
E�cient and Accurate Boundary Evaluation Algorithms for BooleanCombinations of Sculptured SolidsbyShankar KrishnanA dissertation submitted to the faculty of the University of North Carolina at Chapel Hillin partial ful�llment of the requirements for the degree of Doctor of Philosophy in theDepartment of Computer Science. Chapel Hill1997Approved by:Dr. Dinesh Manocha, AdvisorDr. Gregory Turk, ReaderDr. David Eberly, Reader

ii

c1997Shankar KrishnanALL RIGHTS RESERVED

iii

To my parents, Saroja Krishnan and C. N. Krishnan

ivShankar Krishnan. E�cient and Accurate Boundary Evaluation Algorithms forBoolean Combinations of Sculptured Solids(Under the direction of Dr. Dinesh Manocha.)ABSTRACTThis dissertation presents techniques to e�ectively compute Boolean combinationsof solids whose boundary is described using a collection of parametric spline surfaces. Italso describes a surface intersection algorithm based on a lower dimensional formulation ofthe intersection curve that evaluates all its components and guarantees its correct topology.It presents algorithms and data structures to support the thesis that the lower dimensionalformulation of the intersection curve is an e�ective representation to perform Boolean oper-ations on sculptured solids. The thesis also analyzes di�erent sources of problems associatedwith computing the intersection curve of two high degree parametric surfaces, and presentstechniques to solve them.More speci�cally, the intersection algorithm utilizes a combination of algebraic andnumeric techniques to evaluate the curve, thereby providing a solution with greater accuracyand e�ciency. Given two parametric surfaces, the intersection curve can be formulated asthe simultaneous solution of three equations in four unknowns. This is an algebraic curvein R4. This curve is then projected into the domain of one of the surfaces using resultants.The intersection curve in the plane is represented as the singular set of a bivariate matrixpolynomial. We present algorithms to perform loop and singularity detection, use curvetracing methods to �nd all the components of the intersection curve and guarantee its correcttopology. The matrix representation, combined with numerical matrix computations likesingular value decomposition, eigenvalue methods, and inverse iteration, is used to evaluatethe intersection curve.We will describe a system BOOLE, a portable implementation of our algorithms,that generates the B-reps of solids given as a CSG expression in the form of trimmed B�ezierpatches. Given two solids, the system �rst computes the intersection curve between thetwo solids using our surface intersection algorithm. Using the topological information ofeach solid, we compute various components within each solid generated by the intersectioncurve and their connectivity. The component classi�cation step is performed by using ray-

vshooting. Depending on the Boolean operation performed, appropriate components areput together to obtain the �nal solid. The system has been successfully used to generateB-reps for a number of large industrial models including a notional submarine storage andhandling room (courtesy - Electric Boat Inc.) and Bradley �ghting vehicle (courtesy - ArmyResearch Labs). Each of these models is composed of over 8000 Boolean operations andis represented using over 50,000 trimmed B�ezier patches. Our exact representation of theintersection curve and use of stable numerical algorithms facilitate an accurate boundaryevaluation at every Boolean set operation and generation of topologically consistent solids.

viAcknowledgementsI wish to thank my advisor, Dr. Dinesh Manocha, for his excellent guidance and continuedsupport throughout my dissertation period. I am very grateful for his willingness to �ndtime for me in spite of his busy schedule and keeping my spirits up during some toughtimes. I would like to express my deepest gratitude to the other members of my committee:Dr. Stephen Pizer for his expectation of the highest standards, Dr. Pankaj Agarwal forproviding me with a wealth of knowledge in computational geometry, Dr. David Eberlyand Dr. Gregory Turk for agreeing to read my thesis and providing insightful criticismsand Dr. Ilse Ipsen for improving my understanding of numerical analysis. I would like tothank Dr. Frederick Brooks for taking interest in my work.I would like to thank Dr. Thomas Sederberg, Mike Hohmeyer and Atul Narkhedefor providing their implementations of B�ezier Clipping, linear programming and polygontriangulation. Thanks also to Ken Fast, Greg Angelini and Jim Boudreaux at ElectricBoat and Mike Muuss at Army Research Labs for providing their CSG models for me touse. A special thanks to the members of the Modeling and Walkthrough groups at UNC,especially Subodh Kumar, Gopi Meenakshisundaram, John Keyser and Kenny Ho� forproviding display routines to test the results of my algorithms. I would like to thank Gopifor implementing the parallel version of our algorithm and Sumedh Barde for providing theGLUT graphical user interface.Last but certainly not the least, I would like to thank my mother, Saroja Krishnan,whose immense hard work and sacri�ce made it possible for me to get to this point. I wouldalso like to thank my sisters, Lakshmy and Meenakshi, for their love and care.This work was supported in part by an Alfred P. Sloan Foundation Fellowship,ARO Contract DAAH04-96-1-0257, NSF Grant CCR-9319957, NSF Career Award CCR-9625217, ONR Young Investigator Award (N00014-97-1-0631), Intel Corp., DARPA Con-tract DABT63-93-C-0048 and NSF/ARPA Center for Computer Graphics and Scienti�cVisualization.

vii
ContentsList of Figures xList of Tables xii1 Introduction 11.1 Summary of Results : 61.2 Previous Work : 71.2.1 Boundary Evaluation Techniques : 71.2.2 Surface Intersection Techniques : 91.3 Thesis Statement : 151.4 Main Contributions : 161.4.1 Surface Intersection : 171.4.2 Curve-Surface Intersection : 181.4.3 Loop Detection : 191.4.4 Trimmed Surface Intersection : 201.4.5 Component Classi�cation : 221.5 A Guide to the Chapters : 232 Mathematical Background 242.1 A�ne and Projective Spaces : 242.2 Curve and Surface Representation : 252.2.1 Gauss Maps : 312.2.2 Multipolynomial Resultants : 322.3 Sturm Sequences : 352.4 Algebraic Curves : 362.5 Matrix Computations : 392.5.1 Power Method : 402.5.2 QR Algorithm : 412.6 Seidel's algorithm for polygon triangulation : : : : : : : : : : : : : : : : : : 433 Curve Surface Intersection 453.1 Intersection Problems and Algebraic Formulation : : : : : : : : : : : : : : : 453.1.1 Reduction to Eigenvalue Formulation : : : : : : : : : : : : : : : : : 483.2 Algebraic Pruning : 50

viii3.2.1 Computation of Multiple Solutions : : : : : : : : : : : : : : : : : : : 523.2.2 Use of Matrix Structure : 533.2.3 Algorithm for Intersection : 553.2.4 Illustration : 573.3 Performance and Comparison : 593.4 Robustness of Algebraic Pruning : 634 Surface Intersection Algorithm 664.1 Overview : 664.1.1 Matrix formulation of intersection curve : : : : : : : : : : : : : : : : 674.1.2 Parameterizations with base points : : : : : : : : : : : : : : : : : : : 694.1.3 Computing partial derivatives of intersection curve : : : : : : : : : : 714.2 Intersection Computation : 724.2.1 Start Points : 734.3 Tracing : 734.3.1 Domain Decomposition : 754.3.2 Tracing in lower dimension : 824.4 Singularities : 844.4.1 Detection of Cusps : 874.5 Robustness and E�ciency : 884.6 Models Composed of Piecewise Surfaces : 904.7 Implementation and Performance : 915 Loop Detection Algorithm 935.1 Loop Detection I: Algebraic Curves : 945.2 Implementation, Performance and Applications : : : : : : : : : : : : : : : : 1005.2.1 Application to surface intersection : : : : : : : : : : : : : : : : : : : 1015.2.2 Silhouette Computation : 1025.3 Loop Detection II: Surface Sectioning : 1045.3.1 Intersection formulation using distance function : : : : : : : : : : : : 1055.3.2 Collinear normal points and Distance function : : : : : : : : : : : : 1075.4 Loop Detection Algorithm : 1085.4.1 Multivariate Sturm sequences : 1085.4.2 Converging to the critical points : 1105.5 Implementation and Demonstration on Examples : : : : : : : : : : : : : : : 1116 Boundary Computation of Sculptured CSG Solids 1146.1 Representation of Solids : 1146.2 Set Operations between Solids : 1166.2.1 Intersection Curve between Trimmed Patches : : : : : : : : : : : : : 1196.2.2 Partitioning Trimming Boundaries : : : : : : : : : : : : : : : : : : : 1226.2.3 Updating Topological Information : : : : : : : : : : : : : : : : : : : 1246.2.4 Component Classi�cation : 1256.2.5 Final B-rep Generation : 1296.3 Degeneracies : 129

ix7 Implementation and Performance 1327.1 Architecture of the BOOLE system : 1357.2 Robustness and Accuracy : 1397.3 Parallel Implementation : 1427.3.1 Load Balancing Algorithm : 1457.4 Performance : 1508 Conclusion and Future Work 1548.1 Ongoing and Future Work : 156Bibliography 158Appendix A 172Appendix B 174

x
List of Figures1.1 Submarine storage and handling room : 21.2 An example of regularized intersection operation [Hof89] : : : : : : : : : : : : 31.3 Part of a CSG tree of the roller from the submarine model : : : : : : : : : : : 41.4 Various components of the intersection curve : : : : : : : : : : : : : : : : : : 101.5 Loop detection based on Gauss maps : 141.6 Obtaining intersections between trimmed surfaces : : : : : : : : : : : : : : : : 212.1 Embedding projective space into a�ne space : : : : : : : : : : : : : : : : : : : 252.2 B-Spline blending functions for a cubic curve : : : : : : : : : : : : : : : : : : : 262.3 A surface patch and its parametric domain : 282.4 Trimming rule : 292.5 Sixteen control points of a bicubic Bezier patch : : : : : : : : : : : : : : : : : 302.6 A trimmed surface patch : 312.7 Isocontours of bivariate polynomial : 382.8 Seidel's algorithm for polygon triangulation : : : : : : : : : : : : : : : : : : : 433.1 Intersection of B�ezier curves : 463.2 Intersection of a B�ezier curve and surface : 483.3 Domain Pruning based on Inverse Iteration : 513.4 Intersection of Fourth Order B�ezier Curves : 583.5 Intersection of a cubic B�ezier Curve and a bicubic patch : : : : : : : : : : : : 604.1 Intersection curve and its planar preimages [MC91] : : : : : : : : : : : : : : : 674.2 A single tracing step : 744.3 Component jumping : 754.4 (a) First level domain decomposition (b) Second level decomposition : : : : : : 764.5 Application of domain decomposition : 774.6 (a) Intersection curve components lying close to each other (b) Two patchesintersecting in a singularity : 784.7 Comparing Domain Decomposition and Bisection : : : : : : : : : : : : : : : : 814.8 Case of slow convergence of domain decomposition : : : : : : : : : : : : : : : 824.9 Step size computation : 834.10 Types of singularity (a) Noop (b) Cusp (c)Tacnode : : : : : : : : : : : : : : : 854.11 Teapot handles intersecting at a tacnode : 86

xi4.12 (a) Intersecting Goblets (b) Intersecting Scissors : : : : : : : : : : : : : : : : : 905.1 Algebraic curve continuous in complex projective plane : : : : : : : : : : : : : 945.2 Characterization of loops based on complex tracing : : : : : : : : : : : : : : : 955.3 Two surfaces intersecting in a loop : 965.4 A pair of intersecting surfaces : 985.5 Two tori intersecting in a small loop : 1005.6 Loop as part of a silhouette curve : 1035.7 Intersection of a plane with a biquadric surface : : : : : : : : : : : : : : : : : 1055.8 Distance function between two surfaces : 1065.9 Linear convergence of roots : 1105.10 Planar section of a bicubic surface : 1136.1 Exterior of a Bradley �ghting vehicle : 1156.2 Representation of a trimmed patch as algebraic curve segments : : : : : : : : : 1166.3 A cylinder and its face connectivity structure : : : : : : : : : : : : : : : : : : : 1176.4 (a) Intersection of trimmed surfaces (b) Computing curve intersections withtrimming boundary : 1206.5 (a) A cube (b) A cylinder (c) Cylinder used to drill a hole right through the cube(d),(e) Connectivity graphs of the cube and cylinder : : : : : : : : : : : : : : : 1226.6 (a) Intersection curves inside trimmed domain (b) Partitions introduced by in-tersection curves (c) Partitioning a trimmed patch with chains of intersectioncurves : 1236.7 (a),(b) Intersection curves on cubes and cylinders (c),(d) Updated connecivitygraphs based on partitions (e) Connectivity graph of �nal solid : : : : : : : : : 1266.8 2D Classi�cation : 1276.9 (a) Surface-edge contact degeneracy (b) Four surfaces meeting at a point : : : 1307.1 Functional modules in the BOOLE system : 1337.2 B-rep of Pivot from Submarine model (4100 B�ezier patches) [Courtesy: ElectricBoat] : 1347.3 Various implementation layers in BOOLE : 1367.4 Inaccurate point inversion for curve merging : : : : : : : : : : : : : : : : : : : 1397.5 Inaccurate point classi�cation : 1417.6 B-reps of some solids from the submarine storage and handling room : : : : : : 1427.7 Intersection curve computation and curve merging : : : : : : : : : : : : : : : : 1437.8 Component generation, classi�cation and B-rep computation : : : : : : : : : : 1447.9 B-rep of Shipping line from Submarine model (3400 B�ezier patches) [Courtesy:Electric Boat] : 1467.10 B-rep of Torpedo tube from Submarine model (1200 B�ezier patches) [Courtesy:Electric Boat] : 1477.11 Track from the Bradley model showing placement of drivewheel model (15000B�ezier patches) [Courtesy: Army Research Labs] : : : : : : : : : : : : : : : : : 1487.12 B-reps of some solids from the Bradley �ghting vehicle : : : : : : : : : : : : : 1507.13 Performance of our parallel algorithm as a function of processor count : : : : : 152

xii
List of Tables3.1 Algebraic pruning on curves shown in Figure 3.4 : : : : : : : : : : : : : : : : : 593.2 Algebraic pruning on the curve and surface shown in Figure 3.5 : : : : : : : : : 593.3 Comparison between three curve-surface intersection algorithms : : : : : : : : 634.1 Performance Statistics of Intersection Algorithm : : : : : : : : : : : : : : : : : 917.1 Performance of our system on parts of the submarine model : : : : : : : : : : 1517.2 Performance of our sequential algorithm on parts of the Bradley model : : : : 1517.3 Performance of our parallel algorithm on parts of the Bradley model : : : : : : 152

1
Chapter 1IntroductionThe �eld of solid modeling deals with design and representation of physical objects.One of its main emphases has been on the consistency of models generated. Boolean opera-tions, such as regularized unions, intersections and di�erences, on solids play a fundamentalrole in solid modeling. They are used in various applications in mechanical engineering,computer graphics, robotics and computer vision. The two major representation schemataused in solid modeling are constructive solid geometry (CSG) and boundary representations(B-rep). B-reps describe solids as a set of vertices, edges, and faces with topological relationsamong them. In contrast, CSG considers solids as expressions of Boolean operations andrigid motion transformations of primitive solids which typically include polyhedra, spheres,cylinders, cones, tori and surfaces of revolution. Both these representations have di�erentinherent strengths and weaknesses, and for most applications both are desired. For instance,a CSG object is always valid in the sense that its surface is closed, orientable and encloses avolume, provided the primitives are valid in this sense. A B-rep object, on the other hand,is easily rendered on a graphic display system and is useful for visual feedback in soliddesign. Figure 1.1 shows the model of a notional submarine storage and handling roomthat we obtained from Electric Boat, a division of General Dynamics. This model consistsof more than 5000 solids, each designed using Boolean operations. The primitives used togenerate these models vary from simple polyhedral objects, spheres and cylinders to fairlycomplex ones like generalized prisms, surfaces of revolution and o�set surfaces. Figure 6.1

2
 ��

Figure 1.1: Submarine storage and handling roomis a model of a real Bradley �ghting vehicle from Army Research Labs. This model hasover 8500 solids generated entirely using Boolean operations as well. Generating the B-repsof such large CAD models is necessary for applications like interactive visualization andmodel veri�cation. Another application where B-reps are required is in collision detectionfor dynamic simulation of machine parts. For example, consider the track of the Bradleyshown in Figure 7.11. The toothed circular structure shown in the left hand side of theimage is the drivewheel. It is placed in the track in such a way that when it rotates withoutslippage, the Bradley vehicle moves forward. Placement of the drivewheel is very critical toobtain this e�ect. Dynamic simulations are performed to study the model placement. Tosimulate these realistically, we require algorithms that can perform interference detection.B-reps are necessary for this purpose.

3
A

B

A,B A B Int(A) Int(B)
*A BFigure 1.2: An example of regularized intersection operation [Hof89]Algorithms for determining the regularized union, intersection, or set di�erence oftwo solids is a useful component of most B-rep modelers. The regularized operations di�erfrom their corresponding set-theoretic counterparts in that the result is the closure of theoperation on the interior (mathematically speaking, this refers to all of the solid exceptits boundary) of the two solids, and are used for eliminating \dangling" lower-dimensionalstructures (see Figure 1.2). If Int(A) represents the interior of solid A and op correspondsto one of the set operations, we de�ne op�, the regularized version of the Boolean operationas A op� B = cl(Int(A) op Int(B))where cl(A) denotes the closure (generates boundary) of A. These operations can be usedto convert solids represented by CSG trees (see Figure 1.3) to an equivalent B-rep. Theseprocesses for performing Boolean operations on B-reps are called boundary evaluation algo-rithms. These algorithms are not di�cult conceptually, but their implementation requiressubstantial work for several reasons. Implementation of layers of primitive geometric andtopological operations have to be designed. Examples of primitive geometric and topo-logical layers include polygon triangulation, point location in a planar arrangement, linear

4
 ��

Figure 1.3: Part of a CSG tree of the roller from the submarine modelprogramming and graph algorithms. Finding a good structure for these layers is nontrivial,and accounting for all the special positions of incident structures can be quite di�cult. Fur-ther, the presense of curved surfaces introduces a number of di�cult mathematical problems.The use of numerical techniques to solve these problems inevitably leads to the problem ofnumerical precision and stability of computation.The use of free-form surfaces in model design has been the primary contributionof the �eld of computer-aided geometric design (or geometric modeling) to solid modeling.This �eld deals with the design of curved surfaces using parametric surface patches and, inparticular, various types of spline surfaces subject to aesthetic and functional constraints.Surface design with splines originated in the automobile industry, principally for car-bodydesign. It was also used in shipbuilding and design of aircraft wings. Other researchershave been using free-form surfaces in design of submarines (Figure 1.1), �ghting vehicles(Figure 6.1) and other applications.

5Earlier, most B-rep modelers were able to support solids composed of polyhedralmodels and quadric surfaces (like spheres, cylinders etc.) and their Boolean combinationsonly. Over the last few years, modeling using free-form surfaces (sculptured models) hasbecome very useful throughout the commercial CAD/CAM/CAE industry. On the re-search front, there has been considerable e�ort in integrating geometric and solid modeling[Kal82, Jar84, CK83, VP84, KGI84, FH85, Far86]. In particular, there is a lot of interest inbuilding complete solid representations from spline surfaces and their Boolean combinations[Hof89, RR92, CS85, Cas87, Wei85, RV82, Cha87, Men92]. However, the major bottleneckis in performing robust, e�cient and accurate Boolean operations on the sculptured models.According to Ho�mann [Hof89]: \The di�culty of evaluating and representing the inter-section of parametric surface patches has hindered the development of solid modelers thatincorporate parametric surface patches". The topology of a surface patch becomes quitecomplicated when a number of Boolean operations are performed and �nding a convenientrepresentation for these topologies has been a major challenge.In many applications involving CAD/CAM, solids are designed in terms of tensorproduct trimmed Non-Uniform Rational B-Spline (NURBS) surfaces. This class includes anumber of rational parametric surfaces like tensor-product and triangular B�ezier patches.A detailed description of NURBS and tensor-product surfaces is given in chapter 2. Therepresentation capability of these surfaces is quite large, and is su�cient to represent allprimitive solids encountered in boundary evaluation systems. Due to the di�culty in per-forming free-form surface intersection, many B-rep modelers use high-resolution polyhedralapproximations to these surfaces and apply existing algorithms to design and manipulatethese polyhedral objects. Apart from the fact that the resulting solids are inaccurate,there is an additional cost in terms of increased memory usage due to data proliferation.This dissertation seeks to change that by providing e�ective strategies to perform Booleanoperations on sculptured solids without resorting to polyhedralization.

61.1 Summary of ResultsIn order to compute boundary representations of Boolean combinations of sculp-tured solids directly, we have developed a number of techniques. The main theme of ourapproach is to use a combination of symbolic and numeric algorithms for e�cient andaccurate computation.The main contribution of this work is to show the e�ectiveness of a surface inter-section algorithm which computes the intersection curve in a plane as opposed to higherdimensions. Formulating the intersection curve as a planar algebraic curve has been knownfor quite some time. However, it was believed that this approach would su�er from problemsof inaccuracy and numerical instability (for example, symbolic determinant evaluation). Bymaking use of a new representation for the intersection curve coupled with stable numericalmethods, we have alleviated most of these problems. The surface intersection algorithmalso uses newly developed algorithms for performing curve-surface intersections, loop de-tection and curve tracing. To the best of our knowledge, the loop detection algorithmpresented in this dissertation is the �rst comprehensive algorithm to detect closed loops ofan algebraic plane curve inside a �nite domain of interest. Previous loop detection algo-rithms have been restricted to intersection curves and provide only necessary criteria forloops. Further, the e�ciency of these methods su�er in the presence of singular points inthe intersection curve. Current surface intersection algorithms that use numerical marchingmethods to evaluate the intersection curve su�er from reliability problems when di�erentcurve components come close to each other. Our curve tracing algorithm guarantees thecorrect topology of the curve under these situations.Our boundary evaluation algorithm generates B-reps of solids in terms of trimmedparametric surfaces. Refer to chapter 2 for more details on trimmed patches. The trimmingboundaries in these surfaces are high-degree algebraic curves. By maintaining an accuraterepresentation of the trimming curves, we are able to perform accurate trimmed surfaceintersection. Earlier methods resort to approximations of the algebraic curves which resultin solids that have inconsistent topology. The component classi�cation step is used todetermine which parts of the original solids are to be retained in the �nal solid. This step

7consists of a number of fairly expensive operations especially when dealing with sculpturedsolids. By using the topological information of each solid, we perform an optimal numberof such operations to improve the e�ciency of this method.1.2 Previous WorkThe need to generate accurate boundary representations of solid objects in manyapplications involving design and manufacturing has generated signi�cant interest in theresearch community. Over the years, the body of literature addressing these problems hasgrown to be quite extensive. Some of the earliest work in generating B-reps was done onpolyhedral solids. The need to use free-form surfaces to represent solids has led to researchin the problems of curve-surface and surface-surface intersection and loop detection whichare important for B-rep generation.Currently, most boundary evaluation algorithms follow a general framework. Thisframework was �rst introduced by Requicha and Voelcker [RV85] to perform Boolean oper-ations on polyhedra. However, this can be extended easily to accommodate curve surfacedomains as well. Given two polyhedra, A and B, the conceptual structure of the algorithm[Hof89, HHK89] is1. Determine which pairs of faces f 2 A and g 2 B intersect. If there are none, test forcontainment only and skip all other steps.2. For each face f 2 A that intersects faces gi 2 B, compute the intersecting line segmentsbetween f and gi's. The set of all intersecting line segments partitions the surface offace f . Determine the partitions of f that contribute to some of the surface area ofthe resulting solid.3. Perform the same for all faces of B.4. Assemble all the faces into the new solid.1.2.1 Boundary Evaluation TechniquesPolyhedral solids: Algorithms for performing Boolean operations on polyhedra

8in B-rep have been proposed by a number of researchers [Bra75, Hil82, Man86, OKK73,Voe74, Wes80]. Most of these techniques rely heavily on the algebraic formulation of theproblem. Cameron [Cam85] considers several strategies and redundancy tests to propagateapproximations of CSG primitives from the root of the CSG tree down to the leaves, andpossibly re�ning them on the way. Rossignac and Voelcker [RV89] consider redundancydetermination without approximating the primitives. They de�ne certain active zones onsolids and show how knowledge of active zones can be used to improve conversion from CSGto B-rep, detection of redundancy and other operations on CSG trees.The use of topological structures of solids has been very popular in B-rep solidmodeling. The winged-edge style of boundary representation is due to Baumgart [Bau75].Many variants of the method, and other alternatives, have been proposed and used inB-rep modeling systems since then. A complete survey of topological structures in solidmodeling is given in [Wei86]. The use of non-manifold boundary representations was �rstproposed by Wesley [Wes80]. Weiler [Wei85, Wei86] observed that a number of geometricoperations on polyhedra simplify when non-manifold structures are permitted. Paoluzzi et.al. [PRS86] implement Boolean operations on B-rep solids by using only triangular facesfor their polyhedra. Laidlaw et. al. [LTH86] describes another method in which all facesmust be convex polygons, and suggest random perturbations to eliminate complex vertexintersection cases.A number of approaches have been proposed for robust and accurate B-rep com-putation in polyhedral modelers. One of the most common approaches is based on usingtolerances with oating-point arithmetic [Jac95]. However, it is hard to decide a globaltolerance value for all computations. To circumvent these problems, combinations of sym-bolic reasoning [HHK89] and adaptive tolerances [Seg90] have been proposed. Other al-gorithms include those based on redundancy elimination [FBZ93]. Many algorithms basedon exact arithmetic have been proposed for reliable numeric computation for polyhedra[SI89, For95, BMP94, Hof89].Sculptured Solids: The idea of using free-form surfaces in solid modeling wasintroduced by Chiyokura et. al [CK83]. It describes the implementation of a system calledDesignbase with some curved-surface capabilities. In this system, curved solids are designed

9and modi�ed by local operations such as altering the shape of certain edges and faces.However, Boolean operations require that one of the intersecting objects be polyhedral.Geisow [Gei83] maps surface intersection curves to the plane and uses subdivision methodsto solve surface interrogation problems. Requicha and Voelcker [RV85] describes the PADLsystem developed at University of Rochester. This system supports Boolean operationson polyhedral solids and a few curved primitives. Casale et. al. [CS85, Cas87, CB89]use trimmed parametric surfaces to generate B-reps of sculptured solids. The algorithmuses subdivision methods to evaluate surface intersections, and represents the trimmingboundary with piecewise linear segments. Chan [Cha87] uses special properties of quadricsurfaces and other free-form surface to design industrial parts. A number of techniques likeinterval arithmetic and shell representations [VP84, KGI84, Taw91, Sat91, Men92, Duf92]have been developed to perform solid design with free-form geometries. Sorting points alongintersection curves [Joh87] was used to classify components with respect to solids.The Alpha 1 CAD system developed at the University of Utah has many features tocombine solids composed of sculptured surfaces. A systematic approach for design, analysisand illustration of assemblies has been presented in [DC95, RMS92]. Ray representationsalong with specialized parallel architectures [Mea84, EKL+91, Men92] like the RayCastingengine and `Solids engine' were used to achieve interactive solid modeling on low-degreeprimitives like quadrics. Mantyla and Ranta [MR86] describe methods to perform solidmodeling using HutDesign. Rossignac et. al. [RMS92] present algorithms for inspectionof cross-sections and interference between solids with bounded degree and limited height ofCSG trees.Most of the recent work in the literature on Boolean combinations of curved modelshas focussed on computing the surface intersection between a pair of B-spline surfaces[KS88, SN91, Nat90, Hoh92, MC91, KPW90, BHHL88, BK90, KM97]. We shall now lookat some of these methods.1.2.2 Surface Intersection TechniquesThere is a signi�cant body of literature addressing the surface intersection prob-lem. Some recent surveys include [Pat93, Pra86, Hof89]. One of the main issues that has

10
Open

Component

Loop

SingularityFigure 1.4: Various components of the intersection curveto be considered while designing surface intersection algorithms is that two surfaces can in-tersect in a number of components including small loops and singularities (see Figure 1.4).Evaluation of all the components along with their correct connectivity structure is veryimportant. In general, surface intersection techniques can be broadly classi�ed into fourmajor categories: subdivision, lattice evaluation, analytic methods, and marching methods.More recently, techniques have been designed that combine features of di�erent categories.These are generally referred to as hybrid methods. Our approach uses a combination ofanalytic and marching methods to compute the intersection curve between surfaces.Subdivision methods: The basic idea of these methods is to decompose theproblem recursively into similar problems which are much simpler. Decomposition continuesuntil a desired level of simplicity is achieved and then the corresponding intersection isobtained directly. The last step is to merge all the individual curves together to get the �nalsolution. This approach has the avor of the divide and conquer paradigm used extensivelyin algorithmic design. Subdivisions are based on the geometric properties of the controlpolytopes [LR80, Gei83, Las86]. These methods are convergent in the limit, but if usedfor high-precision results, lead to data proliferation and are consequently slow. In casesubdivision is stopped after some �nite number of steps, it may miss small loops or lead toincorrect connectivity in the presence of singularities. The robustness of this approach canbe improved by posing the problem algebraically and using interval arithmetic [Sny92].

11Lattice evaluation: These techniques decompose surface intersection into a seriesof lower geometric complexity problems like curve-surface intersections [RR87]. This isfollowed by connecting the discrete points into curves. Determination of the discrete stepsize to guarantee robust solutions is hard. Further, these techniques can be slow and su�erfrom robustness problems in terms of �nding all the small loops and singularities.Analytic methods: Analytic methods are based on explicit representation ofthe intersection curve and have been restricted to low degree intersections [Sed83, Sar83].Another alternative to the analytic methods is the use of geometric methods developed by[Pie89]. In this paper, Piegl uses geometric principles to compute the intersection of quadricsurfaces very accurately. However, the algorithm cannot be easily extended to the generalintersection problem.Marching methods: These are by far the most widely used [Far86, BHHL88,BK90, KPW90] and are easy to implement. The main advantage of this technique is itsgenerality, allowing intersection of arbitrary parametric surfaces as well as their o�sets andblends. The idea behind marching methods involves analytic formulation of the intersectioncurve, determination of a start point on each component, and the use of local geometry totrace out the curve. The intersection curve is de�ned implicitly as an algebraic set based onthe surface equations, as a curve of zero distance between the two surfaces, or as a vector �eld[Hof90, KPW90, Che89]. Tracing is done on the intersection curve in higher dimensions oron its projection in the plane. Most algorithms use the local geometry of the curve coupledwith quasi-Newton's methods [BHHL88, BK90] for tracing. These methods do not convergewell sometimes [FF92] and many issues related to choice of step size to prevent componentjumping are still open. Therefore, most implementations use very conservative step sizesfor tracing and this slows down the algorithm. Overall, current tracing algorithms are notconsidered robust [Sny92].The components of an intersection curve consist of open components and closedloops (see Figure 1.4). Start points on the open components are obtained by curve-surfaceintersections. Developing competitive algorithms for curve-surface intersection problemsand detection of closed loops has itself been an active area of research.

12Curve-Surface IntersectionThe three major approaches for computing curve-surface intersections are basedon subdivision, interval arithmetic and algebraic methods. Subdivision based approachesuse the geometric properties of curve and surface representations [LR80]. Given two splinecurves, the intersection algorithm proceeds by comparing the convex hulls of their controlpolytopes. Control polytopes and their relation to splines are described in chapter 2. If theydo not overlap, the curves or surfaces do not intersect. Otherwise the curves are subdividedand the resulting convex hulls are checked for intersection. At each iteration the algorithmrejects regions of the curve that do not contain any intersection point. Eventually, the curvesegments are approximated by straight lines up to a certain tolerance, and their intersectionpoint is accepted as the intersection of two curves. A simple subdivision algorithm has linearconvergence in the domain. Its convergence is improved using B�ezier clipping [SWZ89,Sed89, NSK90]. B�ezier clipping makes use of the convex hull property in a powerful way, bydetermining parameter ranges which are guaranteed not to include points of intersection.The interval arithmetic approach is similar to subdivision [KM83]. The curvesare divided into intervals using vertical and horizontal tangents which de�ne rectangularbounding boxes. The subdivision amounts to evaluating the coordinate of the midpoint ofthe interval and de�ning the resulting rectangles.Algebraic methods formulate the intersection problem in terms of solutions of asystem of algebraic equations. Given the equations, the variables are eliminated using tech-niques from elimination theory [Sal85] and the problem is reduced to �nding roots of aunivariate polynomial. This approach was applied to ray-tracing by Kajiya [Kaj82] and tocurve intersections by Sederberg [Sed83]. For lower degree curve intersection (up to degreethree or four), the implicitization approach results in the fastest algorithms. However, theproblem of �nding roots of higher degree polynomials can be numerically unstable [Wil59].Therefore, the overall algorithm for intersection may not be accurate. Moreover, the sym-bolic expansion of determinants to compute resultants can be computationally expensive[Hof90]. To circumvent these problems, Manocha et. al. [Man92, MD94] have proposedmethods combining elimination theory with matrix computations. The resulting problem

13is reduced to computing the eigenvalues of a matrix as opposed to roots of a polynomial.Eigenvalue algorithms like the QR algorithm [GL89] are backward stable and as a result theintersections can be computed accurately and e�ciently for high degree curves and surfaces.Loop DetectionAs shown in Figure 1.4, the intersection curve of two surfaces can result in a numberof di�erent components like closed loops and singularities. While evaluating these curves,it is essential to determine all the components. Loop detection deals with the problem ofdetermining whether an algebraic curve contains closed loops, and if so, where they occur.There is a considerable amount of work in classic and modern literature related tocomplete evaluation of algebraic curves. Every algebraic space curve is birationally equiva-lent to an algebraic plane curve and the latter can be computed using Gr�obner bases [Buc89]and resultants. Given an algebraic plane curve, techniques for desingularization based onquadratic transformations are given in [Wal50, Abh90, AB88b]. An excellent introduc-tion to desingularization techniques is provided in [Abh90, Hof89]. However, the resultingalgorithm can be exponential in the degree of the curve. Algorithms based on Collins'cylindrical algebraic decomposition (CAD), [Col75, ACM84], have been used for evaluatingall components of algebraic curves [Arn83, SS83]. However, its worst case complexity isdoubly exponential in the number of variables. For plane curves, improved polynomial timealgorithms based on CAD have been presented in [AF88, AM88].The problem of evaluating all the loops of an algebraic curve numerically hasbeen studied in the modeling literature and a number of techniques based on subdivisionmethods, marching methods and lattice evaluations [Hof89, RR92] have been developed.The subdivision based algorithms subdivide the domain up to a user-speci�ed toleranceand evaluate the curves accordingly [Gei83, LR80, MP93]. No good methods are known forcomputing a good tolerance value during curve tracing. Thus, most implementations use aconservative value for the tolerance. In general, the two components of a curve can be veryclose, and as a result, there is a potential danger of merging two isolated components into asingle one. Some of the other approaches are based on lattice evaluation where the surface-surface intersection problem is simpli�ed to a set of curve-surface intersection problems.

