the scheduling policy in the above 

experiments was 104.3ms and the maximum was 110.4ms. 

4.9 Summary 

To summarize, we have considered response times with the (a) transmit-first, process-

first, concurrent, and lazy single-core and (b) parallel multi-core scheduling policies. The 

lazy and parallel policies have not been considered before. We have presented not only their 

definitions but also issues that must be resolved in order to implement them. We have 

presented an analytical model of response times that extends the model presented in the 

previous chapter by considering the impact of scheduling policies on response times. We 

have also updated our self-optimizing system to automatically select the scheduling policy 

that best meets response time requirements for any pair of processing and communication 

architectures. We have validated our model and system through simulations and experiments 

for both single-core and multi-core policies. Finally, we have identified several new 

implementation issues that must be addressed by any system that automatically maintains the 

scheduling policy. These results serve as proof of sub-thesis IV and V and partial proof of 

sub-thesis VI, which we re-state below. The partial proof of sub-thesis VI in this chapter, 

combined with partial proofs for it in the previous two chapters, completes the sub-thesis VI 

proof. 
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SUB-THESIS VI 

It is possible to develop a model that analytically evaluates the impact on response 

times of different processing architectures, communication architectures, and 

scheduling policies to the degree necessary to automate their maintenance. 

SUB-THESIS V 

It is possible to develop a system that automatically switches to the scheduling 

policy that satisfies any user-specified response time criteria better than existing 

systems. 

SUB-THESIS IV 

The scheduling policy used for executing the processing and transmission tasks 

impacts response times. 



CHAPTER 5 

RELATED WORK 
 

 

5.1 Overview 

In the previous three chapters, we have presented an analytical model that can predict 

response times for any combination of (a) centralized and replicated processing architectures, 

(b) unicast and multicast communication architectures, and (c) transmit-first, process-first, 

concurrent, lazy, and parallel scheduling policies. The model is an important contribution as 

it can provide guidance to users regarding which combination of these factors best meets the 

users’ response time requirements. However, as it may be difficult and tedious to manually 

apply the model, we have also presented a system that can better meet response time 

requirements than existing systems by automatically maintaining these three factors of 

performance based on predictions made by the model.  

We are not the first to study the performance of collaboration systems. In fact, as 

mentioned throughout the previous three chapters, the thesis was motivated by Chung’s [21] 

work on performance. In this chapter, we give an overview of Chung’s and other prior work 

that serves as either a basis for our work or provides an avenue for extending it. While we 

focus mostly on work from the distributed collaboration area, we also review several relevant 

research efforts from other computer science fields, such as human-computer interaction, 

networking, distributed systems, and real-time systems. 
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 The rest of this chapter is organized as follows. We first present prior work that, like 

our analytical model, provides guidance to users regarding how to improve response times. 

Then, we present several prior techniques that may be used to further improve response 

times. Following this, we present the results of user studies that can be used to decide when 

to apply the techniques and guidelines. Then, we present related work on how to 

automatically apply them. We end with a brief summary. 

5.2 Guidelines for Improving Response Times 

As mentioned above, the analytical model presented in the previous three chapters is 

a powerful contribution as it provides guidance to users regarding which combination of 

processing architecture, communication architecture, and scheduling policies best meets the 

users’ response time requirements. While it is the first to provide such guidance regarding 

multicast and scheduling policy, prior work has addressed the choice of processing 

architecture and its impact on response times. Such guidelines have been provided through a 

comparison of abstract architectures, concrete architectures used in actual systems, and 

empirical results. We next describe the guidelines emerging from these three areas of 

previous work, beginning with a discussion on abstract architectures. 

5.2.1 Abstract Architectures 

As mentioned in the introduction chapter, a collaboration architecture defines the 

logical system components, their physical distribution, and the interaction among them. Since 

collaboration architectures differ along these dimensions, it is difficult to reason about the 

relative performance merits of each architecture without a model that covers the entire design 
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space defined by the dimensions. A well-known model of collaboration architectures is 

Dewan’s general model [27], which represents an application as a stack of N layered 

components as shown in Figure 5-1 (left). Each component in the stack provides an 

abstraction to and services requests from the component at the next lower layer. Conversely, 

each component in the stack renders the information from the component at the next higher 

layer. To share an application, a layer is selected to be logically shared. The layers above the 

shared layer are also shared as they are abstractions of it. On the other hand, the layers below 

the shared layer are replicated for each user and can diverge as they may render the 

abstractions below them differently. 

The general model exposes several parameters through which it is possible to reason 

about the performance (and other) properties of architectures. One of these parameters is the 

replication degree, which allows us to reason about the choice of processing architecture. The 

 

Figure 5-1. (left) Dewan's general model of collaborative applications; (center) the 

general model with a replication degree of N-1; (right) user-interface and program 

components as defined by the general model. 
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replication degree is equal to the layer of the highest component in the stack that is 

replicated. An architecture with a replication degree of N-1 is shown in Figure 5-1 (center). 

When processing powers are equal, a high replication degree favors local response times. 

The reason is that a higher replication degree allows more of the application stack to be 

distributed on each user’s machine. By executing more of the application on each user’s 

machine, a higher number of user commands can be processed locally without incurring the 

costs of remote communication. Since in a replicated processing architecture, all processing 

is done locally, this result implies that equal processing powers favor a replicated 

architecture.  

Chung [21] confirmed predictions made by Dewan analytically through a two-user 

analytical response time model for centralized and replicated architectures. The model 

assumed 1) constant costs of processing user’s input commands, 2) zero costs of processing 

outputs, 3) zero costs of transmitting input and output commands, 4) constant think times, 

and 5) no type-ahead. In addition to confirming predictions made by Dewan, Chung’s model 

also predicts that that asymmetric processing powers and low network latencies favor lower 

replication degrees. The reason is that it pays for the slower computer to incur the costs of 

remote communication in order to use the faster computer as a high-speed computation-

server.  

As mentioned above, Chung’s model served as a basis for our own analytical model. 

We extended his work by creating a new analytical model that relaxed all of the assumptions 

made by his model. In addition, we added support for multicast and scheduling policies.  
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5.2.2 Concrete Architectures 

One issue with the above predictions is that they may not accurately predict behavior 

of actual systems because the concrete architecture implemented in the systems may not fully 

reflect the properties of abstract architectures. In particular, while designers may use 

Dewan’s model for a high-level organization of an application’s components, they may also 

use one of many other collaborative architectures that decompose the components in a more 

fine-grained manner [68]. Examples of these models include PAC* [15], Clover [59], model-

view-controller (MVC) [14], abstraction-link-view (ALV) [52], Clock [40], and Chiron-2 

[87]. They are not motivated by performance. Their goal is to help the designers of 

collaborative applications bridge the gap between an abstract architecture and the actual code 

needed to implement the architecture. Thus, in addition to reasoning about the relative 

performances of abstract architectures, it is also useful to compare the performances of 

popular concrete architectures. The experiences from using architectures in actual systems 

may help to qualify the high-level intuition and, ultimately, make it more useful. 

Graham et al. [42] qualitatively compared the properties, including response times, of 

five architectures each of which is used in at least three popular commercial collaborative 

systems. Of these five architectures, three used a centralized and two used the replicated 

architecture. Their analysis agrees with the general model prediction that the replicated 

architecture favors local response times. However, they qualified the conclusion as follows. 

When (a) input commands are smaller than output commands, (b) each input command 

generates one output command, and (c) bandwidth is limited, as is the case in some popular 

multiplayer games such as Half-Life [88] and Halo 2 [61], then the replicated architectures 

may offer worse remote response times than the centralized architectures. The reason is that 
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synchronizing the users’ computers in the replicated case requires that each computer sends 

its local user’s input commands to all of the other computers, while the centralized case, the 

inputs are sent only to the server, which then sends outputs to all users. However, as Ahuja et 

al. [4] show, in some applications, input and output commands can be of similar size. 

Moreover, there can be multiple outputs generated for each input command. They performed 

experiments to compare the network load imposed by the centralized and replicated 

implementations of a shared drawing program. They found the following three results: 1) 

when output was not buffered, there were 6 times as many output events as input events; 2) 

when output was buffered, there were 3.6 times as many output events as input events; and 3) 

an output event was about the same size as an input event – about 25 bytes (presumably not 

including network headers). Therefore, the replicated response times of the drawing 

application used in their experiments are better than those of centralized when bandwidth is 

limited for this application.  

The results by Graham et al. and Ahuja et al. show that the number and size of input 

and output commands is application dependent. Therefore, the amount of bandwidth these 

commands require is non-zero and application dependent. Since the network card 

transmission costs are a function of bandwidth, it is important to consider the impact on 

response times of input and output transmission costs when there is a large number of users 

or when the commands are large. These results confirm the need to account for the 

transmission costs in our analytical model.  

Concurrency Control 

Graham et al. [42] also offered another qualification for the general model prediction 

that the replicated architecture favors local response times. In particular, they state that the 
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replicated mapping may actually offer worse local response times because of concurrency 

control mechanisms. The role of concurrency control mechanisms is to prevent users from 

entering conflicting commands. These mechanisms are pessimistic or optimistic by nature. 

Pessimistic schemes prevent the execution of a user’s command until they verify that the 

command does not conflict with other users’ commands. Optimistic schemes do not prevent 

an action from executing, and they recover from any conflicts that result using state rollback 

or undo/redo mechanisms [43]. To illustrate the impact of these schemes on response times, 

consider a pessimistic concurrency control mechanism. In the replicated case, the mechanism 

has to coordinate the command with each user’s computer. In the centralized case, the 

mechanism has to coordinate the command only with the server. Therefore, the coordination 

delay is longer in replicated than in centralized architectures. As a result, local response times 

may be worse in replicated than in centralized architectures. The extra concurrency control 

coordination penalty in the replicated architecture can be avoided by using an optimistic 

mechanism. However, the scheme must recover from any conflicts that occur by rolling back 

state or undoing conflicting commands [43]. Since these recovery mechanisms require CPU 

time, they can degrade response times by delaying the execution of incoming user 

commands. Therefore, even an optimistic scheme can degrade response times. But compared 

to the pessimistic scheme, it only degrades response times when there are conflicts. 

Regardless of whether a concurrency control mechanism is optimistic or pessimistic, 

an issue arises when there continuous contention for the same resource. To illustrate, 

consider a lock concurrency control mechanisms. Suppose several computers are repeatedly 

requesting the lock for the shared object. Regardless of whether the lock is pessimistic or 

optimistic, some computer may never get the lock if the timing of the requests is such that the 
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other computers always get it. This is known as starvation. Starvation is an issue because it 

can lead to unbounded response times in collaborative systems. It is also an issue in real-time 

systems because tasks may miss their deadlines if they starve. Anderson et al. [6] have shown 

that in real-time systems, starvation can be prevented by using lock-free concurrency control 

mechanisms. As their name implies, these mechanisms provide concurrency control without 

locks. Such mechanisms are usually implemented using “retry loops.” A failed attempt to 

gain access to the object is automatically retried; with locks, the computer requesting the lock 

must request the lock again when the response to the original local request was denied. 

Anderson et al. show that the number of retries to get the lock is bounded when using a lock-

free approach. A similar approach can be used in concurrency control mechanisms in 

collaborative systems to ensure that response times are not unbounded when there is 

continuous contention for a resource.  

As the comparison of the concurrency mechanisms shows, it is important to consider 

the impact on response times of concurrency control mechanisms in applications that use 

them. Our thesis considered only applications that do not use such mechanisms. Since many 

popular and important applications need these mechanisms in order to function correctly, an 

important future direction is to extend our work to applications that do. 

5.2.3 Empirical Results 

Another source of response time guidelines can be obtained by comparing various 

architectures through experiments. The empirical data obtained in such experiments is useful 

for two reasons. First, the data can offer performance insights in addition to those provided 

by the qualitative analysis. Second, unlike the qualitative comparisons, empirical data can 

inform designers about the relative importance of the factors that impact response times. 
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There have been relatively few studies that have directly targeted collaboration. One can, 

however, make some collaboration implications indirectly from studies of distributed 

window systems. 

Nieh, Yang, Novik et al. [64] conducted experiments that measured the relative 

performances of two distributed window systems, the Linux implementation of VNC [71] 

and Microsoft’s Windows 2000 RDP implementation. The architecture used was essentially a 

two-user centralized architecture with the user at the hosting site inactive. Such a setup gives 

an idea of the performance experienced by a remote user interacting with a centralized 

program, assuming the host site does not become a bottleneck. They found that these systems 

perform well in LAN environments, but that their performance degrades significantly in 

broadband environments. Moreover, in LAN settings, the VNC implementation gave 

noticeably better response times than the RDP implementation for typing and scrolling 

commands while it gave noticeably worse response times to bitmap load operations. These 

studies compared two different implementations of the centralized architecture and do not 

addresses the relative performances of different architecture configurations. 

