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Abstract
Seon Joo Kim: Radiometric Calibration Methods from Image Sequences.

(Under the direction of Marc Pollefeys.)

In many computer vision systems, an image of a scene is assumed to directly reflect the

scene radiance. However, this is not the case for most cameras as the radiometric response

function which is a mapping from the scene radiance to the image brightness is nonlinear. In

addition, the exposure settings of the camera are adjusted (often in the auto-exposure mode)

according to the dynamic range of the scene changing the appearance of the scene in the

images. Vignetting effect which refers to the gradual fading-out of an image at points near its

periphery also contributes in changing the scene appearance in images.

In this dissertation, I present several algorithms to compute the radiometric properties of

a camera which enable us to find the relationship between the image brightness and the scene

radiance. First, I introduce an algorithm to compute the vignetting function, the response

function, and the exposure values that fully explain the radiometric image formation process

from a set of images of a scene taken with different and unknown exposure values. One of the

key features of the proposed method is that the movement of the camera is not limited when

taking the pictures whereas most existing methods limit the motion of the camera. Then I

present a joint feature tracking and radiometric calibration scheme which performs an inte-

grated radiometric calibration in contrast to previous radiometric calibration techniques which

require the correspondences as an input which leads to a chicken-and-egg problem as precise

tracking requires accurate radiometric calibration. By combining both into an integrated ap-

proach we solve this chicken-and-egg problem. Finally, I propose a radiometric calibration

method suited for a set of images of an outdoor scene taken at a regular interval over a period

of time. This type of data is a challenging problem because the illumination for each image

is changing causing the exposure of the camera to change and the conventional radiometric

calibration framework cannot be used for this type of data. The proposed methods are applied
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to radiometrically align images for seamless mosaics and 3D model textures, to create high

dynamic range mosaics, and to build an adaptive stereo system.
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Chapter 1

Introduction

In many computer vision systems, an image is assumed to represent a photometric mea-

surement of a scene. However, this is not the case for most cameras as the radiometric

response function which is a mapping from the scene radiance to the image brightness

is nonlinear. In addition, the exposure settings of the camera are adjusted (often in

the auto-exposure mode) according to the dynamic range of the scene, thus changing

the appearance of the scene in the images. Vignetting effect, which refers to the grad-

ual fading-out of an image at points near its periphery, also contributes in changing

the scene’s appearance in images. The effects of the exposure change and vignetting

on images are shown in Figure 1.1. An image mosaic is created from multiple images,

where each image is taken with a different exposure value to capture the high dynamic

range of the scene, which is much greater than the camera’s dynamic range. While

the scene itself was reflecting light consistently during the image capture, the resulting

mosaic exhibits significant brightness inconsistency due to the exposure changes and

the vignetting effect. Another example of the effect of the exposure change is shown

in Figure 1.2, where pixel values of a point over time recorded with auto-exposure are

compared with those recorded with a fixed exposure value. In such outdoor scenes, the

exposure is adjusted to accommodate the significant lighting variation over the course

of a day. In this particular example, the sun is moving away from the surface. As time



Figure 1.1: Effect of exposure and vignetting on images. Due to vignetting and exposure
changes between images, there are significant brightness inconsistency in the image
mosaic.

goes on the radiance of the points in the scene decrease, as shown by the pixel values

of the fixed exposure sequence. But the camera compensates for the decrease in the

brightness of the scene by increasing its exposure value, resulting in almost constant

pixel values over time.

While the exposure change (or auto-exposure) is desirable to make optimal use of

the limited dynamic range of most cameras, it has an ill effect on many computer vision

methods along with the nonlinearity of the camera response that rely on the scene

radiance measurement such as photometric stereo, color constancy, and on the methods

that use image sequences or time-lapse data of a long period of time such as in Jacobs

et al. (2006, 2007) and Weiss (2001) since the pixel values do not reflect the actual scene

radiance. The radiometric properties of the camera also affect the synthesis of image

mosaics and texture-maps for 3-D models from multiple images as seen in Figure 1.1. The

goal of this dissertation is to compute the radiometric properties of the cameras including

the radiometric response function, the exposure values, and the vignetting function from

multiple images which explain the relationship between the image brightness and the

scene radiance as well as the radiometric relationship between multiple images.
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Figure 1.2: Effect of auto-exposure on images. Sample of images taken at different times
with (Top) auto-exposure and (Middle) exposure fixed. (Bottom) Pixel values of a point
over time.

1.1 Thesis Statement

Given a collection of images of a scene taken under varying conditions, one can com-

pute radiometric properties of the camera (up to some ambiguities) that explain the

relationship between the image brightness and the scene radiance as well as the radio-

metric relationship between multiple images. The radiometric properties include the

radiometric response function, exposures, and vignetting.

1.2 Contribution

My research makes the following contributions:

1. Robust radiometric calibration and vignetting correction from corre-

spondence. (Chapter 3)

I introduce an algorithm that robustly estimates the radiometric response func-

3



tion, exposures, and the vignetting effect given multiple images taken with a freely

moving camera. Specifically,

• I present a method to decouple the vignetting effect from the radiometric

response function estimation.

• I introduce a novel method to estimate the radiometric response function

from correspondences between images which is robust to noise and outliers

enabling the use of images from a moving camera.

• I present a vignetting estimation method which is also robust to noise and

outliers.

• I demonstrate methods to radiometrically align images and to create high

dynamic range (HDR) mosaics using the estimated radiometric properties of

the camera.

2. Joint feature tracking and radiometric calibration. (Chapter 4)

I present an algorithm suited for video data taken with auto-exposure where the

correspondence (feature tracks) and the radiometric response function along with

the exposure values are computed simultaneously. In detail,

• I present a novel method to simultaneously compute the feature tracks and

the camera exposure values from a video taken with a camera with known

response.

• I present a method to simultaneously compute the feature tracks, the radio-

metric response function, and the exposures from a video taken with a camera

with unknown response.

• I apply the results of the algorithm to build an adaptive stereo system.

3. Radiometric calibration with illumination change for outdoor scene

analysis. (Chapter 5)
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I introduce a new algorithm to compute the radiometric response function and the

exposure of images given a sequence of images of a static outdoor scene taken over

time where the illumination is changing. In detail,

• I present a method to cluster pixels with same illumination conditions.

• I introduce a method to estimate the radiometric response function using the

group of pixels with same illumination conditions.

• I present a novel method to compute the exposure values of images using the

illumination model assuming the known motion of the sun.

1.3 Overview

The remainder of the dissertation is organized as follows.

Chapter 2 presents the overview of the image formation process and the related termi-

nology. In addition, previous work on radiometric calibration and vignetting correction

is surveyed.

Chapter 3 describes a novel method for robust radiometric calibration and vignetting

correction that deals with images taken with a moving camera. Applications including

radiometric alignment of images for texture-mapping 3-D models and image mosaics as

well as high dynamic range (HDR) mosaic are shown.

Chapter 4 introduces a new framework for feature tracking where radiometric cali-

bration process is combined with feature tracking. The presented method is applied to

build an adaptive stereo system.

Chapter 5 presents a new algorithm to compute the radiometric response function

and the exposure of images given a sequence of images of a static outdoor scene where

the illumination is changing.

Chapter 6 discusses the contributions of this thesis and suggests directions for future

work.

5



Chapter 2

Background

What determines the brightness at a certain point in an image? How is the image

brightness related to the actual scene brightness? These are the key questions asked for

this dissertation. Before presenting novel methods developed to answer those questions,

I first review the related terminology and the image formation process in this chapter. In

addition, a survey of previous work on the topic of radiometric calibration and vignetting

correction is presented.

2.1 Image Formation

Figure 2.1 summarizes the image formation process. The scene brightness or the amount

of light reflected from a surface point (x) to a direction can be defined by the term

radiance which is the power per unit foreshortened area emitted into a unit solid angle

by a surface (Figure 2.1, L) (Horn, 1986). The unit for radiance is watts per square meter

per steradian1 (Wm−2sr−1). For a Lambertian surface for which the radiance leaving

the surface is independent of the angle, the radiance is proportional to the albedo of the

surface point and the dot product between the illumination direction and the surface

normal. Albedo is a reflectance term for Lambertian (diffuse) surface ranging from 0 to

1 characterizing the ratio of reflected light to incident light.

1Steradian is the unit of solid angular measure. See Horn (1986) for more details.



Figure 2.1: Radiometric image formation process. Vignetting affects the transformation
from the scene radiance (L) to the image irradiance (E). Then the radiometric response
function explains the nonlinear relationship between the image irradiance (E) and the
image brightness (I).

After passing through the lens system, the power of radiant energy falling on the

image plane is called the image irradiance (Figure 2.1, E). The unit for irradiance is

watts per square meter (Wm−2). Irradiance is then transformed to image brightness (I).

These two steps, radiance to image irradiance and image irradiance to image brightness

are explained in more details below.

2.1.1 Radiance to Image Irradiance

The amount of light hitting the image plane (image irradiance, E) is proportional to the

scene radiance (L) but varies spatially causing the fade-out in the image periphery due

to multiple factors (Figure 2.2). This irradiance fall-off effect often goes unnoticed unless

the object in the image is of uniform color / brightness. However, this image distortion

can be damaging to photometric methods such as shape from shading, appearance-based

techniques such as object recognition, and image mosaicing (Zheng et al., 2006).

One of the factors for the irradiance fall-off in the periphery is the cosine-fourth law

that defines the relationship between the radiance (L) and the irradiance (E) which is

derived using a simple camera model consisting of a thin lens and an image plane (Horn,
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1986). The following equation shows that the irradiance is proportional to the radiance

but it decreases as cosine-fourth of the angle θ that a ray makes with the optical axis.

In the equation, R is the radius of the lens and d denotes the distance between the lens

and the image plane.

E =
LπR2cos4θ

4d2
(2.1)

A more dominant source for the irradiance fall-off is a phenomenon called vignetting.

The vignetting effect refers to the gradual darkening of an image towards image corners

due to the blocking of a part of the incident ray bundle by the effective aperture size (Yu,

2004). The effect of vignetting increases as the size of the aperture increases and vice

versa (Figure 2.2). The white openings in Figure 2.2 indicate effective apertures. For

a large aperture size (small F-number), the opening is smaller when viewed from an

oblique angle because the view is blocked by the lens barrel. This implies that for large

apertures, the lens will collect less light away from its optical axis making the image

corners darker than its center. The vignetting effect decreases as the aperture size gets

smaller since the opening (effective aperture) gets smaller and no longer blocked.

A phenomenon called the pupil aberration has been described as another cause for

the fall in irradiance away from the image center (Aggarwal et al., 2001). The pupil

aberration is caused by the nonlinear refraction of the rays which results in a significantly

nonuniform light distribution across the aperture.

In this thesis, I view vignetting as the combination of all irradiance fall-off effects

including the effect from the cosine-fourth law and the pupil aberration as it is the most

dominant factor as well as to conform with the previous work and for generality. Rather

than trying to model this radiometric distortion physically by combining the effects from

different sources, we use a model that explains the overall irradiance fall-off behavior.

The following equation shows the mapping from radiance (LX) to image irradiance (Ex)

through the vignetting function (V (rx)) which is radially symmetric with r being the

distance of the image point from the image center.
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Figure 2.2: Vignetting Effect. (Top) Image taken with (left) a large aperture (f/1.4)
and (right) a small aperture (f/5.6). (Bottom) Lens Images : (left) f/1.4 and (right)
f/5.6 . c©Paul van Walree (www.vanwalree.com)
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Ex = V (rx)LX (2.2)

2.1.2 Image Irradiance to Image Brightness

The amount of light collected by the imaging sensor (irradiance E) is transformed to

image brightness value (I) through a function called the radiometric response function

or the camera response function. The relationship can be stated as follows :

Ix = f(kEx) (2.3)

where Ex is the image irradiance at a point x, k is the exposure value with which

the picture was taken, and Ix is the observed image intensity value at the pixel x.

Because increasing the irradiance will result in increasing (or keeping constant) the

image intensity for cameras, the response function is (semi-) monotonic and can be

inverted.

In general, the camera response is a nonlinear function providing means to compress

the dynamic range of the scene that far exceeds the dynamic range of the camera. For

digital cameras, even though the CCD and the CMOS respond linearly to the image

irradiance, nonlinearities are purposely introduced in the cameras electronics to mimic

the nonlinearities of film, to mimic the response of the human visual system, or to create

a variety of aesthetic effects (Grossberg and Nayar, 2004).

As can be seen in Equation (2.3), the exposure value k plays a big role in deciding the

final image intensity value by determining the amount of light exposed on the imaging

sensor. Since the dynamic range of the scene usually exceeds that of a camera, the

exposure value has to be adjusted to capture the dynamic range of interest by controlling

the shutter speed and/or the aperture. The shutter speed controls how long the imaging

sensor is exposed and is represented in a fraction of a second like 1/500, 1/250, 1/120,
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Figure 2.3: Reciprocity : the same amount of light is obtained with an exposure twice
as long and an aperture area half as big

1/60, 1/30, 1/15, and 1/8. The shutter speed affects how motions in the scene are

captured in the image: a fast shutter speed will freeze the movement and a slow shutter

speed will blur the motion. The aperture is the diameter of the lens opening which is

expressed as a fraction of focal length (f-number) such as f/2.0, f/2.8, f/4, f/5.6, etc.

Smaller f-numbers represent bigger apertures. The aperture is related to the depth of

field which means the amount of the picture, from foreground to background, that is

in sharp focus. A smaller aperture will give you a greater depth of field and a larger

aperture will give you a more restricted depth of field. Many different combinations of

the shutter speed and the aperture result in identical exposure2 and the choice depends

on the motion and the depth of field.

Most of the digital cameras provide several ways to set exposure. In the auto-

exposure mode, the camera automatically determines the appropriate aperture and shut-

ter speed for the scene. In addition, there are two semi-automatic methods called the

aperture priority mode and the shutter priority mode. In case of the aperture priority

2This is called the reciprocity.
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mode, the user manually chooses the size of the aperture while the camera automati-

cally determines the shutter speed appropriate for the shooting condition. In the shutter

priority mode, the decision on the shutter is made by the user and the aperture is de-

termined by the camera. Finally, there is the manual mode in which both the aperture

and the shutter speed is manually chosen by the user.

The effect of exposure change on images is illustrated in Figure 2.4. A set of images

were taken around a tree with auto-exposure where some images were taken inside

shadows and some in sunlight (images on top in Figure 2.4). The exposure value was

adjusted to a high value in shadows to allow more light in the camera and to a low

value in sunlight to allow less light. If the images were taken with a fixed low exposure,

the images will look as the images in the second row of Figure 2.4. On the other hand,

the images will look as the images on the bottom of Figure 2.4 if a fixed high exposure

was used. As can be seen, the auto-exposure functionality provides the flexibility of

not having to worry about finding the right 8-bit range to avoid over-exposed or under-

exposed images. However, the exposure change causes the appearance of the object

to change, which may be problematic for some computer vision methods that relate

multiple images, such as image matching, feature tracking, and creating image mosaics

and texture-maps.

