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SHANKAR KRISHNAN. Efficient and Accurate Boundary Evaluation Algorithms for
Boolean Combinations of Sculptured Solids

(Under the direction of Dr. Dinesh Manocha.)

ABSTRACT

This dissertation presents techniques to effectively compute Boolean combinations
of solids whose boundary is described using a collection of parametric spline surfaces. It
also describes a surface intersection algorithm based on a lower dimensional formulation of
the intersection curve that evaluates all its components and guarantees its correct topology.
It presents algorithms and data structures to support the thesis that the lower dimensional
formulation of the intersection curve is an effective representation to perform Boolean oper-
ations on sculptured solids. The thesis also analyzes different sources of problems associated
with computing the intersection curve of two high degree parametric surfaces, and presents
techniques to solve them.

More specifically, the intersection algorithm utilizes a combination of algebraic and
numeric techniques to evaluate the curve, thereby providing a solution with greater accuracy
and efficiency. Given two parametric surfaces, the intersection curve can be formulated as
the simultaneous solution of three equations in four unknowns. This is an algebraic curve
in R*. This curve is then projected into the domain of one of the surfaces using resultants.
The intersection curve in the plane is represented as the singular set of a bivariate matrix
polynomial. We present algorithms to perform loop and singularity detection, use curve
tracing methods to find all the components of the intersection curve and guarantee its correct
topology. The matrix representation, combined with numerical matrix computations like
singular value decomposition, eigenvalue methods, and inverse iteration, is used to evaluate
the intersection curve.

We will describe a system BOOLE, a portable implementation of our algorithms,
that generates the B-reps of solids given as a CSG expression in the form of trimmed Bézier
patches. Given two solids, the system first computes the intersection curve between the
two solids using our surface intersection algorithm. Using the topological information of
each solid, we compute various components within each solid generated by the intersection

curve and their connectivity. The component classification step is performed by using ray-



shooting. Depending on the Boolean operation performed, appropriate components are
put together to obtain the final solid. The system has been successfully used to generate
B-reps for a number of large industrial models including a notional submarine storage and
handling room (courtesy - Electric Boat Inc.) and Bradley fighting vehicle (courtesy - Army
Research Labs). Each of these models is composed of over 8000 Boolean operations and
is represented using over 50,000 trimmed Bézier patches. Our exact representation of the
intersection curve and use of stable numerical algorithms facilitate an accurate boundary

evaluation at every Boolean set operation and generation of topologically consistent solids.
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Chapter 1

Introduction

The field of solid modeling deals with design and representation of physical objects.
One of its main emphases has been on the consistency of models generated. Boolean opera-
tions, such as regularized unions, intersections and differences, on solids play a fundamental
role in solid modeling. They are used in various applications in mechanical engineering,
computer graphics, robotics and computer vision. The two major representation schemata
used in solid modeling are constructive solid geometry (CSG) and boundary representations
(B-rep). B-reps describe solids as a set of vertices, edges, and faces with topological relations
among them. In contrast, CSG considers solids as expressions of Boolean operations and
rigid motion transformations of primitive solids which typically include polyhedra, spheres,
cylinders, cones, tori and surfaces of revolution. Both these representations have different
inherent strengths and weaknesses, and for most applications both are desired. For instance,
a CSG object is always valid in the sense that its surface is closed, orientable and encloses a
volume, provided the primitives are valid in this sense. A B-rep object, on the other hand,
is easily rendered on a graphic display system and is useful for visual feedback in solid
design. Figure 1.1 shows the model of a notional submarine storage and handling room
that we obtained from Electric Boat, a division of General Dynamics. This model consists
of more than 5000 solids, each designed using Boolean operations. The primitives used to
generate these models vary from simple polyhedral objects, spheres and cylinders to fairly

complex ones like generalized prisms, surfaces of revolution and offset surfaces. Figure 6.1



Figure 1.1: Submarine storage and handling room

is a model of a real Bradley fighting vehicle from Army Research Labs. This model has
over 8500 solids generated entirely using Boolean operations as well. Generating the B-reps
of such large CAD models is necessary for applications like interactive visualization and
model verification. Another application where B-reps are required is in collision detection
for dynamic simulation of machine parts. For example, consider the track of the Bradley
shown in Figure 7.11. The toothed circular structure shown in the left hand side of the
image is the drivewheel. It is placed in the track in such a way that when it rotates without
slippage, the Bradley vehicle moves forward. Placement of the drivewheel is very critical to
obtain this effect. Dynamic simulations are performed to study the model placement. To
simulate these realistically, we require algorithms that can perform interference detection.

B-reps are necessary for this purpose.
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Figure 1.2: An example of regularized intersection operation [Hof89]

Algorithms for determining the regularized union, intersection, or set difference of
two solids is a useful component of most B-rep modelers. The regularized operations differ
from their corresponding set-theoretic counterparts in that the result is the closure of the
operation on the interior (mathematically speaking, this refers to all of the solid except
its boundary) of the two solids, and are used for eliminating “dangling” lower-dimensional
structures (see Figure 1.2). If Int(A) represents the interior of solid A and op corresponds
to one of the set operations, we define op™, the regularized version of the Boolean operation

as

A op* B = cl(Int(A) op Int(B))

where cl(A) denotes the closure (generates boundary) of A. These operations can be used
to convert solids represented by CSG trees (see Figure 1.3) to an equivalent B-rep. These
processes for performing Boolean operations on B-reps are called boundary evaluation algo-
rithms. These algorithms are not difficult conceptually, but their implementation requires
substantial work for several reasons. Implementation of layers of primitive geometric and
topological operations have to be designed. Examples of primitive geometric and topo-

logical layers include polygon triangulation, point location in a planar arrangement, linear



Figure 1.3: Part of a CSG tree of the roller from the submarine model

programming and graph algorithms. Finding a good structure for these layers is nontrivial,
and accounting for all the special positions of incident structures can be quite difficult. Fur-
ther, the presense of curved surfaces introduces a number of difficult mathematical problems.
The use of numerical techniques to solve these problems inevitably leads to the problem of
numerical precision and stability of computation.

The use of free-form surfaces in model design has been the primary contribution
of the field of computer-aided geometric design (or geometric modeling) to solid modeling.
This field deals with the design of curved surfaces using parametric surface patches and, in
particular, various types of spline surfaces subject to aesthetic and functional constraints.
Surface design with splines originated in the automobile industry, principally for car-body
design. It was also used in shipbuilding and design of aircraft wings. Other researchers
have been using free-form surfaces in design of submarines (Figure 1.1), fighting vehicles

(Figure 6.1) and other applications.



Earlier, most B-rep modelers were able to support solids composed of polyhedral
models and quadric surfaces (like spheres, cylinders etc.) and their Boolean combinations
only. Over the last few years, modeling using free-form surfaces (sculptured models) has
become very useful throughout the commercial CAD/CAM/CAE industry. On the re-
search front, there has been considerable effort in integrating geometric and solid modeling
[Kal®2, Jar84, CK83, VP84, KGI84, FH85, Far86]. In particular, there is a lot of interest in
building complete solid representations from spline surfaces and their Boolean combinations
[Hof89, RR92, CS85, Cas87, Wei85, RV82, Cha87, Men92]. However, the major bottleneck
is in performing robust, efficient and accurate Boolean operations on the sculptured models.
According to Hoffmann [Hof89]: “The difficulty of evaluating and representing the inter-
section of parametric surface patches has hindered the development of solid modelers that
incorporate parametric surface patches”. The topology of a surface patch becomes quite
complicated when a number of Boolean operations are performed and finding a convenient
representation for these topologies has been a major challenge.

In many applications involving CAD/CAM, solids are designed in terms of tensor
product trimmed Non-Uniform Rational B-Spline (NURBS) surfaces. This class includes a
number of rational parametric surfaces like tensor-product and triangular Bézier patches.
A detailed description of NURBS and tensor-product surfaces is given in chapter 2. The
representation capability of these surfaces is quite large, and is sufficient to represent all
primitive solids encountered in boundary evaluation systems. Due to the difficulty in per-
forming free-form surface intersection, many B-rep modelers use high-resolution polyhedral
approximations to these surfaces and apply existing algorithms to design and manipulate
these polyhedral objects. Apart from the fact that the resulting solids are inaccurate,
there is an additional cost in terms of increased memory usage due to data proliferation.
This dissertation seeks to change that by providing effective strategies to perform Boolean

operations on sculptured solids without resorting to polyhedralization.