14
Intersection curve

as loop

Gauss map
(patch B)

patch A

patch B

Gaussian sphere

overlap region
of Gauss maps

Gauss map
(patch A)

Figure 1.5: Loop detection based on Gauss mapsThe curves are obtained by evaluating the surface patch at a number of constant parametervalues. The biggest drawback in this approach is the lack of robustness. Small loops couldeasily be missed depending on the frequency with which the curves are evaluated.In the last decade, techniques based on curve tracing have been widely used toevaluate high degree curves [BFJP87, BHHL88, KPP90, MC91]. The main idea is to com-pute at least one point on every component of the curve and use the local geometry ofthe curve to evaluate successive points. In this class of methods, identifying a point onevery loop is signi�cantly harder than identifying a point on open components. As a result,simultaneously with the development of new ideas for evaluating such curves, a number oftechniques for loop detection have been proposed [SKW85, SM88, THS89, Che89, Hoh91,Kim90, KPP90, KPW90]. Most of the loop detection criteria are based on bounds on theGauss map of the surfaces being intersected. Sinha et. al. [SKW85] had shown that if two(at least C1) surfaces intersect in a closed loop, there exists a normal vector on one surface

15that is parallel to a normal vector of the other surface. The use of overlaps of Gauss mapsin loop detection is illustrated in Figure 1.5. Sederberg et. al. [THS89, SM88] strengthenedthe above work by proving that if two (at least C1) surfaces intersect in a closed loop, thereexists a line which is perpendicular to both surfaces (collinear normal vectors), providedthe inner product between any normal on one surface and any other normal on the othersurface is never zero. Patriakalakis et. al. [KPP90] precomputed the most signi�cant pointsof the intersection curve between an algebraic surface and a parametric patch to identifythe main features of the curve. Sederberg et. al. [SM88, ZS93] developed an e�cientway to bound the normals and tangents of a surface using bounding cones and pyramidalsurfaces, thereby giving a faster way to achieve the no loop condition. Hohmeyer [Hoh91]bounded the Gauss maps using pseudo-normal patches and used an e�cient algorithm forlinear programming [Sei90a] to test the separability criterion. In all these algorithms, ifthe loop detection criterion is satis�ed, each surface is divided into a pair of sub-patchesand the criterion is recursively tested on each pair combination. This is continued until allpatch pairs fail the test. The number of levels of subdivision depends on the tightness ofGauss map bounds [EC94] and curvature variations of the two surfaces. Furthermore, thesealgorithms may not work well if the intersection curve is self-intersecting.Techniques based on �nding critical points of plane vector �elds inside the domainof the surfaces have been proposed by [Che89, KPP90, KPW90, ML95]. Cheng [Che89]de�ned a plane vector �eld as the gradient of an oriented distance function of one surfacefrom the other. The critical points are found by following special integral curves thatconnect all the critical points. [KPP90, KPW90, ML95] use rotational indices of (planarand three-dimensional) vector �elds to determine presence of critical points. However,these methods rely on some form of subdivision in the domain, and hence, cannot robustlyguarantee detection of all the critical points.1.3 Thesis StatementMy thesis is

16The lower dimensional surface intersection formulation provides aneffective representation to perform Boolean operations on sculpturedmodels.The algorithm's performance on large real world models proves this claim. Depending onthe representation of the surfaces (implicit or parametric), their intersection curve can liein three or four dimensions. However, from classic algebraic geometry we know that it isalways possible to determine an equivalent curve that lies in a plane. The lower dimensionalformulation refers to evaluation of the equivalent plane curve. We shall describe all thealgorithms with the use of splines like NURBS which are widely used in most modelingapplications. By \large real world models" we mean industrially designed models whichhave thousands of parts built using Boolean operations.1.4 Main ContributionsThis dissertation presents a number of techniques to e�ectively compute boundaryrepresentations of Boolean combinations of sculptured primitives and perform associatedsurface interrogations. It employs a combination of symbolic and numeric methods tocompute the B-reps accurately and e�ciently. The input to our algorithm is a CSG tree thatdescribes the solid as a Boolean expression of primitive solids. In this thesis, we assume thatthe surface boundaries of all the primitives can be represented as a piecewise collection ofparametric surface patches. However, our algorithms apply equally well on solids composedof algebraic surfaces. We use trimmed tensor-product rational B�ezier patches (see chapter2), a special type of NURBS, to represent the surfaces. In order to compute the B-rep ofthe �nal solid, our algorithm computes the Boolean combination of the solids at the leavesof the CSG tree and propagates the results up the tree.Given two such solids, our algorithm identi�es pairs of surface patches from thetwo solids that intersect. The intersection curve between each such pair is computed usinga new surface intersection algorithm. The surface intersection algorithm ensures accurateevaluation of the intersection curve using algorithms for curve-surface intersection, loopdetection and curve tracing. It makes use of a matrix representation of the intersection

17curve to accurately compute intersections between trimmed surfaces and to classify thevarious topological features generated by the intersection curve. The main contributions ofthis dissertation are briey described next.1.4.1 Surface IntersectionComputing intersections of surfaces forms a critical part of any boundary evalu-ation algorithm. Modelers that perform Boolean operations on polyhedral solids have todeal only with plane-plane intersections. The essential di�erence between intersecting twoplanes and two free-form surfaces is that while the former generates a single line, the latterresults in a high degree algebraic space curve with a number of components including opencomponents, closed loops and singularities (see Figure 1.4).The main theme of our approach is to combine well known symbolic and numerictechniques for accurate and e�cient computation. Our algorithm borrows a basic theoremof space curves from algebraic geometry. The crux of the theorem is that any algebraic spacecurve can be projected into an equivalent plane curve after a suitable linear transformationof the coordinates. Using this idea, we obtain a new representation of the intersection curvein a plane in the form of a matrix polynomial. We then evaluate the curve using numericmatrix computations and tracing algorithms. The algorithm guarantees determination ofall components of the intersection curve for well-conditioned input cases by employing newlydeveloped algorithms for curve-surface intersection and loop detection. Since all the com-putation is performed in oating point arithmetic, we evaluate the intersection curve to auser-speci�ed tolerance1. The main steps of the algorithm are� Given the two parametric surfaces, eliminate two of the variables using Dixon's resul-tant (see chapter 4) and obtain the intersection curve as a matrix polynomial.� Compute a starting point on each component of the intersection curve using curve-surface intersection and loop detection algorithms.� Subdivide the domain of the surface into regions such that each sub-region has atmost one curve component.1we use 10�5 in our implementation

18� If the separability condition is not satis�ed due to singularities in the intersectioncurve, use local optimization techniques to isolate singular points within small portionsof the domain.� For each starting point, follow that component of the intersection curve using tracingmethods.Of all these steps, the elimination step dominates the computational cost. How-ever, most of the computation involved in this stage can be performed o�-line, and itscost amortized over a large number of surface intersection operations. This is particularlyadvantageous in boundary evaluation algorithms where the surface intersection routine iscalled hundreds of times for each solid. We have used our algorithm to generate surfaceboundaries of models like the submarine storage and handling room (Figure 1.1) and theBradley �ghting vehicle (Figure 6.1). On an average, our algorithm takes a fraction of asecond (0.2{0.5 seconds) to perform one surface intersection.1.4.2 Curve-Surface IntersectionWe use curve-surface intersections to evaluate starting points on intersection curvesof two surfaces and to perform ray-shooting tests (see chapter 6) to classify surface featureswith respect to solids. Other applications for this algorithm include ray-tracing and visiblesurface determination in computer graphics. In all these applications, we are interested in�nding intersections only in a small subset of the real domain.In this dissertation, we introduce a new technique called algebraic pruning whichuses matrix computations e�ectively to prune out regions of the domain with no intersectionsquickly. The basic idea of the algorithm is: Assume that we have an algorithm A whichgiven a guess � to an intersection point generates the closest intersection point �. Let theseparation between � and � be � = j �� � j. Then, we know that there is no intersectionpoint in the region (�� �) < t < (�+ �). We can safely prune out this region.We use inverse power iterations (an iterative matrix computation algorithm) toconverge to the closest intersection point. To the best of our knowledge, our algorithm per-forms faster than previously known curve-surface intersection algorithms when the number

19of intersections is fairly sparse. It performs competitively even when the intersection set isnot sparse. This algorithm can be used without signi�cant modi�cation for �nding zero-dimensional intersection sets like planar curve-curve intersection as well.1.4.3 Loop DetectionLoop detection in algebraic curves is an important part of any curve evaluationalgorithm, and is traditionally considered hard. The reason for this is because searching forsuch curve features in higher dimensions is di�cult. Any discretized search strategy su�ersfrom the possibility of missing small loops. We have devised an e�cient algorithm forloop detection based on a simple algebraic characterization. We use the fact that any realalgebraic plane curve is continuous in the complex projective plane. Put simply, it meansthat while curve components appear disjoint when restricted to the real plane, they areactually connected into one single component in the complex plane. Therefore, by followingthe curve in complex space, we can reach at least one point on every loop component. Theoverview of the algorithm is described below.� Evaluate all the starting points of the curve (in complex space) at the boundary ofthe domain.� Follow each starting point by tracing out the curve in complex space.� Few of these paths meet the real plane. These form candidates for loop componentsof the curve.Compared to some of the traditional algebraic approaches which exhibit quadraticcomplexity in terms of the degree of the curve, our method traces out only a linear numberof paths (our algorithm takes about 10-20 milliseconds, depending on the length, to traceout a single complex path completely). However, the number of complex paths to be tracedcould be high depending on the degree of the algebraic curve. This method o�ers theexibility of being combined with other heuristics that would limit the number of complexpaths traced. Another advantage of our method is that it is general enough to be used withany algebraic curve. We show the working of our algorithm on another algebraic curve - a

20silhouette curve of parametric surfaces from a given viewpoint. A silhouette curve locallyseparates front and back facing portions of a surface from a given viewpoint. Some of themost e�ective numerical methods previously developed for loop detection are only restrictedto curves resulting from the intersection of two parametric surfaces.In this dissertation, we present another loop detection algorithm that is restrictedonly to planar surface sections (intersection of a surface by a plane). One important appli-cation for obtaining cross sections of solids is in the process of stereolithography for rapidprototyping. The algorithm we present can be implemented in exact arithmetic or �niteprecision depending on the accuracy demands of the application. The algorithm uses theidea of Sturm sequences (described in chapter 5) to evaluate certain critical points that arealways present inside loops. By determining these points and subdividing the surface, wecan ensure that no loops will be missed. Our implementation of this algorithm is done onlyin exact arithmetic, and is thus restricted to low degree surfaces for reasons of e�ciency andmemory utilization. We believe, however, that this algorithm can be applied extensively ifit is implemented in double precision arithmetic.1.4.4 Trimmed Surface IntersectionOur algorithm for boundary evaluation generates surface boundaries in the formof trimmed NURBS patches. A detailed de�nition of trimmed NURBS is given in chapter 2.For the moment, it su�ces to say that along with the de�nition of the parametric surface, wealso have an oriented closed curve called the trimming curve in the domain. This trimmingcurve determines the portion of the patch that is valid. For example, in Figure 1.6, thetrimming curve is generated in a counterclockwise sense and the portion of the patch thatis on the left of the curve is valid.Let us look at why we need to have trimming curves for our surfaces. When weperform a Boolean operation (union, intersection or di�erence) between two solids, theirintersection curve determines which part of the original surface belongs to the �nal solid. Ifwe look in the domain of one of these surfaces, the intersection curve partitions it. Only afew of the partitions are retained in the �nal solid. For the kind of operations we perform onsolids, it is therefore, natural to represent their surface boundaries using trimmed parametric

21
s

t

0

1

1

intersection curve

trimming boundary

p
0

p
1

p
2

p
3Figure 1.6: Obtaining intersections between trimmed surfacespatches. Moreover, the trimming curves are portions of intersection curves themselves.The surface intersection algorithm that we describe in chapter 3 deals with untrimmedparametric surfaces only. Applying this algorithm, only some parts of the intersection curvegenerated are valid for trimmed surfaces. For example, in Figure 1.6, the valid intersectioncurve is only between (p0; p1) and (p2; p3). Generating the pi's accurately is not an easyproblem because it involves intersections of two fairly high degree algebraic curves. Theaccuracy of these points is crucial because they determine important surface features of thenew solid.We present an e�cient and accurate algorithm to generate these intersectionpoints. The algorithm uses the piecewise linear representation (generated by curve tracing)of the intersection and trimming curves to compute approximations for these points. Wethen use the patch parameterizations of the surfaces involved and the analytic represen-tation of the intersection curve to re�ne the approximations using iterative minimizationtechniques. Details of this algorithm are given in chapter 6.

221.4.5 Component Classi�cationWhen two solids enter into a Boolean operation, only portions of the surfacesof each solid remain in the �nal solid. The portions to be retained are determined bythe intersection curve between the two solids. For example, consider a union operationbetween two solids A and B. After computing the intersection curve, only portions ofA that lie outside B and those of B that lie outside A are retained in the solid A [B. Similar characterizations exist for other operations as well. Component classi�cationrefers to algorithms that generate maximally connected portions of the boundary � of asolid that have the property that � either lies completely inside or outside (orientation-invariant component) the other solid. Furthermore, it also deals with the resolution of theinside/outside nature of each orientation-invariant component.We use the topological information (connectivity between the various features)of each solid and the intersection curve between them to generate the various orientation-invariant components. Our algorithm creates an associated undirected graph and computesits connected components for this purpose. It also generates another graph whose verticesare the various orientation-invariant components. An edge exists between two such verticesif and only if orientations are opposite with respect to the other solid. This connectivityinformation turns out to be very useful in classifying the various components e�ciently.When two polyhedral solids intersect, it is fairly easy to classify the inside/outsidenature of the various components by performing simple local tests based on the orientationof the intersection curve [Hof89]. However, for solid boundaries composed of curved surfaces,local tests cannot be performed. The main reason for this is the complicated nature of theintersection curve. We use an algorithm based on ray-shooting to perform the classi�cationtests. Ray-shooting is based on the following simple fact: A point is inside a closed solid ifany semi-in�nite ray originating from that point intersects the boundary of the solid oddnumber of times; otherwise, it is outside. We use our curve-surface intersection algorithmto perform ray-shooting. Since curve-surface intersection is a fairly expensive operation, itbehooves us to reduce the number of such invocations. Our algorithm uses the connectivityinformation between the various components and performs just one ray-shooting test per

23solid per operation. This signi�cantly speeds up our computation.The accuracy of the ray-shooting test is very important in determining the �nalsolid. Double precision arithmetic or degenerate ray-surface intersections could possiblychange a result from inside to outside or vice-versa. We use an analytic representation ofthe intersection curve and stable matrix computations to prevent such catastrophic errors.More details are presented in chapter 6.1.5 A Guide to the ChaptersTo understand some of our algorithms better, some mathematical background isrequired. Chapter 2 lays these mathematical foundations and introduces our terminology.Chapter 3 presents methods to compute intersection points when a curve meets anothercurve or surface. This algorithm is used by our surface-surface intersection algorithm andcomponent classi�cation algorithm. Chapter 4 describes our surface-surface intersectionalgorithm. It describes our formulation of the intersection curve, and the curve tracingmethods used to evaluate it. The problem of identifying closed loops in algebraic curvesis discussed in Chapter 5. It also presents our algorithm to identify loops when surfacesare sectioned by a plane. Two additional applications of our loop detection algorithmare presented in Chapter 5. Chapter 6 discusses our algorithm to evaluate curved surfaceboundaries of Boolean combinations of solids. Our implementation of the various algorithmspresented in this dissertation and techniques to parallelize the computation are presented inChapter 7. Chapter 8 suggests some extensions to this work and concludes this dissertation.

24
Chapter 2Mathematical BackgroundIn this chapter, we will briey introduce some mathematical preliminaries andrepresentation issues that are required to get a better understanding of this thesis.2.1 A�ne and Projective SpacesIn our discussion, we will use both a�ne and projective spaces.De�nition 1 A�ne n-dimensional space is a space where all points p have coordinatesp = (x1; x2; : : : ; xn) 2 Rn, where all the xis are always �nite.Euclidean space is the most familiar form of a�ne space with the Euclidean dis-tance metric associated with it.De�nition 2 Projective n-dimensional space (Pn) consists of all points with (n+ 1) coor-dinates (x1; x2; : : : ; xn; xn+1), where not all xi are zero and all xi are �nite. Further, for all� 6= 0, both (x1; x2; : : : ; xn; xn+1) and (�x1; �x2; : : : ; �xn; �xn+1) represent the same point.The variable xn+1 is called the homogenizing variable. Therefore, these coordinatesare also called homogeneous coordinates. In all our usage throughout this dissertation, thehomogenizing variable is written as the last coordinate. An interesting connection betweenthe two spaces is that projective n-space is the space of all lines in a�ne (n+ 1)-space thatcontain the origin. In Figure 2.1, point p is the representative point of line L = (a1t; a2t; a3t).The plane x3 = 1 represents P2.

25
p

x1

x2

x3
L = (a t, a t, a t)1 2 3

0

x3= 1

Figure 2.1: Embedding projective space into a�ne space2.2 Curve and Surface RepresentationMost algebraic curves and surfaces in 3D space can be represented using theirimplicit form, f(x; y; z) = 0. Geometric modeling applications frequently involve computinga set of points on a given curve or surface. But the process of computing points on surfaceswith implicit representation is computationally intensive. An alternative representation isthe parametric form. For example, a parametric space curve is a mapping from the realline to R3. The domain of these functions is also called the parameter of the curve. Bysubstituting di�erent values for the parameter, we obtain di�erent points on the curve.A NURBS curve [Far93] is a special kind of parametric curve. This curve iscompletely speci�ed by a set of points in space and a few smooth functions. These pointsare called the control points of the NURBS curve. The pre-speci�ed functions are calledthe basis or blending functions. The exact forms of these basis functions are given later inthis section. The control points and the blending functions are combined mathematicallyto give rise to a single curve.The NURBS curve is composed of a number of segments or spans. In the paramet-ric domain, these spans are described by a knot vector, which is basically a non-decreasing

26

X

0.00

0.00
1.00

N

N

N

N

N

N

N
N

0,4

1,4

2,4

3,4

4,4

5,4

6,4
7,4

0.10 0.13 0.4 0.6 0.7 0.90.3

1.00

u

value

0.35Figure 2.2: B-Spline blending functions for a cubic curvesequence of parameter values. The knot vector determines the region of inuence a par-ticular basis function has on the curve. A NURBS polynomial is de�ned as a linear com-bination of basis functions. When the coe�cients of the linear combination expression are4-tuples, the set of four implied polynomials form a curve. Each 4-tuple is a homogeneousrepresentation of a control point in projective 3-space, and the homogenizing variable (4thcoordinate) is called a weight. In the rest of this dissertation, we assume that the weights arenon-negative. Essentially, this assumption ensures that the curve or surface is completelycontained within the convex hull of the control points. This is not a major restrictionbecause most curves and surfaces occurring in CAD applications can be represented usingnon-negative weights.

27We shall represent control points in homogeneous coordinates (vi; wi), where vi =(wixi; wiyi; wizi) and wi is the weight. Therefore the parametric curve f(t) of degree k� 1with n control points and the standard basis functions Ni;k is given byf(t) = Pni=0 viNi;k(t)Pni=0 wiNi;k(t)Ni;k(t) is de�ned recursively over the knot interval [ti; ti+k] asNi;1(t) = 8><>: 1; if ti � t � ti+10; otherwiseNi;k(t) = (ti+k � t)Ni+1;k�1(t)ti+k � ti+1 + (t � ti)Ni;k�1(t)ti+k�1 � tiFigure 2.2 shows the various blending functions for a cubic NURBS curve.Based on the above formulation of the parametric curve, it is clear that the controlpoints determine the shape of the curve. Further, since each control point has only a limitedrange of inuence, it is very easy to shape the curve (or surface) by local modi�cation ofthe control points. In most parametric speci�cations, the domain is normalized to lie inthe unit interval, t 2 [0; 1], without loss of generality. We shall stick to this conventionthroughout this dissertation.A tensor product NURBS surface is de�ned over a two dimensional parametricdomain over the parameters 0 � s; t � 1. The shape of the surface is determined bytwo array of knot vectors (one for each parameter) and a two dimensional array of controlpoints [Far93]. Figure 2.3 shows the relationship between a surface patch and its parametricdomain. The weighted sum formulation of a NURBS surface isF(s; t) = Pmi=0Pnj=0 vijNi;k(s)Nj;l(t)Pmi=0Pnj=0 wijNi;k(s)Nj;l(t)In this equation, the surface is of degree k�1 in s and l�1 in t (degree (k�1)�(l�1),for short). A trimmed NURBS surface, F0(s; t), is a subset of F(s; t) de�ned by a setof trimming curves. A trimming curve is a simple, closed, piecewise sequence of curves(linear, NURBS or algebraic) de�ned in the domain, D = [0; 1] � [0; 1], of F(s; t). Thesubset of the domain that is part of the trimmed surface is usually given by a unambiguousrule. For consistency, we shall de�ne a rule that we follow for algorithmic description andimplementation purposes.

28
s

t

parametric domain

surface

Figure 2.3: A surface patch and its parametric domain� The trimming curve is oriented counterclockwise when looking into the plane of thepaper from above (see Figure 2.4). More precisely, the simply closed trimming curveis homeomorphic to a circle which is oriented counterclockwise.� The curve retains the part of the surface domain immediately to the left of it. Considera point q on the curve and a domain point q0 arbitrarily close to q (see Figure 2.4).Let the tangent at q be ~t. Then q0 2 DF 0 is a part of the trimmed surface if thecounterclockwise angle between ~t and ~qq0 is less than �.� Two points q1 and q2 belong to the same trimmed region (DF 0 or D�DF 0) if and onlyif the line segment q1q2 intersects the trimming curve even number of times (countingmultiplicities).Therefore, F0(s; t) = fF(s; t) j (s; t) 2 DF 0gB�ezier surfaces are special types of NURBS surfaces, that do not have any knots

29
DF’

D−D F’

q

q’

t

Figure 2.4: Trimming ruleexcept at the corner points (i.e., (s; t) = (0; 0); (0; 1); (1; 0); (1; 1)). The multiplicity of s andt knots is one more than s and t degrees, respectively, of the surface. The main advantagesof the B�ezier representation is that they are more easy to evaluate than general NURBS.Using knot insertion algorithms [Far93], it is possible to decompose each NURBS surfaceinto a series of rational B�ezier patches. We use B�ezier patches to represent boundaries ofthe solid primitives in our algorithms.A rational B�ezier patch, F(s; t), of degree m � n, de�ned in the domain (s; t) 2[0; 1]� [0; 1] and speci�ed by a two dimensional array of control points (vij; wij) (see Fig-ure 2.5) is given by F(s; t) = Pmi=0Pnj=0 vijBmi (s)Bnj (t)Pmi=0Pnj=0 wijBmi (s)Bnj (t) : (2.1)B is the Bernstein basis function de�ned asBmi (s) = 0B@ mi 1CA si(1� s)m�iA trimmed B�ezier patch, as shown in Figure 2.6, has trimming curves in thedomain of the patch and trims out the domain similar to its NURBS counterpart.

30
Figure 2.5: Sixteen control points of a bicubic Bezier patchThe partial derivatives of a B�ezier patch, F(s; t), with respect to s and t and de-noted by Fs and Ft, lie in the tangent plane of F(s; t). If Fs and Ft are linearly independent,then the normal direction at (s; t) is given byN(s; t) = Fs(s; t)� Ft(s; t) (2.2)In the above de�nition, � refers to the cross product between two vectors in 3-space. The partial derivatives of a rational B�ezier patch are computed as follows. Let therational form of the patch F(s; t) be V(s;t)W (s;t) . Then,Vs(s; t) =Pm�1i=0 Pnj=0(vi+1;j � vi;j)Bm�1i (s)Bnj (t)Ws(s; t) =Pm�1i=0 Pnj=0(Wi+1;j �Wi;j)Bm�1i (s)Bnj (t)Vt(s; t) =Pmi=0Pn�1j=0 (vi;j+1 � vi;j)Bmi (s)Bn�1j (t)Wt(s; t) =Pmi=0Pn�1j=0 (Wi;j+1 �Wi;j)Bmi (s)Bn�1j (t)It is easy to note that the above four functions are also in B�ezier form. We computethe partial derivatives of the patch using these functions and the quotient rule.�VW �s = WVs �VWsW 2 ; �VW �t = WVt �VWtW 2

31
trimmed surface

trimmed domainFigure 2.6: A trimmed surface patch2.2.1 Gauss MapsGauss maps provide a convenient way to describe the normals of a surface. Wede�ne the Gauss map of a surface with a continuous unit normal vector �eld as [O'N66]De�nition 3 The Gauss map Gf of a surface F, is a map Gf : F ! S2, a sphere embed-ded in R3, which maps point F(s; t) to the vector U(s; t), translated to the origin, whereU(s; t) = N(s;t)jN(s;t)j.Therefore, at some point p = (s; t) on the surface, Gf (s; t) = Up, where Up isa point on the unit sphere centered at the origin O such that the vector ~OUp is alongthe same direction as N(s; t). The function Gf can be used to compute the unit normaldirection at a given point on the surface. But computing an exact representation of Gf isquite complicated. Further, the continuous unit normal vector �eld assumption is not validfor some cases of degenerate parameterizations. Fortunately, in our applications, we are onlyinterested in the direction of the normals. The pseudo-Gauss map, G = Fs � Ft gives thisinformation. It is called a \pseudo"-Gauss map because the vector �eld is not normalized

32and for certain parameterizations of surfaces, it may be incorrect at �nite number of points.The computation of the pseudo-Gauss map is quite e�cient and is based on the partialderivative computation described above. Another bene�t of using the pseudo-Gauss mapis that G is itself a B�ezier surface, and can thus be described in terms of its control points.Hohmeyer [Hoh91] uses pseudo-Gauss maps to perform e�cient loop detection in surfaceintersection algorithms.If F(s; t) has a polynomial parameterization of degree m � n, then the pseudo-normal surface is a degree (2m � 1) � (2n � 1) B�ezier patch. For rational surfaces, thedegree of the cross product is 3m� 3n.2.2.2 Multipolynomial ResultantsElimination theory investigates the conditions under which sets of polynomialshave common roots. Usually, it concerns itself with sets of n homogeneous polynomials inn unknowns, and �nds the relationship between the coe�cients of the polynomials whichcan be used to determine whether the polynomials have a non-trivial common solution.De�nition 4 [Sal85] A resultant of a set of polynomials is an expression involving thecoe�cients of the polynomials such that the vanishing of the resultant (evaluating to zero) isa necessary and su�cient condition for the set of polynomials to have a common non-trivialroot. In this dissertation, we use resultants to compute implicit forms of surfaces fromtheir parametric representation and to detect the presence of loops in our surface inter-section algorithm. [Mac02] provided a general method for eliminating n variables from nhomogeneous polynomials. The resultant is expressed as a ratio of two determinants. How-ever, a single determinant formulation exists for n = 2 and 3 [Sal85, Dix08]. For n = 3,however, [Dix08] gives the resultant only if the three equations have the same degree. Inour applications, it is su�cient to compute resultants for the cases when n = 2 and 3.Sylvester's method [Sal85] can be used to express the resultant of two polynomialsof degreem and n respectively as a determinant of a matrix with (m+n) rows and columns.Given two polynomials,

33f(x) = anxn + an�1xn�1 + : : :+ a1x+ a0; (2.3)and g(x) = bmxm + bm�1xm�1 + : : :+ b1x+ b0; (2.4)generate m polynomials by multiplying f(x) with xi; i = m � 1; m � 2; : : : ; 1; 0 and npolynomials by multiplying g(x) with xi; i = n � 1; n� 2; : : : ; 1; 0. This results in a totalof (m+ n) polynomials. By treating the (m+ n) monomials, xi; i = 0; 1; : : : ; m+ n � 1 asindependent variables, the Sylvester's resultant for the above two polynomials isRx(f; g) = �������������������� an an�1 : : : a0 0 : : : 00 an an�1 : : : a0 0 : : :0 : : : 0 an an�1 : : : a00 : : : 0 bm bm�1 : : : b00 : : : 0 bm bm�1 : : : b0 0bm bm�1 : : : b0 0 : : : 0 �������������������� (2.5)The problem of computing the implicit representation of a parametric surface F(s; t) =(X(s; t); Y (s; t); Z(s; t);W (s; t)) involves eliminating s and t from the three polynomialsX(s; t)� xW (s; t) = 0Y (s; t)� yW (s; t) = 0Z(s; t)� zW (s; t) = 0We use Dixon's resultant [Dix08] to compute the implicit form. We discuss this in moredetail in chapter 3.The results and algorithms developed in elimination theory assume that the poly-nomials are described in their monomial basis (like polynomials given in equations (2.3)and (2.4). This assumption is not true in cases like NURBS and B�ezier patches wherethe polynomials are given using other basis functions. For example, tensor product B�ezier

34patches are given in the Bernstein basis. In order to apply resultant algorithms on thesepolynomials, we have to convert them into the monomial (or power) basis.Bernstein to Power Basis: In order to convert from Bernstein to power basis,we perform a reparametrization of the forms = g(s) = s(1� s) ; t = g(t) = t(1� t) ;for tensor product surfaces. In the resulting formulation we substitute s = s1�s ; t = t1�tand the resulting parametrizations are in power basis in terms of s and t. For tensor productB�ezier surfaces, like the one de�ned in equation (2.1), the new formulation becomesF(s; t) = Pmi=0Pnj=00B@ mi 1CA0B@ nj 1CAvijsitjPmi=0Pnj=00B@ mi 1CA0B@ nj 1CAwijsitj :The domain of the surfaces are suitably transformed. The reparameterizationstrategy can be applied to transform other basis functions to the power basis as well. Twoobservations are made regarding these transformations.� Bounded domains get transformed to unbounded domains. For example, the unitsquare domain is mapped to the positive quadrant of the real plane.� Computations may become numerically unstable near the boundary values of theparameters. This is the case in tensor product B�ezier patches when s and t are closeto 1.0.To avoid these problems, we apply this transformation only during phases of thealgorithm where resultant algorithms are used. Once that is done, we apply the inversetransformation to restore the stability of the Bernstein basis [FR87].

352.3 Sturm SequencesLet f(x) be a polynomial of degree n,f(x) = anxn + an�1xn�1 + : : :+ a1x + a0; an 6= 0 (2.6)We construct a sequence of polynomials fi(x); i = 0; 1; : : : ; m, of descending degrees. Byexamining the number of sign changes, w(a), for certain points x = a, we can determinethe number of real roots of f(x) in a speci�ed region. Such a sign change happens wheneverthe sign of a polynomial value di�ers from that of its successor. Furthermore, if fi(a) = 0,then this entry is removed from the sequence before counting the sign changes. Suitablesequences of polynomials are called Sturm sequences.De�nition 5 [SB93] The sequencef0(x) = f(x); f1(x); : : : ; fm(x) (2.7)of real polynomials is a Sturm sequence for the polynomial f(x) if:� All real roots of f0(x) are simple.� sign f1(�) = - sign f 00(�) if � is a real root of f0(x).� For i = 1; 2; : : : ; m� 1, fi+1(�)fi�1(�) < 0if � is a real root of fi(x).� The last polynomial fm(x) has no real roots.For such Sturm sequences we have the following theorem that we state withoutproof.Theorem 1 [SB93] The number of real roots of f(x) � f0(x) in the interval [a; b) equalsw(b)�w(a), where w(x) is the number of sign changes of a Sturm sequence f0(x); f1(x); : : : ; fm(x)at location x.