There is another step in the imaging process called the white balance that influences

the image brightness. The white balance corresponds to color constancy in human visual

system, which is the ability to perceive color of an object independent of the illumina-

tion condition. The goal of white balance is usually to make sure that a white object

appears white in the image no matter what the illumination condition is (Martinkauppi,

2002). For example, a photograph taken under incandescent illumination will appear

unnaturally orange without proper white balance (Hsu et al., 2008). As with the expo-

sure, digital cameras provide automatic white balancing. One of the basic algorithms

for automatic white balancing is the gray world assumption which assumes that the
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Figure 2.4: Effect of exposure change: (Top) Few sample images of the sequence taken
with auto-exposure. Images radiometrically aligned with a fixed (Middle) high exposure
value and (Bottom) low exposure value.
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(a) (b)

(c) (d)

Figure 2.5: Effect of white balance. Photographs taken with different white balance set-
tings (Sony F717) : (a) automatic white balance, (b) set to sunlight (c) set to fluorescent
light (d) set to incandescent light.

average color in a scene is gray (Buchsbaum, 1980). Additionally, users can manually

adjust the white balance by setting the illumination condition to one of camera-provided

presets, such as daylight, cloudy, fluorescent, and incandescent. Figure 2.5 illustrates

the effect of white balancing with images taken with different white balance settings. In

this dissertation, the white balance is modeled with different exposure values for each

of the color channels (red, green, and blue).
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Figure 2.6: Macbeth color chart with 24 color patches with known reflectance.

2.2 Previous Work

While both the radiometric response function and the vignetting problem need to be

addressed to fully explain the radiometric image formation process, works on these two

problems have been developed separately in most cases. Hence, we can classify previous

work on the subject into three categories: methods that deal with the camera response

function only, methods that deal with vignetting only, and those that include both

problems.

2.2.1 Radiometric Response Function Estimation

We first discuss the works that compute the radiometric response function without

considering the vignetting effect. One way to compute the camera response function

is to photograph a color chart with known reflectances, such as the Macbeth chart

(Figure 2.6), in a uniform illumination condition. A mapping from the known reflectance

to the image intensity provides a simple means to find the camera response function.

However, the radiometric calibration using the color chart is not practical since the

method can be used only when the image of the chart is available.

For chartless recovery of the camera response, the majority of existing radiometric
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calibration methods uses multiple images taken with different exposure values to com-

pute the camera response function. Assuming constant irradiance value, which implies

constant illumination while the photographs are taken, the change in intensity is ex-

plained by the change in exposure. Taking the inverse of the response function on both

sides in Equation (2.3), we get

f−1(Ix) = kEx . (2.4)

With two images taken with different exposure values ki and kj, Equation (2.4)

becomes

f−1(Ixi
)

f−1(Ixj
)

=
ki

kj

, (2.5)

assuming the irradiance of the point stays constant (Exi
= Exj

). Let g = log f−1 and

K = log k, then we get the following relationship in the log-domain :

g(Ixi
)− g(Ixj

) = Ki −Kj . (2.6)

Equation (2.5) or (2.6) serves as the basis for computing the camera response function

in most of the methods that use multiple images taken with different exposures and the

early radiometric calibration methods concentrated on using different models of the

response function. Mann and Picard (1995) estimated the response curve assuming

that the response is a gamma curve and they know the exposure ratios between images.

While the method is limited due to the model of the response function, the work by Mann

and Picard has significance as the earliest work to introduce radiometric calibration from

images and the concept of extending the dynamic range by combining differently exposed

images. Debevec and Malik (1997) introduced a nonparametric method for response

function recovery by imposing a smoothness constraint and assuming that the exposure

values are known. With the computed response function, they created high dynamic
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range (HDR) radiance maps from multiple images with different exposures, and showed

applications of HDR maps such as synthesizing realistic motion blur and simulating the

response of the human visual system. In the work by Mitsunaga and Nayar (1999),

the response curve was assumed to be a low degree polynomial and was estimated

iteratively with rough exposure ratio estimates. In their work, Mitsunaga and Nayar

also introduced a method for automatic rejection of image areas with large vignetting

effects and fused multiple images for HDR imaging. Tsin et al. (2001) also introduced an

iterative method for computing the response function with the nonparametric response

form using a statistical model of the measurement errors. Pal et al. (2004) propose

the use of probability models for the imaging system and prior models for the response

function to estimate the response function that is modeled differently for each image

in the sequence. In Grossberg and Nayar (2004), the authors introduced a new model

for the response function called the empirical model of response (EMoR) which is based

on applying principal component analysis (PCA) to the database of response functions.

This model will be discussed in details later in this chapter. A common limitation of all

the mentioned methods above is that both the camera and the scene have to be fixed

when multiple images are photographed for the calibration.

Several methods were introduced to loosen the scene and the camera movement re-

strictions. Mann and Mann (2001) proposed an iterative method with a non-parametric

model that computes the response function and the exposures that allows camera ro-

tation. Grossberg and Nayar (2003) explained ambiguities associated with the problem

of finding the response function and introduced a response curve estimation method by

recovering intensity mapping functions3 between differently exposed images from his-

tograms using histogram specification. The registration process is unnecessary in this

method, allowing small movement of the scene and the camera. In Candocia and Man-

3In this dissertation, I use the term brightness transfer function instead of the intensity mapping
function
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darino (2005), the authors present an approach for response function computation by

approximating the camera response function with a constrained piecewise linear model.

They also incorporate the framework for spatial and tonal image registration (Candocia,

2003) to allow camera rotation.

Methods described so far use multiple images taken with different exposures and

assume the irradiance for each image point stays constant, which implies that the illu-

mination condition for all the images in the sequence is the same. A couple of methods

were presented for computing the camera response when the illumination is changing.

Manders et al. (2004) proposed a radiometric calibration method by using superposition

constraints imposed by different combinations of two (or more) lights. It is difficult to

apply this method in practice because it requires two or more images, each with differ-

ent lighting direction, and an image with all the lights combined. Shafique and Shah

(2004) also introduced a method that uses differently illuminated images. They estimate

the response function by exploiting the fact that the material properties of the scene

should remain constant and use cross-ratios of image values of different color channels

to compute the response function. The response function is modeled as a gamma curve

and a constrained non-linear minimization approach is used for the computation. This

method is also limited in practice due to the restricted model for the response function

and the algorithm is verified only by synthetic experiments by the authors.

Instead of using multiple images with different exposures or different lighting con-

ditions, there are algorithms that compute the camera response function from a single

image. Farid (2001) treats the radiometric nonlinearity as a gamma correction and

presents a technique for computing the gamma correction from a single image without

any information about the imaging device. His approach exploits the fact that gamma

correction introduces specific higher-order correlations in the frequency domain which

can be detected using tools from polyspectral analysis. The method by Farid is limited in

practice because the response curves can be significantly different from a gamma curve.
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Figure 2.7: An image of a flat and textureless Lambertian surface under constant illu-
mination can be used as an reference image for vignetting estimation.

In the work by Lin et al. (2004), a single image was used for computing the response

function by looking at the color distributions of local edge regions. Measured colors

across edges should form linear distributions in color space due to blending of distinct

region colors. However, they actually show nonlinear distributions because of the non-

linear camera response function. Using this idea, Lin et al. (2004) compute the response

function which maps the nonlinear distributions of edge colors into linear distributions.

Lin and Zhang further extended the method to deal with a single grayscale image by

using the histograms of edge regions (Lin and Zhang, 2005). While these methods can

be used for cases when multiple images with different exposures are not available, they

are susceptible to high levels of image noise. Matsushita and Lin (2007) presented a

method to complement the methods in Lin et al. (2004) and Lin and Zhang (2005) by

using the asymmetric profiles of measured noise distributions to compute the camera

response function which maps the asymmetric noise distribution to a symmetric dis-

tribution. This method requires the noise distributions for different image irradiances,

which may not be simple, and the assumption on the symmetric noise distribution may

not hold in low lighting conditions.
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2.2.2 Vignetting Estimation

We now discuss previous work on vignetting. Conventional methods for correcting vi-

gnetting involve taking a reference image of a non-specular object such as a white paper

with uniform color (Figure 2.7). This reference image is then used to build a correction

lookup table or to approximate a parametric correction function. Asada et al. (2001)

proposed a camera model using a variable cone that accounts for vignetting effects in

a zoom lens system. Parameters of the variable cone model were estimated by taking

images of a uniform radiance field. Yu et al. proposed using a hypercosine function

to represent the pattern of the vignetting distortion for each scanline (Yu et al., 2004).

They expanded their work to a 2D hypercosine model in Yu (2004) and also introduced

an anti-vignetting method based on wavelet denoising and decimation. Other vignetting

models include a simple form using radial distance and focal length (Uyttendaele et al.,

2004), a third-order polynomial model (Bastuscheck, 1987), a first order Taylor ex-

pansion (Sawchuk, 1977), and an empirical exponential function (Chen and Mudunuri,

1986). While above methods rely on a reference image of an object of uniform color,

Zheng et al. introduced a new method for determining the vignetting function given

only a single image of a normal scene (Zheng et al., 2006). To extract vignetting in-

formation from an image, they presented adaptations of segmentation techniques that

locate image regions for vignetting estimation. In all of the works mentioned above,

the radiometric response function was ignored and vignetting was modeled in the image

intensity domain rather than in irradiance domain.

In a related work, Schechner and Nayar (2003) exploited the vignetting effect to

capture high dynamic range intensity values. In their work, they calibrate the ”intended

vignetting” using a linear least-squares fit on the image data itself rather than using a

reference image. Their work assumes either a linear response function or a known

response function. In Kang and Weiss (2000), vignetting effect was used for camera

calibration. Their image formation model included the effect of the tilt of the camera in
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addition to the vignetting effect. Using an image of a flat and textureless Lambertian

surface under constant illumination, the camera intrinsics such as focal length, principal

point, aspect ratio, and skew were computed. While the concept was novel, their method

was impractical, since it did not yield accurate calibration results with real images.

2.2.3 Radiometric Response Function and Vignetting Estima-

tion

Recently, works that include both the radiometric response function and the vignetting

effect have been introduced. Litvinov and Schechner presented an unified framework for

simultaneously estimating the unknown response function, exposures, and vignetting

from a normal image sequence taken with camera motion (Litvinov and Schechner,

2005a,b). They achieve the goal by a nonparametric linear least squares method using

common areas (correspondences) between images. Goldman and Chen (2005) also pre-

sented a solution for estimating the response function, the exposures, and vignetting.

Using the empirical model of response (EMoR, Grossberg and Nayar (2004)) for the re-

sponse function and a polynomial model for vignetting, they estimate the model parame-

ters simultaneously by a nonlinear optimization method. In these papers, the recovered

response function, exposure, and the vignetting factors were used to radiometrically

align images for seamless mosaics. The method presented in Chapter 3 falls into this

category and the results will be compared with results from Litvinov and Schechner

(2005a) and Goldman and Chen (2005).

2.3 Radiometric Response Function Model

Before introducing different methods for radiometric calibration, I will first introduce the

model of the radiometric response function used through out the dissertation. To model

the camera response function, the empirical model of response (EMoR) introduced in
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Figure 2.8: EMoR Basis. (Left) First four basis of the DoRF (log space), (Right) The
cumulative energy occupied by the first 15 basis

Grossberg and Nayar (2004) will be used. In their work, Grossberg and Nayar first show

that all response functions must lie within a convex set that results from the intersection

of a hyperplane and a positive cone in function space. They also collected a Database

of Response Functions (DoRF) of a variety of imaging systems including film, CCD,

and solid-state camera components that are currently used. The database includes a

total of 201 real-world response functions. Then they combine the constraints from the

theoretical analysis and the data from DoRF to formulate a new model for the camera

response function called the Empirical Model of Response (EMoR) which is a low (Mth)

order approximation :

f(E) = f0(E) +
M∑

n=1

cnhn(E), (2.7)

where hn’s are basis functions found by applying PCA to the DoRF and f0 is the mean

function.

In log space, Equation (2.7) becomes :

g(I) = g0(I) +
M∑

n=1

cnh
′
n(I), (2.8)

where g(I) = ln f−1(I) and h′n’s are basis functions for log inverse response function of
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the database. The h′n’s are found by applying PCA to the log space of the DoRF. One

thing to notice is that elements of the first column and the first row of the covariance

matrix of DoRF in log space are -∞ since data are normalized from zero to one. So,

we remove the first column and the first row from the matrix for the PCA. Figure 2.8

shows the first four basis functions of the log space of DoRF and the cumulative energy

occupied by first 15 basis. The first three eigenvalues explain more than 99.6%, which

suggest that the EMoR model represents the log space of response functions very well.
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Chapter 3

Robust Radiometric Calibration and

Vignetting Correction from

Correspondence

3.1 Introduction

In this chapter, I introduce an algorithm to compute the vignetting function, the re-

sponse function, and the exposure values that fully explain the radiometric image forma-

tion process from a set of images of a scene taken with different and unknown exposure

values. One of the key features of the method is that the movement of the camera is not

limited when taking the pictures whereas most existing methods limit the motion of the

camera. The main application of interest is to radiometrically align images for image mo-

saics and for texture mapping 3D models where vignetting and exposure changes cause

color inconsistency. The proposed approach is essentially different from image blend-

ing/feathering methods commonly used in image mosaicing (Brown and Lowe, 2003;

Burt and Adelson, 1983; Levin et al., 2004) and other texture correction methods such

as the method in Jia and Tang (2005) where the global and the local intensity variation

were corrected using tensor voting, the method in Agathos and Fisher (2003) where a

color transform was adapted for correcting the color discontinuity, and the method in



Beauchesne and Roy (2003) where a common lighting between textures was derived to

relight textures. I also apply the method to create high dynamic range (HDR) mosaics

that better represent radiometric measurement of the scene than normal mosaics.

The rest of the chapter is organized as follows. In the next section, a novel method

for computing the radiometric response function is introduced. In Section 3.3, an al-

gorithm for vignetting estimation is presented. Associated ambiguities are explained in

Section 3.4 and methods for radiometrically aligning images and creating HDR mosaic

are presented in Section 3.5. The proposed method is evaluated with various experi-

ments in Section 3.6 and the chapter is concluded with discussions about the algorithm

in Section 3.7.

Versions of this work were published in Kim and Pollefeys (2004) and Kim and

Pollefeys (2008).

3.2 Radiometric Response Function Estimation

We begin by showing the equations for relating radiance (L) to image irradiance (E)

and image irradiance (E) to image brightness (I) as introduced in Chapter 2.

Ex = V (rx)LX (3.1)

Ix = f(kEx) (3.2)

Combining (3.1) and (3.2), the radiometric process of image formation can be mathe-

matically stated as follows.

Ix = f(kV (rx)LX) (3.3)

LX is the radiance of a scene point X towards the camera, Ix is the image intensity

value at the projected image point x, k is the exposure, f() is the radiometric response

function, V () is the vignetting function, and rx is the normalized radius of the point x
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from the center of vignetting. We assume that vignetting is radially symmetric with the

center of vignetting being the center of the image. We also assume that the vignetting

function is the same for all images in the sequence. Equation (3.3) can be rewritten as

follows.

ln(f−1(Ix)) = ln k + ln V (rx) + ln Lx (3.4)

g(Ix) = K + ln V (rx) + ln Lx (3.5)

The goal of our algorithm is to estimate f() (or g()), V (), and k (or K) given

a set of differently exposed images taken with a non-stationary camera. Our work

falls under the last group of existing work (Goldman and Chen (2005); Litvinov and

Schechner (2005a)) explained in the previous chapter where both the response function

and the vignetting function are recovered. The difference between those methods and

our method is that while the camera response function and the vignetting function were

estimated simultaneously in Goldman and Chen (2005) and Litvinov and Schechner

(2005a,b), we approach the problem differently by robustly computing the response

function and the vignetting function independently. Separating the two processes is

possible by decoupling the vignetting process from the radiometric response function

estimation. By separating the two processes, we derive a solution for each process that

is robust against noise and outliers. Thus we are able to get robust estimation even

when there is a vast number of outliers due to inaccurate stereo correspondences for

the overlap region on the 3D models as well as non-Lambertian reflection. Previous

least-squares based approaches are not able to deal with this.