1.1 Summary of Results

In order to compute boundary representations of Boolean combinations of sculp-
tured solids directly, we have developed a number of techniques. The main theme of our
approach is to use a combination of symbolic and numeric algorithms for efficient and
accurate computation.

The main contribution of this work is to show the effectiveness of a surface inter-
section algorithm which computes the intersection curve in a plane as opposed to higher
dimensions. Formulating the intersection curve as a planar algebraic curve has been known
for quite some time. However, it was believed that this approach would suffer from problems
of inaccuracy and numerical instability (for example, symbolic determinant evaluation). By
making use of a new representation for the intersection curve coupled with stable numerical
methods, we have alleviated most of these problems. The surface intersection algorithm
also uses newly developed algorithms for performing curve-surface intersections, loop de-
tection and curve tracing. To the best of our knowledge, the loop detection algorithm
presented in this dissertation is the first comprehensive algorithm to detect closed loops of
an algebraic plane curve inside a finite domain of interest. Previous loop detection algo-
rithms have been restricted to intersection curves and provide only necessary criteria for
loops. Further, the efficiency of these methods suffer in the presence of singular points in
the intersection curve. Current surface intersection algorithms that use numerical marching
methods to evaluate the intersection curve suffer from reliability problems when different
curve components come close to each other. Our curve tracing algorithm guarantees the
correct topology of the curve under these situations.

Our boundary evaluation algorithm generates B-reps of solids in terms of trimmed
parametric surfaces. Refer to chapter 2 for more details on trimmed patches. The trimming
boundaries in these surfaces are high-degree algebraic curves. By maintaining an accurate
representation of the trimming curves, we are able to perform accurate trimmed surface
intersection. Earlier methods resort to approximations of the algebraic curves which result
in solids that have inconsistent topology. The component classification step is used to

determine which parts of the original solids are to be retained in the final solid. This step



consists of a number of fairly expensive operations especially when dealing with sculptured
solids. By using the topological information of each solid, we perform an optimal number

of such operations to improve the efficiency of this method.

1.2 Previous Work

The need to generate accurate boundary representations of solid objects in many
applications involving design and manufacturing has generated significant interest in the
research community. Over the years, the body of literature addressing these problems has
grown to be quite extensive. Some of the earliest work in generating B-reps was done on
polyhedral solids. The need to use free-form surfaces to represent solids has led to research
in the problems of curve-surface and surface-surface intersection and loop detection which
are important for B-rep generation.

Currently, most boundary evaluation algorithms follow a general framework. This
framework was first introduced by Requicha and Voelcker [RV85] to perform Boolean oper-
ations on polyhedra. However, this can be extended easily to accommodate curve surface

domains as well. Given two polyhedra, A and B, the conceptual structure of the algorithm

[Hof89, HHK89] is

1. Determine which pairs of faces f € A and g € B intersect. If there are none, test for

containment only and skip all other steps.

2. For each face f € A that intersects faces g; € B, compute the intersecting line segments
between f and g;’s. The set of all intersecting line segments partitions the surface of
face f. Determine the partitions of f that contribute to some of the surface area of

the resulting solid.
3. Perform the same for all faces of B.

4. Assemble all the faces into the new solid.

1.2.1 Boundary Evaluation Techniques

Polyhedral solids: Algorithms for performing Boolean operations on polyhedra



in B-rep have been proposed by a number of researchers [Bra75, Hil82, Man86, OKK73,
VoeT74, Wes80]. Most of these techniques rely heavily on the algebraic formulation of the
problem. Cameron [Cam8&5] considers several strategies and redundancy tests to propagate
approximations of CSG primitives from the root of the CSG tree down to the leaves, and
possibly refining them on the way. Rossignac and Voelcker [RV89] consider redundancy
determination without approximating the primitives. They define certain active zones on
solids and show how knowledge of active zones can be used to improve conversion from CSG
to B-rep, detection of redundancy and other operations on CSG trees.

The use of topological structures of solids has been very popular in B-rep solid
modeling. The winged-edge style of boundary representation is due to Baumgart [Bau75].
Many variants of the method, and other alternatives, have been proposed and used in
B-rep modeling systems since then. A complete survey of topological structures in solid
modeling is given in [Wei86]. The use of non-manifold boundary representations was first
proposed by Wesley [Wes80]. Weiler [Wei85, Wei86] observed that a number of geometric
operations on polyhedra simplify when non-manifold structures are permitted. Paoluzzi et.
al. [PRS86] implement Boolean operations on B-rep solids by using only triangular faces
for their polyhedra. Laidlaw et. al. [LTH86] describes another method in which all faces
must be convex polygons, and suggest random perturbations to eliminate complex vertex
intersection cases.

A number of approaches have been proposed for robust and accurate B-rep com-
putation in polyhedral modelers. One of the most common approaches is based on using
tolerances with floating-point arithmetic [Jac95]. However, it is hard to decide a global
tolerance value for all computations. To circumvent these problems, combinations of sym-
bolic reasoning [HHK89] and adaptive tolerances [Seg90] have been proposed. Other al-
gorithms include those based on redundancy elimination [FBZ93]. Many algorithms based
on exact arithmetic have been proposed for reliable numeric computation for polyhedra
[SI89, For95, BMP94, HofR9].

Sculptured Solids: The idea of using free-form surfaces in solid modeling was
introduced by Chiyokura et. al [CK83]. It describes the implementation of a system called

Designbase with some curved-surface capabilities. In this system, curved solids are designed



and modified by local operations such as altering the shape of certain edges and faces.
However, Boolean operations require that one of the intersecting objects be polyhedral.
Geisow [Gei83] maps surface intersection curves to the plane and uses subdivision methods
to solve surface interrogation problems. Requicha and Voelcker [RV85] describes the PADL
system developed at University of Rochester. This system supports Boolean operations
on polyhedral solids and a few curved primitives. Casale et. al. [CS85, Cas87, CB89]
use trimmed parametric surfaces to generate B-reps of sculptured solids. The algorithm
uses subdivision methods to evaluate surface intersections, and represents the trimming
boundary with piecewise linear segments. Chan [Cha87] uses special properties of quadric
surfaces and other free-form surface to design industrial parts. A number of techniques like
interval arithmetic and shell representations [VP84, KGI84, Taw91, Sat91, Men92, Duf92]
have been developed to perform solid design with free-form geometries. Sorting points along
intersection curves [Joh87] was used to classify components with respect to solids.

The Alpha_1 CAD system developed at the University of Utah has many features to
combine solids composed of sculptured surfaces. A systematic approach for design, analysis
and illustration of assemblies has been presented in [DC95, RMS92]. Ray representations
along with specialized parallel architectures [Mea84, EKL*91, Men92] like the RayCasting
engine and ‘Solids engine’ were used to achieve interactive solid modeling on low-degree
primitives like quadrics. Mantyla and Ranta [MR86] describe methods to perform solid
modeling using HutDesign. Rossignac et. al. [RMS92] present algorithms for inspection
of cross-sections and interference between solids with bounded degree and limited height of
CSG trees.

Most of the recent work in the literature on Boolean combinations of curved models
has focussed on computing the surface intersection between a pair of B-spline surfaces
[KS88, SN91, Nat90, Hoh92, MC91, KPW90, BHHL&8, BK90, KM97]. We shall now look

at some of these methods.