Wong and Seltzer [94] measured the network load for various remote user operations. 

They found that typing at a rate of 75 words per minute, moving the mouse, menu 

navigation, and scrolling require a bandwidth as high as 11.67KBps, 1.95KBps, 40KBps, and 

200KBps, respectively. Danskin and Hanrahan [23] measured the frequencies of these 

operations. They found that they account for 75% of all communication in a 2D drawing 

program and a text editor. Together, these two results give an idea of the actual bandwidth 

requirements for a variety of remote desktop tasks. Two other studies, one involving 

Microsoft’s Terminal Services [63] and the other by Droms and Dyksen [30] showed that 
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average and maximum network bandwidth requirements of remote desktop operations can 

vary greatly.  Again, these studies do not address the relative performances of different 

architecture configurations. This limitation was addressed by the following two works.  

Ahuja et al. [4] performed experiments to compare the network load imposed by the 

centralized and replicated implementations of a shared drawing program. As mentioned 

above, they found that input and output commands were of the same size but there were 6 

(3.6) times more output events when outputs were (not) buffered.  

Like Ahuja, Ensor, Lucco et al. [4], Chung and Dewan [22] compared the centralized 

and replicated architectures, addressing response and task completion times instead of 

network load. Their experiments confirm the prediction made by Chung’s two-user analytical 

model that (a) low network latency favors the centralized architecture and (b) asymmetric 

processing powers favor the centralized architecture. As these conditions can change 

dynamically, they developed a system that supports architecture changes at runtime. They 

also performed experiments showing that when a user with a powerful computer joins the 

collaboration, it is useful to dynamically centralize the shared program to the new user’s 

computer. 

Abdelkhalek et al. [1] also evaluated a collaborative system, but instead of comparing 

the performances of different architectures, they compared the impact of the processing and 

communication costs. They investigated the bottlenecks in the performance of the game 

server for Quake [53], a multi-player first-person shooter game. They found that the amount 

of data transmitted between the server and a user’s computer was small (on the order of a few 

kilobytes per second). Moreover, they found that the server spends an equal amount of time 

on game-related and network-related processing. According to these results, when 
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considering the cost of remote communication, the available bandwidth is not the limiting 

factor. The limiting factor instead is the time the processor requires for transmitting a 

command to a single destination. The transmission time is a function both of the processing 

power and the available bandwidth. As Brosh and Shavitt observe [13], the reason is that 

when transmitting a command, the operating system requires time to traverse the network 

stack and copy message data buffers along the way before the message transmission can 

begin. 

As results by Nieh, Yang, Novik et al. [64] show, it is important to consider different 

processing costs for different commands. Therefore, it is important to relax the assumption 

made by Chung’s model that the costs of processing user commands are constant. The 

analytical model presented in the thesis relaxes this assumption. Moreover, results by 

Abdelkhalek et al. [1] show that both the CPU and the network card speeds are transmission 

cost factors. This result agrees with separating the time the CPU and the time the network 

card on each user’s computer require to transmit a command to a single destination, which is 

what our model does. 

5.2.4 Summary 

In summary, we have presented several guidelines that users can use to decide 

whether to user the replicated or centralized architecture to improve response times. 

However, it is difficult to apply them in all scenarios because they require both the 

knowledge of architectural details of systems and empirical data regarding numbers and sizes 

of commands. Chung’s two-user analytical model makes this easier as it requires only the 

latter. However, it made several assumptions that conflict with empirical findings. The 

analytical model presented in the thesis relaxes all of these assumptions.  
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5.3 Techniques for Improving Response Times 

So far, we have presented general guidelines for making architectural and other 

choices (in a well-known design space) to improve response times of collaborative 

applications. In this section, we describe a number of techniques for improving response 

times for all points in the design space. These techniques focus on reducing the time required 

to perform mandatory collaborative application tasks, the processing and distribution of user 

commands, which are also the tasks we consider in our analysis. Any reduction in processing 

and transmission task times helps improve response times. To illustrate, consider a 

centralized architecture with multiple slave users. Suppose that all of the slave users 

simultaneously enter a command and that all of the commands reach the server at the same 

time. As the server will process the commands in some order, reducing the processing times 

helps improve local response times of commands which are processed later. As the server 

must also transmit an output for each command to all of the users, reducing the transmission 

times helps improve remote response times of the users to server transmits to last. The 

response times of replicated architectures can also improve when transmission and 

processing times are improved. The reasoning is similar. 

We first present techniques for reducing processing times, then those for transmission 

times, and finally techniques that consider both of these factors. 

5.3.1 Reducing Processing Times 

As mentioned above, Chung [21] developed a system that supports architecture 

changes at runtime. He also performed experiments showing that when a user with a 

powerful computer joins the collaboration, it is useful to dynamically centralize the shared 
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program to the new user’s computer. However, he did not provide an algorithm for deciding 

when to perform architecture changes. 

Load-balancing 

 While no such algorithm exists for collaborative-systems, one could be obtained by 

modifying load-balancing techniques used in distributed systems. One such algorithm is 

presented by Seshasayee et al. [77], which load-balances a computationally heavy task across 

a network of mobile devices. The system attempts to optimize two metrics: the computation 

time and the application lifetime. The computation time is similar to the response time 

metrics as it measures how much time the devices require to complete some task. The 

application lifetime metric, which is defined only for mobile systems, measures how many 

computations the devices can carry out before running out of power. When a metric must be 

sacrificed, the algorithm sacrifices computation time, which makes sense because slow 

progress towards completing the task is better than no progress. The scheme continuously 

monitors the remaining battery charge of each device as the computation proceeds. When a 

device begins to run out of power, the scheme moves computation from this device onto 

devices with more power, even if computation time increases. As a result, the system can 

increase application lifetime by 10% compared to load-balancing algorithms that do not 

consider power. Our self-optimizing system could use a modified version of this scheme to 

improve response times. Roughly, the modified algorithm would 1) give preference to 

computation time instead of application lifetime, 2) monitor available processing powers of 

the devices instead of their remaining battery charges, and 3) centralize the program 

component on the most powerful computer. 
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Interest Management 

 One issue with centralizing the program on the most powerful computer is that the 

computer may become overloaded as the number of collaborators grows. For example, in 

massively multi-player online games, such as EverQuest [57], a single server cannot handle 

all of the users. Instead, a cluster of servers is used, and each server is assigned a geographic 

region of the game world [60]. Typically, these regions are divided by barriers that prevent 

any inter-region player interactions. Thus, a server needs to handle only the interactions of 

the players in its region. If too many players enter a region, which is an issue known as 

“crowding,” a mini-cluster of servers is allocated to serve the region. The players in the 

region are evenly divided among the servers. Each server in the cluster processes only 1) 

actions of its users and 2) actions of users assigned to other servers that affect its users. A 

server is aware which of its users impact users on other servers through a technique called 

“interest management” [62], and thus forwards only their actions to other servers. Interest 

management techniques are based on a spatial model of interaction [10], which has been used 

 

Figure 5-2. (left) User A is interested in user B’s actions because user A’s focus 

intersects with user B’s nimbus, (center) user A is not interested in user B’s actions 

because user A’s focus does not intersect with user B’s nimbus, (right) prefetching of 

user B’s data onto user A’s computer begins because user A’s predicted focus intersects 

with user B’s nimbus. 
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to create several systems, including the MASSIVE [46] and DIVE [16] virtual reality 

systems. This model determines which objects can interact with each other based on their 

proximity. Each object has an aura. If the auras of two objects intersect, then it is possible for 

the objects to interact. The actual way in which the objects can interact is determined by the 

notion of a focus and a nimbus. If a user’s focus (some area around the user) intersects with 

another user’s nimbus (an area around the other user) (Figure 5-2 (left)), then the former is 

interested in actions of the latter; otherwise (Figure 5-2 (center)), the former is not interested 

in the actions of the latter.  

 Interest management techniques can be used to improve response times by reducing 

the number of commands processed on each computer. To illustrate, consider a master 

computer in the replicated architecture. Recall that to keep the program replicas running on 

different masters in sync in the replicated architecture, each master forwards input commands 

from its local user to all of the other masters. Therefore, each master computer must process 

all input and output commands. However, some user actions, such as telepointing, do not 

affect the shared state. Moreover, when people collaborate, not every person may be 

interested in telepointer motions of every other user. For instance, users may turn off 

telepointer display on their machines if they do not wish to be disturbed. In addition, if the 

shared application enables users to work on different parts of the document simultaneously 

(i.e., if the application supports non-WYSIWIS interaction), then users cannot see the 

telepointer of a user working on different part of the document. In either case, there is no 

reason to send telepointer actions to these users’ computers. As a result, there is no reason for 

a master to forward telepointer input commands to another master computer unless the user 

on that computer is interested in seeing the telepointer. By employing interest management in 
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our system, we could reduce the number of telepointer commands that are processed by each 

master. This, in turn, helps improve response times because it frees up resources on each 

user’s computer to process commands that impact shared state or in which the user is 

interested. Applying a similar technique in centralized architectures can also improve 

response times by reducing the number of output commands processed by each slave. 

5.3.2 Reducing Transmission Times 

Interest management schemes, in addition to reducing the number of commands each 

computer has to process, also reduce the amount of communication among a master and 1) a 

slave in the centralized architecture 2) another master in the replicated architecture. In this 

section, we describe several other techniques which can further reduce transmission costs. 

Intelligent Prefetching and Interest Management 

 A technique that can be combined with interest management to reduce the impact of 

transmission times on response times is prefetching. Prefetching does not actually reduce the 

amount of data that is transmitted; nevertheless, it is useful for two reasons. First, it amortizes 

the transmission costs over a longer period of time. Amortization reduces bottlenecks by 

spreading the cost of an expensive operation over many operations. Second, by the time the 

data is needed at a client, the client does not have to wait for the server to transmit it. 

 Scholtes et al. [76] developed a prefetching algorithm for massively multi-player 

online games. Their algorithm predicts future positions of a user in the game world based on 

the user’s history of movement in the world. Any data that is predicted to be needed at the 

client in the near future, such as the data for rendering other players, is gradually prefetched 

onto the client. The set of predicted future positions can be thought of as a union of the user’s 
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future foci. When the predicted foci intersect with a nimbus, the data of the player who owns 

the nimbus is prefetched (Figure 5-2 (right)). 

 Prefetching is especially useful when players go through a portal, which is special 

entity in the game world that can teleport a player not only to a distant area in the player’s 

current region, but also to a different region. In this case, the player’s focus may in an instant 

intersect with a large new set of nimbi. Since this set of nimbi was not “close” to the player’s 

position before entering the portal, they have not been prefetched. Thus, the player needs to 

wait until the data for region on the other side of the portal is downloaded. To reduce the 

waiting time, Glinka et al. [38] create a nimbus around each portal. When the player’s focus 

intersects with a portal’s nimbus, the prefetching of data required to render the world on the 

other side of the portal begins. Since the player may use the portal to move to a different 

region, their algorithm also begins the process of proactively moving the player’s data onto 

the new server to reduce the delay required to hand-off the player’s data between the servers 

(or mini-clusters) responsible for the players’ interactions in the current region and the region 

on the other side of the portal. 

 Prefetching techniques could be employed by our self-optimizing system to improve 

response times of data-centric applications such as PowerPoint. To illustrate, consider a 

PowerPoint presentation in which a presenter is giving a talk to a large number of audience 

members. Suppose that the computers belonging to the users are organized in a centralized 

architecture in which the presenter’s computer is the master. Prefetching could improve 

response times as follows. While the presenter is discussing a slide, our system could use the 

time to transmit the next slide or the next several slides to all of the users. Therefore, when 

the presenter eventually advances to the next slide, the slide will already be present on the 
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remote user’s machines. This would reduce local response times as in the transmit-first 

policy case as the CPU on the presenter’s computer would not have to transmit the slide first. 

Moreover, it would reduce the remote response times as the remote computers would not 

have to wait for the presenter’s network card to transmit the slide. However, prefetching can 

also hurt response times when non-blocking communication is used and think times are low. 

To illustrate, suppose that the presenter enters a “next animation” command after the CPU 

but before the network card has completed the transmission task for prefetching the next 

slide. In this case, the network card will begin the transmission of the next animation 

command only once it completes the transmission of the prefetched data. Therefore, the 

remote response times of the next animation command increase. More generally, in data-

centric applications, when non-blocking communication is used and think times are low, 

prefetching data that has not yet been distributed to all users can degrade the remote response 

times of user commands that interact with data that has been distributed. Of course, when 

blocking communication is used, the thread that is transmitting the prefetched data could be 

paused, and hence the network card would be ready to transmit the user command 

immediately. It would be interesting to consider a communication protocol in which the 

prefetched data is transmitted using blocking communication while user commands are 

transmitted using non-blocking communication. In this case, it would be possible to benefit 

from prefetching without hurting remote response times.  