3.2.1 Correspondence

Since we are dealing with images taken with a moving camera, the first thing that

we consider is the computation of correspondences. Ideally, only a limited number of

points are required to estimate the radiometric response curve, the exposures, and the
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vignetting parameters. However, because of a certain number of limitations in finding

accurate correspondences, it is best to estimate correspondences for a larger number of

points. First, we want corresponding points to cover as many intensity values as possible

(and this for each R, G and B channel separately). In addition, matching between images

recorded with different exposure settings is in itself hard, thus, we expect a significant

number of wrong matches. Finally, because we deal with a moving camera and not

all pixels correspond to Lambertian surfaces, we can not always expect the radiance to

be constant over varying viewing directions (this would not be a problem for static or

purely rotating cameras). Therefore, it is important to obtain as much redundancy as

possible so that a robust approach can later be used to estimate the desired camera

properties.

If the set of images are captured with a purely rotating camera, we compute the

homographies between images to compute the correspondences. We used the software

”Autostitch” (Brown and Lowe, 2003)1 for computing the homographies.

For images taken with a moving camera, the correspondences are computed by esti-

mating the epipolar geometry for each pair of consecutive images (for video, keyframes

would be selected so that the estimation of the epipolar geometry would be stable) using

tracked or matched features, followed by stereo matching (Pollefeys et al., 2004). To

avoid problems with intensity changes it is important to use zero-mean normalized cross-

correlation. While we do not explicitly deal with independent motions in the scene, our

stereo algorithm combined with our robust joint histogram approach explained in the

next subsection will handle those as outliers.

3.2.2 Estimating the radiometric response function

Equation (3.3) shows that the response function f() cannot be recovered without the

knowledge about the vignetting function V () and vice versa. Hence, one way to solve

1http://www.cs.ubc.ca/∼mbrown/autostitch/autostitch.html
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the problem is to estimate both functions simultaneously either in a linear (Litvinov and

Schechner, 2005a,b) or in a nonlinear way (Goldman and Chen, 2005) . But if we use

corresponding points affected with the same amount of vignetting, we can decouple the

vignetting effect from the process and estimate the response function without worrying

about the vignetting effect using Equation (3.3). Let xi and xj be image points of a scene

point X in image i and image j respectively. If rxi
= rxj

then V (rxi
) = V (rxj

) since we

have already made the assumption that the vignetting model is the same for all images

in the sequence. Hence by using corresponding points that are of equal distance from the

center of each image, we can decouple vignetting from the response function. So after

finding all possible correspondences first using the methods described in the previous

subsection (homography for rotating camera and stereo matching for moving camera),

we then compare the distance of the points in each matching pair from the center of

its image in order to select only correspondences with equal distance. In practice, we

allowed some tolerance to the constraint by allowing correspondences that are close to

equal distance from the center rather than strictly enforcing correspondences to be of

exact equal distance. In the case of panoramic images, these correspondences will form

a band between images (Figure 3.1). In the case of stereo images, these correspondences

will form an arbitrarily deformed shape depending on the geometry of the scene and the

motion of the camera (Figure 3.2). Note that while in general there are no problems

finding a sufficient amount of such correspondences in stereo cases, there are some cases

that may not yield enough correspondences particulary in the case of forward (backward)

motion where the radius for all pixels would increase (decrease) (except that even in that

case we might still have far away points that stay approximately fixed and allow for the

exposure changes to be computed while the response function mostly gets constrained

by other images).

By using only those correspondences mentioned above, we obtain the following equa-

tion from Equation (3.5) where the vignetting function is now removed from the process.
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Figure 3.1: Decoupling the vignetting effect (mosaic image) : The figure shows three
images stitched to a mosaic. Only corresponding points in the colored band (red for
the first pair and blue for the second) are used to decouple the vignetting effect from
estimating the radiometric response function .

(a) (b)

(c) (d)

Figure 3.2: Decoupling the vignetting effect (stereo images) : Stereo image pairs (a)-(b),
(c)-(d). The colored pixels are the corresponding points between the images that satisfy
the equal radius condition (with the tolerance of ±3 pixels in these examples). By using
only these points, we can decouple the vignetting effect from estimating the radiometric
response function.
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Figure 3.3: An example of a joint histogram with the estimated brightness transfer
function (BTF) overlaid on it.

g(Ixi
)− g(Ixj

) = Ki −Kj (3.6)

While Equation (3.6) is solved for the response function g() in a least squares sense

in most previous works, we approach the problem in a robust way to achieve robustness

against noise and mismatches. This is very critical since we are dealing with images

taken with a moving camera where using least squares would not yield accurate results

due to noise and a vast number of outliers. The robust estimation process is explained

in details in the following subsections.

Joint Histogram and Brightness Transfer Function

For a pair of images, all the information relevant to our problem is contained in the

pair of intensity values of corresponding points. As suggested in Mann (2000), these can

all be collected in a two-variable joint histogram which he calls the comparagram. For

a pair of corresponding intensity values (Ixi
, Ixj

), the corresponding value in the joint

histogram J(Ixi
, Ixj

) indicates for how many pixels the intensity value changes from Ixi
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to Ixj
.

As noted in Grossberg and Nayar (2003), ideally a function should relate the intensity

values between the two images. From Equation (3.6), one immediately obtains

Ixj
= τ(Ixi

) := g−1(g(Ixi
) + ∆K) . (3.7)

with ∆K = Kj − Ki. We will call the function τ as the brightness transfer function

(BTF). It was shown in Grossberg and Nayar (2003) that under reasonable assumptions

for g, τ is monotonically increasing, τ(0) = 0 and if ∆K > 0, then I ≤ τ(I). Inversely,

if ∆K < 0 then I ≥ τ(I). Ideally, making abstraction of noise and discretisation, if

Ixj
6= τ(Ixi

), then we should have J(Ixi
, Ixj

) = 0. However, real joint histograms are

quite different due to image noise, mismatches, view dependent effects and a non-uniform

histogram as shown in Figure 3.3. In the presence of large numbers of outliers, least

squares solutions for response functions as have been used by others are not viable. We

propose to use the following function as an approximation for the likelihood of the BTF

passing through a pixel of the joint histogram.

P (τ(I1) = I2|J̄) = (G(0, σ1) ∗ J̄)(I1, I2) + Po (3.8)

where G(0, σ1)∗ represent the convolution with a zero-mean Gaussian with standard

deviation σ1 to take image noise into account, J̄ is the normalized joint histogram, and

P0 is a term that represents the probability for τ(I1) = I2 independent of the joint

histogram. This term is necessary to be able to deal with the possibility of having the

BTF pass through zeros in the joint histogram which could be necessary if for some

intensity values no correct correspondence was obtained. Based on these assumptions

the most probable solution is the BTF that maximizes

ln P (τ |J̄) =

∫∫
Jτ (I1, I2)lnP (τ(I1) = I2|J̄)dI1dI2 (3.9)
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with Jτ (I1, I2) being a function that is one where I2 = τ(I1) and zero otherwise. Using

dynamic programming it is possible to compute the BTF that maximizes Equation (3.9)

under the constraints discussed above, i.e. semi-monotonicity, τ(0) = 0, τ(255) = 255

and τ(I) ≥ I or τ(I) ≤ I for all I (Figure 3.3).

3.2.3 Radiometric Response Function Estimation

With the computed BTFs, we now estimate the radiometric response function by using

the low parameter Empirical Model of Response (EMoR) by Grossberg and Nayar (2004)

as the model for the response function which was explained in Section 2.3. The equation

for the model in log space is as follows.

g(I) = g0(I) +
M∑

n=1

cnh
′
n(I), (3.10)

where g(I) = ln f−1(I) and h′n’s are basis functions for log inverse response function of

the database.

We estimate the response function and exposure differences between images by using

the computed BTFs and combining Equation (3.6) and Equation (3.10).

g0(τij(I))− g0(I) +
M∑

n=1

cn(h′n(τi,j(I))− h′n(I))−Kji = 0 (3.11)

where Kji = Kj −Ki and τi,j() is the brightness transfer function from the image i with

exposure Ki to the image j with exposure Kj.

To deal with the white balance, we adopt the simplifying assumption that the effect

of white-balance corresponds to changing the exposure independently for each color band

(Finlayson et al., 1994). Then the unknowns of Equation (3.11) are the coefficients cn’s

and the exposure differences Kji’s for each different color channel. The solution for these

unknowns at this point will suffer from the exponential ambiguity. The exponential

ambiguity means that if a response function g and some exposures K’s are solution
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to Equation (3.6) then so are γg and γK’s. Simply put, there are many response

functions and exposures that satisfy the equation as long as they have the same scale

factor. As stated in Grossberg and Nayar (2003), it is impossible to recover both the

response function (g) and the exposures (K’s) simultaneously from BTF alone, without

making assumptions on either the response function or the exposures. To resolve this

ambiguity problem, we chose to make an assumption on an exposure value by setting

the exposure difference of a pair to a constant value (α). For simplicity, we will set the

exposure difference of the first image pair K12 to a constant value (α) in this work. This

serves as fixing the scale of the response function. For many applications including the

tonemapping for high dynamic range imaging and the texture alignment application,

the choice of the constant is not critical which is an advantage over many other methods

which require exact or rough estimate of exposure values. The sign of α should be

positive when the exposure increases while it should be negative when the exposure

decreases for the chosen pair. Alternatively, the scale can be fixed by setting the value

of the response curve at an intensity to an arbitrary value. This alternative method is

used in Chapter 4 and Chapter 5 to deal with the ambiguity.

After fixing the value of K12, we now have to solve for the unknown model parameters

(cn) and exposure differences of each image pair for each color channel except the first

pair which amounts to M + 3(N − 2) unknowns. The computed BTF (τ) for each color

channel of an image pair yields 254 equations (Equation 3.11) for image values (I) 1 to

254. We do not include the value 0 and 255 to avoid under-exposed or saturated data.

To solve the problem in a linear least squares sense, we first build matrices Al
i

(254×(M +3(N − 2))) and bl
i (254×1) for each image pair other than the first pair
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(2 ≤ i ≤ N − 1) and each color channel (l ∈ {R,G,B} or {0, 1, 2}).

Al
i(m, n) =


w(m)(h′n(τ l

i,i+1(m))− h′n(m)); 1 ≤ m ≤ 254, 1 ≤ n ≤ M

−w(m); 1 ≤ m ≤ 254, n=M+(N − 2)×l+i−1

0; elsewhere

(3.12)

bl
i(m) = w(m)(g0(m)− g0(τ

l
i,i+1(m))); 1 ≤ m ≤ 254 (3.13)

For the first pair (i = 1),

Al
1(m, n) =

 w(m)(h′n(τ l
1,2(m))− h′n(m)); 1 ≤ m ≤ 254, 1 ≤ n ≤ M

0; elsewhere
(3.14)

bl
1(m) = w(m)(g0(m)− g0(τ

l
1,2(m)) + α); 1 ≤ m ≤ 254 (3.15)

The weight w is as follows.

w(m) = w1(m)w2(m) (3.16)

w1(m) =

 0; if J(m, τ(m)) < ε or τ(m) = 0 or 255

1; else
(3.17)

w2(m) = exp(−((m− 127)/127)2

2σ2
2

) (3.18)

The weights are included for two reasons. First, joint histograms may not contain

data on all the intensity range. So the brightness transfer function (τ) values at the

intensity range where there are no data (or very few) may not be accurate. Also, data

that are either saturated or under-exposed should be eliminated from the equation. All

these factors are reflected in the first weight w1.

In addition, the response function will typically have a steep slope near Imax and

Imin, so we expect the response function to be less smooth and fit the data more poorly

near these extremes (Debevec and Malik, 1997). This is reflected to our algorithm by
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the second weight w2. We used values from 1.0 to 10.0 for σ2 for the examples in this

chapter.

To deal with the discretization problem, we also compute BTFs in the opposite

direction (i+1 to i) and build matrices Al′
i and bl′

i which is similar to Al
i and bl

i except

that τi,i+1 is now changed to τi+1,i along with following few changes.

Al′

i (m, n) =


w(m)(h′n(τ l

i+1,i(m))− h′n(m)); 1 ≤ m ≤ 254, 1 ≤ n ≤ M

w(m); 1 ≤ m ≤ 254, n=M+(N − 2)×l+i−1

0; elsewhere

(3.19)

bl′

i (m) = w(m)(g0(m)− g0(τ
l
i+1,i(m))); 1 ≤ m ≤ 254 (3.20)

Al′

1 (m,n) =

 w(m)(h′n(τ l
2,1(m))− h′n(m)); 1 ≤ m ≤ 254, 1 ≤ n ≤ M

0; elsewhere
(3.21)

bl′

1 (m) = w(m)(g0(m)− g0(τ
l
2,1(m))− α); 1 ≤ m ≤ 254 (3.22)

After all the matrices above are built, we can solve for the coefficients of the model

and the exposure differences linearly (Au = b) using the singular value decomposition

(Equation (3.25)) by combining all the computed matrices to form A and b as in Equa-

tion (3.23) where each Al and bl are formed by combining Al
i and bl

i for all image

pairs.
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A =



AR

AR′

AG

AG′

AB

AB′


b =



bR

bR′

bG

bG′

bB

bB′


(3.23)

u =
[
c1, . . . , cM , KR

23, . . . , K
G
23, . . . , K

B
23, . . . , K

B
N−1N

]T
(3.24)

û = arg min
u
‖ Au− b ‖2. (3.25)

3.3 Vignetting Estimation

After estimating the response function and the exposure values, each image intensity

value is transformed to an irradiance value E to compute vignetting function V .

Ex =
f−1(Ix)

k
= V (rx)LX (3.26)

Since the scene radiance LX is the same for the corresponding points xi and xj, we

get

Exi

V (rxi
)

=
Exj

V (rxj
)

(3.27)

As presented in Section 2.2.2, many models for vignetting exist. In this dissertation,

we chose to use the polynomial model used in Goldman and Chen (2005). In Goldman

and Chen (2005), a third order polynomial was used for the vignetting model and

it was estimated together with the response function simultaneously by a nonlinear

optimization method. By computing the response function independent of vignetting in

our first step, we can now compute the polynomial vignetting model linearly. This saves
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a great deal of computational time compared to the nonlinear optimization scheme used

in Goldman and Chen (2005), avoids issues with potential local minima, and it also

enables us to easily use much higher order polynomial function for more accuracy. The

vignetting model is given by

V (r) = 1 +
D∑

n=1

βnr
2n. (3.28)

Let a =
Exi

Exj
, then combining the model with Equation (3.27) yields the following

equation.
D∑

n=1

βn(ar2n
xj
− r2n

xi
) = 1− a (3.29)

One obvious choice for solving for the D unknown βn’s is to use least squares since

each corresponding pair of points in given image pairs provides additional equation in

the form of (3.29). But in the presence of many outliers, the least squares solution will

not give us a robust solution to the problem.