1.2.2 Surface Intersection Techniques

There is a significant body of literature addressing the surface intersection prob-

lem. Some recent surveys include [Pat93, Pra86, Hof89]. One of the main issues that has



10

Open
Component

Loop

Singu(arity
Figure 1.4: Various components of the intersection curve

to be considered while designing surface intersection algorithms is that two surfaces can in-
tersect in a number of components including small loops and singularities (see Figure 1.4).
Evaluation of all the components along with their correct connectivity structure is very
important. In general, surface intersection techniques can be broadly classified into four
major categories: subdivision, lattice evaluation, analytic methods, and marching methods.
More recently, techniques have been designed that combine features of different categories.
These are generally referred to as hybrid methods. Our approach uses a combination of
analytic and marching methods to compute the intersection curve between surfaces.
Subdivision methods: The basic idea of these methods is to decompose the
problem recursively into similar problems which are much simpler. Decomposition continues
until a desired level of simplicity is achieved and then the corresponding intersection is
obtained directly. The last step is to merge all the individual curves together to get the final
solution. This approach has the flavor of the divide and conquer paradigm used extensively
in algorithmic design. Subdivisions are based on the geometric properties of the control
polytopes [LRR80, Gei®3, Las86]. These methods are convergent in the limit, but if used
for high-precision results, lead to data proliferation and are consequently slow. In case
subdivision is stopped after some finite number of steps, it may miss small loops or lead to
incorrect connectivity in the presence of singularities. The robustness of this approach can

be improved by posing the problem algebraically and using interval arithmetic [Sny92].
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Lattice evaluation: These techniques decompose surface intersection into a series
of lower geometric complexity problems like curve-surface intersections [RR87]. This is
followed by connecting the discrete points into curves. Determination of the discrete step
size to guarantee robust solutions is hard. Further, these techniques can be slow and suffer
from robustness problems in terms of finding all the small loops and singularities.

Analytic methods: Analytic methods are based on explicit representation of
the intersection curve and have been restricted to low degree intersections [Sed83, Sar83].
Another alternative to the analytic methods is the use of geometric methods developed by
[Pie89]. In this paper, Piegl uses geometric principles to compute the intersection of quadric
surfaces very accurately. However, the algorithm cannot be easily extended to the general
intersection problem.

Marching methods: These are by far the most widely used [Far86, BHHLSS,
BK90, KPW90] and are easy to implement. The main advantage of this technique is its
generality, allowing intersection of arbitrary parametric surfaces as well as their offsets and
blends. The idea behind marching methods involves analytic formulation of the intersection
curve, determination of a start point on each component, and the use of local geometry to
trace out the curve. The intersection curve is defined implicitly as an algebraic set based on
the surface equations, as a curve of zero distance between the two surfaces, or as a vector field
[Hof90, KPW90, Che89]. Tracing is done on the intersection curve in higher dimensions or
on its projection in the plane. Most algorithms use the local geometry of the curve coupled
with quasi-Newton’s methods [BHHL88, BK90] for tracing. These methods do not converge
well sometimes [FF92] and many issues related to choice of step size to prevent component
Jumping are still open. Therefore, most implementations use very conservative step sizes
for tracing and this slows down the algorithm. Overall, current tracing algorithms are not
considered robust [Sny92].

The components of an intersection curve consist of open components and closed
loops (see Figure 1.4). Start points on the open components are obtained by curve-surface
intersections. Developing competitive algorithms for curve-surface intersection problems

and detection of closed loops has itself been an active area of research.
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Curve-Surface Intersection

The three major approaches for computing curve-surface intersections are based
on subdivision, interval arithmetic and algebraic methods. Subdivision based approaches
use the geometric properties of curve and surface representations [LR80]. Given two spline
curves, the intersection algorithm proceeds by comparing the convex hulls of their control
polytopes. Control polytopes and their relation to splines are described in chapter 2. If they
do not overlap, the curves or surfaces do not intersect. Otherwise the curves are subdivided
and the resulting convex hulls are checked for intersection. At each iteration the algorithm
rejects regions of the curve that do not contain any intersection point. Eventually, the curve
segments are approximated by straight lines up to a certain tolerance, and their intersection
point is accepted as the intersection of two curves. A simple subdivision algorithm has linear
convergence in the domain. Its convergence is improved using Bézier clipping [SWZ89,
Sed89, NSK90]. Bézier clipping makes use of the convex hull property in a powerful way, by
determining parameter ranges which are guaranteed not to include points of intersection.

The interval arithmetic approach is similar to subdivision [KM83]. The curves
are divided into intervals using vertical and horizontal tangents which define rectangular
bounding boxes. The subdivision amounts to evaluating the coordinate of the midpoint of
the interval and defining the resulting rectangles.

Algebraic methods formulate the intersection problem in terms of solutions of a
system of algebraic equations. Given the equations, the variables are eliminated using tech-
niques from elimination theory [Sal85] and the problem is reduced to finding roots of a
univariate polynomial. This approach was applied to ray-tracing by Kajiya [Kaj82] and to
curve intersections by Sederberg [Sed83]. For lower degree curve intersection (up to degree
three or four), the implicitization approach results in the fastest algorithms. However, the
problem of finding roots of higher degree polynomials can be numerically unstable [Wil59].
Therefore, the overall algorithm for intersection may not be accurate. Moreover, the sym-
bolic expansion of determinants to compute resultants can be computationally expensive
[Hof90]. To circumvent these problems, Manocha et. al. [Man92, MD94] have proposed

methods combining elimination theory with matrix computations. The resulting problem
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is reduced to computing the eigenvalues of a matrix as opposed to roots of a polynomial.
Eigenvalue algorithms like the QR algorithm [GL89] are backward stable and as a result the

intersections can be computed accurately and efficiently for high degree curves and surfaces.

Loop Detection

As shown in Figure 1.4, the intersection curve of two surfaces can result in a number
of different components like closed loops and singularities. While evaluating these curves,
it is essential to determine all the components. Loop detection deals with the problem of
determining whether an algebraic curve contains closed loops, and if so, where they occur.

There is a considerable amount of work in classic and modern literature related to
complete evaluation of algebraic curves. FEvery algebraic space curve is birationally equiva-
lent to an algebraic plane curve and the latter can be computed using Grébner bases [Buc89]
and resultants. Given an algebraic plane curve, techniques for desingularization based on
quadratic transformations are given in [Wal50, Abh90, AB88b]. An excellent introduc-
tion to desingularization techniques is provided in [Abh90, Hof89]. However, the resulting
algorithm can be exponential in the degree of the curve. Algorithms based on Collins’
cylindrical algebraic decomposition (CAD), [Col75, ACM84], have been used for evaluating
all components of algebraic curves [Arn83, SS83]. However, its worst case complexity is
doubly exponential in the number of variables. For plane curves, improved polynomial time
algorithms based on CAD have been presented in [AF88, AMSS].

The problem of evaluating all the loops of an algebraic curve numerically has
been studied in the modeling literature and a number of techniques based on subdivision
methods, marching methods and lattice evaluations [Hof89, RR92] have been developed.
The subdivision based algorithms subdivide the domain up to a user-specified tolerance
and evaluate the curves accordingly [Gei83, LR80, MP93]. No good methods are known for
computing a good tolerance value during curve tracing. Thus, most implementations use a
conservative value for the tolerance. In general, the two components of a curve can be very
close, and as a result, there is a potential danger of merging two isolated components into a
single one. Some of the other approaches are based on lattice evaluation where the surface-

surface intersection problem is simplified to a set of curve-surface intersection problems.
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Figure 1.5: Loop detection based on Gauss maps

The curves are obtained by evaluating the surface patch at a number of constant parameter
values. The biggest drawback in this approach is the lack of robustness. Small loops could
easily be missed depending on the frequency with which the curves are evaluated.