36There is a simple recursive algorithm to construct one such Sturm sequence for thepolynomial f(x), provided it has only simple real roots. We de�ne the �rst two polynomialsin the sequence as f0(x) := f(x); f1(x) := �f 00(x) = �f 0(x)The remaining polynomials fi+1(x) are de�ned recursively as the remainder when fi�1(x)is divided by fi(x). fi�1(x) = gi(x)fi(x) � cifi+1(x); i = 1; 2; : : : ;where ci is a positive constant. Further, the degrees of the polynomials obtained shouldform a strictly decreasing sequence. This algorithm is the well-known Euclid's algorithmfor obtaining the greatest common divisor of two polynomials. Because of the decreasingdegree condition, the sequence must terminate after at most m � n steps.The main use of Sturm sequence in combination with bisection methods is toisolate roots of polynomials in a given domain. They are also used to �nd eigenvalues ofHermitian tridiagonal symmetric matrices. For a system of multivariate polynomials with adiscrete set of roots, there are extensions of Sturm sequences. Chapter 5 describes one suchtechnique. We will use multivariate Sturm sequences in evaluating certain critical pointsfor loop detection.2.4 Algebraic CurvesIn this section, we describe properties of algebraic curves in the context of curveevaluation that we use in the remainder of this dissertation. An algebraic curve in Rn+1can be expressed as a solution of n a�ne polynomial equations in (n+ 1) unknowns.F1(u1; u2; : : : ; un�1; u; v) = 0F2(u1; u2; : : : ; un�1; u; v) = 0... (2.8)Fn(u1; u2; ; : : : ; un�1; u; v) = 0:

37The functions Fi, i = 1; 2; : : : ; n, are the components of a vector �eld F : D ! Rn, D �Rn+1. In this context, we are only interested in evaluating all the components of the curveinside the regionD = [U11; U12]�[U21; U22]�: : :�[Un�1;1; Un�1;2]�[U1; U2]�[V1; V2] 2 Rn+1.The solution to the problem are elements of D that map to the zero vector under F . Thiscan be illustrated by taking the example of parametric surface intersection. Given twoB�ezier surfaces, F(s; t) = (X(s; t); Y (s; t); Z(s; t);W (s; t))G(u; v) = (X(u; v); Y (u; v); Z(u; v);W(u; v))represented in homogeneous coordinates, their intersection curve is de�ned as the set ofcommon points in 3-space and is given by the vector equation F(s; t) = G(u; v). Thisresults in the following set of three equations in four unknowns.F1(s; t; u; v) = X(s; t)W(u; v)�X(u; v)W (s; t) = 0F2(s; t; u; v) = Y (s; t)W(u; v)� Y (u; v)W (s; t) = 0 (2.9)F3(s; t; u; v) = Z(s; t)W (u; v)� Z(u; v)W (s; t) = 0;and the domain of the intersection curve is (s; t; u; v) 2 [0; 1]� [0; 1]� [0; 1]� [0; 1].The degree of an algebraic curve is a fairly accurate measure of its complexity.Geometrically, the degree of a space curve is the maximum number of intersections it haswith any plane. Algebraically, the degree of a space curve is the degree of the implicitequation of its projection onto a plane. Bezout's theorem is an important theorem thatrelates the degree of an algebraic curve with the degrees of the surfaces that intersect toproduce the curve.Theorem 2 Bezout's Theorem: Two algebraic surfaces of degree d1 and d2, respectively,intersect in an algebraic curve of degree d1d2 unless they have a common component.Sederberg [Sed83] developed a computational method based on resultants to com-pute the implicit form of any parametric surface. For the special case of a degree m � ntensor product B�ezier surface, Sederberg showed that its implicit form is of degree 2mn.

38
f (u,v) = 0

f (u,v) = c > 0

f (u,v) = c < 0
u

v

Figure 2.7: Isocontours of bivariate polynomialConsider two rational B�ezier surfaces to degree m1 � n1 and m2 � n2 respectively. Us-ing the previous fact, we know that the algebraic degree of these surfaces are 2m1n1 and2m2n2. Bezout's theorem states that the intersection of these surfaces results in a curve ofdegree 4m1n1m2n2. In most modeling applications, it is typical to design bicubic (degree3�3) B�ezier surfaces to preserve smoothness constraints. Intersection of two bicubic B�eziersurfaces results in an algebraic space curve of degree 324.Equation (2.9) gives an intersection curve formulation in parametric space. Usingresultant techniques, it is possible to project this curve onto a plane (domain of one of thepatches actually - see chapter 3). In this case, we obtain an implicit equation of the planecurve of the form f(u; v) = 0. The degree of this curve is 2m1n1(m2 + n2). For the bicubiccase, this expression evaluates to 108.Tangents to algebraic curves: Numerical curve tracing methods are one of themore popular techniques to evaluate algebraic curves. These methods usually evaluate thetangent at some point on the curve and step along the tangent using a step size. Thisapproximant is re�ned to estimate the new curve point.Given a plane curve, f(u; v) = 0, we want to �nd the tangent at p = (u0 ; v0) on

39it. Consider the surface w = f(u; v). The curve produced by cutting the surface with aplane w = constant is called an isocurve. The curve f(u; v) = 0 is the special case whenthe constant is zero (see Figure 2.7). It is a well known fact that the direction of greatestchange of a function is along the gradient of the function. Further, the gradient is along thenormal to the isocurves at all times. Therefore, the normal vector ~n(u0 ; v0) is given by~n(u0 ; v0) = ~rf = (fu; fv)(u0 ; v0)For plane curves, the tangent is obtained easily from the normal vector. For theabove normal vector, the tangent is (�fv ; fu)(u0; v0). We use this de�nition to evaluatetangent vectors of intersection curves in chapter 3.2.5 Matrix ComputationsGiven an n� n matrix A, its eigenvalues and eigenvectors satisfy the equationAx = sx;where s is an eigenvalue and x 6= 0 is the corresponding eigenvector. The eigenvalues ofa matrix are also the roots of its characteristic polynomial, Determinant(A � sI). Givenn� n matrices, A and B, the generalized eigenvalue problem isAx = sBx:where s is an eigenvalue and x 6= 0 is the corresponding eigenvector. The eigenvalues ofthe matrix pencil (A;B) are all elements s such that Determinant(A � sB) = 0. If B isnon{singular, the problem can be reduced to a standard eigenvalue problem by multiplyingboth sides of the equation by B�1 and thereby obtainingB�1Ax = sx:When B has a high condition number, such a reduction may be numerically unstable.Standard algorithms for computing eigenvalues, like the QR algorithm for the standardeigenvalue problem and QZ algorithm for the generalized eigenvalue problem, are based onorthogonal similarity transformations [GL89].

40We reduce our problems of intersection computation to computing certain eigen-values of a matrix pencil (a parameterized matrix form). Since the QR or QZ algorithmcompute all the eigenvalues, they can be ine�cient. Iterative techniques based on the powermethod are more e�cient because they �nd only certain eigenvalues.2.5.1 Power MethodThe Power method computes certain eigenvalues and eigenvectors of a matrix.Let A be a diagonalizable matrix such that X�1AX = diag(�1; �2; : : : ; �n) where X =[x1;x2; : : : ;xn] and j�1j > j�2j � : : : � j�nj. diag(�1; �2; : : : ; �n) is a diagonal matrix with�s as its diagonal entries. Given a unit vector q0, the power method produces a sequenceof vectors qk. for k = 1; 2; : : :zk = Aqk�1qk = zk= k zk k1sk = qTkAqkendwhere k zk k1 is the element of maximum magnitude in the vector zk . Using exact arith-metic power method, it is known that sk converges to �1 and qk converges to x1, theeigenvector associated with �1 provided q0 is not orthogonal to x1. Moreover, the asymp-totic convergence rate is j�1j=j�2j. �1 is the dominant eigenvalue of A. The power methodis described in detail in [GL89, Wil65].In our applications, we use power iterations to compute the smallest eigenvalues(in magnitude) of matrix pencils of the form, As0 +B. The smallest eigenvalue of As0 +Bcorresponds to the largest eigenvalue of (As0 + B)�1. Instead of computing the inverseexplicitly, given q0, inverse power iteration solves a linear system of equations,for k = 1; 2; : : :Solve (As0 +B)zk = Aqk�1qk = zk= k zk k1

41sk = �(qTkBqk)=(qTkAqk)endwhere k zk k1 is the element of maximum magnitude of zk . We compute an LU decom-position of As0 +B using Gaussian elimination. The vector q0 is chosen randomly. GivenAqk�1, the resulting triangular linear system can be solved in O(n2) steps. Assume thatthe eigenvalues (�1; �2; : : : ; �n) of As0 +B can be ordered such thatjs0 � �1j < js0 � �2j �; : : : ;� js0 � �nj:The asymptotic convergence rate is js0 � �1j=js0 � �2j. If two eigenvalues, �1 and �2, arealmost at the same distance from s0 , the convergence can be slow. The convergence can befurther improved using the following procedure (given q0 and u0).for k = 1; 2; : : :Solve (As0 +B)zk = Aqk�1Solve (As0 +B)Tvk = Auk�1qk = zk= k zk k1uk = vk= k vk k1sk = �(uTkBqk)=(uTkAqk)endIn exact arithmetic, this process is locally cubically convergent [Wil65]. Many other tech-niques for improving the accuracy and convergence of the algorithm in the presence of highermultiplicity eigenvalues or closely spaced eigenvalues are presented in [Wil65].2.5.2 QR AlgorithmThe QR algorithm computes eigenvalues of a matrix. The basic QR algorithmmakes use of the Schur Normal Form. Schur's theorem states that

42Theorem 3 [SB93] For every n� n matrix A there is a unitary n�n matrix U such thatUHAU = 0BBBBBBB@ �1 � : : : �0 �2 : : : �...0 : : : 0 �n 1CCCCCCCAThe diagonal elements are the eigenvalues of A.UH is the conjugate transpose of U, i.e., for real matrices, UH = UT. A matrix U isunitary if UHU = I, the identity matrix. Two matrices A and B are similar if B =T�1AT, for some nonsingular matrix T. Similar matrices have the same eigenvalues. Thetransformation T is called a similarity transformation.The basic QR algorithm can be written asGiven A 2 Rn�n, de�ne A1 = A.For k = 1; 2; : : : ; doCalculate the QR decomposition Ak = QkRk,De�ne Ak+1 = RkQk.In the above algorithm, Qk is an orthonormal matrix (QTkQk = I) and Rk is anupper triangular matrix. The iterates Ak are similar to each other becauseAk+1 = RkQk = QTkAkQkThe basic idea of QR iteration is that if these transformations are carried out enoughtimes, the upper triangular matrix will eventually have the eigenvalues in its diagonalelements. Computing a QR decomposition of a general matrix requires (O(n3) operations)per iteration. To reduce the operation count, we use similarity transformations to convertA to an upper Hessenberg matrix.

43
(a) (b) (c)

s1

s4
s2

s3

s5
s7

s8

s9
s6 d0

d1

d2

Figure 2.8: Seidel's algorithm for polygon triangulationA matrix H is in upper Hessenberg form if its elements hij = 0 for all j � i � 2,i.e., H = 0BBBBBBBBBBBBBB@ � � : : : � �� � : : : � �0 � : : : � �0 0 � : : : �...0 : : : 0 � � 1CCCCCCCCCCCCCCAComputing a QR decomposition of an upper Hessenberg matrix (using Given's ro-tations) requires only O(n2) operation [SB93]. The QR decomposition of an upper Hessen-berg matrix yields an orthogonal component Q which is also upper Hessenberg. Therefore,the basic QR algorithm preserves upper Hessenberg form.2.6 Seidel's algorithm for polygon triangulationSeidel's algorithm [Sei91] is an incremental randomized algorithm to compute thetrapezoidal decomposition induced by a set of n lines segments in 2D. The expected timecomplexity of this algorithm in O(n log� n). This algorithm can be used for fast polygontriangulation and, as a by-product, produces a query structure which can be used to answerpoint-location queries in O(logn) time.

44The algorithm proceeds in three steps as described below (shown in �g. 2.8).� Trapezoidation of the polygon: Let S be a set of non-horizontal, non-intersectingline segments of the polygon . A randomized algorithm is used to create the trape-zoidal decomposition of the X�Y plane arising due the segments of set S. This is doneby taking a random ordering s1; : : : ; sn of the segments in S and adding one segmentat a time to incrementally construct the trapezoids. This divides the polygon intotrapezoids (which can degenerate into a triangle if any of the horizontal segments ofthe trapezoid is of zero length). The restriction that the segments be non-horizontal isnecessary to limit the number of neighbors of any trapezoid. However, no generality islost due to this assumption as it can be simulated using lexicographic ordering. Thatis, if two points have the same Y -coordinate then the one with larger X-coordinateis considered higher. The number of trapezoids is linear in the number of segments.Seidel proves that if each permutation of s1; : : : ; sn is equally likely then trapezoidformation takes O(n log� n) expected time.� Decomposition of the trapezoids into monotone polygons: A monotonepolygon is a polygon whose boundary consists of two Y -monotone chains. Thesepolygons are computed from the trapezoidal decomposition by checking whether twovertices of the original polygon lie on the same side of the horizontal line. This is alinear time operation.� Triangulation of monotone polygons: A monotone polygon can be triangulatedin linear time by using a simple greedy algorithm which repeatedly cuts o� the convexcorners of the polygon [FM84]. Hence, all the monotone polygons can be triangulatedin O(n) time.In our algorithm for boundary evaluation, we represent the trimming boundary ofa surface patch as a simple polygon. During ray shooting and trimmed surface intersectionoperations, we have to perform point location queries in the trimmed domain. We use afast implementation [NM95] of Seidel's algorithm for this purpose.

45
Chapter 3Curve Surface IntersectionThe problems of computing the intersection of curves and surfaces are fundamen-tal in computer graphics and geometric modeling. Common applications include surface-surface intersection, ray-tracing, hidden-curve removal and visibility algorithms [Hof89,EC90, NSK90, SP86]. Our surface-surface intersection algorithm (chapter 4) needs start-ing points on each component of the intersection curve. We use curve-surface intersectionto evaluate these starting points. Our algorithm for boundary evaluation relies on a ray-shooting approach for the classi�cation of certain solid features. Ray-shooting can be re-duced to a series of ray-surface intersection tests. In this chapter, we provide an e�cient,accurate and general algorithm to solve curve-surface intersection problems. We assumethat problems like curve-curve intersection, curve-surface intersection and ray-surface inter-section result only in a zero dimensional intersection set. Chapter 4 deals with intersectionproblems that result in algebraic curves.3.1 Intersection Problems and Algebraic FormulationWe only consider the intersections of rational parametric and algebraic curves andsurfaces. These include B�ezier curves and surfaces, NURBS, quadric patches etc. A rationalB�ezier plane curve is represented as:P(t) = (X(t); Y (t)) = �ni=0PiBni (t)�ni=0wiBni (t) ; 0 � t � 1

46
P0

P1

P2 P3

P4

P5

Q
0

Q 1
Q2

Q 3

Q4

Q 5

Figure 3.1: Intersection of B�ezier curveswhere Pi = (wiXi; wiYi) are the coordinates of a control point, wi is the weight of the controlpoint and Bni (t) corresponds to the Bernstein polynomial. Other rational formulationslike B-splines can be converted into a series of rational B�ezier curves by knot insertionalgorithms. Algebraic plane curves (of degree n) are generally expressed in standard powerbasis: F (x; y) = �i+j�ncijxiyj = 0:They can also be represented in Bernstein basis. The problem of intersection correspondsto computing the common points on such curves in a particular domain.The parametric surfaces may correspond to tensor product B�ezier patches orNURBS patches. Their representations were discussed in chapter 2.The problem of intersection can always be reduced to solving a system of algebraicequations. For example, given the homogeneous representation of two rational B�ezier curves,P(s) = (X(s); Y (s);W (s))) and Q(t) = (X(t); Y (t);W(t))), the problem of intersectioncorresponds to computing all the common solutions ofX(s)W(t)�X(t)W (s) = 0 (3.1)Y (s)W (t)� Y (t)W (s) = 0

47in the domain (s; t) 2 [0; 1]� [0; 1].Given a B�ezier surface F(s; t) = (X(s; t); Y (s; t); Z(s; t);W (s; t)), its intersectionswith a ray represented as the intersection of two planesa1X + b1Y + c1Z + d1 = 0and a2X + b2Y + c2Z + d2 = 0can be reduced to the solutions ofa1X(s; t) + b1Y (s; t) + c1Z(s; t) + d1W (s; t) = 0 (3.2)a2X(s; t) + b2Y (s; t) + c2Z(s; t) + d2W (s; t) = 0in the domain (s; t) 2 [0; 1]� [0; 1].Given a B�ezier space curve, P(u) = (X(u); Y (u); Z(u);W(u)), its intersectionswith the B�ezier surface F(s; t) can be formulated as all solutions ofX(s; t)W(u)�X(u)W (s; t) = 0Y (s; t)W(u)� Y (u)W (s; t) = 0 (3.3)Z(s; t)W (u)� Z(u)W (s; t) = 0in the domain (s; t; u) 2 [0; 1]� [0; 1]� [0; 1].Accuracy: It is clear that in all these formulations, we are trying to solve a system ofequations. Consider the system of equations described by equation (3.3). Let the threeequations be denoted by f1(s; t; u); f2(s; t; u) and f3(s; t; u). Another way of looking atthese equations is a vector �eld F : R3 ! R3 such thatF : (s; t; u)! (f1(s; t; u); f2(s; t; u); f3(s; t; u))The ideal (and accurate) solutions are those domain points which map to the zero vectorunder F . Since we are working in �nite precision arithmetic, it is not possible to recoverthese values exactly. Instead, we settle for domain points that map under F to a vectorwhose norm is smaller than a user-speci�ed value. In all the algorithms presented in this

48
p

1 p
2

p
3

Figure 3.2: Intersection of a B�ezier curve and surfacedissertation, we use the Euclidean norm for this purpose. A consequence of this conditionis that while it includes all the roots of the system, it may also include spurious intersectionpoints which satisfy the criterion. Unfortunately, as long as we are using �nite-precisionarithmetic we will never be able to tell the di�erence. By using exact rational arithmeticand algebraic methods like Sturm sequences (see chapter 2), we may be able to eliminatethem. For the rest of this dissertation, we will use this de�nition of accuracy for all ouralgorithms.3.1.1 Reduction to Eigenvalue FormulationGiven a system of equations, we eliminate variables using resultants. In inter-section problems, we obtain systems consisting of two or three algebraic equations. Fortwo equations corresponding to curve-curve intersection and ray-tracing we use Sylvesterresultant [Sal85], and for curve-surface intersections we use Dixon's formulation [Dix08]. Ineither case the resultant can be expressed as a matrix determinant and the entries of thematrix are univariate polynomials. Such matrices are called matrix polynomials. Instead

49of symbolically expanding the determinant, we reduce the problem to an eigenvalue for-mulation [Man92]. In particular, the resultant corresponds to a matrix polynomial of theform: M(s) =Mnsn +Mn�1sn�1(1� s) +Mn�2sn�2(1� s)2 + : : :+M0(1� s)n;where Mi is an m �m matrix with numeric entries. m and n are function of the degreeof the curves and surfaces. Dividing the matrix polynomial by (1 � s)n and substitutingu = s1�s (substitution to change from Bernstein basis to power basis - see section 2.2.2)yields a matrix polynomialL(u) =Mnun +Mn�1un�1 + : : :+M0: (3.4)The intersection algorithm computes the roots of Determinant(L(u)) = 0 by solving aneigenvalue problem in the following manner [Man92]:Theorem 4 Given the matrix polynomial, L(u) the roots of the polynomial correspondingto its determinant are the eigenvalues of the generalized system C1u+C2, whereC1 = 2666666666664 Im 0 0 : : : 00 Im 0 : : : 0... ... : : :0 0 : : : Im 00 0 : : : 0 Mn 3777777777775 C2 = 2666666666664 0 �Im 0 : : : 00 0 �Im : : : 0... ... : : :0 0 0 : : : �ImM0 M1 M2 : : : Mn�1 3777777777775 ; (3.5)where 0 and Im are m�m null and identity matrices, respectively. IfMn is well-conditioned,the matrix equation can be reduced to the eigenvalues of the following associated companionmatrix. C = 266666664 0 Im 0 : : : 0...0 0 0 : : : Im�M0 �M1 �M2 : : : �Mn�1 377777775 (3.6)where Mi =M�1n Mi.

50Based on the problem formulation and properties of resultants, it follows that theeigenvalues of C1u + C2 correspond to one of the unknowns in (3.1), (3.2) or (3.3). Theother variables can be recovered from the corresponding eigenvectors. For most intersectionapplications, we are interested in computing the eigenvalues in a �nite interval of the realdomain. For example, for B�ezier curves and surfaces, the domain is s 2 [0; 1]. However,the variable u in L(u) takes values in the interval [0;1]. To avoid this problem, we back-substitute u = s1�s and transform the matrix pencil C1u + C2 to (C1 � C2)s + C2. Forthe rest of the chapter, we assume that this transformation has been performed and shallconcentrate in computing all the eigenvalues of a matrix pencil in a �nite interval.3.2 Algebraic PruningThe intersection problem is now reduced to �nding eigenvalues of the matrix pencil,C1s+C2. The QR algorithm for the standard eigenvalue problem and QZ algorithm for thegeneralized eigenvalue problem [GL89] compute all eigenvalues and it is di�cult to restrictthem to eigenvalues in the given domain. But in our applications we are only interestedin �nding intersections that lie inside the given domain. In this section, we describe a newalgorithm called algebraic pruning to compute intersections restricted to a domain.Initially, we use linear programming [Sei90b] to check if the control polytopes ofthe pairs of curves (or a curve and a surface) have a separating line (or plane) betweenthem. If they do, then the given pair does not intersect. Otherwise, there is probably aneigenvalue of the pencil C1s + C2 close to the domain [0; 1]. This also includes complexeigenvalues.The main idea behind our algorithm is to use inverse iteration to �nd some eigen-values in the domain, and at the same time prune out portions of the domain not containingany solution. In particular, we start with a guess s0 � 0:5, which is the midpoint of thedomain. Using inverse iteration, we �nd an eigenvalue closest to s0 . Let that eigenvalue bet. If t is a complex number we compute a complex conjugate pair of eigenvalues. Assumingthat we chose random start vectors, q0 and u0 (as used in section on power iterations insection 2.5.1), t is an eigenvalue of C1s +C2 which is closest to s0 . As a result, there are

51
Real(s)

Imaginary(s)

0 1s’ t

R

s’−t ||R =

Figure 3.3: Domain Pruning based on Inverse Iterationno other eigenvalues of the pencil in the circle centered at s = s0 with radius R = jt � s0 j[Wil65] (as shown in Figure 3.3).We draw the following conclusions:� If t 2 [0; 1], t corresponds to an intersection point. The rest of the unknowns arecomputed from the corresponding eigenvector.� There are no other intersections in the real domain, (s0 � R; s0 + R).� The technique is recursively applied to �nd all the intersections in the following do-mains:* [0; s0 �R], if (s0 �R) � 0.* [s0 +R; 1], if (s0 +R) � 1.Therefore, we are able to compute an intersection and prune the domain with inverseiteration. The algorithm is applied recursively to each domain after pruning. Our testexamples contain only a few intersections in the domain. In those cases, the algorithmconverges to the intersection fast and we need to apply this technique only a few times.

523.2.1 Computation of Multiple SolutionsIn the previous section, we described the technique of algebraic pruning based oninverse iteration. Often the inverse iteration does not converge to a real solution t or theconvergence can be slow because the closest eigenvalue corresponds to a pair of complexconjugate eigenvalues. The latter is due to the fact that there are two or more real eigen-values which have roughly the same distance from s0 . In this section, we modify the inverseiteration to compute more than one intersection point at the same time. This includescomplex conjugate pairs as well. We describe the technique to compute two solutions atthe same time and it can be easily extended to �nd more than two solutions.Given the approximation, s = s0 , let the two closest eigenvalues of the matrix(C1s + C2) be t1 and t2. Let the corresponding eigenvectors be x1 and x2 and A =(C1s0 +C2)�1. Then 1(s0�t1) and 1(s0�t2) are the largest eigenvalues of A in magnitude. Ifwe start with a random unit vector u0 and solve for p and q such thatlimi!1(Ai+2 � pAi+1 � qAi)u0 = 0;then 1t1 and 1t2 are the solutions to the equation x2� px� q = 0. Whether the solutions arereal or complex depends on the sign of (p2 + 4q). We compute these multiple eigenvaluesin the following manner. Let u0 be a random start vector.for k = 1; 2; : : :Solve (C1s0 +C2)vk = C1uk�1sk =k vk k1uk = vk=skSolve for pk and qk fromsksk�10B@ uTk uk�1uTk�2uk 1CA = 0B@ uTk�1uk�1 uTk�1uk�2uTk�2uk�1 uTk�2uk�2 1CA0B@ pksk�1qk 1CAif k pk � pk�1 k2< � and k qk � qk�1 k2< �, quitendAfter pk and qk converge, we compute the closest eigenvalues in the following

53manner. Let D = p2 + 4q. If D > 0:0 the two closest eigenvalues aret1 = s0 � 2:0=(p+pD);t2 = s0 � 2:0=(p�pD):Furthermore, the radius R for pruning corresponds to the minimum of jt1�s0 j and jt2�s0 j.In case the closest pair of eigenvalues is a complex conjugate pair, it is computedas: Real(t) = s0 � 2pp2 �D;Imag(t) = 2p�Dp2 �D:and the radius R for pruning isR = q(Real(t)� s0)2 + Imag(t)2):3.2.2 Use of Matrix StructureIn inverse iteration, the two main operations are the LU decomposition of thematrix C1s0+C2 and solution of the resulting upper triangular systems. The matrix pencilde�ned in Theorem 4 has orderN = m�n. In particular, it has a block companion structurebeing linearized from a m �m matrix polynomial of degree n. The LU decomposition iscomputed using Gaussian elimination [GL89] which takes about 13N3 operations (withoutpivoting). Solving each triangular system costs about 12N2 operations. As a result, inverseiteration requires 13N3 + kN2 operations, where k is the number of iterations.The structure of the matrices can be used to reduce the number of operations forLU decomposition as well as solve the triangular systems. Given s0 , let A = C1s0 + C2.Using the structure of C1 and C2, it can be shown that A is a matrix of the form:A = 0BBBBBBBBBBB@ �1Im �2Im 0 : : : 00 �1Im �2Im : : : 0... ... : : :0 0 : : : �1Im �2ImP1 P2 P3 : : : Pn 1CCCCCCCCCCCA

54where �1 and �2 are functions of s0 . Pi's are m�m matrices, which are functions of Mi'sand s0 . A LU decomposition of A can be written asA = 0BBBBBBBBBBB@ �1Im 0 0 : : : 00 �1Im 0 : : : 0... ... : : :0 0 : : : �1Im 0R1 R2 : : : Rn�1 Ln 1CCCCCCCCCCCA0BBBBBBBBBBB@ Im �2�1Im 0 : : : 00 Im �2�1 Im : : : 0... ... : : :0 0 : : : Im �2�1 Im0 0 : : : 0 Un 1CCCCCCCCCCCA ;where R1 = P1R2 = P2 � �2�1R1R3 = P3 � �2�1R2...Rn�1 = Pn�1 � �2�1Rn�2Rn = Pn � �2�1Rn�1Moreover, Ln and Un correspond to the LU decomposition of Rn.This formulation is constructive and based on it, LU decomposition of A requires13m3 + (n� 1)m2 operations. Furthermore, given the LU decomposition, solving the lowertriangular system takes (n� 12)m2 operations and solving the upper triangular system takes12m2 + (n � 1)m operations. As a result, the total number of operations for solving thelinear system is nm2 + (n� 1)m.Sometimes numerical di�culties can arise with the LU decomposition of A whenit is ill-conditioned. Even though pivoting can be used to improve numerical reliability, itdestroys the structure of the matrix. In such cases, we use LQ factorization (similar toQR decomposition in eigenvalue computation), where L is a lower triangular matrix andQ is an orthogonal matrix. This factorization can be performed either using Householdermatrices or Given's rotation. We have used Householder transformations to carry out thefactorization.

553.2.3 Algorithm for IntersectionThe algorithm for intersection computation combines algebraic pruning with prop-erties of curves and surfaces. We assume that each curve and surface is associated with acorresponding control polytope. For B�ezier curves and surfaces such control polytopes areformed by their control points. Similar geometric representations are known for algebraiccurves and surfaces as well [Sed89]. The simplest algorithm for intersection is based on theversion of algebraic pruning from Section 3.2. We start with the middle point of the domain,�nd a closest eigenvalue using inverse iteration and prune the domain. The algorithm canbe recursively applied to each domain obtained after pruning.Although this algorithm works well, its performance can be improved tremendouslyusing properties of curves and surfaces and behavior of inverse iteration. The convergenceof inverse iteration is a function of the distance of eigenvalues from the guess s0 . If thereare a number of intersections in the domain, the ratio js0 � �1j=js0 � �2j may not be smalland the overall convergence may therefore be slow. However, the convergence is faster ifthere are very few intersections in the domain. In the applications involving curve andsurface intersections, we make use of the geometric properties of the control polytopes inthe following manner:� Compute the number of intersections between the control polytopes of the curves orcurve-surface pair. This number is used as a good guess to the actual number ofintersections.� Subdivide the curves and surfaces such that each pair obtained after subdivisionconsists of at most one or two intersections between the control polytopes.In case the actual number of intersections between the original pair of controlpolytopes is high, we use the QR algorithm [MD94]. The technique of algebraic pruningworks best when there are relatively few intersections. Let k be the number of intersectionsbetween the control polytopes. We use the algorithm based on algebraic pruning if k <2pN , where N refers to the order of matrix pencil in Theorem 4. This is a heuristic derivedbased on our experience. Eventually, we apply algebraic pruning to �nd eigenvalues in each

56domain, such that the associated control polytopes have only one or two intersections.Although we subdivide the curve and obtain new control points, the implicit representationand the matrix pencil C1s +C2 remain the same and we associate each subdivided curvewith a di�erent domain. It is still possible that after subdivision the algorithm does notconverge to a solution fast enough. In that case, it could be because multiple eigenvaluesare close to the chosen approximation (s0).Inverse iteration terminates once successive values of si di�er by less than a toler-ance, TOL. In applications involving computation of multiple solutions, we terminate theiteration once pk and qk di�er between successive iterations by at most TOL. The accuracyand performance of the overall method is a function of TOL. Depending on the number ofiterations it takes to converge, we use the following values of TOL and use a one-pass ortwo-pass approach. Let [a; b] be the interval in which all eigenvalues need to be computed.uk refers to the eigenvector computed at each iteration. The eigenvector is used to extractthe other variable in the system of equations.� Use inverse iteration to compute a closest eigenvalue of A = C1s0 +C2. Initially useTOL = 0:01=(b� a). After three iterations ifjs3 � s2j < TOL; ju3[1]=u3[0]� u2[1]=u2[0]j < TOLwe continue using inverse iteration and modify TOL = (1:0e�6)=(b� a).� { In case inverse iteration does not converge to two digits of accuracy in the �rstthree iterations, TOL remains the same and we compute pk and qk using thealgorithm for multiple solutions. Let the inverse iteration converge to a realsolution sk or a pair of real solutions, t1k and t2k. Each of them is accurate upto two digits.{ For each eigenvalue t computed with two digits of accuracy, we set s0 = t andperform some inverse iteration on A = C1t+C2 using TOL = (1:0e�6)=(b� a).The tolerances are user driven and the number of iterations used to switch thetolerance can be varied by the user as well. The entries uk[1] and uk[0] of the eigenvectorare used to compute the other variable in the curve-curve intersection problem.