We propose to approach the problem similar to the way we computed the response

function in the first stage. Rather than solving the problem in a least squares sense, we

once again solve the problem in a robust fashion. For a pair of rxi
and rxj

(discretized),

we estimate â(rxi
, rxj

) which is the robust estimate of the ratio a for the given rxi
and

rxj
. For each matching pair of points in the image sequence with radius rxi

and rxj

respectively, the irradiance ratio a is computed and stacked at s(rxi
, rxj

) (Figure 3.4).

We only use correspondences where the image intensity of each pixel is within certain

range, from 10 to 245 for example. The purpose of this is to exclude saturated or under-

exposed pixels as well as pixels in the intensity range where estimate of the response

function tends to be less accurate. Also, only pairs with similar ratio for each color

channel are added to the stack since the vignetting effect is the same for all color

channels. In the end, â(rxi
, rxj

) is computed as the median of stacked values s(rxi
, rxj

) .

Notice that we only have to keep track of cases where rxi
> rxj

due to symmetry. With
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Figure 3.4: Estimating the irradiance ratio â. For every matching pair with rxi
= r1,

rxj
= r2, the value a is stacked in s(r1, r2). â(r1, r2) is computed as the median of

stacked values.

the discretisation of 100×100, we have less then 5000 equations in the form of Equation

(3.29) instead of having one equations per matching pair of points.

The model coefficients (v = [β1, β2, ..., βD]T ) are estimated by solving the linear

equation of the form Yv = z. The mth rxi
and rxj

pair adds one equation (Equation

(3.29)) to the linear equation as follows.

Y(m, n) = wv(m)(â(rxi
, rxj

)r2n
xj
− r2n

xi
) (3.30)

z(m) = wv(m)(1− â(rxi
, rxj

)), 1 ≤ n ≤ D

Note that we weight (wv) each row of the matrix Y and z by the number of elements

in the stack s(rxi
, rxj

). Finally, the model parameter vector v is the solution to the

following least squares problem Equation (3.31) which can be solved using the singular

value decomposition (SVD).

v̂ = arg min
v
‖ Yv − z ‖2. (3.31)
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Once we have the estimates of the response, the exposures, and the vignetting func-

tion from the given set of images, we can add other images that may have different

exposure value and vignetting such as zoomed-in images to capture more dynamic range

and details. Assuming that the center of vignetting stays at the center of the image,

we can first compute the exposure of the added image using the pixels close to the cen-

ter that are not affected by vignetting (we used pixels within 10% from the center) by

Equation (3.5). Then the vignetting function is computed robustly in a similar way as

the vignetting estimation described in the previous section. From Equation (3.27), the

vignetting function for the zoomed-in image (Mz) is computed with the known response

function (f), the vignetting function of the original image (Mi), the exposure of the

original image (ki), and the exposure of the zoomed-in image (kz) as follows.

Vz(rxz) =
f−1(Ixz)kiVi(rxi

)

f−1(Ixi
)kz

(3.32)

Again for the robustness against outliers and noise, we use the median of the right-

hand side value of Equation (3.32) for each radius to fit the vignetting model instead of

fitting the model to all possible data. An example of adding a zoomed-in image to the

sequence is shown in the experiments section (Figure 3.15).

3.4 Ambiguities

As mentioned earlier, the process of radiometric calibration explained thus far is subject

to the exponential ambiguity, sometimes called the γ ambiguity as in Grossberg and

Nayar (2003) and Litvinov and Schechner (2005a). This ambiguity basically means that

if f̂ , k̂, and V̂ are the solutions for Equation (3.3), then the whole family of f̂γ, k̂γ, and

V̂ γ are also solutions to the problem. In this work, this ambiguity is dealt by setting an

exposure ratio of an image pair to a constant value.

There is another ambiguity called the scale ambiguity (Litvinov and Schechner,
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2005a) corresponding to arbitrary offsets in Equation (3.5) : g + Sg, K + SK , and

ln V (rx) + SV would all satisfy the equation with the radiance value being offset ac-

cordingly. This ambiguity is dealt with in this dissertation by normalizing the response

function and the vignetting function.

Due to these ambiguities, the radiance value L̂x that we recover using Equation

(3.33) with the estimates f(), V (), and k would not be the true radiance value (Lx).

It would be related to the true radiance by an exponential function. However, this

is not a problem for many applications including the radiometric alignment and the

high dynamic range display explained in the next subsection unless absolute or linearly

proportional quantitative measurements are required such as in the simulation of motion

blur or lens glare effects (Debevec and Malik, 1997).

L̂x =
f−1(Ix)

kV (rx)
(3.33)

3.5 Radiometric Alignment and High Dynamic Range

Mosaic Imaging

After computing the response function (f()), the vignetting function (V ()), and exposure

values (k) for each image, we can radiometrically align images in the sequence so that

the vignetting is corrected and all images have a common exposure setting as follows.

Inew
x = f(knewL̂x) (3.34)

The ambiguities mentioned above will not have any effect on the alignment since

the solutions with different γ values will still generate the same intensity values. By

radiometrically aligning images, we can make mosaics and textures of 3D models look

seamless. Note that even after the alignment, pixels that were either saturated or under-
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exposed may still look inconsistent in the resulting mosaic or the 3D model depending on

the new exposure value. We cannot find the radiance value if a pixel is either saturated

or under-exposed.

Another application of our method is the high dynamic range (HDR) imaging, specif-

ically creation of the high dynamic range mosaic. Radiometrically aligning images has

the effect of fixing the exposure which limits the showing of the full dynamic range of the

scene. By displaying the estimated scene radiance values (L̂x), we can represent the high

dynamic range scene more realistically. While we are not displaying the actual radiance

value due to ambiguities, we can alleviate the problem by tuning the value of γ for vi-

sual plausibility (Litvinov and Schechner, 2005b). Since most of the displaying systems

cannot show high dynamic range images, we have to compress the estimated radiance

values (L̂x) appropriately using a method called tonemapping. In this dissertation, we

used a software called Photomatix2 for tonemapping.

For high dynamic range mosaics, we scan the scene changing the exposure accord-

ingly. We have to make sure that every point in the mosaic is at least once correctly

exposed meaning it is neither underexposed or saturated. The response function, ex-

posures, and vignetting are computed using our method and the approximate radiance

value in Equation (3.33) for each point is computed by averaging the estimated radiance

value (L̂x) of the point in multiple images. Pixels that are either saturated or under-

exposed are excluded in the averaging process. An HDR mosaic example is shown in

the next section.

3.6 Experiments

In this section, we evaluate the performance of our proposed method. We test our

algorithm by performing experiments with real data as well as synthetic data.

2http://www.hdrsoft.com
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Figure 3.5: Synthetic Example : (Left) Image mosaic simulated with a response function,
a vignetting function, and different exposures. (Right) Image mosaic after images are
aligned to a common exposure setting with values estimated with our algorithm

3.6.1 Synthetic Example

We first evaluate our method with a synthetic example. An image is divided into multiple

images that overlap and Gaussian white noise is added to each image. The RMS error of

corresponding pixels was 5.01 after adding the noise. Then each image was transformed

using Equation (3.3) with a known response function, vignetting function, and exposure

values. The image mosaic built with these transformed images is shown in Figure 3.5.

The RMS value after the transformation was 21.3. Applying our algorithm to this data

set, we were able to recover the response function (g()), the vignetting function (V ()),

and the exposure values (K) accurately as shown in Figure 3.6. The mosaic built with

the images aligned to a common exposure setting using the estimated values is shown

in Figure 3.5. The RMS error of corresponding pixels after correction was 5.66.

3.6.2 Real Examples

We now evaluate our algorithm with real data. We run our algorithm on images taken

with a rotating camera and a freely moving camera. We then compare our estimation

with the ground truth and also with the estimates resulting from algorithms proposed

in Goldman and Chen (2005) and in Litvinov and Schechner (2005a).
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Figure 3.6: Synthetic Experiment. (Left) The response function (g, log inverse response)
used for the simulation and the estimate (Right) The vignetting function used for the
simulation and the estimate.

To compare the estimates of the response function with the ground truth, the esti-

mated response function is plotted with the measurement from the image of a uniformly

lit calibration chart (Macbeth chart) where the reflectance of patches are known. For

vignetting, the ground truth is measured by taking images of a light box to image a

surface with uniform radiance. The uniformity of the light box was checked with a

light meter. The measured image values are then transformed to irradiance value using

Equation (3.5) with the response function computed using the EMoR representation

on images taken with different exposures where both the camera and the scene were

static. The ground truth for the vignetting is then computed by taking the average of

the irradiance for each radius value.

Our method assumes, like the methods of Goldman and Chen (2005) and Litvinov

and Schechner (2005a), that the vignetting effect is the same for all images in the

sequence. This means that the aperture size has to be fixed while taking pictures. To

ensure this assumption, the exposures are changed by changing the exposure time with

a fixed aperture. In most cameras, this can be done either in aperture priority mode or

in manual mode.

The first experiment was carried out with images taken with a rotating camera. Six
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Figure 3.7: Result Comparisons: (Left) Recovered inverse response functions (f−1) and
the measurement from the MacBeth chart as ground truth (dots). (Right) Recovered
vignetting function and the measured ground truth. Numbers inside the parenthesis
indicate the number of parameters used

differently exposed images were taken with a Sony F-717 camera. The image mosaic

constructed with this image set is shown in Figure 3.8. Figure 3.7 compares the estima-

tion of the response function and the vignetting function by our method with the ground

truth as well as the results from the methods in Goldman and Chen (2005) and Litvinov

and Schechner (2005a). Experiments for the methods Goldman and Chen (2005) and

Litvinov and Schechner (2005a) were carried out with code provided by the authors. We

modified the method of Litvinov and Schechner (2005a) since the method is limited to

grayscale images only. We used the same assumption as our method, exposures change

independently for each color channel, to explain the white balance. The comparison of

image mosaics constructed with radiometrically aligned images by the estimates from

each method is shown in Figure 3.8. The error histograms of the corresponding pixels in

the mosaic along with the RMS errors are provided in Figure 3.9. The error histograms

provide more information about the performance in this case since the RMS errors can

be largely affected by mismatches. We also ran another experiment with the data set

used in Goldman and Chen (2005) and the results are shown in Figure 3.10 and Figure

3.11.
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From the experiments, the estimations using our method were the closest to the

ground truth and also yielded the minimum errors resulting in most seamless mosaics.

Note that all methods tend to be less accurate in the high/low intensity region for the

response function and the high radius value regions due to lack of data in the region.

The method in Litvinov and Schechner (2005a) showed lack of robustness against noise

and mismatches. As can be seen from the second example (Figure 3.10), there were a

large amount of mismatches in this sequence because there were a lot of high frequency

components such as tree branches in this sequence. Use of a nonparametric model

resulted in lack of accuracy due to the large number of outliers. While the method

in Goldman and Chen (2005) gave better results than the method in Litvinov and

Schechner (2005a), the problem with this method was the speed of the estimation.

Since it relies on a nonlinear optimization, the process is very slow compared to the

other two methods. Hence, it is very difficult to increase the number of parameters

or samples which will increase the estimation time even more. The estimation by our

method was very accurate even against the outliers and the speed of our algorithm is

nearly as fast as the method in Litvinov and Schechner (2005a) since the solution is in

large part acquired linearly.

The goal of the next experiment was to evaluate our algorithm with the data cap-

tured with a moving camera. We used the same camera (Sony F-717) to capture images

of an object while freely moving the camera and changing the exposure. We ran the

algorithm in Pollefeys et al. (2004) on the data set for the stereo matching and building

the 3D model which is shown in Figure 3.12. The radiometric response function, the

vignetting function, and the exposures were estimated by running our algorithm using

the correspondences from the stereo matching. As shown in Figure 3.3, there are signif-

icant amount of outliers in stereo data sets which will make getting robust estimation

difficult using existing methods. However, using our method, we were able to get robust

estimations as shown in Figure 3.13 which shows that the recovered response function
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Figure 3.8: (First) Image mosaic constructed with differently exposed images. All images
are aligned to the mean exposure value and vignetting corrected using (second) our
method, (third) the method by Goldman and Chen (2005), and (last) the method by
Litvinov and Schechner (2005a). Note that the discrepancy in the sky after the alignment
is due to saturation.
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(a) (b)

(c) (d)

Figure 3.9: Error histograms of corresponding pixels in the mosaics shown in Figure 3.8.
(a) original (RMS error = 94.25), (b) our method (RMS error = 8.48), (c) method in
Goldman and Chen (2005) (RMS error = 17.26), (d) method in Litvinov and Schechner
(2005a) (RMS error = 16.29).
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Figure 3.10: (First) Image mosaic constructed with differently exposed images. All
images are aligned to the mean exposure value and vignetting corrected using our method
(second), the method in Goldman and Chen (2005) (third), and the method Litvinov
and Schechner (2005b) (last). The images are provided by Dan Goldman (Goldman and
Chen, 2005).
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(a) (b)

(c) (d)

Figure 3.11: Error histograms of corresponding pixels in the mosaics shown in Fig-
ure 3.10. (a) original (RMS error = 31.17), (b) our method (RMS error = 16.85), (c)
method in Goldman and Chen (2005) (RMS error = 17.97), (d) method in Litvinov and
Schechner (2005a) (RMS error = 23.45).
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Figure 3.12: (Top) Some samples from the stereo sequence, (middle) radiometrically
aligned images using our method, (bottom) texturemapped 3D models before and after
the alignment

50



Figure 3.13: Comparison of the results from mosaic sequence and stereo sequence. (Left)
The recovered inverse response functions and the vignetting functions (right)

Figure 3.14: Another example of stereo sequence alignment. (Top) Some samples from
the stereo sequence. (Bottom) Texturemapped 3D model before the alignment (left)
and after the alignment (right). In this example, there are still some artifacts remaining
(most visibly on the nose) after the alignment due to view-dependent highlights which
are not compensated for by our method.

51



and the vignetting function is very close to the ones recovered from the mosaic sequence

and hence to the real data. Figure 3.12 shows a few samples of radiometrically aligned

images as well as the 3D model texturemapped using those images. Another stereo

example is shown in Figure 3.14.

3.6.3 High Dynamic Range Mosaic

As the final experiment, we show an HDR mosaic example as explained in the previous

section. With the images shown on the top of Figure 3.15, we first estimated the response

function, the vignetting function, and the exposures of each image. When the estimation

is complete, the approximate radiance value of each point in the mosaic is computed and

the radiance map for the example is tonemapped for displaying purposes. Figure 3.15

shows the difference between the radiometric image alignment and the HDR imaging.

While the mosaic is seamless after the alignment, the outside scene is still saturated and

parts of the inside are too dark to recognize. The tone-mapped HDR mosaic is able to

represent the scene in front of the camera more realistically than the normal mosaic.