General Message Compression 

 The simplest approach to reducing the transmission times is to compress each 

message before it is transmitted. However, there are two issues with this approach. First, such 

algorithms require processor time to run both on the sender and the receiver, and can 
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therefore actually increase the time needed to transmit and process messages. Second, if a 

message is not large, traditional compression algorithms may not actually compress it 

significantly. For example, Gutwin et al. [51] showed that the popular Lempel-ziv algorithm 

compressed an 88 byte telepointer message as little as two percent. 

 The poor compression stems from the fact that there is not enough redundant 

repetition within a single message for general compression schemes to work well. However, 

Gutwin et al. [51] also found that a typical application transmits only certain message types 

during a session and that the data in two messages of the same type from the same user has a 

significant amount of overlap. For example, they observed that two consecutive telepointer 

messages originating on the same computer differ only in the X and Y coordinates of the 

telepointer. As a result, they developed a compression technique that capitalizes on the inter-

message rather than intra-message redundancy. After several messages of the same type are 

transmitted by the computer, their redundancy algorithm is able to compress messages as 

much as 92%. Moreover, it can perform this compression with low memory, processing, and 

communication overheads. Thus, their scheme can significantly reduce the amount of 

transmitted data, and thus the transmission costs.  

 Compression techniques can be implemented in our self-optimization system. For 

instance, in Checkers, messages are small. Moreover, input commands are similar in nature 

to telepointer commands – instead of containing X and Y mouse positions, they contain the X 

and Y board position of the piece that moved. Therefore, the scheme presented by Gutwin et 

al. [51] can be used to reduce the transmission costs of these commands. On the other hand, 

in PowerPoint, message content can vary significantly since two slides can contain 

significantly different data. Moreover, the commands that contain the slides carry large 
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amounts of data. Therefore, it may be better to use traditional compression algorithms, such 

as Lempel-Ziv, instead of Gutwin et al.’s algorithm to compress these commands and reduce 

their transmission costs. In fact, as part of the self-optimizing calculations, our system could 

dynamically decide which compression technique to use in order to improve response times 

the most. 

Multicast 

 The message compression and prefetching techniques can improve response times by 

reducing and amortizing transmission times. Another approach is to distribute and parallelize 

the task of transmitting a message to a set of destinations across several computers, which is 

the approach taken by multicast algorithms. 

 Previous work in operating systems and networking has shown that multicast can 

reduce the worst case end-to-end delays in content-streaming systems [18][56]. The end-to-

end delay metric is related to the remote response time metric as both contain the total 

network latencies a message experiences from the source to the destination. They are not 

exactly the same, however, as the remote response times include the time required to process 

the message at the destination computer. Nevertheless, since it can reduce end-to-end delays, 

multicast schemes are still useful for improving remote response times. 

 The idea of multicast requires the creation of multicast communication overlays, 

which consists of paths from the source to all of the receivers. The end-to-end delays are 

improved by using an overlay which 1) minimizes the sum of transmission delays and 

network latencies on a path from the source to each receiver and 2) respects the bandwidth 

capabilities of the devices. Therefore, traditional multicast schemes focus on minimizing the 

diameter of the multicast overlay while satisfying the host constraints. The implicit 
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assumption in this approach is that the diameter of the overlay determines the largest end-to-

end cost. However, as mentioned above, transmission times
1
 and not the bandwidth is the 

limiting factor at the application-layer, and therefore, in collaborative systems. As described 

in chapter three, the transmission times are a factor of both the CPU and network card 

transmission times. In particular, they are a function of (a) the amount of time the CPU 

requires for duplicating a message and queuing it for transmission by the network card and 

(b) the amount of time the network card requires for reading a message from memory and 

sending it on the physical wire. Bandwidth is still a factor. It is accounted for in the time the 

network card requires for sending a message on the physical wire. Hence, the network 

latency and bandwidth oriented (i.e., traditional) multicast algorithms may not distribute and 

parallelize the transmission task in an optimal fashion. Recognizing that the transmission 

times can be important in some scenarios, Brosh and Shavitt developed a multicast algorithm 

called HMDM [13] that explicitly considers transmission times on the total end-to-end 

delays. This is the main reason why we use HMDM to create multicast trees in our self-

optimizing system instead of a different multicast scheme. By doing so, their algorithm is 

able to significantly reduce maximum end-to-end delays. As our results in chapter three 

show, HMDM can be used to improve the maximum remote response times in collaborative 

applications. In addition to HMDM, other efficient application-layer multicast schemes have 

been proposed. One of these schemes is the NICE multicast protocol described by Banerjee 

et al. [8]. The NICE protocol organizes end-user devices into a hierarchy of L layers. At each 

                                                           
1
 As explained in chapter 3, networking researchers use the term processing time to denote 

the amount of time the CPU requires for duplicating a message and queuing it for 

transmission by the network card. What they call processing times, we call CPU transmission 

times. We use a more specific term as there are other kinds of processing tasks in our 

domain, such as those of processing input and output commands. 
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layer, devices are organized in clusters. Devices can communicate directly only with other 

devices in their cluster. Unicast is used for intra-cluster communication. At a non-top-most 

layer, a leader device is selected in each cluster. The leaders are grouped into clusters at the 

next higher layer. Therefore, leaders can be members of multiple clusters but each of the 

clusters are at different layers. The leaders distribute messages among all of the devices in 

their clusters. However, the NICE algorithm does not explicitly consider application-layer 

transmission times, that is, both CPU and network card transmission costs, when forming the 

clusters and the layers. In fact, no other multicast scheme of which we are aware accounts for 

them. Since in collaborative systems, they are a factor, we used HMDM. In the future, it 

would be interesting to study the impact on response times of NICE and other application-

layer multicast schemes. For example, it would be useful to investigate the formation of 

NICE clusters and layers based on the processing and transmission powers of the devices and 

evaluating NICE under various combinations of processing architectures and scheduling 

policies. 

 One issue with the HMDM multicast scheme is that it can result in a large end-to-end 

delay variations. Therefore, using HMDM in collaborative systems could result in high 

remote response time variations, which is an issue in some scenarios. For example, in a 

multiplayer game, if a unique item becomes available for sale, ideally, all of the players 

should become aware of the item availability at the same time to give all of them an equal 

chance of buying it. The Chains scheme presented by Banik et al. [9] can be used to solve the 

problem. Their algorithm explicitly creates overlays with minimal variations in end-to-end 

delays. It does this by calculating for each destination k shortest paths from the source to the 

destination. The path lengths are calculated based on the bandwidth of each node on the path 
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and the network latencies along the path. Then, it selects for each destination one of the k 

paths, such that the variation in the lengths of the picked paths is minimized. If there are 

several combinations of paths with equal delay variations, then Chains picks the combination 

that gives a multicast tree with a minimum diameter. It would be interesting to combine 

Chains and HMDM. In particular, when finding the shortest paths from the source to a 

destination, the Chains algorithm would, like HMDM, measure the path length using 

transmission costs and network latencies. Such a scheme could provide bounded remote 

response time variations in collaborative systems while improving remote response times.  

Reducing the Quality and Rate of Message Streams 

 The multicast schemes described so far focus on the paths from the source to each 

destination. A different approach is to focus on paths from the source to a group of 

destinations with similar capabilities. Grouping devices according to their capabilities would 

allow the multicast scheme to customize data that is forwarded to members of a group based 

on the group’s capabilities and as a result reduce the cost of transmitting data to the group. 

To illustrate, consider a scenario in which the video of a user is being transmitted to other 

users. Suppose that some of these users are using smart phones and others LAN-connected 

desktop computers. When transmitting the video frames, the multicast scheme could 

automatically adjust the rate at which it transmits frames to a group to match the maximum 

frame rate supported by the devices in the group. Thus, it would transmit lower frame-rate 

video to the smart phones than the desktops. As a result, it would reduce the costs of 

transmitting data to the smart phones destinations without those users noticing a difference in 

quality. Chawathe et al. [19] present RMX, which is multicast scheme that works precisely in 

this manner.  
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RMX adaptive transmission rate is an instance of a more general idea of controlling 

flow of information in push-based systems. With push-based systems, operations are pushed 

out by some computer to one or more remote computers. If some computers are slower than 

others, then a push rate that fast computers can handle may actually overload the slower 

computers. One approach to prevent overload on slow computers is to monitor how quickly 

remote computers can process the pushed commands and then adapt a rate that does not 

overload any of the computers. This is approach taken by T.120 [24], which monitors the 

receive queue sizes at the remote sites. The push-rate is selected based on the queue sizes at 

the slowest computer. If the queue size is below some low threshold, then the push-rate is 

increased. If the queue size is above some high threshold, then the push-rate is decreased. An 

issue with decreasing the push-rate to accommodate a user with slow computers is that 

performance is degraded for all other users. As a result, T.120 forces a user to leave the 

collaborative session if the queue size on a computer exceeds some even higher threshold.  

 The dual of pull-based communication is push-based communication. In pull-based 

communication, each computer pulls data from the server. An instance of pull-based 

communication is the intelligent prefetching idea described above. An important advantage 

of pull-based communication is that pulling computers can request data at their own pace. As 

a result, slow computers can make sure that they pull at a rate that does not overload them. 

More importantly, the slow computer will not affect faster computers as the fast computers 

can pull at a faster rate. Because of this advantage, VNC [71] allows remote computers to 

pull data at their own pace. The benefit to transmission times is that data is not transmitted to 

a computer unless the computer is ready to process it. 



283 

 Reducing the quality and rate of message streams is useful for more than just 

preventing slow machines from being overloaded. It is also useful to adapt the quality and 

rate based on the importance of the stream. Greenhalgh et al. [46] designed a collaborative 

virtual environment that also customizes the frame rates of videos a user sees of other users, 

using interest management instead of the capabilities of the devices to determine the frame 

rate. The basics of their scheme are as follows. The quality of the video stream exchanged 

between two users is based on the proximity of the users’ avatars in the virtual world. The 

smaller the distance between their avatars, the higher the quality of videos they receive of 

each other. If a user can see several avatars at once, high quality video is shown for the 

remote user whose avatar appears in the center of the user’s view while low quality video is 

shown for the other users. The reason is that in a collaborative virtual environment, standing 

directly in front of an avatar usually indicates interest. 

 Video lends itself well to the scheme used by Greenhalgh et al. [46] because a low 

quality video can still convey a significant amount of information. The same is true of 

pictures – a low quality version of a picture can provide much of the information that is 

found in a full quality version. It would be interesting to incorporate the idea of trading-off 

the quality of data sent to users for response times. To illustrate, consider a distributed 

PowerPoint presentation. In many presentations, slides contain pictures. If these pictures are 

of high quality, then they are also large (in terms of bytes). Therefore, the cost of transmitting 

the slide containing such pictures will be high. Our self-optimizing system could calculate 

the best tradeoff between picture quality and transmission costs before transmitting the slide. 

As a result, the lower transmission costs would help improve response times while the 

remote users could still understand the information on the slide. However, for this to work, 
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the framework would have to be aware of some application semantics because it would need 

to figure out which of the data in the commands is the image data in order to compress it. 

Alternatively, it could invoke a command in the application that reduces the quality of data 

that is in the shared commands. 

Gutwin et al. [50] extended the reduced video and image quality idea to telepointers. 

They discovered that when a dead-reckoning algorithm is used, telepointer motions can be 

understood by a remote user even if telepointer commands are late or lost, assuming 

unreliable communication. In general, when commands from a remote user are late (or lost), 

dead-reckoning algorithms estimate what these commands would have been had they arrived 

on time. The algorithms extrapolate the late commands based on the most recent commands 

received from the remote users. To illustrate, consider a scenario in which a remote user is 

using a telepointer to underline some object. Telepointing commands are sent at a regular 

pace of thirty per second, or one every 33ms. Suppose that at after some command, more 

than 33ms elapses and no new command is received, that is, the next command is late. The 

dead-reckoning algorithm analyzes the previous commands and sees that the remote user has 

been making a line motion. Based on the direction and the velocity of the motion, the 

algorithm estimates what the late command should be and displays its output to the local 

user. A perfectly accurate dead-reckoning algorithm can therefore mask any missing 

telepointing commands. Gutwin et al. suggest that when a dead-reckoning algorithm is used 

for telepointer motions, it would be useful to selectively drop telepointer messages in order to 

reduce network loads (and thus, reduce transmission times). However, they did not provide 

an algorithm that would selectively drop the messages. In general, dead-reckoning algorithms 

work well as long as the number of consecutive messages that are lost or delayed is limited. 
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The reason is that even if the algorithm incorrectly predicts a command, it soon receives an 

actual command from the remote user and can therefore correct what is being displayed to 

the local user. What is needed then is a message transmission scheme that ensures that the 

number of dropped or delayed messages in a group of consecutive messages is below the 

maximum percentage of dropped or delayed messages that dead-reckoning algorithms can 

handle effectively. The algorithm presented by West et al. [89] makes exactly such a 

guarantee by ensuring than at least X out of Y consecutive messages will be delivered. 