573.2.4 IllustrationIn this section, we demonstrate our algorithm on two examples:� intersection of two planar B�ezier curves each of degree four, and� intersection of a cubic B�ezier curve with a bicubic tensor-product B�ezier patch.Intersection of two planar curvesThe control points of the curves in homogeneous coordinates are de�ned as:P(s) = ((�2:5; 0:3; 1:0); (4:0; 6:1; 1:0); (�1:0;�3:3; 1:0); (5:0; 1:4; 1:0); (7:2; 3:3; 1:0))andQ(t) = ((�2:0; 2:3; 1:0); (3:0; 2:1; 1:0); (�4:0;�2:3; 1:0); (2:0; 1:3; 1:0); (3:0; 3:3; 1:0)):The curves are shown in Figure 3.4. We implicitize the �rst curve and obtain its implicitrepresentation as a 4� 4 matrix M:M = 0BBB@ 23:2x� 26:0y+ 65:8w �21:6x� 9:0y� 51:3w 4:4x� 30:0y+ 20:0w 3:0x� 9:7y + 10:41w�21:6x� 9:0y� 51:3w �221:2x+ 90:0y+ 190:4z �72:2x� 25:7y+ 408:81z �11:2x� 12:8y+ 122:88w4:4x� 30:0y + 20:0w �72:2x� 25:7y+ 408:81w 101:6x� 156:8y� 239:52w 39:6x� 49:2y� 122:76w3:0x� 9:7y + 10:41w �11:2x� 12:8y+ 122:88w 39:6x� 49:2y� 122:76w 7:6x� 8:8y � 25:68w 1CCCA :We substitute the second parameterization and obtain a matrix polynomial. UsingTheorem 2.1 it can be reduced to �nding eigenvalues of the matrix pencil C1t+C2, whereC1 and C2 are listed in Appendix A.We apply the pruning algorithm on this example. The performance of the algo-rithm is shown in Table 3.1. In the table, t refers to the eigenvalue computed by inverseiteration and s = u[1]=u[0] is the corresponding point on the other curve, P(s), based onthe eigenvector. At each instance, we �rst compare the control polytopes of the curves forintersection. The simplest algorithm involves use of bounding box tests followed by testingthe convex hulls of their control polytopes for overlap. The convex hull test is reduced to alinear programming problem, whose complexity is linear in the number of constraints. Inthis case, each control points contributes one constraint. Good randomized algorithms forlinear programming are described in [Sei90b] and they work very well in practice. We usean implementation of Seidel's algorithm [Sei90b] given to us by Mike Hohmeyer [Hoh91].

58
P(s)Q(t)

p

p

p

p

p

q
0 q

1

q
2

q
3

q
4

0

1

2

3

4

Figure 3.4: Intersection of Fourth Order B�ezier CurvesCurve-Surface IntersectionThe control points of the curve in homogeneous coordinates are given byP(s) = ((85:0; 0:0;�150:0; 1:6); (104:0;�50:0;�50:0; 1:6); (90:0; 50:0; 50:0; 1:4);(120:0; 0:0; 150:0; 1:3)):The control points of the surface are given by the matrix:Q(u; v) = 0BBB@ (160:0;�10:0;�140:0;1:8) (140:0;�45:0;�70:0;1:4) (135:0;64:0;40:0;1:7) (148:0;10:0;120:0;1:2)(104:0;20:0;�120:0;1:3) (95:0;55:0;�40:0;1:2) (109:0;�54:0;80:0;1:1) (110:0;6:0;180:0;1:9)(42:0;�159:0;�120:0;1:0) (65:0;45:0;�60:0;1:8) (50:0;�28:0;70:0;1:7) (55:0;160:0;130:0;1:5)(�3:0;154:0;�110:0;1:3) (10:0;�35:0;�50:0;1:4) (�9:0;40:0;55:0;1:6) (9:0;�139:0;170:0;1:6) 1CCCAThe implicit representation of the surface Q(u; v) is an 18 � 18 matrix and isdenoted by M(x; y; z). M(x; y; z) is shown in Appendix B. After substituting the parame-terization of P(s) (a cubic curve), we obtain a matrix pencil of order 54. The results of thepruning method are shown in Table. 3.2. s refers to the converged eigenvalue and u and vare obtained from the corresponding eigenvector. Q(u; v) thus obtained is the intersectionpoint on the patch.

59Interval t0 t s = u[1]=u[0] No. of Iterations[0.0,1.0] 0.4 0.1297 0.1070 7[0.0,0.5] 0.2 0.1298 0.1074 4[.27,0.5] 0.362 0.1298 0.1066 5[0.0,0.1298] 0.0528 0.1298 0.1073 3[0.5,1.0] 0.7 0.7954 0.354 3[0.7954,1.0] 0.8784 0.7951 0.351 3[0.5,0.604] 0.541 0.7951 0.353 3Table 3.1: Algebraic pruning on curves shown in Figure 3.4Interval s0 s u = u[1]=u[0] v = u[3]=u[0] Iterations[0.0,1.0] 0.5 0.5976 0.3367 0.5738 9[0.0,0.3923] 0.1961 0.2021 -0.7150 0.4619 5[0.0,0.1802] 0.0901 0.1210 2.3133 0.4864 7[0.1310,0.1802] 0.1556 0.1663 0.4871 0.1582 3[0.2121,0.3923] 0.3022 0.2900 0.1880 -1.0303 4[0.2121,0.2800] 0.2461 0.2394 -0.5077 -0.3593 3[0.6076,1.0] 0.8038 0.7973 0.2332 0.8176 4[0.8204,1.0] 0.9102 0.9177 � i0.0317 { { 5Table 3.2: Algebraic pruning on the curve and surface shown in Figure 3.53.3 Performance and ComparisonWe have implemented the algorithm using LAPACK routines [ABB+92]. Theoverall algorithm has been applied to many cases of parametric curve intersection, alge-braic curve intersection, intersection of a ray with a parametric surface and curve-surfaceintersections. In each case, the problem is reduced to an eigenvalue problem and we com-pute the eigenvalues in a domain. We have performed comparisons with the QR algorithmin [MD94] and an implementation of implicitization based algorithm described in [SP86]and B�ezier clipping described in [SN90].B�ezier Clipping: B�ezier Clipping is an iterative method which takes advantageof the convex hull property of B�ezier curves, and iteratively clips away regions of the curvethat does not intersect with the surface. B�ezier clipping converges more robustly with the

60
P(s)

Q(u,v)

I 3
I 2

I 1Figure 3.5: Intersection of a cubic B�ezier Curve and a bicubic patchpolynomial's solution than does Newton's method. This method was �rst developed for ray-tracing B�ezier patches [NSK90]. The main advantages of this method include applicabilityto high-degree polynomials, robustness and faster convergence. It does not require initialguesses unlike Newton's method and can provide all solutions within a speci�ed range.Implicitization algorithm: It uses the fact that any rational curve can be ex-pressed as an implicit equation, f(x; y; w) = 0 [Sed83]. The problem of computing theintersection of two parametric curves is solved by implicitizing one of the curves. Theparameterization of the second rational curve is substituted into the implicit form to ob-tain an equation of the form f(x(s); y(s); w(s)) = 0. The roots of this equation in therange s 2 [0; 1] is solved using standard numerical polynomial root �nding methods like theJenkins-Traub method [SB93].The actual timings obtained from our implementation can be greatly improved bycareful programming and using the structure of the problem. For example, the techniqueapplied to intersection of parametric curves results in a matrix polynomial with symmetricmatrices. This structure can be exploited in solving linear equations arising in inverseiteration and giving us almost a speed up of two over the implementation not making

61use of symmetric structure of the matrices. As a result, if we implement algorithms aspart of a generic package or specialize to particular cases (like intersection of cubic B�eziercurves), we can see a considerable di�erence in their running time. A similar analysis holdsfor the implementation of implicitization based algorithm described in [SP86]. Thus, it israther di�cult to perform an exact comparison between two algorithms and in this sectionwe analyze them in terms of convergence per iteration and the total number of iterationsrequired on various examples.One of the main advantages of using inverse iteration is that whenever it convergesthe closest eigenvalue is obtained. This is the basis of algebraic pruning. However, itis possible that inverse iteration may stagnate at a spurious eigenvalue. But these canbe detected by resubstitution into the original curve and surface equations and retriedwith a di�erent starting vector. It is also possible that inverse iteration does not convergefor particular choices of initial eigenvalue and eigenvector. As discussed earlier, this canoccur when the initial guess is close to multiple eigenvalues. Another possibility for non-convergence is the initial choice of the eigenvector u0. Let �i be a closest eigenvalue to s0 withcorresponding eigenvector xi. If u0 has a very small component of xi then rounding errorsmay prevent these components from being enriched and the algorithm may not converge.However, according to [Wil65], this possibility is extremely rare if u0 is chosen at random.If a given pair of curves or a curve and a surface have very few intersections,the technique based on algebraic pruning gives almost an order of magnitude improvementover the algorithm presented in [MD94]. This is mainly due to the fact that we are onlycomputing the relevant solutions in the domain of interest as opposed to computing all thesolutions. For example, on a DEC 5000/25, it takes about 8:5 milliseconds to compute allthe intersections of the example in Section 3.2.4 using algebraic pruning. On the other hand,application of QR algorithm takes about 78:2 milliseconds on the same matrix to computeall the eigenvalues and the eigenvectors corresponding to eigenvalues in the domain. In thecase of a cubic curve and bicubic surface intersections, we obtain a 54�54 matrix. For cases,involving two or three intersections the algebraic pruning performed better by more thanan order of magnitude (almost 20-fold speedup) as compared to the QR algorithm. TheQR algorithm has a comparable performance if the number of intersections in the domain

62is at least equal to 2pN .Compared to the implicitization based approach in [SP86], algebraic pruning al-most shows the same kind of performance (on low degree curves of degree three or four).The implicitization based approach involves expansion of the symbolic determinant andcomputing all the roots in the domain of interest of the resulting polynomial. The lattercan be computed e�ciently using the Bernstein representation of the resulting polynomial.On the other hand algebraic pruning reduces it to an eigenvalue problem and does notinvolve symbolic expansion. For most applications on degree three and degree four curves,both algorithms take about 5 to 7 milliseconds on the DEC 5000/25. However, on degree�ve curves consisting of at most two or three intersections, algebraic pruning performedbetter by a couple of milliseconds. We would again like to emphasize the fact that these arethe performance �gures corresponding to our implementation and an earlier implementationof implicitization based intersection algorithm [SP86]. Other implementations may resultin a di�erent set of timings.Finally, we compared our algorithm to B�ezier clipping [SN90]. This comparisonhas been performed only for curve intersections. The actual performance of the algorithmis actually a function of the geometry of the curves and the number of intersections in thegiven domain. On low degree curves of degree less than �ve or six, both algorithms takeabout 8 to 16 milliseconds on the DEC 5000/25. The algebraic pruning is typically fasterin cases consisting of one or two intersections, whereas B�ezier clipping is faster by a fewmilliseconds in the other cases. This is consistent with the fact that the convergence ofalgebraic pruning is a function of the proximity to other intersections. At a conceptuallevel, it appears that the convergence of algebraic pruning is slightly better than that ofB�ezier clipping for cases consisting of a few intersections. On the other hand, the numberof operations at each iteration of B�ezier clipping is less than that of algebraic pruning.Subdividing a B�ezier curve takes O(n2) operations whereas each each iteration of algebraicpruning takes O(nm2) operations. However, in our examples we are dealing with low valuesof m and n and one needs to take care of the constants in front of these asymptotic bounds.We used an implementation of B�ezier clipping by John Keyser at UNC-ChapelHill for performance comparisons. In this implementation, we found that when the toler-

63Timing (in milli sec.)Curve Patch No. of Bezier QR AlgebraicDegree Degree intersections Clipping method Pruning1 1 X 1 0 3.133 0.998 0.3551 1 X 1 1 5.140 1.102 0.5612 1 X 1 1 4.556 1.254 0.7791 2 X 2 1 13.67 10.50 3.911 2 X 2 2 34.59 10.09 6.112 2 X 2 1 10.34 28.80 11.652 2 X 2 2 18.83 26.98 17.223 2 X 2 1 15.53 70.73 13.281 3 X 3 1 9.92 65.38 11.232 3 X 3 1 10.40 67.96 9.212 3 X 3 2 18.64 91.80 22.173 3 X 3 2 25.01 99.55 31.673 3 X 3 3 52.94 650.13 89.12Table 3.3: Comparison between three curve-surface intersection algorithmsances were very small, the B�ezier clipping algorithm may su�er from robustness problemsdue to sign evaluation. We performed comparisons between the QR algorithm, algebraicpruning and B�ezier clipping. Table 3.3 shows the comparison among the various methodson randomly generated curves and surfaces of varying degrees. When the number of inter-sections is small, algebraic pruning performs best of all. But as the degrees and number ofintersections rise, B�ezier clipping performs best.In applications like ray-tracing, algebraic pruning can be very well combined withray to ray coherence. For example, the intersection of the previous ray with the surfacecan be used as a starting guess for the next ray-surface intersection. Given a good startingguess, inverse iteration converges in a very few iterations. As a result, inverse iterationcombines very well with spatial and temporal coherence.3.4 Robustness of Algebraic PruningOur method of algebraic pruning relies heavily on the performance and robustnessof inverse power iterations. In this section, we shall discuss some of the issues concerning

64inverse iterations.The ith step of inverse iterations of a matrix A with shift p and initial vector u0proceeds as follows: (A � pI) vi+1 = ui; ui+1 = vi+1k vi+1 k1 (3.7)Let the initial vector u0 be written as a linear combination of the eigenvectors xj of thematrix A. That is, u0 = �1 x1 + �2 x2 + : : : + �n xnWe make a few assumptions while making this claim. Firstly, we assume that the set ofeigenvectors of A span the entire space. This is true only if the matrix is diagonalizable,i.e., if the Jordan canonical form [SB93] is a diagonal matrix, or it has distinct eigenvalues.Secondly, the assumption that a random initial vector has a non-zero component along eacheigenvector may not be true. However, this seems very unlikely for purely random initialchoices. In our experience, if p is very close to �k then initial vectors which are de�cient inthe xk component usually have a substantial component after one iteration.Given these assumptions, choice of u0, and the fact that A xk = �k xk, after isteps of the inverse iteration [JI92]ui = �nj=1�j (�j � p)�i xjIt is easy to see that as i!1 the term that dominates corresponds to an eigenvalue thatis closest to the point p in the complex plane (if there is such a unique eigenvalue).As seen in equation (3.7), a linear system has to be solved at each step of theiterative algorithm. If p is very close to the eigenvalue �k, the matrix (A � p I) is closeto singular. Thus the linear system may be ill-conditioned. However, we will show thatinverse iteration gives good results even when p is very close to �k unless the correspondingeigenvector xk is ill-conditioned. Since our algorithm runs in �nite precision, let us assumethat vi+1 is the exact solution of a perturbed matrix (A + �), k � k1 = �. Letp = �k + �. Thus,(A � p I + �) vi+1 = ui

65(A � �k I � � I + �) vi+1kvi+1k1 = uikvi+1k1(A � �k I) ui+1 = (� I � �) ui+1 + uikvi+1k1 = � ,where k � k1 < j�j + � + 1kvi+1k1 [JI92].This shows that if k vi+1 k1 is large and � and � are small, ui+1 gives a smallresidue. To derive the lower bound for k vi+1 k1, let us assume thatui = �nj=1�j xj ; vi+1 = �nj=1�j xj ;and let k xj k1= 1. For each xj , let yj be a unit vector such that for l 6= j, yTj xl = 0and yTj xj = cos �j , where �j is the angle between xj and yj . From this, it is obvious thatyTk ui = cos �k �k , yTk vi+1 = cos �k �k, and yTk (A � �k I) ui+1 = 0. Earlier, we had(A � p I + �) vi+1 = uiPremultiplying both sides by yTk and simplifying, we get�� cos �k �k + yTk � vi+1 = cos �k �kHence, j�kj � (j�j + �) kvi+1k1j cos �k jgiving k vi+1 k1 � j�k cos �k j(j�j + �)The above analysis shows that inverse iteration has small backward error. Un-fortunately, however, a small backward error does not imply a small forward error [Ips97].Their relationship also depends on the distribution of eigenvalues. In the absence of thisinformation, we have to resort to backward analysis.

66
Chapter 4Surface Intersection Algorithm4.1 OverviewThe problem of surface intersection corresponds to computing an accurate repre-sentation of the intersection curve. The di�culty of the problem lies both in the algebraicand the geometric complexity of the intersection curve. The degree of the curve resultingfrom the intersection of rational parametric surfaces can be very high, and computing anaccurate representation is nontrivial. For example, the degree of the intersection curve oftwo tensor-product bicubic B�ezier surfaces can be as high as 324. In terms of geometriccomplexities, the curve may have multiple components, small loops, singularities, and mul-tiple branches at the singularities. Our approach is based on an accurate representation ofthe intersection curve. It is a well known result in algebraic geometry that the intersectionspace curve has a one-to-one correspondence with an algebraic plane curve after suitablelinear transformations(except for a �nite number of points). The plane curves with one-to-one correspondence with the intersection curve in space are shown in Figure 4.1. Werepresent the plane curve as an unevaluated determinant [MC91].Given two B�ezier surfaces,F(s; t) = (X(s; t); Y (s; t); Z(s; t);W (s; t))G(u; v)= (X(u; v); Y (u; v); Z(u; v);W(u; v))in homogeneous coordinates, implicitize F(s; t) to the form f(x; y; z; w) = 0 [Sed83, Hof89]

67
s

t

u

v

0 1

1

0 1

1

(X, Y, Z)

-1 G

F
-1

D(u,v) = 0

F(s,t)

G(u,v)

F (s,t)

G(u,v)

Intersection Curve

D
_
(s,t)=0

Preimage of
Intersection Curve

Preimage of
Intersection Curve

 (I)

(P1) (P2)

Figure 4.1: Intersection curve and its planar preimages [MC91]and substitute the parametrization of G(u; v) into f to get an algebraic plane curve of theform f(X(u; v); Y (u; v); Z(u; v);W(u; v)) = 0: (4.1)This corresponds to an algebraic plane curve birationally equivalent to the originalintersection curve. However, its degree is rather high and leads to e�ciency and accuracyproblems [Hof89]. Instead of explicitly computing the plane curve, we use numericallystable algorithms like eigenvalues and Singular Value Decomposition (SVD) on a matrixrepresentation.4.1.1 Matrix formulation of intersection curveThe �rst step in generating the algebraic plane curve is to compute the implicitform of one of the parametric surfaces. To perform this computation, we use an algorithmby [Sed83]. Let us assume that the surface we are implicitizing is denoted by F(s; t) with

68coordinate functions as above.The implicit representation of F(s; t) is obtained by eliminating s and t from thefollowing set of equations. xW (s; t) � X(s; t) = 0yW (s; t) � Y (s; t) = 0 (4.2)zW (s; t) � Z(s; t) = 0Here x, y and z are the individual components of R3 and are treated as constantshere. The implicit form of F(s; t) is basically an expression in terms of x, y, z and other nu-meric coe�cients of the patch equations that simultaneously satisfy (4.2). Dixon's resultant[Dix08] provides an elegant way to compute this expression.Dixon's resultant: Let us denote the three equations in (4.2) as p1(s; t), p2(s; t)and p3(s; t). If there exists an (~s; ~t) which simultaneously satis�es the three equations, thefollowing determinant will vanish for that value of s and t regardless of the values of � and�. Det(s; t; �; �) = ���������� p1(s; t) p2(s; t) p3(s; t)p1(�; t) p2(�; t) p3(�; t)p1(�; �) p2(�; �) p3(�; �) ����������The determinant vanishes for any (~s; ~t) which satisfy p1 = p2 = p3 = 0 becausethe top row vanishes. The determinant also vanishes if either s = � or t = � because tworows would then be identical. Hence, (s � �) and (t � �) are factors of the determinant.De�ne �(s; t; �; �) = Det(s; t; �; �)(s� �)(t� �)� vanishes for arbitrary values of � and � if and only if s = ~s and t = ~t. If the parametricsurface is of degreem�n, then the maximum degree monomial of � is sm�1t2n�1�2m�1�n�1.Considering � as a polynomial in � and � whose coe�cients are polynomials in s and t, wecan write �(s; t; �; �) = �2m�1i=0 �n�1j=0 fij(s; t)�i�j

69This polynomial has 2mn terms. Because � must vanish for any value of � and � if s = ~sand t = ~t, all of fij(~s; ~t) must also vanish. Therefore, 2mn polynomials have been generatedeach with 2mn terms in s and t. The determinant of these coe�cients will serve as theresultant. Let Ci;j;k;l denote the coe�cient of sktl in fij(s; t).�0�0...�i�j...�2m�1�n�1 0BBBBBBB@ C0;0;0;0 : : : C0;0;k;l : : : C0;0;m�1;2n�1...Ci;j;0;0 : : : Ci;j;k;l : : : Ci;j;m�1;2n�1...C2m�1;n�1;0;0 : : : C2m�1;n�1;k;l : : : C2m�1;n�1;m�1;2n�1 1CCCCCCCA0BBBBBBB@ s0t0...sktl...sm�1t2n�1 1CCCCCCCA = 0It turns out that for the set of equations in (4.2) each of the Ci;j;k;l is a linear expressionof the form aijx + bijy + cijz + dijw. Let us denote this matrix as M(x; y; z; w). Further,the kernel of M(x; y; z; w), represented by the rightmost vector in the left hand side of theabove expression, have entries that are simple functions of s and t. So for a given value ofx, y and z that lie on the surface, the corresponding parameters s and t can be obtainedfrom the kernel vector. A vector x lies in the kernel of a matrix A if Ax = 0.We substitute the parametrization of G(u; v) into this matrix and obtain a repre-sentation of the formM(u; v), where each entry is a polynomial in u and v. This substitutionis very simple because every entry of the matrix is just a linear term. The degree of eachpolynomial in M(u; v) corresponds to the degree of the patch G(u; v).4.1.2 Parameterizations with base pointsThe base points of a parameterization are the common solutions of the equationsX(s; t) = 0; Y (s; t) = 0;Z(s; t) = 0; W (s; t) = 0 (4.3)The base points also include common solutions at in�nity. In general, any faithful param-eterization of a rational surface whose algebraic degree is not a perfect square has basepoints. Consider a base point p = (s0 ; t0). By de�nition,X(s0 ; t0) = Y (s0 ; t0) = Z(s0 ; t0) = W (s0 ; t0) = 0

70It is therefore obvious that (s0 ; t0) is a non-trivial solution to (4.2). Further, this is a solutionirrespective of the values of x; y or z. Therefore, the resultant of this set of equations isidentically zero.Checking for base points: The most obvious way to identify whether the given param-eterization contains base points is to compute all the common solutions of (4.3). The basicidea is to �nd all the solutions to two of the equations (say, X(s; t) = Y (s; t) = 0). Eachelement of the solution set (assuming a �nite set) is tested for satis�ability by substitutingin the other two equations to recover the base points. However, this method cannot detectparameterizations which are very close to having base points (we call it the near base pointcase). The implicit form of the surface is highly error-prone if the parameterization containsnear base points. Further, recovering the implicit form of the surface is not possible fromthis method.It was mentioned earlier that in the presence of base points, the resultant of (4.2) isidentically zero (independent of the values of x; y or z). Therefore, the matrix M(x; y; z; w)(whose determinant gives the resultant) is always singular (rank de�cient). SVD is a popularmethod to �nd the rank of a matrix. We substitute random values for x; y and z (makingsure they do not lie on the original surface) in the matrix and perform SVD. If it containszero singular values, it implies that the given parameterization contains base points. Thismethod can also identify parameterizations with near base points. In such cases, somesingular values of the matrix M(x; y; z; w) are very close to zero. We treat near base pointcases as if they contain base points (by zeroing the corresponding singular values).Computing the implicit form: The resultant (determinant of M(x; y; z; w)) providesthe implicit representation of the surface if its parameterization does not contain base points.However, in their presence, the resultant method will not work. It was shown in [Man92]that the maximum rank submatrix (largest non-vanishing minor) contains the implicit formas a factor in such cases. In order to obtain the implicit representation of the surface, wehave to �nd the maximum rank submatrix. This can be achieved by performing Gaussianelimination on the original matrix. Substitution of the parameterization ofG(u; v) into thisminor gives us the planar projection of the intersection curve. It must be observed that therank submatrix could contain extraneous factors (other than the implicit form) which must

71be eliminated by testing the solutions obtained with the original set of surface equations.4.1.3 Computing partial derivatives of intersection curveLet us denote the determinant of the matrix M(u; v) as D(u; v). Du(u; v) andDv(u; v) represent the �rst order partial derivatives with respect to u and v. To be able totrace through the intersection curve we need to evaluateD(u1; v1),Du(u1; v1) andDv(u1; v1)(used for tangent computation - see Chapter 2) for a given point (u1; v1) accurately ande�ciently. To compute the �rst and higher order partials, we use a simple variation of Gaus-sian elimination [MC91]. The basic idea is to compute the partial derivative of each matrixentry at the beginning of computation and update the derivative information with each stepof Gaussian elimination. In this case, we modify the matrix structure such that each entryconsists of a tuple Gij(u1; v1) = (gij(u1; v1); guij(u1; v1); gvij(u1; v1)), where guij(u1; v1) andgvij(u1; v1) represent the partial derivatives of gij(u; v) with respect to u and v respectivelyat (u1; v1). The resulting matrix is of the formM�(u1; v1) = 0BBBB@ G11(u1; v1) : : : G1n(u1; v1)... : : : ...Gn1(u1; v1) : : : Gnn(u1; v1) 1CCCCATo compute D(u1; v1); Du(u1; v1) and Dv(u1; v1), we perform Gaussian elimina-tion. We consider the matrix formed by �rst entry of each tuple (equal to M(u1; v1)) andproceed to compute its determinant using Gaussian elimination. As a side e�ect we changethe entry in the other tuples. Assume we are operating on the ith and kth rows of thematrix. A typical step of Gaussian elimination is of the formgkj = gkj � gkigii gijgkj = gkjwhere gkj represents the element in the kth row and jth column of the matrix. In the newformulation this step is replaced bygkj = gkj � gkigii gij ;gukj = gukj � (gukigij+gkiguij)gii�(gkigij)guii(gii)2 ;

72gvkj = gvkj � (gvkigij+gkigvij)gii�(gkigij)gvii(gii)2 ;gkj = gkj ;gukj = gukj ;gvkj = gvkjWe make a choice for the pivot element based on the �rst tuple (i.e. gij entry). AfterGaussian elimination is complete, we compute D(u1; v1); Du(u1; v1) and Dv(u1; v1) asD(u1; v1) = Qni=1 giiDu(u1; v1)= D(u1; v1)Pni=1 guiigiiDv(u1; v1)= D(u1; v1)Pni=1 gviigiiThis procedure can be easily extended to compute the higher order partial derivativesas well. Furthermore, the analysis of Gaussian elimination may be used to analyze thenumerical accuracy of partial derivatives computation.4.2 Intersection ComputationThe intersection curve in the domain ofG(u; v) is de�ned as the singular set of thematrix polynomial M(u; v). In other words, it consists of all points (u1; v1) 2 [0; 1]� [0; 1]such that M(u1; v1) is singular. Corresponding to each point (u1; v1) there exists a point(s1; t1) 2 [0; 1]� [0; 1] in the domain of F(s; t). Given a point (u1; v1) in the domain ofG(u; v), (s1; t1) can be computed from a vector in the kernel of M(u1; v1) [Dix08]. Themain advantages of this matrix representation are its e�ciency and accuracy. Although thesingular set is de�ned in terms of a determinant, we use algorithms based on eigenvaluesand singular values for numerical stability. E�cient and accurate algorithms for computingthe eigendecomposition and SVD (Singular Value Decomposition) are well known [GL89],and good implementations are available as part of numerical libraries like EISPACK andLAPACK.

734.2.1 Start PointsGiven the matrix representation of the intersection curve, we use numerical march-ing methods to evaluate points on the intersection curve. Figure 1.4 shows a wireframe ofa planar surface intersecting a bicubic patch. As shown in the �gure, quite a few curvecomponents are generated as a result of this intersection. The marching algorithm needs atleast one start point on each such component. These components can be classi�ed into openand closed components. Open components have an intersection with one of the boundarycurves of the surface as shown in Figure 1.4. These are points on the plane curve where oneof the parameter values is 0 or 1. The other components are closed loops. The start pointson the open components are computed using curve-surface intersections (using algorithmsfrom previous chapter). In particular, we substitute u = 0; u = 1; v = 0 and v = 1 into therepresentation of the intersection curve, M(u; v), and compute the intersection points.The algorithms for computing start points on the open components of the inter-section curve are based on B�ezier curve-surface intersections. Our curve-surface intersectionalgorithm based on eigenvalue computation and inverse power iterations was described inchapter 3.The di�culty in identifying start points on closed components lies in the fact thatloops have no simple characterization such as the one for open components. However, weshow that we can use a simple algebraic property which will guide us to some point on everyloop. The loop detection algorithm is elaborated in chapter 5. We will now assume thatwe have obtained at least one starting point on every component of the intersection curve,and proceed to describe the tracing algorithm.4.3 TracingGiven the start points, we evaluate the curve using our tracing algorithm. Thereare a number of algorithms proposed for tracing [BHHL88, BK90, Che89, KPW90]. Givena point on the curve, an approximate value of the next point is obtained by taking a smallstep size in a direction determined by the local geometry of the curve. A single tracingstep is shown in Figure 4.2. Given the approximate value, these algorithms use iterative

74
u

v

0 1

1

Q1=(u1,v1)
Q3=(u2,v3)

C

Q2=(u2,v2)

Figure 4.2: A single tracing stepmethods like Newton's method to trace back on to the curve.The three main problems with tracing algorithms are [FF92, Sny92]1. Converging back on to the curve.2. Component jumping.3. Inability to handle singularities and multiple branches.The convergence problems arising from the behavior of Newton's method are described in[FF92]. It is rather di�cult to predict the convergence of Newton's method on high degreeequations corresponding to the intersection (for bicubic patches). Component jumping canoccur when two components of the curve are close to each other as shown in Figure 4.3. Inthis case, the tracing algorithm can jump from point A on component C1 to point B oncomponent C2. Most implementations circumvent this problem by choosing very small andconservative step sizes. But this still cannot guarantee correctness and, moreover, slowsdown the algorithm. No e�cient algorithms are known for handling singularities on theintersection curve of high degree surfaces (such as bicubic patches).We present an e�cient tracing algorithm that can resolve all these issues most ofthe time. In particular, we introduce a technique called domain decomposition and tracing

75
u

v

10

1

C1

C2

A
B

Figure 4.3: Component jumpingbased on inverse power iterations. Singularities are also handled e�ciently under well-placedassumptions.4.3.1 Domain DecompositionAfter performing curve-surface intersection and loop detection, a sequence of pointsis obtained on the curve ((u; v) 2 [0; 1]� [0; 1]) which either corresponds to starting pointson open components or some points on loops. Using these points, the intersection curve istraced completely without missing any important curve features. The idea behind domaindecomposition is that if there are only two boundary points inside a domain with no loops,these points belong to the same component of the intersection curve. Further, there existsexactly one component of the intersection curve inside this domain. We are guaranteedthat each subdomain does not have any new loops because the loop detection algorithmhas already been applied. Therefore, the purpose of the algorithm is to subdivide theoriginal domain into smaller subdomains such that each subdomain contains exactly onecurve component.We now describe the working of domain decomposition. The input into the domaindecomposition routine is a rectangular domain, speci�ed as [Lu; Hu]� [Lv; Hv], and a set ofpoints, S, on the intersection curve inside this domain. S covers all the components of the

76
C1

C2

R1

R2

R3

R5

R6R7

R4
R42

R43

R44

R41

R45
R46

v

u(u2,v1)

(u2,v2) (1,v2)

1u

v

(u1,0)

(0,v1)

(u2,1)

(1.v2)

1

1

0

(a) (b)Figure 4.4: (a) First level domain decomposition (b) Second level decompositionintersection curve inside the domain. If the cardinality of S is two, then we are assured ofa single curve component inside the domain and the decomposition terminates.If the cardinality of S is greater than two the algorithm subdivides the domainalong isoparametric lines determined by the parametric values of points of S. The isopara-metric lines chosen at every point (u1; v1) could either be a u-isoline (u = u1) or a v-isoline(v = v1). The algorithm arbitrarily chooses the v-isoline to subdivide the domain. If subdi-vision is not possible (all the points in S have v coordinates as Lv or Hv), then u-isoline ischosen for subdivision. In the process, new points corresponding to the intersections of theisoparametric lines with the intersection curve are generated and inserted into the appro-priate subdomains. Domain decomposition is then applied recursively to each subdomain.In most cases of surface-surface intersection, this process quickly separates out thevarious curve components. But in the presence of singularities, no amount of subdivisionhelps. In such cases, subdivision of domains is not carried out inde�nitely. If the dimen-sions of a domain become smaller than a speci�ed tolerance1, the subdivision is stoppedand checked for singularities. Informally, singularities are points on the intersection curvewhere the curve self-intersects. A more formal treatment of singularities is given in the nextsection. In the presence of singularities (except for cusps), no level of decomposition can1we use 10�5 in our implementation

77
u

v

intersection
curve

0Figure 4.5: Application of domain decompositionproduce subdomains with one simple curve component unless the singular point is deter-mined accurately. If domain decomposition is unable to isolate single curves in a domainafter repeated levels of subdivision, then one of two cases can occur.� Curve has a singularity, or� Two components of the intersection curve are very close.At this point, minimization of an energy function E(u; v; s; t) distinguishes the two cases.E(u; v; s; t) = (D(u; v; s; t)2+N(u; v; s; t)2) (4.4)where, D(u; v; s; t) =j F(s; t)�G(u; v) j (4.5)and, N(u; v; s; t) =j (Fs(s; t)� Ft(s; t))� (Gu(u; v)�Gv(u; v)) j (4.6)j : j refers to the length operator and �, the cross product of two vectors. The minimizationis applied with the midpoint of the region given as the initial point. A minimum valueof zero corresponds to a singularity. A non-zero minimum value means that the curvehas two very close components. If there is a singularity, then subdivision is done at thesingular point and domain decomposition is performed in each subdomain. Singularities