3.7 Discussion

In this chapter, we have proposed a novel radiometric calibration method for estimating

the radiometric response function, exposures, and vignetting. By decoupling vignetting

from the response function, we can approach each problem with a robust estimation

method. The robustness of our method was validated synthetically and also with real

examples. Our method accurately estimates the parameters even in the presence of large

noise and mismatches including matches from stereo sequence whereas other existing

methods were not effective against noise and outliers. We applied the estimation results

to radiometrically align images for seamless mosaics and 3D model textures. We also

used our method for creating the HDR mosaic which is more representative of the scene
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Figure 3.15: HDR mosaic. (First) Original mosaic, (Second) A zoomed-in image added
to the mosaic. The exposure and the vignetting function for this image is computed
using the method described in Section 3.3. (Third) Radiometrically aligned mosaic
(Last) HDR mosaic
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than the normal mosaic.

Some may question the accuracy of our response function estimation process which

uses only corresponding pixels between images that are of equal distance (with some

tolerance) from the image center. Even though it may seem like we are using fewer

samples than other methods, we are actually using more samples than the existing

methods which rely on random sampling of points. For the method of Goldman and

Chen (2005), only 1000-2000 samples were used for each sequence shown in this chapter.

It is very difficult to use more samples because it will slow down the computation which

is already very slow. While more samples can be used for the method of Litvinov and

Schechner (2005a), it is still limited due to memory constraints when solving the linear

equation. It is important to note that we do not use the pixel values directly to compute

the response function as in other methods but rather use them to compute the brightness

transfer function by dynamic programming. Given the robustness of this process along

with the power of the model (EMoR) we use, the number of points we use in our method

is not much of a problem. One case that would be problematic for our method is when

the distribution of pixel values is very limited such as when the regions we use are of

an uniform color. But this is usually not the case in practice especially since we can

easily expand our method to include correspondences from more images, not just the

next image in the sequence.
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Chapter 4

Joint Feature Tracking and Radiometric

Calibration from Auto-Exposure Video

4.1 Introduction

Extracting and tracking features is a fundamental step in many computer vision sys-

tems since it provides means to relate one image to another spatially. One of the most

commonly used feature tracker, especially for processing videos, is the KLT (Kanade-

Lucas-Tomasi) tracker (Lucas and Kanade (1981); Shi and Tomasi (1994)) due to its

robustness and efficiency. However, there are cases that pose problems for the KLT

tracker, mainly when images of a high dynamic range scene are captured. In order to

capture the full brightness range of natural scenes, where parts are in the shadow and

others are in bright sunlight for example, the camera has to adjust the exposure accord-

ingly. As a result, the appearance of the same scene point varies throughout the video

sequence, breaking the basic assumption for the KLT tracker that the brightness of the

scene points stays constant. Hence, we need methods to find radiometric relationships

between image features in addition to the spatial relationships.

In this chapter, I introduce a new method that models the changes in image bright-

ness between images globally and nonlinearly rather than treating the variation locally

and linearly by comparing local regions independently. The brightness change can be



explained by the radiometric response function which defines the mapping from the im-

age irradiance to the image brightness. We first introduce a method for tracking features

and estimating the exposure changes between frames when the camera’s radiometric re-

sponse function is known. In many cases the radiometric response function is not known

a priori, so I also present a method for joint feature tracking and radiometric calibration

by formulating the estimation of the response function within a linear feature tracking

scheme that can deal with varying intensity values of features due to exposure changes.

The novel framework presented here performs an integrated radiometric calibration in

contrast to previous radiometric calibration techniques (including the method presented

in Chapter 3) which require the correspondences as an input to the system which leads to

a chicken-and-egg problem as precise tracking requires accurate radiometric calibration.

By combining both into an integrated approach we solve this chicken-and-egg problem.

The remainder of the chapter is organized as follows. In the next section, a review

of the related work will be presented. In Section 4.3, the KLT tracker algorithm will be

reviewed. In Section 4.4, a method for tracking features when the response function is

known will be introduced first, and then a method for simultaneous tracking and the re-

sponse function estimation will be explained. We evaluate our method with experiments

in Section 4.5, including an application of the method for an adaptive stereo system,

and conclude with discussion about our algorithm in Section 4.6.

This work was originally presented in Kim et al. (2007) and the extended version of

the original work is currently under review (Kim et al., 2008a).

4.2 Related Work

A problem that is similar to our work is the joint domain and range registration of

images. In Mann (2000), Mann introduced a method for jointly computing the projective

coordinate transform (domain) and the brightness change (range) between a pair of
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images of a static scene taken with a purely rotating camera. The brightness transform

which he calls the comparametric function is approximated by using a gamma function

as the model for the response function. The joint registration process is linearized by the

Taylor expansion and the least squares solution is acquired. In similar work, Candocia

proposed a method for the joint registration by using a piecewise linear model for the

comparametric function (Candocia, 2003).

Our method is different from the methods in Mann (2000) and Candocia (2003) in

that we are interested in tracking of features that are allowed to move in an unconstrained

manner, rather than estimating a global projective transform between images. Although

this involves estimation of significantly more parameters, our algorithm is able to deal

with it efficiently. In addition, we do not restrict the movement of the camera, and can

also deal with moving objects in the scene. We are also different in that we compute

the actual response function of the camera and the exposures, rather than just finding

out the brightness transform between images.

One application of our work is a stereo system that is adaptive to brightness changes

between images. Several stereo methods have employed matching metrics which achieve

invariance to brightness changes. A comparison of these techniques is presented in

Hirschmuller and Scharstein (2007). Normalized cross-correlation is effective for dealing

with locally linear changes, while mutual information is invariant to arbitrary one-to-one

mappings. However, mutual information has been only been successfully implemented

as a global mapping between images. The rank transform has been shown to be robust

even to local illumination changes. In general, more invariance can lead to ambiguity in

some cases, and overfitting is possible. Furthermore, all these methods require known

camera poses, or at least rectified images. In our system, we recover the camera poses

from feature tracks. Using our method, the radiometric calibration is recovered jointly

with the feature tracks, and therefore brightness invariance in stereo is unnecessary.
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4.3 Kanade-Lucas-Tomasi (KLT) Tracker

We now review the KLT tracker (Lucas and Kanade (1981); Shi and Tomasi (1994)).

The algorithm is based on the assumptions that the motion of the camera is small

and the appearance of features stays constant between consecutive frames in the video

sequence. The brightness constancy assumption is stated as follows :

J(x + dx)− I(x) = 0 (4.1)

where J and I are images at time t + 1 and t respectively, x = [x, y]T is the feature

location, and dx = [dx, dy]T is the displacement vector.

Linearizing Equation 4.1 using the Taylor expansion, we get

Jxdx + Jydy + Jt = 0 (4.2)

where Jx = ∂J
∂x

, Jy = ∂J
∂y

, and Jt = J(x)− I(x). Computing the displacement is under-

constrained since there are two unknowns (dx and dy) with one equation (Equation 4.2).

This is the aperture problem in which the component of the optical flow perpendicu-

lar to the gradient is unknown. To overcome this problem, Lucas and Kanade (1981)

proposed to use the spatial coherence constraint which assumes that the neighbors of

the pixel (x) have the same motion dx. Thus the displacements can be computed by

minimizing the following energy :

E =
∑
x∈P

(Jxdx + Jydy + Jt)
2 (4.3)

Notice that the summation is over the patch (or neighborhood) P surrounding the

feature. The displacements dx and dy are solved by minimizing the energy in Equation

4.3 ( ∂E
∂dx

= 0 and ∂E
∂dy

= 0) as follows.
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 ∑
x∈P J2

x

∑
x∈P JxJy∑

x∈P JxJy

∑
x∈P J2

y


 dx

dy

 = −

 ∑
x∈P JxJt∑
x∈P JyJt

 (4.4)

The summation in Equation 4.4 is over a patch centered at the feature. In the KLT

tracker, the features are extracted so that the matrix on the left side of the Equation

4.4 is well-conditioned and above the image noise level. This is determined by the

two eigenvalues of the matrix and the points with two large eigenvalues are selected as

features (Shi and Tomasi, 1994).

In practice, Equation 4.1 is rewritten as follows to make the equation symmetric

with respect to both images :

J(x +
dx

2
)− I(x− dx

2
) = 0 (4.5)

Linearizing Equation 4.5 using the Taylor expansion and minimizing the error over a

patch P as explained above, the displacement for each feature is computed as follows.

 ∑
x∈P sx

2
∑

x∈P sxsy∑
x∈P sxsy

∑
x∈P sy

2


 dx

dy

 = 2

 ∑
x∈P (I(x)− J(x))sx∑
x∈P (I(x)− J(x))sy

 (4.6)

where sx = Jx + Ix and sy = Jy + Iy.

The dynamic range of cameras is usually too small to accommodate the large dynamic

range of natural scenes. Accordingly, the exposure of the camera is adjusted causing

the appearance of the features to change breaking the brightness constancy assumption.

In the implementation by Birchfield, a simple method is used to account for the gain

change between images (Birchfield, 1997). For each feature patch P in the first image,

an individual gain is computed using the current estimate of the location of the patch

P ′ in the second image. The gain ratio is computed by the ratio of mean intensity

values of the two patches. The estimated ratio is used to normalize the intensity of the
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neighborhoods of the point in the second image to proceed with the tracking process.

In Baker et al. (2003) and Jin et al. (2001), illumination invariance is also achieved by

solving for a gain and bias factor in each individually tracked patch. In all of these

approaches, the change in intensity is treated locally for each individual feature. Also,

the intensity change which is a nonlinear process is linearly approximated.

4.4 Joint Tracking and Radiometric Calibration Al-

gorithm

We now introduce our method for brightness-invariant feature tracking and radiometric

calibration. Given a video sequence with varying exposure, we estimate the radiomet-

ric response function of the camera, the exposure difference between frames, and the

feature tracks from frame to frame. Our feature tracking, in contrast to previous ap-

proaches, models the global and nonlinear process that is responsible for changes in im-

age brightness rather than adapting to the changes locally and linearly. Our radiometric

calibration is different from previous calibration works because the correspondences are

an output of our system rather than being an input to the system. Our method is an

on-line process not a batch process, which allows subsequent algorithms such as stereo

matching to compensate for brightness changes.

We will first start by explaining the method for tracking features when the response

function is known, and then we will proceed to the method for the joint feature tracking

and radiometric calibration.

4.4.1 Tracking Features with Known Response Function

We first explain the method for tracking features and estimating the exposure difference

K between two images when the response function of the camera g (inverse response

function in the log-domain) is known. From Equation 2.6, the brightness change for a
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feature located at x with the displacement dx is explained as follows.

g(J(x +
dx

2
))− g(I(x− dx

2
)) = K. (4.7)

We apply a Taylor expansion to the images (Equation (4.8)) and then to the response

function (Equation (4.9)) to linearize the equation above.

g(J(x) +∇J(x)T dx

2
)− g(I(x)−∇I(x)T dx

2
) = K (4.8)

Let J(x) = J , I(x) = I, and g′ be the derivative of the response function g, we get

g(J) + g′(J)∇JT dx

2
−

[
g(I)− g′(I)∇IT dx

2

]
−K = 0. (4.9)

Assuming equal displacement for all pixels of a patch Pi around each feature, the

displacements for each feature [dxi, dyi]
T and the exposure difference K are estimated

by minimizing the following error function :

E(dxi, dyi, K) =
∑
x∈Pi

(β + a
dxi

2
+ b

dyi

2
−K)2 (4.10)

with

a = g′(J(x))Jx + g′(I(x))Ix (4.11)

b = g′(J(x))Jy + g′(I(x))Iy (4.12)

β = g(J(x))− g(I(x)). (4.13)

The error function is minimized when all partial derivatives with respect to the

unknowns are zero. Accordingly, the following equation needs to be solved for each
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feature.  Ui wi

wi
T λi

 zi =

 vi

mi

 (4.14)

where,

Ui =

 1
2

∑
Pi

a2 1
2

∑
Pi

ab

1
2

∑
Pi

ab 1
2

∑
Pi

b2

 (4.15)

wi =

 −
∑

Pi
a

−
∑

Pi
b

 , λi =
∑
Pi

2 (4.16)

vi =

 −
∑

Pi
βa

−
∑

Pi
βb

 , mi = 2
∑
Pi

β (4.17)

zi = [dxi, dyi, K]T (4.18)

Note that the exposure difference K is global for all features and we can estimate

the unknown displacements for all features (dxi, dyi, i = 1 to n) and the exposure K

simultaneously by minimizing the following error.

E(dx1, dy1, ..., dxn, dyn, K) =
n∑

i=1

E(dxi, dyi, K) (4.19)

Accordingly the unknowns (z) are found by solving the following linear equation.

Az =

 U w

wT λ

 z =

 v

m

 (4.20)

62



Figure 4.1: Solving for the displacements and the exposure : Illustration of Equa-
tion (4.20)

with

U =



U1 0 . . . 0

0 U2 0

...
. . .

...

0 . . . Un


, w = [w1, . . . ,wn]T (4.21)

λ =
n∑

i=1

λi, m =
n∑

i=1

mi, v = [v1, . . . , vn]T (4.22)

z = [dx1, dy1, . . . , dxn, dyn, K]T (4.23)

Figure 4.1 shows the structure of Equation (4.20). The matrix A is a sparse matrix

and we can take advantage of its structure to find a computationally efficient solutions.

Both sides of the Equation (4.20) are multiplied on the left by

 I 0

−wTU−1 1

 resulting

in  U w

0 −wTU−1w + λ

 z =

 v

−wTU−1v + m

 (4.24)

where (−wTU−1w + λ) is the Schur complement of the matrix U. Since the inverse

of U can be computed efficiently as it is a 2 × 2 block diagonal matrix (this inversion
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corresponds to the amount of work necessary for the standard KLT) and its Schur

complement is a scalar, Equation (4.24) can be solved very efficiently. The exposure

difference K is given by

(−wTU−1w + λ)K = −wTU−1v + m (4.25)

Once K is found, we can solve for the displacements. For each patch i, dxi and

dyi are computed by back substituting K as in Equation (4.26). Hence the proposed

estimation adds one additional equation (Equation (4.25)) to solve to the standard KLT

tracking equations.

Ui

 dxi

dyi

 = vi −Kwi (4.26)

4.4.2 Joint Tracking and Radiometric Calibration

We now discuss the case of unknown response function. Given a video sequence, we

automatically compute the radiometric response function g, the exposure difference

between frames K, and the feature tracks.

We again use the Empirical Model of Response (EMoR) introduced in Grossberg

and Nayar (2004) for the camera response function.

g(I) = g0(I) +
M∑

k=1

ckhk(I) (4.27)

where g0 is the mean function and ck’s are the coefficients for the basis functions hk’s. For

the work introduced in this chapter, we used a third order approximation (M = 3) since

the first three basis functions explain more than 99.6% of the energy (Grossberg and

Nayar, 2004). The derivative of the response function is similarly a linear combination

of the derivatives of the basis functions.

64



g′(I) = g′0(I) +
M∑

k=1

ckh
′
k(I) (4.28)

Substituting g and g′ in Equation (4.9) with Equation (4.27) and Equation (4.28),

we get the following equation.

d + a · dx + b · dy +
M∑

k=1

ckrk +
M∑

k=1

αkpk +
M∑

k=1

βkqk −K = 0 (4.29)

The known variables for Equation (4.29) are :

a =
g′0(J)Jx + g′0(I)Ix

2
(4.30)

b =
g′0(J)Jy + g′0(I)Iy

2
(4.31)

rk = hk(J)− hk(I) (4.32)

pk =
h′k(J)Jx + h′k(I)Ix

2
(4.33)

qk =
h′k(J)Jy + h′k(I)Iy

2
(4.34)

d = g0(J)− g0(I) (4.35)

The unknowns are the displacements dx and dy, the coefficients for the response function

ck (k = 1 to M), the exposure difference K, and variables introduced for linearization

αk = ckdx and βk = ckdy.

