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ABSTRACT

In this dissertation. I describe an algorithm for exact boundary evaluation for
curved solids. I prove the thesis that accurate boundary evaluation for low-degree
curved solids can be performed efficiently using exact computation.

Specifically. I propose exact representations for surfaces, patches., curves. and
points. All of the common and standard CSG primitives can be modeled exactly by
these representations. I describe kernel operations that provide efficient and exact
basic operations on the representations. The kernel operations include new algorithms
for curve-curve intersection. curve topology. point generation. and point location. The
representations and kernel operations form the basis for the exact boundary evaluation
algorithm. I describe each step of the boundary evaluation algorithm in detail.

[ propose speedups that increase the efficiency of the boundary evaluation algo-
rithm while maintaining exactness. Speedups fall into several categories. including
methods based on lazy evaluation. quick rejection. simplified computation. and incor-
poration of hardware-supported floating-point methods. [ also describe the tyvpes of
degeneracies that can arise in boundary evaluation and perform a preliminary analvsis
of methods for eliminating degeneracies.

The representations. kernel operations, boundary evaluation algorithm. and speed-
ups have been implemented in an exact boundary evaluation system. ESOLID. that
exactly converts CSG models specified by the Army Research Lab's BRL-CAD sys-
tem to B-rep models. ESOLID has been applied to a model of the Bradley Fighting
\ehicle (provided courtesy of the Army Research Lab). I present results and analvsis
of ESOLID’s performance on data from that model. ESOLID evaluates the exact
boundary of Bradley data at speeds less than 1-2 orders of magnitude slower than
a similar but inexact boundary evaluation system. ESOLID also correctly evaluates

boundaries of objects on which this other system fails.
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Chapter 1

Introduction

1.1 Motivating Problem

Solid modeling systems deal with the representation, creation, and use of models of
solid objects. The two primary representations used by current solid modeling systems
are Constructive Solid Geometry (CSG) and Boundary Representations (B-reps).

A CSG model is a combination of basic solid objects. called primitives. Examples
of common primitives include spheres. cones. rectangular blocks. and tori. Boolean
combinations (union. intersection. and difference) of these primitives are used to con-
struct more complex models. A CSG representation usually stores an object as a
binary tree. where leaf nodes are primitives and interior nodes are Boolean com-
binations of their child nodes. An equivalent storage method for CSG models is
set-theoretic expressions. There is a one-to-one correspondence between a valid set-
theoretic expression and the binary-tree representation of a CSG object. A simple
example of a CSG representation is shown in Figure 1.1. Section 2.1.1 provides more
details about CSG representations.

A B-rep model consists of information defining the object’s boundary. This in-
cludes the geometric data for the points. curves. and surfaces that constitute the
boundary and the topological connectivity between these points. curves. and sur-
faces. Often. the geometric data is stored in the form of parametric patches. Patches
may be flat or curved. and the set of all patches should cover the entire boundary. In
most cases. it is assumed that patches do not overlap. The parameterization of each
patch maps each point in the two-dimensional patch domain to a three-dimensional
point on the object’s boundary. An example of a B-rep is shown in Figure 1.2. Section

2.1.2 gives more details about B-reps.



Figure 1.1: An object in CSG representation.
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Figure 1.2: An object and its boundary representation.
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Each representation has its own advantages. CSG provides a compact representa-
tion that directly correlates to a design or manufacturing process. Difference opera-
tions represent removing material (e.g. by drilling or milling). while union operations
represent merging material (e.g. by welding). Certain operations on the model (such
as ray casting or testing a point for inclusion) are easier with most CSG representa-
tions. B-reps, on the other hand, are more useful for operations such as interactive
visualization and mesh generation. B-reps also allow more predictable local mod-
ifications to objects, whereas minor changes to the lower levels of a complex CSG
representation can cause dramatic and unexpected changes in the overall object.

Because each representation has its own advantages. conversion from one to the
other is desirable. CSG to B-rep conversion is more well-defined than B-rep to CSG.
A CSG representation defines a unique boundary, and although many B-reps can
represent the same boundary, the B-reps will at least be similar to each other. In a
B-rep to CSG conversion, on the other hand. a B-rep will correspond to either no CSG
representation or to many significantly different CSG representations. depending on
the CSG primitives that are available. This dissertation addresses the CSG to B-rep
conversion problem.

One method for CSG to B-rep conversion is to convert the primitive objects to
B-rep (a relatively simple step) and then compute Boolean combinations of these
B-rep objects to obtain a B-rep of the overall object. This computation of Boolean
combinations of B-rep objects. called boundary evaluation. is the key operation in
CSG to B-rep conversion. Note that boundary evaluation is also useful in a strictly
B-rep modeling system that provides functionality analogous to that of a CSG-based

solid modeling system. This dissertation addresses boundary evaluation.

1.2 Key Considerations

Boundary evaluation is well-studied. Sonie of the previous work addressing this prob-
lem is discussed in Section 2.3.1.

Since real-world solids and many CSG primitives are curved. having a curved B-
rep is desirable. A curved solid is a solid object with a boundary that can be curved
- polyhedra (i.e. flat or linear solids) are a subset of the curved solids. Curved B-
reps are necessary to represent curved solids exactly, but curved surfaces. and thus
curved B-reps., can be much more difficult to represent and manipulate than the

planar surfaces of polyhedral B-reps. Furthermore. a curved solid can always be



approximated to within a given precision by a polvhedral B-rep. Therefore. many
previous approaches to boundary evaluation have focused only on polyhedral B-reps.
However. this dissertation considers curved solids, including polyhedra, represented
by curved B-reps.

Because the set of all curved objects is too large for a single practical impiemen-
tation. this dissertation considers only a subset, low-degree algebraic objects. In this
context. low-degree refers to objects whose surfaces have an algebraic degree of two
to four. Specifically. the surfaces examined are those found among the most common
CSG primitives: polyvhedra, generalized cones. ellipsoids. and tori. This set of ob-
jects. though seemingly small, has been used to create a large number of complex CSG
models. As an example. consider the model of a Bradley Fighting Vehicle. which is
made up of over 5000 solids (Figure 1.3). This model is composed entirely of Boolean
combinations of polyhedra (53%). generalized cones (44%). ellipsoids (2%). and tori
(1%). Other complex CSG models. such as the torpedo room of a submarine (Figure
1.4). are also primarily composed of low-degree solids. The only higher-degree CSG
primitives in the torpedo room model come from surfaces of revolution formed by
rotating an interpolated curve. as seen in the cylindrical rollers in the pivot assembly
(Figure 1.4). Such primitives could be approximated by lower degree CSG objects.

Efficiency. accuracy. and robustness are desirable properties of any approach to
boundary evaluation. but there are often tradeoffs among these properties. For ex-
ample. an increase in accuracy or robustness usually leads to a decrease in efficiency-.

Efficiency refers to the amount of time or computer resources (such as memory)
that an algorithm uses as compared to the performance of another algorithm on the
same problem. A primary source of inefficiency in boundary evaluation is accurately
storing and manipulating curved surfaces. In this dissertation. efficiency is addressed
in terms of time.

Accuracy refers to how close the computed solution is to the true solution. Nu-
merous potential sources of inaccuracy exist. including numerical errors resulting
from fixed-precision arithmetic and errors introduced by approximating geometric
data. Accuracy plays an important role in robustness as well. as is seen in Section
1.3.1. The approach outlined in this dissertation uses exact representation and ex-
act evaluation throughout. thus eliminating inaccuracies in the boundary evaluation
computations.

Robustness is a more complex property than either efficiency or accuracv. For

that reason. and because it is a distinguishing feature of the work presented in this



Figure 1.3: Images of the exterior and interior of a Bradley Fighting Vehicle.
Images are ray-traced. Model courtesy of Army Research Lab.



Figure 1.4: Immages of a submarine torpedo room and a pivot assembly. \odel
courtesy of Electric Boat, a division of General Dvnamics.

dissertation. it is examined at greater length below in Section 1.3.

1.3 Robustness

The robustness problem refers to the tendency of seemingly well-designed algorithms
to fail in practice due to invalid assumptions. It is well-known in geometric modeling,.
solid modeling. and computational geometry. In geometric computations. there are

two major sources of robustness problems: numerical errors and degeneracies.

1.3.1 Numerical Error

Most geometric algorithms assume the Real RAM model of computation [79]. This
model states that all calculations are carried out over the real numbers exactly with
unit-time arithmetic operations. but this is not true in practice. Since [EEE floating-
point and other fixed-precision numbers are usually supported by computer hardware.
they are often used to approximate real numbers. and this approximation creates
roundoff error. Further computation with these approximated numbers compounds
the error. If exact representations and exact computation are used. arithmetic oper-
ations are no longer unit-time.

Numerical error plays an especially important role in geometric computation. be-
cause predicates that affect the flow of the algorithm are often evaluated using nu-
merical data. For example. some algorithms for computing the convex hull of a set

of points rely on finding the point that creates the smallest angle to a given line.
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Numerical inaccuracies in the computation may cause the wrong point to be chosen,
which may result in the wrong convex hull being computed or the program crash-
ing. Thus, numerical error may result in completely wrong output, rather than just
slightly inaccurate output.

The most common method for dealing with numerical error is the use of tolerances.
which attempts to account for error by allowing two values that are within a certain
fixed amount of each other to be considered the same. Although the use of tolerances
can considerably reduce the problems associated with numerical error. there are still
problems with its use in boundary evaluation. For large models, it may be impossible
to define a global tolerance that works for all cases. and so a number of different
tolerances have to be used. Defining these tolerances and tweaking them until they
work can require a large amount of user effort, and tolerances may need to be adjusted
after each modification. Furthermore, the use of tolerances suffers from the inherent
problem of equality no longer being an equivalence relation. This means that 4 = B
and B = C does not imply that A = C. For example. consider the numbers A = 1.47.
B = 1.50. and C = 1.53. If a tolerance of 0.05 is used, then a program will determine
that 4 = B and B = C. since they are only 0.03 (< 0.05) apart. but that 4 # C,
since they are 0.06 (> 0.05) apart. Since the equivalency of an equality relationship
is usually an unstated assumption in algorithms. this problem can easily lead to
algorithm failure.

Several other approaches have been used with varying success to reduce or elim-
inate the problems associated with numerical error. Many of these approaches are
reviewed in Section 2.3.2.

To fully eliminate numerical errors. some form of eract computation is required.
In exact computation, any decision based on numerical data is guaranteed to be made
as if all numerical computations are exact [102]. One way to achieve this is with exact
arithmetic. where every numerical computation is carried out to whatever precision
necessary to specify the number exactly. Problems can arise with exact arithmetic
involving irrational numbers, however. Unlike integers. irrational numbers cannot be
represented as a finite set of digits and thus cannot be stored directly on a computer.

The primary drawback to exact computation is its inefficiency. Standard com-
putation on floating-point or other fixed-precision numbers can make direct use of
computer hardware to produce an answer in a short. fixed amount of time. The out-
put of an arithmetic operation is the same size (e.g. 64 bits in [IEEE double-precision

arithmetic) as the input. In contrast, exact representations of numbers require vari-



able amounts of memory for storage. Multiplying an m digit integer by an n digit
integer requires m + n digits. As more computations are performed. more space is
necessary. Additionally. the time required for exact-arithmetic computations on exact
numbers is a function of the space those numbers require. In practical applications
this additional time can be prohibitive. For example. Karasick et al. found that for
a relatively simple problem, Delaunay triangulation. a naive substitution of exact
computation for inexact computation yielded running times four orders of magnitude
(i.e. 10.000 times) longer [36]. For applications requiring more complex calculations.
such as algebraic computations in boundary evaluation. the storage space required
can grow more rapidly and the slowdown become even worse. Yu presents some of
the theoretical bounds for these storage requirements [105].

Fortunately, methods exist for speeding up exact arithmetic and for performing
exact computation without relying solely on exact arithmetic. Some of the previous
work in this area is discussed in Section 2.3.2.1. Most of that work has focused
on exact computation in the linear domain. In contrast. this dissertation focuses on
identifving ways to perform exact computation more efficiently on non-linear algebraic
problems like those that arise in boundary evaluation.

Exact computation coupled with exact representations guarantees complete ac-
curacy. thus eliminating robustness problems due to numerical error. This is the

approach taken in this dissertation.

1.3.2 Degeneracies

A second assumption of many geometric algorithms is that the input data will be
in general position. General position means that. with probability one. a minor (in-
finitesimal) perturbation of the input data will not change the branching decisions
made in an algorithm. For example, consider an algorithm for finding the intersec-
tion between two line segments. If the endpoint of one segment lies on the other. the
segments are not in general position, since slight perturbations of the segments can
cause the segments to intersect transversely or not to intersect at all. In practice. data
often is not in general position. This may be because of numerical error. such as two
numbers close together being rounded to the same number, or because of the input
itself. Data that is not in general position is called degenerate, and the specific degen-
erate situation is called a degeneracy. Unexpected degeneracies can cause algorithms
to fail. Note that a geometric algorithm may sometimes construct and then rely on

degeneracies as an intermediate step. For example. it may compute the midpoint of



two points. thus constructing a degeneracy of three collinear points. Numerical errors
cause such expected degeneracies to be destroved. creating further problems.

Further details of degeneracies are described in Section 2.1.3.2. Previous ap-
proaches for dealing with degeneracies are summarized in Section 2.3.2.2.

Since numerical error can both create and eliminate degenerate configurations.
handling numerical error is important for rigorous handling of degeneracies. This
dissertation. therefore, focuses on the elimination of numerical error in boundary
evaluation by using exact representations and exact computation. The approach out-
lined assumes that the input data is in general position. although Chapter 7 discusses
how degeneracies impact this approach and how they may be handled. A truly robust
approach would need to handle both degeneracies and numerical error. so this work
is a first step in that direction.

The elimination of numerical error through the use of efficient exact computation
is the distinguishing feature of this work. Boundary evaluation of curved solids is the

motivating problem.

1.4 Boundary Evaluation

\arious processes for boundary evaluation follow a common basic approach. First.
cach patch of the first solid is intersected with each patch of the second. creating
intersection curves in the domain of each patch. When all patches have been inter-
sected in this way. each patch is partitioned into some number of subpatches. based
on the intersection curves. A decision is then made as to which subpatches should be
kept in the final solid. and which should be thrown away. Finally. the subpatches to
be kept are joined to form the boundary of the result.

To see the importance of accuracy in dealing with curved solids, consider the
example shown in Figure 1.5. In this example. the two cvlinders. each of radius 1.
interpenetrate by 10~*. Any error in accuracy introduced can cause the cvlinders to
no longer interpenetrate. An inexact representation is one source of error. Operations
such as a rotation. if performed using inexact computation. are another source of error.
Even when no additional error is introduced. accurate boundary evaluation (using the
algorithm outlined in this dissertation) requires approximately 200 two-dimensional
curve-curve intersection computations, some of which must be performed to more
than 6 decimal digits of precision. Mlore precision is required when the cylinders

interpenctrate less (e.g. up to 16 decimal digits if theyv interpenetrate by 107'8). If
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Figure 1.5: Two views of two cylinders that barely interpenetrate.

even one calculation is wrong, the data can become inconsistent and the boundary
evaluation can fail. IEEE-standard double-precision floating-point numbers cannot
represent 16 digits of precision, much less allow guaranteed computation to that
precision. For this reason. computations based on fixed-precision numbers. such as
the [EEE-standard numbers provided in hardware. are likely to fail on such cases.
The use of exact computation and exact representations. on the other hand. ensures
consistent and accurate results.

Basic approaches to boundary evaluation have been well-known for several vears
(12]. A number of approaches have been implemented, and the basic approach is now
well understood. The first systematic study of boundary evaluation. by Requicha and
\oelcker [82]. lists several possible approaches. General descriptions of the process
can also be found in books by Hoffmann [43] and Mantyli [69].

Following the basic work on polyhedral boundary evaluation. development pro-
ceceded in two directions. Much of the work focused on expanding the approach to
handle curved solids (e.g. [88. 16. 62]). The basic approach described above can be
used regardless of whether the patches are planar or curved, but using curved sur-
faces makes each step more difficult. For example. intersecting pairs of planar faces
gives intersection curves that are line segments. Intersecting curved surfaces results
in curves that can be extremely complicated to represent and manipulate.

The other direction of development attempted to make the polvhedral opera-

tions more robust. As is described in Section 1.3. numerical errors and degeneracies
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cause significant problems in implementations of boundary evaluation algorithms.
Approaches have been described that focus both on exact numeric computation (e.g.
[105. 35]) and on making inexact methods more robust (e.g. [45, 42, 17]).

A small amount of work has been done on accurate and robust computations with
curved primitives [74, 32. 48. 49]. Current solid modeling systems that ensure accu-
racy (i.e. use exact computation) are restricted to polyhedral models. Most industrial
solid modeling systems allow curved primitives. but to the best of my knowledge. all
such systems are based on fixed-precision arithmetic. Inexact computation can be
made more robust (Section 2.3.2.1). but complete accuracy and true robustness re-
quire exact methods. Section 2.3.1 discusses previous work on boundary evaluation

in more detail.

1.5 Thesis

The thesis of this dissertation is the following:

Accurate boundary evaluation for low-degree curved solids can be per-

formed efficiently using exact computation.

The keyv ideas in this statement have been discussed in the previous sections. The
thesis is proved by an implementation of a boundary evaluation algorithm based on
exact computation. The use of exact computation on data that (by assumption) is
not degenerate yields accurate solutions. A straightforward implementation would be
highly inefficient. so a major emphasis of the work is to make exact computation as
efficient as possible. The goal is to achieve. on typical real-world examples. running
times within one to two orders of magnitude greater than those of a similar approach

that uses fixed-precision arithmetic.

1.6 Theme

The work presented here follows the approach of ensuring eractness first. then in-
creasing efficiency. This means that one first forms an exact method and then works
on identifving routines that can be made faster, while maintaining exactness. The
method remains exact and is increasingly efficient as individual routines become

faster.
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Most standard methods for geometric problems follow a different approach of
forming a fast but inexact method first. then increasing the accuracy of that method.
One major reason for following this other approach is that accuracy-related robust-
ness problems do not become apparent until an implementation is tested on real
models. The algorithms used are likely to have been developed assuming the Real
RAM model. so assumptions regarding numerical error may not carry through to the
implementation.

The application determines which approach is appropriate. The inexact approach
is unlikely to yvield a fully robust implementation for all cases. but the exact approach
is unlikely to be as efficient as the inexact. A decision must be made as to whether

speed or robustness is of greater concern.

1.7 New Results

The primary result of this work is a comprehensive description and implementation
of an eract algorithm for boundary evaluation for curved solids. There are no known
previous exact algorithms for boundary evaluation for curved solids. Although the
algorithm described is geared toward low-degree solids for efficiency reasons. it is also
applicable to higher-degree curved solids.

Many subproblems. several of which are related to geometric problems besides
boundary evaluation, have been explored during development of the exact boundary
evaluation algorithm. Some of the key subproblems addressed in this work are listed

below:

e Exact representation of points, curves, and patches: The representa-
tions used for geometric objects play a large role in the efficiency of opera-
tions performed on those objects. Furthermore. the need to maintain exact
representations throughout the boundary evaluation algorithm places certain
restrictions on the types of representations that are appropriate. This disser-
tation outlines representations for two-dimensional points and curves and for
parametric patches that are exact and are well-suited for efficient use in the

boundary evaluation algorithm.

e Curve-curve intersection and curve topology: Two of the kev operations
in the boundary evaluation algorithm are intersecting algebraic plane curves

and resolving the topology of algebraic plane curves. These operations are of
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interest in general symbolic and algebraic computation as well. This dissertation
outlines techniques for both operations that are efficient and well-suited for use

with the exact representations outlined previously.

Speeding up of exact computation using floating-point arithmetic:
Standard floating-point computations are faster than equivalent exact compu-
tations. Although the answer produced by a floating-point computation might
not be exact, there still are ways of using floating-point methods to make ex-
act computations faster. This dissertation discusses some of these methods for

speeding up exact computations.

Library for manipulating algebraic points and curves: A key component
of the boundary evaluation algorithm is efficient and exact manipulation of al-
gebraic points and curves in the plane. A library to do this has been developed
in the process of implementing the boundary evaluation algorithm. This library
has clear application outside of boundary evaluation, although boundary eval-
uation is the motivating factor. This dissertation describes the implementation
of that library, MAPC, and presents results of its application to problems of

interest both within and outside of the context of boundary evaluation.

Implementation and application: The boundary evaluation algorithm has
been implemented as part of a system. ESOLID. that forms exact Boolean
combinations of low-degree curved solids. ESOLID has been applied to real-
world data taken from the Bradleyv Fighting \'ehicle data set. This dissertation
describes the implementation of ESOLID and its performance on artificial and

real-world data.

Curve correspondence and point inversion: Curve correspondence and
point inversion both involve transferring data from one parametric domain to
another. Both operations would seem to require computation in more than two
dimensions. and both are key operations in the boundary evaluation algorithm.
Exact computations in higher dimensions can be extremely slow. however. This
dissertation explains ways that both of these operations can be handled in the
boundary evaluation algorithm by performing only lower-dimensional compu-

tations.

Point classification: The classification of whether a point is within a given

patch or within a solid are key operations in later stages of the boundary eval-
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uation algorithm. These classifications are highly susceptible to floating-point
error in inexact implementations. This dissertation discusses methods for exact
point classification that are efficient and work well with the exact representa-

tions proposed.

e Loop detection, patch splitting, and patch partitioning: A loop occurs
when the intersection curve for two solids lies entirely inside the domain of one
patch on either solid. Detecting and handling such loops has traditionally been
one of the more difficult operations in boundary evaluation programs. Related
to loop detection is patch partitioning. or breaking up a patch into subpatches
along its intersection curve. This dissertation presents methods for automatic
loop detection and for efficient decomposition of loops via patch splitting, as a
part of the general approach to patch partitioning. All of these are important

operations in the later stages of the boundary evaluation algorithm.

¢ Enumeration and description of degeneracies: Although the boundary
evaluation algorithm presented here is not intended to handle degeneracies. it is
important to have a clear understanding of what degeneracies are possible and
how they affect the algorithm described. This dissertation enumerates potential
degeneracies, identifies their effect on the algorithm. proposes possible solutions
to some degeneracies on a case-by-case basis. and briefly evaluates more general

attempts to deal with degeneracies.

Some examples of the results achieved are shown in Figure 1.6. These examples
arc taken from the Bradley Fighting Vehicle data set. The models were expressed
in CSG format. and ESOLID was used to convert them to B-reps. These models
were also processed by the BOOLE system. a floating-point based modeling system
developed by Shankar Krishnan [61]. BOOLE was used for timing comparisons and
to verify that ESOLID could handle cases on which BOOLE failed.

For the M-16 example (Figure 1.6(a)). six Boolean operations were performed
to create the object. ESOLID took 633 seconds on a 300 MHz R12000 processor to
perform boundary evaluation while BOOLE took 6.7 seconds. This is approximately a
two-orders of magnitude time difference, which is within the time range goal. For the
track link example (Figure 1.6(b)). created by eleven Boolean operations. ESOLID
took 132 seconds while BOOLE took 27.7 seconds. a difference of less than one order of

magnitude. Finally. for the engine hatch example (Figure 1.6(c)), created by sixteen
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Figure 1.6: Solids evaluated by ESOLID. All data is from the Bradley Fighting
Vehicle model. At left. an M16 rifle. At center, a link from the tread. At right. an
engine access hatch.

Boolean operations. ESOLID took 55 seconds while BOOLE was unable to evaluate

the boundary.

1.8 Overview of Chapters

The organization of the rest of this dissertation is as follows:

Chapter 2 describes background material relevant to this work. It first provides
a more detailed background of boundary evaluation and the robustness problem.
Next it discusses relevant previous work. and it closes with a short discussion

of mathematical concepts used in the rest of the dissertation.

Chapter 3 describes the exact representations for points. curves. and surfaces

used in the algorithm. It ends with a discussion of input data.

Chapter 4 describes several of the basic operations in the boundary evaluation
algorithm. These include routines for curve-curve intersection. curve topology

resolution. and point location.

Chapter 5 describes the boundary evaluation algorithm in detail. beginning with

an overview of the entire algorithm and followed by a description of each step.

Chapter 6 describes some of the methods used to increase the efficiency of the

exact calculations.
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e Chapter 7 enumerates the various tvpes of degeneracies that can arise. and
describes how these degeneracies manifest themselves in the boundary evalua-
tion algorithm. This chapter also discusses various ways degeneracies might be
handled.

e Chapter 8 describes the implementation of the MAPC library for manipulation
of algebraic points and curves and the ESOLID boundary evaluation system.
built on top of MAPC. Performance results on example data are also presented.

e Chapter 9 concludes the dissertation with a review of the new results and a

discussion of future directions of research related to this work.



Chapter 2

Background

This chapter provides background information that is useful for understanding later
chapters. The chapter begins by providing background information about boundary
evaluation and the robustness problem. Next. an introduction to some of the primary
mathematical techniques is given. Finally. a discussion of previous work done on

boundary evaluation and the robustness problem is given.

2.1 Problem Background

[n order to understand the boundary evaluation algorithm. a clear understanding of

several general concepts is needed. This section provides that background.

2.1.1 CSG Models

As described in Section 1.1. a CSG model is represented as a sequence of Boolean
combinations on primitive solids. The usual method for storing the representation is a
binary tree. with leaf nodes representing the primitives and interior nodes representing
Boolean combinations of the child nodes. The overall object is at the root node. It is
also possible to represent the binary operations in a directed acyvclic graph format. In
this way. primitives and child objects may be reused instead of copied. An example
of the two CSG representations is shown at the top and middle of Figure 2.2. The
binary tree representation can be directly translated into a set theoretic expression
(and vice versa).

Hoffmann lists the CSG standard primitives as the parallelepiped (block). triangu-
lar prism. sphere. cylinder, cone. and torus [43]. A CSG based solid modeling system

may use more primitives than these. For example, the BRL-CAD [26] system also
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Figure 2.1: The difference between a non-regularized and a regularized Bool-
ean operation, in 2D.

allows ellipsoids, generalized cones. tetrahedra. and other primitives [24]. Some of
these primitives are just more general versions of the standard primitives. For exam-
ple. generalized cones include cones and cylinders. The model of the Bradley Fighting
Vehicle. shown in Figure 1.3, is built entirely from polyhedra. ellipsoids. generalized
cones. and tori. This set of low-degree primitives includes all of the CSG standard
primitives and is enough to construct a rather complex model.

The Boolean operations used for representing CSG models are union. intersection.
and difference. Rather than the standard definition of these operations. CSG usually
assumes a regularized operation. A regularized operation is defined as the closure of
the Boolean operation on the interior of the two solids. Regularized operations are
usually denoted by an asterisk after the operator's symbol. Thus. regularized union.
intersection. and difference are written as U*. N*. and —* (or \*) respectively. Reg-
ularized operations eliminate problems with extraneous faces. edges. and points that
can arise in non-regularized operations. Figure 2.1 shows a two-dimensional exam-
ple demonstrating the difference between regularized and non-regularized operations.
The result of a regularized operation is guaranteed to enclose volume (or be null).
although the result might not be a manifold.

Note that the difference between regularized and non-regularized operations is
only significant when the input is in degenerate position. More discussion of degen-
eracies. including definitions of degenerate and general position. is in Section 2.1.3.2.
Because the algorithm in this dissertation follows the assumption that input data is
in general position. it is not concerned with the distinction between the two cases.

The assumption of general position also ensures that if input solids have manifold
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boundaries. then the output solid’s boundary will be manifold. Manifold means that
cach point on the boundary is (locally) topologically the same as a disc. All common
CSG primitives are manifold, so only manifold geometries are considered in this dis-
sertation. Chapter 7 describes how degenerate situations, such as those that might
be resolved by using regularized operations. occur. manifest themselves, and may be
dealt with.

Besides Boolean combinations, a CSG tree may also incorporate transformations
of objects. Conceptually, this means that an object can be designed in its own
local frame of reference. and then repositioned in order to be combined (by union.
intersection. or difference) with another object in a different reference frame. The
most common transformations include translation. rotation. and scaling, and a general
transformation matrix can be used to represent a combination of these (or other)
transformations. The incorporation of transformation data into a CSG tree inserts
new nodes representing the transformation. each with only one child (the object
to be transformed). Since transformations can be combined (e.g. by multiplyving
the transformation matrices). such transformation data may be pushed down the
trec to the leaf nodes if the CSG tree is stored as a full binary tree rather than a
directed acyclic graph. If this approach is taken. only the initial primitives have to
be transformed. which is often easier than transforming more complex objects. This
may create a simpler storage scheme, at the cost of possible loss of the design history

of the object. Figure 2.2 shows an example of this collapse.

2.1.2 Boundary Representations

A B-rep model stores a collection of points, curves. and surfaces that define the
boundary of an object. Besides this geometric information. the topological informa-
tion. which describes how the geometric data is connected. is stored. There are many
ways of storing both the geometry and the topology of the model.

The simplest form of B-rep involves only linear geometry. Such models are com-
posed of planar surfaces (faces), line segments (edges). and points (vertices). The
faces can be represented using groups of triangles. These B-reps are useful for inter-
active graphics display. since most graphics hardware is designed to render triangles.

Curved solids can be represented by linear B-reps by tessellating them to a fine
level. Curved surfaces can be approximated by a large number of small triangles.
Such tessellations may be necessary for display purposes. but can cause problems for

accurate boundary evaluation. As shown in Figure 2.3 for a 2D example. the specific
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Figure 2.2: Three formats for a CSG representation of an object. From top
to bottom. as a directed acyclic graph. as a binary tree. and as a binarv tree with

transformation data collapsed to the leaves.
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Figure 2.3: A pair of circles tessellated. The tessellation at left results in inter-
secting circles. while the one at right does not.

tessellation used can affect whether two solids are touching. Greater accuracy can be
achieved by using more triangles, but this can lead to excessive storage. Furthermore.
it may be difficult to determine ahead of time how much accuracy is necessarv in a
specific situation. Different applications may require different levels of accuracy. so
many tessellations of the models may need to be stored. For example. a tessellation
appropriate for graphical display and visual inspection may not be accurate enough
for finite element analysis.

Because of the shortcomings of linear approximations, nonlinear representations
are often used. Faces are defined by curved surfaces. and edges by curves. Note that
since lines are just degree one curves, linear B-reps are just a special case of curved
B-reps. The usual method for representing the curved faces is by parametric patches.
A parametric patch maps a two-dimensional domain into three-dimensional space.
Each point in the parametric domain projects to one point in three-dimensional space.
Usually only a portion of the two-dimensional parametric domain is defined as being
part of the patch. This is called the patch dommain. A common patch domain is the
region [0. 1] x [0. 1]. to which any other rectangular domain can be easily transformed.
An example of a parametric patch can be seen in Figure 2.4.

There are several ways that a surface may be decomposed into patches. Figure 2.5
shows three different ways that a cylindrical surface can be decomposed. A parametric
patch may be divided into two or more subpatches simply by dividing the patch
domain. For example. a patch over the region [0.1] x [0. 1] could be subdivided into
two patches. over the regions [0.0.5] x [0.1] and [0.5.1] x [0. 1]. each of which can
then be reparameterized to the [0, 1] x [0. 1] domain. Also. several different types of
rational parametric patches can be used. The particular type of patch used and the

particular way a model is divided into patches are dependent on the modeling system

(V]
[§]



0

Figure 2.4: A curved parametric patch. The domain is shown at left, the 3D
projection at right.

being used.

With a rectangular patch domain. there is little control over the edges of the
patch. since they must be at a fixed parameter value. In order to represent more
complex edges. trimmed patches are used. Trimmed patches are formed by defining
a closed set of curves in the patch domain. called the trimming curves. Only the
portion of the patch within the trimming curves is considered part of the boundary.
This is called the trimmed region. The boundary of the patch is defined as the edges
formed by the trimming curves in a trimmed patch or the domain boundaries in an
untrimmed patch. Figure 2.6 shows an example of a trimmed parametric patch. In
this dissertation, a trimmed parametric patch representation for the models is used.

Besides the geometric data. topological data must also be stored. Topological
data indicates the connectivity between various parts of the model. and there are
several methods for representing that information. Regardless of the method used.
the importance of topological information is in allowing all connectivity information to
be discovered. Topological data is considered sufficient if it is possible to reconstruct
the adjacencies of all faces. edges. and vertices to each other. For example. one
must be able to compute the list of all edges around a face. and all vertices adjacent
(i.c. connected by a single edge) to a given vertex. This information may be stored
explicitly in a topological data structure, or may need to be derived by examining the
topological and geometric information. For example. which faces are adjacent to a
given face may be stored in a table or graph directly. may be derived from information

about the order of faces around each vertex, or may be found by determining which
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Figure 2.5: Three possible patch breakdowns for a cylindrical surface. At
the left. as a single patch. In the middle and at the right as two patches.
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Figure 2.6: A trimmed parametric patch. The patch from Figure 2.4 is trimmed
by the circular trimming curves shown in the domain on the left. A 3D projection is
at right.



other faces. when intersected with this face, vield one of the edges. Obviously, the
way the topological data is stored can influence the efficiency of operations on the
model.

A popular method for representing topological data is using an edge-based data
structure. These data structures have the property that all topological information
is associated with the edges of the model. Any further topological information can
be derived from this information at the edges. One of the well-known such structures
is the winged-edge data structure developed by Baumgart [9]. Weiler [101] gives a
proof of the sufficiency of the winged-edge data structure for topological information,
and also introduces three other edge-based representations. outlining their sufficiency
proofs. Guibas and Stolfi present an equivalent edge-based data structure, the quad-
edge [38]. The winged-edge data structure will briefly be described as an example of
one type of topological data structure.

The winged-edge data structure stores each edge in a directed manner. The start-
ing and ending vertices are defined. as well as the faces on the left and right. Finally.
the previous and succeeding edges are stored. as one traverses clockwise around the
adjacent faces. An illustration is shown in Figure 2.7. From this information. all adja-
cency information is derived. For example. to find the ordered list of edges bounding
a face. F. first one edge. E. bounding the face is listed. Then. the succeeding edge
for E with F is followed (e.g. if F is to the left of E. then the left succeeding edge
is next) and that edge is listed. The process is repeated until E is reached again.
Finding the faces adjacent to a face is similar. except at each edge. the opposing face

is listed instead of the edge.

2.1.3 Robustness Problems

The robustness problem refers to the tendency of seemingly well-designed algorithms
to fail in practice due to unrealistic assumptions. For boundary evaluation. possible
failures include invalid (not physically realizable) output and program crashes. There
are two main sources of robustness problems. each stemming from an assumption that
is often invalid in practice. These sources are numerical errors and degenerate data.

and each is discussed separately.
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Figure 2.7: The winged-edge data structure. An edge of a model is shown.
Stored with the edge are the starting and ending vertex. the left and right faces. and
the previous and succeeding edges as yvou travel clockwise around the left and right
faces.

2.1.3.1 Numerical Errors

As described in section 1.3.1. the assumption of the Real RAM model in algorithm de-
sign leads to robustness problems. Usually. because of the efficiency gained through
both hardware and compiler support. implementations of algorithms use standard
fixed-precision representations for numbers. These representations often require inte-
gers to be limited in absolute value and require real numbers to be approximated by
fixed-precision floating-point numbers. For applications where the precision require-
ments are not high. these limits are fine.

In other situations. however. a higher precision is necessary in order to guarantee
correctness of the code. This is particularly true for geometric algorithms. A dis-
tinguishing feature of geometric algorithms is that numerical data often determines
program flow. Even slightly inaccurate numerical results can cause serious problems
when those errors are large enough to change the direction a program takes. For ex-
ample. consider the case of determining on which side of a line lies the intersection of
two other lines. This is illustrated in Figure 2.8. A case such as this may arise when
determining whether two polygons intersect. The two dashed lines in the figure may

be the lines defining two edges of a polygon. with their intersection being the vertex.



Figure 2.8: Determining the intersection of two lines relative to a third.
Slight errors in the representations of the lines or in the calculation of the intersec-
tion point may vield the wrong answer, possibly resulting in the failure of an entire
program.

If the solid line is an edge of the other polygon. then the determination of which side
the vertex lies on is key in determining whether the two polygons intersect. If this
determination is wrong. a program will produce incorrect output or fail completely.

There are many ways that numerical problems arise. Consider again the example
illustrated in Figure 2.8. The case illustrated on the left differs from that on the right
only in that one of the dashed lines has a slightly different slope. The first problem
that arises is in the representation of one of the lines. Even a small amount of error.
say from approximating the slope, can cause the wrong result. A second problem
arises in computation of the intersection point itself. Even if the lines are represented
exactly. an error in computing the intersection point can cause the lines to appear to
intersect on the wrong side of the test line. A third problem arises with redundant
geometric data. In the example illustrated. assume that the dashed lines are the
edges of a polygon. as described earlier. Assume the polygon representation stores
both the line equations for the edges and the coordinates of the intersection point.
Due to roundoff or other errors, the true intersection of the lines can differ from the
coordinates stored for the vertex. Thus. the geometric information is inconsistent.
causing potentially serious problems.

Just as geometric information can conflict with other geometric information. geo-
metric information can conflict with topological information. Numerical errors can be
the root cause of this conflict. An example is a case where the topological information

describes a valid polygon. while the geometric information (due to roundoff error) in-
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dicates that there are self-intersecting sides. Such inconsistency leads to incorrect
programs. Inconsistencies can be reduced by eliminating redundant information. For
example. when dealing with polygons, only the line equations for the edges might be
stored. Vertices are then defined implicitly as the intersections of two lines.

The problems just described show how errors may arise in just one example. More
complex situations, such as those involving nonlinear structures. three-dimensional
structures. or more complicated queries. magnify the potential problems. In all cases,
however. the fundamental problem is due to inexact computations. and thus inexact
representations.

Numerical errors can occur at several times during boundary evaluation. Bound-
ary evaluation involves intersecting surfaces. intersecting curves, and determining
where points lie relative to surfaces and curves. There are usually a large number
of these operations. and numerical errors in any one computation can cause the en-
tire process to fail. Thus. minimizing numerical errors is extremely important when
implementing a boundary evaluation algorithm.

A number of methods have been used to deal with numerical errors. some of
which are described in Section 2.3.2. The most direct method for dealing with these
errors. and the one described in this dissertation, is using exact computation and
exact representations. The drawbacks to exact computation have been that it can be
extremely slow and that some exact methods (such as those for dealing with algebraic
numbers) are very complicated. The algorithms presented in computer algebra books

(e.g. [21. 76]) provide examples of such complexities.

2.1.3.2 Degeneracies

A second assumption that leads to robustness problems is that data is in general
position. As mentioned in section 1.3.2. degeneracies can cause algorithms to fail.
Further distinction can be drawn between three basic types of degeneracies. First
are input degeneracies. For example. in a convex hull problem. three of the input
points might be collinear. Second are unpredictable degeneracies that are the results
of arbitrary decisions made in the algorithm itself. For example. to intersect two
curves. a program might tessellate the curves into chains of linear segments. A de-
generacy between the two linear chains is unpredicatable, since the algorithm created
a degenerate situation from a non-degenerate one. Nothing was inherently degener-
ate about the problem. and a change in the tessellation would have eliminated the

degeneracy. The third type, the intentional degeneracy is one that is intentionally



Figure 2.9: An overlapping face degeneracy. On the top. the solid to be removed
shares a face with the solid being removed from. In a non-regularized operation. it is
not clear whether the top face should or should not have a hole in it.

created by the algorithm. An example is when an algorithm forms the midpoint of
two points (a degeneracy). then depends on that point being the true midpoint in
later computation.

When an algorithm does not anticipate a degeneracy occurring, serious problems
occur. Basic tests may fail, causing an immediate crash or causing a program to
proceed in a wrong manner. eventually vielding incorrect output or a program crash.
[t can be difficult to anticipate all of the degenerate situations, and even then. it can
be difficult to deal with them. To deal with a degeneracy. both the algorithm and
the data structures might need to be modified.

A large number of degeneracies can occur during boundary evaluation. A sig-
nificant number arise in the input data. Specific input degeneracies that arise are
discussed in Chapter 7. There are also a number of unpredictable degeneracies that
occur. For example, the particular way that the patches of a B-rep model are param-
cterized. or the way that a surface is broken up into patches can cause degenerate
situations. such as the two solids intersecting along a patch boundary.

The nature of design can lead to some of the input degeneracies in boundarv
evaluation. For example. consider a degeneracy where a face of one solid overlaps
the face of another solid. This is a degeneracy (since a slight modification of cither
surface would remove the overlap). and it can cause problems in boundary evaluation
when it is assumed that two surfaces meet at a curve. Figure 2.9 shows one wayv that
such a degeneracy can arise in a two-dimensional example.

Although a designer might be able to avoid some degenerate cases, others may be
mandated by the function of the object. For example, imagine a designer creating
a wheel. The designer will wish to place the axle hole directly in the center of the

wheel. This creates a degeneracy (two concentric circles - one for the outer rim of the
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Figure 2.10: Two solids in a degenerate position. The union of the two cubes is
a nonmanifold object.

wheel. one for the axle hole). This particular degeneracy might not cause a problem
for a particular boundary evaluation algorithm, but other designer-mandated input
degeneracies will.

Degeneracies can be considered apart from numerical errors as sources of robust-
ness problems. but the two topics are closely linked. Degenerate conditions or con-
ditions that are nearly degenerate are often the conditions most likely to lead to
numerical errors. Numerical errors may eliminate certain degeneracies. For exam-
ple. consider two lines that should be parallel. Due to roundoff error. their linear
equations might be slightly modified. enough so that their stored representation is no
longer parallel. Numerical errors can also create degenerate situations. For example.
imagine two points that are close together. but distinct. Due to limited precision.
the coordinates of these points may be rounded to the exact same point. Because
numerical errors can both create and eliminate degeneracies. it is important to have a
consistent way of addressing issues of numerical error before addressing degeneracies.

Handling degeneracies in an implementation can be difficult. Section 2.3.2 de-

scribes some of the approaches used to handle degeneracies.

2.2 Mathematical Background

This section provides an introduction to some of the mathematical terms and no-
tation that are used in this dissertation. It addresses only material necessaryv for

understanding the approach described.
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2.2.1 Terms and Notation

In this dissertation. z, y, and z are used to denote three-dimensional coordinates. A
parametric surface maps a two-dimensional domain into three-dimensional space. For
two dimensions, such as the domain of a parametric patch. the coordinates used in
this dissertation are s and t. In cases where two patches are considered. one domain
uses s and ¢. the other uses u and v.

w denotes a homogenizing variable, used to describe coordinates in projective
space. A parametric surface that includes a homogenizing variable (i.e. a surface
described by X (s.t).Y (s.t), Z(s.t),W (s,t)) is said to be a rational surface. The
3D coordinates of a point on a rational parametric surface are. in homogeneous

coordinates: r = X(s.t),y = Y(s.t).z = Z(s.t).w = W (s.t), or in 3D space:

I = ‘}((Z't)) y= :",.((“:'i)), z = f.((ss‘_‘t)). That is. the surface being described is the surface at
w = 1.