In the last decade, techniques based on curve tracing have been widely used to
evaluate high degree curves [BFJP87, BHHL88, KPP90, MC91]. The main idea is to com-
pute at least one point on every component of the curve and use the local geometry of
the curve to evaluate successive points. In this class of methods, identifying a point on
every loop is significantly harder than identifying a point on open components. As a result,
simultaneously with the development of new ideas for evaluating such curves, a number of
techniques for loop detection have been proposed [SKW85, SM88, THS89, Che89, Hoh91,
Kim90, KPP90, KPW90]. Most of the loop detection criteria are based on bounds on the
Gauss map of the surfaces being intersected. Sinha et. al. [SKW85] had shown that if two

(at least C'!) surfaces intersect in a closed loop, there exists a normal vector on one surface
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that is parallel to a normal vector of the other surface. The use of overlaps of Gauss maps
in loop detection is illustrated in Figure 1.5. Sederberg et. al. [THS89, SM88] strengthened
the above work by proving that if two (at least C'!) surfaces intersect in a closed loop, there
exists a line which is perpendicular to both surfaces (collinear normal vectors), provided
the inner product between any normal on one surface and any other normal on the other
surface is never zero. Patriakalakis et. al. [KPP90] precomputed the most significant points
of the intersection curve between an algebraic surface and a parametric patch to identify
the main features of the curve. Sederberg et. al. [SM88, ZS93] developed an efficient
way to bound the normals and tangents of a surface using bounding cones and pyramidal
surfaces, thereby giving a faster way to achieve the no loop condition. Hohmeyer [Hoh91]
bounded the Gauss maps using pseudo-normal patches and used an efficient algorithm for
linear programming [Sei90a] to test the separability criterion. In all these algorithms, if
the loop detection criterion is satisfied, each surface is divided into a pair of sub-patches
and the criterion is recursively tested on each pair combination. This is continued until all
patch pairs fail the test. The number of levels of subdivision depends on the tightness of
Gauss map bounds [EC94] and curvature variations of the two surfaces. Furthermore, these
algorithms may not work well if the intersection curve is self-intersecting.

Techniques based on finding critical points of plane vector fields inside the domain
of the surfaces have been proposed by [Che89, KPP90, KPW90, ML95]. Cheng [Che89]
defined a plane vector field as the gradient of an oriented distance function of one surface
from the other. The critical points are found by following special integral curves that
connect all the critical points. [KPP90, KPW90, ML95] use rotational indices of (planar
and three-dimensional) vector fields to determine presence of critical points. However,
these methods rely on some form of subdivision in the domain, and hence, cannot robustly

guarantee detection of all the critical points.

1.3 Thesis Statement

My thesis is
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The lower dimensional surface intersection formulation provides an

effective representation to perform Boolean operations on sculptured

models.
The algorithm’s performance on large real world models proves this claim. Depending on
the representation of the surfaces (implicit or parametric), their intersection curve can lie
in three or four dimensions. However, from classic algebraic geometry we know that it is
always possible to determine an equivalent curve that lies in a plane. The lower dimensional
formulation refers to evaluation of the equivalent plane curve. We shall describe all the
algorithms with the use of splines like NURBS which are widely used in most modeling
applications. By “large real world models” we mean industrially designed models which

have thousands of parts built using Boolean operations.

1.4 Main Contributions

This dissertation presents a number of techniques to effectively compute boundary
representations of Boolean combinations of sculptured primitives and perform associated
surface interrogations. It employs a combination of symbolic and numeric methods to
compute the B-reps accurately and efficiently. The input to our algorithm is a CSG tree that
describes the solid as a Boolean expression of primitive solids. In this thesis, we assume that
the surface boundaries of all the primitives can be represented as a piecewise collection of
parametric surface patches. However, our algorithms apply equally well on solids composed
of algebraic surfaces. We use trimmed tensor-product rational Bézier patches (see chapter
2), a special type of NURBS, to represent the surfaces. In order to compute the B-rep of
the final solid, our algorithm computes the Boolean combination of the solids at the leaves
of the CSG tree and propagates the results up the tree.

Given two such solids, our algorithm identifies pairs of surface patches from the
two solids that intersect. The intersection curve between each such pair is computed using
a new surface intersection algorithm. The surface intersection algorithm ensures accurate
evaluation of the intersection curve using algorithms for curve-surface intersection, loop

detection and curve tracing. It makes use of a matriz representation of the intersection
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curve to accurately compute intersections between trimmed surfaces and to classify the
various topological features generated by the intersection curve. The main contributions of

this dissertation are briefly described next.

1.4.1 Surface Intersection

Computing intersections of surfaces forms a critical part of any boundary evalu-
ation algorithm. Modelers that perform Boolean operations on polyhedral solids have to
deal only with plane-plane intersections. The essential difference between intersecting two
planes and two free-form surfaces is that while the former generates a single line, the latter
results in a high degree algebraic space curve with a number of components including open
components, closed loops and singularities (see Figure 1.4).

The main theme of our approach is to combine well known symbolic and numeric
techniques for accurate and efficient computation. Our algorithm borrows a basic theorem
of space curves from algebraic geometry. The crux of the theorem is that any algebraic space
curve can be projected into an equivalent plane curve after a suitable linear transformation
of the coordinates. Using this idea, we obtain a new representation of the intersection curve
in a plane in the form of a matrix polynomial. We then evaluate the curve using numeric
matrix computations and tracing algorithms. The algorithm guarantees determination of
all components of the intersection curve for well-conditioned input cases by employing newly
developed algorithms for curve-surface intersection and loop detection. Since all the com-
putation is performed in floating point arithmetic, we evaluate the intersection curve to a

user-specified tolerance!. The main steps of the algorithm are

e Given the two parametric surfaces, eliminate two of the variables using Dixon’s resul-

tant (see chapter 4) and obtain the intersection curve as a matrix polynomial.

e Compute a starting point on each component of the intersection curve using curve-

surface intersection and loop detection algorithms.

e Subdivide the domain of the surface into regions such that each sub-region has at

most one curve component.

1 —5 . . .
we use 107 in our implementation
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o If the separability condition is not satisfied due to singularities in the intersection
curve, use local optimization techniques to isolate singular points within small portions

of the domain.

e For each starting point, follow that component of the intersection curve using tracing

methods.

Of all these steps, the elimination step dominates the computational cost. How-
ever, most of the computation involved in this stage can be performed off-line, and its
cost amortized over a large number of surface intersection operations. This is particularly
advantageous in boundary evaluation algorithms where the surface intersection routine is
called hundreds of times for each solid. We have used our algorithm to generate surface
boundaries of models like the submarine storage and handling room (Figure 1.1) and the
Bradley fighting vehicle (Figure 6.1). On an average, our algorithm takes a fraction of a

second (0.2-0.5 seconds) to perform one surface intersection.

1.4.2 Curve-Surface Intersection

We use curve-surface intersections to evaluate starting points on intersection curves
of two surfaces and to perform ray-shooting tests (see chapter 6) to classify surface features
with respect to solids. Other applications for this algorithm include ray-tracing and visible
surface determination in computer graphics. In all these applications, we are interested in
finding intersections only in a small subset of the real domain.

In this dissertation, we introduce a new technique called algebraic pruning which
uses matrix computations effectively to prune out regions of the domain with no intersections
quickly. The basic idea of the algorithm is: Assume that we have an algorithm A which
given a guess p to an intersection point generates the closest intersection point «. Let the
separation between p and & be § = | p — v |. Then, we know that there is no intersection
point in the region (p —0) <t < (p + ). We can safely prune out this region.

We use inverse power iterations (an iterative matrix computation algorithm) to
converge to the closest intersection point. To the best of our knowledge, our algorithm per-

forms faster than previously known curve-surface intersection algorithms when the number
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of intersections is fairly sparse. It performs competitively even when the intersection set is
not sparse. This algorithm can be used without significant modification for finding zero-

dimensional intersection sets like planar curve-curve intersection as well.

1.4.3 Loop Detection

Loop detection in algebraic curves is an important part of any curve evaluation
algorithm, and is traditionally considered hard. The reason for this is because searching for
such curve features in higher dimensions is difficult. Any discretized search strategy suffers
from the possibility of missing small loops. We have devised an efficient algorithm for
loop detection based on a simple algebraic characterization. We use the fact that any real
algebraic plane curve is continuous in the complex projective plane. Put simply, it means
that while curve components appear disjoint when restricted to the real plane, they are
actually connected into one single component in the complex plane. Therefore, by following
the curve in complex space, we can reach at least one point on every loop component. The

overview of the algorithm is described below.

e Evaluate all the starting points of the curve (in complex space) at the boundary of

the domain.
o Follow each starting point by tracing out the curve in complex space.

e Few of these paths meet the real plane. These form candidates for loop components

of the curve.