Again, we assume equal displacement for all pixels in a patch around each feature

and minimize the following error function to solve for the unknowns.

E(dxi, dyi, c1, . . . , cM , αi1, . . . , αiM , βi1, . . . , βiM , K) =

∑
Pi

(d + adxi + bdyi +
M∑

k=1

ckrk +
M∑

k=1

αikpk +
M∑

k=1

βikqk −K)2 (4.36)
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Setting all partial derivatives towards the unknowns to zero, we get following equation

for each feature.  Ui Wi

Wi
T Λi


︸ ︷︷ ︸

Ai

zi =

 vi

mi

 (4.37)

Now we can solve for all feature tracks and the global parameters for the response

function and the exposure difference similar to the case of known response function.

Az =

 U W

WT Λ

 z =

 v

m

 (4.38)

with

U =


U1 0 . . . 0
0 U2 0
...

. . .
...

0 . . . Un

 , W = [W1, . . .Wn]T (4.39)

Λ =
n∑

i=1

Λi, v = [v1, . . . ,vn]T ,m =
n∑

i=1

mi (4.40)

z = [ϕ1, . . . , ϕn, c1, . . . , cM , K]T (4.41)

where

ϕi = [dxi, αi1, . . . , αiM , dyi, βi1, . . . , βiM ]T (4.42)

Notice that Equation (4.38) has the same structure as Equation (4.20) (Figure 4.2)

except that the size of each sub-matrices are bigger. Ui’s are (2M +2)× (2M +2), Wi’s

are (2M + 2) × (M + 1), and Λi’s are (M + 1) × (M + 1). Multiplying both sides on
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Figure 4.2: Solving for the radiometric response function (3 basis functions), exposures,
and the feature displacements : Illustration of Equation (4.38).

the left by

 I 0

−WTU−1 I

 results in

 U W

0 −WTU−1W + Λ

 z =

 v

−WTU−1v + m

 (4.43)

The coefficients of the response function and the exposure can be solved by

(−WTU−1W + Λ)υ = −WTU−1v + m (4.44)

where

υ = [c1, . . . , cM , K] (4.45)

The solution to Equation (4.44) will suffer from the exponential ambiguity (or γ

ambiguity) explained in the previous chapter which means that if a response function g

and an exposure K are the solution to the problem so are γg and γK (Grossberg and

Nayar, 2004). In Chapter 3, we fixed the scale by fixing the exposure ratio of an image

pair. In this work, we chose to set the value of the response function at the image value
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Figure 4.3: Factorization for estimating the tracks (M=3).

at 128 to a value τ to deal with the exponential ambiguity. This is done by adding the

following equation to Equation (4.44).

ω
M∑

k=1

ckhk(128) = ω(τ − g0(128)) (4.46)

The value ω in the equation controls the strength of the constraint.

The displacement for each feature can then solved by back substituting the solution

υ to Equation (4.37).

Uiϕi = vi −Wiυ (4.47)

Notice that αik’s and βik’s in ϕi are the products of the displacement and the response

function coefficients: αik = ckdxi and βik = ckdyi. Since we have already estimated the

coefficients ck’s, we can factorize the unknowns in ϕi as follows.

 dxi αi1 . . . αiM

dyi βi1 . . . βiM

 =

 dxi

dyi

[
1 c1 . . . cM

]
︸ ︷︷ ︸

c

(4.48)

Using the factorization, Equation (4.47) can be put into a simpler form as follows (Fig-
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ure 4.3).

Yi

 dxi

dyi

 = vi −Wiυ (4.49)

Yi(1 : 2M + 2, 1) = Ui(1 : 2M + 2, 1 : M + 1)cT

Yi(1 : 2M + 2, 2) = Ui(1 : 2M + 2, M + 2 : 2M + 2)cT (4.50)

4.4.3 Updating the Response Function Estimate

In Section 4.4.2, we introduced the method for computing the response function, the

exposure difference, and the feature tracks at the same time given an image pair from

a video sequence. We now explain how we can integrate the estimates of the response

function from each pair of images using a Kalman filter (Kalman, 1960; Welch and

Bishop, 1995). The state is the coefficients of the response function (φ = [c1, . . . , cM ]T )

and it is assumed to remain constant. Hence the process noise covariance was set to

zero and the time update equations used are

φ̂−k = φ̂k−1

P−
k = Pk−1 (4.51)

where φ̂ is the estimate of the state and P is the estimate error covariance matrix. The

measurement update equations are

κk = P−
k (P−

k + R)−1

φ̂k = φ̂−k + κk(zk − φ̂−k )

Pk = (I− κk)P
−
k (4.52)
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Figure 4.4: Overview of our algorithm

where κ is the Kalman gain, zk is the measurement which is the pair-wise estimate of

the response function in our case, and R is the measurement noise covariance.

Let D = (−WTU−1W + Λ) and b = −WTU−1v + m from Equation (4.44), the

covariance matrix R is computed as follows.

R = (DTD)−1((Dυ − b)T (Dυ − b)) (4.53)

The Kalman estimate of the response function φ̂ = [ĉ1, . . . , ˆcM ]T is incorporated into

the response function estimation in the next frame in the sequence where the problem

becomes estimating ∆ck as follows.

g(I) = g0(I) +
M∑

k=1

(ĉk + ∆ck)hk(I) (4.54)

4.4.4 Multi-scale Iterative Algorithm

Figure 4.4 shows the overview of our algorithm for the method explained in Section 4.4.2.

As with the standard KLT tracker implementation, our algorithm runs iteratively on

multiple scales. Image intensity and gradient pyramids are first built and the computa-
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tion (process A in Figure 4.4) starts from the coarsest level pyramid to the finest level.

The process A in Figure 4.4 is iterated multiple times for each pyramid level. Strictly

speaking, the response estimate in the pyramid level other than the pixel level is an

approximation of the real response function since the smoothing operation for building

pyramids is done with the image values affected by the nonlinear response function.

However, this does not affect our final estimates since the final estimation is done at the

pixel level. The output of the algorithm are the coefficients for the response function

which are fed to the Kalman filter (Section 4.4.3), the exposure difference K, and the

tracked features which become input for the next pair of frames. Notice that we can

start the tracking process with unknown response function and switch to tracking with

known response function explained in Section 4.4.1 when the estimate of the response

function gets stable.

4.5 Experiments

4.5.1 Experiment with Synthetic Data

We first evaluate our proposed methods with synthetic examples using evaluation images

from Birchfield (1997). The brightness of an image can be changed from I to I ′ using

Equation (4.55) with a response function g together with an exposure difference of K.

I ′ = g−1(g(I) + K) . (4.55)

The response function used for the evaluation with the synthetic data is shown in Fig-

ure 4.6. The exposure value applied for the examples from Figure 4.5 was 0.4. The

feature tracking results using the standard KLT (Lucas and Kanade, 1981; Shi and

Tomasi, 1994), the local adaptive KLT (Birchfield, 1997), our method with known re-

sponse function in Section 4.4.1, and our method with unknown response function in
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Section 4.4.2 are shown in Figure 4.5. As expected, the standard KLT does not perform

well under the brightness change. Our experiments show that the local adaptive KLT

mostly performs well when the camera motion and the brightness change are small (Fig-

ure 4.5). However, the performance significantly degrades when the change in motion or

brightness increases as demonstrated in Figure 4.8. Tracking results using our methods,

both with and without the knowledge of the response function, show superior results

even with significant change in brightness which poses some problems for other track-

ing methods. The exposure value computed by our method was 0.404 with the known

response function method and 0.408 with the unknown response function method (The

scale of the response function was set with the known scale). We further tested our

response function estimation algorithm by creating a synthetic sequence with 9 images

with varying exposure values. Figure 4.6 shows some samples of the successive response

function estimates and the final estimate along with the ground truth. Some estimates

are less accurate in the lower intensity regions because the exposure difference was small

in those image pairs. When the exposure difference is small, there are no changes in

the brightness in the lower brightness regions giving no constraints to the estimation

problem.

4.5.2 Experiments with Real Data

Similar results were observed in an experiment with a real video sequence. It was

taken in a high dynamic range scene with a Canon GL2 camera. The exposure was

automatically adjusted to a high value when the camera pointed to the dark inside area

and it changed to a low value as the camera turned to the bright outside area. The

comparison of tracks using the local-adaptive KLT, our method with known response

function, and our method with unknown response function is shown in Figure 4.8. Both

of our methods are able to track more features with significantly fewer errors when

the changes in motion and brightness are relatively large as shown in the example.
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(a) (b)

(c) (d)

Figure 4.5: Feature tracking results (synthetic example) using : (first) standard KLT
(second) local-adaptive KLT (third) our method with known response (fourth) our
method with unknown response. Each line shows the movement of the feature from
the previous frame to the current frame. Consistent feature displacements indicate
good tracking. Images are from Birchfield (1997)

Figure 4.6: Camera response function estimation results. (First) Samples of response
functions estimated from the synthetic sequence. (Second) Final estimate of the response
function.
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Figure 4.7: Camera Response Function Estimation (Real Data). (First) Sam-
ples of response functions estimated from the real video sequence (20 frames).
(Second) Final estimate of the response function. The video can be seen at
http://www.cs.unc.edu/∼sjkim/klt/track-response.wmv

Figure 4.7 shows the result of our response function estimation from this video. For the

ground truth, we took multiple images of a static scene with a fixed camera changing

the exposure value and fit the empirical model of response (EMoR) to the data as the

method in the previous chapter. Samples of the response function estimates and the

final estimate are compared with the ground truth in Figure 4.7.

We further verified our exposure estimation by comparing our estimates with the

ground truth. Using a Point Grey Flea camera which has a linear response function, we

took videos of scenes where the camera goes in and out of shadows causing the exposure

to change frequently. The computed exposure values were compared with the values

reported by the camera in Figure 4.9 and Figure 4.10.

The execution time for tracking 500 features in 720x480 images on a Pentium 4

processor (2.80 GHz) was 5 frames/second for the standard KLT, the local-adaptive

KLT, and our method with known response. For our method with unknown response,

the execution time was 0.2 frames/second which includes camera response and exposure

estimation in addition to tracking. Only a few frames are necessary to compute the
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Figure 4.8: Feature Tracking using (First)Local-adaptive KLT (Second) Our method
with known response (Third) Our method with unknown response. The video can be
seen at http://www.cs.unc.edu/∼sjkim/klt/tracks.wmv
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Figure 4.9: Exposure Estimation 1. The estimated exposure values are compared with
the values reported by the camera.

response function and our method with the known response can be used for tracking

afterwards. The overhead would be about 5% to 10% when tracking a 1-minute video.

Zach et al. implemented our joint tracker with known (linear) response in GPU where

the processing time is 213 frames/second for similar data sets (Zach et al., 2008).

Our method for joint feature tracking and radiometric calibration can be applied

to perform structure from motion and stereo to recover a dense 3D surface. Using the

tracked features, the camera motion can be computed using the technique presented

in Pollefeys et al. (2004)1. Using our method, we are able to recover camera motion

despite passing in and out of heavy shadows and even entering fully enclosed areas.

Furthermore, feature tracks are continued over a larger number of frames, which is

important for reducing drift in bundle adjustment. By using the recovered camera

response function and the exposure differences between frames, we can use the simple

stereo matching metric such as sum of absolute differences (SAD) instead of using metrics

1Camera intrinsics are precomputed manually.
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Figure 4.10: Exposure Estimation 2. The estimated exposure values are compared with
the values reported by the camera.

that are invariant to brightness changes. Our matching function for a given pixel (x, y)

and disparity (depth) d is as follows.

C(x, y, d) =
∑

i,j∈W

|g(I(x + i, y + j)))− g(J(x + i− d, y + j))−K| (4.56)

The cost function is aggregated over a window W , and the disparity (depth) with min-

imum cost is selected. A plane-sweeping approach is used to handle multiple views

simultaneously. More detailed explanation on the stereo system can be found in Polle-

feys et al. (2008).

To evaluate the stereo algorithm, we used videos from two scenes with high dynamic

range which caused the exposure to change significantly. Some sample images of the

videos are shown in Figure 4.11 and Figure 4.12. For the first example, the exposure

changes because the camera moves from a shadow to sunlight. Depth map computed
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with our method which adapts for the exposure change shows superior results compared

with the depth map computed without compensating for the exposure change as shown

in the last row of Figure 4.11. The texture-mapped 3D model of the scene generated with

our stereo system are also shown in Figure 4.11. The textures are radiometrically aligned

to a constant exposure values using Equation 4.55. For the second stereo example, a

video of a tunnel-like structure is taken starting from outside. This example is more

challenging due to bigger exposure changes and more complex geometry of the scene.

Depth map comparison and 3D models in Figure 4.12 show similar result as the first

example. Note that some textures are radiometrically distorted in the model because

the original pixels for those regions were saturated. An additional stereo result is shown

in Figure 4.13.

4.6 Discussion

We have introduced a novel method that unifies the problems of feature tracking and

radiometric calibration which includes exposure computation into a common framework.

For feature tracking, it is commonly required that the brightness of features stays con-

stant or the variations are dealt locally and linearly when the change is actually global

and nonlinear. This limitation is not acceptable in many applications like ground re-

conaissance video for large scale outdoor scene modeling which needs to capture a high

dynamic environment with a low dynamic camera system. To overcome these limita-

tions, we proposed a joint feature tracking, radiometric response function and exposure

estimation framework. This solves the chicken-and-egg problem in which the tracking

requires accurate radiometric calibration for accuracy which in turn relies on precise

tracks. Our computationally efficient algorithm takes advantage of the structure of the

estimation problem which leads to a minimal computational overhead. With our joint

estimation, we were able to advance the quality and robustness of the known structure
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Figure 4.11: First stereo example. (Top) Sample images from the video sequence (Mid-
dle) Generated 3D model with radiometrically aligned textures (Bottom) Depth maps
computed without exposure compensation (left) and with our method (right)
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Figure 4.12: Second stereo example. (Top) Sample images from the video sequence
(Middle) Generated 3D model with radiometrically aligned textures (Bottom) Depth
maps computed without exposure compensation (left) and with our method (right)

(a) (b) (c)

Figure 4.13: Additional Stereo Example. (a) video frame, (b) novel gain corrected
stereo, (c) standard stereo.
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from motion techniques by incorporating the information for 3D camera tracking, the

depth from stereo and providing radiometrically aligned images for texture-mapping.
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Chapter 5

Radiometric Calibration with Illumination

Change

5.1 Introduction

There are millions of webcams worldwide providing videos of streets, buildings, natural

sites such as mountains and beaches, and etc. The images of an outdoor scene col-

lected over time provide a rich source of information and can lead to novel computer

vision applications such as computing intrinsic images (Weiss, 2001), building webcam

synopsis (Pritch et al., 2007), and geolocating webcams (Jacobs et al., 2007). They

are also valuable in studying scene appearance variations, which can help develop more

interesting applications and enhance existing computer vision methods that were con-

strained to controlled indoor environments. For this purpose, Narasimhan et al. (2002)

introduced a database of images of a fixed outdoor scene with various weather condi-

tions captured every hour for over 5 months. Their database covers a wide range of

illumination conditions (both day and night), weather conditions, and seasons. Another

database of images were introduced by Jacobs et al. (2006) where they collected more

than 17 million images over 6 months from more than 500 webcams across the United

States. In their work, it was shown that the image sets from different static cameras

have consistent correlations over large spatial and temporal extents.