The implicit form of such a surface is F(z. y. z. w) = 0. where F is a homogeneous
polynomial (i.e. all terms are of the same degree). F may also be expressed in non-
homogeneous form as F(r.y.z) = 0. Note that different parametric surfaces may
have the same implicit form.

Unless specified otherwise. all functions in this dissertation are polvnomials with
exact rational number coefficients. Polynomials are expressed in the power basis.
The power basis is the traditional basis used to write polvnomials. where each term

is expressed as the product of the variables, each raised to a power. e.g. r?yz3.

2.2.2 Resultants

The theory of elimination deals with methods for eliminating variables from a set
of equations. particularly to find common solutions (i.e. common roots) of a set of
polynomials. Elimination theory has been around since the 1800's. Salmon [87]
provides a summary of much of the early work.

Elimination theory is usually concerned with determining the conditions under
which a system of j homogeneous equations in j variables has a common solution.
This is equivalent to looking for solutions of j non-homogeneous equations in j — 1
variables. Elimination methods extend directly to problems of eliminating some (up
to j — 1) of the variables when there are j or more unknowns.

An important part of elimination theory is the resultant. also referred to as the

eliminant. A resultant is defined as an expression involving the coefficients of a set
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of polynomials such that the vanishing of the resultant is a necessary and sufficient
condition for the set of polynomials to have a common root. As a simple example.
for the equations axr + b = 0 and cx + d = 0. the resultant would be ad — bc. That
is. the two equations have a common solution if and only if ad — bc = 0. Resultants
are homogeneous functions of the coefficients of the equations. and are linear with
respect to any one coefficient. Since a resultant does not contain the variables of the
original equation. a resultant is said to eliminate those variables.

There are a variety of ways to compute the resultant. with the most fundamental
methods attributed to Sylvester. Bezout, and Cayley [87]. A general expression for
climinating k(< j) variables from j homogeneous equations was provided by Macaulay
(65]. Macaulay’s resultant is expressed as ratio of two determinants. where the de-
nominator is a minor of the numerator. For the cases j.k = 2 and j.k = 3 (i.e. two
non-homogeneous equations in one variable or three equations in two variables). it is
possible to express the resultant as a single determinant. For the boundary evaluation
algorithm. these are the only cases of concern.

For the case of j.k = 2, Sylvester’s method {87] can be used to represent the
resultant of two polynomials of degree m and n as a determinant with (m + n) rows
and columns. Assume. without loss of generality. that n < m. For the polynomials

(in non-homogeneous form)

f(s) =ans" +an_1s" P+ .. +a;s + ag (2.1)
and
g(8) = bps™ + by 1s™ L+ bys + by (2.2)
Svivester’s resultant is:
n QAp_y s Qag
an An-1 Tt Qo
an Qn-1 -+ Qo (23)
bm bm—l T T bO
b bmot oo e bo

where the empty spaces denote zeros. The coefficients of f appear in m rows. and
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those of g in n rows. Notice that if f and g are not univariate. Svlvester’s method
can stiil be used to eliminate any one variable from the pair of equations. by treating
the remaining unknowns as constants.

For the case of j. k = 3, Dixon [25] provides a method for expressing the resultant
as a single determinant. Dixon’s method is an extension of the Cayvlev-Bezout method

[87]. For three equations (nonhomogeneous in two variables):
f(s.t) = g(s.t) = h(s.t) =0 (2.4)

a new polvnomial is formed:

f(s,t) g(s.t) h(s.t)
fla.t) g(a.t) h(a.t) (:
f(a.b) g(a.b) h(a.b)

[NV
(I}
—

d(s.t.a.b) =

(s —a)(t —b)

Notice that every common root of the three equations is also a common root of 4.
for any value of a or 5. The Dixon matrix. D. is simply the coefficient matrix of 4.
where the rows index the powers of a and b. and the columns the powers of s and
t. Note that the entries of D can be obtained without explicitly computing 4. Since

any value of a or b can be substituted in 4. we must have:
) T T
D1t £ ..o t" s st - st ] =[0 - 0] (2.6)

The determinant of D provides the Dixon resultant. Unfortunately. this process
only works when the three polynomials are of the same degree with no zero coefficients.
Otherwise. the Dixon matrix can become singular. vielding no solution. More recently-.
the Dixon resultant formulation has been extended to handle certain singular matrix

cases. eliminating some of these problems [54].

2.2.3 Algebraic Numbers and Sturm Sequences

Because integers can be represented as binary numbers. they can be represented
directly on a computer. If the integers are limited in size. they can usually be stored
and manipulated directly by hardware. Rational numbers can also be stored exactly
and easily by storing one integer for the numerator and one for the denominator.
Algebraic numbers (roots of polynomials). on the other hand. do not have such a

direct representation on the computer. in general. Thus. special methods must be
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used in order to represent and use algebraic numbers.

2.2.3.1 Representing Algebraic Numbers

A common format for representing algebraic numbers is to store floating-point approx-
imations to the number. Although the floating-point approximation may be close to
the algebraic number. it is (usually) not an exact representation. As described earlier,
this inexactness can lead to serious robustness problems.

One way to represent algebraic numbers exactly is to store them as the unique
root of a polynomial in an interval. For example, to represent the number /2. one
might store the polynomial z2 — 2 = 0. along with the interval [0.2]. Since there is
only one root of r* — 2 = 0 within that interval. the combination of the polvnomial
and the interval is an exact specification of a unique algebraic number. This is the
representation used in this dissertation. Note that for a given algebraic number.
there is not a unique representation. Any polvnomial with that number as a root
can be used. and any interval bounding that one number and no other root of the
corresponding polvnomial can be used.

Hereafter. the terms algebraic number and root are used interchangeably. The
polynomial used in the representation of the algebraic number is referred to as the
root’s polynomial, and the interval is called the root’s interval.

The representation described is well known in computer algebra literature. Further
discussion of this representation is found in general books on computer algebra (e.g.
(21. 76]).

2.2.3.2 Univariate Sturm Sequences

In order to effectively manipulate algebraic numbers in the format described. a method
is needed for verifving that an interval contains one and only one root of a polynomial.
The method used to do this is the Sturm sequence. Again. general computer algebra
books [21. 76] provide more details. but an overview is given here.

For a polynomial. p(s), (with rational coefficients) the Sturm sequence is defined

to be the following sequence of polvnomials:

po(s) = p(s)
m(s) = p'(s)
pi(s) = —rem(p,_2(s).pi-1(s)) (2.7)
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where rem(a.b) means the remainder when a is divided by b. The final term of the
sequence is the last p, that is not identically zero. It should be noted that with the
exception of the minus sign. generating a Sturm sequence is the same as a greatest
common divisor computation using Euclid’s method.

Once the Sturm sequence has been created, each polynomial p; is evaluated at
a specific value a. By examining the sign of each of these evaluated terms. one can
count the number of sign permanencies in the sequence. One permanency is counted
every time p;(a) has the same sign as p;;(a). The number of sign permanencies in
the Sturm sequence of a polynomial is called the Sturm value. Assuming a is not a
root of p. the Sturm value at a gives the number of real roots of the polynomial less
than a. plus half the number of imaginary (i.e. non-real) roots. Notice that if a is a
root of p. then pg(a) = 0. The handling of zeros in the Sturm sequence determines
whether roots at a contribute to the Sturm value.

As a simple example. consider the equation:
ps)=(—-1)(s=3)(s>+1) =5 —4s3 + 4s* — 45+ 3

which has two real roots (at 1 and 3). and two imaginary roots. From this. the rest

of the Sturm sequence can be generated:

po=s'—d4s3+ 452 — 45+ 3
pr=+4s3 - 125> +8s — 4
Pr=5"+s5—2

ps = —32s + 36

Dy = —3

To compute the Sturm value at a number. substitute that number in the p,. At
s = 0. the terms of the Sturm sequence are (3. —4. —2. 36. —%). giving a Sturm value
of 1. At s = 2 they are (=3.—4.-2,4. -1
they are (51.92.18. —92. —g). giving a Sturm value of 3. Notice that in each case.

). giving a Sturm value of 2. At s = {.

the Sturm value correctly gives the number of real roots less than the query value.
plus half the number of imaginary roots.

Given an interval. [a.b]. it is easily verified that the interval contains only one
root. By subtracting the Sturm value at a from the Sturm value at b. one has a
count of the number of real roots within the interval. Sturm values can also be

used to isolate individual roots. If an interval contains more than one root. one can



recursively subdivide the interval and count the number of roots in each subinterval
until each interval contains at most one root. For a polynomial of degree n. with
coefficients a;.i = 1...n, Davenport [21] cites a worst case time for root isolation of
O(n®(logn + log ¥ a2)?), with average running time of O(n'). Methods for efficient

root isolation are discussed in Chapter 6.

2.2.3.3 Equality of Algebraic Numbers

A useful operation on algebraic numbers is comparison for equality. Assume that two
algebraic numbers are given in the representation described earlier. Let f(s) = 0 and
g(s) = 0 be the polynomials of the two roots. Assume for the sake of simplicity that
the roots have identical intervals, [a.b]. If the intervals are not equal. they can be
made equal or disjoint via a cut, analogous to that described in Section 3.3.2.2. Note
that if the intervals are disjoint. the points cannot be equal. To determine whether the
points are equal. find the greatest common divisor of f and ¢, h(s) = ged(f. g). which
can be done by a method such as Euclid’s algorithm (e.g. as in Davenport’s book
[21}). The points are equal if and only if A has a root in [a.b]. which is determined

using a method such as univariate Sturm sequences.

2.2.3.4 Multivariate Sturm Sequences

Just as univariate Sturm sequences can be used to count the number of roots of a
univariate polynomial in an interval. multivariate Sturm sequences can be used to
count the number of roots of a system of n equations in n variables inside an n-
dimensional box. The common example that arises in this dissertation is counting
the intersections of two planar curves (i.e. two bivariate polynomials) within a 2D
rectangle.

The work on multivariate Sturm sequences is relatively recent. and kev work has
been done by both Pedersen [78] and Milne [75]. Pedersen’s work is more general. and
discusses methods for counting real roots on one side of a hvpersurface and within
a simplex. The method presented by Milne is restricted to boxes. which makes the
formulas simpler. For the boundary evaluation algorithm. boxes are sufficient. and so
Milne's approach is discussed here. This section presents the method only - for the
development and proofs consult Milne's paper [75].

Just as for univariate Sturm sequences. being able to count the number of roots

in a box is enough to perform root isolation. If a box contains more than one root.
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it can be recursively bisected and the number of roots counted in each smaller box.

This is continued until the roots are all separated.

General Method: The general multivariate Sturm method is described here.

Immediately afterward, the specialization to two dimensions is described and rein-

forced with an example.

1.

(3]

Given:
filz)=0.i=1...nx =(x,.72.....T,) (2.8)
First define new variables u and a = (a;.a..... a,). Then form a new poly-
nomial: .
fari(w.z.a) =u+ [[(ei —z,) =0 (2.9)

=1

Next. eliminate the z; from the system of equations f;, =0.i=1...n + 1. This

(Davenport’s book [21] gives a description of these). The final result is a single

polynomial. V' (u, a) called the volume function.

Treat 17 as a univariate polynomial in terms of u. and compute the univariate
Sturm sequence for V7. Evaluating the resulting Sturm sequence at u = 0 leaves

a Sturm sequence in terms of the o,. This Sturm sequence is called M (a).

Now. for a given point. @ = (a,.a»,....a,) in n-dimensional space. the Sturm
value is determined by counting the permanencies when a is substituted for ar.
Here. the Sturm value counts the number of real roots of the original set of
equations that make positive volume with a. plus half the number of imaginary

roots. Positive volume simply means that:
[I(3-a)>0 (2.10)
=1

where 8 = (3. 32, ..... 3,) is a root of the original set of equations.

. To count the number of real roots inside of an n-dimensional rectangle. [a,. by] x

[@z.b2] x ... x [a,.by,], define the function:
E(M) = %(Ei—l(az —b) - Ei_i(a; « a,))
E\(M) = per(M(b)) — per(M(a;)) (2.11)



where per means the number of permanencies in the Sturm sequence. M. and

the notation r < y means the substitution of y for .

Specialization: To understand this process more clearly. the specialization to
two dimensions is provided. Note that the 2D operation is also the fundamental

operation involved in the boundary evaluation algorithm.

1. Given two polynomials. f(s.t) and g(s,t). first form the polyvnomial:

h(s.t) =u+ (a; — s)(az — t) (2.12)

o

From the three equations. f(u.a;.aq,s.t) = f(s.t). g(u.a,as.5.t) = g(s.t).
and h(u.qp,as,s.t), eliminate s and t. Using resultants, this can be done as

follows:

i __ Res,(Res,(f.h). Res(g. h))
(1. 1. 02) = (d29(/(5.0))deg(9(5.0))

(2.13)

where Res:(a.b) means the resultant of ¢ and b obtained by eliminating r. and
deg stands for the degree of the polynomial. That is. first eliminate s from the
three polynomials in five variables, leaving two polynomials in four variables.
then eliminate ¢ from those. leaving V". The denominator simply removes an

extraneous power of u that is a result of taking repeated resultants.

3. Now treat a; and a» as constants and form the Sturm sequence for V" (u). Then

set u = 0. Call this Sturm sequence M (a;.a»).

1. Given a point, (p.g). the number of permanencies in M (p.q). i.e. per(M(p.q))
gives the number of roots that make positive volume with (p. g). plus half the
number of imaginary roots. The roots that make positive volume are illustrated

in Figure 2.11.

5. To count the number of roots inside the rectangle [a.b] x [c.d]. use Equation

2.11 to determine the following formula for computing the number:

per(M(a.c)) + per(M(b.d)) — per(M(b.c)) — per(M(a.d))
2

(2.14)

This formula can also be verified by considering how roots in each of the nine

regions labeled in Figure 2.11 would be counted.

Example: An example of a 2D situation. taken from \lilne's paper [75]. follows.

Assume we are given:
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Figure 2.11: Counting roots in a box using 2D Sturm sequences. At left. the
shaded region shows the region of positive volume with respect to the point (p.q).
Any roots in the shaded region are counted. At right, the nine regions of the plane
associated with a rectangle. Only roots inside region 5 are to be counted. The
counting formulas ensure that roots in the other regions are not counted.

f(s.t) =s2+t3 -2
g(s.t) =s—t

The common solutions are (-1, —1) and (1. 1). First form the third polvnomial:
h(u.a. 3.5.t) = u+ (a—s)(3—-t)
Eliminate s and ¢ to obtain:

(w0, 3) = (u+ad + 1) — (a+ 3)2
=u +2uad3+22u+a3F —-a?-32+1

Treating 17 as univariate in u. form the Sturm sequence:

u? +2uad +2u+a23 —a? - 32 +1
20+ 2ad 4+ 2
102 + 8a.3 + 4.32

Setting u = 0. then. gives the Sturm sequence:

M(a.3)=a%3? —a®> -3 +1
203+ 2

{a® + 8a3 + 1.32
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Assume that we would like to count the number of roots inside the rectangle:
[0.2] x [3.3]. Since M(0.3) = (3.2.1). then per(M(0, 1)) = 2, meaning that two
roots make positive volume with the point (0,%). Likewise, per (.M (0. g)) = 1.
per(M(2.3)) = 1. and per(M(2,2)) = 2. Thus, by Equation 2.14 we have the

number of roots in the rectangle to be:

5(per(M(0.3)) + per(M(2.2)) — per(M(2. })) — per(M(0. 3)))

l2+2-1-1)
1

e

Since the root (1.1) is in the interval of interest, while the only other real root.
(—1.—1) is not. this is correct.

Restrictions: Like univariate Sturm sequences, multivariate Sturm sequences
are not well defined along the boundary. Just as with univariate methods, the way
that zeros in the sequence are handled determines how roots along the boundary are
counted. Unfortunately. multivariate methods can also have problems when a root
has the same coordinate value as one of the bounds of the rectangle to be tested. For
example. in two dimensions assume [a. b] x [c. d] is the rectangle to be tested. to find
intersections of f(s.t) = 0 and g(s.t) = 0. If the common solutions (over R2. not
Jjust within the rectangle) of the polynomials are of the form (a;..3;). then there can
be problems if 3/ : o; € {a.c} or 3; € {b.d}.

2.3 Previous Work

This section discusses previous work in boundary evaluation and robustness. Al-
though there has been some overlap between these two areas. much of the work has
remained separate. In particular. robustness issues have been addressed mainly in
terms of general geometric problems. rather than specifically applied to boundary

evaluation.

2.3.1 Boundary Evaluation

There has been a great deal of work on subjects related to boundary evaluation.
A comprehensive review of all relevant work from every subject is too extensive for
this dissertation. This section highlights the relevant, interesting. and widely known

previous work.
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Boundary evaluation is a topic in the realm of solid modeling, which deals with
representing and manipulating models of solid objects. Before the development of
solid modeling there was a significant amount of work in geometric modeling, which
deals with representing geometric data that might or might not be part of a solid.
Geometric modeling has focused on the representation of curves and surfaces, with
surface intersection being one of the problems studied.

The study of surface intersection dates to the ancient Greeks. Hohmeyer gives
an excellent review of the history of surface intersection in his PhD dissertation [46].
Surface intersection has continued to be an area of research interest. A variety of
approaches have been used. including ones based on subdivision. curve tracing. and
algebraic representation (the approach taken in this dissertation). These approaches
include that of Sarraga [88]. Abhyankar and Bajaj [1]. Farouki et al. [32], Manocha
and Canny [67], Shene and Johnstone [93], and Goldman and Miller [74].

Research in solid modeling began in the 1960s and grew rapidly in the 1970s
[81]. CSG and B-rep were formally defined during this time. An overview of early
developments in solid modeling is given by Requicha and Voelcker [82]. In their
books. both Hoffmann [43] and Mantyla [69] give comprehensive introductions to the
ficld of solid modeling, including boundary evaluation. Over time. solid modeling and
geometric modeling gradually merged. with some of the work in geometric modeling
being motivated by solid modeling (including much of the surface intersection work
mentioned above [67. 93. 74]). A survey of some of the directions that solid modeling
rescarch has taken in recent vears is given by Requicha and Rossignac [81].

Boundary evaluation has been an important part of solid modeling systems for
many vears. Braid treated boundary evaluation (although he did not call it that) in his
1975 paper describing B-reps [12]. Most of the earliest work on boundary evaluation
dealt with polyhedral solids. Requicha and Voelcker's work is an example [83]. Later
work extended boundary evaluation to curved surfaces. Casale and Bobrow presented
one of the first detailed descriptions for boundary evaluation for curved solids [16].
Later work on boundary evaluation for curved solids includes that of Krishnan [62].
which motivated the work in this dissertation.

Robustness in boundary evaluation has gained greater attention in recent vears.
Most of this work has focused on boundary evaluation for polvhedra. where all surface
are lincar. Some of the approaches use exact computation. These include those by
Sugihara and Iri [99]. Yu [105]. Benouamer et al. [10]. Sugihara [98]. and Fortune

(35]. Other approaches focus on different methods for increasing robustness. These
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include those by Hoffmann et al. [45]. Fang et al. [31]. Higashi et al. [42]. Chubarev
[17]. and Hu et al. [48, 49]. Stewart surveys several other methods, and develops a
more formalized theory of robustness in relation to polvhedral boundary evaluation
[97]. Methods to increase robustness. including some of the approaches mentioned
here. are described in more detail in the following section (Section 2.3.2).

There has been a limited amount of previous work toward robust boundary evalu-
ation for curved solids. Some of the work has been in the area of surface intersection.
For example. Farouki et al. [32] and Goldman and Miller [74] look at degenerate
intersections of quadric surfaces. Yu explores some theoretical bounds on exact arith-
metic in boundary evaluation for curved solids [105]. Fang et al. [31] use tolerances to
achieve more robust boundary evaluation for solids with quadric surfaces. Hu et al.
[48. 49] use interval computations for robust boundary evaluation of more complicated

solids.

2.3.2 Robustness

This section gives a brief description of some of the previous approaches to the ro-
bustness problem. In recent yvears. the robustness problem has gained increasing
attention in the field of computational geometry. The basic issues related to robust-
ness have already been described in Section 2.1.3. As mentioned. the two basic (and
interrelated) categories of robustness problems are those due to numerical errors (i.e.
precision problems) and those due to degeneracies.

There are several possible definitions for what makes an algorithm robust. Some
have devised systems for specifyving the type of robustness an algorithm achieves [23].
A number of approaches that are outlined here claim to be robust. Other approaches
only claim to increase robustness. Rather than try to examine only approaches that
meet certain robustness criteria. this section describes techniques that claim to at
least increase robustness.

The tests performed by various methods are often for a particular predicate. A
predicate is a simple. well-defined test that can be performed on the data and is used
to determine the flow of control in a program. It is usually just the sign of some
polynomial calculation on input data. An example of a commonly used predicate is
the plane orientation test (determining which side of a plane a point lies on). which
is usually performed by taking sign of the determinant of a matrix. On the other
hand. constructors are used to actually generate a new geometric object. and require

the value of some polvnomial calculation on the input data.
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The degree of a computation must be considered when evaluating techniques that
address robustness. Most of the classical computational geometry problems have
been defined for linear objects (e.g. lines, polygons. polyhedra). Several problems of
interest, particularly those in geometric and solid modeling, make use of quadric or
higher degree objects. Higher degree objects will. in general. cause execution times
and robustness problems to become much worse [73].

There have been several surveys of the robustness problem. Many papers give
a brief survey of robustness issues in general before presenting some new technique.
Among those that survey the robustness problem (to various levels of detail) are
papers by Hoffman [44. 43]. Schirra [89]. Fortune [34]. and Seidel [92].

2.3.2.1 Precision Problems

The real RAM model of computation simplifies the design and description of algo-
rithms [33]. but can overly simplify analysis. as shown in a paper bv Kahan and
Snoeyink [533]. Often. implementations of algorithms choose to sacrifice numerical
accuracy for the sake of speed. For many types of problems and in many cases this is
acceptable. The basic problems of error and error propagation have been well stud-
ied in numerical analysis literature. For geometric problems. representations usually
involve both numerical and combinatoric data. and choices about combinatoric struc-
ture may be made based on numerical data [47]. Thus. error accumulation can lead
to incorrect combinatoric information.

The approaches taken to deal with precision problems generally fall into two cate-
gories. Some approaches continue to use floating-point or some other finite precision

arithmetic. Other approaches use some form of exact computation.

Floating-point and Finite Precision The efficicncy and ease-of-use of floating-
point arithmetic make it attractive for numerical computation. In order to achieve
robustness. however. special techniques need to be used. Following are descriptions
of some of the numerous techniques used to increase robustness while using finite
precision computation.

Interval Arithmetic. With interval arithmetic, each number is stored as a
interval. The actual number lies somewhere between the two interval bounds. Com-
putations on the number are actually performed as a set of computations on the
interval bounds. For example, [a.b] + [c.d] = [a + c.b + d]. Similar rules define the

other interval operations. It is important to round the floating-point interval bounds
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correctly in order to ensure that the final interval will contain the answer. Entire
books have been written that deal exclusively with the use of interval arithmetic [77].

By storing the interval bounds as floating-point numbers. the interval computa-
tions can be performed quickly. There are several drawbacks to using these methods.
however. The computed intervals may be much larger than what is actually necessary.
For example, using interval arithmetic to calculate z(10 — ) for £ = [4..6] gives:

10 — r = [10..10] — [4..6] = [4..6]

r(10 — z) = [4..6]{4..6] = [16..36]
which is much wider than the actual range of [24..25]. For complex computations. the
output interval size may grow too large to be useful. It may not be possible to make
the starting intervals small enough for the final computation to have an acceptably
narrow interval size. The intervals themselves may not be able to separate two points
that are close together. Guaranteeing the equivalence of equality (where 4 = B and
B = C implies 4 = C) can be a problem in naive implementations, but it is possible
[48]. Despite the drawbacks. interval arithmetic has been used in practice. with some
success. Hu et al. have even adapted this approach for use on curved surfaces in a
solid modeling system [49].

Affine Arithmetic. An extension to interval arithmetic is the use of affine
arithmetic [19]. Affine arithmetic reduces the overly conservative bounds sometimes
generated by interval arithmetic. It does so by keeping track of correlations between
error introduced at each step in a long computation chain. Each number is stored as
an affine form:

I =1rg+ I + ...+ Ips,
where s, = [—1..1] and represents one source of error. As new potential errors are
introduced. new z, are introduced. This allows one to accurately predict cancellation
of error by reuse of the same variable. For example. the previous calculation of
(10 — r) for £ = [4..6] gives:

r=5+15

10 —r=5-1z5

r(10 —r) = 254 5z, — 55| — leg = 25 — 12, = [21..26]
which is much closer to the actual interval. [24..25]. than the previous calculation of
[16..36].

The use of affine arithmetic is slower than the use of standard interval arithmetic.
but in cases where there might be error correlation from one step of a computation

to the next. it is beneficial. Affine arithmeric has been used for applications in
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computer graphics [19] and surface intersection [22]. Its applicability to more classical
computational geometry problems has not vet been looked into.

Epsilon Geometry. Another method closely related to interval arithmetic is
the epsilon geometry defined by Guibas et al. [40]. Epsilon geometry uses epsilon
predicates to solve problems. These predicates return intervals that identify regions
over which the predicate is “definitely true”. “definitely false”. or “uncertain.” The
interval defines a range by which input data can be perturbed in order to reach
the "uncertain” interval (and thus. by implication. the range that gives a true or a
false return). Thus. if a predicate returns with a “definitely false” region of points
< 0.3 that means that this predicate will always return false as long as the data is
perturbed by less than 0.3. Here it is not the error in a particular number that is
being measured. but rather the allowable error in all numbers for a computation to
work correctly. These predicates can be used to determine the amounts by which one
would have to perturb data to account for rounding error in a perturbation scheme
(Section 2.3.2.2). Unfortunately, there have been few predicates developed. and it is
not clear how well this method extends to more complex predicates.

Tolerances. Tolerances are one of the most common methods used in practice
for increasing robustness. With tolerance methods. tests for equality are done within
a certain specified tolerance. Thus. two points that are less than the tolerance value
away from each other are considered to be coincident.

There are several potential benefits of tolerance methods [50]. First. by picking a
tolerance value large enough. the error buildup due to floating-point arithmetic can
be ignored for most cases. If the error buildup is less than half the tolerance. then
comparisons between two values are still valid. A second benefit to tolerances is that
small features (those smaller than the tolerance) are automatically eliminated. In
several applications. the presence of small features in the output can cause problems.
A third benefit is that tolerances can sometimes mimic actual physical constraints.
For example. manufacturing tools are only able to handle a certain degree of preci-
sion - any higher precision in the output is wasted. Also. input data is often created
with tolerances in mind. The notion of tolerances for geometric computation (as a
way to increase robustness) is different from. although related to. the technical no-
tion of tolerances in computer-aided-design. Design tolerances are tolerance amounts
specifically placed by the designer to account for physical constraints such as wear or
manufacturing imprecision [31]. There is also work on representing true design toler-

ances in geometric and solid modeling systems [41] and choosing appropriate design



tolerances [64].

There are several drawbacks to the use of tolerances. First, unless a common
tolerance value is used on all machines. there is no guarantee that the output on one
machine will be the same as the output on another. Second. it can be difficult or
impossible to find a global tolerance value that works well for an entire computation.
One part of the data might require a low tolerance and another require a high toler-
ance. No single tolerance will be appropriate for all requirements. Third. tolerances
suffer from the problem of equality not being equivalent (i.e. A = B and B = C but
A # C). Fourth. error buildup can still occur to a point where the error is larger
than the tolerance. defeating the whole purpose for setting a tolerance. Simply mak-
ing the tolerance value larger may eliminate small but significant features. make some
operations such as subdivision more difficult. and give output that is not accurate.

One potential solution to some of these problems is the use of local adaptive tol-
erances by Segal [91], which was extended to non-planar cases by Jackson [50]. With
local tolerances. different tolerance values are applied to different parts of the model.
In areas where higher tolerance values are needed. they are increased as necessary.
and topological structures that are close together are merged. This approach is sim-
ilar to the use of interval arithmetic. in that the tolerances define intervals that are
expanded as necessary to account for error buildup. The drawbacks to this approach
are that several of the problems with tolerances remain and the tolerance values can
grow rather large.

An approach by Fang et al. also uses different tolerances for different parts of the
model {31]. In this approach. many tolerances are kept. and decisions are made as to
whether geometric objects are apart. coincident. intersecting. or ambiguous (which
requires refinement of the interval). based on how the tolerance bounds overlap. A
drawback to this approach is that setting up and manipulating the tolerances is
difficult. Still. this approach has been applied to Boolean operations on 3D objects
bounded by planes and quadrics, with promising results.

Data Normalization and Hidden Variables. M\lilenkovic uses the methods
of data normalization and hidden variables to perform robust computation in finite
precision arithmetic on linear objects [72]. With data normalization. the input data
is modified to meet certain normalization conditions. Namely. points must be at least
a certain distance apart and points must be at least a certain distance from a line.
Points that are too close together are merged (this is called vertezr shifting). and edges

that are too close to a point are split into two edges that meet at that point (this
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is called edge cracking). The hidden variable method. on the other hand, does not
actually modify numerical data. but operates as if the data were behaving in a certain
way topologically. This behavior should be close to the real behavior but does not
have to be exact. In effect, topological questions are answered as if the data were
slightly different than it actually is. behaving according to some hidden topology.
This hidden topology does not ever need to be computed specifically. Using these
methods. more robust geometric algorithms are obtained. Mlilenkovic has extended
his work with fixed precision data to begin looking at applications to higher degree
objects [73]. but the application has been limited.

Rounding. Guibas and Marimont [39] have described a successful implementa-
tion of a method for rounding line segment arrangements to a grid. In other words.
the endpoints and intersection points of the line segments are snap rounded to an
integer grid. In many ways. this is similar to data normalization. They show that
snap rounding can maintain the correct topology among all segments by representing
cach segment by a short chain of segments with endpoints snapped to the integer grid.
Snap rounding holds promise as a way to consistently round geometric computations
without altering the overall combinatorial structure.

Methods similar to snap rounding have been used to construct link paths. Link
paths are a series of line segments connected at the endpoints. Minimum link paths
for certain applications can be shown to require a more bits of precision than the
input data. In order to determine a link path in finite precision, Kahan and Snoevink
described a method for constructing link paths where the endpoints are snapped to
a predetermined grid [33]. This allows a (not necessarily minimal) link path to be
constructed without resorting to higher precision (exact) arithmetic.

Estimated Error. Masotti [70] has developed a method for performing floating-
point computation using an estimated error. When worst-case error estimates are kept
(such as in interval arithmetic). one is guaranteed that the final result is located within
a certain bounded interval. However, after several computations, this interval may be
so large that it is worthless. Masotti’s error estimate is much smaller than the worst-
case error. and thus the final answer is more useful. In addition. this approach detects
certain ill-conditioned computations. \asotti demonstrates that this approach can
be used to perform operations far more robustly than with standard floating-point.

although the results are still not guaranteed.



Exact Computation With exact computation, all computations are performed
such that the outcome of the computation is known precisely. All numerical data is
kept to whatever precision is necessary for an algorithm. The size of the individual
numbers must be taken into account when performing arithmetic operations on them.
so the constant-time assumption of the Real RAM model is violated.

There are numerous implementations of exact arithmetic routines. Exact arith-
metic is used in all the common computer algebra systems. Several programming
libraries are also available for performing exact arithmetic. One of the most well-
developed current libraries is the LEDA library [30]. For a description of a number
of other libraries available, see Yap and Dube’s paper [102].

Exact arithmetic routines are usually confined to operations on integers or ra-
tional numbers. Some packages handle algebraic numbers as well. and this extension
appears to handle almost all problems in computational geometry [104]. As long as
computations require only rational numbers, exact arithmetic can be used directly to
implement a geometric algorithm. Since the numbers and computations are exact.
rounding error is not a concern. The drawback to exact arithmetic is efficiency -
numbers can take a significant amount of space to store and computations can take
a long time to perform. Thus. most work in exact computation deals with ways of
making exact computation more efficient.

The standard representation of exact integers is a set of bits that exactly ex-
presses the integer. Rational numbers are stored as two integers (for the numerator
and denominator). Algebraic numbers are usually stored as two items: a polvnomial
equation and an interval. The idea of exact floating-point numbers. in which the
mantissa and exponent are kept exactly. has also been investigated. Any representa-
tion that allows numbers to be stored exactly (or equivalently. such that they can be
determined to any given precision) is acceptable in an exact computation paradigm.

Yap and Dube point out several reasons why exact computation is an important
paradigm [102]. Among the reasons they list are that exact algorithms are much more
straightforward than a corresponding robust floating-point algorithm. that almost all
algorithms (in computational geometry and elsewhere) are developed assuming exact
arithmetic. and that exact computation is useful for studying and validating floating-
point computation. Yap also points out [104] that as processor speeds increase. the
appeal of robustness offered by exact computation may begin to approach the ap-
peal of speed that floating-point offers. Yap's papers [102. 104} provide an excellent

overview of many of the concepts and techniques used in exact arithmetic.
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A number of techniques have been used to improve the efficiency and applicability
of exact computation. Among these techniques are the following methods:

Interval Arithmetic. Karasick et al. [56] look into methods for improving exact
computation by the use of interval arithmetic. In their approach, they attempt to
perform computations using a simplified representation of the rational number (i.e.
one requiring fewer bits). Instead of computing with the rational number itself, they
bound each rational number with an interval with endpoints that are rational numbers
that require fewer bits. Interval arithmetic is used in the computation. and the final
result is an interval. For an appropriate predicate. such as sign of a determinant. the
computed (interval) answer either is enough to answer the question or indicates that
higher precision is needed. If higher precision is needed. then the original intervals
are chosen to have more bits of precision. If all attempts at simpler intervals fail. the
exact number itself is used.

Since the interval bounds have far fewer bits than the actual number. the computa-
tion using interval arithmetic can potentially take far less time than the computation
would have had the exact number (with all bits of precision) been used. The useful-
ness of this approach is limited. however. in that the predicates need to be carefully
chosen so that thev can be computed efficiently using interval arithmetic.

Another adaptation of interval arithmetic to exact computation is the approach
taken by Johnson [51]. Johnson. like Karasick. uses intervals with rational endpoints.
Using these intervals. he shows how exact computations can be performed for real
numbers that are bounded by an interval. even if the real number itself is not known.
Examples of the computations include sign evaluation and substitution into a poly-
nomial. To achieve greater efficiency, Johnson makes use of binary rational numbers.
where the denominator is a power of two. Thus. only the power of the denominator
needs to be stored. and basic rational operations (+. —. x) are faster.

Floating-point Filters. The idea of floating-point filters was introduced by
Fortune and van Wyk as a way to potentially avoid exact computation [36]. Like
the interval arithmetic approach of Karasick et al. [56]. the idea is to compute an
approximate value quickly. then determine whether that value is good enough. With
floating-point filters. the computation is performed in floating-point. but an error
bound is kept. If the final error bound is too large to precisely determine the answer
to a predicate. then the exact computation is performed. Otherwise. the answer deter-
mined by fluating-point is used. Fortune and van Wyk found that filters dramatically

speed up the determination of certain predicates.
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Tuning Computations. In the same paper [36], Fortune and van Wyk propose
a method for tuning a computation. By this. they mean that an entire computation
for some predicate is parsed. and a complete straight-line program is created to eval-
uate that computation. The parser estimates the precision required for intermediate
computations. This program is then compiled and run. Since the necessary number of
bits is predetermined. the computation is performed efficiently and exactly. Fortune
and van Wyk see significant improvements from this approach as well. Theyv have
implemented a package. LN, that can automatically produce C++ code for evalu-
ating linear geometric primitives [37]. This package includes floating-point filters to
increase efficiency.

Lazy Arithmetic. Another approach geared toward improving the efficiency of
exact computation is lazy arithmetic [10]. With this approach, a number is stored in a
floating-point interval format as well as in a directed acyclic graph (dag) format. The
graph format is used to trace the history of how the final number is computed. For
example. if two numbers are added together. the graph consists of three nodes: one for
each input number. with links heading toward an addition node that represents the
output. For most computations, only the interval is used. In case the interval is not
tight enough. the actual rational number answer is computed by following the dag. As
an alternative. a progressive approach can be used. continually starting with tighter
intervals and propagating those down (again resorting to the exact computation after
a certain point). In the worst case, just as many exact rational operations have to be
performed. In the best case. exact rational operations never have to be performed.
and the result is determined from the floating-point interval computations alone.

Precision-Driven Computation. Another approach. similar to the lazy arith-
metic approach. is to use Yap and Dube’s precision driven arithmetic [102]. With this
approach. a dag is constructed. but instead of propagating information from the input
to the output. the desired precision of the output is specified. and that information
is propagated backward in the dag to determine to what precision the input needs
to be specified. In the worst case. the exact computation needs to be performed. but
more typically. the input can be inexact and still give a final output that is within
the desired precision.

Minimizing Intermediate Precision. Clarkson presents a method for finding
the sign of a determinant exactly and efficiently with exact arithmetic {18]. He com-
putes the result exactly. but manages to formulate the problem in such a way that the

number of bits of precision required is far less than one would expect. This allows the



approach to be implemented effectively using hardware-based arithmetic, assuming
that the original data contains a limited number of bits. A group from INRIA gives
a different approach (based on modular arithmetic, see below) for determinant sign
evaluation that also minimizes intermediate precision [13]. By implementing a basic
geometric predicate in such an efficient manner, an overall geometric operation may
be performed in a reasonable amount of time. while maintaining exactness.

The drawback here is that the efficiency is obtained for only one operation -
determinant sign evaluation. If similarly efficient approaches can be found for other
important operations. then exact arithmetic can be used widely and efficiently for
many geometric problems. It is not clear, however, that such efficient implementations
of other operations exist.

Fast Hardware Computation. Shewchuck has developed a method for quickly
finding exact determinations of some predicates using only standard floating-point
hardware [95]. Shewchuck uses specialized routines for performing exact arithmetic
using floating-point hardware. based on work done by Priest [80]. An adaptive com-
putation method is used such that predicates are determined with less than exact
precision. if possible. The efficiency comes from the use of floating-point hardware.
the relaxation of storage conditions for high precision numbers. and the use of adaptive
computation with the predicates. This approach is promising in that exact compu-
tation is performed more quickly and. if the desired predicates are amenable to it.
adaptive computation allows individual predicates to be computed quickly-.

Modular Arithmetic One approach that is commonly used (e.g. [36. 13]) to
speed up exact computation is the use of modular arithmetic. Rather than storing
integers as long series of bits, the integers are stored modulo a set of prime numbers
with small. fixed precision. Then. computation takes place in hardware for each of the
modulo numbers. If necessary, the Chinese Remainder Theorem is used to construct
the final number. In some cases. the final number does not have to be completely
reconstructed. since one might be interested only in some aspect of the number (e.g.

the sign). Use of modular arithmetic can give a significant speedup.

2.3.2.2 Degeneracies

The manifestation of degeneracy problems in a program is generally the failure of
a predicate to determine which branch of a program to take. \When there are no
degeneracies. the predicate determines which of two branches to take by whether

the sign of a polynomial is positive or negative. \When degeneracies are present. the



predicate polynomial evaluates to zero. thus making the choice of branch unclear.
With inexact computation. a predicate might evaluate to zero even when it shouldn’t
(effectively creating a degeneracy when there’s not one), or a predicate that should
evaluate to zero might not (effectively removing a degeneracy that should be there).
Although in some cases the loss of a degeneracy might seem like a good thing, it
may cause serious problems if the special case handling routines expect to find all
degeneracies.

Two main approaches are used to handle degeneracies. These are the use of special

cases and the use of symbolic perturbation.

Special Cases Usually. computational geometry algorithms are designed assuming
that no degeneracy exists. If a degenerate case does arise, it is treated as a special
case for the problem. This means that a special routine is called when a predicate
evaluates to zero.

In order to use special cases. a programmer must determine all potential degen-
eracies. detect them. and deal with them. Each of these requirements can be difficult.
Enumerating all potential degeneracies is difficult, detecting the degeneracies can be
difficult and lead to confusing code. and dealing with a detected degeneracy within
the framework of the original algorithm can be difficult or impossible. Still. treating
degeneracies as special cases is usually the most straightforward and most commonly
used method. Yu demonstrates one attempt to handle degeneracies through the use

of special cases [103].

Perturbation Methods A general approach for dealing with degeneracies is the
use of perturbation methods. The idea behind perturbation methods is to modify
the input data such that one is guaranteed to have no degeneracies. The goal is to
make sure that a predicate never evaluates to zero. There are a number of different
techniques for doing so.

Some question the validity of all perturbation methods [92]. One of the most
compelling arguments against perturbation methods is that degenerate cases are of-
ten there on purpose. Thus. perturbing the data to make it non-degenerate actually
loses important information. A second strong argument against perturbation is that
the solution determined is not actually the solution of the given problem. Thus. the
computed solution might have to be transformed into the solution to the given prob-

lem. Such a transformation can be difficult. A third argument against perturbation



methods is that the perturbed problem can be much more difficult to solve than the
original problem. A fourth argument against perturbation is that perturbation meth-
ods generally require some form of exact computation in order to be successful. This
requirement makes implementations of perturbation methods run much slower than
those that do not use exact computation.

Despite these drawbacks. perturbation methods remain one of the best known
approaches for dealing with degeneracies consistently. A well-chosen perturbation
method eliminates all potential degeneracies. meaning that no special cases have to
be detected. Since exact computation is used. algorithms can be implemented in their
most straightforward sense. Perturbation methods have proven successful for several
problems and there is hope that they will be applied successfully to a much wider
array of problems.

In a more formal sense. Seidel {92] defines a perturbation scheme:

For input space. Z and output space, O. with ¢ € Z. a perturbation of q is any
curve ¢g() : [0, 00) — Z with ¢(0) = q.

A perturbation scheme. Q. induces for every function F : T +— O a perturbed
function T‘—Q : Z — O. defined by

F2(q) = lim F(q(e))
=0+
If F is continuous at ¢q. then F(q) = fQ(q). Even when F is not continuous at
some ¢. usually one can easily recover F(q) from fQ(q). Thus, if the computation is
continuous for all inputs. the output of the perturbed problem is exactly the same as
that for the unperturbed problem. In cases where the computation is not continuous
for all the inputs (as may be the case for degenerate input conditions). the cutput for
the original problem must be recovered through some transformation on the output of
the perturbation scheme. In many cases. this transformation is fairly simple although
it can be rather difficult. possibly even more difficult than solving the unperturbed
degenerate problem. Note that the actual perturbation is never computed. Rather.
the computation proceeds treating the perturbation amount as a variable. and the
limit of the perturbation is taken at the end.
Following Seidel’s outline. there are three primarv proposals for perturbation
methods:
Simulation of Simplicity. Probably the first general perturbation scheme pro-

posed was the Simulation of Simplicity (SoS) scheme of Edelsbrunner and Miicke [27].



