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GEORGE J. KALARICKAL. Theory of cortical plasticity in vision
(Under the direction of Professor Jonathan A. Marshall.)

ABSTRACT

A theory of postnatal activity-dependent neural plasticity based on synaptic
weight modification is presented. Synaptic weight modifications are governed by simple
variants of a Hebbian rule for excitatory pathways and an anti-Hebbian rule for inhibitory
pathways. The dissertation focuses on modeling the following cortical phenomena:
long-term potentiation and depression (LTP and LTD); dynamic receptive field changes
during artificial scotoma conditioning in adult animals; adult cortical plasticity induced by
bilateral retinal lesions, intracortical microstimulation (ICMS), and repetitive peripheral
stimulation; changes in ocular dominance during “classical” rearing conditioning; and the
effect of neuropharmacological manipulations on plasticity. Novel experiments are proposed
to test the predictions of the proposed models, and the models are compared with other
models of cortical properties.

The models presented in the dissertation provide insights into the neural basis
of perceptual learning. In perceptual learning, persistent changes in cortical neuronal
receptive fields are produced by conditioning procedures that manipulate the activation
of cortical neurons by repeated activation of localized cortical regions. Thus, the analysis of
synaptic plasticity rules for receptive field changes produced by conditioning procedures that
activate small groups of neurons can also elucidate the neural basis of perceptual learning.

Previous experimental and theoretical work on cortical plasticity focused mainly
on afferent excitatory synaptic plasticity. The novel and unifying theme in this work is
self-organization and the use of the lateral inhibitory synaptic plasticity rule. Many cortical
properties, e.g., orientation selectivity, motion selectivity, spatial frequency selectivity, etc.
are produced or strongly influenced by inhibitory interactions. Thus, changes in these

properties could be produced by lateral inhibitory synaptic plasticity.
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Chapter 1

Introduction: Motivation and

overview

1.1 Introduction

The visual system, even in adult animals, is highly plastic, i.e., easily modifiable.
The perception of a visual feature depends on the surrounding (contextual) visual features in
space (simultaneously presented neighboring stimuli) and in time (e.g., previously presented
stimuli).

For example, adaptation (from continuous viewing of a stimulus for few minutes)
to a stimulus produces a contextual, orientation specific contrast threshold elevation for test
stimuli (Blakemore & Nachmias, 1971). Adaptation effects are not persistent; they wear
off within a few minutes in the absence of visual stimulation. Adaptation to orientation
stimuli can distort perception of test stimuli. In the &t aftereffect, after viewing a grating
of a particular orientation (e.g., vertical), an observer perceives off-vertical gratings to
be more tilted away from the vertical than the actual test grating (Mayo et al., 1968).
The response properties of neurons in the primary visual cortex, the first visual cortical
processing stage, fatigue/adapt after the conditioning phase (Maffei & Fiorentini, 1973;
Movshon & Lennie, 1979), and the neural adaptation is consistent with the tilt aftereffect
(see Sekuler & Blake, 1994, pp. 135).



Prior viewing of stimuli over a longer period can also produce persistent changes
in visual perception. For example, in perceptual learning, human observers improve their
performance in perceptual tasks such as orientation perception (Fiorentini & Berardi, 1980),
vernier acuity (Fahle & Edelman, 1993), and discrimination of texture (Karni & Sagi, 1991)
after training. Perceptual learning is stable, as it does not wear off after periods without
visual stimulation, unlike the adaptation effects. The effects of perceptual learning are
very specific; the improvement may be restricted to the orientation (Fahle et al., 1995;
Poggio et al., 1992) and visual field position (Fahle et al., 1995; Karni & Sagi, 1991;
Poggio et al., 1992) of the training stimuli. The effects of perceptual learning can be masked
by adaptation/fatigue. Improvement in perceptual performance may not be apparent
during training, but may manifest itself following a rest period during which the effects
of adaptation /fatigue dissipate (Fahle, 1997; Karni & Sagi, 1991).

It has been proposed that the long-range lateral pathways in the primary
visual cortex may subserve the effects of contextual stimuli and visual plasticity.
The lateral long-range pathways in the primary visual cortex connect neurons with
non-overlapping “classical” receptive fields, but with similar stimulus feature preferences,
e.g., orientation (Gilbert & Wiesel, 1989; Weliky et al., 1995). Thus, neural representations
of distant visual stimuli may interact via the long-range pathways to produce the contextual
effects. The receptive field properties of primary visual cortical neurons are affected by
simultaneously presented contextual stimuli (Gilbert & Wiesel, 1990; Sengpiel et al., 1997;
Toth et al., 1996). Repeated presentation of stimuli used to characterize the effects of
neighboring stimuli on orientation preference of a neuron produced persistent changes
in its orientation tuning (Gilbert & Wiesel, 1990). Karni and Sagi (1991) suggested
that perceptual learning occurs even at the monocular stage of visual cortical processing.
Herzog and Fahle (1995) suggested that perceptual learning may involve reciprocal
interactions among several visual cortical processing stages.

Perceptual learning occurs in other sensory modalities too. For example,
monkeys gradually improved their performance of a tactile frequency discrimination
task during several weeks of training (Recanzone et al., 1992a). The training also

produced changes in the receptive field properties of neurons in the somatosensory cortex



(Recanzone et al., 1992acde).

From an information theoretic viewpoint, animal brains adapt during long-term
development and during short-term conditionings to maximize the information content of
neural signals (Atick & Redlich, 1990). Following changes in living environment, loss of
sensory organs (e.g., damage to retina, loss of limbs, etc.), or brain damage (e.g., from
stroke) the brain adapts to maximize the information content of its remaining capacities
with respect to the new condition.

An information-theoretic analysis of brain adaptation does not reveal the brain
processes or the rules by which the brain adapts, although it constrains plausible rules for
plasticity. Knowledge of the substrate(s) and the rules for brain adaptation is useful for
clinical applications, e.g., treatment of brain damage, or recovery from loss of sense organs,
as well as for design of artificial systems capable of mimicking animal brain functions,
e.g., face recognition systems. The information theoretic approach does not elucidate the
mechanistic processes of the brain.

Current psychophysical and neurobiological data suggest that cortical
plasticity can be produced by changes in efficacy of individual synapses (synaptic
plasticity) (Kirkwood et al., 1993), by habituation of individual synapses (synaptic
habituation/adaptation) or in individual neurons (neuronal habituation/adaptation)
(Movshon & Lennie, 1979; Varela et al., 1997), and by changes in axonal arborization
and synaptogenesis (Darian-Smith & Gilbert, 1994). Changes in these sites differ in their
persistence/stability and in the time scales at which they occur. Synaptic and neuronal
habituation are short-term changes; they are induced within a few seconds by synaptic
activity and neuronal activity, respectively, and last for a few seconds after removal of the
activation. Synaptic plasticity depends on activation in pre- and postsynaptic elements; it
is produced in several minutes and lasts for several tens of minutes. Changes in axonal
arborization and synaptogenesis take several months and last for several months.

In this dissertation, simple synaptic plasticity rules are used to model persistent
changes in receptive field properties of cortical neurons that are produced by conditioning
procedures that selectively activate afferent pathways to cortical neurons, manipulate the

activation of cortical neurons, and produce activation in localized cortical regions. In



perceptual learning, a stimulus configuration is repeatedly presented. It is assumed that the
neurons selective for the features of the training stimuli become repeatedly activated. Thus,
the analysis of synaptic plasticity rules for receptive field changes produced by conditioning
procedures that activate small groups of neurons can shed light on the neural basis of
perceptual learning.

The synaptic plasticity rules are compared with experimental data on synaptic
plasticity in the cortex and the hippocampus, and the rules are used to model several
phenomena of cortical plasticity in early postnatal and adult animals. Several cortical
plasticity phenomenona are characterized as the emergent properties of a small set of
synaptic plasticity rules. In particular, the EXIN rules (Marshall, 1995a; Marshall &
Gupta, 1998), which comprise a Hebbian afferent excitatory synaptic plasticity rule and

an anti-Hebbian lateral inhibitory synaptic plasticity rule, are used to model
e long-term potentiation (LTP) and long-term depression (LTD);
e changes in ocular dominance during “classical” rearing conditioning;

e changes in ocular dominance during visual deprivation with cortical infusion of

pharmacological agents;

e dynamic receptive field (RF) changes during artificial scotoma conditioning and retinal

lesions;
e changes in RF topography and RF properties after intracortical microstimulation; and

e changes in RF topography and stimulus discrimination following repeated local

peripheral stimulation.

The novel and unifying theme in this work is self-organization and the use of the lateral
inhibitory synaptic plasticity rule. Many experiments (Benevento et al., 1972; Rose &
Blakemore, 1974; Sillito, 1975, 1977, 1979; Sillito et al., 1980; Sillito & Versiani, 1977)
have shown that many cortical properties are produced or strongly influenced by inhibitory
interactions. A biologically plausible neural model of primary visual cortex has reproduced

several neurobiological results on the effects of simultaneously presented contextual stimuli



and adaptation effects (Somers et al., 1996, 1998; Todorov et al, 1997). In the model, lateral
inhibitory interactions are responsible for producing the effects of high-contrast contextual
stimuli. The lateral excitatory interactions were responsible for the facilitatory effects
produced by subthreshold contextual stimuli. In spite of the experimental data on the
role of lateral inhibition in producing cortical feature selectivity, there is little experimental
information on lateral inhibitory synaptic plasticity and its role in the development and
maintenance of cortical properties. Thus, the analysis of the role of lateral inhibitory
synaptic plasticity in the development of cortical receptive field properties and changes in
receptive field properties in adult animals advances our understanding of the possible neural
mechanisms of cortical plasticity. Several novel and testable experiments are also suggested
to probe the predictions of the models.

The following section (Section 1.2) describes a simplified neural circuit used in
the simulations in this dissertation. The conditioning procedures that produce synaptic
plasticity and cortical plasticity that are modeled in this dissertation are briefly described
in Section 1.3. The synaptic plasticity rules used in this dissertation are briefly described
in Section 1.4. Section 1.5 relates this work to previous self-organization based theories of
cortical development and cortical plasticity. The absence of lateral excitatory pathways in
the EXIN model simulations is justified in Section 1.6. A summarizing thesis statement
is presented in Section 1.7, and the overall contributions and significance of this work are

stated in Section 1.8. Finally, Section 1.9 outlines the organization of this dissertation.

1.2 Simplified neural circuit

Most of the data modeled in this dissertation are from experiments on primary
visual cortical plasticity. Some persistent plasticity in the somatosensory cortex and
the hippocampus is also modeled. In this section, the pathway connections within
the primary visual cortex are briefly described. Although, the cortical areas differ
in their cytoarchitecture, corticocortical and subcortical connectivity, neural response
properties, and behavioral role, they share several anatomical and functional properties

(Sur et al., 1990). In fact, re-routing the retinal afferents to medial geniculate nucleus



causes primary auditory cortical neurons to become visually responsive, and some of these
neurons even become orientation selective (Sur et al., 1990).

The visual cortical connectivity has a hierarchical organization (Felleman &
Van Essen, 1991) — information from the sensors flows through several stages of processing;
at each successive stage, the information undergoes more complex transformations. The
cortical areas interact via reciprocal excitatory pathways. The pathways from an early /lower
processing stage to a later /higher processing stage are called feedforward pathways, and the
reciprocal pathways from a higher to a lower processing stage are called feedback pathways.
The pathways conveying inputs to neurons are called afferent pathways, and the pathways
channeling outputs to other neurons are called efferent pathways. The cortical areas also
perform parallel information processing; the efferent pathways from a cortical area can
provide inputs to two or more cortical areas (Felleman & Van Essen, 1991). The cortical
areas receiving inputs from a common cortical area may also have reciprocal excitatory
pathways between them. In this situation, feedforward and feedback pathways cannot truly
be defined based on sequential processing stages. Maunsell and Van Essen (1983) defined
feedforward and feedback pathways in cortex in terms of the cortical lamina in which the
pathways originate and terminate. Feedforward pathways originate mainly from superficial
layers and terminate mainly in layer 4, and feedback pathways originate from superficial
and deep layers and terminate mainly outside layer 4 (Maunsell & Van Essen, 1983).

The cortex in cross-section has a layered structure. Figure 1.1 shows a
simplified cross-section of the primary visual cortex. The primary visual cortex receives
feedforward excitatory afferents from the lateral geniculate nucleus (LGN) in layer 4C
(Hubel & Wiesel, 1972). There are reciprocal excitatory pathways between the layers
(Blasdel et al., 1985; Fitzpatrick et al., 1985). The cortex contains excitatory and
inhibitory neurons, but the proportion of inhibitory neurons is about 20 percent (Somogyi &
Martin, 1985). The excitatory and inhibitory neurons receive afferent excitatory inputs
(Somogyi, 1989). In addition, there are lateral/horizontal pathways within the layers
(Blasdel et al., 1985; Gilbert & Wiesel, 1983, 1989; Rockland & Lund, 1983). The
lateral excitatory (inhibitory) pathways originate from excitatory (inhibitory) neurons and

terminate on excitatory and inhibitory neurons (McGuire et al., 1991; Somogyi et al., 1983;



Somogyi & Martin, 1985).

A simplified neural circuit is shown in Figure 1.2. The neural circuit shows the
major input pathways to a cortical neuron. For ease of computer simulations, the neural
circuit of Figure 1.2 is abstracted to the circuit shown in Figure 1.3. In Figure 1.3, it is
assumed that there is a inhibitory neuron for every excitatory neuron and that they receive
similar excitatory and inhibitory pathways. This simplification is reasonable because the
models are designed to produce the qualitative changes in cortical properties following
various conditioning procedures. A working hypothesis is that the persistent/long-term
cortical plasticity in early postnatal development and in adulthood are produced by changes
in inputs to the neurons because of synaptic plasticity in the excitatory and the inhibitory
pathways. The emphasis is on the rules of synaptic plasticity that can qualitatively model
the different cortical plasticity phenomena. Although the proportion of inhibitory neurons
in the cortex is small, response properties of cortical neurons are heavily influenced by
inhibition.

Neural circuits in the hippocampus are similar to those in the cortex. Excitatory
and inhibitory neurons receive afferent excitatory pathways, and there are lateral excitatory
and inhibitory pathways within hippocampal layers (McMahon & Kauer, 1997; Miles &
Wong, 1987; Sik et al., 1995).

1.3 Plasticity in early postnatal and adult cortex

In this section, the synaptic and cortical plasticity phenomena that are modeled
in this dissertation are described. The experiments on long-term synaptic plasticity provide
information on changes in neural circuits at the level of synapses and individual pathways.

The “classical” rearing experiments were conducted on young animals in their
critical periods. In these experiments, the ocular dominance of cortical neurons was
modified by varying the correlation in the visual stimulation to the two eyes. Ocular
dominance describes the relative responsiveness of primary visual cortical neurons to
stimulation in the two eyes. Some neurons respond exclusively to one of the eyes, and

are called monocular neurons. Binocular neurons respond equally to both eyes, and other
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Figure 1.1: Pathway connection pattern in the primary visual cortex.
The pathways from the parvocellular layers in the LGN terminate mainly in
layers 4C3 and 4A, and the pathways from the magnocellular layers in the LGN terminate
in layer 4Ca. Layers 3B and 4A receive afferent pathways from the parvocellular layers
in the LGN and from neurons in layer 4C3. Neurons in layers 3B/4A project mainly to
layers 2/3A and 5A and sparsely to layer 6. The neurons in layer 4B receive major afferents
from neurons in layer 4Ca, and they project pathways to layers 2/3A, 5, and 6 (these
projections are sparse). Layer 4B neurons also send efferent pathways to other cortical
areas, e.g., area MT. Neurons in layer 2/3A receive major afferents from layer 3B/4A and
from layer 4B and send pathways to layers 4B, 5, and 6. Layer 2/3A sends corticocortical
pathways, e.g., to area V2. The layer 5A receives major input pathways from layers 4Ce,
4Cp3, 3B/4A, and 2/3A, and some sparse input pathways from layer 6. Layer 5A sends
pathways to layers 2/3A, 3B/4A, and 4C. The layer 5B neurons receive major inputs
from layer 2/3A and project pathways to layers 2/3A and 6. Layer 5B also projects
to subcortical areas, e.g., the superior colliculus. Layer 6 neurons receive prominent
input from layer 5. Layer 6 also receives afferents from other cortical layers, i.e., 2/3A,
3B/4A, 4B, 4Ca, and 4C3 and some input from the LGN. Layer 6 sends pathways to
layer 4C, 4A, and 5A and to the LGN. There are also long-range lateral pathways within
layers 2/3A, 4B, 5, and 6. The primary cortical pathway connectivity is summarized
from Blasdel et al. (1985). The shading in the layers represents the density of neurons.
Layers 4C and 6 are the most dense. The density of neurons in layers 1, 4B, and 5 is small.

Layer 1 mainly contains axons, dendrites, and synapses.
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Figure 1.3: Abstract neural circuit.

neurons show preferential responsiveness to one of the eyes. Data from “classical” rearing
experiments elucidate the development of afferent excitatory pathways and lateral excitatory
and lateral inhibitory pathways and their role in the development of cortical properties.

Experiments involving visual deprivation of animals in their critical periods along
with cortical infusion of pharmacological agents that block specific neural sites were designed
to identify the site(s) of ocular dominance plasticity.

Artificial scotoma conditioning, localized peripheral stimulation, retinal lesions,
and intracortical microstimulation in adult animals selectively activate small groups of
cortical neurons. In these experiments, persistent changes in receptive field properties were
studied. These experimental data provide insights into the neural basis of adult cortical

plasticity.

1.3.1 Long-term synaptic plasticity

Plasticity has been induced experimentally in synapses between isolated
test pathways and individual target neurons (Figure 1.4). The stimulation strength of

the test pathway is the presynaptic activation, and the activation of the target neuron is
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‘ Inhibitory neuron

Q Excitatory neuron

Figure 1.4: Experimental configuration for experiments on long-term synaptic
plasticity.

the postsynaptic activation. In these experiments, plasticity in the synapses is produced by
artificially controlling the activations of the test pathway and the postsynaptic neuron.
The test pathways can be stimulated by stimulation electrodes. The activation of
the postsynaptic neuron can be controlled independently of the presynaptic activation
by depolarizing or hyperpolarizing the postsynaptic neuron using current injections or
pharmacological agents (Artola et al., 1990; Frégnac et al., 1994).

The efficacy of synapses between a pathway and a postsynaptic neuron is
determined in terms of the activation subsequently evoked in the postsynaptic neuron in

response to a test stimulation of the pathway.
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During the conditioning phase, the correlation in the pre- and postsynaptic
activation is maintained at some fixed level. Change in the efficacy of the synapses between
the test pathway and the postsynaptic neuron is called homosynaptic plasticity. Synaptic
plasticity in unstimulated pathways to the postsynaptic neuron is called heterosynaptic
plasticity. An increase in synaptic efficacy is called synaptic potentiation, and a decrease
in synaptic efficacy is synaptic depression.

Synaptic plasticity has been induced in vitro in brain slices from several different
areas (e.g., cortex, hippocampus, cerebellum) and in vivo in young and adult animals.
Induction of synaptic plasticity takes minutes and lasts for tens of minutes (Dudek &
Bear, 1992; Frégnac et al., 1994; Kirkwood et al., 1993; Miles & Wong, 1987). Persistent

synaptic plasticity is called long-term synaptic plasticity.

1.3.2 Cortical plasticity in early postnatal development

Changes in cortical neuronal properties such as orientation selectivity and ocular
dominance in young animals are produced by manipulations of the visual input distribution.

For example, primary visual cortical neurons in cats have orientation selectivity
from very early postnatal stages, but a normal visual environment is needed to maintain
and develop orientation selectivity (Frégnac & Imbert, 1978). Optical recording of the
developing primary visual cortex in very young ferrets showed that the structure of
orientation maps is stable during development, but the orientation tuning of primary
cortical neurons sharpens during normal development (Chapman et al., 1996). Weliky and
Katz (1997) produced weakening of orientation selectivity of primary visual cortical neurons
in ferret kittens by artificially correlated activation of optic nerve fibers, although the overall
organization of orientation column maps was unaltered.

Dramatic changes in ocular dominance of primary cortical neurons are produced
during a critical period (Hubel & Wiesel, 1970). The ocular dominance of primary
cortical neurons is modified by the “classical” rearing paradigms, which include
monocular deprivation, reverse suture, strabismus, binocular deprivation, and normal
stimulation following monocular and binocular deprivation.

In monocular deprivation, one eye is deprived of visual stimulation while the other
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eye receives normal visual stimulation (Hubel & Wiesel, 1970). Changes in ocular dominance
can be induced within a few hours of monocular deprivation (Freeman & Olson, 1982). In
reverse suture conditioning (Blakemore & Van Sluyters, 1974), after a period of monocular
deprivation the previously closed eye is opened and the previously open eye is closed. In
strabismus conditioning (Hubel & Wiesel, 1965), uncorrelated input to the eyes is surgically
induced (e.g., by cutting muscles controlling eye movements in one eye). Uncorrelated input
to the two eyes can also be produced by alternating occlusion of the eyes, rotating the image
in one eye relative to the other, or simultaneously producing different patterns of stimulation
on corresponding regions of the two eyes. Binocular deprivation is produced by deprivation
of normal stimulation in both eyes for a period comparable to that of monocular deprivation
(Wiesel & Hubel, 1965). In recovery experiments, normal binocular vision after weeks of

monocular deprivation or binocular deprivation restores the ocular dominance distribution

(Buisseret et al., 1982; Freeman & Olson, 1982).

1.3.3 Cortical plasticity during pharmacological infusions

The following experiments were designed to study the sites of ocular dominance
plasticity. The basic idea was to block specific neural sites that are hypothesized to
be involved in cortical plasticity. For example, based on theoretical and experimental
considerations (Bear et al., 1987; Fox & Daw, 1993; Goda & Stevens, 1996), it has
been hypothesized that NMDA receptors may be the site of synaptic plasticity and that
postsynaptic activations are necessary to enable excitatory synaptic plasticity.

To test these predictions, the following experiments were performed.
Reiter and Stryker (1988) locally infused muscimol, a GABA agonist selective for
GABA , receptors, into the primary visual cortex of kittens during monocular deprivation.
Muscimol at strong concentrations blocked postsynaptic action potentials without affecting
presynaptic activity. Bear et al. (1990) treated kitten primary visual cortex with
D,L-2-amino-5-phosphonovaleric acid (APV) during monocular deprivation. APV is an
NMDA receptor antagonist. Visually evoked responses could be evoked during APV infusion
at concentrations sufficient to block NMDA receptors (Bear et al., 1990).

Ocular dominance, responsiveness, and orientation selectivity of primary visual
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cortical neurons are also affected by about 10 hours of infusion of an NMDA receptor
antagonist in adult cats (Kasamatsu et al., 1997, 1998a) without any visual deprivation.

Normal cortical properties are restored by 68 hours after cessation of APV infusion

(Kasamatsu et al., 1997, 1998a).

1.3.4 Cortical plasticity induced by peripheral conditioning

Several experimental procedures (artificial scotoma conditioning, retinal lesions,
localized repetitive peripheral stimulation) have been used to produce cortical plasticity in
adult animals. In these experiments, the distribution of the peripheral input stimulation is
such that a region of the cortex is stimulated while a neighboring region is unstimulated.
In some of these experiments, the cortical plasticity has been studied in conjuction with
behavioral changes produced by the conditioning.

The cortical plasticity observed in these experiments may be related to the
phenomenon of perceptual learning. Because neurons in the cortex are selective for specific
stimulus features, repeated presentation of training stimuli repeatedly activates a small
group of neurons. Thus, perceptual learning may be realized by cortical plasticity that
depends on repeated activation of a group of neurons, as in the following conditioning
procedures.

In artificial scotoma conditioning (Pettet & Gilbert, 1992), a pattern of moving
lines is presented in the visual field while masking out an artificial “scotoma’” region
covering the original receptive field of the recorded neuron. Cortical plasticity occurs after
10-15 minutes of conditioning and can last for as long as 20 minutes in the absence of any
patterned visual stimulation. Cortical plasticity following artificial scotoma conditioning
can be restored by presentation of moving lines in the entire visual field for about
10-15 minutes. Artificial scotoma conditioning can also produce short-term changes in
neuronal properties (DeAngelis et al., 1995). A few seconds of artificial scotoma conditioning
in human observers produces distortions in position judgments (Kapadia et al., 1994)

A permanent retinal scotoma can be produced by localized retinal lesions
(Chino et al., 1992; Darian-Smith & Gilbert, 1995). Retinal lesions allow study of cortical

plasticity over a long time range, e.g., a few minutes to hours of retinal lesions, to over
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several months to a year after the lesions.

Repetitive stimulation of a restricted skin region for several weeks
(Jenkins et al., 1990; Recanzone et al., 1992acde) produces extensive changes in cortical
properties in primary somatosensory cortex. Recanzone et al. (1992acde) determined
changes in behavior and somatosensory cortical receptive field properties following three

to twenty weeks of training adult owl monkeys on a tactile frequency discrimination task.

1.3.5 Cortical plasticity induced by intracortical microstimulation

In experiments employing intracortical microstimulation, specific cortical sites
are directly stimulated without any peripheral stimulation. Intracortical microstimulation
involves stimulating a single cortical site by delivering current pulses using a microelectrode.
Intracortical microstimulation almost simultaneously excites nearly all excitatory and
inhibitory terminals and excitatory and inhibitory cortical neurons within a few
microns of the stimulating electrode. The strength of excitation of cortical neurons,
the afferent excitatory pathways, and the lateral inhibitory pathways is maximum
at the intracortical microstimulation site and decreases with distance from the
intracortical microstimulation site (Recanzone et al., 1992b). In addition, some of the
excitatory and inhibitory terminals receive secondary, ortho- and antidromic excitation.
However, not all ortho- and antidromically excited excitatory afferents succeed in driving
their target neurons above threshold (Recanzone et al., 1992b). Two to six hours of
intracortical microstimulation of a single site in layers 3—4 of primary somatosensory
cortex of rats and monkeys produced extensive reorganization of receptive field topography

(Recanzone et al., 1992b).

1.4 The rules of long-term synaptic plasticity

In this section, the synaptic plasticity rules used to model long-term synaptic
plasticity and cortical plasticity are briefly described.
Response properties of neurons can change because of synaptic plasticity in the

various pathways to the neurons (Figure 1.2). Thus, long-term synaptic plasticity in
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afferent, feedback, and lateral excitatory pathways and in lateral inhibitory pathways may
be responsible for cortical plasticity.

Previous models of cortical development and cortical plasticity were based
on synaptic plasticity in afferent excitatory pathways (Bienenstock et al., 1982;
Clothiaux et al., 1991; Kohonen, 1987; Linsker, 1986abc; von der Malsburg, 1973;
Miller et al., 1989). Grossberg (1976abc, 1980, 1982) used synaptic plasticity in afferent
excitatory and feedback excitatory pathways to model development of feature detectors
and neural codes. Lateral excitatory synaptic plasticity has been used in models of the
development of cortical properties and cortical plasticity (Grajski & Merzenich, 1990;
von der Malsburg & Singer, 1988).

Many models (e.g., Douglas & Martin, 1991; von der Malsburg & Singer, 1988;
Marshall, 1989, 1990abcd; Marshall & Alley, 1993; Marshall et al., 1996ab; Martin &
Marshall, 1993; Sirosh et al., 1996; Sirosh & Miikkulainen, 1997; Somers et al., 1995,
1998; Xing & Gerstein, 1994) have emphasized lateral intracortical interactions to model
several cortical and perceptual properties. In fact, geniculocortical afferent synapses
comprise only 4% to 24% of all synapses received by layer 4 neurons (Ahmed et al., 1994;
Einstein et al., 1987; Peters & Payne, 1993). Furthermore, recent anatomical,
electrophysiological, and optical recording based studies have shown that the interlayer
and lateral pathways within the primary visual cortex are highly specific and that their
connectivity is related to the stimulus feature selectivities of the neurons. Long-range
intracortical horizontal pathways (Gilbert & Wiesel, 1979) develop during the early
postnatal stages during which ocular dominance and orientation selectivity develop and
are refined (Dalva & Katz, 1994; Katz & Callaway, 1992; Lowel & Singer, 1992). The
long-range pathways connect non-adjacent cortical neurons having similar input feature
selectivity, e.g., orientation selectivity (Gilbert & Wiesel, 1989). Thus, it is possible that
lateral intracortical interactions may contribute to cortical development and adult cortical
plasticity. However, the development of lateral pathways during early postnatal stages and
its effects on cortical properties have not been fully explored.

XX

Synaptic and cortical plasticity produced by the conditioning procedures described
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Figure 1.5: Comparison of instar and outstar plasticity rules.

o

The symbol ‘+’ represents synaptic potentiation, represents synaptic depression, and

‘0’ represents no synaptic plasticity. In an instar rule, when the postsynaptic neuron is
inactive synaptic plasticity is disabled, and when the postsynaptic neuron is active, synaptic
potentiation occurs when the presynaptic activation is strong and synaptic depression occurs
when the presynaptic activation is very weak or absent. In an outstar rule, when the
presynaptic neuron is inactive synaptic plasticity is disabled, and when the presynaptic
neuron is active, synaptic potentiation occurs when the postsynaptic activation is strong

and synaptic depression occurs when the postsynaptic activation is very weak or absent.

in Section 1.3 are modeled using the EXIN rules (Marshall, 1995a), which consist of an
instar afferent excitatory synaptic plasticity rule and an outstar lateral inhibitory synaptic
plasticity rule. In an instar rule, plasticity is enabled when the postsynaptic neuron is
active, and the weights of pathways into the postsynaptic neuron are adjusted according to
the presynaptic signals on the pathways. (Grossberg, 1976ab). In an outstar rule, plasticity
is enabled when the presynaptic neuron is active, and the weights of pathways out of the
presynaptic neuron are adjusted according to the postsynaptic activations of the pathway
targets (Grossberg, 1976¢). Some experimental data on excitatory synaptic plasticity are

modeled using an outstar feedback excitatory synaptic plasticity rule (Grossberg, 1976¢).
XX
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The instar excitatory and the outstar excitatory synaptic plasticity rules are part
of the adaptive resonance theory (ART) network (Carpenter & Grossberg, 1987). The
instar excitatory and the outstar inhibitory synaptic plasticity rules form the EXIN model
(Marshall, 1995a). Thus, the synaptic plasticity rules used in the models in this dissertation
have been previously used to model some cortical properties. However, the work presented in
this dissertation is original in applying these rules (especially the lateral inhibitory plasticity
rule), to some classical problems — classical “rearing” conditioning, long-term potentiation,
and long-term depression — and to some recently discovered phenomena — ocular dominance
changes during visual deprivation with cortical infusion of pharmacological agents in
animals in their critical period, dynamic receptive field changes in adult animals after
artificial scotoma conditioning, and changes in receptive field topography after intracortical
microstimulation and local peripheral stimulation in adult animals. Novel explanations
are proposed for receptive field changes in adults, long-term potentiation and long-term
depression, and ocular dominance plasticity during visual deprivation with cortical infusion
of pharmacological agents. Furthermore, novel experiments are suggested based on the

modeling.

1.5 Relation to previous theories

Neural networks that self-organize using unsupervised learning rules can model
how cortical circuitry and receptive field properties form during biological development
and how they change in adults in response to the input environment (Grossberg, 1982;
von der Malsburg & Singer, 1988; Willshaw & von der Malsburg, 1976).  Thus,
self-organization provides a unified framework for discussing and understanding synaptic
plasticity, cortical circuits, receptive field properties, and behavior.

A unifying theory based on self-organization has succeeded in modeling several
cortical properties and functions — disparity selectivity (Marshall, 1990¢), motion selectivity
and grouping (Marshall, 1990a, 1995b; Schmitt & Marshall, 1995, 1996), visual inertia
(Hubbard & Marshall, 1994), the aperture problem (Marshall, 1990a), length selectivity

and end-stopping (Marshall, 1990b), visibility/invisibility and depth from occlusion
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events (Marshall & Alley, 1993; Marshall et al., 1996a), depth from motion parallax
(Marshall, 1989), motion smearing (Martin & Marshall, 1993), orientation selectivity
(Marshall, 1990d), and stereomatching (Marshall & Kalarickal, 1995; Marshall et al., 1996b).
The proposed research provides further support for a unified theory of cortical processing
based on self-organization.

Recent neural network models (Marshall, 1995a; Marshall & Gupta, 1998)
have demonstrated that the outstar lateral inhibitory synaptic plasticity rule leads to
the development of neurons with high stimulus feature selectivity and high stimulus
discrimination. Lateral inhibitory synaptic plasticity also reduces redundancy in neural
coding and produces sparse, distributed codes for input stimuli (Marshall & Gupta, 1998;
Sirosh et al., 1996). Marshall (1995a) has shown that neural networks using the instar
afferent excitatory synaptic plasticity rule in concert with the outstar inhibitory synaptic
plasticity rule can self-organize to represent multiple simultaneously presented input stimuli,
represent transparency, perform scale and context sensitive processing, and maintain high

discrimination in the presence of noise.

XX

1.6 Emphasis on lateral inhibitory interactions

In this dissertation, the role of lateral inhibitory plasticity in producing cortical
plasticity is emphasized. In the cortex, there are lateral excitatory and lateral
inhibitory pathways (Gilbert & Wiesel, 1989; McGuire et al., 1991; Somogyi et al., 1983;
Somogyi & Martin, 1985). The lateral excitatory and inhibitory pathways terminate on
excitatory and inhibitory neurons. Stimulation of thalamocortical pathways produces
a monosynaptic excitatory postsynaptic potential (EPSP) and disynaptic inhibitory
postsynaptic potential (IPSP) in primary visual cortical neurons, and disynaptic EPSPs
are occasionally produced (Gil & Amitai, 1996; Ferster, 1989). Direct stimulation of lateral
excitatory pathways have an excitatory effect at low stimulation strength and have an
inhibitory effect at high stimulation strength (Gil & Amitai, 1996; Weliky et al., 1995).

In addition, cortical neurons receive feedback excitatory inputs from other cortical layers.
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Thus, the response properties of cortical neurons depends on a combination of the various
pathways onto the neurons.

The EXIN model, however, does not have lateral excitatory connections. But,
lateral excitatory connections with signal transmission latencies have been used in
conjunction with the EXIN rules to model several aspects of visual motion perception
(Hubbard & Marshall, 1994; Marshall, 1989, 1990a, 1991, 1995b; Marshall & Alley, 1993;
Martin & Marshall, 1993). Plasticity in lateral excitatory pathways has been used in
development of topologically ordered RFs (Sirosh & Miikkulainen, 1994b).

In the EXIN simulations presented in the dissertation, lateral excitatory pathways
were not incorporated. This simplified the simulations. The use of lateral inhibitory
pathways alone is justified by the observation that in the cortex, suprathreshold stimulation
produces overall inhibitory lateral interaction (Ferster, 1989; Gil & Amitai, 1996;
Toth et al., 1996; Weliky et al., 1995). The overall lateral interaction is facilitatory when
the input stimulus is subthreshold (Toth et al., 1996). Combined measurement of spiking
point-spread using extracellular recording and optical point-spread in cat primary visual
cortex showed that the spiking point-spread accounts for only 5% of the optical point-
spread; the remainder of the optical point-spread was largely caused by inhibition (Das &
Gilbert, 1995a). Thus, the EXIN model can be viewed is a functional model that describes
the overall effect of lateral interactions in the cortex.

Furthermore, lateral inhibition strongly influences most cortical properties.
Several stimulus feature specificities of cortical neurons such as orientation selectivity and
spatial frequency selectivity are abolished by cortical infusion of a GABA, antagonist
(Sillito, 1975, 1977, 1979). Blocking intracortical inhibition also reveals new peripheral
regions capable of evoking neuronal responses (Lane et al., 1997; Sillito et al., 1981). Thus,
changes in overall lateral inhibitory strength can contribute to cortical plasticity.

Neurophysiologically, the EXIN lateral inhibitory synaptic plasticity rule could be
realized in a disynaptic circuit containing a lateral excitatory horizontal connection (either
short- or long-range) and an inhibitory interneuron, either by modifying the excitatory
weights from the excitatory neuron or by changing the inhibitory weight from the inhibitory
neuron (Darian-Smith & Gilbert, 1994, 1995; Das & Gilbert, 1995ab; Gilbert et al., 1996;
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Hirsch & Gilbert, 1993).
XX

1.7 Thesis statement

Lateral inhibitory plasticity is crucial in modeling a diverse set of cortical and
behavioral properties and functions. Together with excitatory plasticity, it allows the
self-organization of neural network models that exhibit many fundamental properties
found in neurobiological experiments: the cortical, synaptic, and behavioral reorganization
that follows classical rearing conditioning, artificial scotoma conditioning, retinal lesions,
intracortical microstimulation, repetitive peripheral stimulation, and neuropharmacological
manipulations. These reorganization properties can be seen as manifestations of the more
general properties of high selectivity, high discrimination, and efficient representation that

emerge from lateral inhibitory synaptic plasticity.

1.8 Overall contributions and significance

Experimental data from different conditioning paradigms — stimulation of
individual pathways and isolated postsynaptic neurons, classical rearing, artificial scotoma
conditioning, retinal lesions, local peripheral stimulation, intracortical microstimulation,
and pharmacological treatments — are modeled using a small set of simple synaptic plasticity

rules. This work
1. models the phenomena of long-term potentiation and depression;

2. models ocular dominance plasticity in during classical rearing procedures and during

visual deprivation with pharmacological infusions in the cortex;

3. provides a complete model for dynamic receptive field changes produced by artificial

scotoma conditioning;
4. models changes in receptive field properties after retinal lesions;

5. models changes in receptive field topography after intracortical microstimulation;
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6. models changes in receptive field properties and improvement in stimulus

discrimination after repeated localized peripheral stimulation;
7. compares the EXIN model with other models for synaptic and cortical plasticity;

8. demonstrates the dramatic effects that are produced by the subtle distinctions between

instar, outstar, and covariance rules;

9. analyzes the role of lateral inhibitory synaptic plasticity in neuronal feature selectivity

and stimulus discrimination during development and adult cortical plasticity; and
10. suggests novel and feasible experiments to test predictions of the models.

Overall, the dissertation provides further support for a unified theory of
cortical processing based on self-organization and highlights the possible role of lateral
inhibitory synaptic plasticity in cortical development and adult cortical plasticity. Novel
experiments and the predictions of the models are provided to facilitate further experimental
investigations of cortical development and adult cortical plasticity. Furthermore, the
simulations demonstrate that the outstar lateral inhibitory synaptic plasticity rule is
sufficient to model the receptive field changes produced by artificial scotoma conditioning
and localized peripheral stimulation in adult animals. Because artificial scotoma
conditioning and localized peripheral stimulation are similar to the conditioning procedures
used in perceptual learning, lateral inhibitory synaptic plasticity may also be involved in

perceptual learning.

1.9 Outline of the dissertation

The dissertation is organized as follows. The main chapters (Chapters 2-6) are
each self-contained and can be read independently of one another. In these chapters, specific
cortical plasticity phenomena are modeled, and novel experiments are proposed based on
the predictions of the models.

In Chapter 2, the phenomena of long-term potentiation (LTP) and long-term

depression (LTD) are modeled using the instar and the outstar excitatory synaptic plasticity
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rules. The experiments on synaptic plasticity provide direct evidence for the relationship
between correlation in pre- and postsynaptic activation and synaptic plasticity. The working
hypothesis is that long-term synaptic plasticity is responsible for the development and
refinement of cortical properties and functions during early postnatal stages and for cortical
plasticity in adults. Thus, the rules for synaptic plasticity used for modeling cortical
development and adult cortical plasticity must be consistent with data on long-term synaptic
plasticity. This chapter shows that the instar and the outstar excitatory synaptic plasticity
rules model data on LTP and LTD more accurately than a popular excitatory synaptic
plasticity rule, the BCM rule (Bienenstock, Cooper, & Munro, 1982). Furthermore, the
properties of the outstar lateral inhibitory synaptic plasticity rule are characterized and
compared with the few available experimental data on inhibitory synaptic plasticity. The
functional roles of the instar and outstar excitatory and the outstar lateral inhibitory
synaptic plasticity rules in development of cortical properties are discussed.

Chapter 3 presents computer simulations of the effects of afferent excitatory
and lateral inhibitory synaptic plasticity rules on ocular dominance, responsiveness, and
receptive field width of model cortical neurons during classical rearing conditioning. The
model is based on the EXIN synaptic plasticity rules (Marshall, 1995a), which consist of the
instar afferent excitatory and the outstar lateral inhibitory synaptic plasticity rules. In the
model, the afferent excitatory synaptic plasticity plays the primary role in ocular dominance
plasticity during the classical rearing paradigms, and lateral inhibitory interactions produce
secondary ocular dominance changes. The relationship between the strength of lateral
inhibitory pathway weights and the ocular dominance distribution after normal rearing is
demonstrated.

In Chapter 4, the effects of cortical infusion of an NMDA antagonist
(Bear et al., 1990) and a GABA agonist (Reiter & Stryker, 1988) during monocular
deprivation and effects of cortical infusion of an NMDA antagonist on ocular dominance in
adult animals (Kasamatsu et al., 1997, 1998a) are modeled. The salient effects produced
by the model are caused by lateral inhibitory interactions, and the model is consistent
with experimental data on excitatory synaptic plasticity in the presence of NMDA receptor

antagonists and postsynaptic hyperpolarization.
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In Chapter 5, the dynamic changes in the size, shape, and position of neuronal
receptive fields in response to artificial scotoma conditioning (Pettet & Gilbert, 1992;
DeAngelis et al., 1995) and retinal lesions (Darian-Smith & Gilbert, 1995) are modeled using
the EXIN synaptic plasticity rules. The effects produced by the EXIN rules are compared
with those produced by models based on neuronal adaptation (Xing & Gerstein, 1994)
and on the LISSOM learning rules (Sirosh et al., 1996). The comparison of the effects
produced by the models and the neurophysiological data show that the outstar lateral
inhibitory synaptic rule and the LISSOM lateral excitatory rule provide the best fit for
the experimental data. A novel complementary scotoma conditioning experiment, in which
stimulation of scotoma and non-scotoma regions are alternated repeatedly, is proposed to
differentiate the outstar lateral inhibitory synaptic rule and the LISSOM lateral excitatory
synaptic plasticity rule.

A model for the dynamic changes in the size and position of neuronal receptive
fields in response to intracortical microstimulation (Recanzone et al., 1992b) based on the
EXIN synaptic plasticity rules is presented in Chapter 6. Changes in cortical topography,
receptive field properties, and stimulus discrimination following local repetitive peripheral
stimulation (Jenkins et al., 1990; Recanzone et al., 1992acde) are also modeled. The
effects of the outstar lateral inhibitory synaptic plasticity rule during ICMS and peripheral
stimulation on the relationship between receptive field size and cortical magnification is also
analyzed.

The final chapter, Chapter 7, summarizes the main results of the dissertation and

presents several research questions related to the issues addressed in this dissertation.



Chapter 2

Comparison of generalized
Hebbian rules for long-term

synaptic plasticity

Abstract

A large variety of synaptic plasticity rules have been used in models of excitatory
synaptic plasticity (Brown et al., 1990). These rules are generalizations of the Hebbian
rule and have some properties consistent with experimental data on long-term excitatory
synaptic plasticity, but they also have some properties inconsistent with experimental
data. For example, the BCM rule (Bear et al., 1987; Bienenstock et al., 1982) produces
homosynaptic potentiation and depression, which has been observed experimentally
(Artola et al., 1990; Dudek & Bear, 1992; Kirkwood et al., 1993; Frégnac et al., 1994;
Yang & Faber, 1991). But the BCM rule is also inconsistent with some experimental
results; e.g., the BCM rule cannot produce heterosynaptic depression (Abraham &
Goddard, 1983; Lynch et al., 1977). In addition, long-term synaptic plasticity in inhibitory
pathways has been emphasized in some models of cortical function (Marshall, 1990abc,

1995a; Sirosh et al., 1996), but experimental data on inhibitory synaptic plasticity is
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sparse. This paper compares three popular excitatory synaptic plasticity rules — the BCM
rule, the instar rule (Grossberg, 1972, 1976ab; Kohonen, 1988; Levy & Burger, 1987;
Levy & Desmond, 1985; Marshall, 1995a), and the outstar excitatory rule (Grossberg, 1976¢;
Rescorla & Wagner, 1972) — and presents and characterizes the outstar inhibitory synaptic
plasticity rule (Marshall, 1995a). These rules are evaluated by comparing their predictions

with neurobiological data.

2.1 Introduction

There is a large number of synaptic plasticity rules that have been proposed to
model developmental, structural, functional, cognitive, and behavioral properties of animal
brains (Bienenstock et al., 1982; Grossberg, 1972, 1976abc, 1980, 1982; Kohonen, 1987,
1988; Linsker, 1986abc, 1988; von der Malsburg, 1973; Marshall, 1995a; Miller et al, 1989;
Rescorla & Wagner, 1972; Rumelhart & McClelland, 1986; Sejnowski, 1977ab; Sirosh &
Miikkulainen, 1994b). Experimentally, synaptic plasticity in excitatory synapses has
been extensively studied in hippocampus (Brown et al., 1990), sensory neocortex
(Kirkwood et al., 1993), and cerebellum (Crepel et al., 1995). But there have been
very few studies comparing abstract synaptic plasticity rules with experimental data
(e.g., Bear et al., 1987; Dudek & Bear, 1992). In addition, only a few models use
and emphasize the role of inhibitory synaptic plasticity (e.g., Marshall, 1990abec, 1995a;
Marshall & Gupta, 1998; Sirosh & Miikkulainen, 1996) in development of important
computational and neurobiological properties.

In this paper, a widely studied (both theoretically and experimentally)
synaptic plasticity rule — the BCM rule (Bear et al., 1987; Bienenstock et al., 1982;
Clothiaux et al., 1991) — is compared with two generalized Hebbian (Brown et al., 1990)
excitatory synaptic plasticity rules — an instar excitatory synaptic plasticity rule
(Grossberg, 1972, 1976ab; Kohonen, 1988; Levy & Desmond, 1985; Levy & Burger, 1987;
Marshall, 1995a) and an outstar excitatory synaptic plasticity rule (Grossberg, 1976¢;
Rescorla & Wagner, 1972) — and with the experimental data on excitatory synaptic

plasticity. The plasticity governed by an instar rule is enabled when the postsynaptic
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neuron is activated, and excitatory pathways into the neuron undergo synaptic plasticity
(Grossberg, 1972, 1976ab). In contrast, the plasticity governed by an outstar rule is enabled
when the presynaptic neuron or presynaptic element is activated, and excitatory pathways
out of the neuron undergo synaptic plasticity (Grossberg, 1976¢). This paper furthermore
describes an outstar inhibitory synaptic plasticity rule and elucidates and compares the
rule’s properties with the currently sparse experimental database on inhibitory synaptic
plasticity.

Many experimental results on excitatory synaptic plasticity have been attributed
to the covariance rule (Sejnowski, 1977ab; Stanton & Sejnowski, 1990) or the BCM rule
(Bear et al., 1987; Dudek & Bear, 1992). This paper shows that many of the experimental
data are also consistent with the instar and outstar excitatory synaptic plasticity rules. Only
a few experiments are available today to illuminate the subtleties of the different rules. Thus,
novel experiments are proposed, and explicit predictions of the synaptic plasticity rules are
made. The plausible functional capabilities of the rules are also discussed.

The instar excitatory synaptic plasticity rule alone can be used to self-organize a
neural network that categorizes arbitrary input patterns (Carpenter & Grossberg, 1987;
Grossberg, 1976ab, 1980, 1982; Marshall, 1995a; Nigrin, 1993). The instar excitatory
synaptic plasticity rule moves the synaptic input weight vector of an active neuron closer
to the presynaptic activation vector.

The outstar excitatory synaptic plasticity rule has been used to govern
synaptic efficacy of feedback pathways roles (Baloch & Grossberg, 1997; Carpenter &
Grossberg, 1987; Grunewald & Grossberg, 1997; Grossberg et al., 1997a; Schmitt &
Marshall, 1995; Nigrin, 1993) and to make predictions in classical conditioning protocols
(Pavlov, 1927; Rescorla & Wagner, 1972; Schmajuk, 1997). The outstar excitatory synaptic
plasticity rule moves the synaptic output weight vector of an active neuron closer to the
postsynaptic activation vector.

The outstar lateral inhibitory synaptic plasticity rule produces strong lateral
inhibitory pathways between neurons that are consistently coactivated (Marshall, 1995a).
Neurons are consistently coactivated if they are selective for similar patterns, and the strong

lateral inhibition between such neurons improves stimulus discriminability. According
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to the outstar lateral inhibitory synaptic plasticity rule, lateral inhibitory pathways
between neurons that are not consistently coactivated become weak. Neurons are not
consistently coactivated if they are selective for very different input patterns. This selective
development of lateral inhibitory pathways between neurons leads to exclusive allocation
and simultaneous representation of separate multiple patterns, e.g., transparently overlaid
surfaces (Marshall, 1995a; Marshall et al., 1996b).

The instar excitatory and the outstar inhibitory synaptic plasticity rules have been
used together within a single model, and they are together referred to as the EXIN synaptic
plasticity rules (Marshall, 1995a). The EXIN rules develop an efficient representation of
input patterns according to their distribution in an input environment. The EXIN rules
self-organize networks capable of representing multiple superimposed patterns, ambiguous
patterns, overlapping patterns at different scales, and contextually constrained patterns
starting from completely nonspecific afferent excitatory and lateral inhibitory pathway
weights (Marshall, 1995a). In EXIN networks, the instar excitatory synaptic plasticity
rule modifies weights so that the active neurons become more responsive to the currently
presented input pattern. The development of weights of lateral inhibitory pathways
according to the outstar lateral inhibitory synaptic plasticity rule ensures that different
neurons become selective to different input patterns. Yet if the input environment contains
several similar patterns, the outstar lateral inhibitory synaptic plasticity rule develops
strong lateral inhibitory pathways between neurons selective for the similar input patterns,
thereby producing high discrimination. In EXIN networks, lateral inhibitory pathways from
often activated neurons to unresponsive neurons weaken, thereby making the unresponsive
neurons more likely to respond to some input. This feature of the EXIN lateral inhibitory
synaptic plasticity rule is comparable to that of “conscience” rules (DeSieno, 1988).

EXIN synaptic plasticity rules have been used to model the development of
visual motion selectivity and grouping (Marshall, 1990a), visual inertia (Hubbard &
Marshall, 1994), motion integration in the aperture problem (Marshall, 1990a), length
selectivity and end-stopping (Marshall, 1990b), depth perception from occlusion events
(Marshall & Alley, 1993; Marshall et al., 1996a), depth from motion parallax
(Marshall, 1989), motion smearing (Martin & Marshall, 1993), orientation selectivity
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(Marshall, 1990d), stereomatching (Marshall et al., 1996b), dynamic receptive field changes
produced by artificial scotoma conditioning (Kalarickal & Marshall, 1997b; Marshall &
Kalarickal, 1997), and changes in somatosensory cortical RF structure after intracortical
microstimulation (Kalarickal & Marshall, 1998b).

The BCM synaptic plasticity rule (Bienenstock et al., 1982) has been used to model
the results of “classical” rearing conditions (Bienenstock et al., 1982; Clothiaux et al., 1991).
The important feature of the BCM rule is its adaptable synaptic modification threshold. The
adaptable synaptic modification threshold is nonlinearly related to the activation history
of the postsynaptic neuron and contributes to the development of selectivity and stability
of the system in the absence of lateral inhibition (Bienenstock et al., 1982; Intrator &
Cooper, 1992; Shouval et al., 1996). The synaptic modification function proposed by the
BCM rule has been shown to be in partial agreement with studies on synaptic plasticity
(Bear et al., 1987; Dudek & Bear, 1992; Kirkwood et al., 1993). These properties cannot be
produced by some other synaptic plasticity rules, such as the covariance rule (Sejnowski &
Stanton, 1990; Brown & Chattarji, 1995).

In the cortex, interactions via lateral pathways may influence cortical neuronal
properties (Gilbert et al., 1990). In fact, geniculocortical synapses comprise only 4% to 24%
of all synapses received by layer 4 neurons (Ahmed et al., 1994; Einstein et al., 1987; Peters &
Payne, 1993). Recent models (e.g., Kalarickal & Marshall, 1997b, 1998b; Marshall, 1989,
1990abc; Marshall & Alley, 1993; Marshall et al., 1996ab; Marshall & Kalarickal, 1997;
Martin & Marshall, 1993; Sirosh et al., 1996; Somers et al., 1995) have emphasized
lateral intracortical interactions to model several cortical and perceptual properties. In
the simulations the synaptic plasticity rules are applied in a small, simple model neural
network to demonstrate the properties that can be produced by the rules because of network

interactions.

2.2 Methods

In the simulations, a simple two layered network was used. Layer 1 may correspond

to part of the lateral geniculate nucleus (LGN), and Layer 2 may correspond to part of the
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primary visual cortex. In Section 2.2.1, the activation equation used in the simulations is
described. Section 2.2.2 describes the BCM, the instar, and the outstar excitatory synaptic

plasticity rules and the outstar inhibitory synaptic plasticity rule.

2.2.1 The activation equation

In order to analyze the influence of lateral interactions on the various synaptic
plasticity rules, a non-linear activation equation was used. The activation equation expresses
the activation of neurons in terms of the total excitation and inhibition received by the
neurons. Let ¢ refer to Layer 1 neurons and ;7 to Layer 2 neurons. The activation level

x; of a neuron j was governed by a shunting equation (Grossberg, 1972) based on the

Hodgkin (1964) model:

%xj = —Az; + (B —a;)l; — v(C+x;)1;, (2.1)
where A, B, C, 3, and v are constants, and £; and I; represent respectively the neuron’s
total afferent excitatory and lateral inhibitory input signals. Because Equation 2.1 is a
shunting equation, if ;(0) € [-C, B] then «;(t) € [-C, B] for all time ¢ > 0 (Cohen &
Grossberg, 1983). Thus, activation levels remain within a bounded range, between —C' and
B. The total input excitation F; was defined as

E; = (Z[MWJ) : (2.2)

K3

and the total input inhibition /; was given by
1= YW, (2.3)
k
where [a] = max(a,0), W; > 0 represents the weight of the afferent excitatory pathway
from presynaptic neuron i to postsynaptic neuron j, and Wk_] > 0 represents the weight
of the lateral inhibitory pathway from presynaptic neuron k£ to postsynaptic neuron j.
Parameters 8 and 4 govern the effectiveness of the excitation and inhibition, respectively,
received by a neuron.
The shunting equation (Equation 2.1) with Wﬁg = Wk_] > 0, belongs to a class of

competitive dynamical systems that are absolutely stable; i.e., the system has fixed points
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(stable equilibrium states) for any choice of parameters (Cohen & Grossberg, 1983). The
neuronal activations in such a system are guaranteed to reach stable equilibrium values for
all synaptic weight values, with the restriction that I/Vﬁg = Wk_] > 0 for all pairs of neurons.

However, it is not known whether the shunting equation remains absolutely stable
when I/Vﬁg #* Wk_] for some pairs of neurons. Nevertheless, empirically the shunting equation
reaches an equilibrium state even when reciprocal pairs of lateral inhibitory weights are not

equal.

2.2.2 Synaptic plasticity rules

This section briefly describes the BCM rule, the instar excitatory synaptic
plasticity rule, the outstar excitatory synaptic plasticity rule, and the outstar inhibitory

synaptic plasticity rule.

The BCM excitatory synaptic plasticity rule

According to the theory presented by Bienenstock, Cooper, & Munro (1982),
synaptic weights change over time as a function of local and global wvariables.
Bienenstock et al. (1982) proposed a synaptic plasticity rule, now known as the BCM rule, to
model ocular dominance plasticity in animals during a critical period. The focus of the BCM
synaptic plasticity rule is a variable threshold, which depends on the postsynaptic activation
history, and which controls whether the synaptic weights undergo potentiation or depression
(Bienenstock et al., 1982; Clothiaux et al., 1991; Intrator & Cooper, 1992). According to a
recent formulation of the BCM synaptic plasticity rule (Clothiaux et al., 1991; Intrator &
Cooper, 1992; Shouval et al., 1996),

d

W) = no(e;(),0;(8) =i (), (2.4)

where z; is the presynaptic activation, x; is the postsynaptic activation, and 7 is a small
positive constant that determines the magnitude of the synaptic modification. The function
¢ is

&, (0,0,1) = 2,(8) (a5(0) — ;1)) 2.5
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(Shouval et al., 1996), and 6;(t) is a nonlinear time-averaged function of the postsynaptic

0.(t) = %/_too (%fl))pexp (-t _Tt/) ' (2.6)

(Clothiaux et al., 1991; Intrator & Cooper, 1992), where ¢ and 7 are positive constants. The

activation given by

parameter p is chosen to be greater than 1. The usual choice is p = 2 (Clothiaux et al., 1991).
Choosing p > 1 causes the BCM rule to give neurons high selectivity for input features
(Bienenstock et al., 1982; Intrator & Cooper, 1992). The constant ¢y is a normalizing
constant. The parameter 7 controls the rate of change of ;; as 7 increases, #; changes more
slowly in response to changes in the neuronal activation.

According to the shunting equation (Equation 2.1),the activation level of neurons
can go below zero. No output signals or spikes are given below the zero level. Therefore,
in the simulations «;(¢) and x;(t) are replaced by [z;(f)] and [z;(t)], respectively, in
Equations 2.4, 2.5, and 2.6. In the simulations using the BCM synaptic plasticity rule
(Section 2.3.3), the plasticity is disabled when either the presynaptic activation or the
postsynaptic activation is less than or equal to zero, i.e., when one or both neurons are
hyperpolarized.

In the simulations, changes in the BCM LTP threshold was approximated by

0.(t+1) = 0;(t) exp (—71) + (M)p (1 exp (‘71)) , (2.7)

&)

by assuming that z;(¢) = «(t + 1) for t' € (¢, + 1].

The instar excitatory synaptic plasticity rule

The instar excitatory synaptic plasticity rule (Grossberg, 1972, 1982) is a variant
of a Hebbian rule. In an instar plasticity rule, postsynaptic activity enables the plasticity;
when the plasticity is enabled, the weight tends to become proportional to the presynaptic

activity. The rule can be expressed (Grossberg, 1982) as

%W;u) = ¢ F(a;(0) (-WF@) + Pla(v), (2.8)

where € > 0 is a small learning rate constant, and F and P are half-rectified non-decreasing

functions. Thus, whenever a neuron is active, its input excitatory connections from
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active neurons tend to become shghtly stronger, while its input excitatory connections
from inactive neurons tend to become slightly weaker. Neuron activations remain within
[—C, B] according to the shunting equation (Section 2.2.1); this causes the excitatory weight
values to be bounded, because according to Equation 2.8, W; (t) € [0,P(B)] for t >0, if
W; (0) € [0, P(B)] and z;(t) < B (Grossberg, 1982).

The outstar excitatory synaptic plasticity rule

In an outstar plasticity rule (Grossberg, 1972, 1982), presynaptic activity enables
the plasticity at a synapse; when the plasticity is enabled, the weight tends to become

proportional to the postsynaptic activity. The rule can be expressed (Grossberg, 1982) as

W) = €G(x) (-WH©) + Q1)) (2.9)

where £ > 0 is a small learning rate constant, and G and Q are half-rectified non-decreasing
functions. The positions of z; and z; are reversed, compared with the instar rule. Thus,
whenever a neuron 1s active, its output excitatory connections to active neurons tend to
become shightly stronger, while its output excitatory connections to inactive neurons tend to
become slightly weaker. Neuron activations remain within [—C/, B] according to the shunting

equation (Section 2.2.1); this in turn causes the excitatory weight values to be bounded

between 0 and Q(B) (Grossberg, 1982).

The outstar lateral inhibitory synaptic plasticity rule

The lateral inhibitory weights, Wﬁg, are modified according to the

anti-Hebbian rule

%Wﬁﬂ = 3 Hiaj) (~Wj + R(xr)) (2.10)

(Marshall, 1995a; Marshall & Gupta, 1998) where § > 0 is a small learning rate constant,
and H and R are half-rectified non-decreasing functions.

Thus, whenever a neuron is active, its output inhibitory connections to other active
neurons tend to become slightly stronger (i.e., more inhibitory), while its output inhibitory

connections to inactive neurons tend to become slightly weaker. Neuron activations remain
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within [—C, B] according to the shunting equation (Equation 2.1); this causes the inhibitory

weight values to remain bounded as well, between 0 and R(B) (Grossberg, 1982).

2.3 Results

In order to evaluate the BCM rule, the instar and outstar excitatory synaptic
plasticity rules, and the outstar lateral inhibitory synaptic plasticity rule in comparison
to experimental data, the properties of the rules are studied by analysis and computer
simulations.

In Section 2.3.1, synaptic plasticity in pathways to a postsynaptic neuron is
expressed analytically as a function of input excitation according to the BCM, the instar,
and the outstar excitatory synaptic plasticity rules, by making simplifying assumptions
about the postsynaptic activation. Lateral inhibitory synaptic plasticity, according to the
outstar lateral inhibitory synaptic plasticity rule, is expressed analytically as a function of
input excitation in Section 2.3.2.

In Section 2.3.3, the subtle properties of the BCM, the instar, and the outstar
excitatory synaptic plasticity rules are studied as a function of pre- and postsynaptic
activation, initial synaptic weight, and simultaneous stimulation of different pathways. The
effects of lateral inhibitory interactions are also explored.

In  some experiments (Artola et al, 1990; Frégnac et al.,, 1994;
Kirkwood et al., 1993), the conditioning stimulation was applied
at the white matter—layer 6 border. Stimulation at the white matter—layer 6 border can
activate geniculocortical and corticocortical feedback pathways (Kirkwood et al., 1993).
Many models (e.g., Carpenter & Grossberg, 1987; Grossberg, 1980; Grossberg et al., 1997a;
Grossberg & Merrill, 1997; Grunewald & Grossberg, 1997; Nigrin, 1993) use both the instar
and the outstar excitatory synaptic plasticity rules. In these models, the instar rule governs
synaptic plasticity in afferent excitatory pathways, and the outstar rule governs synaptic
plasticity in feedback excitatory pathways. Thus, the effects of a combination of the instar
and the outstar excitatory synaptic plasticity rules are studied in Section 2.3.4.

Finally, Section 2.3.5 presents the properties of the outstar lateral inhibitory
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synaptic plasticity rule as a function of the input excitation to model neurons,
pre- and postsynaptic activation, and initial inhibitory synaptic weight.

Computer simulations were used to study synaptic plasticity in Sections 2.3.3-2.3.5
because, with lateral interactions, the activation equation does not have a closed-form

formula in the model neural network.

2.3.1 Analyses of excitatory synaptic plasticity rules

In this section, the postsynaptic activation of a neuron is first expressed as a
function of presynaptic stimulation by supposing that the neuron does not receive any
inhibitory input and that postsynaptic activation is linearly related to input excitation.
These simplifying assumptions are helpful in deriving analytical expressions that elucidate
the important properties of the synaptic plasticity rules.

Let > 0 represent the strength of presynaptic stimulation applied to excitatory
pathways to postsynaptic neuron j. Let z; represent the activation level of the postsynaptic
neuron j. Let W; be the weight of the excitatory synapse from the afferent ¢ and to

neuron j. The presynaptic activation of unstimulated pathways to neuron j is zero.

Neuronal activation as a function of input stimulation.

The excitation received by neuron j is
E; = > [2 W, (2.11)
i € active presynaptic input
where [z;] is defined to mean max(0,z;). For each stimulated excitatory pathway i to

neuron j, the presynaptic activation x; = x in this test simulation. Thus
E,=Fzx (2.12)

where =3 W; From Equation 2.1, the activation level of

i € active presynaptic input

neuron j, at equilibrium, is

v ﬁBEj—’yCIj _ ﬁBEx—'yC]j (2 13)
J A—i—ﬁE]‘—F’y[]‘ A—i—ﬁEl’—i—’y]j )
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In general, the relationship between z; and x is difficult to determine because of
lateral inhibition. It is possible that with increasing x, z; decreases because of increasing [;
(Figure 2.12). If j is the only active neuron in a winner-take-all (WTA) network, z; can
increase with increasing x (Figure 2.8). However, the activation of a neuron can increase
monotonically with presynaptic activation even if there are other active neurons sending
inhibition to it (Figure 2.13).

To facilitate analytical expressions for synaptic plasticity, the following simplifying
assumptions are made: (1) the Layer 2 neuronal responses are linearly related to the input
excitation, i.e. z; « I;, and (2) the network behaves in a WTA fashion (the winner neuron
does not receive any lateral inhibition).

Assuming that the activation of layer 2 neurons is in their linear region,
z; =PL; = ®PFz. Under the WTA assumption, the winner neuron j does not receive
any inhibition; i.e., I; = 0, and therefore, the equilibrium activation of neuron j, is

.~ BBE; _ BBEa
T ATBE, T A+pBEx (2.14)

In this case, the activation of the winner neuron monotonically increases with input

exclitation.

Analysis of the BCM excitatory synaptic plasticity rule

Assuming that the activation of neuron j is in its linear region, let
x; = OL; = ®PEx. Substituting for z; in Equation 2.4, and because x > 0, the BCM

excitatory synaptic plasticity rule becomes

%W; =ndEz (PFz — 0;) z. (2.15)
The synaptic weight change as a function of the presynaptic stimulation strength «,
controlled by Equation 2.15, is shown in Figure 2.1.

Under a WTA assumption, the equilibrium activation level of the winner neuron,

7, is given by Equation 2.14. Substituting the value of z; in the BCM rule (Equation 2.4),

and because z > 0, Equation 2.4 becomes

d f:nﬁBEx (ﬁBEx —04)1’.
dt Y A+BE a2 \A+(BE x I

(2.16)
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Figure 2.1: The BCM excitatory synaptic plasticity rule.

The change in synaptic weight as a function of the presynaptic activity proposed by the
BCM excitatory synaptic plasticity rule. The rule induces LTP when the postsynaptic
activation level is above the LTP threshold (indicated by arrow-head) and induces LTD
when the postsynaptic activation level is below the LTP threshold. In both curves, n = 0.05,
E =0.5,0; =0.7,and W;; = 0.5. In the WTA case, the synaptic plasticity curve is governed
by Equation 2.14 with 8 = 1.0, A = 0.1, and B = 1.0. In the linear case, synaptic plasticity
is governed by Equation 2.15 with ® = 1.5.
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Figure 2.2: The BCM excitatory synaptic plasticity rule.
The change in synaptic weight as a function of the presynaptic stimulation strength observed
experimentally by Dudek & Bear (1992). The presynaptic stimulation strength was varied
by changing the frequency of conditioning stimulation, and synaptic weight was estimated
by measuring the slope of excitatory postsynaptic potential evoked by a test stimulation of
the pathway. LTP is observed at higher presynaptic stimulation frequencies, and LTD is

observed at lower frequencies. Redrawn with permission, from Dudek and Bear (1992).
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The synaptic weight change as a function of presynaptic stimulation strength = > 0,
according to Equation 2.16 is plotted in Figure 2.1.

The graphs in Figure 2.1 are similar to the experimental data on synaptic weight
modification as a function of presynaptic stimulation strength shown in Figure 2.2.

In the general case, where inhibition is present, the weight change is obtained by
substituting z; given by Equation 2.13 in Equation 2.4. Assuming that synaptic plasticity

is blocked when the postsynaptic neuron is hyperpolarized and that z > 0,

d + BBE x —~(C1; BBE x —~(C1; o). (2.17)
dt " A+ BE x + 71, A+ BE z + 1, o '
The term ({%} — Hj) in Equation 2.17 captures the property of change in sign

of synaptic modification. The multiplicative term 7 [%} x modulates the rate of
J

change.

In the BCM synaptic plasticity rule, the weight change is zero when the
postsynaptic or the presynaptic activity is zero. The LTP threshold #; determines the
sign of weight change in all stimulated pathways to an active postsynaptic neuron. The
shape of the function ¢ is shown in Figure 2.3 for two different values of the threshold 6; ().
The two important features of the function ¢ are that it changes sign at the modification
threshold 6;(¢) and that it is zero when a;(t) is zero.

The BCM synaptic plasticity rule exhibits homosynaptic depression when the
postsynaptic activation is less than the LTP threshold and homosynaptic potentiation when
the postsynaptic activation is greater than the LTP threshold. Heterosynaptic depression
of the synaptic weight of inactive pathways to active neurons does not occur, because the

BCM rule disables synaptic plasticity in unstimulated pathways.

Analysis of the instar excitatory synaptic plasticity rule

Assuming that the activation of neuron j is in its linear region, let
x; = OF; = ®Fa. Substituting for z; in Equation 2.8 with F(z) = [z], P(x) = [z], and

x > 0, the instar excitatory synaptic plasticity rule becomes

d
TWiE = @b (-wit +). (2.18)
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Figure 2.3: Change in synaptic weight as a function of the postsynaptic activity
using the BCM rule.

The BCM rule induces LTP (positive synaptic weight change) when the postsynaptic
activation is above the variable synaptic modification threshold  and induces LTD (negative

synaptic weight change) when it is below 6.
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Figure 2.4: Change in synaptic weight as a function of the presynaptic activity
using the instar excitatory synaptic plasticity rule.

The rule induces LTP when the presynaptic activation level is above the current synaptic
weight (which acts like the LTP threshold) and induces LTD when it is below the weight.
In the WTA case, the synaptic plasticity curve is governed by Equation 2.17 with ¢ = 0.05,
B3 =10,F =05, A=0.1, B=1.0, and W; = 0.5. In the linear case, synaptic plasticity
is governed by Equation 2.18 with ¢ = 0.05, ® = 1.5, F = 0.5, and W; = 0.5.
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The synaptic weight change as a function of presynaptic stimulation strength «, controlled
by Equation 2.18, is shown in

Under a WTA assumption, the equilibrium activation level of the winner neuron j
is given by Equation 2.14. Substituting the value of x; in the instar excitatory synaptic
plasticity rule (Equation 2.8), and assuming F (z) = [z], P(z) = [z], and > 0, Equation 2.8

becomes
% &= e% (-wit +). (2.19)
The synaptic weight change as a function of presynaptic stimulation strength z, according
to Equation 2.19, is plotted in Figure 2.4. Figure 2.4. The graphs in Figure 2.4 are similar
to the experimental data in Figure 2.2.
In the general case, when inhibition is present, the weight change is obtained by

substituting 2; from Equation 2.13 in Equation 2.8 and assuming that F(z) = [z] and
P(z) = [¢]. When > 0,

Lot

+_ . BBE x —~C1;
v

A—FﬁEJL’-ﬁ-’YI]‘

(—W;; + x) - (2.20)

The term (—WJ + 2) in Equation 2.20 captures the property of change in sign of synaptic
modification. The multiplicative term e [%} modulates the rate of change.

In the instar excitatory synaptic plasticity rule, the weight change is zero when
the postsynaptic activity less than or equal to zero. When a postsynaptic neuron is active,
all unstimulated pathways to the active neuron weaken: P(z;) = 0 in Equation 2.8, and
thus the right-hand side of Equation 2.8 is negative.

The weight W; in Equation 2.8 behaves like a variable synaptic weight
modification threshold, because W; is variable. In addition, W; is independent for every
synaptic connection.

The instar excitatory synaptic plasticity rule exhibits homosynaptic depression
when the function P of presynaptic activation is less than the synaptic weight, and it
exhibits homosynaptic potentiation when the the function P of presynaptic activation is

greater than the synaptic weight. Heterosynaptic depression of the synaptic weight of

inactive pathways occurs during postsynaptic activation.
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Analysis of outstar excitatory synaptic plasticity rule

Assuming that the activation of neuron j is in its linear region, let
v; = OF; = ®Fa. Substituting for z; in Equation 2.9 with G(z) = [¢], Q(z) = [z], and

x > 0, the outstar excitatory synaptic plasticity rule becomes
d
+ _ +
W = ga (-WF 4+ @) (2.21)

The synaptic weight change as a function of presynaptic stimulation strength «, controlled
by Equation 2.21, is shown in Figure 2.5.

Under a WTA assumption, the equilibrium activation level of the winner neuron 7,
is given by Equation 2.14. Substituting the value of z; in the outstar excitatory synaptic
plasticity rule (Equation 2.9) with G(z) = [z], Q(«) = [#], and @ > 0, Equation 2.9 becomes

3BE )‘

A+ 3BT (2:22)

d ot +

The synaptic weight change as a function of presynaptic stimulation strength z, according
to Equation 2.22, is plotted in Figure 2.5. The graphs in Figure 2.5 are similar to the
experimental data on synaptic weight modification as a function of presynaptic stimulation
strength shown in Figure 2.2.

In the general case, the weight change is obtained by substituting z; from
Equation 2.13 in Equation 2.9 and assuming G(z) = [z] and Q(x) = [z]. Since = > 0,

BBE x —~C1;
. 2.23
A—FﬁEJL’-ﬁ-’YI]‘ ( )

d
Wt = W
Vi =& (_ iy T

The term (—WJ + {%}) in Equation 2.23 captures the property of change in sign
J

of synaptic modification, and the multiplicative term £z modulates the rate of change.

In the outstar excitatory synaptic plasticity rule, the weight change is zero when
the presynaptic activity is less than or equal to zero; thus in the outstar rule, synaptic
plasticity is specific to stimulated pathways into a postsynaptic neuron. W; in Equation 2.9
behaves like a variable synaptic weight modification threshold, because W; is variable. In
addition, W; is independent for every synaptic connection.

The outstar excitatory synaptic plasticity rule exhibits homosynaptic depression

when Q of the postsynaptic activation is less than the synaptic weight, and homosynaptic

potentiation when Q of the postsynaptic activation is greater.
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Figure 2.5: Change in synaptic weight as a function of the presynaptic activity
using the outstar excitatory synaptic plasticity rule.

The rule induces LTP when the postsynaptic activation level is above the current synaptic
weight (which acts like the LTP threshold) and induces LTD when it is below the weight. In
the WTA case, the synaptic plasticity is governed by Equation 2.20 with £ = 0.05, 8 = 1.0,
EF =05 A4A=01, B=1.0, and W; = 0.5. In the linear case, the synaptic plasticity is
governed by Equation 2.21 with £ = 0.05, ® = 1.5, ' = 0.5, and W; = 0.5.
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2.3.2 Analysis of the outstar lateral inhibitory synaptic plasticity rule

In this section, changes in lateral inhibitory synaptic weights between two neurons
are expressed in terms of excitatory inputs to the two neurons. To derive an analytical
expression for the weight changes, it is assumed that the activation of the neurons are
linearly related to input excitation.

Let 5 and k be two Layer 2 neurons, and let I/Vﬁg and Wk_] be the weights of lateral
inhibitory pathways between them. The outstar lateral inhibitory synaptic plasticity rule
(Equation 2.10) depends on the activation levels of the Layer 2 neurons, and the weight
of inhibitory pathways between them. The changes in inhibitory weights between Layer 2
neurons can be studied either by activating Layer 1 neurons or by activating just the Layer 2
neurons by other means.

Let presynaptic input neurons to neurons j and k be stimulated with stimulation
strength > 0. The presynaptic activation of unstimulated excitatory pathways is zero.

The excitation received by neurons j and k, I/; and £, respectively is

E; = > Wike = Ja (2.24)
i € active Layer 1 neurons
and
B, = > Wiz =Kz (2.25)
i € active Layer 1 neurons
According to the shunting equation (Equation 2.1), at equilibrium
BE; —~C1; BJx —~C1;
oy = DBL =00l BB — 30, (2.26)
A—i—ﬁE]‘—F’y[]‘ A—i—ﬁJ&L’—F’y[]‘
and
BE, —~C1 BKz —~C1
xk_ﬁ k —yCly  BBEKx —~yCly (2.27)

A4 BE 4+, A+ pKe 41
Substituting for «; and zj in Equation 2.10, and assuming H(z) = [2] and R(z) = [z],

d [ BBKx — vC1, ] e o | BB —aCl (2.28)

dt % A+ BKx + I kit A+ B+~ '
and

d BBJx —~C1I; ( _ [ﬁBKx —’yCIk])

WS =4 | =22 T W . 2.2

i A+ BJz + 1, Wit A+ 8Kz +~Iy (2.29)
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For simplicity, assume that the activations of Layer 2 neurons are in their linear

regions. Then, #; =I'E; = 'Jxz, 2 = AE, = AKw, and with H(2) = [z], R(z) = [z], and

x >0,

d__ , .

Wi = 6AKe (-wi +1Jz) (2.30)
and

d _ .

Wi = ol (Wi +AKe). (2.31)

The lateral inhibitory synaptic weight modification as a function of the Layer 1
stimulation strength , governed by the outstar lateral inhibitory synaptic plasticity rule,
is shown in Figure 2.6. Qualitatively similar relation between inhibitory weight change
and input excitation exists when the postsynaptic activation is half-rectified and increases
monotonically with = > 0.

Consider the situation when neuron k is active and neuron j is not. This can
occur, for example, if the Layer 1 stimulation activates strong excitatory pathways to k,
but activates only weak excitatory pathways to j (see Figure 2.8), or if k is stimulated

externally. In these cases x; <0 and z; > 0. Thus,
d__ _
T = by (-ow5) (2.32)

and

d . _
Wi =0, (2.33)

ie., Wk_] decreases, and I/Vﬁg does not change. This shows that the outstar rule is
asymmetric. Lateral inhibitory weights of pathways from active neurons to inactive neurons

weaken, but lateral inhibitory weights of pathways from the inactive neurons do not change.

2.3.3 Characteristics of the excitatory synaptic plasticity rules

In Section 2.3.1, excitatory synaptic weight changes according to the BCM, the
instar, and the outstar rules were analytically expressed by making simplifying assumptions
about postsynaptic activation. The effect of lateral inhibition on postsynaptic activation
was ignored. In this section, the properties of the instar, outstar, and the BCM excitatory

synaptic plasticity rules are studied using a simple neural network with lateral inhibitory
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Figure 2.6: The outstar inhibitory synaptic plasticity rule under the linearity
assumption.

The change in synaptic weight as a function of the presynaptic activity according to the
outstar lateral inhibitory synaptic plasticity rule. The rule produces LTP when postsynaptic
activation exceeds a variable inhibitory synaptic LTP threshold (a function of the current
synaptic weight) and LTD when postsynaptic activation is below the variable threshold. The
inhibitory synaptic plasticity under the linearity assumption is governed by Equation 2.29
with 6 = 0.10, A =1.5,'=4.0, J = 0.25, K = 0.5, and Wy, =0.4.
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pathways. Because the activation of model neurons in the network with lateral inhibition
cannot be expressed analytically, the activation equation was solved numerically.

If pre- and postsynaptic activations can be controlled independently, the three
excitatory synaptic plasticity rules give different results. In the following subsections, the
properties of the three rules are studied as a function of presynaptic stimulation strength,
and the role of postsynaptic activation in the three rules is explored. Synaptic plasticity in
stimulated (homosynaptic) and unstimulated (heterosynaptic) pathways is studied.

Some experiments have shown dependence of synaptic plasticity on the initial
excitatory synaptic weight. Therefore, the effects of the initial synaptic weight on synaptic
plasticity according to the instar, the outstar, and the BCM excitatory synaptic plasticity
rules are analyzed.

Finally, associative synaptic plasticity (Brown et al., 1990; Levy & Steward, 1979;
Barrionuevo & Brown, 1983; Kelso & Brown, 1986) is modeled using the instar, the outstar,
and the BCM excitatory synaptic plasticity rules in the last subsection.

The simple neural network used in the simulations is shown in Figure 2.7. The
postsynaptic neurons a and b receive excitatory inputs from the presynaptic neurons c,
d, and e. The postsynaptic neurons @ and b inhibit each other via lateral inhibitory
pathways. The activation of the postsynaptic neurons a and b in response to activation
of the presynaptic neurons ¢, d, and e is governed by the shunting equation (Equation 2.1).
In Appendix A, the behavior of the shunting equation as a function of the various parameters

is presented.