The scene appearance depends on multiple factors including the scene geometry and

reflectance, illumination geometry and spectrum, and the viewing geometry. In addition,

the weather has a large effect on the scene appearance for outdoor scenes. An important

factor for determining the image appearance of a scene that is often not considered is

the radiometric properties of the camera. In many computer vision systems, an image

of a scene is assumed to directly reflect the appearance of the scene. However, this is

not the case for most cameras as the camera response function is nonlinear. In addition,

cameras usually operate in the auto-exposure mode where the exposure settings are

automatically adjusted according to the dynamic range of the scene which may change

the appearance of the scene in the images. Note also that this is often a necessity for

outdoor scenes undergoing significant lighting variation during the day. The effect of

the auto-exposure on the images is illustrated in Figure 5.1 where pixel values of a point

over time recorded with auto-exposure are compared with those recorded with a fixed

exposure value. In this particular example, the sun is moving away from the scene so

the radiance of the points in the scene are decreasing as shown by the pixel values of the

fixed exposure sequence. In the auto-exposure mode however, the camera compensates

for the decrease in the overall brightness of the scene resulting in the increase of the

pixel values. As can be seen in the auto-exposure sequence example, the pixel values

stay almost constant even though the scene radiance is actually decreasing. While this

behavior is good for the viewing purposes, it has an ill effect on many computer vision

methods that rely on the scene radiance measurement such as photometric stereo, color

constancy, and on the methods that use image sequences or time-lapse data of a long

period of time such as in Jacobs et al. (2006), Jacobs et al. (2007), and Weiss (2001)

since the pixel values do not reflect the actual scene radiance.

In this chapter, we introduce a new algorithm to compute the radiometric response

function of the camera and the exposure values of images given a sequence of images

of a static outdoor scene taken at a regular interval for a period of time. While the
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Figure 5.1: Effect of auto-exposure. (Top) Images taken at different times with auto-
exposure (Middle) Images taken with exposure fixed (Bottom) Pixel values of a point
over time.

underlying assumption for our method is that the surfaces are Lambertian, the proposed

method deals with non-Lambertian surfaces such as windows and specular materials by

automatically filtering out those points. Radiometric calibration on this type of data is

a challenging problem because the illumination for each image is changing, causing the

exposure of the camera to change. Most of the previous radiometric calibration methods

cannot be applied because they are based on using differently exposed images taken with

constant illumination. In particular, exposures will only change in response to lighting

changes which makes it hard to separate the effect of both. We solve the problem of

lighting change by first selecting groups of pixels that have constant behaviors with

regard to illumination change. This means that the pixels in a group are either all

sunlit or in a shadow at a certain time in addition to having the same surface normal.

The effect of the exposure and the lighting is constant for the selected pixels and the

intensity differences between these pixels are due to their albedo differences which should
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remain constant over time since the albedo is a property of the material. This property

is exploited to compute the response function using images with varying illumination.

Estimating the exposure value for each image in the sequence after linearizing the images

with the computed response function is still a difficult problem because the change in

the intensity is due to the change in both the exposure and the illumination. There

are countless combinations of the exposure and the illumination change that results in

the same intensity change. To solve this problem, we model the illumination variation

according to the motion of the sun since we are dealing with outdoor scenes.

As mentioned in Chapter 2, radiometric calibration methods that deal with illumi-

nation change were introduced in Manders et al. (2004) and Shafique and Shah (2004).

However, both methods are limited in practice and cannot be used for outdoor images.

For the method in Manders et al. (2004) which uses superposition constraints imposed

by different combinations of two (or more) lights, the control over lighting is necessary as

you need images with different light sources and an image with all the light sources on.

The method in Shafique and Shah (2004) estimates the response function by exploiting

the fact that the material properties of the scene should remain constant and use cross-

ratios of image values of different color channels to compute the response function. The

response function for this method is limited to a gamma function making this method

difficult to use in practice. Compared to these works, the algorithm proposed in this

chapter is more general in that the we use natural lighting conditions and allow exposure

changes. In addition, we allow a more general model of the response function, do not

require information across different color channels, and compute the response function

linearly unlike the method of Shafique and Shah (2004).

The remainder of the chapter is organized as follows. In Section 5.2, we introduce

a method for computing the camera response function using images with illumination

change. Then we develop methods for computing the exposure value for each image in a

sequence in Section 5.3. We evaluate our methods with experiments in Section 5.4 and
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conclude with discussion about our algorithm in Section 5.5.

This work was presented in Kim et al. (2008b).

5.2 Computing the Radiometric Response Function

with Illumination Change

In this section, we first introduce a method for computing the response function of a

camera given multiple images of a static scene which is assumed to consist predominantly

of Lambertian surfaces with illumination change. We model the image formation process

as

Iit = f(ktaiMit) , (5.1)

where the response function f transforms the product of the exposure value k, the illu-

mination M , and the albedo a to the image intensity I. The indexes i and t denote pixel

location and time respectively. The product of the albedo (a) and the illumination (M)

is the irradiance (E) in the image formation equations presented in previous chapters

(Equation 2.3 and Equation 3.2). The illumination M is the inner product between the

surface normal N and the directional light L which in our case is the sunlight. The

illumination also includes indirect lighting1 (Lindirect) such as from sky illumination and

reflections from different surfaces.

Mit = Ni · Lt + Lindirect (5.2)

Equation (5.1) can also be written as follows :

f−1(Iit) = ktaiMit . (5.3)

1This lighting term is referred to as ambient lighting in computer graphics
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Let g = logf−1, K = log(k), and α = log(a), then

g(Iit) = Kt + αi + log(Mit) . (5.4)

If two points in the image have the same surface normal and both points are either

both in a shadow or a non-shadow region, the amount of lighting is the same for the

two points (Mit = Mjt)
2. The exposure K is a global factor for all points in an image

so the relationship between the two points can be stated as follows :

g(Ijt)− g(Iit) = αj − αi . (5.5)

By using the points with same lighting conditions, the relationships between the image

intensities of the points are explained only with the albedos of the points. Since the

albedo of a point is constant over time, we can use Equation (5.5) to compute the

response function g as well as the albedo differences between points with same lighting

condition (αj − αi) from multiple images with different illumination.

5.2.1 Finding Pixels with Same Lighting Conditions

The first step necessary to compute the camera response function is to find pixels that

have the same lighting conditions in all images that are used for the radiometric cali-

bration. For different pixels to have the same lighting conditions, the surface normals of

the points have to be the same and if one point is in the shadows, the other points also

have to be in the shadows at that time. We modify the method proposed in Koppal and

Narasimhan (2006) in which the appearance of the scene is clustered according to the

surface normals. The key observation is that appearance profiles for iso-normal points

exhibit similar behaviors over time (Figure 5.2). An appearance profile is a vector of

2We assume that the indirect lighting is the same for all points within a patch at a specific time.
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Figure 5.2: Using appearance profile to cluster pixels with same lighting conditions
: (Top) Images used to compute the camera response function (Bottom) Appearance
profiles of points with the same lighting conditions. Note that even though all the points
have the same normal in the example, they have different profiles due to shadows.

measured intensities at a pixel over time and the extrema location in the profiles are used

to cluster the appearance in Koppal and Narasimhan (2006). In this work, we compute

the similarity of the lighting between two pixels by simply computing the normalized

correlation between the appearance profiles of the two points. With this similarity mea-

sure, we use the k-means algorithm to cluster pixels with same lighting conditions over

time (Figure 5.3). The clusters at this point may contain errors due to non-Lambertian

regions, motions in the scene, and reflections. To deal with these errors, we first divide

the image into blocks of the same size and filter out regions where all the pixels do not

fall into the same cluster as illustrated in Figure 5.3. Blocks with uniform intensity

such as in sky are also filtered out since they don’t provide valuable information for the

radiometric calibration.

5.2.2 Pixel Selection

After clustering the pixels, we then select pixels from each cluster for the response

function estimation. First, we randomly pick a number of points (300 points in our
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Figure 5.3: (Left) Pixels clustered by the appearance profile with k-means algorithm
using 4 images shown in Figure 5.2. Clusters are identified with different colors in the
image. (Right) Regions (blocks) with non-uniform clusters are filtered out. Most of the
non-Lambertian regions are filtered out at this stage.

experiments) from each cluster. Due to image noise and non-uniform surface, the ap-

pearance profiles for the selected pixels will be significantly disturbed by noise as shown

in Figure 5.4. Profiles of two pixels under the same lighting conditions crossing each

other means that the albedo difference between the two points changed even though it

should stay constant throughout. It is essential to filter out these outliers which can

otherwise have a serious effect on the estimation results.

To remove outliers from the selected pixels for each cluster, we use the order of

the pixel intensities as the cue. The idea is that if a pixel has the lowest intensity in

one frame, the intensity of that pixel should also be the lowest in the following frames.

Assuming that there are n points selected for a cluster, we build a vector dit of size n

for each pixel i at time t where each element is :

dit(j) =


+1 if Iit > Ijt

−1 if Iit < Ijt

0 if Iit = Ijt

(5.6)

The dot product between dit and dit+1 gives us how much support the pixel i has

in terms of orders from other pixels in the cluster. We iteratively remove pixels with
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Figure 5.4: Pixel profiles for two frames (Left) Originally selected pixels and their profiles
(Right) Profiles after postprocessing.

the worst support until all the pixels are in order between frames. An example of this

process is shown in Figure 5.4.

5.2.3 Radiometric Response Function Estimation

To model the response function g, we again use the Empirical Model of Response

(EMoR) explained in Section 2.3.

g(I) = g0(I) +
m∑

s=1

cshs(I) (5.7)

where the g0 is the mean function and the ck’s are the coefficients for the basis functions

hk’s. Combining Equation (5.5) and Equation (5.7), we have

m∑
s=1

cs(hs(Ijt)− hs(Iit))− αji = g0(Iit)− g0(Ijt) (5.8)

where αji = αj − αi.

For n pixels in the same cluster l at time t, we have n−1 linear equations Atlxt = btl

as follows.

Atl = [A′
tl In−1] (5.9)
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A′
tl(y, x) = hx(Iy+1,t)− hx(I1t), 1≤y≤n−1, 1≤x≤m, (5.10)

btl(y) = g0(I1t)− g0(Iy+1,t), 1 ≤ y ≤ n− 1 (5.11)

xt = [c, al]
T (5.12)

where In−1 is an identity matrix of size n − 1 by n − 1, c = [c1, c2, . . . , cm] and al =

[α21, α31, . . . , αn1].

Since we have m+n-1 unknowns with n-1 equations, the system above is under-

constrained. We can add more equations to the system by incorporating the temporal

information of multiple frames. The number of points n is typically bigger than the

number of basis functions (m = 5 in this chapter), so as few as two frames are enough

to solve for the response function. Since one cluster typically does not provide enough

range of intensities for accurate estimation, we combine equations from different clus-

ters. Adding multiple clusters at multiple frames, we can compute the response function

by solving the following least squares problem Ax = b with (assuming we are using 3

clusters from 2 frames for simplicity)

A =



A′
11 In−1 0 0

A′
21 In−1 0 0

A′
12 0 In−1 0

A′
22 0 In−1 0

A′
13 0 0 In−1

A′
23 0 0 In−1

,


(5.13)

b = [b11,b21,b12,b22,b13,b23]
T , (5.14)

x = [c, a1, a2, a3]
T . (5.15)

In practice, the rows of A and b are weighted according to the intensity of the pixel

used for the row as explained in Chapter 3 (Equation 3.18).
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The solution to the problem Ax = b above suffers from the exponential (or scale

in the log space) ambiguity explained in the earlier chapters. To fix the scale of the

response function, we set the value of the response function at the image value 128 to a

value τ . We will discuss this ambiguity later in Section 5.3.

5.3 Exposure Estimation from Images with Differ-

ent Illumination

By using the computed response function, we can linearize the images as in Equations

(5.3). While the images taken at different times are now linearly related, the images may

not reflect the true appearance of the scene due to the exposure change in the camera.

However, there is an inherent ambiguity in computing the exposures from images with

different illumination similar to the exponential ambiguity mentioned in the previous

section. As can be seen from Equation (5.3), there is an infinite number of combinations

of the exposure and the lighting that result in the same image intensity. To compute

the exposure, assumptions on the lighting have to be made.

In this section, we introduce a method to estimate the exposure values given a

sequence of images of an outdoor scene taken over a period of time. For the outdoor

scenes, the dominant source of lighting in general is the sun. We model the lighting

change according to the motion of the sun and use the model to compute the exposures.

We make the assumption that the sunlight was not blocked by clouds when the images

were taken.

5.3.1 Modeling the Illumination with the Motion of the Sun

The direction of the sunlight (Lt) at time t and the surface normal of a point i (Ni)

can be expressed in Cartesian coordinates as in the following equation where θ’s are the
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Figure 5.5: Relationship between lighting, exposures, and image appearance. We need
at least two pixel profiles to compute exposures since many combination of lighting and
exposure can result in a same profile.

azimuth angles and φ’s are the elevation angles :

Lt = [cos φt cos θt, cos φt sin θt, sin φt]
T ,

Ni = [cos φi cos θi, cos φi sin θi, sin φi]
T .

(5.16)

The lighting due to the sun at point i is then

Ni · Lt = cos φt cos φi cos(θt − θi) + sin φt sin φi . (5.17)

Without loss of generality we rotate Lt and Ni so that φt = 0, Equation (5.17) becomes

Ni · Lt = cos φ′i cos(θt − θ′i)

= cos φ′i(cos θ′i cos θt + sin θ′i sin θt)

= pi cos θt + qi sin θt (5.18)

where pi = cos φ′i cos θ′i and qi = cos φ′i sin θ′i. According to Equation (5.18), the lighting

variation at a point due to the sun over time is a sinusoidal function with the scale and

the phase being the parameter.
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5.3.2 Exposure Estimation

Combining Equations (5.2), (5.3), and (5.18) we have

1

kt

f−1(Iit)− p′i cos θt − q′isinθt = 0. (5.19)

In the above equation, p′i and q′i are considered to include the albedo term a from

Equation (5.3). Additionally, we assumed that the effect of indirect lighting is constant

over time. With a sequence of η images, the exposure for each image (kt, 1 ≤ t ≤ η)

and the lighting parameters (p′i and q′i) for a point i can be computed as follows :



cos θ1 sin θ1 f−1(Ii1) 0 0 · · · 0

cos θ2 sin θ2 0 f−1(Ii2) 0 · · · 0

...

cos θη sin θη 0 0 0 · · · f−1(Iiη)





p′i

q′i

k′1

k′2
...

k′η


= 0 (5.20)

where k′ = 1/k.