With this method. given a set of n geometric chjects, each of which takes d input

parameters. the data is perturbed such that

LIRS

mij(e) =m; +€

for0<:<n-1,1<j<d andd > d. Notice that the amount of the perturbation is
different for every i, j pair. This ensures that each of the original points is perturbed
to a different amount

This perturbation can then be used in a predicate. For example, the paper by
Edelsbrunner and Miicke uses a point orientation test that is the sign of a determinant.
The determinant for the perturbed points gives a polynomial in terms of e.

Thus. to find the sign of the determinant as e approaches 0*. one needs to find
the sign of the lowest-degree nonzero term of the polynomial. The polynomial’s
constant term (i.e. its lowest degree term) is nothing more than the determinant of
the matrix without any perturbation applied. Thus the only time that the perturbed
case requires more work than the non-perturbed case is when the non-perturbed
determinant evaluates to zero - i.e. a degenerate case. In these cases. the sign of the
determinant is computed from the sign of the smallest nonzero term of the polynomial.
Thus. a sign determination is made even when the data is given in degenerate format.

Linear and Random Perturbation. Emiris and Canny present a variation on
the SoS method that makes use of a linear perturbation [29. 28]. Specifically. the

perturbation used is:
7(’,_](6) = '/T,'J' -+ € - iJ

Notice that in this representation. the perturbation is linecar in €. improving the
efficiency of the approach. Also, the overall scheme can be viewed as a vector. w,.
being perturbed by another vector, b;. where the elements of b; are just //. Emiris and
Canny show that this perturbation scheme can be used in a variety of predicate tests.
and apply it to convex hull computation. They perform a rather extensive analysis
of time and bit complexity required.

Another approach presented by Emiris and Canny in the same papers is a random

permutation of the form:

w(€) =7 +€-1;



In this representation. r; is a randomly chosen number from a large interval. This
perturbation is more efficiently evaluated (assuming the random numbers are chosen
with an appropriately smaller number of bits) than the earlier one, but it is not
guaranteed to eliminate all degeneracies. Instead, the probability of still having a
degeneracy is extremely low. In the unlikely event that a degeneracy remains. it can
be detected and the program restarted with a new random choice for a perturbation
amount. This method is particularly applicable to cases where the computation is
for branching on some arbitrary rational function. as opposed to branching on a
determinant. which the earlier method is more suitable for.

Symbolic Perturbation Yap’s method for symbolic perturbation is far more
general than the other perturbation methods [103]. In Yap's formulation, a predicate
can be any polynomial or rational function, or even an analytic function [92]. Yap's
predicate returns a number if that number is not zero. or, if the predicate value is zero.
returns either 07 or 07. This is really no different than simply returning the sign of
the predicate. just as the other methods do. With Yap's method. a large polynomial
is produced. and from it a series of polynomials is found by taking a number of
derivatives. The final sequence of polyvnomials is used to determine the returned
value. If the polyvnomial itself evaluates to zero. then either 0" or 0~ is returned
based upon the sign of the first nonzero polynomial in the sequence. Although this
approach is general and powerful. it may be difficult to compute the potentially high

derivatives and large polynomial.

Other Approaches Other approaches to dealing with degeneracies have been used.
These include redundancy elimination and automatic parsing.

Redundancy Elimination. Rossignac and Voelcker use a method called re-
dundancy elimination to eliminate sources of degeneracies [84]. With redundancy
elimination. data is preprocessed to remove information that is not needed in or-
der to solve problems based on that data (i.e. redundant information). Although
the primary focus of such work is for faster implementations. removing some of this
extrancous data can eliminate some degenerate cases.

Automatic Parsing. An approach taken by Farouki et al. toward dealing
with certain types of degeneracy is automatic parsing [32]. An expression is set up to
determine when a degenerate case can occur. and the case is automatically formulated
as a non-degenerate one instead. In this way. several degeneracies are eliminated by

a relatively simple transformation. For this approach to work. the degenerate case



must involve some expression that can be turned into an equivalent expression that
vields a non-degenerate case. In Farouki’'s example. this involves factoring a quadratic
polynomial. This can be a useful approach in cases where it applies. but usually there

is no simple way to create an equivalent non-degenerate case.



Chapter 3

Representations

This chapter describes an exact representation for curved B-rep models. For boundary
evaluation. it is assumed that the input is given in this representation. and the output
is produced in this representation.

To convert CSG models to B-rep models. first convert the CSG primitives to B-
rep. Second. combine the primitive B-reps into the final B-rep. Appendix A describes
conversion to B-rep for the CSG primitives this dissertation is concerned with. Section
3.5 describes other aspects of CSG input data. such as transformation matrices.

A solid is assumed to be closed with a manifold boundary. The boundary is
represented by a number of trimmed parametric patches. also referred to as the faces.
The trimming curves are stored in the domain of the patch. and are defined as portions
of algebraic plane curves. The trimming curves define the edges of the object. The
endpoints of these trimming curves define the vertices of the object. Representing
these vertices requires the representation of points with algebraic coordinates. The
solid as a whole is stored as an array of patches. arbitrarily ordered.

The representations described here are exact. The description assumes that an
underlyving system for eract rational arithmetic is provided. Such a system allows
for storage and basic arithmetic operations on rational numbers of arbitrary preci-
sion. There are several readily available implementations of exact rational arithmetic.
LiDIA {11] and LEDA [71] are two examples.

3.1 Patches

The surface that defines each patch is rational and parametric (Section 2.2.1). So.
X(s.t). Y(s.t). Z(s.t). and W (s, t) are specified, along with the implicit form of the



Figure 3.1: A trimmed patch. The dashed lines represent the extents of the patch
domain. The dark curves denoted by the I, are the trimming curves. which form edges
of the solid. The circles at the beginning and end of the trimming curves represent
the vertices of the solid.

surface. F(r.y.z) = 0. Such a parametric surface exactly represents all surfaces of the
standard CSG primitives (Appendix A). along with many other possible primitives.
such as surfaces of revolution.

Each patch is stored as a trimmed parametric patch. Note that a patch is defined
by one parametric surface. but a parametric surface may define several patches. Also.
different parametric surfaces can have the same implicit form.

The patch domain is defined as a rectangular region [s;.sy] x [t..{y]. where the
limits of the domain. s;. sy, t;, and ty, are specified as exact rational numbers.
Trimmed curves are defined within this patch domain (Section 3.2). The trimming
curves are contained entirely within the patch domain. For example. if the trimming
curves trace out the boundary of the (s.t) = [0. 1] x [0. 1] region of the domain. then
the patch domain must be defined by s,.t; <0 and sg.ty > 1. Figure 3.1 gives an
example of a patch domain.

The trimming curves within the patch form a single closed loop. Interior loops



Figure 3.2: Breaking loops. At left. one face is represented by a single patch with
an interior loop. At right. the same face is broken up into two patches. neither with
an interior loop. Solid lines represent trimming curves. dashed lines the extent of the
patch domain.

(i.c. holes in patches) are not allowed. In the cases where one wishes to represent an
interior loop within a patch. the patch is instead broken up into two separate patches
(Figure 3.2). The trimming curves are oriented so that when looking at the patch
from the exterior of the solid. the trimming curves will go counterclockwise around
the patch boundary.

Associated with each trimming curve in a patch is another surface that. when
intersected with this patch. vields the algebraic curve that that trimming curve is a
part of. This surface is referred to as the adjacent surface for a trimming curve. A
given patch P will have some surface Sp associated with it. For every trimming curve
(', in P’s domain. an adjacent surface S; is associated. such that Sp N S; vields the
trimming curve C;. The adjacent surface may or may not be the surface associated
with the adjacent patch. For example. in the representation for a cube. assume each
of the six faces is represented by a patch with four trimming curves (one for each
adjacent face). The adjacent surface of those trimming curves is the plane associated
with the adjacent face. On the other hand. consider a model of a cylinder represented
as six patches - one patch for each cap. and four for the curved portion. as in Figure
3.3. Each of the curved patches is adjacent to two other curved patches. Since all the
curved patches come from the same surface, the adjacent surface cannot be simply
the surface of the adjacent patch. Instead. the adjacent surface is defined to be the
planc that separates the two adjacent curved patches. as illustrated in Figure 3.3.
Only the implicit form of the adjacent surface needs to be stored. The reason for
storing the adjacent surface is shown in the description of the boundary evaluation

algorithm itself (e.g. in Section 5.4.2).
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Figure 3.3: Adjacent surfaces in a cylinder. At left. a cvlinder broken up into
six patches (one for each cap. four for the sides). The S, are the adjacent surfaces.
Sy and S, are the planes that divide the curved faces. S; and S, are the planes for
the top and bottom caps. At right is the domain of one of the curved patches. The
trimming curves are labeled with the adjacent surface.
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The trimmed parametric patch format described here is a superset of many of
the common curved patch representations, such as NURBS and Bezier patches. The
surfaces and trimming curves of these other patch formats might need to undergo a

change of basis or subdivision into many patches. but they can be converted.

3.2 Curves

Trimming curves are stored in the patch domain. No explicit three-dimensional rep-
resentation of the curve is stored. Each curve is defined as a portion of an algebraic
plane curve. The algebraic plane curve is the zero set of a bivariate polynomial with
rational coefficients. This algebraic plane curve is assumed to be regular within the
patch domain. That is. it is assumed that the algebraic plane curve does not have
any singularities. such as cusps, self intersections. or isolated point solutions. within
the patch domain. As is described in Appendix A. the trimming curves for the B-reps
of standard CSG primitives are regular curves. Also. if input solids are in general
position. all curves involved in boundary evaluation will be regular.

The representation of curves described here applies to both trimming curves and
intersection curves. Intersection curves, formed during boundary evaluation (Section
5.2). become trimming curves of the output B-rep. Intersection curves are formed
from from the intersection of two patches. The intersection of rational patches does
not necessarily have a rational parametric representation with rational coefficients.
Thus. curves must be stored implicitly in order to maintain an exact representation.

[t is important to remember that the term curves is used to refer to these general

two-dimensional curves. Only the trimming curves define the edges of the solid.

3.2.1 Curve Representation

Only certain portions of an algebraic plane curve are of interest. The entire algebraic
plane curve is broken into a number of curve segments. Each curve segment is defined
by two endpoints. a starting point and an ending point. both of which lie on the curve.
The representation for these points is described in Section 3.3. The ending point of
one segment is the starting point of the next segment. In this way. an orientation
is induced on the curve. Hereafter. the term curve refers to a series of one or more
simply connected segments from a single algebraic plane curve. The algebraic plane

curve refers to the entire curve independent of which portions are kept. Notice that
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7/

Segments

Figure 3.4: A single algebraic plane curve and two associated curves. The
algebraic plane curve has three components in the region of interest. The heavier
lines indicate the two curves. The curve at left is made up of three segments. the
curve at right of two.

a single algebraic plane curve may give rise to more than one curve. See Figure 3.4
for an illustration. The curve’s polynomial refers to the polynomial whose zero set
defines the algebraic plane curve. The starting point of the curve is the starting point
of the first segment of the curve, and the ending point is the ending point of the last
segment.

A curve segment is broken up into many segments by introducing new points
along that segment. The curve itself is unchanged. but the number of segments used
to define that curve increases. Two restrictions are placed on the curve segments.
which might require that the segments be subdivided. The first restriction is that
the curve segments be monotonic in both s and t. That is. moving from the starting
point to the ending point. the curve must be non-increasing (or non-decreasing) in
s and non-increasing (or non-decreasing) in ¢t. This involves inserting into the curve
all of the turning points. i.e. the local maxima and minima with respect to s and t.
Inserting points into a curve simply means subdividing the segment that point lies
in so that the inserted point becomes the ending point of a segment (and thus the
starting point of another segment).

Consider rectangular axis-aligned boxes around each segment. just large enough
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Figure 3.5: Subdivision of a curve. The curve in the upper left is divided into
monotonic sections as shown in the upper right. The bounding boxes for the curve
segments still overlap, as shown in the lower left, and so the segments are further
subdivided until the bounding boxes no longer overlap. as shown in the lower right.

to contain both the starting point and ending point. Because the curve is monotonic
within the segment. this box bounds the curve segment. The second restriction is
that the bounding boxes for all curve segments associated with the same algebraic
plane curve do not overlap. This ensures that no portion of the algebraic plane curve
passes through the bounding box except for that individual segment. Figure 3.5
shows a curve represented as a single segment. broken up into monotonic segments.
and further broken up into segments with nonoverlapping bounding boxes. Section
4.2 describes how an algebraic plane curve is broken up into valid segments.

Each curve segment. and thus the curve. is defined to be open at the starting

point. and closed at the ending point. That is. a segment contains the ending point.
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but not the starting point. Thus, there is no overlap between the segments. The
segments partition the curve.

This representation is capable of storing closed curves, also called loops. For closed
curves. the ending point of the last segment of the curve is the same as the starting
point of the first segment of the curve.

This representation for curves is appropriate only for curves that are regular within
the patch domain (singularities outside the patch domain do not matter). The se-
quentially connected segments do not allow representations of self intersections or
point solutions. and it may not be possible to obtain non-overlapping bounding boxes
around cusps. Modifications to the structure (such as allowing zero-length segments
to represent isolated point solutions, and implementing a graph structure to handle
self intersections) would allow singularities to be represented. Such modifications,

however. make operations on the curves more complex.

3.2.2 Operations on Curves

All curves can be reversed. A curve is reversed by reversing the order of the segments
in the curve. and swapping the starting and ending point of each segment. Reversing
the curve merely changes the direction that the curve is considered to travel.

For closed curves. the distinction of first and last segment is arbitrary. so a closed
curve can always be rotated to make a new segment the starting segment. Rotating
the curve simply means to change the first segment of the curve to be the last segment.
leaving the second segment to be the new first segment.

Having segments that are monotonic with no overlapping bounding boxes makes
many basic computations efficient. Section 4.2 describes how an algebraic plane curve
is broken up into segments. A few of the basic operations that this representation

specds up are as follows:

e Curve-curve intersection: Intersecting two curves is a common operation in
the boundary evaluation algorithm. The segment bounding boxes can be used
as a quick-reject test to avoid unnecessary computation. If the bounding boxes

of the curves’ segments do not intersect. the curves themselves do not intersect.

e Point on a curve query: Another common operation is determining whether
a point lies along a given curve. when the point is already known to lie on the
algebraic plane curve. That is. a determination must be made whether this

point is on one of the segments that make up the curve. Since the individual
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bounding boxes do not overlap any portion of the algebraic plane curve other
than that segment, all that is needed is to classify whether or not the point lies
in one of the bounding boxes.

e Sorting points along a curve: Another operation that arises in the boundary
evaluation algorithm is sorting points along a curve. The points are already
known to lie on the curve. To sort the points, first determine which segment’s
bounding box each lies in. Since the segments are ordered from start to end.
the order of points relative to points on another segment is known. Within any
one segment, the curve is guaranteed to be monotonic in both s and ¢. Thus.

the points can be sorted within a segment based only on their s or ¢ coordinate.

3.3 Points

Like curves. points are defined in two dimensions. In boundary evaluation. points
arise from the intersection of algebraic plane curves. The coordinates of these points
may be irrational algebraic numbers. This algebraic number can be represented as
the unique real root of a polynomial within an interval. as described in Section 2.2.3.1.

[t is important to distinguish points from vertices. A vertex is a point that
is formed at the intersection of two trimming curves. A point refers to anv two-

dimensional point. and may or may not be a vertex.

3.3.1 Point Representations

When points are defined implicitly as the intersection of two algebraic plane curves.
l.e. as a common real root of a pair of bivariate equations. the point may be stored as
a two-dimensional interval with rational bounds that isolates one root of the pair of
equations. One method for guaranteeing that the interval isolates the root is multi-
variate Sturm sequences. as described in Section 2.2.3.4. Another method. presented
in Section 4.1. isolates each coordinate of the point individually. then performs a test
to verify that the combination of coordinates isolates the curve intersection. This
second approach allows each coordinate to be treated separately as a single algebraic
number. In either case. all interval bounds are stored as exact rational numbers.
This root-in-an-interval approach stores any algebraic number. rational or irra-
tional. In many cases. one or both coordinates is a known rational number. One

option is to continue to treat the number as before (i.e. as a root within an interval).



Figure 3.6: Four ways of representing points. From left to right: both coordi-
nates known as rational numbers: s known as a rational number. ¢ as the root of a

polynomial within an open interval; ¢ as a rational number. s as a root in an interval:
as a root within an open two-dimensional interval.

but make the interval of zero width. All computations involving the coordinate then
proceed exactly as they would if the interval were nonzero. Care must be taken that
computations on the interval do not implicitly assume that the interval is of nonzero
length. Although this approach is elegant. it may lead to significant time performing
operations that are unnecessary. If rational coordinates are stored directly, theyv can
be used directly in computations. making them significantly simpler. Storing rational
coordinates directly as rational numbers requires a hybrid representation to be used
for points. where each coordinate can be stored either directly as a rational number

or generally as an algebraic number. This is illustrated in Figure 3.6.

3.3.2 Operations on Points

There are a number of basic operations involving points that need to be performed
as part of the boundary evaluation algorithm. \When coordinates are known as exact
rational numbers. operations such as comparison in one dimension are straightfor-
ward. When a coordinate is known only as an algebraic number within an interval.
the operations are more complex. Basic operations are needed to refine the interval
to a smaller width so that appropriate comparisons can be made. Terminology to
refer to these basic operations is introduced below.

In Sections 3.3.2.1 and 3.3.2.2. it is assumed that the points have been isolated
using a method similar to that presented in Section 4.1. The keyv point is that the
5 and t coordinates are each known independently from each other. This makes
it possible to deal with one coordinate as a single algebraic number. rather than
having to consider the entire two-dimensional interval. as is necessary when roots

are found using a method such as multivariate Sturm sequences (Section 2.2.3.4). A
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Figure 3.7: A point being cut and halved. At left, a point is given by a two-
dimensional interval. The actual value is shown by the dot. At center. the point is
cut at the s value indicated, yielding a smaller interval. At right. the point is further
reduced by halving in the ¢ direction.

brief mention of how these operations would be modified for a multivariate Sturm

approach is given in Section 3.3.2.3.

3.3.2.1 Reducing Intervals

The most basic method of interval reduction is the cuf. A cut operation in one
dimension refines the bounding interval so that it lies on one side or another of a
specific rational value. called the cut point. Cuts are always defined with respect to
only one coordinate direction. When the cut point is defined as the midpoint of the
starting interval. the operation is called a halve. A cut is performed by examining the
Sturm sequence at the cut point (Section 2.2.3.2). Similar to the wayv that roots can
be isolated by Sturm sequences, the Sturm value at the cut point determines which
portion of the interval contains the actual algebraic number. If the Sturm value at
the cut point is the same as the lower interval bound. then the upper portion of the
interval is kept. Otherwise. the lower portion is kept. Figure 3.7 shows an example.
Note that it is important to first check that the cut point is not the actual algebraic
number being represented. This is done by checking whether the root’s polynomial is
zero at the cut point. If the cut point is a root. the overall point is represented using
a rational number for the coordinate instead of the root of a polynomial. This may
also allow the polynomial defining the other coordinate to be simplified.

A second basic operation is a contract operation. A contract reduces the bounding
interval until it is no larger than a specified tolerance. When this tolerance is expressed

in terms relative to the width of the starting interval (e.g. the new interval should be
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Figure 3.8: Contracting and shrinking a point. At left, a point is given by a
two-dimensional interval. The actual value is shown by the dot. At center. the point
1s contracted in the s direction to a width indicated by the bar underneath the s
axis. At right. the original point is shrunk to 1/4 its original size in both the s and ¢
dimensions.

1/10 the size of the old interval), it is referred to as a shrink operation. A contract can
be performed by applying a series of halve operations. until the width of the interval
is below the specified amount. Since each halve operation reduces the interval by a
factor of two. a shrink in one dimension by a factor of n (i.e. contracting the interval
to a width 1/n times the previous interval width) requires [log, n] halve operations.

An example of contracting and shrinking is given in Figure 3.8.

3.3.2.2 Comparisons

At rimes. two distinct points might have overlapping intervals. In order to compare
them. it is necessary to separate the points. An efficient method for doing this is to
first cut each point along the boundaries of the other point. After this. the two points
either have nonoverlapping intervals. or have identical intervals. If the points have
identical intervals. a shrink operation is performed on each. and the resulting intervals
again checked for overlap. This process (cutting and then shrinking) is continued
until the two points are separated. Figure 3.9 shows an example of the separation
of two points. Once these points are separated. comparison operations can be easily
performed. When a comparison is made in only one dimension (e.g. finding which
point has the smallest s coordinate), the cutting and shrinking operations occur in
just one dimension.

A final basic operation on points is checking for equality. Each coordinate is
checked for equality independently. Checking for a coordinate’s equality is done in

the standard way for algebraic numbers: take the greatest common divisor of the
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Figure 3.9: Separating two points. At upper left. the two points have overlapping
intervals. Actual values are shown as dots. At upper right. each point is cut at the
bounds of the other’s interval. The intervals still overlap. so the points are shrunk. as
shown at lower right. The intervals still overlap, so the process is repeated. At lower
right. the next set of cuts has separated the two points.
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polynomials of the two roots. then check to see whether there is a root of the ged
within the root’s interval. These operations can be somewhat time consuming. due
mainly to the ged operation. so it is often more efficient to make a few attempts to
separate the points (as described above) before checking for equality. Only after the

points are known to be very close to each other is an equality test performed.

3.3.2.3 Operations on Points as 2D Intervals

The operations described become somewhat more complicated when the point does
not have individual algebraic number representations for each coordinate. This is the
case when points have been determined via a multivariate Sturm approach (Section
2.2.3.4). A cut operation. which is the basis for contracting and separating, involves
determining Sturm values at two new points. Equality tests cannot be made as
described above. Instead. an equality test as described in the next paragraph is used.
Because this equality test can be extremely slow, it is especially important to attempt
to separate the points before checking for equality.

Each of the two points is defined as the unique real intersection of two algebraic
planc curves. Call the curve polynomials f, and g; for point 1. and f,. g, for point
2. Note that one of the polynomials from point 1 mayv be the same as one of those

from point 2. A straightforward approach to this problem would involve looking for

be used to achieve this. but such computations can be extremely slow when dealing
with several polynomials. Instead. a different check for equality is used. Form a new
polynomial. F = f2 + ¢? + f? + g2 = 0. Notice that since the coefficients of the four
point polyvnomials are real. that F = 0 can have a real solution if and only if f; = 0.
g1 = 0. fo = 0. and g, = 0 at that same real solution. Next. find whether there is
a real intersection of ¥ = 0 with one of the other polynomials. sayv f; = 0. within
the interval. If there is an intersection. that implies that all four polyvnomials have a
common intersection within that interval. and the two points must be equal. If there

is not a common solution to F' = 0 and f, = 0. then the two points cannot be equal.

3.4 Topology

To this point. only geometry of the representation has been discussed. It is also
necessary to represent the topology of the model. Unlike the geometric data. which

to some extent has its representation defined by the nature of the problem itself.
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there are many ways that the topological structure can be represented. One that has
worked well in practice is presented here. The approach presented stores topological
data within the patch and the edge. No global topological data structure is stored.
although one can be created from the local data. Recall the assumption that the
model to be represented is manifold. The topological information described here is
appropriate for representing only manifold objects. Representation of non-manifold
geometry requires more complex topological data structures and different geometric
representations for curves.

First. a word must be said about shells. A shell refers to one connected set of
boundary surfaces forming a closed manifold. The boundary of a simple object. such
as a polyhedron, forms a single shell. while more complex objects may have many
shells. For example, imagine a hollow ball. One set of surfaces (i.e. one shell) defines
the outermost boundary of the ball. while another set of surfaces (i.e. a second shell)
defines the inner boundary surrounding the hollowed out area. In some cases. the
topological structure describing the nesting of shells is desired. In the representation
presented here, topological shell information is not stored explicitly. Individual shells
can be derived from the other topological data. and information on the nesting of
shells can be derived from the geometric data, if desired.

Within each patch is an ordered list of trimming curves. These trimming curves
are connected and form a counterclockwise loop around each face when viewed from
the exterior of the object. The choice of which curve is first in the loop is arbitrary.
but the sequential ordering of the curves forms the first piece of topological infor-
mation. Along with each trimming curve is stored a pointer to the patch that is
adjacent along that curve. called the adjacent patch. Note that the adjacent patch’s
surface might not be the same as the adjacent surface (Section 3.1) for that trimming
curve. A restriction is made that a patch can not be adjacent to itself. For example.
it may be possible to represent the entire curved portion of a cylinder as a single
patch (Figure 2.5). but this would require that the patch be adjacent to itself. As
mentioned in Section 2.1.2. it is always possible to subdivide a patch into two or
more subpatches, and this can be used to create models such that patches are never
adjacent to themselves. If no patches are adjacent to themselves before performing
boundary evaluation. then no patch will be adjacent to itself in the output.

Within each curve data structure is a pointer to the associated curve in another
patch domain. Corresponding to each trimming curve is a trimming curve in the

domain of the adjacent patch. These two curves define the same curve in three



dimensions. and so a pointer from each to the other is used to store this information.
The topological information listed is sufficient to find all the necessary topological
information. A listing of how various adjacency relationships can be derived from a

model as presented here is given in Section 3.4.2.

3.4.1 Additional Data

For the sake of convenience in computation, some additional data is stored. Within
curves. an indicator of the relative orientation of the two curves is kept. As mentioned
earlier. each curve has an orientation given by the order of the points along it from the
start to the end. Because the curves reside in different parametric domains. “forward”
on one curve may correspond to either “forward” or “backward” on the other. Recall
that the trimming curves for a patch are in counterclockwise order when viewed from
the exterior of the model. This restriction ensures that associated curves must be
oriented opposite to each other in the input and output models. In intermediate
computations, however, curves may have the same orientation. so this information is
stored in the curve structure.

Just as associated curves in different domains refer to the same curve. points
in different domains may refer to the same point. Each point. then. may have an
associated point in a different domain. Even though a point may have an equivalent
representation in several other domains, only one associated point needs to be stored.
Furthermore. within any one domain. there may be two separate representations for
the same point. The ways that this can happen are seen in the discussion of the
boundary evaluation algorithm. For this reason. a way to record that two points are
coincident is necessary. There are numerous ways of doing this. including a global
structure listing pairs of equal points. or by maintaining a circularly linked list of
cqual points. Like the orientation information for curves. all of this information is
used only during intermediate computations.

A diagram outlining all of the data (both geometric and topological) stored is
given in Figures 3.10. 3.11 and 3.12.

3.4.2 Sufficiency of Topological Data

The sufficiency of the topological information stored is shown here. To do this.
it is necessary to show that all nine adjacency relationships can be derived from

the information provided. To conform to standard notation. F is used to refer to

=1
[§V]



Univariate Polynomial

Univariate Root " Upper Bound: Rational
Lower Bound: Rational
Bivariate Polynomial
s low: Rational
Bivariate Root = s high: Rational

t low: Rational

t high: Rational

s: Rational, t: Rational

s: Rational, t: Univariate Root

1 of: s: Univariate Root, t: Rational

s,t: Bivariate Root

Point Defining Polynomials Bivariate Polynomial

Bivariate Polynomial

Associated Point: Point

Figure 3.10: Univariate root, bivariate root, and 2D point data structures.



Segment

Curve

Starting Point: Point

Ending Point: Point

Defining Polynomial: Bivariate Polynomial

Associated Curve: Curve

Monotonic Segments ——-»

Segment

Segment

Segment

Figure 3.11: The data structures for a segment and a curve.




/ Implicit Form [———= Trivariate Polynomial

Surface

X:Bivariate Polynomial

Parametric Form [ Y:Bivariate Polynomial

Z: Bivariate Polynomial

W: Bivariate Polynomial

Surface

s low: Rational

Patch

Domain s high: Rational

t low: Rational

t high: Rational

Boundary

|

Trim Curve: Curve Trim Curve: Curve

Adjacent Surface: Surface |e e o | Adjacent Surface: Surface

Adjacent Patch: Patch Adjacent Patch: Patch

Figure 3.12: The data structures for a surface and a patch.



faces (patches). E to edges (the trimming curves), and V to vertices (points). An
adjacency relationship is written as A-B. meaning that given a member of group A
(one of {F.E.V'}), find an ordered list of adjacent members of group B (again. one
of {F.E.\'}). For example, F-E means finding an ordered list of the edges adjacent
to a face. Showing certain subsets of the nine adjacency relationships is enough to
show full sufficiency [101]. All the nine relationships are specified here. however, to
demonstrate the method for finding each type. It is assumed that a model is given
as a collection of patches, as described above. The order of patches is not important.

Before listing the adjacency relationships. it is important to demonstrate that
edges and vertices are specifically identified. Each face has a unique representation,
but edges and vertices are defined within the domain of more than one patch. Thus.
it must be shown that given one edge (or vertex), that all the other representations
of that same edge (or vertex) can be identified. For edges. this is direct. Since
we deal with only manifold solids. and since no patch is self adjacent. each edge
is represented in exactly two patch domains. The association pointer stored with
cach curve identifies one. given the other. The identification of all equivalent vertices

follows the same approach as the V-E problem, described below.

e F-F. F-E. and E-V: These relationships are all stored directly. The patch data
structure keeps a circular ordered list of the adjacent faces and the trimming
curves. which are the edges. The curve data structure keeps the starting and

ending points. i.e. the vertices.

e F-V: This is derived directly from the stored F-E and E-V" lists. Taking the
ending point of each of the trimming curves gives the complete ordered list of

vertices around a face.

e E-F: Each edge is a part of exactly two faces. For a given trim curve. the
associated edge in another patch domain is found. Since each patch contains a
list of all trimming curves, the patch list is then iterated through to find the

two patches that contain the trimming curve and its associated curve.

e V-E: Each vertex is defined as the intersection of two trimming curves. and
thus is at the beginning of one trimming curve and the end of another in one
domain. Given a vertex, 1", in one domain, the list of trimming curves for all
patches is examined until a curve. call it 4, having that point as an ending point

is found. The succeeding trimming curve in that same patch. call it B. then.



has that point as a starting point. Take A’s associated curve, call it C, that is in
another patch domain. C’s starting point. I, is the same as 4’s ending point,
in three dimensions. Notice that this is how the equivalent representations of
1" are found (i.e. V" and /" are the same vertex. just in different domains). The
curve preceding C, call it D, will end on W. Continue with D just as was
done with A. This proceeds around the vertex in order. Eventually. B will be
reached, at which point all the adjacent edges will have been found in order.

e V-F: This is determined in the same way as the V-E case. As one marches
around the edges, the patches are examined to determine which one contains

each edge. Thus, the adjacent faces are listed in order around a vertex.

e E-E: This case is handled by using the V-E approach on both the starting point
and ending point of the edge.

e V-V: Again, the V-E approach is modified to return this data. As each new
edge. such as D in the description above, is found, a new vertex (such as the
starting point of D in the description) is recorded. In this way, the vertices at

the other end of all adjacent edges are recorded.

[t is noted that certain of these operations (such as those based on \-E) can
be complicated. however they do not regularly arise as part of the boundary evalu-
ation algorithm outlined in Chapter 5. They are presented merely to demonstrate
sufficiency. Furthermore. as is seen in later chapters. the running time of the exact
boundary evaluation algorithm is heavily dominated by exact numerical computa-
tions. The efficiency of combinatorial computations. such as these topological queries.
is of relatively little importance. If efficiency in these topological operations is de-
sired. it is a simple matter to augment the topological data. For example, the curve
structure can contain a pointer to the patch that it is a part of. This would reduce

the time taken for most of the above adjacency queries.

3.5 Input Data

Input data must be convertible to the format described above in order for the bound-
ary evaluation algorithm to be applied. Converting input objects in a B-rep format
to the format described above is usually straightforward. More often. however. the

input data is given in a CSG format, with the goal being conversion to B-rep.
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Even among CSG systems. there can be many ways of representing data. For the
purposes of this dissertation. a representative CSG-based system has been chosen to
use as a basis for input. This is the BRL-CAD system [26. 24|, developed at the
Army’s Ballistics Research Lab. As mentioned in the introduction, the BRL-CAD
system has been used for several applications, and large, complex models have been
designed with it.

Most input data comes in as floating-point numbers. It should be noted that any
floating-point number has an exact representation as a rational number. For example,
the number 0.53891 is equal to 53891/100000. Thus, any floating-point number input
can be treated as an exact rational number. The implications of this are discussed
below. Note also that it is possible, using methods such as continued fractions [59. 96],
to generate close. lower precision, approximations to high precision numbers. For the
purposes of discussion here, all input is converted exactly.

Before boundary evaluation is performed. the CSG primitives must be converted
to the B-rep format just described. Because they include all the CSG standard
primitives and can represent complex models, only four basic primitives are consid-
ered here: polyvhedra. ellipsoids, generalized cones, and tori. Each of these can be
represented exactly in the format described. and brief descriptions of these specific
representations are provided in Appendix A. Other primitives can also be converted
to the representation described.

Besides the primitives and Boolean combinations. CSG data also contains transfor-
mations. In BRL-CAD. the transformation data is stored in transformation matrices.
Internally. BRL-CAD stores transformation data within the binarv tree. rather than
collapsing it to the leaves (Section 2.1.1 and Figure 2.2).

Transformation data can be applied directly to an object represented in the format
described above. Applying a transformation matrix affects only the surface informa-
tion in the patch description. All curves and points are defined within the patch
domain. and are completely unaffected by a transformation.

A transformation matrix is a 4 x 4 matrix. specifving the new X(s.t). Y (s.t).
Z(s.t). and 1" (s.t) relative to the original parametric form. The transformation ma-
trix is applied to the parametric form of each surface. and the inverse transformation
is applied to the implicit form (or vice versa. depending on how the transformation
matrix is specified). If the transformation matrix is a combination of the common
transforms (translation, rotation. scaling). it is invertible.

As stated before, floating-point data can be converted exactlv to an exact ra-



tional representation. In many cases, however, the floating-point data itself is not
exact. For example. a number such as 1/3 may have been truncated to 0.33333333.
A transformation matrix intended to show a rotation by 30 degrees must contain
some roundoff error. since the entries of such a matrix would be irrational (and thus
not representable by floating-point or exact rational numbers). It should be noted,
however. that it is possible to construct a rational number arbitrarily close to an
irrational number. thus making it possible to represent a rotation by some number of
degrees to any precision desired.

Even if all of the input data is specified exactly as the designer specified. it is
unlikely that the designer’s intent was to have an absolutely exact value. In the real
world. it is not currently possible to specify physical measurements to infinite preci-
sion anyway. so an insistence that the designer’s input measurements be determined
exactly is unfounded. The reason the input data is still treated as exact is to en-
sure consistent computation. Consistency is achieved by dealing with all input in a
uniform manner. Treating the input data as exact is just one way of achieving this
consistency. Other methods can be used to try to better capture the design intent or
to use less precision. but these approaches are outside the scope of this dissertation.

Note that converting an inexact B-rep into the exact representation presented
carlier can run into problems if the error in the inexact B-rep causes that B-rep not
to be a closed manifold. For example, the trimming curves might be inexact (due to
approximation or roundoff error). leading to patches not meeting smoothly along an
edge. Such conversion problems, which might be dealt with by not assuming exact
input data. again. are outside the scope of this dissertation. With CSG data, since
primitives are usually specified by a set of parameters (e.g. center and radius for a
sphere). this is not a problem. Minor errors in the parameters only lead to slightly
different objects. not invalid ones.

Finally. certain systems may incorporate further information into the model speci-
fication. For example. systems may list tolerances on measurements (a way of dealing
with uncertain physical constraints), or material property values. Svstems that can
deal with this additional data are important. but this dissertation is concerned with
the boundary evaluation problem only in reference to models as specified earlier in

this chapter.



Chapter 4

Kernel Operations

This chapter describes some of the the fundamental operations that arise in the
boundary evaluation algorithm. The methods presented here are useful for other
geometric applications besides boundary evaluation. These operations, along with
the basic operations on curves and points discussed in Sections 3.2.2 and 3.3.2, form
the kernel operations that the overall boundary evaluation algorithm is built on. The
specific ways that these operations are used in the boundary evaluation algorithm are
described in detail in Chapter 5.

The methods presented in this chapter rely on the mathematical background ma-
terial described in Section 2.2. as well as the representations (and basic operations
on those representations) presented in Chapter 3. This chapter describes methods
for intersecting two curves (Section 4.1). resolving the topology of an algebraic plane
curve (Section 4.2), generating and locating points (Section 4.3). and finding implicit

surfaces (Section 4.4).

4.1 Curve-Curve Intersection

Perhaps the most important operation in the boundary evaluation algorithm is that
of curve-curve intersection. Specifically. given two algebraic plane curves. the goal is
to find all intersections between the curves within a rational rectangle. A rational
rectangle is defined to be an axis-aligned rectangular region of the plane whose bounds
are given by rational numbers. That is. a region of R? given by [as. b,] x [a,. b,] where
a,. a;. by. and b, are rational numbers. The coordinates of the intersection points are
algebraic numbers. which may be irrational. Each algebraic plane curve is assumed

to be regular (i.e. without singularities such as self-intersections) and is expressed as



the zero set of a bivariate polynomial with rational coefficients. Also. it is assumed
that the curves do not have any common components (i.e. there are a finite number
of solutions). In the boundary evaluation algorithm, curves are regular and will not
have common components except in degenerate situations.

The specification of a rational rectangle comes from the fact that in most cases,
one is only interested in roots within a patch domain. This allows roots that are
outside of the rational rectangle to be ignored, which can simplify computation. In
some cases. one needs to find all intersections between the curves over the entire real
plane. Conservative bounds are available that specifv the maximum absolute value
of a real root of a polynomial (e.g. as in [21]). By using these bounds. a rational
rectangle can be determined.

If one or both of the two aigebraic plane curves comes from a curve divided into
segments as described in Section 3.2, then an additional step is added. Once all inter-
section points between the algebraic plane curves have been found. each intersection

is checked to see whether it is a part of the curve (Section 3.2.2).

4.1.1 Previous Approaches

Finding 2D roots of a pair of bivariate equations is a well-studied problem. usually
considered in the more general setting of finding roots of a set of n equations in n
unknowns. One approach is to use worst-case bit length estimates to guarantee accu-
rate results (e.g. (15, 105]). Another approach involves multivariate Sturm sequences
(Section 2.2.3.4). Grobner Basis methods are commonly used. particularly in general
computer algebra systems (e.g. [21. 43]). Finally, a number of other approaches. in-
cluding those based on interval arithmetic. eigenvalues, and curve subdivision (e.g.
[94. 66. 2]) have been explored.

The approach presented here was developed specifically to work well for the bound-
ary evaluation algorithm and the representations described earlier. Unlike some earlier
methods. it is designed to find roots only within a rational rectangle. The input plane
curves are not required to have a parametric representation. as some other methods
require. Interval methods tend to have slower convergence than desired. and can have
trouble distinguishing solutions when curves are nearly tangential. Because interval
methods do not know a priori how many roots are in a particular region, they may
refine only to a limited tolerance. and can potentially report spurious intersection
points or merge two nearby intersections into one.

In the new approach. the output points are bounded by a rational rectangle.
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as in the point representation (Section 3.3). Although multivariate Sturm sequences
(Section 2.2.3.4) can provide the functionality desired, they suffer from two problems.
First of all. multivariate Sturm operations are often too slow. The new algorithm.
which replaces the multivariate Sturm calculations with a series of univariate Sturm
calculations. is significantly faster in practice. Second, multivariate Sturm sequences
can have problems whenever a root of the polynomials has one coordinate value the
same as that of the rational test rectangle. Although such a condition is a degeneracy.
it is usually of the unpredictable variety (Section 2.1.3.2). which makes it difficult to
avoid. This type of unpredictable degeneracy can show up in practice. but the new
algorithm is unaffected by it.

Although developed independently. the approach presented here is similar to an
approach used by Sakkalis [83. 86]. Sakkalis’ approach performs root classification by
computing the Cauchy index over a region. and the new approach can be seen as an
implementation of that same idea. Rather than ordering boz hits as the new approach
does. Sakkalis determines the sign of a ratio of polynomials at some of the box hits in
order to classify points. The new approach eliminates some of the minor restrictions
of Sakkalis’ method (including certain boundary conditions). while Sakkalis’ method

provides more information about the point itself.

4.1.2 Algorithm for Curve-Curve Intersection
This section describes the algorithm for finding common intersections of two algebraic

plane curves. over a limited domain.

Goal: Given the algebraic plane curves:

f(s.t) =
g(s.t) = 0 (4.1)

and a rational rectangle [s;. s2] x [¢;. t2]. return a set of points. as described in Section
3.3. such that each solution of f(s.t) = g(s.t) = 0 that lies within the rational

rectangle is described by exactly one point.



Procedure:

L.

(8]

First compute the polynomials:

S(s) = Res((f.g)
T(t) = Ress(f.9) (4.2)

Notice that if f(o.7) = g(0.7) =0, then S(0) = 0and T(7) = 0. That is. the s
coordinates of the common solutions of f = 0 and g = 0 are given by the roots

of S. and the ¢ coordinates are given by the roots of T'.

Isolate the roots of S within the interval [s,.s,] and the roots of T within
the interval [t.¢2]. This can be done using an exact univariate root finding
method such as univariate Sturm sequences (Section 2.2.3.2). Each isolated
root is represented either as an exact rational number (a rational root), or as an
interval with rational endpoints (an interval root). Let the number of interval
roots of S be m;, the number of rational roots be m,. and the total number
be m = m; + m,. Let the number of interval roots of T be n;, the number of

rational roots be n,, and the total number be n = n, + n..

At this point. any solution of f = g = 0 within the interval will have the s
coordinate specified by one of the m roots of S. and the t coordinate by one of
the n roots of T. All that remains is to take all mn combinations of coordinates
and determine which. if any, correspond to a solution of f = ¢ = 0. The mn
combinations fall into one of four categories. depending on whether each root

is a rational root or interval root. Three cases are handled quickly:

(a) Consider the m, rational roots of S (call them the o;) and the n, rational
roots of T (call them the 7,). For all the man, pairs of roots. check whether
f(oi.7;) = g(oi.7)) =0. If so, then (o,.7;) is a root. and is a solution.