Synaptic plasticity in excitatory synapses as a function of presynaptic

stimulation strength

This section explores excitatory synaptic plasticity as a function of presynaptic
stimulation to excitatory pathways. First, excitatory synaptic plasticity in the conditioned
pathways (homosynaptic plasticity) and in the unconditioned pathways (heterosynaptic
plasticity) to active postsynaptic neurons are studied based on the three rules. Second,
homosynaptic and heterosynaptic plasticity according to the three rules are studied in

excitatory pathways to inactive neurons. Then, the equilibrium weights of conditioned
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| 0 e

Figure 2.7: Model network.

The figure shows the simple network used in the simulations. W; represents the efficacy of

the excitatory pathway from neuron ¢ to neuron j, and W;; represents the efficacy of the

inhibitory pathway from neuron ¢ to neuron j.
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and unconditioned pathways after repeated conditioning stimulations, according to the
three rules, are presented. Finally, some of the effects of network interactions on synaptic
plasticity, according to the three rules, are considered.

Synaptic plasticity in pathways to an active neuron. In Figure 2.8, the
presynaptic neuron ¢ was stimulated. The stimulation of neuron ¢ is presented by z..
Figures 2.8a and 2.8b show the activation level of postsynaptic neurons a and b, respectively,
as r. was varied from 0 to 1.

Synaptic plasticity in the stimulated pathways (homosynaptic plasticity) based on
the three rules as a function of presynaptic stimulation strength is shown in Figure 2.8.
Synaptic plasticity in the unstimulated pathways (heterosynaptic plasticity) is also shown
in Figure 2.8.

In the stimulated pathway from neuron ¢ to active neuron « in Figure 2.8, the
three rules weakened the excitatory synaptic weight W1 when presynaptic stimulation z.

ca

was weak and strengthened W1 when z. was strong (Figure 2.8¢). In the absence of any

ca
presynaptic stimulation, W7, did not change according to the three rules (Figure 2.8c).
Thus, the instar, the outstar, and the BCM excitatory synaptic plasticity rules can produce
homosynaptic LTP and LTD.

In the unstimulated excitatory pathways to neuron a, e.g., from neuron d, only LTD
was produced by the instar excitatory synaptic plasticity rule, because the synaptic weight
W;; was greater than the activation level of neuron d, x4, which was zero (Figure 2.8e).
As . was increased, W;; decreased more (Figure 2.8¢). This happened because in the
instar rule the magnitude of change in excitatory synaptic weight is proportional to the
postsynaptic activation, and #, increased with z. (Figure 2.8a). According to the outstar
and the BCM excitatory synaptic plasticity rules, presynaptic activation is required for the
learning rules to be enabled (Equations 2.4 and 2.9). Thus, in the unstimulated pathways
no synaptic plasticity occurred (Figure 2.8e).

In Figure 2.8¢c, the amount of LTD produced by the outstar and the BCM rules was
small, because of the simulation parameters. For comparison, a simulation with a different

set of parameters was run, to produce larger LTD (Figure 2.9¢). In Figure 2.9, the initial

weight of the stimulated pathway ca was increased, and the learning rate parameters € and
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Figure 2.8: Legend on next page.
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Figure 2.8: Simulation results: Changes in excitatory synaptic efficacy of
stimulated and unstimulated pathways as a function of presynaptic stimulation
strength.

Figure on previous page. The synaptic weight changes are shown according to the three
rules after activating neuron c¢; the activation level of neuron ¢ of Figure 2.7, x., was varied
from 0 to 1. Panels (a) and (b) show the activation of neurons a and b, respectively, as z.
was varied, (¢) and (d) show plasticity in the stimulated pathways from neuron ¢ to neuron a
and from neuron ¢ to neuron b, respectively, as z. was varied, and (e) and (f) show plasticity
in the unstimulated pathways from neuron d to neuron a and from neuron d to neuron b,
respectively, as z. was varied. The rate of weight change in the instar rule became zero
when postsynaptic activation was suppressed (d), (f). The rate of weight change in the
outstar rule became zero when presynaptic activation was suppressed (e), (f). The rate of
weight change in the BCM rule became zero when either pre- or postsynaptic activation
was suppressed (d), (e), (f). In this simulation the initial synaptic pathway weights in the
network shown in Figure 2.4 were assigned as follows: W1 = 0.5, WC-Z =0.25 W] =04,
WCEZ = 0.4, Wt = 0.25, W:z; = 0.5, W, =W, = 0.4. The parameters for the activation
equation (Equation 2.1) were A =0.1, B=1,C =0.05, 3 =1, and v = 15. The activation
level was computed using the Euler method with a time step of 0.04 until ¢ = 40. The
initial activation level of neurons a and b was set to zero. The parameters for the instar
excitatory synaptic plasticity rule were ¢ = 0.05, F(z) = [z], and P(z) = [z], for the outstar
excitatory synaptic plasticity rule were & = 0.05, G(z) = [z], and Q(x) = [z], and for the
BCM rule were n = 0.05, and 6, = 6, = 0.5.

7 for the outstar and the BCM rules, respectively, were increased. For the BCM rule, the
initial LTP threshold for neuron @ was also increased. The magnitude of weight change
increased with increase in the learning rate parameters. In addition, increasing the initial
weight increased the magnitude of the difference between the postsynaptic activation and
the initial weight and therefore increased the magnitude of weight change according to
the outstar rule. Increasing the LTP threshold increased the magnitude of the difference
between the postsynaptic activation and the LTP threshold and therefore increased the
magnitude of weight change according to the BCM rule.

Synaptic plasticity in pathways to an inactive neuron. In Figure 2.8bd, the
stimulated excitatory pathway from neuron ¢ to inactive neuron b did not undergo synaptic
plasticity under the instar excitatory synaptic plasticity rule because neuron b was inactive.
The outstar excitatory synaptic plasticity rule produced LTD in the excitatory pathway

from neuron ¢ to neuron b because neuron b was inactive. Under the BCM excitatory
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Figure 2.9: Simulation results: Changes in excitatory synaptic efficacy of
stimulated and unstimulated pathways under faster learning parameters.

Figure on previous page. See Figure 2.8 for conventions. There was no synaptic weight
change under the instar rule in (d,f), under the outstar rule (e,f), and under the BCM
rule (d,e,f). In this simulation the initial synaptic pathway weights in the network shown
in Figure 2.4 were assigned as follows: W} = 0.8, W1 = 0.25, W;; = 0.4, WCEZ = 0.4,

C

Wt = 0.25, W:I; =08, W, =W, = 0.4. The parameters for the activation equation
(Equation 2.1) were A = 0.1, B =1, C = 0.05, 3 = 1, and v = 15. The activation level
was computed using the Euler method with a time step of 0.04 until ¢ = 40. The initial
activation of neurons a and b was set to zero. The parameters for the instar excitatory
synaptic plasticity rule were ¢ = 0.02, F(z) = [¢], and P(z) = [z], for the outstar excitatory
synaptic plasticity rule were & = 0.15, G(z) = [#], and Q(x) = [«], and for the BCM rule
were 1 = 0.15, and 8, = 6, = 0.8. The parameter values in boldface differ from the values

used in the simulations for Figure 2.8.

synaptic plasticity rule, no plasticity was observed because neuron b was inactive.

In the unstimulated excitatory pathways to the inactive neuron b, e.g., from
neuron d, no plasticity was produced in WCEZ because z < 0 (Figure 2.8f). Under the
outstar excitatory and the BCM synaptic plasticity rules, presynaptic activation is required
for the plasticity to be enabled (Equations 2.4 and 2.9). Thus, in the unstimulated pathways
no synaptic plasticity occurred.

Under the instar excitatory synaptic plasticity rule, the stimulated pathway can
be potentiated or depressed; however, the unstimulated pathways can only weaken, or at
best, remain constant. Under the outstar excitatory synaptic plasticity rule, the stimulated
pathways may be potentiated or depressed, and unstimulated pathways do not undergo
synaptic plasticity. The BCM rule also potentiates or depresses the stimulated pathways
onto a postsynaptic neuron and does not modify synaptic weight of unstimulated pathways.

Equilibrium values of synaptic weights. In this section, changes in the weights of
excitatory pathways according to the three excitatory synaptic plasticity rules are studied
when an excitatory pathway is continuously stimulated.

According to the instar excitatory synaptic plasticity rule, the synaptic weight W7,
equilibrates to a value proportional to a function, P(), of the presynaptic stimulation

strength z. (Grossberg, 1982; see Figure 2.10ce). The weight change in W1

o approaches

zero as WT

ca

approaches P(z,), and for P(z4(t)) = 0 weight change in W, approaches zero
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as W;; approaches zero.
The outstar excitatory synaptic plasticity rule causes the synaptic weight W2 to
equilibrate at a value proportional to a function, Q(), of the postsynaptic activation z,

(see Figure 2.10ce); the weight change of W1 approaches zero as W1 approaches Q(z,),

ca ca

and for Q(xp) = 0 the weight change of WC-Z approaches zero as WC-Z approaches zero.
On the other hand, the synaptic weight W1

o may not equilibrate when synaptic

plasticity is governed by the BCM rule (Figures 2.10 and 2.11). In Figure 2.10, stimulating

neuron ¢ with #. = 1 activates neuron a, which suppresses neuron b. In this WTA case,

BBWdz,
Tq = oo
A+BW i zc

In the simulation in Figure 2.10, 8,(¢) < z,(t) for ¢t > 0 (Figure 2.10a), and W[, increases
under the BCM rule. According to the BCM rule, W1

ca

0, (') = [za(t)], and 8,(t) = 0,(t + 1) for t > t'. With p=2 and ¢ =1, 0,(t) = 0, (t + 1)

at equilibrium in response to z. according to Equation 2.1 because z; < 0.
equilibrates at some time ¢, if

implies that 6,(t) = [z,(t)]? according to the approximation for the BCM LTP threshold
modification (Equation 2.7), and 6,(t) = [z,(t)]?, when 0,(t) = [z.(t)] = 1, or when
0,(t) = [x4(t)] = 0. But, z, = % < B =1 (for the parameters in Figure 2.10), and
x, approaches 1 as W1 approaches co. Thus, for the parameters used in Figure 2.10, the

BCM rule caused W1 to increase without bound. Since neuron b remained inactive, WC-Z,
the weight of the stimulated pathway from neuron ¢ to neuron b did not change, and 6,
decayed to 0 according to the BCM rule (Figure 2.10d).

Figure 2.11 shows changes in weights of stimulated excitatory pathways according
to the BCM rule using several different parameters. The curves labeled “Initial LTP
threshold = 1”7 show weight changes when the initial LTP thresholds of neurons a and b
were 1 and were greater than z,(0) and #;(0), respectively. Since the activation of neuron a
was less than 1, W1 increased without bound (Figure 2.11e).

When 2, was allowed to become equal to 1, for example, when the decay parameter
in the activation equation was set to 0, the BCM rule with p = 2 and ¢y = 1 caused W1 to
reach an equilibrium value (curves labeled “A = 0” in Figure 2.11eg). When the parameter
A in Equation 2.1 is set to zero, under WTA conditions z, = B = 1 (Figure 2.11a), and 6,
equilibrated at 1 (Figure 2.11¢).

The BCM rule causes the weights to reach stable values if p is set to 1. According
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to the BCM rule, W1

ca

equilibrates at some time ¢/, if 0, (¢') = [24(t')], and 0,(t) = 0,(t + 1)
for t > . With p = 1, 6,(t) = 0,(t + 1) implies that 6,(t) = [v.(t)]/co according
to the approximation for the BCM LTP threshold modification (Equation 2.7). In the
simulations, when 6,(0) = 1 > z,(0), W equilibrated at 0 because z,(t) < 8,(t) for ¢ > 0
(Figure 2.11eg). When W, decreased, neuron b became activated (Figure 2.11b), and W1
increased to its equilibrium value (Figure 2.11fh). When 6,(0) = 0.5 < z,(0), W2 increased
and eventually reached astable value (Figure 2.11eg).

Fffects of network interactions. This section shows some of the effects of network
interactions on the shape of the synaptic plasticity curves under the three excitatory
synaptic plasticity rules.

In Figure 2.12, the weight of the lateral inhibitory pathways between
neurons a and b was decreased. Therefore, as the strength of stimulation applied to neuron ¢
was increased, neuron b became activated. When neuron b became activated, the activation
of neuron a began to decrease. When the postsynaptic neuron b was actived, WC-Z changed
according to the instar and the BCM rules (Figure 2.12d). When the postsynaptic neuron b
was active, the unstimulated pathway from neuron d began to weaken (Figure 2.12f).

In Figure 2.13, the neuron d was stimulated. In this case, neurons a and b were
equally activated because they received the same amounts of excitation and inhibition. The
postsynaptic activation of neurons a and b remained less than W;; and Wb—lc_lv respectively,
and therefore, only LTD was produced in W;; and Wb-lc_l according to the outstar rule.
The postsynaptic activation of neurons a and b was less than 8, and 8,, respectively, and
therefore, W;; and Wb—; underwent LTD according to the BCM rule. According to the
instar rule, changes in W;; and Wb-lc_l switched from LTD to LTP when the function P of the

presynaptic stimulation strength exceeded the initial values of W;; and Wb-lc_l (Figure 2.13cd).

Synaptic plasticity in excitatory synapses as a function of postsynaptic

activation level

These simulations are based on experiments in which the role of postsynaptic
activation in producing synaptic plasticity was studied by depolarizing and hyperpolarizing

the postsynaptic neuron (Brown et al., 1990; Frégnac et al., 1994; Sejnowski et al., 1990;
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Figure 2.10: Simulation results: Equilibrium values of excitatory synaptic efficacy
of stimulated and unstimulated pathways.

Figure on previous page. The simulation parameters were the same as those in Figure 2.8.
In this simulation, presynaptic stimulation was applied by keeping z. fixed at 1 for
200 iterations. The synaptic weights were changed every iteration. Panels (a) and (b)
show the activation level of neurons a and b, respectively, over a period of 200 iterations as
the excitatory synaptic weights change. In the case of the BCM rule, panels (a) and (b) also
show the LTP threshold of neurons a and b, respectively. The LTP threshold for the instar
and the outstar excitatory synaptic plasticity rules are the excitatory synaptic weight itself.
Panels (¢) and (d) show the excitatory synaptic weight of different excitatory pathways,
and panels (e) and (f) show the rate of excitatory synaptic weight change in the different
excitatory pathways. The pathway from neuron ¢ to neuron j is labeled pathway ¢7. In
the simulations, p = 2, 7 = 20, and ¢g = 1. In the simulations, activation of neuron b

was suppressed (b), and therefore the weight of the excitatory pathway from neuron ¢ to

neuron b did not change under the BCM rule (d,f).

Stanton & Sejnowski, 1989).

In the simulations, a presynaptic element was stimulated at a fixed level,
e.g., neuron ¢ was stimulated at . > 0, and the activation level of a postsynaptic
neuron, e.g., that of neuron «a, z,, was varied independently.

The instar excitatory synaptic plasticity rule increased the magnitude of change
in Wt

+ as z, was increased (Figure 2.14a); however, the sign of change in W remained

ca
the same because it depends on the sign of (—WZ5 + P(z.)) (Figure 2.14a), which was
fixed for fixed initial W1 and P(z.). Furthermore, synaptic plasticity was disabled when
postsynaptic activation was zero (Figure 2.14a). When the postsynaptic activation of
neuron a, r,, was kept fixed and presynaptic activation of neuron ¢, ., was varied from

0 to 1 in Figure 2.14b, the synaptic plasticity in W1

ca

went from LTD to LTP; for higher
values of x, the rate of plasticity increased. Thus, according to the instar excitatory
synaptic plasticity rule, postsynaptic activation is required to enable plasticity, postsynaptic
activation affects the rate of plasticity, and postsynaptic activation does not affect the sign
of plasticity (the sign of plasticity depends on presynaptic activation and the weight).
According to the outstar excitatory synaptic plasticity rule, the sign of change in
W1 depended on the postsynaptic activation; as x, was increased when z. > 0 was kept

fixed, the change in W, went from depression to potentiation (Figure 2.14c). In the outstar
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Figure 2.11: Simulation results: Equilibrium values of excitatory synaptic efficacy
of stimulated and unstimulated pathways according to the BCM rule.

Figure on previous page. The relationship between #; and z; and their effect on synaptic
plasticity are shown. The initial network weights and the BCM excitatory synaptic plasticity
rule parameters are given in Figure 2.8. As in Figure 2.12, neuron c¢ is activated at a fixed
level of 1 for 200 iterations. Panels (a) and (b) show the activation level of neurons a and
b, respectively. In the curves labeled “BCM 0.5,” the BCM LTP threshold modification
function parameters were p =1, ¢o = 1, and 7 = 20, the activation equation parameters
were the same as in Figure 2.8, and the initial LTP thresholds for neurons a and b were
0, = 0y = 0.5. In the curves labeled “BCM 1.0,” the parameters were the same, except
that 8, = 0, = 1.0. In the curves labeled “A = 0,” the decay parameter A in the activation
equation was set to 0, and the other activation equation parameters were the same as in
Figure 2.8, 6,(0) = 6,(0) = 0.5, and the LTP threshold was varied as in Figure 2.12. In the
curves labeled “Initial LTP threshold = 1,” the initial LTP thresholds for neurons a and b
were set to 1, the activation equation parameters were the same as in Figure 2.8, and the
LTP threshold was varied as in Figure 2.12. Panels (¢) and (d) show the LTP threshold of
neurons a and b, respectively. Panel (e) shows W, and panel (g) shows the rate of change
in W2. Panel (f) shows W1, and panel (h) shows the rate of change in W1. In the curves
labeled “BCM 0.5,” “A = 0,” and “Initial LTP threshold = 1,” the activation of neuron b
was suppressed (b), and therefore W3 did not change under the BCM rule (f,h). The curves
labeled “BCM 0.5,” “A = 0,” and “Initial LTP threshold = 1,” are overlapping in (f,h).
In (d), the curves labeled “BCM 0.5” and “A = 0,” are overlapping.

rule, the sign of weight change depends on the sign of (—=W2X + Q(z,)), and the magnitude

of weight change in W7, is affected by the magnitude of (=W + Q(z,)). The magnitude

ca
of weight change also depended on the presynaptic activation level (Figure 2.14cd); as the
presynaptic activation z. was increased, the magnitude of synaptic weight change increased.
When the postsynaptic activation x, was fixed and presynaptic activation z. was varied,
the magnitude of weight change in W,, increased, but the sign of weight change was fixed
(Figure 2.14d). According to the outstar rule, synaptic weight change did not occur when
the presynaptic activation was zero (Figure 2.14d). According to the outstar excitatory
synaptic plasticity rule, postsynaptic activation affects both the sign of plasticity and the
magnitude of weight change.

In the BCM excitatory synaptic plasticity rule, the sign of change in W

depended on the postsynaptic activation level. As x, was increased with fixed z. > 0,

the change in W5

o underwent depression when 0 < x, < 8,

was zero when z, =0, W21
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Figure 2.12: Simulation results: The effects of lateral inhibitory weight on
excitatory synaptic plasticity.

Figure on previous page. In these simulations, all the parameters are the same as in
Figure 2.8 except that W , = W, = 0.2, i.e., the lateral inhibitory weights are weakened.
Weakening the lateral inhibitory weights causes neuron b to be activated when input
excitation was strong (b). See Figure 2.8 for conventions. There was no synaptic weight
change under the instar rule (d,f) when neuron b was inactive. There was no synaptic weight
change under the outstar rule (e,f) and under the BCM rule (d,e,f) in the unstimulated
pathway.

(the LTP threshold), and W2

ca

underwent potentiation when z, > 0, (Figure 2.14ef). The

magnitude of weight change in W2

o also depended on z,, although it was non-monotonic

(Figure 2.14e). According to the BCM excitatory synaptic plasticity rule, the magnitude

of change increased with the presynaptic stimulation strength (Figure 2.14ef).

Synaptic plasticity in excitatory synapses as a function of initial synaptic weight

Yang and Faber (1991) reported that LTD was more easily achieved after prior
induction of LTP in the pathway. Based on this result, they suggested that synaptic
plasticity in excitatory pathways may depend on their initial synaptic weights. In this
section, the effects of varying the initial weight of the conditioned pathway in the instar,
outstar, and the BCM excitatory synaptic plasticity rules are presented.

In the simulations in this section, an excitatory pathway, e.g., from neuron ¢ to
neuron a, was stimulated at a fixed strength. The initial synaptic weight of the stimulated
excitatory pathway was varied. The initial synaptic weight may be varied by prior induction
of LTP or LTD in the pathway. A variation is to apply a fixed presynaptic stimulation
to different excitatory pathways to the same postsynaptic neuron and to plot the weight
changes in the pathways as a function of the initial synaptic weight of the excitatory
pathways to the postsynaptic neuron.

Figures 2.15a and b show the activation of neurons a and b caused by stimulation

of neuron ¢ at a fixed level as the weight W1 was varied. When W1 was small, the

ca ca

activation of neuron a was suppressed, and when W3

o was large the activation of neuron b

was suppressed.
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Figure 2.13: Simulation results: Excitatory synaptic plasticity produced by
stimulation of equally strong pathways to different neurons.

Figure on previous page. In these simulations, all the parameters were the same as in
Figure 2.8. The figure shows the synaptic weight changes under the three rules after
activating neuron d; the activation of neuron d, 4, was varied from 0 to 1. Panels (a) and (b)
show the activation level of neurons a and b, respectively, as ¢4 was varied, panels (c) and (d)
show synaptic plasticity in the stimulated pathways from neuron d to neuron a and from
neuron d to neuron b, respectively, as x4 was varied, and panels (e) and (f) show synaptic
plasticity in the unstimulated pathways from neuron ¢ to neuron @ and from neuron ¢ to
neuron b, respectively. There was no synaptic weight change under the outstar rule and the

BCM rule in panels (e) and (f) since there was no presynaptic stimulation.

Under the instar excitatory synaptic plasticity rule with neuron ¢ stimulated at

a fixed level, W1 increased when the initial value of W2} was small and decreased when

the initial value of W was large (Figure 2.15¢). When W1 was very small, no change

ca ca

occurred in WT because x, <0 (Figure 2.15ac). The weight WC-Z increased when xp > 0
(Figure 2.15d) because, in the simulation, W1 < P(z.). Weights of unstimulated pathways
to neurons a and b, e.g., W;; and WCEZ, respectively, decreased when the corresponding
postsynaptic neuron was activated (Figure 2.15ef).

The outstar excitatory synaptic plasticity rule weakened W21 when the initial value

of W1 was small (Figure 2.15¢). When the initial value of W

o o was small, activation of

neuron a produced very weak or no response in neuron a (Figure 2.15a), and W > Q(z,).

As the initial value of WT

F was increased, activation level of neuron a increased, and W1

underwent LTP when W1 < Q(z,). For larger values of Wk, Q(z4) was less than the initial

value of WT

ca’

and therefore, W1, weakened (Figure 2.15¢). Thus, for a fixed activation

level of neuron ¢, the outstar excitatory rule can produce LTD at very low and very high

initial values of WI |

and LTP at intermediate initial values of W1 . The weight WC—Z
increased for small values of W} (Figure 2.15d) because, in the simulation, W3 < Q(a}),
and W1 decreased for large values of W, (Figure 2.15d) because W1 > OQ(x}). Weights of
unstimulated pathways to neurons a and b, e.g., W;; and WCEZ, respectively, did not change
(Figure 2.15ef).

The sign of synaptic weight change according to the BCM rule depends on the
postsynaptic activation and the BCM LTP threshold (Equations 2.4 and 2.5), and the
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Figure 2.14: Simulation results: Changes in excitatory synaptic efficacy of the
stimulated pathway as a function of postsynaptic activation.
Figure on previous page. The dependence of the changes in W on postsynaptic activation

level z, is shown under the instar excitatory rule (a), (b), under the outstar excitatory

rule (c), (d), and under the BCM rule (e), (f). The initial value of W1 was 0.5. In the

ca

panels in the left column, x. was kept fixed at a low presynaptic activation level (z. = 0.3)
and at a high presynaptic activation level (z. = 0.7), and the postsynaptic activation z, was
varied from 0 to 1. In the panels in the right column, z, was kept fixed at a low postsynaptic
activation level (z, = 0.3) and at a high postsynaptic activation level (z, = 0.7), and the
presynaptic activation z. was varied from 0 to 1. The parameters for the plasticity rules

were the same as in Figure 2.8.

BCM LTP threshold depends on the postsynaptic activation history (Equation 2.6). When
synaptic weight is varied to test the dependence of the initial weight on synaptic plasticity
as in Yang and Faber (1991), by prior induction of synaptic plasticity, the BCM rule affects
the BCM threshold in addition to the synaptic weight. Thus, two cases were considered in
the simulations: one in which the BCM LTP threshold was held constant as the excitatory
synaptic weight was varied, and another in which the initial weight and the BCM LTP
threshold were changed by prior conditioning.

When a fixed value for 6, was used as the initial value of W was varied, the BCM
and strengthened W for

synaptic plasticity rule weakened W, for low initial values of W2

high initial values of W21 (Figure 2.15¢). When W21

o was very small, no change occurred in

W because z, < 0 (Figure 2.15ac). The weight W1 decreased when z;, > 0 (Figure 2.15d)
because #, > wp in the simulation. Weights of unstimulated pathways to neurons a and
b, e.g., Wi and W, respectively, did not change (Figure 2.15¢f).

Suppose the initial weight W1 was varied using the BCM rule by activating

neuron ¢ to different levels. Figure 2.16a shows the change in W7

and Figure 2.16b shows
6, after activating neuron c¢ to different levels for a fixed duration. Subsequent activation
of neuron ¢ with a fixed activation level increased W7 when a weak activation level was

used in the prior conditioning and decreased W7,

o when a strong activation level was used

in the prior conditioning (Figure 2.16¢). Thus, the BCM rule can produce LTP when the
weight of the conditioned pathway was previously decreased by LTD-inducing stimulation,

and LTD when the initial weight of the conditioned pathway was previously increased by
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Figure 2.15: Legend on next page.
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Figure 2.15: Simulation results: Changes in excitatory synaptic efficacy of the
stimulated pathway as a function of initial synaptic efficacy.

Figure on previous page. The parameters for the plasticity rules and the activation equation
were the same as in Figure 2.8. The initial network synaptic weights were the same except
that W7 was varied from 0 to 1, and neuron ¢ was activated at a fixed level of 0.5.
(a,b) Activation level of neurons a and b, respectively, as W21 was varied. (c,d) Synaptic
plasticity in the stimulated pathways from neuron ¢ to neuron @ and from neuron ¢ to
neuron b, respectively. (e,f) Synaptic plasticity in the unstimulated pathways from neuron d
to neuron @ and from neuron d to neuron b, as W1 was varied. For the BCM rule the initial
LTP threshold of neurons a and b was fixed at 0.7 as W21 was varied. There was no synaptic
weight change according to the instar rule when postsynaptic activation was suppressed
(c,d,e,f). Synaptic plasticity was blocked according to the BCM rule when postsynaptic
activation was suppressed (c), (d) and when presynaptic stimulation was absent (e), (f).
Absence of presynaptic stimulation blocked synaptic plasticity in (e), (f) according to the

outstar rule.

LTP-inducing stimulation.

Associative synaptic plasticity

Associative LTP (Brown et al., 1990; Levy & Steward, 1979; Barrionuevo &
Brown, 1983; Kelso & Brown, 1986) refers to LTP produced in a weak excitatory pathway
to a neuron by simultaneous stimulation of the weak excitatory pathway and a strong
excitatory pathway to the neuron; but LTP is not induced in the weak excitatory pathway
to the neuron by exclusive stimulation of the weak or the strong excitatory pathway.
Figures 2.18 and 2.20 show changes in the synaptic efficacy governed by the three rules in
response to stimulation of independent excitatory pathways to neuron a. In the simulations,
the excitatory pathway from neuron e to neuron a in Figure 2.7 was weak, and the excitatory
pathway from neuron ¢ to neuron a in Figure 2.7 was strong.

In the simulations in Figures 2.17 and 2.18, when the weak excitatory pathway
from neuron e to neuron a was stimulated, neuron a was inactive (Figure 2.17a). Therefore,

W-I—

ea

and W1 did not change according to the instar and the BCM excitatory synaptic
plasticity rules (Figure 2.18ab) because postsynaptic activation was below zero. The outstar

excitatory synaptic plasticity rules weakened W because W7,

ea

was greater than Q(z,) =0

(Figure 2.18a); W1 did not change because the pathway from neuron ¢ to neuron a was not
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Figure 2.16: Simulation results: Changes in excitatory synaptic efficacy of the
stimulated pathway according to the BCM rule as a function of prior presynaptic
stimulation.

Figure on previous page. The initial network synaptic weights, the BCM rule parameters,
and the activation equation parameters are the same as in Figure 2.8. The initial LTP
threshold of neurons a and b was 0.7. (a) The change in W,

o after stimulating neuron ¢ at

different activation levels for 20 iterations. The LTP threshold was changed according to the
equation in Figure 2.12. The L'TP threshold of neuron @ and the activation level of neuron a
in response to activation of neuron ¢ at z. = 0.3 are shown following the stimulation of

neuron c for 20 iterations (b). The changes in W, when neuron ¢ was activated at z. = 0.3

ca

are also shown in (c).

stimulated. Thus, according to the three excitatory synaptic plasticity rules, stimulation of
a weak excitatory pathway to a neuron may not induce LTP in the weak pathway, because
network interaction may render the neuron inactive.

When the strong excitatory pathway from neuron ¢ to neuron a was stimulated,
neuron a became strongly activated (Figure 2.17a). The instar excitatory synaptic plasticity
rule weakened W because z. = 0 (Figure 2.18¢c). The outstar and the BCM excitatory
synaptic plasticity rules did not modify W because z. = 0 (Figure 2.18c). All three rules
produced LTP in the stimulated strong excitatory pathway from neuron ¢ to neuron a when
z. was large (Figure 2.18d). Thus, stimulation of the strong excitatory pathway alone did
not produce LTP in the weak pathway.

When neurons ¢ and e were simultaneously activated at the same level, z, was
smaller than when x. was stimulated alone (Figure 2.17a); the strong lateral inhibitory
interactions between neurons a and b reduced their activation levels. In this particular
network, when neurons ¢ and e were simultaneously stimulated with the same strength, the

instar excitatory synaptic plasticity rule produced LTP in W and W]

o o at high stimulation

strengths (Figure 2.18ef). Thus, in this network the instar excitatory synaptic plasticity
rule exhibited associative LTP when the presynaptic stimulation strength was high. When
neurons ¢ and e were simultaneously stimulated with the same stimulation strength, they
had different LTP thresholds under the instar rule (Figure 2.18ef). When the outstar
rule was used during simultaneous stimulation of neurons ¢ and e, LTP was produced in

_|_
Wea

at high stimulation strengths (Figure 2.18e), but W1

ca

underwent LTD even at high
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Figure 2.17: Simulation results: Postsynaptic activation caused by stimulation of
independent excitatory pathways.

The activation level of neuron a (panel (a)) and of neuron b (panel (b)) is shown when
neuron e was stimulated alone, when neuron ¢ was stimulated alone, and when neurons e
and ¢ were simultaneously stimulated using the same stimulation strength. The initial
network synaptic weights, the activation equation parameters, the synaptic plasticity rule

parameters, and the initial BCM LTP thresholds were the same as in Figure 2.8.

stimulation strengths (Figure 2.18f). Thus, it is possible to induce associative LTP in a
weak excitatory pathway to a postsynaptic neuron under the outstar rule. Furthermore, the
LTP threshold in independent pathways can be different according to the outstar excitatory
synaptic plasticity rule (Figure 2.18ef). In this network, the BCM rule did not produce LTP
when neurons ¢ and e were simultaneously stimulated with the same stimulation strength
because 0, was greater than z, (Figure 2.18¢f). If the initial value of 8, were chosen to be
less than the activation level of x, when z. = . = 0.5, then the BCM rule would produce
LTP in W and W}

ea ca

LTP in W[,. The changes in W and W7, produced by the BCM rule were identical because

when 2, = 2, > 0.5. Thus, the BCM rule too can produce associative

. = @., and the independent pathways had a single LTP threshold 8,.
Figure 2.20 demonstrates associative LTP in W under the outstar and the BCM
excitatory synaptic plasticity rules, but not under the instar excitatory synaptic plasticity

rule. The BCM rule has a single LTP threshold for independent pathways, whereas

the instar and the outstar synaptic plasticity rules have independent LTP thresholds for
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Figure 2.18: Legend on next page.
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Figure 2.18: Simulation results: Associative synaptic plasticity.
Figure on previous page. The simulation parameters are given in Figure 2.17. The panels in
the left column show changes in the weak pathway from neuron e to neuron a, and the panels
in the right column show changes in the strong pathway from neuron ¢ to neuron a, when
the weak pathway alone was stimulated (top row), the strong pathway alone was stimulated
(middle row), and the weak and the strong pathways were simultaneously stimulated using
the same stimulation strength (bottom row). Activation of neuron a was suppressed when
the pathway ea was stimulated, and therefore the weight of pathway ea and pathway ca was
not changed under the instar rule and the BCM rule (a), (b). The weight of pathway ca was
not changed under the outstar rule (b), since the pathway was not stimulated. (¢) Synaptic
plasticity in pathway ea was blocked according to the outstar rule and the BCM rule because

pathway ea was not stimulated.

— Weak pathway ea is stimulated ____ Weak pathway ea is stimulated
____ Strong pathway ca is stimulated ____ Strong pathway ca is stimulated
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Figure 2.19: Simulation results: Postsynaptic activation caused by stimulation
of independent excitatory pathways in a network with asymmetric lateral
inhibitory weights.

The activation of neuron a (panel (a)) and of neuron b (panel (b)) is shown when neuron e
was stimulated alone, when neuron ¢ was stimulated alone, and when neurons e and ¢ were
simultaneously stimulated using the same stimulation strength. The activation equation
parameters, the synaptic plasticity rule parameters, and the initial BCM LTP thresholds
were the same as in Figure 2.8. The initial network synaptic weights were the same as in
Figure 2.8 except that W, = 0.4 and W, = 0.1.
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Figure 2.20: Legend on next page.
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Figure 2.20: Simulation results: Associative synaptic plasticity in a network with
asymmetric lateral inhibitory weights.

Figure on previous page. The simulation parameters are given in Figure 2.19. See
Figure 2.18 for conventions. The weights of pathways ca and ea were not changed under

the outstar rule and the BCM rule (b), (¢) because the pathways were not stimulated.

independent pathways (Figure 2.20ef).

In the case of the outstar and the BCM excitatory synaptic plasticity rules, to
demonstrate associative plasticity the postsynaptic activation level should be below the LTP
threshold of the weak pathway when the weak pathway is stimulated alone. However, when
the weak and a strong pathway are simultaneously stimulated, the postsynaptic activation
should exceed the LTP threshold of the weak pathway. Under the outstar and the BCM
excitatory synaptic plasticity rules, no synaptic plasticity occurs in the unstimulated weak
pathway when the strong pathway alone is stimulated. In the case of the instar excitatory
synaptic plasticity rule, to produce associative plasticity the postsynaptic activation should
be suppressed when the weak pathway is stimulated alone, but when the weak and the
strong pathway are simultaneously stimulated the postsynaptic neuron should be activated.

If stimulation of the weak pathway activates the postsynaptic neuron, then
associative LTP cannot be produced according to the instar rule alone. When the
postsynaptic neuron is active, then the sign of weight change depends only on the
presynaptic stimulation strength to the weak pathway and the synaptic strength of the
weak pathway. Any stimulation that produces LTP (LTD) in the weak pathway when the
weak pathway alone is stimulated will produce LTP (LTD) in the weak pathway when
the weak pathway and the strong pathway are simultaneously stimulated with the same

stimulation strength.

2.3.4 Combined effects of instar and outstar excitatory synaptic plasticity

rules

Artola et al. (1990) found that for a fixed presynaptic stimulation at the
white matter—layer 6 border, synaptic plasticity in the excitatory pathways to

layers 2—4 neurons depended on the postsynaptic activation level. Plasticity was blocked,
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or very little LTD was produced, when the postsynaptic activation was suppressed below
a threshold. Increasing postsynaptic activation above the threshold produced larger LTD;
and further increase in postsynaptic activation above a second higher threshold produced
LTP. In this section, it is shown that a combination of the instar and the outstar rules
models the results of Artola et al. (1990).

Stimulation at the white matter—layer 6 border can activate geniculocortical
pathways and corticocortical pathways to neurons in layers 2—4 (Kirkwood et al., 1993).
In the absence of any pharmacological treatment, white matter stimulation produces
complex postsynaptic potentials involving monosynaptic and polysynaptic EPSP and IPSP
sequences (Frégnac et al., 1994). A measure of synaptic efficacy such as the amplitude of the
early peak of the postsynaptic potential may involve interactions of a variety of membrane
currents, and therefore, this measure of synaptic efficacy of the pathway from white matter
is an estimate of the “effective weight” of the pathway (Frégnac et al., 1994).

In the simulations presented in this section, it was assumed that plasticity in
afferent feedforward (Felleman & Van Essen, 1991; Maunsell & Van Essen, 1983) excitatory
pathways from lateral geniculate nucleus to neurons in layers 2—4 is governed by the instar
excitatory rule and that plasticity in feedback (Felleman & Van Essen, 1991; Maunsell &
Van Essen, 1983) excitatory corticocortical pathways to neurons in layers 2—4 is governed
by the outstar excitatory rule. In Sections 2.4.3 and 2.4.4, a plausible computational basis
for the above assumptions is discussed.

Figure 2.21 shows the effects of combining the weights of feedforward and feedback
pathways. In Figure 2.21, a postsynaptic neuron k was innervated by a feedforward
pathway ¢k with synaptic weight W{};, and by a feedback pathway 7k with synaptic weight
Wﬁ. The feedforward pathway synaptic plasticity was governed by the instar excitatory
rule, and the feedback pathway synaptic plasticity was governed by the outstar excitatory
rule. In the simulation, both the pathways were stimulated using the same stimulation.
Because the total excitation to the postsynaptic neuron was given by Equation 2.2, which is
linear in the synaptic weights, and because the presynaptic stimulation strength to the two
pathways was the same, the effective weight of the two pathways was computed by adding

their synaptic weights.
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Figure 2.21: Legend on next page.
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Figure 2.21: Simulation results: Synaptic plasticity with fixed presynaptic
stimulation and variable postsynaptic activation level under the instar and the
outstar excitatory synaptic plasticity rules.

Figure on previous page. In this simulation, a postsynaptic neuron received feedforward
and feedback pathways. The feedforward pathway synaptic plasticity was governed by
the instar excitatory rule, and the feedback pathway synaptic plasticity was governed by
the outstar excitatory rule. The two pathways were stimulated by the same stimulation
strength, and the effective synaptic weight of the two pathways was obtained by adding
the synaptic weights of the two pathways. The presynaptic stimulation strength of the
two pathways was held constant, and the postsynaptic activation was varied. (a)—(e) The
synaptic weight changes were computed after pairing the pre- and postsynaptic activation
for 20 iteration. () The synaptic weight changes were computed after a single pairing of the
pre- and postsynaptic activation. The initial synaptic weight of the feedforward pathway
was 0.5, and the initial synaptic weight of the feedback pathway was 0.05. The presynaptic
stimulation strength was 0.1 in panels (a) and (f), 0.4 in panel (b), and 0.6 in panel (c).
In panels (d) and (e), the initial synaptic weight of the feedforward pathway was 0.5, and
the initial synaptic weight of the feedback pathway was 0.45. The presynaptic stimulation
strength was 0.1 in panel (d) and 0.4 in panel (e). The parameters for the instar and the

outstar rules were the same as in Figure 2.8.

The changes in the combined synaptic weight according to the instar and
the outstar excitatory synaptic plasticity rules in Figure 2.21a are similar to those
experimentally observed by Artola et al. (1990). However, the changes in the combined
weight of the feedforward and the feedback pathways produced by the instar and the outstar
excitatory synaptic plasticity rules were parameter dependent.

The following paragraphs analyze the parameter dependence of the combined
weight changes based on the combination of the instar and the outstar excitatory synaptic
plasticity rules. The shape of the curve relating the combined weight changes and
postsynaptic activation level depends on the duration of stimulation, the presynaptic
stimulation strength, and the initial synaptic weights.

In Figure 2.21a the presynaptic stimulation was presented for 20 time steps.
Under the instar excitatory rule, the feedforward weight change reached an asymptote
because presynaptic stimulation was fixed while postsynaptic activation was varied. The
outstar excitatory rule caused the feedforward pathway weight to approach the postsynaptic

activation level, and the weight change in the feedback pathway did not reach an asymptote
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as the postsynaptic activation was increased. Thus, as the postsynaptic activation level was
increased, the feedforward pathway weight change equilibrated, but the feedback pathway
weight change increased, and the change in combined weight of the two pathways went from
LTD to LTP (Figure 2.21a). When the postsynaptic activation was less than or equal to
zero, the plasticity under the instar rule was disabled, but the plasticity in the outstar rule,
which is enabled by presynaptic stimulation alone, caused a small LTD in the feedback
pathway because the initial weight of the feedback pathway was small.

In Figures 2.21b and 2.21c, the presynaptic stimulation strength was varied.
When the presynaptic stimulation strength was close to but less than the feedforward
pathway synaptic weight (Figure 2.21b), the maximal decrease in the feedforward pathway
according to the instar rule was small, and therefore the LTP threshold for the combined
synaptic weight decreased. When the presynaptic stimulation strength was close to but
greater than the feedforward pathway synaptic weight (Figure 2.21c), the feedforward
pathway underwent LTP according to the instar rule, and the LTP threshold for the
combined synaptic weight decreased even further. When the initial synaptic weight of
the feedback pathway was large, large LTD was produced in the combined synaptic weight
when the postsynaptic neuron was inactive (Figures 2.21de). In Figure 2.21f, the synaptic
weight changes are shown after only one iteration when the weights were far from their
equilibrium values. In this case, the combined weight decreased.

The instar and the outstar rules alone can not reproduce the experimental results;
in fact, the instar and the outstar rules alone cannot produce the results for any parameter
values. If the instar rule alone were used for a fixed presynaptic activation, the sign of
the synaptic weight change would be fixed as the postsynaptic activation was changed
(Figure 2.14). If the outstar rule alone were used for a fixed presynaptic activation, the
maximal LTD would be produced when the postsynaptic neuron was hyperpolarized or

inactive (Figure 2.14).

2.3.5 Characteristics of the outstar inhibitory synaptic plasticity rule

There have been only a few experiments on lateral inhibitory synaptic plasticity

(e.g., Levy & Desmond, 1985; Miles & Wong, 1987; Rutherford et al., 1997).
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Levy and Desmond (1985) suggested several inhibitory synaptic plasticity rules, including
the outstar inhibitory rule, to model some aspects of classical conditioning. To motivate
further experimentation on lateral inhibitory synaptic plasticity, predictions of the outstar
lateral inhibitory synaptic plasticity rule (Marshall, 1990a, 1995a; Marshall & Gupta, 1998)
are presented. As in the case of the excitatory synaptic plasticity rules, changes in the
lateral inhibitory synaptic weights under the outstar lateral inhibitory synaptic plasticity
rule are studied as a function of input excitation to model neurons, pre- and postsynaptic
activation, and initial lateral inhibitory weights.

The properties of the outstar lateral inhibitory synaptic plasticity rule are
illustrated using the simple neural network described in Section 2.3.3 (Figure 2.7). In
the simulations in this section, only the lateral inhibitory pathway weights were plastic; the

excitatory pathway weights were held constant.

Synaptic plasticity in lateral inhibitory synapses as a function of input excitation

Figure 2.22 shows the activation of neurons a and b as 4 was varied from 0 to 1.
The activations #, and w; increased as x4 was increased (Figure 2.22ab), and x, and
remained equal, because of the symmetry of the initial weights.

Synaptic plasticity in the lateral inhibitory pathways between neurons a and b as
a function of input stimulation strength is shown in Figure 2.22cd. When the excitatory
input to neurons a and b was low, both neurons were weakly activated (Figure 2.22ab),
and according to the outstar lateral inhibitory plasticity rule pathway the lateral inhibitory
pathways between the two neurons underwent LTD, because R(z,) and R(zp) were less
than W, and W, respectively. As x4 increased, , and x; increased (Figure 2.22ab), and
W, and W_, were potentiated (Figure 2.22¢cd).

In Figure 2.23, neuron ¢ was stimulated. Figure 2.23ab shows the activation of
neurons a and b as x, was varied from 0 to 1. When z;, was below zero, according to
the outstar lateral inhibitory synaptic plasticity rule W,  did not undergo any change, and
W, decreased (Figure 2.23cd). At high values of x., when 2, and x are greater than
zero, changes in the lateral inhibitory pathway weights depended on the initial value of the

inhibitory weights and on the postsynaptic activation level (Figure 2.23cd); the inhibitory



81

1.00 —— Neuron a 1.00 —— Neuron b
0.80 | 0.80 |
c 0.60 | c 0.60 |
il 8
-g 0.40 | -g 0.40 |
© ©
g 020 2020
0.00 0.00
-0.20 | -0.20
00 02 04 06 08 10 00 02 04 06 08 10
Presynaptic stimulation strength Presynaptic stimulation strength
(a) (b)
__ Outstar inhibitory ____ Outstar inhibitory
= 0.09 _ = 0.09 _
o 0.08 | o 0.08 |
X 0.07 | X 0.07 |
> 0.06 > 0.06
‘G 0.05 | ‘G 0.05 |
*@ 0.04 | *@ 0.04 |
5. 0.03 5. 0.03
© 0.02 © 0.02
*% 0.01 | *% 0.01 |
® 0.00 ® 0.00
& 001 & 001
00 02 04 06 08 10 00 02 04 06 08 10
Presynaptic stimulation strength Presynaptic stimulation strength
(c) d

Figure 2.22: Simulation results: Changes in inhibitory synaptic efficacy under
the outstar inhibitory synaptic plasticity rule as a function of input excitation.

Figure on previous page. In this simulation, the initial pathway synaptic weights in the
network shown in Figure 2.4 were assigned as follows: W1 = 0.5, WC-Z = 0.25, W;; =04,
Wi =04, Wik =0.25, W:g =0.5, W, =W, =0.2. The parameters for the activation
equation (Equation 2.1) were A =0.1, B=1,C =0.05, 3 =1, and v = 15. The activation
level was computed using the Euler method with a time step of 0.04 until £ = 40. The initial
activation level of neurons a and b was set to zero. The parameters for the outstar lateral
inhibitory synaptic plasticity rule were assigned the following values: ¢ = 0.1, H(z) = [z],
and R(z) = 2[z]. The figure shows the synaptic weight changes according to the outstar
lateral inhibitory synaptic plasticity rule after activating neuron d. The activation level
of neuron d, x4, was varied from 0 to 1. Panels (a) and (b) show the activation level of
neurons a and b, respectively, as x4 was varied, and panels (c) and (d) show changes in W,

and W, _, respectively, as x4 was varied.



82

pathway from the strongly active neuron a to the weakly active neuron b weakened (became
less inhibitory), while the inhibitory pathway from the weakly active neuron b to the strongly
active neuron a strengthened.

Figure 2.24 shows the changes in the lateral inhibitory pathways when a
fixed stimulation was continuously applied to neuron c¢. The lateral inhibitory weights
equilibrated to a value proportional to the postsynaptic activation level (Figure 2.24cd),
and the rate of change approached zero as the lateral inhibitory weights approached their

equilibrium values (Figure 2.24ef).

Synaptic plasticity in lateral inhibitory synapses as a function of activation level

of the pre- and postsynaptic neurons

In Figure 2.25a, activation level of postsynaptic neuron b was varied for fixed
values of activation level of presynaptic neuron a. As x; was increased, the change in W_,
went from LTD to LTP. As x, was increased, the magnitude of change in W, increased.
In Figure 2.25b, activation level of presynaptic neuron a was varied for fixed values of the
activation level of postsynaptic neuron b. As x, was increased the sign of change in W,

was fixed, but the magnitude of change increased. As x, was increased, the change in W,

went from LTD to LTP.

Synaptic plasticity in lateral inhibitory synapses as a function of initial

inhibitory synaptic efficacy

The simulations in this section illustrate that under the outstar lateral inhibitory
synaptic plasticity rule, in general, the lateral inhibitory pathway weights increase if the
initial weights are low, and the lateral inhibitory pathway weights decrease if the initial
weights are high. Figure 2.26 shows changes in W, and W, _, as only W, was varied for a
fixed value of x4. At low values of W ;, neuron a was inactive, and at high values of W,
neuron b was inactive. Figure 2.26 shows that plasticity in a lateral inhibitory pathway was
blocked when the presynaptic neuron was inactive.

Figure 2.27 shows the changes in W, and W,_, as W, and W, were varied for a

fixed value of x,. W_, underwent potentiation when the initial value of W, was low and



83

1.00 —— Neuron a 1.00 —— Neuron b
0.80 | 0.80 |
< 0.60 | c 0.60 |
9 9
S 040 S 040
3] 3]
g 020 2020
0.00 0.00
-0.20 -0.20
00 02 04 06 08 10 00 02 04 06 08 10
Presynaptic stimulation strength Presynaptic stimulation strength
(@) (b)
__ Outstar inhibitory ____ Outstar inhibitory
5010 5010
o o
X 0.05 | X 0.05 |
2 2
‘G 0.00 ‘G 0.00
2 9
5. -0.05 5. -0.05
Q Q
5 -0.10 | 5 -0.10 |
IS IS
c c
& 015 & 015
00 02 04 06 08 10 00 02 04 06 08 10
Presynaptic stimulation strength Presynaptic stimulation strength
(c) d

Figure 2.23: Simulation results: Changes in inhibitory synaptic efficacy under

the outstar inhibitory synaptic plasticity rule produced by unequal activation
of neurons.

The synaptic weight changes under the outstar lateral inhibitory synaptic plasticity
rule are shown after activating neuron c¢. The activation z. was varied from 0 to 1.
Panels (a) and (b) show the activation level of neurons a and b, respectively, as z. was
varied, and panels (c) and (d) show changes in W, and W, _, respectively, as . was varied.
The initial synaptic weights, the parameters for the activation equation, and the parameters
for the outstar lateral inhibitory synaptic plasticity rule are given in Figure 2.22. (d) There
was no weight change in the inhibitory pathway from neuron b to neuron a when activity

in neuron b was suppressed.
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Figure 2.24: Legend on next page.
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Figure 2.24: Simulation results: Equilibrium value of inhibitory synaptic efficacy
under the outstar inhibitory synaptic plasticity rule.

Figure on previous page. The simulation parameters were the same as those given in
Figure 2.23. In this simulation, presynaptic stimulation was applied by keeping . fixed at
1 for 200 iterations. The synaptic weights were changed every iteration. Panels (a) and (b)
show the activation level of neurons a and b, respectively, over a period of 200 iterations as
the lateral inhibitory synaptic weights change. The LTP threshold for the outstar lateral
inhibitory synaptic plasticity rule was proportional to the lateral inhibitory synaptic weight.
Panels (c¢) and (d) show the synaptic weight of the inhibitory pathways, and panels (e) and
(f) show the rate of inhibitory synaptic weight change in the inhibitory pathways.

____ Low presynaptic activation ____ Low postsynaptic activation
____ High presynaptic activation ____ High postsynaptic activation
;_T 0.40 _ ;_'; 0.40 _
o o
X 0.30 | X, 0.30 |
2 2
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Figure 2.25: Simulation results: Changes in inhibitory synaptic efficacy under the

outstar inhibitory synaptic plasticity rule as a function of pre- and postsynaptic
activation.

The dependence of synaptic plasticity in W, on presynaptic activation level z, and on
postsynaptic activation level x; under the outstar inhibitory synaptic plasticity rule is
shown. The initial value of W, was 0.2. (a) The presynaptic activation x, was kept fixed
at a low level (z, = 0.05) and at a high level (z, = 0.2), and the postsynaptic activation
was varied from 0 to 1. (b) The postsynaptic activation z; was kept fixed at a low level
(zp = 0.05) and at a high level (z; = 0.2), and the presynaptic activation z, was varied

from 0 to 1. The parameters for the inhibitory synaptic plasticity rule were the same as in
Figure 2.22.
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xp was high and underwent depression when the initial value of W, was high and z; was
low. Figure 2.28 shows the changes in W, and W,_, as W_, and W, were varied for a fixed
value of x,4; because of the equal excitation and inhibition received by the Layer 2 neurons,
neurons @ and b were equally activated as W , and W, were varied and kept equal. In
Figure 2.28, W, and W, underwent potentiation when their initial values of were low and
z, and xp were high, and they underwent depression when their initial values were high and
z, and xp were low.

Although several factors affected the activation of neurons a and b as input
excitation and inhibition were varied, the most important factors determining the sign
of plasticity in the lateral inhibitory pathway weights, were the initial inhibitory synaptic
weight and the postsynaptic activation level. The rate of change was determined by the

presynaptic activation level.

2.4 Discussion

Three generalized Hebbian excitatory synaptic plasticity rules — the BCM
(Bear et al., 1987; Bienenstock et al., 1982; Clothiaux et al., 1991), the instar
(Grossberg, 1972, 76ab; Kohonen, 1988; Levy & Desmond, 1985; Levy & Burger, 1987;
Marshall, 1995a), and the outstar (Grossberg, 1976¢c; Rescorla & Wagner, 1972) — have
been compared. In addition, an outstar inhibitory synaptic plasticity rule (Marshall, 1990a,
1995a; Marshall & Gupta, 1998) has been analyzed.

The important distinctions between the BCM, and the instar and the outstar

excitatory synaptic plasticity rules are the following;:

1. the BCM rule has only one LTP threshold for all the pathways converging onto
a neuron; the instar and the outstar excitatory synaptic plasticity rules have

independent LTP thresholds for different pathways onto the same neuron;

2. under the BCM rule, all pathways to the same postsynaptic neuron undergo
simultaneous LTD or simultaneous LTP; under the instar and the outstar excitatory
synaptic plasticity rules, pathways to the same postsynaptic neuron may undergo LTP

or LTD independent of one another; and
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Figure 2.26: Simulation results: Changes in inhibitory synaptic efficacy under
the outstar inhibitory synaptic plasticity rule as a function of initial inhibitory

weight.

The parameters for the outstar inhibitory synaptic plasticity rule and the activation

equation were the same as in Figure 2.22. The initial network synaptic weights were the

same except that W, was varied from 0 to 1, W, = 0.5, and neuron d was activated at a

fixed activation level of 0.5. Panels (a) and (b) show the activation level of neurons a and

b, respectively, and panels (c¢) and (d) show synaptic plasticity in the inhibitory pathways

from neuron a to neuron b and from neuron b to neuron a, respectively, as W, was varied.
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Figure 2.27: Simulation results: Changes in inhibitory synaptic efficacy under
the outstar inhibitory synaptic plasticity rule as reciprocal inhibitory weights

were varied.

The parameters for the outstar inhibitory synaptic plasticity rule and the activation

equation were the same as in Figure 2.22. The initial network synaptic weights were the

same except that W, and W, were varied from 0 to 1 and W, = W,_, and neuron ¢ was

activated at a fixed activation level of 0.5. Panels (a) and (b) show the activation level

of neurons a and b, respectively, and panels (c¢) and (d) show synaptic plasticity in the

inhibitory pathways from neuron @ to neuron b and from neuron b to neuron a, respectively,

as WJ) and Wb; were varied.
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Figure 2.28: Simulation results: Changes in inhibitory synaptic efficacy under
the outstar inhibitory synaptic plasticity rule as reciprocal weights were varied
and the neurons received equal input excitations.

The parameters for the outstar inhibitory synaptic plasticity rule and the activation
equation were the same as in Figure 2.22. The initial network synaptic weights were the
same except that W, and W, were varied from 0 to 1 and W, = W, _, and neuron d was
activated at a fixed activation level of 0.5. Panels (a) and (b) show the activation level
of neurons a and b, respectively, and panels (c¢) and (d) show synaptic plasticity in the
inhibitory pathways from neuron @ to neuron b and from neuron b to neuron a, respectively,

as WJ) and Wb; were varied.
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3. the LTP threshold in the BCM rule depends only on the postsynaptic activation
history; the LTP thresholds in the instar and the outstar excitatory synaptic plasticity
rules are a function of the synaptic efficacy of the pathways and depend on both

pre- and postsynaptic activation levels.

The BCM and the outstar excitatory synaptic plasticity rules cannot produce heterosynaptic
LTD; according to these rules, unstimulated pathways do not undergo synaptic plasticity.
The instar excitatory synaptic plasticity rule, on the other hand, produces heterosynaptic
LTD.

The characteristic features of the outstar lateral inhibitory synaptic plasticity rule

are:
1. presynaptic activation is necessary to enable synaptic plasticity;
2. the rate of weight change is proportional to presynaptic activation; and

3. the sign of weight change depends on the difference between the initial weight and the

postsynaptic activation level.

The three excitatory synaptic plasticity rules are compared with experimental
data in Section 2.4.1. The experimental data supporting the three rules are summarized
in Table 2.1, and experimental data inconsistent with the three rules are tabulated in
Table 2.2. Table 2.3 summarizes the characteristics of the rules, the experimental support
for the rules, and the predictions of the rules. The symbol IT in Table 2.3 indicates the
absence of experimental data on some features of the rules. Experimental evidence for
the outstar lateral inhibitory synaptic plasticity rule is presented in Section 2.4.2. Finally,

plausible functional roles for the rules are discussed in Sections 2.4.3 and 2.4.4.

2.4.1 Experimental evidence for the excitatory synaptic plasticity rules

This section presents experimental data that provide some support for the instar,
the outstar, and the BCM excitatory synaptic plasticity rules. The experimental data
that have not been be explained by the three excitatory synaptic plasticity rules are also

discussed. In many experiments, synaptic plasticity was induced in the conditioned pathway
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by stimulating the pathway using pulses at different frequencies. In the simulations,
presynaptic stimulation frequency was abstracted as presynaptic activation level; the
presynaptic activation level in the model was proportional to the presynaptic stimulation
frequency (Brown et al., 1990).

The results of many experiments can be explained by the instar, the outstar,
or the BCM excitatory synaptic plasticity rule; these experiments are referred to as
ambiguous experiments. Some of the ambiguous experimental results are explained by
a combination of the instar and the outstar excitatory synaptic plasticity rules. Novel
experiments are suggested to determine the rules underlying synaptic plasticity in the

ambiguous experiments.

Experimental evidence for the instar excitatory synaptic plasticity rule

In this section, experimental evidence supporting the properties of the instar
excitatory synaptic plasticity rules are presented. Some of these experimental results are
inconsistent with the outstar and the BCM excitatory synaptic plasticity rules.

The instar rule requires postsynaptic activation to enable synaptic plasticity
(Section 2.3.3, Synaptic plasticity in excilatory synapses as a function of postsynaptic
activation level). Experimentally, homosynaptic LTD in hippocampal culture (Goda &
Stevens, 1996) and in hippocampal slices (Mulkey & Malenka, 1992) was produced when
low frequency stimulation of presynaptic sites was paired with postsynaptic depolarization,
but was blocked when low stimulation of presynaptic sites was paired with postsynaptic
hyperpolarization. In some experiments, it has been observed that pharmacological
treatments that increase postsynaptic activation, e.g., pharmacological disinhibition,
aid induction of synaptic plasticity (Artola & Singer, 1987; Bear et al., 1992; see
subsections Fxperimental evidence for the outstar excitatory synaptic plasticity rule and
Ambiguous experimental results ).

The instar excitatory synaptic plasticity rule produces heterosynaptic depression
(Section 2.3.3, Synaptic plasticity in excitatory synapses as a function of presynaptic
stimulation strength). Furthermore, the instar rule can produce simultaneous LTP and LTD

in different pathways. There are several experiments consistent with these properties of the



is inactive

Plasticity Characteristic properties Experimental data
rule
Instar postsynaptic | plasticity roda & Stevens (1996); Mulkey & Malenka (1992)
excitatory | neuron is disabled
is inactive
postsynaptic | stimulated Abraham & Goddard (1983); Dudek & Bear (1992);
neuron pathway may Kirkwood & Bear. (1994); Kirkwood et al. (1993)
is active undergo LTP Lynch et al. (1977)
or LTD
unstimulated Abraham & Goddard (1983); Levy (1985);
pathways Levy & Burger (1987); Levy & Desmond (1985);
undergo LTD Levy & Steward (1979, 1983); Lynch et al. (1977)
Outstar presynaptic | plasticity Andersen et al (1977); Dudek & Bear (1992);
excitatory | neuron is disabled Hess & Donoghue (1994); Heynen et al. (1996);

Hirsch & Gilbert (1993); Kirkwood & Bear (1994);
Kirkwood et al. (1993); Kobayashi et al. (1996);
Malinow & Tsien (1990); Sejnowski et al. (1990);
Stanton & Sejnowski (1989); Yang et al. (1994);
Yang & Faber (1991)

is inactive

presynaptic | pathway undergoes | Hess & Donoghue (1994); Malinow & Tsien (1990);
neuron LTD when Sejnowski et al. (1990); Stanton & Sejnowski (1989);
is active postsynaptic Yang et al. (1994); Yang & Faber (1991)
neuron is inactive
or weakly active
pathway undergoes | Hess & Donoghue (1994); Malinow & Tsien (1990);
LTP when Sejnowski et al. (1990); Stanton & Sejnowski (1989);
postsynaptic Wigstrom & Gustafsson (1983)
neuron is
strongly active
BCM presynaptic | plasticity Andersen et al (1977); Dudek & Bear (1992);
excitatory | nmeuron is disabled Hess & Donoghue (1994); Heynen et al. (1996);

Hirsch & Gilbert (1993); Kirkwood & Bear (1994);
Kirkwood et al. (1993); Kobayashi et al. (1996);
Malinow & Tsien (1990); Sejnowski et al. (1990);
Stanton & Sejnowski (1989); Yang et al. (1994);
Yang & Faber (1991)

presynaptic
neuron

is active

pathway undergoes
no plasticity or
weak [T when
postsynaptic
neuron is inactive

or weakly active

Artola et al. (1990); Goda & Stevens (1996);
Mulkey & Malenka (1992);

pathway undergoes
LTD when
postsynaptic
neuron is
moderately active

Artola et al. (1990); Hess & Donoghue (1994);
Yang et al. (1994); Yang & Faber (1991)

pathway undergoes
I.TP when
postsynaptic
neuron is

strongly active

Artola et al. (1990); Hess & Donoghue (1994);
Malinow & Tsien (1990); Sejnowski et al. (1990);
Stanton & Sejnowski (1989);

Wigstrom & Gustafsson (1983)
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Table 2.1: Properties of the excitatory synaptic plasticity rules that are consistent
with experimental data.
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Plasticity Cannot model Experimental data

rule

Instar absence of synaptic plasticity Andersen et al (1977); Dudek & Bear (1992);
excitatory | in unstimulated pathways Hess & Donoghue (1994); Heynen et al. (1996);

Hirsch & Gilbert (1993); Kirkwood & Bear (1994);
Kirkwood et al. (1993); Kobayashi et al. (1996);
Malinow & Tsien (1990); Sejnowski et al. (1990);
Stanton & Sejnowski (1989); Yang et al. (1994);
Yang & Faber (1991)

LTD and LTP as postsynaptic Artola et al. (1990); Hess & Donoghue (1994);
is varied for a fixed Yang et al. (1994); Yang & Faber (1991)
presynaptic stimulation
Outstar heterosynaptic LTD Abraham & Goddard (1983); Levy (1985);
excitatory Levy & Burger (1987); Levy & Desmond (1985);
Levy & Steward (1979, 1983); Lynch et al. (1977)
absence of synaptic plasticity Artola et al. (1990); Goda & Stevens (1996);
when postsynaptic neuron is inactive Mulkey & Malenka (1992);
BCM heterosynaptic LTD Abraham & Goddard (1983); Levy (1985);
excitatory Levy & Burger (1987); Levy & Desmond (1985);

Levy & Steward (1979, 1983); Lynch et al. (1977)
homosynaptic I.TD when postsynaptic | Malinow & Tsien (1990); Sejnowski et al. (1990);

neuron is hyperpolarized or very Stanton & Sejnowski (1989);

weakly active

Table 2.2: Properties of the excitatory synaptic plasticity rules that are
inconsistent with experimental data.

instar rule. Abraham and Goddard (1983) produced heterosynaptic LTD in the perforant
pathways to the dendate gyrus of rat hippocampus. They showed that tetanization of
either the lateral or the medial components of the perforant pathways to the dendate gyrus
produced LTD in the other, regardless of whether LTP was produced in the tetanized
pathway. In addition, associative LTP and heterosynaptic depression has been observed
in the synapses of the perforant pathways to the dendate gyrus (Levy, 1985; Levy &
Desmond, 1985; Levy & Steward, 1979, 1983). Lynch et al. (1977) showed that LTD in
unstimulated pathways to a CA1l pyramidal neuron in rat hippocampus can be produced
with concomitant LTP in a tetanized pathway to the same neuron; when a previously
unstimulated pathway was conditioned using tetanic stimulation it underwent LTP, and
the previously tetanized pathway underwent LTD.

According to the instar excitatory synaptic plasticity rule, LTD is produced in
an excitatory pathway when presynaptic activation is low, and LTP is produced when the

presynaptic activation is high (Section 2.3.3, Synaptic plasticity in excitatory synapses as a



Measurement Exp’tal || Instar Outstar BCM
Data Excitatory | Excitatory | Excitatory
1 synaptic plasticity at
zero postsynaptic activation Yes/No || No Yes No
2 | Homosynaptic LTP with strong
presynaptic stimulation Yes Yes Yes Yes
3 | Homosynaptic LTD with weak
presynaptic stimulation Yes Yes Yes Yes
4 | Heterosynaptic L'TD along
inactive/spontaneously active
excitatory pathways Yes/No || Yes No No
5 | Synaptic plasticity in unstimulated
excitatory pathways even with
postsynaptic activation Yes/No || Yes No No
6 | LTD more likely with large initial
weight Yes ‘es Yes Yes
7 | LTP more likely with small initial
weight Yes Yes Yes Yes
8 | LTD with presynaptic stimulation and
postsynaptic hyperpolarization Yes/No || No Yes No
9 | Associative LTP Yes Yes Yes Yes
10 | LTP and LTD in different pathways
are independent of each other Yes Yes Yes No
11 | For fixed magnitude of weight
presynaptic | change depends on
stimulation postsynaptic activation 77 Yes Yes Yes
strength sign of weight change
depends on postsynaptic
activation level 7 No Yes Yes
12 | For fixed magnitude of weight
postsynaptic | change depends on
activation presynaptic stimulation | 77 Yes Yes Yes
level sign of weight change
depends on presynaptic
stimulation strength 7 Yes No No
13 | Different I.TP thresholds for
different pathways 77 Yes Yes No
Table 2.3: Comparison of the excitatory synaptic plasticity rules.
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function of presynaptic stimulation strength). This is consistent with experiments showing
that stimulated pathways undergo LTD when they are stimulated with low frequency stimuli
and undergo LTP with high frequency stimuli (Dudek & Bear, 1992; Kirkwood & Bear, 1994;
Kirkwood et al., 1993; see subsections Fzperimental evidence for the outstar excitatory
synaptic plasticity rule, Fxperimental evidence for the BCM excitatory synaptic plasticity
rule, and Ambiguous experimental resulls).

The instar excitatory synaptic plasticity rule also produces associative LTP
(Section 2.3.3, Associative synaptic plasticity). Levy and Burger (1987) also used an instar
excitatory synaptic plasticity rule to model associative LTP and heterosynaptic depression.

Heterosynaptic LTD (Abraham & Goddard, 1983; Levy, 1985; Levy &
Burger, 1987; Levy & Desmond, 1985; Levy & Steward, 1979, 1983; Lynch et al., 1977)
cannot be produced by the outstar and the BCM excitatory synaptic plasticity rules
because they require presynaptic activation to enable synaptic weight changes (Section 2.3.3,
Synaptic plasticity in exciltatory synapses as a function of presynaptic stimulation strength).
The BCM rule is consistent with blockade of LTD in a stimulated pathway when the
postsynaptic neuron is hyperpolarized (Goda & Stevens, 1996; Mulkey & Malenka, 1992),
but the outstar excitatory rule predicts weakening of the stimulated pathway to a

hyperpolarized or weakly active postsynaptic neuron (Figures 2.8d and 2.12d).

Experimental evidence for the outstar excitatory synaptic plasticity rule

The defining characteristics of the outstar excitatory synaptic plasticity rule are
(1) the plasticity is enabled by presynaptic stimulation, and (2) the pathway synaptic weight
moves closer to a direct function of the postsynaptic activation.

In several experiments, the postsynaptic activation was varied for a fixed
presynaptic stimulation, and synaptic plasticity in stimulated and unstimulated pathways
was measured. LTD was produced in pathways to CA1l pyramidal neurons in
hippocampal slices by stimulating presynaptic terminals while the postsynaptic neuron
was hyperpolarized, and LTP was produced in pathways to CAl neurons by stimulating
presynaptic terminals while the postsynaptic neuron was depolarized (Malinow &

Tsien, 1990; Sejnowski et al., 1990; Stanton & Sejnowski, 1989). Control excitatory
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pathways to the postsynaptic neurons, which were unstimulated during induction of LTP
or LTD in the stimulated pathways, did not undergo synaptic plasticity (Malinow &
Tsien, 1990; Sejnowski et al., 1990; Stanton & Sejnowski, 1989). No long-term synaptic
plasticity was observed in pathways to CA1l neurons after the neuron was depolarized
or hyperpolarized, and low-frequency stimulation of pathways to CAl neurons alone did
not produce long-term synaptic plasticity (Malinow & Tsien, 1990; Sejnowski et al., 1990;
Stanton & Sejnowski, 1989). These results are consistent with the outstar excitatory rule
because the rule produces plasticity only in stimulated pathways, and the rule weakens
stimulated pathways to inactive neurons and strengthens stimulated pathways to strongly
active neurons (Section 2.3.3, Synaptic plasticity in excitatory synapses as a function of
postsynaptic activation level). The instar excitatory and the BCM synaptic plasticity rules
are inconsistent with the above results because they block synaptic plasticity or produce very
little synaptic plasticity in pathways to inactive or very weakly active postsynaptic neurons
(Section 2.3.3, Synaptic plasticity in excilatory synapses as a function of postsynaptic
activation level). Furthermore, the instar excitatory synaptic plasticity rule weakens all
unstimulated or weakly stimulated pathways to a highly active neuron (Section 2.3.3,
Synaptic plasticity in excitatory synapses as a function of postsynaptic activation level),
inconsistent with the observation of Malinow and Tsien (1990), Sejnowski et al. (1990), and
Stanton and Sejnowski (1989) that unstimulated pathways depolarized or hyperpolarized
neurons did not undergo synaptic plasticity.

According to the outstar excitatory synaptic plasticity rule, LTP is more likely
to occur in a stimulated pathway to a highly active postsynaptic neuron than in a
stimulated pathway to a weakly active or inactive postsynaptic neuron (Section 2.3.3,
Synaptic plasticity in excitatory synapses as a function of postsynaptic activation level);
thus, the rule exhibits a LTP intensity threshold. In some experiments, increasing the
stimulation intensity increased the postsynaptic activation and increased the effectiveness
of the tetanic stimulation in inducing LTP (Brown et al., 1990).

In some experiments, the postsynaptic activation was varied by pharmacological
means, simultaneous stimulation of several excitatory pathways to the postsynaptic

neuron, or stimulation of inhibitory pathways to the postsynaptic neuron. When
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postsynaptic activation of layer 2/3 neurons in rat motor cortex was increased by
pharmacological disinhibition or by simultaneous tetanization of two layer 2/3 horizontal
pathways terminating on a neuron, the stimulated pathways were strengthened (Hess &
Donoghue, 1994). In three out of eight cases the LTP was specific to the tetanized
pathway, and in the remaining cases a small strengthening of the untetanized layer 2/3
horizontal pathways was observed. The LTP in the untetanized layer 2/3 horizontal
pathways may occur because the pathways were not completely independent (Hess &
Donoghue, 1994). A weak depression was produced in the tetanized pathway without
the pharmacological disinhibition when the postsynaptic activation level was low. Thus,
the same presynaptic tetanization caused LTP when the postsynaptic activation level was
raised by pharmacological disinhibition and caused LTD when the postsynaptic activation
was low in the absence of pharmacological disinhibition, just as predicted by the outstar
excitatory synaptic plasticity rule (Section 2.3.3, Synaptic plasticity in excitatory synapses
as a function of postsynaptic activation level).

Yang et al. (1994) produced LTD in Schaffer collaterals to rat hippocampal
CA1 neurons by weak presynaptic stimulation and inhibition of the postsynaptic neuron
by repeated brief exposure to the inhibitory transmitter GABA or GABA receptor
agonists. Yang et al. (1994) suggested that the LTD could be caused by weakening of
the pre- and postsynaptic activation by GABA infusion. But presynaptic stimulation with
the GABA receptor agonist muscimol also produced LTD in the stimulated pathway, and
muscimol affected only the postsynaptic activation (Reiter & Stryker, 1988). Hippocampal
LTP was easily obtained by presynaptic stimulation in slices disinhibited by GABA blockers
(Wigstrom & Gustafsson, 1983). This suggests that it may the postsynaptic activation level
that determines whether the stimulated pathway undergoes LTP or LTD. The LTD was
reversed by strong presynaptic stimulation (Yang et al., 1994).

Yang and Faber (1991) reported that L'TD is induced at mixed synapses between
eighth nerve fibers and the goldfish Mauther (M) neuron in vive, by pairing weak
presynaptic stimuli with postsynaptic inhibition. The weak stimulation alone produced
LTP. Postsynaptic inhibition was applied by stimulating inhibitory interneurons that

synapse on M neuron dendrites and soma. The LTP and LTD was specific to the stimulated
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pathway and depended on the postsynaptic activation level.

The results of Hess and Donoghue (1994), Wigstrom and Gustafsson (1983),
Yang and Faber (1991), and Yang et al. (1994) cannot be modeled by the instar excitatory
synaptic plasticity rule because the rule cannot produce LTP and LTD in the conditioned
pathway with fixed stimulation as the postsynaptic activation alone is varied (Section 2.3.3,
Synaptic plasticity in excitatory synapses as a function of postsynaptic activation level).

Yang and Faber (1991) also found that LTD was more easily produced in a pathway
whose synaptic efficacy was previously raised than in a naive pathway. Section 2.3.3,
Synaptic plasticity in excitatory synapses as a function of initial synaptic weight, shows
that the outstar excitatory synaptic rule produces LTD when the initial synaptic weight is
very high.

As discussed in Section 2.3.3, the outstar excitatory synaptic plasticity rule
produces conditioned pathway-specific LTD and LTP as a function of presynaptic
stimulation strength. The synaptic plasticity in Schaffer collateral pathway to CAl
pyramidal neurons in adult rat hippocampus goes from LTD to LTP as the stimulation
frequency is increased, and the synaptic plasticity is specific to the tetanized pathway
(Dudek & Bear, 1992). Conditioned pathway-specific presynaptic stimulation frequency
dependent LTD and LTP have also been observed in pathways from layer 4 or white
matter to layer 3 neurons in the primary visual cortex of adult rats and kittens in wvitro
(Kirkwood & Bear, 1994; Kirkwood et al., 1993), in Schaffer collaterals to hippocampal
CA1 pyramidal neurons in adult rats in vivo (Heynen et al., 1996), and in hippocampal
mossy fiber CA3 synapses (Kobayashi et al., 1996). Andersen et al. (1977) observed
tetanized pathway specific LTP in pathways to CA1l neurons in guinea pig hippocampal
slices. Horizontal excitatory pathways in layer 3 of cat primary visual cortex could be
strengthened by pairing presynaptic stimulation and postsynaptic depolarization, and the
LTP produced was conditioned pathway specific (Hirsch & Gilbert, 1993).

Section 2.3.3, Associative synaptic plasticity, shows that the outstar rule can
produce associative LTP (Levy & Steward, 1979; Barrionuevo & Brown, 1983; Kelso &
Brown, 1986). Associative LTP was produced in a test excitatory pathway to hippocampal

CA1l pyramidal neurons when the test pathway was stimulated with low-frequency



99

stimulation in phase with high-frequency stimulation of an independent excitatory pathway
to the same postsynaptic neuron (Sejnowski et al., 1990; Stanton & Sejnowski, 1989).
High-frequency stimulation of the other excitatory pathway alone induced LTP in it, and no
synaptic plasticity was observed in the unstimulated test pathway (Sejnowski et al., 1990;
Stanton & Sejnowski, 1989). When the test pathway stimulation was out of phase with the
high-frequency stimulation of the other excitatory pathway, the test pathway was weakened
(Sejnowski et al., 1990; Stanton & Sejnowski, 1989). When the low-frequency stimulation in
the test pathway was in phase with the high-frequency stimulation in another pathway to the
same neuron, the postsynaptic neuron was highly depolarized when presynaptic terminals
in the test pathway were activated. However, when the test stimulation was out of phase
with the high-frequency stimulation, the postsynaptic neuron was hyperpolarized when
presynaptic terminals in the test pathway were activated (Sejnowski et al., 1990; Stanton &
Sejnowski, 1989). The outstar rule can produce LTD in a test pathway when the stimulation
of the test pathway is out of phase with stimulation in an independent pathway to a common
postsynaptic neuron because presynaptic activity in the test pathway is correlated with

postsynaptic hyperpolarization.

Experimental evidence for the BCM excitatory synaptic plasticity rule

The BCM excitatory synaptic plasticity rule states that presynaptic stimulation of
excitatory pathways to a postsynaptic neuron activated above a LTP threshold potentiates
the pathways, and presynaptic stimulation of excitatory pathways to a postsynaptic neuron
activated below the threshold depresses the pathways. Thus, the BCM rule exhibits a
LTP intensity threshold; increasing the stimulation intensity increases the effectiveness of
the tetanic stimulation to induce LTP (Brown et al., 1990). According to the BCM rule,
the LTP threshold is a function of the activation history of the postsynaptic neuron. In
addition, the rule does not produce synaptic plasticity if either presynaptic or postsynaptic
activation is absent.

The following experimental results are consistent with the role of postsynaptic
activation in producing synaptic plasticity according to the BCM rule.

Section 2.3.1 shows that the BCM rule produces LTD at low presynaptic
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stimulation strength and LTP at high stimulation strength as shown experimentally by
Dudek & Bear (1992). In addition, the BCM rule produces stimulated pathway-specific LTP
and LTD consistent with several experiments (Dudek & Bear, 1992; Heynen et al., 1996;
Kirkwood & Bear, 1994; Kirkwood et al., 1993; Kobayashi et al., 1996). The stimulated
pathway specificity of the BCM rule is also consistent with stimulated pathway-specific LTP
in reported by Andersen et al. (1977) and Hirsch and Gilbert (1993).

According to the BCM rule, as postsynaptic activation level is raised, the chances of
inducing LTP with the same presynaptic stimulation protocol increases. This is consistent
with experiments in which LTP was produced when the activation level was raised by
pharmacological disinhibition (Hess & Donoghue, 1994; Wigstrém & Gustafsson, 1983)
and LTD was produced in the absence of any pharmacological disinhibition (Hess &
Donoghue, 1994) or in the presence of strong inhibition (Yang et al., 1994; Yang &
Faber, 1991).

When the postsynaptic activation level was varied, a pathway that is stimulated
by the same stimulation protocol did not undergo any significant change in pathway weight
when the postsynaptic activation level was very small; the pathway underwent significant
depression as the postsynaptic activation level was raised, and the pathway underwent
significant potentiation when the activation level was raised very high (Artola et al., 1990).
This behavior can be modeled by the BCM rule (Figure 2.14e).