Moreover, it guarantees that the arrival rate of these messages will not be worse than the rate 

at which they were originally sent. Therefore, this algorithm could be used to strategically 

drop some number of telepointer messages while delivering a sufficient stream of messages 

for the dead-reckoning algorithms to work correctly. The end result is a reduction in total 

transmission times, which helps to improve response times. Of course, the dead-reckoning 

algorithms running on the destination computers have to adjust for the missing commands, 

which in turn increase processing costs of commands, and therefore, the response times. 

Thus, the ideal number of messages that should be dropped needs to be carefully calculated 

on a per scenario basis in order to improve the response times the most. Gutwin et al. [50] did 

not present any such equations, but if they exist, then they can be incorporated into our self-

optimizing system. Based on these equations, our system could selectively drop the 

transmission a command to one or more destinations.  

Scheduling Issues 

 In some cases, however, messages cannot be dropped. In this case, Abdelkhalek et al. 

[2] demonstrated that it is useful to use multiple threads to perform the transmission task. 

They performed experiments in which a special parallel version of the Quake game server 
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[53] mentioned above ran on an eight-processor machine. One, two, four, and eight threads 

were used to perform the transmission task, each thread running on a different processor. 

Their results show that as the number of threads increased, the amount of time that elapsed 

form the moment the CPU began to the moment it finished transmitting the messages to all of 

the users’ computers decreased. In particular, the policy states that only one core should be 

used for the transmission task because otherwise, it is difficult to predict remote response 

times. As stated in chapter four, if predicting the response times is not important, then the 

CPU can complete the transmission sooner by using multiple threads for the transmission 

task, each running on a different core, which is in agreement with results shown by 

Abdelkhalek et al. [2]. 

When a single-core is available for scheduling, Ostrowski and Birman [56] showed 

that using a single transmission thread provides the best performance. The reason is that the 

garbage collector mechanisms can slow down the system because of high memory overheads 

associated with having many threads active at once. All of our single-core policies use a 

single thread for performing the transmission task, which follows the Ostrowski and 

Birman’s guideline. 

5.3.3 Reducing Both Processing and Transmission Times 

So far, we’ve looked at scheduling algorithms only from an individual machine’s 

point of view. In collaborative systems, however, scheduling of tasks across machines is also 

important. For example, the response time on a slave machine depends both on it and on its 

master computer. Moreover, if multicast is used, the response time for a machine depends on 

all of the machines on the path from the source to the machine. Thus, it is important to 

consider scheduling schemes that optimize the performance of the entire system. One 
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approach is to greedily schedule the processing task on the most powerful machines and 

make these machines responsible for most of the transmission task. Proceeding in a greedy 

fashion, the algorithm could schedule a smaller percentage of the transmission task on the 

next most powerful set of machines, and continue until every part of the transmission task is 

scheduled on some machine. For instance, in a collaborative system, such an algorithm could 

create a centralized architecture in which the most powerful machine is the master. However, 

the master would transmit commands to most but not all of its slaves, since the algorithm 

would create a multicast overlay in which the slave machines participate in the transmission 

of commands. An algorithm that uses such an approach for scheduling the stages of a 

complex task on the nodes of a high-performance computer is Streamline [3]. Streamline can 

schedule tasks that are either computation intensive, communication intensive, or both. As a 

result, it should be able to schedule the processing and transmission tasks in a wide range of 

collaborative applications. 

Interestingly, it should be possible to unify the scheduling aspects of Streamline and 

the reallocation of computation aspects of the energy-aware load-balancing algorithm 

presented by Seshasayee et al. [77] to create an algorithm that both schedules and load-

balances the processing and transmission tasks in a collaborative system.  

5.3.4 Other Lazy Systems 

In fact, the algorithm presented by Seshasayee et al. [77] is in one respect similar to 

our lazy policy – both of them rely on the notion of completing tasks “just in time.”Their 

algorithm uses slack to complete tasks just in time while maximizing the battery life of each 

device. For instance, if a task completes early, they use dynamic voltage and frequency 

scaling to reduce the amount of power consumed by the mobile devices. As a result, the task 
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completes later, but on time. Unlike our lazy policy, which trades-off local and remote 

response times, their scheme trades-off application lifetime for response times. 

The notion of “just in time” is also found in real-time systems. The idea of lazy 

scheduling when multicast is used is similar to the problem addressed by distributed real-

time systems, which use end-to-end scheduling algorithms. In end-to-end scheduling, a task 

is divided into subtasks, and each subtask is allocated to a different processor. The sub-tasks 

are governed by precedence constraints – subtask k cannot start until subtask k-1 completes. 

Distributing subtasks in this fashion is similar to building multicast overlays. Multicast 

schemes divide the transmission task into subtasks and schedule each subtask on a different 

machine. Precedence constraints are implicit as a machine must wait for a command to arrive 

before forwarding it. However, there are several important differences between end-to-end 

scheduling and the lazy policy. First, in end-to-end scheduling, the system has freedom in 

mapping a task to any processor, while in a collaborative system, the processing architecture 

constrains the mapping. In particular, regardless of the architecture, input (output) processing 

must be done on all master (master and slave) machines. Thus, processing tasks are not 

distributable in end-to-end scheduling. Second, the two kinds of systems have fundamentally 

different goals. The main goal of end-to-end scheduling is to complete the final subtask by 

the overall task deadline, while the main goal of the lazy policy is to meet the processing task 

deadline on as many computers as possible. As a result, our scheme trades off local and 

remote response times, while end-to-end scheduling schemes only guarantee that a task 

completes on time. 
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5.3.5 Summary 

In summary, this section presented several techniques for improving response times, 

including load-balancing, message compression, prefetching, multicast, quality and rate of 

data adjustments, and finally scheduling. All of these techniques are related to one another, 

which is indicative of the fact that all of these approaches can be combined in a number of 

ways. Moreover, we have outlined a number of ways that these techniques can be 

incorporated into the self-optimizing system.  

5.4 User Studies 

So far, we have seen guidelines and techniques for improving response times. 

Previous work has also defined when these guidelines and techniques should be applied. As 

mentioned in the introduction chapter, Sheiderman [80] has shown that users cannot notice 

local response times below 50ms. Jay et al [54] complement these results by showing remote 

response times of visual and haptic operations of 50ms and 25ms, respectively, are 

noticeable. Moreover, they have shown that 50ms increments in the remote response times of 

both types of operations are noticeable. While changes in local response time increments 

were not directly addressed, Youmans [95] has shown indirectly that a 50ms change is 

noticeable.  

 In addition to using noticeable response time thresholds for comparing response times 

of two systems, it is also useful to consider intolerable thresholds. Such thresholds are 

important because they inform designers what the maximum response can be without the 

users quitting the application. Steinmetz [82] studied what remote response time values the 

users feel are annoying for a variety of collaborative applications. The results revealed 
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different thresholds for different applications. For example, if a user is talking and 

telepointing at the same time, then the telepointer should not be displayed on a remote user’s 

screen more than 750ms after the audio. Similarly, during a slide show, the slides should 

appear no later than 500ms after the presenters audio. Since, typically, audio is established 

through separate specialized channels, such as the phone system, its remote response time is 

low (i.e. 0ms). Thus, the above results show that if the remote response times of telepointers 

and presentation operations are more than 750ms and 500ms, then the users will be annoyed. 

However, these are the thresholds at which the remote response time becomes annoying. In 

every single experiment Steinmetz presents, users began to notice threshold times much 

earlier than the above thresholds suggest. 

Our self-optimizing system could be configured to find the system configuration that 

ensures that the response times are below the annoying thresholds. In fact, the only change 

needed is in the total order function that specifies the users’ response time requirements. 

Instead of comparing response times across systems, the function could simply check if any 

user’s response time is above the annoying threshold and if so, reject the system. If all 

possible systems break the threshold, then the total order function could inform our system to 

stop the collaborative session. This is similar to the way the T.120 protocol [24] removes a 

user from the session if the capabilities of the user’s device are causing a significant 

degradation in the performance of other users. 

As mentioned above, it is not only absolute response time thresholds that are useful. 

In particular, the variation in the response times of all users is also a useful metric. A related 

metric is difference between the local and remote response times. Stuckel and Gutwin [83] 

have shown that in two-user tightly-coupled scenarios in which latencies are high, it is useful 
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if both collaborators see the output to a command at approximately the same time. They 

showed that delaying the command locally by as much as 200ms did not result in significant 

negative impact on the user experience. Interestingly, the lazy policy we propose also 

reduces the difference in remote and local response times. The difference between their 

policy and ours is that they minimize the difference by making them both high (i.e., 

noticeable), while the lazy policy tries to make them both low (i.e., unnoticeable). 

5.5 Automatically Improving Response Times 

While each of the above guidelines and techniques can improve response times, none 

of them is without issues. First, we have shown that the general guidelines have a number of 

qualifications that dictate whether or not to apply the guideline. As more research is carried 

out, the number of these qualifications is likely to increase. Second, even though we have 

presented several techniques that can help with response times, many of them, such as 

multicast, load-balancing, and scheduling, require a considerable amount of research to make 

them useable in collaborative applications. 

One approach to resolving these problems is to develop toolkits and programming 

environments that help developers improve response times by automatically applying one or 

more of the response time guidelines and techniques. Several systems already exist. For 

example, RTF [38] and ClockWorks [41] enable a developer to use special programming 

statements to dictate whether a component is replicated or centralized. However, the user 

must still decide when and what to replicate or centralize. Several toolkits, such as GroupKit 

[74] and Suite [26] make it easier to develop collaborative applications but they do not 

support arbitrary architectures, which may be needed for to maximize the potential 
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improvement on response times by using load-balancing algorithms. Chung’s system 

supports arbitrary architectures [21] but leaves the load-balancing up to the users who may 

not make optimal (or in fact any) load-balancing decisions. What is really needed is a system 

designed specifically for collaborative systems that can automatically improve response 

times [68][92]. This is a hole that the self-optimizing system we have created is designed to 

fill.  

The only other system of which we are aware that is similar to the self-optimizing 

system in this thesis has been recently described by Wolfe et al [93]. Their work was done 

concurrently with ours. There are two important differences between the systems. First, the 

system in this thesis automates the maintenance of the processing architecture, 

communication architecture, and scheduling policy, while Fiia automates the maintenance of 

only the processing architecture. Second, the system in this thesis uses a predictive analytical 

model to decide which configuration to use. Fiia, on the other hand, relies on developer 

provided hints, which are given through custom annotations in the actual program code, and 

a set of rules of thumb, which are based on previously published performance results and 

guidelines. These rules of thumb are similar to the guidelines we have described above, 

which were imprecise. In particular, they did not account for nuances in collaborative 

scenarios, which can be important when optimizing performance. Hence, one drawback of 

Fiia is that it can potentially choose the wrong processing architecture. To illustrate, consider 

the following rule of thumb: when local response times are important, the replicated 

architecture should be used. As mentioned above, Chung [21] has shown that this rule of 

thumb is not correct in all situations. Hence, Fiia can degrade performance in some cases. 
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As mentioned above, unlike Fiia, the self-optimizing system in this thesis applies an 

analytical model to decide how to reconfigure the application. It estimates values of the 

parameters in the model based on the values observed for them earlier in the session or 

during previous sessions. The idea of using known values of a parameter to estimate its 

future values has been used in other works, not just by us. For example, Block [12] has 

presented a self-optimizing real-time scheduler that uses the same approach. Typically, real-

time schedulers are provided with the amount of processor time required to complete a task. 

If a task is repetitive, the same provided value is used as the time for all of them. In general, 

the values can be wrong, which can lead to sub-optimal scheduling decisions. For this reason, 

Block’s scheduler attempts to refine the provided values during the scheduling session. His 

scheduler estimates the amount of processor time required to complete a task based on the 

amount of processor time that was required to complete the task in the past. By making 

scheduling decisions based on the estimated values, the scheduler is better able to schedule 

real-time tasks than existing schedulers, which do not attempt to refine initially provided 

values.  

5.6 Summary 

A significant amount of previous research has investigated ways of improving the 

performance of collaborative systems. In this chapter, we have shown how the techniques 

and guidelines stemming from the prior work serve either as a basis for our work or provide 

an avenue for extending it.  
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CHAPTER 6 

DISCUSSIONS 
 

6.1 Overview 

The results presented in the preceding chapters serve as proof of our thesis. They 

show that for certain classes of applications, it is possible to improve the response times 

through a new framework without requiring changes to the hardware, network, or the user-

interface. The framework improves performance by automating the maintenance of the 

processing architecture, communication architecture, and the scheduling policy. The results 

show that automating the maintenance of one of these three factors of performance in 

isolation of the others can improve response times. However, there is nothing in the 

analytical model or the self-optimizing system that prevents changing more than one factor 

during a collaboration session. In this chapter, we will discuss how our self-optimizing 

system can change all three factors in a single optimization step.  