(b) Consider the m, interval roots of S. and the n, rational roots of T (call
them the 7;). For each of the n, 7;’s. do the following:

i. Compute f(s) = f(s. 7;) and g(s) = g(s.7;).
ii. Compute k(s) = ged(f.7).
iii. Determine whether h(s) has anyv roots inside the intervals given by

the m roots of S. Univariate Sturm sequences can be used to find

any roots. Note that any roots of h(s) must be solutions of f(s.1)) =
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g(s.7j) =0, and any of those roots within the interval [s|, s;] must be
one of the m roots of S. Any roots found in those intervals give the s
coordinate of a solution (the ¢ coordinate is given by the ;).

(c) The m, rational roots of S = 0 and the n, interval roots of T = 0 are dealt

with as in the previous case, with the coordinates reversed.

4. From this point on, consider only the m; roots of S = 0 and the n; roots of
T = 0. all represented as intervals. Form m;n; rational rectangle boxes by
combining the root-bounding interval solutions of S = 0 and T = 0. Each box

can contain at most one solution of f = ¢ = 0.

An illustration of this is shown in Figure 4.1. In the figure, the two curves are
shown. along with the intervals that bound roots of S and 7. Notice that not all
roots of S and T correspond to an intersection between the two curves within
the rational rectangle of interest. The six boxes formed by combining the roots
of S with those of T are illustrated.

5. At this point, it is still necessarv to determine which (if any) of the boxes contain
solutions of f = g = 0. This is done by intersecting each of the curves with the

box boundaries.

For each of the m; roots of S. we have a rational upper and lower bound: (L. k).
Substitute the lower bound to obtain f(t) = f(I;.t). Using a univariate root
finding method. determine which roots of f = 0 (if any) lie on the boundaries
of one of the n, boxes that /; is a lower boundary of. These roots are called f
boz hits. since they represent the locations where f(s,t) = 0 intersects the box.
Likewise. substitute /; in to ¢ and find g boz hits. Perform the same procedure
for the upper bound. A, in s, and then for the lower and upper bounds for the
intervals in £. At the end of this process. all intersections of the curves f = 0 and
g = 0 with the boxes has been found. In total. there are 2(m; + n;) univariate

equations for which roots must be computed.

6. Finally. classify boxes as to whether or not each contains a solution. This is
done by ordering the box hits around each box. Figure 4.2 shows some of
the potential box hit configurations that can arise. Recall that the curves are
assumed to be regular. and thus without self intersections. point solutions. or

cusps. For now, also assume that intersections between the two curves are
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Figure 1.1: Forming boxes that might contain roots. Intersections between
the two curves can occur only in these boxes. The curves are shown in the rational
rectangle of interest. The root-bounding intervals found by isolating roots of § = 0
and T = 0 are shown on the horizontal and vertical axes. Combining the 2 roots in
s with the 3 roots in ¢ yvields the six boxes illustrated in the image.



not tangential. Techniques to handle these special situations are discussed in

Section 4.1.3. The possible cases are the following:

(a)

(c)

(d)

No hits from f or no hits from g: Examples 4.2(a) and 4.2(b) illustrate
this. At least one of the two curves does not pass through the box. or
has an entire component within the box that does not intersect the other

curve. Thus, there is no intersection in the box.

Ezactly one hit from f or g: Example 4.2(c) illustrates this. This means
that the curve tangentially hit the box boundary but did not enter it. Thus

there is no intersection inside the box.

There are exactly two hits from both f and g: Determine the ordering
(either clockwise or counterclockwise) of the four box hits. The pattern of
hits may alternate between the two curves (i.e. an FGFG or GFGF pattern.
where F and G describe whether the hit is from f or g, respectively). In
this instance. as in Example 4.2(d), there must be an intersection inside
the box. If the ordering of hits does not alternate (i.e. an FFGG. GGFF,
FGGF. or GFFG pattern). then two cases are possible. The curves do
not intersect (as in Example 4.2(e)). or the curves meet tangentially (as
in Example 4.2(f)). In some applications. it is acceptable to ignore such
tangential intersections entirely, in which case these non-alternating cases
are never recorded as intersections. In other cases, such events are handled

separately. as described in Section 4.1.3.3.

There are at least two hits from one curve. and more than two from the
other- Examples 4.2(g) and 4.2(h) are examples of this. At least one of
the curves is passing through the box more than once. Shrink the root S
and the root of T that corresponds to this box. and recompute the box
hits. At some point, the box will fall into one of the previous categories,

and its status is determined conclusively-.

In practice. cases 6b and 6d are very rare. as is case 6¢ when there is no inter-

section. Also. note that the tighter the bounds on the roots of S and T (i.c.

the smaller the interval), the more likely it is that boxes without intersections

inside will fall into case 6a.
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Figure 1.2: A few of the possible box hit configurations.
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Figure 4.3: A curve intersecting the corner of a box. At left. a curve is entering
a box at a corner. At right, it is only grazing the box.

4.1.3 Handling Other Cases

The algorithm presented in the previous section relies on several assumptions. This

section discusses how to handle cases where these assumptions mayv not be valid.

4.1.3.1 Box Hits At a Corner

[t is simple to compute whether f = 0 or g = 0 intersects the corner of the box by
substituting the coordinates of the corner into the equations. If a curve intersects a
box at a corner. though. there is a question of whether the curve is entering the box
or just grazing it. Figure 4.3 shows examples of each case. The question is answered
by examining the sign of the slope of the tangent of f (or g) at the corner. So. if the
coordinates of the corner are (o, 7), then we want to compute the sign of:

dt 0.7

e 3
The sign of the slope determines whether the curve is entering or grazing the box. If
the gradient is horizontal or vertical. simply treat the box as in case 6d above (i.e.
shrink the box and recompute box hits - the smaller box should no longer have an

intersection at the corner).

4.1.3.2 Many Tangent Box Hits

This is an extremely rare type of unpredictable (Section 2.1.3.2) degeneracy. Exam-

ples are given in Figure 4.4. Simply shrinking the box (by shrinking the associated
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Figure 4.4: Two cases of many tangent box hits by one algebraic plane
curve.

root intervals) would usually eliminate this problem, but the algorithm as described
has no way of distinguishing this case from one where a curve is entering and leaving
normally. One solution is to take one box hit from each curve on each box and make
sure that that box hit is not a tangency. This is done by examining whether the
tangent of f (or g) is horizontal (or vertical, depending on which edge of the box is
being tested) at the intersection. That is accomplished by examining whether the
partial derivative with respect to s (or t) has a zero at the intersection point. Testing
whether a zero of the partial derivative coincides with the box hit is done via alge-
braic number comparison (Section 2.2.3.3). This is not difficult to implement, but
it will decrease the overall efficiency of the algorithm. Because the case is so rare.

implementing this solution might not be worthwhile.

4.1.3.3 Tangent intersections

The algorithm assumes that intersections between the algebraic plane curves are
transverse. When the curves have only a tangential intersection. the algorithm will
fail to detect any intersection. In boundary evaluation. tangent curve intersections
only arise as a result of input degeneracies, which in this dissertation are assumed
not to occur. This information is provided to discuss how the algorithm will work in
a more general setting. Figure 4.5 shows two examples of tangent intersections.

One type of tangency (at right in Figure 4.5) is when one or both of the curves does
not intersect the box boundary. This can only occur if an entire closed component of
the algebraic plane curve is inside the box. This is unlikely to occur if the boxes are

small. and shrinking the box would likely cause the curve to intersect the box. The
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Figure 4.5: Two types of tangent intersections. At left. both curves intersect the
hox in a nonalternating pattern. At right. one of the curves is completely contained
in the box.

only way to avoid circumstances like this is to verify that a curve that does not hit the
box boundary is indeed not inside the box. A simple interval (or affine) arithmetic
computation can usually verify that this is the case (i.e. that f # 0 over the box).
If the interval arithmetic operation fails to verify this, the box can be shrunk until
eventually either the box is shown (by an interval arithmetic test) not to contain
a component of f = 0. or the curve intersects the box. If there is no component
inside. then there will be no solution inside the box. If. instead, the curve eventually
hits the box. then the second type of tangency situation is encountered. Another
possibility is. after a certain amount of box shrinking, to test for an intersection using
a multivariate Sturm calculation (Section 2.2.3.4).

The other tangency situation (at left in Figure 4.5) is when both curves hit the
box boundary. but do not form an alternating pattern. Usually. this is taken to
mean that there is no intersection within the box. In order to rule out a tangent
intersection. one solution is to use a method such as multivariate Sturm sequences
(Section 2.2.3.4). Because these calculations can be slow. it is often useful to first
shrink the box significantly before calling a multivariate Sturm routine. Multivariate
Sturm sequence methods can also be avoided entirely if the box is shrunk to a small

enough size to meet the gap theorem requirement [15].
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4.1.3.4 Non-Regular Curves

An assumption is made in this dissertation that all the algebraic plane curves are
regular. Due to the nature of the boundary evaluation algorithm, any non-regular
curves that arise are the results of input degeneracies. In fact, the representation for
curves described in Section 3.2 is not capable of representing a non-regular curve.
Still. the algorithm described is capable of intersecting non-regular curves. except
when the actual point of intersection is at a singularity. Figure 4.6 illustrates four
examples of intersections at a singularity of a nonregular curve.

For cusps. the ordering of box hits may not be relevant as to whether or not there
is an intersection. Intersections at cusps where the ordering alternates are detected
by the algorithm (Example 4.6(a)), while those where the box hits do not alternate
(Example 4.6(b)) must be handled in the same way as tangential intersections (Section
1.1.3.3).

For curves with an isolated point component (such as s? + t?> = 0 has at (0.0)).
there will be no box hits and the intersection is missed entirely (Example 1.6(c)).
Similar to the isolated component in the tangential case. the box can be checked via
interval techniques. and repeatedly shrunk if necessary. At some point. the box must
be either tested with a multivariate Sturm method, or shrunk to a point that it is
guaranteed to have a solution by the gap theorem [15].

For curves with self intersections, the box will be shrunk without stopping when
the intersection point is at the point of self-intersection (Example 4.6(d)). The al-
gorithm will (by step 6d) repeatedly shrink the interval since there will always be
more than two box hits from one polynomial. The gap theorem [15] provides a limit
for how much the interval needs to be reduced. but this is often much smaller than
desired. Performing a multivariate Sturm test. after a certain amount of shrinking

has occurred. is an alternate method for finding an intersection in this case.

4.2 Curve Topology

Curve topology refers to the decomposition an algebraic plane curve over a region of
the plane. Often. curves are first generated as the zero set of some bivariate polyvno-
mial with rational coefficients. A curve topology algorithm allows one to understand
the structure of the curve in a region. so that it can be represented and manipu-
lated effectively. The curve topology algorithm presented here generates curves in

the format described in Section 3.2 from an algebraic plane curve. Since a curve
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Figure 1.6: Intersections at singularities. In (a) and (b). two potential config-
urations when there is an intersection at a cusp. In (c). an intersection at a point
solution. In (d). an intersection at a curve self-intersection.
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topology algorithm is run for many, if not all, of the curves generated as part of the
boundary evaluation algorithm. having an efficient method that works well with the
representations described is important.

The specific problem being dealt with here is this: given a polynomial, f(s.t) = 0,
and a domain. [s;,sg] X [tL,ty]. decompose the curve into monotonic segments of
S = 0. and record the connectivity between the monotonic segments. This process
is called resolving the curve topology. The algorithm presented here is intended for
regular curves. as are assumed within the boundary evaluation algorithm. Discussions
of how the algorithm may be modified to work when there are singularities is provided

later.

4.2.1 Previous Work

Analysis of curve topology has been extensively studied in algebraic geometry, sym-
bolic computation. and geometric modeling. The curve topology algorithm presented
here is closely related to the problem of finding a cylindrical algebraic decomposition
for a curve. although the cylindrical algebraic decomposition is more general. An
overview of the cylindrical algebraic decomposition is given by Arnon. Collins. and
McCallum [7. 8]. An example of the use of the cvlindrical algebraic decomposition in
resolving curve topology can be found in another paper by Arnon [6]. An example of
a way to compute the cylindrical algebraic decomposition for 2D curves is presented
by Arnborg and Feng [4]. Some work has addressed the problem of interest here more
directly. A paper by Kriegman and others [60] is one notable example. although that
approach is not exact. Other methods for resolving curve topology include those
described by Arnon and McCallum [5] and Sakkalis [86].

Although the algorithm presented here performs the same basic task as these
previous approaches, it differs in a few key wavs. Some previous approaches require
computation over a region that is unbounded in at least one dimension [5. 86]. The
algorithm proposed here allows both dimensions to be bounded. saving significant
work. Some approaches rely on specific information being computed about the turning
points. For example, Sakkalis [86] requires a Cauchy index computation for each
point. and Arnborg and Feng [4] require that the point representation be amenable to
a spatial subdivision scheme that does not work well with points defined as intervals.
The algorithm presented here does not rely on a specific method for computing or
representing turning points. Inexact methods, such as those based on curve tracing.

have trouble finding small isolated components or correctly resolving topology when
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two components are close together. The approach presented here, when exact point-
finding methods (such as the ones described in this dissertation) are used, does not

have such problems.

4.2.2 Algorithm for Resolving Curve Topology

This section describes an algorithm to break down an algebraic plane curve into chains

of monotonic segments over a limited domain.

Goal: Given a polynomial. f(s.t) = 0. and a domain. {s..sy] % [t..{y]. resolve the

topology of the curve.

Procedure: The algorithm consists of two stages. First is a preprocessing stage
that locates several points on the curve. The second stage is a recursive subalgorithm,

that works on connecting the points identified in the first stage.

Stage 1.

1. Isolate turning points: The turning points are defined to be the points where the
curve f = 0 has a vertical or horizontal tangent within the domain of interest.
The turning points are located by finding the intersections of f = 0 with each of
its partial derivative curves, f, = 0 and f; = 0. Turning points can be isolated
using the curve-curve intersection method described in Section 4.1. Any other
method for isolating the turning points can be used. but the rest of the algorithm
benefits from the planar subdivision that occurs in a method such as the one
in Section 4.1. Turning points should be separated (Section 3.3.2.2) so that no
two have overlapping intervals. Note that singularities. where f = f, = f, = 0.
do not happen on regular curves. so turning points are always separable. While
turning points often correspond to local maxima and minima in s and ¢. theyv
may- also be points of inflection. The rest of this algorithm does not rely on

distinguishing among the various types of turning points.

[SV]

Isolate edge points: The edge points are defined to be the intersections of the
curve with the boundaries of the region. The edge points are further classified
into one of four types: L, R, T. or B edge points. depending on whether they
occur on the left. right. top, or bottom edge. respectively. For example. the T

edge points would be found by computing roots of the equation f(s) = f(s.ty).
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Figure 4.7: The output of Stage 1 of the curve topology algorithm. It is also
the input to Stage 2. Shown are three turning points and six edge points that were
found. Here, the edge points are shown as dark bars representing an interval. and
turning points as boxes representing a 2D interval.

for s in [s..sy]. Again, these points can be computed by any method and
represented in any format. Univariate Sturm sequences and the representation

of points described in Section 3.3 is one possibility.

The output of the first stage is a set of turning points. along with four sets of
edge points. An example of this. where the points are represented as 1D and 2D
intervals. is shown in Figure 4.7. This information is passed into the next stage of the
algorithm. The curve topology has not yet been resolved since there may be many

wayvs to connect the points that were computed.
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Stage 2. The second stage of the curve topology algorithm analyzes the pattern

of turning points and edge points, and either determines all connectivity or subdivides

and calls itself recursively.

For the purposes of this description. it is assumed that turning points are repre-

sented as two-dimensional intervals. and edge points as intervals in one coordinate

and exact rational numbers in the other. Any representation that allows the points

to be clearly separated from each other and to be cut and shrunk (Section 3.3.2.1)

is sufficient. Representing the points as a unique number (e.g. as in floating-point)

generally allows even simpler operations.

The input falls into one of the following cases:

I

o

The region contains many turning points: Find a horizontal or vertical line
that will subdivide the turning points. It is always possible to find such a
line. although in the worst case. turning points will have to be shrunk first.
Subdivide the region along that line. finding intersections of the curve with the
subdividing line. Then call recursively. The intersections with the subdividing
line become edge points in the two subregions. The recursive call ensures that
given n turning points originally. the region will be subdivided into n subregions.

cach containing exactly one turning point.

O a

f —i

The region contains one turning point and more than two edge points: The
region is subdivided along the boundaries of the turning point’s interval. If.
after all four interval boundaries have been used, the region still contains more
than two edge points, shrink the interval of the turning point (Section 3.3.2.1)
and continue subdividing. Note that if the algorithm in Section 4.1 is used to
isolate the turning point, then this is never necessary. Eventually, the region will
be subdivided into one region with a turning point and exactly two edge points.
and other regions containing only edge points. It should be noted that Sakkalis

[86] presents a method for determining connectivity in a case like this without
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using subdivision, assuming that some additional information is associated with

the turning point.

3. The region contains one turning point and eractly two edge points: First. note
that if a region contains one turning point. it must contain at least two edge
points, since the curve is assumed to be regular. The curve must pass from one
edge point through the turning point and leave by the other edge point. Thus.

the connectivity for this region is determined.

7
+ 7
O 2]
\

1. The region contains only edge points: Let numL refer to the number of L edge

points. numR the number of R edge points. etc. Two cases are possible:

(a) [numT —numB| = numL+numR. or |numL — numR| = numT +numB:
Note that this includes all cases where there are no edge points along one
of the edges. In this case, it is possible to connect the edge points to one
another directly. Since there are no turning points in the region. and by
assumption there are no self intersections in the region. the connections

are straightforward.



(b) Otherunse: The region must be subdivided. If (numT+numB) < (numL+
numR). then subdivide with a vertical line that subdivides the T and/or
B points. thus ensuring that (numT + numB) is smaller in the resulting
subregions than in the current one. Otherwise, subdivide the L and/or R
points with a horizontal line, ensuring that (numL + numR) is reduced
in each subregion. Eventually, with one exception. (numT + numB) or
(numL+numR) will be at most one, ensuring that the region falls into the
previous case. The only exception to this would be when a truly horizontal
or vertical line is involved. In such cases, either (numT + numB) or
(numL + numR) may always be at least two. but the other sum would

eventually be zero. again vielding the previous case.

-

The output of this stage is a connectivity between several points that breaks the
curve into monotonic sections. This is either arrived at directly (cases 3 or 4a). or
via subdivision (cases 1. 2. and 4b).

An example of the curve topology algorithm being performed on the input from
Figure 4.7 can be found in Figures 4.8 and 4.9.

Subdivision and degenerate cases: Subdivision involves dividing the region by ei-
ther a horizontal or vertical line. and recursively running Stage 2 on each portion.
Subdividing a region may require certain edge points and turning points to be cut
(Section 3.3.2.1). Also. new edge points must be generated along the cut line. This
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e f
Figure 1.8: Curve topology example. In (a). the input to the algorithm. The
region is subdivided, following case 1 in (b) and again in (c). In (d), case 3 determines

the connectivity in one subregion. In (e). two applications of case 2 have further
subdivided the regions. In (f). case 4a determines the connectivity of one region.
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Figure 1.9: Curve topology example continued. State (g) is four steps after
-1.8(f). (h) is subdivided by case 4b. In (i) and (j). the connectivity is found for each
subregion. The algorithm continues until the final output, shown in (k), is found. (1)
is the actual algebraic plane curve on which the curve topology algorithm was run.
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involves finding the roots of a single univariate equation, just as with finding edge
points in Stage 1.

[t is possible (though unlikely) that an edge point may lie exactly at the corner of
a region. In such cases, it is necessary to examine the sign of the slope of the curve
at that point, as in the curve-curve intersection algorithm (Section 4.1). The point is
assigned to one of the two subregions based on that slope. Edge points at a corner
may be treated as a part of either (but not both) of the two adjacent edges.

Notice that since all turning points are isolated. there is never a tangential inter-
section along the border of a region. assuming the point is represented as an interval.
If the turning point is a single number (such as a floating-point number), it may lie
on an edge as a result of step 2. In such a case, a subdivision with a line parallel but
slightly (i.e. less than the distance to the nearest edge point) offset from the turning
point (instead of the original subdivision) allows that connectivity to be determined

conclusively.

Non-regular curves: The algorithm as described is capable of handling only
regular curves. Extending it to handle curves with singularities is possible. although
a representation for non-regular curves must be used. The representation described
in Section 3.2 is not sufficient. Handling non-regular curves involves identifving and
handling the singular points individually. Singular points are places where f = f, =
ft = 0. and are found in Stage 1 of the algorithm. The singular points fall into
three categories: isolated point components. cusps. and self-intersections. The tvpe
of singularity needs to be identified.

Point solutions require no connectivity information since they are. by definition.
isolated. No additional work needs to be done.

Cusps can be treated the same way as turning points, as far as topology. It is
important to treat cusps as a single turning point. rather than two turning points
(as might arise if f = f; =0 and f = f, = 0 are isolated completely independently).
Also. it may not be possible to ensure that the bounding boxes of segments near a
cusp point are non-overlapping.

Self intersections occur where a curve has three or more incident branches. These
should be treated as a separate type of turning point. Instead of terminating when
there are two edge points (case 3). termination occurs when there are n edge points.
where n is the number of branches leaving that point. It is necessary to classifv the

number of branches at the point ahead of time.
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4.2.3 Non-Overlapping Bounding Boxes

In order to fit into the representation described in Section 3.2. the monotonic segments
of the curve must have non-overlapping bounding boxes. Often the monotonic sections
already have non-overlapping bounding boxes. but in some cases it is necessary to
further subdivide the monotonic sections to meet this criterion. Subdivision occurs by
locating more points on the curve and inserting those points into the curve (Section
3.2.1) thus creating new, smaller, segments.

Numerous heuristics can be used to subdivide the segments with overlapping
bounding boxes. and it is unlikely that any one will be ideal in all circumstances.
One that has worked well in practice for a pair of segments is to subdivide each seg-
ment at the boundaries of the box surrounding the other segment. For example, if
segment - with bounding box [a,.a»] x [a3.a,4]. and segment B with bounding box
[b1.bs] x [b3. by] have overlapping bounding boxes. then subdivide .1 along the lines
$ =bj.s =0by. t =b3. t =by, and B along the lines s = a,. s =a,. t = az. t = a,.
Each line has at most one intersection with the segment. and finding that intersection

point involves only a univariate root isolation.

4.3 Point Generation and Location

A basic operation that comes up in the later stages of the boundary evaluation algo-
rithm is point location in two and three dimensions. Point location is the process of
determining whether a point lies inside or outside a closed loop of curves in 2D. or a
closed solid formed by patches in 3D.

Local information regarding which side of individual curves a point lies on is not
enough to classify the point with respect to a loop of curves. An example is shown in
figure 4.10. Instead, ray shooting is used. Ray shooting also forms the basis for point
generation.

Point generation is the process of finding a 3D point on the surface of a trimmed
patch. It comes up in a later stage of the boundary evaluation algorithm. Since
points with rational coordinates are easier to work with (i.e. computations are far
more efficient) than those stored as intervals. an additional requirement is added that
the point have rational coordinates.

Point gencration is discussed below. followed by discussions of point location in
two and three dimensions. For the point location problem. locating points stored as

rational numbers is described. followed by locating points stored as intervals. For
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Figure 4.10: The difficulty of classifying a point with respect to curves. A
loop of curves is defined by the heavy black lines. The point (shown as a solid dot)
lies inside the loop of curves, but is outside of the circle that defines one of the curves.
Performing point location relative to the circle alone provides no direct indication of
the point location relative to the loop of curves.
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three dimensions. point location for points with rational coordinates is described. as
that is the only type that arises in the boundary evaluation algorithm. Extending

the 3D case to handle points as intervals follows the same process as in the 2D case.

4.3.1 Point Generation

For point generation. the first step is to generate a point with rational coordinates.
that lies within the patch’s loop of trimming curves. To perform this computation.
intersect a horizontal (or vertical) line with the trimming curves. Any horizontal line
that intersects the trimming curves at least twice is acceptable. To find such a line.
simply compute the smallest and largest points in ¢ along the trimming curves. Note
that since the trimming curves are made of monotonic segments, these points must
be the endpoints of some curve segments. Take the midpoint (actually the midpoint
of the rational bounds) m, in ¢ of the largest and smallest points, and let L be the
horizontal line t = m,. L always intersects the loop of trimming curves. except in
extremely rare cases where the intervals bounding the maximum and minimum points
are large relative to the loop of curves. In that unlikely event, simply reduce the size
of intervals around the maximum and minimum points and choose a new line.

L should not intersect the curves tangentially. It is easy to detect such tangential
intersections. and choose a different L if necessary. Since the segments of the curves
are monotonic. any tangential intersection occurs at a segment endpoint (where there
is a local maximum or minimum in ¢). If these turning points are marked as such.
then the tangential intersection is easily detected. A second option is to assume that
any time L hits a segment endpoint. L hits it tangentially. In either case, create a new
line close to L by choosing a ¢ value other than m, (e.g. 5/8 the distance between the
maximum and minimum points). Also. in the unlikely event that one of the trimming
curves is a horizontal curve at m,. choose a new L.

Intersect L with all of the trimming curves to find a positive even number of
intersections. Order these intersections from the lowest s value to the highest.
(p1.pa. .. .. pn). For any 1 < i < n/2. consider the points ps;,_; and p,;. The re-
gion between these two points must be inside the trimmed region. Each of these
points’ s coordinate is either a rational number or a number bounded by a rational
interval. Take the upper bound of p,;_;’s interval (or the rational coordinate itself).
and the lower bound of p,;’s interval (or the rational coordinate itself) and find the
midpoint. m,. Assuming the original intervals do not overlap (the points should be

separated if they do). then (m,.m,) is the point inside the patch. Figure 4.11 shows
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Figure 4.11: An example of point generation. The thin lines show the trimming
curves, and the thick line shows the horizontal test line. Intersections of the test line
with the trimming curves are shown by dots. Any point chosen between p, and po.
or between p; and py is within the trimmed region.

an example of such a case.

Given a point with rational coordinates that is inside the trimmed region of a
patch. raise it to three dimensions by substituting the values of s and ¢ into the para-
metric equations. Assuming that the parametric equations have rational coefficients
(and that the point is not a base point. where the w coordinate is zero). the 3D point

is a point with rational coordinates that lies on the patch’s surface. not at a boundary.

4.3.2 2D Point Location

Point location in two dimensions is similar to point generation. First point location
when the point has two rational coordinates is described, followed by point location

when the point is represented using a 1D or 2D interval.



4.3.2.1 Points with Rational Coordinates

To locate points with rational coordinates, shoot a ray from the point, and count
how many times it crosses the loop of curves. An even number of crossings means
that the point is outside the loop, an odd number. inside. Because anyv rayv should
be sufficient. use a horizontal (or vertical) ray for ease of computation. Assume that
the line is horizontal. Also assume that the loop of curves is bounded in the region
{sL.su] x [tL.ty]. For a point at (a.b), ray shooting means finding all intersections
of t = b with the curves over either the region a < s < sy or s; < s < a.

Tangential intersections are computed in a manner similar to that in point gen-
eration (Section 1.3.1). If a tangential intersection is found or is possible. then a
different ray is used. In the unlikely event that all four horizontal/vertical rayvs have
tangent intersections, use random rays in any direction. Since such rays are not
horizontal/vertical. finding intersections involves slightly more work than a simple

substitution followed by univariate root finding.

4.3.2.2 Points stored as intervals.

The situation becomes more complicated when the point is represented as an interval.
The basic idea is to check the values at all four (or two) corners of the interval. and
see whether all four corners are on the same side of all curves. Since the corners of
the interval have rational coordinates. testing any one corner proceeds as above. The
difficulty with this is that it is possible to have a point lving on one side of a curve.
when all four corners of the interval bounding the curve are on the other side. Figure
4.12 shows an example of such a case.

This difficulty is resolved by the restriction of monotonic segments in the curve
representation (Section 3.2.1). First. reduce the interval until it lies in the bounding
box of at most one segment in each curve. This usually means cutting the point
(Section 3.3.2.1) by the values of the bounding box for each segment within which
the point might be contained. Then classify the interval corner points. If the point
is located inside the bounding region of at most one segment of the curve. and if the
four (or two) corners of the interval are all on the same side of the curve. then the
entire interval is on the same side of the curve. and thus the point must be on that
side.

Note that if a point does not lie in the bounding box of any segment in the curve,

then locating any one point in the interval (e.g. one of the corner points) is sufficient
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Figure 4.12: The difficulty of point location without monotonic segments.
The gray region shows the interval bounding the point and the black dot shows the
true coordinates. The point lies on the opposite side of a curve from the corner points
of its interval.

to locate the entire point relative to that curve.

When the four corner points do not agree. the interval must be “straddling” the
curve. In this case. shrink the point (Section 3.3.2.1) until all four corner points lie
on the same side of the curve.

[t is important to ensure that the point does not lie on the curve itself. If this
is the case. no amount of shrinking will make the four corner points vield the same
answer. In the boundary evaluation algorithm. the guarantee that the point is not
on the curve is a result of the assumption of no input degeneracies.

One further observation is that if horizontal or vertical rays are used. classifving
two corner points is usually the same amount of work as classifying a single rational
point. For example. if the point is defined as s = a.t = [b.. by], then firing a ray along
the line s = a will locate both endpoints of the interval. The endpoints only disagree
when there is an intersection with a curve in the region b; < t < by. Similarly.

locating the four corner points of an interval is only twice as much work.

4.3.3 3D Point Location

Point location in three dimensions involves determining whether a point is inside
or outside of a solid. Again. this is done by shooting a ray from the point and
counting how many times it intersects the boundary of the other solid. Like the two-

dimensional case. the rays are fired along one of the coordinate directions. to simplify
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the computation.

The basic idea is to intersect the ray with each patch domain (there can be many
intersections with any one patch). These intersection points are then located with
respect to the trimming curves (via 2D point location) to determine whether or not
they are within the trimmed region. Each intersection within the trimmed region is
counted. and this count is tallied over all patches, with an odd number meaning the
point is inside and an even number meaning the point is outside.

The assumption is that the point to be tested has rational coordinates in r. y.
and :. as is always the case in the boundary evaluation algorithm. Assume a ray
is shot in the positive z direction (any other one of the other five signed coordinate
directions would also work) from the point with coordinates (a.b,c). For a given
patch. P. find all intersection points within P’s domain. Assume the surface of P is
defined by the parametric equations: (\\'(s,t).Y'(s.t), Z(s.t), W (s,t)). The line along
the = coordinate through the point is defined as the intersection of the planes r = a
and y = b. The intersection of these planes with the surface of P gives the following

intersections in the domain of P:

r=a = X(s.t)=all'(s,t)

= X(s.t) —all'(s.t) = f(s.t) =0 (4.4)
y=5b = Y(s.t) =bU{(s.t)

= Y(s.t) - b (s.t) = g(s.t) =0 (4.3)

The intersections of the ray with P, then. are found by intersecting the curves f(s.t) =
0 and g(s.t) = 0 within P’s domain.

Once these points are isolated, check that they correspond to values on the correct
side of the ray (e.g. z > c in the above example). This is done by raising the isolated
2D points (that are likely to be intervals) to three dimensions by interval arithmetic on
= Z(s.t)/W (s.t). If the three-dimensional interval overlaps ¢. then shrink the 2D
point until the 3D interval no longer overlaps. Also note that if the entire bounding
box of the patch is on one side or the other of ¢, then any point in the patch is on that
side of ¢. Thus. 3D interval operations for each point can often be avoided entirely.

In the boundary evaluation algorithm. the point to be tested is the result of point
generation from a patch of solid A, to be located with respect to solid B. Thus if there
are any difficulties (such as a potential tangential intersection), a different point from

solid A can be easily generated, or another of the six rays can be tested. Testing a
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different ray or generating and testing with a new point is likely to be more efficient
than performing excessive operations (e.g. many levels of shrinking a 2D point) within

3D point location.

4.4 Finding an Implicit Surface Representation

Finding an implicit surface comes up two times during boundary evaluation. It first
occurs when defining the surfaces of input solids. As stated in Section 3.1. a patch’s
surface must have both a parametric and implicit form. It is often easier to define the
parametric form of a surface (Appendix A) based on input data. and so implicitizing a
parametric surface can be important. Even though implicitization is not a part of the
boundary evaluation algorithm, it can play a key role in defining input. The second
time that implicit surface representations are generated is when splitting patches to
break loops. The goal is, given a patch P with associated surface Sp and a constant-
parameter line s = a (or t = a). find the implicit form of a surface S; such that the
intersection of Sp with S; is the line s = a in the domain of P. This will be referred
to as implicit generation.

For both cases. the implicit surface is found by interpolation. The basic idea is
to generate a set of points known to lie on the surface. and then generate a surface
passing through those points. The approach that is described here involves setting
up a linear system to solve for the coefficients of the implicit form of the surface.

[mplicitization and interpolation are not new concepts. Extensive work in these
arcas has been done previously. For example. Sederberg [90] and Manocha [68] have
described ways of performing surface implicitization using the Dixon resultant (Sec-

tion 2.2.2). The basic idea in these cases is to form the system of equations:

X(s.t) -zl (s.t) = 0
Y(s.t) —yll(s.t) = 0
Z(s.t) =z (s.t) = 0

and use a resultant to eliminate s and t. leaving a polvnomial in r. y. and z. The
difficulty is that the Dixon resultant has problems when the original equations are
not of the same degree. Although I am not aware of another specific approach that
performs interpolation exactly as described here. interpolation is a well studied prob-

lem (particularly in numerical analysis). and it is certain that similar techniques have
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been developed. described. and used before. A paper by Manocha and Canny [68], for
example. uses interpolation to solve the Dixon resultant. and Zippel [106] describes
two methods for polynomial interpolation.

For the CSG solids parameterized as in Appendix A. it is important to realize that
implicit generation always yields a plane equation. That is. any parameter line can
be determined by an intersection of some plane with the surface. Implicit generation

is efficient during boundary evaluation since only such simple surfaces are needed.

4.4.1 Generating Interpolating Points

For the first step of interpolation, generate a series of 3D sample points that lie on that
surface. In order to avoid degenerate configurations of the sample points. it is best
to choose random sample points. In practical implementations. only pseudorandom
points can be generated. but this is usually sufficient for specifving a general collection
of points.

For the examples of interest in the boundary evaluation algorithm, generate sample
points by selecting an appropriate point in the domain of the patch. then raising
it to three dimensions. For implicitization, choose any (s.t) points. For implicit
generation. choose any t value along the specified line s = a. Note that the patch
domain and trimmed region are irrelevant to the generation of sample points. unless
they are used in generating the 2D points. It is assumed that all sample points
have rational coordinates, as there is never an instance in the boundary evaluation
algorithm that would require otherwise.

The 3D coordinates of the points are obtained from the parametric patch:

r = X(s, t)/WW(s.t)
y = Y(s,t)/W(s.t)
z = Z(s,t)/W(s.t)

For a sct of n sample points. the coordinates of the sample points are be (z,. y,. z,)

for: =(1.2.....n).

4.4.2 Interpolating a Plane

The most basic interpolating surface is the plane. A plane is defined by three sample

points. Although an interpolation method for these points is well known and straight-
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forward. it will be described in detail to illustrate the procedure that is followed with
higher degree surfaces.

First it is assumed that the plane does not pass through the origin. Handling
cases where it does is discussed later. A plane. then, is defined by the equation:

C[I + ng + C3~ = (46)

Substitute the three sample points to vield the equations:

Cl.l'[ + ng[ + C3Z[ = 1
Cirs + ngg +C3z;, = 1
Ciz3 +Coys +C3z3 = 1

that can be written in matrix form:

T oy = C 1
Iz Y2 22 C | =11 (4.7)
I3 Y3 33 Cs 1

Solve this system directly, using Gaussian elimination, to determine the values of C;.
Cs. and Cs.

One special case needs to be dealt with. If the three sample points are collinear (as
often arises during implicit generation). there are many possible interpolating planes.
When the points are collinear (which can easily be checked). form a vector 4 pointing
from one point to another. Also choose a random vector B. 4 x B gives the normal
vector of a plane passing through these points, and this plane (when anchored to the
points) can be used as the interpolating plane. In the implicit generation problem.
this plane is acceptable as long as it is not tangent to the surface being split. To verify
that the plane is not tangent. examine sample points to either side of the parameter
line. If these points (in 3D) are on opposite sides of the plane. then the plane is not

tangent.

4.4.3 Checking the Interpolated Surface

In some cases. the implicit degree of the surface is not known ahead of time. In such
cases. begin by assuming that the surface is a plane, generating three sample points.

and interpolating the plane. Then generate a fourth sample point and check the plane
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equation to see if that point lies on the plane. If that point satisfies the plane equation.
and the point was truly generated randomly. then with probability 1. the surface is
a plane. In practice. points will not be truly random. so a number of pseudorandom
points might be tested. The more points that are found to lie on the plane. the greater
the probability that the surface is truly planar. In practical application. testing only
one point is almost always sufficient. If any of these points does not satisfv the plane
equation. then the surface cannot be a plane. so interpolate a surface of degree two
(as described next). Once that surface has been generated. check new sample points
to see whether they satisfy the surface equation, and generate a higher degree surface
if necessary. Eventually. all sample points will be found to lie on the surface.

Note that this incremental process ensures that there is not an extraneous fac-
tor in the implicit equation. For example. if the surface is actually a plane, but a
second-degree surface is interpolated. then the equation of the plane is a factor of the
degree two surface. The portion of the degree two surface that is not the true surface
is referred to as the extraneous factor. There are other ways of removing an extra-
neous factor (e.g. symbolic factorization). but the incremental approach is simpler to
implement and is efficient for lower-degree (degree four and below) surfaces generally

dealt with in this dissertation.

4.4.4 Interpolating Higher-Degree Surfaces

To interpolate a higher-degree surface. a procedure similar to that for the plane surface
is followed. Again. assuming that the surface does not pass through the origin. the
constant term will be nonzero (assume it is -1). Determine a number of sample points
equal to the number of undetermined cocfficients. For example. a degree two surface

would be:
C\r? + Cory + Cyrz + Csy? + Csyz + Ce=> + Crz + Cey +Coz =1 (4.8)

Nine coefficients need to be determined. so nine sample points are used.

Each row of the matrix is determined by one sample point. and each column
corresponds to some power of r. y. and =. For example. for the degree two case.
the first row. first column would be z2. the third row. second column would be I3Y3.
etc. Perform Gaussian climination on this matrix to determine the values of the
coefficients.

In the process of Gaussian elimination. it may occur that one or more rows disap-



pears entirely. In such a case. there are many surfaces of that degree passing through
those points. Any of these surfaces is an acceptable solution. One or more of the
coefficients will be undetermined. By setting the undetermined coefficients to zero.

one at a time. a solution can be found that interpolates all points.

4.4.5 Surfaces Passing through the Origin

When a surface passes through the origin, the constant term of the implicit form
must be zero. Thus, the procedure described earlier does not work. This situation is
recognized by the failure of Gaussian elimination to find any solution. For example.
Gaussian elimination may lead to conflicting solutions. such as z = 2 and z = 3. In
such a case (where it is impossible to find a surface passing through the points). the
surface must be passing through the origin.

If the surface is known to pass through the origin. there are a few ways of handling
things. One approach is to translate every sample point by the same random amount
in the same random direction. Next. compute the surface passing through those
sample points. This surface is then translated back the same amount in the opposite
direction. That final surface should be a solution for the original sample points. as
well as for (0,0,0).

A second approach is to set up a more general system. fixing the value of one of
the other coefficients. For example. in a planar case. the coefficient of = could be

fixed to be -1. Then, the surface equation would become:
—-r + ng + C3Z =0 (-19)

Substituting the three sample points in gives the equations:

Coyy +C3zy = 1y
Coyr +C32p = 1y
Coys +Czz3 = 13

These vield the matrix equation:

N <1 I
Cs
Y2 2 [C } =1 I (4.10)
3
Y3 23 I3
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which can be solved by Gaussian elimination. Higher degree surfaces are similar. This
is a seemingly overconstrained system, but it has a solution as long as the coefficient
of r fixed at —1 (or whatever constant value was chosen) is not actually 0. If there
is no possible solution to the matrix equation, then the coefficient that was fixed
must also be zero, and a different coefficient is fixed to some value. This continues
until eventually the matrix system can be solved. thereby providing an interpolating

surface.
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Chapter 5

Boundary Evaluation

This chapter discusses the boundary evaluation algorithm. Using the representations
described in Chapter 3 and the kernel operations described in Chapter 4. this chapter
describes the steps to perform a Boolean operation between two solids.

The approach used in this algorithm is similar to many previous approaches (Sec-
tion 2.3.1) to boundary evaluation. Like those approaches. each pair of patches is
intersected. and the patches are subdivided based on the intersection curves. Certain
subpatches are then stitched together to form the patches of the final solid.

The algorithm presented here differs from previous approaches in the use of exact
computation throughout. Exact computation has implications for both the repre-
sentations used and the operations performed. Computation can be inefficient if an
exact operation is naively substituted for an inexact operation. The steps described
in the following sections. when coupled with the representations and kernel opera-
tions already described and the speedup techniques described in Chapter 6. produce
an efficient exact algorithm for boundary evaluation.

In the discussions that follow, it is generally assumed that points are 2D intervals.
In almost all cases. if one or both coordinates are known as rational numbers. the

operations described simplify significantly.

5.1 Overview

The boundary evaluation algorithm is split into two stages. The first stage deals with
pairs of patches. The output of this first stage is a set of intersection curves in each
patch obtained from the intersections with all of the patches of the other solid. The
second stage of the algorithm subdivides the patches in each solid and stitches certain

subpatches together to compute the boundary of the final solid.



The first stage consists of five steps, described in detail in Sections 5.2-5.6. First,
for each given pair of patches, intersection curves are computed. Second, the topology
of the curves is resolved. Third, the intersections of the intersection curves with the
trimming boundary are found. Fourth, correspondence between the curves in each
patch domain is determined. Fifth, the curves are clipped to the trimming boundaries
in both domains.

The second stage consists of four steps, described in detail in Sections 5.7-5.10.
First. the various intersection curves are merged together. Second, the patches are
divided into partitions. based on the merged curves. Third. the partitions are classi-
fied with respect to whether theyv are inside or outside of the other solid. Fourth. a
subset of the partitions is merged together to form the final solid.

The following sections describe the steps in each stage. An overview of how the
steps fit together. including where kernel operations are used. is shown in Figures 5.1
(first stage) and 5.2 (second stage).

Overall, the goal of the boundary evaluation algorithm can be stated as follows:

Given two solids, S| and S., in general position and in the format
described in Chapter 3. and given a Boolean operation op € (N.U.\).
produce a new solid. Sr. in the same format such that Sp = S, 0p Ss.