Prior strong postsynaptic activation raises the LTP threshold in the BCM
rule (Section 2.2.2, The BCM excitatory synaptic plasticity rule). Thus, a presynaptic
stimulation that induces little LTP induces LTD when the presynaptic stimulation is
preceded by strong postsynaptic activation because of strong presynaptic stimulation in
another independent pathway. Yang and Faber (1991) reported such a phenomenon.

Section 2.3.3, Associative synaptic plasticity, shows that the BCM rule produces
associative LTP (Levy & Steward, 1979; Barrionuevo & Brown, 1983; Kelso & Brown, 1986).
The BCM rule is also consistent with associative plasticity based on correlation between
stimulation applied to two pathways (Sejnowski et al., 1990; Stanton & Sejnowski, 1989).
When low-frequency stimulation of a test pathway is in phase with high-frequency

stimulation in another pathway to the same neuron, the postsynaptic neuron is highly
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active (Sejnowski et al., 1990; Stanton & Sejnowski, 1989); according to the BCM rule if
the high postsynaptic activation level is greater than the LTP threshold, LTP is induced
in all stimulated pathways. When low-frequency stimulation in the test pathway is
out of phase with high frequency stimulation in the other pathway, the postsynaptic
neuron is hyperpolarized when the presynaptic terminals in the test pathway are activated
(Sejnowski et al., 1990; Stanton & Sejnowski, 1989). Thus, according to the BCM rule,
plasticity in the test pathway cannot occur because the postsynaptic neuron is inactive.
But if the postsynaptic neurons were only very weakly activated when the presynaptic
terminals in the test pathway are activated, the BCM rule induces weak LTD in the test
pathway (Equations 2.4 and 2.5).The high-frequency stimulation of the other pathway alone
can induce LTP in the stimulated pathway because the strong presynaptic stimulation can
raise the postsynaptic activation above the LTP threshold, and the pathway weights of
unstimulated pathways do not change. When the low-frequency stimulation is applied to
the test pathway, the test pathway may undergo a small depression if the postsynaptic

activation level is below the LTP threshold.

Ambiguous experimental results

In this section, experimental results that can be modeled by any one of the three
rules are considered. Some experimental results that can be modeled by a combination of
the instar and the outstar excitatory synaptic plasticity rules are also discussed.

In some experiments the stimulated pathway and the unstimulated control
pathways are of different types, e.g., intracortical horizontal excitatory pathways and
pathways from white matter to primary visual cortical layers. Pathways from white
matter to primary visual cortical layers may include feedforward geniculocortical pathways
and corticocortical feedback pathways (Felleman & Van Essen, 1991; Maunsell &
Van Essen, 1983). It is hypothesized that synaptic plasticity in feedforward, feedback,
and intracortical horizontal excitatory pathways may be governed by different synaptic
plasticity rules. The assumption that the instar excitatory synaptic plasticity rule governs
synaptic plasticity in feedforward pathways and the outstar excitatory synaptic plasticity

rule governs synaptic plasticity in lateral and feedback pathways models many experimental
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results. Some novel experiments are suggested to test the hypothesis.

Cortical plasticity based on temporal covariance in pre- and postsynaptic
activation. Frégnac et al. (1988) obtained ocular dominance (OD) shifts and changes in
orientation selectivity in neurons in the primary visual cortex of kittens and cats. They
used iontophoresis to increase the visual response to a given stimulus and to decrease or
block the neural response to a second stimulus which differed in ocularity or orientation.
The neural selectivity shifted toward the stimulus paired with reinforced the visual response.

The observations of Frégnac et al. (1988) can be modeled by any of the three
rules. According to the instar excitatory synaptic plasticity rule, increase in response
to the stimulus that was paired with postsynaptic depolarization occurred because the
pairing strengthens the stimulated excitatory pathways to the neuron and weakens the
unstimulated /weakly active excitatory pathways to the neuron. Pairing the second stimulus
with postsynaptic hyperpolarization does not change the synaptic weight of the excitatory
pathways to the neuron because the postsynaptic activation was suppressed. Thus,
according to the instar rule the excitatory pathways that were strongly activated by
the second stimulus but not by the first stimulus are weakened, and the neuron loses
responsiveness to the second stimulus. The excitatory pathways that were strongly activated
by the first stimulus are strengthened, and the neuron becomes more responsive to the first
stimulus.

In the case of the outstar excitatory synaptic plasticity rule, inactive presynaptic
pathway weights do not change. The pathways activated by the first stimulus, which are
paired with postsynaptic depolarization, are strengthened because of high postsynaptic
activation level, and the pathways activated by the second stimulus, which are paired with
postsynaptic hyperpolarization, are weakened because of low postsynaptic activation level.
Thus, the postsynaptic neuron strengthens excitatory pathways that are strongly activated
by the first stimulus and weakens excitatory pathways that are strongly activated by the
second stimulus, and therefore, the neurons become more responsive to the first stimulus
and become less responsive to the second stimulus.

In the case of the BCM excitatory synaptic plasticity rule, inactive presynaptic

pathway weights do not change. The pathways activated by the first stimulus, which are
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paired with postsynaptic depolarization, are strengthened because the high postsynaptic
activation is greater than the LTP threshold. The pathways activated by the second
stimulus, which are paired with postsynaptic hyperpolarization, are weakened because
the low postsynaptic activation is less than the LTP threshold. Thus, the postsynaptic
neuron strengthens excitatory pathways that are strongly activated by the first stimulus
and weakens excitatory pathways that are strongly by the second stimulus. Therefore, the
neurons become more responsive to the first stimulus and lose responsiveness to the second
stimulus.

Synaptic plasticity based on temporal covariance in pre- and postsynaptic
activation. Debanne et al. (1997) produced bidirectional associative plasticity in
CA3 to CA1 pathways in rat hippocampus in vitro. To obtain LTP, presynaptic stimulation
was repeatedly paired with synchronous postsynaptic depolarizing pulses. To induce LTD,
asynchronous pairing of postsynaptic depolarization with a single delayed presynaptic
stimulus was repeated. As shown in Section 2.3.3, the three rules can produce LTP during
synchronous pairing, when the presynaptic and postsynaptic activations are strong. During
asynchronous pairing, the instar rule can weaken the pathway when the postsynaptic neuron
is activated by the depolarizing pulses and there is no presynaptic stimulation. The single
delayed presynaptic pulse may not be strong enough to overcome the LTD produced during
the preceding strong postsynaptic depolarization; during asynchronous pairing, the delayed
single pulse stimulation of the presynaptic pathway after strong postsynaptic depolarization
may only very weakly activate the postsynaptic neuron (Sejnowski et al., 1990; Stanton &
Sejnowski, 1989). According to the outstar and the BCM excitatory synaptic plasticity
rules, very weak postsynaptic activation paired with weak presynaptic stimulation weakens
the pathway, and strong postsynaptic depolarization without any presynaptic stimulation
of the excitatory pathways to the neuron does not change the pathway synaptic weight.
Thus, asynchronous pairing weakens excitatory pathways according to the outstar and the
BCM excitatory synaptic plasticity rules. Debanne et al. (1997) did not ascertain whether
the LTP/LTD was specific to the stimulated pathway, and thus the results are consistent
with all the three rules. As discussed in the preceding subsections, the instar rule can

produce depression in unconditioned pathways, but the outstar and the BCM rules produce
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plasticity only in conditioned pathways.

Bear et al. (1992) induced LTP in pathways from the white matter—layer 6 border
to layer 3 neurons in kitten primary visual cortex in vitro by high-frequency stimulation of
the pathway and local pharmacological disinhibition. As shown in Section 2.3.3, Synaptic
plasticity in excitatory synapses as a function of postsynaptic activation level, all the three
rules can produce larger LTP as the postsynaptic activation level is raised. Bear et al. (1992)
did not verify the specificity of synaptic plasticity or the dependence of synaptic plasticity
on postsynaptic activation level, and therefore, the evidence is insufficient to discard any of
the three rules.

Synaptic plasticity in feedforward, feedback, and lateral excitatory pathways.
Synaptic plasticity in pathways from white matter—layer 6 border to neurons in layers 2—4 in
the primary visual cortex and in intracortical horizontal excitatory pathways in layers 2/3 of
cats and guinea pigs (Frégnac et al., 1994) were studied (Frégnac et al., 1994) by varying the
postsynaptic activation level and the temporal covariance of pre- and postsynaptic activity.
In the following paragraphs, it is argued that the various details of synaptic plasticity in
pathways to primary visual cortex neurons can be modeled by a combination of the instar
and the outstar rules for excitatory synaptic plasticity, or by the BCM excitatory synaptic
plasticity rule.

Frégnac et al. (1994) used intracellular techniques to vary postsynaptic activation
level independent of activation of presynaptic elements. They found that pairing white
matter stimulation with postsynaptic hyperpolarizing current injections weakened the
pathway, and pairing white matter stimulation with postsynaptic depolarizing current
injections strengthened the pathway. The potentiation and depression of the pathway
synaptic weight was reversible. Successive pairing of white matter stimulation and
postsynaptic depolarizing current pulses resulted in a significant but decreasing amount
of potentiation.

In Section 2.3.3, Synaptic plasticity in excitatory synapses as a function of
postsynaptic activation level, it was shown that plasticity under the instar rule is disabled
when the postsynaptic neuron is inactive, and that weight changes under the instar rule

in pathways to a weakly active postsynaptic neuron are small. On the other hand, the
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outstar rule weakens stimulated excitatory pathways to inactive or very weakly active
neurons. Based on the assumptions that synaptic plasticity in geniculocortical feedforward
pathways is governed by the instar excitatory synaptic plasticity rule and that synaptic
plasticity in corticocortical feedback pathways is governed by the outstar excitatory synaptic
plasticity rule, the effective/combined weight of feedforward geniculocortical and feedback
corticocortical pathways from white matter to layers 2—4 neurons can weaken when white
matter stimulation is paired with hyperpolarizing current injections to the postsynaptic
neuron. The BCM rule can weaken the stimulated white matter pathways because the
hyperpolarizing current pulses can decrease the activation level of the postsynaptic neuron
below the LTP threshold while the pathway is stimulated.

In Section 2.3.3, Synaptic plasticity in excitatory synapses as a function of
postsynaptic activation level, it was shown that stimulation of an excitatory pathway to
strongly active postsynaptic neurons can be strengthened under the outstar excitatory
synaptic plasticity rule, if the initial synaptic weight of the pathway is less than a function
of postsynaptic activation. Thus, when presynaptic stimulation is paired with postsynaptic
depolarizing current injections, it is possible that the feedback corticocortical pathways
to layers 2—4 neurons are strengthened according to the outstar rule. The feedforward
geniculocortical pathways, which are assumed to undergo synaptic plasticity according
to the instar excitatory synaptic plasticity rule, are strengthened if the initial weight
of the geniculocortical pathway is less than a function of the presynaptic stimulation
strength, and weakened otherwise. As the postsynaptic activation level is increased the
magnitude of synaptic change increases, but the sign of synaptic weight change remains
the same. If white matter stimulation activates both geniculocortical and corticocortical
pathways, the effective weight of the pathways from white matter to layers 2—4 neurons
is increased when both geniculocortical and corticocortical pathways are strengthened, or
when the potentiation in the corticocortical pathways dominates the possible depression in
the geniculocortical pathways or vice-versa. The BCM rule can strengthen the stimulated
white matter pathways because the depolarizing current pulses can increase the activation
level of the postsynaptic neuron above the LTP threshold, while the pathway is stimulated.

When white matter stimulation was paired with postsynaptic hyperpolarizing
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current injections, the amount of decrease in the pathway weight was greater when the
initial effective weight of the pathway was larger. When white matter stimulation was
paired with postsynaptic depolarizing current injections, the amount of increase in the
pathway weight was greater when the initial effective weight of the pathway was smaller
(Frégnac et al., 1994). This result is consistent with the combination of instar and outstar
rules and with the BCM rule. In Figures 2.10 and 2.11, it was shown that a presynaptic
stimulation applied for sufficiently long duration, when postsynaptic activation level is below
the LTP threshold, can cause the pathway weight to decrease to an equilibrium value under
the outstar and the BCM rules, and that the rate of change in the pathway weight decreases
as the pathway weight approaches the equilibrium value. When the postsynaptic activation
level is very low, synaptic plasticity according to the instar rule is very small; thus, changes
in effective weight of the white matter pathway will be dominated by changes under the
outstar rule. Also, when the same presynaptic stimulation is applied for a sufficiently
long duration and postsynaptic activation is above the LTP threshold, the pathway weight
increases to an equilibrium value under the outstar or the BCM rules, and the rate of change
in the pathway weight can decrease as the pathway weight approaches the equilibrium value
(Figures 2.10 and 2.11). With a high postsynaptic activation, the sign of the synaptic
changes under the instar rule depends on whether the initial weight was greater or smaller
than a function of the presynaptic activation, and the rate of synaptic weight change
decreases as the pathway weight approaches the equilibrium value (Figure 2.10).

In order to verify the assumptions that feedforward pathway plasticity is governed
by the instar excitatory synaptic plasticity rule and that feedback and lateral excitatory
pathway plasticities are governed by the outstar excitatory synaptic plasticity rule, the

following experiments are suggested.

1. Depolarize a neuron in layers 2—4 above its spiking threshold without any presynaptic
stimulation. The predictions based on the assumption are that the feedforward
geniculocortical pathways to the active postsynaptic neuron weaken, under the instar
rule, and that the feedback corticocortical pathways and the intracortical horizontal
pathways to the active postsynaptic neuron do not undergo synaptic plasticity, under

the outstar rule. Thus, the effective weight of pathways from white matter should
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weaken, and the weight of intracortical horizontal excitatory pathways do not change.

2. When white matter stimulation at a site is paired with postsynaptic depolarizing
current injections, the independent pathway from another white matter site to the
postsynaptic neuron weakens. The instar excitatory synaptic plasticity rule weakens
unstimulated feedforward geniculocortical pathways to active postsynaptic neurons,
and the outstar excitatory synaptic plasticity rule does not modify unstimulated

feedback corticocortical pathways to active postsynaptic neurons.

3. When white matter stimulation at a site is paired with strong postsynaptic
hyperpolarizing current injections, the independent pathway from another white
matter site to the postsynaptic neuron may not undergo synaptic plasticity; the
instar excitatory synaptic plasticity rule does not modify the synaptic weight of
feedforward geniculocortical pathways to inactive postsynaptic neurons, and the
outstar excitatory synaptic plasticity rule does not modify unstimulated feedback

corticocortical pathways.

In all the above cases, according to the BCM rule, the weight of unstimulated pathways to
postsynaptic neuron at any level of activation will not change.

Synaptic  plasticity produced by a dual stimulating electrode protocol.
Frégnac et al. (1994) used a dual stimulating electrode protocol in which presynaptic
stimulation of one pathway (white matter or intracortical horizontal) was paired with
postsynaptic depolarizing or hyperpolarizing current pulses; this pathway is termed the
paired pathway. Another pathway (the unpaired pathway) was stimulated in the absence of
postsynaptic current injection in an alternating fashion. When the white matter pathway
to neurons in layers 2—4 was the paired pathway, an intracortical horizontal pathway served
as the unpaired pathway, and vice-versa. The same total number of stimuli was delivered
to both pathways, and interstimulus intervals between the activation of the paired and the
unpaired pathway were varied depending on the neuron.

In 41% (13 of 32) of the cases, pairing presynaptic stimulation with synchronous
postsynaptic hyperpolarizing pulses resulted in significant weakening of the paired pathway

efficacy. In 36% (8 of 22) of the cases, pairing presynaptic stimulation with synchronous



108

postsynaptic depolarizing pulses resulted in significant strengthening of the paired pathway.
These statistics include both the white matter and the intracortical horizontal excitatory
pathways to neurons in layers 2—4. In 68% (17 of 25) of the cases using the dual stimulation
electrode protocol, the unpaired pathway weight was unaffected. In 32% (8 of 25) remaining
cases, when the unpaired pathway was affected, the change in the unpaired pathway weight
was opposite to that produced in the paired pathway.

As mentioned before, it was assumed that plasticity in feedforward geniculocortical
pathways from white matter to neurons in layers 2—4 is governed by the instar excitatory
rule and that plasticity in feedback corticocortical pathways from white matter to neurons
in layers 2—4 and intracortical horizontal excitatory pathways to neurons in layers 2—4 is
governed by the outstar excitatory rule. With this assumption, it is shown below that
the model produces depression in the paired pathway when presynaptic stimulation is
paired with synchronous postsynaptic hyperpolarizing pulses and produces potentiation in
the paired pathway when presynaptic stimulation is paired with synchronous postsynaptic
depolarizing pulses. The cases under which the unpaired pathway can be affected are
discussed.

When white matter stimulation is paired with postsynaptic depolarizing current
pulses, the instar and the outstar rules can strengthen the effective weight of the pathways
from white matter; the initial weight can be less than a function of the presynaptic weight
(for LTP under the instar rule) and less than a function of the postsynaptic weight (for
LTP under the outstar rule). The unpaired intracortical horizontal excitatory pathway
weight may not change if the postsynaptic activation remains the same as during the prior
control stimulations. Any change in postsynaptic activation caused by test stimulation
after the conditioning stimulation can affect the equilibrium weight of the intracortical
horizontal excitatory pathway, under the outstar rule. If the interstimulus interval between
the stimulation of the paired and the unpaired pathways is small, it is possible that because
of the pairing protocol the neuron is in an adapted or fatigued state, and thus, stimulation of
the unpaired pathway can evoke a smaller postsynaptic activation. This would cause a small
depression of the unpaired intracortical pathway under the outstar rule. This hypothesis

can be tested by stimulating the unpaired pathway with a stronger presynaptic stimulation
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or by varying the interstimulus interval between the stimulation of the paired and unpaired
pathway. The prediction of the outstar rule is that the stronger presynaptic stimulation
will evoke a larger postsynaptic activation and therefore would strengthen the unpaired
intracortical pathway. When the interstimulus interval between the paired pathway (white
matter pathway) and the unpaired pathway (intracortical pathway) is increased, the amount
of depression in the unpaired pathway would decrease. Assuming that the depression
was caused by neuronal adaptation/fatigue, the postsynaptic neuron would recover from
adaptation in the absence of postsynaptic activation (Movshon et al., 1978).

When intracortical horizontal excitatory pathway stimulation is paired with
postsynaptic depolarizing current pulses, the outstar excitatory rule can strengthen the
paired pathway. During stimulation of the intracortical horizontal excitatory pathway
and synchronous postsynaptic depolarizing current injections, the postsynaptic neuron is
strongly active, and therefore, under the instar excitatory synaptic plasticity rule, the
feedforward geniculocortical pathways to the active neurons weaken. When the unpaired
white matter pathway is stimulated during testing, the feedback corticocortical pathways
may remain unchanged or weaken according to the outstar rule (similar to the situation
when an intracortical horizontal pathway was the unpaired pathway). Thus, the effective
weight of white matter pathways may decrease.

When the white matter pathways or intracortical horizontal excitatory pathways
to neurons in layers 2—4 are paired with synchronous postsynaptic hyperpolarizing current
pulses, the paired pathway is weakened (Frégnac et al., 1994). Interestingly, in some cases
the unpaired pathway in the dual stimulating electrode protocol was potentiated. During
pairing of presynaptic stimulation and postsynaptic hyperpolarizing current injections, the
postsynaptic activation level is very small. Therefore, the synaptic weight changes in the
feedforward geniculocortical pathways under the instar rule are very small. It is possible
that because of the low activation during the pairing phase, the adaptation/fatigue level
of the postsynaptic neuron decreases. Consequently, the postsynaptic neuron response to
stimulation of the unpaired pathway during testing could be higher than during the prior
control conditions. The higher activation in response to presynaptic stimulation of the

unpaired pathway during testing can strengthen the unpaired pathway under the outstar
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rule. Tt is also possible that during pairing of presynaptic stimulation with postsynaptic
hyperpolarizing current injections, lateral inhibitory pathways to the postsynaptic neuron
from other cortical neurons are weakened (see Section 2.2.2, The outstar lateral inhibitory
synaptic plasticity rule), thereby leading to an apparent strengthening of the unpaired
pathway.

The effects of the dual stimulating electrode protocol can be also explained by the
BCM rule. When the paired pathway is stimulated with postsynaptic depolarizing current
injections, the postsynaptic activation level is raised above the LTP threshold, and therefore
under the BCM rule the paired pathway is potentiated. The strong postsynaptic activation
during the pairing procedure also raises the LTP threshold. When the unpaired pathway is
stimulated during testing, the postsynaptic activation level can be less than the raised LTP
threshold, and hence the unpaired pathway can be depressed. When the paired pathway is
stimulated with postsynaptic hyperpolarizing current injections, the postsynaptic activation
level is below the LTP threshold, and therefore, under the BCM rule, the paired pathway
is depressed. The weak postsynaptic activation during pairing procedure decreases the
LTP threshold. When the unpaired pathway is stimulated during testing, the postsynaptic
activation level can be greater than the lowered LTP threshold, and hence, the unpaired
pathway can be potentiated. If the LTP threshold does not change much during the pairing
procedures, the synaptic weight of the unpaired pathway may not change at all.

Postsynaptic voltage dependence of L'TP and LTD. In Section 2.4.1, Fxperimental
evidence for the BCM excitatory synaptic plasticity rule, it was shown that the BCM
excitatory synaptic plasticity rule can explain the presence of different voltage-dependent
thresholds for inducing LTP and LTD in visual cortical slices (Artola et al., 1990). For
a fixed presynaptic stimulation strength, the stimulated pathway undergoes no synaptic
plasticity or very small LTD when the postsynaptic neuron is hyperpolarized or is inactive;
as the postsynaptic activation level increases, the stimulated pathway undergoes significant
LTD; and when the postsynaptic activation level increases further, the stimulated pathway
undergoes LTP.

The results of Artola et al. (1990) can be modeled by a combination of the instar

and the outstar excitatory synaptic plasticity rules. Artola et al. (1990) stimulated a site
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in the white matter—layer 6 border, through which feedforward geniculocortical pathways
(whose synaptic plasticity is assumed to be governed by the instar rule) and corticocortical
pathways (whose synaptic plasticity is assumed to be governed by the outstar rule) pass.
Section 2.3.4 shows the result of combining the synaptic weight of feedforward and feedback
pathways, which are similar to the results reported in Artola et al. (1990).

Independent LTP thresholds for different pathways. Huang et al. (1992) showed
that LTP in a pathway to hippocampal CA1l neurons was inhibited by prior presynaptic
stimulation with weak low-frequency stimulation or with single strong presynaptic shocks.
LTP induction was attempted by using high-frequency stimulation. The inhibition of LTP
was pathway specific; an independent control pathway to the same postsynaptic neuron
easily underwent LTP. When the test and the control pathways were stimulated using the
identical presynaptic stimulation to induce LTP at the same time, LTP in the test pathway
(which was previously stimulated by low-frequency stimulation) was less than the LTP in
the control pathway. Huang et al. (1992) suggested that the LTP thresholds in the different
pathways could be different and pathway specific. Both the instar and the outstar excitatory
synaptic plasticity rules have pathway specific LTP thresholds, which are dependent on the
pathway synaptic weight. The BCM rule has only one postsynaptic activation history

dependent LTP threshold for all pathways onto a postsynaptic neuron.

2.4.2 Experimental evidence for the outstar lateral inhibitory synaptic

plasticity rule

Plasticity in inhibitory synapses has not received the extensive attention of the
experimental and theoretical community, compared with that received by plasticity in
excitatory synapses. This section presents experimental results on inhibitory synaptic
plasticity and compares these results with the outstar inhibitory rule.

According to the outstar lateral inhibitory synaptic plasticity rule, presynaptic
activation is necessary for plasticity, but when presynaptic stimulation is present, the sign of
weight change depends on the postsynaptic activation. LTD is produced when the synaptic
weight is greater than a function of the postsynaptic activation, and LTP is produced when

the synaptic weight is less. There are several experimental results consistent with the
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properties of the outstar lateral inhibitory synaptic plasticity rule.

In Aplysia, pairing stimulation of an excitatory pathway and postsynaptic
hyperpolarization by an intracellular microelectrode increased the responsiveness of the
postsynaptic neuron to stimulation of the excitatory pathway (Carew et al., 1984).
Generalized Hebbian excitatory synaptic plasticity rules, including the BCM rule, the
instar and outstar excitatory synaptic rules, and other rules (Brown et al. 1990) predict
no plasticity or LTD in the stimulated excitatory pathway to the hyperpolarized neuron.
Stimulation of a presynaptic input to a hyperpolarized neuron can activate another
postsynaptic neuron, and under the outstar inhibitory rule, inhibitory pathways from active
neurons to the inactive neuron weaken, and inhibitory pathways from the inactive neuron
do not undergo synaptic plasticity. Thus, test stimulation of the input neuron will activate
both neurons, but the previously hyperpolarized neuron receives less inhibition from the
other active neuron, and hence its activation increases.

Responsiveness of a goldfish Mauther neuron to an unstimulated control pathway
increased slightly after pairing presynaptic stimulation in another independent test pathway
with postsynaptic inhibition (Yang & Faber, 1991). After a dual stimulating electrode
protocol in rat and guinea pig visual cortex, the responsiveness of the unpaired pathway
increased in some cases when the stimulation in the paired pathway was temporally
associated with postsynaptic hyperpolarizing current injections (Frégnac et al., 1994). These
results can be modeled by weakening of lateral inhibitory pathways to the weakly active
neurons according to the outstar inhibitory rule.

Miles and Wong (1987) reported a weakening of lateral inhibitory pathways
between  CA3  pyramidal neurons in  guinea  pig  hippocampal  slices,
several (approximately 15) minutes after tetanic stimulation of mossy fibers or
longitudinal association pathways. The outstar lateral inhibitory synaptic plasticity rule
can produce such an effect (see Figure 2.23¢) when the initial lateral inhibitory pathway
weight is less than a function of the postsynaptic activation.

In cerebellar Purkinje neurons, low-frequency stimulation of excitatory climbing
fiber resulted in a long-term potentiation of GABAja receptor-mediated inhibitory

postsynaptic currents (Kano et al., 1992). Kano et al. (1992) showed that intracellular
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calcium ion concentration determines potentiation and depression of the inhibitory
postsynaptic currents. When the postsynaptic calcium ion concentration was raised by
climbing fiber stimulation or by direct activation of the voltage-gated calcium ion channels
with a strong depolarizing pulse, long-lasting potentiation of inhibitory postsynaptic
currents was observed. When the postsynaptic calcium ion concentration was low, during
stimulation of climbing fibers with intracellular injection of a calcium ion chelator or during
antidromic stimulation of Purkinje neuron axons in the granule neuron layer, a long-lasting
depression of inhibitory postsynaptic currents was found. The outstar lateral inhibitory
synaptic plasticity rule produces potentiation of stimulated lateral inhibitory pathways to
strongly active neurons and produces depression of stimulated lateral inhibitory pathways
to weakly active or inactive neurons. In wvivo, high postsynaptic calcium ion concentration
can be produced when the postsynaptic neuron is highly depolarized, since calcium ion
channels are voltage-gated (Kano et al., 1992). Thus, the results in Kano et al. (1992)
are consistent with the outstar lateral synaptic plasticity rule, if it is further assumed that
depolarization of a Purkinje neuron or antidromic stimulation of Purkinje neuron axons in
the granule neuron layer activates lateral inhibitory pathways to the Purkinje neuron via
neural circuit interactions.

Hendry et al. (1990) reported a decrease in the density of GABA, receptors
in ocular dominance columns corresponding to the closed eye in layer 4C3 of adult
monkey primary visual cortex after five or ten days of monocular deprivation. After
monocular deprivation in adult cats, visual stimulation revealed a lack of lateral inhibitory
interactions, which are seen in normal cortex, in the monocularly deprived cortex
(Kasamatsu et al., 1998b). The outstar lateral inhibitory synaptic plasticity rule proposes
weakening of inhibition to the inactive neurons. In neocortical cultures, blockade of
spontaneous activity reversibly decreased the number of GABA-positive neurons, decreased
GABA-mediated inhibition onto pyramidal neurons, and raised the firing rates of pyramidal
neurons (Rutherford et al., 1997).
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2.4.3 Functional significance of the synaptic plasticity rules

The excitatory synaptic plasticity rules — the instar, the outstar, and the BCM
rules — and the outstar lateral inhibitory synaptic plasticity rule have been used in models
of cortical properties and functions. In this section, the roles of the individual synaptic
plasticity rules in the proposed models of cortical properties and functions are discussed.
The unique functional properties of the rules are also discussed.

In Section 2.4.1, Ambiguous experimental results, it was assumed that the instar
excitatory synaptic plasticity rule governs plasticity in feedforward pathways and that
the outstar excitatory synaptic plasticity rule governs plasticity in lateral excitatory and

feedback pathways. In this section, the functional bases for the assumption are discussed.

The instar excitatory synaptic plasticity rule

The instar excitatory synaptic plasticity rule modifies the synaptic efficacy of
excitatory pathways to active postsynaptic neurons so that the postsynaptic neurons
become more responsive to the input pattern; in fact, the synaptic weights move closer
to a function of the presynaptic activation level (Grossberg, 1976ab; Kohonen, 1988;
Marshall, 1995a; Nigrin, 1993). The instar excitatory synaptic plasticity rule has been used
to self-organize neural network circuits in response to arbitrary input patterns (Carpenter &
Grossberg, 1987; Grossberg, 1976ab, 1980, 1982; Marshall, 1995a; Nigrin, 1993).

Because the instar excitatory synaptic plasticity rule causes the weight vector
of the excitatory pathways to active postsynaptic neurons to move closer to the input
pattern vector, the instar rule can be used to model “fast” and “slow” learning
(Carpenter & Grossberg, 1987; Grossberg, 1976ab, 1980, 1982; Marshall, 1995a;
Nigrin, 1993). In fast learning, a network codes an input pattern in a small number of
presentations, e.g., rapidly learning a person’s face and name; whereas in slow learning,
a network gradually establishes neural codes for an input pattern over a large number
of input presentations, e.g., development of low-level feature selective neurons in primary
visual cortex. Grossberg (1976a) showed that the instar excitatory synaptic plasticity rule is

stable if the input patterns are sparse relative to the number of neurons coding the patterns,
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and that no stable pathway weights exist in the simplest networks using instar excitatory
plasticity if the number of patterns to be represented is large compared to the number
of neurons used to represent the input environment or if the input patterns are densely
distributed. Several sophisticated mechanisms to ensure stability in networks that use the
instar excitatory synaptic plasticity rule have been proposed (Carpenter & Grossberg, 1987;
Grossberg, 1976ab, 1980, 1982; Nigrin, 1993). Marshall (1995a) demonstrated the
development of a stable representation of input patterns in a dense stationary input
environment using a combination of the instar excitatory synaptic plasticity rule and the

outstar lateral inhibitory synaptic plasticity rule under a slow learning paradigm.

The outstar excitatory synaptic plasticity rule

The outstar excitatory synaptic plasticity rule modifies the synaptic efficacy of
excitatory pathways from active presynaptic neurons so that the synaptic weights of
stimulated excitatory pathways move closer to a function of the postsynaptic activation
level (Carpenter & Grossberg, 1981; Grossberg, 1976b, 1980, 1982; Nigrin, 1993).

Reciprocal geniculocortical and corticocortical excitatory pathways exist
throughout the brain (Felleman & Van Essen, 1991; Maunsell & Van Essen, 1983). The
firing pattern of neurons in the LGN can be modulated by corticogeniculate pathways
(Sillito et al., 1994; Varela & Singer, 1987; Vidyasagar & Urbas, 1982). In addition,
intracortical horizontal excitatory pathways exert subthreshold modulatory influences
on cortical neurons (Gilbert & Wiesel, 1983, 1989, 1990; Gilbert et al., 1996;
Kapadia et al., 1995; Toth et al, 1996; Ts’o et al., 1986). Feedback pathways or
intracortical excitatory pathways may be involved in synchronized firing of cortical neurons
(Engel et al., 1991; Gray et al., 1989; Gray & Singer, 1989; Konig et al, 1995).
Somers et al. (1995) employed intracortical horizontal excitatory pathways between model
cortical neurons with similar orientation preferences to enhance orientation selectivity.
Thus, feedback pathways and intracortical horizontal excitatory pathways may modify the
the activation of cortical neurons activated by feedforward pathways.

Feedback signals have been used to bias expected features in a temporal sequence

or in spatial patterns (Nigrin, 1993), to resolve local ambiguities using global information
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(Baloch & Grossberg, 1997; Grossberg & Rudd, 1992; Marshall et al., 1996b; Schmitt &
Marshall, 1995), to bind elements of a group (Marshall et al., 1998), to perform line
completions, formation of illusory boundaries, and texture processing (Gove et al., 1995;
Grossberg & Mingolla, 1985ab; Grossberg et al., 1997b), to model spatial attention
(Grossberg et al., 1994), to categorize of temporal input sequences (Grossberg et al, 1997a;
Grossberg & Merrill, 1996; Nigrin, 1993), and to learn a stable representation of input
patterns without supervision (Carpenter & Grossberg, 1987; Nigrin, 1993).

The outstar excitatory synaptic plasticity rule has been used to modify synaptic
efficacy of feedback pathways in the aforementioned roles (Baloch & Grossberg, 1997;
Carpenter & Grossberg, 1987; Grunewald & Grossberg, 1997; Grossberg et al., 1997a;
Schmitt & Marshall, 1995; Nigrin, 1993). The outstar excitatory synaptic plasticity rule has
also been used to model a large number of classical conditioning protocols (Pavlov, 1927;

Rescorla & Wagner, 1972; Schmajuk, 1997).

The BCM synaptic plasticity rule

The BCM synaptic plasticity rule has been used to model development of a stable
neural network having neurons with high selectivity in the absence of lateral inhibition
(Bienenstock et al., 1982; Intrator & Cooper, 1992; Shouval et al., 1996). The BCM rule has
been used to model visual cortical plasticity (Clothiaux et al., 1991; Law & Cooper, 1994;
Shouval et al., 1996) and to extract features from very high dimensional vector spaces
(Intrator, 1992).

The occurrence of negative and positive regions for the function ¢ the BCM rule
(Equation 2.4) results in neurons becoming selective to subsets of stimuli in the visual
environment. This happens because the response of the neuron is diminished to those
patterns for which the postsynaptic activation is below the LTP threshold, while the
response is enhanced to those patterns for which it is above (Bienenstock et al., 1982;
Clothiaux et al., 1991).

As opposed to the instar rule, the BCM rule cannot be used for fast learning.
If an input pattern activates a postsynaptic neuron above its LTP threshold, all active

pathways to the postsynaptic neuron are strengthened. The pathway weights reach an
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equilibrium level if the postsynaptic activation level and the LTP threshold become equal.
Thus, during fast learning the BCM rule cannot keep the synaptic efficacy of pathways to
the active postsynaptic neuron proportional to the input pattern.

However, even during slow learning the BCM rule can lead to loss of selectivity.
For example, if only one input pattern is repeatedly presented, all excitatory pathways
to the postsynaptic neuron most responsive to the input pattern will strengthen toward
a maximum saturation level. If we assume that unstimulated pathways can be
activated because of noise, then all pathways to the highly active neuron will strengthen

(Clothiaux et al., 1991), and the neuron loses selectivity.

The outstar inhibitory synaptic plasticity rule

The outstar lateral inhibitory synaptic plasticity rule along with the instar
excitatory synaptic plasticity rule (the EXIN rules) leads to development of neurons
with high stimulus discrimination, sparse distributed coding, and exclusive allocation
(Marshall, 1995a; Marshall & Gupta, 1998). The EXIN rules have been used to
model the development of disparity selectivity (Marshall, 1990c¢), motion selectivity and
grouping (Marshall, 1990a, 1995b; Schmitt & Marshall, 1995), orientation selectivity
(Marshall, 1990d), and length selectivity and end-stopping (Marshall, 1990b).

Under the outstar lateral inhibitory synaptic plasticity rule, strong lateral
inhibitory pathways develop between neurons that are consistently coactivated. Neurons
can be consistently coactivated if they receive excitatory afferents from many common
input neurons. Thus, in the EXIN network, model cortical neurons that share inputs
tend to develop strong lateral inhibitory pathways between them (Marshall, 1995a). This
is consistent with experimental results suggesting that a neuron receives the strongest
inhibition when stimulated with the preferred stimuli of the neuron or when the stimuli
is presented within the neuron’s receptive field (Blakemore et al., 1970; Blakemore &
Tobin, 1972; DeAngelis et al., 1992; Ferster, 1989; Sengpiel et al., 1997).

The outstar lateral inhibitory plasticity rule (Equation 2.10) is an asymmetric
rule; lateral inhibitory pathways from active neurons to inactive neurons weaken; however,

lateral inhibitory pathways from inactive neurons to other neurons do not change. The
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outstar lateral inhibitory synaptic plasticity rule thus directly reduces inhibition to neurons
inactivated by peripheral scotomas or lesions, thus making the inactive neurons more likely
to respond to some visual stimuli (with reduced selectivity). The outstar lateral inhibitory
synaptic plasticity rule enhances the efficiency of a neural network’s representation of
perceptual patterns by recruiting unused and under-used neurons to represent input data
(Marshall, 1995a; Marshall & Gupta, 1998).

The lateral inhibitory synaptic plasticity rule is a functional rule that describes
the modifications in the effective inhibition through synaptic weight changes. In
vivo, intracortical inhibition to excitatory neurons is mediated by inhibitory neurons,
which receive lateral excitation from excitatory neurons in addition to afferent input
(McGuire et al., 1991; Somogyi, 1989; Somogyi & Martin, 1985). In addition, inhibitory
neurons have inhibitory synapses with other inhibitory neurons (Somogyi, 1989; Somogyi &
Martin, 1985). Neurophysiologically, the outstar lateral inhibitory synaptic plasticity
rule could be realized directly by plasticity in the GABAergic synapses onto excitatory
neurons — using the outstar lateral inhibitory synaptic plasticity rule — or indirectly by
plasticity in lateral excitatory horizontal pathways (both short- and long-range) terminating
on inhibitory neurons — using the outstar excitatory synaptic plasticity rule (Darian-Smith &
Gilbert, 1995; Das & Gilbert, 1995ab; Gilbert et al., 1996; Hirsch & Gilbert, 1993). The
axonal arbors of many inhibitory neurons (e.g., clutch, basket, chandelier) terminate mainly
on excitatory neurons (Somogyi, 1989; Somogyi & Martin, 1985), and axonal arbors of
most excitatory neurons terminate on other excitatory neurons (McGuire et al., 1991;
Somogyi, 1989; Somogyi & Martin, 1985). Stimulation of the long-range horizontal
excitatory pathways produce excitatory and inhibitory effects on excitatory neurons (Gil &
Amitai, 1996; Weliky et al., 1995). Thus, changing the efficacy of either the lateral inhibitory
pathways or the lateral excitatory pathways to inhibitory neurons will change effective

inhibition to cortical neurons.
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2.4.4 Comparison of the functional roles of the instar and outstar

excitatory rules

The instar excitatory rule has been used to govern synaptic plasticity in
feedforward pathways (Grossberg, 1976ab; Kohonen, 1988; Marshall, 1995a; Nigrin, 1993)
and the outstar excitatory rule has been used to modify weights in feedback pathways
(Carpenter & Grossberg, 1981; Grossberg, 1976b, 1980, 1982; Nigrin, 1993). In this section,
the above choices are justified.

The appropriateness of using the instar excitatory synaptic plasticity rule in
governing synaptic plasticity in feedforward excitatory pathways (e.g., the geniculocortical
pathways), instead of the outstar synaptic plasticity rule, is shown using the following
example.

In the developing primary visual cortex, neurons show some selectivity for specific
input features, e.g., oriented line segments, from a quite early stage of development
(Blasdel et al., 1995; Chapman et al., 1996; Frégnac & lImbert, 1978, 1984; Hubel &
Wiesel, 1963; Wiesel & Hubel, 1974). An input pattern is composed of a small number of
basic elements; e.g., a line segment at a particular position, length, width, and orientation
is made up of a spatially linear sequence of adjacent stimulus positions. The basic elements
that comprise an input pattern may belong to an extremely large number of different input
patterns, e.g., a particular stimulus position may be an element of any line segment passing
through that position. Because of the high selectivity in the developing cortex, only a
small number of cortical neurons are activated in response to an input pattern; most
cortical neurons are inactive or very weakly active, even though the input pattern that is
presented contains elements that belong to input patterns that evoke strong response in the
inactive/weakly active neurons. Under the instar excitatory synaptic plasticity rule, only
active neurons can modify the synaptic efficacy of convergent excitatory pathways. Because
of the high selectivity and the instar excitatory synaptic plasticity rule, only excitatory
pathways to a small number of active neurons undergo plasticity in response to a input
presentation. This contributes to the maintenance of stability of the pathway weights; only

the excitatory pathways to strongly activated neurons are modified, and the weight changes
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under the instar rule make the strongly active neurons even more responsive to the currently
presented input patterns.

If the outstar excitatory synaptic plasticity rule were used to modify the synaptic
efficacy of feedforward excitatory pathways, it would be difficult to maintain stable and
strong feedforward pathway weights. Because of the high selectivity in the cortex, only
a few cortical neurons are strongly activated. The plasticity in the outstar excitatory
rule is enabled when the excitatory pathway is stimulated. Thus, stimulated excitatory
pathways to a small number of strongly active cortical neurons are strengthened, and
stimulated excitatory pathways to a large number of inactive or weakly active cortical
neurons are weakened. Thus, excitatory feedforward pathways to cortical neurons are
strengthened during presentation of a small number of input patterns, but are weakened
during presentation of a large number of input patterns. This can cause all the excitatory
feedforward pathways to become very weak. This conclusion is based on the observation
that an input feature is composed of a small number of basic elements, but each element
belongs to a large number of input patterns.

To clarify the above point, consider a worst-case scenario. During the early stages
of cortical development, let the input environment be changed so that the animal is shown
lines of only one orientation, e.g., vertical, over the entire visual field. Since only a small
number of cortical neurons selective to the vertical line will be strongly active, while most
cortical neurons are inactive or very weakly active, the outstar excitatory synaptic plasticity
rule would weaken stimulated feedforward excitatory pathways to inactive neurons. Thus,
presentation of one stimulus over the entire visual space leads to weakening of feedforward
pathways to neurons selective to other stimuli, and eventual loss of responsiveness to visual
stimulation in neurons selective to stimuli other than the presented stimulus.

Another problem with using the outstar excitatory synaptic plasticity rule for
plasticity in feedforward excitatory pathways is that the rule causes all stimulated
pathways to a common postsynaptic neuron to approach the same equilibrium value,
which is a function of the postsynaptic activation level. Thus, the outstar rule is
incapable of presenting input patterns that differ in activation level of the components

of the input pattern, e.g., in representation of temporal patterns (Grossberg, 1978, 1985;
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Grossberg et al., 1997a; Nigrin, 1993).

The instar excitatory synaptic plasticity rule on the other hand, allows plasticity
in pathways to active neurons only, and cortical neurons previously less responsive to the
vertical lines become more responsive to the vertical lines. Cortical neurons selective to
other stimuli will retain their selectivity and responsiveness.

The outstar excitatory rule is well-suited for governing synaptic plasticity in
feedback pathways, while the instar excitatory rule is not. In a hierarchical processing
system, a higher stage neuron should send a feedback signal proportional to the activation
pattern in the lower stage that strongly activates the higher level neuron to bias neurons in
the lower stage (Nigrin, 1993). When the feedback signal is used to stabilize the pathway
weights in an unsupervised learning network, the feedback signal is an expectation signal
which allows the expected signal and the activation pattern in the lower stage to be locally
compared. In this case too, the feedback signal should be proportional to the lower stage
activation pattern that most strongly activates the higher stage neuron (Carpenter &
Grossberg, 1987; Nigrin, 1993). The outstar rule is activated when the presynaptic neuron
(a higher stage neuron in case of feedback pathways) is activated; the pathway weights
then move closer to values proportional to the activation of the postsynaptic neurons
(lower stage neurons in case of feedback pathways). Thus, the feedback pathway weights
become proportional to the expected activation pattern in the lower stage, and feedback
pathway weights change only when a higher stage neuron is activated. Thus, synaptic
plasticity in feedback pathways governed by the outstar rule produces feedback pathways
appropriate in generating biasing signals and stabilizing signals.

The instar excitatory synaptic plasticity rule is not appropriate for producing
synaptic plasticity in feedback pathways. Because of the high input pattern selectivity in
cortex, and because the constituent elements of an input pattern can belong to a large
number of different input patterns, using the instar excitatory synaptic plasticity rule on
feedback pathways would cause feedback pathways from a large number of higher stage
neurons to an active lower stage neuron to weaken during the presentation of input patterns.
Feedback pathways to a lower stage neuron would increase only when a higher stage neuron

and the lower stage neuron are both active; this would happen during presentation of only
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a small number of input patterns. Thus, if the instar rule were used to govern plasticity in
feedback pathways, the feedback pathways would become very weak. Therefore the instar
rule is not appropriate to govern plasticity in feedback pathways.

The outstar excitatory synaptic plasticity rule is also appropriate in producing
synaptic plasticity in lateral excitatory pathways. A neuron in a given stage of processing
may not be very predictive of the activation level of other neurons within the same stage;
e.g., in a textured visual scene, the orientations of neighboring lines could be very different.
The neurons selective to different simple input features in a lower stage can be combined
to represent a more complex input feature or entity in a higher stage. When a neuron
in a particular processing stage is active, lateral excitatory pathways from strongly active
neurons within the same layer may strengthen under the instar excitatory rule, but lateral
excitatory pathways from inactive or weakly active neurons weaken, and lateral excitatory
pathways to inactive neurons do not change. On the other hand, when the outstar excitatory
synaptic plasticity rule is used in lateral excitatory pathways, lateral excitatory pathways
from an active neuron to a strongly active neuron may strengthen, but lateral excitatory
pathways from the active neuron to inactive or weakly active neurons weaken. Thus, the
instar and the outstar rules establish weights in lateral excitatory pathways between neurons
within a processing stage proportional to the likelihood of coactivation of the neurons. In
Section 2.4.1, Ambiguous experimental results, the outstar rule was assumed to govern
plasticity in the intracortical lateral excitatory pathways because experimental evidence on
synaptic plasticity in intracortical lateral pathways is consistent with the outstar rule but

inconsistent with the instar rule.

2.4.5 Conclusions

This paper showed that the instar and the outstar excitatory rules modeled many
experimental results on long-term potentiation and long-term depression. The main points

of the paper are:

1. in the instar and the outstar rules, each synapse has a LTP threshold, whereas in the

BCM rule, all synapses onto a neuron have a common LTP threshold;
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2. in the instar and the outstar rules, independent pathways onto a neuron undergo
synaptic plasticity independent of plasticity in other pathways, whereas in the

BCM rule, the sign of weight changes in active pathways to a neuron is the same;

3. lateral inhibitory synapses can undergo LTP and LTD similar to excitatory synapses;

and

4. lateral inhibitory synaptic plasticity improves models of experimentally observed

synaptic plasticity.



Chapter 3

The role of afferent excitatory and
lateral inhibitory synaptic
plasticity in visual cortical ocular

dominance plasticity

Abstract

Previous models of visual cortical ocular dominance (OD) plasticity
(e.g., Clothiaux et al., 1991; Miller et al., 1989) are based on afferent excitatory synaptic
plasticity alone; these models do not consider the role of lateral interactions and synaptic
plasticity in lateral pathways in OD plasticity. Recent models of other cortical properties
and functions have emphasized lateral intracortical interactions, however, and long-range
lateral pathways develop during the early postnatal stages (Callaway & Katz, 1990).
Thus, a biologically plausible model of OD plasticity should consider the development
of intracortical pathways and its effects on OD and other cortical properties during early
postnatal stages. In this paper, the EXIN model (Marshall, 1995a), which consists of afferent

excitatory and lateral inhibitory synaptic plasticity, is used to model OD plasticity during
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the “classical” rearing paradigms such as normal rearing, monocular deprivation, reverse
suture, strabismus, binocular deprivation, and recovery from monocular and binocular
deprivation, and to study the role of afferent excitatory and lateral inhibitory synaptic
plasticity in the OD changes. Computer simulations using the EXIN model show that
normal rearing produces model cortical neurons with high input feature selectivity and
with a range of OD. The OD of model cortical neurons after normal rearing depends on
the correlation between the patterns of stimulation in the two eyes. A novel result based
on the EXIN model is that the weight of lateral inhibitory pathways has a strong effect on
the OD distribution after normal rearing; as the strength of lateral inhibitory pathways is
decreased, model cortical neurons become less selective and more monocular. In the model,
the afferent excitatory synaptic plasticity plays the primary role in OD plasticity under the
classical rearing paradigms, and lateral inhibitory interactions cause secondary OD changes.
The EXIN model shows how afferent excitatory and lateral inhibitory pathways develop
during normal rearing and undergo changes under the classical rearing paradigms. Novel

experiments are suggested based on comparison of the EXIN model with previous models.

3.1 Introduction

The development of orientation selectivity and binocularity in primary visual
cortex depends on the type of visual environment experienced during a critical
period of development (Blakemore & Van Sluyters, 1975; Freeman et al., 1981;
Frégnac & Imbert, 1978; Hubel & Wiesel, 1963, 1965, 1970; Wiesel & Hubel, 1963, 1965).

Primary visual cortical neurons in cats have orientation selectivity from very early
postnatal stages, but a normal visual environment is needed to maintain and develop
orientation selectivity (Frégnac & Imbert, 1978). Optical recording of the developing
primary visual cortex in very young ferrets showed that the structure of orientation maps
is stable during development, but the orientation tuning of primary cortical neurons is
sharpened during normal development (Chapman et al., 1996). Weliky and Katz (1997)
produced weakening of orientation selectivity of primary visual cortical neurons in ferret

kittens by artificially correlated activation of optic nerve fibers, although the overall
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organization of orientation column maps was unaltered.

The distribution of ocular dominance (OD) of primary cortical neurons is highly
plastic during a critical period (Hubel & Wiesel, 1970). The OD of primary cortical neurons
changes after “classical” rearing paradigms, which include monocular deprivation (MD),
reverse suture (RS), strabismus (ST, binocular deprivation (BD), and recovery (RE) under
normal stimulation following MD and BD. The classical rearing paradigms and their effects
on cortical properties are reviewed below.

Brief periods of MD, in which one eye is deprived of visual stimulation, changes
the OD of cortical neurons so that most become responsive exclusively to the open eye
(Hubel & Wiesel, 1970). Changes in OD can be induced within a few hours of monocular
experience (Freeman & Olson, 1982).

In RS conditioning (Blakemore & Van Sluyters, 1974), after a period of MD the
previously closed eye is opened and the previously open eye is closed. RS shifts the OD of
cortical neurons toward the newly opened eye (Blakemore & Van Sluyters, 1974). Cortical
neurons lose responsiveness to the newly closed eye before becoming responsive to the newly
opened eye (Mioche & Singer, 1989). Neurons may acquire an orientation tuning different
from their original orientation tuning (Blakemore & Van Sluyters, 1974).

ST causes cortical neurons to become monocular (Hubel & Wiesel, 1965). In
strabismic animals, stimulation of corresponding retinal positions is uncorrelated. Lack of
correlated input to the eyes produced by alternating occlusion of the eyes, rotating the
image in one eye relative to the other, or simultaneously producing different patterns of
stimulation on corresponding regions of the two eyes, also causes loss of binocularity in
cortical neurons.

In contrast to MD, most neurons remain equally responsive to both eyes after BD,
in which animals are deprived of patterned stimulation in both eyes for a period comparable
to that of MD (Wiesel & Hubel, 1965). Brief periods (< 1 week) of BD produce about a
50% drop in peak responsiveness to the preferred orientation and a slight broadening of
orientation tuning. Longer periods of BD lead to further reduction in responsiveness and
orientation selectivity (Freeman et al., 1981).

Normal binocular vision after weeks of MD or BD restores normal binocularity of
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cortical neurons (Buisseret et al., 1982; Freeman & Olson, 1982). However, binocularity
may not be recovered after prolonged dark-rearing and MD followed by normal binocular
vision (Cynader, 1983; Hubel & Wiesel, 1970; Freeman & Olson, 1982). Long periods of
MD and BD can cause eye misalignment resulting in ST, and thereby preventing recovery
of the binocularity of cortical neurons (Cynader, 1983; Olson & Freeman, 1978).

Several rules for excitatory synaptic plasticity have been
proposed (e.g., Bienenstock et al., 1982; Clothiaux et al., 1991; Miller et al., 1989) to
model OD changes during classical rearing experiments. These models rely only on afferent
excitatory synaptic plasticity to produce OD changes.

Geniculocortical synapses comprise only 4% to 24% of all synapses received
by layer 4 neurons (Ahmed et al., 1994; Einstein et al., 1987; Peters & Payne, 1993).
Binocularity of cortical neurons is increased when intracortical inhibition is blocked
by cortical infusion of GABA antagonists in animals conditioned by MD, suggesting
that reduction of inhibition uncovers responsiveness to the eye that was closed during
MD (Sillito et al., 1981). Thus, lateral intracortical interactions may contribute to
cortical ocular dominance plasticity. Recent models (e.g., Douglas & Martin, 1991;
Kalarickal & Marshall, 1997ab, 1998b; Marshall, 1989, 1990abcd; Marshall & Alley, 1993;
Marshall et al., 1996ab; Marshall & Kalarickal, 1997; Martin & Marshall, 1993;
Sirosh et al., 1996; Somers et al., 1995; Xing & Gerstein, 1994) have emphasized lateral
intracortical interactions to model several cortical and perceptual properties.

Long-range intracortical horizontal pathways (Gilbert & Wiesel, 1979) develop
during the early postnatal stages (Callaway & Katz, 1990). The long-range
pathways connect non-adjacent cortical patches having similar input feature selectivity,
e.g., orientation selectivity (Gilbert & Wiesel, 1989). The long-range pathways can have
both facilitatory and suppressive effects on cortical neurons (Weliky et al., 1995). The
effects of lateral intracortical interactions on cortical properties is under active investigation
(Gilbert et al., 1996; Nelson et al., 1994; Sengpiel et al., 1997; Toth et al., 1996, 1997). The
development of lateral pathways during early postnatal stages and its effects on cortical
properties have not been fully explored.

This paper presents computer simulations of the effects of afferent excitatory and
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lateral inhibitory synaptic plasticity rules on OD, responsiveness, and receptive field width
of model cortical neurons under the classical rearing paradigms. The model is based on the
EXIN synaptic plasticity rules (Marshall, 1995a), which consist of an afferent excitatory
and a lateral inhibitory synaptic plasticity rule. In the model, afferent excitatory synaptic
plasticity plays the primary role in OD plasticity under the classical rearing paradigms, and
lateral inhibitory interactions produce secondary OD changes. The EXIN lateral inhibitory
synaptic plasticity rule controls the development of lateral inhibitory pathway weights as
a function of neuronal activation and contributes to the development of input feature

selectivity and high discriminability of model cortical neurons and to sparse neuronal coding

of input features (Marshall, 1995a; Marshall & Gupta, 1998).

3.2 Methods

3.2.1 EXIN model of ocular dominance shifts

We have formulated and tested a neural network model that exhibits OD changes
similar to those observed experimentally. The model uses the EXIN (excitatory+inhibitory)
plasticity rules (Marshall, 1995a). The EXIN rules consist of a Hebbian afferent excitatory
plasticity rule (Grossberg, 1982) combined with an anti-Hebbian lateral inhibitory plasticity
rule (Marshall, 1995a).

The EXIN lateral inhibitory plasticity rule

The EXIN lateral inhibitory plasticity rule (Marshall, 1995a) is an anti-Hebbian
plasticity rule. Changes of the weight Z;; of the lateral inhibitory pathway from neuron @

to neuron j are governed by

%Zz? = 5G(x:) (25 +Q(xy)). (3.1)

where § > 0 is a small learning rate constant, z; and x; are the activations of neurons
¢ and j, respectively, and G and Q are half-rectified non-decreasing functions with some
noise (see Appendix B, Section B.6). Thus, whenever a neuron is active, its output

inhibitory connections to other active neurons tend to become gradually stronger (i.e., more



129

inhibitory), while its output inhibitory connections to inactive neurons tend to become
gradually weaker. In this rule, the presynaptic activation (#;) controls the rate of plasticity,
and the postsynaptic activation (z;) determines the target value for the weight.

According to this rule, the weight of the lateral inhibitory pathways between two
neurons is a direct function of the coactivation of the neurons. This leads to improved

discrimination and sparse coding (Marshall, 1995a).

The EXIN afferent excitatory plasticity rule

The afferent excitatory pathway weight changes are governed by the EXIN

excitatory plasticity rule. The rule can be expressed (Grossberg, 1982; Marshall, 1995a) as

%Z;; = ¢ 7)) (_Z;§+7{($i))7 (3.2)

where Z{; is the afferent excitatory weight from neuron ¢ to neuron 7, ¢ > 0 is a small
learning rate constant, and F and H are half-rectified non-decreasing functions with some
noise (see Appendix B, Section B.6). Thus, whenever a neuron is active, its input excitatory
connections from active neurons become tend to become gradually stronger, while its input
excitatory connections from inactive neurons tend to become gradually weaker. In this
rule, the presynaptic activation (z;) determines the target value for the weight, and the
postsynaptic activation (z;) controls the rate of plasticity.

The EXIN excitatory plasticity rule operates as a competitive learning rule. It
allows each modeled cortical neuron to become selective for a specific pattern of input

activations.

The activation rule

The activation level z; of each modeled cortical neuron is governed by a shunting

equation (Grossberg, 1972) based on the Hodgkin model (Hodgkin, 1964):

d

o = —Aw + BB 2B — y(C+e))lj, (3.3)
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where A, B, C, 3, and v are positive constants. E; represents the neuron’s total excitatory

signal
2

E]‘ = Z [xz]Z;I]— ) (3'4)

i € Model input layer

and [; represents the neuron’s total inhibitory signal

I; = > (2] 21, (3.5)

k € Model cortical layer
where [a] = max(a, 0).

Because Equation 3.3 is a shunting equation, z;(t) € [-C, B] if ;(0) € [-C, B],
for t > 0 (Cohen & Grossberg, 1983). Thus, B is the maximum activation level and
—(' is the minimum activation level of Layer 2 neurons. Parameter A determines the
passive decay rate. Parameters 3 and v control the amount of excitation and inhibition,
respectively, received by a model cortical neuron. The parameters of the activation equation
were chosen so that the network would give a distributed activation response to an input,
instead of a winner-take-all response. Also, the strength of inhibitory interaction was chosen
so that weak afferent excitatory pathways to model cortical neurons would be ineffective
in activating neurons. Thus, receptive field changes can occur when lateral inhibitory
pathway weights change. The squaring in Equation 3.4 causes the maximal activation of
model cortical neurons in response to binocular inputs to be more than twice the maximal
activation level of the neurons in response to monocular inputs (Figure 3.1). Because of the
squaring in Equation 3.4, the maximal excitation received by model cortical neurons during
binocular stimulation is about four times that during monocular stimulation.

The shunting equation (Equation 3.3) with Zj_k = Zk_j > 0, belongs to a class of
competitive dynamical systems that are absolutely stable; i.e., the system has fixed points
for any choice of parameters (Cohen & Grossberg, 1983). The neuronal activations in such
a system are guaranteed to reach stable equilibrium values for all synaptic weight values if
Zj_k = Zk_j > 0 for all pairs of neurons.

However, it is not known whether the shunting equation remains absolutely stable
when Zj_k #* Zk_j > 0 for some pairs of neurons. Nevertheless, simulations demonstrate

stability of the shunting equation when reciprocal pairs of lateral inhibitory weights are
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not equal. In the simulations, the activation equations were solved numerically using the
Euler method. The stability of the system was established empirically by observing the
model’s behavior under different Euler time step sizes. The step size and the number of
steps were chosen so that the model cortical neuronal activations would reach a stable state
without oscillations. The parameters used in the simulations are presented in Appendix B,

Section B.6.

3.2.2 Initial network structure

We simulated a 1-dimensional patch of 42 model primary visual cortical neurons,
receiving inputs from corresponding epipolar lines in the two eyes. The simulated input
layer contained 14 monocular neurons, 7 each for the two eyes. The neurons in the input
layer of the model were selective for different, overlapping positions along the epipolar lines
and were topographically arranged. Topographic neighborhood relationships were arranged
in a ring to eliminate boundary effects from the simulations. Orientation selectivity per se
was not modeled in this 1-D network.

A network with initially nonspecific connection weights was trained on stimuli
with a range of disparities and with a small amount of pre- and postsynaptic activation
noise. The pre- and postsynaptic noise modeled spontaneous activity in the neurons. This
training phase modeled a period of NR dependent development of the visual cortex during
the early postnatal days. This network developed neurons with a normal ocular dominance

distribution. The simulation details are in Appendix B, Sections B.1-B.6.

3.2.3 Measures of cortical properties

OD  histograms were plotted according to the seven-point scale
of Hubel and Wiesel (1962). The model cortical neurons were assigned to an OD group as
follows. Let z;; and z;,, respectively, be the maximal response of neuron ¢ to stimulation

of left and right eye selective model input layers, and

D = YT Tir (3.6)

T+ @,
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Then the neuron is assigned to group 1 if 1 > D > 0.80, group 2 if 0.80 > D > 0.45,
group 3 if 0.45 > D > 0.10, group 4 if 0.10 > D > —0.10, group 5 if —0.10 > D > —0.45,
group 6 if —0.45 > D > —0.80, and group 7 if —0.80 > D > —1. Non-uniform bin sizes
with smaller bins for groups 1, 4, and 7 than for groups 2, 3, 5, and 6 were chosen rather
than uniform bin sizes, because the former provides a stricter condition to be a member of
group 1 (neurons respond to only to the left eye), group 4 (neurons respond equally to both
eyes), and group 7 (neurons respond to only to the right eye).
Changes in OD were expressed by a contralateral bias index (CBI)

(Ni — N7)+(2/3)(Ny — Ng)+(1/3) (N3 — N5)+ N

CBI = 100
X IN

(3.7)

where NN; represents the number of neurons in OD group ¢, and N is the total number of
visually responsive neurons (Reiter & Stryker, 1988). The fraction of binocular neurons was

measured by the binocularity index (BI)

N3 + Ny + N,
BI = % (3.8)

(Bear et al., 1990).
The receptive field width of left- and right-eye RFs of model cortical neurons were

measured by width at half-height. Positional selectivity is the reciprocal of RF width.

3.3 Results

The EXIN rules modeled the effects of classical rearing paradigms. An explanation
based on synaptic modifications governed by the EXIN rules is provided for normal
binocular vision, monocular deprivation, binocular deprivation, reverse suture, strabimus,

and restoration of normal binocular vision after various kinds of deprivation.

3.3.1 Normal rearing

Figure 3.1 shows the OD distribution of model cortical neurons after normal
rearing. The figure also shows the average maximal responsiveness to monocular stimulation

over all the neurons and the average left- and right eye RF width over all the neurons. The
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Figure 3.1: Normal rearing.
B represents binocular inputs, and L. and R represent left and right eye monocular inputs.
Average responsiveness is the average maximal responses over all the model cortical neurons
neurons. UR represents the unresponsive neurons. The vertical lines on the bars represent
the standard deviation, and the numbers above the bars represent the mean values. The

simulation parameters are described in Section 3.2.4.

RF of model cortical neurons and the network pathway weights were stable after 1,500,000
presentations of binocular inputs during NR (see Appendix B, Section B.4). Figure 3.2
shows the development of left- and right eyve RFs of two different model cortical neurons
during NR. In the model, cortical neurons may become selective for non-corresponding
left- and right eye positions (Figure 3.2a), and therefore, to a particular disparity, because

of disparity in the training inputs.

Factors affecting binocularity, responsiveness, and RF width during NR

The binocularity of model cortical neurons decreased as the range of disparity in
the binocular inputs for NR was increased (Figure 3.3). As the range of disparity in the

NR inputs is increased, the maximal correlation in the activation of model left and right
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Figure 3.2: Development of monocular RFs during NR.
The figure shows the development of the left and right RFs of two model cortical neurons.
The network was trained with 1,500,000 binocular inputs. The simulation parameters used

are given in Section 3.2.4.
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Figure 3.3: NR with binocular inputs over a larger disparity range.
Binocular inputs with disparity in {—4,—10/3, —8/3,—-2,-4/3,-2/3,0,2/3,4/3,2,8/3,10/3,
4} were used in this simulation. Other simulation parameters were the same as those used

for the simulation in Figure 3.1. The conventions are the same as in Figure 3.1.

eye selective input neurons decreases. If only zero disparity were allowed, the activation of
corresponding positions in the left and right eye would be fully correlated. For non-zero
disparity ranges, a position in one eye can be coactivated with any position in the other
eye allowed by the disparity range. Assuming that all the disparities within the range
are equally probable, as the disparity range increases the maximal correlation between the
activation of input positions in the two eyes decreases. Furthermore, the correlation in the
activation of model cortical neurons and monocular input neurons decreases.

When the correlation between the activation of a model cortical neuron and a
binocular pattern of activation of input neurons is high, the model cortical neuron becomes
binocular; the model cortical neuron is activated by a small range of binocular inputs
close to its preferred stimuli and is unresponsive to other inputs. Thus, when a model
cortical neuron is active, the correlation in the activation of left and right eye selective

input neurons is high. According to the EXIN afferent excitatory synaptic plasticity rule,
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plasticity occurs only when model cortical neurons are active. Thus, the model cortical
neuron remains binocular.

As the number of binocular input patterns activating the neuron increases, the
model cortical neuron can be activated by input stimulation in one RF (e.g., left eye RF)
and input stimulation over a range of positions in the other eye. In this case, when a model
cortical neuron is active, the correlation in the activation of monocular input neurons is low.
According to the EXIN afferent excitatory synaptic plasticity rule, unstimulated afferent
excitatory pathways to active model cortical neurons weaken, and strongly stimulated
afferent excitatory pathways to active model cortical neurons strengthen. Thus, afferent
excitatory pathways from one eye may weaken in competition with afferent pathways
from the other eye, and model cortical neurons become less binocular. Because model
cortical neurons became biased toward one of the eyes, the variance in the average maximal
responsiveness to monocular inputs and in the average left and right eye RFs increased
(Figure 3.3).

The binocularity, responsiveness, and RF width are also dependent on the strength
of lateral inhibitory weights. In the simulations, the function Q(x) = min(0.2, V]z]) in
Equation 3.1 was manipulated by varying V. As V was decreased, the maximal inhibitory
weight in the network decreased. Parameter V was set to 3 in Figure 3.1, 0.3 in Figure 3.4a,
and 0.03 in Figure 3.4b. As V was decreased, maximal responsiveness to monocular inputs
and monocular RF width of the model cortical neuron increased (Figure 3.4). At very low
values of V the model cortical neurons were less likely to be strongly monocular (compare
Figures 3.4a and 3.4b) because the lateral inhibitory pathways were very weak. This
phenomenon is analogous to the decrease in the number of neurons responsive exclusively
to the eye that was open during MD, after a reduction in intracortical inhibition induced
by cortical infusion of a GABA antagonist in kittens that were previously deprived of vision
in one eye (Sillito et al., 1981).

As V was decreased, lateral inhibitory pathways weakened, thereby decreasing
positional selectivity of model cortical neurons, i.e., their RF width increased. Because of
low selectivity, model cortical neurons were actived by a larger number of binocular inputs,

and as in the case of increasing disparity range in the training inputs, the model cortical
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Figure 3.4: The effects of varying the inhibitory weights during NR.
The simulation parameters are the same as for the simulation in Figure 3.1, except that
Q(z) = min(0.2,0.3[z]) in (a), and Q(z) = min(0.2,0.03[z]) in (b). The conventions are

given in Figure 3.1.
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neurons became less binocular. Because model cortical neurons became biased toward one
of the eyes, the variance in the average maximal responsiveness to monocular inputs and in
the average left and right eye RF's increased (Figure 3.4).

In the simulations, model cortical neurons were biased to become tuned
to binocular inputs because of the square non-linearity in the excitation equation
(Equation 3.4), and in the EXIN afferent excitatory plasticity rule (Equation 3.2). The
squaring in Equation 3.4 caused model cortical neurons to be more responsive when they
received preferred binocular inputs, and the squaring in Equation 3.2 caused the more active
neurons to learn faster. Since preferred binocular inputs activate model cortical neurons
more strongly than other inputs, the excitatory plasticity rule caused the active neurons
to learn the preferred stimuli faster than the less preferred inputs. Thus, the unlearning
that occurs when less preferred stimuli active model cortical neurons is offset by the faster

learning that occurs when the preferred stimuli is presented.

3.3.2 Monocular deprivation

In the model, MD resulted in OD shift toward the open eye (the left eye in
Figure 3.5). Figure 3.6 shows the changes in the left and right RFs of two model cortical
neurons during MD.

Stimulation of the open eye activates model cortical neurons. According to the
excitatory synaptic plasticity rule, the synaptic weights of afferent excitatory pathways
from the open eye selective active monocular input neurons increase, and the synaptic
weights of afferent excitatory pathways from the inactive closed eye selective monocular
input neurons decrease. Thus, the afferent excitatory pathway weights from the closed
eye selective monocular input neurons to model cortical neurons eventually decay to low
random values.

In the simulations, the average maximal responsiveness of model cortical neurons
to the open eye stimulation increased, and the average maximal responsiveness of
model cortical neurons to the closed eye stimulation decreased (Figures 3.5 and 3.6).
Increase in responsiveness to the open eye has been observed in MD experiments

(Mioche & Singer, 1989). The average width of the closed eye RF's of model cortical neurons
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Figure 3.5: OD changes during MD.

The parameters are given in Section 3.2.4, and the conventions are in Figure 3.1. The left
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Figure 3.6: Monocular RF changes during MD.
The parameters are given in Section 3.2.4. The left eye was the open eye and the right eye

was closed.
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Figure 3.7: OD changes during RS.
The parameters are given in Section 3.2.4, and the conventions are in Figure 3.1. The right

eyve was the open eye and the left eye was closed.

decreased, and the variance in the average width increased (Figure 3.5).

3.3.3 Reverse suture

In RS, the stimulation of the eyes was reversed following MD in Section 3.3.2;
i.e., the left eye received low, random inputs, and the right eye received monocular
stimulation. During RS, OD of model cortical neurons shifted toward the newly opened eye
(Figures 3.7 and 3.8).

Immediately after the reversal of the input presentation to the two eyes, model
cortical neurons are weakly activated because the afferent excitatory pathways with strong

weights receive low, random inputs, and the input patterns are presented to the monocular



142

7 %QQQ’\ 7.
6 & 6]
Q&
L 5 Q;;}o v 5
%) S n i
S N 5
o 4 O S 4|
g3 & 3 3
o 4 < = o 4
= $\¥L\_/—\~__:~Q__% =
31 A =—— 31
Z T \\M\%\ zZ 7]
0 A\\\g\\;i\\:\ 0]
1 S 1 N
Left eye X position Right eye X position
@)
il
gl
7 7 -
; S e
] y "\|i|',,n||||,‘,".‘.ﬂl';i;fl"‘,'"m”"mh J \\// S
g =
5 35| 1 N\
£ z° /,’, ‘;.Jli‘ﬂ‘!t‘f',',"‘/'t% \\&X&k&%%&%&
4 il /\\:}'/\\Q&;’
5 s S s
° 2 o2 e "
Q1 o 1] A==
Z zZ / \ =
0 0| %ﬁ_
-1 o 1 Q
Left eye X position Right eye X position
(b)

Figure 3.8: Monocular RF changes during RS.
The parameters are given in Section 3.2.4. The right eye was the open eye and the left eye

was closed.
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Figure 3.9: Monocular RF changes during NR for the neurons in Figure 3.8.

Figures (a) and (b) show the monocular RFs of the neurons whose monocular RFs are shown

in Figures 3.8a and 3.8b, respectively, during NR. The parameters are given in Section 3.2.4.
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input layer with weak afferent pathways to model cortical neurons. Low activation of
model cortical neurons causes slow changes in the afferent excitatory pathways. The initial
large afferent pathway weights from the left eye selective input layer to the model cortical
neurons are decreased every time model cortical neurons are actived. Simultaneously, model
cortical neurons strengthen afferent excitatory pathways from the right eye selective input
layer. The temporal competition among the various input patterns slows the development
of strong afferent excitatory pathways from the right eye selective input neurons compared
to the decay of afferent excitatory pathway weights between the left eye selective input
neurons and model cortical neurons. Thus, in the simulations, model cortical neurons lost
responsiveness to the newly closed eye before becoming responsive to the newly opened eye
(Figure 3.8).

During RS, some neurons became highly responsive to the newly opened eye
(Figure 3.8b). Because of the lateral inhibitory interactions, high responsiveness of some
neurons to the newly opened eye caused complete suppression of responsiveness of other
model cortical neurons to the newly opened eye, thereby increasing the number of neurons
responsive only to the previously closed eye (Figure 3.7). A low activation level of model
cortical neurons weakens the lateral inhibitory weights to the neurons according to the EXIN
lateral inhibitory synaptic plasticity rule. In the simulation, the decrease in inhibitory
weights increased the responsiveness of inactive neurons to the newly opened eye and
eventually caused the neurons to become responsive exclusively to the newly opened eye
(Figure 3.8a).

During RS, the average maximal responsiveness of model cortical neurons to the
newly opened eye increased (Figure 3.7), and the average maximal responsiveness of model
cortical neurons to the newly closed eye decreased (Figure 3.7). The variance in the maximal
responsiveness of model cortical neurons to the newly opened eye was large; some neurons
became highly responsive to the newly opened eye (Figure 3.8b) because of weakening of
the lateral inhibitory pathways. In addition, most neurons responded to the left or the
right eye; therefore, the maximal responsiveness of model cortical neurons to monocular
stimulation varied widely.

In the MD simulation described in Section 3.3.2, model cortical neurons did not
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completely lose their responsiveness to the closed eye (Figures 3.5 and 3.6). Therefore,
during the subsequent RS conditioning, the RF tuning of the model cortical neurons for the
newly opened eye was close to the neurons’ original RF tuning in the same eye after NR

(compare the right-eye RFs in Figures 3.8 and 3.9).

3.3.4 Strabismus

During ST, the left and right inputs were uncorrelated, and the model cortical
neurons became selective for correlated patterns of activation in the monocular input layers.
Thus, the model cortical neurons became monocular (Figures 3.10 and 3.11). The model
cortical neurons became selective for positions in the left or right eye (Figure 3.11).

After ST, model cortical neurons responded to the left or the right eye. Thus,
the monocular RF width and the maximal responsiveness of model cortical neurons to
monocular stimulation varied widely, and the variance in the maximal responsiveness to
monocular inputs, and in the monocular RF widths was high (Figure 3.10). During ST,

some neurons became highly responsive (Figure 3.11b).

3.3.5 Binocular deprivation

After prolonged BD, the average maximal responsiveness to monocular inputs
decreased, the average monocular RF width increased, and model cortical neurons remained
binocular (Figure 3.12). During BD, the input neurons received very weak noisy activation,
and according to the excitatory synaptic plasticity rule, unstimulated and weakly stimulated
afferent excitatory pathways to active neurons weaken. The noise in the input activates
model cortical neurons very weakly. To speed up the rate of weakening of the afferent
excitatory pathways, a random-noise term was included in the excitatory synaptic plasticity
rule (Appendix B, Section B.6).

The EXIN lateral inhibitory synaptic plasticity rule is instrumental in widening
the monocular RFs. Since model cortical neurons are very weakly activated during BD, the
lateral inhibitory pathways are weakened. Weakened lateral inhibitory pathways increased
the RF width (decreased position selectivity) of model cortical neurons (Figure 3.12).

When lateral inhibitory synaptic plasticity was disabled during BD, the average maximal
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Figure 3.10: OD changes during ST.

The parameters are given in Section 3.2.4, and the conventions are in Figure 3.1.

responsiveness of model cortical neurons to monocular stimulation decreased, but the

monocular RF widths of model cortical neurons also decreased (Figure 3.14).

3.3.6 Recovery

In the EXIN model, presentation of normal, binocular inputs following
MD (Figures 3.15 and 3.16), ST (Figures 3.17 and 3.18), and BD (Figures 3.20 and 3.21)
restored the OD distribution, the average maximal responsiveness of neurons to monocular
inputs, and the average monocular RF widths.

During the prolonged BD in Section 3.3.5, the model cortical neurons became very
weakly responsive to both eyes and lost their positional selectivity (Figures 3.12 and 3.13).

During the subsequent normal training, model cortical neurons became selective for different
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Figure 3.11: Monocular RF changes during ST.

The parameters are given in Section 3.2.4.
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Figure 3.12: OD changes during BD.

The parameters are given in Section 3.2.4, and the conventions are in Figure 3.1.
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Figure 3.13: Monocular RF changes during BD.

The parameters are given in Section 3.2.4.
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The parameters are the same as those in the simulation in Figure 3.11 except that the

lateral inhibitory synaptic plasticity was blocked.
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Figure 3.15: OD during RE following MD.

The parameters are given in Section 3.2.4, and the conventions are in Figure 3.1.

positions (Figure 3.19).

3.4 Discussion

The EXIN (excitatory + inhibitory) rules qualitatively model cortical ocular
dominance plasticity during early postnatal stages produced by the classical rearing
paradigms. During NR, the EXIN rules produced model cortical neurons with stable
position and disparity tunings (Section 3.3.1). The EXIN rules have been used to model
the development of motion selectivity (Marshall, 1990a, 1995b; Schmitt & Marshall, 1995),
orientation selectivity (Marshall, 1990d), length-selectivity (Marshall, 1990b), and abstract

pattern categorization (Marshall, 1995a).
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Figure 3.16: Monocular RF changes during RE following MD.

The parameters are given in Section 3.2.4.
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Figure 3.17: OD during RE following BD.

The parameters are given in Section 3.2.4, and the conventions are in Figure 3.1.

The EXIN rules also produced the following salient features of OD plasticity after

MD, RS, ST, BD, and RE consistent with the experimental results reviewed in Section 3.1.

OD shift toward the open eye after MD; model cortical neurons lost responsiveness

to the closed eye and gained responsiveness to the open eye.

OD shift toward the newly opened eye after RS; model cortical neurons lost

responsiveness to the newly closed eye before gaining responsiveness to the newly

opened eye.

Loss of binocularity after ST; model cortical neurons became responsive exclusively

to one of the eyes.

Loss of responsiveness to both eyes without loss of binocularity, and loss of position
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Figure 3.18: Monocular RF changes during RE following BD.

The parameters are given in Section 3.2.4.
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Figure 3.19: Monocular RF changes during RE following prolonged BD and
during NR.

The figure shows the RF tuning of a model cortical neuron during RE following prolonged
BD (a) and during NR (b). The neuron did not recover its original position selectivity after

normal training following prolonged BD. The parameters are given in Section 3.2.4.
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Figure 3.20: OD during RE following ST.

The parameters are given in Section 3.2.4, and the conventions are in Figure 3.1.

selectivity (i.e., increase in RF width) after prolonged BD.

e Restoration of OD distribution, responsiveness, and RF width after normal binocular

mainly on the afferent excitatory synaptic plasticity;

stimulation following MD and BD. Model cortical neurons became selective to different

positions after RE following prolonged BD.

In the EXIN model, OD changes during the classical rearing paradigms depend

the lateral inhibitory synaptic

plasticity, however, is critical for the development of high input feature selectivity. As shown

in Section 3.3.1, weak lateral inhibition produces model cortical neurons with low input

feature selectivity, which in turn makes the model cortical neurons monocular. Furthermore,

lateral inhibitory interactions produce secondary OD changes; when some model cortical
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Figure 3.21: Monocular RF changes during RE following ST.

The parameters are given in Section 3.2.4.
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neurons become more responsive to one eye, the inhibitory interaction causes other neurons
to become less responsive to that eye.