Compared to some of the traditional algebraic approaches which exhibit quadratic
complexity in terms of the degree of the curve, our method traces out only a linear number
of paths (our algorithm takes about 10-20 milliseconds, depending on the length, to trace
out a single complex path completely). However, the number of complex paths to be traced
could be high depending on the degree of the algebraic curve. This method offers the
flexibility of being combined with other heuristics that would limit the number of complex
paths traced. Another advantage of our method is that it is general enough to be used with

any algebraic curve. We show the working of our algorithm on another algebraic curve - a
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silhouette curve of parametric surfaces from a given viewpoint. A silhouette curve locally
separates front and back facing portions of a surface from a given viewpoint. Some of the
most effective numerical methods previously developed for loop detection are only restricted
to curves resulting from the intersection of two parametric surfaces.

In this dissertation, we present another loop detection algorithm that is restricted
only to planar surface sections (intersection of a surface by a plane). One important appli-
cation for obtaining cross sections of solids is in the process of stereolithography for rapid
prototyping. The algorithm we present can be implemented in exact arithmetic or finite
precision depending on the accuracy demands of the application. The algorithm uses the
idea of Sturm sequences (described in chapter 5) to evaluate certain critical points that are
always present inside loops. By determining these points and subdividing the surface, we
can ensure that no loops will be missed. Our implementation of this algorithm is done only
in exact arithmetic, and is thus restricted to low degree surfaces for reasons of efficiency and
memory utilization. We believe, however, that this algorithm can be applied extensively if

it is implemented in double precision arithmetic.

1.4.4 Trimmed Surface Intersection

Our algorithm for boundary evaluation generates surface boundaries in the form
of trimmed NURBS patches. A detailed definition of trimmed NURBS is given in chapter 2.
For the moment, it suffices to say that along with the definition of the parametric surface, we
also have an oriented closed curve called the trimming curve in the domain. This trimming
curve determines the portion of the patch that is valid. For example, in Figure 1.6, the
trimming curve is generated in a counterclockwise sense and the portion of the patch that
is on the left of the curve is valid.

Let us look at why we need to have trimming curves for our surfaces. When we
perform a Boolean operation (union, intersection or difference) between two solids, their
intersection curve determines which part of the original surface belongs to the final solid. If
we look in the domain of one of these surfaces, the intersection curve partitions it. Only a
few of the partitions are retained in the final solid. For the kind of operations we perform on

solids, it is therefore, natural to represent their surface boundaries using trimmed parametric
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Figure 1.6: Obtaining intersections between trimmed surfaces

patches. Moreover, the trimming curves are portions of intersection curves themselves.

The surface intersection algorithm that we describe in chapter 3 deals with untrimmed
parametric surfaces only. Applying this algorithm, only some parts of the intersection curve
generated are valid for trimmed surfaces. For example, in Figure 1.6, the valid intersection
curve is only between (pg,p1) and (pz,p3). Generating the p;’s accurately is not an easy
problem because it involves intersections of two fairly high degree algebraic curves. The
accuracy of these points is crucial because they determine important surface features of the
new solid.

We present an efficient and accurate algorithm to generate these intersection
points. The algorithm uses the piecewise linear representation (generated by curve tracing)
of the intersection and trimming curves to compute approximations for these points. We
then use the patch parameterizations of the surfaces involved and the analytic represen-
tation of the intersection curve to refine the approximations using iterative minimization

techniques. Details of this algorithm are given in chapter 6.
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1.4.5 Component Classification

When two solids enter into a Boolean operation, only portions of the surfaces
of each solid remain in the final solid. The portions to be retained are determined by
the intersection curve between the two solids. For example, consider a union operation
between two solids A and B. After computing the intersection curve, only portions of
A that lie outside B and those of B that lie outside A are retained in the solid A U
B. Similar characterizations exist for other operations as well. Component classification
refers to algorithms that generate maximally connected portions of the boundary 7 of a
solid that have the property that 7 either lies completely inside or outside (orientation-
invariant component) the other solid. Furthermore, it also deals with the resolution of the
inside/outside nature of each orientation-invariant component.

We use the topological information (connectivity between the various features)
of each solid and the intersection curve between them to generate the various orientation-
invariant components. Our algorithm creates an associated undirected graph and computes
its connected components for this purpose. It also generates another graph whose vertices
are the various orientation-invariant components. An edge exists between two such vertices
if and only if orientations are opposite with respect to the other solid. This connectivity
information turns out to be very useful in classifying the various components efficiently.

When two polyhedral solids intersect, it is fairly easy to classify the inside/outside
nature of the various components by performing simple local tests based on the orientation
of the intersection curve [Hof89]. However, for solid boundaries composed of curved surfaces,
local tests cannot be performed. The main reason for this is the complicated nature of the
intersection curve. We use an algorithm based on ray-shooting to perform the classification
tests. Ray-shooting is based on the following simple fact: A point is inside a closed solid if
any semi-infinite ray originating from that point intersects the boundary of the solid odd
number of times; otherwise, it is outside. We use our curve-surface intersection algorithm
to perform ray-shooting. Since curve-surface intersection is a fairly expensive operation, it
behooves us to reduce the number of such invocations. Our algorithm uses the connectivity

information between the various components and performs just one ray-shooting test per
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solid per operation. This significantly speeds up our computation.

The accuracy of the ray-shooting test is very important in determining the final
solid. Double precision arithmetic or degenerate ray-surface intersections could possibly
change a result from inside to outside or vice-versa. We use an analytic representation of
the intersection curve and stable matrix computations to prevent such catastrophic errors.

More details are presented in chapter 6.

1.5 A Guide to the Chapters

To understand some of our algorithms better, some mathematical background is
required. Chapter 2 lays these mathematical foundations and introduces our terminology.
Chapter 3 presents methods to compute intersection points when a curve meets another
curve or surface. This algorithm is used by our surface-surface intersection algorithm and
component classification algorithm. Chapter 4 describes our surface-surface intersection
algorithm. It describes our formulation of the intersection curve, and the curve tracing
methods used to evaluate it. The problem of identifying closed loops in algebraic curves
is discussed in Chapter 5. It also presents our algorithm to identify loops when surfaces
are sectioned by a plane. Two additional applications of our loop detection algorithm
are presented in Chapter 5. Chapter 6 discusses our algorithm to evaluate curved surface
boundaries of Boolean combinations of solids. Our implementation of the various algorithms
presented in this dissertation and techniques to parallelize the computation are presented in

Chapter 7. Chapter 8 suggests some extensions to this work and concludes this dissertation.
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Chapter 2

Mathematical Background

In this chapter, we will briefly introduce some mathematical preliminaries and

representation issues that are required to get a better understanding of this thesis.

2.1 Affine and Projective Spaces

In our discussion, we will use both affine and projective spaces.

Definition 1 Affine n-dimensional space is a space where all points p have coordinates

p=(21,22,...,2,) € R", where all the x;s are always finite.

Fuclidean space is the most familiar form of affine space with the Euclidean dis-

tance metric associated with it.

Definition 2 Projective n-dimensional space (P™) consists of all points with (n+ 1) coor-
dinates (1,22, ..., Tn, Tnt1), where not all x; are zero and all z; are finite. Further, for all

a %0, both (x1,22,..., %, Tpt1) and (Qx1, 0Za, . .., 0C,, 0 ,11) represent the same point.

The variable z,,41 is called the homogenizing variable. Therefore, these coordinates
are also called homogeneous coordinates. In all our usage throughout this dissertation, the
homogenizing variable is written as the last coordinate. An interesting connection between
the two spaces is that projective n-space is the space of all lines in affine (n+ 1)-space that
contain the origin. In Figure 2.1, point pis the representative point of line L = (a1t, ast, ast).