5.2 Generate Intersection Curves

If Si is composed of m patches, and S, is composed of n patches. then the first stage
operations are repeated as many as mn times. For each of the first stage operations.
assume that the patch from S| is P,. and the patch from S, is P,.

Given P, and P, the first step is to find the intersection of their associated
surfaces. This intersection is represented as an algebraic plane curve in the domain
of each patch.

Let the surface associated with P; have a rational parametric form given by
Ni(s.f). Yi(s.t). Zi(s. t). and 1V (s.t). and an implicit form given by Fi(zr.y.z) = 0.
Similarly. let the surface associated with P, have parametric form Xy(u. v). ¥5(u. v).
Zy(w.v). and Wy(u.v). and implicit form Fy(z,y.z) = 0. Consider the homogenized
forms. F; and 5. of F, =0 and F> = 0. That is. add a homogenizing variable. w. so
that all terms of Fy(z.y. z.w) and F3(z,y, z. w) are of full order.

Compute the intersection between the two surfaces in each patch domain. In the
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Generate Intersect With Determine Clip to
Intersection Resolve ey Trimming Curve W  Trimming
Curves Topology Boundary Correspondence Boundary

Point Implicit
Curve-Curve Curve Location/ Surface
Intersection Generation Generation

Patch
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Curve
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Point
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Topological
Data

Figure 5.1: A summary of the five main steps in the first stage of the bound-
ary evaluation algorithm. These operations are done for each pair of patches (one
from the first solid. one from the second solid). Arrows show how the basic data
and kernel operations are used in the various steps. At top are the steps in bound-
ary evaluation. in the middle are the kernel operations, and at bottom are the data
structures for the input solids.
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Figure 5.2: A summary of the four main steps in the second stage of the
boundary evaluation algorithm. Arrows show how the basic data and kernel
operations are used in the various steps. At top are the steps in boundary evaluation. -
in the middle are the kernel operations. and at bottom are the data structures for the

input solids.
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domain of Py, the intersection curve is:
(X (s.t). Yi(s.t), Z\(s,t), Wi(s.t)) = fi(s,t) =0 (3-1)
and in the domain of P». the intersection curve is:
Fi(Xa(u. v). Ya(u. v). Za(u. v), Wa(u. v)) = fao(u.v) =0 (5.2)

Notice that this is the same as substituting X(s.t)/W (s, t). etc. into F, = 0, then
clearing polvnomials from the denominator.

When the implicit and parametric forms are all defined as polvnomials with ra-
tional coefficients. f; and f» are also polynomials with rational coefficients. Note that
the algebraic plane curves fi = 0 and f, = 0 might not have a rational parameteri-
zation.

Assume F; has implicit degree n. Assume that the highest implicit degree of .\,.
¥5. Z5. and W5, is m. Then. f, has implicit degree at most mn. f, has a similar
degree bound. For the standard CSG primitives, the implicit degree of the boundary
surfaces ranges from 1 for planes to 4 for tori and certain generalized cones. Likewise,
the degree of the parametric form can range from 1 to 4. Thus. the maximum total

degree of f; and f,. for the objects considered here. is 16.

5.3 Resolve Topology

The sccond step is to resolve the topology of each of the algebraic plane curves.
fi(s.t) =0 and fo(u,v) = 0. The procedure for resolving curve topology is discussed
in Section 4.2. Resolve the topology of f; over the domain of patch P,. [sc.su] x
[tL.t;]. and the topology of f; over the domain of patch Ps. [ur, ugy] x [vr, vy]. The
results are sets of intersection curves, in the format described in Section 3.2. that
represent the intersection of the two patch surfaces in each domain.

Note that when resolving curve topology, there is no information regarding which
curve in one domain corresponds to which curve in the other domain. None of the
points found during curve topology resolution (such as turning points and edge points)

have a known corresponding point in the other domain.
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5.4 Intersect with Trimming Boundary

The third step is to intersect the intersection curves found in the previous step with
the trimming curves. The procedure is described for patch P,. The same procedure
is used for patch P,. This step takes place in two parts. First intersection points
are found in the domain of P, (Section 5.4.1). then the points are inverted into P,’s

domain (Section 5.4.2).

5.4.1 Find Intersection Points

Intersect each trimming curve with the intersection curves, as follows. Because all
intersection curves come from the same algebraic plane curve. f,(s.t) = 0. it is suf-
ficient to perform a single curve-curve intersection (Section 4.1) per trimming curve.
Let T; be the trimming curve, and 6;(s.t) = 0 be the trimming curve's polynomial.
Compute all intersections between f; = 0 and ; = 0 within the domain of P;. Each
intersection must be contained within exactly one intersection curve. since each point
on fi(s.t) = 0 in the patch domain is on exactly one intersection curve. Test each
intersection point to see whether it is contained in the trimming curve T; (Section
3.2.2). The intersections that lie on T; are called intersection points. Those that do
not are discarded. The procedure is illustrated in Figure 5.3.

Once each intersection point Q is found. insert Q (Section 3.2.1) into both the
trimming curve T; and the appropriate intersection curve. For each curve. an associ-
ated curve in the domain of a different patch will also have a point inserted. Though
the actual insertion is straightforward. finding the equivalent point in another domain
can be difficult. The term equivalent. when used here. means a point that is the same
three-dimensional point, but represented in the domain of a different patch. Finding
the equivalent point is discussed in Section 3.4.2.

Note that it is not necessary to find the equivalent point in the adjacent patch
of T,. because that point is automatically determined when that patch is intersected
with P». The point in that patch’s domain is found equivalent to @ when patches are

partitioned (Section 5.8).

5.4.2 Point Inversion

Point inversion is the process of taking a point in one patch domain. say P;’s. and

finding the equivalent point in another patch domain. say P,’s. The two points are



Figure 5.3: Finding intersection points in the domain of a patch. The three
trimming curves are T) (shown with the medium thickness line). T3, and T;. f,(s.t) =
0 forms one intersection curve in the domain of interest. as shown with the thickest
line. Intersecting fi(s.t) = 0 with T}’s polynomial, 8,(s.t) = 0 (shown by the dashed
line) produces two intersections. @, and @». Only @, is located on T;. Q- is an
intersection point for T;. and @, is discarded.



then associated with each other (Section 3.4). Many approaches to point inversion
solve algebraic systems in a higher-dimensional space (such as sxtxuxv). While these
may be practical in an inexact (e.g. floating-point based) system. the higher number
of dimensions usually makes exact computations too slow to be useful. Instead. an
alternate approach using lower-dimensional computations will be used here. A set of
possible inversion points is created in the other patch domain. then the one that is
the corresponding inverse point is chosen.

Recall (from Section 3.1) that with each trimming curve T; is an adjacent surface.
Let the implicit form of this surface be Q;(z.y.z) = 0. Let S; be the surface of P,
and S, be the surface of P,. We then know the following:

e T,’s polynomial is the intersection of Q; = 0 with S;.

e The intersection of &, with S, vields the polynomial of the intersection curves
(fi(s.t) =0 in P;’s domain, fo(u,v) =0in P’s).

e Intersection points (where T; meets an intersection curve) occur where Q;, S,

and S, all meet.

Perform point inversion as follows:

Goal: Given an intersection point @ that is formed from the intersection of T; with

Si(s.t) = 0. find the equivalent point Q' in the parameter space of P;.

Procedure:

1. Q" must lie on the intersection of Q,;(zr.y.z) = 0 and S».. Construct a new
algebraic plane curve. f3(u.v) = 0. by substituting the parametric form of S,
into €; = 0 (similar to the process for generating intersection curves in Section
5.2). f3 = 0 is the intersection of Q;(r.y,z) = 0 and S,. so Q' must lie on
filu.v) =0.

2. Q' must lie on the intersection of S; and S,. thus it must also lie on fi(u. v) =0.
Since Q' must lie on both f, = 0 and f; = 0. it must be at an intersection of
f: =0 and f;3 = 0. Find all intersections between f, = 0 and f; = 0. Assume
that the number of intersections found is n. One of these n intersections must
be Q.

Note that all intersections over R2 must be found. not just those within the

domain of P,. This is because the point corresponding to Q can be any of the
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intersection points, not just the ones in P’s domain. Conservative bounds on
root values exist that bound the range that must be examined to find common

roots of the two polynomials.

3. Perform 3D point matching to find which of the n possible points is the same
point (in 3D) as Q. This is done as follows:

(a) For Q and all the potential matching points. construct a 3D interval
that is guaranteed to bound the point found in 2D. For example. if Q
is bounded by the interval [s;. s3] x [t|,¢5]. then a three-dimensional in-
terval bounding @ is found by performing the interval operations: = =
Ni([s1. s2], [t1. t2]) /W1 ([51. 52]. [t1. t2]). etc.

(b) Compare each of the n 3D intervals to Q’s 3D interval. checking for overlap.
At least one interval (corresponding to Q') must overlap. If onlv one of
the n intervals overlaps with @’s interval, then that point must be Q'.

(c) If more than one interval overlaps, shrink the 2D intervals of both Q and
the points that had overlapping 3D intervals with Q's. Compute new
3D intervals (which must be smaller than the previous). for those points.
Check for overlap of the 3D intervals. Continue this process of shrinking
the 2D intervals and computing new 3D intervals until only one interval

overlaps with @’s interval. That point must be Q'.

1. Q' is called the inverted point. Check to see whether or not Q' is located in the
domain of P,. If it does lie in the domain. then insert Q' into the appropriate
intersection curve in P,, otherwise discard it. If @’ lies in the domain of Ps.

then Q and Q' are defined as each other’s associated point (Section 3.4).

5.5 Determine Curve Correspondence

The fourth step in the first stage of the boundary evaluation algorithm is to determine
a correspondence between the intersection curves in P, and those in P,. Before the
process is described. the notion of correspondence must be explained.
Correspondence means that the two curves are equivalent (i.e. they refer to the
same curve in three dimensions). and that the relative direction of each curve is
known. Recall that the curve representation provides a direction (from starting point

to ending point) on each curve.
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Each patch represents a subset of an algebraic surface. The intersection between
the two surfaces may have more than one component. All, part, or none of each
component may appear in the domain of a patch, and one component of the three-
dimensional curve may give rise to many components in the patch domain (each of
which is an intersection curve). Thus, even if there are many intersection curves
within the two patch domains. each patch might contain a separate subset of the
three-dimensional intersection curve. An individual intersection curve can correspond
to many. one. or none of the curves in the other domain.

The input to curve correspondence is two sets of curves. one in each patch domain.
The topology of each curve has already been resolved and equivalent points found
(by intersecting with trimming curves). The output of curve correspondence is a list
of which curves are found equivalent, along with their relative directions.

Assume that f; = 0 is broken into m intersection curves (i.e. real components
of the algebraic plane curve), ;. in the domain of P;, and f, = 0 is broken into n
intersection curves. B, in the domain of P,. The A; form the first input set of curves.
the B, the second. The output of curve correspondence can be written as a table with
m rows and n columns. where the (i. j) element states whether moving “forward” on
A, corresponds to moving “forward.” “backward.” or “neither” on B;. An example
of curve correspondence is given in Figure 5.4. For that example, the table listing

correspondences would be:

B, B,

4, | backward neither

Ay neither  forward

As neither neither

So. if Q is a point on A4;. with an associated point Q' on B, starting at Q and moving
forward on A4, is the same as starting at Q' and moving backward on B,.

Note that if an intersection point @ is on a curve A; and its inverted point Q' is on
a curve B;. then the entry for (i, j) may not be “neither”. since the curves must have
a correspondence. Said another way, if a single point in 3D is found to be on both
a curve in P and a curve in P,. then those two curves must have a correspondence.
Also. just because a pair is marked “neither” does not mean that the curves do not
come from the same three-dimensional component of the intersection curve. The
neither marking simply means that no common points were found between the two

curves. and thus even if a correspondence might exist. it is unnecessary for future
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Figure 5.4: Correspondence between curves on different patches. Recall that
cach patch is a subset of a larger algebraic surface. The intersection of the two surfaces
results in three intersection curves in the first patch’s domain. and two in the second's.
The solid lines show the portions of the intersection curves that appear in both patch
domains. while dashed lines show the portions that appear in only one patch domain.
Curve correspondence identifies which curves in one domain correspond to which in
the other. In this case, 4, and B; have backward correspondence. A, and B, have
forward correspondence. All other pairs have neither correspondence.
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computation. The process for finding correspondences follows.

The key idea is that curve correspondence can be conclusively determined between
two curves if three equivalent points are known on each curve. Consider the curves in
Figure 5.5. As the figure shows. having only two points is not enough to determine
correspondence between two closed loops. Three equivalent points on each curve is
enough. however. A similar condition exists when the curves are not closed loops.
Any curve in the patch domain can be part of a larger closed loop (part of which is
outside the patch domain), so three points on each curve in each domain are needed
in order to conclusively find the correspondence between curves.

Consider each curve from patch P; as one of two cases. Section 5.5.1 discusses the
case when a curve has at least one intersection or inverted point on it. Section 5.5.2
discusses the case when a curve has no intersection or inverted points. The following
sections describe how to find the correspondence for a given curve in P,’s domain. It
is not necessary to perform a similar computation for the curves in patch P,. since
all information is determined by examining the curves in P,. Pairs of curves that
do not have correspondence found by the following process will be marked as having
“neither” correspondence.

Hereafter. the curve (in the domain of P,) is referred to as C. An equivalent curve

to C' in P,’s domain is referred to as C'.

5.5.1 Curves with Intersection or Inverted Points

If C contains an inverted point, then there must be an equivalent curve C’ that
contains the intersection point associated with that inverted point. Likewise. if C
contains an intersection point Q for which an inverted point Q’ exists, then an equiv-
alent curve " must exist (and it contains Q’). Ignore intersection points that do not
have an inverted point in the domain of P,. If C contains only intersection points
that do not have associated inverted points, then C’s equivalent is clearly outside
the trimmed region of P,. Discard C for the remainder of the boundary evaluation
algorithm.

For cach curve C] with which C shares at least one associated point. determine
a correspondence between C and C]. To do this, find three equivalent points on
cach curve (Section 5.5.1.2 below). Once these three points are found. determining
correspondence is straightforward.

Label the three points on C: q;. ¢2. and ¢;. in order from closest to C’s starting

point to farthest from the starting point. Let the associated points on C! be ¢j. ¢}. and
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Figure 5.5: The necessity of three points for curve correspondence. At top.
curve correspondence cannot be determined based on just two points. The arrows
show the ~forward” direction of each curve in its own domain. As one moves forward
from A to B. it is not clear whether that is equivalent to moving forward (clockwise)
from A’ to B'. or backward (counterclockwise) from A’ to B'. At bottom. adding
a third point allows correspondence to be determined. On the left patch. moving
forward on the curve starting at A reaches C before reaching B. Since one must
travel backward in the patch at right in order to reach A’ then C’ then B’. there must
be “backward™ correspondence.



q3. respectively. Starting at ¢]. determine whether g} or ¢j is the first to be reached
when proceeding in the forward direction. For the sake of this ordering, assume that
C, is a closed curve, so that if the end of the curve is reached, just continue from the
start of the curve. If g, is reached first, then the forward direction on C! is the same
as on C. so the correspondence is forward. If ¢} is reached first, the correspondence

is backward.

5.5.1.1 Simplifying Observations

A few significant observations help to simplify the overall procedure. An implemen-
tation may make use of these to improve efficiency, but the method described above

is general and handles all the cases.

e Onc observation is that one point on either C or C' (but not both) does not
need an associated inverted point on the other curve. For example, if ¢; and ¢»
have inverted points on Cj. but g3 has no inverted point. or an inverted point
on a different C;(j # ). then consider g} to lie after the end point of C!. In
such a situation, fa(u.v) extends beyond the domain of P, and g is assumed
to lie somewhere in that area. Notice that this can only be used for one point.

since there is no way to order the points in that region.

e A second observation is that if C contains no intersection points. and only
inverted points, and if C is not a loop, then C clearly lies outside of the trimmed
region. Even if it is a loop. it may still lie outside the trimmed region. In such
a case. C can be eliminated entirely from further consideration. The procedure
that is described for clipping curves to the trimmed region (Section 5.6) does

this automatically. however. so further discussion will not be given here.

e A\ third observation is that if C contains an intersection point that has an
associated inverted point on C}, and C contains no other points associated with
ones in Cj, then any portion of C! that is equivalent to C must lie outside
the trimmed region of P,. The reasoning behind this is complicated and is only
summarized here. The basic idea is that the number of intersection points along
C' must be even (since it is assumed that there are no tangential intersections).
Since only one intersection point inverts to a point on C!. the other one must
lie outside of the domain of P, (as far as C! is concerned). Thus. at least some

of C7 must lie outside the trimmed region. Since there is no intersection of C’
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with P’s trimming curves in the region that would invert to C. then the entire
portion of C| that corresponds to C must be outside the trimmed region. When
this is the case, correspondence does not have to be determined. and regions

can be clipped away automatically.

e A final observation. by reasoning similar to the previous case. is that if a curve
contains only one inverted point and no intersection points corresponding to
the other curve, C|. then this portion of C lies outside the trimmed region, and

its correspondence does not have to be determined.

The net result is that unless there are at least two equivalent points (intersec-
tion or inverted) between a pair of curves, correspondence does not have to be

determined. So. at most one other point needs to be generated.

5.5.1.2 Generating More Intersection Points

In many cases. there will already be three or more intersection or inversion points on
C corresponding to each CY, or the observations in Section 5.5.1.1 make additional
points unnecessary. At most one new point needs to be generated.

To generate a new point. intersect C with a horizontal or vertical line. chosen as
in the point generation algorithm (Section 4.3.1). In order to have the inverse point
be likely to lie on C}, choose a parameter value for the line that is close to a known
inverted point. For example. if two points on C with equivalent points on C} are
known. choosing the midpoint of the points on C as the parameter value is likely to
generate an intersection point that has an equivalent inverted point on C!.

Ounce the intersection points are found, they should be inverted (Section 3.4.2).
which entails interpolating a surface that passes through the parameter curve (Section
4.4). If the inverted point(s) do not lie on C, then intersect a new line with C until
such a point is found.

The intersection and inverse points generated in this way are used only to deter-

mine curve correspondence, not to perform curve clipping (Section 5.6).

5.5.2 Curves Without Intersection or Inverted Points

If C has no intersection or inverted points, neither C nor C’ (if it exists) intersects
the trimming boundary in either domain. There are two ways this can happen. First.

C' may lic outside of the trimmed region. Second. C may be a loop contained entirely
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inside the trimmed region. C’, in the other patch domain, must also be in one of
these two categories.

If either C or C"' is outside of the trimmed region, then C can be discarded for the
remainder of the boundary evaluation algorithm. Ounly when C is a loop within P;’s
trimmed region and C’ is a loop within P,’s trimmed region does the curve matter.
In this case. curve correspondence must be determined.

First. check whether C is a loop. This is a trivial test (the endpoint must be equal
to the start point). If C is a loop, a point on C is chosen (any segment endpoint will
do). and that point is located with respect to the trimmed region (Section 4.3.2). If
the point is within the trimmed region. continue. Otherwise. the loop is outside the
trimmed region. so discard C.

To find curve correspondence, first determine whether C' exists. Recall that in
order for C' to matter. C' must be a loop wholly inside the trimmed region. First
check the intersection curves in P,’s domain to see whether there are any closed loops
with no intersection or inverted points inside the trimmed region. If not, then C’
must be outside the trimmed region of P, (if it exists at all), and therefore C can
be discarded. If there is a possible C’. then generate (and invert) intersection points
along C. as in Section 3.5.1.2. If the inverted points do not lie within the trimmed
region of the other patch. then C’ does not lie within the trimmed region of the other
patch. and so C can be discarded. Otherwise, the inverted points lie on one curve in
P,’s domain. This curve is C’. Once three equivalent points have been found. which
may mean intersecting C with another line, the correspondence between C' and C”’

can be determined.

5.6 Clip Curves to Trimming Boundary

The fifth and final step in the first stage of the boundary evaluation algorithm is to clip
the intersection curves. Clipping means eliminating those segments of the intersection
curve that lie outside the trimmed region of either patch. After curve clipping. the
remaining intersection curves are the portions of fi(s,t) = 0 (and fs(s.t) = 0) that
lie in the trimmed regions of both patches. The procedure that follows is performed
for each intersection curve on each patch.

Let C (an intersection curve in the domain of patch P,) be the curve under
consideration. Assume that C is broken up into n segments. Let Q be the set of

intersection points located on C. with individual points called Q;. and R be the
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inverted points located on C, with individual points called R;. For each of the n
segments of C', maintain a marker as to whether that segment is “good” or “bad.”
Set all markers to “good” originally, and change them to “bad” as necessary during
the clipping process. The “bad” segments are removed in the last step of the clipping
process. Maintain this set of markers for all intersection curves in both patch domains.
since clipping removes the regions in both domains.

Because a curve must cross a trimming boundary (in either patch domain) in order
to make a transition from outside the trimmed region to inside the trimmed region
(or vice-versa). transitions from “good” to “bad” can only happen around one of the
Q. or R;. Note that since each Q; and R; has been inserted into the curve (Section
5.4). each Q; and R; must occur at the end of a curve segment. So, given two points.
A. B € QU R. with no other points in Q U R between A and B, all the segments of C
starting at A and ending at B will be marked the same (either “good” or “bad™). A
transition from good to bad or vice-versa is not possible in that region since the curve
does not pass a trimming curve (from either domain) at any point in that region.

In the clipping procedure below. a key operation is marking bad forward (or mark-
ing bad backward). Both operations take as input a starting point A that is a segment
endpoint of C'. Marking bad forward is marking all segments of C after A as “bad”
until another segment endpoint B is reached that is an element of Q U R. If there is
no such point B after A on the curve. then all segments to the end of the curve are
marked ~bad.” If the curve is a loop. then the marking bad operation should continue
from the starting point of the curve. once the ending point is reached. Marking bad
backward is the same process, just in the opposite direction.

Following is the procedure for curve clipping.
e \aintain a status counter. The counter may have the value “out™ or “in."

1. First. handle one special case situation. If all of the following hold for C:

(a) The number of points in Q U R is zero (i.e. there are no intersection or

inverted points on the curve).
(b) The curve is a loop.

(c) C is inside the trimmed region of P,. This is determined by locating any

point on C with respect to P;’s trimming curves.

(d) There is no corresponding curve to C in the domain of P». This is deter-
mined by finding whether every entry in C’s row of the correspondence

table is “neither.”
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Then mark the entire curve bad. This describes a case where there is a loop
that is entirely inside P;’s trimmed region. but outside the domain of P,. Every
segment of C is marked bad. and the remaining steps are skipped for C.

. Determine whether the starting point of the curve lies inside or outside of the

trimmed region. If the curve is not a loop. the starting point always lies outside
the trimmed region, since the curve must start on the boundary of the patch
domain, and the entire patch domain boundary lies outside of the trimming
curves. If the curve is a loop, the starting point should be located with respect to
the trimmed region (Section 4.3.2) to determine whether it is inside or outside.
There is a small chance that the point lies on the trimming curves. so if the
point location is not immediately clear, rotate the curve (Section 3.2.2) until
a point that is clearly inside or outside is found. Such a point always exists.
though in the worst case it may be necessary to shrink the points to find it.
Note that the good/bad marker associated with each segment must be rotated

along with the curve.

Initialize the status counter to “in” if the starting point is inside the trimmed

region. or “out” if the starting point is outside.

Next. march along the curve. one segment at a time. from the starting point
to the ending point. If the current status is “out”. mark the current segment
bad. This means that the current segment is outside of the trimmed region of
P;. Before moving to the next segment, examine the endpoint of the current
segment to determine whether the segment endpoint is an intersection point.

Q. € Q. If so. special action is taken:

(a) If the segment endpoint is an intersection point. C must be passing the
trimming boundary of P,. Thus. reverse the status. either from “in” to

out” or from “out” to “in.”

(b) Reaching an intersection point requires that action be taken based on the
inverted point. Two cases are possible. and these are distinguished by per-
forming point location (Section {.3.2). Locate the point associated with
Q. (i.c. the equivalent inverted point of Q;). relative to the trimmed region
of P,. Note that the associated point cannot lie on P;’s trimming bound-
ary unless there is a degenerate situation. since Q; lies on the trimming

boundary. Two cases are possible:



i. The associated point is outside the trimmed region of P»: This includes
any case where the associated point is outside the domain of P,. In
such a case, the segments of C around Q; are clearly equivalent to
segments outside of the trimmed region of P,. So, mark the segments
of C bad both forward and backward from Q.

ii. The associated point is in the trimmed region of P;: In this case, part of
a curve in P,’s domain must be clipped away. Let the associated point
be . Examine the intersection curves in P;’s domain to determine
which one contains @;. Call this curve C’. Mark C’ bad either forward
or backward, depending on whether the status on C is changing from
in to out or from out to in. This is where curve correspondence is
used. For example, if at Q;. the status on C is moving from in to out,
then mark the section equivalent to C’s forward section bad. If the
correspondence between C and C’ is forward, then mark bad forward
on C’'. If the correspondence is backward. then mark bad backward
on C'. If the status had been changing from out to in. this would be

reversed.

In this way. all segments outside of the trimming region in patch P, are
marked bad. and the corresponding sections of curves in P, are also marked
bad.

Examples of curve clipping are shown in Figures 5.6 and 5.7. These examples show
the original intersection curves, the segments remaining after curve clipping in one
patch. and the segments remaining after curve clipping in the other patch. Situations
far more complex than those in the examples (e.g. many components passing the
trimming boundary many times in each domain) are possible.

After this process is performed for all intersection curves in both patch domains.
all segments that are outside of at least one trimmed region have been marked “bad.”
The next step is to find any string of consecutive segments that are still marked
“good.” Each such string of consecutive “good™ segments should then be turned into
an intersection curve. referred to as a final intersection curve. Note that the number
of final intersection curves can range from zero (if all segments were marked “bad”).
to far greater than the original number of intersection curves. Each final intersection
curve in P| is equivalent to exactly one final intersection curve in P,. These curves

are marked as associated with each other (Section 3.4).
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Figure 5.6: An example of curve clipping. At top. the original curves in each
domain. In the middle. the results after curve clipping in the left-hand patch. At
bottom. results after curve clipping in the right-hand patch. Trimming curves are
shown with light lines, and dotted lines show portions of intersection curves that are
marked bad. Points marked with a " signify inverted points (e.g. A’ is A inverted).
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Figure 5.7: Another example of curve clipping. At top. the original curves in
cach domain. In the middle. the results after curve clipping in the left-hand patch.
At bottom. results after curve clipping in the right-hand patch. Trimming curves are
shown with light lines. and dotted lines show portions of intersection curves that are
marked bad. Points marked with a ’ signify inverted points (e.g. A" is A inverted).
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When clipping is finished. all the final intersection curves are appended to a list
of intersection curves maintained in each patch. When all pairs of patches have been
intersected, this list will contain all the trimmed intersection curves from that patch
intersected with all patches from the other solid. This ends the first stage of the
boundary evaluation algorithm. The patches. each with its own trimmed intersection

curves. are passed on to the second stage.

5.7 Merge Curves

Merging curves is the first step of the second stage of the boundary evaluation al-
gorithm. Unlike the first stage, which dealt with pairs of patches. the second stage
generally considers only one patch at a time.

Merging curves combines the adjacent clipped intersection curves found in the
first stage to form joincurves. A joincurve is a simply connected sequence of clipped
intersection curves. That is, the ending point of one curve is the starting point of the
next. The overall structure is similar to that of segments in curves. except that the
curves do not all come from the same polynomial. Like regular curves. a joincurve
can either form a loop or have a separate start point and end point. and cannot
self-intersect. The set of trimming curves. for example. can be thought of as a single
joincurve that forms a loop. A single curve can be declared a joincurve. and additional
curves can be added on to a joincurve (if they share the same starting or ending point
as the joincurve). Joincurves can also be merged with each other. Note that if two
Joincurves have the same starting (or ending) points. then one of the joincurves can
be reversed so that it’s starting point is then its ending point. This lets the two
Joincurves be merged into a single joincurve. Reversing a joincurve means reversing
the order of the curves that make up the joincurve. and reversing the individual curves
(Section 3.2.2).

After finishing the first stage of the boundary evaluation algorithm. each patch
contains a number of clipped intersection curves. Together. these intersection curves
represent the trimmed region of the patch intersected with the entire other solid.
The intersection curves are combined together to form joincurves. When all possible
intersection curves have been merged into joincurves. each joincurve either is a loop
or starts and ends on a trimming curve.

Figure 5.8 demonstrates a simple example of curve merging. In the figure. a patch

contains six intersection curves. These six curves are merged to form two joincurves.
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Figure 5.8: Curve merging. At left. six clipped intersection curves (designated C,
and in thick lines) were found in the trimmed region (designated by thin lines). Cj,
Cy. C3. and Cs were merged to form joincurve .J,, and C; and Cg were merged to
form joincurve J,, at right.

one of which is made from four intersection curves. the other from two.

To perform curve merging, first declare each intersection curve to be a joincurve.
An endpoint (either the starting point or ending point) of a joincurve is declared to
be “closed™ if the joincurve forms a loop. or if that endpoint lies on a trimming curve
(i.e. it is an intersection point). Otherwise the endpoint is declared to be “open.”
When all remaining endpoints are closed. curve merging is finished.

Curve merging proceeds by looking for pairs of open endpoints that could poten-
tially be equal. By potentially equal it is meant that the points have overlapping
bounding intervals. It is generally not necessary to perform a complete equality test.
Every open endpoint is guaranteed to match up with at least one other open endpoint.
If A is an open endpoint, consider all other open endpoints. If there is only one other
open endpoint. B. that has an overlapping interval. then those two points must be
cqual. The joincurve with endpoint A should then be merged with the joincurve with
endpoint B. If A and B are on the same joincurve, then just mark A and B closed.
as the joincurve is forming a loop. Note that although this is an O(n?) matching
operation, in actual implementations n (the number of open endpoints) will be small.
and the asymptotic bound is not significant. In the unlikely event that no pair of
open endpoints is found to match (i.e. every endpoint is potentially equal to more
than one other endpoint), shrinking the remaining open endpoints and repeating the

procedure will eventually lead to all points matching.
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Figure 5.9: Patch partitioning. The three joincurves (.J;) at left induce a parti-
tioning into four partitions (C;), as shown at right.

5.8 Partition Patches

A partition is a subregion of a patch that has a boundary defined by the trimming
curves and/or joincurves of the patch. If there are no joincurves (because the patch
does not intersect with any patch in the other solid). the entire patch is declared to be
a single partition. The next step of the boundary evaluation algorithm is to compute
each individual partition, and the topological connectivity between them.

First. determine whether any of the joincurves forms a loop. If so. subdivide the
patch into two patches. in order to break every loop. Loop breaking is described in
detail in Section 5.8.1. The output of loop breaking is two (or more) patches. each of
which is treated independently.

With all loops broken, each joincurve starts and ends on the trimming boundary-
If there are n joincurves in the patch. then the patch will be broken up into n + 1
partitions. An example is shown in Figure 5.9.

The immediate goal is to determine the boundary of each partition. This boundary
is a list of curves. taken from both the joincurves and the trimming curves. The

procedure is as follows:

1. Subdivide the trimming curves at the points of intersection with the joincurves.
These points are the endpoints of the joincurves, which are the intersection
points found earlier that have already been inserted into the trimming curve.

Also. keep a record of which original trimming curve each of the subdivided
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curves comes from. This information is used later (Section 5.8.2).

After the trimming curves are subdivided, each trimming curve contributes
to the boundary of exactly one partition, and each joincurve contributes to
the boundary of exactly two partitions (since it is assumed that there are no
degeneracies). One partition contains the joincurve in the forward direction,

and one partition contains the joincurve in the reverse direction.

Allocate a marker for each trimming curve that registers the trimming curve as
cither “visited” or “unvisited.” depending on whether it has contributed to a
partition yet. Initialize all markers to “unvisited”. Also. allocate registers for
a begin point and current point that point to individual points. and a previous
Joincurve register that points to a joincurve. Finally, for each partition. allocate

a list (initially empty) of the curves that make up the partition boundary.

Begin to trace out a partition boundaryv. The partition boundary will be a list

of curves. First initialize a new partition:

Find a trimming curve marked “unvisited.”

(a)

(b) Set the begin point to be the starting point of this trimming curve.
(c) List this trimming curve as the first curve in the partition boundary.
(d) Set the marker for this trimming curve to “visited.”

(e) Set the current point to be the endpoint of this trimming curve.

(f) Set the previous joincurve to be undefined.

Now trace out the rest of the partition boundary. Repeat the following until the

current point is the same as the begin point:

Examine whether the current point is an endpoint of any joincurve. other than

the previous joincurve (if defined).

e If the current point is an endpoint of a joincurve:

(a) Add the curves comprising the joincurve to the partition boundary
list. If the current point is the starting point of the joincurve. add the
curves in order, otherwise reverse the joincurve (Section 5.7) before

adding it to the partition boundary list.

(b) Set the previous joincurve register to this joincurve.
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Figure 5.10: Two loops broken by one patch subdivision. The joincurves of
the original patch are shown at left. in bold. The trimming curves are shown by thin
lines and the patch domain boundary by dashed lines. At right, the patch has been
broken into two subpatches, neither with a loop.

(c) Set the current point to the opposite endpoint of this joincurve.
e [f the current point is not an endpoint of a joincurve:

(a) The point is the starting point of a trimming curve. Add this trimming

curve to partition boundary list.
(b) Set the marker for this trimming curve to “visited.”

(c) Set the current point to be the endpoint of this trimming curve.

5. Check to see whether any of the trimming curves is still “unvisited.” If so.

return to step 3. Otherwise. all partitions have been found.

Once all of the partitions are found for all of the patches in the solid. the topologi-
cal connectivity between the partitions is determined. Although most of the topologi-
cal information can be obtained during the partitioning process. it is not significantly
less efficient to determine it afterward. and the description is much simpler. This

topological information is described in Section 5.8.2.

5.8.1 Break Loops

Breaking joincurves that form loops is necessary since a patch is not allowed to have
any internal loops (Section 3.1). Loop breaking involves subdividing one patch into
two subpatches. each of which contains part of the joincurve. If there are many
Joincurves. the patches are just further subdivided until all loops are broken. Note

that it is possible for a single subdivision to break many loops (Figure 5.10).
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Subdivide along one of the the parameter lines. To pick an appropriate parameter
value. examine the maximum and minimum extents of the joincurve that forms the
loop. Choose a rational value between these extents. Form a line at that parameter
value, say s = a (or t = a). that is called the split line. Because the rational value is
between the maximum and minimum extents, the split line passes through the loop.

Next intersect the split line with the trimming curves and the curves that comprise
the joincurve. Insert all intersection points into both the split line and the trimming
curve or curve in the joincurve. Form a new surface passing through the split line
(Section 4.4). and use this surface to invert the points. Also intersect this surface
with the adjacent patches from the same solid in order to invert the points found on
the trimming curve. Note that these inversion processes are not as complicated as the
process described in Section 5.4.2. Because all correspondence information between
the curves in each domain is already known, the matching in three dimensions is not
necessary. This principle is described in more detail in Section 5.8.2.

Assuming that there are no tangential intersections (and if there are. they are eas-
ily detected and a new split line chosen), the split line intersects both the trimming
boundary and the loop an even number of times. Clip the split line to the trimmed
region. Clipping the split line can be done directly - if the intersections with the
trimming curves are ordered along the split line ¢, s, ..., {,. then the clipped curves
are the segments between i;_; and iy,. for j = 1.2..... n/2. These n/2 split curves
formed from the split line each become part of the trimmed region for the new sub-
patches.

Given the n/2 split curves, the patch is subdivided into n/2 + 1 new subpatches.
This is illustrated in Figure 5.11. Each split curve forms part of the trimming bound-
ary for two new subpatches. Trace the trimming boundaries for these new subpatches
in a manner similar to that described above for determining partitions. Notice that
since the subpatches occupy a smaller portion of the parametric space. the patch
domain of each subpatch can be reduced. if desired. Reducing the patch domain
may save computation if the output of this boundary evaluation is used as input to
another boundary evaluation.

The next step is to subdivide the joincurves themselves. First subdivide the
joincurve into a number of smaller joincurves, based on the intersection points with the
split line. Note that this involves splitting the individual curves in the joincurve into
different curves. as well. Each of these joincurves will belong to one of the subpatches.

Determine the specific subpatch by choosing any point (except an endpoint) from each
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Figure 5.11: Splitting one loop leading to many patches. The split line has six
intersections with the trimming curves, which are clipped to form three new curves in
the trimming region. These three new curves become part of the trimmed boundary
of the new subpatches. The single patch is broken into four subpatches.

joincurve and performing point location relative to the trimming boundaries of the
subpatches. Store the joincurve in whichever subpatch the point is located in.

Finally. update topological information. both for this patch and for the patches
adjacent to the original patch. The adjacency information along each trimming curve
must be updated. For any of the original trimming curves (or their subparts) in the
patch being split. the adjacent patch is the same as in the original solid. Along any
of the new trimming curves in the subpatches (formed from the split curves). the
adjacent patch is the other subpatch that shared that split curve. Associate the two
curves (one in each subpatch) formed from a split curve.

Another topological change is in the patches that are adjacent to the original
patch. Adjust the adjacency information in each of those patches to point to one of
the new subpatches. In most cases, this relationship is straightforward. The only area
of interest is along the trimming curves that were subdivided as a result of the patch
splitting. Divide each of these trimming curves into two separate trimming curves
at the inverted point. The adjacency information for each of the two new curves is

different (each pointing to a different subpatch). This is illustrated in Figure 5.12.
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Figure 5.12: Adjacency across patches. At left. two adjacent patches in a solid.
One of the patches is split along the dark line shown. At right. the topological
relationship along adjacent curves. At top. the original patches are adjacent along
the curves indicated. At bottom. one trimming curve on the left patch has been split
into two trimming curves. The adjacency information is different for the two new
curves.
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5.8.2 Compute Topology

Once all of the patches have been partitioned. update the topological information.
Two types of connections need to be determined: connections between partitions from
one patch. and connections between partitions from different patches.

The topological information of interest for the partitions is similar to that for the
patches. with one additional piece of information. Besides keeping track of which
partition is adjacent along each boundary curve (as is done for trimming curves in
patches). also keep a record of whether that boundary came from a joincurve or from
a trimming curve. The distinction is useful when classifving components (Section
5.9).

For the curves arising from the joincurves. the adjacent partition is simply the
other partition from the same patch that involved that joincurve. For the trimming
curves. the process is slightly more complicated. Each of the original trimming curves
of the patch has been subdivided into a number of smaller trimming curves based on
intersections with the joincurves. Because the joincurve is the intersection curve
with the other solid. the intersection curve continues to the adjacent patch. so that
trimming curve is also subdivided in the adjacent patch (Figure 5.13).

Let P, and P, be adjacent patches in a solid. Assume that the patches are adjacent
along trimming curve A in P;’s domain. and trimming curve B in P,’s domain.
After partitioning, A and B have been broken up into a number of subcurves. i;
for i = 1.2.....m. and B, for j = 1.2.....n. It is assumed that the intersection
curve with the other solid does not intersect an edge of the solid tangentially, as that
is considered an input degeneracy. Thus. the intersection curve carries over to the
adjacent patch. subdividing the edge in the same way in each patch. Thus m = n.

Even though the trimming curves in each patch are subdivided independently
of one another. they are subdivided at the same points. The adjacency along all
such trimming curves follows directly from knowing the adjacency along the original
trimming curve. This is demonstrated in Figure 5.13.

The final result can be stored in a graph structure. if desired (it is helpful for com-
ponent classification in Section 5.9). Each node of the graph represents one partition.
There are two types of edges that will be referred to as solid edges and dashed edges.
Solid edges represent adjacent partitions along original trimming curves. Dashed
edges represent adjacent patches along joincurves (i.e. intersection curves with the

other solid). An example of such a graph is given in Figure 5.14.
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Figure 5.13: The continuation of an intersection curve across patches. At
top is the original solid, with the intersection curve shown in medium thickness. One
edge of the original solid is highlighted in bold. At bottom are the two patches. The
domain is shown with dashed lines, the trimming curves with solid lines. The edge
highlighted at top is also highlighted in each domain. This edge has been subdivided
into equivalent regions in each patch domain. even though the curve was subdivided
in each domain independently.
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Figure 5.14: Adjacency of partitions. At left. a solid after partitioning. The dark
curve shows the intersection curve, and the partitions are labeled (Ps; and P; are at
back. P; is underneath). At right, the associated topological graph for the partitions.
Solid lines indicate adjacency along original trimming curves. and dashed lines along
the intersection curve.

5.9 Classify Partitions

The third step of the second stage of the boundary evaluation algorithm is classifving
partitions. Classifving partitions means locating the partition with respect to the
other solid.

To perform classification. use point generation and point location (Section 4.3).
Choose any partition from the first solid. S;. Generate a point in that partition. and
locate it with respect to S,. Likewise. choose any partition from S,. and generate and
locate a point relative to S,. If the point is inside the other solid. the entire partition
that it came from must be inside the other solid. and if the point is outside. the entire
partition must be outside.

Finally. propagate this information to the other partitions. This is done using the
topological structure computed after partitioning. Components connected by a solid
edge in the graph have the same location (inside or outside). Components connected
by a dashed edge have an opposite location. For example, in Figure 5.14. if P, is
located outside of the other solid, then P;. P;. and P- must also be outside. since
they are connected by solid edges. P,, Py, and P must be inside. since they are

connected via dashed edges to partitions that are outside. Any graph routine (e.g.
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depth-first search) can be used to propagate this location information.

If any partition is not located in this manner, it means that the original solid
is composed of two or more disjoint parts. Recall that a solid may consist of many
disjoint collections of surfaces. In such a case. classify one partition from another
part of the solid (i.e. one partition that was not successfully located), and propagate
the information. Continue until every partition is labeled either inside or outside of

the other solid.

5.10 Build Final Solid

The final step of the boundary evaluation algorithm is to stitch together partitions
to form the final solid. From each solid, choose one set of partitions (either inside or

outside). Which set to choose depends on the Boolean operation:

e Union (S,US,): Keep all partitions from S, that lie outside S;. and all partitions
of S, that lie outside S;.

e [ntersection (S; N S;): Keep all partitions from S, that lie inside S». and all
partitions of S, that lie inside 5.

o Difference (S; \ S2): Keep all partitions from S, that lie outside S,. and all
partitions of S, that lie inside S,.

Once these partitions are selected, convert the data structure for each partition
to a patch data structure. The surface and domain of the new patch are the same as
for the patch that the partition came from (i.e. the parent patch). It may be possible
to reduce the domain. which can save time in the future. The patch boundary is

determined as follows:
e The trimming curves are the curves that formed the partition boundary.

e The adjacent surface depends on whether the new trimming curve is (part of)

a trimming curve from the parent patch. or (part of) an intersection curve.