During NR, the correlation in the stimulation of corresponding locations in the
two eyes affects the OD distribution. In the simulation, as the range of disparity in the
left and right eye stimulation during binocular stimulation was increased, the correlation in
the corresponding locations in the two eyes decreased, and model cortical neurons became
less binocular. During MD, the OD shifted toward the open eye because of weakening
of the afferent excitatory pathways from the closed eye to the model cortical neurons.
In RS, OD shifted toward the newly opened eye because of weakening of afferent excitatory
pathways from the newly closed eye to model cortical neurons and because of strengthening
of afferent excitatory pathways from the newly opened eye to model cortical neurons. Lateral
inhibitory interactions caused the OD of some model cortical neurons to shift toward the
newly closed eye during RS, when some model cortical neurons became highly responsive
to the newly opened eye. In ST, the stimulation patterns of corresponding positions in
the two eyes were uncorrelated, and model cortical neurons became monocular because
of the competitive afferent excitatory synaptic plasticity rule. During BD, the afferent
excitatory synaptic plasticity rule was responsible for a reduction of responsiveness of model
cortical neurons to both eyes, but the lateral inhibitory synaptic rule was responsible for
weakening of position selectivity of the model cortical neurons. The afferent excitatory
synaptic plasticity rule alone during BD reduced responsiveness and increased the position
selectivity of model cortical neurons. Binocular stimulation following MD, BD, and ST
restored the OD distribution, responsiveness, and receptive field width of model cortical
neurons. The afferent excitatory synaptic plasticity rule restored the afferent excitatory
pathway weights, and lateral inhibitory synaptic plasticity rule ensured high selectivity of

the model cortical neurons.

3.4.1 Role of lateral inhibitory synaptic plasticity on neuronal feature

selectivity

It has been proposed that several input feature selectivities depend on intracortical

inhibition (Bonds & DeBruyn, 1985; Sillito, 1975, 1997, 1979; Somers et al., 1995;
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Somogyi & Martin, 1985). The EXIN rules produce neurons with high selectivity and
sparse distributed coding (Marshall, 1995a; Marshall & Gupta, 1998). In the EXIN model,
strong lateral inhibitory pathways develop between neurons with overlapping receptive fields
(Marshall, 1995a), consistent with experimental results suggesting that a neuron receives the
strongest inhibition when the orientation of the input stimulus is the same as the neuron’s
preferred orientation (Blakemore & Tobin, 1972; Ferster, 1989), or when the position of the
input stimulus is in the neuron’s receptive field (DeAngelis et al., 1992).

In the EXIN model, position tuning and orientation tuning can change because of
changes in either afferent excitatory pathway or lateral inhibitory pathway weight values.
Weakening lateral inhibitory pathways in the model makes neurons more responsive to weak
excitation; neurons can become more responsive to some of the less-preferred orientations
or positions, leading to reduced orientation selectivity and position selectivity.

Hendry et al. (1990) reported a decrease in the density of GABA, receptors
in ocular dominance columns corresponding to the closed eye in layer 4C3 of adult
monkey primary visual cortex after five or ten days of monocular deprivation. After
monocular deprivation of adult cats, visual stimulation revealed a lack of lateral inhibitory
interactions, which are seen in normal cortex, in the monocularly deprived cortex
(Kasamatsu et al., 1998b). In neocortical cultures, blockade of spontaneous activity
reversibly decreased the number of GABA-positive neurons, decreased GABA-mediated
inhibition onto pyramidal neurons, and raised the firing rates of pyramidal neurons
(Rutherford et al., 1997). The EXIN lateral inhibitory synaptic plasticity rule proposes
weakening of inhibition to the inactive neurons, and it is therefore consistent with the
above experimental results.

If prolonged BD also causes a decrease in GABA receptors and GABA-positive
neurons during prolonged BD, the EXIN model provides an alternate explanation of the
lack of recovery of binocularity of cortical neurons during normal binocular vision following
prolonged BD (Cynader, 1983). Previously, it has been thought that long periods of BD
produces eye misalignment and subsequent loss of correlated inputs to the two eyes when
normal binocular vision is restored, leading to loss of binocularity (Cynader, 19983). If

lateral inhibitory pathways remain weak during binocular vision after prolonged BD, cortical
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neurons can become responsive to one of the eyes, as in the EXIN model with low inhibitory

pathway weights (Figure 3.4).

3.4.2 Site of cortical OD plasticity

In this paper, cortical OD plasticity is modeled by plasticity in afferent excitatory
and lateral inhibitory synapses. Changes in cortical OD can be induced by anatomical
changes in the geniculocortical pathways (LeVay et al., 1980). However, there is
also evidence that OD changes can be induced without a corresponding anatomical
change in the geniculocortical projections, if MD is initiated late in the critical period
(Wiesel, 1982). Furthermore, cortical OD plasticity can occur within four to eight hours
(Freeman et al., 1981); the rapid OD plasticity suggests that OD plasticity may involve
changes in the efficacy of individual cortical synapses. Responsiveness of cortical neurons
to the deprived eye during MD can be restored by abolishing intracortical inhibition,
thereby suggesting the involvement of lateral inhibitory interactions in OD plasticity

(Sillito et al., 1981).

3.4.3 Comparison with other models of cortical OD plasticity

Previous models of OD plasticity (Clothiaux et al., 1991; Miller et al., 1989) are
based on excitatory synaptic plasticity in geniculocortical pathways. Shouval et al. (1996)
used the BCM afferent synaptic plasticity rule to show that misalignment of the two eyes
causes model cortical neurons to become monocular. Sirosh and Miikkulainen (1997) used
a self-organizing model with afferent excitatory, lateral excitatory, and lateral inhibitory
synaptic plasticity rules, to model the development of ocular dominance columns and to
study the relationship between the distribution of lateral excitatory and lateral inhibitory
pathways and the ocular dominance and orientation selectivity of model cortical neurons.
Sirosh and Miikkulainen (1997) showed that in their model, lateral pathways develop
between cortical neurons with similar properties (e.g., orientation selectivity and ocular
dominance).

The EXIN afferent excitatory synaptic plasticity rule differs from the rules used
by Clothiaux et al. (1991) and Miller et al. (1989).



161

Clothiaux et al. (1991) used the BCM (Bienenstock et al., 1982) rule. According
to the BCM rule, the synaptic weight of afferent pathways to cortical neurons varies
as a product of input activity and a function (¢) of the postsynaptic response. For
all postsynaptic responses greater than the spontaneous activation level but less than a
modification threshold (), ¢ is negative; ¢ is positive when the postsynaptic activation
exceeds . According to the BCM rule, an excitatory pathway synaptic weight is weakened
only when the pathway receives input stimulation and the postsynaptic activation is
less than # and is strengthened only when the pathway receives input stimulation and
the postsynaptic activation is greater than #. The modification threshold # varies as
a non-linear function of the average postsynaptic activation (Bienenstock et al., 1982;
Clothiaux et al., 1991).

An interesting feature of the BCM rule is that weakening of afferent excitatory
pathways from the closed eye to a model cortical neuron during MD depends on the
ratio of preferred to non-preferred open-eye patterns for the model cortical neuron
(Clothiaux et al., 1991). According to the model in Clothiaux et al. (1991), if a single
pattern is repeatedly presented to one eye with the other eye closed, the afferent excitatory
pathways from both eyes will be strengthened; i.e., model cortical neurons will not lose
responsiveness to the closed eye. In the EXIN model, however, model cortical neurons
activated by the repeatedly presented pattern to the open eye weaken excitatory pathways
from the closed eye because unstimulated/weakly stimulated pathways to active neurons
weaken; thus, model cortical neurons lose responsiveness to the closed eye.

Miller et al. (1989) used an afferent excitatory synaptic plasticity rule that
depends on the covariance in the presynaptic and postsynaptic activation. According
to the rule, afferent excitatory pathways weaken if strong presynaptic activation is
coincident with low postsynaptic activation, or if weak presynaptic activation is coincident
with strong postsynaptic activation. An experiment in which the covariance-based rule
used by Miller et al. (1989) and the EXIN rules produce different predictions is as
follows. Suppress cortical activation without affecting presynaptic activation during normal
binocular visual experience; cortical infusion of the GABA 5 agonist muscimol accomplishes

this (Reiter & Stryker, 1988). According to the covariance-based rule, afferent excitatory
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pathways from both the eyes would weaken, and therefore cortical neurons would lose
responsiveness to both eyes. According to the EXIN model, afferent excitatory and lateral
inhibitory synaptic plasticity is blocked by suppression of cortical activation, and therefore
cortical neurons would remain responsive to both eyes.

The EXIN afferent excitatory and lateral inhibitory plasticity rules differ from
those used by Sirosh and Miikkulainen (1997). Sirosh and Miikkulainen (1997) used a
normalization based rule for afferent excitatory, lateral excitatory, and lateral inhibitory
pathway synaptic plasticity. According to the normalization rule, when a postsynaptic
neuron is active, active pathways to the neuron are strengthened, and inactive pathways to
the neuron are weakened. However, if a postsynaptic neuron is active and all pathways of
one kind (e.g., afferent excitatory, lateral inhibitory, or lateral excitatory) are inactive,
the pathways do not undergo plasticity. In contrast, under the EXIN rules, inactive
afferent pathways to active neurons weaken, while inactive lateral inhibitory pathways to
inactive or active neurons do not undergo plasticity. According to Sirosh and Miikkulainen’s
normalization rule, active lateral inhibitory pathways to inactive neurons do not change, but
according to the EXIN lateral inhibitory synaptic plasticity rule, active lateral inhibitory
pathways to inactive neurons weaken.

During MD, the EXIN lateral inhibitory synaptic plasticity rule predicts weakening
of lateral inhibitory pathways from active neurons, whose OD shifted toward the open
eye, to neurons unresponsive during MD, i.e., monocular neurons responsive exclusively
to the closed eye. In contrast, the lateral inhibitory synaptic plasticity rule in
Sirosh and Miikkulainen (1997) predicts that lateral inhibitory pathways from the neurons

unresponsive during MD to neurons whose OD shifted toward the open eye weaken.



Chapter 4

Plasticity in cortical neuron
properties: Modeling the effects of
an NMDA antagonist and a GABA

agonist during visual deprivation

Abstract

Infusion of a GABA agonist (Reiter & Stryker, 1988) and infusion of an NMDA
receptor antagonist (Bear et al., 1990), in the primary visual cortex of kittens during
monocular deprivation, shifts ocular dominance toward the closed eye, in the cortical region
near the infusion site. This reverse ocular dominance shift has been previously modeled by
variants of a covariance synaptic plasticity rule (Bear et al., 1990; Clothiaux et al., 1991;
Miller et al., 1989; Reiter & Stryker, 1988). Kasamatsu et al. (1997, 1998a) showed
that infusion of an NMDA receptor antagonist in adult cat primary visual cortex changes
ocular dominance distribution, reduces binocularity, and reduces orientation and direction
selectivity. This chapter presents a novel account of the effects of these pharmacological

treatments, based on the EXIN synaptic plasticity rules (Marshall, 1995), which include
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both an instar afferent excitatory and an outstar lateral inhibitory rule. Functionally,
the EXIN plasticity rules enhance the efficiency, discrimination, and context-sensitivity
of a neural network’s representation of perceptual patterns (Marshall, 1995; Marshall &
Gupta, 1998). The EXIN model decreases lateral inhibition from neurons outside the
infusion site (control regions) to neurons inside the infusion region, during monocular
deprivation. In the model, plasticity in afferent pathways to neurons affected by the
pharmacological treatments is assumed to be blocked, as opposed to previous models
(Bear et al., 1990; Miller et al., 1989; Reiter & Stryker, 1988), in which afferent pathways
from the open eye to neurons in the infusion region are weakened. The proposed model
is consistent with results suggesting that long-term plasticity can be blocked by NMDA
antagonists or by postsynaptic hyperpolarization (Bear et al., 1990; Dudek & Bear, 1992;
Goda & Stevens, 1996; Kirkwood et al., 1993). Since the role of plasticity in lateral
inhibitory pathways in producing cortical plasticity has not received much attention, several

predictions are made based on the EXIN lateral inhibitory plasticity rule.

4.1 Introduction

Ocular dominance (OD) of primary visual cortical neurons in young animals is
modified by visual deprivation within a critical period (Blakemore & Van Sluyters, 1974;
Hubel & Wiesel, 1965, 1970; Hubel et al., 1977). Several models of afferent excitatory
plasticity (e.g., Clothiaux et al., 1991; Miller et al., 1989) based on pre- and postsynaptic
correlation and competition between left and right eye afferents have been proposed to
account for these results. It has been hypothesized that NMDA receptors may serve to
measure correlation in pre- and postsynaptic activity (Bear et al., 1987; Fox & Daw, 1993).

The primary visual cortex of kittens has been locally infused with an NMDA
receptor antagonist (Bear et al., 1990) and a GABA, agonist (Reiter & Stryker, 1988)
during monocular deprivation (MD), to determine the role of NMDA receptors and
postsynaptic activation, respectively, in producing OD changes after MD. Some of the
results of these experiments have been modeled by plasticity in afferent excitatory pathways

(Bear et al., 1990; Reiter & Stryker, 1988).
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In contrast to the models based on synaptic plasticity, Kasamatsu et al. (1997,
1998a) have proposed that changes in ocular dominance, binocularity, and orientation
selectivity during MD with infusion of an NMDA receptor antagonist may be caused by
aspecific action of the antagonist.

This chapter presents a novel account for the effects on OD of these
pharmacological treatments during MD, based on the EXIN synaptic plasticity rules
(Marshall, 1995) and suggests an account for changes in orientation selectivity during
chronic dark rearing and the two pharmacological experiments. The EXIN rules consist
of a Hebbian instar afferent excitatory synaptic plasticity rule (Grossberg, 1972), and
an anti-Hebbian outstar lateral inhibitory synaptic plasticity rule (Marshall, 1995).
Comparison of the predictions of the EXIN model and the previous rules can be used
to design experiments to further elucidate the rules of cortical plasticity in developing
cortex. Some experimental ideas are suggested in Section 4.5.2. It is hypothesized that the
EXIN rules, which were developed from computational considerations (Marshall, 1990a,
1995; Marshall & Gupta, 1998), have a neurophysiological realization in the synaptic

microcircuitry of cortical tissue and in the neuropharmacology of cortical plasticity.

4.1.1 Disruption of MD by pharmacological infusion

Reiter and Stryker (1988) locally infused muscimol, a GABA agonist selective
for GABA, receptors, into the primary visual cortex of kittens during MD. Muscimol
at strong concentrations blocked postsynaptic action potentials without affecting
presynaptic activity. Bear et al. (1990) treated kitten primary visual cortex with
D,L-2-amino-5-phosphonovaleric acid (APV) during MD. APV is an NMDA receptor
antagonist.  Visually evoked responses could be evoked during APV infusion at
concentrations sufficient to block NMDA receptors (Bear et al., 1990). The salient results of
these two experiments are: (1) in the untreated control regions and regions weakly affected
by the pharmacological treatments, the OD distribution shifted toward the open eye; and
(2) in regions in which neurons were completely inhibited by muscimol and in regions close
to the APV infusion cannula where NMDA receptors are completely disabled, the OD

distribution shifted toward the closed eye.
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Bear et al. (1990) also reported a large increase in the number of neurons with
reduced or eliminated orientation selectivity and reduced visual responsiveness close to the
APV infusion site. Reiter and Stryker (1988) noted a small increase in the number of neurons
with little or no orientation selectivity and reduced responsiveness. No specific rules have
previously been proposed to model this loss of orientation selectivity. Bear et al. (1990)
observed that the loss of orientation selectivity in their experiments was similar to that

during chronic dark rearing (Frégnac & Imbert, 1984).

4.1.2 Aspecific effects of infusion of APV and muscimol

Kasamatsu et al. (1998a) measured ocular dominance during 33-48 hours of
infusion of APV in primary visual cortex of adult cats. They found that APV infusion
reduced responsiveness, orientation selectivity, and binocularity. After 10 hours of APV
infusion in adult cats, the ocular dominance distribution was W-shaped, and average
binocularity was low (Kasamatsu et al., 1998a). Normal ocular dominance distribution,
binocularity, and responsiveness were restored within 68 hours after cessation of APV
infusion (Kasamatsu et al., 1998a). Bear et al. (1990) reported reduced responsiveness
in cortical neurons affected by APV.

Reiter and Stryker (1988) reported that cortical infusion of muscimol in kittens
selectively blocked postsynaptic activity. It is not known whether muscimol infusion at low
concentrations, at which postsynaptic activity is not completely blocked, changes ocular

dominance distribution.

4.1.3 Previous models

Previous models of the effects of these pharmacological treatments during
MD are based on several covariance rules (Bear et al., 1990; Clothiaux et al., 1991;
Miller et al., 1989; Reiter & Stryker, 1988; Stanton & Sejnowski, 1989). These models
propose homosynaptic LTD in the active afferent excitatory pathways from the open eye to
the weakly active or inactive cortical neurons affected by the pharmacological treatments.
The inactive afferent excitatory pathways from the closed eye to the weakly active or inactive

cortical neurons are unaffected. These changes in the afferent excitatory pathways cause a
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shift in ocular dominance to the closed eye after MD in the cortical region affected by the
pharmacological infusions (Figure 4.1a).

Homosynaptic LTD has been observed in conditioned excitatory pathways to
hyperpolarized neurons in hippocampus (Stanton & Sejnowski, 1989) and in visual cortex
(Frégnac et al., 1994), although in some other preparations homosynaptic LTD could not
be induced in the conditioned pathways to hyperpolarized neurons (Goda & Stevens, 1996).
Several experiments have shown that homosynaptic LTD cannot be induced when NMDA
receptors are antagonized (Bear et al., 1987, 1990; Dudek & Bear, 1992; Goda &
Stevens, 1996; Kirkwood et al., 1993).

Kasamatsu et al. (1997, 1998a) suggested that aspecific action of APV on cortical
neurons may contribute to changes in cortical properties. The loss of orientation selectivity
in a large number of APV-affected neurons after MD with APV infusion (Bear et al., 1990)
may be caused by the aspecific effects of some residual APV during orientation tuning

measurement rather than by any specific synaptic plasticity (Kasamatsu et al., 1998a).

4.1.4 Significance and contributions of the chapter

In the EXIN model, in contrast to the previous models, homosynaptic
LTD is assumed to be blocked by NMDA receptor antagonists and by postsynaptic
hyperpolarization. OD shifts in the model cortical neurons affected by the pharmacological
treatments occur because of lateral inhibitory interactions (Figure 4.1b). The proposed
model uses plasticity in lateral inhibitory pathways in the development of cortical properties
during normal rearing. A functional feature of the EXIN lateral inhibitory plasticity rule
is that it enhances efficiency of representation by recruiting unused or under-used neurons
(Marshall, 1995) in the presence of peripheral scotomas or lesions to represent some input
information (Kalarickal & Marshall, 1997). The EXIN rules also produce neurons with high
selectivity and sparse distribution coding (Marshall, 1995; Marshall & Gupta, 1998). It is
hypothesized that anti-Hebbian outstar lateral inhibitory plasticity may be a general part of

cortical development, and specific experiments to test the model’s predictions are proposed.
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Figure 4.1: Legend on next page.
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Figure 4.1: Models OD changes.

Figure on previous page. Layer 1 contains retinotopically arranged input neurons with
monocular receptive fields. The monocular neurons project afferent excitatory pathways
to layer 2 neurons, so that layer 2 neurons receive afferent pathways from both eyes.
In the figure, the right eye is closed during MD with cortical infusion of muscimol
or APV in the layer 2 region labeled “affected region;” the rest of the layer 2 is the
“control region’.” Neurons in the control region respond to stimulation in the left eye,
and the activity of neurons in the affected region is blocked or is very weak. The dashed
lines represent weakened afferent excitatory pathways. Panel (a) shows the basis for
OD changes based on a covariance based afferent excitatory synaptic plasticity rule: afferent
excitatory pathways from the unstimulated right eye to active neurons in the control region
(e.g., neurons A and C) weaken, and afferent excitatory pathways from the stimulated
left eye to inactive neurons in the affected region (e.g., neuron B) also weaken. Afferent
excitatory pathways with correlated pre- and postsynaptic activity (e.g., stimulated afferent
excitatory pathways from the open eye to active neurons in the control region and
unstimulated afferent excitatory pathways from the closed eye to inactive neurons in the
affected region) do not undergo synaptic plasticity. Thus, the OD of neurons in the control
region shifts towards the open eye, and the OD of neurons in the affected region shifts
towards the closed eye. Panel (b) shows the basis for OD changes based on the EXIN model.
In the EXIN model, lateral inhibitory pathways develop most strongly between neurons
receiving afferent excitation from common input neurons (e.g., between neurons A and B,
but not between neurons A and C). In the EXIN model, plasticity in afferent excitatory
pathways to neurons in the affected region is assumed to be blocked. The EXIN afferent
excitatory plasticity rule weakens afferent excitatory pathways from the closed right eye to
active neurons in the control region. Thus, neurons in the control region (neurons A and C)
lose responsiveness to the closed eye, and their OD shifts towards the open eye. The
afferent excitatory pathways to neurons in the affected region (e.g., neuron B) do not
change. Because the response of neurons in the control region to open eye stimulation is
much greater than their response to the closed eye, neuron B in the affected region receives
greater inhibition during open eye stimulation than during closed eye stimulation. Thus,
neuron B responds more strongly to closed eye stimulation than to open eye stimulation,
and its OD shifts towards the closed eye.
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4.2 EXIN model of changes in cortical properties

We have formulated and tested a neural network model that exhibits changes in
cortical properties (OD, neuronal responsiveness, positional selectivity) similar to those
observed experimentally. The model uses the EXIN (excitatory+inhibitory) plasticity rules
(Marshall, 1995).

It has been proposed that several input feature selectivities depend on intracortical
inhibition (Bonds & DeBruyn, 1985; Sillito, 1979; Somers et al., 1995; Somogyi &
Martin, 1985). In the EXIN model, position tuning and orientation tuning can change
because of changes in either afferent excitatory or lateral inhibitory weights. Weakening of
lateral inhibitory pathwaysin the model makes neurons more responsive to weak excitation;
neurons can become more responsive to some of the less-preferred orientations or positions,
leading to reduced orientation selectivity or position selectivity. It is hypothesized that
changes in lateral inhibition that underlie position selectivity in the simulations also
underlie changes in orientation selectivity observed experimentally (Bear et al., 1990;

Kasamatsu et al., 1998a; Reiter & Stryker, 1988).

4.2.1 The EXIN plasticity rules
The EXIN lateral inhibitory plasticity rule

The EXIN lateral inhibitory synaptic plasticity rule (Marshall, 1995) is an
anti-Hebbian outstar synaptic plasticity rule. Changes of the weight Z;; of the lateral

inhibitory pathway from neuron ¢ to neuron j are governed by

975 = 56w (-7 + Q). (4.1)

where § > 0 is a small plasticity rate constant, z; and «; are the activations of neurons
¢ and j, respectively, and G and Q are half-rectified non-decreasing functions with some
noise (Appendix B, Section B.6). Thus, whenever a neuron is active, its output inhibitory
connections to other active neurons tend to become slightly stronger (i.e., more inhibitory),
while 1ts output inhibitory connections to inactive neurons tend to become slightly weaker.

This rule is called an outstar rule (Grossberg, 1972) because the presynaptic activation (x;)
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controls the rate of synaptic plasticity, and the postsynaptic activation (2;) determines the
target value for the weight. In an instar rule (Grossberg, 1972) the subscripts of ; and x;
would be interchanged.

According to this rule, the weight of the lateral inhibitory pathways between two
neurons is a function of the coactivation of the neurons (Marshall, 1995). Thus, neurons with
overlapping and similar receptive fields acquire strong reciprocal lateral inhibitory pathways,
consistent with experimental results based on intracellular recordings of inhibitory
postsynaptic potentials (Ferster, 1989; Gil & Amitai, 1996). This leads to improved
discrimination and to sparse distributed coding (Marshall, 1995; Sirosh et al., 1996).

The EXIN afferent excitatory plasticity rule

The afferent excitatory pathway weight changes in the EXIN model are governed

by an instar excitatory synaptic plasticity rule. The rule can be expressed (Grossberg, 1982;

Marshall, 1995) as

%Z{; = cF(x;) (—Z{; + 7—[(1’2)) , (4.2)

where Z{; is the afferent excitatory weight from neuron 2 to neuron 7, € > 0 is a small
synaptic plasticity rate constant, F and H are half-rectified non-decreasing functions with
some noise (Appendix B, Section B.6). Thus, whenever a neuron is active, its input
excitatory connections from active neurons tend to become slightly stronger, while its input
excitatory connections from other inactive neurons tend to become slightly weaker. This rule
is called an instar rule (Grossberg, 1972) because the presynaptic activation (z;) determines
the target value for the weight, and the postsynaptic activation (z;) controls the synaptic
plasticity rate.

The afferent excitatory synaptic weight becomes stronger or weaker depending
on whether (x;) is currently greater than or less than the synaptic weight Z{; (see
Equation 4.2). This behavior of Equation 4.2 is consistent with homosynaptic potentiation
and depression (Dudek & Bear, 1992; Kalarickal & Marshall, 1996¢).

The EXIN excitatory synaptic plasticity rule is a competitive learning rule. It

causes each modeled cortical neuron to become selective for a specific pattern of input
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activations (Grossberg, 1982; Marshall, 1995). Like other competitive learning rules, the
EXIN rules do not produce absolutely stable fixed points. The stability of the network
depends on the input environment and the rate of synaptic plasticity (Marshall, 1995). If
the input distribution changes for a sufficiently long time, the weights change to encode
the new statistics. Empirically, the EXIN synaptic plasticity rules are very stable in a

stationary input environment (Marshall, 1995).

Applications of the EXIN rules

The EXIN rules have previously been used to model motion selectivity
and grouping (Marshall, 1990a), visual inertia (Hubbard & Marshall, 1994), motion
integration in the aperture problem (Marshall, 1990a), length selectivity and end-stopping
(Marshall, 1990b), depth perception from occlusion events (Marshall & Alley, 1993;
Marshall et al., 1996a), depth from motion parallax (Marshall, 1989), motion unsmearing
(Martin & Marshall, 1993), orientation selectivity (Marshall, 1990d), stereomatching
(Marshall et al., 1996b), long-term potentiation and long-term depression (Kalarickal &
Marshall, 1996¢), dynamic receptive field changes produced by artificial scotoma
conditioning (Kalarickal & Marshall, 1997; Marshall & Kalarickal, 1997), and changes in
somatosensory cortical RF topography after intracortical microstimulation (Kalarickal &
Marshall, 1998b). The explanation for the effects of the pharmacological treatments during
MD based on the EXIN rules is presented in Section 4.2.3.

4.2.2 The activation rule

The activation level z; of each modeled cortical neuron is governed by a shunting

equation (Grossberg, 1972) based on the Hodgkin model (Hodgkin, 1964):

d
'

where A, B, C, 3, and v are positive constants. E; represents the neuron’s total excitatory

= —Az; + B(B—ux;)E; — v(C+ ;)1 (4.3)

signal

E; = ( > [xi]Z;;) , (4.4)

i € Model input layer
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and [; represents the neuron’s total inhibitory signal

I; = > (2] Z5 (4.5)

k € Model cortical layer

where [a] = max(a,0). Because Equation 4.3 is a shunting equation, z;(t) € [-C, B] for all
t>0if 2;(0) € [-C, B] (Cohen & Grossberg, 1983). Thus, B is the maximum activation
level and —C'is the minimum activation level of Layer 2 neurons. The constant A determines
the passive decay rate. Parameters 8 and + control the amount of excitation and inhibition,
respectively, received by a model cortical neuron. The squaring in Equation 4.4 helps to
contrast-enhance the input signal. The parameters of the activation equation were chosen
so that the network would give a distributed activation response to an input, instead
of a winner-take-all response. Also, the strength of inhibitory interaction was chosen so
that weak afferent excitatory pathways to model cortical neurons would be ineffective in
activating neurons. Thus, receptive field changes occur when lateral inhibitory pathway
weights change.

The activation equation was computed using the Euler method. The stability of
the activation equation was established empirically by observing the model’s behavior under
different Euler time step sizes. The step size and the number of steps were chosen so that
the model cortical neuronal activations would be close to a stable state and there would be

no oscillations. The parameters used in the simulations are presented in the Appendix B.

4.2.3 Explanation based on the EXIN plasticity rules

During MD in the presence of modeled muscimol or APV, the following synaptic

modifications occurred in the EXIN model:

1. The synaptic weight of afferent pathways to neurons strongly affected by muscimol
and APV was almost unaffected: model APV blocked model excitatory synaptic
modifications (¢ = 0 in Equation 4.2), and muscimol prevented postsynaptic activation
(z; <0). The only excitatory synaptic modifications were caused by noise and were

small (see f and ¢ in the Appendix B).
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2. The weight of afferent pathways from the closed eye to neurons in the control regions
was substantially weakened (h(z;) = 0 for the closed eye), and the weight of afferent
pathways from the open eye to neurons in the control regions were slightly strengthened
(because of increased correlation between presynaptic activation from the open eye

and the postsynaptic cortical neuron activations).

3. Lateral inhibitory weights between neurons in the control regions weakened
(Equation 4.1), because neuronal responses to monocular stimulation during MD are

less than neuronal responses to binocular stimulation during normal rearing (NR).

4. Because muscimol prevents postsynaptic activation (z; < 0), lateral inhibitory
pathways from neurons in the control regions (z; > 0) to those inactivated by muscimol
weakened (¢(z;) = 0 and g(x;) > 0 in Equation 4.1). However, lateral inhibitory
pathways from neurons inactivated (z; < 0) by muscimol to other neurons changed

very little.

5. Although APV does not block postsynaptic activity, it decreases activation levels.
Thus, the weight of lateral inhibitory pathways to and from neurons affected by APV

decreased.

After MD with muscimol and APV, the model cortical neurons in the control regions
responded very weakly to closed eye stimulation compared to open eye stimulation. Thus,
the OD of neurons in the control regions shifted toward the open eye. In addition,
the control region neurons inhibited the neurons in the infusion site less strongly during
closed eye stimulation than during the open eye stimulation. Therefore, neurons in the
infusion site showed greater responsiveness to the closed eye than to the open eye, and
the OD distribution shifted toward the closed eye (Figure 4.1b). A mechanism based on
decrease in inhibition via weakening in afferent excitatory pathways has been proposed by
Sirosh et al. (1996) to model receptive field shifts and expansions after artificial scotoma

conditioning in adult cats (Pettet & Gilbert, 1992).
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4.3 Methods

4.3.1 Initial network structure

We simulated a 1-D patch of 42 model primary visual cortical neurons, receiving
inputs from corresponding epipolar lines in the two eyes. The simulated input layer
contained 7 monocular neurons each for the two eyes. The neurons in the input layer of the
model were selective for different positions along the epipolar lines and were topographically
arranged. Topographic neighborhood relationships were arranged in a ring to eliminate
boundary effects from the simulations. Orientation selectivity was not modeled in this 1-D
network.

A network with initially nonspecific connection weights was trained with stimuli
containing a range of disparities and with a small amount of pre- and postsynaptic
activation noise to develop neurons with a normal ocular dominance distribution. The
pre- and postsynaptic noise modeled spontaneous activity in the neurons. This training
phase modeled a period of normal rearing (NR) of the visual cortex during the early

postnatal days. The simulation details are in the Appendix B.

4.3.2 Pharmacological manipulations

APV application was simulated by multiplicatively weakening the afferent
excitatory input signal to a neighborhood of 21 model cortical neurons. These affected
neurons were surrounded by the remaining unaffected 21 neurons. Furthermore, the afferent
excitatory synaptic plasticity rate, € in Equation 4.2, was varied to model blocking of cortical

LTP and LTD by APV (Kirkwood et al., 1993). The excitatory input to the affected neurons

was computed by
2

B wx S [z (1.6)

i € Model input layer

where w € [0, 1] weakens afferent excitation, as caused by model APV. In the simulation, w
was inversely related to the APV concentration. APV concentration was characterized by
the afferent excitation blocking strength of APV, which was (1 —w). The excitatory input

to neurons in the control region was computed by Equation 4.4.
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Infusion of muscimol was modeled by applying strong inhibition to a neighborhood
of 21 model cortical neurons surrounded by the other 21 neurons, which were unaffected.
The neurons affected by muscimol received an additional amount & > 0 of inhibition. Thus,
inhibition to the affected neurons was

I; = > [ek] 7 + S (4.7)
k € Model cortical layer

In the pharmacological experiments, APV or muscimol was continuously infused
during MD to achieve a steady concentration of APV or muscimol, and cortical properties
were assayed after allowing APV or muscimol to dissipate (Bear et al., 1990; Reiter &
Stryker, 1988). Therefore, in the simulations w and & were kept fixed during MD, and
model cortical properties were determined at a reduced concentration of model APV and

muscimol.

4.3.3 Simulation procedure

During NR, 1,500,000 presentations of binocular stimuli containing a range
of disparities and containing small amounts of pre- and postsynaptic noise were made.
To simulate MD, 75,000 presentations of monocular stimuli with small amounts of

pre- and postsynaptic noise were made. The simulation details are presented in the

Appendix B.

4.3.4 Measures of cortical properties

OD  histograms were plotted according to the seven-point scale
of Hubel and Wiesel (1962). The model cortical neurons were assigned to an OD group as
follows. Let z;; and z;,, respectively, be the maximal response of neuron ¢ to stimulation

of left and right eye selective model input layers, and

D = ful T Tir (4.8)

T+ @,

Then the neuron is assigned to group 1if 1 > D > 0.80, group 2if 0.80 > D > 0.35, group 3
if 0.35 > D > 0.05, group 4 if 0.05 > D > —0.05, group 5 if —0.05 > D > —0.35, group 6 if

—0.35> D > —0.80, and group 7if —0.80 > D > —1.
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Figure 4.2: Model OD distribution before MD.
B represents binocular inputs, and L. and R represent left and right eye monocular inputs.
Average response is the average maximal responsiveness over all neurons in a region. UR
represents the number of unresponsive neurons. The vertical lines on the bars represent the
standard deviation. The control region represents neurons unaffected by APV or muscimol

in the simulation of MD with APV or muscimol, and the infusion site represents neurons
affected by APV or muscimol.

Changes in OD were expressed by a contralateral bias index (CBI)

100 ((Ny — N7)+(2/3) (N2 — Ng)+(1/3) (N3 — N5)+ N)

CBI =
2N '

(4.9)

where NN; represents the number of neurons in OD group ¢, and N is the total number of
visually responsive neurons (Reiter & Stryker, 1988). The fraction of binocular neurons was

measured by the binocularity index (BI)

N3+ N4+ N3
N

BI = (4.10)

(Bear et al., 1990).
The receptive field width of left and right eye RFs of model cortical neurons were

measured by width at half-height. Positional selectivity is the reciprocal of RF width.

4.4 Results

Simulated changes in cortical properties caused by various pharmacological

manipulations are presented in this section. Figure 4.2 shows some properties of the model
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cortical neurons after the initial normal rearing.

4.4.1 Aspecific effects of pharmacological treatments

This subsection shows that the EXIN model produces changes in cortical properties
under the aspecific action of APV or muscimol. A neighborhood of 21 neurons was affected

by model APV or muscimol.

Aspecific effects of APV

Figure 4.3 shows the effects of the model APV infusion on ocular dominance,
binocularity, responsiveness, and RF width without any synaptic plasticity. In
the APV-affected model cortical region, increasing model APV concentration reduces
responsiveness of the neurons because afferent excitation is reduced. Increasing model
APV concentration also reduces binocularity. The OD distribution changes from the initial
M-shape to W-shape, and then to U-shape, with a progressive reduction in binocularity and
an increase in the number of unresponsive neurons.

OD is caused by the combined action of afferent excitation and lateral inhibition.
In the model, a neuron can be binocular, although the left and right eye afferent pathways
to the neuron may not be equally strong. Increasing model APV concentration eventually
renders the weaker afferent pathways from one of the eyes ineffective, thus making the
neuron strongly monocular.

In the model, the average RF width of the APV-treated model neurons decreases
with increase in model APV concentration (Figure 4.3). The stronger APV makes the weak
afferents ineffective, thereby reducing RF width.

Properties of model cortical neurons not treated by APV also changed. There is
a decrease in the number of neurons in OD group 4, and their average responsiveness
increases. As mneurons affected by model APV become less responsive, they exert less
inhibition on neurons in the control region. When w = 0.2, six (out of 21) control neurons
showed an increase in their left eye RF width. The initial average width changed from
1.0 to 1.33, and one (out of 21) control neuron showed an increase in its left eye RF

width. The initial average width changed from 1.0 to 1.67. This shows that decreased
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responsiveness of APV-affected neurons increases RF width (reduces position selectivity)
of some neurons unaffected by APV. The loss of orientation selectivity in some neurons
observed by Kasamatsu et al. (1998a) could be caused by reduced inhibition to neurons less
affected by APV from neurons rendered unresponsive by APV.

When lateral inhibitory plasticity was enabled during infusion of APV during
NR, the responsiveness, RF width, and Bl of APV-affected model neurons increased
(Figure 4.4a). These effects were caused by weakening of lateral inhibitory inhibitory
pathways to the APV-affected neurons. Figure 4.4b shows the model cortical properties
when measured without any residual APV. The average responsiveness and RF width of

the APV-treated neurons increased by a small amount.

Aspecific effects of muscimol

In the model, infusion of muscimol was modeled by increasing inhibition to the
affected neurons without any synaptic plasticity, thereby reducing their responsiveness, and
eventually completely blocking model cortical activity (Figure 4.5). As the concentration of
model muscimol infusion was increased, responsiveness, binocularity, and RF width of the
affected model neurons became reduced (Figure 4.5). Model neurons in the control region
showed effects similar to those during model APV infusion.

With both afferent excitatory and lateral inhibitory plasticity during model
muscimol infusion, the network showed effects (Figure 4.6) similar to those during model

APV infusion with only lateral inhibitory plasticity.

4.4.2 Effects of pharmacological treatments during MD

The effects of model pharmacological treatments during model MD were assessed
at different residual concentrations of model APV and muscimol. This revealed the
contributions of synaptic plasticity and of the aspecific effects of model APV and muscimol
to changes in cortical properties. In the model, presence of APV or muscimol enhanced
shifts in the OD distribution.

Cortical infusion of muscimol blocks postsynaptic activation without affecting

presynaptic activation (Reiter & Stryker, 1988). Some experimental data suggest that
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Figure 4.3: Aspecific effects of APV.
In these simulations, synaptic plasticity rules were not enabled. The strength of APV
in the model was inversely proportional to w. In (a) w = 0.6, and in (b) w = 0.2. As
w was decreased, i.e., afferent excitation was weakened, model cortical layer binocularity,

responsiveness, and REF width decreased. See Figure 4.2 for conventions.

postsynaptic activation is necessary for excitatory synaptic plasticity and OD plasticity
(Goda & Stevens, 1996; Rauschecker & Singer, 1979). On the other hand, APV
blocks NMDA receptors without necessarily blocking neuronal responsiveness to visual
stimulation (Bear et al., 1990). It has been hypothesized that NMDA receptors subserve
long-term plasticity in excitatory synapses (Bear et al., 1987; Dudek & Bear, 1992;
Kirkwood et al., 1993) and may be involved in visual cortical plasticity (Fox & Daw, 1993).
In the model, strong muscimol concentration blocks postsynaptic activity and therefore
disables plasticity in afferent excitatory pathways to the muscimol-affected neurons and

in lateral inhibitory pathways from the muscimol-affected neurons. On the other hand,
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Figure 4.4: Aspecific effects of APV with lateral inhibitory plasticity.
OD was measured after 500,000 presentations of binocular inputs (NR) with w = 0.6 and
with only lateral inhibitory plasticity. APV is assumed to have blocked afferent excitatory
plasticity. RF properties were measured with w = 0.6 in (a) and with w = 1 (i.e., zero
residual APV) in (b). See Figure 4.2 for conventions.

in the model, APV is assumed to block plasticity in afferent excitatory pathways to the
APV-affected neurons with reduced afferent excitation. Since APV-treated neurons are
activated during MD in the model, plastic changes in lateral inhibitory pathways from the
APV-treated neurons can occur.

In the simulations, MD with APV or muscimol were similar in that afferent
excitatory pathways to the affected neurons were blocked and reverse OD shift in
APV- or muscimol-affected neurons was observed (Section 4.4.2, Changes in ocular
dominance). However, plasticity in lateral inhibitory pathways from muscimol-treated

neurons was blocked, and plasticity in lateral inhibitory pathways from APV-treated
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Figure 4.5: Aspecific effects of muscimol.
In these simulations, EXIN plasticity rules were not enabled. The strength of muscimol
is directly proportional to . In (a) & = 0.05, and in (b) & = 0.1. As I was increased
model cortical layer binocularity, responsiveness, and RF width decreased. See Figure 4.2

for conventions.

neurons was not blocked. This difference resulted in almost no loss of position selectivity
in muscimol-treated neurons and a significant loss of position selectivity in APV-treated

neurons (Section 4.4.2, Changes in RF width).

Changes in ocular dominance

Figures 4.7a and 4.9a present the modeled changes in OD after MD with APV
and muscimol, respectively. In these figures, the residual concentration of APV and
muscimol was half the concentration of APV and muscimol during model MD. In both

these simulations, the OD of the control region shifted toward the open eye, and the OD of
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Figure 4.6: Aspecific effects of muscimol with afferent excitatory and lateral
inhibitory synaptic plasticity.

OD was measured after 500,000 steps of NR with & = 0.05. At & = 0.05, the model
cortical neuronal activation was not completely blocked (see Figure 4.5). After training,
model cortical properties were measured with a residual muscimol concentration of & = 0.05

in (a) and I =01in (b). See Figure 4.2 for conventions.

the treated region shifted toward the closed eye.

Figures 4.7b and 4.9b present the modeled changes in OD after MD with no
residual APV and muscimol, respectively. In this case, reverse OD shift in the affected
regions was slightly reduced. Thus, the model produces reverse OD shifts in neurons affected
by APV or muscimol after MD, as observed experimentally (Bear et al., 1990; Reiter &
Stryker, 1988). In addition, the model predicts a decrease in the amount of reverse OD

shift with increasing dissipation of APV or muscimol.
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Figure 4.7: Changes in RF properties after MD with APV infusion.
In this simulation, synaptic plasticity in afferent excitatory pathways to neurons in the
infusion site was blocked. APV during MD reduced afferent excitation by a factor of 0.3;
ie., w = 0.7. The left eye was closed and the right eye was open during MD. OD was

measured with w = 0.85 in (a) and w = 1.0 in (b). See Figure 4.2 for conventions.

Changes in responsiveness

As the residual concentration of APV and muscimol was reduced, neuronal
responsiveness in the affected region increased (Figures 4.7 and 4.9). The maximal
responsiveness in the affected region was greater than the maximal responsiveness in the
control region after complete removal of APV and muscimol.

Bear et al. (1990) showed that neuronal responsiveness increased after stoppage of
APV infusion and that the neuronal responsiveness was greater than control responsiveness
three days after cessation of APV infusion. Reiter and Stryker (1988) noted that neuronal

responsiveness of neurons affected by muscimol increased after stopping muscimol infusion.
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Figure 4.8: Changes in RF properties after MD with APV infusion with lateral
inhibitory pathway synaptic plasticity disabled.

In this simulation, synaptic plasticity in afferent excitatory pathways to neurons in the
infusion site was blocked, and lateral inhibitory learning was disabled in the model cortical
layer. APV during MD reduced afferent excitation by a factor of 0.3; i.e., w = 0.7. The left
eye was closed and the right eye was open during MD. OD was measured with w = 0.85

in (a) and w = 1.0 in (b). See Figure 4.2 for conventions.

Changes in RF width

At w = 0.85 and w = 0 (residual strength of APV), the average RF width of
affected neurons was significantly greater than that in the control region and the initial
average RI width before MD with APV (Figure 4.2), especially the closed eye RF width
(Figures 4.7ab). The increase in RF width was caused by weakening of lateral inhibitory
pathways between the APV-affected neurons, which were weakly responsive during MD.
Figure 4.8 shows changes in average RF width in the model, when MD with APV infusion

was simulated with lateral inhibitory learning in the model cortical layer disabled; the
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Figure 4.9: Model OD distribution after MD with muscimol infusion.
In this simulation, afferent excitatory and lateral inhibitory plasticity were enabled. The
left eye was closed, and the right eye was open during MD. The concentration of muscimol
during MD was § = 0.1, and OD was measured with & = 0.05 in (a) and I = 0.0 in (b).

See Figure 4.2 for conventions.

APV affected neurons show RF contraction when RF size was measured with w = 0.85.
Bear et al. (1990) observed loss of orientation tuning in a significant number of APV-affected
neurons after MD. The model predicts that the loss of orientation tuning in APV-affected
neurons after MD with APV infusion (Bear et al., 1990) may be caused by weakening of
the lateral inhibitory pathways. Based on the simulations, it is predicted that a significant
number of APV-affected cortical neurons after MD with APV infusion will also show RF
expansion. See Section 4.5.1 for further discussion.

At I = 0.05 (residual strength of muscimol), the average RF width in the affected

region was slightly smaller than that in the control region (Figure 4.9a). At the zero residual
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Figure 4.10: Model OD distribution after MD with muscimol infusion with lateral
inhibitory pathway synaptic plasticity disabled.

In this simulation, only afferent excitatory plasticity was enabled. The left eye was closed,
and the right eye was open during MD. The concentration of muscimol during MD was
3 = 0.1, and OD was measured with & = 0.05in (a) and S = 0.0 in (b). See Figure 4.2 for

conventions.

level of muscimol, the average RF width of model neurons in the affected region showed
only a small increase (Figure 4.9b). At non-zero muscimol levels, increased inhibition due
to muscimol reduced RF width. In addition, during MD with muscimol the neurons in the
muscimol-treated region were very weakly active. Thus, lateral inhibitory pathways from
these inactive neurons changed very little. However, lateral inhibitory pathways from active
neurons to the inactive neurons weakened, according to the lateral inhibitory plasticity rule,
thereby increasing the RF width of some neurons in the affected region. Compare Figure 4.9
with the changes in RF width when lateral inhibitory plasticity in the model cortical layer
was blocked during MD with muscimol infusion in Figure 4.10. Reiter and Stryker (1988)
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observed a reduction of orientation selectivity in only a small number of muscimol-treated
neurons after MD with muscimol infusion. Most muscimol-treated neurons after MD
with muscimol infusion may retain high orientation selectivity because (1) some residual
muscimol enhances orientation selectivity, and (2) lateral inhibitory pathways between

muscimol-affected neurons do not change, as their activation is fully suppressed by muscimol

during MD.

4.4.3 Important model parameters

The most important factors influencing OD shifts and changes in receptive field
width are the amount of change in the afferent excitatory and lateral inhibitory pathways.
The model requires weakening of afferent excitatory pathways from the closed eye selective
input layer neurons to the control model cortical neurons. Apart from this, the amount of
plasticity in afferent excitatory and lateral inhibitory pathways to the affected neurons is

important. These factors are discussed below.

Plasticity in afferent excitatory pathways to affected neurons

The amount of reverse OD shift in the region affected by APV or muscimol is
highly dependent on the amount of plasticity in the afferent pathways to the affected
neurons. With APV infusion, the greatest reverse OD shift occurred when afferent
excitatory synaptic plasticity in pathways to APV treated neurons is assumed to be
completely blocked (Figure 4.11), even though these neurons are active during MD. At
low muscimol concentrations, reverse OD shift did not occur (Figure 4.12). When muscimol
concentration was increased, postsynaptic activation decreased, afferent excitatory synaptic
plasticity decreased, and OD shifted toward the closed eye in the muscimol treated region
(Equation 4.2). In Figure 4.12, the amount of reverse OD shift is not a monotonic function
of muscimol concentration when lateral inhibitory plasticity was enabled (see Section 4.4.3,

Plasticity in lateral inhibitory pathways to affected neurons).
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Figure 4.11: Dependence of OD shifts on APV concentration.
In these simulations, OD after MD was measured at APV concentrations that reduced
afferent excitation by a factor that was half of the factor by which afferent excitation was
reduced during MD. Model OD shifts are plotted as a function of afferent excitation blocking

strength of APV (1 — w) at different synaptic plasticity rates in afferent excitatory pathways
to neurons affected by APV.

Residual levels of APV and muscimol

The reverse OD shift was further enhanced by aspecific effects of residual APV and
muscimol. Increasing APV or muscimol strength reduced neuronal responsiveness and hence
slowed down afferent excitatory synaptic plasticity in pathways to the affected neurons. In
addition, residual APV or muscimol reduced the effectiveness of afferent pathways to the
affected neurons. Afferent pathways from the open eye to the affected neurons were less
effective because the affected neurons received more inhibition during open eye stimulation.
And hence, residual APV or muscimol made the afferent pathways from the open eye

even less effective. Removing residual APV or muscimol reduced the reverse OD shift

(Figures 4.7b and 4.9b).
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Figure 4.12: Dependence of OD shifts on muscimol concentration.
In these simulations, OD after MD was measured at muscimol concentrations equal to
half of the muscimol concentration during MD. Model OD shifts are plotted as a function
of muscimol concentration (J) at different synaptic plasticity rates in lateral inhibitory

pathways to neurons affected by muscimol.

Plasticity in lateral inhibitory pathways to affected neurons

The amount of change in the weight of the lateral inhibitory pathways from
the control region to the treated region also determined the amount of reverse OD
shift, especially in the case of model muscimol infusion. If muscimol completely blocks
postsynaptic activation, lateral inhibitory pathway weights from active neurons to these
inactive neurons can go to zero with sufficient conditioning (see Equation 4.1). When
this happens, the neurons in the control region exert no inhibitory influence when either
eye is stimulated. And therefore, the OD of the affected neurons may not shift toward
the closed eye, although residual muscimol may reduce binocularity (see Section 4.4.1).
The weakened inhibitory pathways produced non-monotonicity in the amount of reverse
OD shift as model muscimol concentration increased, when lateral inhibitory plasticity was
enabled (Figure 4.12). In Figure 4.12, as the rate of lateral inhibitory plasticity in pathways

to the affected neurons was decreased with fixed muscimol concentration, the reverse OD
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shift increased. In the case of model APV infusion, this issue is not crucial because the
APV-affected neurons remained responsive to input stimulation.

In the model, increase in RF width is highly dependent on weakening of lateral
inhibitory pathways to the affected neurons. The amount of change with fixed NR training
depends on the activity of the source neuron and the target neuron (see Equation 4.1).
Thus, during NR with APV infusion, if postsynaptic activation is blocked (using APV),
lateral inhibitory pathways between affected neurons change very little (the only changes are
caused by noise), and neurons show very little RF expansion. At near-normal postsynaptic
activation, APV-affected neurons do not show much RF expansion because lateral inhibitory
pathway strengths remain close to normal levels. At some intermediate, weak postsynaptic
activation levels, APV-affected neurons show RF expansion (Figure 4.13). The RF width
of neurons affected by muscimol during NR is also an inverted-U function of the strength of
muscimol (Figure 4.13). In Figure 4.13 the RF properties were measured with zero residual
APV or muscimol. Figure 4.13 shows responsiveness and RF width in the presence of APV
or muscimol. During APV infusion, the afferent excitatory plasticity was blocked. Afferent
excitatory plasticity was unchanged during model muscimol infusion.

In the EXIN lateral inhibitory plasticity rule (Equation 4.1), the postsynaptic
activation determines the stable-state weight of the inhibitory pathways, and the
presynaptic activation determines the rate of weight change. Thus, if the network is trained
for a sufficiently long time, RF widths will increase as a function of the concentration of
APV (instead of being an inverted-U curve).

During NR with very strong muscimol infusion, noise in the EXIN plasticity
rules dominates neuronal activation. When this happens, neurons have no selectivity,
and weight changes occur because of noise, resulting in weakening of afferent excitatory
and lateral inhibitory pathways. When & = 0.8, model cortical neuronal activations
were completely suppressed. After 1,500,000 presentations of binocular inputs, the average
maximal responsiveness to monocular input was 0.073 (mean) £0.003 (standard deviation),

and the average monocular RF width was 1.615+ 0.121 (RF width increased).



192

APV APV
____Initial ____ Initial
____ After 100,000 steps ____ After 100,000 steps
20 1 — Alfter 200,000 steps 20, — After 200,000 steps

o

—

x

7

@ 157 15 1

o

= <

2} S

S 101 2 10

o LL

a @

f—

8 o5 { 05 |

o

S

S

()

Z

00 T T T 1 OO T T T 1
0.000 0.225 0.450 0.675 0.900 0.000 0.225 0.450 0.675 0.900

Afferent excitation blocking strength of APV Afferent excitation blocking strength of APV

Muscimol Muscimol
____Initial ____Initial
____ After 100,000 steps ____ After 100,000 steps
20 1 — Alfter 200,000 steps 20, — After 200,000 steps
o
—
x
?
B 15 1.5 {
o
= <
[} S
é 2 1.0 -
L
(7]
3 o
S
8 o5 { 05 |
)
-
>
o)
z
0.0 ; ‘ 0.0 ; ‘
0.000 0.200 0.400 0.000 0.200 0.400
Muscimol concentration Muscimol concentration

Figure 4.13: Dependence of RF width and responsiveness on cortical activation.
The model cortical neuronal responsiveness to monocular inputs (left) and monocular RF
width (right) was measured after NR with infusion of APV (top) and muscimol (bottom)
with no residual APV or muscimol. With APV infusion, w < 1, the learning rate ¢ in
Equation 2 was set to zero; i.e., afferent excitatory plasticity was blocked. APV afferent

excitation blocking strength was 1 — w. During muscimol infusion, ¢ was unchanged.
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Figure 4.14: Legend on next page.
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Figure 4.14: RF width and responsiveness in the presence of APV or muscimol.
Figure on previous page. The model cortical neuronal responsiveness to monocular inputs
(left) and monocular RF width (right) was measured after NR with infusion of APV
(top) and muscimol (bottom). The measurements were made in the presence of APV
or muscimol. With APV infusion, as w was decreased, the learning rate ¢ in Equation 2
also was decreased by the same factor. APV afferent excitation blocking strength is 1 — w.
During muscimol infusion, ¢ was not changed. The average maximal responsiveness of the
model cortical neurons to binocular inputs used during NR in the presence of APV or
muscimol was 6.546 x 1072 (mean) = 2.280 x 1072 (standard deviation) with w = 0.325,
1.025 x 1072 4 1.467 x 1072 with w = 0.1, 6.157 x 1072 4 2.055 x 1072 with & = 0.2, and
1.283 x 1071 £ 9.790 x 10™* with & = 0.4. The normal average maximal responsiveness of
the model cortical neurons to binocular inputs was 1.893 x 1071 4 9.145 x 107,

4.5 Discussion

The salient effects of the infusion of muscimol or APV during MD are an OD shift
toward the open eye in the control region and a reverse OD shift toward the closed eye.
These effects have been modeled using the EXIN synaptic plasticity rules (Marshall, 1995).
The model is based on the observation that neurons in the control regions become less
responsive to closed eye stimulation and hence exert less inhibition to neurons in the infusion
region, where afferent synapses do not change. In addition, the aspecific action of APV and
muscimol contributes to changes in cortical properties.

In two experiments (Bear et al., 1990; Reiter & Stryker, 1988), OD was measured
within 48 hrs of stoppage of infusion, and responsiveness of neurons in the infusion site
continued to increase. Bear et al. (1990) showed that responsiveness of neurons in the
APV infusion site three days after stoppage of infusion was greater than the control
responsiveness. This suggests a relatively long residual effect of muscimol and APV.
Therefore, a small residual amount of APV or muscimol was assumed during measurement
of model cortical properties in the present model.

Lateral inhibitory interactions can also play a role in producing reverse OD shifts
even if a covariance rule (Miller et al., 1989; Stanton & Sejnowski, 1989) were used for
afferent excitatory synaptic plasticity, instead of the EXIN afferent excitatory plasticity

rule. The covariance rule would weaken afferent excitatory pathways from the open eye
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to muscimol or APV treated neurons, thereby producing OD shift toward the closed
eye. Furthermore, weakening of afferent pathways from the closed eye to control neurons
according to the covariance rule would cause an additional OD shift toward the closed eye

because of lateral inhibitory interactions, as in the EXIN model.

4.5.1 Loss of cortical neuronal stimulus feature selectivity

Several cortical properties — orientation selectivity, disparity selectivity, length
selectivity, spatial frequency selectivity, motion direction selectivity, etc. — may depend on
lateral inhibition (Bonds & DeBruyn, 1985; Sillito, 1979; Somers et al., 1995; Somogyi &
Martin, 1985). Specificity of cortical neurons for several stimulus features is abolished by
cortical infusion of a GABA antagonist (Sillito, 1975, 1977, 1979). Blocking intracortical
inhibition also reveals new peripheral regions capable of evoking neuronal responses
(Lane et al., 1997; Sillito et al., 1981).

Kasamatsu et al. (1998a) observed loss of orientation selectivity and direction
selectivity after APV infusion in adult cat primary visual cortex. Bear et al. (1990) reported
loss of orientation selectivity in a region affected by APV after MD with APV infusion.
Prolonged binocular deprivation reduces neuronal responsiveness and orientation selectivity
(Frégnac & Imbert, 1984). In these experiments, cortical activation was much lower than
during normal rearing.

According to the EXIN lateral inhibitory plasticity rule, weak neuronal activation
is sufficient for weakening lateral inhibitory pathways between these neurons (albeit
relatively slowly) and may lead to reduction of neuronal stimulus feature specificity.
During chronic binocular deprivation, the afferent pathways may weaken, thereby weakening
neuronal responsiveness. In the model, loss of position selectivity (increase in RF width)
occurred after APV infusion and after MD with APV infusion.

Biologically, the EXIN inhibitory rule could be realized either by modifying the
weights of inhibitory synapses onto excitatory neurons or by modifying the weights of
excitatory synapses onto inhibitory interneurons. In the developing cortex, lateral excitatory
pathways too may undergo synaptic plasticity. If changes in the lateral inhibitory pathways

dominate changes in lateral excitatory pathways, the effects predicted by the EXIN model
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would arise.

The loss of orientation selectivity during APV infusion observed by
Kasamatsu et al. (1998a) could also be caused by weakening of afferent excitatory inputs
to inhibitory neurons, thus reducing intracortical inhibition. Kasamatsu et al. (1998a)
observed reduced orientation selectivity and binocularity during APV infusion. In the
EXIN model, model APV infusion in a group of neurons caused RF expansion in some
control neurons. When lateral inhibitory plasticity was enabled, APV-affected neurons
recovered binocularity. Thus, the model suggests both an immediate and a prolonged effect
of APV on neuronal selectivity. The model suggests that APV-affected neurons will have
weak orientation selectivity after complete removal of APV because of weakened lateral
inhibitory pathways.

The loss of stimulus feature specificity of cortical neurons based on the
EXIN rule is valid even if lateral excitatory pathways contribute to feature selectivity
(Somers et al., 1995). Somers et al. (1995) assume that lateral excitation from neighboring
neurons is orientation selective, and weakened lateral inhibition will render all neurons less

selective.

4.5.2 Model predictions

In the model, it was assumed that plasticity in lateral inhibitory pathways is not
affected by muscimol or APV. However, in the cortex it is possible that APV blocks plasticity
in lateral excitatory pathways to inhibitory neurons; and if the biological realization of the
EXIN lateral inhibitory rule requires plasticity in lateral excitatory pathways to inhibitory
neurons, then APV can affect plasticity in lateral inhibitory pathways in the cortex. There
are very few reports of possible plasticity in lateral inhibitory pathways (e.g., Miles &
Wong, 1987). The effect of muscimol on plasticity in lateral inhibitory pathways is not
known. Thus, the effects produced by the lateral inhibitory rule in the simulations are

predictive.
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Intracellular measurement of excitatory and inhibitory postsynaptic potentials

Thalamocortical stimulation produces monosynaptic excitatory postsynaptic
potentials (EPSPs) and disynaptic inhibitory postsynaptic potentials (IPSPs) (Gil &
Amitai, 1996; Ferster, 1989). The EXIN model makes the following predictions, for
young animals during their critical period after MD with strong concentrations of APV

or muscimol.

1. Monosynaptic EPSPs evoked in APV or muscimol treated neurons by left or right
eye selective thalamocortical afferent stimulation remain unchanged. (It should be

ensured that there is no residual APV or muscimol.)

2. Monosynaptic EPSPs evoked in control neurons by closed eye selective thalamocortical
afferent stimulation decrease substantially, and monosynaptic EPSPs evoked in control
neurons by open eye selective thalamocortical afferent stimulation may increase

slightly (see Section 4.2.3).

3. Disynaptic IPSPs in neurons treated with muscimol or APV by stimulation of
thalamocortical afferents selective to the closed eye decreases, because neurons in
the control region become weakly responsive to closed eye stimulation and hence send

weaker inhibition to neurons affected by muscimol or APV.

4. Disynaptic IPSPs in control neurons caused by stimulation of thalamocortical afferents
selective to either eye may change by a small amount (the afferent excitatory pathways
to these neurons strengthen slightly because of increased correlation with monocular
inputs, and lateral inhibitory pathways to these neurons weaken by a small amount

because the neurons are weakly active).

In contrast, models based on depression in the afferent excitatory pathways from
the open eye to neurons affected by APV or muscimol (Bear et al., 1990; Miller et al., 1989;
Reiter & Stryker, 1988) predict decrease in monosynaptic EPSPs in APV or muscimol

treated neurons by stimulation of open eye selective thalamocortical afferents.
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Changes in RF width and stimulus feature selectivity as a function of cortical

activity

During binocular rearing of young animals for a fixed duration within their critical
period, neuronal activation of a small region of the cortex can be varied, e.g., by infusion
of muscimol or APV, or by controlling the input stimulation strength. The EXIN model

suggests the following predictions.

1. With muscimol or APV infusion, the amount of increase in RF size and
neuronal responsiveness and the amount of decrease in stimulus feature selectivity
(e.g., orientation selectivity) as a function of cortical activation level (concentration of
muscimol or APV) will be an inverted-U shaped curve (see Section 4.4.3, Plasticity in
lateral inhibitory pathways to affected neurons). Because of normal input stimulation,

the afferent excitatory pathways may not change during muscimol infusion.

2. As the strength of input stimulation is decreased (cortical activation also decreases),
the magnitude of change in RF size, responsiveness, and stimulus feature selectivity
will be inverted-U shaped. When input stimulation strength is decreased, the afferent
excitatory pathways may weaken; therefore, the change in RF width, neuronal
responsiveness, and stimulus feature selectivity will depend on whether decrease
in excitation or decrease in inhibition dominates. During prolonged binocular

deprivation, neuronal responsiveness and orientation selectivity decrease (Frégnac &

Imbert, 1984).

3. APV can be infused to block afferent excitatory plasticity when the strength of
input stimulation is decreased. The amount of increase in RF size and neuronal
responsiveness and the amount of decrease in stimulus feature selectivity will be

inverted-U shaped as a function of the input stimulation strength.

Artificial scotoma conditioning with pharmacological treatments

Pettet and Gilbert (1992) showed RF expansion in primary visual cortical neurons

whose RF was occluded with just 15 minutes of artificial scotoma conditioning in one
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eye with the other eye closed. This RF expansion has been modeled by weakening
lateral inhibitory pathways from active neurons to inactive neurons, without requiring any
plasticity in the afferent excitatory pathways (Kalarickal & Marshall, 1997; Marshall &
Kalarickal, 1997). The reduced weights of inhibitory pathways to neurons whose RF is inside
the scotoma from neurons whose RF is outside then allows greater and wider responses by
the neurons whose RF is inside. In contrast, Sirosh et al. (1996) modeled the RE expansion
using afferent excitatory plasticity. During artificial scotoma conditioning, neurons whose
RF straddles the scotoma boundary have active afferent excitatory pathways from positions
outside the scotoma and inactive afferent excitatory pathways from positions inside the
scotoma. Thus, active afferent excitatory pathways to the neuron can be competitively
weakened. Since afferent excitatory plasticity in animals during the critical period is easily
induced (Hubel & Wiesel, 1965, 1970; Hubel et al., 1977), artificial scotoma conditioning
with cortical infusion of APV can be used to assess (1) the efficiency of APV in blocking
afferent plasticity and (2) the contribution of afferent excitatory and lateral inhibitory
plasticity in producing the effects of artificial scotoma conditioning.

We propose the following experiments:

1. Perform artificial scotoma conditioning in animals during the critical period. With

both afferent and lateral inhibitory synaptic plasticity, the EXIN model predicts

(a) RF expansion in neurons whose RF is in the scotoma region during artificial

scotoma conditioning; and

(b) RF contraction in neurons whose RI straddles the artificial scotoma boundary.
These neurons will be active during conditioning, and hence the afferent

excitatory pathways from parts of the scotoma region will weaken (Kalarickal &

Marshall, 1997; Sirosh et al., 1996).

2. Perform artificial scotoma conditioning with a large cortical infusion of APV. If APV

blocks afferent excitatory plasticity, the EXIN model predicts

(a) RF expansion in neurons whose RF is in the scotoma region (because of lateral

inhibitory plasticity); and
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(b) no RF contraction in neurons whose RI straddles the scotoma boundary.

Temporary cortical scotoma conditioning with normal input stimulation

To determine the role of lateral inhibitory plasticity, a temporary local cortical
scotoma can be produced by infusion of muscimol, during normal stimulation in animals
during their critical period. The EXIN model predicts RF expansion in neurons affected by
muscimol (after sufficient time to allow dissipation of the effects of muscimol) because of
weakening of lateral inhibitory pathways from the active neurons to the muscimol-treated
inactive neurons. The lateral inhibitory pathways from the muscimol-treated inactive
neurons to other neurons and the afferent excitatory pathways to the muscimol-treated
neurons may change by a very small amount because of noise. In contrast, if the active
afferent excitatory pathways to the cortical neurons whose activation is suppressed by
muscimol were weakened as proposed by Reiter and Stryker (1988) and Miller et al. (1989),

then the RF size of the muscimol-treated neurons would shrink.

4.5.3 Conclusions

In the EXIN model, plasticity in lateral inhibitory pathways develops as a function
of overlap in the RF of neurons. Previously, it was shown that lateral inhibitory plasticity
produces neurons with high selectivity and sparse distributed coding (Marshall, 1995;
Marshall & Gupta, 1998). Therefore, the role of the lateral inhibitory plasticity rule in
producing RF changes was studied in detail in the context of MD with infusion of APV and
muscimol. The predictions made based on the EXIN plasticity rules can be used to design
experiments to reveal the rules of afferent excitatory and lateral inhibitory plasticity and

their role in cortical plasticity.



Chapter 5

Models of receptive field dynamics

in visual cortex

Abstract

The position, size, and shape of the receptive field (RF) of some cortical neurons
change dynamically, in response to artificial scotoma conditioning (Pettet & Gilbert, 1992)
and to retinal lesions (Chino et al., 1992; Darian-Smith & Gilbert, 1995) in adult animals.
The RF dynamics are of interest because they show how visual systems may adaptively
overcome damage (from lesions, scotomas, or other failures), may enhance processing
efficiency by altering RF coverage in response to visual demand, and may perform perceptual
learning.

This chapter presents an afferent excitatory synaptic plasticity rule and a lateral
inhibitory synaptic plasticity rule — the EXIN rules (Marshall, 1995a) — to model persistent
RF changes after artificial scotoma conditioning and retinal lesions. The EXIN model
is compared to the LISSOM model (Sirosh et al., 1996) and to a neuronal adaptation
model (Xing & Gerstein, 1994). The rules within each model are isolated and are
analyzed independently, to elucidate their roles in adult cortical RF dynamics. Based

on computer simulations, the EXIN lateral inhibitory synaptic plasticity rule and the
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LISSOM lateral excitatory synaptic plasticity rule produced the best fit with current
neurophysiological data on visual cortical plasticity in adult animals (Chino et al., 1992;
Darian-Smith & Gilbert, 1995; Pettet & Gilbert, 1992) including (1) the retinal position of
the expanding RF's, (2) the amount of change in spontaneous activation in the absence of any
visual stimulation, (3) the corticotopic direction in which responsiveness returns to lesioned
cortex, (4) the direction of RF shifts, (5) the amount of change in response to blank stimuli,
and (6) the lack of dynamic RF changes during conditioning with a retinal lesion in one
eye and the unlesioned eye kept open, in adult animals. The effects of the LISSOM lateral
inhibitory synaptic plasticity rule during artificial scotoma conditioning are in conflict with
those of the other two LISSOM synaptic plasticity rules. A novel “complementary scotoma”
conditioning experiment, in which stimulation of two complementary regions of visual space
alternates repeatedly, is proposed to differentiate the predictions of the EXIN and LISSOM

rules.

5.1 Introduction

In experiments using artificial scotoma conditioning (Pettet & Gilbert, 1992)
and retinal lesions (Chino et al., 1992; Darian-Smith & Gilbert, 1995), neurons in
primary visual cortex corresponding to a particular region of visual space were deprived
of visual stimulation, while neurons corresponding to a surrounding region received visual
stimulation. In response to these manipulations, a variety of dynamic changes occurred in
the position, size, and shape of the receptive field (RF) of some of the neurons. For example,
after 15 minutes of artificial scotoma conditioning, the RF area of some cortical neurons
whose RF was located inside the scotoma expanded by a factor of five; after 15 minutes of
subsequent normal stimulation, the RF returned to its original size (Pettet & Gilbert, 1992).
The dynamic RF expansion following artificial scotoma conditioning in one eye also transfers
to the other eye (Volchan & Gilbert, 1994).

Pettet and Gilbert (1992) simulated a retinal lesion experiment by presenting a
pattern of moving lines in the visual field while masking out an artificial “scotoma” region

covering the original RF of the recorded neuron. After 10-15 minutes of stimulation, a
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five-fold average expansion in RF area was found. In the second phase of the experiment,
the scotoma region was unmasked, and moving lines were presented in the whole field. After
several minutes of stimulation, the RF shrank back to its original extent. The RF expansion
and contraction was repeatable. A key observation was that stimulation exclusively in the
surrounding region was necessary for the RF expansion to occur. Exposure to a blank
screen for as long as 20 minutes had little effect on the RF size.

Pettet and Gilbert (1992) tested the effect of orientation of the conditioning stimuli
on RF expansion, during artificial scotoma conditioning. For a few neurons (3 out of 15),
they found an expansion with iso-orientation conditioning stimuli and did not find an
expansion with the orthogonal pattern. In these cases, the orthogonal pattern actually
reduced the RF size and responsiveness of the neuron.

Darian-Smith and Gilbert (1995) studied topographic reorganization in the striate
cortex of the adult cat and monkey after binocular retinal lesions, using physiological and
anatomical techniques. They found that immediately (between 5 minutes and up to 1 hour)
after making corresponding retinal lesions of 3.5°-14° in diameter, there was a cortical
scotoma region containing neurons whose RF was located more than 0.5-1.0 mm inside
the initial scotoma boundary. However, cortical neurons located close to or just inside
the cortical scotoma boundary showed an increase in RF size. The greatest expansion
occurred for neurons whose RF was located closest to the scotoma boundary. In addition,
the expanded RFs shifted centrifugally toward the outside of the scotoma. Neurons that
acquired responsiveness to locations outside the scotoma, i.e., neurons in the recovered
region of the original cortical scotoma, were less responsive, more sluggish in their response,
and more easily fatigued compared to those in normal cortex or in cortex located more than
1 mm outside the cortical scotoma boundary. In spite of the changes in their RF size and
position, these neurons retained some of their original RF properties, such as directionality,
orientation specificity, and binocularity.

Measurements within the same cortex 2-12 months after the lesions showed
that cortical neurons located several millimeters inside the original boundary of the
cortical scotoma became responsive to stimulation of perilesion retina (Darian-Smith &

Gilbert, 1995). Over time, function returned to the cortex in a roughly concentric inward
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direction. The cortical reorganization was accompanied by RF shifts. In spite of distortions
in representation, topographic order was maintained.

In contrast to the cortical reorganization, the LGN scotoma and thalamocortical
afferents did not undergo any change, as reflected in electrophysiological recordings and
anatomical studies. This led Darian-Smith and Gilbert to conclude that the reorganization
of cortical topography following retinal lesions originates in the cortex and is likely to be
mediated, at least in part, by the long-range collaterals of cortical neurons rather than by

thalamocortical afferents.

5.1.1 Significance of RF dynamics

The dynamics of RFs are of interest for several reasons. They reveal some
of the ways in which visual systems may adaptively overcome damage from lesions
or scotomas. In addition, they reveal some of the functional organization of visual
cortex (Das, 1997; Gilbert, 1998). Dynamic visual RFs might also be related to the
dynamic response properties found in other cortical areas (Das, 1997), such as the
tactile RF expansion/contraction found in adult somatosensory cortex in response to
intracortical microstimulation (Recanzone et al., 1992b) and localized peripheral stimulation
(Recanzone et al., 1992d).

Artificial scotoma conditioning can elucidate the neural basis of perceptual learning.
In perceptual learning, human observers improve their performance in perceptual tasks
such as orientation perception (Fiorentini & Berardi, 1980), vernier acuity (Fahle &
Edelman, 1993), and discrimination of texture (Karni & Sagi, 1991) after training (repeated
performance of a perceptual task). Perceptual learning is stable: it does not wear off after
periods without visual stimulation. Furthermore, in these studies perceptual learning was
not simply a matter of becoming accustomed to the perceptual task. Perceptual learning
was specific for features of the training stimuli (Crist et al., 1997; Fahle, 1997); it was
usually confined to the portion of the retina that was stimulated during training, or the
improvement was restricted to the orientation of the training stimuli. Since neurons in the
visual cortex are selective for specific stimulus features, repeated presentation of training

stimuli repeatedly activates a small group of neurons. Thus, perceptual learning may be
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realized by cortical plasticity that depends on repeated activation of a group of neurons.
In artificial scotoma conditioning, visual cortical neurons selective for a particular region
of visual space are deprived of visual stimulation while neurons selective for surrounding
visual space receive stimulation. Thus, artificial scotoma conditioning provides a systematic
procedure to control the activation of specific groups of neurons and to study the neural

basis of perceptual learning.

5.1.2 Modeling of RF dynamics

Figure 5.1 shows the input pathways to primary visual cortical neurons. The RF
of a cortical neuron can be affected by changes in the inputs to the neuron. The long-
range horizontal excitatory or inhibitory pathways in visual cortex have been regarded as
the substrate for RF dynamics (Darian-Smith & Gilbert, 1995; Das & Gilbert, 1995ab;
Gilbert et al., 1996; Pettet & Gilbert, 1992; Somogyi & Martin, 1985; Volchan &
Gilbert, 1994). It has been shown that dynamic RF changes result from changes in the
amount of excitation and/or inhibition received by the neurons (Chapman & Stone, 1996;
Petersen & Taylor, 1997). Changes in the amount of excitation and/or inhibition to neurons
can result from neuronal adaptation (DeAngelis et al., 1995; Xing & Gerstein, 1994),
short-term inhibitory synaptic adaptation (Todorov et al., 1997), long-term synaptic
modifications in long-range horizontal pathways (Darian-Smith & Gilbert, 1994, 1995;
Das & Gilbert, 1995ab; Gilbert et al., 1996; Pettet & Gilbert, 1992), long-term synaptic
plasticity in lateral inhibitory pathways (Marshall & Kalarickal, 1997), or long-term synaptic
plasticity in afferent excitatory pathways (Marshall, 1995a; Sirosh et al., 1996). Reafferent
feedback pathways between cortical layers may also be involved in producing cortical
plasticity (Gilbert, 1996).

A drawback of adaptation-based models (Todorov et al., 1997; Xing &
Gerstein, 1994) is that they cannot sustain the RF expansions during periods with no visual
stimulation in artificial scotoma conditioning as reported by Pettet and Gilbert (1992).
Sirosh et al. (1996) attributed RF expansion after artificial scotoma conditioning to afferent
excitatory plasticity in their LISSOM model. Their model also had plasticity in lateral

excitatory and lateral inhibitory pathways, but the role of these forms of plasticity in
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Figure 5.1: Site of RF changes.
The RF of cortical neurons changes when input excitation and inhibition to the neurons
change. Cortical neurons receive afferent, lateral, and feedback excitation. Cortical neurons
receive lateral inhibition from inhibitory neurons (shown by the shaded ellipse in layer 2).
The excitatory cortical neurons (represented by the unfilled ellipses) send lateral excitation
to excitatory and inhibitory neurons. Changes in input excitation and inhibition can occur
because of synaptic plasticity in excitatory and inhibitory synapses, respectively, or because

of adaptation cortical neurons.
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RF changes after artificial scotoma conditioning was not analyzed.

This chapter compares the properties of RF changes produced by several models
of cortical plasticity to the neurobiological data on RF changes after artificial scotoma
conditioning and after retinal lesions in adult animals. In particular, RF changes
after artificial scotoma conditioning and retinal lesions produced by the EXIN rules
(Marshall, 1990a, 1995a), the LISSOM rules (Sirosh & Miikkulainen, 1994ab, 1995, 1997;
Sirosh et al., 1996), and an adaptation rule (Xing & Gerstein, 1994) are analyzed.

EXIN plasticity rules

The EXIN model uses an an instar Hebbian afferent excitatory synaptic plasticity
rule and an outstar anti-Hebbian lateral inhibitory synaptic plasticity rule (Marshall, 1990a,
1995a). An instar rule is enabled when the postsynaptic neuron is activated, and excitatory
pathways into the neuron undergo synaptic plasticity (Grossberg, 1972, 1976ab), whereas
an outstar rule is enabled when the presynaptic neuron or presynaptic element is activated,
and excitatory pathways out of the neuron or the presynaptic element undergo synaptic
plasticity (Grossberg, 1976¢). This subtle distinction makes dramatic difference in the
plasticity and behavior of the neural circuits (Grossberg, 1976abc; Marshall, 1995a).

In EXIN networks, the instar excitatory synaptic plasticity rule modifies the
weights of afferent excitatory pathways to active neurons so that the active neurons
become more responsive to the currently presented input pattern. The instar excitatory
synaptic plasticity rule is responsible for the development of the broad excitatory RF of the
neurons. The development of weights of lateral inhibitory pathways according to the outstar
lateral inhibitory synaptic plasticity rule ensures that different neurons become selective to
different input patterns. Yet, if the input environment contains several similar patterns, the
outstar lateral inhibitory synaptic plasticity rule causes strong lateral inhibitory pathways
to develop between neurons selective for the similar input patterns, thereby producing high
discrimination. In EXIN networks, lateral inhibitory pathways from often-activated neurons
to unresponsive neurons weaken, thereby making the unresponsive neurons more likely to
respond to some input. The outstar lateral inhibitory synaptic plasticity rule is responsible

for dispersion of neuronal selectivity and sharpening of the RF of the neurons. The EXIN
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rules develop efficient representation of input patterns according to their distribution in an
input environment. The EXIN rules self-organize networks capable of representing multiple
superimposed patterns, ambiguous patterns, overlapping patterns at different scales, and
contextually constrained patterns starting from completely nonspecific afferent excitatory

and lateral inhibitory pathway weights (Marshall, 1995a).

LISSOM plasticity rules

The LISSOM model (Sirosh & Miikkulainen, 1994b) uses instar Hebbian afferent
excitatory and lateral excitatory synaptic plasticity rules, and an instar anti-Hebbian
lateral inhibitory synaptic plasticity rule. Unlike the EXIN model, the LISSOM model
has modifiable lateral excitatory pathways and uses an instar lateral inhibitory synaptic
plasticity rule. However, like the EXIN rules, the LISSOM rules produce a sparse,
distributed coding that reduces redundancies (Marshall, 1995a; Marshall & Gupta, 1998;
Sirosh et al., 1996). Lateral excitatory pathways in the LISSOM model help the development
of a topographic RF arrangement. The LISSOM lateral excitatory and inhibitory synaptic
plasticity rules cause highly specific lateral pathway connectivity to develop between neurons

that have similar RF properties (Sirosh & Miikkulainen, 1997).