The plane z3 = 1 represents P2.
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Figure 2.1: Embedding projective space into affine space

2.2 Curve and Surface Representation

Most algebraic curves and surfaces in 3D space can be represented using their
implicit form, f(z,y, z) = 0. Geometric modeling applications frequently involve computing
a set of points on a given curve or surface. But the process of computing points on surfaces
with implicit representation is computationally intensive. An alternative representation is
the parametric form. For example, a parametric space curve is a mapping from the real
line to R3. The domain of these functions is also called the parameter of the curve. By
substituting different values for the parameter, we obtain different points on the curve.

A NURBS curve [Far93] is a special kind of parametric curve. This curve is
completely specified by a set of points in space and a few smooth functions. These points
are called the control points of the NURBS curve. The pre-specified functions are called
the basis or blending functions. The exact forms of these basis functions are given later in
this section. The control points and the blending functions are combined mathematically
to give rise to a single curve.

The NURBS curve is composed of a number of segments or spans. In the paramet-

ric domain, these spans are described by a knot vector, which is basically a non-decreasing
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Figure 2.2: B-Spline blending functions for a cubic curve

sequence of parameter values. The knot vector determines the region of influence a par-
ticular basis function has on the curve. A NURBS polynomial is defined as a linear com-
bination of basis functions. When the coefficients of the linear combination expression are
4-tuples, the set of four implied polynomials form a curve. Each 4-tuple is a homogeneous
representation of a control point in projective 3-space, and the homogenizing variable (47’%
coordinate) is called a weight. In the rest of this dissertation, we assume that the weights are
non-negative. Essentially, this assumption ensures that the curve or surface is completely
contained within the convex hull of the control points. This is not a major restriction
because most curves and surfaces occurring in CAD applications can be represented using

non-negative weights.
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We shall represent control points in homogeneous coordinates (vi, w;), where v; =
(wizs, wiy;, wiz;) and w; is the weight. Therefore the parametric curve f(t) of degree k — 1

with n control points and the standard basis functions A is given by

Db Wil k(1)

N i (t) is defined recursively over the knot interval [t;, ;4] as

f@)

1, if t; <t <t
./\/;'71(t)2 9 7 1+

0, otherwise

: _ (e = ONigr e (8) | (E = t)Nig—1(t)
ka(t) - tipk — tit1 - tipk—1 — &

Figure 2.2 shows the various blending functions for a cubic NURBS curve.

Based on the above formulation of the parametric curve, it is clear that the control
points determine the shape of the curve. Further, since each control point has only a limited
range of influence, it is very easy to shape the curve (or surface) by local modification of
the control points. In most parametric specifications, the domain is normalized to lie in
the unit interval, t € [0, 1], without loss of generality. We shall stick to this convention
throughout this dissertation.

A tensor product NURBS surface is defined over a two dimensional parametric
domain over the parameters 0 < s, < 1. The shape of the surface is determined by
two array of knot vectors (one for each parameter) and a two dimensional array of control
points [Far93]. Figure 2.3 shows the relationship between a surface patch and its parametric
domain. The weighted sum formulation of a NURBS surface is
> it 2oy=0 VijNik ()N (t)
>0 Y=o wiiNik(s)Nja(t)

In this equation, the surface is of degree k—11in s and [—1in ¢ (degree (k—1)x(I—1),
for short). A trimmed NURBS surface, F/(S,t)7 is a subset of F(s,t) defined by a set

F(s,t) =

of trimming curves. A trimming curve is a simple, closed, piecewise sequence of curves
(linear, NURBS or algebraic) defined in the domain, D = [0, 1] x [0, 1], of F(s,t). The
subset of the domain that is part of the trimmed surface is usually given by a unambiguous
rule. For consistency, we shall define a rule that we follow for algorithmic description and

implementation purposes.
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Figure 2.3: A surface patch and its parametric domain

e The trimming curve is oriented counterclockwise when looking into the plane of the
paper from above (see Figure 2.4). More precisely, the simply closed trimming curve

is homeomorphic to a circle which is oriented counterclockwise.

e The curve retains the part of the surface domain immediately to the left of it. Consider
a point ¢ on the curve and a domain point q/ arbitrarily close to ¢ (see Figure 2.4).
Let the tangent at ¢ be t. Then q/ € Dy is a part of the trimmed surface if the

counterclockwise angle between t and q;/ is less than 7.

e Two points ¢; and g3 belong to the same trimmed region (D, or D — D) if and only
if the line segment ¢ ¢z intersects the trimming curve even number of times (counting

multiplicities).

Therefore,
F'(s,1) = {F(s,1) | (s.1) € Dpr}

Bézier surfaces are special types of NURBS surfaces, that do not have any knots
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Figure 2.4: Trimming rule

except at the corner points (i.e., (s,¢) = (0,0), (0,1),(1,0), (1,1)). The multiplicity of s and
t knots is one more than s and ¢ degrees, respectively, of the surface. The main advantages
of the Bézier representation is that they are more easy to evaluate than general NURBS.
Using knot insertion algorithms [Far93], it is possible to decompose each NURBS surface
into a series of rational Bézier patches. We use Bézier patches to represent boundaries of
the solid primitives in our algorithms.

A rational Bézier patch, F(s,t), of degree m X n, defined in the domain (s,t) €
[0,1] x [0,1] and specified by a two dimensional array of control points (vij, w;;) (see Fig-
ure 2.5) is given by
Dm0 2i=0 VB (8) B} (1)
Soito Y=o wii B (s)BE (L)

B is the Bernstein basis function defined as

F(s, ) = (2.1)

A trimmed Bézier patch, as shown in Figure 2.6, has trimming curves in the

domain of the patch and trims out the domain similar to its NURBS counterpart.
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Figure 2.5: Sixteen control points of a bicubic Bezier patch

The partial derivatives of a Bézier patch, F(s,t), with respect to s and ¢ and de-
noted by Fg and Fy, lie in the tangent plane of F(s, ). If Fg and Fy are linearly independent,

then the normal direction at (s,t) is given by
N(s,t) = Fa(s,t) X Fi(s,1) (2.2)

In the above definition, X refers to the cross product between two vectors in 3-
space. The partial derivatives of a rational Bézier patch are computed as follows. Let the

rational form of the patch F(s,t) be % Then,

s(s:0) = TG oo (Vi — vi )BT ()B(1)

o(8,0) = 7 g (Wiga g — Wi ) B~ (s) B (1)
Vi(s,t) = Zoz] S0 (Vi1 — i) BT ()BT (¢)
Wi(s,t) = >0 (Wijn — Wi j) B () BS (1)

It is easy to note that the above four functions are also in Bézier form. We compute

the partial derivatives of the patch using these functions and the quotient rule.

(V) WV - VW (V) WV - VW,
5_ 7 w t_

w w2 w2
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trimmed surface

trimmed domain

Figure 2.6: A trimmed surface patch

2.2.1 Gauss Maps

Gauss maps provide a convenient way to describe the normals of a surface. We

define the Gauss map of a surface with a continuous unit normal vector field as [O’N66]

Definition 3 The Gauss map G¢ of a surface F, is a map Gg : F — S?, a sphere embed-

ded in R?, which maps point F(s,t) to the vector U(s,t), translated to the origin, where

U(s.0) = -

Therefore, at some point p = (s,t) on the surface, G¢(s,t) = Up, where Uy is
a point on the unit sphere centered at the origin O such that the vector ijp is along
the same direction as N(s,?). The function G¢ can be used to compute the unit normal
direction at a given point on the surface. But computing an exact representation of Gy is
quite complicated. Further, the continuous unit normal vector field assumption is not valid
for some cases of degenerate parameterizations. Fortunately, in our applications, we are only
interested in the direction of the normals. The pseudo-Gauss map, G = Fg x Fy gives this

information. It is called a “pseudo”-Gauss map because the vector field is not normalized
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and for certain parameterizations of surfaces, it may be incorrect at finite number of points.
The computation of the pseudo-Gauss map is quite efficient and is based on the partial
derivative computation described above. Another benefit of using the pseudo-Gauss map
is that G is itself a Bézier surface, and can thus be described in terms of its control points.
Hohmeyer [Hoh91] uses pseudo-Gauss maps to perform efficient loop detection in surface
intersection algorithms.