The self-optimization system, however, cannot improve the performance of all 

applications. More specifically, the system is useable only with thin-client applications that 

neither use atomic or causal broadcast nor employ access, awareness, concurrency, or 

consistency mechanisms. Several important applications satisfy these assumptions, including 

those in the three problems that motivated the thesis: a distributed PowerPoint presentation, a 

collaborative Checkers game, and instant messaging. However, other important applications, 
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such as Second Life, do not, and hence our system cannot be used for it. Therefore, an 

important future direction for us is to relax these assumptions. For now, in this chapter, we 

will discuss the extent to which our current results apply to applications for which the 

assumptions do not hold.  

Finally, the system presented in the thesis is a complex prototype that can under 

certain conditions have clear benefits over existing groupware systems. However, as 

mentioned above, several simplifying assumptions were made as the system and the 

analytical model it uses were developed. Therefore, an important question is whether the 

system should be recommended as a practical alternative to software developers. The simple 

answer is that the system is a realistic alternative to existing solutions, but it cannot be 

applied blindly as it involves a number of trade-offs and unknowns. Thus, a careful cost-

benefit analysis is necessary before deciding whether or not to use the system in practice.  

 The rest of this chapter is organized as follows. First, we describe how our system 

can change the processing architecture, communication architecture, and the scheduling 

policy in a single optimization step. Following this, we present the extent to which our 

system applies when the application assumptions are relaxed. Finally, we address the cost-

benefit tradeoff of the self-optimizing system.  

6.2 Self-Optimizing All At Once 

The self-optimizing system can change the processing architecture, communication 

architectures, and scheduling policy in a single optimization step. To illustrate how it does 

this, consider first the high-level steps the self-optimizing system takes to optimize each of 

them. Regardless of what factor our system is optimizing, the first step is always to gather 
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values of all parameters in the analytical model. Once it gathers the values, the second step is 

takes is to calculate the response time matrix, although in a slightly different manner for each 

performance factor. As described in the previous chapters, the response time matrix has three 

dimensions. An entry [x,y,z] in the matrix gives the response time of userz for an input 

command entered by usery when the factor being optimized has value x. The exact 

calculation of the matrix for each factor is as follows: 

Processing Architecture: calculate response time matrix, that is, calculate all users’ 

response times of a command entered by each inputting user in the replicated and all 

centralized architectures.  

Communication architecture: calculate response time matrix, that is, for the current 

processing architecture, calculate all user’s response times of a command entered by 

each inputting user with and without multicast. 

Scheduling Policy: calculate response time matrix, that is, for the current processing 

and communication architecture, calculate all users’ response times of a command 

entered by each inputting user with each scheduling policy. 

Once it calculates the response time matrix, the third step the system takes is to invoke the 

total order function, passing it the response time matrix, list of inputting users, and identities 

of all users. Like the first step, the third step is the same regardless of what factor our system 

is optimizing. Finally, the system takes a fourth step that depends on the factor being 

optimized: 

Processing architecture: switch to the processing architecture returned by the total 

order function. 
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Communication architecture: switch to the communication architecture returned by 

the total order function. 

Scheduling policy: switch to the scheduling policy returned by the total order 

function. 

Hence, to change all three factors at once, we have to reconcile the second and fourth steps.  

Consider the second step which calculates the response time matrix. As we had 

mentioned the earlier chapters, both unicast and multicast can be used in both centralized and 

replicated architectures. Moreover, any of the scheduling policies can be used with any 

processing and communication architecture. Therefore, when calculating the response time 

matrix, our system calculates the response times of commands entered by each inputting user 

for all possible combinations of the processing architecture, communication architecture, and 

scheduling policy. Hence, it actually calculates a five dimension response time matrix instead 

of the three dimension matrix described previously. The first dimension of the matrix indexes 

the processing architecture, the second the communication architecture, and the third the 

scheduling policy. When the total order function decides which system best meets response 

time requirements, it then effectively decides which combination of the three does so. The 

value returned by the total order function gives the index of the processing architecture that 

should be used and the index of the scheduling policy that can be used since all users use a 

single processing architecture and scheduling policy at a time. Since there can be multiple 

multicast trees deployed in a communication architecture, as described in chapter three, the 

function also returns for each inputting user a pair of values. The first value indicates whether 

unicast or multicast should be used to distribute the inputting user’s input commands (the 

corresponding output commands) in the replicated (centralized) processing architecture. If it 
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indicates multicast, then the second value indicates which user is the root of the multicast tree 

that should be used to distribute commands. 

Finally, consider the fourth step which deploys the processing architecture, 

communication architecture, and scheduling policy returned by the total order function. One 

approach to changing all three is to change them in a single atomic step during which the 

acceptance of new input commands is paused. This is the approach we use to change the 

processing architecture in chapter two. As described in chapter two, one issue with the 

atomic change is that changing the processing architecture takes time and therefore, the 

response times of input commands entered during the change can be high. As our results in 

the previous three chapters show, while switching scheduling policies can be done relatively 

quickly, changing the communication architecture can take longer than changing the 

processing architecture. Thus, changing all three atomically can result in even higher 

response times of commands entered during the change. An alternative approach, which is 

the one we use, is to change the three sequentially. A sequential change is an attractive idea 

because, as described in the previous three chapters, only the processing architecture change 

must be done atomically. Therefore, the advantage of the sequential approach is that we need 

to pause input only for the duration the processing architecture change.  

When sequentially deploying the processing architecture, communication 

architecture, and scheduling policy, we must select the order in which we do so. Since the 

processing architecture defines which computers process input commands, it must be 

deployed before the communication architecture as the communication architecture dictates 

how the input commands are distributed. Otherwise, a slave computer that will be a master in 

the new processing architecture may receive input commands before it actually becomes a 
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master, which is inconsistent with the notion of the collaboration architectures. Therefore, we 

first deploy the processing architecture and then the communication architecture. As 

described in chapter four, the scheduling policy is independent of the processing and 

communication architectures. Thus, we arbitrarily chose to deploy it last  

One issue when deploying a new processing architecture is deciding what 

communication architecture and scheduling policy should be used until they are also 

changed. In particular, since the new processing architecture redefines which users process 

input commands, a previous multicast architecture may distribute input commands to slave 

computers, which is again inconsistent with the notion of collaboration architectures. To 

illustrate, consider a six-user scenario in which user1 is the only inputting user. Suppose that 

 
Figure 6-1. Replicated-multicast (consistent) architecture. 

 
Figure 6-2. Centralized-multicast (inconsistent) architecture. 
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a change is made from a replicated-multicast architecture shown in Figure 6-1 to a 

centralized-multicast architecture in which user4’s computer is the master shown in Figure 6-

4. We first change the processing architecture to centralized. If we leave the old 

communication architecture, then slave users receive input commands, as illustrated in 

Figure 6-2. Ideally, we would like to compute a new multicast architecture that is consistent 

with the new processing architecture and deploy it immediately. However, it is quicker to 

compute a unicast architecture that is consistent. Therefore, when we change the processing 

architecture, we also change the communication architecture to unicast, to get a centralized-

unicast architecture as seen in Figure 6-3. Eventually, we change to the centralized-multicast 

architecture shown in Figure 6-4. We must also choose a scheduling policy to use. Our 

system simply keeps the old scheduling policy since the scheduling policy does not bring out 

any inconsistency issues regardless of which one is used. 

 
Figure 6-3. Centralized-unicast (consistent) architecture. 

 
Figure 6-4. Centralized-multicast (consistent) architecture. 
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A potential problem with our procedure is that the framework may temporarily 

configure the application in a non-optimal fashion. In particular, since inputs are resumed 

once the processing architecture is changed, the combination of the new processing 

architecture and the old communication architecture and scheduling policy may give sub-

optimal response times. For instance, in our transition example, when the centralized-unicast 

architecture is deployed, user4 has to distribute outputs to all other users. However, in the 

final centralized-multicast architecture, user4 transmits commands only to user5 and user6. 

Since the multicast communication architecture is used because it improves response times, 

using unicast communication may result in sub-optimal performance. Similar temporary 

problems can arise because of using the old instead of the new scheduling policy. Future 

work is needed to create an atomic approach through which these the durations of these 

temporary periods is reduced. 

So far, we have discussed only how our system can improve performance by 

changing more than one factor of performance in a single optimization step. We next discuss 

how these changes can be extended to applications that do not satisfy our application 

assumptions.  

6.3 Thick-Client Architectures 

In our analysis, we have analyzed the response times of user commands that interact 

with the shared state, that is, those commands which the user-interface sends to the program 

component. In general, the user-interface may not forward all commands to the program 

component. The commands that the user-interface does not forward to the program 

component interact with only the local state contained in the user-interface. These commands 
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have been referred to as “syntactic sugar” commands [27]. Syntactic sugar commands may or 

may not be computationally heavy. When an application supports computationally heavy 

syntactic sugar commands, its user-interface has been described as “thick” [42]. On the other 

hand, when an application does not support computationally heavy syntactic sugar 

commands, its user-interface has been described as “thin” [42].  

Our analysis has focused on applications with thin user-interfaces, also known as 

thin-client architectures [42]. As mentioned before, such applications are used frequently in 

practical collaboration scenarios.  They include distributed PowerPoint, a collaborative 

checkers game, and instant messaging. On the other hand, many popular applications, such as 

massively multiplayer online games [42], have thick user-interface components. Therefore, it 

is important to consider thick-client applications, as well. After all, syntactic sugar 

commands should have good local response times. 

The thin-client analysis does not directly apply to thick-client applications. The 

reason is that computationally-heavy syntactic-sugar commands require a lot of CPU time. 

As a result, they will either delay the time at which the CPU processes a shared command if 

the CPU performs them first or delay the time at which the CPU completes processing a 

shared command if the CPU processes it concurrently with them. Either way, the time at 

which the processing of a shared command is completed is increased, which increases the 

response times of the command. Moreover, the syntactic-sugar command will also increase 

the time the CPU requires to queue a command for transmission. The combination of these 

effects will lead to increases in response times of the shared commands. To accurately 

predict the resulting increase in response times requires, a model of syntactic-sugar 

commands is needed. Unfortunately, the model is application-dependent. Thus, a separate 
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model is needed for each application. Developing these models for all applications is beyond 

the scope of our work.  

Our analysis can, actually, indirectly account for computationally-heavy syntactic 

sugar commands as the cost of executing them will be reflected in the cost of processing the 

shared commands. To illustrate, consider a thick-client application scenario. Suppose that the 

users have similar computers, which in turn have similar network connections. Suppose also, 

that one of these users is illustrating something to the other users, and that in the process of 

illustrating, the user is generating both shared and syntactic-sugar commands. Because the 

syntactic-sugar commands increase the time the CPU requires to process and transmit the 

shared commands, the processing and transmission costs of shared commands reported by 

the illustrating user are going to be higher than those reported by the observing users. 

Therefore, it will appear to our system that one of the user’s computers is slower than all of 

the other users’ computers. Therefore, indirectly, our analysis and system can account for 

thick-client architectures.  

The issue arising from the differences between thin-client and thick-client 

architectures is an architectural issue. Next, we consider issues raised by collaborative 

functionality. 

6.4 Collaborative Functionality 

A collaborative application can offer a variety of collaborative functions to the users. 

Two functions are mandatory: the processing and distribution of user commands. Our 

analysis of response times of user commands has focused on these mandatory tasks. In 

general, an application can provide additional optional collaborative functions, such as 
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concurrency control, consistency maintenance, awareness, and access control that can impact 

the response times of the user commands. 

6.4.1 Concurrency Control 

When multiple users enter commands, it is possible that their commands are 

inconsistent, that is, their commands conflict. The main goal of concurrency control 

mechanisms is to prevent the users from entering inconsistent commands. As described in the 

related work chapter, concurrency control mechanisms are pessimistic or optimistic by 

nature. As described in the related work section, both pessimistic and optimistic concurrency 

control schemes require additional commands to be transmitted and processed in order to 

coordinate the prevention of inconsistent commands. Future work is needed to not only 

model these tasks but also study the scheduling policies for them.  