Adaptation rules

In adaptation models (Xing & Gerstein, 1994), the RF changes occur as a result
of adaptive modifications in the sensitivity of single neurons, rather than as a result of

modifications in the synaptic weights between pairs of neurons.

5.1.3 Significance and contributions of this chapter

This chapter analyzes the role of each rule individually. The EXIN rules and the
LISSOM rules have been used to model development of cortical properties and functions in
young animals. Studies on young animals in their critical periods show that the afferent and
lateral pathway connectivity in the primary visual cortex are modified by changes in the
visual environment (Hubel & Wiesel, 1965, 1970; Hubel et al., 1977; Katz & Callaway, 1992).

However, the neural basis of adult cortical plasticity, e.g., RF changes after artificial scotoma
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conditioning and retinal lesions in adult animals, is not known. Thus, the rules in the
EXIN model, the LISSOM model, and the adaptation models are studied individually
to determine whether they produce effects consistent with the experimentally observed
RF changes after artificial scotoma conditioning and retinal lesions in adult animals. The
possible effects of the full EXIN and the full LISSOM model are also discussed. The
simulation results based on individual rules serve as predictions for the effects of artificial
scotoma conditioning and retinal lesions in adult animals in the presence of pharmacological
agents that block plasticity in specific pathways, e.g., NMDA receptor antagonists which
block plasticity in excitatory pathways (Kirkwood et al., 1993). The simulations show
differences in two plausible rules for plasticity in lateral inhibitory pathways (the outstar
EXIN lateral inhibitory rule and the instar LISSOM lateral inhibitory rule) in the context
of artificial scotoma conditioning and retinal lesions. A novel experiment is suggested to
further differentiate between the rules.

In this chapter, experimental data on cortical effects of artificial scotoma
conditioning and retinal lesions are used to constrain plausible rules for dynamic RF changes.

In particular,

1. the chapter analyzes the effects of an instar and an outstar lateral inhibitory synaptic

plasticity rule during scotoma conditioning;

2. the effects of different plausible ways of modifying effective inhibition to neurons
during scotoma conditioning, e.g. due to changes in lateral excitatory or afferent

excitatory pathway strength, or neuronal adaptation, are studied;

3. some of the possible rules that could produce dynamic RF changes are eliminated

based on comparison with experimental data;

4. the chapter shows that the EXIN outstar lateral inhibitory synaptic plasticity rule and
the LISSOM instar lateral excitatory synaptic plasticity rule are sufficient to account
for most of the data on artificial scotoma conditioning and on the short-term effects of
retinal lesions (the effects of orientation selectivity on RF dynamics during artificial

scotoma were not simulated);
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5. the sufficiency of the EXIN lateral inhibitory synaptic plasticity rule in producing
RF changes after artificial scotoma conditioning and after retinal lesions in adult
animals provides indirect evidence for the existence of plasticity in lateral inhibitory

pathways and predicts characteristics of inhibitory synaptic plasticity in cortex; and

6. a novel experiment, complementary scotoma conditioning, is proposed to distinguish

the effects caused by neuronal adaptation from those caused by synaptic plasticity.

5.2 Methods

5.2.1 Network simulation organization

The architecture used for the simulations is a two-layered neural network with
afferent and lateral connections, corresponding to parts of subcortex and primary visual
cortex. A patch of neurons in the primary visual cortex, arranged in a 30 x 30 grid of
spatial positions, was simulated. The position of each neuron’s RF corresponded to the
neuron’s position in the grid. Adjacent RFs initially had more than 50% spatial overlap.

In the computer simulations, Layer 1 (corresponding to LGN processing) and
Layer 2 (corresponding to early laminae of primary visual cortex) each had a 30 x 30 array
of neurons. For ease of simulation, the initial afferent pathway weight and lateral pathway
weight distributions in the simulations are chosen to be spatially isotropic. Furthermore,
the input feature to these networks is an isotropic Gaussian blob (see Section 5.2.2), which
when used to train the networks produces spatially isotropic receptive fields. However,
isotropic RFs are not essential for these networks to produce changes in RF properties
during the various forms of input conditioning. The EXIN and LISSOM learning rules are
competitive learning rules and produce orientation selective neurons if the input features
are oriented (Marshall, 1990d; Sirosh et al., 1996); scotoma conditioning using oriented
features would affect the networks as described in Sections 5.2.5 and 5.2.6. The adaptation
networks are based on neuronal adaptation, without synaptic plasticity. The weights
in the adaptation networks can be assigned to produce orientation selective neurons.

The adaptation of the orientation selective neurons during artificial scotoma conditioning
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will produce RF expansions because of differences in adaptation levels as explained in
Section 5.2.7.

Following Xing and Gerstein (1994), orientation selectivity is not built into the
simulations. This is a gross simplification, as it discounts the effects of neurons selective
to other orientations on dynamic RF changes. The simplification of representing only
iso-orientation selective neurons in Layer 2 is partially justified by observing that the
RF expansion was more pronounced and robust during conditioning with iso-orientation
patterns than during conditioning with ortho-orientation patterns (Pettet & Gilbert, 1992).
In the discussion section, a mechanism for orientation selectivity is described which may
model the influence of neurons with other orientation selectivity on dynamic RF properties.

The following symbols are used to refer to the various entities of the network.
The indices (7,7) and (k,I) are used to refer to Layer 1 neurons, and (p,q), (r,s), and
(u, v) refer to Layer 2 neurons, where 4,5, k,l,p,q,r,s,u,v € {=15,...,14}. These indices
also represent the retinotopic coordinates of the neurons’ RF. The weight of the afferent
excitatory connection pathway from a Layer 1 neuron (7,j) to a Layer 2 neuron (p,¢) is
denoted by Z;m (t). The weight of the lateral inhibitory connection pathway and the weight
of the lateral excitatory connection pathway from Layer 2 neuron (p, ¢) to Layer 2 neuron
(r,s) are represented by 7, . (t) and Z;;J,S(t), respectively. These pathway weight values
may represent the effect of a monosynaptic connection, the total effect of a polysynaptic
chain of connections (see Section 5.5.7), or the population effect of multiple direct synapses.

The activation levels (mean spike rate) over time of Layer 1 neuron (7, j) and Layer 2 neuron

(p, q) are represented by a;;(t) and x,,(t), respectively.

5.2.2 The inputs

The inputs to Layer 1 were obtained as follows. First, two-dimensional 30 x 30
images were convolved with a Gaussian kernel, K, with toroidal wraparound. The input
stimulus at each position in the images could be 0 or 1. The input at each position took
value 1 with probability ® during a given simulation step. After convolution, the resultant
image was normalized by the maximum intensity value in the image. In the simulations, the

mean of the normalization factor was 1.68, with a standard deviation of 0.34, over 10,000
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inputs. The resultant images from the normalization stage were the inputs to Layer 1.
These inputs to Layer 1 are called normal stimuli.

In artificial scotoma conditioning, random stimulation in the whole visual field
except in a masked region was followed by whole-field random stimulation. To simulate
inputs with a scotoma, images with a scotoma were convolved with the kernel K and then
normalized. Input stimuli at positions outside the scotoma region had probability ® of being
assigned value 1, and input stimuli inside the scotoma region had value 0. These inputs
are called scotoma stimuli. The term “cortical scotoma” refers to the silenced region in
Layer 2 as a result of using retinal scotoma stimuli (Xing & Gerstein, 1994; Darian-Smith &
Gilbert, 1995).

5.2.3 Simulation procedure

In the simulations, the experimental paradigm of Pettet and Gilbert (1992) was
followed. The original RF was determined after a period of random whole-field stimulation.
In all the simulations, the initial whole-field stimulation was continued until the sum
of the magnitude of individual weight changes after 100 training steps had reached an
asymptote. Then the RF was again measured after conditioning with the artificial scotoma.
To determine reversibility of RF changes, the RF was measured again after whole-field

stimulation.

5.2.4 RF measurements

The RF was mapped using single-point stimulation, blurred with the Gaussian
kernel K, at all input positions (¢,7). The RF of a Layer 2 neuron (p, ¢) is defined as the
collection of positions (z, j) at which the test input causes the activation level x,, to exceed

a threshold ©.

5.2.5 The EXIN model

The EXIN model (Figure 5.2) combines an instar afferent EXcitatory synaptic

plasticity rule and an outstar lateral INhibitory synaptic plasticity rule. The EXIN synaptic
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plasticity rules change the weights as a function of the input stimuli so that different
neurons become selective for different input patterns and every input pattern is represented
by a sparse output pattern (Marshall, 1995a). In scotoma conditioning, a subset of the
visual input is removed, and therefore neurons previously selective for these inputs are not
stimulated. The EXIN rules change the weights so that the unstimulated neurons become

responsive to different input patterns, resulting in changes in their RF's.

The EXIN lateral inhibitory synaptic plasticity rule

The lateral inhibitory weights, Z_ ., are modified according to the anti-Hebbian

rule

d
d_ZZ;]J’S = 6g(qu) (_Z];],rs + Q(xr’s)) (51)

(1\/[:&L1’shall7 1995&)7 where § > 0 is a small learning rate constant and G and Q are
half-rectified non-decreasing functions. Thus, whenever a neuron is active, its output
inhibitory connections to other active neurons tend to become slightly stronger (i.e., more
inhibitory), while its output inhibitory connections to inactive neurons tend to become
slightly weaker. Neuron activations remain within [—C, B] according to a shunting equation
(Equation 5.3) based on the Hodgkin model (Hodgkin, 1964); this causes the weight values to
remain hounded as well, because according to Equation 5.1, 7 . (t) € [0, Q(B)] for ¢t > 0,

q,rs

if 77 ,..(0) € [0, Q(B)] (Grossberg, 1982). The weight change in Equation 5.1 approaches

pq,rs

zero as 7 .. approaches Q(z,), the weight change is positive when 7 = < Q(z,), and

the weight change is negative when Z .. > Q(x,5). The weight change approaches zero as
Zpq.rs approaches Q(a,).

In an outstar synaptic plasticity rule (Grossberg, 1972), presynaptic activity
“enables” the plasticity at a synapse; when the plasticity is enabled, the weight tends
to become proportional to the postsynaptic activity. In an instar synaptic plasticity rule,
postsynaptic activity enables the plasticity; when the plasticity is enabled, the weight tends
to become proportional to the presynaptic activity. Thus, to make Equation 5.1 into an
instar rule, x,, and x,; would be interchanged.

An effect of the EXIN inhibitory synaptic plasticity rule is that if two neurons are

frequently coactivated, then the lateral inhibitory weights between them become strong.
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Lateral inhibitory connections
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Feedforward
excitatory
connections

Layer 1

Figure 5.2: Network architecture for the EXIN model.
The afferent pathways from Layer 1 to Layer 2 are excitatory. The lateral pathways within
Layer 2 are inhibitory. The unfilled ellipses represent the afferent connectivity pattern from
Layer 1 to Layer 2 neurons. The shaded ellipses represent the RFs of Layer 2 neurons. The
strength of lateral inhibitory pathways is a function of the amount of overlap in the afferent
connectivity patterns to the Layer 2 neurons. The strength of lateral inhibitory pathways

is indicated by the thickness of the arrows.
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If two neurons are only rarely coactivated then their reciprocal lateral inhibitory weights
become weak. Strong lateral inhibition between two neurons tends to make them less likely
to be coactivated, causing the two to become selective to different inputs according to
the excitatory synaptic plasticity rule (Equation 5.2). Thus, when the network is exposed
to normal stimuli, the lateral inhibitory weights and the excitatory afferent weights are
modified so that each neuron becomes selective to different inputs and the RFs of all Layer 2
neurons cover the input space (Marshall, 1995a; Marshall & Gupta, 1998). This leads to

improved discrimination and sparse coding (Marshall, 1995a).

The EXIN afferent excitatory synaptic plasticity rule

The afferent excitatory weight changes are governed by a variant of a Hebbian

learning rule. The rule can be expressed (Grossberg, 1982; Marshall, 1995a) as

L
dt 17,Pq9

= ef(qu) (_Z+

17,pq

+ H(ry)), (5.2)
where € > 0 is a small learning rate constant, and F and H are half-rectified non-decreasing
functions.

Thus, whenever a neuron is active, its input excitatory connections from active
neurons tend to become slhightly stronger, while its input excitatory connections from inactive
neurons tend to become slightly weaker. As discussed for Equation 5.1, the weight values in
Equation 5.2 remain bounded.

The EXIN excitatory synaptic plasticity rule is an instar competitive learning rule.

When used in conjunction with strong lateral inhibition, it causes model cortical neurons

to become selective for a specific pattern of input activations (Marshall, 1995a).

Stability of EXIN networks

Like other competitive learning rules, the EXIN rules do not produce absolutely
stable synaptic weights. The stability of the network depends on the input environment.
If the input distribution changes for a sufficiently long time, the weights change to encode

the new statistics. Such instability, reflecting the statistics of the input environment is
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advantageous at lower-levels of cortical processing; e.g., the cortex can reorganize after
cortical or peripheral damage.

The learning rates in competitive learning networks must be kept small enough to
allow approximate stability in a statistically stationary input environment, yet large enough
to allow plasticity in response to the statistical changes posed by perturbations such as
scotomas. Stability in competitive learning networks and the various learning parameters

are discussed in Appendix C, Section C.1.2.

Explanation of dynamic RF changes based on the EXIN rules

The maximum extent of a Layer 2 neuron’s RF is limited by the axonal arborization
spread of the Layer 1 neurons from which it receives afferent excitation. In addition, a
Layer 2 neuron receives lateral inhibition from neurons with which it is frequently co-excited.
Neurons in Layer 2 can be consistently co-excited if they share inputs from common Layer 1
neurons. Because of inhibition, it is possible that a Layer 2 neuron (p, q) does not become
active in response to some active Layer 1 neuron (7, j), even though Z;']:pq > 0.

The role of the EXIN afferent excitatory and lateral inhibitory synaptic plasticity
rules in producing RF changes during scotoma conditioning are studied independently.

Role of EXIN lateral inhibitory synaptic plasticity. Consider the EXIN network
with the afferent excitatory synaptic plasticity rule disabled and the lateral inhibitory
synaptic plasticity rule enabled. When the network is exposed to scotoma stimuli with
a sufficiently large scotoma, there exists a cortical scotoma region in Layer 2. During
scotoma conditioning, neurons outside the cortical scotoma region are active and those
inside the cortical scotoma region are not. Let neuron (p,q) be outside and neuron (r,s)
be inside the initial cortical scotoma region (Figure 5.3a). Assume that after conditioning
with normal stimuli, 7, .. and Z7; . are not zero, because neurons (p, q) and (r, s) share
common afferent inputs. If for a given stimulus, neuron (p,q) is active, then according
to the EXIN inhibitory synaptic plasticity rule, 7~ . weakens (Figure 5.3b). However,

pq,rs

Z1s.pq 18 unchanged, since x5 is zero. Thus, lateral inhibitory weights to neuron (r,s) from

active neurons outside the cortical scotoma region weaken, but lateral inhibitory weights

from neuron (r,s) are unaffected. The net effect, from the point of view of neuron (r, s), is
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that its afferent excitatory input weights remain unchanged and its input lateral inhibitory
weights from neurons outside the cortical scotoma region weaken (if nonzero before the
conditioning). If the RF of neuron (r,s) is measured then, it will be more responsive to
positions in its old RF and will be responsive to some new positions too (Figure 5.3b), thus
producing RF expansion. The simulation results are presented in Section 5.3.1.

When the network is again conditioned with normal stimuli, the asymmetric lateral
inhibitory weights between the neurons inside and outside the cortical scotoma region regain
symmetry. Thus, the RFs of neurons in the cortical scotoma are restored.

Role of EXIN afferent excitatory synaptic plasticity. Now consider the EXIN
network with the lateral inhibitory synaptic plasticity rule disabled and the afferent
excitatory synaptic plasticity rule enabled. Neurons close to the edge of the cortical
scotoma but outside it show some interesting changes (e.g., neuron (p, q) in Figure 5.3¢).
Because these neurons are near the cortical scotoma edge, the region of their RF inside
the scotoma is not stimulated. Thus, because of the EXIN excitatory synaptic plasticity
rule, afferent excitatory connections from Layer 1 neurons in the scotoma region to this
neuron become weaker. Hence its RF shrinks, and the center of its RF shifts outward.
During RF measurement after scotoma conditioning, these neurons (e.g., (p,q)) respond
only weakly to stimuli in the scotoma region and hence exert less inhibition on neurons
that were inactive during conditioning (e.g., (r,s)). Thus, the neurons that were inactive
during the conditioning show increased responsiveness and RF expansion. This explanation
for RF expansion during scotoma conditioning was proposed by Sirosh et al. (1996). The
RF expansion causes the RF centers to shift away from the scotoma center (Section 5.3.2).

When the EXIN network with only afferent excitatory synaptic plasticity enabled
is conditioned again using normal stimuli, the neurons do not recover their original RFs.
The neurons whose afferent excitatory pathways from the scotoma region were weakened
are weakly actived by stimulation of the region that was occluded during artificial scotoma
conditioning, during the subsequent whole-field stimulation. On the other hand, the neurons
whose initial RF was inside the scotoma region during artificial scotoma conditioning are
more responsive to positions inside the scotoma during whole-field stimulation, following

artificial scotoma conditioning. Thus, during whole-field stimulation following artificial
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Figure 5.3: Legend on next page.
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Figure 5.3: The effects of scotoma conditioning on the EXIN model.
Figure on previous page. The unfilled ellipses represent the afferent connectivity pattern
from Layer 1 to Layer 2 neurons. The shaded ellipses represent the RFs of Layer 2 neurons.
The parallelogram within Layer 1 represents the scotoma region, and the parallelogram
within Layer 2 represents the cortical scotoma region before scotoma conditioning. (a) The
network state before scotoma conditioning. Neuron (r,s) is in the cortical scotoma region
because its RF is within the scotoma region; neuron (p, ¢) is outside the cortical scotoma
region. (b) The network state after scotoma conditioning with only lateral inhibitory
synaptic plasticity enabled. After scotoma conditioning, lateral inhibitory connections
between neurons in the cortical scotoma and lateral inhibitory connections between neurons
outside the cortical scotoma do not change. However, lateral inhibitory connections from
neurons outside the cortical scotoma (e.g., (p,q)) to neurons inside the cortical scotoma
(e.g., (r, s)) weaken (dashed line). The decrease in inhibition received by neuron (r, s) results
in expansion of its RF. (¢) The network state after scotoma conditioning with only afferent
excitatory synaptic plasticity enabled. After scotoma conditioning, afferent connections
to neurons in the cortical scotoma do not change. However, afferent connections from
locations inside the scotoma to neurons outside the cortical scotoma (e.g., (p,q)) weaken
(dashed line). Neurons inside the cortical scotoma (e.g., (r, s)) receive less inhibition from
neuron (p,¢) when locations inside the scotoma are stimulated. Thus, neuron (r, s) shows

new responsiveness to these locations, and its RF size thus increases.

scotoma conditioning, the neurons whose initial RF was inside the scotoma region strengthen
afferent excitatory pathways from positions inside the scotoma region to which they are more
responsive and exert greater inhibition on neurons whose initial RF straddled the scotoma
boundary. The neurons whose RF straddled the scotoma boundary further weaken afferent
excitatory pathways from positions inside the scotoma region to which they have become less
responsive after artificial scotoma conditioning, as their responsiveness to positions inside
the scotoma region is further suppressed. With strong fixed lateral inhibitory pathways
weights, the lateral inhibition between neurons suppresses the activation of the neurons
whose RF size was decreased (because of weakening of pathways from the scotoma during
scotoma conditioning) when inputs are presented at positions inside the scotoma. According
to the EXIN afferent excitatory synaptic plasticity rule, afferent pathway weights change
only when postsynaptic neurons are active. Thus, the weak afferent connections from the
scotoma region to the neurons whose RF size was decreased are not strengthened, and the

RF's of these neurons do not shift back to their original positions (Section 5.3.2).
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In the EXIN network (with either lateral inhibitory or afferent excitatory synaptic
plasticity alone), in response to scotoma stimuli, all neurons that show RF expansion belong
to the set of neurons that were inside the initial cortical scotoma. Thus, after scotoma
conditioning, the EXIN network with both lateral inhibitory and afferent excitatory synaptic

plasticity will produce RF expansion in neurons that were inside the initial cortical scotoma.

The activation equation

The activation level z,, of each Layer 2 neuron is governed by a shunting equation

(Grossberg, 1972) based on the Hodgkin (Hodgkin, 1964) model:

d
%qu = —Azy,, + ﬁ(B_qu)qu - 7(O+qu)lpqv (5.3)

where A, B, C, 3, and v are constants, and £,, and I, represent respectively the neuron’s
total afferent excitatory and lateral inhibitory input signals. Because Equation 5.3 is a
shunting equation, if 2,,(0) € [-C, B] then 2,,(t) € [-C, B] for all time ¢ > 0 (Cohen &
Grossberg, 1983). Thus, activation levels are forced to remain within a bounded range,

between —C' and B. The total input excitation F,, is defined as

2
qu = Z[xZ]]ZZ-I]—,pq 9 (54)

i
and the total input inhibition 7,4 is given by

Ipq = Z[xr’s]Zr_sJ)q7 (5.5)

rs

where [a] = max(a,0). Parameters 8 and v, respectively, control the effectiveness of the
excitation and inhibition received by a Layer 2 neuron. The squaring in Equation 5.4
sharpens the RF profile of the Layer 2 neurons; squaring enhances excitation to Layer 2

neurons when Y [2,s]7., > 1 and suppresses excitation to Layer 2 neurons when

rs,pq
er[wrs]Zr_s,pq < 1.

Stability of the shunting equation: Cohen-Grossberg theorem

The shunting equation (Equation 5.3) with Z7 = Z_ .o > 0, belongs to a class

of competitive dynamical systems that are absolutely stable; i.e., the system has fixed points
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for any choice of parameters (Cohen & Grossberg, 1983). The neuronal activations in such
a system are guaranteed to reach stable equilibrium values for all synaptic weight values
with the restriction.

However, it is not known whether the shunting equation remains absolutely stable
even when 7 . # Z_ .. > 0 for some pairs of neurons. The symmetry of reciprocal
pairs of lateral inhibitory weights is not guaranteed by the EXIN lateral inhibitory synaptic
plasticity rule. During normal stimulation, the lateral inhibitory weights are approximately

symmetric (Marshall, 1995a). They become asymmetric between neurons across the

scotoma boundary during scotoma conditioning. Nevertheless, simulations empirically show
the stability of the EXIN network (Section C.1.1).
The initial weights

In the EXIN simulations, the initial afferent excitatory weight from Layer 1

neuron (¢, 7) to Layer 2 neuron (p, ¢) is given by

2 2
+ B —(z* +y%)
Zipa(0) = [\I} X exp ( ) _) 7Fﬂ‘] ; (5.6)
where
a if a>b,
[a,b] = (5.7)

0 otherwise,
z,y € {—=15,---,14}, p= (((¢+15) + ) mod 30) — 15, and ¢ = (((j+15) +y) mod 30) — 15.
The indices 4,7,p, and ¢ are in {—15,---,14}. The indices 7,j,p, and ¢ and the
distances # and y are related by the above equations because the model cortical and thalamic
neurons are arranged in a wrapped-around two-dimensional grid. The parameters ¥, og,
and ['g are positive constants.
The initial lateral inhibitory weights between Layer 2 neurons (p,¢) and (r,s),

where p # r or q # s, are set as follows. Let

Xpgirs = D min(Z ., Z% ) (5.8)
ij
and
Wogrs(0) = Wi 10 (0) = [Xpgrs, Ti] (5.9)
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where I'; is a constant. Then

Qx W,
z> (0)=2..(0)= Pore 5.10
a0 = 75, 0) = — (5.10)
ab,cd€Layer 2 ?

where {2 is a constant. Equation 5.10 assigns inhibitory weights between two distinct Layer 2
neurons in proportion to the amount of overlap in the RFs of the two neurons.

The initial weight values of the pathways were chosen according to
Equations 5.6-5.10, instead of completely random weights, to speed the convergence of
weight values during subsequent whole field stimulation and to ensure RF topography,
thereby avoiding RF shifts and RF size changes caused by RF scatter that may be present
when the initial weights are chosen randomly. The networks produced after the whole field

stimulation were used for scotoma conditioning simulations.

Neurons do not directly inhibit themselves in the EXIN network; that is, 7, is
zero or nonexistent, and %Zzzmq = 0.

Lateral excitatory pathways are omitted in this model; all Z];':N,S are fixed at
zero. This is a simplification based on the assumption that the net effect of the lateral
excitatory and inhibitory pathways on excitatory neurons is inhibitory. Partial support for
setting Z];':N,S to zero comes from the lack of disynaptic excitatory postsynaptic potential
due to stimulation of thalamocortical afferents during intracellular recordings in simple
neurons of the cat visual cortex (Ferster, 1989) and in layer 5 neurons of adult mice (Gil &
Amitai, 1996). Although lateral excitatory pathways exist in the cortex, Weliky et al. (1996)
and Gil and Amitai (1996) showed that at high stimulation strengths the long-range

horizontal pathways exert overall inhibition on pyramidal neurons. This issue is discussed

further in Section 5.5.7.

5.2.6 The LISSOM model

The LISSOM model (Sirosh & Miikkulainen, 1994ab, 1995, 1997;
Sirosh et al., 1996) uses afferent excitatory, lateral excitatory, and lateral inhibitory synaptic
plasticity rules. All three rules are instar rules based on weight normalization. The LISSOM
rules produce use-dependent weight changes and thus produce changes in RF properties

during artificial scotoma conditioning and lesions.
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The LISSOM synaptic plasticity rules

The most significant differences between the LISSOM model and the EXIN model
are that LISSOM uses an instar, rather than outstar, inhibitory synaptic plasticity rule,
and that LISSOM has used lateral excitatory pathways, in addition to lateral inhibitory
and afferent excitatory pathways.

In the LISSOM model (Figure 5.4), intracortical interactions are mediated by both
lateral excitatory and lateral inhibitory pathways. The weights of both lateral excitatory
and lateral inhibitory pathways change according to an instar Hebbian synaptic plasticity
rule. This rule keeps the sum of the squares of the synaptic weights of the excitatory
connections constant, and likewise for the inhibitory connections. After the activations of

Layer 2 neurons have stabilized, the weights are modified according to

Zab,cd(t) + ‘Sxabxcd

(Zef (Zef,cd(t) + ‘Sxefl’cd)z) 3

Zaped(t +1) = (5.11)
(Sirosh & Miikkulainen, 1994b), where the constant £ controls the rate of learning. The
LISSOM rules are “instar” (Grossberg, 1972) rules because weight change in pathways to
a target neuron is enabled only if the target neuron is active.

Sirosh et al. (1996) used Equation 5.11 for the afferent excitatory synaptic
plasticity.  They used sum normalization (Zef (Zefealt) + .fxefxcd)) for the lateral
excitatory and lateral inhibitory synaptic plasticity rules, instead of length normalization
as in this chapter. Qualitatively, both length and sum normalization have the same effects.
Length normalization causes the lateral excitatory and lateral inhibitory weight values to
be larger than does sum normalization. In the simulations, length normalization produced
larger RF size changes than did sum normalization.

For the afferent excitatory synaptic plasticity rule, ab and ef refer to Layer 1
neurons, and cd refers to Layer 2 neurons, £ = &g. For the lateral excitatory and lateral
inhibitory synaptic plasticity rules, ab, cd, and ef refer to Layer 2 neurons. The parameter
€ is set to & and & for the lateral excitatory and lateral inhibitory synaptic plasticity rules,
respectively. The weights remain bounded because of the weight normalizations.

In response to normal stimuli, LISSOM’s learning rules cause the lateral inhibitory
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Figure 5.4: Network architecture for the LISSOM model and the
inhibition-dominant adaptation model.

The connections from Layer 1 to Layer 2 are excitatory. There are lateral inhibitory and
excitatory connections between Layer 2 neuron (p, ¢) and Layer 2 neurons within the inner
ellipse (e.g., (r,s)). Neuron (p,q) also sends both inhibitory and excitatory connections
to itself. The lateral connections between neuron (p,q) and Layer 2 neurons (e.g., (u,v))
outside the inner ellipse and inside the outer ellipse are inhibitory. The unfilled ellipses in
Layer 1 represent the afferent connectivity pattern from Layer 1 to Layer 2 neurons. The

shaded ellipses represent the RFs of Layer 2 neurons.
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and lateral excitatory weights between pairs of Layer 2 neurons to remain approximately
symmetric. In addition, the lateral inhibitory and excitatory weights become approximately
proportional to the amount of coactivation between neuron pairs. The learning rules

maintain the initial topographically arranged RF's (Sirosh & Miikkulainen, 1997).

Stability of LISSOM networks

The LISSOM learning rules are competitive learning rules. Therefore, the stability
of LISSOM networks depends on the input environment and the learning rates (Sirosh &
Miikkulainen, 1994b). This issues of network stability and choice of the various parameters

in the current simulations are discussed in Appendix C, Section C.2.

Explanation of dynamic RF changes based on LISSOM rules

The effect of each of the three LISSOM synaptic plasticity rules is considered
separately. The overall behavior of the LISSOM model depends on the relative learning
rates of the three rules.

Role of LISSOM lateral inhibitory synaptic plasticity. Consider the LISSOM
network with only the lateral inhibitory synaptic plasticity rule enabled. Let neuron (p,q)
be outside and neuron (r,s) be inside the cortical scotoma region. Assume that after
conditioning with normal stimuli, Z . and Z7; . are not zero, because neurons (p,q) and
(r, s) share some common afferent inputs, and that they are approximately equal. According
to the LISSOM lateral inhibitory synaptic plasticity rule, Z . does not change, because

;s is 0. However, Z7,  decreases if some other neuron (u, v) is active, because the weights
are normalized. In addition, the normalization causes the lateral inhibitory weights from
active neurons (e.g, neurons (u,v) and (p,¢)) to neuron (p,¢) to become slightly stronger.
In the LISSOM model, Layer 2 neurons send lateral excitatory and inhibitory pathways to
themselves. Thus, because of the lateral inhibitory synaptic plasticity, neurons outside the
cortical scotoma region receive a reduced overall amount of inhibition from neurons within
the cortical scotoma. This causes neurons like (p, ¢) that are outside the cortical scotoma

region to exhibit increased responsiveness, a RF expansion, and a slight inward RF shift

toward the scotoma edge. The RF expansion of neuron (p,q) is asymmetric because it
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receives reduced inhibition only when the input is in the scotoma region. For neurons in the
overall excitatory zone of neuron (p, ¢) (e.g., (u,v) and (r,s)), the increased responsiveness
of neuron (p, ¢) may result in increased responsiveness, a RF expansion, and a slight inward
RF shift toward the scotoma edge. The increased responsiveness of (p, ¢) results in increased
inhibition to neurons in the overall inhibitory zone of neuron (p,q) (e.g., (¢, d) and (a,b))
(Figure 5.5b), when input locations inside the scotoma are stimulated. Because of the
asymmetric RF profile, neurons whose initial RF center is inside the scotoma and in the
overall inhibitory zone of neuron (p,q) (e.g., (a,b)) would show decreased responsiveness,
RF contraction, and a small inward RE shift away from the scotoma edge (Figure 5.5b).
The simulation results are in Section 5.3.1.

Role of LISSOM lateral excitatory synaptic plasticity. When only the LISSOM

_|_

lateral excitatory synaptic plasticity rule is enabled, Z], ., does not change, 71 decreases,

75,0

and the lateral excitatory weights from active neurons (e.g, neurons (u,v) and (p,q)) to
neuron (p,q) become slightly stronger (in the LISSOM network neurons receive lateral
excitatory pathways from itself), for the same reasons described in the previous paragraph
(Figure 5.5¢).  Thus, neurons outside the cortical scotoma region receive a reduced
amount of lateral excitation from neurons in the cortical scotoma. This results in reduced
responsiveness, decreased RF size, and an outward RF shift, away from the scotoma edge,
for neurons like (p,¢) that are outside the cortical scotoma region. For neurons in the
overall excitatory zone of neuron (p, q) (e.g., (u,v) and (r,s)), the decreased responsiveness
of neuron (p,q) may result in decreased responsiveness, a RF contraction, and a slight
outward RF shift away from the scotoma edge. For neurons in the overall inhibitory zone of
neuron (p, q) (e.g., (¢,d) and (a, b)), the decreased responsiveness of (p, ¢) results in reduced
inhibition. Active neurons during scotoma conditioning receive weakened lateral excitatory
signals from neurons inside the cortical scotoma. These asymmetric lateral excitatory
weight changes lead to a decrease in RF size and an outward RF shift away from the
scotoma in neurons whose initial RF center is close to the scotoma boundary (e.g., (p,¢)).
They also lead to an increase in RF size and an outward RF shift away from the scotoma
center in neurons (e.g., (a, b)) whose initial RF is inside and close to the scotoma boundary

(Figure 5.5¢). The simulation results are shown in Section 5.3.3.
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Figure 5.5: Legend on next page.
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Figure 5.5: The effects of scotoma conditioning on the LISSOM model.
Figure on previous page. The unfilled ellipses in Layer 1 represent the afferent connectivity
pattern from Layer 1 to Layer 2 neurons. The shaded ellipses represent the RFs of
Layer 2 neurons. The parallelogram within Layer 1 represents the scotoma region, and
the parallelogram within Layer 2 represents the cortical scotoma region before scotoma
conditioning. (a) The network state before scotoma conditioning. Neurons (r,s) and
(a,b) are inside the cortical scotoma region because their RFs are within the scotoma
region. Neurons (p,q), (u,v), and (¢,d) are outside the cortical scotoma region. There
are excitatory and inhibitory connections between neuron (p,¢) and neurons in the small
ellipse (e.g., (u,v) and (r,s)). The connections between neuron (p,q) and the neurons
outside the small ellipse and inside the large ellipse are inhibitory. (b) The network state
after scotoma conditioning with only instar lateral inhibitory synaptic plasticity enabled.
The dashed lines represent a decrease in the connection weights and the thick lines represent
an increase in the connection weights. (c¢) The network state after scotoma conditioning
with only instar lateral excitatory synaptic plasticity enabled. (d) The network state after

scotoma conditioning with only afferent excitatory synaptic plasticity enabled.

Role of LISSOM afferent excitatory synaptic plasticity. In the LISSOM network
with only afferent excitatory synaptic plasticity enabled, the synaptic plasticity causes
changes in the afferent connectivity of neurons close to the edge of the cortical scotoma
region (Figure 5.5d). These neurons (e.g., (u,v) and (p,¢q)) have part of their input in
Layer 1 within the scotoma. Thus, according to the afferent excitatory synaptic plasticity
rule, when these neurons are activated, the weights from neurons within the scotoma become
weaker, and weights from Layer 1 neurons outside the scotoma become stronger. This causes
the RFs of Layer 2 neurons (e.g., (u,v) and (p,q)) close to the initial cortical scotoma
edge to shrink and shift away from the scotoma center. In addition, these neurons respond
weakly to stimulation at positions in the scotoma region and exert less inhibition on neurons
(e.g., (a,b)) that were inactive during conditioning. Thus, the neurons that were inactive
during the conditioning show increased responsiveness and RF expansion away from the
scotoma center (Sirosh et al., 1996). The RF expansion causes the RF centers to shift away
from the scotoma center (Figure 5.5d). The simulation results are in Section 5.3.2.

The overall effect on responsiveness, RF size, and RF position depends on the
relative strengths and sizes of afferent excitation, lateral excitation, and lateral inhibition.

It also depends on the learning rates of the three types of connections. In the LISSOM
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model, the effects of inhibitory synaptic plasticity are in conflict with the effects of afferent
and lateral excitatory synaptic plasticity. The RF expansion occurs in neurons outside the
cortical scotoma if the relative strength and learning rate of lateral inhibitory weights are
greater than those of the lateral and afferent excitatory weights. The RF expansion occurs
in neurons nside the cortical scotoma if the relative strength and learning rate of lateral
excitatory or afferent excitatory weights are greater than those of the lateral inhibitory
weights. After artificial scotoma conditioning, the LISSOM rules produce RF expansion on
one side of the scotoma boundary and RF contraction on the other side.

When the LISSOM networks (with plasticity in only one of the three types of
pathways) are again conditioned with normal stimuli, the RF's of all affected neurons are

restored.

The activation equation

In the LISSOM simulations, the Layer 2 neuron activations are determined

iteratively by

qu(t+ 1) = S T § :Zz—lj—,pqxlj(t) + Ye § :Zr-’l;,pqxrs(t) -7 § :Zr_s,pqxrs(t) (512)
i rs rs
where
1
Sla) = ———— —0.5 (5.13)

14 exp (- [a])
(Sirosh & Miikkulainen, 1994b), and [¢] = max(0,z). The constants vg, ve and 75 are

scaling factors on the excitatory and inhibitory weights and determine the strength of
afferent and lateral interactions. The activations are bounded because of the sigmoid

function S.

Stability of LISSOM activation equation

The LISSOM activation equation can quickly equilibrate (Sirosh &
Miikkulainen, 1994b). Equation 5.12 approached a fixed point during the various input
conditioning regimes for the parameters that are used in this chapter (Appendix C,

Section C.2.1).
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The initial weights

In simulations using the LISSOM model, the connection weights were computed

Yabed = [exp (#) ,F] . (5.14)

where a,b,c,d,m,n € {-=15,...,14}, ¢ = (((a + 15) + m) mod 30) — 15, and d =

as follows. Let

(((b+ 15) + n) mod 30) — 15. The relationship between the indices a,b, ¢, and d and the
distances m and n is such that the model cortical and thalamic neurons are arranged in a
wrapped-around two-dimensional grid. The paramters o and I' are positive constants, and

the notation [.,.] is defined by Equation 5.7. Then

Yabe
Zab,cd(o) = # (515)

(Zef Y?f,cd) :
is the initial weight of the connection pathway from neuron (a,b) to neuron (c,d).

For afferent weights, ab and ef refer to Layer 1 neurons, cd refers to Layer 2
neurons, 0 = og, and I' = I'g. For lateral excitatory and lateral inhibitory weights, ab, cd,
and ef refer to Layer 2 neurons. For lateral excitatory weights, 0 = 0o and I' = I'g, and for
inhibitory weights, 0 = o and ' = T}.

The initial weights were chosen to speed the simulations; in all simulations,
these weight values were overridden by new values during an initial phase of whole-field

stimulation.

5.2.7 The inhibition-dominant adaptation model

Xing and Gerstein (1994) described four models of dynamic RFs and argued in
favor of an inhibition-dominant network with neural adaptation, or habituation. A neuron’s
ability to fire decreases/increases after a period of activity/inactivity, without any synaptic
changes. In an inhibition-dominant adaptation network, the strength of the lateral
inhibitory connections is greater than that of lateral excitatory connections, and all the
weights are fixed.

Xing and Gerstein used a spiking neuron model. They modeled adaptation by

modifying the action potential threshold, which depended on the number of spikes of a
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neuron in the recent past. Thus, if a neuron spikes frequently, its action potential threshold
increases, thereby making it spike less vigorously, even though the same input is present.
On the other hand, if a neuron has not been activated for a long time, then it becomes

highly responsive to inputs in its RF.

The adaptation equation

In the present simulations the spiking neuron model is not used. Instead, the
output of a Layer 2 neuron (p,q) is modeled as [2,, — T},], where x,, is controlled by a

shunting equation (Grossberg, 1972):

d

%qu = —Axpy + (B —apg)Epy — 7(C 4 2pg) Ipg, (5.16)
with
qu = ﬁff Z [xZ]]Z;I;7pq + ﬁe Z [xrs _Trs]Zr-’I;pqv (517)
1,5€Layer 1 r,s€Layer 2
Ly = Y s — T2 (5.18)

(r,s)E€Layer 2
and [a] = max(a,0). The positive constants Sg and Be control the effectiveness of afferent
excitation and lateral excitation, respectively. The variable T}, represents the adaptive firing
threshold of neuron (p, q). After the activation of Layer 2 neurons has reached equilibrium,

the adaptation parameter 7T}, is modified according to

d
%qu = p(=nTpg + (7 = Tpq) [wpg — Tpal) » (5.19)
where p, 1, 7 are positive constants. The constant p controls the rate of change in 7,,. The

constants n and 7 determine the maximum value of 7,4, and the relative rates of increase

and decrease in T,

ng, Tespectively. As 7 increases the maximum value of T, decreases and

the rate of decrease in T), when [2,5 — T,;] = 0 increases, and as 7 increases the maximum
value of T}, increases and the rate of increase in T, increases. According to Equation 5.19,
if T,4(0) > 0, then T,,,(¢) > 0 for all £ > 0. The threshold 7}, increases if neuron (p, ¢) was
active in its recent past and decreases if (p, ¢) was not very active.

The spiking model was not implemented here because Xing and Gerstein (1994)

did not provide complete implementation details of their model. Even though the model
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described by Equations 5.16-5.19 differs from the spiking model used by Xing and Gerstein
in their simulations, it captures the essential characteristics of their inhibition-dominant
adaptation model: the simulation results based on Equations 5.16-5.19 replicate their
results.

In the inhibition-dominant adaptation network, the lateral inhibitory and lateral
excitatory pathway weights are symmetric. Extensive simulations show that the system
defined by Equation 5.16 may be absolutely stable (Cohen & Grossberg, 1983). Simulations
presented in this chapter show that the network equilibrates. The adaptation levels of the
neurons reach stable fixed points with sufficient training. The initial pathway weights are

set according to Equations 5.14 and 5.15.

Explanation of dynamic RF changes based on adaptation

After the network receives normal stimulation for a sufficiently long time, every
Layer 2 neuron becomes adapted by approximately the same amount. In response to the
scotoma stimuli, the neurons outside the cortical scotoma region are activated, thereby
keeping them habituated. However, the inactive neurons whose RF is inside the scotoma
become dishabituated. Dishabituation of neurons with RF inside the scotoma produces
increased responsiveness and RF expansion. The increased responsiveness increases
inhibition to neurons whose RF is outside the scotoma. Thus, the RF size of the neurons
whose RF is occluded by the scotoma region increases, and the RF size of some neurons
whose RF is just outside the scotoma decreases. As scotoma conditioning proceeds, some
neurons in the initial cortical scotoma may recover functionality. Asin the EXIN model, all
neurons that show RF expansion are those whose RF lies within the scotoma (Figure 5.6).

If the network is exposed to normal stimuli again, the RF of the neurons that were
in the cortical scotoma region is restored. The simulation results are in Section 5.3.1.

The above explanation is different from the one given by Xing and Gerstein (1994).
In their simulations, they measured the initial RFs before any conditioning by the normal
stimuli. Then they conditioned the network using scotoma stimuli. In this case, the neurons
in the cortical scotoma region are not affected, and those outside the cortical scotoma

adapt. The adaptation of the neurons outside the cortical scotoma causes them to be less
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Figure 5.6: The effects of scotoma conditioning on the inhibition-dominant
adaptation model.

The unfilled ellipses represent the afferent connectivity pattern from Layer 1 to Layer 2
neurons. The shaded ellipses represent the RFs of Layer 2 neurons. The parallelogram
within Layer 1 represents the scotoma region, and the parallelogram within Layer 2
represents the cortical scotoma region before scotoma conditioning. (a) The network state
before scotoma conditioning. All Layer 2 neurons have almost the same adaptation level
(shaded circles). Thus, all Layer 2 neurons have almost the same RF size. (b) The network
state after scotoma conditioning. The neurons inside the cortical scotoma are dishabituated
(white circles) and hence are highly responsive to input stimulation. The neurons inside
the cortical scotoma inhibit neurons outside the cortical scotoma and in turn receive weaker

inhibition. Thus, neurons within the cortical scotoma show RF expansion.

responsive, and hence they exert less inhibition on neurons in the cortical scotoma. As a
result, the size of the RF of the neurons in the scotoma region increases (see Section 5.3.1).
The conditioning procedure used by Xing and Gerstein differs from that used by Pettet and
Gilbert (1992). In the experiments of Pettet and Gilbert, the original RF was determined
after a period of random stimulation within and outside the field.

In the inhibition-dominant adaptation model used in simulations presented in this
chapter, if the 7, values had not equilibrated during normal stimuli presentations, then
they would increase for neurons outside the cortical scotoma and would decrease for those

in the cortical scotoma. This situation would also produce expansion of the RF of neurons
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in the cortical scotoma.

5.2.8 The adaptation model with no lateral interaction

In this variant of the adaptation model, there are no lateral excitatory or lateral
inhibitory pathways. The neurons adapt according to Equation 5.19. In the simulations,
the activation level of Layer 2 neuron (p,q) is [zp, — T}, where z,, is controlled by
Equation 5.16. With no lateral interactions, Equation 5.16 can be solved analytically
(Appendix C, Section C.3.1). The afferent excitatory weights were the same as for the

inhibition-dominant network.

Explanation of dynamic RF changes based on adaptation

In the adaptation network with no lateral interactions, all the neurons are adapted
equally after normal stimulation. During scotoma conditioning, neurons with initial RFs in
the scotoma region dishabituate due to inactivity. As the adaptation level in neurons within
the cortical scotoma decreases, the effective RF size of these neurons increases. Neurons
outside the cortical scotoma remain adapted because of activation by the input stimuli.
During normal stimulation following scotoma conditioning, the previously inactive neurons
are activated; hence they become adapted, and their RF size contracts. In the absence
of lateral interactions, the RFs remain symmetric, and there are no shifts in RF position

during scotoma conditioning. Simulation results are in Section 5.3.1.

5.2.9 The excitation-dominant adaptation model

In an excitation-dominant adaptation network, the strength of the lateral
excitatory connections is greater than that of lateral inhibitory connections. In this model,
the neurons adapt according to Equation 5.19. The output of Layer 2 neuron (p,q) is
[2pg — Tpq), where x,, is controlled by Equation 5.16. The initial connection weights are

set according to Equation 5.15. In the simulations, the activation equation equilibrated

(Appendix C, Section C.3.1).
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Explanation of dynamic RF changes based on adaptation

In the excitation-dominant adaptation network, all the neurons are adapted equally
after normal stimulation. During scotoma conditioning, neurons with initial RF in the
scotoma region become less adapted, because of inactivity. The neurons close to the center of
the cortical scotoma become least adapted and hence most responsive. In addition, because
of lateral excitation, the neighboring neurons excite one another. Thus, neurons within the
cortical scotoma show RF expansion. Since neurons receive more lateral excitation from
neurons within the cortical scotoma, the RF's of the neurons shift toward the center of the
scotoma. Neurons outside the cortical scotoma remain adapted because of activation by the
input stimuli. During normal stimulation following scotoma conditioning, the previously
inactive neurons are activated; hence they become adapted, and their RF size contracts.

Simulation results are in Section 5.3.1.

5.3 Simulation results: Scotoma stimuli

The simulation results are organized to emphasize the effects of the different rules
for RF changes after artificial scotoma conditioning and retinal lesions. The different
synaptic plasticity rules in the EXIN and the LISSOM model serve different purposes during
self-organization of various cortical properties. The analyses of the effects of each rule
individually during artificial scotoma conditioning and retinal lesions elucidates the unique
properties of the rules. Furthermore, the dynamic RF changes produced by the full EXIN
and the full LISSOM model during artificial scotoma conditioning depend on the relative
learning rates of the different synaptic plasticity rules, and thus the effects produced by one
rule can mask the effects produced by the others.

In Section 5.3.1, the EXIN network with only lateral inhibitory synaptic plasticity
enabled, the LISSOM network with only lateral inhibitory synaptic plasticity enabled, the
inhibition-dominant adaptation network, the adaptation network with no lateral interaction,
the excitation-dominant adaptation network, and the inhibition-dominant adaptation
network with no prior normal stimulation are simulated during scotoma conditioning. These

results are compared to experimental data. In Section 5.3.2, the effects of synaptic plasticity
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in afferent excitatory pathways alone in the EXIN and LISSOM networks during scotoma
conditioning are presented, and the effects of lateral excitatory synaptic plasticity alone
during scotoma conditioning are presented in Section 5.3.3 using the LISSOM network. To
further distinguish the effects of the various rules for cortical plasticity, a novel experiment

is presented in Section 5.4.

5.3.1 Comparison of outstar/instar lateral inhibitory synaptic plasticity

rules and neuronal adaptation

The following simulations highlight the opposite effects of instar and outstar lateral

inhibitory synaptic plasticity rules.

Dynamic RF expansion and contraction

To induce robust expansion and contraction of RF size, Pettet and Gilbert (1992)
presented the artificial scotoma conditioning stimuli for several minutes. Because
quantitative mapping took several minutes, the exact time course of the observed changes
was not determined. To minimize the effect of the RF measurement process on the RF size,
Pettet and Gilbert (1992) alternated conditioning stimuli and RF mapping. Pettet and
Gilbert (1992) reported that the REF expansion after artificial scotoma conditioning was
always accompanied by an increased responsiveness from the region of the original RF.
However, the spontaneous firing of the neuron in the absence of visual stimuli did not
change.

In the simulations, the synaptic plasticity rules and the adaptation rules were
turned-off so that the RF sizes are not affected by RF measurements. Figure 5.7 compares
the RF sizes of Layer 2 neurons that show maximal RF expansion after scotoma
conditioning. Neurons with maximal RF expansion are shown to emphasize the asymmetry
in the RF profile after artificial scotoma conditioning in the models. The RF expands in
the EXIN network with only lateral inhibitory synaptic plasticity enabled (Figure 5.7d) and
in the inhibition-dominant adaptation network (Figure 5.7f) after scotoma conditioning, in
neurons whose initial RF is inside the scotoma. In the LISSOM network with only lateral

inhibitory synaptic plasticity enabled, the initial RF of the neuron that showed maximal
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RF expansion after scotoma conditioning was located outside the scotoma (Figure 5.7e).
Re-conditioning with normal stimuli resulted in RF restoration in all the three models, as
shown in Figures 5.7g—i. The simulations illustrate the qualitative behavior of the models.
The absolute RF size and the absolute RF size change in the three networks are parameter
dependent, and can be matched better with some parameter adjustments. Therefore, the
differences in the RF size and the absolute RF size change of model neurons in the models
are not significant.

Pettet and Gilbert (1992) claimed that the expansion elicited by the artificial
scotoma never exceeded the boundaries of the scotoma. However, the neurons that
they studied had initial RFs in the center of the artificial scotoma, and the size of
the scotoma was about three times the diameter of the initial RF. Darian-Smith and
Gilbert (1995) showed rapid recovery of responsiveness in neurons whose RE was inside
the cortical scotoma, following bilateral retinal lesions. This indicates that the RF of some
neurons in the original cortical scotoma crossed the retinal scotoma boundary. The EXIN
network with lateral inhibitory synaptic plasticity alone, the LISSOM network with only
lateral inhibitory synaptic plasticity enabled, and the inhibition-dominant adaptation model
produced RF expansions that cross the scotoma boundaries (Figure 5.7).

The RF expansions in the three simulations are accompanied by increased
responsiveness of the corresponding Layer 2 neurons. Figures 5.8a—c compare the
responsiveness of the neurons whose RFs are shown in Figure 5.7, before and after
conditioning with scotoma stimuli in the three models. Note that after scotoma
conditioning, the RF profile of some neurons in these models is asymmetric. The
asymmetric RF shape is caused by asymmetric changes of the weights in the EXIN
and LISSOM simulations and by asymmetric changes in adaptation level of the neurons
in the inhibition-dominant adaptation network. The asymmetry in the RF profile
produced by the EXIN and the inhibition-dominant adaptation networks is consistent
with observations made by Das and Gilbert (1995b), that neurons were more responsive to
locations outside the scotoma than to those inside, following artificial scotoma conditioning.
DeAngelis et al. (1995) did not observe asymmetry in the RF of recorded neurons whose

RF was inside the scotoma during scotoma conditioning; this may have happened because
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Figure 5.7: Simulation results: RF expansion and contraction.
Figure on previous page. The RFs of Layer 2 neurons that showed maximal expansion,
in the EXIN network with only lateral inhibitory synaptic plasticity enabled (a,d,g), the
LISSOM network with only lateral inhibitory synaptic plasticity enabled (b,e;h), and the
inhibition-dominant adaptation network (c,f,i) are shown. The inner square indicates the
extent of the scotoma. The responsiveness of the neurons to the test stimuli is proportional
to the gray level. Panels (a,b,c) show the initial RF, (d,e,f) show the RF after scotoma
conditioning using a 13 x 13 square scotoma centered at (0,0), and (g,h,i) show the RF
after re-conditioning using normal stimuli. Panels (d,e,f) show expansion, and (g,h,i) show
that the RF is restored by re-conditioning with normal stimuli. In the EXIN network with
only lateral inhibitory synaptic plasticity enabled and in the inhibition-dominant adaptation
network, the center of the RF is within the scotoma (d,f). In contrast, in the LISSOM
network with only lateral inhibitory synaptic plasticity enabled the center of the RF is
outside the scotoma (e). Furthermore, the RFs shown in panels (a,c), which are within
the scotoma, cross the scotoma boundary after artificial scotoma conditioning, as shown
in panels (d,f). The RF in panel (b), which is outside the scotoma, crosses the scotoma

boundary after artificial scotoma conditioning, as shown in panel (e).

the RF of the recorded neurons in their experiments was in the center of the scotoma. In
the simulations, asymmetric RFs were observed in neurons close to the scotoma boundary
(Figure 5.8) but not in neurons at the scotoma center.

Spontaneous cortical activations were not incorporated in the EXIN and LISSOM
simulations. However, synaptic plasticity during scotoma conditioning does not affect
spontaneous activations in the absence of visual stimulation. Cortical spontaneous activity
in the absence of any visual stimuli is close to zero (Movshon et al., 1978). This weak
activity would have negligible effect on the spontaneous activation of other neurons, even if
synapses between them were modified. Thus, spontaneous activity in the absence of visual
stimuli would be almost unchanged if scotoma conditioning resulted in synaptic plasticity.
Xing and Gerstein (1994) did not simulate the effect of adaptation on the spontaneous
activation levels of Layer 2 neurons. However, they assumed that the spontaneous activation

level is independent of adaptation.
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Figure 5.8: Simulation results: The iceberg effect.
Layer 2 neuron responsiveness before scotoma conditioning (solid line), after scotoma
conditioning (dashed line), and after re-conditioning with normal stimuli (dotted line)
are shown. Neuron activations in the EXIN network with only lateral inhibitory synaptic
plasticity enabled (a), the LISSOM network with only lateral inhibitory synaptic plasticity
enabled (b), and the inhibition-dominant adaptation network (c), are shown as a function
of one-dimensional input positions across Layer 1 passing through the scotoma center. The
responsiveness is for the neurons in Figure 5.7. The responsiveness is computed by summing
the response of the Layer 2 neuron to test stimuli along the y axis at each = axis position.
The neuron position is represented relative to the x coordinate of the scotoma center. The
scotoma is a square of size 13 X 13. The thick line segment on the abscissa represents the

scotoma region.
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RF size as a function of position

Pettet and Gilbert (1992) showed RF expansion of cortical neurons whose
initial RF was within the artificial scotoma, after conditioning with artificial scotoma
stimuli. Darian-Smith and Gilbert (1995) reported that between five minutes and one hour
after bilateral retinal lesions, cortical neurons located close to or just inside the cortical
scotoma boundary showed a striking increase in RF size.

Figures 5.9a—c show the RF size before and after scotoma stimuli conditioning
as a function of the position of the initial RF center, for the three models. For the
EXIN network with only lateral inhibitory synaptic plasticity enabled, Figure 5.9a, and
the inhibition-dominant adaptation model, Figure 5.9c, the most prominent RF expansions
occur for Layer 2 neurons with initial REF centers close to and inside the scotoma edge.
However, for the LISSOM network with only lateral inhibitory synaptic plasticity enabled,
Figure 5.9b, the most prominent RF expansions occur for Layer 2 neurons with initial

RF centers close to and oulside the scotoma edge.

RF size profile as a function of scotoma size

In the three simulations, neurons whose initial RF was close to the scotoma
boundary showed the maximal expansion. This is clearly visible in the bimodal peaks
in Figure 5.9. In the EXIN network with lateral inhibitory synaptic plasticity alone and the
inhibition-dominant adaptation model, the peaks occur for neurons with initial RF inside
the scotoma region; in the LISSOM network with only lateral inhibitory synaptic plasticity
enabled, the peaks occur for neurons with initial RF outside the scotoma region.

The three simulations suggest the prediction that as the scotoma size is reduced,
the peaks will move closer. This prediction is illustrated by results shown in Figure 5.10.
Figure 5.10 shows the RF size of a cross section of Layer 2 neurons after scotoma conditioning
with a scotoma of size 9x9. The EXIN model with only lateral inhibitory synaptic plasticity
enabled produced a unimodal function (Figure 5.10a). In the LISSOM model with only
lateral inhibitory synaptic plasticity enabled and the inhibition-dominant adaptation model,

the peaks are closer in Figures 5.10b—c than in Figures 5.9b—c.
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Figure 5.9: Simulation results: RF size as a function of position.
The RF area before scotoma conditioning (solid line), after scotoma conditioning (dashed
line), and after re-conditioning with normal stimuli (dotted line) in the EXIN network
with only lateral inhibitory synaptic plasticity enabled (a), the LISSOM network with only
lateral inhibitory synaptic plasticity enabled (b), and the inhibition-dominant adaptation
network (c), are shown as a function of the position of the initial RF center of Layer 2
neurons relative to the scotoma center (0,0). The RF area shown is for a one-dimensional
cross-section through Layer 2: neurons (0,—15)—(0,14). In panel (¢) the dotted curve
overlaps with the solid curve. The RF area of a Layer 2 neuron is the number of locations
at which the test stimulus evokes a response in the Layer 2 neuron. See Figure 5.8 for

simulation details and conventions.
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Figure 5.10: Simulation results: Changes in RF after scotoma conditioning with
a smaller scotoma.

The RF area before scotoma conditioning (solid line), after scotoma conditioning (dashed
line), and after re-conditioning with normal stimuli (dotted line) in the EXIN network
with only lateral inhibitory synaptic plasticity enabled (a), the LISSOM network with only
lateral inhibitory synaptic plasticity enabled (b), and the inhibition-dominant adaptation
network (c), are shown as a function of the position of the initial RF center of Layer 2
neurons relative to the scotoma center (0,0). The scotoma is a square of size 9 X 9 centered
at (0,0). In panel (c) the dotted curve overlaps with the solid curve. See Figure 5.9 for the
definition of RF size. The RF area shown is for a one-dimensional cross-section through
Layer 2: neurons (0,—15)—(0,14). The thick line segment on the abscissa represents the

scotoma region.
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Recovery of neurons in the cortical scotoma

After bilateral retinal lesions, function returned over time to the cortex in a roughly
concentric inward direction (Darian-Smith & Gilbert, 1995).

The EXIN network with only lateral inhibitory synaptic plasticity enabled
exhibited this property during scotoma conditioning. According to the EXIN inhibitory
synaptic plasticity rule, lateral inhibitory pathways to inactive or weakly active Layer 2
neurons with RF centers inside the scotoma weaken. The neurons closest to the edge of the
cortical scotoma have relatively strong afferent inputs from locations outside the scotoma.
Thus, these neuron respond first to inputs outside the scotoma. These newly responsive
neurons in turn weaken inhibition to neurons farther inside the cortical scotoma. This
behavior is illustrated in Figure 5.11a.

The LISSOM lateral inhibitory synaptic plasticity rule alone did not produce
recovery in Layer 2 neurons in an concentric inward direction during scotoma conditioning,.
Contrary to the experimental data, the LISSOM lateral inhibitory rule caused loss of
functionality in an concentric inward direction. According to the LISSOM lateral inhibitory
synaptic plasticity rule, during scotoma conditioning Layer 2 neurons outside and close to
the cortical scotoma edge show an increase in their responsiveness and RF size because of a
decrease in the inhibitory weights from neurons inside the cortical scotoma. This increase
in responsiveness results in increased inhibition to functional Layer 2 neurons very close to
the scotoma boundary, and consequently, these lose responsiveness to locations outside the
scotoma (Figure 5.11b).

In the inhibition-dominant adaptation model, during scotoma conditioning,
adaptation of Layer 2 neurons in the cortical scotoma decreases, which lets neurons closest

to the cortical scotoma edge recover responsiveness first (Figure 5.11c¢).

RF shifts

Figures 5.12a—c display the shift in RF center after conditioning with scotoma
stimuli as a function of the position of the initial RF center of each Layer 2 neuron. The

EXIN network with only lateral inhibitory synaptic plasticity enabled, Figure 5.12a, and the
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Figure 5.11: Simulation results: Recovery of responsiveness of Layer 2 neurons.
The figures show the activation pattern in Layer 2 in response to input outside the scotoma
before scotoma conditioning (solid line), after 2500 steps of scotoma conditioning (dashed
line), and after 5000 steps of scotoma conditioning (dotted line) in the EXIN network
with only lateral inhibitory synaptic plasticity enabled (a), the LISSOM network with only
lateral inhibitory synaptic plasticity enabled (b), and the inhibition-dominant adaptation
network (c). The abscissa represents the distance of initial RF center of Layer 2 neurons
from the scotoma center. The input is a test stimulus centered at Layer 1 neuron (0, —9).
Panels (a) and (c) show recovery of neurons in a concentric inward direction. In panel (b)
responsiveness is lost in a concentric inward direction. See Figure 5.8 for simulation details

and conventions.
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inhibition-dominant adaptation model, Figure 5.12¢, exhibit consistent outward shifts in the
RF center of Layer 2 neurons, and the maximal shifts occur for neurons with RF center close
to the scotoma edge, consistent with the centrifugal RF displacements found within 1 hour
after retinal lesions (Darian-Smith & Gilbert, 1995). In contrast, the LISSOM network with
only lateral inhibitory synaptic plasticity enabled, Figure 5.12b, displays consistent shifts

toward the scotoma center.

Effect of blank stimuli on RF

In the simulations with only lateral inhibitory synaptic plasticity (EXIN or
LISSOM lateral inhibitory rule), the changes in RFs are the consequence of synaptic
strength modifications that depend on neuronal activation. When the network is presented
with a blank display, no Layer 2 neuron is activated, and hence no RF change occurs,
consistent with the absence of changes observed in RFs during periods of no visual
stimulation (Pettet & Gilbert, 1992).

In the inhibition-dominant adaptation model, the RF changes are due to differences
in the adaptation thresholds of Layer 2 neurons whose initial RF is within and outside the
scotoma region. In the inhibition-dominant adaptation model the adaptation threshold is
a function of neuronal activation within a time interval. Blank stimuli do not activate
Layer 2 neurons, and this causes the adaptation thresholds of all Layer 2 neurons to
become approximately equal. The neurons whose RF is outside the scotoma region
show RF expansion. The RF size increases because of the decrease in the threshold
(Figure 5.13). In Figure 5.13a, the neurons inactive during scotoma conditioning are not
fully dishabituated; therefore, during presentation of blank stimuli, these neurons too show
RF expansion.

In Figure 5.13b, after a longer period of scotoma conditioning, some of the neurons
are almost fully dishabituated, especially the neuron with initial RF center at position
0. During presentation of blank stimuli, changes in inhibition caused by dishabituation
of the neurons whose initial RF center is outside the scotoma become dominant. Thus,
during presentation of blank stimuli, as neurons whose RF is outside the scotoma rapidly

become more responsive, and they exert more inhibition on neurons whose RF is inside the
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Figure 5.12: RF shift as function of position.
Shift in REF center after scotoma conditioning (solid line) and after re-conditioning with
normal stimuli (dashed line) with respect to the initial RE centers is shown as a function of
distance of the initial RF center of Layer 2 neurons from the scotoma center for the EXIN
network with only lateral inhibitory synaptic plasticity enabled (a), the LISSOM network
with only lateral inhibitory synaptic plasticity enabled (b), and the inhibition-dominant
adaptation network (¢). The RF shift shown is for a one-dimensional cross-section through
Layer 2: neurons (0, —15)—(0, 14). Positive and negative shifts represent a shift away from
and toward the center of the scotoma, respectively. The RF center of a Layer 2 neuron is
the center of moment of the neuron’s responsiveness to input at different positions within

its RF. See Figure 5.8 for simulation details and conventions.
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scotoma. This results in a slight RF contraction for neurons whose RF is inside the scotoma

(Figure 5.13b).

Other adaptation models

Xing and Gerstein (1994) measured the initial RF's before conditioning with normal
stimuli. Then they conditioned the network using scotoma stimuli. In this case, the
neurons in the cortical scotoma region were not affected, and those outside the cortical
scotoma adapted. Adaptation of the neurons outside the cortical scotoma decreases their
responsiveness; hence they exert less inhibition on neurons in the cortical scotoma. As a
result, the RFs of the neurons in the scotoma region increased in size and showed other
changes consistent with experimental data (Figures 5.14-5.17a). However, presenting blank
stimuli to the model would result in a decrease in adaptation of all neurons. Thus, the RFs
would be restored to their pre-scotoma sizes.

Figures 5.14b—c show changes in RF size following artificial scotoma conditioning
in an adaptation network with no lateral interaction and in an adaptation network with
dominant lateral excitation, respectively. The two networks produce RF expansion in
inactive neurons after scotoma conditioning, and they produce RF contraction during
normal stimulation following scotoma conditioning.

However, in the adaptation network with no lateral interactions, RF profiles after
scotoma conditioning are symmetric (Figure 5.15b), and the RF position of the neurons
do not change (Figure 5.16b). In the adaptation network with dominant lateral excitation,
the RF profile shows asymmetry, but the neurons are more responsive to locations within
the occluded region during scotoma conditioning (Figure 5.15¢); this manifests itself as
REF shifts toward the center of the scotoma (Figure 5.16¢). These effects are inconsistent
with the observations of Darian-Smith and Gilbert (1995) and Das and Gilbert (1995b).

Figures 5.17b—c show that in these adaptation networks, responsiveness returns to
neurons within the cortical scotoma in a concentric inward direction.

Because the adaptation level in these adaptation models depends on neuronal
activation, the RF size of neurons in these models changes in the absence of input

stimulation.
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Figure 5.13: Simulation results: Blank screen causes RF changes in the
inhibition-dominant adaptation model.

The RF area after scotoma conditioning (solid line), after 2500 steps of conditioning
with blank stimuli (dashed line), and after 5000 steps of conditioning with blank
stimuli (dotted line) in the inhibition-dominant adaptation network after 5000 steps of
scotoma conditioning (a), and after 15000 steps of scotoma conditioning (b), are shown as
a function of the position of the initial RF center of Layer 2 neurons relative to the scotoma
center (0,0). In (a) the neurons in the cortical scotoma were not fully dishabituated and
therefore show RF expansion during no visual stimulation. In (b) prolonged inactivity in
neurons in the cortical scotoma causes them to become almost fully dishabituated. With
no visual stimulation, the neurons outside the cortical scotoma are dishabituated and they
exert stronger inhibition on neurons inside the cortical scotoma. Thus, neurons outside
the cortical scotoma show RF expansion, and neurons inside the cortical scotoma, which
were highly dishabituated, show RF contraction. See Figure 5.10 for simulation details and

conventions.
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Figure 5.14: Simulation results: RF size changes in other adaptation models.
The RF area before scotoma conditioning (solid line), after scotoma conditioning (dashed
line), and after re-conditioning with normal stimuli (dotted line) in the inhibition-dominant
adaptation network without prior normal stimulation (a), the adaptation network without
lateral connections (b), and the excitation-dominant adaptation network (c¢), are shown as
a function of the position of the initial RF center of Layer 2 neurons relative to the scotoma
center (0,0). In panel (b) the dotted curve overlaps with the solid curve. See Figure 5.9 for

simulation details and conventions.
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Figure 5.15: Simulation results: The iceberg effect in other adaptation models.
Layer 2 neuron responsiveness before scotoma conditioning (solid line), after scotoma
conditioning (dashed line), and after re-conditioning with normal stimuli (dotted line)
in the inhibition-dominant adaptation network without prior normal stimulation (a), the
adaptation network without lateral connections (b), and the excitation-dominant adaptation
network (c), are shown as a function of one-dimensional input positions across Layer 1

passing through the scotoma center. See Figure 5.8 for simulation details and conventions.
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Figure 5.16: Simulation results: RF shifts in other adaptation models.
Shift in REF center after scotoma conditioning (solid line) and after re-conditioning with
normal stimuli (dashed line) with respect to the initial RF centers is shown as a function
of distance of the initial RF center of Layer 2 neurons from the scotoma center for
the inhibition-dominant adaptation network without prior normal stimulation (a), the
adaptation network without lateral connections (b), and the excitation-dominant adaptation
network (c). In panel (b) the solid and the dashed curves overlap with the abscissa. See

Figure 5.12 for simulation details and conventions.
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Figure 5.17: Simulation results: Recovery of responsiveness in other adaptation
models.

The figures show the activation pattern in Layer 2 in response to input outside the scotoma
before scotoma conditioning (solid line), after 2500 steps of scotoma conditioning (dashed
line), and after 5000 steps of scotoma conditioning (dotted line) in the inhibition-dominant
adaptation network without prior normal stimulation (a), the adaptation network without
lateral connections (b), and the excitation-dominant adaptation network (c). The input is
a test stimulus centered at Layer 1 neuron (0,—9). See Figure 5.11 for simulation details

and conventions.
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Conclusions

From the simulations presented in this section, it is clear that the LISSOM instar
lateral inhibitory synaptic plasticity rule is insufficient to model the effects of artificial
scotoma conditioning and retinal lesions. However, the EXIN outstar lateral inhibitory
synaptic plasticity rule is sufficient to model these effects.

Xing and Gerstein’s (1994) inhibition-dominant adaptation network failed only
in modeling the effects of presentation of blank stimuli after scotoma conditioning. In
Section 5.4, a novel experiment is suggested to determine the role of neuronal adaptation
in producing dynamic RF changes that persist over a long periods (about 15 minutes).
Cortical neurons are maximally adapted within tens of seconds, and neurons recover
their responsiveness over a period of tens of seconds (Hammond et al., 1986, 1989).
Psychophysical experiments on humans using artificial scotoma conditioning produces shifts
in position judgments consistent with the RF expansion hypothesis (Kapadia et al., 1994).
These changes occurred over a period of 1-2 seconds, however, and would be consistent with
the inhibition-dominant adaptation model.

Thus, we conclude that during scotoma conditioning, effects of neuronal adaptation
occur over a period of tens of seconds; however, the persistent effects produced over a
period of 15 minutes to hours may be caused by a long-term process, e.g., long-term
synaptic plasticity. The RF changes observed over a period of months, however, may
involve sprouting and establishment of new connections (Darian-Smith & Gilbert, 1994).
The issue of time-scales is further discussed in Section 5.5.4.

The adaptation models without lateral interaction and with dominant lateral
excitation produced RF expansion in neurons whose RFs were within the scotoma region.
However, they produced RF shifts inconsistent with experimental data.

Sirosh et al. (1996) explained RF changes during scotoma conditioning using the
LISSOM afferent excitatory synaptic plasticity. However, in their simulations the LISSOM
lateral excitatory and lateral inhibitory synaptic plasticity rules were also enabled. To study
the effects of afferent excitatory synaptic plasticity alone during scotoma conditioning, the

next section (Section 5.3.2), presents simulations on the EXIN and LISSOM networks with
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their respective afferent excitatory synaptic plasticity rules.

5.3.2 Role of afferent excitatory synaptic plasticity

In this section, the effects of scotoma conditioning on the EXIN and
LISSOM networks with only afferent excitatory synaptic plasticity enabled are presented.
Both the EXIN and LISSOM afferent excitatory synaptic plasticity rules are instar rules.
One difference between the two networks is the presence of short-range lateral excitatory

connections in the LISSOM network.

RF size as a function of position

Figures 5.18a—b show the RF size before and after scotoma conditioning as a
function of the position of the initial RF center, for the EXIN and the LISSOM networks
with only afferent excitatory synaptic plasticity enabled. For the EXIN network with only
afferent excitatory synaptic plasticity enabled, small RF expansions occurred for Layer 2
neurons whose initial RF center is close to and inside the scotoma edge, and Layer 2
neurons whose initial RF center is close to and outside the scotoma boundary showed
larger RF contraction (Figure 5.18a). Similarly, the LISSOM network with only afferent
excitatory synaptic plasticity enabled produced RF expansion in neurons whose initial RF is
inside the scotoma and produced RF contraction in neurons close to the scotoma boundary
(Figure 5.18b).

The EXIN and the LISSOM networks with only afferent excitatory synaptic
plasticity enabled produced RF expansion in neurons whose initial RF center is inside
the scotoma, consistent with the results of Pettet and Gilbert (1992).

The LISSOM network with afferent excitatory synaptic plasticity alone showed
larger RF expansion than the EXIN network with only afferent excitatory synaptic plasticity
enabled because of the short-range lateral excitatory connections in the LISSOM network.
In the LISSOM network, the neurons whose responsiveness increased (because of decreased
inhibition through weakening of afferent pathways converging on other neurons) elevated
the responsiveness of their neighbors via lateral excitatory connections, thereby producing

large RF expansions. In Figure 5.18b, the curve showing RF size after scotoma conditioning
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Figure 5.18: Simulation results: RF size changes caused by afferent excitatory
plasticity.

The RF area before scotoma conditioning (solid line), after scotoma conditioning (dashed
line), and after re-conditioning with normal stimuli (dotted line) in the EXIN network with
only afferent excitatory synaptic plasticity enabled (a), the LISSOM network with only
afferent excitatory synaptic plasticity enabled (b), and the EXIN network with afferent
excitatory and lateral inhibitory synaptic plasticity (c), are shown as a function of the
position of the RF center of Layer 2 neurons relative to the scotoma center (0,0). See

Figure 5.9 for conventions and simulation details.
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is unimodal. The curve would become bimodal when the scotoma size is increased. In the
LISSOM network, the weight of the lateral excitatory and inhibitory pathway decreases as
the distance between the source and target neurons increases. Thus, as the scotoma size
is increased, the effects of lateral pathways between neurons whose RFs are close to the
scotoma boundary and neurons whose RFs are close to the center of the scotoma decrease,
and therefore the amount of RF expansion in neurons whose RFs are close to the scotoma
center will be less than the amount of RF expansion in neurons whose RFs are inside the
scotoma, but closer to the scotoma boundary than the scotoma center. Thus, the RF size
curve after scotoma conditioning becomes bimodal.

Figure 5.19 shows the RF profile of a neuron that exhibited RF expansion and
another that exhibited RF contraction in the two simulations. After scotoma conditioning,
the RF profile of some neurons in these networks was asymmetric, consistent with
observations of Das and Gilbert (1995b). The asymmetric RF shape is caused by asymmetric
changes in weights in the two networks.

In Figure 5.18a, neurons far away from the scotoma showed RF expansion.
In the EXIN network with only afferent excitatory synaptic plasticity enabled, during
scotoma conditioning neurons initially in the cortical scotoma strengthened their afferent
connections from locations outside the scotoma. Thus, neurons surrounding the cortical
scotoma received more inhibition when locations outside the scotoma were stimulated, and
suppression of responsiveness of these neurons resulted in a slight increase in responsiveness

of neurons farther away from the scotoma (Figure 5.20).

Recovery of neurons in the cortical scotoma

The EXIN and the LISSOM networks with only afferent excitatory synaptic
plasticity enabled exhibited new responsiveness to stimuli outside the scotoma in neurons
whose initial RF is inside the scotoma, during scotoma conditioning (Figure 5.21). This is
consistent with the finding that after bilateral retinal lesions, function returned over time

to the cortex in a roughly concentric inward direction (Darian-Smith & Gilbert, 1995).
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Figure 5.19: Simulation results: RF profiles of neurons that show expansion or
contraction.

Layer 2 neuron RF profiles before scotoma conditioning (solid line), after scotoma
conditioning (dashed line), and after re-conditioning with normal stimuli (dotted line)
in the EXIN network with only afferent excitatory synaptic plasticity enabled (a,b), and
the LISSOM network with only afferent excitatory synaptic plasticity enabled (c,d), as a
function of a one-dimensional input positions across Layer 1 passing through the scotoma
center. In (a) and (c¢), the neurons show RF expansion, and in (b) and (d), the neurons show
RF contraction. See Figure 5.8 for simulation details and conventions. The thick line on the
abscissa represents the scotoma region. In (a) and (c), the neurons showed RF expansion,

and in (b) and (d) the neurons showed RF contraction.
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Figure 5.20: Simulation results: Activation profiles in response to inputs at
locations away from the scotoma.

The  figure shows activation of a  one-dimensional cross-section of
Layer 2 neurons: (0, —15)—(0, 14), in response to input stimulation at (0,11) (a), (0,12) (b),
(0,13) (¢), and (0,14) (d) in the EXIN network with only afferent excitatory synaptic
plasticity enabled. The activation level of the neurons was scaled by a factor of 20. See

Figure 5.11 for conventions and simulation details.
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Figure 5.21: Simulation results: Recovery of responsiveness of Layer 2 neurons
caused by afferent excitatory plasticity.

The figures show the activation pattern in Layer 2 in response to input outside the scotoma
before scotoma conditioning (solid line), after 2500 steps of scotoma conditioning (dashed
line), and after 5000 steps of scotoma conditioning (dotted line) in the EXIN network with
only afferent excitatory synaptic plasticity enabled (a) and the LISSOM network with only

afferent excitatory synaptic plasticity enabled (b). See Figure 5.11 for conventions and
simulation details.
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RF shifts

Figures 5.22a-b display the shift in REF center after conditioning with scotoma
stimuli as a function of the position of the initial RF center of each Layer 2 neuron.
The EXIN and LISSOM networks with only afferent excitatory synaptic plasticity enabled,
Figures 5.22a—b, exhibited consistent outward shifts in the RF center of Layer 2 neurons.
The maximal shifts occurred for neurons whose RFE center was close to the scotoma edge.
These results are consistent with the consistent small centrifugal RF shift away from the
lesion center, between five minutes and one hour after the retinal lesions, observed by
Darian-Smith and Gilbert (1995). In the two networks, neurons whose initial RF center
was inside the scotoma showed outward shift because of the asymmetric RF expansion
(Figure 5.19), and neurons whose initial RF overlapped the scotoma boundary showed an
outward shift because of RF contraction (Figure 5.19).

During normal stimulation following scotoma conditioning, the EXIN network
with only afferent excitatory synaptic plasticity enabled did not recover (Figure 5.22a).
This effect was caused by strong lateral inhibition, which prevented the neurons whose
RF size decreased (because of weakening of pathways from the scotoma during scotoma
conditioning) from becoming strongly active to inputs at positions inside the scotoma.
The weak afferent connections were thus prevented from becoming strong. In the LISSOM
network with afferent excitatory synaptic plasticity alone, the short-range lateral excitatory
connections helped neurons with weak afferent connections from the scotoma region to
become more active, and hence to strengthen the weak afferent pathways (Figure 5.22b).

To ensure that the lack of recovery in the EXIN simulation was not caused
by insufficient training, the simulation was run for much longer time (dotted line in
Figure 5.22a). In fact, additional training shifted the RFs of neurons farther away from
their original positions. The dotted line in Figure 5.22a is jagged, implying that the
RF positions of some neurons shifted toward the scotoma center and the RF positions of
neighboring neurons shifted away from the scotoma center. This behavior is the consequence
of the strong lateral inhibitory interactions between the neurons. Because of strong

lateral inhibition, when a neuron’s responsiveness increases it suppresses the activation
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Figure 5.22: Simulation results: RF shifts caused by afferent excitatory plasticity.
Shift in RF center after scotoma conditioning (solid line), after re-conditioning with
normal stimuli for 50,000 steps (dashed line), and after re-conditioning with normal stimuli
for 100,000 steps (dotted line) with respect to the initial RF centers is shown as a function
of distance of the initial RF center of Layer 2 neurons from the scotoma center for the EXIN
network with only afferent excitatory synaptic plasticity enabled (a), the LISSOM network
with only afferent excitatory synaptic plasticity enabled (b), and the EXIN network with
both afferent excitatory and lateral inhibitory synaptic plasticity (c¢). See Figure 5.12 for

conventions and simulation details.
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of neighboring neurons, and thus neurons farther away from the neighbor neurons receive
less inhibition. This alternation of increased inhibition and decreased inhibition causes
RF shifts in opposite directions in neighboring neurons.