If F(s,t) has a polynomial parameterization of degree m X n, then the pseudo-
normal surface is a degree (2m — 1) X (2n — 1) Bézier patch. For rational surfaces, the

degree of the cross product is 3m X 3n.

2.2.2 Multipolynomial Resultants

Elimination theory investigates the conditions under which sets of polynomials
have common roots. Usually, it concerns itself with sets of » homogeneous polynomials in
n unknowns, and finds the relationship between the coefficients of the polynomials which

can be used to determine whether the polynomials have a non-trivial common solution.

Definition 4 [Sal85] A resultant of a set of polynomials is an expression involving the
coefficients of the polynomials such that the vanishing of the resultant (evaluating to zero) is
a necessary and sufficient condition for the set of polynomials to have a common non-trivial

rooft.

In this dissertation, we use resultants to compute implicit forms of surfaces from
their parametric representation and to detect the presence of loops in our surface inter-
section algorithm. [Mac02] provided a general method for eliminating n variables from n
homogeneous polynomials. The resultant is expressed as a ratio of two determinants. How-
ever, a single determinant formulation exists for n = 2 and 3 [Sal®5, Dix08]. For n = 3,
however, [Dix08] gives the resultant only if the three equations have the same degree. In
our applications, it is sufficient to compute resultants for the cases when n =2 and 3.

Sylvester’s method [Sal85] can be used to express the resultant of two polynomials
of degree m and n respectively as a determinant of a matrix with (m+n) rows and columns.

Given two polynomials,
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f(@) = apa™ + a2 4.4 arz + ag, (2.3)

and

1

9(@) = bpa™ + b12™ ™ 4 bra + by, (2:4)

generate m polynomials by multiplying f(z) with ',i = m — 1,m — 2,...,1,0 and n
polynomials by multiplying ¢g(z) with 2*,¢ = n — 1,n — 2,...,1,0. This results in a total
of (m + n) polynomials. By treating the (m 4 n) monomials, #%,i = 0,1,...,m +n — 1 as

independent variables, the Sylvester’s resultant for the above two polynomials is

A, Qp_1 .. ag 0 ... 0
0 A,  Gp_q ag 0
0 - 0 a, Gnp_1 ... g
R.(f,9) = (2.5)
0o ... 0 by buy bo
0 0 bm bm—l bO 0
by, b1 ... bg 0 . 0

The problem of computing the implicit representation of a parametric surface F(s,t) =

(X(s,1),Y (s,t), Z(s,t), W(s,t)) involves eliminating s and ¢ from the three polynomials

X(s,t)—aW(s,t) =0
Y(s,t) —yW(s,t) =0
Z(s,t) —zW(s,t) =0

We use Dixon’s resultant [Dix08] to compute the implicit form. We discuss this in more
detail in chapter 3.

The results and algorithms developed in elimination theory assume that the poly-
nomials are described in their monomial basis (like polynomials given in equations (2.3)
and (2.4). This assumption is not true in cases like NURBS and Bézier patches where

the polynomials are given using other basis functions. For example, tensor product Bézier
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patches are given in the Bernstein basis. In order to apply resultant algorithms on these
polynomials, we have to convert them into the monomial (or power) basis.
Bernstein to Power Basis: In order to convert from Bernstein to power basis,

we perform a reparametrization of the form

for tensor product surfaces. In the resulting formulation we substitute 5 = >, t= ﬁ
and the resulting parametrizations are in power basis in terms of 5 and ¢. For tensor product

Bézier surfaces, like the one defined in equation (2.1), the new formulation becomes

m n

Yoo | | st
4 J
F(s,t) =
m n m n —i_j
2i=0 2_j=0 , | wigst
4 J

The domain of the surfaces are suitably transformed. The reparameterization
strategy can be applied to transform other basis functions to the power basis as well. Two

observations are made regarding these transformations.

e Bounded domains get transformed to unbounded domains. For example, the unit

square domain is mapped to the positive quadrant of the real plane.

e Computations may become numerically unstable near the boundary values of the
parameters. This is the case in tensor product Bézier patches when s and ¢ are close

to 1.0.

To avoid these problems, we apply this transformation only during phases of the
algorithm where resultant algorithms are used. Omnce that is done, we apply the inverse

transformation to restore the stability of the Bernstein basis [FR87].
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2.3 Sturm Sequences
Let f(z) be a polynomial of degree n,
f@)=a,2" +a,_12" '+ Fawtag, a, #0 (2.6)

We construct a sequence of polynomials fi(z),7 = 0,1,...,m, of descending degrees. By
examining the number of sign changes, w(a), for certain points # = a, we can determine
the number of real roots of f(z) in a specified region. Such a sign change happens whenever
the sign of a polynomial value differs from that of its successor. Furthermore, if f;(a) =0,
then this entry is removed from the sequence before counting the sign changes. Suitable

sequences of polynomials are called Sturm sequences.
Definition 5 [SB93] The sequence

folw) = F(@), fi(@)s -, () (2.7)

of real polynomials is a Sturm sequence for the polynomial f(z) if:

All real roots of fo(x) are simple.

o sign f1(&) = - sign f5(€) if € is a real root of fo(x).

Forv=1,2,...,m—1,
fix1(§) fica(8) <0

if € is a real root of fi(z).

The last polynomial f,,(x) has no real roots.

For such Sturm sequences we have the following theorem that we state without

proof.

Theorem 1 [SBY3] The number of real roots of f(x) = fo(x) in the interval [a,b) equals
w(b)—w(a), where w(x) is the number of sign changes of a Sturm sequence fo(z), fi(x), ..., fm(2)

at location x.
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There is a simple recursive algorithm to construct one such Sturm sequence for the
polynomial f(z), provided it has only simple real roots. We define the first two polynomials

in the sequence as

!

folz) = f(x), fi(x) = —fole) = —f (2)

The remaining polynomials f;11(z) are defined recursively as the remainder when f;_;(z)

is divided by fi(z).
fi—l(w) = gz(x)fz(w) - Cifi+1($)7i:1727"'7

where ¢; is a positive constant. Further, the degrees of the polynomials obtained should
form a strictly decreasing sequence. This algorithm is the well-known Fuclid’s algorithm
for obtaining the greatest common divisor of two polynomials. Because of the decreasing
degree condition, the sequence must terminate after at most m < n steps.

The main use of Sturm sequence in combination with bisection methods is to
isolate roots of polynomials in a given domain. They are also used to find eigenvalues of
Hermitian tridiagonal symmetric matrices. For a system of multivariate polynomials with a
discrete set of roots, there are extensions of Sturm sequences. Chapter 5 describes one such
technique. We will use multivariate Sturm sequences in evaluating certain critical points

for loop detection.

2.4 Algebraic Curves

In this section, we describe properties of algebraic curves in the context of curve
evaluation that we use in the remainder of this dissertation. An algebraic curve in R™*!

can be expressed as a solution of n affine polynomial equations in (n + 1) unknowns.

Fy(uy,ugy. ooy ttp_1,u,0) = 0
Fy(ur,ugy . ooy tip_1,u,v) = 0
(2.8)

Fn(u17u27 3. '7un—17uvv) = 0.
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The functions F;, i = 1,2,...,n, are the components of a vector field F': D — R", D C
R™*1. In this context, we are only interested in evaluating all the components of the curve
inside the region D = [Uyy, Uyo| x[Us1, Uga] X . . X [Up—1,1, Uy—1 2] X [Ur, U] X [V, V5] € R,
The solution to the problem are elements of D that map to the zero vector under F. This
can be illustrated by taking the example of parametric surface intersection. Given two

Bézier surfaces,

F(s,t) = (X(s,1),Y(s,t), Z(s,t),W(s,1))
G(u,v) = (X(u,v),Y(u,v), Z(u,v), W(u,v))
represented in homogeneous coordinates, their intersection curve is defined as the set of

common points in 3-space and is given by the vector equation F(s,t) = G(u,v). This

results in the following set of three equations in four unknowns.