Interestingly, Greenberg and Marwood [43] observe that the amount of conflicts that 

happen under optimistic concurrency control mechanisms is a function of remote response 

times. More specifically, the lower the remote response times, the sooner a user becomes 

aware of other users’ actions, and thus makes fewer conflicting actions. Therefore, our 

analytical model can be used to choose system configuration that provides the lowest remote 

response times among inputting users (as opposed to observing users), and thus reduce 

potential conflicts. A reduction in conflicts would reduce the use of conflict recovery 

mechanisms. In turn, this enables the lazy scheduling policy to further delay processing 

commands, thus improving remote response times even more in a self-feeding cycle. This 

cycle calls for reducing remote response times as much as possible, even if the users cannot 

notice the reduction. Of course, if the users notice that there are fewer conflicts, then it means 

that they noticed the effect of the response time reduction!  
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Greenberg and Marwood [43] also conclude that if users cannot notice the 

degradation in local response times caused by pessimistic approaches, then these approaches 

should be used since their optimistic counter-parts are considerably more difficult to 

implement. This notion of using pessimistic mechanisms if users cannot notice the delay is 

similar to the notion of delaying the processing task in our lazy policy if the users cannot 

notice the delay. It would be interesting to combine the idea of lazy scheduling with 

concurrency control. Merging these ideas can create a new pessimistic-optimistic hybrid 

concurrency control scheme, which works as follows. When a user enters a command, the 

scheme behaves pessimistically at first. If the time required to check for conflicts is longer 

than the local response time degradation threshold, however, the scheme turns optimistic and 

uses conflict resolution mechanisms to handle any conflicts that occur. If, on the other hand, 

the time required for conflict checking is less than the local response time threshold, the 

scheme remains pessimistic. Such a scheme would be useful because the user would never 

notice the delays during the pessimistic phase, yet conflicts detected during the phase can be 

handled easily by rejecting the user’s command. 

6.4.2 Consistency Maintenance 

So far, we have looked at the case when concurrent user commands conflict. In many 

cases, simultaneous commands do not conflict. Nevertheless, they may still lead to state 

inconsistencies if they are not executed in the same order by each user’s computer. That is 

not to say they always do. For example, when commands commute, then state inconsistencies 

cannot arise. Regardless of the order in which the commands are executed, the final state is 

the same. For example, in a distributed PowerPoint presentation, if the presenter enters two 

commands to advance the presentation, the commands commute.  
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Moreover, when simultaneous commands lead to state inconsistencies, the users may 

not care [43]. For example, in an instant-messaging application, when a user enters the 

message, it is immediately displayed in the local message history. Therefore, if multiple users 

enter messages at the same time, then their histories may be different because, in general, it 

takes some time for a message to go from one user’s computer to another. But even though 

the message histories are inconsistent, the users do not seem to care – perhaps because the 

history is not important to them or they can deduce the correct message order by “eye-

balling” the history.  

When the commands do not commute and the users care about having a consistent 

view of the workspaces, then consistency maintenance mechanisms need to be used. The 

mechanisms that are used in an application depend on the consistency requirements. The 

strongest consistency requirement is that all computers execute all commands in the same 

order. This is accomplished using atomic broadcast [25]. Atomic broadcast delays the 

execution of a received command until the broadcast ensures that the order in which the 

command is executed with respect to other commands on the receiving computer is the same 

as the order in which it is executed on all other computers. This delay increases response 

times. As we stated in the introduction, we assume that when an idle computer receives a 

command, it immediately begins performing the tasks for that command. Therefore, the 

assumption circumvents the delay in performing these tasks that are necessary to ensure 

atomic consistency. 

A less stringent consistency requirement is that causality is preserved [58]. The causal 

relationship is defined through a “happens-before” function. It effectively states that when a 

command entered locally is executed, every other command that has been executed by the 
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computer happened-before the command. To preserve causality, whenever a different 

computer receives the command, it cannot execute the command until it executes all of the 

commands that “happened-before.” When a “happened-before” relationship does not exist 

between two commands, the commands are said to be concurrent. Concurrent commands 

occur, for example, when two users enter a command at the same time. There is no delay in 

processing concurrent commands when they arrive. Nevertheless, the delay required to 

ensure that the order of execution of non-concurrent commands satisfies the happened-before 

relationship can increase response times. 

When concurrent commands are executed in different orders on different computers, 

they can lead to state inconsistencies. One solution is to transform these operations in some 

special way so that even though they are executed in different orders on the users’ machines, 

the resulting state is the same. Such transformations are possible only when some knowledge 

of the semantics of the commands is available. For example, in multi-user editor applications, 

a promising solution is operation transformations [85]. Another solution is to undo 

commands executed out of order and redo them in the same order on all devices [70]. 

Alternatively, state can be rolled-back to some consistent state on all devices and then 

commands can be repeated on all devices in the same order form that state. Regardless, of the 

mechanisms, the extra computation costs increase the processing costs of commands, and 

hence can increase response times. 

All published implementations of the replicated architecture assume that the program 

component does not implement atomic broadcast to ensure good response times [27], 

requiring instead causal consistency and relying on some application-specific scheme to do 

consistent real-time merging of concurrent input. Therefore, it is important that we consider 
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causal consistency maintenance in the future. When we extend our work in this direction, we 

have to adjust the analysis only for the delays of non-concurrent commands. In particular, our 

analysis already accounts for the case when consistency is maintained using operation 

transformation mechanisms. The reason is that operation transformation algorithms simply 

increase the processing costs of commands and nothing else. We have not, however, 

measured these costs. A recent paper by Shao et al. [78] has measured them in asynchronous 

mobile scenarios. They provide an algorithm which is able to transform as many as 3000 

text-editing operations in less than 1.5 seconds on a mobile tablet device with a 900Mhz 

processor. While no costs for transforming a single operation are reported, it appears that the 

average time required for on operation transformation is around 0.5ms. Since this is two 

orders of magnitude less than our noticeable threshold value of 50ms, it seems that all of our 

results should hold when operation transformations are used. 

So far, we have only considered the impact on response times of consistency 

mechanisms. An interesting observation is that improving response times can improve the 

effectiveness of some of these mechanisms. For instance, Fletcher et al. [34] have shown that 

dead-reckoning algorithms can perform better when remote response times are low. There 

are no thresholds in this case. The response times simply need to be as low as possible. Thus, 

if dead-reckoning and other optimistic concurrency control mechanisms are used in a 

collaborative system, it is important to improve remote response times as much as possible. 

6.4.3 Access Control 

Access control mechanisms ensure that a user cannot execute unauthorized 

commands. In many respects, they are similar to concurrency control mechanisms. They can 

be optimistic or pessimistic. Optimistic mechanisms allow an action to proceed and later 
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revoke it if it turns out the action was not authorized. Pessimistic mechanisms do not allow 

an action to proceed until it is first verified that the action is authorized. Like locking 

concurrency control mechanisms, access control mechanisms must contact a manager, only 

instead of contacting a lock manager, they contact the access manager. Therefore, from the 

point of view of our analysis, they are not supported because they can delay actions and have 

their own processing and transmission tasks. 

6.4.4 Awareness 

Not all collaborative functions are correctness driven. One such functionality is 

provided a user with awareness of other users’ actions. Awareness mechanisms can be 

roughly classified by whether or not they must be explicitly invoked by the user to convey 

information to other users.  

Awareness commands explicitly invoked by the users are effectively shared 

commands. The reason is that the action of invoking the mechanism can be considered a 

shared action. Therefore, our analysis and results account for them. An example of an 

awareness mechanism that requires implicit action from a user to convey information about 

that user is a telepointer. A telepointer enables a user to point at objects on a remote user’s 

screen. Since a user must explicitly invoke a telepointer to perform a telepointing operation 

on a remote user’s screen, telepointing commands are effectively shared commands.  

Awareness mechanisms that are not explicitly invoked by the user provide awareness 

implicitly based on shared commands. As a result, they create additional commands for 

updating awareness information on other users’ screens. Examples of such awareness 

mechanisms are radar views [7][49][75][81], fish-eye views [44][75], and multi-user 

scrollbars [7][49]. Our analysis can account for these additional commands as long as the 
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awareness commands are piggy-backed on the shared commands. In this case, the 

transmission costs measured by our system would increase. Moreover, the processing of the 

commands on the remote machines would also increase because they would include the cost 

of processing both commands. However, our analysis does not account for all 

implementations of awareness mechanisms. For example, some mechanisms such as multi-

user scrollbars transmit commands even when no shared commands are transmitted. A multi-

user scrollbar uses a separate scrollbar elevator to indicate the position of each collaborator in 

the workspace. If one user is simply scrolling or reading the workspace without making 

modifications, awareness commands will be sent to update the multi-user scrollbar on other 

users’ machines even though the user did not manipulate the shared state. The impact of 

these awareness commands on the local and remote response times is not captured by our 

analysis. Of course, if the scrollbar commands are considered shared commands, than our 

analysis applies. In this case, the shared scrollbar commands would have different processing 

costs on the local and remote computers.  

6.5 Immediate Applicability of Results 

This dissertation shows that under certain conditions, (a) the choice of processing 

architecture, communication architecture, and scheduling policy can noticeably impact 

performance and (b) the self-optimizing system that automates their maintenance can have 

clear performance benefits over traditional groupware systems. The thesis clearly shows how 

these conditions can occur in some practical scenarios, such as instant messaging, 

collaborative board games, and distributed presentations. However, it does not show whether 
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they occur in actual scenarios. Thus the question that remains is whether the proposed system 

should be recommended as an alternative to software engineers. 

6.5.1 Self-Optimizing System Complexity 

The simple answer is that the self-optimizing system is a realistic alternative to 

existing frameworks, but that it cannot be applied blindly as it involves a series of trade-offs 

and unknowns. At the very least, the system is more complex than traditional client-server 

systems. As with any complex program, the complexity can have serious implications in 

terms of software development. For instance, bugs and deployment issues are likely in initial 

iterations while maintenance is an issue in the long term. Ultimately, to recommend the 

system to software developers, the cost of this added complexity must be worth the benefits. 

Therefore, if the community finds system performance to be a significant interaction 

roadblock, then the risk is worth it. On the other hand, if the current systems offer 

sufficiently good performance, then the risk is not worth it. 

6.5.2 Application Complexity 

Another software development issue is that to fully utilize the system, applications 

need to support both centralized and replicated semantics. However, a large number of 

groupware applications are constructed as centralized systems, such as NetMeeting 

Application Sharing, Live Meeting, Webex Application Sharing, VNC, and Google Wave. 

Their preponderance is likely due to their simplicity: there are many known issues with 

replicated architectures in certain application settings. Thus, gaining performance benefits of 

dynamically switching between centralized and replicated architectures demands a greater 

sophistication in terms of how the program collaborative applications are constructed.  As 
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was the case with the framework development issues, this implies a trade-off. In cases where 

performance benefits are warranted, this extra work is worth it. Indeed, many commercial 

systems, such as NetMeeting Whiteboard, Grove PowerPoint, Webex PowerPoint, and 

GroupKit [72] are constructed on a replicated architecture, and Google’s Docs and 

Spreadsheet uses a semi-replicated architecture. Thus, in general, replicated semantics are not 

a barrier to the creation of collaborative applications. Hence, they should not be a barrier to 

using the self-optimizing system. Moreover, even if an application is locked into centralized 

or replicated semantics, the system proposed in this thesis can still improve its performance 

by automating the maintenance of the communication architecture and the scheduling policy.  

6.5.3 Networking Issues  

An important question that is not related to the cost-benefit analysis of software 

development complexities is whether the analysis presented in this thesis ignores certain 

important network related factors. The typical set of network factors in any distributed 

application consists of bandwidth, network latency, jitter, packet loss, and firewall traversal.  

Network Latency and Bandwidth: In the analytical model presented in the thesis, 

network latency is a parameter. And while bandwidth is not an explicit parameter, it 

is captured by the network card transmission times. Therefore, network latency and 

bandwidth are accounted for.  

Jitter: The model does not account for jitter because there predictive model has been 

presented that can predict frequency, duration, and magnitude of jitter. However, 

there are ways of reducing its on performance. To illustrate, consider a telepointer 

action. Stuckel and Gutwin [83] have shown that it is possible to handle jitter on the 

receiver side using a dead-reckoning algorithm. These algorithms typically introduce 
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more commands that the receiver must process. The model presented in this thesis 

does not directly account for the impact of these additional commands on processing 

costs. But as mentioned above, it can indirectly measure the impact.    

Packet Loss: Packet loss is an issue when using non-reliable transmission protocols 

such as UDP. The self-optimizing system uses TCP communication, and therefore, 

packet loss is not an issue. Communication costs arising from TCP’s guarantees are 

accounted for in the network latency. 

Firewall Traversal: The model does not directly account for the impact of firewalls 

on the direct communication and communication costs. The costs of firewall 

traversal, however, are indirectly accounted for in the network latency. Moreover, if a 

firewall blocks two computers from communicating directly, the system assigns a 

value of “infinity” to the network latency between the computers. It passes this value 

to the model, which effectively means that the link is not going to be used.  

6.5.4 Windows of Opportunity 

Finally, the dissertation targets the window of opportunity. As mentioned in the 

introduction, this window includes the cases in which the network and processor resources 

are somewhat stressed, specifically the cases between high stress (in which performance is 

likely to always be poor) and low stress (in which performance is likely to always be good). 