However, with both the afferent excitatory and the lateral inhibitory synaptic
plasticity enabled, the neurons in the EXIN network tended to recover their original
RFE properties (size, position, shape, and responsiveness) during normal stimulation
following scotoma conditioning. During normal stimulation following scotoma conditioning,
lateral inhibitory connection weights to the weakly active neurons decreased, and lateral
inhibitory connection weights to strongly neurons increased. This led to an attraction
effect on neurons with weakened afferent connections from the scotoma region and a
repulsive effect on neurons with strengthened afferent connections from outside the scotoma
region, resulting in a shift in RE centers toward their original locations (Figure 5.22¢) and
restoration of the original RF sizes (Figure 5.18¢). During the normal stimulation following
scotoma conditioning, the EXIN network with only lateral inhibitory synaptic plasticity rule
completely recovered the original RF properties, but the EXIN network with only afferent
excitatory synaptic plasticity enabled did not recover the original RF properties. Thus, in
the full EXIN network, the amount of recovery of RF properties during normal stimulation

following scotoma conditioning will depend on which rule produces the dominant effects.

Effect of blank stimuli on RFs

In the EXIN and LISSOM networks with afferent excitatory synaptic plasticity
alone, a blank input display causes the Layer 2 neurons to be inactive, and therefore afferent

excitatory pathway weights and cortical RFs do not change.

Conclusions

The EXIN and the LISSOM networks with only afferent excitatory synaptic
plasticity enabled produced RF expansion consistent with experimental effects of artificial
scotoma conditioning and bilateral retinal lesions. The EXIN network with only afferent
excitatory synaptic plasticity enabled did not recover during normal stimulation following

scotoma conditioning. However, the full EXIN network with both afferent excitatory and
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lateral inhibitory synaptic plasticity enabled, did recover. In both the EXIN and the
LISSOM networks with only afferent excitatory synaptic plasticity enabled, RF contraction
in neurons whose initial RF overlapped the scotoma edge was observed during scotoma

conditioning.

5.3.3 Role of lateral excitatory synaptic plasticity

In this section, the effects of the LISSOM instar lateral excitatory synaptic
plasticity rule alone during scotoma conditioning are presented.

These simulations demonstrate that in a network with short-range lateral dominant
excitatory connections and long-range lateral dominant inhibitory connections, an instar
rule to modify the short-range lateral excitatory connections during scotoma conditioning

produces RF expansion in neurons whose initial RF center is inside the scotoma.

RF size as a function of position

Figure 5.23a shows the RF size before and after scotoma stimuli conditioning as a
function of the position of the initial RF center. In the LISSOM network with only instar
lateral excitatory synaptic plasticity enabled, Figure 5.23a, RF expansions occurred for
Layer 2 neurons whose initial RF center is inside the scotoma edge. In addition, neurons
whose initial RF center is close to and outside the scotoma boundary showed RF contraction.
These effects are similar to those observed in the EXIN and the LISSOM networks with
only afferent excitatory synaptic plasticity enabled (Section 5.3.2).

In the LISSOM network with instar lateral excitatory synaptic plasticity alone,
during scotoma conditioning the lateral excitatory pathways from the neurons just inside
the cortical scotoma to those just outside weaken. Thus, in the LISSOM network with
only instar lateral excitatory synaptic plasticity enabled, neurons whose RF is close to and
outside the scotoma become less responsive to stimulation within and close to the scotoma
boundary. This causes RF contraction in neurons whose initial RF is close to and outside
the scotoma. Furthermore, because of the decreased responsiveness of these neurons to
stimulation within and close to the scotoma boundary, they exert less inhibition on neurons

whose initial RF is inside and away from the scotoma boundary, resulting in RF expansion.
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Figure 5.23: Simulation results: RF changes in the LISSOM network with only
lateral excitatory plasticity enabled.

Figure on previous page. (a) The RF area before scotoma conditioning (solid line), after
scotoma conditioning (dashed line), and after re-conditioning with normal stimuli (dotted
line), is shown as a function of the position of the initial RF center of Layer 2 neurons
relative to the scotoma center (0,0). See Figure 5.9 for conventions and simulation details.
(b) Layer 2 neuron responsiveness before scotoma conditioning (solid line), after scotoma
conditioning (dashed line), and after re-conditioning with normal stimuli (dotted line), are
shown as a function of one-dimensional input positions across Layer 1 passing through
the scotoma center. See Figure 5.8 for conventions and simulation details. (c¢) The
activation pattern in Layer 2 in response to input outside the scotoma before scotoma
conditioning (solid line), after 2,500 steps of scotoma conditioning (dashed line), and
after 5,000 steps of scotoma conditioning (dotted line). The input is a test stimulus
centered at Layer 1 neuron (0, —9). (d) Shift in RF center after scotoma conditioning (solid
line) and after re-conditioning with normal stimuli (dashed line) with respect to the initial
RF centers is shown as a function of distance of Layer 2 neurons from the scotoma center.

See Figure 5.12 for conventions and simulation details.

In Figure 5.23b, the neuron became more responsive to locations away from the
scotoma center, consistent with the results of Das and Gilbert (1995b). Normal stimulation
following scotoma conditioning restored the RF size in the LISSOM network with instar

excitatory synaptic plasticity alone (Figure 5.23).

Recovery of neurons in the cortical scotoma

The LISSOM network with instar lateral excitatory synaptic plasticity alone
exhibited new responsiveness to stimuli outside the scotoma in neurons whose initial RF is

inside the scotoma, during scotoma conditioning (Figure 5.23c).

RF shifts

Figure 5.23d displays the shift in RF center after conditioning with scotoma stimuli
as a function of the initial RF center position of Layer 2 neurons. The LISSOM network
with only instar lateral excitatory synaptic plasticity enabled exhibits consistent outward

shifts (Figure 5.23d).

In the LISSOM network with only instar lateral excitatory synaptic plasticity
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enabled, neurons whose initial RF center is inside the scotoma showed outward shift because
of asymmetric RF expansion (Figure 5.23b), and neurons whose initial RF overlapped the

scotoma boundary showed outward shift because of RF contraction.

Effect of blank stimuli on RF

In the LISSOM network with only lateral excitatory synaptic plasticity enabled,
when no input stimulation is present, Layer 2 neurons are inactive, and therefore lateral

excitatory pathway weights and cortical RFs do not change.

Conclusions

The LISSOM network with instar lateral excitatory synaptic plasticity alone
produces many effects consistent with the experimental effects of artificial scotoma
conditioning and bilateral retinal lesions. The LISSOM network with only instar lateral
excitatory synaptic plasticity enabled produces RF contraction in neurons whose initial RF
is just outside the scotoma during scotoma conditioning. Instar lateral excitatory
synaptic plasticity in a network with short-range lateral excitatory connections and long-
range inhibitory connections thus models dynamic REF changes during artificial scotoma
conditioning.

In the LISSOM network, if the outstar lateral excitatory synaptic plasticity rule
is used instead of the LISSOM instar lateral excitatory synaptic plasticity rule, then after
scotoma conditioning the network may produce RF expansion in neurons outside the cortical
scotoma and may produce RF shifts toward the scotoma center. These may happen during
scotoma conditioning because an outstar lateral excitatory synaptic plasticity rule weakens
lateral excitatory pathways from active neurons to inactive neurons, whereas an instar
lateral excitatory synaptic plasticity rule weakens lateral excitatory pathways from inactive

neurons to active neurons.
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5.4 Simulation results: Complementary scotoma stimuli

The EXIN network (with afferent excitatory synaptic plasticity or lateral
inhibitory synaptic plasticity alone), the LISSOM network (with afferent excitatory synaptic
plasticity or instar lateral excitatory synaptic plasticity alone), and the inhibition-dominant
adaptation model explain many important features of the artificial scotoma experiment
(Pettet & Gilbert, 1992) and the experiment on the short-term effects of the bilateral retinal
lesion (Darian-Smith & Gilbert, 1995). However, the inhibition-dominant adaptation model
differs from other models in its behavior after blank screen conditioning (Section 5.3.1). The
EXIN network with instar afferent excitatory synaptic plasticity alone and the LISSOM
network with instar afferent or instar lateral excitatory synaptic plasticity alone produce
RF contraction during scotoma conditioning, in neurons whose initial RF overlaps the
scotoma boundary.

To further distinguish between the EXIN synaptic plasticity rules, the LISSOM
synaptic plasticity rules, and the adaptation rule, a “complementary scotoma’” stimulation
experiment is proposed. In this conditioning paradigm, after the initial conditioning
with normal stimuli, the network is presented with stimuli that have two alternating,
complementary scotoma regions. That is, for any stimulus, the scotoma is a hemifield
or its complementary hemifield. The duration of presentation, inter-trial interval, and
duration before testing after conditioning should be varied to control for the ubiquitous
neuronal adaptation in the cortex. The duration of presentation of each hemifield should

short (e.g., 1-10 seconds).

5.4.1 RF changes because of synaptic plasticity

In the EXIN network with only lateral inhibitory synaptic plasticity enabled,
neurons whose RF is near the common boundary of the complementary scotoma regions
show maximal increase in RF size. The expansion is due to the decrease in the
lateral inhibitory weights between layer 2 neurons whose RFs are inside and outside
the common boundary of the complementary scotoma regions. The decrease occurs

because these neurons are never coactivated during complementary scotoma conditioning.
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Figure 5.24a shows the results of a complementary scotoma simulation, plotting Layer 2
RF size as a function of position of the initial RF center. The RF expansion was
accompanied by an increase in responsiveness of the corresponding Layer 2 neurons.

Figure 5.24b shows Layer 2 RF size as a function of position of the initial RF center,
after the LISSOM network with only lateral inhibitory synaptic plasticity enabled was
presented with complementary scotoma stimuli. The behavior of the LISSOM network with
only lateral inhibitory synaptic plasticity enabled was similar to that of the EXIN network
with only lateral inhibitory synaptic plasticity enabled for this conditioning. Layer 2
neurons in the LISSOM network, with RFs inside and outside the common boundary of
the complementary scotoma regions, were never coactivated. This resulted in a decrease in
the strength of lateral inhibitory connections between these neurons. Thus, RFs near the
boundary increased in size.

Figure 5.25a shows Layer 2 RF size as a function of position of the initial RF center
after the EXIN network with only afferent excitatory synaptic plasticity enabled was
presented with complementary scotoma stimuli. The neurons whose initial RF overlapped
the complementary scotoma boundary showed RF contraction, as these neurons received
weakened afferent pathways from positions close to the complementary scotoma boundary.
Complementary scotoma conditioning of the LISSOM network with only afferent excitatory
synaptic plasticity enabled produced the same effects (Figure 5.25b).

The LISSOM network with instar lateral excitatory synaptic plasticity alone
produced RF contraction in neurons whose initial RF straddled the complementary scotoma
boundary. This happens because anti-correlated activity in neurons whose initial RF center
lay on opposite sides of the complementary scotoma boundary results in weakening of mutual
lateral excitatory connections, leading to RF contraction (Figure 5.25¢).

In the EXIN and the LISSOM networks with only lateral inhibitory synaptic
plasticity enabled, the RFs of neurons across the complementary scotoma boundary shifted
toward each other (Figure 5.26). However, in the EXIN network with only afferent
excitatory plasticity enabled and in the LISSOM network with either afferent excitatory or
lateral excitatory plasticity enabled, the RF's of neurons across the complementary scotoma

boundary shifted away from each other (Figure 5.27). In the LISSOM network with lateral
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Figure 5.24: Simulation results: Average RF size changes after complementary
scotoma conditioning.

The average RIF' area before complementary scotoma conditioning (solid line), after
complementary scotoma conditioning (dashed line), and after re-conditioning with normal
stimuli (dotted line) in the EXIN network with only lateral inhibitory synaptic plasticity
enabled (a), the LISSOM network with only lateral inhibitory synaptic plasticity
enabled (b), and the inhibition-dominant adaptation network (c), are shown as a function
of the position of the initial RF center of Layer 2 neurons relative to the scotoma center.
The scotoma is a hemifield of size 15 x 30. The average RF area shown at each position is
the mean over the RF area of neurons with same x coordinate. The RF area of a Layer 2
neuron is defined as the number of locations at which the test stimulus evokes a response in
the Layer 2 neuron. In panel (c) the dotted curve overlaps with the solid curve. The thick

line segment on the abscissa represents the scotoma region.



271

___initial
40 _ __ during scotoma
reset
~
@
n e 30 | o -
u,- 8 TR T ST T
Z Q 20 N - N P //
< N SN NN
LIJ U)
LL 10 4
0
O T T T T T T T T
-14 -12 -10 8 6 4 -2 0 2 4 6 8 10 12 14
@
___initial
80 _ __ during scotoma
reset
~
w o]
LI'- < AN /I~ g AN - .7
E S A AN \\\// h //
/ s \
O o 60 | v ~
n N
(7)) (%]
- 50 |
_I LL
0
401 ———
-14 -12 -10 8 6 4 -2 0 2 4 6 8 10 12 14
(b)
___initial
60 _ __ during scotoma
59 | reset
~
© 58 |
L_I|J O 57 |
EI 8 56
O ) 55 |
) N 54 |
N ¥ 53|
W52
o 51 |
50

14 12 10 8 6 4 2 0 2 4 6 8 10 12 14

Figure 5.25: Simulation results: Average RF size changes after complementary
scotoma conditioning.

The average RIF' area before complementary scotoma conditioning (solid line), after
complementary scotoma conditioning (dashed line), and after re-conditioning with normal
stimuli (dotted line) in the EXIN network with only afferent excitatory synaptic plasticity
enabled (a), the LISSOM network with only afferent excitatory synaptic plasticity
enabled (b), and the LISSOM network with only instar lateral excitatory synaptic plasticity
enabled (c), are shown as a function of the position of the initial RE center of Layer 2 neurons

relative to the scotoma center. See Figure 5.24 for conventions and simulation details.



272

excitatory plasticity alone, smaller RF shifts in neurons far from the cortical complementary
scotoma boundary were due to reduced inhibition to these neurons from neurons close to

the cortical complementary scotoma boundary.

5.4.2 RF changes because of neuronal adaptation

During complementary scotoma conditioning, Layer 2 neurons are activated
alternately because of the alternate complementary input stimulations. Thus, Layer 2
neurons become less adapted compared to the adaptation level after the initial whole field
stimulation.

In the computer simulations of complementary scotoma conditioning of the
inhibition-dominant network, Layer 2 neurons whose initial RF straddles the complementary
scotoma boundary were more adapted than neurons whose initial RF is away from the
complementary scotoma boundary. But the Layer 2 RF size as a function of the initial
RF center position was almost flat (Figure 5.24¢). Note that the RF size of a Layer 2
neuron was defined as the number of input positions at which stimulation drives the
neuron’s activation above a threshold. The difference in adaptation level among the neurons
was not large enough to produce significant change in RF size. The small differences in
the adaptation level of Layer 2 neurons after complementary scotoma conditioning was
manifested as small RF shifts (Figure 5.26c). Because neurons whose RF center was
close to the complementary scotoma boundary were more adapted than the other neurons,
they exerted less lateral inhibition on neurons whose initial RF center was away from the
complementary scotoma boundary, and the RF center of neurons whose RF center was on
either side of the complementary scotoma boundary shifted toward each other. If neurons
whose RF center was close to the complementary scotoma boundary were less adapted than
the other neurons, then they would have maximal RF size, and they would exert more
lateral inhibition on neurons whose initial RF center was away from the complementary
scotoma boundary; thus the RF centers of neurons whose RF centers were on either side of
the complementary scotoma boundary would shift away from each other.

In the simulation of complementary scotoma conditioning of the adaptation

network with no lateral interaction, Layer 2 neurons whose RF center was close to the
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Figure 5.26: Simulation results: Average RF shifts after complementary scotoma
conditioning.

The average shift in the RF center after complementary scotoma conditioning (solid line)
and after re-conditioning with normal stimuli (dashed line) with respect to the initial
RF centers is shown as a function of distance of the initial RF center of Layer 2 neurons
from the scotoma center for the EXIN network with only lateral inhibitory synaptic
plasticity enabled (a), the LISSOM network with only lateral excitatory synaptic plasticity
enabled (b), and the adaptation network (c). The average RF shift shown at each position
is the mean over the shift in RF center of neurons with same z coordinate. Positive
and negative shifts represent a shift away from and toward the center of the scotoma,
respectively. The RF center of a Layer 2 neuron is the center of moment of the neuron’s
responsiveness to input at different positions within its RF. See Figure 5.24 for simulation

details and conventions.
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Figure 5.27: Simulation results: Average RF shifts after complementary scotoma

conditioning.

The average shift in the RF center after complementary scotoma conditioning (solid line)

and after re-conditioning with normal stimuli (dashed line) with respect to the initial

RF centers is shown as a function of distance of the initial RF center of Layer 2 neurons

from the scotoma center for the EXIN network with only afferent excitatory synaptic

plasticity enabled (a), the LISSOM network with only afferent excitatory synaptic plasticity

enabled (b), and and the LISSOM network with only instar lateral excitatory synaptic

plasticity enabled (c). See Figure 5.26 for conventions.
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Figure 5.28: Simulation results: Average RF size changes after complementary
scotoma conditioning.

The average RIF' area before complementary scotoma conditioning (solid line), after
complementary scotoma conditioning (dashed line), and after re-conditioning with normal
stimuli (dotted line) in the adaptation network with no lateral interaction (a), and in the
excitation-dominant adaptation network (b), are shown as a function of the position of the
initial RF center of Layer 2 neurons relative to the scotoma center. In panels (a,b) the
dotted curve overlaps with the solid curve. See Figure 5.24 for conventions and simulation
details.

complementary scotoma boundary were more adapted than other neurons. Thus, they may
have a smaller RF than neurons whose initial RF center was away from the complementary
scotoma boundary. As in the simulation of the inhibition-dominant adaptation model, the
RF sizes of Layer 2 neurons were almost the same (Figure 5.28a). No RF shifts occurred
because there are no lateral interactions (Figure 5.29a). If Layer 2 neurons whose RF center
was close to the complementary scotoma were less adapted than other neurons, they would
have larger RFs than other neurons, and again there would not be any RF shifts.

In the simulation of complementary scotoma conditioning of the
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Figure 5.29: Simulation results: Average RF shifts after complementary scotoma
conditioning.

The average shift in the RF center after complementary scotoma conditioning (solid line)
and after re-conditioning with normal stimuli (dashed line) with respect to the initial
RF centers is shown as a function of distance of the initial RF center of Layer 2 neurons
from the scotoma center for the adaptation network with no lateral interaction (a) and for
the excitation-dominant adaptation network (b). In panel (a) the solid and dashed curves

overlap with the abscissa because there were no RF shifts. See Figure 5.26 for conventions.

excitation-dominant adaptation, Layer 2 neurons whose RF center was close to the
complementary scotoma boundary were less adapted than other neurons. Thus, they had
larger RF's than neurons whose initial RF center was away from the complementary scotoma
boundary (Figure 5.28b). Because neurons whose RF center was close to the complementary
scotoma boundary were less adapted than the other neurons, they exerted more lateral
excitation on neurons whose initial RF center was away from the complementary scotoma
boundary, and the RF centers of neurons whose RF centers were on either side of the

complementary scotoma boundary shifted toward each other (Figure 5.29b). If neurons
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whose RF center was close to the complementary scotoma boundary were more adapted
than the other neurons, then they would have smaller RFs than other neurons, and they
would exert less lateral excitation on neurons whose initial RF center was away from the
complementary scotoma boundary; thus, the RF centers of neurons whose RF centers were

on either side of the complementary scotoma boundary would shift away from each other.

Effects of network interactions on neuronal adaptation

In the adaptation networks, the complementary scotoma stimulation activates
Layer 2 neurons with close to equal probability. The adaptation levels of Layer 2 neurons
in the adaptation networks are not necessarily equal for the following reasons. (1) Neurons
whose initial RF straddles the complementary scotoma boundary are activated slightly
more often (although possibly at a lower intensity), and therefore these neurons may become
slightly more adapted than other neurons. (2) Neurons whose RF center is close to the center
of a hemifield have a large number of their afferent excitatory pathways excited when that
hemifield is stimulated, whereas neurons whose RF center is close to the complementary
scotoma boundary have only a small number of their afferent excitatory pathways excited.
Thus, neurons whose RF center is close to the center of a hemifield are likely to be more
strongly activated and therefore more adapted than neurons whose RF center is close to the
complementary scotoma boundary. (3) The difference in the amount of afferent excitation
received by the Layer 2 neurons is further accentuated by the adaptation threshold. If
Layer 2 neurons have large thresholds, neurons receiving larger afferent excitation are more
likely to be activated and hence be more adapted. (4) In the inhibition-dominant adaptation
network, neurons whose RF center is close to the complementary scotoma boundary receive
less lateral inhibition than neurons whose RF center is close to the center of a hemifield, thus
making neurons whose RF center is close to the complementary scotoma boundary likely to
respond strongly and become more adapted. On the other hand, in the excitation-dominant
adaptation network, neurons whose RF center is close to the complementary scotoma
boundary receive less lateral excitation than neurons whose RF center is close to the center
of a hemifield, thus making them respond weakly and become less adapted. The eventual

distribution of adaptation levels will be determined by the more dominant factors.
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5.4.3 Recovery of RF properties

Normal stimulation following complementary scotoma conditioning caused
restoration of the original RF size and position in the EXIN and LISSOM networks with
only lateral inhibitory synaptic plasticity enabled, in all the adaptation networks, and in
the LISSOM network with only afferent synaptic plasticity enabled (Figures 5.24-5.29).

The EXIN network with only afferent excitatory synaptic plasticity enabled
(Figures 5.25a and 5.27a) did not recover its original RE properties. The LISSOM network
with only lateral excitatory synaptic plasticity enabled (Figures 5.25¢ and 5.27c¢) also did
not recover some of its original RF properties, because as the lateral excitatory pathways
weaken, effective inhibition between neurons increases, and increased lateral inhibition

makes Layer 2 neurons less coactive.

5.4.4 Conclusions

Complementary scotoma conditioning revealed differences in the behaviors of
the various models. Thus, a neurobiological experiment using complementary scotoma
conditioning could discriminate between the different models based on their predictions.
The predictions of the different models are described below.

After complementary scotoma conditioning, the EXIN and the LISSOM network,
with only their respective lateral inhibitory synaptic plasticity rules enabled, predict
that cortical neurons whose initial RF centers were close to the complementary scotoma
boundary would have larger RFs than neurons whose initial RF centers were far from
the complementary scotoma boundary, and the initial RFs on opposite sides of the
complementary scotoma boundary would shift toward each other, whereas the LISSOM
network with only lateral excitatory synaptic plasticity and the EXIN and the LISSOM
network with only afferent excitatory synaptic plasticity predict that neurons whose initial
RF centers were close to the complementary scotoma boundary would have smaller RF's
than neurons whose initial RF centers were far from the complementary scotoma boundary,
and the initial RFs on opposite sides of the complementary scotoma boundary would shift

away from each other.
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After complementary scotoma conditioning, the adaptation network with no lateral
interaction predicts that RFs of neurons whose initial RF centers were close to the
complementary scotoma boundary would be smaller than, equal to, or greater than the
RFs of other neurons, but no RF shifts would occur because the afferent weights were
symmetric.

The inhibition-dominant adaptation network network predict that, complementary
scotoma conditioning would (1) cause the RFs of neurons whose initial RF centers were
close to the scotoma boundary to be smaller than the RFs of other neurons and cause
the RFs on opposite sides of the complementary scotoma boundary to shift toward each
other, or (2) cause the RFs of neurons whose initial RF centers were close to the scotoma
boundary to be larger than the RFs of other neurons, and cause the RFs on opposite
sides of the complementary scotoma boundary to shift away from each other. In the
excitation-dominant network, however, when the RFs of neurons whose initial RF centers
were close to the scotoma boundary are smaller (larger) than the RFs of other neurons,
the RF's across the complementary scotoma boundary shift away from (shift toward) each
other. The specific effects will depend on the conditions discussed in Section 5.4.2.

It is possible that the rates of change in the effective lateral excitation and the
effective lateral inhibition may differ at short and long ranges. This can be probed by
scotoma and complementary scotoma conditioning. For example, if at short ranges effective
lateral excitation decreases faster than lateral inhibition, then scotoma conditioning should
produce RF contraction in neurons whose initial RF center is close to the scotoma boundary

and RF expansion in neurons whose initial RF is inside and far from the scotoma boundary.

5.5 Discussion

The effects of the EXIN rules, the LISSOM rules, and the adaptation rule in
response to artificial scotoma stimuli have been compared. The experimental data and the
simulation predictions are summarized in Table 5.1. The entries in boldface indicate where
the models are in agreement with experimental data.

The EXIN network with outstar lateral inhibitory synaptic plasticity alone
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Measurement

Exp’tal
Data

EXTN
Outstar
Tateral
Inh.
Learning
alone

EXIN
Instar
Afferent
Exc.
TLearning
alone

TLISSOM
Instar
Tateral
Inh.
Tearning
alone

LISSOM
Instar
lateral
Exc.
learning
alone

LISSOM
Instar
Afferent
Exc.
TLearning
alone

AN
with no
lateral
inter-
actions

AN
Exc.

Dom.

AN
Inh.

Dom.

RF expansion
inside the scotoma

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

Asymmetric RF
profile after
scotoma
conditioning

Yes

Yes

Yes

Yes

Yes

Asymmetric RF
more responsive
to locations
away from
scotoma center

No

Yes

No

No

Yes

Maximal RF
expansion just
inside the
cortical scotoma
boundary

Yes

Yes

No

Yes

Yes

No

No

Yes

Function returns
in concentric
inward direction

Yes

Yes

Yes

Yes

Yes

Retinal lesion
produces small
centrifugal

RF shifts

Yes

Yes

No

No

Yes

Blank display
changes RF size

Complem. scotoma
cond. produces
peak expansion
near scotoma,
boundary

77

Yes

No

No

No

No/Yes

No/Yes

No/Yes

Complem. scotoma
cond. shifts RFs
across and close

to the scotoma
boundary toward
each other

77

No

No

No

No/No

No/Yes

Yes/No

Table 5.1: Comparison of models

of dynamic RF

changes

produced the following effects, corresponding closely to the reported neurophysiology.

During scotoma/normal conditioning, the EXIN model with only outstar lateral inhibitory

synaptic plasticity enabled produced

o centrifugal expansion of RFs that were initially inside the scotoma region;

o the greatest expansion for RFs closest to the scotoma boundary;

e RF expansion that exceeded the boundaries of the scotoma for RFs close to the

scotoma boundary;
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e increased response from the area of the initial REF (DeAngelis et al., 1994, 1995),
without changes in spontaneous activation in the absence of visual stimulation

(Pettet & Gilbert, 1992);

e asymmetric RF profiles in neurons with initial RF close to the scotoma boundary

(Das & Gilbert, 1995b);
e RF contraction to original size during subsequent normal stimulation; and
e no RF changes in the absence of stimulation.

During complementary scotoma conditioning the EXIN network with only outstar lateral

inhibitory synaptic plasticity enabled showed

e maximal RF size for neurons whose initial RF was on either side of the scotoma

boundary; and

e a shift in RF of neurons whose initial RFs were close the scotoma boundary toward

each other.

The EXIN model with only afferent excitatory synaptic plasticity enabled
produced the following effects, different from those produced by the EXIN model with

only lateral inhibitory synaptic plasticity enabled:

e neurons affected by scotoma conditioning did not recover their original RF size and

RF position; and

e complementary scotoma conditioning caused RF contraction and minimal RF size in

neurons whose initial RF was on either side of the scotoma boundary; and

e complementary scotoma conditioning shifted the RFs of neurons whose initial RFs

were close to the scotoma boundary away from each other.

The other effects were the same as those produced by the EXIN model with only lateral
inhibitory synaptic plasticity enabled (see Table 5.1).
The effects of scotoma conditioning and complementary scotoma conditioning

the full EXIN network (with the afferent excitatory and the lateral inhibitory synaptic
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plasticity rules enabled) will depend on the relative rate of learning in the two rules. The
effects obtained by disabling one of the two rules are at the ends of a continuum of effects
produced by the EXIN rules. Because the two EXIN rules produce many common effects
after scotoma conditioning (see Table 5.1), the full EXIN network too produces these effects.
Unlike the EXIN network with only afferent excitatory synaptic plasticity, the full network
can recover the original RFs during normal conditioning following scotoma conditioning.
Thus, the full EXIN network produces effects consistent with neurophysiological data on
artificial scotoma conditioning. However, during complementary scotoma conditioning the
two EXIN rules produce opposite effects (Table 5.1), and thus the overall effects produced
by the full EXIN network will depend on the relative magnitudes of changes produced by
the two rules.

The LISSOM network with only instar lateral inhibitory synaptic plasticity enabled
produced the following effect inconsistent with neurophysiological data. In response to

normal/scotoma conditioning, the network showed

e expansion of RFs that were initially outside the scotoma and close to the scotoma

boundary.

The LISSOM network with afferent excitatory synaptic plasticity alone or instar
lateral excitatory synaptic plasticity alone produced RF expansion in neurons whose
initial RF was inside the scotoma during scotoma conditioning and produced effects similar
to those produced by the EXIN network with only outstar lateral inhibitory synaptic
plasticity enabled during scotoma conditioning. However, during complementary scotoma
conditioning, the LISSOM network with instar afferent excitatory synaptic plasticity alone

or instar lateral excitatory synaptic plasticity alone produced
e RF contraction and minimal RF size in neurons whose initial RF was on either side

of the scotoma boundary; and

o shifts in RF of neurons whose initial RFs were close the scotoma boundary, away each

other.

As in the full EXIN network, the effects produced by the full LISSOM network

after scotoma conditioning and complementary scotoma conditioning will depend on the
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relative magnitudes of changes produced by the three rules in the LISSOM model. The
important observation is that, after scotoma or complementary conditioning, many of the
effects produced by the LISSOM lateral inhibitory synaptic plasticity rule are in conflict
with those produced by the LISSOM afferent and lateral excitatory synaptic plasticity rules
(see Table 5.1).

The inhibition-dominant adaptation model produced several effects (Xing &
Gerstein, 1994) consistent with neurophysiological data. However, the inhibition-dominant

adaptation network produced the following effect inconsistent with neurophysiological data:
e changes in RF size in the absence of stimulation.

The adaptation network with no lateral interaction and the excitation-dominant
adaptation network produced RF expansion in neurons in the cortical scotoma. However,
the RF size in these networks changed in the absence of stimulation, inconsistent with
experimental data. In the adaptation network with no lateral interaction, the RFs remained
symmetric, and RF positions did not change following scotoma conditioning. In the
excitation-dominant adaptation network, the RF's shifted toward the scotoma center. These
results are inconsistent with neurophysiological data.

After complementary scotoma conditioning the adaptation networks, the RFs of
neurons whose initial RF centers were close to the complementary scotoma boundary may
be smaller or larger than the RFs of other neurons; the RF size is parameter dependent.
In the adaptation network with no lateral interaction no RF shifts occurred. In the
inhibition-dominant adaptation network, when the RFs of neurons whose initial RF centers
were close to the complementary scotoma boundary were larger than the RFs of other
neurons, then the RFs on opposite sides of the boundary shifted away from each other,
but when the RFs of neurons whose initial RF centers were close to the complementary
scotoma boundary were smaller than the RF's of other neurons, then the RFs on opposite
sides of the boundary shifted toward each other. In the excitation-dominant adaptation
network, the relationship between the relative RF size and RF shift are opposite to that in
the inhibition-dominant adaptation network.

The role of afferent excitatory synaptic plasticity rule in producing fast (on the
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order of minutes or hours) RF changes in adult animals may be very limited or non-existent.
Restricted retinal lesion in cats produced RF changes in neurons in layers 3 and 4 of area 17
within hours only if the non-lesioned eye was closed (Chino et al., 1992). This result is
contrary to the prediction of a model with only a fast instar afferent excitatory synaptic
plasticity rule (e.g., the EXIN and the LISSOM afferent excitatory synaptic plasticity
rules), because active neurons would weaken their connections from the lesioned region,
regardless of whether the other eye is open or closed, to produce changes in RF properties.
Furthermore, changes in ocular dominance, which are presumed to be caused by changes in
thalamocortical afferents (Clothiaux et al., 1991; Miller et al., 1989), cannot be induced in
adult animals by visual deprivation. However, dynamic RF changes because of afferent
excitatory plasticity would be consistent with the results of Chino et al. (1992) if the
afferent excitatory plasticity occurs in pathways originating from a binocular layer. With
the unlesioned eye open, there will be no scotoma in the binocular layer, and hence afferent
excitatory pathways from the binocular layer will not change. But, Chino et al. (1992)
observed no change in RF of neurons in layer 4 of cat area 17 (which may receive monocular
thalamocortical inputs) when the unlesioned eye was open. In the EXIN network with
outstar lateral inhibitory synaptic plasticity alone, the LISSOM networks with instar lateral
excitatory or instar lateral inhibitory synaptic plasticity alone, and the adaptation networks,
with the unlesioned eye open there is no cortical scotoma; all binocular neurons in the
networks are active during the conditioning and therefore the lateral weights in the EXIN
or the LISSOM networks and the adaptation level in the inhibition-dominant adaptation
network would remain almost unchanged. However, there might be some small changes
in RF properties because some cortical neurons are binocularly activated while others are
monocularly activated by the unlesioned eye.

Instar lateral excitatory synaptic plasticity alone in the LISSOM network decreases
lateral excitatory connection weights from neurons inside the cortical scotoma to those
outside the cortical scotoma. This directly reduced the RF size of neurons whose initial
RFE center is close to and outside the scotoma (Figure 5.23) and indirectly leads to
RF expansion in neurons whose initial RF is inside the scotoma (Figure 5.23). In the

EXIN model with lateral inhibitory synaptic plasticity alone, scotoma conditioning leads to



285

weakening of the lateral inhibitory connections from neurons outside the cortical scotoma to
those inside. This directly leads to RF expansion in neurons inside the cortical scotoma. The
increased responsiveness of neurons inside the cortical scotoma then lets those neurons exert
more inhibition on neurons outside the cortical scotoma, leading indirectly to RF contraction
of neurons outside the cortical scotoma (Figures 5.7 and 5.10). Thus, these two models
produce qualitatively similar results during scotoma conditioning; the results are closest
to the experimental data on artificial scotoma conditioning and retinal lesions. However,
as shown in Section 5.4, they exhibit different RF changes during complementary scotoma
conditioning.

Grajski and Merzenich (1990) proposed a model with plasticity in afferent
excitatory, feedback excitatory, lateral excitatory, and lateral inhibitory pathways, for
RF changes following repetitive peripheral stimulation of a restricted skin region. Their
plasticity rule is a covariance rule with normalization; pathway strength is weakened if either
the source or the target neuron is inactive. Such a rule would produce roughly symmetric
RF changes across the cortical scotoma boundary even during scotoma conditioning,

contrary to the experimental data and contrary to the EXIN and LISSOM rules.

5.5.1 Models based on the EXIN and the LISSOM rules

Several visual functions and visual cortical properties have been modeled by the
EXIN and the LISSOM rules.

The EXIN afferent excitatory and lateral inhibitory synaptic plasticity rules
together have been used to model visual disparity selectivity (Marshall, 1990c),
visual motion selectivity and grouping (Marshall, 1990a), visual inertia (Hubbard &
Marshall, 1994), visual motion integration in the aperture problem (Marshall, 1990a),
visual length selectivity and end-stopping (Marshall, 1990b), visual depth perception from
occlusion events (Marshall & Alley, 1993; Marshall et al., 1996a), visual depth from
motion parallax (Marshall, 1989), visual motion smearing (Martin & Marshall, 1993), visual
orientation selectivity (Marshall, 1990d), and visual stereomatching (Marshall et al., 1996b).

The LISSOM rules have been used to model development of topographic RFs

(Sirosh & Miikkulainen, 1994b, 1997), visual orientation tuning and orientation



286

columns (Sirosh et al., 1996), ocular dominance columns (Sirosh & Miikkulainen, 1995,
Sirosh et al., 1996), RF changes after cortical lesions (Sirosh & Miikkulainen, 1994a), and
tilt aftereffects (Bednar & Miikkulainen, 1997).

Although, the EXIN and the LISSOM rules model some visual functions and
cortical properties, they produce different effects after artificial scotoma conditioning. Thus,
the analyses of the effects of the various synaptic plasticity rules during artificial scotoma

conditioning provides a basis for determining the rules for cortical plasticity.

5.5.2 Transient response bias in RF measurements

The changes in RFs produced by the EXIN and the LISSOM rules persist after
cessation of the conditioning stimuli. However, several results show that some dynamic
RF changes produced by artificial scotoma conditioning are transient. For example,
some RF changes occurred within seconds of the conditioning, and recovery time was
also on the order of seconds, in the absence of stimulation (DeAngelis et al., 1995;
Kapadia et al., 1994). These transient changes in RF can be modeled by the Xing and
Gerstein (1994) inhibition-dominant adaptation model, operating at a fast time-scale
(1-10 seconds). Adaptation could also be added to the EXIN and the LISSOM models
to describe the transient RF changes. The transient RF affects appear to be a separate

phenomenon from the RF dynamics that operate at a slower time scale (5—15 minutes).

5.5.3 Effect of orientation on RF dynamics

Pettet and Gilbert (1992) studied the effects of conditioning a neuron by presenting
the artificial scotoma against a background of moving bars oriented orthogonally to the
preferred orientation of the neuron (cross-orientation artificial scotoma). For a few neurons
(3 out of 15), they found an expansion with iso-orientation conditioning stimuli and did
not find an expansion with the orthogonal pattern. In these cases, the orthogonal pattern
actually reduced the RF size and responsiveness of the neuron.

The EXIN rules predict that cross-orientation artificial scotoma conditioning
of a neuron would produce less expansion than would iso-orientation artificial scotoma

conditioning. Lateral inhibition between neurons becomes roughly proportional to the
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amount of overlap in their RFs, using the EXIN rules (Marshall, 1990bcd; 1992ab; 1995a).
The EXIN model predicts strong iso-orientation inhibition and weak ortho-orientation
inhibition (Marshall, 1990d) consistent with the results of Ferster (1989). During
cross-orientation artificial scotoma conditioning, the decrease in lateral inhibition to the test
neuron will be small because according to the EXIN rules, the ortho-orientation inhibition
is small. In addition, the EXIN rules can model the shrinkage after cross-orientation
artificial scotoma conditioning observed by Pettet and Gilbert (1992). The cross-orientation
scotoma conditioning causes neurons with the near-orthogonal preferred orientation within
the cortical scotoma to become more responsive and to exert more inhibition on the recorded
neuron. Further simulations are needed to demonstrate this prediction.

Gilbert and Wiesel (1990) found short term modifications in the orientation
specificity of neurons, in response to contextual stimuli placed outside a neuron’s RF.
Presentation of differently oriented bars in the surround of a neuron’s RF caused the
neuron’s tuning curve to shift. In some cases, the change persisted even after the
removal of the surround stimuli. The most effective way of restoring the neuron’s
original orientation tuning was to stimulate the surround with lines of varying orientation,
for a period of about 10 mins. This persistent effect may be produced by changes
in the lateral inhibitory weights between neurons with different orientation specificity.
An explanation of this effect based on synaptic changes may explain development of
connection patterns that can produce the various kinds of contextual effects (Badcock &
Westheimer, 1985; Butler & Westheimer, 1978; Westheimer, 1986, 1989; Westheimer &
McKee, 1977; Westheimer et al., 1976).

5.5.4 Long-term effects of retinal lesions on RF properties

Darian-Smith and Gilbert (1995) found that about 5 minutes after bilateral retinal
lesions neurons in the cortical scotoma became responsive to visual stimuli outside the
lesioned regions. However, the neurons that acquired responsiveness to locations outside
the lesioned retina were less responsive and more sluggish in their response compared to
neurons in the normal cortex. The sluggish response of neurons in the recovered area of

the cortical scotoma in the primary visual cortex may arise because these neurons receive
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afferent excitation via weak connections, which can activate these neurons because of the
reduced lateral inhibition they receive, as a consequence of the EXIN lateral inhibitory
synaptic plasticity rule, the EXIN or the LISSOM afferent excitatory synaptic plasticity
rule, or the LISSOM lateral excitatory synaptic plasticity rule. It is also possible that the
cortical recovery is aided by long-range lateral excitation or by feedback connections from
other cortical layers (Darian-Smith & Gilbert, 1994, 1995), in addition to the changes in
lateral inhibition in the primary visual cortex. Cortical scotoma in deeper layers can modify
RF properties of neurons in the deeper layers, and these changes can affect RF properties in
lower cortical layers via feedback pathways. Within the EXIN learning framework, feedback
connections have been used in the representation of oblique and transparent surfaces defined
by stereo disparity (Marshall & Kalarickal, 1995; Marshall et al., 1996b) and in motion
grouping (Schmitt & Marshall, 1995, 1996).

The cortical reorganization occurring over a period of weeks and months following
retinal lesions may also involve the sprouting and establishment of new connections — either
synaptogenesis along existing fibers or the physical extension of axonal/dendritic terminals
in addition to synaptogenesis (Darian-Smith & Gilbert, 1994).

Even after several months after the retinal lesions, a small region of the
cortex remained unresponsive to visual stimulation in the unlesioned retinal regions.
Darian-Smith and Gilbert (1995) invoke physical limits on the extent of changes in the

horizontal connections to explain the existence of the persistent deprived cortical region.

5.5.5 Role of lateral excitatory pathways in RF properties

The LISSOM network has been used to model self-organization of topographic
RF organization and ocular dominance columns and the effects of cortical lesions (Sirosh &
Miikkulainen, 1994ab, 1995, 1997). In the LISSOM network, topographically ordered RF's
develop if the initial afferent connections are ordered in overlapping patches and the
synaptic weights are random (Sirosh & Miikkulainen, 1997). This possibility suggests that
undeveloped cortex with input afferents ordered in overlapping connections but with random
synaptic weights can develop into topographically organized cortex.

The EXIN network described in this chapter does not have lateral excitatory
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connections. Lateral excitatory connections with signal transmission latencies have been
used in conjunction with the EXIN rules to model several aspects of visual motion perception
(Hubbard & Marshall, 1994; Marshall, 1989, 1990a, 1991, 1995b; Marshall & Alley, 1993;
Martin & Marshall, 1993). The EXIN lateral connectivity pattern can be viewed of as a
limiting case of the LISSOM connectivity pattern, when the lateral excitatory zone of a
Layer 2 neuron contains only itself. Smaller lateral excitatory zones lead to smaller regions
of topographic ordering. Like the LISSOM network, the EXIN network could show local

topographic ordering if it had lateral excitatory connection pathways.

5.5.6 Significance of the EXIN lateral inhibitory plasticity rule

In the EXIN model, strong lateral inhibitory pathways develop between neurons
that are consistently coactivated. Neurons can be consistently coactivated if they receive
excitatory afferents from many common input neurons. Thus, in the EXIN model, cortical
neurons that share inputs have strong lateral inhibitory pathways between them. This
is consistent with experimental results suggesting that a neuron receives the strongest
inhibition when its stimuli are most similar to the preferred stimuli of the neuron
(Blakemore & Tobin, 1972; DeAngelis et al., 1992; Ferster, 1989).

The EXIN lateral inhibitory plasticity rule has several desirable functional
properties. The inhibitory synaptic plasticity rule leads to improved stimulus
discrimination, sparse and distributed coding, and exclusive allocation (Marshall, 1995a;
Marshall & Gupta, 1997). The EXIN synaptic plasticity rules have been used to
model the development of disparity selectivity (Marshall, 1990c¢), motion selectivity and
grouping (Marshall, 1990a, 1995b; Schmitt & Marshall, 1995), orientation selectivity
(Marshall, 1990d), and length selectivity and end-stopping (Marshall, 1990b).

Note that the EXIN lateral inhibitory plasticity rule (Equation 5.1) is an
asymmetric rule; lateral inhibitory pathways from active neurons to inactive weaken,
however, lateral inhibitory pathways from inactive neurons to other neurons do not change.
This asymmetry makes it possible to produce RF expansion in the inactive neurons in
response to artificial scotoma conditioning and retinal lesions, without necessarily producing

RF expansion in neurons that are activated. The EXIN lateral inhibitory synaptic plasticity
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rule directly reduces inhibition to neurons inactivated by peripheral scotomas or lesions, thus
making them more likely to respond to some visual stimuli. The EXIN lateral inhibitory
synaptic plasticity rule enhances the efficiency of a neural network’s representation of
perceptual patterns, by recruiting unused and under-used neurons to represent input
patterns (Marshall, 1995a; Marshall & Gupta, 1998). In comparison, the LISSOM lateral
inhibitory synaptic plasticity rule weakens lateral inhibitory pathways from inactive neurons
to active neurons, thereby tending to make the active neurons more strongly active and
to suppress the inactive neurons more strongly. In the LISSOM model, neurons that
are inactive or very weakly active because of a peripheral scotoma or because of weak
afferent excitatory pathways can become more responsive to some specific visual feature
only indirectly via weakening of either afferent excitatory pathways to other active neurons
or lateral excitatory pathways to other active neurons.

Thalamocortical afferent arbors can spread over a large cortical area;
thalamocortical afferents from the lateral geniculate nucleus can extend over a region up
to 3 mm in cat primary visual cortex (Humphrey et al., 1985). Gilbert & Wiesel (1983)
observed thalamocortical arbors that extended 2 mm in layer 4 of primary visual cortex
of cats. Interlaminar excitatory pathways in the primary visual cortex of cats spread over
a few millimeters (Gilbert & Wiesel, 1983). Thus, large overlap in the afferent excitatory
inputs to model neurons in the simulations is reasonable.

In animal cortex, lateral pathways spread over large distances. Axonal arbors
of GABAergic large basket neurons extend up to 1.5 mm in cortex and terminate on the
soma of pyramidal neurons in small patches of cortex (Somogyi et al., 1983; Somogyi &
Martin, 1985). Based on the anatomical structure of the axonal arbors of basket neurons,
these neurons appear to have the greatest effect on neurons with orientation selectivity
similar to their own; however, they may affect neurons with other orientations and other
RF positions (Martin, 1988). Long-range inhibitory influences in cortex may also be
subserved by the long-range horizontal pathways that extend 2-8 mm in primary visual
cortex of cat (Gilbert & Wiesel, 1983, 1989). The long-range horizontal pathways have an
excitatory effect at low stimulation strength and have an inhibitory effect at high stimulation

strength (Gil & Amitai, 1996; Weliky et al., 1995). Furthermore, the excitatory and
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inhibitory effects of the long-range horizontal connections are concentrated on neurons with
similar orientation selectivity to that of the source neuron (Weliky et al., 1995). Combined
measurement of spiking point-spread using extracellular recording and optical point-spread
in cat primary visual cortex showed that the spiking point-spread accounts for only 5%
of the optical point-spread; the remainder of the optical point-spread was largely caused
by inhibition (Das & Gilbert, 1995a). The optical point-spread had a diameter between
3.2 and 5.2 mm and showed greatest magnitude for cortical neurons with similar stimulus
orientation preference to that of the spiking neurons.

These data are consistent with the suggestion that cortical neurons with common
inputs, and hence similar properties, should have relatively strong lateral inhibitory
pathways between them, for improved stimulus discrimination (e.g., orientation selectivity,
disparity selectivity, length selectivity, spatial frequency selectivity, motion direction
selectivity) and sparse distributed coding. Thus, lateral inhibitory plasticity may play
an active and important role in the development of cortical function. An alternative is to
hardwire lateral inhibitory pathway weights as a function of cortical distance. However,
the strength of lateral inhibitory pathways in primary visual cortex is not uniform, but

depends on topographical organization of RF properties such as orientation selectivity

(Weliky et al., 1995).

5.5.7 Neurophysiological realization of the EXIN lateral inhibitory
plasticity rule

The EXIN model is a functional model that describes modifications in the effective
synaptic weights, including modifications in effective lateral inhibitory weights. In wvivo,
intracortical inhibition is mediated by inhibitory interneurons, which receive excitation from
excitatory neurons in addition to afferent input (Douglas & Martin, 1991; Somogyi, 1989).

Neurophysiologically, the EXIN lateral inhibitory synaptic plasticity rule could be
realized in a disynaptic circuit containing a lateral excitatory horizontal connection (either
short- or long-range) and an inhibitory interneuron, either by modifying the excitatory
weights from the excitatory neuron or by changing the inhibitory weight from the inhibitory
neuron (Darian-Smith & Gilbert, 1994, 1995; Das & Gilbert, 1995ab; Gilbert et al., 1996;
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Hirsch & Gilbert, 1993). The axonal arbors of many inhibitory neurons (e.g., clutch,
basket, chandelier) terminate mainly on excitatory neurons (Somogyi, 1989; Somogyi &
Martin, 1985), and axonal arbors of most excitatory neurons terminate on other excitatory
neurons (McGuire et al., 1991; Somogyi, 1989; Somogyi & Martin, 1985). During
development, lateral pathways in the primary visual cortex are initially widespread, and
then develop into clustered patches (Katz & Callaway, 1992; Dalva & Katz, 1994). The
development of the lateral connectivity depends on external input (Katz & Callaway, 1992).
The axonal arbors of inhibitory large basket neurons are also clustered (Somogyi &
Martin, 1985) and may develop from initially widespread pathways during development,
suggesting that there is synaptic plasticity in these connections. Stimulation of the long-
range horizontal excitatory pathways produce excitatory and inhibitory effects on excitatory
neurons (Gil & Amitai, 1996; Weliky et al., 1995). Thus, changing the efficacy of lateral
inhibitory pathways or the lateral excitatory pathways to inhibitory neurons will change
effective inhibition to cortical neurons. Hirsch & Gilbert (1993) have suggested that long-
term depression could be a decrease in the strength of excitatory connections or an increase
in the strength of inhibitory connections. If the synapses of the long-range excitatory
connections to both excitatory and inhibitory neurons change, then to be consistent with
the EXIN inhibitory rule, the synapses onto inhibitory neurons should change faster than the
synapses onto excitatory neurons, so that the overall effect is a change in lateral inhibition.

Plasticity in inhibitory synapses would be more likely to produce large RF changes
than plasticity in excitatory synapses on inhibitory interneurons. The axonal arbors of
many inhibitory neurons (e.g., clutch, basket, chandelier) terminate mainly on excitatory
neurons (Somogyi, 1989; Somogyi & Martin, 1985), and axonal arbors of most excitatory
neurons terminate on other excitatory neurons (McGuire et al., 1991; Somogyi, 1989;
Somogyi & Martin, 1985). Thalamocortical stimulation produces a monosynaptic EPSP
and a disynaptic IPSP in primary visual cortical neurons, but disynaptic EPSPs are
rarely produced (Gil & Amitai, 1996; Ferster, 1989). Neurons receive disynaptic [PSPs
because of thalamocortical excitation at all stimulation intensities that evoke early EPSPs
(Gil & Amitai, 1996). Weak stimulation of the long-range horizontal excitatory pathways

produces excitatory effects on excitatory neurons, but strong stimulation leads to inhibition
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of excitatory neurons (Gil & Amitai, 1996; Weliky et al., 1995); this implies that inhibitory
interneurons are inactive or very weakly active during weak stimulation of the long-range
horizontal excitatory pathways. The above data suggest that the inhibition received by
excitatory neurons from inhibitory interneurons tends to be stronger than the lateral
excitation received by the excitatory neurons. Thus, changing the efficacy of lateral
inhibitory pathways directly (using the EXIN lateral inhibitory synaptic plasticity rule)
may affect RF properties more drastically than changing lateral excitatory pathways to
inhibitory neurons or lateral excitatory pathways to excitatory neurons (e.g., using the

LISSOM lateral excitatory synaptic plasticity rule).

5.5.8 Conclusions

The major conclusions of this chapter are:

1. the subtle distinction between instar and outstar rules produces a dramatic difference

in neural behavior and plasticity;

2. the outstar EXIN lateral inhibitory and the instar LISSOM lateral excitatory synaptic
plasticity rules are sufficient to produce effects consistent with neurophysiological data

on RF changes after artificial scotoma conditioning and retinal lesions in adult animals;

3. the instar LISSOM lateral inhibitory synaptic plasticity rule produces effects contrary

to experimental data;

4. the adaptation networks do not produce stable RF changes after scotoma conditioning;

and

5. synaptic plasticity in afferent excitatory pathways does not contribute to RF changes

after artificial scotoma conditioning and retinal lesions.



Chapter 6

Rearrangement of receptive field
topography after intracortical and
peripheral stimulation: The role of

plasticity in inhibitory pathways

Abstract

Intracortical microstimulation (ICMS) of a single site in the somatosensory cortex
of rats and monkeys for 2—6 hours produces a large increase in the number of neurons
responsive to the skin region corresponding to the ICMS-site receptive field (RF), with
very little effect on the position and size of the ICMS-site RF, and the response evoked
at the ICMS site by tactile stimulation (Recanzone et al., 1992b). Large changes in
RF topography are observed following several weeks of repetitive stimulation of a restricted
skin region in monkeys (Jenkins et al., 1990; Recanzone et al., 1992acde). Repetitive
stimulation of a localized skin region in monkeys produced by training the monkeys in a
tactile frequency discrimination task improves their performance (Recanzone et al., 1992a).

It has been suggested that these changes in RF topography are caused by competitive
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learning in excitatory pathways (Grajski & Merzenich, 1990; Jenkins et al., 1990;
Recanzone et al., 1992abede). ICMS almost simultaneously excites excitatory and inhibitory
terminals and excitatory and inhibitory cortical neurons within a few microns of the
stimulating electrode. Thus, this chapter investigates the implications of the possibility
that lateral inhibitory pathways too may undergo synaptic plasticity during ICMS.
Lateral inhibitory pathways may also undergo synaptic plasticity in adult animals during
peripheral conditioning. The “EXIN” (afferent excitatory and lateral inhibitory) synaptic
plasticity rules (Marshall, 1995a) are used to model RF changes after ICMS and peripheral
stimulation. The EXIN model produces RF topographical changes similar to those observed
experimentally. The possible role of inhibitory synaptic plasticity in cortical reorganization
is studied by simulating ICMS with only lateral inhibitory synaptic plasticity. The model
also produces an increase in the number of neurons responsive to the skin region represented
by the ICMS-site RF. In the EXIN model lateral inhibitory pathway plasticity is sufficient
to model RF changes and increase in position discrimination after peripheral stimulation.
Several novel and testable predictions are made based on the EXIN model. It is also
suggested that lateral inhibitory synaptic plasticity may be a general principle of cortical

organization and reorganization.

6.1 Introduction

6.1.1 Cortical plasticity in adult animals

Cortical receptive field (RF) properties undergo substantial change in adult
animals following deviations from a normal sensory input distribution. RF size, position,
shape, and sensitivity of primary visual cortical neurons are modified by artificial scotoma
conditioning (Das & Gilbert, 1995ab; DeAngelis et al., 1995; Pettet & Gilbert, 1992;
Volchan & Gilbert, 1994); changes in RF topography occur within minutes to hours
following retinal lesions, and these changes continue to occur over a period of months
(Chino et al., 1992; Darian-Smith & Gilbert, 1994, 1995). In human behavior, artificial
scotoma conditioning for a few seconds modifies position judgments (Kapadia et al., 1994).

Primary somatosensory cortical RF topography in adult animals is rearranged by two
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to six hours of low intensity intracortical microstimulation (Recanzone et al., 1992b).
Peripheral stimulation of a localized skin region in adult owl monkeys increased the cortical
representation (the cortical region responsive to stimulation at a particular skin region)
of the stimulated skin region and decreased the RF size of the neurons sensitive to the
stimulated region (Jenkins et al., 1990). The cortical representation of a skin region can
be quantified by the size of the cortical region containing neurons responsive to the skin
region. Because cortical layers have uniform neuron density, the area of a cortical region
responsive to a skin region will be proportional to the number of neurons responsive to
the skin region. Adult owl monkeys performed better in a tactile frequency discrimination
task with training over a period of several weeks (Recanzone et al., 1992a). The training
produced substantial changes in the cortical representation of the stimulated skin region
(Recanzone et al., 1992cde).

In these experiments, some neurons were differentially activated by repetitive
peripheral stimulation of the same sensory region or by intracortical microstimulation.
These experiments reveal how the cortex adaptively reorganizes in adult animals following
a lesion, scotoma, or changes in input stimulation pattern. The neurophysiological data on
ICMS and peripheral stimulation place further constraints on plausible common mechanisms
for dynamic RF changes following artificial scotoma conditioning, retinal lesions, ICMS, and
repetitive peripheral stimulation.

This chapter presents and tests a neural network model, using the “EXIN” synaptic
plasticity rules (Marshall, 1995a), which exhibit RF changes similar to those in
somatosensory cortex following intracortical microstimulation and peripheral stimulation
of restricted skin region. The model also produces an increase in discrimination between
stimuli presented at the conditioning site and nearby positions after peripheral conditioning.
The EXIN model uses a lateral inhibitory synaptic plasticity rule, which is crucial in
producing the results of the various experiments, as well as an afferent excitatory synaptic

plasticity rule. Several predictions are made based on the EXIN model.
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6.1.2 Receptive field topography changes after intracortical

microstimulation

Intracortical microstimulation (ICMS) of a single site in layers 3—4 of primary
somatosensory cortex of rats and monkeys produced reorganization of RF topography
over a large region of the cortex (Recanzone et al., 1992b). ICMS involves stimulating
a single cortical site by delivering current pulses using a microelectrode. ICMS almost
simultaneously excites nearly all excitatory and inhibitory terminals and excitatory and
inhibitory cortical neurons within a few microns of the stimulating electrode. The
strength of excitation of cortical neurons, the afferent excitatory pathways, and the
lateral inhibitory pathways is maximum at the ICMS site and decreases with distance
from the ICMS site (Recanzone et al., 1992b). In addition, some of the excitatory and
inhibitory terminals receive secondary, ortho- and antidromic excitation. However, not
all ortho- and antidromically excited excitatory afferents succeed in driving their target
neurons above threshold (Recanzone et al., 1992b). Recanzone et al. (1992b) mapped the
tactile RFs of cortical neurons surrounding the stimulation site before and after low intensity
ICMS.

ICMS of the cortex for 2—6 hours produced a large (2-fold to over 20-fold)
increase in the cortical representation of the skin region represented by the ICMS-site RF
(Recanzone et al., 1992b). In addition, the RFs of neurons surrounding the stimulation site
overlapped the ICMS-site RF to a greater extent following ICMS.

ICMS did not affect the location and the size of the ICMS-site REF or the
response evoked at the ICMS site by tactile stimulation. However, RF's of cortical neurons
surrounding the ICMS site shifted and/or expanded to produce greater overlap with the
ICMS site RFs. In some cases, the RF of cortical neurons was “substituted” for part of
the ICMS-site RF; i.e., neurons gained sensitivity to part of the ICMS-site RF area and
lost sensitivity to parts of their original RF. RF shifts both toward and away from the
ICMS-site RF were observed.
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6.1.3 Receptive field topography changes after peripheral stimulation

Jenkins et al. (1990) mapped primary somatosensory cortical RF topography in
adult owl monkeys before and after several weeks of repetitive stimulation of a restricted
skin region. In this experiment, peripheral stimulation increased the cortical representation
of the stimulated region, and the RF size of the neurons responsive to the stimulated region
was much smaller than normal.

Recanzone et al. (1992acde) determined behavioral and somatosensory cortical
RF changes following three to twenty weeks of training adult owl monkeys on a tactile
frequency discrimination task. The monkeys’ performance on the task progressively
improved (Recanzone et al., 1992a). RF measurements after training showed that the
cortical representation of the stimulated skin increased significantly, the RF of neurons
responsive to the stimulated region expanded, and the overlap in the RFs of neurons
sensitive to the stimulated region increased (Recanzone et al., 1992¢). Measurement of the
temporal response properties revealed that after tactile frequency discrimination training,
stimulation of the trained skin region produced larger-amplitude response, the response
peaked earlier, and the response was sharper (Recanzone et al., 1992e). The tactile
frequency discrimination training also produced emergence of responsiveness to touch in
area 3a of the adult owl monkeys (Recanzone et al., 1992d). Furthermore, stimulating a
restricted skin region while the monkeys attended to auditory stimuli (passive stimulation)

produced similar, though smaller, changes in cortical RF topography.

6.1.4 Previously suggested mechanisms

The above experiments have been taken as evidence for plasticity in excitatory
and inhibitory synapses to cortical neurons based on activity-dependent coactivation of
presynaptic and postsynaptic elements (Jenkins et al., 1990; Recanzone et al., 1992abcde).
Activity dependent synaptic plasticity rules have been used in modeling the reorganization
of retinotectal maps (Willshaw & von der Malsburg, 1976), the development of ocular
dominance columns in the visual cortex and changes in ocular dominance columns following

various deprivation conditioning in young animals (Clothiaux et al., 1991; Miller et al., 1989;
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Sirosh & Miikkulainen, 1994b), and the development of orientation maps in visual cortex
(Linsker, 1986¢; von der Malsburg, 1973; Sirosh et al., 1996). However, the interactions
of plasticity in inhibitory and excitatory synapses in producing the effects of ICMS and

localized peripheral stimulation has not been previously studied.

Previous explanations for RF changes after ICMS

The following possible mechanisms have been suggested to contribute to RF
changes after I[CMS.

Changes in RF topography at subcortical sites could occur through feedback
pathways from the cortex or via anterograde stimulation of the thalamocortical afferents
during ICMS (Recanzone et al., 1992b).

Nearly simultaneous activation of a small cortical region and a subset of pathways
terminating in this region, during ICMS and during stimulation of a restricted skin region,
could alter cortical RF's based on competitive synaptic plasticity rules (Jenkins et al., 1990;
Recanzone et al., 1992abcde).

Synchronous activation of neurons could strengthen interconnections between
neighboring neurons that belong to cooperative neuron groups (von der Malsburg &
Singer, 1988; Merzenich, 1987; Pearson et al., 1987). Strengthening intrinsic lateral
excitatory pathways further coordinates the activation of the neurons and can recruit nearby
neurons to create a larger functional group of neurons that respond to a common skin
region (Recanzone et al., 1992b). This mechanism alone, however, does not explain why
the ICMS-site RF does not change after ICMS. As more and more neurons develop stronger
lateral excitatory pathways with ICMS-site neurons, the ICMS-site neurons should become

responsive to parts of the RF's of other neurons, and hence the ICMS-site RF should expand.

Previous explanations for RF changes after peripheral stimulation

Grajski and Merzenich (1990) modeled the increase in the number of neurons
sensitive to a restricted skin region and the concomitant decrease in the RF size of
these neurons observed by Jenkins et al. (1990), after repetitive stimulation of the

restricted skin region. The model had afferent excitatory, feedback excitatory, lateral
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excitatory, and lateral inhibitory pathways. All these pathways were modified using a
single competitive rule based on neuronal activation, passive decay, and normalization
(Grajski & Merzenich, 1990). Jenkins et al. (1990) used a rotating disk with grooves
which moved across a skin region. To explain the decrement in RF size, it was assumed
that the peripheral stimulation in Jenkins et al. (1990) produced several small skin areas
in which sensory nerves were synchronously activated and the stimulation of the sensory
nerves responsive to different skin areas were not correlated (Recanzone et al., 1992d).
Thus, the small skin areas of synchronous inputs compete with one another to according
to a Hebbian afferent excitatory rule to produce contraction in the RF of the cortical
neurons (Recanzone et al., 1992d). Grajski and Merzenich (1990) repeatedly stimulated
a small input region. The competitive learning in afferent excitatory pathways led to
strengthening of a small number of afferents activated simultaneously by the small peripheral
stimulation and to weakening of inactive afferent excitatory pathways; RF contraction was
thus produced. Furthermore, during training the stimulation site was more frequently
stimulated than the surrounding regions. This caused more neurons to become sensitive to
the stimulation site via the competitive learning in afferent excitatory pathways (Grajski &
Merzenich, 1990; Recanzone et al., 1992d).

To model the increase in the RF size of neurons responsive to the repetitively
stimulated skin region as observed by Recanzone et al. (1992d), it was assumed that
the stimulation procedure, which was restricted to a fixed skin region, synchronously
activated a large number of afferent pathways from the stimulated skin region. Because
the afferent pathways receive synchronous stimulation, they all form stronger synaptic
connections with active cortical neurons. Thereby expanding the RFs of the active neurons
(Recanzone et al., 1992d).

Grajski and Merzenich (1990) also showed that RF contraction and increase in
cortical representation of the stimulated skin region was also produced in their model in
the absence of lateral excitatory and feedback excitatory pathways or with plasticity only
in excitatory pathways. In their model, lateral excitatory synaptic plasticity was needed to
model long-term effects of digit amputation.

After repetitive peripheral stimulation of a restricted skin region, in addition to
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an increase in the number of cortical neurons responsive to the stimulated skin region
(Jenkins et al., 1990; Recanzone et al., 1992d), the RE of cortical neurons shifted towards
the stimulated skin region and the RF size of neurons initially responsive to the peripheral
stimulation site increased (Recanzone et al., 1992d) or decreased (Jenkins et al., 1990).
Furthermore, RF of neurons surrounding the cortical representation of the stimulated
skin region expanded, but the general excitability of these neurons did not change
(Recanzone et al., 1992e). Models based on increase in excitability of neurons because
of withdrawal of tonic inhibition or increase in excitatory cholinergic input can produce
increase in cortical representation of the stimulated skin region and RF expansion.
Recanzone et al. (1992d) discounted this possibility on the grounds that decrease in
increased excitability alone (1) would not produce RF shifts; (2) would cause changes in
the general excitability of affected neurons; and (3) cannot produce RF contraction. These

effects are inconsistent with experimental data.

6.1.5 EXIN model of RF changes

The model uses the EXIN (excitatory+inhibitory) synaptic plasticity rules
(Marshall, 1995a), to describe the effects of ICMS and peripheral stimulation. A novel
feature of the EXIN model is the role of lateral inhibitory synaptic plasticity rule.

The EXIN lateral inhibitory synaptic plasticity to model dynamic RF
changes produced by artificial scotoma conditioning and retinal lesions (Kalarickal &
Marshall, 1996b, 1997b; Marshall & Kalarickal, 1997). The EXIN rules have been used
to model development of disparity selectivity (Marshall, 1990¢), motion selectivity and
grouping (Marshall, 1990a, 1995b; Schmitt & Marshall, 1995), orientation selectivity
(Marshall, 1990d), and length selectivity and end-stopping (Marshall, 1990b). A neural
model of stereomatching that allows slanted surfaces and transparently overlaid surfaces to
be represented has been proposed based on analysis of the EXIN synaptic plasticity rules
(Marshall et al., 1996b). The EXIN rules produce networks with stimulus discrimination,
sparse and distributed coding, and exclusive allocation properties (Marshall, 1995a;

Marshall & Gupta, 1998).
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6.1.6 Significance and contributions of the chapter

6.2

The EXIN model of the effects of ICMS and repetitive peripheral stimulation

reproduces the neurophysiological data qualitatively (Sections 6.3.1, 6.3.3, and 6.3.4);

. emphasizes the role of a lateral inhibitory rule in producing RF changes in neurons

over a large cortical region (Section 6.3.2);

. demonstrates substantial rearrangement of RF topography with plasticity only in

lateral inhibitory pathways (Section 6.3.4);

. produces increased cortical representation of a repetitively stimulated peripheral

region with either RF expansion or contraction in neurons responsive to the stimulated

region (Section 6.3.4);

. increases discrimination between the peripheral conditioning site and other nearby

positions following repetitive stimulation of a fixed conditioning site (section 6.3.5);

and

suggests novel and testable predictions (Section 6.4.5).

Methods

This section describes the network architecture and the simulation procedures.

The neural architecture used for computational simulations is a two-layered

network with afferent excitatory and lateral inhibitory pathways (Figure 6.1). The two

layers may correspond to parts of subcortical and cortical layers or two cortical layers. In

the chapter, Layer 2 is referred to as the model cortical layer and Layer 1 as the model

thalamic layer. In this neural architecture, the changes in RF topography following ICMS

or peripheral stimulation can be produced by changes in the afferent excitatory or lateral

inhibitory pathway weights.
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Lateral inhibitory connections

Layer 2

Feedforward
excitatory
connections

Layer 1

Figure 6.1: Network architecture of the EXIN model.
The pathways from Layer 1 to Layer 2 are excitatory (+). The lateral pathways within
Layer 2 are inhibitory (—). The unshaded ellipses represent the region of Layer 1 projecting
afferent excitatory pathways to Layer 2 neurons. The shaded ellipses represent the RFs of
Layer 2 neurons. The weights of lateral inhibitory pathways are approximately proportional
to the correlation in the activation of the neurons, which in turn depends on the amount of
overlap in the afferent excitatory pathway connectivity patterns of Layer 2 neurons. Weights

of lateral inhibitory pathways are indicated by the width of the arrows.
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6.2.1 Model architecture

In the computer simulations, Layer 1 and Layer 2 each have a 30 x 30
grid array of neurons. The indices (¢,7) and (k,l) are consistently used to refer
to Layer 1 neurons, and (p,q), (r,s), and (u,v) refer to Layer 2 neurons, where
i, 7.k, l,p,q,rys,u,v € {=15,...,14}. These indices also represent the topographic spatial
coordinates of the neurons within their layers.

The weight of the afferent excitatory connection pathway from a Layer 1 neuron
(7,7) to a Layer 2 neuron (p, ¢) at time ¢ is denoted by Z;m (t). The weight of the lateral
inhibitory pathway from Layer 2 neuron (p,q) to Layer 2 neuron (r,s) is represented
by Z,,,s(t) (Figure 6.1). These pathway weight values may represent the effect of

a monosynaptic connection or the total effect of a polysynaptic chain of connections
(see Section 6.4.6).
The activation levels (mean spike rate) over time of Layer 1 neuron (¢,7) and
Layer 2 neuron (p, q) are represented by x;;(t) and x,,(t), respectively.
6.2.2 Model stimulation procedures
Model intracortical microstimulation
ICMS was modeled by
1. directly activating model cortical neurons close to the ICMS site and

2. activating nearby model thalamocortical excitatory and lateral inhibitory pathways.

The direct excitation received by model cortical neuron (p, q) is

2+ 2
EY = gpexp (—‘r Y ) (6.1)

o1
where z,y € {=15,---,14}, p = (((po + 15) + #) mod 30) — 15, and ¢ = (((¢o + 15) +
y) mod 30) — 15. The indices po, qo, p,q € {—15,---,14}. The indices po, qo, p, and ¢ and
the distances & and y are related such that the model cortical neurons are arranged in a

wrapped-around two-dimensional grid. The position (pg, qo) is the ICMS site and g is

a positive constant. The parameter ¢y determines the magnitude of direct excitation to
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model cortical neurons and the parameter o7 controls the spread of direct excitation to
cortical neurons.

Let y;';pq be the presynaptic activation at the terminal of the afferent from model
thalamic neuron (¢,7) to model cortical neuron (p, ) that is due to ICMS (a combination

of direct activation and anti/orthodromic activation of thalamocortical afferents). Then

22 + y2 x/2 + y/2
y;;’pq = (qﬁl—l—gol exp (— X exp | ————— |, (6.2)
02 o3

where z,y, 2’y € {=15,---,14}, ¢ = ((({o + 15) + ) mod 30) — 15, 7 = (((jo + 15) +
y) mod 30) — 15, p = (((po+ 15) + 2’) mod 30) — 15, and ¢ = (((qo + 15) + y') mod 30) — 15.

The position (po, qo) is the ICMS site, and (ig, jo) is the position of the model thalamic
neuron projecting the strongest afferent excitatory pathway to model cortical neuron at
(pos o). The parameters ¢ and oy determine the magnitude and the width, respectively,
of the Gaussian distribution of excitation to afferent excitatory terminals as a function of the
distance between the thalamocortical pathway from which the excitatory terminals originate
and the thalamocortical pathway most responsive to the [CMS-site RF. The parameter ¢y
specifies a tonic excitation to afferent excitatory terminals. The second term in Equation 6.2
scales the excitation to the afferent excitatory terminals according a Gaussian function of
the distance between the ICMS site and the position of the cortical neuron at which the
afferent terminal terminates, and the spread of the Gaussian function is determined by o3.

Let y,, .5 be the presynaptic activation at the terminal of the lateral inhibitory
pathway from model cortical neuron (p,¢q) to model cortical neuron (r,s) due to ICMS (a
combination of direct activation and anti/orthodromic activation of inhibitory pathways

and inhibitory neurons). Then

B x2+ 2 x/2—|— 12
Ypgrs = ((bz—i-goz exp (— i X exp Ty , (6.3)
g4 05

where l’,y,l’/7 y/ € {_157 Ty 14}7 P = (((Po + 15) + l’) mod 30) - 157 q = (((qo + 15) +
y) mod 30) — 15, r = (((po+ 15) + 2’) mod 30) — 15, and s = (((¢o + 15) + ¢') mod 30) — 15.

The position (po, qo) is the ICMS site. The first term in Equation 6.3 is additively composed
of tonic excitation ¢2 and a Gaussian function of the distance between ICMS site and the

cortical position of the neuron from which the lateral inhibitory terminal originates; the
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magnitude and the width of the Gaussian function is given by ¢, and o4, respectively.
The second term in Equation 6.3 scales the excitation to the lateral inhibitory terminals
according a Gaussian function of the distance between the ICMS site and the position of
the cortical neuron at which the lateral inhibitory terminal terminates, and the spread of
the Gaussian function is determined by o5.

Equation 6.1 specifies that the direct excitation of the model cortical neurons
due to model ICMS decreases according to a Gaussian function with distance from the
ICMS site. Equation 6.2 specifies that the afferent excitatory terminals that branch from
thalamocortical pathways close to the stimulation site are more active; in Figure 6.2 the
excitatory terminal from model thalamic neuron (¢, ) to model cortical neuron (p, ¢) is more
strongly activated than those arising from neuron (k,1), whose thalamocortical pathway is
farther from the ICMS site. Furthermore, afferent excitatory terminals branching from the
same thalamocortical pathway are less excited with increasing distance from the ICMS site.
These assumptions of the model ICMS are illustrated in Figure 6.2 by the orientation and
the thickness of the crescents attached to the circles representing the model cortical neurons.
A similar activation distribution is applied to the lateral inhibitory pathways (Equation 6.3).

This distribution of excitation to the presynaptic excitatory and inhibitory
terminals was chosen based on the assumption that ortho- and antidromic excitation of
the pathways combine to increase presynaptic excitation of the excitatory and inhibitory
synapses. Thus, a presynaptic terminal originating from pathways close to the ICMS site
would be more active than a terminal originating from distant pathways. Likewise, and
a presynaptic terminal on a model cortical neuron close to the ICMS site would be more
active than a terminal on a model cortical neuron far from the ICMS site, even though these
two terminals originate from a common pathway. This assumption may be reasonable at
weak stimulation strengths; at very high stimulation strengths all the presynaptic terminals
converging onto a postsynaptic neuron could be close to saturation because of the strong
direct excitation from the stimulation electrode, and thus the antidromic excitation may
not have any significant effect at the ICMS site.

The spread of Ez(?le) is small. However, y;';pq and y_. .. spread over large distances.

Although the presynaptic excitatory terminal activation spreads over large distances, most
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of them are initially ineffective in driving model cortical neurons because of inhibition.
The way that the excitation of excitatory and inhibitory pathways are combined
to obtain postsynaptic neuronal activation is described in Section 6.2.5 (Equations 6.8,

6.9, and 6.10). The parameters used in the simulations are presented in Appendix D.

Model peripheral stimulation

In the simulations requiring peripheral stimulation, the model thalamic neurons
were directly activated. To apply local peripheral stimulation at location (¢,7), model
thalamic neurons were assigned activation levels according to a scaled Gaussian kernel K

centered at (7, 7). The kernel K is defined in Appendix D, Section D.5.

6.2.3 Simulation procedure

The network was initially assigned excitatory and lateral inhibitory weights
according to Equations 6.13-6.17 in Section 6.2.5. The initial weights are such that the
initial RF's of the model cortical neurons were topographically arranged and of the same
size. With such a choice of the initial weights, the RF topography was maintained during
a training phase (Appendix D, Section D.2).

The network was trained with whole-field stimuli. The training stimuli were
obtained as follows. First, two-dimensional 30 x 30 images were convolved with a Gaussian
kernel, K, with wraparound. The input stimulus at each position in the images could be
0 or 1. The input at each position took value 1 with probability =. After convolution, the
resultant image was normalized by the maximum value in the image. The normalization is
done so that the peak value in the training inputs was 1. The resultant images from the
normalization stage were the inputs to Layer 1.

Model ICMS and peripheral stimulation were applied on the network obtained after
a training phase. To simulate ICMS, EZ(?ZI), y$7pq, and y,. ., were held constant. However,
the effect of the presynaptic activation of the excitatory and inhibitory terminals on the

postsynaptic neuron changes as the excitatory and inhibitory pathways undergo synaptic

plasticity. To simulate peripheral stimulation, the model thalamic activations were fixed.
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ICMS site Lateral

inhibition

Co rtex

Afferent
excitation

Thalamus

Input neurons

Figure 6.2: Intracortical microstimulation of model cortical layer.
The figure illustrates the model ICMS. The gradient of shading represents the spread and
relative strength of ICMS in the model cortical layer. The model cortical neurons are directly
excited (shown by the pluses within the circles representing the cortical neurons). The
strength of direct excitation (number of pluses) of the model cortical neurons decreases with
distance from the ICMS site. The distribution of excitation of the presynaptic excitatory
terminals onto a model cortical neuron is depicted by the orientation and the thickness of
the crescents. The presynaptic inhibitory terminals are excited by distribution similar to

the afferent excitatory terminals. See text for details and the assumptions about ICMS.

6.2.4 RF measurements

The RF was mapped using single-point stimulation, blurred with the Gaussian
kernel K, at all input positions (¢,7). The RF of a Layer 2 neuron (p, ¢) is defined as the
collection of positions (z, j) at which the test input causes the activation level x,, to exceed
a threshold O.

In the ICMS experiments (Recanzone et al., 1992a), cortical neural responses were
measured using extracellular recording techniques. Because several neurons may contribute

to the extracellular potentials, the RF measured at the ICMS site was the composite RF
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of neurons close to the ICMS site. In the simulations, however, the ICMS-site RF was the
RF of a single model cortical neuron at the model ICMS site.

In the simulations, the RF center of a model cortical neuron was determined by
the centroid of the RF. The centroid was calculated by weighting the RF positions by the
response evoked in the neuron. Shifts in the RF of a model cortical neurons was determined

by changes in the RF center of the neuron.

6.2.5 The EXIN model

This section describes the EXIN network (Marshall, 1995a). The EXIN network
relies on synaptic modifications to explain dynamic RFs. In the following subsections the
equations governing synaptic plasticity, the activation equation, and the initial connectivity
pattern are presented.

The EXIN model combines an instar afferent excitatory and an outstar lateral
inhibitory synaptic plasticity rule. The EXIN (excitatory + inhibitory) synaptic plasticity
rules cause the weights to change as a function of the input environment so that different
neurons become selective for different input patterns and every input pattern is represented
(Marshall, 1995a). During ICMS and peripheral stimulation, a small number of neurons
are activated. The EXIN rules change the weights so that the inactive neurons become

responsive to input patterns in the new environment, thereby causing changes in RFs.

The EXIN lateral inhibitory synaptic plasticity rule

The lateral inhibitory weights, Z_ ., are modified according to the anti-Hebbian

outstar rule

d
EZZ;]J’S =34 g(qu) (_Z];],rs + Q(xr’s)) (64)

(Marshall, 1995a), where 6 > 0 is a small learning rate constant, and G and Q are
half-rectified non-decreasing functions.