As can be seen, Equation (5.20) is under-constrained with η + 2 unknowns and η

equations. Therefore, at least two pixel profiles of different surface normals are necessary

as shown in Figure 5.5.

Let

S =



cos θ1 sin θ1

cos θ2 sin θ2

...
...

cos θη sin θη


, (5.21)
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Fi =



f−1(Ii1) 0 · · · 0

0 f−1(Ii2) · · · 0

. . .

0 0 · · · f−1(Iiη)


(5.22)

with θt = 2πt( 1
24

smin

60
) (smin is the sampling interval in minutes).

Using a total of ζ pixels with different surface normals, we can solve for the exposures

kt (1 ≤ t ≤ η) and the lighting parameters (p′i and q′i, 1 ≤ i ≤ ζ) by solving a linear

least squares problem Uy = 0 with

U =



S 0η×2 0η×2 . . . 0η×2 F1

0η×2 S 0η×2 . . . 0η×2 F2

. . .

0η×2 0η×2 0η×2 . . . S Fζ


, (5.23)

y = [p′1, q
′
1, p

′
2, q

′
2, · · · , p′ζ , q

′
ζ , k

′
1, k

′
2, · · · , k′η]

T . (5.24)

More pixels can be added to the problem easily by putting the sub-matrices S and 0η×2

in U in the same order as the pixels with the same surface normal.

A set of pixels used to solve the equation above are randomly selected from the

clusters used for the response function estimation (Section 5.2). It is important not to

use pixel values at time t in the above equation when the pixels fall into shadows since

the lighting model does not apply to shadow regions. From the appearance profile of a

pixel, we detect whether the pixel is in shadow by a simple thresholding as in Sunkavalli

et al. (2006) (Figure 5.6). We also remove the pixels from the equation if the average

intensity is too low meaning that the pixels were probably always in the shadow.
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Figure 5.6: Appearance profile of a pixel : a simple thresholding scheme is used to detect
whether a pixel is in shadow or not. See Sunkavalli et al. (2006) for the thresholding
scheme.

5.3.3 Exponential Ambiguity

In Section 5.2, we discussed the inherent ambiguity in computing the response function

where the elements in Equation (5.3) are related exponentially as follows.

(f−1(Iit))
γ = kγ

t aγ
i M

γ
it (5.25)

We resolved this exponential ambiguity by arbitrarily fixing the scale of the response

function which is not a problem for applications that require image intensity alignment

since different γ’s still result in the same intensity value. However the ambiguity affects

our exposure estimation process since our method is based on having the right scale

for the response function f . If the scale of the response function is incorrect, then the

system is trying to fit a sine function to a measurement that is the exponent of a sine.

Ideally, the error ‖Uy‖ in Section 5.3.2 gives us the information about the γ. It should

be the minimum when the correct scale of the response function is used. However, the

error is not distinctive due to image noise and lack of time interval when surfaces of

different normals are both in the sunlight as shown in Figure 5.7. Alternatively, we need
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Figure 5.7: Simulation of the effect of the exponential ambiguity. The exposures and
the lighting changes were estimated on the two synthetically generated image profiles
similar to Figure 5.5 using 400 minutes of data (top) and 200 minutes of data (bottom).
The correct γ is 1.0.

information about the camera or the scene to find the right scale. In this work, we first

estimate the exposures (kt) and the lighting functions (p′i cos θt+q′isinθt in Equation 5.19)

using multiple γ values. The recovered lighting functions will have different phases with

different γ’s as shown in Figure 5.7. We then manually select the γ value that yields the

lighting functions to have the peaks at the right time of the day which can be inferred

from the orientations of shadows in the image sequence. We plan to add a step for

computing the γ automatically in the future.

5.4 Experiments

We first evaluate our response function estimation method introduced in Section 5.2.

Two cameras used for the experiments are Sony SNC-RZ30N PTZ camera and Point

Grey Dragonfly camera. For the Sony camera, we first computed the response function

97



Figure 5.8: Response function estimation result for Sony SNC-RZ30N PTZ camera.
Images used are shown in Figure 5.2

by using the method introduced in Chapter 3 with multiple images of a static scene with

constant illumination to test our method. We then computed the response function with

our method using four images shown in Figure 5.2 and the comparison of the computed

response functions is shown in Figure. 5.8. While only the green channel was used

for this example, we can easily combine all channels if necessary. For the Point Grey

Dragonfly camera, we compare our result computed with two images with the known

linear response function (Figure 5.9). The number of images for accurate estimation

depends on the intensity range of each image. While the method does not need a large

number of points, it is important to have well distributed pixel intensities for accurate

estimation.

To evaluate our exposure estimation method, we recorded images of a scene with the

Point Grey camera every minute for a little more than 4 hours when we could observe

surfaces with different normals being illuminated by the sun. Some sample images as

well as some of the pixel profiles used for the estimation are shown in Figure 5.10. Our

exposure estimates are compared to the ground truth exposures reported by the camera

in Figure 5.11. Notice that the exposure estimates start to deviate from the ground

truth starting around hour 1400. The cause for this is the change in indirect lighting as
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Figure 5.9: Response function estimation result for Point Grey Dragonfly camera with
two images used for our estimation.

a building in front of the scene started to cast a large shadow at that time reducing the

amount of light in the scene. Since our method is based on constant indirect lighting, the

change in the indirect lighting caused errors in the exposure estimation. However, for a

long period of time when the indirect lighting was close to being constant, our estimation

was accurate as shown in the figure. We can observe the function of the auto-exposure

from Figure 5.10. The camera adjusts to the brightness change by trying to fix the

intensity of dominant pixels. This function prohibits images from being under-exposed

or saturated as can be seen from the exposure-compensated images in the figure. While

this is good for viewing, this could affect vision algorithms that rely on photometric

measurements since the image intensities do not reflect the true radiance of the points.

By computing the response function and exposures using our method, we can convert

the image intensities to their actual radiance enabling further analysis of the scene.

As our last experiment, we used one of the webcam datasets introduced in Jacobs

et al. (2006) as shown in Figure 5.13. The images we used were captured every 30

minutes for 11 hours. The estimated response function and the exposures are shown in

Figure 5.12. Note that we do not have the ground truth for this data since the camera is
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Figure 5.10: Exposure Estimation. (Top) Sample images from the input sequence and
the pixel profiles of the dotted points (Bottom) Images and profiles normalized to a fixed
exposure. The 0 values in the profiles represent shadow.

Figure 5.11: Comparison of the estimation with the ground truth exposure
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Figure 5.12: Estimated response function (left) and the exposures (right) using dataset
introduced in Jacobs et al. (2006) (Figure 5.13)

unknown. We can roughly evaluate the results by comparing the input images and the

pixel profiles with the images and the profiles normalized with the estimated exposures

as in Figure 5.13. Input profiles tend to stay constant unless affected by shadows.

However, after normalizing the images with the estimated exposures, the pixel values

vary gradually as expected.

5.5 Conclusion

We have introduced a novel method for computing the radiometric response function

of a camera and additionally demonstrated the computation of exposures for outdoor

image sequences. This is a challenging problem because the image appearance varies

due to the changes in both the exposure of the camera and the lighting conditions. For

computing the camera response function, we solved the problem of illumination change

by using groups of pixels with a constant behavior towards lighting change where the

material property between the pixels in the group remains the same. To compute the

exposures, some prior knowledge in either the exposure or the lighting is necessary since

different combinations of exposure and lighting result in the same image intensity. We

overcome this limitation by modeling the lighting according to the motion of the sun
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Figure 5.13: (Top) Sample images from one of the dataset introduced in Jacobs et al.
(2006) and the pixel profiles of the dotted points. (Bottom) Images and profiles nor-
malized to a fixed exposure. The right side of the figure is to the east.

which turns out to be a sinusoidal function.

Most conventional radiometric calibration approaches use images with different ex-

posures while the illumination stays constant. Hence those algorithms cannot be used

in time-lapse sequences as used in this chapter. A couple of methods were presented

to deal with the lighting change (Manders et al., 2004; Shafique and Shah, 2004) but

both methods are limited to special cases making it difficult to apply to outdoor image

sequences. The significance of the method presented in this chapter is that it overcomes

the limitations of previous work and can be used for real images of outdoor scenes.

We believe that this work can serve as a basis for more exciting outdoor scene analysis

applications in computer vision.
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Chapter 6

Conclusion

6.1 Summary

In preceding chapters, several algorithms were presented to support the claims made in

the thesis statement :

Given a collection of images of a scene taken under varying conditions, one

can compute radiometric properties of the camera (up to some ambiguities)

that explain the relationship between the image brightness and the scene ra-

diance as well as the radiometric relationship between multiple images. The

radiometric properties include the radiometric response function, exposures,

and vignetting.

In Chapter 3, we first introduced an algorithm for computing the radiometric re-

sponse function, exposures, and vignetting from a set of images taken with freely mov-

ing camera. This method advances the state of the art in radiometric calibration by

allowing general image sets to be used, while previous methods were limited to images

taken with a static camera or a rotating camera. By decoupling the vignetting effect

from the radiometric response function, we were able to approach the camera response

estimation problem and the vignetting computation problem independently and in a

robust way. We evaluated our method with synthetic and real examples. With the



proposed algorithm, we were able to estimate the radiometric properties of the camera

accurately even in the presence of large noise and mismatches, whereas other existing

methods were not effective against noise and outliers. We applied our method to radio-

metrically align images for seamless mosaics and 3D model textures. Additionally, we

applied the algorithm to create a high dynamic range mosaic that represents the scene

radiance better than the conventional image mosaic.

The method presented in Chapter 3 requires correspondences between images, which

must be obtained from stereo matching or from a known projective transform between

images. In Chapter 4, we tackle the problem of computing the correspondences and

the radiometric calibration simultaneously. This method is especially suited for video

sequences taken in a high dynamic range environment where the image brightness of a

point changes due to the changes in the exposure of the camera. Our method advances

the conventional feature tracking algorithm (KLT tracker) which requires the brightness

of features to stay constant by unifying the problems of feature tracking and radio-

metric calibration into a common framework. Our computationally efficient algorithm

takes advantage of the structure of the estimation problem which leads to a minimal

computational overhead. With our joint estimation, we were able to advance the qual-

ity and robustness of the known structure from motion techniques by incorporating the

information for 3D camera tracking, the depth from stereo, and radiometric alignment

of images for texture-mapping.

The methods in Chapter 3 and Chapter 4 as well as most of the previous work on

radiometric calibration are based on the fact that the scene radiance itself is the same for

all images in the sequence and the change in the image brightness is due to the change in

the exposure only. This means that the illumination condition for all the images is the

same. While this condition is valid for many applications where the images are taken in

a short period of time, the condition does not hold for images taken over a long period

time such as a time-lapse video of an outdoor scene taken over a day. In Chapter 5, we
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have introduced a novel radiometric calibration algorithm that solves this problem of

illumination change by using groups of pixels with constant behavior towards lighting

change where the relationship between the albedo of the pixels in the group remains the

same. In addition, we have also presented a method to compute the exposure values

by modeling the effect of lighting on images by a sinusoidal function which is computed

according to the motion of the sun. The images in the sequence can be normalized using

the computed response function and exposures enabling the image sequence to be used

for computer vision methods that are based on image variation due to the change in

illumination only.

6.2 Future Work

There are various areas that we would like to explore in the future to overcome the

limitations as well as to extend our methods.

• Exponential Ambiguity : As mentioned several times, the radiometric response

function recovered using the algorithms presented in this dissertation is subject

to the exponential ambiguity. As stated in Grossberg and Nayar (2003), it is im-

possible to recover both the response function and the exposures simultaneously

without making assumptions on either the response function or the exposures. To

resolve this ambiguity problem, we either made an assumption on the exposure by

fixing the exposure ratio between an image pair to an arbitrary value (Chapter 3)

or on the response function by fixing the the response function to an arbitrary scale

(Chapters 4 and 5). This arbitrary fixing of the scale does not affect applications

such as radiometric alignment and feature tracking since the change of brightness

between images is the same regardless of the scale of the response function and

exposures. However, the ambiguity poses problem for applications that require

accurate scene radiance measurements such as high dynamic range imaging and
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decoupling exposure change from lighting as in Chapter 5. For the future, we

would like to extend our methods to find the right scale of the response function

automatically. One possibility would be using high-order correlations in the fre-

quency domain such as in Farid (2001). Farid modeled the nonlinearity between

the scene radiance and the image intensity with a gamma function (f(E) = Eγ)

and estimated the gamma by computing the bispectrum. We could approach the

problem of resolving the exponential ambiguity similar to Farid’s method since the

problem becomes estimating the gamma with the exponential ambiguity.

• Vignetting : Vignetting is modeled as circularly symmetric about the image

center in Chapter 3. We would like to add more flexibility to our vignetting com-

putation to include nonsymmetric vignetting models as in Litvinov and Schechner

(2005b) and also solve the cases where vignetting would not be the same for all

images in the sequence. In addition, we are interested in adding vignetting estima-

tion to the method presented in Chapter 4. Since the displacement between frames

is small, the vignetting did not affect the joint feature tracking and radiometric

calibration framework in Chapter 4. However, feature tracks over multiple frames

could be used for computing the vignetting effect.

• Illumination Change : While the method presented in Chapter 5 overcame the

limitation of conventional methods on images with changes in illumination, we

would like to improve several aspects of the proposed algorithm. For the camera

response estimation, we would like to improve its robustness against errors in

the classification of pixels with same illumination conditions. We would also like

to add a step where a set of images optimal for the calibration is automatically

selected. Additionally, we plan to enhance the exposure estimation process to take

into account the change in indirect lighting as well as the change in lighting due to

weather. One of the necessary improvement will be in improving the illumination
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model of the sun and the sky.

• Color and Spectral Analysis : In this dissertation, color changes were de-

scribed by the exposure changes in each channel independently. In the future,

we would like to extend our method to allow for cross talk between the channels

to deal with the correlation between color channels (Agathos and Fisher, 2003;

Sunkavalli et al., 2008). Also in this work, spectral analysis including the illumi-

nation spectrum, the spectral reflectance of the surface, and the spectral response

of the camera were not explicitly dealt with. We plan to extend our methods to

include the spectral analysis in the future. This would allow us to extend our radio-

metric calibration schemes to cases where different types of cameras are used. No

current radiometric calibration method can be applied when the camera spectral

responses are different. By including the spectral analysis, radiometric relation-

ship between multiple cameras of different type can be computed which would be

beneficial for many computer vision applications such as color constancy, com-

modity photo-collection applications (Snavely et al., 2006; Goesele et al., 2007),

and multi-spectral imaging (Park et al., 2007; Schechner and Nayar, 2002).

• Applications : There are several applications that we would like to explore

in the future. First, we are interested in HDR imaging. In addition to the tone-

mapping for displaying HDR images, we are interested in creating HDR video as in

Kang et al. (2003) and HDR-textured 3D models. We are also interested in explor-

ing HDR display systems with significant larger dynamic range than the current

display systems 1. We would also like to work on applications based on the method

proposed in Chapter 5. Some applications of interest include photometric stereo

from time-lapse image sequence of an outdoor scene, tensor representation for out-

door scene images (Vasilescu and Terzopoulos, 2002), and texture alignment and

1Brightside DR37-P, http://www.dolby.com/promo/hdr/technology.html
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relighting from images taken at different times, as in commodity photo-collections.
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