— If the new curve comes from an original trimming curve. then the adjacent

surface is the same as the original surface.

— If the new curve comes from an intersection curve, then the adjacent surface
is the surface of the patch (in the other solid) that formed that intersection

curve.
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e The adjacent patch information depends on whether the topological connection

for that curve in the partition is a solid edge or a dashed edge.

— If the connection is a solid edge (i.e. the curve is from a trimming curve
in the parent patch), then the adjacent patch is one from the same solid.
The adjacent patch is the patch formed from the adjacent partition along

that curve.

— If the connection is a dashed edge (i.e. the curve is from an intersection
curve). then the adjacent patch is from the other solid. In this case. use
the associated curve information for the curve. Recall that the curves
were associated near the end of the curve clipping stage (Section 5.6).
The associated curve is a boundary curve in one and only one of the kept
partitions from the other solid. The patch formed from that partition is

the adjacent patch.

Thus, the final solid is computed in the same format as the input solids.
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Chapter 6

Speedups

Direct use of exact computation often results in implementations that are too slow to
be practical. This chapter describes a number of speedups that improve the efficiency
of computations while maintaining exactness.

The boundary evaluation algorithm described in the previous chapters relies on
an exact rational number library. The efficiency of this library has a significant and
direct influence on the efficiency of the overall boundary evaluation algorithm. While
speeding up exact rational number arithmetic will speed up boundary evaluation.
such speedups are outside of the scope of this dissertation.

Exact rational number computation takes more time (in general) on numbers that
use more bits than on numbers that use fewer bits. Reducing the number of bits used
In an exact computation is the basis for many of the speedups described below. If
few enough bits are used. the arithmetic operations can be performed directly in
hardware. Assuring that a lower-precision operation is still exact is the keyv to using
it within an exact computation.

Although any individual speedup. on its own. may result in significant efficiency
improvement. combining speedups does not necessarily combine the improvements.
One reason is that several speedups may eliminate the same unnecessary computations
(i.e. the speedups are not independent). For example. floating-point filters (Section
6.4.1) and bounding box comparisons (Section 6.2) both work well on the same types
of problems. A second reason why combining speedups may not result in as much
gain as desired is that certain speedups produce conflicting goals. For example.
lazy evaluation (Section 6.1) encourages intervals surrounding points to be large.
while floating-point guided computation (Section 6.4.2) encourages them to be small.
The best balance between various speedups is dependent on the problem and the

particular implementation, and must be adjusted accordingly. In any case. combining



the speedups described here has resulted in significant efficiency improvements to the
boundary evaluation implementation. Some results are described in Chapter 8.

6.1 Lazy Evaluation

Lazy evaluation refers to postponing time-consuming operations as long as possible, in
the hope that the operation can be avoided entirely or a simpler. less time-consuming
operation can be substituted for it. Lazy evaluation fits well with the concept of exact
computation being a way to guarantee that anyv decision based on numerical data is
correct. Often. such decisions can be guaranteed using only limited information, and
the result of a decision may mean that certain numerical data is no longer needed.
If the evaluation of that numerical data had been postponed, then the evaluation
operations are avoided entirely.

Lazy evaluation can be incorporated into exact computation in several wayvs. The
most obvious is in the representation of algebraic numbers. and thereby points. Recall
that an algebraic number is represented as the root of a polynomial within an interval.
As long as the interval is small enough to ensure that it contains only one root of the
polyvnomial. the algebraic number is specified exactly.

Comparisons between algebraic numbers. then, can be first made on the basis
of comparing their intervals. Only when the intervals overlap is more computation
required. \When the intervals overlap. they can often be reduced in size until they
no longer overlap. In any case, the interval only needs to be made small enough to
make a decision at a particular time. The interval can be reduced in the future, if
later computation requires more precision. Thus. the time-consuming operations of
shrinking the intervals to a small width and exact algebraic number comparison may
be avoided.

The boundary evaluation algorithm uses lazy evaluation to a lesser extent in the
definition of curves. Curves are initially broken only as much as is necessary to resolve
curve topology. As later computations require. new points can be inserted into the
curve. These new points break the curve into smaller segments. thus making it better
defined. but only to the extent needed at one time.

Lazy evaluation is also useful in exact computations where algebraic numbers are
used to construct some geometric object or other number. Such constructions do not
arise in the boundary evaluation algorithm. but they can arise in other problems.

An example is when two algebraic numbers must be added. In such cases. a lazy
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evaluation approach would store the new number as a tree, with the two original
algebraic numbers as leaves. When more precision is required for the new number, the
precision of the subtrees (in this case the two leaves containing the original algebraic
numbers that were added) must be increased. This approach is used in both the
LEDA [14] and Core [53] libraries.

There are other ways of incorporating lazy evaluation into the boundary evalua-
tion algorithm. For example. rather than resolving curve topology, the curves could
perhaps be expressed simply as algebraic plane curves, with curve topology resolved
only as necessary. It is not clear whether such an approach would actually save compu-
tation. however. since curve topology would probably need to be resolved eventually.
Other applications of lazy evaluation might involve restructuring the algorithm itself

to treat much of the numerical data symbolically.

6.2 Quick Rejection

Quick rejection techniques attempt to avoid all computations that do not lead to a
useful result. For example. imagine two patches that do not intersect. If the surfaces
corresponding to those patches intersect. the boundary evaluation algorithm will go
through the entire first stage for that pair of patches. spending significant time. only
to have the entire curve clipped away at the last step. If a simple test is performed
ahead of time to conclusively eliminate the possibility of an intersection. all that work

is avoided.

6.2.1 Interval Arithmetic

While interval arithmetic (Section 2.3.2.1) alone does not provide the efficient guar-
anteed root isolation needed in an exact approach. interval methods (and. similarly.
affine arithmetic methods) are useful for quick rejection. An example of interval
methods in boundary evaluation is in determining whether the intersection curve be-
tween two patches lies in a patch domain. Treating the patch domain as a 2D interval
and evaluating the intersection curve over that interval determines whether the alge-
braic plane curve might pass through the patch domain. This computation eliminates
cases that bounding boxes do not. Interval methods can be used in other parts of the
algorithm as well. including generating and testing bounding boxes (Section 6.2.2).
Affine arithmetic (Section 2.3.2.1) can provide tighter bounds on computation
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than direct interval arithmetic, but can be much slower. Affine arithmetic can be
performed efficiently, however. when evaluating a polynomial. Assume that one wishes
to evaluate a polynomial. f(r). over an interval, [a,b]. Affine arithmetic represents
the interval as ¢ +de,, where c = (e +b)/2, d = (b—a)/2. and £, = [—1,1]. A simple
variable substitution yields a new polynomial, univariate in =y, i.e. g(g;) = f(c+de)).
Since ={ = [—1.1] for odd 7 and [0, 1] for even i, a new interval can be easily found from
g. The constant term of g gives the center of the resulting interval, while the width
of the interval is found by summing up the absolute values of the other coefficients.
A tighter interval can be obtained by taking into account whether the power of =, is
even or odd. Thus. affine arithmetic is performed by making one variable substitution

and then summing the absolute values of the resulting coefficients.

6.2.2 Bounding Boxes

The most common method of quick rejection is bounding boxes. A bounding box of
a certain geometric object is a rectangle (usually axis-aligned) that is guaranteed to
contain that structure. If another geometric object is outside of the bounding box.
then the two geometric objects cannot touch. Often. interval arithmetic is a simple
way to compute a bounding box.

Bounding boxes have many uses in the boundary evaluation algorithm. For exam-
ple. a 3D bounding box can be placed around each patch. If two patches™ bounding
boxes do not overlap. then the patches cannot intersect. As is described in Section
3.2.1. a curve is made up of several segments. each contained within a bounding box.
If a curve-curve intersection is to be computed. a test can first be made of whether
any of the segment bounding boxes of the curves overlap. Bounding boxes are directly
applicable to points, since the interval of each point effectively forms a bounding box.
If the intervals around two points do not overlap. the points are not equal. If the
points have identical intervals and are the roots of the same polvnomials. they are
equal.

When performing ray shooting as part of point generation or location (Section
4.3). bounding boxes are also useful. In two dimensions. each segment of a curve can
be intersected with a horizontal or vertical line by determining whether the bounding
box contains that particular coordinate value. In three dimensions. bounding boxes
can quickly eliminate most ray-patch intersection tests.

Another way that bounding boxes are useful is in the approach to point inversion

(Section 5.4.2). In that case. matching in three dimensions is performed by comparing
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bounding boxes generated in three dimensions. Matching the bounding boxes is

significantly faster than performing four-dimensional point inversion.

6.3 Simplifying Computation

Simplifying computation refers to substituting fast, simple computations for more
complex ones. By analyzing the problem, a simple problem-specific approach can be

found to suffice for a more general one.

6.3.1 Point Equality

One example of this is in comparing points for equality. At various stages in the
boundary evaluation algorithm, points must be checked to see whether they are equal.
Exact point comparison involves comparing the coordinates for equality. which in-
volves finding the greatest common divisor of two polynomials and then finding the
roots of the resulting polynomial. There are several simpler computations that can
often be made first. providing significant speedups. If the points are in the same
location in memory, they are the same point. The intervals around points can be
used to quickly verify that two points are not equal. There are many cases where one
point is guaranteed to be the same as one out of a set of other points. In such cases.
finding which point is equal is only a matter of comparing (and possibly shrinking)
intervals. By combining these methods. it is often possible to eliminate the test for

exact point equality. saving significant time.

6.3.2 Curve-curve Intersection

Another example of simplified computation is in curve-curve intersection. For the
standard CSG primitives. one of the two curves being intersected during boundary
evaluation is often a trimming curve that is a vertical or horizontal line. In such
cases. there is no need to perform a complete curve-curve intersection (such as is
described in Section 4.1). Instead. the horizontal or vertical line defines the value for
one coordinate. This value is substituted into the polynomial of the other curve. and
the roots of the resulting univariate polynomial are found, vielding intersection points
that have one coordinate as a rational number, the other as an interval. Also. when
both curves are lines (not necessarily horizontal/vertical), the intersection point has

rational coordinates that can be found directly and exactly-



6.3.3 Reducing Intervals

A third example of simplified computation is in reducing the interval surrounding
an algebraic number. For an individual algebraic number, the defining polynomial is
usually negative on one side of the number, and positive on the other. The only ex-
ception is when the number is a root of even multiplicity, in which case the full Sturm
sequence must be used. Assuming the usual case. however. the interval around the
algebraic number can be cut (Section 3.3.2.1) using only a single sign of a polynomial
test. Depending on the sign of the polynomial at the cut value. either the upper or

lower end of the interval is changed to the cut value.

6.3.4 Lower-Dimensional Computation

A fourth example of simplified computation is in reducing high-dimensional problems
to lower-dimensional problems. Patch-patch intersections can be seen as a problem
involving seven variables (two for each parametric patch domain, and three for the
3D space). Treating the entire problem using all seven variables at once makes many
parts of the algorithm conceptually simpler. however performing seven-dimensional
computations takes far too long, particularly with exact computation. Instead. all
significant computations in patch-patch intersection are performed in two dimensions
(the patch domain). Even in cases where it seems as if more dimensions are necessary.
the problem can be reduced primarily to two dimensions. For example. point inversion
(Section 5.4.2) is generally seen as at least a four-dimensional problem. Instead. the
problem is restructured so that a series of two-dimensional operations are performed.
followed by a simple 3D matching algorithm. This approach vields a much faster
implementation than the equivalent four-dimensional computation.

Using a lower-dimensional formulation also carries over to the curve-curve intersec-
tion algorithm presented in Section 4.1. In that case. the two-dimensional problem is
broken (after resultant computations) into a series of one-dimensional problems. The
series of one-dimensional computations takes significantly less time than comparable

two-dimensional computations (such as multivariate Sturm sequences).

6.4 Floating-point Evaluations

Usually. operations using standard floating-point arithmetic are much faster than

cquivalent exact computations. Besides the direct hardware and compiler support

154



for floating-point computation, the limited precision obtained by rounding allows
computations to be performed quickly. Unfortunately, this rounding also introduces
numerical error, making standard floating-point operations seemingly unusable in a
system based on exact computation.

At the same time, standard floating-point based computations are usually close
to the correct answer. Many systems are based on floating-point computations, and
these systems work correctly in many cases. However. the error that accumulates
in such systems makes it difficult to ensure accuracy and correctness. particularly in
nonlinear geometric computations such as boundary evaluation. The goal is to use
the speed of floating-point computation while ensuring exactness. Two ways this is

done are described below.

6.4.1 Floating-point Filters

As mentioned in Section 2.3.2.1. floating-point filters are ore method for speeding
up exact computation. The basic idea of a floating-point filter is to perform the
computation in floating-point. but keep a bound on the error that is accumulated.
The first step is to convert exact data to floating-point data. along with a bound on the
error introduced (machine precision). As each floating-point operation is performed.
the error bound is increased to account for both propagated error from previous steps
and new error introduced by rounding at that step. The final result is a floating-point
number and a bound on the maximum error in that number. If that error is small
enough to make a particular decision. then exact evaluation has been avoided.

Experience has shown that floating-point filters are not helpful for everyv exact
computation, due to the rate of error growth in nonlinear computations. Further-
more. iterative floating-point routines (such as Newton's method for finding roots)
can not be directly adapted to a floating-point filter approach. since they are not
a single computation within which the error can be strictly bounded. Nevertheless.
floating-point filters can be successfully applied to a few computations within bound-
aryv evaluation.

The most important way that floating-point filters are used in boundary evaluation
is in determining the sign of a polynomial. This is a kev operation in the evaluation
of a Sturm sequence, as well as in the process of narrowing the interval surrounding
an algebraic number (Section 6.3.3). Finding the sign of a polynomial can be turned
into a floating-point filtered operation. The coefficients of the polvnomial. as well as

the value used in evaluating the polynomial, are converted to floating-point numbers
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(with associated error). Error is propagated through the polvnomial evaluation, and
the final result is a number and an associated error bound. As long as the error
bound is smaller than the absolute value of the number, the sign of the polyvnomial
computation is conclusive.

Floating-point filters can be used more extensively. For example. the entire Sturm
sequence computation could be performed in floating-point. generating polynomials
with floating-point coefficients with bounded error. For fairly simple Sturm sequences.
this has proved useful, but more often the error in those coefficients becomes too large

to allow further computation to be guaranteed.

6.4.2 Floating-point Guided Computation

While floating-point filters are a well-known approach to increasing efficiency. another
approach has proved to be just as useful. if not more. for nonlinear computation. This
approach will be called floating-point guided computation. The basic idea is to use
any floating-point method to estimate the result of a computation. then use an exact
method to verify that the estimate is close to the true result. Floating-point guided
computation does not preclude the use of floating-point filters for the exact portion of
the computation. Floating-point guided computation is most applicable in schemes
where an exact iterative process is used to gradually close in on a result.
Floating-point guided computation is especially helpful for univariate root finding.
As a component of curve-curve intersection. univariate root finding is a keyv operation
in the boundary evaluation algorithm. To use floating-point guided computation.
first isolate the roots within some interval using any univariate root finding method.
Newton's method or eigenvalue approaches are two possible methods for root isolation.
Then. using an exact method such as univariate Sturm sequences. count the total
number of roots in the interval. If this number is less than or equal to the number
found by the floating-point method. then the floating-point estimates of the roots are
temporarily considered valid. Each valid floating-point estimate can be verified by
testing a small rational interval around that number. For example. assume that all
roots of a polynomial over the range [0.1] were to be found. Using a floating-point
method. one root is found at the value 0.3589271. The interval [0.358,0.360] can
then be checked using an exact method to see whether there is a unique root of the
polynomial in that interval. If so. then the root has been isolated to a certain precision
much faster than it would have for bisection with purelyv exact arithmetic. Even

though the floating-point estimate is not exact, it allows the root to be approximated
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Figure 6.1: Floating-point guided computation. At left. a floating-point estimate
(shown by the x) approximates the actual root (shown by the circle). At center, a
bounding interval placed around the floating-point solution contains the actual root.
At right. a smaller interval no longer contains the actual root.

much more quickly. vielding an exact interval.

As long as the interval contains the floating-point estimate. the estimate is con-
sidered valid. Valid estimates can continue to guide future computations when the
interval needs to be shrunk (Section 3.3.2.1) at a later time. At some point (possibly
even at the first attempt), the floating-point estimate will not be close enough to
the actual root to provide a valid guide. In this case. the floating-point estimate lies
outside the interval containing the root. and the interval has to be further reduced
by the traditional bisection approach. In the worst possible case. the floating-point
estimate is completely invalid (or one of the roots was not found by the floating-point
method). and the standard bisection approach to root isolation/interval reduction is
used. The only extra work in such a case is in generating the floating-point esti-
mates (which is insignificant in time compared to the exact computations). and in
testing the intervals (which is only a small amount of extra work compared to the
numerous evaluations by the bisection method). Figure 6.1 illustrates the process of

floating-point guided computation.



Chapter 7

Degeneracies

Although the focus of this dissertation is on eliminating numerical error, dealing with
degeneracies is necessary for any approach to be considered robust. Degenerate situ-
ations can arise in many different ways. Far more types of degeneracies are possible
when curved surfaces are involved than when only linear surfaces are involved.

This chapter gives a brief discussion of degeneracies in the context of boundary
evaluation. This includes the types of degeneracies that are possible, how these de-
generacies manifest themselves within the approach to boundary evaluation described

earlier. and possible ways that these degeneracies can be handled.

7.1 Types of Degeneracies

Degeneracies can be classified into several different categories. As is mentioned in
Section 2.1.3.2. degeneracies will be grouped into three different categories. These

are:
e :nput degeneracies. which are degenerate configurations of input data.

e unpredictable degeneracies, which are degenerate situations that come from ar-

bitrary decisions made in the algorithm itself.

e intentional degeneracies. which are intentionally constructed as part of the al-

gorithm.

Recall that with all types of degeneracies, a slight perturbation of the data will remove

the degeneracy.



Figure 7.1: A borderline degeneracy. The two squares do not meet at a degener-
acy. but the faces marked in bold lie on the same line.

The the use of exact computation in the boundary evaluation algorithm deals with
intentional degeneracies appropriately. All further discussion focuses on dealing with
the other two types of degeneracies appropriately.

Certain degeneracies, called borderline degeneracies can be viewed as either input
degeneracies or unpredictable degeneracies. A borderline degeneracy occurs when the
faces and edges of the input solids do not meet in a degenerate configuration. but the
infinite extension of the surfaces and curves do. For example, Figure 7.1 shows a 2D
example where the faces of two squares lie on the same line. A boundary evaluation
algorithm may or may not need to use the extended surface and edge definitions. If
it does. it will encounter the same types of situations as would arise with an input
degeneracy. For example. a boundary evaluation algorithm intersecting the bold faces

from Figure 7.1 could encounter an overlapping surfaces degeneracy.

7.1.1 Input Degeneracies

The enumeration of all possible input degeneracies is difficult. Several degenerate
conditions have no bearing on the algorithm being used. No general method exists for
enumerating all degeneracies that can affect a particular algorithm. Each algorithm
must be individually analyzed to determine where a degenerate situation can arise.
For the boundary evaluation algorithm presented here. potential input degenera-
cies are enumerated by considering the various ways that points, curves. and surfaces
can interact in non-generic ways. Following that, the ways that each of these situa-

tions can arise in terms of the input solids are described.
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” Surface l Curve Point
2: Overlapping
Surfaces
Surface || 1: Surfaces Tangent | 1: Curve Lying
Along a Curve on a Surface
0: Surfaces Tangent | 0: Curve Tangent | O: Point Lying
at a Point to a Surface on a Surface
1: Overlapping
Curve Curves
0: Intersecting 0: Point Lying
Curves on a Curve
Point 0: Coincident
Points

Table 7.1: Possible degeneracies. The entries show the possible types of degen-
cracies that can arise between an object of the type given in the row and one given
by the column. The bold number in front of the degeneracy gives the order of the
degenerate intersection. The way that these situations arise is discussed in Section
7.1.1.2

7.1.1.1 Degenerate Configurations of Parts of Solids

Each solid is composed of geometric objects of various order: points (order 0). curves
(order 1). and surfaces (order 2). When these objects are in general position. only
two mutual interactions are possible. Two surfaces can meet transversely along a set
of curves. and a curve and a surface can meet transversely at a set of points. No
other interactions are possible if the objects are in general position.

Degeneracies occur in two ways. First. a degeneracy occurs when two geometric
objects interact that should not (e.g. a point and a surface). Second. a degeneracy
occurs when one of the two valid interactions is not transverse (e.g. a curve meets a
surface tangentially at a point, instead of the curve passing through the surface at
that point). The various types of degeneracies are summarized in Table 7.1.

Curves can be considered the intersection of two surfaces. Recall that each curve in
an input solid is an edge formed from the intersection of two faces of the input solid.
Similarly. points can be considered the intersection of three surfaces. Generically.
two surfaces meet at curves. and three surfaces meet at points (thus we have the two

generic interactions). Four or more surfaces do not meet, generically. This idea can
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be used to group together many of the types of degeneracies mentioned in Table 7.1
into other categories.
Eight of the ten degenerate intersections can be viewed as two or more surfaces

with a non-generic order of intersection. These are:

o Two surfaces not meeting along a curve:

— Overlapping Surfaces

— Surfaces Tangent at a Point
o Three (or more) surface meeting at a curve:

— Curve Lying on a Surface

— Overlapping Curves
e Four (or more) surfaces meeting at a point:

— Point Lying on a Surface
— Intersecting Curves
— Point Lying on a Curve

— Coincident Points

The other two tvpes of degeneracy (surfaces tangent along a curve and curve
tangent to a surface) occur when there is a seemingly generic intersection (i.e. two
surfaces meet at curve or three at a point). but the intersection is tangential instead
of transverse. Tangential intersections can occur between the surfaces that cause the
other eight degeneracies. as well. For example. two intersecting curves is equivalent to
a common intersection of four surfaces. One of those surfaces might intersect another
only tangentially at the point. Also. the case of surfaces being tangent along a curve
includes cases where even one point along that curve is a point of tangency. This
results in an intersection between the two surfaces that contains either a cusp or a

self-intersection.

7.1.1.2 Degenerate Positions of Input Solids

Within boundary evaluation. each of the cases from Table 7.1 can arise from input
solids given in a degenerate configuration. Following, examples are given of the types
of degenerate solid positions that can result in each of the underlying degenerate

configurations. Wherever possible. linear examples are used to illustrate the case.
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Figure 7.2: Examples of degenerate input situations.



k

Figure 7.3: More examples of degenerate input situations.
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e Overlapping Surfaces: Instead of intersecting transversely, the two solids have

overlapping faces. Example 7.2(a) shows one such configuration.

e Surfaces Tangent Along Curve: There are two possible ways this can arise. In
one case (Example 7.2(b)), the face of one solid lies entirely on one side of a
face from the other solid. The surfaces are tangent along the entire intersection
curve. In the other example (Example 7.2(c)), the surfaces are tangent at a
point along the intersection curve. This yields an intersection curve that has a

cusp or a self-intersection.

e Surfaces Tangent at Point: The solids meet at only one point. Example 7.2(d)

illustrates this case.

e Curve Lying on Surface: As illustrated by Example 7.2(e). an edge of one solid

lies on a face of the other solid.

e Curve Tangent to Surface: The edge of one solid intersects the face of the other
solid only tangentially. Example 7.2(f) illustrates this case.

e Point Lying on Surface: Example 7.3(g) shows an example of the vertex of one
solid just touching the face of the other solid.

e Querlapping Curves: When the edges of two solids overlap. this case occurs. as

shown in Example 7.3(h).

e Intersecting Curves: When an edge of one solid just touches an edge of the

other solid, this case can occur, as illustrated in Example 7.3(i).

e Point Lying on Curve: Example 7.3(j) shows an example of the a vertex of one

solid Iving on an edge of another.

e Coincident Points: This case results when a vertex of one solid is exactlyv the

same as a vertex of the other solid. Example 7.3(k) is one such possibility.

Depending on the configuration of the solids, these degeneracies may manifest
themselves in different ways. The case of surfaces tangent along a curve illustrates
this fact. Particular ways that these degeneracies manifest themselves in the boundary

evaluation algorithm are discussed in Section 7.2.
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7.1.2 Unpredictable Degeneracies

By their nature, it is difficult to determine what types of unpredictable degeneracies
may arise. In boundary evaluation, unpredictable degeneracies might arise from the
choice of parameterization of the boundary of the solid or from the choice of a direction
for ray-shooting. Finding potential unpredictable degeneracies involves analyzing
every step of the algorithm to determine assumptions made at each step. Then,
each assumption is analyzed to determine how a situation can arise such that the
assumption may not hold.

[t is important to distinguish unpredictable degeneracies from intentional degen-
eracies that have not been taken into account. For example, it may be assumed that
no two points generated in the boundary evaluation algorithm are equal. Generically.
if a set of random points are chosen, no two are equal. so this might seem to be a
safe assumption. However. in the boundary evaluation algorithm, equal points are
often generated in separate parts of the algorithm (this is what allows curve match-
ing). There are far more subtle cases that can arise. Failure to recognize and account
for such possibilities is a failure in algorithm design rather than a failure due to an
unpredictable degeneracy.

Following is a list of some of the basic sources of unpredictable degeneracies. This

list is likely to be incomplete. but illustrates some types of unpredictable degeneracies.

e Patch Representations: The way that a solid is broken up into patches is an
arbitrary decision. As is illustrated in Figure 2.5. there are many ways that
a cylinder can be broken up into patches. The particular patch breakdown
introduces artificial edges and vertices into the solid. These artificial edges and
vertices are subject to the same degenerate configurations as the real edges and

vertices (the input degeneracies described in Section 7.1.1).

e Parameterizations of Patches: Within any one patch. the particular parameter-
ization chosen may lead to a degenerate situation. For example, the parameter-
ization may be such that the trimming curves are horizontal and vertical lines.
While this makes some computations easier. problems can arise later on. For
example. a horizontal or vertical ray used during point location (Section 4.3.2)
might be at the same value as that line, or two separate points might have the

same s or t coordinate.

e Point Intervals: The bounding interval for a point can be chosen arbitrarily. In

theory. there is no reason to allow the interval bounding one point to have the
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same endpoint(s) as the interval bounding another point. Because points may
have been separated by a cut operation. however, two different points might

have identical interval endpoints.

e Points Lying on Cut Value: Generically, a cut point should never be the true
algebraic coordinate of a point. A point chosen at random would not have
rational coordinates. much less have those coordinates at the cut value. The
design of objects, however. is certainly not random, and points often have ra-
tional coordinates, which sometimes may lie at a cut value. An assumption that
the point has irrational coordinates or does not lie at a cut value can lead to

problems.

Note that the choices that result in an unpredictable degeneracy may be made
that way for a specific reason. For example. a parameterization may be chosen be-
cause it is simple. A ray direction may be chosen in a coordinate direction to simplify
later computation. Even though a different parameterization or a different ray direc-
tion could have been used. eliminating problems with the degeneracy. the resulting
computation might be much more complicated. As long as the parameterization or

ray direction is fixed, a degeneracy can arise.

7.2 Detecting Degeneracies

This section discusses methods for detecting when an input degeneracy is present.
in the context of boundary evaluation algorithms. In many of these cases. detection
requires the boundary evaluation algorithm to be modified. Because unpredictable de-
generacies due to patch representation are indistinguishable from input degeneracies.
those unpredictable degeneracies will also be detected. The other types of unpre-
dictable degeneracy are usually handled on a case-byv-case basis at the same time
they are detected. They are discussed briefly in Section 7.3.1.

Below. the input degeneracies described in Table 7.1 are listed either individuallyv

or in groups as appropriate:

e Overlapping Surfaces: This degeneracy becomes apparent during the first step of
boundary evaluation. finding the intersection curve. Since the surfaces overlap.
their implicit forms must have a non-constant common factor. Substitution of
the parametric form of one surface into the implicit equation of the other causes

the implicit equation to vanish. Thus, there will be no intersection curve found.
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e Surfaces Tangent Along Curve: This appears in different ways depending on
whether the tangency is at an isolated point or along the entire intersection
curve. If the surfaces are tangent at only one point along the intersection curve,
then the intersection curve has a cusp or self-intersection at that point. That can
be detected in the curve topology algorithm. If the tangency is along the entire
curve. then the degeneracy is not apparent. A modification to the component
classification step of the algorithm (as is described in Section 7.3.1) allows such
a case to be both detected and handled.

e Surfaces Tangent at Point: When surfaces are tangent at a point, the intersec-
tion curve between the surfaces is a point solution in the patch domain (e.g.
5?2 +t? = 0). A point solution can be detected when resolving curve topology by
finding an s turning point equal to a t turning point, but only if the curve-curve
intersection method supports point curves. Multivariate Sturm sequences can

be used to detect such cases.

e Three (or more) surfaces meeting at a curve: This includes the cases of a curve
lving on a surface and overlapping curves. First, for a curve lyving on a surface.
assume that the curve is an edge E of solid 4. and the surface is a face F
of solid B. Then, for the two faces from A that border E. the intersection
curves of F with those faces overlaps the trimming curves corresponding to E.
This can be detected in the third step of the boundary evaluation algorithm
(intersecting with trimming curves). The intersection curve has a non-constant
common factor with one of the trimming curves, indicating an overlap. The case
of overlapping curves is detected in exactly the same way. since for the curves

to overlap. each curve must first be lving on the surface of the other solid.

e Curve Tangent to Surface: As in the previous case, consider the faces of solid A
that border edge E. For each of these faces. the intersection curve has a tangen-
tial intersection with the trimming curve corresponding to E. This is described
in Figure 7.4. For solid B. the face F has either a cusp. self-intersection. or
point solution. similar to the case of surfaces tangent along a curve. Detecting

the situation in either solid determines that there is a degeneracy.

e Four (or more) surfaces meeting at a point: This includes the cases of a point
lving on a surface. intersecting curves. a point lying on a curve. and coincident

points. The point lying on a surface case is illustrated. but the other cases are
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Figure 7.4: Curve tangent to surface degeneracy as seen in the patch do-
main. Different intersection curves are shown by the dashed lines, the trimming
curves by the solid lines. Tangential intersections indicate a curve tangent to a sur-
face.

similar. Assume the point is a vertex, 1", of solid A. and the surface is a face.
F. of solid B. For the faces of A that surround that vertex. the intersection
curve with F passes right through the endpoint of one of the trimming curves
corresponding to V". An example is shown in Figure 7.5(a). Notice that within
the patch domain. this is equivalent to three planar curves meeting at a point.
All such cases of four (or more) surfaces meeting at a point appear as three
(or more) planar curves meeting at a common point within a patch domain.
For all cases except intersecting curves, this point appears at a trimming curve
endpoint in at least one of the domains. For the intersecting curves case. the
point lies on a trimming curve, but not at an endpoint. The other two plane
curves meeting at the point are two separate intersection curves. This is il-
lustrated in Figure 7.5(b). All of these cases can be detected during the third
step of the boundary evaluation algorithm (intersecting with trimming curves).
Intersecting curves are found during point inversion. while the other cases are

found when performing the intersection in the first patch domain.
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Figure 7.5: More input degeneracies as seen in the patch domain. Different
intersection curves are shown by the dashed lines. the trimming curves by the solid
lines. In (a). when an intersection curve passes through a trimming curve endpoint.
a point lying on surface. point lying on curve. or coincident vertex input degeneracy
may be occurring. In (b). when three plane curves meet at a point (one trimming
curve. two intersection curves). an intersecting curves degeneracy may be occurring.
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7.3 Eliminating Degeneracies

For this section, assume that the input solid is stored in a CSG format. To have a
fully robust system, it is necessary to handle all degeneracies. This means that the
syvstem will not crash on any degeneracy, and will produce valid output for all cases.
In an ideal system, this output is also a completely accurate result based on the
input. Because it is often difficult to enumerate and represent all the degeneracies, in
practical implementations, usually either degeneracies are not handled or the output
data is slightly different from the completely accurate answer.

One example of the difficulty of representing degeneracies is representing non-
manifold data for boundary evaluation. Even when input data is manifold, the output
generated may be non-manifold. Unions of the solids in Examples 7.2(b). 7.2(d).
7.2(e), and 7.2(f) are all cases of this. For a boundary evaluation system to accurately
handle these cases, it must represent non-manifold data. as well as handle the non-
generic intermediate cases that such degenerate situations impose. A svstem could
also choose to handle the degeneracies by approximating the output by a manifold.
or some other representation that is close but inaccurate.

Section 2.3.2.2 describes some of the previous approaches to dealing with degen-
crate data. In this section. three general ways that degeneracies can be handled are
described. in the context of the boundary evaluation algorithm. In some cases. it is
necessary to distinguish unpredictable degeneracies from input degeneracies. although
in general. the methods described handle both types of degeneracies. Also realize that
most methods for handling degeneracies require some modification to the boundary
evaluation algorithm as described. Some of these modifications are complicated. and

they are not described in detail here.

7.3.1 Special Cases

The most direct method for dealing with degeneracies is on a case-by-case basis. Un-
fortunately. it can be difficult to account for all degeneracies. detect all degeneracies,
and implement methods for handling each type of degeneracy. Even if all cases can
be enumerated. the implementation to detect and handle the cases tends to consist
of large amounts of special-case code, obscuring the overall program flow and making
software maintenance and debugging difficult. Still. because a case-by-case approach
is direct. can be implemented incrementally (handling one degeneracy at a time). and

can be added on to an existing non-robust system. it is a reasonable and popular
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approach to dealing with degeneracies.

Note that the algorithm described already handles certain special cases. For exam-
ple. the curve-curve intersection routine described in Section 4.1 ignores point curves.
So. an algebraic intersection curve that is a single point in the domain is ignored
completely. Because the intersection curve is also ignored in the other patch domain.
the corresponding degeneracy is effectively handled.

Minor modifications to the algorithm described allow it to handle other special
cases. One example is the degeneracy of surfaces tangent along a curve, where the
tangency is along the entire curve. not just at a few points. In this case. all steps of
the boundary evaluation algorithm proceed normally, except for classifving partitions
(Section 5.9). Normally. at this step, one partition from each solid is classified. and
the classification information is propagated to all the other partitions of that solid.
The assumption is that partitions adjacent along intersection curves are on opposite
sides of the boundary of the other solid. That is. if partitions A and B are adjacent
partitions of solid S;. and A and B are separated by an intersection curve. then if
A is inside S, then B must be outside. and vice-versa. When surfaces are tangent
along a curve this might not be true. For example. both 4 and B could be outside
of S». The boundary evaluation algorithm can be modified so that each component
is classified individually. with no information passed between adjacent components.
This allows every component to be correctly classified as inside or outside of the other
solid. at the cost of more computation.

Similar methods can be used to handle other types of degeneracies. Handling
some special cases requires significant changes to the algorithm as a whole. For
example. two types of input degeneracies can vield curves that have cusps or self
intersections. In order to correctly deal with such curves. kernel operations for curve-
curve intersection and curve topology resolution must be modified. the representation
of curves must be changed, and the overall boundary evaluation algorithm must be
modified. Such complexity led previous researchers to the proposal of perturbations
to deal with several degeneracies at once (Section 2.3.2.2). Perturbation methods are
discussed further in Sections 7.3.2 and 7.3.3.

Although it can be difficult to implement special cases to handle all degeneracies.
particularly input ones. special cases may be useful for dealing with unpredictable
degeneracies.  General position of the input is a reasonable assumption. although
it is seldom guaranteed in practice and it will not necessarily remove unpredictable

degeneracies. Fortunately. the unpredictable degeneracies that arise in the boundary



evaluation algorithm tend to be easy to handle by special cases. The special cases for

the unpredictable degeneracies mentioned in Section 7.1.2. are:

e Patch representations: Since these basically appear the same way as input de-
generacies, they must be treated the same way. Perturbation methods are
probably more appropriate than special cases for dealing with these.

e Parameterizations of Patches: The particular parameterization used for a patch
can lead to several unpredictable degeneracies. Two different points may have
the same coordinate value in one dimension. which must be taken into account
in a variety of point comparison operations. Intersection curves (and trimming
curves) may be horizontal or vertical in the patch domain, making computa-
tions with them much simpler. but causing them to be treated as a special case.
A ray direction might be chosen that overlaps a trimming curve or hits a trim-
ming curve or patch at a trimming curve endpoint. This can either be handled
by detecting the case and choosing a different ray direction/test point (which
should always be possible). or by simply augmenting the ray test procedure to
take into account the other possibilities. Points may be equal due to intentional
degeneracies. or may be equal due to unpredictable degeneracies. For example.
two curves might intersect at a point that is at a local maximum in s of one
of the curves. That intersection point, then. will also be a segment endpoint,
since that local maximum will be one of the turning points found when resolving
curve topology. Such unpredictable cases are usually a result of the choice of
patch parameterization. and they can be handled by performing an explicit test

for point equality.

e Point Intervals: Because the intervals surrounding points are assumed to be
open. points sharing interval endpoints can still be compared directly. The
only important consideration is to take equality into account when performing

comparisons (i.e. < vs. <).

e Points Lying on Cut Value: Every time a point is to be cut. the cut value is first
tested to determine if it is the exact solution to the corresponding polynomial. If
so. the hybrid representation of the point allows it to be expressed as a rational

number instead of an interval.

Another group of degeneracies that can be handled by special cases are the bor-

derline degeneracies (Section 7.1.1.1). The boundary evaluation algorithm described
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can encounter these cases. For example, the first step of boundary evaluation is to
form the entire intersection curve, which is the result of the entire surface of the other
solid intersected over the domain of the patch. This intersection may be degenerate,
even if the original solids were seemingly in a valid position. Borderline cases are

treated the same way as input degeneracies.

7.3.2 Symbolic Perturbation

Perturbation methods are used to eliminate a large group of degeneracies at one time.
The basic idea is that since a small perturbation of the input data will (by definition)
remove any degeneracy, the computation is performed on a perturbed problem rather
than on the actual input problem. Symbolic perturbation modifies the data by a
variable amount, and the final answer is the result of the limit as that variable goes
to zero. Thus, degenerate conditions are not explicitly dealt with.

Previous approaches and a more general discussion of perturbation methods are
described in Section 2.3.2.2. In all previous perturbation approaches, the flow of the
geometric algorithm is determined by predicates that can be directly expressed in
terms of the input data. Each piece of input data is perturbed by some svmbolic
amount. and thus the predicate is replaced by a function involving these svmbolic
amounts. Only the sign of the predicate is important. and thus the sign of the new
syvmbolic predicates can be determined by simple computations on the input variables.

A simple example, used by Fortune {35] to deal with degeneracies in an exact
polyhedral modeling system, is the plane orientation test. This test determines on
which side of a plane a point lies. The point is defined as the intersection of three
planes. If the coefficients of the plane equations are of the form (a,, b;. c;.d;). then

the plane orientation is determined by the sign of the determinant:

a, b ¢ d;
i b ¢

Qg bk Ck dk

a

a b c d

When the point lies on the plane (a degeneracy where four planes meet at a point).
this determinant evaluates to zero. A perturbation can be induced that shifts all of
the planes slightly. The coefficients of the plane equation become (a,. b,. c;.d; + oi€'),

where o, is either 1 or —1, and ¢ > 0 is the amount of the perturbation. This
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perturbation scheme moves the planes either in or out along the normal direction.

The plane orientation predicate then becomes:

a; b ¢ di+oe
a; bj C]' dj +@J£j

k = ("2)
ar b o dir + Ore
a b ¢ d(+0161
l b, ¢ d
:' bl cl dl a;, b ¢ a, b c, a, b, < a, b, cy
a’ bJ C’ d] +oie' | ar bk ek |~ ak b o [+oxek|a, b, ¢ (- a; b, ¢
AN a b q aq b «q a b ar b o
a b o 4
(7.3)

So. whenever predicate 7.1 was to be used originally, it is replaced by the perturbed
function 7.2. Since one is only interested in the sign of the predicate. only the sign of
7.3 is of interest. as € goes to zero. This means that the sign of 7.2 can be found by
evaluating the terms of 7.3 in order of increasing power of e. Notice that the first term
in 7.3 is identical to 7.1. Thus, if no perturbation is needed. no extra computation
is performed. Only when a degeneracy is present are the later terms of 7.3 used to
determine a sign of the predicate. Using a perturbation such as this. degeneracies of
the form of four planes meeting at a point are dealt with.

[deally. a similar symbolic perturbation scheme could be followed for the curved
surfaces. One such example might be to formulate evervthing in terms of the sur-
face equations. and then perturb the equations slightly to eliminate degeneracies. A
number of problems occur with such an approach. however. While planes can be
casily perturbed by translation along a normal direction. such a perturbation is not
as well defined for curved surfaces. Adjusting the constant term of an implicit surface
equation. however. might achieve a similar result. In any event. solids would need to
be defined only in terms of the surface equations. with all edges and vertices defined
only implicitly in terms of those surface equations.

A more fundamental difficulty is in defining appropriate predicates. This diffi-
culty applies to any symbolic perturbation scheme for boundary evaluation for curved
solids. While the plane orientation predicate is sufficient for an entire polvhedral
boundary evaluation algorithm, no similar single predicate is known for boundary
cvaluation for curved solids. Simply knowing which side of an implicit surface a point
lies on is not enough information to perform boundary evaluation. More significantly.

three surfaces may meet in 0, 1. or many points. as opposed to three planes. which
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(generically) always meet at one point. Thus, any predicate would not be nearly as
simple as the determinant of the plane orientation test. Even if a single predicate
were found. it is possible that the symbolic expansion of the perturbed predicate
would not have a (relatively) simple formulation, like the plane orientation test. This
is not to say that no appropriate predicate. or combination of predicates, for curved
surfaces is possible, only that no such scheme is apparent.

If such a scheme were to be developed, it wouid require a significantly different
approach to boundary evaluation than the one outlined in this dissertation. The
representations and computations used here are not geared toward simple predicates.
Predicates for symbolic perturbation are generally defined so that the perturbations
on the input can be directly mapped to perturbations in the predicate evaluation.
The approach described in this dissertation performs most calculations based on de-
rived data. rather than directly on the input data. For example. the first step of the
boundary evaluation algorithm is to form the intersection curve between two surfaces
in the patch domain. Thereafter. the intersection curve is used instead of the two
surface equations. Points are generated by intersecting with the intersection curve,
rather than a three-dimensional intersection of surfaces. This provides significant per-
formance gains (and gives a representation in line with traditional B-reps), but makes
the representation and computations incompatible with likely symbolic perturbation
methods.

Because it seems unlikely that a practical symbolic perturbation scheme for curved
surfaces can be easily obtained. instead a different type of perturbation is proposed.