Thus, whenever a neuron is active, its output inhibitory pathways to other active
neurons tend to become slightly stronger (i.e., more inhibitory), while its output inhibitory

pathways to inactive neurons tend to become slightly weaker. Layer 2 neuronal activations
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remain within [—C, B] according to a shunting equation (Equation 6.8) based on the
Hodgkin model (Hodgkin, 1964); this causes the weight values to be bounded as well,
because according to Equation 6.4, Z_ . (t) € [0, Q(B)] for t > 0, if Z,, .. (0) € [0, Q(B)]

(Grossberg, 1982). The weight change in Equation 6.4 approaches zero as Z . rs aPproaches
Q(x,s), the weight change is positive when 7 o < Q(z,5), and the weight change is
negative when 7, .. > Q(z,). If Q(z,5) = 0, then the weight change approaches zero as
Zpq,rs approaches zero.

In an outstar synaptic plasticity rule (Grossberg, 1972), presynaptic activity
“enables” the plasticity at a synapse; when the plasticity is enabled, the weight tends
to become proportional to the postsynaptic activity. In an instar synaptic plasticity rule,
postsynaptic activity enables the plasticity; when the plasticity is enabled, the weight tends
to become proportional to the presynaptic activity. Thus, to make Equation 6.4 into an
instar rule, x,, and x,; would be interchanged.

An effect of the EXIN inhibitory synaptic plasticity rule is that if two neurons are
frequently coactivated, then the lateral inhibitory weights between them become strong.
If two neurons are only rarely coactivated, then their reciprocal lateral inhibitory weights
become weak. Strong lateral inhibition between two neurons tends to make them less likely
to be coactivated, causing the two to become selective to different inputs according to
the excitatory synaptic plasticity rule (Equation 6.6). Thus, when the network is exposed
to normal stimuli, the lateral inhibitory weights and the excitatory afferent weights are
modified so that each neuron becomes selective to different inputs and the RFs of all Layer 2
neurons cover the input space (Marshall, 1995a; Marshall & Gupta, 1998). This leads to
improved discrimination and sparse coding (Marshall, 1995a).

In Equation 6.4, the term G(x,,) represents the presynaptic activation, and the
term Q(z,5) represents the postsynaptic activation. During ICMS the presynaptic terminals
are activated directly by ICMS, even though the presynaptic neurons may be inactive. In

this case, G(xp,) is replaced by presynaptic activation caused by a combination of direct

excitation by ICMS and activation of the presynaptic neuron, i.e.,

e = 0 (9) ) (e + Q) (6.5)
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The EXIN afferent excitatory synaptic plasticity rule

The afferent excitatory weight changes are governed by a variant of a Hebbian

synaptic plasticity rule. The rule can be expressed (Grossberg, 1982; Marshall, 1995a) as

Dt Flay,) (=25 + Hiig)) (6.6)

de “idpa
where € > 0 is a small learning rate constant, and F and H are half-rectified non-decreasing
functions.

Thus, whenever a neuron 1s active, its afferent excitatory pathways from active
neurons become slightly stronger, while its afferent excitatory pathways from inactive
neurons become slightly weaker. Layer 2 neuronal activations remain within [—C| B]
according to a shunting equation (Equation 6.8), and Layer 1 neuronal activations are
within [0,1] in all the simulations (Appendix D). This causes the afferent weight values
to be bounded because according to Equation 6.6, Z{']77pq(t) € [0,H(1)] for t > 0O, if
Zf ,,(0) € [0, H(1)].

The EXIN excitatory synaptic plasticity rule is a competitive learning rule.
Because of the inhibition, it causes each modeled cortical neuron to become selective for a
specific pattern of input activations (Grossberg, 1982; Marshall, 1995a).

In Equation 6.6, the term H(z;;) represents the amount of presynaptic activation
reaching the synapse, and the term F(x,,) represents the amount of postsynaptic activation
at the synapse. During ICMS the presynaptic afferent excitatory terminals are activated
directly by ICMS, even though the presynaptic model thalamic neuron is inactive. In this

case, H(xp,) is replaced by the presynaptic activation, y;';pq (see Equation 6.2), i.e.,

d
+ + +
%Zij,pq = ¢ Flap) (_Zij}pq T yij,pq) : (6.7)

The activation equation

The activation level z,, of each Layer 2 neuron is governed by a shunting equation

(Grossberg, 1972) based on the Hodgkin model (Hodgkin, 1964):

d
%qu = —Azy,, + ﬁ(B_qu)qu - 7(O+qu)lpqv (6.8)
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where A, B, C, 3, and v are positive constants, and £, and [,, represent respectively
the neuron’s total afferent excitatory and lateral inhibitory input signals. The first term
in Equation 6.8 is the passive decay term which decreases activation of model neurons
after removal of excitation. The excitatory and inhibitory contributions to the activation of
model cortical neurons are given by the second and the third terms, respectively. The factors
(B — 2p) and (C' 4 xp,) “shunts” the input excitation [£,, and the input inhibition [,
respectively, i.e., the contribution of input excitation and of input inhibition goes to zero as
activation approaches B and C, respectively. Because Equation 6.8 is a shunting equation,
if 2,,(0) € [=C, B] then x,,(t) € [-C, B] for all time ¢t > 0 (Cohen & Grossberg, 1983).
Thus, activation levels are driven to remain within a bounded range, between —C' and
B. Parameters 3 and v, respectively, control the effectiveness of excitation and inhibition
received by a model cortical neuron.

Execitation and inhibition during ICMS. During ICMS the total input

excitation F/,, was modeled as

2
d
Epq = Zy;}pqzjj—}pq - Ez(ﬁq)7 (6.9)
i
and the total input inhibition 7,, was given by
Ipq = Z ([xTS] + yr’_s,pq) Zr_s,pq7 (610)

rs
where [a] = max(a,0). The total input excitation received by model cortical neurons was a
combination of the excitation received because of stimulation of excitatory synapses, given
by the first term in Equation 6.9, and direct excitation because of ICMS, the second term in
Equation 6.9. The input excitation via the excitatory synapses was modeled by weighting
the presynaptic stimulation, y$7pq, by the excitatory synaptic weight, Z;']77pq. In the model,
cortical neurons received inhibition because of stimulation of lateral inhibitory synapses.
The total inhibition to a model cortical neuron was obtained by the sum of the product of
presynaptic stimulation and lateral inhibitory synaptic weight over all the lateral inhibitory
terminals onto a cortical neuron. The presynaptic stimulation of lateral inhibitory pathways

during ICMS was obtained by adding the activation of lateral inhibitory source neurons and

excitation because of ICMS.
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Ezcitation and inhibition during peripheral stimulation and RF measurement.

During peripheral conditioning and RIF measurement, the total input excitation F,, was

2
Epy = Zl’ijZ{;pq ; (6.11)
i
and the total input inhibition 7,, was given by
Y Z[xTS]Zr_s,p(p (6.12)

rs

where [a] = max(a,0). During peripheral stimulation, the model cortical neurons received
excitation and inhibition via excitatory and inhibitory synapses, respectively. Thus, input
excitation and input inhibition was obtained by some function of the sum of the product of
presynaptic excitation and the synaptic weight.

Stability of the shunting equation: Cohen-Grossberg theorem. The shunting
equation (Equation 6.8) with Zrspg = ZLpgrs = 0, belongs to a class of competitive dynamical
systems that are absolutely stable; i.e., the system has fixed points (stable equilibrium
states) for any choice of parameters (Cohen & Grossberg, 1983). The neuronal activations
in such a system are guaranteed to reach stable equilibrium values for all synaptic weight
values, with the restriction that 27, = Z . > 0 for all pairs of neurons.

However, it is not known whether the shunting equation remains absolutely stable
even whenZ;, # Z. .. > 0 for some pairs of neurons. The symmetry of reciprocal pairs
of lateral inhibitory weights is not guaranteed by the EXIN lateral inhibitory synaptic
plasticity rule. During normal stimulation, the lateral inhibitory weights are approximately
symmetric (Marshall, 1995a). They become asymmetric between active and inactive
neurons during ICMS and repetitive local peripheral conditioning. Nevertheless, simulations

have empirically shown the stability of the activation equation in the EXIN network
(Appendix D, Section D.1).

The initial weights

A patch of neurons in the primary somatosensory cortex, arranged in a 30 x 30 grid
of spatial positions, was simulated. The position of each neuron’s RF corresponded to the

neuron’s position in the grid. Adjacent RFs initially had more than 50% spatial overlap.
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In the EXIN simulations, the initial afferent excitatory weight from model thalamic

neuron (¢, 7) to model cortical neuron (p,q) was given by the truncated Gaussian function
— (2 +y?)

Z;l},pq = [exp (T 7Fff‘ s (613)

where

a if a>b,
[a,b] = (6.14)

0 otherwise,
v,y € {—=15,---,14}, p= (((1+15) + 2) mod 30) — 15, ¢ = (((+15) +y) mod 30) — 15, and
og and ['g are positive constants. The indices 7,7, p, and ¢ are in the set {—15,---,14}.
The relationship between the indices ¢, 7, p, and ¢ and the distances x and y is such that
the model cortical and thalamic neurons are arranged in a two-dimensional grid which was
wrapped around.
The initial lateral inhibitory weights between model cortical neurons (p,q) and

(r,s), where p # r or q # s, are set as follows. Let

Xpgrs = »_min(Z%  ZE ) (6.15)
]
and
Wigrs = Wispg = [Xpgirs, T, (6.16)
where I'; is a constant. Then
— — MWp_s,rs
Zpgrs = Zrspg = (6.17)

max W5
ab,cd € layer 2 ab,cd

Neurons do not directly inhibit themselves in the EXIN network; that is, 2, .

is zero and %Zzzmq = 0. Equation 6.17 assigns inhibitory weights between two distinct
Layer 2 neurons in proportion to the amount of overlap in the RFs of the two neurons.
Equation 6.15 computes a measure of the amount of overlap in the afferent excitatory
pathways to two model cortical neurons. The measure is the sum of the lesser of the
afferent excitatory weights to the two model cortical neurons from common input neurons.

According to Equation 6.16, the measure of the amount of overlap in afferent excitatory

pathways is set to zero if it is below a threshold, I'j. Finally, the initial lateral inhibitory
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synaptic weights are set after normalizing W, ., according to Equation 6.17 such that the
maximum lateral inhibitory synaptic weight is 1.

The initial weight values of the connections were chosen to speed the convergence
of weight values during the simulated training phase and to preserve RF topography, thereby
avoiding RF shifts and RF size changes caused by RF scatter that would have been present
if the initial weights were chosen randomly. The network produced after the training phase
was used for simulated ICMS and peripheral conditioning.

Lateral excitatory pathways were omitted in this model. This is a simplification
based on the assumption that the net effect of the lateral excitatory and inhibitory pathways
on excitatory neurons is inhibitory. Partial support for setting Z];':N,S to zero comes from
the lack of disynaptic excitatory postsynaptic potentials (EPSPs) caused by stimulation
of thalamocortical afferents during intracellular recordings in simple neurons of the cat
visual cortex (Ferster, 1989), and in layer 5 neurons of adult mice (Gil & Amitai, 1996),
even though lateral excitatory pathways exist in the cortex. Stimulation of thalamocortical
afferents and lateral excitatory pathways produce monosynaptic EPSPs in cortical neurons
(Gil & Amitai, 1996; Hirsch & Gilbert, 1993). Therefore, if lateral excitatory pathways in
the cortex were strong, then stimulation of thalamocortical pathways should produce strong
disynaptic EPSPs via the lateral excitatory pathways. Weliky et al. (1995) and Gil and
Amitai (1996) showed that strong stimulation of the long-range horizontal pathways exerts
overall inhibition on pyramidal neurons. Weak stimulation of lateral excitatory pathways
produces predominant excitation in cortical neurons presumably because the inhibitory
neurons, which have high activation thresholds, are not activated by weak stimulation
(Weliky et al., 1995). Sections 6.4.3 and 6.4.6 describe the possible role of lateral excitatory
pathways and feedback excitatory pathways in producing RF changes after ICMS and

repetitive local peripheral conditioning.

6.3 Simulation results

In all the simulations except the one in Section 6.3.3, the network with

topographically arranged RFs after a training phase was used. In Section 6.3.3, a network
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with RF scatter was used. Section 6.3.1 presents the results of modeling ICMS on a network
with topographically arranged RFs. The role of some of the parameters in the model are
explored in Section 6.3.2, and the effects of RF scatter are demonstrated in Section 6.3.3.
Section 6.3.4 shows the effects of peripheral stimulation in the model. The parameters used

in the simulations are in Appendix D.

6.3.1 The effects of ICMS on the model

In this simulation, the network was conditioned using all the inputs to the neurons
during ICMS — direct excitation to the postsynaptic neurons, and excitation of excitatory
and inhibitory presynaptic terminals, as explained in Section 6.2.2. Both afferent excitatory
synaptic plasticity (Equation 6.7) and lateral inhibitory synaptic plasticity (Equation 6.5)
were simulated.

The spatial distributions of presynaptic excitation and inhibition are shown in
Figure 6.3. The ICMS site was at the center of the squares representing the model
cortical surface. The activation levels of model cortical layer neurons are shown in

Figures 6.3¢ and 6.5.

Increase in the cortical representation of the ICMS-site RF

Recanzone et al. (1992b) observed a large increase in the cortical area representing
the skin region corresponding to the pre-ICMS ICMS-site RF after ICMS. Before ICMS
only the ICMS-site RF had > 85% RF overlap with the ICMS-site RF. After ICMS the
cortical region containing neurons with > 85% RF overlap with the pre-ICMS ICMS-site RF
increased in area.

Qualitatively similar results were obtained in the simulation. Figure 6.4 shows the
number of model cortical neurons whose RF overlaps the pre-ICMS ICMS-site RF, before
and after ICMS. After ICMS, there was a large increase in the number of neurons whose RF's
have > 0 — 25% and > 75 — 100% overlap with the ICMS-site RF. In the simulation, the
neurons whose RFs have > 75 — 100% overlap with the pre-ICMS ICMS-site RF were very
close to the ICMS site, and these neurons were active during ICMS (Figures 6.5 and 6.11).
The neurons whose RFs have > 0 — 25% overlap with the pre-ICMS ICMS-site RF were
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Presynaptic excitation Presynaptic inhibition Postsynaptic activation

(@) (b) (©)

Figure 6.3: Spatial distribution of presynaptic excitation and postsynaptic
activation.

(a) The distribution of presynaptic excitation of afferent excitatory pathways to the ICMS-
site neuron (0,0). Other model cortical neurons receive a fraction of the presynaptic afferent
excitation received by the ICMS-site neuron, scaled according to distance. The scaling
factor is a Gaussian centered at the ICMS site (see Section 6.2.2). (b) The distribution of
presynaptic excitation of lateral inhibitory pathways to the ICMS-site neuron (0,0). Other
model cortical neurons receive a fraction of the presynaptic excitation of lateral inhibitory
pathways received by the ICMS-site neuron. The scaling factor is a Gaussian centered at

the ICMS site. (c) Initial postsynaptic activation of model cortical neurons in response to

ICMS.

farther from the ICMS site and were inactive during ICMS (Figures 6.5 and 6.11).

RF expansion, contraction, and substitution

Figure 6.6 shows examples of mneurons that exhibited RF expansion,
RF contraction, and RF substitution.

The neuron (0,—7) in Figure 6.6 was inactive during the early stages of ICMS
(Figure 6.5). As a consequence of the EXIN lateral inhibitory synaptic plasticity, active
lateral inhibitory pathways to neuron (0,—7) weakened (Figure 6.7), and the afferent
excitatory pathways to neuron (0, —7) did not change much (Figure 6.7). Thus, its RF size
increased to overlap more with the pre-ICMS ICMS-site RF (see Section 6.4.1).

The neuron (0, —4) in Figure 6.6 was weakly active during ICMS (Figure 6.5) and

was close to inactive neurons. The distribution of the presynaptic excitation received by
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Figure 6.4: Changes in RF overlap with the ICMS-site RF.
The figure shows the number of the model cortical neurons with RF overlapping with the
pre-ICMS ICMS-site RF before and after ICMS. The percentage of overlap is computed
with respect to the pre-ICMS RF size of the ICMS-site neuron.

neuron (0, —4) shows that the neuron receives stronger presynaptic excitation from afferents
selective to positions close to the ICMS-site RF center. The EXIN afferent excitatory
synaptic plasticity rule strengthened the strongly excited synapses with afferents selective
to positions close to the ICMS-site RF center and weakened the weakly excited synapses
(Figure 6.7). This resulted in a shift of the neuron’s RF position toward the pre-ICMS
ICMS-site RE and an increase in RF overlap with the pre-ICMS ICMS-site RF. The neuron
weakened its previously strong synapses, and this contributed to a decrease in its RF size.
Thus, a part of the pre-ICMS ICMS-site RF has been substituted for neuron (0,—4)’s
former RF.

The change in RF of neuron (0, —1) in Figure 6.6 illustrates another example of
RF substitution. This neuron, being very close to the ICMS site, was active during ICMS

(Figure 6.5). Neuron (0, —1) received presynaptic stimulation similar to that received by the
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Figure 6.5: Changes in activation level of neurons caused by changes in the
distribution of presynaptic excitation to afferent excitatory pathways.

The activation levels of a cross-section of model cortical layer neurons through the ICMS site,
neurons (0, —15)—(0,14), in the initial stage of ICMS (when ICMS was first applied and
synaptic weights were not yet changed) as parameter values in Equation 2 are varied. The
parameters values in Equations 1, 2, and 3 were the same as those used in the simulations
presented in Section 6.3.1 (see Appendix D, Section D.4.1). The normal presynaptic
excitation to afferent excitatory pathways was produced using the values of parameters in
Equation 2 that were used in the ICMS simulation in Section 6.3.1. For stronger excitation
to afferent excitatory pathways the value of ¢ in Section 6.3.1 was multiplied by 1.5;
for broader distribution of excitation to afferent excitatory pathways the value of o3 in
Section 6.3.1 was multiplied by 2; for smaller fall-off rate of the effect of ICMS on excitation
to afferent excitatory pathways the value of o3 in Section 6.3.1 was multiplied by 2; and for
larger baseline excitation to afferent excitatory pathways the value of ¢; in Section 6.3.1

was multiplied by 2.
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Figure 6.6: Pre- and post-ICMS RFs.
Examples of RF substitution, RF contraction, and RF expansion are shown. The RF
drawn with vertical lines represents the pre-ICMS ICMS-site RF, and the RFs drawn with

horizontal lines represent another RF at other model cortical sites.

ICMS-site neuron (0, 0). Thus, according to the EXIN afferent excitatory synaptic plasticity
rule, neuron (0,—1) developed strong synapses with afferents selective to the ICMS-site
RF center and weakened its synapses with afferents selective to positions away from the
ICMS-site RF center (Figure 6.7). Thus, neurons (0,—1) and (0,0) have very similar
distributions of synaptic strength with the afferent terminals (Figure 6.7). This caused the
RF of neuron (0, —1) to shift toward the pre-ICMS ICMS-site RF. The direct stimulation of
lateral inhibitory pathways during ICMS caused the neurons closest to the ICMS-site to be
weakly active. Thus, neuron (0, —1) did not develop strong lateral inhibitory pathways with
neuron (0,0) (Figure 6.7). Thus, the RF size of neuron (0,0) did not contract (Figure 6.8),
and the RF of neuron (0, —1) became almost identical to the pre-ICMS RF of neuron (0, 0).

In this simulation, the presynaptic activation levels of the afferents were chosen
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Figure 6.7: Legend on next page.
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Figure 6.7: Pre- and post-ICMS afferent excitatory and lateral inhibitory
synaptic weights.

Figure on previous page. The figure shows weights of afferent excitatory pathways (left
column) and lateral inhibitory pathways (right column) to different model cortical neurons
—neuron (0,0) in (a) and (e), neuron (0,—1) in (b) and (f), neuron (0, —4) in (c¢) and (g),
and neuron (0, —7) in (d) and (h) — before ICMS, after 500 ICMS presentations, and after
1000 ICMS presentations. In the EXIN network model, cortical neurons did not inhibit
themselves; i.e., the lateral inhibitory pathway from a neuron to itself was zero. Thus, the
distribution of the weights of lateral inhibitory pathways to a neuron has a dip. The thick

line segment on the abscissa represents the neurons that were active during the initial stage

of ICMS.

so that the synaptic strength of the afferents to the ICMS-site neuron remained almost
unchanged (Figure 6.7). In Section 6.3.2 the effects of varying the presynaptic excitation
to afferent excitatory pathways are presented.

In the model, the RF's of the model cortical neurons were topographically arranged,
and all the neurons had almost identical RF sizes. In the cortex, however, the RF positions
are not strictly topographically arranged at a finer level of detail, and RF sizes show
large variations even among neighboring cortical neurons (Favorov & Kelly, 1996; Hubel &
Wiesel, 1962; Recanzone et al., 1992b). In the model, if the neuron close to the ICMS site
had a RF larger than the pre-ICMS ICMS-site RF size, it will receive stronger presynaptic
excitation from afferents selective to positions close to the ICMS-site RF center than from
afferents selective to positions far from the ICMS-site RE center. In this case, the RF size
of the neuron will decrease to become almost identical to the pre-ICMS ICMS-site RF. If a
neuron close to the ICMS site had a RF smaller than the pre-ICMS ICMS-site RF size, it will
form strong synapses with afferents selective to positions close to the ICMS-site RF center,
and its RF size could increase because the lateral inhibition between the neurons close to the

ICMS site is weakened. In Section 6.3.3, ICMS is simulated in a network with RF scatter.

Changes in RF size

Figure 6.8a shows the RF size before and after ICMS as a function of the position
of the initial RF center. It is clear from the figure that after ICMS

1. the ICMS-site RF size increased by a very small amount;
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Figure 6.8: Changes in RF size.
(a) The figure shows the RF area of neurons in a cross-section of model cortical layer passing
through the ICMS site before and after ICMS. The thick line segment on the abscissa
represents the neurons active during the initial phase of ICMS. (b) The figure shows the
mean RF area of model neurons before (white bar) and after (black bar) ICMS. The vertical

line on the bars represent the standard deviation.

2. the RF size of neurons closest to the ICMS site underwent very little change;

3. the RF size of the neurons 2—4 units of distance away from the ICMS site showed a

decrease in their RF size. These neurons were active during ICMS; and

4. neurons 6-10 units of distance away from the ICMS site showed an increase in their

RF size. These neurons were inactive during ICMS.

Thus, in the model, changes in RF size varied systematically with distance from the
ICMS site.

Recanzone et al. (1992b) reported that after ICMS the mean RE size showed a
slight increase. Figure 6.8b shows the pre- and post-ICMS mean RF sizes of the model

neurons.
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Changes in neuronal responsiveness

Figure 6.9a shows the RF profile of the ICMS-site neuron, and Figure 6.9b shows
the maximal responsiveness of a one-dimensional cross-section of model cortical neurons
through the ICMS site, before and after ICMS. In the simulation, responsiveness of the
neuron at the ICMS site showed very little change. This is consistent with results of
Recanzone et al. (1992b). In addition, maximal responsiveness of distal neurons increased.
The distal neurons were inactive for most of the ICMS duration and therefore, the lateral
inhibitory pathways to these neurons weakened (especially the strongly excited lateral
inhibitory pathways from neurons close to the ICMS site), and the afferent excitatory
pathways to these neurons changed very little (e.g., neuron (0,—7) in Figure 6.7). In
contrast, maximal responsiveness of neurons surrounding the ICMS site decreased. Because
the strength of excitation to the presynaptic afferent excitatory terminals decreases as
distance from the ICMS site increases, neurons close to the ICMS site, which were active
during ICMS, have weaker afferent excitatory pathways after ICMS (e.g., neuron (0, —4) in
Figure 6.7).

Changes in RF position

In the ICMS experiment, the RF of neurons close to the ICMS site shifted after
ICMS toward the ICMS-site RF. However at cortical sites away from the ICMS site, some
RFs shifted toward the ICMS-site RF and others shifted away from the ICMS-site RF at
random (Recanzone et al., 1992b).

In the model with topographically arranged RFs, the RF of most neurons shifted
toward the ICMS-site RF (Figure 6.10). Small RF shifts away from the ICMS-site RF in

the REF of model neurons were seen in some neurons far from the ICMS site (Figure 6.30).

Spatial distribution of the affected cortical region

In the ICMS experiment, the cortical region affected by ICMS extended
asymmetrically around the ICMS site for several hundred microns. In addition, there

were sharp discontinuities at some locations between a region in which the RF of neurons
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Figure 6.9: Changes in neuronal responsiveness after ICMS.
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(a) One-dimensional RF profile of ICMS-site neuron. The RF profile was obtained by

adding the neuron’s response to input at positions along the y axis. (b) The maximal

responsiveness of neurons in a cross-section of the model cortical layer passing through the
ICMS site, neurons (0, —15)—(0, 14), before and after ICMS. The thick line segment on the

abscissa represents the neurons active during the initial stage of ICMS.
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Figure 6.10: RF shift after ICMS.
The figure shows the RF shift of neurons in a cross-section of the model cortical layer passing
through the ICMS site after ICMS, neurons (0, —15)—(0, 14). The thick line segment on the

abscissa represents the neurons active during the initial phase of ICMS.

overlapped with the pre-ICMS ICMS-site RF and an adjacent region in which the RF of
neurons did not overlap with the pre-ICMS ICMS-site RF (Recanzone et al., 1992b).

A lack of systematic variation in the amount of overlap of the RF of neurons
surrounding the ICMS site and the ICMS-site RF may have occurred because the
pre- and post-stimulation recordings were not necessarily from exactly the same neurons
(Recanzone et al., 1992b). However, the neurons recorded at the same site before and
after ICMS were within 10-20 microns from each other (Recanzone et al., 1992b). The
observed asymmetries in the distribution of RF changes over the cortical space may be
due to variations in the anatomical spread of arborizations of the thalamocortical afferents
and/or the cortical axons and dendrites (Recanzone et al., 1992b).

Figure 6.11 shows the amount of RF shift and the amount of overlap of the
RF of model cortical neurons with the pre-ICMS ICMS-site RE after ICMS. In the
simulation, RF changes extended symmetrically over a large distance, and there were

no sharp discontinuities between regions containing neurons whose RF overlaps with the
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pre-ICMS ICMS-site RF and adjacent regions with neurons whose RF does not overlap with
the pre-ICMS ICMS-site RF.

In the simulation, all model cortical neurons had similar afferent and lateral
connectivity profiles. In addition, the lateral inhibitory pathways were almost symmetrical.
The uniformity in the connectivity patterns of the neurons is responsible for the systematic
RF changes observed in this simulation. A more random connectivity pattern across model

cortical neurons results in less systematic RF changes during ICMS (Section 6.3.3).

Temporal effects of ICMS

The cortical representation of the ICMS-site REF continues to increase with
progressively longer stimulation duration, and the effects of ICMS persist after cessation
of ICMS (Recanzone et al., 1992b). In the simulation, additional conditioning led to an
increase in the overlap of the RF of model cortical neurons with the ICMS-site RF at
farther distances (Figures 6.12 and 6.14). In the absence of any stimulation, the effects of
ICMS persisted in the model: synaptic plasticity in the model requires neuronal activation
(Equations 6.4 and 6.6).

In the simulation, the lateral inhibitory synaptic plasticity rate was faster than
the afferent excitatory synaptic plasticity rate (Appendix D, Section D.4.1). Thus, during
the early stages of ICMS, RF changes were mainly caused by changes in the lateral
inhibitory weights, and during the later stages, RF changes were mainly caused by the
afferent excitatory synaptic plasticity. At an early stage (after 250 ICMS steps), there
was a large increase in the number of neurons whose RF has 0-25% overlap with the
pre-ICMS ICMS-site RF (Figure 6.12a). Since the ICMS causes model cortical neurons
to be weakly active, the faster lateral inhibitory synaptic plasticity caused weakening of
lateral inhibitory pathways to neurons close to the ICMS site, thereby resulting in a small
increase in neuronal responsiveness in the neurons close to the ICMS site (Figure 6.13).

As ICMS proceeded (after 1000 ICMS steps), the afferent excitatory synaptic
plasticity strengthened the afferent pathways from the the pre-ICMS ICMS-site RF to
the active neurons near the ICMS site, thereby increasing the amount of overlap

(Figure 6.12a). As more and more model cortical neurons became responsive to the



328

0 ICMS site
= >75-100%
e >50-75%
o >25-50%
+ >0-25%

- 0%

Figure 6.11: Spatial distribution of changes in model cortical RF topography.
The positions of the centroids of the RF of model cortical neurons before ICMS are presented
by the position of the center of the symbols. The lines code the shift of the centroid of
the RF of the model cortical neurons after ICMS. The length of the lines represent the
amount of shift, and the orientation of the lines represent the direction of shift. The

symbols code the amount by which the RF of the model cortical neurons overlap with the

pre-ICMS ICMS-site RF.
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Figure 6.12: Legend on next page.
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Figure 6.12: Temporal changes in RF topography and RF size during ICMS.

Figure on previous page. (a) The number of model cortical neurons whose RF overlaps the
pre-ICMS ICMS-site RF before and after ICMS. (b) RF area of neurons in a cross-section
of the model cortical layer passing through the ICMS site, neurons (0, —15)—(0, 14), before
and after ICMS. (c) RF shift of neurons in a cross-section of the model cortical layer passing
through the ICMS site after ICMS, neurons (0, —15)—(0, 14). The line segment parallel to

the abscissa represents the neurons that were active during the initial stage of ICMS.
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Figure 6.13: Temporal effects of ICMS on responsiveness.
(a) One-dimensional RF profile of ICMS-site neuron.
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(b) The maximal responsiveness

of neurons in a cross-section of the model cortical layer passing through the ICMS site,
neurons (0, —15)—(0, 14), at different stages of ICMS. See Figure 6.9 for conventions.
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Figure 6.14: RF changes with additional ICMS.
Changes in RF topography of model cortical neurons after 1000 steps of ICMS. See
Figure 6.11 for conventions.
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same locations, their responsiveness to test stimuli decreased (Figure 6.13b). The
afferent excitatory pathway weights to the ICMS-site neuron remained almost unchanged
(Figure 6.7), and neurons surrounding the ICMS site strengthened synapses with afferent
excitatory pathways from the the pre-ICMS ICMS-site RF (e.g., neurons (0,-1) and (0,-4)
in Figure 6.7), and these neurons therefore had overlapping RFs. Because some neurons,
e.g., neuron (0,—4) in Figure 6.7, weakened afferent pathways from which they had the
strongest synapses, neurons close to the ICMS site became responsive to positions farther
from the pre-ICMS ICMS-site RF. Thus, the RF of neurons close to the ICMS site expanded
(Figures 6.12b and 6.13a). Furthermore, as the amount of overlap of the RF of neurons
close to the ICMS site with the pre-ICMS ICMS-site RF increased, the responsiveness of
neurons close to the ICMS site decreased (Figure 6.13b).

The amount of shift in the RF of model cortical neurons toward the

pre-ICMS ICMS-site RF increased with the number of ICMS time steps (Figure 6.12¢).

6.3.2 The effects of model ICMS parameters

This section illustrates the role of some of the parameters in the model, especially
the specific effects of the afferent excitatory synaptic plasticity, the lateral inhibitory
synaptic plasticity, and the distribution of presynaptic excitation to the afferent excitatory

and lateral inhibitory pathways.

Role of afferent excitatory synaptic plasticity

To determine the effects of synaptic plasticity in afferent excitatory pathways,
ICMS was performed with the lateral inhibitory synaptic plasticity disabled. With
only afferent excitatory synaptic plasticity, active neurons strengthened their synapses
with strongly active afferents and weaken their synapses with weakly active afferents.
Thus, the RF of these neurons shifted toward the ICMS-site RF (Figure 6.16¢), and
there was an increase in number of neurons responsive to the pre-ICMS ICMS-site RF
(Figures 6.16a and 6.17).

In the absence of lateral inhibitory synaptic plasticity, as more active neurons

strengthened synapses with afferents selective to the ICMS-site RF, the ICMS-site neuron
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Figure 6.15: Legend on next page.
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Figure 6.15: Changes pathway weights in ICMS simulations with afferent
excitatory or lateral inhibitory synaptic plasticity disabled.

Figure on previous page. Weights of afferent excitatory pathways in the ICMS simulation
with lateral inhibitory synaptic plasticity disabled (left column), and weights of lateral
inhibitory pathways in the ICMS simulation with afferent excitatory synaptic plasticity
disabled (right column) to different model cortical neurons are shown before ICMS and
after 500 ICMS presentations. (a,e) neuron (0,0), (b,f) neuron (0, —1), (¢,g) neuron (0, —4),
and (d,h) neuron (0,—7). See Figure 6.7 for conventions.

received more inhibition when the ICMS-site RF was stimulated. This led to a decrease
in responsiveness of the ICMS-site neuron and neurons close to the stimulation site
(Figure 6.18b). Because some neurons, e.g., neuron (0, —4) in Figure 6.15, weakened afferent
pathways from which they had the strongest synapses, neurons close to the ICMS site
became responsive to positions farther from the pre-ICMS ICMS-site RF. Thus, the RF of
neurons close to the ICMS site expanded (Figures 6.16b and 6.18a).

Role of lateral inhibitory synaptic plasticity

With only lateral inhibitory synaptic plasticity, model ICMS resulted in weakening
of lateral inhibitory pathways to neurons close to the ICMS site, which were weakly active
(Figure 6.15). This led to an increase in responsiveness (Figure 6.18b) and RF size of
model cortical neurons close to the ICMS site (Figures 6.16b and 6.18a). Because lateral
inhibitory pathways from neurons close to the ICMS site to inactive/weakly active neurons
weakened more than lateral inhibitory pathways from neurons far from the ICMS site to

inactive/weakly active neurons (Figure 6.15; see Section 6.4.1), the RF of neurons far from

the ICMS site showed a small shift toward the ICMS-site RE (Figure 6.16¢).

Comparison of the effects of afferent excitatory and lateral inhibitory synaptic

plasticity

The afferent excitatory synaptic plasticity and the lateral inhibitory synaptic
plasticity produce complementary effects during ICMS. With both plasticity rules, the
increase in the number of neurons inhibiting the ICMS-site neuron when the ICMS-site RF

is stimulated caused by the afferent excitatory synaptic plasticity is balanced by the decrease
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Figure 6.16: Role of afferent excitatory and lateral inhibitory plasticity in
producing RF changes.

In these simulations either the afferent excitatory or the lateral inhibitory synaptic plasticity

rule was disabled during ICMS. See Figure 6.12 for conventions.
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Figure 6.17: Changes in model cortical RF topography with only afferent
excitatory plasticity.
Only afferent excitatory plasticity was enabled during model ICMS. See Figure 6.11 for

conventions.
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on responsiveness.

See Figure 6.9 for conventions.
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in the strength of the lateral inhibitory pathways to the ICMS-site neuron. Furthermore,

o afferent excitatory synaptic plasticity increases the number of neurons whose RFs
have more than 75% overlap with the ICMS-site RF, and these neurons are close to
the ICMS site (Figures 6.16b and 6.17), whereas lateral inhibitory synaptic plasticity
mainly increases the number of neurons whose RFs have > 0-25% overlap with the

ICMS-site RF, and these neurons are far from the ICMS site (Figures 6.16a and 6.19);

o afferent excitatory synaptic plasticity alone produces RF expansion in neurons close to
the ICMS site and RF contraction in surrounding neurons, whereas lateral inhibitory
synaptic plasticity alone produces RF contraction in neurons close to the ICMS site

and RF expansion in surrounding neurons (Figures 6.16b and 6.18a);

o afferent excitatory synaptic plasticity alone produces large RF shifts toward the
ICMS-site RF in neurons close to the ICMS site, whereas lateral inhibitory synaptic
plasticity alone produces comparatively larger RF shifts toward the ICMS-site RF in
neurons far from the ICMS site (Figure 6.16¢); and

e afferent excitatory synaptic plasticity reduces responsiveness of neurons close to the
ICMS site; lateral inhibitory synaptic plasticity increases responsiveness of neurons

close to the ICMS site (Figure 6.18b).

Effects of distribution of presynaptic stimulation of afferent excitatory pathways

In the simulation in Section 6.3.1, a decrease in responsiveness of the
ICMS-site neuron caused by afferent excitatory synaptic plasticity was balanced by the
effects of lateral inhibitory synaptic plasticity. Another possibility for balancing for the
decrease in responsiveness of the [CMS-site neuron is to increase the strength of the afferent
excitatory synapses. According to the EXIN afferent excitatory synaptic plasticity rule, the
afferent excitatory synaptic strength equilibrates at a value proportional to the presynaptic
activation. Thus, increasing the strength of presynaptic activation strengthens the afferent

pathways to the ICMS-site neuron.
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Figure 6.19: Changes in model cortical RF topography with only lateral
inhibitory plasticity.
Afferent excitatory synaptic plasticity was disabled during model ICMS. See Figure 6.11

for conventions.
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Figure 6.20: Synaptic plasticity in the simulation manipulating the magnitude of
presynaptic excitation to afferent excitatory synapses produced by ICMS.

Weights of afferent excitatory pathways (left column) and lateral inhibitory pathways (right
column) to different model cortical neurons — neuron (0,0) in (a) and (e), neuron (0,—1)
in (b) and (f), neuron (0,—4) in (¢) and (g), and neuron (0,—7) in (d) and (h) — are
shown before ICMS and after 500 ICMS presentations. In this simulation, the value of
the parameter ¢ in Equation 2 was 1.5 times the value used in Section 6.3.1. The other
parameters controlling the model ICMS were the same as those used in Section 6.3.1. See

Figure 6.7 for conventions.
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Figure 6.21: Synaptic plasticity in the simulation manipulating the distribution
of presynaptic excitation to afferent excitatory synapses produced by ICMS.

Weights of afferent excitatory pathways (left column) and lateral inhibitory pathways (right
column) to different model cortical neurons — neuron (0,0) in (a) and (e), neuron (0,—1)
in (b) and (f), neuron (0,—4) in (¢) and (g), and neuron (0,—7) in (d) and (h) — are
shown before ICMS and after 500 ICMS presentations. In this simulation, the value of the
parameter oy in Equation 2 was twice the value used in Section 6.3.1. The other parameters
controlling the model ICMS were the same as those used in Section 6.3.1. See Figure 6.7

for conventions.
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Figure 6.22: Legend on next page.
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Figure 6.22: Effects of the strength of presynaptic excitation of afferent excitatory
pathways on model RF size and position.

Figure on previous page. Some of the effects of varying presynaptic excitation strength of
the afferent excitatory pathways during ICMS are shown. The values of the parameters
in Equation 2 are given in Figure 6.5. (a) The number of model cortical neurons with
RE overlapping the pre-ICMS ICMS-site RF before and after ICMS. (b) RF area of
neurons (0, —15)—(0, 14), before and after ICMS. (c) RF shift of neurons in a cross-section
of the model cortex passing through the ICMS site after ICMS, neurons (0, —15)—(0, 14).
The line segments parallel to the abscissa represent the neurons that were active during the

initial ICMS step as the ICMS parameters were varied.

When ICMS was simulated in the EXIN network with stronger stimulation of
the afferent excitatory pathways (i.e., 1 in Equation 6.2 was increased) and with the
lateral inhibitory synaptic plasticity disabled, there was a large increase in the RF size of
neurons close to the ICMS site (Figures 6.22b and 6.23a), and the responsiveness of the
ICMS-site neuron was almost equal to the pre-ICMS ICMS-site neuronal responsiveness
(Figure 6.23b). With a smaller value for ¢;, the responsiveness of the ICMS-site neuron
in the EXIN network with the lateral inhibitory synaptic plasticity disabled was smaller
(Figure 6.18b).

When the ICMS was simulated with both afferent excitatory and lateral inhibitory
synaptic plasticity and with a larger 1, the neuronal responsiveness of the ICMS-site neuron
decreased (Figure 6.23b) but its RF size remained close to the pre-ICMS size (Figure 6.22b).
Stronger stimulation of the afferent excitatory pathways during ICMS caused neurons close
to the ICMS site to be more strongly activated (Figure 6.5), which led to strengthening of
lateral inhibitory pathways to these neurons and to a decrease in neuronal responsiveness of
these neurons. Since the presynaptic activation level of the afferent excitatory pathways to
the ICMS-site neuron was larger, the afferent excitatory synaptic plasticity rule caused these
pathways to strengthen (Figure 6.20). In this simulation, the effects of stronger afferent
excitatory and lateral inhibitory pathways to the ICMS-site neuron combined to produce
no change in the size of the ICMS-site RF after ICMS (Figures 6.22b and 6.23a). When
1 in Equation 6.2 was increased, the EXIN model produced an increase in the overlap of
the RF of model cortical neurons with the pre-ICMS ICMS-site RF (Figure 6.22a) and in
RF shifts toward the pre-ICMS ICMS-site RF (Figure 6.22¢).
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Figure 6.23: Effects of excitation strength of the presynaptic afferent excitatory
pathways on model responsiveness.

Some of the effects of varying presynaptic excitation strength of the afferent excitatory
pathways during ICMS are shown. The values of the parameters in Equation 2 are given
in Figure 6.5. (a) One-dimensional RF profile of ICMS-site neuron. The RF profile was
obtained by adding the neuron’s response to input at positions along the y axis. (b) The
maximal responsiveness of neurons in a cross-section of model cortical layer passing through
the ICMS site, neurons (0, —15)—(0, 14), before and after ICMS. The line segments parallel
to the abscissa represent the neurons that were active during the initial ICMS step as the

ICMS parameters were varied.
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Figure 6.24: Effects of presynaptic stimulation distribution to the afferent
excitatory pathways on model RF properties.

Some of the effects of varying the presynaptic stimulation distribution to the afferent
excitatory pathways during ICMS are shown. The values of the parameters in Equation 2
are given in Figure 6.5. See Figure 6.22 for conventions. In this figure, the line segments
parallel to the abscissa are of different lengths because as the ICMS parameters were varied

the distribution of active model cortical neurons was different (see Figure 6.5).
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excitatory pathways on model responsiveness.
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Effects of presynaptic stimulation distribution to the afferent

Some of the effects of varying the presynaptic stimulation distribution to the afferent

excitatory pathways during ICMS are shown. The values of the parameters in Equation 2

are given in Figure 6.5. See Figure 6.23 for conventions. In this figure, the line segments

parallel to the abscissa are of different lengths because as the ICMS parameters were varied

the distribution of active model cortical neurons was different (see Figure 6.5).
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Figures 6.24 and 6.25 show the effects of varying other parameters in Equation 6.2
(¢1, 02, and o3). As these parameters are varied, the EXIN synaptic plasticity rules
produce an increase in the number of neurons whose RF has more than 75% overlap
with the pre-ICMS ICMS-site RF (Figure 6.24a), a contraction of the RF of neurons
close to the ICMS site, an expansion of the RF of neurons far from the ICMS site
expands (Figure 6.24b), a shift in the RF of model cortical neurons towards the
pre-ICMS ICMS-site RF (Figure 6.24¢), a decrease in the responsiveness of neurons close
to the ICMS site, and an increase in the responsiveness of neurons far from the ICMS site
(Figure 6.25b). This shows that the proposed model is quite robust in producing changes in
RF properties following ICMS similar to those observed experimentally. However, as these
parameters are varied, the RF size of the ICMS-site neuron and the ICMS-site neuronal
responsiveness to test stimuli change (Figures 6.24b and 6.25b).

The changes in ICMS-site neuronal responsiveness to test stimuli are correlated
with the activation level of the ICMS-site neuron in the initial stage of ICMS. In general,
as the activation level of the ICMS-site neuron in the initial stage of ICMS increases,
the RF size of the ICMS-site neuron and the ICMS-site neuronal responsiveness to test
stimuli after ICMS decrease (Figures 6.5, 6.24b, and 6.25ab). As the activation level of the
ICMS-site neuron in the initial stage of ICMS increases, the lateral inhibitory pathways
to the ICMS-site neuron strengthen, according to the EXIN lateral inhibitory synaptic
plasticity rule, thereby reducing the ICMS-site neuron’s RF size and responsiveness to the
test input.

The relationship between the activation level of the ICMS-site neuron in the initial
stage of ICMS and the various parameters in Equation 6.2 is as follows. As the baseline
stimulation strength of the afferent excitatory pathways (¢; in Equation 6.2) is increased,
excitation to the ICMS-site neuron increases (Equation 6.9), and therefore the activation
of the neuron increases (Figure 6.5). The activation of the ICMS-site neuron increases
(Figure 6.5) as the distribution of the stimulation strength of the afferent excitatory
pathways to the model cortical neurons is broadened (i.e., o3 in Equation 6.2 is increased)
because increasing oy increases afferent excitation to the ICMS-site neuron (Equation 6.9).

The activation of neurons close to the ICMS site decreases (Figure 6.5) as the fall-off rate



348

of the strength of the ICMS to the afferent excitatory pathways is reduced (i.e., o3 in
Equation 6.2 is increased), because excitation to the ICMS-site neuron remains the same
but the excitation to neurons surrounding the ICMS site increases, which in turn increases
the activation of the surrounding neurons. As the activation of the surrounding neurons
increases they exert greater inhibition on the ICMS-site neuron, leading to a decrease in
the activation of the ICMS-site neuron.

Figures 6.27 and 6.28 show the effects of varying the parameters in Equation 6.1.
Increasing g in Equation 6.1 increases excitation to the ICMS-site neuron and increases
the activation of the ICMS-site neuron in the initial stage of ICMS (Figure 6.26). Increasing
o1 in Equation 6.1 increases excitation to neurons surrounding the ICMS-site neuron
and decreases the activation level of the ICMS-site neuron in the initial stage of
ICMS (Figure 6.26). ICMS with the larger o decreased the ICMS-site REF size
(Figures 6.27b and 6.28a) and decreased ICMS-site neuronal responsiveness to test
stimuli (Figure 6.28b).  ICMS with the larger o7 increased ICMS-site RF size
(Figures 6.27b and 6.28a) and increased ICMS-site neuronal responsiveness to test stimuli
(Figure 6.28b). Changes in RF properties of other model cortical neurons were similar to

those presented in Section 6.3.1.

Effects of distribution of presynaptic stimulation of lateral inhibitory pathways

Figures 6.30—6.33 show the effects of varying the parameters in Equation 6.3 (¢2,
@2, 04, and o05). As these parameters are increased, the EXIN synaptic plasticity rules
produce an increase in the number of neurons whose RF has a large overlap with the
pre-ICMS ICMS-site RF (Figures 6.30a and 6.32a), a contraction of the RF of neurons
close to the ICMS site and an expansion of the RF of neurons far from the ICMS site
(Figures 6.30b and 6.32b), a shift of the RF of model cortical neurons towards the
pre-ICMS ICMS-site RF (Figures 6.30c and 6.32¢), a decrease in responsiveness of neurons
close to the ICMS site, and an increase in responsiveness of neurons far from the ICMS site
(Figures 6.31b and 6.33b). Thus, the proposed model is quite robust in producing changes in
RF properties following ICMS similar to those observed experimentally. However, as these

parameters are varied, the RF size of the ICMS-site neuron and the ICMS-site neuronal
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Figure 6.26: Changes in activation of model neurons caused by changes in the
distribution of direct excitation to the neurons.

The activations of a cross-section of model cortical layer neurons through the ICMS site,
neurons (0, —15)—(0,14), in the initial stage of ICMS, as parameter values in Equation 1
are varied, are shown. The parameter values in Equations 2 and 3 were the same as those
used in the simulations presented in Section 6.3.1 (see Appendix D, Section D.4.1). For the

normal distribution of direct excitation to model cortical neurons, the values of parameters

in Equation 1 were the same as those used in Section 6.3.1. For stronger direct excitation
to cortical neurons, the value of g in Section 6.3.1 was multiplied by 2000, and for broader

distribution of direct excitation to cortical neurons, the value of o1 in Section 6.3.1 was
multiplied by 10.
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Figure 6.27: Effects of distribution of direct stimulation to the model cortical
neurons on RF properties.

Some of the effects of varying the parameters controlling direct excitation to the model
cortical neurons during ICMS are shown. The values of the parameters in Equation 1 are

give in Figure 6.26. See Figure 6.22 for conventions.
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Figure 6.28: Effects of distribution of direct stimulation to the model cortical
neurons on responsiveness.

Some of the effects of varying the parameters controlling direct excitation to the model
cortical neurons during ICMS are shown. The values of the parameters in Equation 1 are

give in Figure 6.26. See Figure 6.23 for conventions.
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Figure 6.29: Changes in activation of model neurons caused by changes in the
distribution of presynaptic excitation to lateral inhibitory pathways.

The activation of a cross-section of model cortical layer neurons through the ICMS site,
i.e., neurons (0, —15)—(0, 14), in the initial stage of ICMS, as parameter values in Equation 3
are varied, are shown. The parameter values in Equations 1 and 2 were the same as those
used in the simulations presented in Section 6.3.1 (see Appendix D, Section D.4.1). For
the normal distribution of excitation to lateral inhibitory pathways, the parameters in
Equation 3 were assigned the values used in the ICMS simulation in Section 6.3.1. For
stronger excitation to the lateral inhibitory pathways, the value of w5 in Section 6.3.1 was
multiplied by a factor of 2; for broader distribution of excitation to the lateral inhibitory
pathways, the value of o4 used in Section 6.3.1 was multiplied 2; for a smaller fall-off rate
of the effect of ICMS on excitation to the lateral inhibitory pathways, the value of o5 in
Section 6.3.1 was multiplied by 2; and for a larger baseline excitation to the lateral inhibitory

pathways, the value of ¢5 used in Section 6.3.1 was multiplied by 2.
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Figure 6.30: Effects of distribution of presynaptic stimulation of lateral inhibitory
pathways during ICMS on model RF topography and RF size.

Some of the effects of varying the parameters controlling the distribution of presynaptic
stimulation of lateral inhibitory pathways during ICMS are shown. The parameter values

used in these simulations are given in Figure 6.29. See Figure 6.22 for conventions.
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Figure 6.31: Effects of distribution of presynaptic stimulation of lateral inhibitory
pathways during ICMS on model responsiveness.
The parameter values used in these simulations are given in Figure 6.29. See Figure 6.23

for conventions.
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Figure 6.32: Effects of distribution of presynaptic stimulation of lateral inhibitory
pathways during ICMS on model RF topography and RF size.

The parameter values used in these simulations are given in Figure 6.29. See Figure 6.22

for conventions.
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Figure 6.33: Effects of distribution of presynaptic stimulation of lateral inhibitory
pathways during ICMS on model responsiveness.
The parameter values used in these simulations are given in Figure 6.29. See Figure 6.23

for conventions.
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responsiveness to test stimuli change (Figures 6.30b and 6.32b).

Changes in the parameters controlling the strength and distribution of stimulation
of the lateral inhibitory pathways directly affect the activation level of the model cortical
neurons. As the activation of the ICMS-site neuron in the initial stage of ICMS increases, the
RF size of the ICMS-site neuron and the ICMS-site neuronal responsiveness to test stimuli
after ICMS decrease (Figures 6.29, 6.30 — 6.33). As activation of the ICMS-site neuron
in the initial stage of ICMS increases, the lateral inhibitory pathways to the ICMS-site
neuron strengthen according to the EXIN lateral inhibitory synaptic plasticity rule, thereby
reducing the I[CMS-site neuron’s RF size and responsiveness to the test input.

The relationship between the activation of the ICMS-site neuron in the initial stage
of ICMS and the various parameters in Equation 6.3 are as follows. The activation of the
ICMS-site neuron decreases (Figure 6.29) as the distribution of the stimulation strength
of the lateral inhibitory pathways to the model cortical neurons is broadened (i.e., o4 in
Equation 6.3 is increased) because increasing o4 increases the effect of lateral inhibition to
the ICMS-site neuron (Equation 6.10). The activation of neurons close to the ICMS site
increases (Figure 6.29) as the fall-off rate of the strength of the ICMS on inhibitory pathways
is reduced (i.e., o5 in Equation 6.3 is increased), because inhibition to the ICMS-site neuron
caused by stimulation of the lateral inhibitory pathways remains constant but the inhibition
to neurons surrounding the ICMS site caused by stimulation of the lateral inhibitory
pathways increases, thereby decreasing the activation of the surrounding neurons. As the
activation of the surrounding neurons decreases, they exert less inhibition on the ICMS-site
neurorn, leading to an increase in the activation of the ICMS-site neuron. As the stimulation
strength of the lateral inhibitory pathways increases (i.e., ¢y in Equation 6.3 is increased)
or as the baseline stimulation strength of the lateral inhibitory pathways increases (i.e., ¢
in Equation 6.3 is increased), inhibition to the ICMS-site neuron increases (Equation 6.10),
and therefore the activation of the ICMS-site neuron decreases (Figure 6.29).

When o5 in Equation 6.3 was increased, the increased inhibition to neurons
far from the ICMS site kept those neurons inactive during ICMS, and according to the
EXIN lateral inhibitory synaptic plasticity rule the lateral inhibitory pathways to those

inactive neurons weakened. The weakening of the lateral inhibitory pathways to the distant
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neurons, which were inactive during ICMS, made these neurons highly responsive to test
stimuli (Figure 6.31b). Such high responsiveness of these neurons resulted in large inhibition
to the surrounding neurons farther away from the ICMS site, and their RF shifted away
from the pre-ICMS ICMS site RF (Figure 6.30c).

6.3.3 The effects of RF scatter during ICMS

In the earlier simulations, the RFs of the model cortical neurons were
topographically arranged. In this simulation, ICMS was performed in a network with initial
RF scatter and non-uniform RF sizes (Figure 6.34). The parameters used were the same as
those used in the simulation presented in Section 6.3.1. The procedure for producing the
network with RF scatter is described in Appendix D, Section D.2.

With RF scatter in the initial RF topography, the model reproduced all the
qualitative aspects of the effects of ICMS (Figures 6.35-6.37). In particular, the model
produced sharp discontinuities at some positions where a region containing neurons whose
RFs overlap the ICMS-site RF abuts another in which the RFs of the neurons do not overlap
the ICMS-site RF (Figure 6.35).

In this simulation, the RF size, position, and responsiveness of the ICMS-site
neuron changed (Figures 6.36-6.37). This happened because the most strongly activated
model thalamocortical afferents during ICMS were not the thalamocortical afferents that

had the strongest synapses with the ICMS-site neuron.

6.3.4 The effects of peripheral stimulation

The effects of repetitive peripheral stimulation of a restricted skin region were
modeled using lateral inhibitory plasticity and varying peripheral stimulation strength (see
Section 6.4.1). The results of Jenkins et al. (1990) were modeled by assuming that strong
peripheral stimulation was used (Figure 6.38a), producing strong activation in the cortical
neurons (Figure 6.38b). The changes in RF topography reported by Recanzone et al. (1992b)
were modeled by weak peripheral stimulation (Figure 6.38¢cd).

Jenkins et al. (1990) simulated fingers of monkeys using a rotating disk with

wedge-shaped indentations. The monkeys were required to keep their fingers in contact
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Figure 6.34: Initial model cortical RF topography in the scatter simulation.

The figure shows scatter in the model cortical RFs after a training phase. The center of

the symbols in the legend represent the expected position of the center of the RF of model

cortical neurons based on topographically arranged RFs. The line segments represent the

shift in the center of the RF of the model cortical neurons away from the expected RF

center.
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Figure 6.35: Changes in RF topography after ICMS in a network with RF scatter.
Model ICMS was applied in a network whose initial RFs were not topographically arranged.
See Figure 6.11 for conventions.
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Figure 6.36: Changes in RF properties in a model network with RF scatter.
Model ICMS was applied in a network with RF scatter. The model ICMS parameters

were the same as those used in the simulation in Section 6.3.1. The ICMS was presented

500 times. See Figure 6.12 for conventions.
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Figure 6.37: Changes in responsiveness in a model network with RF scatter.
The model ICMS parameters were the same as those used in the simulation in Section 6.3.1.

See Figure 6.9 for conventions.
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with the rotating disk. Because of the grooves on the disk it was difficult to maintain
contact with the disk. Initially, the monkeys pressed their fingers to the disk very strongly
causing their hands to be dragged by the rotating disk. Gradually, they learned to control
the contact pressure to maintain contact with the rotating disk. Thus, the rotating disk
may have stimulated a large skin region. Furthermore, mechanoreceptors are much more
strongly activated by moving surfaces than flat stationary surfaces, and a larger proportion
of cutaneous mechanoreceptors are activated by moving ridged surfaces than flat stationary
surfaces (Jenkins et al., 1990). On the other hand, Recanzone et al. (1990acde) used
a tactile probe with a 2 mm diameter and a rounded tip. The probe was vibrated
sinusoidally at a fixed frequency. The stimulation was applied to a fixed skin region
and was applied with a constant small force of about 6-10 gram weight. The area of
the tactile probe used by Recanzone et al. (1992acde) was smaller than the RF size
of the somatosensory cortical neurons. Thus, the stimulation procedure employed by
Jenkins et al. (1990) could have strongly stimulated a large skin region than the procedure
used by Recanzone et al. (1992acde).

When the input was a strong local stimulation, model cortical neurons were
strongly activated (Figure 6.38b). During conditioning, the lateral inhibitory pathways
between the strongly active neurons strengthened, and lateral inhibitory pathways from
active neurons to inactive neurons weakened. This caused a decrease in the RF size of
the neurons activated by the conditioning input and an increase in the number of neurons
responsive to the conditioning input (Figures 6.40-6.42). These results are qualitatively
similar to those reported by Jenkins et al. (1990).

When the input was a weak local stimulation, model cortical neurons were weakly
activated (Figure 6.38d). During conditioning, the lateral inhibitory pathways between the
weakly active neurons weakened, and the lateral inhibitory pathways from active neurons
to inactive neurons also weakened. This caused an increase in the RF size of the neurons
activated by the conditioning input and an increase in the number of neurons responsive to
the conditioning input (Figures 6.40-6.42). These results are qualitatively similar to those
reported by Recanzone et al. (1992b).
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Figure 6.38: Spatial distribution of presynaptic excitation and postsynaptic
activation in model during peripheral stimulation.

(a) Strong local peripheral stimulation distribution centered at (0,0). (b) Initial
postsynaptic activation of model cortical neurons caused by strong peripheral stimulation.
(c) Weak local peripheral stimulation distribution centered at (0,0). The weak local
peripheral stimulation was 0.15 times the one used in (a). (d) Initial postsynaptic activation

of model cortical neurons caused by weak peripheral stimulation.

6.3.5 Changes in stimulus discrimination after peripheral stimulation

Monkeys improved their performance in a tactile frequency discrimination task
after training (Recanzone et al., 1992a). The improvement occurred gradually over several
weeks (3-20) of training. The task involved discriminating a stimulus with 20 Hz stimulation
frequency (the standard stimulus) from stimuli with more than 20 Hz stimulation frequency
(the comparison stimuli). During training the standard stimulus was presented more
frequently than the others. The standard stimulus was presented in every trial followed by
a brief pause. After the pause, 1 to 5 stimuli were presented, of which one had stimulation
frequency greater than 20 Hz. The monkey was required to maintain contact while the

standard stimulus was presented, but was conditioned to break contact with the stimulus
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Figure 6.39: Changes in activation of model neurons caused by variations in
peripheral stimulation strength.

The activation of a cross-section of the model cortical layer neurons, neurons (0, —15)—
(0,14), in the initial stage of peripheral conditioning, is shown as the strength of the
peripheral stimulus is varied. Strong local peripheral stimulation was the Gaussian K
(Appendix D, Section D.5) centered at (0,0). Weak local peripheral stimulation was
0.15 x K.

if its stimulation frequency was greater than 20 Hz. The probability of occurrence of the
comparison stimuli was small (& 0.388).

In the simulations, tactile frequency selectivity was not incorporated. Therefore,
instead of tactile frequency discrimination, the stimulus position discrimination of the model
was analyzed. The frequency of tactile stimulation can be encoded by distribution of activity
in input fibers innervating mechanoreceptors. Mechanoreceptors in the skin have different
temporal properties. The rapidly adapting (RA) mechanoreceptors respond selectively
to high-frequency tactile stimulation and the slowly adapting (SA) mechanoreceptors
convey information about constant pressure applied to skin. Thus, the frequency of
tactile stimulation at a particular location is encoded in the distribution of activity in
the fibers innervating the RA and SA receptors. Furthermore, the fibers from RA and

SA mechanoreceptors terminate in adjacent positions in the somatosensory cortex. Thus,
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Figure 6.40: Legend on next page.
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Figure 6.40: Changes in model RF properties caused by peripheral stimulation.
Figure on previous page. In this simulation, the peripheral stimulation was centered at
Layer 1 position (0,0). Before conditioning the conditioning stimuli evoked the highest
activation in Layer 2 neuron (0,0). The stimulus used for measurement of RF properties
was also used as the strong peripheral stimulus. The weak peripheral stimulus was 0.15 times
the stimulus used for measurement of RF properties. See Figure 6.12 for conventions. The
line segments parallel to the abscissa represent the neurons that were active during the

initial stage of the two peripheral conditioning simulations.
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Figure 6.41: Changes in model neuron responsiveness caused by peripheral
stimulation.

Simulation details are presented in Figure 6.40. See Figure 6.9 for conventions. The line
segments parallel to the abscissa represent the neurons that were active during the initial

stage of the two peripheral conditioning simulations.
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Figure 6.42: Changes in model cortical magnification caused by peripheral
stimulation.

See Figure 6.40 for simulation details. Cortical magnification was computed as the number
of neurons responsive to the test stimulus at each input location. The figure shows the
cortical magnification of a cross-section of the input layer through the peripheral stimulation
site, input positions from (0, —15) to (0, 14), before and after peripheral conditioning. The
line segments parallel to the abscissa represent the neurons that were active during the

initial stage of the two peripheral conditioning simulations.

changes in the frequency of a tactile stimulation changes the input distribution to adjacent
neurons in the somatosensory cortex. This is similar to varying the position of the input in
the model.

In the simulations, a conditioning stimulus was presented at a single position in
the input layer. The peripheral stimulation used in the simulations is an abstraction of the
stimulation procedure used in Recanzone et al. (1992a) because the conditioning stimulation
was presented at only one position. Peripheral comparison stimuli were presented at other
locations during the discrimination test phase, during which synaptic plasticity in the model
was disabled.

Changes in position discrimination were modeled by lateral inhibitory synaptic
plasticity. Figure 6.43 shows that discrimination between the conditioned input position and

other test positions close to the conditioning site increased after training. The parameters
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Figure 6.43: Changes in position discrimination after peripheral stimulation.
Each model cortical neuron was assumed to code a particular position which was the centroid
of its RF. The centroid was computed by weighting each input position by the response of
the cortical neuron to test stimulus at that position. The position of the test stimulus
was interpreted from cortical activation produced by input stimulation by determining
the centroid of the distribution of cortical activity in the input space; the centroid was
computed by weighting the preferred position of each model cortical neuron by its activation
in response to the test stimulus. As the amount of overlap in the distributions of cortical
activation produced by inputs at different positions decreases, i.e., distance between the
centroids of cortical activation distributions increases, the chances of making errors in
distinguishing the two positions because of noise in the neuronal activations decrease.
Thus, position discrimination increases. In the simulations, the change in discrimination
was computed as the difference between the “perceived” position of the test stimuli after
conditioning and the “perceived” position of the test stimuli before conditioning. Increase in
discrimination represents a shift in the “perceived” position away from the conditioning site;

decrease represents a shift towards the conditioning site.
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used in these simulations were the same as those used in the previous section (Section 6.3.4).
The increase in position discrimination was obtained after stimulating the standard input
position with strong and weak stimuli. The position discrimination was determined using
the stimulus that was used to map the RF of the model cortical neurons. In the model,
increase in position discrimination occurred with increase or decrease in the RF size and
responsiveness of model cortical neurons initially responsive to conditioning stimulation at
the conditioning site (Figures 6.40 and 6.41).

In the simulations, position discrimination between the conditioning site and input
positions close to the conditioning site increases because model cortical neurons selective
for positions surrounding the conditioning site become more responsive to positions close to
the conditioning site relative to the responsiveness of neurons which were highly responsive
to stimulation at the conditioning site. Therefore, test stimulation at positions close to
conditioning site activates neurons whose initial RFs were farther from the conditioning
site more strongly relative to the neurons whose RFs were closer to the conditioning site.
This causes the “perceived” test stimulus position to shift farther away from the actual
test stimulation site. Thus, even a small shift in the position of the test stimulus from the
conditioning site causes a large difference in the “perceived” position of the test stimulus.

In the simulations, input positions at which position discrimination increased were
surrounded by positions at which position discrimination decreased (Figure 6.43). Test
stimulation at positions where position discrimination decreased caused model cortical
neurons responding to the test stimulus and closer to the cortical neurons selective for
the conditioning site to be more active than the neurons responding to the test stimulus
and farther from the neurons selective for the conditioning site. This occured because
the EXIN lateral inhibitory synaptic plasticity rule caused a large weakening in lateral
inhibitory pathways from the active neurons to weakly active/inactive neurons whose RFs
overlap with the RFs of the active neurons, i.e., neurons close to the neurons selective
for the conditioning site. According to the EXIN lateral inhibitory synaptic plasticity
rule, plasticity is enabled only when the presynaptic neuron is active, and the strength
of lateral inhibitory synaptic weights becomes proportional to the amount of overlap in

the RFs of neurons (Marshall, 1995a). Thus, during peripheral stimulation the lateral
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inhibitory pathways from the active neurons to weakly active/inactive neurons weaken,
and maximal weakening occurs in lateral inhibitory pathways from the active neurons to
weakly active/inactive neurons whose RF's have large overlap with the the RF's of the active
neurons. Lateral inhibitory pathways to neurons whose RFs have little overlap with the
RF's of the active neurons are very weak and therefore undergo very little change.

Gilbert and Wiesel (1990) showed that the perception of oriented test bars was
repelled from a standard oriented bar; i.e., the discrimination between the test and the
standard orientation increased, if one of the followed occurred: (1) reduction in the
responsiveness of neurons selective for the standard orientation, (2) shift in the peak of
the orientation tuning of model neurons towards the standard orientation, (3) broadening
of orientation tunings of neurons different from the one selective for the standard orientation,
or (4) sharpening of the orientation tuning of neurons selective for the standard orientation.
In addition, the discrimination between the test and the standard orientation decreased
if (1) responsiveness of neurons selective for orientations different from the standard
orientation was reduced relative to the responsiveness of neurons selective for the standard
orientation or (2) the peak of the orientation tuning of model neurons shifted away from
the standard orientation.

In the case of peripheral conditioning with the strong input, increase in position
discrimination occurred because of (1) decrease in responsiveness and RF size of neurons
selective for the conditioning site (Figures 6.40 and 6.41), (2) RF expansion of neurons
surrounding the neurons selective for the conditioning site (Figure 6.40), or (3) shift in
the RF of neurons surrounding the neurons selective for the conditioning site towards the
conditioning site (Figure 6.40).

In the case of peripheral conditioning with weak input, an increase in position
discrimination occurred because of (1) RF expansion of neurons surrounding the neurons
selective for the conditioning site (Figures 6.40) and (2) shift in the RF of neurons
surrounding the neurons selective for the conditioning site towards the conditioning site
(Figure 6.40). The increase in discrimination between the conditioning site and nearby
positions produced after conditioning with the weak stimulus was small because the

RF size and responsiveness of neurons selective for the conditioning site increased
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(Figures 6.40 and 6.41), thereby reducing discrimination (Gilbert & Wiesel, 1990). It is
clear from Figure 6.43 that the increase in position discrimination increased with training.

Thus, the EXIN lateral inhibitory synaptic plasticity rule can improve
discrimination of test tactile stimulation frequency from the training tactile stimulation
frequency. Furthermore, the model predicts that tactile stimulation frequencies far from

the training frequency will be perceived to be closer to the training frequency.

6.4 Discussion

Computer simulations of the EXIN network with afferent excitatory and
lateral inhibitory synaptic plasticity have qualitatively reproduced aspects of changes in
somatosensory cortical RFs in adult animals following ICMS and repetitive stimulation
of localized skin region. To closely model RF changes after ICMS, especially the lack
of RF changes at the ICMS site, it was assumed that ICMS excites afferent terminals
branching from afferent pathways close to the ICMS site more strongly than those arising
from afferent pathways far from the ICMS site (Section 6.2.2). To model the effects of
restricted peripheral stimulation, the EXIN lateral inhibitory synaptic plasticity rule was
sufficient (Section 6.3.4). The EXIN network that had topographically arranged initial RF's

exhibited the following RF changes after ICMS, consistent with experimental data:
e a large increase in the number of neurons responsive to the pre-ICMS ICMS-site RF;
e almost no change in RF size and responsiveness of the ICMS-site neuron;
e substitution of the ICMS-site RF for the former RF of surrounding neurons;
e RF expansion in some neurons and contraction in others; and

o RI shift towards the ICMS-site RF in neurons close to the ICMS site and RF shift
away from the ICMS-site RF in neurons far from the ICMS site.

However, to model discontinuous cortical representation of the ICMS-site RF, RF scatter

in the initial RF topography was introduced (Section 6.3.3).
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The EXIN network with lateral inhibitory plasticity alone modeled some of the
RF changes caused by peripheral stimulation. With weak peripheral stimulation, the model
produced an increased cortical representation of the stimulated input region and expanded
the RF of model cortical neurons responsive to the stimulated input region, consistent
with the results of Recanzone et al. (1992d). Increased cortical representation of the
stimulated skin region with decreased RF size of the neurons representing the skin region
following peripheral stimulation (Jenkins et al., 1990) was modeled by presenting strong
peripheral stimulation to the model. Furthermore, in the model, peripheral stimulation
with weak and strong stimuli improved the discrimination between a stimulus placed at the
conditioning site and a stimulus placed at positions close to the conditioning site.

The RF changes after peripheral stimulation have previously been explained by
afferent excitatory plasticity (Grajski & Merzenich, 1990; Recanzone et al., 1992d). Some
experiments to determine the relative possible influence of afferent excitatory and lateral
inhibitory plasticity on RF changes during ICMS and peripheral stimulation are suggested
in Section 6.4.5.

Several weeks of training monkeys in a frequency discrimination task affected
somatosensory cortical area 3a (Recanzone et al., 1992c¢). Neurons in area 3a usually
do not respond to the stimulation of skin surface, but these neurons respond specifically
to pressure on muscles, to muscle stretching, or to movement of the joints — “deep
inputs” (Powell & Mountcastle, 1959). Frequency discrimination training resulted in the
emergence of responsiveness to stimulation of the skin surface in area 3a neurons and loss
of responsiveness to parts of the neurons’ deep input RF (Recanzone et al., 1992¢). The
emergence of new responsiveness to tactile stimulation can be explained by weakening of
lateral inhibitory pathways in area 3a, thereby making the neurons responsive to previously
subthreshold tactile stimulation (Kang et al., 1985; Iwamura et al., 1993). In fact, several
experiments have shown emergence of new responsive zones in neurons after cortical infusion
of GABA antagonists (e.g., Lane et al., 1997; Sillito et al., 1981). But withdrawal of
inhibition cannot explain the concomitant loss of responsiveness to deep inputs with the
emergence of responsiveness to tactile inputs, because withdrawal of inhibition would make

neurons in area 3a more responsive both to deep inputs and to tactile inputs.
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The above objection is not applicable to the EXIN lateral inhibitory synaptic
plasticity rule. Because of the asymmetry of the EXIN lateral inhibitory rule, it is possible
that some area 3a neurons become less responsive to deep inputs. The explanation based on
the EXIN lateral inhibitory synaptic plasticity rule is as follows. As neurons in area 3a with
slight sensitivity to tactile input are weakly activated during peripheral training, lateral
inhibitory pathways into the neuron from other weakly active neurons weaken, thereby
making the neurons more responsive to tactile stimulation. Lateral inhibitory pathways to
inactive area 3a neurons from active neurons weaken, but the lateral inhibitory pathways
from inactive to other neurons do not change. Thus, neurons that were insensitive to tactile
stimulation become highly responsive to deep inputs. This results in more inhibition to
neurons that were weakly active during conditioning with tactile stimulation, when deep
inputs are stimulated, thereby reducing the responsiveness of neurons that were weakly
active during tactile stimulation to deep inputs. Thus, neurons that were weakly active
during tactile stimulation become more responsive to tactile stimulation and less responsive

to deep input stimulation.

6.4.1 Explanation of the RF changes during ICMS and peripheral

stimulation

These subsections describe how the model exhibits changes in RF properties.

Explanation of the effects of ICMS

In the EXIN network, the synaptic plasticity rules depend on the locally available
pre- and post-synaptic activations and the weight at synaptic junctions. Therefore,
during ICMS, afferent excitatory synaptic plasticity occurs even though model thalamic
neurons are not activated, and lateral inhibitory synaptic plasticity is enabled when
the presynaptic inhibitory pathway terminal is excited from ICMS or from presynaptic
activated.

During ICMS the following synaptic modifications occur in the EXIN model.

1. The EXIN inhibitory synaptic plasticity rule weakens the active lateral inhibitory
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pathways to inactive or very weakly active neurons. This weakening of inhibitory
weights to the initially inactive/weakly active neurons allows these neurons to respond
to the excitation they receive via anti- and orthodromically activated excitatory
afferents. According to the EXIN afferent excitatory synaptic plasticity rule, afferent
excitatory pathway weights to inactive neurons do not change. The decreased
inhibition to inactive or very weakly active neurons, combined with the lack of change
in afferent excitatory pathway weights to inactive or very weakly active neurons, causes
an expansion in RF size of these neurons, an increase in their responsiveness, and
an increase in the amount of overlap of their RF with the pre-ICMS ICMS-site RF.
During ICMS the lateral inhibitory pathways from neurons close to the ICMS site are
more strongly activated by ICMS than lateral inhibitory pathways from neurons far
from the ICMS site (Section 6.2.2). Also, synaptic plasticity in the lateral inhibitory
pathways from neurons close to the ICMS site is enabled because of activation of
neurons close to the ICMS site (Equation 6.5). Since the rate of change in the
lateral inhibitory weights is controlled by presynaptic activation in the outstar lateral
inhibitory synaptic plasticity rule (Equation 6.5), the lateral inhibitory pathways from
neurons close to the ICMS site weaken more than the lateral inhibitory pathways from
neurons far from the ICMS site. This asymmetry causes the RF of the inactive/weakly

active neurons to shift toward the ICMS-site RF.

. According to the EXIN afferent excitatory synaptic plasticity rule, the active cortical
neurons during ICMS strengthen excitatory synapses from the strongly active afferents
at the ICMS site or the branches of the afferents at the ICMS site and weaken
excitatory synapses from weakly active and inactive afferents. During ICMS the RF
of the active neurons shift to overlap with the ICMS-site RF, as these neurons
strengthen synapses from thalamocortical afferents sensitive to the ICMS-site RF and
weaken synapses from thalamocortical afferent that previously strongly excited the
neuron. Neurons closest to the ICMS site eventually have a RF almost identical to
the ICMS-site RF. These changes produce RF substitution (Recanzone et al., 1992b).

If an active neuron weakens most of its initial strong afferent excitatory pathways, its
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RF size contracts.

3. In response to the relatively weak activation of neurons close to the ICMS site
during ICMS, the lateral inhibitory synaptic plasticity rule causes the lateral
inhibitory weights between the active neurons close to the ICMS site to weaken. This
weakening of the lateral inhibitory weights to the ICMS-site model cortical neuron
balances the increased inhibition caused by increased responsiveness of neurons close
to the ICMS site to stimulation of the ICMS-site RF, because of strengthening of
afferent excitatory pathways from the ICMS-site RF to the neurons close to the
ICMS site according to the afferent excitatory synaptic plasticity rule. This keeps

the RF size and responsiveness of the I[CMS-site neuron roughly constant.

The EXIN rules, thus exhibit RF substitution, RF expansion, RF contraction, and
RF shift similar to those observed by Recanzone et al. (1992b).

Explanation of the effects of peripheral stimulation

In the EXIN network, RF changes in adult animals after peripheral stimulation
were modeled with only the EXIN lateral inhibitory synaptic plasticity rule in this chapter.

After repeated stimulation of a restricted skin region, the number of neurons
responsive to the stimulated region increased substantially (Jenkins et al., 1990;
Recanzone et al., 1992d). Jenkins et al. (1990) reported contraction in RF size of neurons
sensitive to the stimulated region. However, Recanzone et al. (1992d) observed RF
expansion of neurons coding the stimulated skin region. These apparently contradictory
results of Jenkins et al. (1990) and Recanzone et al. (1992d) are modeled using the
EXIN lateral inhibitory synaptic plasticity rule, by considering the following cases. These

also serve as predictions of the EXIN model.

1. Strong peripheral stimulation. Because of strong peripheral stimulation, the model
cortical neurons are strongly activated. According to the EXIN lateral inhibitory
synaptic plasticity rule, the inhibitory pathways between strongly activated neurons
strengthen. At the same time, the lateral inhibitory pathways from active neurons

to inactive neurons weaken. Thus, weakened inhibition to inactive neurons during
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stimulation enables these neurons to respond to input at the conditioned region.
Hence, the number of neurons responsive to the stimulated region increases. Because
the neurons that were activated during conditioning develop stronger inhibitory
pathways between one another, their RF size contracts. Thus, strong peripheral

stimulation produces RF changes similar to those observed by Jenkins et al. (1990).

2. Weak peripheral stimulation. Weak peripheral stimulation produces low activation
of the model cortical neurons. According to the EXIN lateral inhibitory synaptic
plasticity rule, the inhibitory pathways between weakly activated neurons weaken.
At the same time, the lateral inhibitory pathways from active neurons to inactive
neurons weaken. Thus, weakened inhibition to inactive neurons during stimulation
enables these neurons to respond to input at the conditioned region. Hence, the
number of neurons responsive to the stimulated region increases. Because the neurons
that were activated during conditioning have weakened inhibitory pathways between
one another, their RF size increases. Thus, weak peripheral stimulation produces

RF changes similar to those reported by Recanzone et al. (1992d).

6.4.2 Stability of EXIN networks

Like other competitive learning rules, the EXIN rules do not produce absolutely
stable synaptic weights. The stability of the network depends on the input environment.
If the input distribution changes for sufficiently long time, the weights change to encode
the new statistics. Such instability, reflecting the statistics of the input environment is
advantageous at the lower levels of cortical processing; e.g., the cortex can reorganize after
cortical or peripheral damage.

The learning rates in competitive learning networks must be kept small enough to
allow approximate stability in a statistically stationary input environment, yet large enough
to allow plasticity in response to the statistical changes posed by perturbations such as
scotomas. Empirically, the EXIN synaptic plasticity rules produce stable fixed points in a

stationary input environment, if the rate of learning is sufficiently small (Marshall, 1995a).
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6.4.3 Assumptions of the model
Distribution of presynaptic terminal activation during ICMS

To model the effects of ICMS, it was assumed that the thalamocortical afferents
terminating on a model cortical neuron were not equally excited. Instead, thalamocortical
excitatory afferent terminals that branched from thalamocortical pathways close to
the ICMS site were more strongly excited than excitatory afferent terminals from
thalamocortical pathways far from the ICMS site (Section 6.2.2). With this assumption
it was easy to ensure that the RF properties at the ICMS site did not change after ICMS.

If it were assumed that all presynaptic terminals onto a model cortical neuron
are equally stimulated and that the stimulation strength of the presynaptic terminals
decreases with increasing distance from the ICMS site, then the EXIN synaptic plasticity
rules would eventually expand the ICMS-site RF. According to Equation 6.7, the afferent
excitatory pathway weights become proportional to presynaptic excitation. Thus, all
afferent excitatory pathway weights to an active model cortical neuron during ICMS would
become equal, and the afferent excitatory pathways to the ICMS-site neuron would be
the strongest. Furthermore, all the lateral inhibitory pathway weights to model cortical
neuron activated by ICMS would become equal. However, activated lateral inhibitory
pathways to inactive neurons would weaken; these neurons would thus be highly responsive
to input stimulation and would exert strong inhibition on the ICMS-site neuron. Thus,
thelCMS-site neuron may respond to stimulation of a large number of input positions but
not all input locations from which the ICMS-site neuron receives afferent pathways. But, at
some intermediate stage during ICMS, when most afferent excitatory pathways from input
locations far from the ICMS-site RF center to the ICMS-site neuron are still weak, the

ICMS-site RF size may not change much.