78
Figure 4.6: (a) Intersection curve components lying close to each other (b) Two patchesintersecting in a singularityare unstable points and are very sensitive to small input perturbations and oating pointerrors. Therefore, the algorithm reports a singularity if the minimum value obtained issmaller than a user-speci�ed value2.The pseudocode for the domain decomposition algorithm is described below.� DomainDecomposition(domain, Xsection points, tolerance)1. If (there are only two Xsection points) trace the curve inside the region andreturn.2. If (region size is smaller than tolerance){ Apply singularity criterion.{ If there is a singularity� Subdivide the domain at the singular point along both axes.� Find all intersection points along the subdivided curves.� for each subregion, do DomainDecomposition(subregion, new points, tol-erance).� Return.3. If (domain convergence is slow)210�8 in our system

79{ Divide the domain at midpoint of one of the parameters.{ Compute the intersections of the curve with the dividing line.{ For each of the two subregions, do DomainDecomposition(subregion, new points,tolerance).{ Return.else{ Divide the domain along isoparametric lines from every Xsection points. Forthe point (Lu; v1), the corresponding line is v = v1.{ Compute the intersection of the curve with each such line.{ for each subregion, do DomainDecomposition(subregion, new points, toler-ance).{ Return.Each time a subdivision of the domain is performed, we also maintain the con-nectivity of the curves between various cells. At the end of the DomainDecompositionalgorithm, a set of curves traced out inside each region is obtained. Some of these are partsof the same curve component. By using the cell connectivity structure and matching theirendpoints, they are connected appropriately to obtain the original intersection curve in the[0; 1]� [0; 1] domain. This algorithm guarantees� No component jumping - tracing is performed only inside a region that is guaranteedto contain just one curve.� Singularity detection - During all stages of the algorithm, singular points are alwaysbracketed. It is possible to miss some singular points, however, if they are not well-separated.The decomposition algorithm is illustrated on tensor product surfaces in Fig-ures 4.4(a), 4.4(b) and 4.5. In our test examples, the algorithm uses one or two levelsof decomposition. However, the number of levels may be more in the presence of singulari-ties or close components. In that case, the geometry of the curve is not simple and increases

80the complexity of any robust algorithm. The decomposition step is similar in nature to thatof subdivision or interval arithmetic based algorithms. However, subdivision in our case isdone only for separating the components and not for evaluating them to a certain accuracy.For almost all cases we have tested, domain decomposition performs fewer decompositions.The number of decompositions in subdivision and interval arithmetic based algorithms de-pends on an accuracy parameter. The algorithm has been implemented and tested on awide variety of intersections and it is an order of magnitude faster than previously knownrobust algorithms (like interval arithmetic).Figures 4.5 and 4.6 show the power of domain decomposition. It can take careof arbitrary intersections. Figure 4.6(a) shows the intersection of two patches where theintersection curves come very close to each other. Figure 4.6(b) shows the same two patchesintersecting in a singularity. Domain decomposition was able to detect the presence ofsingularity in the second case, and traced all the branches correctly.The algorithm given above is used to partition the domain of the curve into regionswith a single curve component. Its complexity is a function of the number of componentsand the separation of the components into various regions. For most practical cases, thereare a few well-separated components in the real domain and the algorithm performs wellfor such cases. In many ways the underlying philosophy is rather similar to cylindricalalgebraic decomposition [Col75] based algorithms for partitioning the domain into regions.Our algorithm uses an e�cient and accurate zero-dimensional solver (described in chapter3) and works well using �nite precision arithmetic. On the other hand, the algorithms basedon algebraic decomposition [Arn83] compute all the extremal point and turning points usingpurely symbolic methods and exact arithmetic. Even though this method guarantees thatthe solution is always topologically reliable, they are impractical because of their largememory requirements and poor e�ciency.Analysis of domain decompositionFigure 4.7 provides a comparison between ordinary bisection and domain decom-position. It can be seen that in the case depicted by the �gure, our method performs muchbetter than bisection. In fact, on an average, domain decomposition achieves the desired

81
u

v

0

Domain Decomposition

u

v

0
BisectionFigure 4.7: Comparing Domain Decomposition and Bisectionlevel of subdivision much faster than bisection. This is because our method is a form ofguided subdivision as opposed to blind partitioning adopted by bisection.However, there are instances when the algorithm does not reduce the region sizeappreciably. This usually happens when the intersections are very close to the corners ofthe region. One such example is described in Figure 4.8. These cases can be detectedeasily because the area of one subdomain is almost as large as that of the domain beforesubdivision. When such instances are encountered, bisection is performed once on thedomain to break the symmetry (of points in set S). Domain decomposition is then performedon each half. The step size of tracing is determined by the size of each region.In the worst case, for n components of the intersection curve, domain decompo-sition can perform O(n2) subdivisions. This is asymptotically as bad as bisection basedalgorithms. Computational geometry literature provides a number of techniques like binaryspace partitioning trees and horizontal cell decomposition for separating line segments andcurves of bounded degrees where the number of cuts performed is O(n). But all thesealgorithms have the restriction that the boundary of individual cells contain portions of al-gebraic curves themselves. Essentially, portions of curves share boundaries of two adjacentcells. They do not accomplish the separability condition that we require. Other techniques

82
Figure 4.8: Case of slow convergence of domain decompositionto perform cuts non-orthogonally (oblique line cuts) or low degree curves also reduce thenumber of subdivisions. However, the resulting domains are much more complex, and the al-gorithms and data structures required to perform and maintain such subdivisions are quitedi�cult. In our experience, for most practical cases, the complexity of these algorithmsclearly outweigh their advantages.4.3.2 Tracing in lower dimensionAfter domain decomposition, the entire domain ([0; 1]� [0; 1]) is subdivided intosmaller regions each with at most one curve segment. Further, domain decompositionreturns the two endpoints of the curve inside the region. Starting from one of the endpoints,the tracing algorithm computes successive curve points using the local geometry of the curveuntil the other endpoint is reached. Let the component be C. Given a point Q1 = (u1; v1)the skeleton of the tracing algorithm is given below.� Compute Du(u1; v1) and Dv(u1; v1), the partial derivatives of the curve with respectto u and v, respectively. These are the components of the vector normal to the planecurve. Methods to compute the partial derivatives were described earlier.

83
u

v

0 1

1

C

Q1

Q2

Q3

SFigure 4.9: Step size computation� Given the normal vector, �nd the unit vector corresponding to the tangent. Let thisvector be (tu; tv).� Find an approximate point Q2 = (u2; v2), where u2 = u1 + tuS, v2 = v1 + tvS, and Sis the step size.� Using (u2; v2), converge back to the curve at Q3 = (u2; v3), if j tu j>j tv j, or toQ3 = (u3; v2), if j tv j>j tu j using inverse power iterations.A single tracing step is shown in Figure 4.2. The two main components of the tracingalgorithm are the choosing the step size and tracing back to the curve component usinginverse power iterations. We explain each of them in detail. For the rest of the analysis wewill assume that Q3 = (u2; v3).In the tracing algorithm, we compute the eigenvalue of M(u2; v) which is closestto v2. As a result, we compute the companion matrix C from M(u2; v) (see eq. (3.6) inchapter 3) and set s = v2. In our application, we need to compute a smallest (in magnitude)eigenvalue of the matrix C � sI, which is equal to a largest eigenvalue of (C � sI)�1.Instead of computing the inverse explicitly (which is numerically unstable), we use inversepower iterations. Inverse iteration was described in detail in the context of curve-surfaceintersection in the previous chapter. Our use of the companion matrix structure to perform

84LU decomposition was also discussed.The inverse iteration terminates when an eigenvalue and its corresponding eigen-vector satisfy the convergence criterion. We re�ne the solution obtained from inverse poweriterations by minimizing the distance function D(u; v; s; t) de�ned in eq. (4.5). Inversepower iterations followed by a few minimization steps give very good accuracy in practice.Step Size Computation: The step size S is chosen to prevent componentjumping. To avoid component jumping the following constraints are imposed on Q2. Letthe closest distance of Q2 to the domain boundary be � as shown in Figure 4.9. As aresult, any point on any other component of the curve is at least � away. Furthermore, thedistance � from Q2 to C is at most S. (This statement is not true in regions of very highcurvature or cusps. These cases are handled separately.) If � < �, inverse iteration producesa point on C. Therefore, an upper bound on the choice of stepsize is given by the condition� < S < �. We initially choose a value of S and check whether S < �. If this constraintis not satis�ed we re�ne the value of S using a binary search over the range [0; S]. Thusmaking use of domain decomposition and inverse power iterations, we ensure that there isno component jumping during tracing. It is possible to compute less conservative step sizesby using higher order derivatives of the intersection curve [Dok85, DSY89]. However, wefeel that the complexity of computing higher order derivatives is much more than tracingwith a smaller step size.4.4 SingularitiesIn this section, we describe algorithms to detect singular points. Di�erent types ofsingularities that can occur in intersection curves are shown Figure 4.10. Algebraically thesingularities are classi�ed by the number of branches or places the curve has at that point[Abh90]. The main di�erence between cusps and nodes (also tacnodes) is that the formerhas only one branch while nodes have more than one branch.The tracing algorithm evaluates an algebraic plane curve (D(u; v) = 0). Sin-gularities on the plane curve D(u; v) = 0 are characterized by the common solutions ofD(u; v) = Du(u; v) = Dv(u; v) = 0. Singularities on the intersection curve correspond to

85
node

cusp tacnode

(c)(b)(a)Figure 4.10: Types of singularity (a) Noop (b) Cusp (c)Tacnodepoints where the tangent vector is unde�ned. The tangent to the intersection curve is ob-tained by taking the cross-product of the surface normals at that point. As a result, thepreimages of singular points on the intersection curve I are the common solutions ofF(s; t) = G(u; v)(Fs(s; t)� Ft(s; t))� (Gu(u; v)�Gv(u; v)) = (0 0 0)T (4.7)The curve Imay have more than one branch at the singularity. The nodes on the intersectioncurve and the plane curve are related by the following lemma.Lemma 1 If the surface has no self-intersections, a node on the plane curve D(u; v) = 0corresponds to a node on the intersection curve I.Proof: A patch is said to be faithfully parametrized if the mapping from parametric spaceto the surface is bijective. In other words, there are no self-intersections on the surface.Let Q be a singular point of the curve in the domain and P be its image on I.Corresponding to each branch of P, there is a sequence of points on the curve D(u; v) = 0converging to Q. The images of these points on the intersection curve converge onto P.The one-to-one mapping would imply that there are di�erent branches in the neighborhoodof P as well. Therefore, P corresponds to a node. 2

86
Figure 4.11: Teapot handles intersecting at a tacnodeHowever, there is no direct relationship between cusps on the plane curve andthose on the intersection curve. In particular, D(u; v) = 0 may have cusps but I need nothave cusps and vice-versa. Since we are evaluating the plane curve, we compute all thesingularities and the branches.In general the problem of computing the singularities in the intersection curveof high degree surfaces in oating point arithmetic can be numerically unstable [FR87].Algorithms based on exact arithmetic and birational transformations have been proposedin [AB88a]. However they are computationally very slow. Our algorithms are based on thelocal geometry of the curve and the properties of the representationM(u; v). The algorithmproposed here assumes that all the singular points on the curve are geometrically isolatedand well apart. In a design process, the designer often tends to use operations that resultin singular intersections. Our algorithm can handle these situations well as long as thedesigner generates singular points that are at least separated by a speci�ed tolerance.

874.4.1 Detection of CuspsThe previous section described a method of detecting nodal singularities duringdomain decomposition. Domain decomposition made use of the fact that any region withjust two boundary intersections consists of a single curve component. However this curvecould contain cusps which might introduce problems during tracing. Cusps on the planecurve are computed based on the following lemma.Lemma 2 Given a singular point (u1; v1) on the curve, one of the following must be true,� M(u1; v1) has more than one zero singular value, or� the entries gunn(u1; v1) and gvnn(u1; v1) obtained after performing Gaussian eliminationof M(u1; v1) are both zero.Proof: In section 4.1.3 it was shown that using a slight variant of Gaussian elimination,D(u1; v1) = �ni=0gii and Du(u1; v1) = D(u1; v1)Pni=0 guiigii . It is a well known fact that ifcomplete pivoting is used during Gaussian elimination then for i < j, gii � gjj .Since (u1; v1) is a point on the curve,D(u1; v1) = 0. Therefore, at least gnn(u1; v1) =0. In addition, since (u1; v1) is also a singular point, Du(u1; v1) = Dv(u1; v1) = 0. Thus,�ni=0gii(u1; v1) = �ni=0gii(u1; v1) nXi=0 guii(u1; v1)gii(u1; v1) = 0:This implies one of two cases -� at least another gii(u1; v1) = 0; i 6= n, or� gunn(u1; v1) = gvnn(u1; v1) = 0.The latter case satis�es the second part of the lemma. If the former is true, then M(u1; v1)must be rank de�cient by at least two. This is equivalent to two or more singular valuesbeing zero. 2

88The tracing algorithm computes the partial derivatives at each stage and checksfor the conditions in Lemma 2. If one of them is approximately (if a second singular valueis less than 10�5, or the partial derivatives are each less than 10�3) satis�ed, we conjecturethat we are near a cusp. Tracing is then abandoned on this path and started from the otherendpoint. If the curve has a cusp in this region, the paths from the two endpoints meet atthis cusp. Once the two paths come close (as demanded by the application) to each otherthe tracing stepsize is progressively reduced. Once the two paths are close enough (smallerthan speci�ed tolerance), the cusp point is obtained by minimizing an energy function. Theenergy function is determined by the condition satis�ed in Lemma 2. For example, if thesecond condition is satis�ed, the energy function is E(u; v) = (gunn(u; v))2+ (gvnn(u; v))2.4.5 Robustness and E�ciencyThe two most important considerations in the design of any surface intersectionalgorithm are robustness and e�ciency. There is a clear trade-o� between these two, sincethe more care we take to improve the robustness of our algorithm the slower the executiontime of the algorithm. While it is almost impossible to provide an algorithm that can satisfyboth completely together, one must at least try to design an algorithm that can provide agood fraction of both in most cases and can be �ne-tuned according to the requirements ofthe application.Our algorithm has been tested on a number of models, and we have obtained en-couraging results. There are no benchmarks available to test its e�ciency, but our algorithmcompares favorably to many of the published timings. For example, it performs an orderof magnitude faster than techniques like interval arithmetic. [Sny92] reports that a di�er-ence operation (Boolean operation) between a bumpy sphere and a cylinder using trimmedparametric surfaces takes order of a few minutes on a HP workstation. We can performsuch operations on similar solids (like generalized prisms, cylinders, spheres etc.) in a fewseconds on the same machine. By performing extra work like tracing all complex pathsduring loop detection (see chapter 5) and perform domain decomposition to much smallerdomain extents before isolating singularities, we can increase the robustness guarantees of

89our algorithm.In order to achieve robustness, a general intersection algorithm must be able todetermine the conditioning of the problem. The conditioning becomes more signi�cantbecause of errors introduced by numerical computations. If the input data changes by �,the output results will change by a function �(�). For very small values of �, there mayexist a constant � such that �(�) � �� [Hof89]. If � is small the problem is said to be well-conditioned. A large value of � signi�es an ill-conditioned problem. The value � is called thecondition number. However, it is nontrivial to calculate � for surface intersection problems.Because of such di�culties, we restrict ourselves to robustness issues for well-conditionedproblems only.We identify four main areas in our algorithm where robustness enhancing modi�-cations can be made. They are� tracing - We perform tracing after domain decomposition. We had shown that whenusing inverse power iterations, convergence back to the curve is guaranteed except inplaces of very high curvature (or cusps). In such situations, we reduce the step size byhalf and repeat the process. Robustness can be enhanced by reducing the minimumstep size.� component jumping - Domain decomposition is adopted to prevent componentjumping. Robustness is determined by the extent to which subdivision is carried out.It is possible to control this e�ectively based on the requirement of the application.� singularities - The accurate detection of all the singular points is contingent on theassumption that the singular points are separated and well apart. This assumptionis not unreasonable for most of the practical applications, but a pathological caseviolating this condition can be created.� loop identi�cation -We identify loops by performing curve-surface intersection andcomplex tracing. The number of paths to be traced grows as a cubic function of thedegree of a patch. In most practical examples it is enough to trace a small fraction ofthe paths, but to ensure absolute robustness, all the paths have to be traced. Moredetails are given in the next chapter.

90
Figure 4.12: (a) Intersecting Goblets (b) Intersecting Scissors4.6 Models Composed of Piecewise SurfacesThe algorithms in the previous sections compute the intersection of a pair ofB�ezier or algebraic surfaces only. Most models consist of tens or hundreds of such surfacepatches. To compute the intersections of these models we compute the intersection of eachoverlapping pair.Typically only a small percentage of the O(N2) possible surface pairs intersect.Our algorithm prunes out most of non-intersecting combinations using spatial techniquesbased on bounding boxes and linear programming.� Initially the axis-aligned rectangular bounding boxes are computed for each B�eziersurface for both models. Each bounding box is then projected on each of the threeaxes to obtain three sets of intervals. We denote them by x-lists, y-lists and z-lists.The x-lists is sorted �rst and all the non-intersecting pairs are discarded. The y-listsof the remaining pairs are again sorted to check for overlaps. This is repeated for thez-lists as well. The pairs that remain at the end of this operation have intersectingbounding boxes.� The B�ezier patches are contained in the convex hull of their control points. Given allthe pairs of surfaces obtained after bounding box tests, a test for separating plane

91Timing (in sec.)Model No. of No. of Curve-Surf. Tracing Totalpatches intersections intersectionTeapot 32 8 0.4 2.6 3.5Goblet 72 57 2.4 4.9 7.8Scissor 505 82 3.1 7.8 11.6Table 4.1: Performance Statistics of Intersection Algorithmbetween their control polytopes is performed using linear programming. The existenceof a separating plane implies that the surface pairs have no intersection.After execution of these two steps, the intersection algorithm is applied to eachexisting pair. The intersection of each patch pair results in a (possibly empty) set of opencomponents and loops. The open components could be part of a larger curve in the model.Two open components are spliced together if an endpoint of one is coincident with anendpoint of the other (actually the test is made over a small disk of inuence). Finally,a piecewise representation of each component of the intersection curve is obtained for theoriginal models. The results of the intersection algorithm on large models like goblets andscissors are shown in Figure 4.12.4.7 Implementation and PerformanceThe algorithm has been implemented and its performance was measured on anumber of models. The algorithm uses existing EISPACK and LAPACK routines for thematrix computations. The algorithm was implemented on a high-end SGI Onyx workstationwith an R4400 CPU and a clock frequency of 250MHz. In Table 4.1, we illustrate thealgorithm's performance on di�erent models. The second column represents the numberof patches in each model, and the third column represents to the number of patch pairintersections after linear programming. We have not shown the time taken to performbounding-box tests and linear programming. We believe that a number of optimizationtechniques can be incorporated in our implementation to give better results. Unfortunately,there are no existing benchmarks available to test our algorithm and there are very few

92published performance results on surface intersection algorithms. Our algorithm performsalmost 10-15 times faster than algorithms based on interval arithmetic [Sny92].

93
Chapter 5Loop Detection AlgorithmIn our discussion of the surface intersection problem in chapter 2, the intersectioncurve was formulated as an algebraic curve in higher dimensions (R4, to be precise). Further,these algebraic curves typically are of high degree with multiple components (as shown inFigure 1.4). In most cases we are interested in evaluating all the components in the subsetof the real domain. Components that intersect with the boundaries of the real domainare called open components. Loops are components where the curve folds back into itselfand is completely contained inside the domain of interest. In this chapter, we describe twotechniques for e�cient and accurate evaluation of loops using a combination of symbolicand numeric methods. The �rst method is applicable to arbitrary algebraic curves, whilethe second is suited only for planar sections of surfaces. The loop detection and evaluationalgorithms are used in our surface-surface intersection algorithm to compute the intersectioncurve. Evaluation of high degree algebraic curves is fundamental in a number of areas ofscienti�c computing. Algebraic sets are widely used for representing objects and constraintsin computer graphics, geometric modeling, robotics, computer vision and molecular model-ing. Many problems like surface-surface intersection, o�sets of curves and surfaces, slicingoperations on surface models, Voronoi sets generated by curves and surfaces in geometricmodeling [Hof89], kinematic analysis of a redundant robot [Cra89], robot motion planning[Can88], object recognition in computer vision [PK92] and conformation space of molecular

94
u

vr

vi

0 1

1

complex path

turning point

real curveFigure 5.1: Algebraic curve continuous in complex projective planechains [CH88] correspond to evaluating algebraic curves.5.1 Loop Detection I: Algebraic CurvesWe apply our loop detection algorithm to �nd all the loops of an algebraic planecurve. We use a matrix determinant representation (like the one described in chapter 4)to deal with high degree curves, but any general form (like power or Bernstein basis) issu�cient for our algorithm. In this section, we shall describe our loop detection algorithmassuming that we have a matrix representation of the plane curve (denoted by M(u; v)).The curve we are evaluating is an algebraic plane curve in the complex projectiveplane de�ned by u and v. We are, however, interested only in �nding the part that lies inthe portion of the real plane de�ned by (u; v) 2 [0; 1]� [0; 1]. If we relax this restrictionso that one of the variables, say v, can take complex values, this curve is de�ned as acontinuous set consisting of real and complex components (see Figure 5.1). Before we giveour algorithm, we introduce some de�nitions.De�nition 6 Turning points are points on the curve where the tangent vector, as projected

95
u

v

0 1

1

A1

A2

A

L1 L3L2

 ��

Figure 5.2: Characterization of loops based on complex tracingin the (u; v) space, is parallel to the u or v parameter axes. In other words, one of thepartial derivatives (with respect to u or v) of the intersection curve is 0.A turning point where the tangent is parallel to v-axis is called a u-turning point.We classify u-turning points into left u-turning points and right u-turning points. A point(u1; v1) is a left u-turning point if the curve goes into the complex domain in the leftneighborhood of u1 (u = u1 � �, where � is a small positive value). A point (u1; v1) is aright u-turning point if the curve goes into the complex domain in the right neighborhoodof u1 (u = u1 + �).De�nition 7 Isoparametric curves are curves lying on a parametric patch (surface) whereone of the parameters of the patch (u or v) remains constant.The main idea behind our loop detection algorithm is based on the followinglemma.Lemma 3 If the curve in the real domain [0; 1]� [0; 1] consists of a closed component, thentwo arbitrary complex conjugate paths meet at one of the real points (corresponding to aturning point) on the loop.

96
 ��

Figure 5.3: Two surfaces intersecting in a loopProof: The proof is based on Bezout's theorem which states that if f and g are two algebraiccurves of degree m and n respectively, then f and g intersect in exactly mn points in thecomplex domain counted properly, or they have a common component. We use Bezout'stheorem and the fact that the curve forms a continuous set in the complex domain to provethe result.Let us consider an algebraic curve that forms a loop in the real domain, like theone shown in Figure 5.3. All isoparametric curves of one variable on a surface have thesame degree, namely the degree of the other parameter de�ning the surface. Therefore,the number of intersections of the algebraic curve with any isoparametric curve equals theBezout bound in complex space. Figure 5.2 (left) illustrates the argument. The line L1intersects the curve at two di�erent real points. As we move the line continuously fromL1 to L2, the two intersection points come closer, and at line L2, both of them coincideto form a double root maintaining the intersection count constant. This double root alsocorresponds to a u-turning point. As L2 approaches L3, all the real intersections vanish.Since the algebraic curve is continuous in complex domain, the double root bifurcates intocomplex values and occur in conjugate pairs (because all curve coe�cients are real).

97Now if the sweep is started fromL3 towardsL2, the complex conjugate componentscome closer together, and at line L2, their imaginary part vanishes to yield a double root.This argument shows that the complex conjugate pairs meet the real plane at some turningpoint of every component. Observing that every loop component must have at least twoturning points completes the proof. 2The domain of the intersection curve in the complex space is shown in Figure 5.2(right). The third axis corresponds to the imaginary components of v. It represents acontinuous component of the intersection curve. The white curve is the intersection curvein the complex space and the dark curve is the part of the curve that lies in the real plane.We need only one start point on each loop to trace it completely. So we restrictourselves to u-turning points. Henceforth, we shall use turning points to denote u-turningpoints. Our domain has changed from the real plane to a three dimensional space formedby u, vr and vi, where vr and vi are the real and imaginary values of v. To compute theturning points on the curve, we combine boundary computations with complex tracing.Boundary intersections: Boundary intersections refer to the portions of thecurve that lie along the boundary of the surface (in our case, when u = 0, u = 1, v = 0or v = 1). This corresponds to a curve-surface intersection computation which we reducedto an eigenvalue problem in chapter 3. However, in this case, we have to evaluate allthe complex eigenvalues. Since algebraic pruning converges to only few of the complexeigenvalues in the domain, we do not use this approach. We compute all the eigenvaluesusing the QR algorithm.Tracing: Given the complex start points on the boundary of the surface, we usetracing in the complex domain to reach the turning points on every loop. The generaltracing step proceeds as follows. Given a point on the curve, an approximate value of thenext point is obtained by taking a small step size in a direction determined by the localgeometry of the curve (tangent or curvature information). This approximate value is thenre�ned using iterative techniques. We use inverse power iterations to trace the curve incomplex space. This method was described in detail in chapters 2 and 3.

98
 ��

Figure 5.4: A pair of intersecting surfacesThe basic technique of obtaining all the turning points is to evaluate the startingcomplex points on one of the boundaries and follow all these paths until they either leavethe domain or meet the real plane. Unfortunately, these are not the only complex pathsthat could lead to a turning point. There could be complex paths starting from rightturning points of some other component of the intersection curve. This can be illustratedby considering the intersection between a bicubic patch and a plane (see Figure5.4). Thecurve M(0; v) = 0 is a cubic curve with all real solutions. This implies that there cannotbe any complex solution to this equation. Therefore, the left turning point on the loop isconnected in complex space to the right turning point of another component. So we use thefollowing strategy to complete a sweep of the complex paths from u = 0 to u = 1.Since complex solutions occur in conjugate pairs for real algebraic equations, werestrict ourselves to complex paths whose imaginary parts are strictly positive. When acomplex path touches the real plane the imaginary part (of v) must reach some smallconstant value � > 0 before reducing to zero. These are precisely the common points of thecurve with the plane vi = �. In other words, we are trying to �nd all the real solutions tothe equation detM(u; vr+ i�) = 0 (i = p�1). Expanding out the expression and collecting

99the real and imaginary terms we can writedet(Mr(u; vr) + iMi(u; vr)) = 0 (5.1)Lemma 4 The solutions (u; vr) 2 R2 satisfying equation (5.1) also satisfy the solution ofdet(P(u; vr)) = 0, where P(u; vr) = 0B@ Mr(u; vr) �Mi(u; vr)Mi(u; vr) Mr(u; vr) 1CA (5.2)Proof: If (5.1) is satis�ed, the matrix Mr(u; vr) + iMi(u; vr) is singular. This implies thatthere is at least one non-trivial vector in its kernel of the form a + ib. Therefore,(Mr(u; vr) + iMi(u; vr))(a+ ib) = 0Equating the real and imaginary components to zero separately, we getMr(u; vr)a � Mi(u; vr)b = 0Mi(u; vr)a + Mr(u; vr)b = 0These two equations can be combined in a matrix form as0B@ Mr(u; vr) �Mi(u; vr)Mi(u; vr) Mr(u; vr) 1CA0B@ ab 1CA = 0Therefore, 0B@ ab 1CA is a non-zero vector in the kernel of P(u; vr). Hence the proof. 2As before, the solutions to (5.2) can be posed as the singular set of matrix P(u; vr).The singular set of P(u; vr) is a discrete point set. The order of the matrix P(u; vr) is twicethat of M(u; v). Therefore, there are twice as many paths to trace in general. For anintersection curve, if the patches are of degree m�n and p� q, then at most 2mnmin(p; q)paths have to be traced.Initially we form the companion matrix of P(u; vr), Cp, similar to the one inEq.(3.6). We compute all the eigenvalues of Cp at u = 0 (we expect all of them to be

100
 ��

Figure 5.5: Two tori intersecting in a small loopcomplex). We use them as starting points and trace all the paths in increasing u directionuntil it either crosses the u = 1 plane or become real. All the real values of vr are pointslying very close to the turning points of the intersection curve. The corresponding pointon the real plane is (ur; vr). This is used as an initial guess to approach the actual turningpoint using inverse power iterations.5.2 Implementation, Performance and ApplicationsThe loop detection algorithm has been implemented and its performance was mea-sured on a number of models. The algorithm uses existing EISPACK [GBDM77] and LA-PACK [ABB+92] routines for some of the matrix computations. We report the results of ourimplementation on an SGI Onyx workstation with 128MB of main memory and a specFPrating of 98.1.Tracing in the complex space is a guided form of search for all the turning pointsof the loops. In a purely algebraic form, all the turning points of a curve f(u; v) = 0 canbe posed as the common solutions of f(u; v) = fu(u; v) = 0. Using the Bezout bound, thenumber of possible turning points is quadratic in the degree of the curve. However, the

101maximum number of complex paths that need to be traced in our loop detection algorithmis linearly related to the degree of the curve. The performance of the tracing algorithm isdirectly dependent on the e�ciency of linear system solvers. While methods like LU andLQ decomposition take O(n3) operations, our use of the special structure of the matrix hasalmost quadratic complexity. Our implementation of the algorithm consists of two majormodules - the boundary computation part and the complex tracing part. The boundarycomputation module computes starting points on all the complex paths using eigensolvers.For our implementation, we used an � (see previous section) value of 0.01. The complextracing step is done using inverse power iterations. The total time to trace a path acrossthe domain is about 20-50 milliseconds.5.2.1 Application to surface intersectionOur loop detection algorithm is part of the surface intersection algorithm, whichwas described in chapter 4. This, in turn, has been applied to a number of intersectingsurfaces and has worked well consistently. Our algorithm evaluated the intersection curveof the surfaces in Figure 5.3 in about 4 seconds. A total of 54 complex paths were tracedwhich consumed about 70% of the time.For e�ciency considerations, it may not be necessary to trace all the complexpaths. In our test examples, very few complex paths meet the real plane inside the domainof the patch. It is very di�cult to give exact algorithms to prune out paths that cannot touchthe real plane because of the high degree nature of the curve. However, through repeatedapplication of our algorithm we found that paths that start very high in the complex axisrarely hit the real plane. This observation could be used to speed up the tracing stepdepending on the robustness requirements of the application.In order to compare our algebraic method with the Gauss map based approachesto loop detection, we implemented Hohmeyer's algorithm (in the context of surface inter-section) using pseudo-normal patches [Hoh91]. Hohmeyer's algorithm performed slightlyslower than our algorithm on the example in Figure 5.3. Eight levels of subdivision wereperformed, and most of the time was consumed in the repeated computation of the Gaussmap and application of linear programming. We observed that his algorithm works very well

102when the patches are relatively at and do not intersect in loops. However, these methodsperform a number of subdivisions (to achieve the no loop criterion) when the patches havehigh curvature and intersect in small loops or singularities.Hybrid approach: We suggest the following hybrid approach when dealing withintersection curves. Initially, we test for the possible absence of loops using the Gauss mapapproach. We perform subdivisions based on this approach for about 2-3 levels. In the eventthat Gauss maps are still not separated, we apply our algorithm to identify turning pointson loops in the smaller domains. This method has been applied to compute intersections ofhigh degree surfaces. On an average, our algorithm takes less than one second to computeone patch-pair intersection. For the intersecting surfaces in Figure 5.3 and Figure 5.5,our method performs better than Hohmeyer's algorithm. His method, however, performedbetter when applied to the surfaces in Figure 5.4.5.2.2 Silhouette ComputationTo show the generality of our algorithm, we have also applied it to compute thesilhouettes of parametric surfaces. The property of the silhouette curve is that it subdividesthe surface into front and back facing regions. We shall restrict our discussion to surfaceswhose silhouette (from a given viewpoint) is a curve on the surface. We now describe ourformulation of the silhouette curve on a parametric (represented as a tensor product B�ezier[Far93]) patch from a given viewpoint.We assume for the sake of simplicity that the viewpoint is located at (0; 0;�1).It is easy to see that even if this is not the case, one can always achieve it by applying anappropriate perspective transformation to the parametric surface F(u; v). We also requirethat all the surfaces are at least C1 everywhere. We formulate the silhouette curve as analgebraic plane curve in the domain of F(u; v). Figure 5.6 shows a patch that has a loop aspart of its silhouette.Let F(u; v) denote the parametric (di�erentiable) surface and let �1(u; v); �2(u; v)and �3(u; v) denote the mappings from the parametric space to (x; y; z) space.F(u; v) = hX(u; v); Y (u; v); Z(u; v);W (u; v)i

103
 ��

Figure 5.6: Loop as part of a silhouette curve�1(u; v) = X(u; v)W (u; v) ; �2(u; v) = Y (u; v)W (u; v) ; �3(u; v) = Z(u; v)W (u; v)In the rest of this section, we shall drop the (u; v) su�xes from all the functions for moreconcise notation. The z�component of the normal at an arbitrary point on the surface isgiven by the determinant Nz = ������� �1u �1v�2u �2v ������� (5.3)where �iu and �iv denote the partial derivatives of the appropriate function �i with respect

104to u and v. �1u = (WXu �WuX)W 2 �1v = (WXv �WvX)W 2�2u = (WYu �WuY)W 2 �2v = (WYv �WvY)W 2On the silhouette curve, Nz = 0. Since W (u; v) 6= 0, we can express the plane curve repre-senting the silhouette as the determinantNz = ������� (WXu �WuX) (WXv �WvX)(WYu �WuY) (WYv �WvY) ������� = 0 (5.4)Expanding the determinant and rearranging the terms, we can express it as the singular setof the matrix M(u; v)M(u; v) = 0BBBB@ X(u; v) Y (u; v) W (u; v)Xu(u; v) Yu(u; v) Wu(u; v)Xv(u; v) Yv(u; v) Wv(u; v) 1CCCCA = 0 (5.5)For curves like silhouettes, the Gauss map approach is not very practical. In orderto apply their loop detection criteria on a bicubic patch (like that in Figure 5.6(b)), onewould have to perform repeated subdivisions on rational patches of degree 27 � 27. Thismakes the algorithm very slow because each subdivision step takes O(n3) operations (interms of the degree). We were able to determine all the components of the silhouette for thesame surface using our algorithm in about 2 seconds. Performing boundary computationsto determine all the starting points roughly takes 40% of this time. The rest of the time isspent in curve tracing. For this particular example, a total of two complex paths and �vereal components were traced along the entire domain. The real components of the silhouettecurve in the domain are shown in Figure 5.6(d).5.3 Loop Detection II: Surface SectioningIn this section, we describe an algorithm to perform loop detection on intersectioncurves obtained by taking planar sections of surface models. This operation is widely usedin rapid prototyping to obtain cross-sectional information of such models. A major concern

105
 ��

 ��

Figure 5.7: Intersection of a plane with a biquadric surfacein such applications is the correctness of the resulting curve i.e., its topological type anddetection of all components.Figure 5.7 shows a simple example of a biquadratic surface intersected by a plane.In this case, the intersection curve has a single loop component. We shall now formulate theloop detection problem as critical points of a plane vector �eld. The vector �eld is obtainedas the gradient of a distance function introduced by [Che89].5.3.1 Intersection formulation using distance functionThe intersection set between a pair of parametric surfaces can be formulated as aminimization problem in which the distance between two variable points on the two surfacesbecomes zero. Basically, the intersection set can be expressed as the sequence of points inthe two surfaces with zero distance between them.The oriented distance function � between a surface Q(s; t) and a point moving on

106
Q(s,t)

R(u,v)

q(R(u,v))

nFigure 5.8: Distance function between two surfacesanother surface R(u; v) is de�ned on the (u; v) parameter space as�(u; v) = n̂[q(R(u; v))] � (R(u; v) � q(R(u; v))) (5.6)where q(R(u; v)) is a point on the surface Q(s; t) which is nearest to the pointR(u; v), and n̂ is the unit normal vector on Q(s; t) at the point q(R(u; v)) (see Figure 5.8).� is the dot product operator for vectors. In our case, however, one of the surfaces is aplane, and the normal is constant at all points (say n̂). Therefore the distance functionbecomes �(u; v) = n̂ � [R(u; v) � q(R(u; v))] (5.7)Assuming that � is a well-de�ned distance function, the intersection set is thezero set of �. There are cases when � is not well-de�ned (when there are more than oneclosest point to R(u; v), or when the line joining the two points R(u; v) and q(R(u; v)) isnot collinear to n̂ because of patch boundaries). However, these special cases do not occurwhile looking for loops in the intersection curve. As we will see in the next section, insideevery loop of the intersection curve, there are critical points of �. But points where � isnot well-de�ned (boundary points of surfaces) cannot be enclosed by a loop. Therefore, wecan assume for the purposes of this paper that � is well-de�ned.