The question that has not been answered by this thesis is whether a window of opportunity 

exists in all scenarios. As mentioned in the introduction, windows of opportunity exist in 

other fields, such as multimedia networking. Therefore, it can be expected that windows of 

opportunity also exists in collaborative systems. However, further analysis of network and 
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processor bottlenecks during real collaborative sessions is required to determine whether they 

occur in actual collaborative sessions.  

6.6 Future Applicability of Results 

While currently windows of opportunity can be expected, a related issue is whether 

they will exist in the future. In particular, processing powers, network speeds, and the 

number of cores on a typical computer are constantly increases. Therefore, it may seem that 

eventually, the choice of processing architecture, communication architecture, and 

scheduling policy may not matter. However, an analysis of the past and current application 

trends revels that this is not likely going to be the case. 

6.6.1 Increasing Processing Powers 

One argument against the existence of window of opportunity in the future is that 

because processing powers are constantly increasing, eventually, processing powers will be 

insignificant, and therefore, the choice of processing architecture will not matter. While this 

argument may be true, we actually believe that it is wrong. In particular, processing powers 

have constantly been increasing since the invention of the first computer. And yet today, with 

multi-core desktops, even text-editing operations in Microsoft Word have noticeable 

response times. Some even have multi-second response times. The fact is that as processing 

powers have increased, the consumers have demanded more complex applications. These 

complex applications have increasing processing costs which largely offset the increases in 

processing powers. Since the demand for more complex applications is not likely to stop, 

processing costs will remain an issue, and therefore, the processing architecture will remain a 

response time factor. 
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6.6.2 Increasing Network Speeds 

Another way to debate the existence of windows of opportunity in the future is from a 

networking perspective. In particular, networking speeds are constantly increasing. 

Therefore, communication costs will eventually become insignificant, which means that the 

choice of communication architecture will not matter. However, like the processing power 

argument, this network speed argument does not consider the trends in applications and 

hardware. For instance, the demand for more complex applications implies not only 

increasing processing costs but also increasing communication costs. To illustrate, consider 

the latest generation of videoconferencing applications, commonly referred to as telepresence 

systems. The main selling point of these applications is that they stream high-definition 

video. These streams are sufficient to saturate many network links. Therefore, 

communication costs will remain an issue. Moreover, cellular phone network speeds have not 

been increasing at a breakneck pace. One important reason is that the hardware needed to 

utilize higher speed links uses too much power. Therefore, until battery life of mobile devices 

improves, higher cellular network speeds may not be used. Given these arguments, 

communication costs are likely to stay significant in the future, which means that the 

communication architecture will remain a response time factor. 

6.6.3 Increasing Numbers of Cores 

The existence of the window of opportunity in the future can also be argued against 

from the multi-core processor perspective. In particular, the thesis shows that when multiple-

cores are available for scheduling, then the parallel multi-core policy should always be used. 

Since multi-core desktops are becoming pervasive, it appears that the choice of scheduling 

policy will not matter. However, there are at least two important trends predicting that a 
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single-core may be all that is available to carry out processing and transmission tasks. For 

instance, most, if not all, consumer mobile devices today are single-core. An important 

reason that they are not multi core is that multi-core processors are generally more power 

hungry than single-core processors. Given that battery life is an issue with these devices, it 

makes sense that they are still single core. Another important reason is that more complex 

applications may occupy most of the cores, perhaps leaving a single-core for the 

collaborative tasks. In particular, in state of the art telepresence systems, rendering high 

definition videos of just two remote participants results in 100% utilization of a high-end 

dual-core and a near 100% utilization of a high-end quad-core desktop. Moreover, as users 

typically multi-task, some of the cores may have to be dedicated to their private applications, 

again perhaps leaving only a single core for the collaborative application. Overall, these 

arguments imply that scheduling policy will remain a response time factor.  

6.7 Summary 

In this chapter, we have shown how our system changes the processing architecture, 

communication architecture, and scheduling policy in a single optimization step. Moreover, 

we have discussed the extent to which our analysis and results apply to scenarios outside of 

the scope we outlined in the introduction. Some extensions beyond our scope are 

straightforward, such as those for supporting awareness and operation transformations. On 

the other hand, supporting concurrency control, access control, and general consistency 

mechanisms require significant further analysis. Finally, we have presented an initial cost-

benefit analysis of using the self-optimizing system as an alternative to existing groupware 

systems. The analysis shows that if the performance of current systems is an issue, then the 
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added complexity of the self-optimizing system is worth it. Moreover, it shows both that the 

benefits are possible in actual scenarios, both today and in the future. 

  



CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 
 

This thesis makes contributions at a number of levels. At the highest level, it is the 

first work to identify and exploit the window of opportunity for improving performance in 

collaborative systems. The window of opportunity is an important concept as it relies on 

algorithmic ways of improving performance rather than brute-force monetary investments in 

hardware and network systems. The thesis proves that, when there is a window of 

opportunity, 

 

The next highest-level contribution of the thesis is identifying that multicast and 

scheduling policies are important response-time factors in collaborative applications. These 

factors compliment an earlier result by Chung [21] who found that the processing 

architecture also impacts response times. The importance of the new factors was shown 1) 

theoretically, through examples, 2) analytically, through mathematical equations, and 3) 

practically, through simulations and experiments. In particular, these results show that 

THESIS 

For certain classes of applications, it is possible to meet performance criteria better 

than existing systems through a new a collaborative framework without requiring 

hardware, network, or user-interface changes. 
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The identification of multicast and scheduling policies as response time parameters 

resulted in three innovations. First, the identification of multicast as a response time 

parameter required an update to the traditional models of collaborative systems because they 

did not support multicast. The bi-architecture model of collaborative systems, which supports 

multicast, overcomes this problem. Second, the identification of scheduling as a response-

time parameter led to discovery of two scheduling policies, one for single-core and another 

for multi-core systems. For single-core systems, a new policy, the lazy policy, is identified. 

The policy, which marries results from human psychology and computer science, makes the 

traditional process-first policy obsolete. Moreover, the thesis results have shown that on 

single-core systems, the lazy policy and the other two traditional policies, transmit-first and 

concurrent, do not dominate each other and hence all of them must be supported. The parallel 

policy is presented for multi-core systems. When the processing task is (is not) parallelizable, 

it schedules the transmission task on one core and the processing task on a different core 

(multiple different cores). The policy, somewhat counter-intuitively, never uses more than 

one core for the transmission task. It does so for two reasons, both of which are described in 

chapter four: when multiple cores perform the transmission task 1) the remote response times 

SUB-THESIS IV 

The scheduling policy used for executing the processing and transmission tasks 

impacts response times. 

SUB-THESIS II 

The communication architecture impacts response times. 
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become unpredictable, and 2) there is no remote response time benefit as the network card is 

the bottleneck which serializes the transmission. The benefits of the parallel policy were 

shown theoretically and experimentally.   

The next highest-level contribution of the thesis is an analytical model that can 

predict the performance of a collaborative application for any combination of values for the 

processing architecture, communication architecture, and scheduling policy. Like analytical 

models in other computer science fields, it increases our understanding of the subject 

analyzed. In the case of collaboration architectures, it helps us better understand and compare 

the event flow and performance of the centralized and replicated architectures with and 

without multicast. Moreover, it provides guidance for users with varying degrees of choice 

regarding the combination of the processing architecture, communication architecture, and 

scheduling policy in the collaboration systems they use. It can be used by (a) users of 

adaptive systems to decide when to reconfigure the systems, (b) users who have a choice of 

systems with different configurations to choose the system most suited for a particular 

collaboration mode (defined by the values of the collaboration parameters), and (c) users 

locked into a specific configuration to decide how to change the hardware and other 

collaboration parameters to improve performance. When one or two of the processing 

architecture, communication architecture, and scheduling policy is fixed, the model can help 

guide the users to choose values that optimize response times for the performance parameters 

that are not fixed. 

Relying on the users to make the configuration decisions, however, is problematic for 

several reasons. The main reasons are that the users can make errors as they apply the model,  

forget to apply the model, or choose not to apply it because is tedious to do so at the start and 
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during each collaborative session. Therefore, the next contribution of this thesis is the self-

optimizing system that applies the model to automatically select and deploy the processing 

architecture, communication architecture, and scheduling policy combination that best meets 

the user-response time requirements. The system can select these values at start time or 

switch them dynamically at runtime. Moreover, as the number of sessions in which it is used 

increases, the accuracy of its response time predictions improves, and therefore, it can better 

meet the performance requirements. The thesis has shown through experiments that the 

system can indeed calculate the configuration that best meets the requirements and switch to 

that configuration both at start and at run time. In particular, the results show that 

 

SUB-THESIS V 

It is possible to develop a system that automatically switches to the scheduling 

policy that satisfies any user-specified response time criteria better than existing 

systems. 

SUB-THESIS III 

It is possible to develop a system that automatically switches to the communication 

architecture that satisfies any user-specified response time criteria better than 

existing approaches. 

SUB-THESIS I 

It is possible to develop a system that automatically switches to the processing 

architecture that satisfies any user-specified response time criteria better than 

existing approaches. 
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The fact that the self-optimizing system employs the analytical model to make 

optimization decisions proves that 

 

The next contribution of this thesis is the response time simulator. The simulator can 

calculate the expected response times for any combination of the processing architectures, 

communication architectures, and scheduling policies. As such, it is the first NS-like system 

for collaborative systems. It is not exactly like the NS system because it does not provide 

users with a UI. Nevertheless, like the NS system, it gives textual output that users can use as 

input into their own analytical programs or represent visually through graphs, which leads to 

our final contribution. 

The simulator and the self-optimizing system can both be used as teaching tools in 

collaborative systems courses. The simulator can be used to give students a quick idea of 

advantages and disadvantages of choose certain configurations. The system can be used to let 

the users experience the effect on response times of various configurations. 

This work suggests several new directions for research. One important direction is to 

evaluate the benefit of the self-optimizing system through user studies. Previous work has 

shown that the response time benefits of using our system should be noticeable to users. 

However, our system raises several other questions. For example, our system allows users to 

specify the response time requirements through total order functions. While we can speculate 

SUB-THESIS VI 

It is possible to develop a model that analytically evaluates the impact on response 

times of different processing architectures, communication architectures, and 

scheduling policies to the degree necessary to automate their maintenance. 
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some useful requirements, no work has investigated what the users would actually specify. In 

particular, what kind of total order functions do users prefer? Also, in our experience, users 

stop using a collaborative system when performance is poor. Would they continue to suffer 

poor performance if they know that eventually our system may improve it? In addition, recall 

that our system can temporarily degrade performance when it changes two or more of the 

processing architecture, communication architecture, and scheduling policy in a single 

optimization step. Are users willing to experience temporarily degraded performance for 

better future performance?  

In addition to motivating new user studies, this work motivates new algorithm 

research. For example, an interesting future direction is to create collaboration specific 

multicast algorithms. As mentioned in the thesis, we use the HMDM algorithm because it is 

the only one that considers application-level communication costs, which can be significant 

in collaborative applications. However, HMDM does not consider all collaboration 

parameters, such as processing costs and scheduling policies, when creating the multicast tree 

and hence can actually hurt performance. It will be useful to create the first multicast scheme 

that considers all of the parameters in our analytical model in order to take the next step in 

improving response times. 

It would also be interesting to create a multicast scheme that not only improves 

response times but also minimizes the variation in response times. As mentioned in the 

related work chapter, this idea can be achieved by combining the aspects of the HMDM [13] 

multicast scheme that reduces response times and the aspects of the Chains [9] scheme which 

minimizes end-to-end delay variations.  
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Another attractive algorithm to investigate is a prefetching scheme that does not 

impact the response times of the shared commands. As mentioned in the related work 

chapter, such a scheme could use blocking communication for the prefetched data and non-

blocking communication otherwise. This would allow the system to pause the prefetching of 

the data and free up the network card for immediate transmission of the shared commands. 

It is also attractive to evaluate the benefit of using different scheduling policies on 

different users’ devices. For example, it would be interesting to evaluate the response time 

when using the process-first policy on the inputting user’s computer, to provide good local 

response times, and the transmit-first policy on all of the other users’ computers, to provide 

good remote response times. Our system already deploys the parallel policy on multi-core 

computers regardless of what scheduling policy it deploys on single-core computers is used. 

Therefore, the system is capable of deploying different scheduling policies on different 

machines; what it needs is an updated analytical model that supports such scheduling 

schemes.  

Moreover, it would be useful to combine aspects of the lazy policy with concurrency 

control mechanisms as described in the discussion chapter. The combination would allow the 

creation of a new hybrid pessimistic-optimistic scheme that reduces the response time 

degradations caused by concurrency control mechanisms.  