Afferent excitatory and lateral inhibitory plasticity during ICMS

To reproduce the effects of ICMS, the model assumed plasticity in afferent
excitatory and lateral inhibitory pathways. Synaptic plasticity in excitatory and inhibitory

pathways have been observed experimentally. Intracortical stimulation in adult animals
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produces synaptic long-term potentiation and long-term depression (Kirkwood et al., 1993).
Simultaneous intracellular recording of pairs of CA3 pyramidal neurons in guinea pig
hippocampal slices has revealed a significant reduction in recurrent inhibition 12-20 minutes
after repetitive stimulation of afferent pathways (Miles & Wong, 1987). In neocortical
cultures, the strength of lateral inhibition was decreased by lowering the activation
of the neurons (Rutherford et al., 1997). In adult primary visual cortex, monocular
deprivation weakens lateral inhibitory interactions in the monocularly deprived cortical

regions (Kasamatsu et al., 1998b).

No afferent excitatory plasticity during peripheral stimulation in adult animals

The effects of restricted repetitive peripheral stimulation were modeled using only
the EXIN lateral inhibitory rule. This was done for two reasons.

First, the role of afferent excitatory plasticity in producing RF changes in
adult animals during peripheral stimulation may be limited, or plasticity in afferent
pathways may be very slow. Restricted retinal lesions in cats produced RF changes
in neurons in layers 3 and 4 of area 17 within hours only if the non-lesioned eye was
closed (Chino et al., 1992). This result is contrary to the prediction of a model with a
Hebbian afferent excitatory plasticity rule, which would cause active neurons to weaken
their thalamocortical pathways from the lesioned region, regardless of whether the other
eye is open or closed. Furthermore, Darian-Smith and Gilbert (1995) did not observe
anatomical reorganization of the thalamocortical afferent distribution several months after
bilateral retinal lesions in adult cats. But, Darian-Smith and Gilbert (1994) observed axonal
sprouting in existing long-range excitatory pathway terminals inside the inactive cortical
region several months after bilateral retinal lesions in adult cats. Kirkwood et al. (1993)
showed that synaptic plasticity is very easily produced in excitatory pathways to neurons
in layer 2/3 of the primary visual cortex of adult animals when the conditioning is applied
in layer 4, but synaptic plasticity is not produced or produced very infrequently when the
conditioning is applied in the layer 6-white matter border without any pharmacological
treatments to reduce inhibition. Thus, it appears that synaptic plasticity in afferent

excitatory pathways to neurons in layer 2/3 can be produced by intracortical stimulation
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but not by stimulation of geniculocortical pathways.

Second, the RF changes have been previously modeled by plasticity in afferent
excitatory pathways (Grajski & Merzenich, 1990; Recanzone et al., 1992d). Plasticity in
lateral inhibitory pathways is an alternative to model these RF changes. Furthermore, the
model based on lateral inhibitory plasticity makes predictions distinct from those of the

model based on plasticity in afferent excitatory pathways (see Section 6.4.5).

Absence of lateral excitatory and feedback excitatory pathways in the

simulations

The simulations did not incorporate lateral excitatory and feedback excitatory
pathways. In the cortex axonal arbors from pyramidal neurons make excitatory synapses
with neurons close to (near the dendritic field) and far from (> 0.5 mm) the source neuron
(Gilbert & Wiesel, 1983, 1989; McGuire et al., 1991). These horizontal excitatory pathways
have approximately 80% of their synapses with excitatory neurons; the rest are made
onto inhibitory neurons (McGuire et al., 1991). In addition, thalamocortical afferents also
terminate on GABAergic neurons (Somogyi, 1989). Thus, stimulation of thalamocortical
afferents or lateral excitatory pathways produces a mixture of excitatory and inhibitory
postsynaptic potentials. However, intracellular recordings did not reveal any disynaptic
excitatory postsynaptic potentials (EPSPs) when thalamocortical afferents were stimulated
in layer 4 simple neurons in cat primary visual cortex (Ferster, 1989), or in layer 5 pyramidal
neurons in the barrel area of neocortex in adult mice (Gil & Amitai, 1996). Thalamocortical
afferent stimulation produced disynaptic inhibitory postsynaptic potentials (IPSPs) and
polysynaptic EPSPs. Thus, the effects of the short-range excitatory pathways are rendered
ineffective by strong local inhibition. The polysynaptic EPSPs may be caused by the
long-range excitatory pathways or feedback excitatory pathways from other layers or cortical
areas (Gil & Amitai, 1996; Hirsch & Gilbert, 1993).

The lateral excitatory and feedback excitatory pathways were not included in the
simulations to keep the simulations relatively simple. Furthermore, based on physiological

data, lateral excitatory and feedback excitatory pathways appear to contribute mainly

to polysynaptic EPSPs (Gil & Amitai, 1996; Hirsch & Gilbert, 1993) and have mainly
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subthreshold effects in normal cortex. A decrease in lateral inhibition can cause the
lateral excitatory pathways to have suprathreshold effects (Das & Gilbert, 1995a; Gilbert &
Wiesel, 1989, 1990; Gilbert et al., 1996). Thus, incorporating lateral excitatory/feedback
pathways in the model can produce even larger changes in RF properties after ICMS
and localized peripheral stimulation. Because lateral excitatory and feedback excitatory
pathways contribute to polysynaptic EPSPs in response to thalamocortical stimulation
(Hirsch & Gilbert, 1993; Gil & Amitai, 1996), synaptic plasticity in these pathways may

produce changes in the late responses of cortical neurons after stimulation of their RF.

6.4.4 Significance of lateral inhibitory plasticity

In the model, lateral inhibitory pathways are present between model cortical
neurons separated by large distances. Changes in these pathways, therefore, affected the
RF of model cortical neurons over a large area of the model cortical layer (Section 6.3.2).
Furthermore, the lateral inhibitory synaptic plasticity rule balanced the effects of the
afferent excitatory synaptic plasticity to ensure that the RF properties at the ICMS site
were unaffected (Section 6.3.2).

In the EXIN model, strong lateral inhibitory pathways develop between neurons
that are consistently coactivated. Neurons can be consistently coactivated if they receive
excitatory afferents from many common input neurons. Thus, in the EXIN network, model
cortical neurons that share inputs have strong lateral inhibitory pathways between them.
This is consistent with experimental results suggesting that neurons receive the strongest
inhibition when stimulated with their preferred stimuli. (Blakemore & Tobin, 1972;
DeAngelis et al., 1992; Ferster, 1989).

In addition to the usefulness of lateral inhibitory plasticity in modeling the effects
of ICMS and peripheral stimulation, the EXIN lateral inhibitory plasticity rule has several
desirable properties. The inhibitory synaptic plasticity rule leads to improved stimulus
discrimination, sparse distributed coding, and exclusive allocation (Marshall, 1995a;
Marshall & Gupta, 1998). In addition, the EXIN inhibitory plasticity rule has been
used to model development of disparity selectivity (Marshall, 1990c), motion selectivity
and grouping (Marshall, 1990a, 1995b; Schmitt & Marshall, 1995), orientation selectivity
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(Marshall, 1990d), and length selectivity and end-stopping (Marshall, 1990b).

The EXIN lateral inhibitory plasticity rule (Equation 6.4) is an asymmetric rule;
lateral inhibitory pathways from active neurons to inactive neurons weaken; however,
lateral inhibitory pathways from inactive neurons to other neurons do not change. This
asymmetry makes it possible to produce RF expansion in the inactive neurons during
ICMS or peripheral stimulation, without necessarily producing RF expansion in neurons
activated by ICMS or peripheral stimulation. The EXIN lateral inhibitory synaptic
plasticity rule directly reduces inhibition to neurons inactivated by peripheral scotomas or
lesions, thus making the inactive neurons more likely to respond to some visual stimuli. The
EXIN lateral inhibitory synaptic plasticity rule enhances the efficiency of a neural network’s
representation of perceptual patterns, by recruiting unused and under-used neurons to
represent input data (Marshall, 1995a; Marshall & Gupta, 1998).

Thalamocortical afferent arbors can spread over a large cortical area;
thalamocortical afferents from the lateral geniculate nucleus can extend over a region up
to 3 mm in cat primary visual cortex (Humphrey et al., 1985). Gilbert & Wiesel (1983)
observed thalamocortical arbors that extended 2 mm in layer 4 of primary visual cortex of
cats. Interlaminar excitatory pathwaysin the primary visual cortex of cats spread over a few
millimeters (Gilbert & Wiesel, 1983). Thalamocortical arbors to the somatosensory cortex
in monkeys can extend over a range of 1.2-2 mm (Garraghty et al., 1989; Garraghty &
Sur, 1990; Juliano & Whitsel, 1987; Mayner & Kaas, 1986). Thus, a large overlap in the
afferent excitatory inputs to model neurons is reasonable.

In animal cortex, lateral pathways spread over large distances. Axonal arbors
of GABAergic large basket neurons extend up to 1.5 mm in cortex and terminate on the
soma of pyramidal neurons in small patches of cortex (Somogyi et al., 1983; Somogyi &
Martin, 1985). Based on the anatomical structure of the axonal arbors of basket neurons,
these neurons appear to have the greatest effect on neurons with orientation selectivity
similar to their own; however, they may also affect neurons with other orientations and
other RF positions (Martin, 1988). Long-range inhibitory influences in cortex may also be
subserved by the long-range horizontal pathways that extend 2-8 mm in primary visual

cortex of cat (Gilbert & Wiesel, 1983; 1989). The long-range horizontal pathways have an
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excitatory effect at low stimulation strength and have an inhibitory effect at high stimulation
strength (Gil & Amitai, 1996; Weliky et al., 1995). Furthermore, the excitatory and
inhibitory effects of the long-range horizontal pathways are concentrated on neurons with
similar orientation selectivity to that of the source neuron (Weliky et al., 1995). Combined
measurement of spiking point-spread using extracellular recording and optical point-spread
in cat primary visual cortex showed that the spiking point-spread accounts for only 5%
of the optical point-spread; the remainder of the optical point-spread was caused largely
by inhibition (Das & Gilbert, 1995a). The optical point-spread had a diameter between
3.2 and 5.2 mm and showed greatest magnitude for cortical neurons with similar stimulus
orientation preference to that of the spiking neurons.

These data are consistent with the suggestion that cortical neurons with common
inputs, and hence similar properties, should have relatively strong lateral inhibitory
pathways between them, for improved stimulus discrimination (e.g., orientation selectivity,
disparity selectivity, length selectivity, spatial frequency selectivity, motion direction
selectivity), and sparse distributed coding. Thus, lateral inhibitory plasticity may play

an active and important role in the development of cortical function.

6.4.5 Model predictions

Based on the mechanism of the EXIN synaptic plasticity rules, the following

experimental suggestions and EXIN model predictions are made.

ICMS and peripheral stimulation with an NMDA receptor antagonist

NMDA receptor antagonists block synaptic plasticity in excitatory synapses in
cortex (Bear et al., 1990; Dudek & Bear, 1992; Kirkwood et al., 1993). Furthermore, NMDA
receptor antagonists may not abolish neuronal activation caused by peripheral or cortical
stimulation (although neuronal activation levels are lowered) at concentrations sufficient to
block NMDA receptors (Bear et al., 1990).

With the assumption that lateral inhibitory pathway plasticity is not blocked by
NMDA receptor antagonists and afferent excitatory plasticity is blocked by NMDA receptor

antagonists, it is predicted that ICMS or localized peripheral stimulation during cortical
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infusion of NMDA receptor antagonists will produce increased cortical representation of
the ICMS-site RF or the localized peripheral stimulation site (Sections 6.3.2 and 6.3.4).
According to the EXIN outstar lateral inhibitory synaptic plasticity rule, presynaptic
activation is required to enable plasticity in lateral inhibitory pathways. Therefore, the
concentration of NMDA receptor antagonists should be such that cortical activation is not
suppressed but plasticity in afferent excitatory pathways is blocked. RF measurements
should be made after sufficient duration for the effects of NMDA receptor antagonists to
wash out. As a control, EPSPs to a few neurons before and after conditioning should be

measured to determine whether any plasticity in the afferent excitatory pathways occurred.

Measurement of changes in EPSPs and IPSPs following ICMS and peripheral

stimulation

Based on the EXIN model of ICMS; it is predicted that

1. IPSPs to neurons far from the ICMS site (which were inactive during the initial stages
of ICMS and whose RF is affected by ICMS) caused by peripheral stimulation of the
ICMS-site RF or cortical stimulation at the ICMS site decrease after ICMS, because
of weakening of lateral inhibitory pathways to these neurons from neurons close to

the ICMS site (Figure 6.7).

2. Neurons close to the ICMS site whose RF was substituted for part of the [CMS-site RF
receive reduced early EPSPs from peripheral stimulation of those parts of the neuron’s
initial RF that are ineffective in activating the neuron after ICMS, because of

weakening of the afferent excitatory pathways (Figure 6.7).
After peripheral stimulation, it is predicted that

1. IPSPs to neurons inactive during localized peripheral stimulation and whose RF is
changed after peripheral stimulation decrease because of peripheral stimulation of the
conditioning peripheral site. Also, these inactive neurons receive reduced IPSPs from
cortical stimulation of cortical sites that were active during the conditioning phase.

These effects are predicted because the EXIN lateral inhibitory synaptic plasticity rule
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weakens lateral inhibitory pathways from active neurons to inactive or very weakly

active neurons.

2. IPSPs to neurons sensitive to the localized stimulation site increase as the stimulation
strength during the conditioning phase is increased. This is accompanied by reduced
responsiveness and RF contraction in these neurons. These effects are predicted
because the EXIN lateral inhibitory synaptic plasticity rule strengthens lateral

inhibitory pathways between strongly activated neurons.

Peripheral stimulation with varying strength

The EXIN lateral inhibitory plasticity rule suggests that RF changes in
somatosensory cortex after repetitive peripheral stimulation in the same skin region of
adult animals depend on the strength of stimulation (Section 6.3.4). It is predicted that
for a stimulated skin region of a particular size, the change in somomatosensory cortical
neuronal RF size will vary from expansion to contraction as the stimulation strength is
increased (Section 6.3.4). Because lateral inhibitory plasticity in the model requires neuronal
activation (Equation 6.4), no RF change occurs in the absence of peripheral stimulation or at
very weak peripheral stimulation strength. As peripheral stimulation strength is increased
there is some value at which no RF change occurs; stimulation strength less than this
causes RF expansion, and stimulation strength greater than this causes RF contraction. In
Equation 6.4, neuronal activation affects the rate of change; hence, more RF changes are
expected as stimulation strength is increased.

In a model relying on afferent excitatory plasticity, RF size after repetitive
peripheral stimulation depends on the size of the stimulated region; RF size increases if
a large skin region is stimulated, and RF size decreases if a small skin region is stimulated.
According to the EXIN lateral inhibitory plasticity rule the RF size after repetitive
peripheral stimulation may not be a monotonic function of the size of the stimulated region
because the activation level of cortical neurons may not be a monotonic function of size of
the stimulated region — the neuron may be end-stopped or have side-inhibition. However,

if the size of the stimulated region is small and the stimulation strength is small, a model
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relying on afferent excitatory plasticity predicts a contraction in the RF size of weakly
active neurons, whereas the EXIN lateral inhibitory plasticity rule predicts expansion in

the RF size of weakly active neurons.

6.4.6 Neurophysiological realization of the EXIN synaptic plasticity rules

The EXIN model is a functional model that describes the modifications in
the effective excitation and inhibition through synaptic weight changes. In wvivo,
intracortical inhibition to excitatory neurons is mediated by inhibitory neurons, which
receive lateral excitation from excitatory neurons in addition to afferent input (Martin, 1988;
McGuire et al., 1991; Somogyi, 1989; Somogyi & Martin, 1985). In addition, inhibitory
neurons have inhibitory synapses with other inhibitory neurons (Somogyi, 1989; Somogyi &
Martin, 1985).

Neurophysiologically, the EXIN lateral inhibitory synaptic rule could be realized
directly by plasticity in the GABAergic synapses onto excitatory neurons or indirectly by
plasticity in lateral excitatory horizontal pathways (both short- and long-range) terminating
on inhibitory neurons (Darian-Smith & Gilbert, 1994, 1995; Das & Gilbert, 1995ab;
Gilbert et al., 1996; Hirsch & Gilbert, 1993). The axonal arbors of many inhibitory neurons
(e.g., clutch, basket, chandelier) terminate mainly on excitatory neurons (Somogyi, 1989;
Somogyi & Martin, 1985), and axonal arbors of most excitatory neurons terminate on
other excitatory neurons (McGuire et al., 1991; Somogyi, 1989; Somogyi & Martin, 1985).
Stimulation of the long-range horizontal excitatory pathways produces both excitatory and
inhibitory effects on excitatory neurons (Gil & Amitai, 1996; Weliky et al., 1995). Thus,
changing the efficacy of lateral inhibitory pathways or the lateral excitatory pathways to
inhibitory neurons will change effective inhibition to cortical neurons.

The double bouquet inhibitory neurons have a majority of their axonal arbors
terminating on other inhibitory neurons (Somogyi & Martin, 1985). The axonal terminals
of these neurons have mainly radial spread (Somogyi & Martin, 1985). Thus, these neurons
may not contribute much to producing RF changes in neurons over a large cortical area.
However, plasticity in axonal arbors of these neurons may affect the RF of ICMS-site

neurons.
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It might at first appear that weakening inhibitory synapses to an excitatory neuron
is equivalent to increasing lateral excitatory synapses to the same neuron. However, these
possibilities can produce different network behaviors. Consider the following two cases —
(1) lateral excitatory synapses to excitatory neurons are fixed and lateral inhibitory synapses
to cortical neurons or lateral excitatory synapses to inhibitory neurons are modifiable,
and (2) lateral inhibitory synapses to cortical neurons are fixed and lateral excitatory
synapses to excitatory neurons alone are modifiable. With the additional assumption
that both excitatory and inhibitory pathways are strengthened if the neurons are strongly
coactivated and weakened if the neurons are weakly coactivated or uncorrelated or anti-
correlated, in case (1) strong coactivation causes decorrelation of activation of cortical
neurons because of strengthening lateral inhibitory pathways or strengthening of lateral
excitatory pathways to inhibitory neurons, but in case (2) strong coactivation causes
stronger correlation between cortical neurons because of strengthening of lateral excitatory
pathways to excitatory neurons. Thus, with plasticity only in lateral excitatory pathways
to excitatory neurons, lateral excitatory pathways should be weakened if two neurons
are strongly correlated (Rubner & Schulten, 1990), in order have the same overall effect
as in case (1). Case (2) is similar to the mechanism suggested for RF changes based
on cooperative neuron groups (Section 6.1.4). When neurons are weakly activated by
peripheral stimulation, the mechanism in case (1) produces RF expansion from reduced
lateral inhibition, and the mechanism in case (2) produces RF contraction from reduced
lateral excitation. Strong neuronal activation causes RF contraction in case (1) and RF
expansion in case (2). In adult animal cortex, lateral excitatory pathways to excitatory and
inhibitory neurons and lateral inhibitory pathways to excitatory and inhibitory neurons
may undergo synaptic plasticity. Therefore, the overall effect of synaptic plasticity in
these pathways will depend on the rate of plasticity on these pathways and the relative
contribution of these pathways to RF properties.

No conclusive evidence exists on the role of changes in the excitatory and inhibitory
pathway strength in producing cortical plasticity. Intracellular measurements of EPSPs and
IPSPs in excitatory and inhibitory neurons are required to provide more conclusive evidence

on the site of cortical plasticity in adult animals during various types of conditioning.



Chapter 7

Conclusions and future work

The objectives of this dissertation were to model cortical plasticity in early
postnatal development and in adulthood and to analyze the role of lateral inhibitory
synaptic plasticity in developmental and adult cortical plasticity. Previous models
of cortical development and cortical plasticity (Linsker, 1986abe; Miller et al., 1989,
von der Malsburg, 1973; Kohonen, 1987; Willshaw & von der Malsburg, 1976) used
synaptic plasticity in the afferent excitatory pathways to model development of cortical
maps and neuronal stimulus feature selectivity. Grossberg (1982) used afferent excitatory
and feedback excitatory synaptic plasticity to model development of stable neural codes.
Synaptic plasticity in afferent excitatory and lateral excitatory pathways has been used
to model cortical organization of model neuronal groups with common receptive field
properties (Favorov & Kelly, 1994; von der Malsburg & Singer, 1988; Merzenich, 1987;
Pearson et al., 1987). In the above models, lateral inhibitory synaptic pathway weights
were set according to a predefined function.

It has been recognized that receptive field changes can occur because of
modifications in excitatory and inhibitory inputs to cortical neurons (Merzenich, 1987).
Grajski and Merzenich (1990) modeled the changes in receptive field topography after
repetitive localized peripheral stimulation using a model with synaptic plasticity in afferent
excitatory, lateral excitatory, and lateral inhibitory pathways. All these pathways were

modified using a single competitive rule based on neuronal activation, passive decay, and
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normalization (Grajski & Merzenich, 1990). However, none of the above models analyzed
the possible role of lateral inhibitory synaptic plasticity in the development of cortical
properties and functions and in adult cortical plasticity.

Several recent models (e.g., Hubbard & Marshall, 1994; Marshall, 1989, 1990abcd,
1995ab; Marshall & Alley, 1993; Marshall et al., 1996a; Martin & Marshall, 1993;
Schmitt & Marshall, 1995, 1996; Sirosh et al., 1996; Sirosh & Miikkulainen, 1997) have
emphasized the role of lateral excitatory and lateral inhibitory synaptic plasticity in
the development of cortical maps, neuronal feature selectivity, and cortical functions.
Marshall and Gupta (1998) showed that an instar afferent excitatory and an outstar
lateral inhibitory synaptic plasticity rule (the EXIN rules) lead to the development of
neural codes with low redundancy, high discrimination, and sparse distributed coding.
Marshall et al. (1996b) showed that a neural network with anisotropic lateral inhibitory
pathways, whose strength was proportional to the amount of overlap in the receptive fields
of binocular neurons, could represent stereo transparency and assign unique disparities to
each visual feature in the two eyes.

Lateral excitatory synaptic plasticity in cortex has been examined experimentally
(e.g., Darian-Smith & Gilbert, 1994; Frégnac et al., 1994; Hirsch & Gilbert, 1991;
Kirkwood & Bear, 1994; Kirkwood et al., 1993). However, lateral inhibitory synaptic
plasticity and its role in cortical development and cortical plasticity has received very little
attention experimentally (e.g., Kasamatsu et al, 1998b; Rutherford et al., 1997).

In this dissertation, results based on several experimental paradigms to study
the neural basis of cortical development and cortical plasticity, e.g., long-term synaptic
plasticity, “classical” rearing conditioning, retinal lesions, artificial scotoma conditioning,
repetitive localized peripheral stimulation, and intracortical microstimulation, were modeled
using the EXIN rules. In addition, the predictions of the EXIN rules and some other synaptic
plasticity rules from literature, e.g., the BCM rule (Bear et al., 1987; Bienenstock et al., 1982;
Clothiaux et al., 1991) and the LISSOM synaptic plasticity rules (Sirosh et al., 1996), were
analyzed and compared with experimental data, and novel predictions were made. It was

shown that the outstar lateral inhibitory synaptic plasticity rule

1. along with the instar afferent excitatory plasticity rule leads to the development
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of model neurons with high position selectivity and binocularity; without the
development of strong lateral inhibitory pathways, model cortical neurons become

monocular and have have weak position selectivity;

2. develops lateral inhibitory pathways that can produce ocular dominance changes even

when plasticity in afferent excitatory pathways are pharmacologically blocked;

3. is sufficient to model dynamic receptive field changes after retinal lesions and artificial

scotoma conditioning;

4. is sufficient to model changes in receptive field topography and stimulus feature

discrimination after repetitive localized peripheral stimulation; and

5. along with the instar afferent excitatory synaptic plasticity rule produces cortical

plasticity after intracortical microstimulation.

Repetitive localized peripheral stimulation produced by tactile frequency
discrimination training in monkeys produced widespread changes in the receptive field
properties of somatosensory cortical neurons (Recanzone et al., 1992cde). The training
also improved the monkeys’ performance (Recanzone et al., 1992a). In Chapter 6, it
was shown that repetitive localized peripheral stimulation produced receptive field changes
in the model cortical neurons similar to those observed experimentally. In addition, the
conditioning improved the model’s discrimination of test stimuli from the training stimuli.
The model was based on lateral inhibitory synaptic plasticity. Thus, it is suggested that
lateral inhibitory synaptic plasticity may play an important role in perceptual learning.
Several novel and testable experiments are suggested to test the predictions of the model.

The main results in the chapters of this dissertation are summarized in Section 7.1,
and some open questions related to cortical development and adult cortical plasticity are

discussed in Section 7.2.

7.1 Summary

In Chapter 2, long-term potentiation (LTP) and long-term depression (LTD) were

modeled using the instar and the outstar excitatory synaptic plasticity rules. The instar
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and the outstar excitatory synaptic plasticity rules were compared with the BCM rule
(Bear et al., 1987; Bienenstock et al., 1982; Clothiaux et al., 1991). Furthermore, the
properties of the outstar lateral inhibitory synaptic plasticity rule were analyzed. It was
shown that the instar and the outstar excitatory synaptic plasticity rules model most
experimental data on excitatory synaptic plasticity and that the BCM rule is inconsistent
with some experimental results.

In Chapter 3, shifts of ocular dominance during postnatal classical rearing
conditioning (Blakemore & Van Blakemore, 1974; Buisseret et al., 1982; Freeman &
Olson, 1982; Hubel & Wiesel, 1965, 1970) were modeled using the EXIN rules. The afferent
excitatory synaptic plasticity was primarily responsible for ocular dominance plasticity.
However, the lateral inhibitory interactions produced some secondary changes in ocular
dominance. In the model, lateral inhibitory synaptic plasticity was important in the
development of binocular neurons and high input feature selectivity. Weak lateral inhibitory
pathways during normal rearing caused model cortical neurons to become monocular and
weakly selective.

The effects of cortical infusion of pharmacological agents APV (an NMDA receptor
antagonist) and muscimol (a GABA agonist) were modeled in Chapter 4. The self-organized
network obtained after normal rearing conditioning using the EXIN rules in Chapter 3 was
used for the simulations in this chapter. It was shown that the network produced the effects
of cortical infusion of APV in adult animals during normal binocular vision. Experimentally,
cortical infusion of APV decreases binocularity and responsiveness of primary cortical
neurons (Kasamatsu et al., 1997, 1998a). In addition, the effects of cortical infusion of
APV or muscimol during monocular deprivation in animals in their critical period were
modeled. A reverse ocular dominance shift was observed after monocular deprivation
with cortical infusion of APV (Bear et al., 1990) and muscimol (Reiter & Stryker, 1988).
The model in Chapter 4 is based on lateral inhibitory interactions. In the model, it
was assumed (consistent with experimental data on long-term synaptic plasticity) that
excitatory synaptic plasticity is blocked by infusion of high concentrations of APV and
muscimol. On the other hand, previous models (e.g., Bear et al., 1990; Clothiaux et al., 1991;

Miller et al., 1989) were based on plasticity in afferent excitatory pathways from the open
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eye to the cortical region treated with APV or muscimol, inconsistent with experimental
data on long-term synaptic plasticity.

In Chapter 5, dynamic changes in the size, shape, and position of neuronal
receptive fields in response to artificial scotoma conditioning (Pettet & Gilbert, 1992;
DeAngelis et al., 1994) and retinal lesions (Chino et al., 1992; Darian-Smith & Gilbert, 1995)
were modeled using the EXIN synaptic plasticity rules. The effects produced by
the EXIN rules were compared with a model based on neuronal adaptation (Xing &
Gerstein, 1994) and another based on the LISSOM plasticity rules (Sirosh et al., 1996).
The analyses showed that the outstar lateral inhibitory synaptic plasticity rule in
the EXIN network or the LISSOM lateral excitatory synaptic plasticity rule in the
LISSOM network are sufficient to model the experimental data on artificial scotoma
conditioning and retinal lesions. A novel complementary scotoma conditioning experiment,
in which stimulation of scotoma and non-scotoma regions are alternated repeatedly,
was proposed to test the predictions of the EXIN outstar lateral inhibitory and the
LISSOM lateral excitatory synaptic plasticity rules. In addition, this chapter emphasized
the drastic effects produced by the subtle distinction between instar and outstar synaptic
plasticity rules.

In Chapter 6, the changes in the size and position of neuronal receptive fields
in response to intracortical microstimulation (Recanzone et al., 1992b) and repetitive
peripheral stimulation of a localized region (Jenkins et al., 1990; Recanzone et al., 1992cde)
were simulated based on the EXIN synaptic plasticity rules. It was shown that the
EXIN outstar lateral inhibitory synaptic plasticity rule can produce increase in cortical
magnification of the peripheral stimulation site and increase in discrimination of stimuli
from the conditioning stimuli along with expansion or contraction in the receptive field size

of the neurons initially responsive to the stimulated region.

7.2 Future work

The simulations in this dissertation demonstrated that the EXIN synaptic

plasticity rules produce effects consistent with many neurobiological data on cortical
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development and adult cortical plasticity. However, several important cortical phenomena

were not modeled in this dissertation. Some of these are discussed in this section.

7.2.1 Development of topographic cortical maps

In Chapters 3 and 4, changes in ocular dominance, responsiveness, and positional
selectivity of model cortical neurons during normal rearing and visual deprivation
conditioning were modeled using the EXIN rules. The simulations in Chapters 3 and 4,
however, ignored the spatial topography of ocular dominance and orientation columns. To
provide a stronger support for the claim that the EXIN rules may be part of a set of
fundamental rules for cortical development and adult cortical plasticity, the development of
ocular dominance and orientation columns in networks using the EXIN rules needs to be
studied.

The primary visual cortex is topographically arranged, i.e., in general, neurons
with similar stimulus feature selectivities are located close to each other in the cortex.
Because primary visual cortical neurons are selective for several different stimulus features,
cortical maps can be constructed with respect to each stimulus feature, e.g., the ocular
dominance map, the orientation map, and the spatial frequency map (Hiibener et al., 1997).
Direction of motion and orientation maps have been constructed in cat area 18 (Shmuel &
Grinvald, 1996), and orientation maps of subjective contours in adult cat areas 17 and 18
have been determined (Sheth et al., 1996)

The organization of the maps of ocular dominance and orientation selectivity
are related (Blasdel, 1992ab; Obermayer & Blasdel, 1993; Obermayer et al., 1992). The
ocular dominance and orientation maps have the following general features: (1) linear
zones in which orientation preference changes linearly with distance; (2) singularities at
which orientation preference changes by 180° along a closed path; (3) fractures across which
orientation preferences change rapidly; (4) saddle point regions with respect to orientation
preference; (5) singularities and saddle points that usually occur in the center of the ocular
dominance columns; and (6) iso-orientation lines that tend to intersect the ocular dominance
borders at 90°. Furthermore, the cortical maps display global disorder; i.e., the properties

of the maps do not repeat periodically over the cortical surface.
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The development of the orientation and ocular dominance maps and their
relationships have been simulated by several models (Erwin et al., 1995; Grossberg &
Olsen, 1994). Many of the models have the following common characteristics
(Erwin et al.,1995; Grossberg & Olsen, 1994) — noise inputs, a spatial band-pass filter, and
competitive weight normalization. These models have a tendency to correlate binocularity
and orientation specificity — the binocular neurons tend to have much greater orientation
specificity than monocular neurons (Erwin et al., 1995). However, experimentally monocular
neurons too can be highly orientation specific (Bonhoeffer & Grinvald, 1991). In these
models, the lateral interactions between model neurons have no modular specificity;
i.e., there is no preferential lateral interaction between neurons with similar orientation
preference and ocular dominance, as observed experimentally (Bosking et al., 1997;
Gilbert & Wiesel, 1989). Furthermore, the lateral long-range pathways in the visual cortex
undergo development during the early postnatal stages, and their development is susceptible
to changes in visual environment (Dalva & Katz, 1994; Katz & Callaway, 1992; Lowel &
Singer, 1992).

The LISSOM network (Sirosh & Miikkulainen, 1997) used synaptic plasticity in
afferent excitatory and lateral pathways to model the self-organization of ocular dominance
and orientation maps. They showed that synaptic plasticity in lateral pathways can model
the correlation between the distribution of lateral pathway connectivity with respect to
stimulus feature selectivity of model neurons.

Many models of orientation selectivity rely on lateral inhibition to produce
high orientation selectivity (Marshall, 1990bd; Sirosh et al., 1996; Somers et al., 1995).
Experimentally, blockade of inhibition causes decrease in orientation selectivity
(Sillito, 1975, 1977, 1979; Sillito et al., 1980). Cortical neurons are also selective for disparity
(Barlow et al., 1967; Blakemore et al., 1972; DeAngelis et al., 1991; Ohzawa et al., 1990;
Pettigrew et al., 1968; Nikara et al., 1968). Several studies have shown that disparity
selectivity and stereopsis develop postnatally in normal binocular visual environments
(Chino et al., 1997; O’Dell & Boothe, 1997; Held et al., 1980). The presence of disparity in
the input affects the ocular dominance of model neurons (Chapter 3). Thus, the analysis of

the relationship between orientation maps and the organization and development of lateral
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inhibition and of the effects of disparity on the relationship between orientation and ocular
dominance maps can be interesting research projects.

Some interesting research questions on cortical maps are

1. Can lateral inhibitory synaptic plasticity with afferent excitatory synaptic plasticity
produce orientation and ocular dominance maps in which monocular neurons too have

high orientation specificityl’
2. How do orientation specific lateral pathway connections developl’

3. Does the strength of lateral inhibitory pathways vary across orientation map features

such as singularities, linear zones, fracture, saddle pointsI’

4. What is the relationship between ocular dominance, orientation preference, and

disparity preference mapsI’

5. How is the modeled development of orientation and ocular dominance maps affected

by the introduction of disparity in the training inputsl’

7.2.2 Neural basis of perceptual learning

The analysis and modeling of perceptual learning using the EXIN rules would be
an interesting future project.

In humans, training improves performance of several perceptual tasks such as
orientation perception (Fiorentini & Berardi, 1980), vernier acuity (Fahle & Edelman, 1993),
and texture discrimination (Karni & Sagi, 1991). These improvements are very specific, as
they are observed mainly in tests involving the training stimulus features, e.g., orientation,
position, etc. In monkeys, training in a tactile frequency discrimination task led to a gradual
improvement in the task over a period of several weeks (Recanzone et al., 1992a).

In Chapter 6, it was shown that repeated stimulation of a small region in a network
with outstar lateral inhibitory synaptic plasticity improved discrimination of the stimulated
region from other surrounding positions. It was also suggested that the outstar lateral

inhibitory synaptic plasticity rule may produce perceptual learning. Thus, investigation
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of the possible role of the outstar inhibitory synaptic plasticity rule in perceptual learning

would be interesting.

7.2.3 Changes in information content of self-organizing networks after

changes in input environment

It has been suggested that, the brain adapts in order to maximize its information
content (Atick & Redlich, 1990). Although the information theoretic approach to brain
adaptation does not directly suggest possible rules for brain adaptation, it can be used to
constrain possible rules for brain plasticity.

Thus, the various synaptic plasticity rules proposed by self-organizing models
of cortical development and cortical plasticity can be analyzed in terms of the
changes in information content they produce in the neural models following artificial
scotoma conditioning, complementary scotoma conditioning, repeated localized peripheral

stimulation, intracortical microstimulation, and classical rearing conditioning.

7.2.4 Self-organization of stereopsis

In humans and monkeys stereopsis develops postnatally (O’Dell & Boothe, 1997;
Held et al., 1980). Therefore, self-organizing models are useful for understanding the neural
basis of stereopsis and its development. An understanding of the self-organizing process
of stereopsis may possibly help in the induction of normal development of stereopsis in
strabismic children.

Marshall et al. (1996) proposed a hardwired model, the exclusive grouping (EG)
network, for stereomatching that performed better than previous stereomatching models.
Previous stereomatching algorithms cannot simultaneously represent transparently overlaid
surfaces (Frisby & Pollard, 1991; Marr & Poggio, 1976), cannot directly represent surfaces
of arbitrary orientation (Marr & Poggio, 1976; Qian & Sejnowski, 1989), or cannot assign
unique disparity values to features (Prazdny, 1985).

In the EG network, monocular neurons project excitatory pathways to binocular
neurons at appropriate disparities, binocular neurons project excitatory pathways to

appropriately tuned “surface patch” neurons, and the surface patch neurons project
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reciprocal excitatory pathways to the binocular neurons. Anisotropic intralayer inhibitory
pathways project between neurons with overlapping receptive fields. The network was tested
with simulated stereo image pairs depicting a variety of oblique and transparently overlaid

surfaces. For all the surfaces, the EG network

1. assigns disparity matches and surface patch representations based on global surface

coherence and uniqueness;

2. permits coactivation of neurons representing multiple disparities at the same image

location, unlike the Marr & Poggio (1976) algorithm;

3. represents oblique slanted and tilted surfaces directly, rather than approximating them

with a series of frontoparallel steps;

4. assigns disparities to a cloud of points at random depths, like human observers, and

unlike Prazdny’s (1985) method; and
5. causes globally consistent matches to override greedy local matches.

The EG network constitutes a general solution for resolving conflicts in grouping and
transparency representation.

Thus, an interesting research problem would be to model the self-organization of
the EG network. Previously, the EXIN rules have been used to model the self-organization

of disparity selective neurons (Marshall, 1990c).

7.2.5 Binocular rivalry

Stereomatching and binocular rivalry are related in the sense that binocular rivalry
ensues when stereomatching is not possible, e.g., when very different input stimuli such as
orthogonally oriented gratings are presented dichoptically to corresponding locations in
the two eyes. In binocular rivalry, the disparate stimuli presented to the two eyes are
alternately perceived over time. There is considerable debate on whether binocular rivalry
and stereopsis are parallel, independent processes (Blake, 1989; Blake & O’Shea, 1988;
Wolfe, 1986, 1988).



398

None of the current models (e.g, Blake, 1989; Grossberg, 1987; Lehky, 1988;
Lehky & Blake, 1991; Matsuoka, 1984) is successful in explaining binocular rivalry. Most
models assume ortho-orientation inhibition (Blake, 1989; Grossberg & Marshall, 1989;
Lehky & Blake, 1991). However, ortho-orientation inhibition has not been observed in
intracellular recordings (Ferster, 1986, 1989). Some models have rivalry occurring at a
monocular stage (Blake, 1989; Lehky & Blake, 1991; Matsuoka, 1984). However, binocular
rivalry has not been observed at any monocular stage of visual processing (Lehky &
Maunsell, 1996; Leopold & Logothetis, 1996). Experimental evidence suggests that
stereopsis precedes binocular rivalry and that binocular rivalry ensues when stereopsis fails
(Blake, 1989; Wolfe, 1986, 1988). Recently, Kalarickal and Marshall (1998a) modeled most
of the temporal and stochastic properties of binocular rivalry (Blake et al., 1971; Leopold &
Logothetis, 1996; Levelt, 1965; Mueller & Blake, 1989); but this model does explain how the
rivalry alternations are set up nor does it incorporate the interactions between stereopsis
and binocular rivalry. Furthermore, the relationship between self-organization of stereopsis
and binocular rivalry has not been previously studied. Shimojo & Nakayama (1990, 1994)
have psychophysically studied the relationship between stereopsis and binocular rivalry.
Blake et al. (1991) have demonstrated that stereopsis and binocular rivalry can coexist
under certain conditions.

The EXIN synaptic plasticity rules predict that lateral inhibition will become
the strongest between neurons with similar stimulus feature selectivities, e.g., similar
orientations at a given spatial position (Marshall, 1990bcd, 1995a). But binocular rivalry is
induced when orthogonal gratings are dichoptically presented, and stereopsis ensues when
the dichoptically presented gratings are of similar orientations. In addition, high contrast
orthogonal gratings presented to the same eye at corresponding locations do not produce
alternations in the perception of the gratings. However, at low contrasts, alternations in
the perception of orthogonal gratings presented to the same eye do occur (Breese, 1899,
1909; Campbell & Howell, 1972); this is called monocular rivalry.

Thus, important research questions on binocular rivalry in the context of

self-organization and the EXIN rules are:

1. How is binocular rivalry initiated at a binocular stage between neurons selective for
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the rivalrous stimuli in a network with iso-orientation inhibitionI’

2. Monocular orientation-selective neurons inhibit each other; so why is monocular
rivalry not initiated by high contrast disparate stimuli, while binocular rivalry can

be initiated by high contrast disparate stimulil’

3. What rules of self-organization of lateral inhibitory pathways between neurons with
different ocular dominance and orientation selectivity can produce networks that

exhibit binocular and monocular rivalryl’
4. Why is binocular rivalry not produced in half-occluded regions in stereopsisl’

5. Can stereopsis and binocular rivalry self-organize within the same network using

common self-organizing rulesl’

Answers to the above questions will advance our understanding of the decision
mechanisms in the brain. When the input stimuli in the two eyes are incompatible, the
visual system has to decide between the differing signals coming through the two eyes. The
binocular rivalry phenomenon shares several properties with the alternations in bistable
percepts, e.g., bistable perceptions of the Necker cube. Thus, an understanding of the
binocular rivalry mechanism may shed light on how the brain interprets natural scenes that

contain ambiguities.



400

Appendix A

Parameters used in the simulations

of Chapter 2

The notation [a] is defined to mean max (0, a). The notation |a| is defined to mean
the largest integer less than or equal to a.

The activation equation (Equation 2.1) was numerically integrated using the Euler
method with a time step of 0.04, and the activation levels of all the neurons were initially
set to zero. The network was close to an equilibrium state by time = 40 (the maximal
change in activation level was less than 107%).

At equilibrium %xj = 0, and the activation levels of Layer 2 neurons are given by

-
Since, Equation 2.1 is a shunting equation, z;(t) € [-C, B] if z;(0) € [-C, B],
t > 0 (Cohen & Grossberg, 1983). Thus, B is the maximum activation level and —C' is the
minimum activation level of Layer 2 neurons. The constant A determines the passive decay
rate.
In the activation equation, if 3 =0 or B = 0, the activation level will converge to
zero (Figures A.led and A.2ab), and if v = 0, the neurons do not receive inhibition from

other neurons and therefore z; = % (Figure A.2¢d).

If A — oo, then A> (BE;++I;) and A>> (BBE; —vC1;) in Equation A.1. Thus,
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x;(c0) = 0. Figure A.la shows that increasing A causes the activation level of neuron a to
moves closer to 0.

Increasing 3 is equivalent to increasing the input strength. As 3 is increased, the
activation levels of neurons receiving excitation increases, but the activation level is bounded
by B. This property of the shunting equation is shown in Figure A.2ab. As v is increased,
the activation level of neurons decrease and the response profile becomes narrower. At very
large values of v, the network behaves in a winner-take-all manner (Figure A.2cd).

Increasing B increases the maximal activation level of the neurons (Figure A.led).
And increasing C' causes the activation level of neurons to decrease, and lowers the lower
bound for the activation level (Figure A.lef). For very large values of C', the network
behaves in a winner-take-all manner.

Figure A.2ef shows the effects of introducing non-linearity in input excitation and

input inhibition to the neurons.



Activation

Activation

Activation

__A=00
___A=01

100 ——-A=02

0.90

0.80

0.70 |

0.60 | T T ——

0.50 | 7

7

0.40 | Vi

0301/,

0.20 J|//

0.10 ji/

0.00 T T T T T 1
00 02 05 08 10 12 15
Presynaptic stimulation strength

(@

__B=00

__B=10
160 --B=20 -
1.40 | 7 Tl

. -
1.20 | /7
7

100,

080 /

0.60 ,./

0.40 |

0.20 |/

0.00 T T T T T 1
00 02 05 08 10 12 15
Presynaptic stimulation strength

(©)
__C=00
___C=005

080 —-C=01 <o

0.70 |

0.60 _|

0.50 |

0.40 |

0.30 |

0.20 |

0.10 |

0.00 T T T T T 1
00 02 05 08 10 12 15

Presynaptic stimulation strength
(e)

Figure A.1: Legend on

Activation

Activation

Activation

402

__A=00
_ A=o01
005 ——A=02
///
//
0.03 | o
7
//
///
0.00 .
003 |}_—""
-0.05 |
00 02 05 08 10 12 15

Presynaptic stimulation strength
(b)

—_B=00

__B=10
004 —--B=20

7z
Y
//
0.02 |
0.00
-0.02
-0.04]"
00 02 05 08 10 12 15

Presynaptic stimulation strength
d)

—_C=00
___C=0.05

010 --C=01

0.08 |
0.06 |
0.04 |
0.02 |
0.00
-0.02 |
-0.04_) P

|

|

-0.06 | B
0.08]1___———"""
-0.10 |
00 02 05 08 10 12 15
Presynaptic stimulation strength

next page.



403

Figure A.1: The effects of parameters A, B, and (' on the activation equation.
Figure on previous page. The initial network synaptic weights are given in Figure 2.8.
The activation level of neuron a (left panels) and neuron b (right panels) was determined
using Equation 2.1. The activation level of the input neuron a was varied from 0 to 1.5.
In panels (a) and (b) A € {0.0, 0.1, 0.2}, B = 1.0, ¢ = 0.05, 3 = 1.0, and v = 15. In
panels (¢) and (d) A = 0.1, B € {0.0, 1.0, 2.0}, ¢' = 0.05, § = 1.0, and v = 15. In
panels (e) and (f) A = 0.1, B = 1.0, C' € {0.0, 0.05, 0.1}, 8 = 1.0, and v = 15. When

B =0, the activation of neurons a and b is 0.
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Figure A.2: The effects of varying 3, v, input excitation function, and input
inhibition function on the activation equation.

Figure on previous page. The initial network synaptic weights are given in Figure 2.8.
The activation level of neuron a (left panels) and neuron b (right panels) was determined
using Equation 2.1. The activation level of the input neuron a was varied from 0 to 1.5.
In panels (a) and (b) A = 0.1, B = 1.0, ¢’ = 0.05, 8 € {0.0, 1.0, 2.0}, and v = 15.
In panels (¢) and (d) A = 0.1, B = 1.0, C' = 0.05, 3 = 1.0, and v € {0, 15, 30}. In
panels (e) and (f) A = 0.1, B = 1.0, C = 0.05, 8 = 1.0, and v = 15. The label “Linear
E and I” refers to using Equations 2.2 and 2.3 in Equation 2.1. The label “Non-linear E
and linear I” refers to using Equations 2.3 in Equation 2.1, but Equation 2.2 was replaced
by F; = (ZZ[QL’Z]WJ)Q, and the “Linear E and non-linear 17 refers to using Equations 2.2

in Equation 2.1, but Equation 2.3 was replaced by I; = Zk[xk]QWk_] When 5 = 0, the
activation of neurons a and b is 0.
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Appendix B

Parameters used in the simulations

of Chapters 3 and 4

The parameter values used in the simulations are presented in the following
sections. The notation [a] is defined to mean max(0,a). The notation |a] is defined to

mean the largest integer less than or equal to a.

B.1 Activation equation parameters

The parameters used for computing the activations were A = 0.1, B = 1.0,
C' =0.05, 3 =0.1,and v = 10. The activation equation for Layer 2 neurons was numerically
integrated using the FEuler method with a time step of 0.013, and the activation levels of
all the neurons were initially set to zero. The network was close to an equilibrium state by
time = 27 (the maximal change in activation level was less than 107).

During conditioning, the synaptic weight values were updated every 200 time steps.

Weights were not changed during RF measurement.

B.2 Initial network

The initial network weights were set to have a coarse receptive field topography;

nearby neurons were assigned overlapping afferent excitatory inputs. The model cortical
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layer and the model left and right eye selective input layers had a 1-D ring arrangement.
Let model cortical neurons be refered to by the index j € {0,---,41}, and left and
right eye selective model input neurons be indexed by [ and r, respectively. Then,

ZI—I} = 0.56 (exp (—M) + O.QRIJ‘) ; (B.1)

1.22

and

. "2
+_ (([e]+p) =) ,
where ¢ = (|7/3])/2, p € {-3,-2,-1,0,1,2,3}, and I, = (|7] + p) mod 4, and Ry; and
R,; are uniformly distributed independent random variables in [0, 1).

The initial lateral inhibitory weights were assigned based on the amount of overlap

in afferent pathways to the model cortical neurons. Lateral inhibitory weights between

model cortical neurons j and k, where j, k € {0,---,41}, were computed as follows. Let
j # k and
6 6
Wi=Wi =Y min (25, 28) + Y min (25, 23) . (B.3)
=0 r=0
Then
P 0.05W -, (B.4)
" = ki = — .
J J , max W,
a,b € Model cortical layer

The lateral inhibitory pathway weights Z. were always fixed at 0.
After assigning the initial weights, the network was trained using binocular stimuli
(Section B.3), and the resulting network was used for the various “classical” rearing and

model pharmacological manipulations.

B.3 Training and test stimuli

During NR, the training stimuli were binocular inputs with a range of disparities,
and some noise. The input to an eye was a 1-D truncated Gaussian centered at real-valued
positions in the corresponding model input layer. The model left and right eye selective
input neurons were placed at integer positions {0,---,6}. The inputs were wrapped around

a 1-D ring topology. When monocular input was at position « € [0,7), input layer neuron
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p € {0,---,6} in that eye was assigned activation level
rp=exp (=1.2((g+ |]) = 2)*) + (0.01 - 0.02R,) (B.5)

where ¢ € {-3,-2,-1,0,1,2,3}, p = (|z] + ¢) mod 4, and R, is a uniformly
distributed independent random variable in [0,1). The noise added to the left and
right eyes was independent. If z, < 0.31, it was set to 0. The disparities used were
{-2, —4/3, =2/3, 0, 2/3, 4/3, 2}.

The 1-D truncated Gaussian input without any noise was used to map the

monocular left and right eye RE of the model cortical neurons.

B.4 Normal rearing procedure

During normal rearing, a binocular input with randomly chosen disparity
d at a randomly chosen cyclopean position @ € [0,7) was presented, where d €
{-2, —4/3, —=2/3, 0, 2/3, 4/3, 2}. The disparity and cyclopean position were picked
with a uniform probability distribution. A binocular input with disparity d at cyclopean
position x had left eye input at x — d/2 and right eye input at @ + d/2.

The network was trained with 1,500,000 presentations of binocular inputs. After
1,500,000 input presentations, the network weights and model cortical neuronal RFs were
stable. The stability of the network was evaluated by measuring the FEuclidean distance
between the network weight vectors at intervals of 5000 input presentations. After 1,500,000
presentations of binocular inputs, the distance between the network weight vectors had
reached an asymptote. With an additional 150,000 binocular input presentations, the mean
distance between the afferent excitatory weight vectors after every 5000 input presentations
(d.) was was 5.009 x 10724 1.029 x 1072, the mean distance between the lateral inhibitory
weight vectors after every 5000 input presentations (d;) was 5.422 x 1072 £ 1.180 x 1072,
and the mean distance between the response vector of the neurons to monocular inputs
after every 5000 input presentations (d,) was 1.225 x 1072 4+ 1.629 x 107>. The Euclidean
distance between weight vectors and the response vector between the network before and

after the additional 150,000 binocular input presentations were: D, = 1.531 x 10~ for
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afferent excitatory weights, D; = 8.637 x 1072 for lateral inhibitory weights, and D, =
2.958 x 1072 for the monocular responses. Because D./d. = 3.046 < (150,000/5000) = 30,
D;/d; =1.593 < 30, and D, /d, = 2.415 < 30, the network appears to be very stable.

B.5 Classical rearing manipulations

To model MD, the right eye selective model input neurons were stimulated using
the truncated 1-D Gaussian inputs, and the left eye selective model input neuron [ was
activated by zero mean noise, (0.01 — 0.02R;), where R; € [0, 1) is a uniformly distributed
independent random variable. The network was trained with 75,000 monocular inputs.

After 75,000 presentations of monocular inputs to the right eye, the left eye alone
was stimulated by 50,000 presentations of monocular inputs to simulate RS. The left eye
selective model input neurons were stimulated using the truncated 1-D Gaussian inputs,
and the right eye selective model input neuron r was activated by zero mean noise,
(0.01 — 0.02R,), where R, € [0, 1) is a uniformly distributed independent random variable.

To model ST, the right eye selective model input neurons or the left eye selective
model input neurons were stimulated using the truncated 1-D Gaussian inputs, and the
unstimulated eye selective model input neuron m was activated by zero mean noise,
(0.01-0.02R,,), where R,,, € [0, 1) is a uniformly distributed independent random variable.
The network was trained with 500,000 strabismic inputs.

During BD, left eye and right eye selective model input neurons were activated
by zero mean noise. Left eye selective model input input neuron [ was activated by
(0.01-0.02R;), and right eye selective model input neuron r was activated by (0.01-0.02R;),
where Ry, R, € [0, 1) are uniformly distributed independent random variables. The network
was trained with 5,000,000 input presentations.

Following MD, ST, and BD, the network was trained with 500,000 presentations

of binocular inputs used for normal rearing, to model RE.
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B.6 Parameters for synaptic plasticity rules

The parameters used in the EXIN lateral inhibitory plasticity rule were
§ =0.00505, G(z;) = [([z:])* + N1], and Q(z;) = min(0.2,3[z,]). The parameters used
in the EXIN afferent excitatory plasticity rule were ¢ = 0.0025, F(z;) = [([z,])? + N2], and
Ny and N were zero-mean noise, where N; = (0.0001—0.0002R;), where ¢ € {1, 2},
and R; € [0,1) is a uniformly distributed independent random variable. Noise in the model
input and cortical neurons was important in modeling the effects of chronic binocular

deprivation (see Chapter 3, Section 3.3.5).

B.7 Parameters for aspecific action of pharmacological

infusion

In these simulations, all the model cortical neurons were pharmacologically treated.
APV strength was varied by using w = 0.6 and 0.2 in Equation 4.6, and muscimol strength
was varied by using & = 0.05 and 0.1 in Equation 4.7 to obtain the simulation results
presented in Figures 4.3 and 4.5, respectively.

For the results in Figure 4.4, lateral inhibitory learning alone was enabled (e = 0),
and w = 0.6 was used in Equation 4.6. For the results in Figure 4.6, & = 0.05 was used in
Equation 4.7 with lateral inhibitory and afferent excitatory plasticity using the parameters

in Section B.6. The network was trained with 500,000 binocular input presentations.

B.8 Effects of pharmacological infusion

To model MD with pharmacological infusion, the right eye selective model input
neurons were stimulated using the truncated 1-D Gaussian inputs, and the left eye selective
model input neuron ! was activated by zero mean noise, (0.01—0.02R;), where R; € [0, 1) is a
uniformly distributed independent random variable, and model cortical neurons {12, ---,30}
were treated with an equal concentration of model APV or muscimol. OD after MD was

measured at a residual APV or muscimol concentration of half the strength of the APV or
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muscimol used during MD, or with no residual APV or muscimol. The network was trained
with 75,000 monocular inputs.

To model NR with pharmacological infusion, binocular inputs were used to train
the network with all model cortical neurons equally affected by the pharmacological infusion.

The network was trained with 5,000,000 binocular inputs.

B.8.1 APV infusion

To study the effects of the amount of afferent excitatory plasticity and APV
concentration during MD, w was assigned values 0.9, 0.8, and 0.7, and the afferent excitatory
plasticity rate ¢ was multiplied by a factor of 0, 0.35, and 0.70 (Figure 4.11) in afferent
excitatory pathways to the APV-treated neurons.

To determine the role of cortical responsiveness on RF width and responsiveness
after NR with APV, w was varied through 1, 0.325, and 0.1, and the afferent excitatory
plasticity rate in pathways to the model APV-affected neurons was zero. All the model

cortical neurons were affected by model APV (Figure 4.13).

B.8.2 Muscimol infusion

To study the effects of the amount of lateral inhibitory plasticity and muscimol
concentration during MD, & was assigned the values 0.05, 0.1, and 0.2, and the afferent
excitatory plasticity rate ¢ was not changed (Figure 4.12). The lateral inhibitory plasticity
rate § was multiplied by a factor of 0,0.5,1.0 in lateral inhibitory pathways to neurons
affected by muscimol.

To determine the role of cortical responsiveness on RF width and responsiveness
after NR with muscimol, & was varied through 0, 0.2, and 0.4. The lateral inhibitory and

afferent excitatory plasticity rules used the parameters in Section B.6 (Figure 4.13).
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Appendix C

Parameters used in the simulations

of Chapter 5

The parameter values used to simulate the three models were chosen as follows.

The notation [a] is defined to mean max(0,a).

C.1 Parameters for the EXIN model simulations

The following parameters were used in all the EXIN simulations. To compute the
initial weights, og = 1.41, ¥ = 0.2, I'g = 0.01, 2 = 0.45, and I'; = 0 were used.

The parameters used for computing the activations were A = 0.2, B =2, C' = 0.3,
B8 = 0.1, and v = 0.2. The activation equation for Layer 2 neurons were numerically
integrated using the Euler method with a time step of 0.2. The initial activation level of
all the neurons was zero. The simulations were stopped at time = 110. At time = 110, the
network was close to an equilibrium state by time = 110; the maximal change in Layer 2
neuronal activation at that point was less than 1075,

In the simulation, the weights were modified after the Layer 2 activations reached
equilibrium on each input presentation. To compute the lateral inhibitory weight changes,
parameters 6 = 0.2, G(a) = [a], and Q(a) = 3[a] were used. To compute the afferent
excitatory weight changes, e = 0.0016, F(a) = [a], and H(a) = 0.4[a] were used. When the
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afferent excitatory synaptic plasticity was enabled, the initially zero afferent weights are

not changed. This was done to speedup convergence of the afferent weights.

C.1.1 Parameters for the activation equation

The parameters of the activation equation were chosen so that the network gave
a distributed activation response to an input, instead of a winner-take-all response.

At equilibrium, %qu = 0 and the activation levels of Layer 2 neurons are given

by
o BBy —1C1y,
A BLipg + 1

Because Equation 5.3 is a shunting equation, x,,(t) € [-C, B] if 2,,(0) € [-C, B],

(C.1)

for all t > 0 (Cohen & Grossberg, 1983). Thus, B is the maximum activation level and —C'
is the minimum activation level of Layer 2 neurons. The constant A determines the passive
decay rate.

Increasing (3 is equivalent to increasing the input strength. As 5 is increased,
the activation levels of neurons receiving large excitation increase and the activation levels
of neurons receiving zero or very weak excitation are suppressed. This property of the
shunting equation is shown in Figure C.la. Note that as § is increased (by a factor of 21),
the Layer 2 activation profile expands very little. The activation level of neurons receiving
strong excitation increases, and the activation level of neurons receiving very weak or zero
excitation is further suppressed. As v is increased, the activation levels of neurons first
decrease and the response profile becomes narrower. At very large values of 7, the network
behaves in a winner-take-all manner (Figure C.1b).

Increasing B is similar to increasing . This property of the shunting equation is
shown in Figure C.lc. Increasing (' causes the Layer 2 activation profile to shift downwards.
This property of the shunting equation is shown in Figure C.1d. At very large values of C|
the network behaves in a winner-take-all manner.

The parameters were chosen so that none of the terms in the shunting equation
(Equation 5.3) dominates the others. With such a choice, changes in the weights resulted

in significant changes in RF size, shape, and responsiveness. The desirable dynamic
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Figure C.1: Behavior of the EXIN network as a function of activation equation
parameters.

Figure on previous page. The equilibrium activation level of a one-dimensional cross-section
of Layer 2: neurons (0, —15)—(0, 14), in response to input at (0,0). The EXIN network used
was obtained after training with 25,000 normal inputs with only lateral inhibitory synaptic
plasticity enabled. The network reached a stable state by time 110. (a) The parameter j
in Equation 3 is varied by a factor of 21, yet the width of the response curve increases by
only a small amount. (b) When the parameter v in Equation 3 is increased from 0.2 to 4.2,
the network exhibits winner-take-all behavior. (c) The parameter B in Equation 3 is varied
by a factor of 16, yet the width of the response curve increases by only a small amount.
(d) When the parameter C' in Equation 3 is set to 4, the network exhibits winner-take-all

behavior. When (' is zero, the neurons have non-negative activation levels.

RF changes can be obtained for a wide range of choices for the parameters in the shunting
equation, as long as no term dominates the others.

The stability of the activation equation was established empirically. The activation
equation was computed using the Fuler method. Care was taken to ensure that the step
size and the number of steps resulted in convergence and that there were no oscillations.
Figure C.2 shows the activation as a function of time of 30 Layer 2 neurons in response to
input at (0,0).

Figures C.3b—c show that the activation equation converged during the training
phase. During the training phase, the sum over all the Layer 2 neurons of the absolute
change in activation level, at each step of the Euler method, is averaged over training input
presentation at intervals of 100 input presentations.

Figures C.3b—c demonstrate the convergence of the shunting equation during
the training phase using normal stimuli and scotoma stimuli, respectively, in the EXIN
network with only lateral inhibitory synaptic plasticity enabled. The activation equation
also converged to a fixed point during the other types of conditioning; the maximal change

in Layer 2 neuronal activation was less than 107°.

C.1.2 Parameters for the learning equations

The rates of weight change in the EXIN synaptic plasticity rules were chosen

so that spurious correlations do not produce large changes in the connection weights;
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Figure C.2: Activation curves in the EXIN network after whole-field stimulation.
The activation level of a one-dimensional cross-section of Layer 2: neurons (0, —15)—(0, 14),
in response to input at (0,0) in the EXIN network after training with 25,000 normal
inputs with only lateral inhibitory synaptic plasticity enabled. The network equilibrates by

time 110. Note that some neurons that were active during the initial stages are eventually
suppressed.
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Figure C.3: Stability of the EXIN network with lateral inhibitory synaptic
plasticity alone.

Figure on previous page. The jagged line in panel (a) shows the total change in the lateral
inhibitory pathway weights in the EXIN network, after 100 presentations of normal stimuli,
over the course of 25,000 normal input presentations. The total change is obtained by
summing the magnitude of the weight changes at intervals of 100 input presentations, over
all the lateral inhibitory pathways. The smooth line in panel (a) is the nonlinear least
squares fit of the data using the Marquardt-Levenberg algorithm. The non-linear function
is a X exp(—b X iteration number) 4+ ¢. The best fit parameters are a = 53864.9 £ 5665.23,
b=1.490+£0.098, and ¢ = 10648.6 + 18.26. The sum over all Layer 2 neurons, of the
magnitude of change in the activation level at each step in the Euler method for solving
the activation equation (Equation 3), is averaged over input presentations at intervals of
100 during normal conditioning (b), and during scotoma conditioning (¢). The vertical lines

in (b,c) represent the standard deviation.

only consistent correlations over several input presentations produce significant changes in
connection weights. Figure C.3a plots the sum of the absolute weight change in all lateral
inhibitory pathways after every 100 training input presentations, in the EXIN network with
only lateral inhibitory synaptic plasticity enabled during normal conditioning.

During the normal conditioning phase, the EXIN network simulations with lateral
inhibitory plasticity alone, with afferent excitatory plasticity alone, and with both lateral
inhibitory and afferent excitatory plasticity were trained until the sum of the absolute weight
change in plastic pathways after every 100 input presentations reached an asymptote.

The Euclidean distance between the network weight vector before and after an
additional 10,000 training steps (D), was compared with the average Euclidean distance
between the network weight vectors at successive intervals of 100 training steps (d). With
lateral inhibitory synaptic plasticity alone D = 24.599667, d = 15.691748 + 0.251141
(D/d = 1.568), with afferent excitatory synaptic plasticity alone D = 0.451494 and d =
0.050187 & 0.000005 (D/d = 8.996), and with both synaptic plasticity rules D = 0.699971
and d = 0.052240 + 0.000005 (D/d = 13.399) for the afferent excitatory weights and
D = 19.516132 and d = 12.193612 £ 0.194959 (D/d = 1.601) for the lateral inhibitory
weights. In all cases D/d < 10,000/100 = 100, suggesting that the networks are close to

an equilibrium point.
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C.2 Parameters for the LISSOM simulations

To compute the initial weights in the LISSOM simulations og = 1, 0o = 1.41,
oy = 2.36, I'g = 0.01, I'c = 0.1, and I'; = 0.001 were used.

The parameters used for computing the activations were vg = 0.8, 7o = 1.8,
and v = 1.3. During training and testing LISSOM with only afferent excitatory, lateral
excitatory, or lateral inhibitory synaptic plasticity enabled, the activation equation was
close to an equilibrium state by 30 iterations. The initial value of the activation level was
zero for all neurons.

The weights were modified after the Layer 2 activations reached equilibrium
on each input presentation. To compute the weight changes, parameters &g = 0.01,
e = 0.0005, and & = 0.01 were used. The weights, which were initially set to zero,
were not changed. Without this restriction, normalization would cause all the weights to

become very small.

C.2.1 Parameters for the activation equation

The parameters of the activation equation were chosen so that the network gave
a distributed activation response to its inputs. The LISSOM activation equation rapidly
converges (Sirosh & Miikkulainen, 1994b). The parameters were chosen so that none of the
terms in the LISSOM activation equation (Equation 5.14) dominated the others. In all the
LISSOM simulations, the maximal change in Layer 2 neuronal activation was less than 107>

when the activation equation computation was stopped.

C.2.2 Parameters for the learning equations

The rates of weight change in the LISSOM synaptic plasticity rules were chosen so
that changes in the connection weights because of spurious correlations gets averaged over
a large number of input presentations.

In the initial normal conditioning phase, the networks were trained until the
amount of weight change reached an asymptote (the criterion is the same as for the EXIN

simulations).
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With an additional 10,000 normal training inputs, D = 0.219775, d = 0.017082 &+
0.000001 (D/d = 12.866) with only lateral inhibitory synaptic plasticity enabled, D =
2.256291 and d = 0.620959 £ 0.000422 (D/d = 3.634) with only lateral excitatory synaptic
plasticity enabled, and D = 3.065377 and d = 0.795790+0.000873 (D/d = 3.852) with only
afferent excitatory synaptic plasticity enabled. D/d < 100, suggesting that the networks

are close to an equilibrium state.

C.3 Parameters for the adaptation model simulations

To compute the initial weights in the inhibition-dominant adaptation model,
parameters o = 2.13, 0 = 1.19, 05 = 3.53, I'g = 0.01, I'e = 0.1, and I'; = 0.001
were used.

In the adaptation model with no lateral interaction, the lateral excitatory and
lateral inhibitory weights were set to zero. The excitation-dominant adaptation model had
the same weights as the inhibition-dominant adaptation model. The initial adaptation level
was 0.

In the inhibition-dominant adaptation model, the parameters used for computing
the activations were A = 0.2, B=2, C = 0.3, fg = 1, Be = 0.1, and v = 8. The activation
equations for Layer 2 neurons were numerically integrated using the Euler method with a
time step of 1/75. The network was very close to an equilibrium state by time = 15; the
maximal change in Layer 2 neuronal activation was less than 1075,

In the adaptation model with no lateral interaction, the activation equation was

solved analytically. With no lateral interactions, the activation equation equilibrates when

BE,,
Xpg = ————, (C.2)
pq A+qu
where E,y = 88X (; j)eLayer 112017 pgr A = 0.2, B =2, and fg = 1.
In the excitation-dominant adaptation model, 4 = 0.2, B =2, C = 0.3, gg = 0.1,
Be = 0.01, and v = 0. The activation equations for Layer 2 neurons were numerically

integrated using the Euler method with a time step of 1/75. The network reached an

equilibrium state by time = 15.
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In all three adaptation models, the initial activation level of all neurons was
zero. The adaptation threshold parameters were modified after the Layer 2 activations
reached equilibrium on each input presentation. To compute the changes in the adaptation
threshold, p = 0.0004, n = 0.3, and 7 = 15 were used in the inhibition-dominant adaptation
model. In the adaptation model without lateral interaction and the excitation-dominant

adaptation model, p = 0.0004, n = 0.3, and 7 = 2 were used.

C.3.1 Parameters for the activation equation

The shunting equation (Equation 5.16) was used in the adaptation models.
However, the activation equation in the adaptation models differs from the activation
equation in the EXIN model in two respects: (1) the presence of lateral excitation in the
adaptation model; (2) the threshold in computing lateral excitation and lateral inhibition.
The parameters of the activation equation were chosen so that the network gave a distributed
response to its inputs.

The activation equation in the adaptation model behaved similarly to the
activation equation in the EXIN model. To make the model inhibition-dominant
(excitation-dominant) the constant 8. was chosen to be much smaller (larger) than the
constant v. As neurons are habituated they propagate less lateral excitation and lateral
inhibition.

In all the adaptation model simulations, the maximal change in Layer 2 neuronal
activation was less than 107% when the activation equation computation was stopped. The

adaptation model with no lateral interaction had a unique fixed point (Equation C.2).

C.3.2 Parameters for the adaptation equation

The rate of the adaptation equation was chosen so that the adaptation level of
neurons depended on neuronal activation over a large number of input presentations. In
the initial normal conditioning phase, the networks were trained until the amount of weight
change reached an asymptote (the criterion is the same as for the EXIN simulations).

With an additional 10,000 normal training inputs, D = 0.229360, d = 0.088466 &+
0.000293 (D/d = 2.593) in the network with no lateral interaction, D = 0.113066
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and d = 0.032176 £+ 0.000004 (D/d = 3.514) in the inhibition dominant network, and
D = 0.131278 and d = 0.026841 £ 0.000017 (D/d = 4.891) in the excitation dominant
network. In the all these networks D/d < 100, suggesting that the networks are close to

an equilibrium point.

C.4 Parameters for generating the inputs for the simulations

In generating the input patterns for training, the kernel K was

0.55 0.74 0.55
K=1074 1.00 0.74
0.55 0.74 0.55

The probability, ®, that the input at each position is 1 was 0.02.

C.5 Parameters for RF measurements

The threshold © used for RF measurements was chosen as follows. The activation
level of Layer 2 neurons was scaled relative to 1.25 times the maximal response of Layer 2
neuron to test stimuli, in the network obtained after the initial whole-field stimulation. In

all the simulations, © = 0.01.

C.6 Conditioning procedure

After setting the initial weights in the models, the equilibrium state of the weights
or the adaptation levels with respect to the inputs used in the simulations was obtained
by training the networks with 25,000 presentations of normal stimuli, except for the EXIN
network with afferent synaptic plasticity, and the EXIN network with afferent and lateral
inhibitory synaptic plasticity, which were trained with 50,000 presentations of normal
stimuli, and the LISSOM network with only lateral excitatory synaptic plasticity, which
was trained with 75,000 presentations of normal stimuli. For scotoma and complementary

scotoma conditioning and for reversing the effects of scotoma and complementary scotoma
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conditioning, 5000 presentations of the appropriate stimulus were used, except for the EXIN
network with afferent synaptic plasticity and the EXIN network with afferent and lateral
inhibitory synaptic plasticity, which were trained with 50,000 input presentations, and the
LISSOM network with only lateral excitatory synaptic plasticity, which was trained with
25,000 input presentations. In complementary scotoma conditioning, the complementary

scotoma stimuli were alternated.
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Appendix D

Parameters used in the simulations

of Chapter 6

The parameter values used in the simulations are presented in the following
sections. The notation [a] is defined to mean max(0,a), and the notation |a] is defined
to mean the largest integer less than or equal to a. In all the simulations, the weights were

modified after the Layer 2 activations were close to equilibrium on each input presentation.

D.1 Parameters for the activation equation

The parameters used for computing the activations were A = 0.2, B = 2.0,
C =03, 8 =001, and v = 1.3. The activation equations for Layer 2 neurons were
numerically integrated using the Euler method with a time step of 1/1200, and the
activations of all the neurons were initially set to zero. The network was close to an
equilibrium state by time = 14.

The parameters of the activation equation were chosen so that the network gave
a distributed activation response to an input, instead of a winner-take-all response.

Because Equation 6.8 is a shunting equation, x,,(t) € [-C, B] if 2,,(0) € [-C, B],
t > 0 (Cohen & Grossberg, 1983). Thus, B is the maximum activation level and —C' is the

minimum activation level of Layer 2 neurons. The constant A determines the passive decay
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Figure D.1: Activation curves in the EXIN network after ICMS.
The activation of a one-dimensional cross-section of Layer 2, neurons (0, —15)—(0, 14), in
response to a test input at (0,0) in the EXIN network after 500 ICMS presentations using
the parameters of the simulation in Section 6.3.1. After ICMS the lateral inhibitory weights
were not symmetric (Figure 6.5). The network equilibrated by time 14. Some neurons that

were active during the initial stage were eventually suppressed.

rate. The effects of the parameters on neuronal activation are described in Appendix C.
The stability of the activation equation was established empirically. The activation
equation was computed using the Fuler method. Care was taken to ensure that the step
size and the number of steps resulted in convergence, and that there were no oscillations
(Figure D.1). The activation equation was close to a stable fixed point during the various
ICMS and peripheral stimulation simulations; the maximal change in activation level of

Layer 2 neurons was less than 5 x 107> when the Euler method was terminated.

D.2 Parameters for initial synaptic strength values

To  obtain topographically arranged RFs, the parameters  in
Equations 6.13 and 6.17 were set to the following values: og = v/20, I'g = 0.1, p = 0.45,
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and I'; = 0.0.
To obtain nontopographically arranged RFs, Equation 6.13 was replaced by
_(x/2 + y/2)
Zi—lj—}pq = [(0:2540.75%;; ) exp (T e (D.1)
where
a if a>b,
[a,b] = (D.2)

0 otherwise,

=4 (TP —3), ¥ =y+ ([T, —3), z,y € {-15,---,14}, p = (((+ + 15) +
x) mod 30) — 15, and ¢ = (((j + 15) + y) mod 30) — 15. The variables ®;;,,, ¥; ,,, and
VU, g are independent uniformly distributed random variable in [0, 1). The lateral inhibitory
weights were computed using Equation 6.17. The parameter values were og = /20,
I'eg = 0.1, p = 0.45, and I'; = 0.0. The indices ¢,7,p, and ¢ range from —15 to 14.
The above equations relating the indices ¢, 7, p, and ¢ and the distances « and y were used
because the model cortical and thalamic neurons were arranged in a two-dimensional grid
which was wrapped around.

After setting the weight values of the afferent excitatory and lateral inhibitory

pathways, the network underwent a training phase using whole-field stimulation.

D.3 Parameters for the initial training phase

After the initial weights in the network were set, the network was trained with
5,000 presentations of whole-field stimuli. The probability, =, that the input at each position
is 1 was 0.0033. The resultant network was used for ICMS simulations.

During the whole-field training phase, to compute the lateral inhibitory weight
changes, Equation 6.4 with § = 0.2, G(a) = [a], and Q(a) = 3.0 X [a] was used, and to
compute the afferent excitatory weight changes, Equation 6.6 with ¢ = 0.04, F(a) = [a],
and H(a) = 2.5 x [a] was used. The excitation and inhibition in this simulation were
combined using Equations 6.11-6.12. The same equations were used during the training
phase of the network with nontopographically arranged RFs. The rates of weight change
in the learning rules were chosen so that spurious correlations did not significantly change

the connection weights.
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D.4 Parameters for ICMS simulations

The network obtained after the initial training phase (Section D.3) was used for

ICMS simulations.

D.4.1 ICMS simulations in Section 6.3.1

This simulation was performed on the network with topographically arranged RFs.
The lateral inhibitory weight changes were governed by Equation 6.5 with § = 0.2,
G(a) = [a], and Q(a) = 3.0 x [a], and afferent excitatory weights changed according to
Equation 6.7 with ¢ = 0.04, F(a) = [a], and H(a) = 2.5 X [a].

The model ICMS was simulated using Equations 6.1-6.3 in Section 6.2.2 with
(o, q0) = (0,0), (¢0,jo) = (0,0), w0 = 0.04, o1 = 10, ¢1 = 0.02, ¢1 = 0.37, o3 = 16.67,
o3 = 50, ¢ = 0.0037, vy = 0.0686, o4, = 100, and o5 = 12.5. The excitation
and inhibition during ICMS were combined using Equations 6.9-6.10. Model ICMS was
presented 500 times. To determine the temporal effects of ICMS the network was trained
with an additional 500 presentations of ICMS.

D.4.2 ICMS simulations in Section 6.3.2

In all the simulations in this section, ICMS was presented 500 times. To determine
the role of afferent excitatory synaptic plasticity in producing RF changes after ICMS,
lateral inhibitory synaptic plasticity was disabled. To analyze the effects produced by lateral
inhibitory synaptic plasticity rule, afferent excitatory synaptic plasticity was disabled. In
these two simulations, other parameters were the same as in Section 6.3.1 (see the previous
subsection).

To determine the effects of the strength and distribution of direct excitation to
model cortical neurons and excitation to afferent excitatory synaptic terminals because
of ICMS, the parameters in Equation 6.1 and Equation 6.2 were varied. The values of
parameters in Equation 6.1 were changed as follows. The value of ¢ was independently
changed from 0.04 to 80, and the value of g and ¢y were simultaneously changed from

0.04 to 80 and 10 to 100, respectively. The other parameter values were the same as in
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Section 6.3.1 (see the previous subsection).

The values of parameters in Equation 6.2 were changed independently. The other
parameter values were the same as in Section 6.3.1 (see the previous subsection). The value
of ¢y was changed from 0.02 to 0.04, ¢y was changed from 0.37 to 0.555, o2 was changed
from 16.67 to 33.34, and o3 was changed from 50 to 100.

To analyze the effects of the strength and distribution of excitation to lateral
inhibitory pathways induced by ICMS, the parameters in Equation 6.3 were independently
varied. The other parameter values were the same as in Section 6.3.1 (see the previous
subsection). The value of ¢; was changed from 0.0037 to 0.0074, ¢y was changed from
0.0686 to 0.1372, o4 was changed from 100 to 200, and o5 was changed from 12.5 to 25.

D.4.3 ICMS simulations in Section 6.3.3

This simulation was performed on the network obtained after an initial training
phase (Section D.3) on a network with nontopographically arranged RFs (Section D.2).
The values for the parameters in Equations 6.1-6.3 were the same as those in Section 6.3.1.

The ICMS was presented 500 times.

D.5 Parameters for peripheral stimulation simulations

The network obtained after the initial training phase (Section D.3) was used
for ICMS simulations. During peripheral stimulation only lateral inhibitory learning was
enabled. To compute the lateral inhibitory weight changes, Equation 6.4 with § = 0.2,
G(a) = [a], and Q(a) = 3.0 x [a] was used. These parameter values are the same as in the
lateral inhibitory synaptic plasticity rule during the initial training phase (Section D.3).
The total excitation and inhibition to the model cortical neurons were computed using
Equations 6.11-6.12.

To simulate strong localized peripheral stimulation a truncated Gaussian
convolution kernel K was centered at Layer 1 location (0,0). To simulate weak localized

peripheral stimulation, K was scaled by a multiplicative factor of 0.15. The peripheral



429

stimulation was presented 1000 times. The kernel K was

0.55 0.74 0.55
0.74 1.00 0.74
0.55 0.74 0.55

K

D.6 Parameters for RF measurements

The RF was mapped using single-point stimulation, blurred with the kernel K,
at all input positions (7, j). The activation of model cortical neurons was scaled relative to
the maximal activation of model cortical neurons in response to the RF test input, K, over
all the input locations. The RF of a Layer 2 neuron (p, ¢) was defined as the collection of

positions (¢, 7) at which the test input caused the scaled activation of model cortical neurons

to exceed a threshold ©® = 0.01.
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