1075.3.2 Collinear normal points and Distance functionSederberg [SM88, THS89] was the �rst to recognize the importance of collinearnormals in detecting existence of closed loops in intersection problems. It is easy to see thatcollinear normal points between two surfaces are critical points of the distance function �.This is because collinear normal points are extremal distance point pairs and the gradientvector of the distance function is zero. Therefore, if we have a method to �nd the number ofcollinear normal points within a particular domain of interest, we can use a simple subdivi-sion scheme to compute these points to arbitrary precision. Most existing methods use theidea of rotational index of the vector �eld inside a closed curve [KPP90, KPW90]. However,this test is inconclusive because if a particular region contains two critical points of oppositerotational index, then we obtain net rotational index of zero. Recently [ML95] extendedthis to a three-dimensional vector �eld such that rotational index of this �eld decides con-clusively the number of critical points (provided they are non-degenerate). However, theirmethod is susceptible to failure if the sampling grid in the domain contains contours ofzero Jacobians completely inside them. Further, the use of local minimization methods andNewton type marching methods to locate all the critical points are error-prone.The following theorem formulates the gradient of the distance function. The criti-cal points of this vector �eld provides the set of collinear normal points. We denote partialderivatives with respect to u (v) by subscripted u (v, respectively).Theorem 5 Given the oriented distance function � as in eq. (5.7), the gradient is given by�u(u; v) = n̂ � Ru(u; v)�v(u; v) = n̂ � Rv(u; v) (5.8)Proof: The distance function �(u; v) is given by�(u; v) = n̂ � [R(u; v) � q(R(u; v))]Taking partial derivative with respect to u, we get�u(u; v) = n̂ � [Ru(u; v) � qu(R(u; v))] + n̂u � [R(u; v) � q(R(u; v))]= n̂ � Ru(u; v)

108This is because n̂u is zero because normal does not change for a planar patch, andso is n̂ � qu(R(u; v)) since qu lies in the tangent plane of Q(s; t) and n̂ is the normal to it.The result for partial w.r.t v can be proved similarly. 25.4 Loop Detection AlgorithmIn this section, we describe our loop detection algorithm based on �nding allthe critical points of a two-dimensional vector �eld. Sturm sequences were introduced byHermite (1853) in order to count the number of real roots of a univariate polynomial insidea given interval. Sturm sequences are generated by performing g.c.d. (greatest commondivisor) computation using Euclid's algorithm on the given polynomial and its negativederivative. An introduction to univariate Sturm sequences was given in chapter 2. Thenumber of real roots is computed by counting the number of sign changes of this sequenceat the endpoints of the interval. Extending this idea to multivariate polynomial systems(that yield zero-dimensional solution sets) has been the focus of research for quite some time.Milne [Mil92] introduced the volume function which essentially achieved the extension tomultivariate polynomial systems.5.4.1 Multivariate Sturm sequencesHere, we describe briey the algorithm proposed by Milne [Mil92] to compute thenumber of common real solutions of n polynomials in n variables inside an n-dimensionalrectangle. This algorithm is an extension of the univariate case which constructs a polyno-mial sequence, and measures sign variations of this sequence at the endpoints of the interval.We restrict ourselves to the case when n = 2.Given two polynomials, f1(s; t) and f2(s; t), we construct the volume function,V (u; s; t), as V (u; s; t) = Resa2 (Resa1 (f1(a1; a2); f3); Resa1 (f2(a1; a2); f3))udeg(f1(s;0))deg(f2(s;0)) ;where f3(u; s; t; a1; a2) = u+(s�a1)(t�a2), Resx refers to the resultant of two polynomialsafter eliminating x, and deg refers to the degree of the polynomial. a1 and a2 are two new

109symbolic variables. Because of the special bilinear form of f3, the two resultants involvingelimination of variable a1 inside the expression for volume function is easily performed byhand. We use the Sylvester resultant [Sal85] (see chapter 2) to eliminate variable a2.We use an algorithm based on multivariate interpolation [MC93] to compute theresultant of a set of polynomials e�ciently. The main bottleneck in most resultant algo-rithms is the symbolic expansion of determinants. Most of the computer algebra systems usesymbolic algorithms like polynomial manipulations for resultants, which are very expensive.Further, the magnitude of intermediate expressions grows quickly, and the memory require-ments are high. The algorithm in [MC93] performs all computations over �nite �elds (allnumbers are computed modulo some prime number), and uses a probabilistic incrementalalgorithm based on the Chinese Remainder Theorem to recover actual coe�cients.A practical implementation of the Sylvester resultant introduces extraneous factorsin the resultant that must be removed. For the special form of f3, the extraneous factorintroduced by Sylvester resultant is upq, where p and q are the maximum degrees of s in f1and f2 respectively, and we factor it out immediately.Given a square-free polynomial p(x) we can construct a Sturm sequence of polyno-mials Si = �remainder(Si�2(x); Si�1(x)), where S1(x) = p(x) and S2(x) = p0(x). Treatingthe volume function V as a univariate polynomial in u, we construct its Sturm sequenceSi(u; s; t). The Sturm sequence is specialized at u = 0 to give a sequence of bivariatepolynomials M(s; t).De�nition 8 Given a sequence of polynomials M(s; t) of length n, the V operator at(a1; a2) (V(M(a1; a2))) gives the number of sign changes between consecutive terms of thesequence evaluated at (a1; a2). Correspondingly, the P operator is de�ned as P(M(a1; a2)) =n� 1�V(M(a1; a2)).Given the bivariate sequence M(s; t) and a rational axis aligned rectangle � =[a1; b1]� [a2; b2], the number of real roots of f1 and f2 inside � is given byP(M (b1; b2)) +P(M (a1; a2))� P(M (b1; a2))� P(M (a1; b2))2 :

110
(a1,b1)

(a1,b2)

(a2,b1)

(a2,b2)

((a1+a2)/2,b)

(a,(b1+b2)/2)

Figure 5.9: Linear convergence of rootsThe justi�cation for various steps and extension to arbitrary dimensions can befound in [Mil92].5.4.2 Converging to the critical pointsIn order to �nd all the collinear normal points between the two surfaces, we have toconverge to each critical point within a given tolerance. Once that is done, subdividing thedomain of the surface at these points ensures that there are no loops within each subdomain.We could then use any marching method to trace the intersection curves.The algorithm to converge to each critical point within a tolerance is fairly simple.Given an initial domain, we compute the number of common roots within it. If it is zero,we stop. Otherwise, the domain is divided into four parts (by simple bisection), and thecomputation for number of solutions is performed again. It should be noted that the mostexpensive step of computing the Sturm sequence is performed only once. Substitution atthe various endpoints of the interval is done at each step of the recursion. Once the intervalsize is within the tolerance, we stop and declare that as a root. It is easy to see that theconvergence of this method is linear. Figure 5.9 shows the sequence of subdivisions for a

111particular case with three real roots.5.5 Implementation and Demonstration on ExamplesIn this section, we show some important steps of our algorithm on a few examples.The implementation of our algorithm was carried out in exact rational arithmetic usingLiDIA [BBP95] (a rational number library). By using exact arithmetic, we can assurethat the algorithm gives accurate results, however, for the sake of e�ciency it is better toimplement the algorithm in �nite precision.Example 1: The �rst example is that of a biquadratic (degree 2 � 2) B�ezierpatch sectioned by a plane parallel to the xy-plane (see Figure 5.7). The parametric formof the biquadratic patch is given below.X(s; t) = �2 + 4 s + 2 t � 4 s t � 2 t2 + 4 s t2Y (s; t) = �2 + 2 s � 2 s2 + 4 t � 4 s t + 4 s2 tZ(s; t) = 3 � 2 s + 2 s2 � 4 t � 16 s t + 16 s2 t + 4 t2 + 14 s t2 � 14 s2 t2Using the above patch equations and computing their partial derivatives, we obtainthe following planar vector �eld.f1(s; t) = �2 + 4 s � 16 t + 32 s t + 14 t2 � 28 s t2f2(s; t) = �4 � 16 s + 16 s2 + 8 t + 28 s t � 28 s2 tAfter adding the third polynomial, f3(s; t) = s t + u � t x1 � s x2 + x1 x2 intothe given system of equations and computing successive Sylvester resultants, we obtain thevolume function for this bivariate case.V (u; x1; x2) = �104� 3702 u+ 28244 u2 + 80362 u3 � 333592 u4 � 236670 u5 � 528 x1 + 184 u x1�30728 u2 x1 + 530012 u3 x1 + 667184 u4 x1 + 920 x21 + 36202 u x21 � 77280 u2 x21�530012 u3 x21 + 3680 x31 � 72772 u x31 + 51520 u2 x31 � 6440 x41 + 36386 u x41+2576 x51 � 1469 x2 � 21374 u x2 � 130525 u2 x2 + 358064 u3 x2 + 591675 u4 x2�7458 x1 x2 � 28704 u x1 x2 � 533968 u2 x1 x2 � 2668736 u3 x1 x2 � 1183350 u4 x1 x2+12995 x21 x2 + 131744 u x21 x2 + 2385054 u2 x21 x2 + 2668736 u3 x21 x2 + 51980 x31 x2�206080 u x31 x2 � 1590036 u2 x31 x2 � 90965 x41 x2 + 103040 u x41 x2 + 36386 x51 x2�

1122080 x22 + 84920 u x22 + 166152 u2 x22 � 338100 u3 x22 � 10560 x1 x22 � 218546 u x1 x22+1669248 u2 x1 x22 + 2366700 u3 x1 x22 + 18400 x21 x22 � 1371490 u x21 x22 � 6004656 u2 x21 x22�2366700 u3 x21 x22 + 73600 x31 x22 + 3180072 u x31 x22 + 4003104 u2 x31 x22 � 128800 x41 x22�1590036 u x41 x22 + 51520 x51 x22 + 21398 x32 � 113134 u x32 � 84525 u2 x32+108636 x1 x32 + 404432 u x1 x32 � 1014300 u2 x1 x32 � 189290 x21 x32 + 2264304 u x21 x32+3550050 u2 x21 x32 � 757160 x31 x32 � 5337472 u x31 x32 � 2366700 u2 x31 x32 + 1325030 x41 x32+2668736 u x41 x32 � 530012 x51 x32 � 26936 x42 + 48510 u x42 � 136752 x1 x42�169050 u x1 x42 + 238280 x21 x42 � 1014300 u x21 x42 + 953120 x31 x42 + 2366700 u x31 x42�1667960 x41 x42 � 1183350 u x41 x42 + 667184 x51 x42 + 9555 x52 + 48510 x1 x52�84525 x21 x52 � 338100 x31 x52 + 591675 x41 x52 � 236670 x51 x52We computed the Sturm sequence of this volume function, and isolated the rootsof the original equation in the interval [0; 1]� [0; 1] to within a precision of 1100 . There wasa single root as expected. The domain value of the collinear normal was(s; t) = ��3903878125; 789415625� ; � 832615625; 4227878125��If we subdivide the original patch at this point, we are guaranteed to have no loopin the resulting intersection.Example 2: This is a slightly complicated example with multiple collinear nor-mals (see Figure 5.10). Here a bicubic (degree 3 � 3) parametric surface is cut by a planeparallel to the xy-plane. The coordinate equations of the surface areX(s; t) = �2 + 3 s + s3Y (s; t) = �2 + 3 t + t3Z(s; t) = 2 + 3 s � 6 s2 + 3 s3 � 72 s t + 189 s2 t � 117 s3 t + 171 s t2 �486 s2 t2 + 315 s3 t2 � 99 s t3 + 294 s2 t3 � 195 s3 t3Corresponding to these equations, the vector �eld isf1(s; t) = 1� 4 s+ 3 s2 � 24 t+ 126 s t� 117 s2 t+ 57 t2 � 324 s t2 + 315 s2 t2 � 33 t3 + 196 s t3 � 195 s2 t3f2(s; t) = �8 s+ 21 s2 � 13 s3 + 38 s t� 108 s2 t+ 70 s3 t� 33 s t2 + 98 s2 t2 � 65 s3 t2The volume function for this vector �eld corresponds to a polynomial which is ofdegree 13 in u; x1 and x2 (the number of terms in this polynomial is too large to list ithere). Computation the Sturm sequence and isolation within 1100 of precision yielded fourroots. They are

113
 ��

 ��

Figure 5.10: Planar section of a bicubic surface(s; t) = �h 249915625; 5283125i ; h7187478125; 1448415625i� ; �h 318715625; 6633125i ; h 245315625; 254715625i� ;�h19623125; 986115625i ; h5593778125; 1128115625i� ; �h499625; 25183125i ; h 207815625; 220415625i�Even though there are only two loops in the cross section, it is clear that there areother points where the normals of the two surfaces actually match.Once the critical points have been computed, we subdivide the surfaces along thesepoints and compute the intersection between each of the subdivided surfaces. This is simplebecause we know that the subdivided surface pairs cannot intersect in a loop. Putting theindividual curves together gives us the complete intersection curve.The algorithms presented in this chapter provide an e�ective way to detect loopsin algebraic curves. The surface intersection algorithm described in the previous chapteremploys these techniques with encouraging results. We now proceed to describe the mainproblem of computing B-reps of Boolean combinations of solids.

114
Chapter 6Boundary Computation ofSculptured CSG SolidsIn this chapter, we present an e�cient algorithm for representation and computa-tion of surface boundaries of CSG solids. Every CSG object is built from a set of primitiveobjects which are of a simpler structure. The set of primitives include polyhedra, quadrics,generalized prisms and pyramids, tori, surfaces of revolution and sculptured solids (whoseboundaries can be represented as NURBS surfaces). The techniques presented can also begeneralized to all algebraic surfaces. An example of a CSG tree is shown in Figure 1.3.Boolean combinations of such solids are used in most CAD and modeling systems. For ex-ample, the Bradley �ghting vehicle (shown in Figure 6.1) has been modeled using booleanoperations. The model consists of more than 8500 solids, each designed using 5 to 8 booleanoperations.6.1 Representation of SolidsIn this section, we describe our representation for a solid. Our algorithms assumethat all B-rep solids are speci�ed in this format. Every solid is represented as a set oftrimmed parametric surface (tensor-product B�ezier) patches (for de�nition, see chapter 2)which de�ne the solid boundary.

115
 ��

Figure 6.1: Exterior of a Bradley �ghting vehicleTopological information of the solid is maintained in terms of an adjacency graph.It is similar to the winged-edge data structure [Hof89, MT83]. To start with, we assume thateach of the input objects has manifold boundaries, and the Boolean operation is regularized[Man88]. While it is possible to generate non-manifold objects from regularized Booleans onmanifold solids, we assume for the sake of simplicity that such cases do not occur. Given thisassumption, it has been shown that an unambiguous topological representation is possiblefor a solid [Hof89].A trimmed patch consists of a sequence of curves de�ned in the domain of thepatch such that they form a closed curve (ci's in Figure 6.2). In the �gure, the ci referto the algebraic curve segments forming the trimming boundary. The portion of the patchthat lies in the interior of this closed curve is retained (the trimming rule is described inchapter 2). Most of these trimming curves correspond to intersection curves between twosurfaces. Therefore, these curves are typically algebraic curves that do not admit a rationalparametrization [AB88a]. We represent these curve segments (ci) by their algebraic equation(for accuracy), and a piecewise linear approximation (for e�cient computation) and the two

116
0 1s

t

1

c0

c1

c2 c3

c4

c5

c6

c7

p0

p1

p2
p
3

p
4

p
5

p
6

p7

Algebraic curves as
trimming curves

Vertices formed as intersection
of algebraic curves

c0

c7p
0

Figure 6.2: Representation of a trimmed patch as algebraic curve segmentsendpoints (pi and pi+1).This representation of a solid lends itself to a description in terms of faces, edges,and vertices analogous to the polyhedral case. Each face is a trimmed patch. Each of thetrimming curves form an edge, and are formed as an intersection of two surfaces (faces).Finally, endpoints of edges form the vertices. They can be represented as an intersectionof three surfaces. Figure 6.3 shows an example solid and the face connectivity structurethat we maintain. We also maintain the two faces that are adjacent to each edge, and ananticlockwise order of faces around each vertex.6.2 Set Operations between SolidsIn this section, we shall describe the algorithm to compute the solid which is theresult of some set operation between two given solids, solid1 and solid2 . We shall denote

117
f 1 f 2

f 3f 4

f 5

f 6

f 1

f 2

f 3

f 4

f 5

f 6

e1
e
2

e
3

e
4

e
5

e
6

e
7e

8

e
9

e
10

e
11

e
12Figure 6.3: A cylinder and its face connectivity structurethe resulting solid as solid12 . Let the number of patches in solid1 be m and those in solid2be n and let the maximum degree of each patch be ds� dt (maximal degree monomial is ofthe form sdstdt , where s and t are the parameters de�ning the surface).The �rst step in computing solid12 is to �nd the curve of intersection between thetwo solids. Since each solid is composed of a set of trimmed patches, we have to compute thecomponent of the curve inside each patch. However, not all the mn pairs would intersecttypically. We prune out most of the non-intersecting pairs based on a two-step process.Initially, we compute a 3D axis-aligned bounding box for each patch. Since tensor-productB�ezier patches have the convex hull property [Far93], the bounding box and convex hull ofthe control points encloses the entire surface. Therefore, if a pair of bounding boxes donot intersect, the corresponding patches are also non-intersecting. Further, determiningthe bounding box of the surface just requires computation of the minimum and maximumextents of all the control points along the three coordinate axes. This step can be done intime O(ds dt). Since each of the surface patches comprising the solids are trimmed, we alsocompute the tightest �tting axis-aligned rectangle in the domain that encloses the trimmingregion. This ensures a tighter bounding box for the actual surface.Bounding box tests: Two bounding boxes overlap if and only if their intervalextents projected along each of the coordinate axes overlap. This condition gives us a naivemethod to perform bounding box overlap tests. For each of the O(mn) pairs performingthe above mentioned test gives us the answer. While this algorithm is time optimal if

118there are O(mn) overlapping bounding boxes, this algorithm is quite ine�cient if thereare very few actually intersecting boxes. Obtaining an output sensitive algorithm thatperforms asymptotically better on average has been a well studied problem in computationalgeometry. Edelsbrunner [Ede83] obtained an O(n logn + k) for the three dimensionalrectangle intersection problem. We, however, use an algorithm which runs in O(n log2 n + k)time using nested segment trees.Initially, we sort the Z-extents of all the bounding boxes for a plane sweep algo-rithm. The data structures we maintain at each step of the plane sweep are two nestedsegment trees (one for each solid) - the �rst level is a segment tree where the X-intervalsare stored. At each node of this tree, we maintain the Y -intervals of all the bounding boxesactive in the form of a secondary segment tree. Every insertion, deletion and search steprequires O(log2 n) time. Each step of the algorithm corresponds to the start or end of abounding box belonging to one of the patches in solid1 or solid2 . If it is a starting case,we simply augment the appropriate data structure by inserting the corresponding X andY intervals. However, if the sweeping plane is at the end of a Z-interval from a patch insolid1 (solid2), we delete the corresponding X and Y intervals from the segment tree of the�rst (second) solid. In addition, we report all the bounding boxes intersecting this box byperforming a query operation on the segment tree of the second (�rst) solid. The queryoperation takes O(log2 n) time because the Y -interval overlap query in the secondary struc-tures can be performed from as many as O(logn) nodes. At the end of the plane sweep,all the bounding box overlaps are reported (there may be repetitions). This algorithm isspace ine�cient (takes O(n2 log2 n) space). We chose this algorithm, however, for ease ofimplementation and the nature of our application.Convex hull tests: The next stage of pruning uses convex hulls of the controlpolytope to eliminate non-intersecting patches. This test is performed only for those pairs ofpatches whose bounding boxes overlap. The test can be formulated as a linear programmingproblem as follows. Two patches do not intersect if there exists a separating plane betweenthem. Therefore, if there exists a separating plane between the two sets of control points,then the patches are non-intersecting.The problem is set up as follows. Let the control points for the �rst patch be

119(X1i; Y1i; Z1i;W1i) and those for the second patch be (X2i; Y2i; Z2i;W2i) for i = 1; 2; : : : ; (ds+1)(dt+1). The equation of a plane in projective coordinates is ax + by + cz + dw = 0.If this plane is a separating plane for the two sets of control points, then the substitutionof the control points into the plane equation gives di�erent signs for each patch. Thus,aX11 + bY11 + cZ11 + dW11 < 0aX12 + bY12 + cZ12 + dW12 < 0...aX21 + bY21 + cZ21 + dW21 > 0aX22 + bY22 + cZ22 + dW22 > 0...We are looking for at least one feasible set of solutions for a, b, c and d that makes theseconstraints true. The dimension of this problem is four. The number of control points foreach patch is (ds+1)(dt+1). Therefore, the number of constraints in the linear programmingproblem is 2(ds+1)(dt+1). Seidel's algorithm for linear programming runs in time linearlyproportional to the number of constraints for �xed dimensions. The running time for theentire process, thus, is O(k ds dt). Typically, ds and dt are much smaller than k (number ofpairs with overlapping bounding boxes). Therefore, the running time is O(k). By applyingthese two methods on the two solids, we are left with few pairs of patches that are mostlikely to intersect. We use Mike Hohmeyer's implementation of the linear programmingalgorithm developed by Seidel [Sei90b].6.2.1 Intersection Curve between Trimmed PatchesIn order to compute the intersection curve between the two solids, we compute aseries of intersections between pairs of trimmed patches. Since a trimmed patch is a strictsubset of the original patch, then so is any intersection curve that lies inside this patch. Weuse the algorithm described in chapter 4 to compute the complete intersection curve of thetwo patches (ignoring the trimming curves). The intersection curve so obtained from the

120
trimmed patch

actual intersection curve

p

q

A

B

(a)

intersection curve

trimming boundary

rs

(b)

Surface S 1

(S2)

(S)3

u

v

Figure 6.4: (a) Intersection of trimmed surfaces (b) Computing curve intersections with trim-ming boundaryalgorithm is represented as a piecewise linear chain in parameter space. We also maintain anaccurate representation of the intersection curve in the domain of each patch as a bivariatematrix polynomial Figure 6.4(a) shows the surface B intersecting with a trimmed patch A.A planar surface is trimmed so that only the portion inside the circular region (not showncompletely) belongs to A. The actual intersection curve is highlighted in Figure 6.4(a).However, the curve from p to q is the intersection curve of B with the complete planarpatch. Given the complete intersection curve pq (represented as a di�erent polygonalchain in each of the two patches), we have to compute the intersection curve of the trimmedpatches. This curve is determined by �nding portions of pq that lie inside the trimmedregion of both the patches. This problem can be solved by accurately �nding the intersectionpoints between the intersection curve and the trimming boundary. The trimmed region isrepresented as a simple polygon in parameter space as mentioned earlier. This reducesthe problem to �nding the portions of a polygonal chain (represented di�erently in theother surface domain, but corresponds to the same space curve) that lies inside two simplepolygons simultaneously. If the length of the chain is m, and the sizes of the two polygonsare n1 and n2, then this problem can be solved in time O(m(logn1 + logn2)) using pointlocation queries each of which take O(logn) time [Sei91]. The intersection points obtained

121by this process is only an approximation to the true intersection point. Figure 6.4(b)illustrates this point on a sample surface S1 whose trimming boundary is the result of aprevious intersection computation with surface S3. The intersection curve is generated withsurface S2. The intersection point computed using the piecewise linear curves is r, while theactual intersection point between the intersection curve and trimming boundary is s. Theimage of point s in R3 is the point of intersection between the three surfaces S1; S2 and S3.In order to re�ne r, we use the patch equations of the three surfaces involved. r is a pointin the domain of S1. Since the piecewise linear curves have corresponding representationsin the domains of S2 and S3 and r lies on both the curves, it is easy to �nd the preimage ofr in the domains of S2 and S3. Let us call them _r and �r respectively. Using these points asthe initial guess, we perform few iterative steps of local minimization on an energy functionE(r; _r; �r) that is de�ned asE(r; _r; �r) =k S1(r) � S2(_r) k2 + k S1(r) � S3(�r) k2The number of iterations taken by the minimization routine is directly dependenton the accuracy of the piecewise linear curves. We use Powell's method [PFTV90] as ourlocal minimization algorithm. In our experience, the minimization step converges within3-5 iterations for a tolerance of 10�8.By applying this algorithm on all pairs of patches, we obtain a set of curves inthe domain of every patch. Since each solid is closed (and compact), the intersection curvebetween two such solids must form a collection of closed curves in space. This implies thatlocally in every patch, the set of curves must partition the domain of the patch. Therefore,we merge two curves that share an endpoint in the interior of the patch. Since we areworking in double-precision arithmetic, the endpoints of each curve has to be compared witha tolerance. Determining a consistent tolerance is extremely di�cult because propagationof numerical errors in such complicated algorithms is not clearly understood. However, weavoid oating point comparisons if we observe that two curves can be merged only if thetwo surfaces that generated these curves are adjacent in the other solid.