This is numerical perturbation. and it is described in the following section.

7.3.3 Numerical Perturbation

While symbolic perturbations modify the input data by svmbolic amounts that are
used as their limit approaches zero, numerical perturbations induce real changes to
the geometric values of the input data. With numerical perturbations. the actual
data is modified. resulting in a solution that is truly different than that of the given
input. With symbolic perturbations, the usual effect is to create output with correct
geometric information, but with topological information slightly modified in order to
represent the degeneracy.

The underlying justification for numerical perturbations is the idea of a global
tolerance. That is. there is an assumption inherent in the input that the input data is

correct to within some amount, €. This global tolerance (which could also be expressed
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as local tolerances associated with each input object) often is used to take into account
the inexact nature of real world manufacturing capabilities. Any perturbation of the
input data within the amount of the global tolerance is allowed. Thus, the input data
can be perturbed however is necessary to allow the program to run. as long as the
perturbation is less than e.

There are potential problems with numerical perturbations. First, there is the
chance that a specific numerical perturbation will not eliminate the degeneracy (or
will create another). For example, a vertex of one polyhedron could be perturbed
so that it would lie on the face of another polyhedron (creating a degeneracy), or
two overlapping faces could be perturbed in the same way by the same amount (thus
not removing the degeneracy). If the perturbations are chosen randomly (or even
pseudorandomly). it is extremely unlikely that such an event would happen. A sec-
ond problem is that the perturbed data will have drastically increased bit length.
For example. assume a point has one coordinate equal to 0.34852. and there is a
global tolerance of ¢ = 1078, Then, a perturbed value for the coordinate might be
0.3485200003. The number of bits required to represent this perturbed value is sig-
nificantly higher than that needed for the unperturbed value. Since exact arithmetic
becomes slower the more bits are needed. this can cause inefficiency. While svmbolic
perturbations may be structured so that no additional computation is performed when
there is no degeneracy. with numerical perturbations, all computations can take more
time.

Like symbolic perturbations, numerical perturbations rely on exact computation.
If inexact computation is used. degeneracies can still be created or destroved due to
roundoff error and error compounding. and the perturbation scheme will not guaran-
tee the desired effect.

Tessellation of the curved solid can be viewed as a type of numerical perturbation.
If the curved solid is tessellated into linear faces that are never farther than e from
the original solid. then the tessellated solid is just a numerical perturbation of the
original. As mentioned in Section 2.1.2, there are drawbacks to such tessellations.
Also. such automated tessellations are prone to introducing and maintaining original
degeneracies. For example, if two solids have overlapping edges. their tessellations
can easily have overlapping edges as well. The linear nature of the tessellation may
make computation casier. but does not provide the general handling of degeneracies
that is desired.

In the following sections, two methods for numerical perturbations are proposed
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for handling degeneracies.

7.3.3.1 Random Translation

One numerical perturbation scheme is to perturb the input by applying random trans-
lations. Random rotation and scaling can also be applied, so long as each point on
the perturbed input solid is no more than e away from a point on the original input
solid (and vice versa). Since a random translation accomplishes the effect. and is
easier to understand. the discussion focuses on it.

Consider the examples of the degeneracies in Figures 7.2 and 7.3. Note that for any
of these degeneracies. any translation of one of the solids results in a nondegenerate
case. So. translating each solid by a random amount should remove any degenerate
condition between them.

[t is possible to perturb all the solids in a consistent manner by applying a random
translation to the primitives. Perturbing the primitives perturbs each face. edge. and
vertex of the primitive itself, as well as all edges and vertices of objects constructed
from that primitive. Since each face of the final solid comes from a face of one of
the primitives. and each primitive is perturbed only one time. all uses of a primitive
solid have a consistent face structure. A potential problem can arise. however. with
overlapping surfaces. when the same primitive is used in various parts of the tree.
Figure 7.6 shows a 2D example of this. Although a case as obviously problematic as
the example shown would probably not be part of a design. similar but less obvious
problems occur with only slightly more complex examples.

The problem demonstrated in Figure 7.6 can occur even when the primitives are
perturbed. Since the position of B is perturbed only once. it will be in the same posi-
tion in the first operation as it is in the later one. thus causing overlapping surfaces.
The potential for such cases can be detected by examining the CSG definition of an
object. If the same primitive contributes to many branches of the CSG tree. this case
can happen. At times. such an effect is an intended consequence. In the figure, for
example. (A-B) might be one part of a machine. and B might be a different part.
with no Boolean operation to be performed between the two pieces. The designer
intentionally subtracted B from A to ensure that the two separate parts fit together
closely in the final assembly. Any perturbation that causes (A-B) to no longer meet
B exactly would be changing the intent of the design.

Another option is to translate the two input objects just before a boundary eval-

uation is performed. This ensures that each step of the computation is performed



A-B A-B B

Figure 7.6: Operation leading to overlapping surfaces. At left. two solids, A
and B. are given. At center is the result of a difference operation (A-B). As seen at
right. any time the subtracted object (B) is part of an operation involving (A-B).
there will be a problem of overlapping surfaces.

correctly. but allows results that are completely different than what is specified by
the primitives. Figure 7.7 shows an example for the objects from Figure 7.6. After
forming (A-B). a union with B is performed. A random translation is made just be-
fore the operation. guaranteeing success. The resulting object. however, is not what
would be expected from the definition. If random translations are to be used. special
case detection of situations similar to (A-B)UB should be implemented.

A more general drawback to the use of random translations to remove degeneracies
is that the intent of the design is easily lost. Even though the operation might
complete. the resulting object can be different from what the designer intended. For
example. a designer might assume that operations are regularized. and thus assume
that overlapping surfaces are dealt with in that manner. The random translation
makes regularization of the operation meaningless. and the designer’s intent is lost.
Figure 7.8 shows one example of this. Note that such a problem can also be viewed
as failure on the designer’s part to adhere to the notion of a global tolerance. If
the designer had intended the object to be as in the bottom path of Figure 7.8. the
solid should have been extruded bevond the tolerance level to guarantee the result.
A similar example is shown in Figure 7.9. In this case. no translational perturbation
of the primitive will achieve the designer’s likely intent of cutting a hole all the wayv

through the object.
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A-B B (A-B) UB

Figure 7.7: Random translation before operation yielding incorrect solid.
At left. the two solids as in Figure 7.6. (A-B) and B, are perturbed slightly before a
Boolean operation is performed. A union operation is performed, vielding the solid
shown at right. The resulting solid is clearly different than the solid defined by
(A-B)UB.
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Figure 7.8: Different translations yielding very different output. At left, two
objects that are input to a difference operation. Depending on the perturbation
(shown in the middle). two drastically different output objects are possible (shown at
right). The object at bottom is closer to the designer’s intent.
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Figure 7.9: An example of translations unable to capture design intent. At
left. two objects that are input to a difference operation. The two perturbations,
shown at middle. produce the output shown at right. Neither output reflects the
designer’s intent.
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7.3.3.2 Expanding and Contracting Primitives

A second form of numerical perturbation involves expanding and contracting the
solids. As opposed to random translation, the expansion and contraction is a scaling
performed in a certain way so as to maintain the designer’s intent. For the example in
Figure 7.8. for example. the output would be similar to that of the lower path rather
than the upper one.

There are significant shortcomings of this method. some of which are described
below. The basic principles. however. give a method that eliminates degeneracies.
while making the perturbations more likely to maintain the designer’s intent. This
leads to hope that a more complete method can be developed in the future.

This approach follows the general principles outlined by Fortune in [35]. where the
faces of input polyhedral solids are symbolically perturbed inward or outward in order
to remove degeneracies. For a reasonably complex object. such perturbations can
change the topological connectivity of the object. Fortune’s paper describes how to
deal with this problem (which also arises when rounding face planes) in polvhedra by
using generalized polyhedra and simplification. For curved surfaces. dealing with the
problem is much more complicated. Offsets are not as clearly defined, the topological

changes can be much more complicated, and simplification is more difficult.
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Figure 7.10: Examples of expansion and contraction of primitives. The first
column shows the input. the second the perturbed solids. and the last the final solids.
The top row shows. a union operation. where both solids are expanded. In the middle.

an intersection operation requires both solids to be reduced. At bottom. a difference
operation contracts one solid and expands the other.

The basic idea of this approach is that for two input solids. expanding and con-
tracting the solids eliminates the degeneracies. Furthermore. the operation being per-
formed dictates whether each solid should be expanded or contracted. For a union.
both solids should be expanded, for an intersection. both should be contracted. For
a difference operation. A - B. solid A should be contracted and solid B expanded.
Assuming that the degree of expansion or contraction is different for the two solids.
no degencracies will remain. Figure 7.10 shows some 2D examples of how this works.
similar to ones shown by Fortune [35].

Note that this is not a perfect method for capturing the designer’s intent. De-
pending on which solid is expanded faster, the output in certain cases can be different
than what would be expected. Figure 7.11 shows other 2D examples where the out-

put object does not reflect the original design. If the perturbation were symbolic. the
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Figure 7.11: Examples where numerical expansion and contraction lead to
undesirable results. At top, a union operation is performed. The smaller solid
is expanded more than the larger one. resulting in extraneous faces. Had the larger
solid been expanded more than the smaller one. this would not have happened. At
bottom. in a difference operation, the smaller solid is expanded more than the larger
one is contracted. This results in a notch that is not in the original specification. and
that would not appear had the larger object been reduced more than the smaller one
increased.

results would have symbolic faces. which are geometrically the same as the original
and thus arc usually acceptable. For numerical perturbation. however. such extra
faces are real. which is often not desired. From personal experience, the more com-
mon degenerate cases encountered tend to be of the type shown in Figure 7.10. rather
than those of the type in Figure 7.11. and thus the expansion and contraction usually
perturb solids in the manner desired.

It is important to realize that offsetting the surfaces by a particular amount may
perturb the solid by more than that amount. A simple example is shown in Figure
7.12, where perturbing the lines outward slightly dramatically changes their inter-
section point. [f the lines are perturbed outward by a value €. the point may be

perturbed by much more than e. Similar effects happen when perturbing surfaces.



Figure 7.12: A small perturbation in lines resulting in a much larger per-
turbation of their intersection point.

where slight changes in a surface can cause large changes in the edges and points
formed by intersections with that surface. Note that even if primitives themselves
are not perturbed much. the effect of the perturbation on objects created from those
primitives can be significant.

For all but the simplest curved objects. perturbing each of the surfaces of the
object as described can be difficult. One approach is to apply a scaling to the entire
object. based around the object’s centroid (or some other point). For non-convex
objects. however. scaling about the centroid may not perturb all faces in the desired
direction. Rather than outward or inward relative to the object interior. the surfaces
are perturbed outward or inward relative to some point. A 2D example is shown
in Figure 7.13. Even though such a scaling is not exactly what is desired. it still
climinates degeneracies, and most of the faces are perturbed in the direction desired.
Remember. though. that scaling solids at intermediate stages can lead to the same
tvpes of problems described in Section 7.3.3.1.

If. instead of scaling, a true perturbation of surfaces inward or outward is desired.
computation can become much more difficult. For curved surfaces, a simple trans-
lation of the surface is often not sufficient: instead. an offset surface must be used.
Offset surfaces. however. are difficult to compute and operate on. The standard CSG
primitives. however. are relatively easy to expand and contract. For example. an
ellipsoid can be expanded by just increasing the radius vectors (Appendix A). For
this reason. the numerical perturbation approach proposed perturbs the primitives
only. By perturbing the surfaces of these primitives, all future computations based
on those primitives (i.e. all objects constructed) are also perturbed.

The surfaces of a CSG-defined solid can be perturbed inward and outward by

183



Figure 7.13: The difference between perturbing outward and scaling. At
left. the original object (shown by the dashed lines) has its faces perturbed outward.
resulting in the object shown with the bold lines. At right. the original solid is scaled
from a point in the center. Notice that the interior edges of the object are actually
perturbed inward, rather than outward.

perturbing the surfaces of the input solids. Assume that the CSG tree has been
completely expanded (recall Section 2.1.1 and Figure 2.2). Each primitive is scaled
by some amount. and the computation proceeds as usual. The kev is to understand
how the primitives can be perturbed to eliminate degeneracies. but still provide the
general behavior described earlier (which often matches the designer’s intent).

Perturbation information can be pushed down the tree. For example. say an
object. A is defined by 4 = BUC. If we want to push the boundaries of 4 outward
by one unit. then the boundaries of B and C should be pushed outward by one
unit. B and C would also be pushed outward to compute 4 = BN C. To compute
A = B — C. however, the boundary of B would be pushed outward by one unit. and
the boundary of C inward by one unit. For each Boolean operation in the tree, the
perturbation information for that operation can be pushed all the way down to the
leaf nodes (the primitives). Figure 7.14 shows an example of how the perturbation
information can be propagated down the tree.

[t is tempting to combine the perturbations for each Boolean operation at the
leaves. Each leaf node is then perturbed by the sum of the perturbations from all
operations above it. The difficulty with this idea is that the perturbation information
from one operation may contradict that from another. For example. if a leaf node
had both a union operation and an intersection operation in the tree above it. the

perturbation required for one would be in the opposite direction as the perturba-
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Figure 7.14: Propagating extrusion information. At top. the CSG tree defining
an object. At bottom. the perturbation information for the top node (a union) is
propagated to the leaf nodes. The union requires that both input solids be extruded
outward (the left tree by 1/3 unit. the right by 1/4 in this case). In order for those
inputs to be extruded that way. the primitive solids defined at the leaf nodes must
be extruded by the amounts shown.



tion required by the other. Whichever perturbation is greater will win out, and the
primitive will not be perturbed in the appropriate direction for the other solid.

[t is easy to imagine schemes that can make use of the aggregate perturbation
information passed down from all previous nodes. For example, each previous node
could vote on whether the perturbation should be inward or outward. Another idea is
to identify which operations are more likely to involve a degeneracy (e.g. by some sort
of bounding-box comparison), and use only that perturbation information. Numerous
such schemes can be developed, and it is possible that one of them will lead to a
system that deals with all degenerate cases reliably. Even if no ideal scheme can be
developed. schemes (such as those mentioned) that are more likely to give a good
perturbation (i.e. one in which the resulting solid reflects the designer’s intent) than
a bad one can be easily designed.

It is important to remember that the perturbations should not cancel out (oth-
erwise there is effectively no perturbation. and degeneracies can still arise) and the
amounts of perturbation should be different for any two solids (or. again, the de-
generacies might not be removed). As long as this happens (ignoring the possibility
of introducing new degeneracies by the perturbation). the degeneracies are removed.
and no computational difficulties due to degeneracies should arise. The only problem
is that accuracy is lost.

There are other ways of adapting this scheme slightly. For example. objects could
be chosen to be translated toward or away from each other. There are significant
problems with this method as well, but the concept of a guided perturbation (rather
than a purely random one) to more closely mimic the designer’s intent will lead to

more effective numerical perturbations.
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Chapter 8

Implementation and Performance

The representations, algorithms. and speedups mentioned in earlier chapters have
been implemented as a part of a boundary evaluation system. This system has been
applied to a number of examples. both artificial and from the Bradley Fighting \ehicle
model. a CSG model provided courtesy of the Army Research Lab. This chapter
discusses some of the details of the implementation. as well as describes the results
that have been achieved.

The implementation has been in two major parts. First. a librarv. MAPC. was
developed to handle the underlying two-dimensional operations that form the ba-
sis for the entire boundary evaluation algorithm. Although it is specifically geared
to boundary evaluation. MAPC also can be applied to other geometric problems.
The exact boundary evaluation system. ESOLID. was then built on top of MAPC.
ESOLID includes routines to convert data from the BRL-CAD system to the ESOLID
format. MAPC and ESOLID are discussed separately in the following sections. In or-
der to understand some of the more general details regarding input data. the material
presented in Section 3.5 should be reviewed.

Although I took the lead role in the development of both MAPC and ESOLID.
[ am not the sole developer. Tim Culver, Shankar Krishnan. and Mark Foskev have
cach made significant contributions to the code. In total. MIAPC and ESOLID consist

of over 45.000 lines of code.

8.1 The MAPC Library

MAPC. which stands for Manipulation of Algebraic Points and Curves. is a C++ li-

brary that exactly represents and operates on algebraic plane curves. MAPC provides



classes for polynomials, 2D bounding boxes, and the points and curves as described
in Chapter 3.

Other libraries and systems provide implementations that are similar to portions
of MAPC. However, currently no other library or system is known that provides both
the exact computation and the geometric data structures provided by MAPC. For
example, computer algebra systems can give exact solutions to systems of polyno-
mials, however these do not provide geometric representations for points and curves.
Systems that represent points and curves don’t use exact representations to do so.

Although MAPC was developed specifically to aid in boundary evaluation. the
routines have more general application. MAPC is being used in a program to find
the exact medial axis of a polyhedron [20]. An early version of MAPC has been made
available for download via the web. Although no record has been kept of downloads
or users. from various email responses, it has been downloaded by other people, and
at least one person has used the routines in her research work [100)].

Section 8.1.1 describes the details of the classes implemented in MAPC. Section

8.1.2 presents timings for several example problems.

8.1.1 Implementation Details

The MAPC library consists of over 32.000 lines of C++ code. It is implemented
on top of the LiDIA library [11], which provides exact rational number representa-
tions and arithmetic. Another rational number library could have just as easily been
used. LiDIA was chosen because it provided the functionality being sought. and was
faster on some basic tests than similar libraries. such as LEDA [71]. In addition.
the LAPACK library [3] is used to find polynomial roots (for increased efficiency.
Section 6.4) by the eigenvalue-based methods described by Manocha [66]. Another
root-finding method could have easily been used instead. Besides the methods out-
lined in Section 4.1 for curve-curve intersection. MAPC provides methods based on
multivariate Sturm sequences (Section 2.2.3.4). Those routines make more extensive
use of LAPACK for floating-point speedups.

A chart showing the primary MAPC classes is shown in Figure 8.1. The functions
of each of these classes are described in the following subsections.

Besides the speedups mentioned in Chapter 6. two other speedups have been
implemented and incorporated into the MAPC routines. These speedups can be
optionally included. and have not been part of the publicly released MAPC code.

One speedup. which will be referred to here as fp-roots, is a univariate root isolation
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Figure 8.1: The organization of MAPC. Primary classes in MAPC. shown by clear
boxes. External libraries are shown in shaded boxes. Dashed lines show inheritance.
Solid lines indicate a class or library is used as a member variable of another class.
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method that performs all computation in standard (inexact) floating-point. but with
guaranteed error bounds. Thus. MAPC is able to skip the time-consuming exact
Sturm sequence generation under certain circumstances. The other speedup is incor-
poration of an arbitrary precision floating-point library, PRECISE [63]. PRECISE
allows exact computation. but uses arbitrary precision floating-point numbers rather
than arbitrary precision rational numbers. It can also perform inexact calculations
with more predictable (and controllable) error growth. Although PRECISE could be
applied to many parts of MAPC (possibly even replacing all LiDIA bigrational com-
putations). it has been incorporated. thus far. only in speeding up univariate Sturm

sequences.

8.1.1.1 Polynomials

Polynomials in MAPC are defined by the K_POLY class. The base class allows
representations of polynomials with any number of variables and of arbitrary de-
gree. Three classes. distinguished by the format of their coefficients. inherit from
the K_POLY class. These are the K_ FLOATPOLY, KINTPOLY. and K_RATPOLY
classes. which have coefficients that are IEEE standard double precision floating-point
numbers. LiDIA bigintegers (arbitrary precision integers). and LiDIA bigrationals (ar-
bitrary precision rational numbers). respectively. Conversions between the types are
provided. K_RATPOLYSs are the basic polynomial in almost all MAPC routines.
K_FLOATPOLYS are used only for implementing floating-point speedups (Section
G.4). and K_IINTPOLYS are used in the optional multivariate Sturm code.

In the implementation of the polynomial classes. a dense representation for the
polyvnomials is used instead of the sparse representation used in most computer al-
gebra systems. This means that space is allocated for all coefficients up to a certain
power. rather than just allocating space for nonzero coefficients. For example. a dense
representation of the polynomial r!% + 1 would require storing 101 coefficients. while
a sparse representation would require only 2 coefficients. In most situations. including
general computer algebra systems, the advantage of a sparse representation is unde-
niable. The polynomials encountered in real-world boundary evaluation examples.
however. are almost always dense. The dense representation allows the coefficients to
be stored in an array structure that can be slightly more efficient to work with and
much easier to write code for.

The MAPC polynomial classes include methods for many of the basic polynomial

operations. These include functions for accessing variables. addition, subtraction.
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multiplication, division by a known factor or (for univariate polynomials) with a
remainder. differentiation, evaluation at a point or over an interval, variable sub-
stitution. Bernstein basis conversion. and sign evaluation at a point. More general
polynomial functions, such as polynomial factorization, are not included in MAPC.
Such functions are useful in general computer algebra systems but are not used in
boundary evaluation. The polynomial classes also store the associated Sturm se-
quence. so that it does not have to be recomputed each time it is needed.

8.1.1.2 Points

MAPC can represent points in one and two dimensions. The underlyving classes
for these points are the ROOT1 and ROOT?2 classes. These classes represent an
interval that may contain an arbitrary number of roots of a univariate polvnomial
(in one dimension) or of a pair of bivariate polynomials (in two dimensions). The
classes contain all of the information necessary to count the number of roots within
the interval. using univariate or multivariate Sturm sequences. In addition, basic
routines for isolating roots and reducing interval size are provided. Note that when a
2D point is found using the algorithm described in Section 4.1, the resulting ROOT?2 is
guaranteed to contain a single root of the polynomials, and is just as easily represented
by two ROOT1s (one for each coordinate).

The K_POINT1D and K_POINT2D classes represent individual points. Each
class uses a hybrid representation, allowing a coordinate to be expressed as a ra-
tional number when possible. A K_POINTID. then. is either a single rational num-
ber. or a ROOT1 that contains exactly one root (not on the interval boundary). A
K_POINT2D. like the point description in Section 3.3.1. can have both coordinates be
rational numbers. have one coordinate a rational number and the other a ROOT1 that
contains exactly one root, not on the boundary. or have both coordinates expressed
by a ROOT? that contains exactly one root.

The ROOT1 and ROOT?2 classes are provided in MAPC so that library users
can access them for Sturm sequence computations. In boundary evaluation. only the
K_POINTID and K_POINT2D classes (which indirectly make use of the ROOT1 and
ROOT?2 classes) are used, and the multivariate Sturm computations are never used,
since a more efficient method for curve-curve intersection in 2D is available.

Several operations are provided for points. Besides root isolation. routines are
provided to perform overlap tests. comparison and equality tests, sorting. and in-
terval reduction (Section 3.3.2.1). K_POINT2Ds store pointers to equivalent points
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in other domains, or equal points in the same domain. K_POINT1Ds also can be
treated as real numbers (rather than just as points), allowing for basic operations
(addition, subtraction, multiplication. division, and square root) to be performed on
them. Although such operations are provided in MAPC, other representations are

more efficient and appropriate for performing these operations [14].

8.1.1.3 Curves

MAPC provides a class to represent curves. as described in Section 3.2. A K_.CURVE
is represented by a polynomial and an ordered list of K SEGMENTs. A K. SEGMENT
consists of a starting point and an ending point, each of which is a K_POINT2D.

Closely associated with both curves and segments is the concept of the bounding
box. This is represented by the K_.BOXCO2 class, which provides a 2D bounding box
that can be either open or closed along the boundaries. Each segment is associated
with a bounding box that can be formed by finding a bounding box that contains
both segment endpoints (since the segment is assumed to be monotonic). Segment
bounding boxes can be merged to find a bounding box for the entire curve. Although
only used for bounding boxes in practice, the K_LBOXCO2 can be used for general 2D
interval representations.

Several operations are provided for these classes. Operations to merge. inter-
sect. or compare K_BOXCO2s are provided. K_ SEGMENTSs can be split in two and
subdivided so that their bounding boxes don’t overlap. Curves can be intersected.
split. refined (by adding a point to them), rotated. and checked for point contain-
ment. In addition. routines to sort K_POINT2Ds along a K_.CURVE are included. A
K_CURVE can also store a pointer to an equivalent curve in another domain. along

with the correspondence with that curve.

8.1.2 Performance Results

MAPC provides the underlying support for the boundary evaluation system and has
applications to other geometric problems. It is important to understand the perfor-
mance characteristics of MAPC, since they have a major effect on the efficiency of
ESOLID.

In this section. some basic timing results are given for the basic computations
in MAPC. as well as for a couple of simple applications of MAPC. In all of these

cases. it is difficult to determine a comprehensive test. Worst-case bounds often give
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Case

Degree of Curves

Bits in Coefficients
Number of Roots
Time using 2D Sturm 0.5
Time Using New Algorithm || 0.0

1

2| 2.4 3.3 4,3 4, 4
.619.24 123,20 18,23 | 24,18

4

1

7

[N

821 20.26 | 123.29 | 333.48
0.28 1.01 8.97 | 36.92

% of Time in Resultants 16 43 17 4 2
% of Time for 1D Roots 30 42 79 95 98
% of Time to Find Bozx Hits 54 15 5 1 0

Table 8.1: Timing results for root isolation. Five test cases are shown for pairs
of curves of varyving degree and coefficient size, Timings are presented using both a
heavily optimized 2D Sturm algorithm and the algorithm of Section 4.1. The time
spent in the three main portions of the new algorithm is given in percentages.

timing estimates that are far worse than typical timings seen on real-world data.
For example. a degree m curve and a degree n curve can intersect in up to mn
real intersections. in general. In practice, the degree four (and higher) curves often
encountered in boundary evaluation intersect at most once or twice in the region
of interest. Also. for a given problem,. input data is often specialized. Different
problems may provide completely different input data. vielding completely different
performance characteristics. For example, a problem other than boundary evaluation
might typically encounter curves that meet in close to the maximum theoretical bound
on the number of roots. Determining meaningful tests for problems that vary greatly
in complexity for different cases is worthy of a great deal of further study-

The examples presented here provide a general feel for the capabilities of N\[APC.
the speed of various operations. and the relative time taken by various portions of
the code. The examples here do not use the speedups provided by fp-roots and
PRECISE [63] mentioned earlier. Either of those speedups would be likely to increase
performance further. The timings in this section were first presented in a conference
paper [57]. All timings given in this section are in CPU seconds on a 400 MHz

Pentium [I processor with 128 MB of memory.

8.1.2.1 Isolating Roots

Table 8.1 presents example timings for two-dimensional root isolation. Given two

polynomials and a 2D interval. the timings are for isolating all roots within that
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interval to a range no larger than 0.001 (in each coordinate) of the original interval.
The table lists the degrees of the two input polynomials and the number of bits needed
to represent their coeflicients. Also shown is the number of intersections between the
curves in the area of interest (i.e. the number of common real roots of the polynomials
in the input interval).

The table lists times both for an implementation of 2D Sturm sequences. and
for the algorithm presented in Section 4.1. Although a great deal of time was spent
optimizing the 2D Sturm computation (see [58] for some of the optimizations). it
proved significantly slower than the new approach on all test cases. Recall. however.
that the 2D Sturm method has its own set of advantages and disadvantages. For
example. it can handle certain cases (such as singularities) correctly, but has trouble
when a root lies on one of the lines forming the boundary.

The bottom portion of the table shows the percentage of time spent in the three
ma jor sections of the new algorithm. The three sections are the resultant computation
(used to convert the two bivariate polynomials into two univariate polynomials, one
for each coordinate). the 1D root isolation (the time to isolate the potential roots in
the coordinate directions). and the time for box hits (intersecting the polynomials with
the box boundaries. and classifying the roots). Notice that for increasing complexity
of the polynomials. the time spent in 1D root isolation begins to dominate. Even
though the box hit tests also involve a number of 1D isolations, these are for much
lower-degree polynomials, and thus are much faster. A simple derivation shows that
when the input polynomials are of degree m and n. with bit lengths a and b, the
univariate polynomials obtained by Sylvester’s resultant can have degree mn and
coefficient bit length (an + bm) + log,(m + n). Another simple derivation shows
that the univariate polynomials in the box hit tests have at most degree m with
(a +tn) + log, n bits per coefficient (or degree n with (b + tm) + log, m bits). where ¢
is the number of bits in the substituted value. This difference in degree and bit length
will have a large effect on the time taken to isolate the roots of those polynomials.

Remember that some potential speedups (PRECISE and fp-roots) were not used
in these timings. Such speedups directly affect the running time for univariate root
isolation. and thus improve the total running time. As the results from [63] indicate.
the use of PRECISE can improve the time for univariate root finding by more than
an order of magnitude, even making the time to compute resultants dominate the

time for 1D root isolation.
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8.1.2.2 Curve Topology

Figure 8.2 demonstrates the performance of the curve topology algorithm described
in Section 4.2. Given an algebraic plane curve (a bivariate polynomial). the curve is
broken into a number of pieces, each of which is guaranteed to be monotonic in both
of the coordinate directions. Listed in the table are the degree of the equation. the
number of bits necessary to represent the coefficients, the number of turning points in
the region of irterest, and the number of separate components in the region (i.e. the
number of curves the algebraic plane curve forms). The images show the algebraic
plane curve. the points found on the curve (both turning points and points found in
intermediate stages of the algorithm). and lines connecting those points in order. The
time taken to resolve curve topology is divided into two portions. As is seen from
the numbers, for all cases, the time to compute the turning points clearly dominates
the other steps of the algorithm. Thus, speeding up 2D root isolation is of primary

importance in speeding up resolution of curve topology.

8.1.2.3 Sorting Points

Sorting points along a curve is an important part of the boundary evaluation algorithm
(the ordering in curve correspondence, see Section 5.5). It is also an important part
of finding the medial axis of a polyhedron [20] and is useful for other geometric
problems as well. Point sorting is a well-known problem, and several methods have
been proposed for it [32]. Point sorting routines are included in MAPC.

Figure 8.3 demonstrates one example of point sorting. In the figure. the degree
three curve. shown in bold. is intersected with 25 other curves, shown by thinner
lines. The other curves, which range from horizontal and vertical lines to degree five.
intersect the bold curve a total of 52 times. These points are sorted along the curve
shown in bold. Performing the 25 curve-curve intersections took a total of 102.3
seconds. while sorting the points, including resolving the topology of the curve. took
less than one second. Again, 2D root isolation is the major component of the total

running time.

8.1.2.4 Curve Arrangements

Given a set of curves passing through a domain. the curves partition the domain into
a number of distinct regions. Determining that partitioning is referred to as the curve

arrangement problem. Each individual region that is created by the partitioning. i.e.



‘ /
4
Case 1 [ 2 | 3 4
Degree of Equation 3 4 4 b}
Bits in Coefficients 20 18 5 60
Number of Turning Points 2 3 24 5
Number of Components 1 3 4 2
Time to Find Turning Points || 0.15 | 0.48 | 0.85 | 92.27
Time to Run Algorithm 0.04 1 0.06 | 0.21 | 0.09

Figure 8.2: Curve topology algorithm results and timings. The figures show
four test cases along with the points that the curve topology algorithm finds. con-
nected by lines. The table gives information about each curve within the domain. the
time required by the algorithm to isolate the turning points. and the time required
to run the topology algorithm.
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Figure 8.3: Sorting points along a curve. The curve along which the points are
sorted is in bold. The points to be sorted are the 52 intersections of the bold curve
with the other 25 curves shown. Finding all intersections takes 102.3 seconds, and
the time to resolve curve topology on the bold curve and sort the points takes less
than one second.



a continuous region bounded by curves and/or the domain boundarv and without
any other curves passing through, is called a face of the arrangement. Determining
the arrangement means finding the set of curves bounding each face. along with
the connectivity between faces. Most of the patch-level operations within boundary
evaluation can be thought of as a curve arrangement problem. The intersection curves
with the various patches and the trimming curves partition the region. Boundary
evaluation finds the particular faces created by the arrangement that are a part of
the final solid B-rep.

Figure 8.4 shows four curve arrangement examples. In each example. curves subdi-
vide the region into a number of faces. The number of curves. as well as the maximum
bit-length of the numerators and denominators of the coefficients. are listed in the
table. A program was written to evaluate the curve arrangement. given a set of input
polynomials (i.e. input algebraic plane curves). The table also lists the number of
faces in the arrangement. as well as the total time taken to find all the faces. Finding
the faces includes resolving the topology of each curve, intersecting each curve with
every other curve and then subdividing the curves. finding all faces. and determining
the ordered list of curves around each face. which also gives the connectivity between
faces. Again, it should be emphasized that these timings are not the fastest possible.
For example. applying PRECISE to the curve arrangement problem yvielded speed
improvements ranging from over 30% for the faster cases from Table 8.4. to more

than 90% (i.e. over an order of magnitude) for the slowest cases.

8.2 ESOLID

ESOLID is a system for performing exact boundary evaluation. It includes classes to
define patches and solids as indicated in Chapter 3. a program for conversion of CSG
primitives and CSG trees from the BRL-CAD format to a directorv-based format.
and a program to read CSG data from a directory structure and convert the data
to B-rep format. with optional output to a B-rep viewer program. Together. these
classes and programs are used to perform exact conversions from BRL-CAD data to

B-reps.
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3
Case f 1 1 2 | 3 | 4
Number of Curves 3 3 6 12
Coeff. Bit size (Num./Den.) || 25/1 | 19/14 | 25/14 | 62/17
Number of Faces 9 11 31 171
Time 8.38 | 16.95 | 120.89 | 1142.21

Figure 8.4: Arrangement of planar algebraic curves. The figures show a region
partitioned into a number of faces by the arrangement of curves. The application finds
all subregions. the segments of curves bounding each subregion, and the connectivity
between subregions. The table shows the bit-length of the coefficients of the curves
(numerator bit-length. denominator bit-length), the number of faces generated by the
arrangement. and the total time taken to compute the arrangement. The curves have
maximum degree 1.
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8.2.1 Implementation Details

ESOLID is written in C++, and is built on top of LiDIA and MAPC. ESOLID
consists of approximately 13,000 lines of code. in addition to the code for MAPC.

Figure 8.5 gives a diagram of the major portions of ESOLID. The diagram il-
lustrates the major classes and components of ESOLID, along with how each part
can form other parts. For example, the K_SOLID class is made from K_PATCHs.
and can be formed from boundary evaluation, from BRL-CAD conversion, or from
a combination of K_PARTITIONs and a K_.GRAPH. Each of the major sections of
ESOLID is described in the following subsections.

8.2.1.1 ESOLID Classes

ESOLID defines a new group of classes used to represent solids. This includes the
KSURF. K. PATCH, K_.PARTITION. K.GRAPH. and K_SOLID classes. With the
exception of the K_.GRAPH class, these classes all rely on the classes defined in
MAPC.

Support classes: Besides the classes shown in Figure 8.5. a few other supporting
classes are provided. Three-dimensional intervals. similar to the K_BOXCO?2 class in
MAPC. are provided. These allow points to be bounded in three dimensions. Also
included is the T AIATRIX class to store 4 x 4 transformation matrices. This class
includes the ability to transform polyvnomials and perform an inverse transform. which

is necessary when transforming the surfaces of a solid model.

Surfaces: The K_SURF class is defines a surface. It can store both implicit and
rational parametric forms of a surface. each defined using K_RATPOLY's from MAPC.
In addition. a Bernstein basis representation can be computed and stored. for use in
Bezier patch output. Very few operations are provided for surfaces. A surface can
be modified by a T_MATRIX by computing a linear combination of the parametric
polynomials and applying an inverse transform to the implicit form. The K_SURF
class also computes a 3D axis-aligned bounding box for any interval in the parametric
domain. This is useful for finding the 3D bounding box of a 2D point (possibly

represented by an interval) in the domain. or for an entire patch.

Patches: The K_PATCH class implements patches, as defined in Section 3.1. A
K_PATCH stores a wide range of data. A K_SURF specifies the patch surface. and a
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Boundary Evaluation BRL-CAD Converters
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K_SOLID |[-._
~_ .l
K PATCH — K_PARTITION K_GRAPH
K_SURF

Figure 8.5: The major parts of ESOLID. The shaded boxes indicate external
libraries used in the code. A solid arrow indicates that one library or structure is a
necessary part of another. A dashed arrow from one structure to another means that
the source structure can be used to form the destination structure.
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2D interval specifies the patch domain. An array of K_.CURVEs gives the trimming
curves. Parallel arrays of pointers to K_PATCHs and K_SURF's list the adjacent patch
and adjacent surface corresponding to each trimming curve. In addition, a K_PATCH
contains data structures to hold the additional data generated during boundary eval-
uation. This includes parallel arrays for the intersection curves. similar to those for
the trimming curves. In addition, separate structures to store the joincurves formed
during curve merging are provided.

Several operations are provided for K. PATCHs. Routines are provided to deter-
mine whether a point is in the patch domain or patch trim region (i.e. 2D point loca-
tion). split trimming curves. merge intersection curves, subdivide into many patches
in order to split loops of intersection curves, recompute necessary domain boundaries.
and output as an (approximated. not exact) trimmed Bezier patch, for display pur-
poses. Most significant is the intersection routine, which performs all of the first stage

operations of the boundary evaluation algorithm.

Partitions: The K_PARTITION class defines all data needed after the K_ PATCHs
are partitioned. Since each partition comes from a single K_PATCH, most infor-
mation regarding which curves form the partition boundary are just references to
the appropriate curve from the source K_.PATCH. A K_PARTITION can be used to
create a K_.PATCH, thus allowing the formation of new solids once the appropriate
partitions have been selected. K_PARTITIONS serve mainly as an intermediate data
storage structure. Some of the functions of K_PATCHs are duplicated, with the onlyv

significant new function being 2D point generation.

Graphs: The K_GRAPH structure stores the topological structure of an entire
solid. It maintains a node for each partition, along with adjacency between the
partitions. and a record of whether the adjacency is along a solid edge or dashed edge
(Section 5.8.2). The graph structure is computed from a solid once all partitions have
been formed during boundary evaluation. 3D point location results are propagated
through the K_.GRAPH data structure to determine which partitions to use in the final
solid. Although some basic graph algorithms are provided as part of a K.GRAPH
(c.g. depth-first search and connected components). it is geared toward boundary

cvaluation and is not intended for use as a general graph data structure.

Solids: The K_SOLID class represents an entire solid. The only data stored by the
class is the collection of K_PATCHs that make up the solid. The routines provided for
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K_SOLIDs include the ability to merge (i.e. join, Section 8.2.1.2) two solids. perform
3D point location, transform a solid by a T_MATRIX, and output a solid as a collec-
tion of approximate trimmed Bezier patches (for display purposes). The fundamental
operation in boundary evaluation. performing a Boolean operation. is also defined
directly on this class, taking two K_SOLIDs and the type of operation as input. and
returning a single K_SOLID.

8.2.1.2 Boundary Evaluation

The classes described in the previous sections provide all of the basic functionality
needed for boundary evaluation. The Boolean operation defined on the K_SOLID
class is effectively the implementation of the boundary evaluation algorithm described
in Chapter 5. In order to build a somewhat complex model. however. a CSG tree
must be read. and CSG primitives must be converted to B-rep. ESOLID includes a

program to do this.

Primitives: The program has several modes of operation. including ones to read a
single primitive. read pairs of primitives and perform one Boolean operation. or read
an entire CSG tree. In all cases. the program reads descriptions of CSG primitives in
a high-level format. For example. a box is specified as eight corner points. given in a
specific order. Since the CSG tree mode of operation is the most useful. it is the one
described hereafter.

As is mentioned in Section 3.5. roundoff error in the input data can modify the
nature of the input data. For example. four points that are supposed to form the
corners of a face of a cube might not all lie in the same plane. One choice is to
accept the data as given. Another choice, which is an optional feature of ESOLID.
is to try to understand the designer’s intent. and modify the input data slightly. So.
in the case of the cube. for example. plane equations can be determined for each
of the six faces. based on taking three of the four corner points for the face. New
corner points can be found by intersecting those plane equations. If the new corner
points are within some small tolerance of the old ones, the new corner points are used
instead. Thus. the resulting faces are planar rather than bilinear (as would have been
necessary otherwise), making future computation simpler. Although this approach
does not treat input as exact. it is still consistent. since the input is only modified
once at the time it is read in, and the new values are used consistently in all of the

subsequent computations. Besides the approach just mentioned for boxes. a similar
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option is provided in ESOLID to treat generalized cones. The vectors describing the
cone face axes and centerline are checked for perpendicularity and parallelism, and
the radii are compared for proportionality. Again, if the input data is within a small
tolerance value, the data can be modified to ensure perpendicularity, parallelism, or
proportionality. This helps to prevent a cone that is meant to have a degree two

surface from instead being treated as a degree four surface.

Operations: Besides primitives, input can include Boolean operations and trans-
formation data. Boolean operations include union. intersection, and difference. and
operate on pairs of existing solids (i.e. solids already in memory). Transformations
are specified as a 4 x 4 matrix that represents the linear combinations to be applied
to the parametric form of a single existing solid.

One other type of operation, the join. is allowed. The join operation takes as
input a number of solids and blindly merges them together. If two disjoint objects
are given as input. the join is equivalent to a union operation. Join operations often
merge two objects with overlapping surfaces. This happens because a cavity will have
been created in one object by subtracting another object that is later joined. If two
objects being joined are not disjoint, the resulting model is probably invalid (since
it contains self intersecting surfaces), although no explicit check of this is performed
in ESOLID. A join operation is commonly used to group together distinct parts
of a model into one model. For example. a description of a car model might join
together the models of the engine. body. and frame. Generally, models resulting from
a join operation should not be used in later Boolean computations, since they may

be invalid.

Input tree format: ‘*he input CSG tree is stored in a directory tree structure
that exactly mimics the CSG tree. For example. to represent C = 4 — B. a directory
is created for C. The C directory has two subdirectories, 4 and B. each of which
contains the description of the primitive objects. Within the C directory is a file
specifying that a difference operation should be performed and giving the names of
the two subdirectories. The C directory has two subdirectories. A and B. each of
which contains the description of the primitive objects.

The boundary evaluation program reads the description file from one directory-
and then recursively reads the description of subdirectories. When a leaf directory

is reached (i.e. one in which a primitive is specified). a K_SOLID is formed for that
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primitive, and that K_SOLID is passed back to the parent directory. For a Bool-
ean operation, once a K_SOLID has been found for each subdirectory, the Boolean
operation is performed. and the resulting K_SOLID is passed back. There is only
one subdirectory for a transformation operation and once the K_SOLID for that sub-
directory is found, the solid is translated and passed up to the parent. For a join
operation, there can be many subdirectories. The K_SOLIDs from all of these are
merged together to form a K_SOLID that is, again, passed back to the parent.