Another important future work direction is to extend our work to other applications. 

More specifically, it would be useful to investigate analytical models and extensions to our 

self-optimizing system for thick-client applications and applications that use concurrency 

control, consistency maintenance, awareness, or access control mechanisms. One important 

thick-client application to consider is Second Life. Second Life has been used for various 
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kinds of collaborations, including classroom lectures, group meetings, and presentations. 

Unfortunately, it does not support large collaborations because of performance issues. While 

the processing architecture is fixed to centralized, the communication architecture and 

scheduling policies can be changed. Hence, it would be interesting to evaluate how the 

scalability of Second Life improves when the self-optimizing framework is improving its 

performance.  

Also, it would be useful to investigate applications in which users enter consecutive 

and simultaneous commands. Recording and then replying logs from these applications 

would allow the verification of our model and system for such commands. 

Yet another interesting direction is building a cluster of computers that can be used 

for large scale collaboration experiments, not only by us and our system, but by other 

researchers as well. Such a cluster would provide more fine grained control over what its 

resources than is provided by Planet Lab and Amazon’s CE2.  

It would also be useful to further investigate several aspects of our system. For 

example, it would be useful to incorporate Chung’s solution for changing processing 

architectures without pausing inputs into our system. Moreover, it would be interesting to 

evaluate the optimal values of some of the system parameters. One of these parameters is the 

length of the period that should elapse before the system calculates if a new configuration 

would benefit response times. Another is the weights that are assigned to the historical and 

recent performance measurements in the cost estimation calculations. We used arbitrary 

values that seemed to work well in our experiments. However, more optimal values could 

exist. It would also be useful to investigate solutions that reduce the periods of sub-optimal 
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configurations that can occur when our system switches communication architectures and 

scheduling policies.  

Finally, an important future work is to further evaluate the parallel multi-core policy 

and investigate how our theory differs from what happens during experiments. While many 

devices in use today, such as netbooks, smart-phones, and even many desktop computers and 

laptops still have processors with a single-core, we can expect all of them to migrate to multi-

core processors. Desktops and laptops are already doing so. Thus, further investigation of 

multi-core scheduling policies is required. 
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APPENDIX A 

COLLECTING DATA FOR SIMULATIONS AND EXPERIMENTS 
 

1.1 Overview 

The purpose of this appendix is to summarize our data collection approach for 

experiments and simulations. We present the results of our simulations and experiments as 

needed in chapters 3, 4, and 5. These chapters are carefully organized to make the proof of 

our thesis tractable. Each chapter builds on the results from the previous chapter. Similarly, 

when we collected the data for experiments and simulations for each chapter, the data set for 

one chapter subsumed the data from previous chapters. Hence, in this appendix, we describe 

our data collection for the set of experiments and simulations presented in chapter 5. As a 

result, parts of the discussion presented here is not relevant for chapters 3 and 4. For instance, 

transmission times, which are relevant in chapters 4 and 5, are not relevant for chapter 3. 

Nevertheless, we present all of our data collection at once to minimize repetition. As such, 

this appendix is meant to be used for lookup of information referenced in each chapter.  

1.2 Gathering Performance Parameter Values 

In general, to evaluate the performance of a system, one must first identify the 

parameters relevant to performance. We refer to these as performance parameters. Ideally, 

the parameters must be assigned values that reflect reality. 

Our analytical model has provided us with the parameters relevant to the 

performance: the input and output processing and transmission times for a command on each 

user’s computer; think times of users’ commands; the network latencies between the 
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collaborators’ computers; the number of collaborators; the type of computer that each 

collaborator uses. We must also consider a second set of parameters. These are the 

parameters needed by HMDM to construct the multicast overlay. We refer to these as overlay 

parameters. The overlay parameters must first be assigned values to construct the multicast 

tree, and then the performance parameters must be assigned values to evaluate the overlay 

under various conditions.  

We next describe how we assigned values to these parameters. The first two 

parameters, the costs and think times, depend on the user’s actions. As a result, we call these 

parameters user parameters. The remaining parameters are hardware and network related, so 

we call them system parameters. Following this, we present our approach to assigning values 

to the parameters specified by our model. Then, we present our approach for assigning values 

of the system parameters. Finally, we discuss how we assigned values to the overlay 

parameters. 

1.3 Gathering User Parameters 

To assign values to user parameters, we must first gather users’ actions. Thus, we first 

present our approach for collecting user actions. 

1.3.1 Logs of Users’ Actions 

Several approaches could be used to gather user actions. 

 Live interaction: Under this approach, pairs of users would perform a 

collaborative task multiple times as the architecture and system parameters are 

varied in a controlled manner each time. 
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 Actual logs: Another approach is to use logs of actual collaborations and 

assume that these are independent of the system parameters such as 

architecture, machines used, and network delays. These logs can then be 

replayed under different values of system parameters. 

 Synthetic logs: With this approach, the user logs can be created by varying the 

user parameters using some mathematical distribution such as Poisson’s. 

Since users cannot be relied upon to perform the same sequence of actions and have 

the same think times in different collaborative sessions, the live interaction approach is 

impractical. The other two approaches require a large number of logs to ensure that a wide 

range of values for user parameters are covered. This is not a problem for synthetic logs, but 

such logs do not address the practicality concern as it is not clear parameter values based on 

mathematical distributions represent reality. Logs of actual interaction are not provided in 

any public database and we were unsuccessful in obtaining them from researchers who we 

knew had logged their collaboration tasks. Thus to use the actual-log approach, we would 

have to gather a large number of actual logs ourselves, which is beyond the scope of our 

work: the analytical model is our primary contribution and the experiments are addressed 

mainly to validate the model. In other fields such as real-time systems where benchmarks are 

not widely available, it is customary to resort to the synthetic-log approach to validate new 

theoretical results. We did a little better by using a hybrid of the synthetic and actual log 

approaches. We recorded a small number of actual logs to obtain realistic values of some 

user parameters and then used these values to create a large number of synthetic logs that we 

then replayed in the actual experiments using different architectures and system parameters. 
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One issue with creating many synthetic logs from several actual logs approach is that 

the parameter values obtained from the recorded collaborations may not be representative of 

the values of these parameters in other collaborations. In general, applications used in 

synchronous collaborations involving shared access to a distributed object can be divided 

into four categories: 1) logic-centric, which process computationally expensive input 

commands; 2) data-centric, which distribute large amounts of data; 3) logic-and-data-

centric, which both process computationally expensive input commands and distribute large 

amounts of data; and 4) stateless, which do neither. 

We reduce the problem of log generality by analyzing collaborations involving 

applications belonging to three of these categories: a Checkers game, which is logic-centric; 

PowerPoint, which is data-centric; and a chat application, which is stateless. The checkers 

game fostered collaboration rather the competition: multiple users formed a team that played 

against the application, which used a computationally expensive algorithm to calculate its 

next move. The algorithm optimized the computer’s move by analyzing scenarios five moves 

ahead. The users used an audio channel and a telepointer to determine their next move. Any 

of the users could then make the actual move. This application was created by extending an 

existing single-user checkers program. 

We analyzed recordings of two PowerPoint presentations that were given by one 

presenter to thirty and sixty audience members, respectively. In addition, we recorded two 

chat-room sessions consisting of eighty participants of which as many as eight posted 

messages. Finally, we recorded a collaborative checkers game in which the team consisted of 

two users. Thus, in these applications, not only did the nature of the application engine vary 

(logic-centric, data-centric, stateless) but also the number of actors and observers. None of 
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the applications had concurrency control – the PowerPoint and chat applications did not 

require such control and users of the checker’s program used social protocol to decide who 

made a move. 

These recordings contain actual data and users’ actions – PowerPoint commands and 

slides, checkers moves, and chat messages. The checkers engine used in the actual tasks was 

transformed into a collaborative program using an infrastructure that has facilities for logging 

and replaying commands. Therefore, extracting input and output commands from the 

generated checker logs was relatively simple. The chat programs we logged were the ones 

implemented by the chat rooms we observed. We ran them under Microsoft Live Meeting 

2005 and used its screen-recording capabilities. As a result, we had to use a tedious manual 

process to extract the input command messages in the sessions – analyzing one ten-minute 

recording required two hours of work! In addition to being three qualitatively different 

applications, IM, Checkers, and PowerPoint turned out to be a good choice of applications 

for which to analyze actual logs for two reasons: 1) the parameters values we measured in 

these logs were fairly wide spread, and 2) they represent the kind of tasks users do on a daily 

basis. 

1.3.2 Processing and Transmission Costs 

To obtain the transmission time parameter values, we replayed these logs using a 

Java-based infrastructure that has facilities for logging and replaying commands. The 

checkers program used in the actual tasks was already transformed into a collaborative 

program using this infrastructure. Hence, the checker logs were replayed directly to the 

program used in the actual task. To replay the chat commands, we used the replay-supporting 

infrastructure to create our own version of the chat application. To replay the PowerPoint 
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commands, we had to bridge the gap between our Java-based replay-supporting infrastructure 

and the PowerPoint application. We used the J-Integra library to create this bridge and relay 

the replayed commands to the PowerPoint application. This library required us to assume that 

slave computers could directly access file systems because the information about a slide 

contained in an output command from the master had to be saved in a file before it could be 

displayed by the slave. 

We measured the transmission times for a P3 500MHz laptop, a P4 1.7GHz desktop, 

a Core2 2.0 GHz desktop, and a 1.6 GHz Atom netbook. All the computers were running 

Windows XP except the netbook, which was running Windows 7. The P3 laptop and the P4 

desktop are used to simulate next generation smart-phones and netbooks, respectively. We 

recorded the average amortized input and output command transmission times of each 

machine for checkers, PowerPoint, and chat applications. We removed any “outlier” entries 

from the average calculation, caused for instance, by operating system process scheduling 

issues. To reduce these issues, we removed as many active processes on each system as 

possible. Ideally, while we replay the recordings, we should run a set of applications users 

typically execute on their systems. However, the typical working set of applications is not 

publicly available so we would have to guess which applications to run. For fear of 

incorrectly affecting transmission times by running random applications, we used a working 

set of size zero, a common assumption in experiments comparing alternatives. In order to 

control network-related variability, we ran our experiments on our local 100Mbit LAN. In 

addition, we assumed that the data and users’ actions in the logs are independent of the 

number of collaborators, the processing powers of the collaborators’ computers, and network 

latencies. 
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While the process of obtaining transmission times was fairly complicated, it did have 

a nice side effect that it provided the values of the processing parameters. In particular, 

during the experiments, we measured not only the transmission times of the input and output 

commands for each computer, but also the processing times of these commands. As for 

transmission times, we recorded the average amortized input and output command processing 

times of each computer for checkers, PowerPoint, and chat applications. 

1.4 System Parameters 

As mentioned above, the system parameters are the network latencies between the 

users’ machines, the types of users’ machines, and the number of these machines. We next 

describe how we assign the values to these parameters. 

1.4.1 Network Latencies 

Based on pings done on two different LANs, we use 0ms to simulate half the round-

trip time between two computers on the same LAN in both small-scale and large-scale 

experiments and situations. Moreover, for small-scale experiments, we used additional 

latencies based on Chung’s and Dewan’s experiments. We added 72, 162 and 370 ms to the 

LAN delays to estimate half the round-trip time from a U.S. East Coast LAN-connected 

computer to a German LAN-connected computer, German modem-connected computer, and 

Indian LAN-connected computer, respectively. In addition, for large-scale experiments, we 

use publicly available network latencies measured among 1740 computers distributed around 

the world [85] to simulate latencies between two computers on different LANs. 
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1.4.2 Number of Users 

As mentioned above, in the collaboration recordings that we analyzed, the number of 

users ranged from as few as two in Checkers, between thirty and sixty in PowerPoint, and as 

many as eighty in the chat application. Unfortunately, this is not a wide enough range of 

values; in particular, the maximum value of the parameter needs to be much bigger to be 

representative of large collaborations, such as a company-wide PowerPoint presentation. 

Therefore, we chose synthetic but not unrealistic values for the number of observers. As 

observers do not input commands, they do not influence the logs. Moreover, the talks we 

observed had tight time constraints which did not allow questions. Thus, they were 

independent of the number of observers. We used the following as the number of 

collaborators in a session: 2, 25, 50, 100, 200, 300, 400, and 500. 

1.4.3 Types of Users’ Computers 

We are not unaware of any public data about and our logs did not record the 

distribution of processing powers of the collaborators’ computers during a collaborative 

session. Therefore, we randomly assigned the type of computer of each user to be a P3 

desktop, P4 desktop, Core2 desktop, or a netbook.  

1.5 Overlay Parameters 

It turns out that Brosh and Shavitt use number of collaborators, network latencies, and 

the transmission times as parameters for constructing the HMDM overlay. Therefore, all of 

the HMDM-scheme overlay parameters are covered by the above parameters. 
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