122
1

2

3 6

5
4

 Solid A

7
8

910

11

12

Solid B

(a) (b)

1

2

3

4

5

6

7

8

9

10

11

12

(d) (e)

(c)

Figure 6.5: (a) A cube (b) A cylinder (c) Cylinder used to drill a hole right through the cube(d),(e) Connectivity graphs of the cube and cylinder6.2.2 Partitioning Trimming BoundariesOnce all the intersection curves are merged within each patch, they will partitionthe trimmed domain (if the assumptions that the individual solid boundaries are closedand compact are maintained). Figure 6.6(a) shows intersection curves inside a trimmeddomain. ci's (with endpoints pi and pi+1) form the trimmed boundary of the patch. i0,i1, and i2 are the intersection curves computed with various patches of the other solid.t0 is a turning point on the curve i2. qis are points on the intersection curve where thecurve intersects the trimmed boundary. Given this information, Figure 6.6(b) shows theactual partitions (Ris). To compute the explicit B-rep of the resulting solid, each of thesepartitions are generated. We now present an algorithm that computes these partitionsprovided the intersection curves have no singularity in the trimmed domain.The main idea in this algorithm is the fact that since the intersection curve seg-ments (I0 and I1 in Figure 6.6(c)) do not cross each other, each resulting partition starts at

123
c 0

c 1

c 2
c 3

c 4

c 5

c
6

c 7

i 0 i 1

p0

p1

p2

p3

p4

p
5

p6

p
7

i2

q0 q1

q2

q3
q4

t0

0 1s

t

1

(a)

0 1s

t

1
p0

p1

p2

p3
p4

p
5

p6

p
7

q1

R0

R1

R
2

q0 q2

q4q3

t0

(b)

0 1s

t

1

c 0

c 1

c 2
c 3

c 4

c 5

c
6

c 7

q0
I 0

I 1

q1

q2
q3

(c)Figure 6.6: (a) Intersection curves inside trimmed domain (b) Partitions introduced by inter-section curves (c) Partitioning a trimmed patch with chains of intersection curvesone endpoint of a curve segment, and ends at the other endpoint of the same curve segment.We shall assume that the trimming curves and the intersection curves are given in a speci�corder. We number the endpoints of the intersection curve segments such that q2j and q2j+1belong to Ij. The algorithm works in three steps.� Each endpoint of a curve segment (for example, q0 of I0) lies on a unique curve (exceptwhen it coincides with one of the curve endpoints of the boundary) of the trimmingboundary. In fact, points like q0 are determined as the intersection of I0 with c0.Each boundary curve ci is then partitioned into multiple segments depending on thenumber qjs lying on it.� This is followed by a traversal of the trimming boundary in a consistent order bymaintaining a stack. Two types of elements are pushed in the stack - curve segments,and curve endpoints. Initially, we keep pushing in the boundary curve segments untilwe reach a vertex like q0. Let the vertex number be k. If the topmost curve endpointtype of the stack (say, l) has a number (k + 1) or (k � 1), then a partition has tobe read out. Otherwise, vertex k is pushed into the stack followed by all the curvesthat comprise Ibk=2c. If a decision to read out a region has been reached, all thecurve segments until vertex l are popped. Curves comprising Ibk=2c are pushed againbecause they are required by the next region too. The order in which these curve

124segments are pushed into the stack has to be monitored carefully so that a regionwhich is read out is oriented consistently.� Till now, we have considered only intersection curve segments whose endpoints lieon the trimming boundary. However, there may be loops that lie completely insidethe boundary. Any loop is present (if at all) inside one of the obtained partitions.Each of the loops (starting from the innermost if the loops are nested) themselvesform a partition. The remaining part of the region (it has boundaries with multiplecomponents) is broken into simple regions by introducing a simple cut from the loopto the boundary of the partition or the next loop.This completes the algorithm to compute the partitions introduced by intersectioncurves. A feature of this algorithm is that the adjacency structure between the variouspartitions (which is necessary to avoid redundant, expensive ray-shooting queries duringcomponent classi�cation) are obtained by the order in which they are read out.6.2.3 Updating Topological InformationIt is clear that intersection computation introduces new vertices, edges, and facesin the solid. This change needs to be incorporated in our topological structure. Further,information about the adjacency between the various faces signi�cantly reduces the com-ponent classi�cation time. At this time, we just concentrate on the face adjacency. Vertexand edge adjacency are updated during �nal solid generation.The new graph is a re�nement of the original adjacency graph. Since a vertexof the graph corresponds to a face of the solid, each vertex in the original graph is splitinto a few vertices depending on the partitions obtained due to the intersection curves. Wehave to determine the adjacency relationship between the newly created vertices. Consider,for example, that vertices u and v were adjacent in the original graph. We create a newgraph to extract adjacencies between various orientation invariant components. Due to theintersection curves, let the vertex u be split into u1, u2, : : :, um, and let the vertex v besplit into v1, v2, : : :, vn. The adjacency between the various ui's (similarly vi's) has alreadybeen determined (during partitioning). These adjacencies (let the corresponding set of edges

125be denoted by S) are purposely left out in the new graph. Let e be the edge along whichu and v were adjacent in the original graph, and let it be divided into k portions duringpartitioning. Then all the adjacencies between ui's and vj's can be obtained in O(k) time.The number of connected components in this graph gives the number of solid componentsintroduced by the intersection curves. Let the solid components be named CC0; CC1; : : :.Note that each CCi has a collection of faces. We observe that each of the CCis satis�esthe orientation invariance property that all the patches corresponding to them lie eithercompletely inside or completely outside the other solid (because there is no intersectioncurve passing through the interior of these components).To obtain the connectivity between the various CCis (in a graph �), we introducesome notation. Let R be a mapping which takes a vertex in the new graph to the corre-sponding vertex in the original graph. For example, if u was split into u1, u2, : : :, um, thenR(ui) = u. Two components CCi and CCj are connected in the graph � iff9u1 2 CCi; 9u2 2 CCjjR(u1) = R(u2) and (u1;u2) 2 SgUsing this, we obtain the various components and their connectivity structure.Next we resolve each of these components (inside/outside) with respect to the other solid.Figure 6.5 shows two solids and their connectivity graphs that enter into a setoperation (di�erence). The cylinder is represented by four B�ezier patches along the sideand two planar trimmed surfaces for the top and bottom. Given these two solids, theirconnectivity graphs and all the intersection curves, we obtain the topological informationof the �nal solid.6.2.4 Component Classi�cationComponent classi�cation involves determining whether a given component (ob-tained by the graph algorithm) of one solid lies inside or outside the other solid. In mostpolyhedral modelers, component classi�cation is carried out locally [Hof89] by looking atthe relative orientation (left/right) of the intersection curve. When dealing with sculpturedsurfaces, though, the same technique cannot be used, primarily due to the complexity of

126
 Solid A

Solid B

7a
8a

9a10a

7b 8b

9b10b

7c 8c

9c10c

4a
4b

1a

1b

intersection curves

1a

2

35

6

1b

4b

4a

12

7c

8c

9c

10c

7b

8b

9b

10b

7a

8a

9a

10a 11

2

35

6

1b

4b

7b

8b

9b

10b

(a)
(b)

(c)
(d)

(e)

p

q
r

s

hole

Figure 6.7: (a),(b) Intersection curves on cubes and cylinders (c),(d) Updated connecivitygraphs based on partitions (e) Connectivity graph of �nal solid

127
p

ray

s

t

tessellated trim curve

exact trim curve

Figure 6.8: 2D Classi�cationthe intersection curve topology. The most general method used instead is based on ray-shooting. Ray-shooting is done by �ring a semi-in�nite ray in an arbitrary direction from arepresentative point of the component and checking for intersections with the other solid.For closed solids, if the number of intersections is even, the point (and hence, the entirecomponent) lies outside the solid; if it is odd, it lies inside.There are two steps involved in our algorithm to perform component classi�cation.The �rst step involves getting a point that is part of the component. This is accomplishedby 2D ray-shooting. We initially choose some point p = (s; t) on the trimming boundarysuch that t lies between the lower and upper extents of the trimming boundary (any appro-priate vertex of the polygon would su�ce). A horizontal ray through p (in both directions)is intersected with the boundary. Computing all the intersections is very easy becauseonly those segments whose endpoints (a; b) and (c; d) satisfy (t � b) (d � t) > 0 willintersect the ray. Further, the intersections must be even in number and are of the form(s1; t); (s2; t); : : : ; (s2n; t). Choosing the midpoint of s2i�1 and s2i for i = 1; 2; : : : ; n givesone point inside the trimming boundary. Let this point be called q. Another method isto maintain the triangulation of the trimming polygon and choosing the centroid of one

128of the triangles. When points have to be repeatedly generated, it is bene�cial to preservethe triangulation. We perform triangulation using an implementation of Seidel's algorithm[Sei90b]. The second step involves actual ray-shooting in 3-space. The algebraic pruning al-gorithm described in chapter 3 gives the number of intersections of a ray with an untrimmedpatch. Since each solid is made up of trimmed patches, it is necessary to test if the inter-sected point lies inside the trimmed region or not. This step is called 2D classi�cation.Essentially 2D classi�cation can be done by shooting a ray from the intersected point in theplane of the trimming polygon. However, we use trapezoidation of the trimming polygon(using Seidel's algorithm) to perform logarithmic time point location queries.The accuracy of this result depends on the magnitude of errors introduced byapproximating the high degree trimming curve. For example, consider the point p near theboundary of the trimming polygon in Figure 6.8. It is unclear if the result of the pointlocation query for a point very close to the boundary of the polygon is, in fact, correct. Weimprove the accuracy of the classi�cation test by using the analytic representation of thetrimming curve (bivariate matrix polynomial). Since the algebraic curve is a zero set of apolynomial, there is a sign change on either side of the curve in the local neighborhood ofthe boundary. The sign of the polynomial with the point p substituted for the variablesgives the classi�cation of the point. Since the curve is represented as the determinant of amatrix polynomial, we have to evaluate the sign of this determinant. We use singular valuedecomposition (SVD) to accomplish this task.Given a numerical square matrix A, SVD decomposes it into the formA = U � VT;where U and VT are orthonormal matrices, and � is a diagonal matrix whose entries areall positive. This implies that the sign of the determinant ofA is the same as the product ofthe signs of the two orthonormal matrices (determinant is +1 or -1). We can safely performGaussian elimination to determine the sign of these determinants. SVD is a very stablenumerical algorithm, and hence its results are usually reliable.From the connectivity information among various components and the classi�ca-

129tion of one of them, we can classify all the other components. This is because two adjacentcomponents must have opposite classi�cations. Ray shooting is a fairly expensive operation,and its complexity depends on the degree of the surface patch and the trimming curve. Themethod described above requires only two (one for each solid) ray shooting operations perCSG operation.6.2.5 Final B-rep GenerationThe trimmed patches that make up the �nal solid are determined by the Booleanoperation performed. Given two solids solid1 and solid2, we decide on the �nal B-repdepending on the Boolean operation.� Union: All components of solid1 that lie outside solid2, and vice-versa are retained.� Intersection: All components of solid1 that lie inside solid2, and vice-versa are re-tained.� Di�erence: All components of solid1 that lie outside solid2, and all components ofsolid2 that lie inside solid1 are retained.We also update the topology information. Each connected component that isretained in the �nal solid has some graph vertices (faces of the solid) whose completeadjacency is not determined. These missing adjacencies correspond to edges which areformed by intersection curves. This edge connects two vertices from di�erent solids. Sincean intersection curve is determined by a unique pair of surfaces, the two endpoints of thisedge is also unique. For every intersection curve in a solid, we maintain the correspondingpatch number of the other solid, and use it to complete the adjacency information. Fromthis graph, the entire topological information is easily computable.6.3 DegeneraciesA number of degenerate cases can arise when dealing with curved surfaces. Someof these degeneracies are of the same general type as is found in a polyhedral modeler, whilesome others arise only with curved surface modelers. These include

130
0 1s

t

1

trimming boundary

intersection curve

(a)

0 1s

t

1

trimming boundary

intersection curve

(b)Figure 6.9: (a) Surface-edge contact degeneracy (b) Four surfaces meeting at a point� Two surfaces meeting at a point: This case is particular only to curved surfaces.Since the surfaces meet at a point which lies in the interior of their respective domains,their normals are coincident. This corresponds to a singularity. We determine thisby minimizing the energy function (equation (4.4) in chapter 4) used to determinesingularities.� Two surfaces tangentially intersecting at a curve: This is a degenerate casewhen the surfaces are tangent to each other along that curve. This case also occursonly with curved surfaces. We will be able to detect this when we generate theadjacency graph by �nding that two adjacent components actually have the sameorientation with respect to the other solid. Another scenario when this case occurs isif the intersection curves do not form a closed loop in space.� Two surfaces overlapping: This corresponds to a face-face overlap in the polyhe-dral domain. If two surfaces are overlapping, their intersection set is two-dimensional.Essentially, our bivariate matrix polynomial representing the intersection curve is sin-gular for all values in the domain. We perform this test by sampling the domain anddetermining the ranks of the resulting numeric matrices using SVD.� A surface just touching an edge: This is an edge-face contact in the polyhedraldomain, and can happen when three surfaces meet in a curve. In our representation,

131this will appear as an intersection curve which is tangent to a trimming curve (seeFig. 6.9(a)). Such a case can be automatically eliminated if we check each componentof the intersection curve to see whether it is in the trimmed region. This does notallow us to use the speed-up of propagating the information about one component ofthe intersection curve to all other components of that curve.� Four surfaces meeting at a point: This, is the foundation for several types ofdegeneracies and will be discussed next.Examples of four surfaces meeting at a point include when a vertex of one solid lieson the surface of another solid, or when the edges of two solids meet. Obviously, the vertexcan be thought of as the intersection of three surfaces, and the edges can be thought of asthe intersection of two surfaces, thus the cases mentioned would involve the intersection offour surfaces.Even more degenerate cases, such as two vertices meeting, or a vertex lying on anedge, are possible, but these can be viewed as 5 or 6 surfaces meeting at a point - i.e. atleast four surfaces are still meeting at a point.These cases will manifest themselves in our modeler as three (or more) curvesmeeting at a common point in the domain of some patch (see Fig. 6.9(b)). Assume thesethree curves are f1, f2, and f3. We can �nd out whether this case has occurred by checkingequality of the intersection of f1 and f2 with the intersection of f1 and f3 (or f2 and f3).Degeneracies in the polyhedral case can generally be classi�ed into the categoryof four planes meeting at a point. It has been shown [For95] that a simple perturbationscheme applied to a single basic geometric predicate can eliminate these degeneracies. Noobvious extension of this method exists in the curved surface domain, though there is hopethat some perturbation method can be developed using exact rational arithmetic whichwould work similarly.

132
Chapter 7Implementation and PerformanceOne of the main contributions of this dissertation includes a complete implemen-tation of all the algorithms presented. The implementation of algebraic pruning, loopdetection, surface-surface intersection and boundary evaluation algorithms are parts of theBOOLE solid modeling system. Given a CSG tree whose leaves are chosen from a pre-de�ned set of primitive solids, BOOLE generates the surface representation of the bound-ary of the �nal solid as a collection of trimmed B�ezier patches as well as the topologicalinformation in a graph structure. The various modules in our system and their dependencyrelations are shown in Figure 7.1.We have implemented our system on single processor architectures like SGI Maxi-mum Impact (with one 250MHz R4400 CPU) and Sun-Solaris, as well as a parallel versionof the algorithms on shared memory multiprocessor architectures like SGI Onyx (with upto 6 194MHz R10000 CPUs, 1MByte main memory). Our current sequential implementa-tion can perform one Boolean operation on solids like conicoids (spheres, ellipsoids, tori,cylinders and cones) in about 3-4 seconds, while the parallel version can do the same in onesecond or less.Given a CSG tree, our system generates the boundary representation of all theprimitives involved in the form of trimmed B�ezier patches along with their topology infor-mation. For each Boolean operation, the B-reps of the two solids are passed to the solidintersection module. This module is responsible for generating the intersection curve be-

133
CSG
Tree

Final
B−rep

Topology

Generation

Primitive

B−rep Generation
Solid Intersection

Module

Surface Intersection

Routine

Loop

Detection

Component
Generation/Classification

Module

Curve−Surface
IntersectionFigure 7.1: Functional modules in the BOOLE systemtween the two solids. The curves are generated in the domain of each patch as well asin 3-space. We maintain the curve in 3-space (space curve) so that we can verify if theintersection curves form a closed loop. This is a checkpointing operation, and if the curveis not closed, we declare an error and try to recompute the curve. The space curve isalso used during model visualization. The solid intersection module relies on the surface-surface and curve-surface intersection algorithms to generate the curves. These algorithmsare implemented in C and makes use of a number of matrix operations like SVD, matrixeigendecomposition and inverse iterations. These routines are available in public domainin the form of Fortran libraries like EISPACK [GBDM77] and LAPACK [ABB+92]. Themain advantage of using these libraries is that they are carefully and e�ciently implementedby numerical analysts and well tested on a number of benchmarks. Further, most of thematrix routines also return the condition number of the problem. We use this informa-tion to predict the conditioning of our original problem or to detect inaccuracies in ourcomputation.The intersection curves are fed into the component generation/classi�cation mod-

134
 ��

Figure 7.2: B-rep of Pivot from Submarine model (4100 B�ezier patches) [Courtesy: ElectricBoat]ule. Initially, we partition the domain of each patch as determined by the intersectioncurve. The partitioning algorithm described in section 6.2.2 also generates the connectiv-ity structure within each patch. Using this information and the original topology of thetwo solids, we create the graph whose connected components generate orientation invariantsurface partitions. Construction of the graph � (connectivity information between variousorientation invariant surface partitions) was described in section 6.2.3. Classi�cation isdone by ray-shooting. The ray-shooting test can be reduced to a collection of ray-surfaceintersections. In our implementation, we use algebraic pruning (chapter 3) to perform thisoperation.The algorithm for component classi�cation proceeds by computing all the inter-sections of a randomly directed ray with all the trimmed patches of the other solid. Theparity (odd/even) of number of intersections decides the orientation (inside/outside) of thecomponent. Guaranteeing the correctness of this operation is very crucial for the correct-ness of the �nal B-rep. In our system, we perform a number of redundant computations

135to ensure this. The ray-surface intersection algorithm generates intersection points in thedomain of each surface. If the chosen ray passes through the boundary of two adjacentpatches, this point may be counted twice (once for intersection with each patch). To avoidthis, we compare the corresponding intersections in 3-space and eliminate duplications. Wealso shoot multiple random rays to ensure correct parity. The result of the classi�cation ofone component is propagated throughout the adjacency graph � to resolve the other com-ponents. The propagation prevents us from having to do ray-shooting for each component,which is quite expensive.The B-rep of the resulting solid and its topological structure are generated basedon the Boolean operation begin performed. This data is fed back to the solid intersectionmodule if the new solid enters into another Boolean operation.7.1 Architecture of the BOOLE systemFigure 7.3 shows the basic architecture of the BOOLE system. The bottommostlayer (Layer I) is composed of �ve major modules - the set of numeric libraries, symbolicmodule, geometric module, routines to manipulate parametric curves and surfaces, andgraph algorithms. Here is a brief description about each.� Numeric libraries: We make use of the public domain Fortran libraries EISPACK[GBDM77] and LAPACK [ABB+92]. These libraries provide most of the routinesrequired by our algorithms like QR decomposition for computing eigenvalues andeigenvectors, LU decomposition for solution of linear systems and Singular ValueDecomposition. Various parts of our surface-surface intersection algorithm use thesenumerical algorithms. We have also implemented the algorithm for local minimizationgiven in Press et. al [PFTV90]. The minimization routine is used in conjunction withthe tracing algorithm to improve the accuracy of the intersection curve.� Symbolic module: This module comprises basically of routines for computing vari-ous resultants. We require only two kinds of resultant routines - Sylvester (eliminatingone variable from system of two equations) and Dixon (eliminating two variables from

136

G
eo

m
et

ric
 M

od
ul

e
(T

ria
ng

ul
at

io
n,

P
oi

nt
 lo

ca
tio

n,
Li

ne
ar

 p
ro

gr
am

m
in

g,
B

ox
 in

te
rs

ec
tio

n
)

N
um

er
ic

 L
ib

ra
rie

s
(E

IS
P

A
C

K
/L

A
P

A
C

K
)

E
ig

en
va

lu
es

,
LU

 D
ec

om
po

si
tio

n,
S

V
D

, G
au

ss
ia

n
el

im
in

at
io

n,
 lo

ca
l

m
in

im
iz

at
io

n

C
ur

ve
/S

ur
fa

ce
M

an
ip

ul
at

io
n

m
et

ho
ds

(S
ub

di
vi

si
on

,
C

ur
ve

 fi
tti

ng
,

G
au

ss
 m

ap
s)

G
ra

ph
A

lg
or

ith
m

s
(C

on
ne

ct
ed

co
m

po
ne

nt
)

S
ym

bo
lic

 M
od

ul
e

(S
yl

ve
st

er
 &

re
su

lta
nt

)
D

ix
on

P
oi

nt
In

ve
rs

io
n

A
lg

eb
ra

ic
P

ru
ni

ng

S
ur

fa
ce

Im
pl

ic
iti

za
tio

n

D
om

ai
n

D
ec

om
po

si
tio

n

C
ur

ve
T

ra
ci

ng

O
rie

nt
at

io
n−

In
va

ria
nt

C
om

po
ne

nt
G

en
er

at
io

n

R
ay

S

ho
ot

in
g

S
in

gu
la

rit
y

D
et

ec
tio

n
Lo

op
D

et
ec

tio
n

C
ur

ve
/S

ur
fa

ce
In

te
rs

ec
tio

n

T
op

ol
og

y
M

ai
nt

en
an

ce

B
O

O
LE

G
eo

m
et

ric
O

ve
rla

p
T

es
ts

In
te

rs
ec

tio
n

S
ol

id
/S

ol
id

T
rim

m
ed

In
te

rs
ec

tio
n

C
ur

ve
D

et
er

m
in

at
io

n

La
ye

r
I

La
ye

r
II

La
ye

r
III

La
ye

r
IVFigure 7.3: Various implementation layers in BOOLE

137system of three equations). We use Sylvester resultant during curve-curve intersec-tion as part of the algebraic pruning algorithm (chapter 3) and in the loop detectionalgorithm for planar sections of surfaces (chapter 5). Dixon's resultant is mainly usedto compute implicit forms of surfaces (see chapter 4). These routines are implementedboth in double precision arithmetic and in exact rational arithmetic.� Geometric module: The geometric module contains algorithms for triangulationof simple polygons, point location in planar arrangements, linear programming andbounding box overlap tests. We use a very fast implementation of Seidel's triangu-lation algorithm [Sei91] provided by Atul Narkhede et al [NM95]. The point loca-tion algorithm based on the triangulation algorithm was also implemented by AtulNarkhede. We use Mike Hohmeyer's [Hoh91] implementation of Seidel's randomizedlinear programming algorithm [Sei90b]. We implemented the segment tree version ofthe bounding box intersection test described in chapter 6.� Curve/Surface manipulation module: This module primarily handles all the low-level routines for manipulating parametric curves and surfaces. Typical algorithmsare curve and surface subdivision (at certain parameter values), point evaluation onsurfaces, pseudo-Gauss map evaluation and curve �tting. Curve �tting is a part ofthe BOOLE system that �ts a parametric curve to an ordered set of points obtainedafter curve tracing. This routine is not used by the BOOLE system directly for B-repcomputation. Rather, it is used as a means of data compaction by a display system(developed at UNC) that renders large NURBS models. Details of the curve �ttingmethod can be found in [KKMN95].� Graph Algorithms: This �nal module is used in maintaining topology informationfor each solid in our system. Apart from the simple tools to manipulate graph struc-tures, it contains an algorithm to generate connected components in graphs. Thealgorithm uses repeated calls to a depth-�rst traversal routine in graphs. The runningtime of this algorithm is linearly proportional to the number of edges in the graph.

138Layer II of our system contains routines that are directly called by our algorithmsfor curve-surface intersection, loop and singularity detection, curve tracing etc. Theseroutines are listed in Figure 7.3. Given a point on a curve or surface, the problem ofpoint inversion deals with the determination of parameter values which results in thatpoint. Mathematically speaking, given a rational parameterization of a surface, F(s; t) =(X(s; t); Y (s; t); Z(s; t);W (s; t)) and a point (x; y; z) 2 R3, �nd the parameters (s1; t1) suchthat X(s1; t1) = xW (s1; t1)Y (s1; t1) = yW (s1; t1)Z(s1; t1) = zW (s1; t1)This operation is performed very often during curve tracing. Algebraic pruning is ourmethod of solving zero-dimensional systems based on inverse power iterations. This algo-rithm relies heavily on the numeric libraries. We use algebraic pruning for curve-surfaceintersection queries and ray-shooting. The role of surface implicitization and domain de-composition in the surface-surface intersection algorithm were highlighted in chapter 4.Geometric overlap tests are performed to quickly prune out non-intersecting curves andsurfaces. We use the implementation of linear programming and bounding box overlapsfrom layer I for this purpose.The modules in Layer III include curve/surface intersection, loop and singular-ity detection, curve tracing, trimmed intersection curve determination, ray-shooting andorientation-invariant component generation. Each of these modules call a number of rou-tines from layers I and II. The dependency structure of the various modules is shown inthe �gure. The modules in Layer III are in turn called by the topmost layer which includessolid-solid intersection and topology maintenance modules.

139
0 1s

t

1

0 1

1

u

v
p
0

p
1

p
2

p
3

q
0 q

1

q
2q 3

i

1
I

0
I

I

(a)Figure 7.4: Inaccurate point inversion for curve merging7.2 Robustness and AccuracyOne of the main problems in B-rep generation is robustness. An algorithm is saidto be robust if for every valid input instance of the problem, it generates the correspondingvalid output member. Consider the algorithm as a function F from the input set I to theoutput set O. F : I ! OIn this de�nition, it is important for the algorithm to identify the type of inputinstance i 2 I because the sequence of steps executed by the algorithm depends directly oni. Most geometric algorithms are developed assuming that the input data are ingeneral position, and that exact arithmetic provides reliable geometric primitives. However,for reasons of e�ciency and feasibility, most implementations use oating point instead ofexact arithmetic. Thus, the correctness of the mathematical algorithm does not extenddirectly to the implementation, and the system fails for seemingly innocuous input data(failure to classify the input instance correctly). This is the problem of \robustness" in

140geometric computing.However, if a particular instance is degenerate, the value of the correspondingexpression is smaller than the errors accumulated due to �xed precision. There are two waysof dealing with this problem - tolerances and error estimates [For95]. Estimating toleranceswhen evaluating a complex sequence of predicates is non trivial, and error estimates are toopessimistic to be useful.We shall now identify two areas where our algorithm is susceptible to failure whenusing oating point arithmetic. Most of these errors �nally boil down to either pointorientation tests or comparison between two oating point numbers.Inaccurate point inversion for curve merging: It is a well-known fact thatthe intersection curve of two parametric surfaces is not rationally parametrizable in general.As a result, these curves are approximated as piecewise linear curves or splines to withina �xed tolerance (which is either too conservative or arbitrarily chosen). Since most ofthe surface patches we are dealing with are trimmed, we need to compute portions of theintersection curve that lie inside the trimmed boundaries of both the patches. Figure 7.4shows one such example. The curve I shown in dotted lines is the intersection curve inboth the domains. I0 and I1 are the intersection curves on the left patch obtained fromother surfaces. To compute the actual intersection curve for trimmed patches, we need tocompute the intersection points of the curve with the trimming boundary. p0, p1, p2 andp3 are four such points on the right patch. If the boundary curves or the intersection curveare not accurate, neither are the pi's. They may not even lie on the actual intersectioncurve. Corresponding to the pi's, we need to compute qi's on the other patch to determinewhich portions of the intersection curve to retain. This process is point inversion whichwas described earlier in section 7.1. Two problems can arise in inversion: (a) there maynot be any corresponding point on the other patch (because pi's do not lie exactly on theintersection curve), or (b) the qi's could be positioned such that the curve segments q0q1and q2q3 do not match up with I0 and I1 for curve merging.Using our representation of the intersection curve as the singular set of a bivariatematrix polynomial, we ensure accurate computation of pi's (see section 5.1). Further, usingour intersection curve formulation, the inverted point in the other domain can be obtained

141
0 1s

t

1

q
0

q
1

r 0

r1

actual boundary
approximate boundary

(b)Figure 7.5: Inaccurate point classi�cationfrom the kernel of the singular matrix (chapter 4).Inaccurate point classi�cation: Another area where oating point errors resultin failure of the algorithm is during component classi�cation. As described earlier, we useray shooting for this purpose. The entire computation boils down to classifying whethera point lies inside or outside the trimming region. Figure 7.5 shows an example. In mostcases, classifying points like q1 is not a problem. One ray-shooting query will determineit. However, consider a point like q0 which lies very close to the boundary. Approximaterepresentations of the trimming boundary makes classifying q0 a major problem. Dependingon the choice of ray directions and the tolerances used we may get di�erent classi�cations.This error could result in topologically inconsistent answers. As described in section 5.4,we use singular value decomposition to resolve this problem.We also perform a number of checkpointing operations in our implementationthat control the accumulation of oating point error. We also handle degenerate cases likeface-face and edge-edge overlaps while performing regularized Boolean operations. Theseare handled as special cases in our system. In practice we have observed that our systemgenerates accurate B-reps on most input cases. Since the implementation was done using

142
 ��

Figure 7.6: B-reps of some solids from the submarine storage and handling roomoating point arithmetic, we also use tolerances to compare such values. Finding a tolerancethat works for all models is very di�cult. In some cases, we had to change tolerances tomake our system work. Currently, we are incorporating B-rep computation using exactrational arithmetic [KKM97] to prevent most robustness and accuracy problems. The useof exact arithmetic can slow down the computation time, however exploiting parallelismhelps signi�cantly in the overall speed.The accuracy of the B-rep generated is determined by the accuracy of the inter-section curves between solids. In our system, the accuracy of these curves can be controlledby the user. Depending on the application, our system can generate very accurate B-repsat the expense of computation time.7.3 Parallel ImplementationThe various stages of our algorithm is explained using an example in Figure 7.7and Figure 7.8. Since we are dealing with sculptured solids with trimmed B�ezier patches, asopposed to polyhedral solids, the complexity of the whole system is increased signi�cantly.

143

Curve

Cylinder

Cube

(PE 1)

(PE 0)

(PE 2)

(PE 0)

(PE 2)

(PE 1)

Solid 1

Solid 2

Merging

(Cylinder)

(PE 0)

(PE 1)

(PE 2)

Intersection

(PE 0) (PE 1)

Intersection

(Cube)

Merging

Processor 0 (PE 0) Processor 1 (PE 1) Processor 2 (PE 2)

Stage 1: Bounding Box Overlaps and Linear Programming Tests

Merging

Stage 4

Stage 2: Allocation of patch-pairs to different processors

B-rep generation of the difference

between a cube and a cylinder

Stage 3: Intersection Curve Evaluation

Curve

Figure 7.7: Intersection curve computation and curve merging

144

(Solid 1 - Solid 2)

Stage 5: Component Generation

Stage 6: Component Classification by Rayshooting

Stage 7: B-Rep Computation of the resulting solid

Processor 0 Processor 1 Processor 2

 Patch-Processor assignment for ray-patch intersection computation

Component 2

Component 1

Component 0

ResultFigure 7.8: Component generation, classi�cation and B-rep computation

145The time taken for the surface-surface intersection algorithm described in chapter 4 is acubic function of the degree of the patch in the worst case. Further, the complexity ofray-patch intersection evaluation is again dependent on the degree of the patch. Theseparts are computationally most intensive and form the main bottleneck in terms of systemperformance. To improve the computation time, we have implemented a parallel versionof the algorithm on existing shared memory multiprocessor architectures like SGI-Onyx.One of the main issues that arise while parallelizing an algorithm over many processors isto ensure that each processor performs roughly equal amount of work. This issue of loadbalancing is discussed next.7.3.1 Load Balancing AlgorithmThe problem of load balancing arises when an algorithm has to be parallelizedamong a number of processors. The running time of the parallel algorithm is directlyrelated to the maximum execution time of the task at a single processor. It is clear that themost e�ective parallel algorithm is one where the tasks are equally distributed among allthe processors. The problem of load balancing has received considerable attention for a longtime due to the fact that a single scheme is not applicable for parallelizing all algorithms[Lam87, YA93, Whi94, Gea95, HL95]. The e�ectiveness of di�erent techniques varies withthe nature of the problem it is used for. Hence there arises a need for newer problem speci�canalysis methods which help in choosing the most e�ective load balancing technique. Weshall now describe three such techniques that we use to shared memory multiprocessorarchitectures for boundary computation.� Static load balancing: Static load balancing is done by dividing the given problemconsisting of n tasks into p (number of processors) parts and submitting each part toa single processor. The size of each problem piece is precomputed and is not changedduring execution. This technique works best when the processing time of each of thetasks is known, and the number of tasks does not change during execution. Extractingparallelism in our B-rep converter starts from computing the bounding boxes for allthe patches (Stage 1 in Figure 7.7). As the bounding box computation for each

146
 ��

Figure 7.9: B-rep of Shipping line from Submarine model (3400 B�ezier patches) [Courtesy:Electric Boat]patch is independent of the other, this can be easily parallelized. Further as theamount of work that is to be done for the bounding box computation for each patchis approximately the same, load balancing is achieved statically. Once the boundingboxes for all the patches have been computed, the overlap tests is also performed inparallel.� Global queue: In many algorithms, it is not possible to estimate the executiontime of each task. For example, execution time for computing the intersection curvebetween two surfaces can vary depending on the number of curve components, andlength (in terms of number of points traced) of each component. In this technique,when one processor is accessing the task queue, the queue should be locked to ensureexclusive access (mutual exclusion). This technique achieves the best load balancing,though the extra work done for balancing the load in the form of locks might o�set itsadvantage. In our system, using global queues with locks to perform load balancingwas not as e�cient as dynamic load balancing (described below). We believe it isbecause of the reasons cited above.� Dynamic load balancing: In this technique, a local job queue is maintained foreach processor. Initially, tasks are assigned to every processor similar to the static load

147
 ��

Figure 7.10: B-rep of Torpedo tube from Submarine model (1200 B�ezier patches) [Courtesy:Electric Boat]balancing scheme. However, due to suboptimal task division, some processors mightcomplete their tasks before others. In this scenario, the idle processors share the loadwith the busy processors, thereby balancing the load dynamically. If we can ensurethat each busy processor is accessed by only one idle processor at any time, then alock-free implementation of this scheme is possible. We can also ensure that each taskis processed only once, and no task is left out. In our application, load balancingis e�ciently achieved by minimal use of locks. Therefore, we use this approach forour most computationally intensive tasks like surface-surface intersection (Stage 3 inFigure 7.7) and ray-shooting computation (Stage 6 in Figure 7.8).If we ensure that only one idle processor will access a particular busy processor,then a lock free implementation of dynamic load balancing is possible. We enforce a uniqueone to one correspondence between an idle and busy processor using the following algo-rithm. A shared global variable WhichIdleProc stores the id of the idle processor, whichnow has the chance to choose its busy processor. This serializes the operation of �nding anidle-busy processor pair. In our implementation, we choose a single lock to guard this crit-ical section because the computation time for surface-surface intersection and ray-shootingdominates one locking operation. With each busy processor, we associate a shared variableMyIdleProc, which stores the idle processor id that has been paired up with that particular

148
 ��

Figure 7.11: Track from the Bradley model showing placement of drivewheel model (15000B�ezier patches) [Courtesy: Army Research Labs]busy processor. These variables are initialized to NIL, referring to none of the processors.Each processor also maintains its processor number in a local variable myid. Whenever aprocessor becomes idle, it executes the following code.f If (WhichIdleProc == NIL) then fGetLock(GetMeAccess);if(GetMeAccess == NIL) fGetMeAccess = myid;WhichIdleProc = myid;gReleaseLock(GetMeAccess);g/* Waiting for my chance */while (WhichIdleProc 6= myid);/* All tasks completed */If (NoMoreBusyProc()) then exit;/* All Busy processors are being loadbalanced by some idle processor */

149while (GetBusyProc() == NIL);/* Got a Busy Processor to pair up with */MyBusyProc = GetBusyProc();/* Make sure no one else captures this busy processor */MyIdleProc[MyBusyProc] = myid;/* Give chance to next idle proc to �nd its partner */If (NextIdleProc()) then WhichIdleProc = NextIdleProc();/* No one to grab the chance */else fGetLock(GetMeAccess);WhichIdleProc = NIL;GetMeAccess = NIL;ReleaseLock(GetMeAccess);g/* Balancing the load with the partner */LoadBalance(MyBusyProc);/* Finished load sharing; Freeing my partner */MyIdleProc[MyBusyProc] = NIL;/* Register myself as busy */If (IHaveLoad()) BUSY[myid] = TRUE;/* Work on new list of tasks */

150
 ��

Figure 7.12: B-reps of some solids from the Bradley �ghting vehiclePerformSurfaceIntersection(); or PerformRayShooting();/* Register myself as idle */BUSY[myid] = FALSE;g Initially, the variable WhichIdleProc has to be set by the idle processor to gainaccess to the list of busy processors. Race condition occurs only when the variable WhichI-dleProc isNIL and more than one idle processor try to access it. By makingWhichIdleProca critical resource, we can ensure mutual exclusion while setting this variable. This can beachieved by using locks. The number of locking operations can be reduced by allowingfree access to WhichIdleProc and introducing a new shared variable GetMeAccess, whichis locked only when a race condition occurs. Locks can be totally avoided by maintaininga random permutation of the busy processor list locally in every processor. This does notguarantee that a single idle processor captures a busy processor, however, the probabilityof a race condition is very small.7.4 PerformanceIn this section, we highlight the performance of both the sequential and parallelalgorithm on some real-world models. We obtained a model of a submarine storage and

151# of CSG Running time (in secs.) # of patchesModel opns. BB & LP test SSI Ray-shooting Total (in B-Rep)Fig. (a) 20 1.7 41.3 13.6 77.0 137Fig. (b) 5 0.3 9.7 3.6 16.3 89Fig. (c) 5 0.8 11.6 5.4 18.5 116Fig. (d) 27 2.3 58.9 17.8 98.7 169Fig. (e) 10 1.8 28.5 6.7 41.1 69Fig. (f) 21 2.0 35.1 13.8 64.2 146Table 7.1: Performance of our system on parts of the submarine model# of CSG Running time (in secs.) # of patchesModel opns. BB & LP test SSI Ray-shooting Total (in B-Rep)Link 16 1.3 26.3 9.6 47.81 76Drivewheel 44 5.8 54.3 27.1 97.23 289Idlerwheel 48 5.1 59.8 28.9 106.93 235Table 7.2: Performance of our sequential algorithm on parts of the Bradley modelhandling room through the courtesy of Electric Boat Inc., a division of General Dynamics.This model consists of about 2000 solids. Many of the primitives are composed of polyhedraand conicoids like spheres or cylinders. Additional primitives include generalized prisms andsurfaces of revolution of degrees 6 or more. A few of the primitives are composed of B�eziersurfaces of degree as high as 12. Most of the CSG trees have heights ranging between 6 and12 and some of them are as high as 30. Table 7.1 shows the performance of the sequentialalgorithm on some solids from this model (see Figure 7.6). The column with runningtime is broken into four parts: the bounding box and linear programming, surface-surfaceintersection, ray-shooting and total. The �nal column indicates the number of trimmedpatches that the �nal model has.The model of the Bradley �ghting vehicle was obtained from Army Research Lab-oratories. It is composed of more than 8500 solids each consisting of about 5-8 Booleanoperations. The primitives in the Bradley are solids like conicoids (spheres, cylinders, ellip-soids etc.) and tori whose B-reps can be represented by biquadric (degree 2 times 2) B�ezierpatches. We present the performance of our sequential and parallel algorithms on three of

152
Intersection Time

Total Time for CSG

Final Solid Computation
 Rayshooting, and

Graph Computation,

Link

1 2 3 4 5

10

20

30

40

50

60

1 2

T
im

e
(i

n
se

cs
.)