Output: A K_SOLID can be optionally output at intermediate stages (i.e. into a
file in every subdirectory). The program implemented with ESOLID outputs all data
in an approximate trimmed Bezier patch format. This is useful for visualization. but
does not reflect the exact representation that is maintained within the program itself.
The K_SURF for each K_.PATCH in a K_SOLID is converted to a Bernstein basis,
and the patch domain is used to define a Bezier patch. The trimming curves in each
K_PATCH are tessellated into a number of linear segments (by intersecting the curves
with a number of horizontal and vertical lines). The patch and trimming curves are
output to a file that is viewed using an OpenGL program. Since no material properties
are read on input or maintained during boundary evaluation, no material properties

(such as color) are output.

Usefulness: The boundary evaluation program included with ESOLID serves well
as a testbed to explore performance characteristics of the ESOLID implementation.
[t is not well-suited for more general applications. however. The input directory
structure is unwieldy for most practical applications. The limitation of output to
trimmed Bezier patches. rather than an exact format. makes the program difficult to
integrate with a program that would like to use the exact K_SOLID. For ESOLID to be
used in any practical program. a new implementation. based directly on the ESOLID
classes (described in Section 8.2.1.1) and designed specifically for that application.
should be developed.

8.2.1.3 BRL-CAD Converters

Although the program for general boundary evaluation is useful, the input format it
uses is not appropriate for real-world CSG data. The boundary evaluation algorithm
is intended to be tested on data from the Bradley Fighting \ehicle model. which is
in the BRL-CAD (26, 24] format. Thus, routines to convert BRL-CAD data to the



format described earlier are provided by ESOLID.

The BRL-CAD system contains a routine for traversing the internal CSG tree
representation. This routine was modified to extract the necessarv geometric data
for the boundary evaluation program. The program takes an individual named part
of a model as input, and outputs the description of that part in the directory format
described in Section 8.2.1.2. Although BRL-CAD maintains material properties for
each object, this is not passed on in the conversion.

Most of the conversion operations are straightforward. While BRL-CAD repre-
sents the CSG tree in a directed acyvclic graph structure, it is easily converted to the
expanded directory tree structure described earlier. The transformation data and
Boolean operations map directly to the tree structure. Although primitives are de-
fined slightly differently in BRL-CAD, the exact data needed for the input primitives
in the boundary evaluation program is easily derived.

BRL-CAD assigns names to various objects. A named object can be formed
from a series of operations. No name is given to the intermediate stages of object
formation. so new names are generated for the directory format. Inspection of the
Bradley Fighting Vehicle data set has shown that the vast majority of the operations
performed are difference operations. with a smaller number of unions and an even
smaller number of intersections involved. This is to be expected. since generally an
object is formed by starting with a piece of material and removing unwanted parts
(differences). A few pieces might need to be welded together (unions). Intersections
have no analogous manufacturing operation. which is probably why they are rarely
seer.

The one area where BRL-CAD data needs to be interpreted rather than directly
translated is in the representation of joins. Although BRL-CAD supports the notion
of joins. it was not clear how to extract this information (i.e. to distinguish joins from
unions) within the tree walking routine that was being modified. For this reason. the
data is interpreted as follows. Whenever a group of named objects is put together
by union/join operations, and this grouped data is not used in any other Boolean
operation other than possibly another union/join. the operation is interpreted as a
join. Otherwise. the operation is interpreted as a union. It is likelyv that this reflects
the design intent, since named objects are usually individual items, and thus not likely
to be unioned. This also prevents any problems with invalid objects being formed by
a join and used in subsequent operations.

Finally. BRL-CAD geometric data is provided as single precision floating-point
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numbers. These numbers are interpreted as exact rational numbers. as mentioned in
Section 3.5. Note, however. that the input data can be optionally modified to attempt

to capture design intent, as described in Section 8.2.1.2.

8.2.2 Performance Results

Although the classes that are part of ESOLID can be used for other purposes, the fun-
damental goal of ESOLID is to perform boundary evaluation. This section discusses
the performance of the ESOLID system on several boundary evaluation problems.

All of the timings here are given in CPU seconds on a 300 MHz MIPS R12000
processor. The timings include only the times to perform boundary evaluation once
the input has been read in to the internal ESOLID format. The timings listed do
not include the time taken to read the data from the input files and convert the
primitives to a K_SOLID. Although that time is usually not long, when a surface of
degree four is implicitized (as is done for the torus and certain generalized cones).
the time can be significant (tens of CPU seconds). Since all that information could
potentially be computed or provided ahead of time. it is considered a preprocessing
stage that is not part of boundary evaluation. Also. unless specified otherwise, the
timings presented here do not include the speedups provided by the PRECISE library
or fp-roots. Those speedups can dramatically affect the performance of the MAPC
routines (particularly curve-curve intersection), and will usually result in an overall
speedup in ESOLID.

8.2.2.1 Artificial Cases

This section deals with ESOLID performance on artificial examples. The exam-
ples presented here demonstrate the types of input that ESOLID can handle and
ESOLID’s performance on these basic examples. In these cases. the data has been cre-
ated by hand. which generally means that the number of digits of precision necessary
to specify the data is lower than for a real-world example. the relative configuration
of objects is easily understood. and the examples are not complex.

Figures 8.6 and 8.7 show several basic classes of solids that can be handled in
ESOLID. Each figure shows the result of a difference operation between two basic
primitives. Not all possible primitives are shown. For example, generalized cones
can be created. as well as polyhedra that are not parallelepipeds. For the first nine

examples. Table 8.2 gives information about the nature of the primitives and the
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boundary evaluation, while Figure 8.8 shows a rough breakdown of the timings.

Table 8.2 gives an indication of the importance of accurate computation when
performing boundary evaluation. As seen in the table. even for relatively simple
examples. a large number of curve-curve intersections can be performed. If even one
of these intersections is inaccurate, the entire boundary evaluation may fail. The
table also shows the number of algebraic numbers (univariate roots) that are found.
Although many of these are part of intermediate computations (including the curve-
curve intersection algorithm), an error in any one algebraic number has the potential
to cause the entire algorithm to fail.

The table also shows the number of bits of precision to which the boundary eval-
uation algorithm found it necessary to evaluate the algebraic numbers. If n bits of
precision were used, the intervals surrounding the algebraic numbers were found to
a width of no more than 27". Note that the rational numbers used to represent the
interval require even more bits of precision. The bits of precision table entry indi-
cates the number of bits of precision to which algebraic numbers would need to be
cvaluated to guarantee correctness in a boundary evaluation algorithm similar to the
one used here. IEEE double precision floating-point arithmetic provides at most 53
bits of precision. Thus, even for some of the relatively simple examples presented
here (8.6(d). 8.6(e), 8.7(h)). IEEE double precision arithmetic can not provide the
precision necessary to guarantee correctness. Even for cases such as Example 8.6(f).
the accumulation of error makes it unlikely that IEEE double precision arithmetic
would provide enough accuracy. in practice, to guarantee results.

The time taken for a Boolean operation is a function of several factors. These
include the number of patches on each solid that intersect (or nearly intersect). the
degree of the intersecting patches. the number of bits used in the representation of
the data. and how close the input solids are to a degenerate configuration (which
requires higher bit lengths). Figure 8.8 shows a breakdown of the timings for nine
primitive-primitive examples. This figure shows that the time for curve-curve intersec-
tion computation (resultant, Sturm, and other curve-curve intersection computation)
dominates the time for other computations in all of the longer-running examples.
Notice (from Table 8.2) that these are the cases involving higher-degree surfaces (and
thus higher-degree intersection curves). Within the curve-curve intersection compu-
tation. both the resultant computation and the Sturm sequence calculations take
significant amounts of time, and are the primary components of curve-curve inter-

section in all but the faster examples. While the resultant computation always takes
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Figure 8.6: The results of a difference operation on pairs of primitives.
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Figure 8.7: The results of Boolean operations on pairs of primitives. Exam-
ples g. h. and i are the results of a difference operation. Example j is the result of a
union operation.
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Object 1 box | box | cyl. ell. | torus | twist | cyl. ell. ell.
Object 2 box | twist | box | box box cvl. | cyvl cyvl. | twist
Degree of
Object 1.1 1,2
Surfaces
Number of
Intersecting 6 12 6 8 8 8 4 8 9
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Degree of 1
Intersection
Curves
Number of
Curve-Curve 90 | 531 | 394 | 990 447 562 | 407 881 744
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Number of
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Table 8.2: Details of the difference operations illustrated in Figures 8.6 and
8.7. Object 1 describes the base primitive, while Object 2 describes the primitive
being subtracted. The primitives shown are a box (polyhedron), twist (a box twisted
so that some faces are bilinear patches). cylinder. ellipsoid. and torus. The degree of
the surfaces in the two objects is given. followed by the number of pairs of patches
that actually intersect. The maximum degree (in the parametric domain) of the inter-
section curves is also shown. The total number of curve-curve intersection operations
performed is given. along with the total number of univariate roots found (i.e. the
number of algebraic numbers found as a root of a univariate polynomial). The max-
imum number of bits of precision used to represent these algebraic numbers is given.
followed by the total time taken to perform the Boolean operation.
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Figure 8.8: Timing breakdown for examples from Figures 8.6 and 8.7. For
cach example. the percentage of the overall boundary evaluation time is shown (la-
beled along the vertical axis). The two major parts of curve-curve intersection (re-
sultant and Sturm sequence calculations) are shown, along with the times spent in
other parts of curve-curve intersection and outside of curve-curve intersection. The
cxample number is shown at the base of cach bar, and the total time taken on that
example (in seconds) at the top.



a significant amount of time, the Sturm computation varies, occasionally matching
or exceeding the time for resultant computation. Recall that many of the speedups
discussed earlier (and implemented in ESOLID) have focused on increasing the effi-
ciency of the Sturm portien, which dominates time in a naive approach. From this
information. it is apparent that the speedups in Sturm sequences have been effective,
shifting the performance bottleneck toward the resultant computation.

Example 8.7(j) shows one example of a nearly degenerate configuration of primi-
tives (also illustrated in Figure 1.5). Two cylinders, each of radius one and at a slight
angle to each other, barely interpenetrate. ESOLID correctly computes the Boolean
operation. even when the depth of penetration is extremely small. Table 8.3 shows
how the time and precision required increases as a function of the depth of interpen-
etration. This example demonstrates that ESOLID performs correctly on examples
that are hard to compute in a system based on [EEE floating-point arithmetic. Such
a system can not accurately represent even the input to this problem. Notice that as
the depth of penetration becomes smaller (i.e. the cylinders are closer and closer to
tangent). the precision required increases, and thus the time taken for boundary eval-
uation increases. Also notice that while the time for resultant computation increases
at a near-linear rate with the depth of penetration, the time for the Sturm compu-
tation increases much more rapidly. Therefore. as higher precisions are required. the

efficiency of Sturm computations becomes more important.

8.2.2.2 BRL-CAD Data

The practical performance of a system can only be judged by testing it on realistic
data. For this reason, the ESOLID system has been applied to CSG models from
the Bradley Fighting Vehicle. This data. developed in the BRL-CAD system by the
Army Research Lab. is considered real-world data. since it was developed to be used
in a real application. That is. the data was not created for the purpose of testing
boundary evaluation.

In this section. examples are used that are taken directly from the Bradley Fighting
Vehicle data set. The BRL-CAD conversion routines are applied to convert the data to
the directory format. which is then read in and processed by the boundary evaluation
program. Unless specified otherwise, the input modification described in Section
8.2.1.2 is used on the BRL-CAD data given here, to try to better capture design
intent.

Where possible, the performance of ESOLID is compared with that of BOOLE



Depth of | Precision | Total | Sturm | Resultant
Penetration | Required | Time | Time Time
(107F) (bits) (s) (s) (s)

3 20 8.64 2.19 4.17

6 20| 1245 4.14 5.61

9 25| 17.25 7.23 747

12 30| 2298 | 11.13 9.15

15 40 | 33.21 ) 17.07 11.88

18 32| 47.46 | 24.66 14.46

21 538 | 60.15 | 32.64 18.15

24 62| 86.76 | 47.64 22.80

27 68 | 147.66 | 99.75 26.37

30 71]120.36 | 74.79 29.64

33 77 | 164.01 | 108.03 34.41

36 117 | 205.17 | 143.40 38.34

39 88 | 446.28 | 357.63 16.89

42 141 | 317.55 | 237.15 49.11

45 96 | 385.80 | 296.19 55.80

Table 8.3: Timing results for example j from Figure 8.7. The depth of penetra-
tion of the two cyvlinders is given in the first column. Following that is the maximum
precision required in the boundary evaluation algorithm to represent the algebraic
numbers exactly. n bits of precision required means that algebraic numbers were
determined to an interval of width no smaller than 27". The total time to perform
bhoundary evaluation is listed, followed by the time spent in Sturm computations
(both generation and evaluation of Sturm sequences). and in resultant computations.
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Figure 8.9: BRL-CAD examples where both ESOLID and BOOLE worked.

on the same data. The BOOLE system [61], like ESOLID. has been developed to
perform boundary evaluation on BRL-CAD data. BOOLE. however. is implemented
using inexact floating-point computation. Although local and global tolerances are
used in the BOOLE system to deal with some numerical error, they are insufficient to
deal with all numerical problems. The inability of BOOLE to deal with all numerical
difficulties motivated the work on ESOLID, and so some examples where BOOLE
fails but ESOLID succeeds are also included.

Figure 8.9 shows some objects from the Bradley. The boundaries of these objects
were successfully evaluated in both ESOLID and BOOLE. Figure 8.10 shows other

objects from the Bradley model. The boundaries of these objects were successfully
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Figure 8.10: BRL-CAD examples where ESOLID worked and BOOLE failed.



Example | Name Number of | ESOLID | BOOLE
Number Booleans Time Time
a Tow Hook 2 10.23 2.23
b Wheel Assembly 4 12.57 2.81
c M16 Rifle 6 633.42 6.68
d Track Link 11 132.48 27.74
e Relay Mechanism 1 250.74 -
f Crew Member 3 2 26.37 -
g Launcher Mount Part 3 63.15 -
h Support Assembly Part 6 213.72 -
i Rear Hatch Hinge T 58.92 -
] Engine Access Hatch 16 54.78 -

Table 8.4: Timings for the examples from Figures 8.9 and 8.10. The number
of Boolean operations performed is shown, along with the time taken under ESOLID
and BOOLE. A ‘-’ indicates that boundary evaluation failed for that object.

determined in ESOLID, but failed under BOOLE. A discussion of why the failures
occurred in BOOLE is given below. Table 8.4 provides further data on these examples,
including the number of Boolean operations needed to create the objects, and the time
taken in ESOLID and BOOLE. Note that most objects are created by a series of join
operations (Section 8.2.1.2). Join operations do not count as Booleans. Thus. the
number of Boolean operations may be more or less than is obvious from an external
view. For example, Crew Member 3 (Example 8.10(f)). requires only two Boolean
operations. The wheel assembly (Example 8.9(b)) requires four Boolean operations,
mainly to handle the axle that is hidden in the external view.

As shown in Table 8.4, the time taken by ESOLID is within two orders of mag-
nitude of the time taken by BOOLE. for the examples tested. For three of the four
examples. ESOLID is less than one order of magnitude (less than a factor of five,
in fact) slower than BOOLE. The goal of achieving times that are within one to
two orders of magnitude slower than a fixed-precision implementation (Section 1.5)
is clearly achieved.

Table 8.5 provides a breakdown of timings under ESOLID for all of the examples.
The data shown in the table confirm that curve-curve intersection continues to play
a dominant role in determining the overall running time. just as in the artificial
examples in Section 8.2.2.1. In some cases. the time for resultant computations

dominates the time for curve-curve intersections. while in other cases. the time for
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Example || Number | Number Max. Total % % of % of
Number Curve- | Univar. | Precision | Time | Curve- Total in | Total in
Curve Roots (bits) Curve | Resultant Sturm

a 425 1831 42 10.23 68.0 54.3 5.0

b 637 1106 59 12.57 54.2 46.8 1.9

c 1003 3834 57 633.42 98.2 3.6 96.0

d 4444 13511 7 132.48 74.9 64.6 3.7

e 320 6311 41 250.74 95.1 15.6 76.0

f 315 2259 43 26.37 81.6 71.1 4.9

g 974 5227 65 63.15 81.7 63.6 13.2

h 1162 7116 66 213.72 92.5 35.8 4.7

i 1266 8191 87 58.92 69.1 37.4 5.3

j 1799 5334 69 54.78 64.2 53.0 3.8

Table 8.5: Timing breakdown (under ESOLID) for the examples in figures
8.9 and 8.10. The number of curve-curve intersections is given. The number of
algebraic numbers found as roots of univariate polynomials are shown. along with the
maximum number of bits of precision used to represent these algebraic numbers. The
total time is shown, along with the percentage of time spent in curve-curve intersec-
tion. the major component of the algorithm. The percentage of total time spent in
the two major components of curve-curve intersection. resultant computations and
Sturm computations (generation and evaluation of Sturm sequences). is also shown.



Sturm sequence computation dominates. From the data. it appears that for the slower
cases. curve-curve intersections, and in particular Sturm sequence calculations. take
a greater percentage of the time.

Notice that all examples use a significant amount of precision in determining
algebraic numbers. Although computations that do not provide that level of precision
can still succeed (as evidenced by the fact that BOOLE worked on several cases). an
implementation that does not guarantee that level of precision is prone to failure.

[t is not always clear why the BOOLE system fails on certain examples. Although
lack of accuracy is certainly a problem (as was determined in earlier studies of BOOLE
{62}). other failures may be due to more general programming bugs. Although it is not
feasible to examine the inner workings of BOOLE. some information can be gained
by examining the error messages printed by BOOLE and observing the examples that
BOOLE fails on.

Two such examples are shown in Figure 8.11. Example 8.11(a) shows a close-
up view of the area of intersection between the two cylinders forming the Relay
Mechanism in 8.10(e). The intersection curve is shown in the patch domain in figure
Example 8.11(b). This intersection curve appears to be nearly singular. In fact. the
curve is not singular (it has two separate components), and ESOLID correctly resolves
the topology of the curve. BOOLE. on the other hand. exits with an error that it
has found a singularity or two components that are too close together. It is possible
that using much tighter tolerance values would allow BOOLE to successfully evaluate
the boundary, but it is also possible that the IEEE floating-point computations in
BOOLE could not provide an appropriate level of precision to guarantee correctness.
This is a case where the exact computation of ESOLID allows a computation to be
performed that would otherwise cause problems.

A second example is shown in 8.11(c) and 8.11(d). It shows one of the Boolean
operations from the Crew Member 3 example (8.10(f)). A difference operation is
performed on the solids in 8.11(c), resulting in the solid shown in 8.11(d). BOOLE
fails. on this Boolean operation. with an error that “curves did not close.” which
indicates that there is a significant error in the intersection curve computations. Al-
though there may be many reasons for such an error to arise. a brief examination of
the two solids clearly shows that the two solids are nearly tangential. Thus. a slight
error in the position or orientation of either solid can have a significant impact on the
intersection between those solids. This type of example is highly prone to numerical

crror. and it can be surmised that such numerical error causes BOOLE’s failure.
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Figure 8.11: Close-up views of Boolean operations where BOOLE fails. (a) is
a close-up view of the Relay Mechanism (Example 8.10(e)). Note that the intersection
between the cylinders is nearly singular. (b) shows a graph of the intersection curve for
two patches from the solids shown in (a), over the domain of one of the patches. Even
though the intersection curve appears singular, it is actually two separate components.
(¢) and (d) are from the computation of Crew Member 3 (Example 8.10(f)). A
difference operation is performed on the solids shown in b. resulting in the solid
shown in (c). The intersection is small, and is formed from two nearly tangential
solids.



without PRECISE || with PRECISE

Example || Total Sturm || Total | Sturm
Number Time Time Time Time
a 10.23 0.51 10.95 1.62

b 12.57 0.24 12.69 1.44

c 633.42 597.33 || 42.99 6.93

d 132.48 495 || 137.64 11.35

e 250.74 190.62 73.86 15.36

f 26.37 1.29 || 28.14 3.63

g 63.15 8.34 || 61.26 6.36

h 213.72 116.88 || 105.99 9.90

i 58.92 3.15 || 63.48 8.35

j 54.78 2.07 || 58.44 6.66

Table 8.6: Timings for the examples from Figures 8.9 and 8.10, with and
without the incorporation of the PRECISE library. PRECISE is used to
improve the efficiency of Sturm sequence calculations. The total time and the time
spent in Sturm computations is shown.

As mentioned earlier. the PRECISE library [63], has been developed to speed
up Sturm operations. PRECISE uses error-bounded arbitrary precision (not IEEE
standard) floating-point operations to perform certain computations. It is particularly
useful when the sign of a polynomial is desired. which makes it well-suited for speeding
up Sturm computations.

Table 8.6 shows the performance improvement when PRECISE is applied to the
BRL-CAD examples. PRECISE affects the performance of only the Sturm sequence
portion of ESOLID. As seen in the table, PRECISE can dramatically lower the run-
ning time of the most Sturm sequence intensive examples. In the MI16 example
(8.9(c)) the Sturm code is made almost two orders of magnitude faster. This makes
the overall computation more than an order of magnitude faster. bringing the M16 ex-
ample in ESOLID/PRECISE to less than an order of magnitude slower than BOOLE.
PRECISE incurs a certain amount of overhead. which is the reason that several of

the low-Sturm time examples actually become slower when run with PRECISE.
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Chapter 9

Summary and Future Work

This dissertation describes the representations and operations necessary to perform

exact boundary evaluation for solids with low-degree curved boundaries. This chapter

reviews how the thesis of the dissertation is demonstrated and discusses avenues for

future research.

9.1

Thesis

The thesis of this dissertation is the following:

Accurate boundary evaluation for low-degree curved solids can be per-

formed efficiently using exact computation.

The thesis is proved as follows:

Exact representations for curved solids are proposed (Chapter 3).

On top of these representations. exact kernel operations are proposed (Chapter
1).

Using both the representations and the kernel operations, an algorithm for exact

boundary evaluation is proposed (Chapter 3).

A number of speedups are used to increase the efficiency of the computations.

while maintaining exactness (Chapter 6).

The representations. algorithms, and speedups are implemented and applied to

low-degree real-world data (Chapter 8).



— Exact boundary evaluation is performed in times within two orders (and
often within one order) of magnitude of those for a similar inexact ap-

proach.

— The exact implementation handles cases on which the inexact approach

fails. due to insufficient precision.

The exact representations and computations ensure accurate, exact computation
on curved solids. The speedups make the boundary evaluation for low-degree solids
efficient. as demonstrated by its application to real-world data. Thus it is shown that
accurate boundary evaluation for low-degree curved solids can be performed efficiently

using exact computation.

9.2 Future Work

There are many avenues available for future work related to exact boundary evaluation
on curved solids. This section describes some of the major areas open to further study.

Some of these areas are already being explored.

9.2.1 Increasing Efficiency

Although the implementation of the boundary evaluation algorithm is already well
within the goal of one to two orders of magnitude slewer than an equivalent fixed-
precision approach (BOOLE), an even faster implementation would be better. Some
work in this area is currently being pursued (e.g. PRECISE [63]).

Potential ways of increasing efficiency include:

e Quick rejection tests: Although several quick rejection tests are already in
use. other quick rejection tests are possible, and the current tests can be made
more useful. For example, the bounding box tests (based entirelv on affine

arithmetic) currently being used are much more conservative than necessary.

e Floating-point speedups: Incorporating floating-point methods has already
proved valuable in increasing efficiency. Currently, floating-point optimizations
are used in only 1D Sturm sequence computations. Floating-point speedups
can be applied to other areas of the algorithm as well.

e Lazy/adaptive coefficient determination: While algebraic numbers are

handled in a lazy manner. the polynomials associated with them are not. The
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coeflicients of these polynomials are always determined as exact rational num-
bers. This determination may involve time-consuming resultant computations
and interpolations. It may be possible to adaptively determine the coefficients,
finding them to higher precision only as necessary. The possibility of using the
PRECISE library [63] to do this is being explored.

e Lazy curve topology: Resolving curve topology (and in particular, finding
turning points) can be a time-consuming process. Topology is resolved for
every intersection curve, but is not always needed. A lazy curve topology ap-
proach would wait to resolve curve topology until a time when it is actually
needed. Such an approach would require the boundary evaluation algorithm to
be changed, but could save significant time.

e Cache coherency: The memory use characteristics of the ESOLID implemen-
tation have not been explored in detail. If a significant amount of time is spent in
memory-related operations, it is worth investigating ways that cache coherency
can be used to reduce memory access times. Several interesting issues related
to this. such as predicting memory useage characteristics of arbitrary-length

numbers. could be explored as a result.

9.2.2 Handling Degeneracies

Dealing with degeneracies remains a major obstacle in achieving a fully robust im-
plementation. Chapter 7 addresses several issues related to degeneracies. and briefly
explores some potential methods for alleviating the problems associated with degen-
eracies. Completely dealing with degeneracies in a practical manner will require much
more work.

One way to approach degeneracies is to handle only certain classes of degeneracies
at a time. For example, it would be reasonable to first handle only degenerate cases
where the resulting solid is still manifold. Later work could focus on extending the
boundary evaluation algorithm to handle degeneracies for all regularized operations.

In any case, exact computation is important in any rigorous approach to handling
degeneracies. Thus, the exact algorithm outlined in this dissertation is a basis for

future work addressing degeneracies.
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9.2.3 Implementation

There are several ways that the ESOLID system implementation can be improved.

These include:

e Extended input: Currently, the methods for providing input are limited.

Some direct ways to increase the input sources available include:

— extending the types of input primitives allowed.
— adding converters from CSG-based systems other than BRL-CAD. and

— creating a program that allows interactive creation of input.

e Integration with other systems: The library classes. particularly those of
MAPC., could be incorporated into other systems. In addition, the exact bound-
ary evaluation implementation could be incorporated into a more general solid

modeling system.

e I/0 of internal format: Currently. ESOLID takes primitive descriptions and
a CSG tree as input. Output is either an approximate Bezier patch format (for
viewing) or a human-readable format. The human-readable format is useful for
testing ESOLID. but cannot easily be read back into ESOLID’s internal format.
The ability to directly read into and write from the internal ESOLID format
would be very useful. A different internal representation (such as a global list

of polynomials) is needed to allow such I/O.

e Parallelism: The intersection between any patch pair (the first stage of the
boundary evaluation algorithm) is highly parallelizable. Each pair of intersect-
ing patches could be given to an individual processor. Also. much of the second
stage of the boundary evaluation algorithm (up through patch partitioning) is
parallelizable, since each patch can be processed by a separate processor. Such
parallelism was implemented in BOOLE [62] with excellent results. and similar
results could be expected for ESOLID.

¢ Incorporating other libraries: Other libraries can be incorporated to replace
certain computations being performed now. For example, all rational number
arithmetic is currently performed in LiDIA [l1]. but other rational number
libraries might provide better performance. Similar changes could be used to

replace other computations, such as the floating-point root finding routines.
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A different implementation might provide closer approximations to the roots.

making the speedup more effective.

9.2.4 Long-Term Directions

Besides the relatively short-term directions for future work proposed above, there are
several longer-term and more fundamentally significant areas that can be explored.

A few of these are mentioned here.

e Capturing design intent: As is mentioned in Section 8.2.1.2, capturing the
designer’s intent is an important consideration. In fact, it can be argued that
capturing the designer’s intent is more important than accurately handling the
geometry. The methods for determining designer’s intent will likely vary de-
pending on the field that the boundary evaluation input comes from, but in any

case. significant further study in this area seems warranted.

e Increasing robustness: The theme followed in this dissertation has been to
ensure exactness first, then increase efficiency. For the near future. however.
it is difficult to imagine that many real-world applications will be based on
exact representations. Integration of an exact method (such as exact boundary
evaluation) into an otherwise inexact program therefore seems like the most
likely path for methods to be used. Determining exactly how exact and inexact
code can be integrated to achieve greater robustness overall is a topic worthy

of further study.

e Other reprsentations: This dissertation has focused on the conversion of
CSG models to B-rep models. Other model representations. such as skeletal
models and volumetric models. are also commonly used. The exact methods
described in this dissertation can be used in other conversions. as well. Some

work in this area is already being explored [20].

e Finding general test cases: One issue which repeatedly arose in the work on
this dissertation was how to test an algorithm or routine on a general test case.
For example. to test the curve-curve intersection routines. it seems useful to
have a method for forming completely random polynomials. Real-world data.
however. often has a regular and characterizable structure. and thus is not

close to random. Data from different real-world applications will have different



structures. For example. one application might generate polynomials where the
bit-lengths of all coefficients are nearly equal. while another application might
create polynomials where the bit-length of the coefficient of the leading term
is far less than that of the last term. The structures of mathematical systems
that arise in certain sciences and engineering fields are well understood. and
computation methods can be optimized to handle those particular cases. It
would be useful to have a similar understanding of the nature of data that

arises in real-world boundary evaluation problems.

Exact computation in hardware: One of the reasons why exact computa-
tion is so slow. in general, is a lack of direct computer hardware support. While
it may not be possible (or even desirable) to have complete hardware support
for exact computation, any support can be used to narrow the inherent effi-
ciency gap between exact and inexact computation. Finding what features of
exact computation would be useful and feasible to support in hardware is worth

significant further study.
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Appendix A

Parametric Solids

This chapter describes the parameterizations that are used for a few common solids.
These include all of the standard CSG primitives. as well as the primitives used by
BRL-CAD in the CSG model of the Bradley Fighting Vehicle.

There are many ways to break the boundary into patches for each of these primitive
solids. See Figure 2.5 for an example of how a cylinder boundary can be broken down.
Within any one patch, many parameterizations are possible.

When choosing a breakdown of the solid boundary into patches. it is gener-
ally advantageous to use fewer patches. The fewer patches in each solid. the fewer
patch-patch intersections to be computed. However. breaking a boundary into more.
smaller. patches allows tighter bounding boxes. and reduces the size of the parametric
domain that must be considered for each patch-patch intersection. Overall. experi-
ence has shown that fewer patches result in less computation. Practical considerations
must still be taken into account. For example. the round sides of a cylinder (i.e. gen-
eralized cone) could be represented by a single patch. Such a patch would have an
infinite domain and would be adjacent to itself along certain trimming curves. which
is undesirable. Using four patches. as described in this chapter, gives a simple. direct
parameterization.

When choosing a parameterization for an individual patch, polyvnomials should
be used that have as low a degree as possible. because the degree of the parametric
form directly affects the degree of intersection curves in that domain. High-degree
intersection curves take longer to compute with than low-degree curves. In the solids
below. the parametric form is no more than degree 2 in s and degree 2 in ¢ (total
degree 1) for all solids. Parameterizations should also be chosen. when possible. such
that the trimming curves have a simple (low polynomial degree) form.

The breakdown into patches and the parameterizations presented here are used
in ESOLID and work fine in practice. It is certainly possible that better breakdowns
into patches or parameterizations exist.

For cach case. the breakdown of the boundary into patches. the parametric forms
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of the patches, and the trimming curves in each patch domain are described.

The implicit form of the patch surfaces is not given. but it can be found by
implicitizing the parametric form (Section 4.4). In many cases, implicitization is not
necessary. as the implicit form can be generated directly from the input variables.

The topological connectivity is not directly specified in the solids below, but should
be obvious from the breakdown of the boundary into patches. Also omitted from the
descriptions below are the specifications of the adjacent surfaces (Section 3.1) for each
trimming curve.

The domain of each patch is automatically chosen to be larger than the trimmed
region. For all primitives except polyhedra, the trimmed region will fall into the
[0. 1] x [0. 1] region of the s x ¢ parametric domain. Thus, the patch domain will be

chosen slightly larger, e.g. [-0.1,1.1] x [-0.1.1.1].

A.1 Polyhedron

Polyhedra are relatively simple to parameterize. Each face is one patch. The descrip-
tion that follows assumes that the polyhedral face is a triangle. The extension to
more complex faces is direct and is described below.

Assume that the (z.y. z) coordinates of each of the three vertices of the face are
given. Call these vertices A. B. and C. in counterclockwise order when seen from the
exterior of the solid. (For non-triangular faces. let A, B. and C be any three adjacent
vertices of the face that form a convex angle on the face. given in counterclockwise

order.) The vertex information given. then. is:
e The coordinate of point A: (X 4.Y,.Z,)
e The coordinate of point B: (Xp.Y5. Zg)
e The coordinate of point C: (X¢. Ye. Z¢)

Assume point B will be at the origin of the parametric domain. 4 at the point

(0.1). and C at the point (1.0). Then. the parametric form of the patch is:

X(s.t) = Xp+(Ne— Xg)s+ (X, — Xp)t
Y(s.8) = Yg+ (Yo —1Yg)s+ (Y- Yp)t (A.1)
Z(s.t) Zg +(Zc — Zg)s + (24 — Zp)t

Wi(s.t) = 1
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Figure A.1: The trimming curves for a triangular patch of a polyhedron.
Arrows show the direction of the trimming curves.

The trimming curves are defined as shown in Figure A.1. The horizontal line t = 0
from (0.0) to (1.0) forms one curve. The next curve is the line s+t — 1 = 0 from
(1.0) to (0.1). The final trimming curve is the vertical line s = 0 from (0.1) to (0, 0).

If the face is not triangular, there will be more points that make up the boundary-.
For each other vertex P, find the rational parametric coordinates of that vertex by

solving the overconstrained linear system from A.1:

.\’(S.t) = _Yp
Y(s.t) = Yp (A.2)
Z(S.t) = Zp

for s and ¢. The trimming curves are modified appropriately. All trimming curves
will be lines. Note that A will still be at (0.1). B at (0.0), and C at (1.0). The other
points can have parameter values outside of the [0, 1] x [0.1] region. so the patch
domain will have to be modified appropriately-

If more than three points are given. and the points do not all lie in the same
plane (as can happen if points that should be in the same plane are rounded off), it
is impossible to solve A.2 for the parametric values of additional points. The solid

is not a polyhedron. since the face is not planar. If four points not lyving in a plane



are given, the face is easily treated as a bilinear patch. rather than as a plane. If
more points are given. finding an interpolating parametric surface and determining
the appropriate trimming curves (which might not be lines) in that domain becomes

much more difficult.

A.2 Truncated Generalized Cone

A truncated generalized cone is defined by an ellipse forming the base cap and an
cllipse forming the top cap. The sides of the generalized cone are formed by connecting
the top cap and bottom cap by lines. The lines connect the major axes of the top
cap ellipse to that of the bottom cap. The top cap can be a point (vielding the
traditional conical shape) or line. In such cases, the cone is no longer truncated. In
the description given here, it is assumed that the cone is truncated, so that both the
top and bottom caps are ellipses.

Generalized cones can represent right circular cylinders. elliptical cylinders. right
circular cones. elliptical cones. and other more exotic objects (with surfaces up to

degree four).
Assume that the generalized cone is given by the following information:

e The center of the base ellipse: P = (X,.Y,. Z,)

e The vector from the center of the base ellipse to the center of the top ellipse:
‘; = [-\’b }’t Z{]

e The two vectors pointing from the center of the base ellipse to the outer edge

along the bottom ellipse axes:

Vo = [\a. Ya. ZJ). Vo =[5 Yo, Zs)

e The two vectors pointing from the center of the top ellipse to the outer edge

along the top ellipse axes:

e = [-YC? Y., Zc]e by = [-\’d? Y. Zd]

This is the information provided by BRL-CAD. The generalized cone is broken
into six patches. One patch is used for the top cap. one for the bottom cap, and four

for the sides. An example is shown in Figure A.2.
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Figure A.2: The patch breakdown for a truncated generalized cone. The
center point of the base ellipse. P. is shown. The vector 1; points from P to the
center of the top ellipse. The vectors 1, and ¥} point from P along the major and
minor axes of the bottom ellipse. while 17 and 1} point along the corresponding axes
on the top ellipse. The patch boundaries are outlined. There are four patches forming
the sides of the generalized cone. The points Q; show the four corner points of one
patch.
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The four side patches all have a similar parameterization, so only one patch will
be described. This parameterization describes the patch at the front left in Figure
A.2. The four corners of that patch are labeled by the Q;.

XN(s.t) = (Noe+Xo— Xo)s%t + (X — Xo)s? + 2(Xg — Xp)st + 2Xps +
(Ne+ X=Xt + (X, + X))
Yi(s.t) = (Yo+ Yo — Y)s%t+ (Y, = Y.)s? +2(Y; — Y3)st + 2Y5s +
(Y, + Yo — Yo )t + (Y, + 1)) (A.3)
Z(s.t) = (Zv+ Zo— Z)s*t +(Zp — Z,)5° + 2 Zy — Zp)st + 2245 +
= (Zo+ Z.— ZJ)t + (Z, + Z,)
Wis.t) = s2+1

Note that the point labeled @Q; in Figure A.2 will be at the point (0.0) in the
parametric domain. Q2 will be at the point (1.0). Q3 at the point (0.1) and Q, at
the point (1.1).

The trimming curves for that side patch. then. are as indicated at left in Figure
A.3. They consist of the horizontal line ¢ = 0 from (0,0) to (1.0). the vertical line
s = 1 from (1.0) to (1.1). the horizontal line t = 1 from (1.1) to (0.1). and the
vertical line s = 0 from (0. 1) to (0.0).

The top and bottom patches are planar. The parametric form is obtained from

the same parameterization as for polyhedra (Equation A.1). For the bottom patch.

we have:
A=P+1,
B=P+1,+1;
C=P+1,

and for the top patch. we have:
A=P+1+1
B=P+ 1, +1.+1y
C=P+1,+1y
The trimming curves for the bottom patch are as indicated at right in Figure A.3.

All four trimming curves arise from the same polvnomial,

1 1 1
(z - -2-)2+(y—§)2— ;=0 (A-4)
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Figure A.3: The patch domains for a generalized cone. At left is the patch
domain for the front left patch from Figure A.2. At right is the patch domain for the
bottom cap from the same generalized cone. The Q; show the position of the labeled
points from Figure A.2 in this domain. Arrows show the direction of the trimming

curves.

The trimming curves proceed from the point (3.0) to (0.3) to (1.1) to (1.1). and
back to (%. 0). For the top patch. the curves proceed in the opposite order (since the

curves travel counterclockwise when viewed from the exterior of the solid).

A.3 Ellipsoid
Assume that an ellipsoid is described by the following information:
e The center point: P = (X,.},.2,)

e \ectors pointing from the center of the ellipsoid to the ends of the three axes

of the ellipsoid:

A=[XoYaZ). B=[Xp}02Z). C=[\.Y. 2]

Ellipsoids can be used to represent spheres. An ellipsoid is divided into eight
trimmed patches. each being one octant of the ellipsoid. This breakup is illustrated

in Figure A.4.
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Figure A.4: The patch breakdown for an ellipsoid. The center point and three
axial vectors are labeled. The Q; are three points on one patch.

All eight patches have a similar parameterization. The parameterization of the
top. front. left patch (the one containing all the labeled points. Q;) from Figure A.4

is given here:

XN(s.t) = (Xp— Xo)s? + (Xp = X2 +2Xps + 2Nt + (X, + X,)

Y(s.t) = (Yp—Yo)s"+ (Y, — Yo)t2 + 2Y,s + 2t + (Y, + }3) (A.5)
Z(s.t) = (Zp— Za)s* +(Zp — Zo)t* +2Zys + 22t + (2, + Z,)

Ni(s.t) = s2+t2+1

For the @, labeled in Figure A.4. notice that @, will be at the point (0.0). Q5 will
be at the point (1.0). and Q3 will be at the point (0.1). The trimming curves in the
patch domain are illustrated in Figure A.5. The curves are the horizontal line t = 0
from (0.0) to (1.0), the curve s + t2 = 1 from (1.0) to (0.1). and the vertical line
s = 0 from (0.1) to (0.0). Four of the patches will have the trimming curves in the

opposite orientation.
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Figure A.5: The patch domain for an ellipsoid patch. The trimming curves
in the domain of the front, top, left patch from Figure A.4 are shown. The Q; are
labeled to correspond with those labeled in Figure A.4. Arrows indicate the direction
of the trimming curves.

A.4 Torus

The final primitive considered is the torus. Assume that the information for the torus

1s given as follows:

The center of the torus: P = (X,.},.Z,)

The unit vector pointing in the direction normal to the torus—i.e. through the

hole in the center: NV = [X,.Y;,. Z,]

Two unit vectors perpendicular to the normal vector: they point from the center

toward the ring of the torus:

V= (Vo Yo Zd. Ve =[N0 152

The radius from the center of the torus to the center of the ring: A

The radius of the ring: B

The torus is broken into four patches. as shown in Figure A.6.



Figure A.6: The patch breakdown for the torus. The heavy lines indicate patch
boundaries. The center of the torusis at P. V. 1. and V5 are unit vectors. .V points
through the center of the torus, while ¥} and V, (which are perpendicular to .V) point
toward the A is the radius from the center of the torus to the center of the ring, while
B is the radius of the ring.

The four

patch at the

N(s.t)

Y(s.t)

Z(s.t)

W (s.t)

patches have a similar parametric form. The parametric form for the

upper right in Figure A.6 is given here.

(Xp — AN, — BX,)s%t2 + (2BX,)s%t + (X, — AN, + BX,)s> +
(=2A4AX,)st? + (4BX,)st + (—24ANX,)s +

(Xp + AN, — BX,)82 + (=2BXy)t + (X, + AN, + BX,)

(Y, — AY, — BY;)s?t? + (2BY3)s’t + (Y, — AY, + BY,)s” +
(=2AY,)st? + (4BY,)st + (—2A4Y,)s + (A.6)
(Y, + AY, — BY,)t? + (—2BYs)t + (Y, + A}, + BY})

(Z, — AZ, — BZ,)s*t* + (2BZ,)s*t + (Z, — AZ, + BZ,)s* +
(=2A42Z,)st? + (4BZ,)st + (—2AZ,)s +

(Zp+ AZy — BZ,)t? + (—2BZ,)t + (Z, + AZ, + BZ,)

S+ s+ 2 +1

Each patch will have four trimming curves. The curves will be the horizontal
line. t = —1 from (~1.~1) to (1. —1). the vertical line s = 1 from (1, —1) to (1.1).

the horizontal line ¢t = 1 from (1.1) to (—1,1). and the vertical line s = —1 from

[NV}
W
~!
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Figure A.7: The domain of a torus patch. The trimming curves are shown.
Arrows indicate the direction of the trimming curves.

(=1.1) to (=1.—1). This is illustrated in Figure A.7. Two of the patches will have
the trimming curves given in the opposite order.

The trimmed patch will be the [—1, 1] x [—1, 1] region. A simple linear transfor-
mation (substituting 2s — 1 for s and 2¢ — 1 for ¢) will change the domain to the
[0.1] x [0.1] domain. The trimming curves must also be changed. The adjusted
trimming curves will be the same as for the cylinder side patches (see the left side of
Figure A.3).
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