3 4 5

10

20

30

40

50

60

70

80

90

100

Drivewheel

1 2 3 4 5

10

20

30

40

50

60

70

80

90

100

Idlerwheel

No. of processors

T
im

e
(i

n
se

cs
.) T

im
e

(i
n

se
cs

.)

No. of processors No. of processorsFigure 7.13: Performance of our parallel algorithm as a function of processor countTotal running time (in secs.)Model 1 proc. 2 proc. 3 proc. 4 proc. 5 proc.Link 51.95 30.88 26.93 20.55 23.44Drivewheel 102.32 77.39 53.39 49.02 35.67Idlerwheel 112.40 74.51 58.96 46.10 44.23Table 7.3: Performance of our parallel algorithm on parts of the Bradley modelthe solids in the Bradley �ghting vehicle.� Link model: It consists of 16 Boolean operations and the B-rep contains 76 trimmedB�ezier patches. Figure 7.12(a) shows the model. The graph in Figure 7.13 shows theperformance of our system on varying number of processors. It can be seen that theperformance becomes worse when we go from four to �ve processors. Since this is nota very complex model, the setup costs of using �ve processors outweigh the bene�t ofparallelism.� Drivewheel model: This model is constructed using 44 Boolean operations. TheB-rep is shown in Figure 7.12(b) and consists of 289 trimmed B�ezier patches.

153� Idlerwheel model: The B-rep of the idlerwheel (composed of 235 trimmed B�ezierpatches) is shown in Figure 7.12(c) and took 48 Boolean operations to generate. Againincreasing the processor count reduces the running time because of complexity of themodel.Table 7.2 and Table 7.3 shows the performance of our sequential and parallelalgorithm on the parts of the Bradley model shown in Figure 7.12 respectively.

154
Chapter 8Conclusion and Future WorkEvaluating Boolean set operations of sculptured solid objects is one of the mostpowerful facilities available in a solid modeler. In modelers based on boundary representa-tions, the Boolean set operation algorithm is also technically one of the most demandingcomponent. A signi�cant portion of the complexity is due to the computation and repre-sentation of intersection curves between free-form surfaces. Apart from the algebraic andgeometric di�culties, a convenient representation of the intersection curve is essential toe�ectively compute the boundary. Another important issue in this context is that of ro-bustness on models of large scale. Our experience with the Bradley �ghting vehicle andsubmarine model shows that extremely large CAD models are designed using Boolean setoperations for physical analysis and model veri�cation. Individual solids are generated us-ing a large number of successive Boolean operations. In such cases, systematically dealingwith the growth of errors due to �nite precision arithmetic is very di�cult and impractical,especially for solids with curved primitives. The best way to deal with such problems isto combine numerically stable algorithms with the use of easy-to-implement heuristics thatcontrol the growth of error. In this dissertation, we have explored each of these issues andproved the thesis,The lower dimensional surface intersection formulation provides aneffective representation to perform Boolean operations on sculpturedmodels.

155This dissertation presents a number of techniques to e�ectively compute boundary repre-sentations of Boolean combinations of sculptured primitives and perform associated surfaceinterrogations like surface-surface and curve-surface intersections. It employs a combina-tion of symbolic and numeric methods to compute the B-reps accurately and e�ciently.The input to our algorithm is a CSG tree that describes the solid as a Boolean expressionof primitive solids. The choice of the set of primitive solids is arbitrary as long as theycan be represented as a piecewise collection of parametric surface patches. Our portableimplementation of the algorithms presented in this dissertation, BOOLE, has been suc-cessfully applied to generate the boundary representations of industrial models composedof thousands of Boolean set operations. BOOLE is currently available for download athttp://www.cs.unc.edu/~geom/CSG/boole.html.One of the main contributions of this dissertation is a new algebraic representationfor the intersection curve of two parametric surfaces. The intersection curve is evaluated byadopting numerical curve tracing methods on this representation. The performance of thisalgorithm is output sensitive (in terms of separability of curve components), and typicallyperforms an order of magnitude faster than previously known robust algorithms. Thismethod is an advancement over existing �nite-precision surface intersection algorithms, inthat it guarantees the correct topology of the intersection curve. It does not su�er fromrobustness problems like loop and singularity detection, and component jumping present innumerical approaches, or the e�ciency problems of purely algebraic methods. Further, theaccurate representation of the intersection curve in the parametric space of each surface isappropriate for use in boundary evaluation algorithms.The boundary evaluation algorithm generates B-reps in the form of trimmed para-metric surfaces. The trimming curves on each patch are the result of intersections withsurfaces of other solids. The accurate representation of the intersection curves guaranteeaccurate B-reps as well. Furthermore, the algorithm is implemented on general purposeprocessors, and has been parallelized on existing shared memory architectures. In our par-allel implementation on an SGI-Onyx with four R10000 processors, we are able to performBoolean operations on sculptured solids at interactive rates.The research work conducted in this dissertation shows that it is possible to gen-

156erate accurate B-reps of sculptured solid objects in an e�cient manner. However, this workis merely a �rst step towards obtaining a B-rep modeler that provides accurate results atall times. There are still quite a few important questions that are yet to be addressed.8.1 Ongoing and Future WorkIn this section, we discuss a few of the many extensions that are possible from thiswork.� Robustness: Our current work (in collaboration John Keyser at UNC) is focusedon issues of robustness, which arise in solids model designs with curved surfaces. Byrobustness in this context, we mean that the boundary evaluation algorithm must beable to handle all geometric situations (including degeneracies) and produce correctresults. The use of exact arithmetic coupled with perturbation schemes has beenshown to be successful in polyhedral modeling [For95]. We are trying to extend thiswork to curved geometries. One class of robustness problems is degeneracies like theones listed in section 6.3. The other class of robustness problems involves cases inwhich the use of �xed precision (double-precision oating-point arithmetic) is notaccurate enough to determine B-reps correctly. Previous work on robustness issueshas dealt primarily with linear (polyhedral) cases. Robustness problems in curvedsurface cases are both more numerous and more di�cult to handle. Experience withthe BOOLE system has shown us that these problems can arise in a signi�cant numberof real-world cases.We are currently exploring approaches to address the robustness issue by making useof exact arithmetic and exact representations [KKM97]. This eliminates the problemsrelated to numerical precision. In addition, the use of exact arithmetic allows usto use perturbations methods to eliminate degeneracies. Perturbation methods haveproven to be useful at eliminating degeneracies in the linear case and may be similarlyuseful in the curved-surface domain. The use of exact arithmetic can lead to highlyine�cient implementations. In order to increase the e�ciency of our approach, we haveisolated a few key kernel routines which govern the e�ciency of the overall program.

157We use improved symbolic techniques and a combination of exact and oating-pointarithmetic to speed up our kernel functions, and thus the entire algorithm.� Nonmanifold solids: This dissertation does not discuss set operations on nonman-ifold geometries. The number of cases of classi�cation tests to be performed is signif-icantly higher, and thus makes it much more complicated.� Use of implicit surfaces: Our algorithms generate boundary representations interms of parametric surfaces. The ability to generate boundaries of solids using im-plicit surfaces greatly enhances the power of the solid modeling system because of thegreater representation power of these surfaces. However, some of the questions wehave to answer deal with the representation of trimmed implicit surfaces and numer-ical stability of algorithms.� Extension to other problem domains: The surface-surface intersection algorithmdiscussed in this dissertation is applicable in a wider range of problems. It can beapplied to solve any algebraic system that has a one-dimensional solution set. Forexample, we have use the algorithm to �nd the silhouette of a parametric surface froma given viewpoint. Another application in the �eld of geometric modeling pertainsto the generation of o�sets and blends of surfaces. Applications to vision and pathplanning related problems seem possible.

158
Bibliography[AB88a] S.S. Abhyankar and C. Bajaj. Automatic parametrizations of rational curvesand surfaces iii: Algebraic plane curves. Computer Aided Geometric Design,5:309{321, 1988.[AB88b] S.S. Abhyankar and C. Bajaj. Computations with algebraic curves. In LectureNotes in Computer Science, volume 358, pages 279{284. Springer Verlag, 1988.[ABB+92] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, A. Green-baum, S. Hammarling, and D. Sorensen. LAPACK User's Guide, Release 1.0.SIAM, Philadelphia, 1992.[Abh90] S. S. Abhyankar. Algebraic Geometry for Scientists and Engineers. AmericanMathematical Society, Providence, R. I., 1990.[ACM84] D. S. Arnon, G.E. Collins, and S. McCallum. Cylindrical algebraic decomposi-tion. SIAM J. on Computing, 13:878{889, 1984.[AF88] S. Arnborg and H. Feng. Algebraic decomposition of regular curves. Journalof Symbolic Computation, 5:131{140, 1988.[AM88] D. Arnon and S. McCallum. A polynomial time algorithm for the topologicaltype of a real algebraic curve. Journal of Symbolic Computation, 5:213{236,1988.[Arn83] D. S. Arnon. Topologically reliable display of algebraic curves. ComputerGraphics, 17:219{227, 1983.

159[Bau75] B. Baumgart. A polyhedron representation for computer vision. In NationalComputer Conference, AFIPS Conf. Proc., pages 589{596, 1975.[BBP95] I. Biehl, J. Buchmann, and T. Papanikolaou. Lidia: A library for computa-tional number theory. Technical Report SFB 124-C1, Fachbereich Informatik,Universitt des Saarlandes, 1995.[BFJP87] R. Barnhill, G. Farin, M. Jordan, and B. Piper. Surface/surface intersection.Computer Aided Geometric Design, 4(3):3{16, 1987.[BHHL88] C.L. Bajaj, C.M. Ho�mann, J.E.H. Hopcroft, and R.E. Lynch. Tracing surfaceintersections. Computer Aided Geometric Design, 5:285{307, 1988.[BK90] R.E. Barnhill and S.N. Kersey. A marching method for parametric sur-face/surface intersection. Computer Aided Geometric Design, 7:257{280, 1990.[BMP94] M. Benouamer, D. Michelucci, and B. Peroche. Error-free boundary evaluationbased on a lazy rational arithmetic: a detailed implementation. Computer-AidedDesign, 26(6), 1994.[Bra75] I. Braid. The synthesis of solid bounded by many faces. Comm. ACM, 18:209{216, 1975.[Buc89] B. Buchberger. Applications of groebner bases in non{linear computationalgeometry. In D. Kapur and J. Mundy, editors, Geometric Reasoning, pages415{447. MIT Press, 1989.[Cam85] S. A. Cameron. A study of the clash detection problem in robotics. IEEEConference on Robotics and Automation, pages 488{493, 1985.[Can88] J.F. Canny. The Complexity of Robot Motion Planning. ACM Doctoral Disser-tation Award. MIT Press, 1988.[Cas87] M. S. Casale. Free-form solid modeling with trimmed surface patches. IEEEComputer Graphics and Applications, pages 33{43, January 1987.

160[CB89] M. S. Casale and J. E. Bobrow. A set operation algorithm for sculptured solidsmodeled with trimmed patches. Computer Aided Geometric Design, 6:235{247,1989.[CH88] G.W. Crippen and T.F. Havel. Distance geometry and molecular conformation.Research Studies Press, New York, 1988.[Cha87] K. Chan. Solid Modelling of Parts with Quadric and Free-form Surfaces. PhDthesis, University of Hong Kong, 1987.[Che89] K.P Cheng. Using plane vector �elds to obtain all the intersection curves oftwo general surfaces. In Theory and Practice of Geometric Modeling, pages187{204, 1989.[CK83] H. Chiyokura and F. Kimura. Design of solids with free-form surfaces. ComputerGraphics, 17:289{298, 1983.[Col75] G.E. Collins. Quanti�er elimination for real closed �elds by cylindrical algebraicdecomposition. In Lecture Notes in Computer Science, number 33, Springer-Verlag, 1975.[Cra89] J.J. Craig. Introduction to Robotics: Mechanics and Control. Addison{WesleyPublishing Company, 1989.[CS85] M.S. Casale and E.L. Stanton. An overview of analytic solid modeling. IEEEComputer Graphics and Applications, 5:45{56, February 1985.[DC95] E. Driskill and E. Cohen. Interactive desigb, analysis, and illustration of as-semblies. In Proc. of 1995 Symposium on Int. 3D Graphics, pages 27{34, 1995.[Dix08] A.L. Dixon. The eliminant of three quantics in two independent variables.Proceedings of London Mathematical Society, 6:49{69, 209{236, 1908.[Dok85] T. Dokken. Finding intersections of b-spline represented geometries using re-cursive subdivision techniques. Computer Aided Geometric Design, 2:189{195,1985.

161[DSY89] T. Dokken, V. Skytt, and A.M. Ytrehus. Recursive subdivision and iterationin intersections and related problems. In Mathematical Methods in Computer-Aided Geometric Design, pages 207{214. Academic Press, 1989.[Duf92] Tom Du�. Interval arithmetic and recursive subdivision for implicit functionsand constructive solid geometry. ACM Computer Graphics, 26(2):131{139,1992.[EC90] G. Elber and E. Cohen. Hidden curve removal for free form surfaces. ComputerGraphics, 24(4):95{104, 1990.[EC94] G. Elber and E. Cohen. Exact computation of gauss maps and visibility sets forfreefrom surfaces. Technical report CIS #9414, Computer Science Department,Technion, 1994.[Ede83] H. Edelsbrunner. A new approach to rectangle intersections, part i. Int. J. ofComput. Math, 13:209{219, 1983.[EKL+91] J. L. Ellis, G. Kedem, T. C. Lyerly, D. G. Thielman, R. J. Marisa, J. P. Menon,and H. B. Voelcker. The raycasting engine and ray representations. In Pro-ceedings of Symposium on Solid Modeling Foundations and CAD/CAM Appli-cations, pages 255{267, 1991.[Far86] R.T. Farouki. The characterization of parametric surface sections. ComputerVision, Graphics and Image Processing, 33:209{236, 1986.[Far93] G. Farin. Curves and Surfaces for Computer Aided Geometric Design: A Prac-tical Guide. Academic Press Inc., 1993.[FBZ93] S. Fang, B. Bruderlin, and X. Zhu. Robustness in solid modeling: a tolerance-based intuitionistic approach. Computer-Aided Design, 25(9):567{576, 1993.[FF92] D.A. Field and R. Field. A new family of curves for industrial applications.Technical report GMR-7571, General Motors Research Laboratories, 1992.

162[FH85] R.T. Farouki and J.K. Hinds. A hierarchy of geometric forms. IEEE ComputerGraphics and Applications, 5:51{78, May 1985.[FM84] A. Fournier and D. Y. Montuno. Triangulating simple polygons and equivalentproblems. ACM Trans. Graph., 3:153{174, 1984.[For95] S. Fortune. Polyhedral modeling with exact arithmetic. Proceedings of ACMSolid Modeling, pages 225{234, 1995.[FR87] R.T. Farouki and V.T. Rajan. On the numerical condition of polynomials inbernstein form. Computer Aided Geometric Design, 4:191{216, 1987.[GBDM77] B.S. Garbow, J.M. Boyle, J. Dongarra, and C.B. Moler. Matrix EigensystemRoutines { EISPACK Guide Extension, volume 51. Springer-Verlag, Berlin,1977.[Gea95] G. Georgiannakis and C. Houstis et. al. Description of the adaptive resourcemanagement problem, cost functions and performance objectives. TechnicalReport TR130, The Institute of Computer Science, Foundation for Researchand Technology, 1995.[Gei83] A. Geisow. Surface Interrogations. PhD thesis, School of Computing Studiesand Accountancy, University of East Anglia, 1983.[GL89] G.H. Golub and C.F. Van Loan. Matrix Computations. John Hopkins Press,Baltimore, 1989.[HHK89] C. Ho�mann, J. Hopcroft, and M. Karasick. Robust set operations on polyhe-dral solids. IEEE Computer Graphics and Applications, 9(6):50{59, 1989.[Hil82] R. C. Hillyard. The build group of solid modellers. IEEE Computer Graphicsand Applications, 2:43{52, 1982.[HL95] B. Hendrickson and R. Leland. A multilevel algorithm for partitioning graphs.Proc. Supercomputing '95, 1995.

163[Hof89] C.M. Ho�mann. Geometric and Solid Modeling. Morgan Kaufmann, San Mateo,California, 1989.[Hof90] C.M. Ho�mann. A dimensionality paradigm for surface interrogations. Com-puter Aided Geometric Design, 7:517{532, 1990.[Hoh91] M.E. Hohmeyer. A surface intersection algorithm based on loop detection.International Journal of Computational Geometry and Applications, 1(4):473{490, 1991. Special issue on Solid Modeling.[Hoh92] M.E. Hohmeyer. Robust and E�cient Intersection for Solid Modeling. PhDthesis, Computer Science Division, Department of Electrical Engineering andComputer Science, University of California, Berkeley, 1992.[Ips97] I. C. F. Ipsen. Computing an eigenvector with inverse iteration. SIAM Reviews,39(2):254{291, 1997.[Jac95] D. Jackson. Boundary representation modeling with local tolerances. Proceed-ings of ACM Solid Modeling, pages 247{253, 1995.[Jar84] G.E.M Jared. Synthesis of volume modeling and sculptured surfaces in build.In CAD84, Computers in Design Engineering Conference Proceedings, pages481{495, 1984.[JI92] E. R. Jessup and I. C. F. Ipsen. Improving the accuracy of inverse iteration.SIAM Journal on Scienti�c and Statistical Computation, 13(2):550{572, 1992.[Joh87] J.K. Johnstone. The Sorting of points along an algebraic curve. PhD thesis,Cornell University, Department of Computer Science, 1987.[Kaj82] J. Kajiya. Ray tracing parametric patches. Computer Graphics, 16(3):245{254,1982.[Kal82] Y.E. Kalay. Modeling polyhedral solids bounded by multi-curved parametricsurfaces. ACM IEEE Nineteenth Design Automation Conference Proceedings,pages 501{507, 1982.

164[KGI84] F. Kimura and Geomap-III. Designing solids with free-form surfaces. IEEEComputer Graphics and Applications, 4:58{72, 1984.[Kim90] Deok-Soo Kim. Cones on Bezier Curves and Surfaces. PhD thesis, Universityof Michigan, Ann Arbor, 1990.[KKM97] J. Keyser, S. Krishnan, and D.Manocha. E�cient and accurate b-rep generationof low degree sculptured solids using exact arithmetic. In ACM/SIGGRAPHSymposium on Solid Modeling, pages 42{55, 1997.[KKMN95] S. Kumar, S. Krishnan, D. Manocha, and A. Narkhede. Representation anddisplay of complex csg models. Technical Report TR95-019, Department ofComputer Science, University of North Carolina, 1995.[KM83] P.A. Koparkar and S. P. Mudur. A new class of algorithms for the processingof parametric curves. Computer-Aided Design, 15(1):41{45, 1983.[KM97] S. Krishnan and D. Manocha. An e�cient surface intersection algorithmbased on the lower dimensional formulation. ACM Transactions on Graphics,16(1):74{106, 1997.[KPP90] G.A. Kriezis, P.V. Prakash, and N.M. Patrikalakis. Method for intersectingalgebraic surfaces with rational polynomial patches. Computer-Aided Design,22(10):645{654, 1990.[KPW90] G.A. Kriezis, N.M. Patrikalakis, and F.E. Wolter. Topological and di�erentialequation methods for surface intersections. Computer-Aided Design, 24(1):41{55, 1990.[KS88] S. Katz and T.W. Sederberg. Genus of the intersection curve of two rationalsurface patches. Computer Aided Geometric Design, 5, 1988.[Lam87] L. Lamport. A fast mutual exclusion algorithm. ACM Transactions on Com-puter Systems, 5(1):1{11, 1987.

165[Las86] D. Lasser. Intersection of parametric surfaces in the bernstein-bezier represen-tation. Computer-Aided Design, 18(4):186{192, 1986.[LR80] J.M. Lane and R.F. Riesenfeld. A theoretical development for the computergeneration and display of piecewise polynomial surfaces. IEEE Transactions onPattern Analysis and Machine Intelligence, 2(1):150{159, 1980.[LTH86] D. H. Laidlaw, W. B. Trumbore, and J. F. Hughes. Constructive solid geometryfor polyhedral objects. ACM Computer Graphics, 20:161{170, 1986.[Mac02] F.S. Macaulay. On some formula in elimination. Proceedings of London Math-ematical Society, 1(33):3{27, May 1902.[Man86] M. Mantyla. Boolean operations of 2-manifolds through vertex neighborhoodclassi�cation. ACM Transactions on Graphics, 5:1{29, 1986.[Man88] M. Mantyla. An Introduction to Solid Modeling. Computer Science Press,Rockville, Maryland, 1988.[Man92] D. Manocha. Algebraic and Numeric Techniques for Modeling and Robotics.PhD thesis, Computer Science Division, Department of Electrical Engineeringand Computer Science, University of California, Berkeley, May 1992.[MC91] D. Manocha and J.F. Canny. A new approach for surface intersection. Inter-national Journal of Computational Geometry and Applications, 1(4):491{516,1991. Special issue on Solid Modeling.[MC93] D. Manocha and J.F. Canny. Multipolynomial resultant algorithms. Journalof Symbolic Computation, 15(2):99{122, 1993.[MD94] D. Manocha and J. Demmel. Algorithms for intersecting parametric and alge-braic curves i: simple intersections. ACM Transactions on Graphics, 13(1):73{100, 1994.[Mea84] D. J. Meagher. The solids engine: a processor for interactive solid modeling.In Proceedings of Nicograph, 1984.

166[Men92] J. Menon. Constructive Shell Representations for Free-form Surfaces and Solids.PhD thesis, Dept. of Computer Science, Cornell University, 1992.[Mil92] P. S. Milne. On the solutions of a set of polynomial equations. In Symbolic andNumerical Computation for Arti�cial Intelligence, pages 89{102, 1992.[ML95] Y. Ma and R. C. Luo. Topological method for loop detection of surface inter-section problems. Computer-Aided Design, 27(11):811{820, 1995.[MP93] T. Maekawa and N. M. Patrikalakis. Computation of singularities and inter-sections of o�sets of planar curves. Computer Aided Geometric Design, 10,1993.[MR86] M. Mantyla and M. Ranta. Interactive solid modeling in hutdesign. In Proceed-ings of Computer Graphics, Tokyo, 1986.[MT83] M. Mantyla and M. Tamminen. Localized set operations for solid modeling. InComputer Graphics, volume 17, pages 279{288, 1983.[Nat90] B.K. Natarajan. On computing the intersection of b-splines. In ACM Sympo-sium on Computationl Geometry, pages 157{167, 1990.[NM95] A. Narkhede and D. Manocha. Fast polygon triangulation based on seidel'salgorithm. In A. Paeth, editor, Graphics Gems V, pages 394{397, AcademicPress, 1995.[NSK90] T. Nishita, T.W. Sederberg, and M. Kakimoto. Ray tracing trimmed rationalsurface patches. Computer Graphics, 24(4):337{345, 1990.[OKK73] N. Okino, Y. Kakazu, and H. Kubo. TIPS-1: Technical Information ProcessingSystem for Computer Aided Design and Manufacturing. Computer Languagesfor Numerical Control, J. Hatvany, ed., North Holland, Amsterdam, 1973.[O'N66] B. O'Neill. Elementary Di�erential Geometry. Academic Press, London, UK,1966.

167[Pat93] N.M. Patrikalakis. Surface-to-surface intersections. IEEE Computer Graphicsand Applications, 13(1):89{95, 1993.[PFTV90] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling. NumericalRecipes: The Art of Scienti�c Computing. Cambridge University Press, 1990.[Pie89] L. Piegl. Geometric method of intersecting natural quadrics represented intrimmed surface form. Computer-Aided Design, 21(4):201{212, 1989.[PK92] J. Ponce and D.J. Kriegman. Elimination theory and computer vision: Recog-nition and positioning of curved 3d objects from range, intensity, or contours. InSymbolic and Numerical Computation for Arti�cial Intelligence, pages 123{146,1992.[Pra86] M.J. Pratt. Surface/surface intersection problems. In J.A. Gregory, editor, TheMathematics of Surfaces II, pages 117{142, Oxford, 1986. Claredon Press.[PRS86] A. Paoluzzi, M. Ramella, and A. Santarelli. Un modellatori geometrico surappresentazioni triango-alate. Technical Report Rept. TR 13.86, Departmentof Inf. and Systems, University of Rome, Italy, 1986.[RMS92] J. Rossignac, A. Megahed, and B.D. Schneider. Interactive inspection of solids:cross-sections and interferences. In Proceedings of ACM Siggraph, pages 353{60,1992.[RR87] J.R. Rossignac and A.A.G. Requicha. Piecewise-circular curves for geometricmodeling. IBM Journal of Research and Development, 31(3):296{313, 1987.[RR92] A.A.G. Requicha and J.R. Rossignac. Solid modeling and beyond. IEEE Com-puter Graphics and Applications, pages 31{44, September 1992.[RV82] A.A.G. Requicha and H.B. Voelcker. Solid modeling: A historical summaryand contemporary assessment. IEEE Computer Graphics and Applications,2(2):9{24, March 1982.

168[RV85] A.A.G. Requicha and H.B. Voelcker. Boolean operations in solid modeling:boundary evaluation and merging algorithms. Proceedings of the IEEE, 73(1),1985.[RV89] J. Rossignac and H.B. Voelcker. Active zones in csg for accelerating boundaryevaluation, redundancy elimination, interference detection, and shading algo-rithm. ACM Transactions on Graphics, 8(1):51{87, 1989.[Sal85] G. Salmon. Lessons Introductory to the Modern Higher Algebra. G.E. Stechert& Co., New York, 1885.[Sar83] R F Sarraga. Algebraic methods for intersection. Computer Vision, Graphicsand Image Processing, 22:222{238, 1983.[Sat91] T. Satoh. Boolean operations on sets using surface data. In Proceedings ofSymposium on Solid Modeling Foundations and CAD/CAM Applications, pages119{127, 1991.[SB93] J. Stoer and R. Bulirsch. Introduction to Numerical Analysis. Springer-Verlag,1993.[Sed83] T.W. Sederberg. Implicit and Parametric Curves and Surfaces. PhD thesis,Purdue University, 1983.[Sed89] T.W. Sederberg. Algorithms for algebraic curve intersection. Computer-AidedDesign, 21(9):547{555, 1989.[Seg90] M. Segal. Using tolerances to guarantee valid polyhedral modeling results. InProceedings of ACM Siggraph, pages 105{114, 1990.[Sei90a] R. Seidel. Linear programming and convex hulls made easy. In Proc. 6th Annu.ACM Sympos. Comput. Geom., pages 211{215, 1990.[Sei90b] R. Seidel. Linear programming and convex hulls made easy. In Proc. 6th Ann.ACM Conf. on Computational Geometry, pages 211{215, Berkeley, California,1990.

169[Sei91] R. Seidel. A simple and fast randomized algorithm for computing trapezoidaldecompositions and for triangulating polygons. Computational Geometry The-ory & Applications, 1(1):51{64, 1991.[SI89] K. Sugihara and M. Iri. A solid modeling system free from topological incon-sistencis. J. Inf. Proc., Inf. Proc. Soc. of Japan, 12(4):380{393, 1989.[SKW85] P. Sinha, E. Klassen, and K.K. Wang. Exploiting topological and geometricproperties for selective subdivision. In ACM Symposium on Computationl Ge-ometry, pages 39{45, 1985.[SM88] T.W. Sederberg and R.J. Meyers. Loop detection in surface patch intersections.Computer Aided Geometric Design, 5:161{171, 1988.[SN90] T.W. Sederberg and T. Nishita. Curve intersection using b�ezier clipping.Computer-Aided Design, 22:538{549, 1990.[SN91] T.W. Sederberg and T. Nishita. Geometric hermite approximation of surfacepatch intersection curves. Computer Aided Geometric Design, 8:97{114, 1991.[Sny92] J. Snyder. Interval arithmetic for computer graphics. In Proceedings of ACMSiggraph, pages 121{130, 1992.[SP86] T.W. Sederberg and S.R. Parry. Comparison of three curve intersection algo-rithms. Computer-Aided Design, 18(1):58{63, 1986.[SS83] J. T. Schwartz and M. Sharir. On the piano movers probelem ii, general tech-niques for computing topological properties of real algebraic manifolds. Ad-vances of Applied Maths, 4:298{351, 1983.[SWZ89] T.W. Sederberg, S. White, and A. Zundel. Fat arcs: A bounding region withcubic convergence. Computer Aided Geometric Design, 6:205{218, 1989.[Taw91] M. S. Taw�k. An e�cient algorithm for csg to b-rep conversion. In Proceedingsof Symposium on Solid Modeling Foundations and CAD/CAM Applications,pages 99{108, 1991.

170[THS89] Sederberg T.W, Christiansen H.N, and Katz S. An improved test for closedloops in surface intersections. Computer-Aided Design, 21(8):505{508, 1989.[Voe74] H. B. Voelcker. An introduction to padl: Characteristics, status, and ratio-nale. Technical Report Research Memo. #22, University of Rochester, 1974.Production Automation Project.[VP84] T. Varady and M.J. Pratt. Design techniques for the de�nition of solid objectswith free-form geometry. Computer Aided Geometric Design, 1(3):207{225,1984.[Wal50] R.J. Walker. Algebraic Curves. Princeton University Press, New Jersey, 1950.[Wei85] Kevin J. Weiler. Edge-based data structures for solid modeling in curved-surfaceenvironments. IEEE Computer Graphics and Applications, 5(1):21{40, January1985.[Wei86] Kevin J. Weiler. Topological Structures for Solid Modeling. PhD thesis, Com-puter and Systems Engineering, Rensselaer Polytechnic Institute, 1986.[Wes80] M. Wesley. A geometric modeling system for automated mechanical assembly.IBM Journal of Research and Development 24, pages 64{74, 1980.[Whi94] S. Whitman. Dynamic load balancing for parallel polygon rendering. IEEEComputer Graphics and Applications, 14(4):41{48, 1994.[Wil59] J.H. Wilkinson. The evaluation of the zeros of ill{conditioned polynomials.parts i and ii. Numer. Math., 1:150{166 and 167{180, 1959.[Wil65] J.H. Wilkinson. The algebraic eigenvalue problem. Oxford University Press,Oxford, 1965.[YA93] J.H. Yang and J. Anderson. Fast, scalable synchronization with minimal hard-ware support. In ACM symposium on Principles of Distributed Computing,pages 171{182, 1993.

171[ZS93] A. Zundel and T. Sederberg. Using pyramidal surfaces to detect and isolate sur-face/surface intersections. In SIAM Conference on Geometric Design, Tempe,AZ, 1993.