Fi(s,t,u,0) = X (s, )W (u,v) — X (u,0)W(s,t) = 0

—~

Fy(s,tyu,v) =Y (s, )W (u,v) = Y (u,0)W(s,t) = 0 (2.9)

Fs(s,t,u,v) = Z(s, )W (u,v) — Z(u,v)W(s,t) = 0,

and the domain of the intersection curve is (s,¢,u,v) € [0, 1] x [0, 1] x [0, 1] x [0, 1].

The degree of an algebraic curve is a fairly accurate measure of its complexity.
Geometrically, the degree of a space curve is the maximum number of intersections it has
with any plane. Algebraically, the degree of a space curve is the degree of the implicit
equation of its projection onto a plane. Bezout’s theorem is an important theorem that
relates the degree of an algebraic curve with the degrees of the surfaces that intersect to

produce the curve.

Theorem 2 Bezout’s Theorem: Two algebraic surfaces of degree dy and ds, respectively,

intersect in an algebraic curve of degree didy unless they have a common component.

Sederberg [Sed83] developed a computational method based on resultants to com-
pute the implicit form of any parametric surface. For the special case of a degree m X n

tensor product Bézier surface, Sederberg showed that its implicit form is of degree 2mn.
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fuv) =0

-

f(uv)=c>0
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u

f(uv)=c<0
Figure 2.7: Isocontours of bivariate polynomial

Consider two rational Bézier surfaces to degree my X ny and mgy X ng respectively. Us-
ing the previous fact, we know that the algebraic degree of these surfaces are 2myn; and
2mang. Bezout’s theorem states that the intersection of these surfaces results in a curve of
degree 4minymsang. In most modeling applications, it is typical to design bicubic (degree
3 x 3) Bézier surfaces to preserve smoothness constraints. Intersection of two bicubic Bézier
surfaces results in an algebraic space curve of degree 324.

Equation (2.9) gives an intersection curve formulation in parametric space. Using
resultant techniques, it is possible to project this curve onto a plane (domain of one of the
patches actually - see chapter 3). In this case, we obtain an implicit equation of the plane
curve of the form f(u,v) = 0. The degree of this curve is 2myni(mz + ng). For the bicubic
case, this expression evaluates to 108.

Tangents to algebraic curves: Numerical curve tracing methods are one of the
more popular techniques to evaluate algebraic curves. These methods usually evaluate the
tangent at some point on the curve and step along the tangent using a step size. This
approximant is refined to estimate the new curve point.

Given a plane curve, f(u,v) = 0, we want to find the tangent at p = (ul, v/) on
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it. Consider the surface w = f(u,v). The curve produced by cutting the surface with a
plane w = constant is called an isocurve. The curve f(u,v) = 0 is the special case when
the constant is zero (see Figure 2.7). It is a well known fact that the direction of greatest
change of a function is along the gradient of the function. Further, the gradient is along the

normal to the isocurves at all times. Therefore, the normal vector ﬁ(ul, v/) is given by

!

ﬁ(u ,U/) = V_)f = (fuva)(ulvvl)

For plane curves, the tangent is obtained easily from the normal vector. For the
above normal vector, the tangent is (—fv,fu)(ul,v/). We use this definition to evaluate

tangent vectors of intersection curves in chapter 3.

2.5 Matrix Computations
Given an n X n matrix A, its eigenvalues and eigenvectors satisfy the equation
Ax = sx,

where s is an eigenvalue and x # 0 is the corresponding eigenvector. The eigenvalues of
a matrix are also the roots of its characteristic polynomial, Determinant(A — sI). Given

n X n matrices, A and B, the generalized eigenvalue problem is
Ax = sBx.

where s is an eigenvalue and x # 0 is the corresponding eigenvector. The eigenvalues of
the matrix pencil (A, B) are all elements s such that Determinant(A — sB) = 0. If B is
non—singular, the problem can be reduced to a standard eigenvalue problem by multiplying

both sides of the equation by B~! and thereby obtaining
B 'Ax = sx.

When B has a high condition number, such a reduction may be numerically unstable.
Standard algorithms for computing eigenvalues, like the QR algorithm for the standard
eigenvalue problem and Q7 algorithm for the generalized eigenvalue problem, are based on

orthogonal similarity transformations [GL89].
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We reduce our problems of intersection computation to computing certain eigen-
values of a matrix pencil (a parameterized matrix form). Since the QR or QZ algorithm
compute all the eigenvalues, they can be inefficient. Iterative techniques based on the power

method are more efficient because they find only certain eigenvalues.

2.5.1 Power Method

The Power method computes certain eigenvalues and eigenvectors of a matrix.
Let A be a diagonalizable matrix such that X71AX = diag(A1, Az, ..., \,) where X =
[X1,X2,...,X5] and [A1] > [A2] > ... > |A,]. diag(A1, Az, ..., Ay) is a diagonal matrix with
As as its diagonal entries. Given a unit vector qg, the power method produces a sequence

of vectors qg.

for k=1,2,...
zp = Aqj1
ar = zi/ || zk ||l
sk = qi Aqy

end

where || zj || is the element of maximum magnitude in the vector z;. Using exact arith-
metic power method, it is known that s; converges to Ay and qj converges to xi, the
eigenvector associated with Ay provided qg is not orthogonal to x;. Moreover, the asymp-
totic convergence rate is [A1|/|A2|. A is the dominant eigenvalue of A. The power method
is described in detail in [GL89, Wil65].

In our applications, we use power iterations to compute the smallest eigenvalues
(in magnitude) of matrix pencils of the form, As' + B. The smallest eigenvalue of As' +B
corresponds to the largest eigenvalue of (ASI + B)~!. Instead of computing the inverse

explicitly, given qg, inverse power iteration solves a linear system of equations,
for k=1,2,...
Solve (As' +B)zp = Aqs_;

ar = zi/ || 2k |l



41

sy = —(af Bay)/(a; Aqy)

end

where || z ||oo is the element of maximum magnitude of z;. We compute an LU decom-
position of As + B using Gaussian elimination. The vector qq is chosen randomly. Given
Aqy_1, the resulting triangular linear system can be solved in O(n?) steps. Assume that

the eigenvalues (A1, Ag, ..., A,) of As' + B can be ordered such that
|S/ _A1| < |S/ - A2| §7"'7§ |S/ _An|

The asymptotic convergence rate is s — A|/[s' — Aa|. If two eigenvalues, A; and Ay, are
almost at the same distance from 8/7 the convergence can be slow. The convergence can be

further improved using the following procedure (given qg and up).

for k=1,2,...
Solve (As' +B)zp = Aqs_;
Solve (As' +B) vy = Aug_,
ar = zi/ || zk ||l
up = Vie/ || Vi [loo
sy = —(uf Bay)/(u} Aqy)

end

In exact arithmetic, this process is locally cubically convergent [Wil65]. Many other tech-
niques for improving the accuracy and convergence of the algorithm in the presence of higher

multiplicity eigenvalues or closely spaced eigenvalues are presented in [Wil65].

2.5.2 QR Algorithm

The QR algorithm computes eigenvalues of a matrix. The basic QR algorithm

makes use of the Schur Normal Form. Schur’s theorem states that
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Theorem 3 [SBY3] For every n X n matriz A there is a unitary n X n matriz U such that

AL % *
vHau= | O M i
0 0 A,

The diagonal elements are the eigenvalues of A.

UH is the conjugate transpose of U, i.e., for real matrices, UH = UT. A matrix U is
unitary if UHU =1, the identity matrix. Two matrices A and B are similar if B =
T~1AT, for some nonsingular matrix T. Similar matrices have the same eigenvalues. The
transformation T is called a similarity transformation.

The basic QR algorithm can be written as

Given A € R™"*"™ define A; = A.

For k=1,2,..., do
Calculate the QR decomposition Ax = QkRy,
Define Axy1 = RxQk.

In the above algorithm, Qg is an orthonormal matrix (QEQk =1I) and Ry is an

upper triangular matrix. The iterates Ay are stmilar to each other because

Axi1 = ReQr = QFALQy

The basic idea of QR iteration is that if these transformations are carried out enough
times, the upper triangular matrix will eventually have the eigenvalues in its diagonal
elements. Computing a QR decomposition of a general matrix requires (O(n>) operations)
per iteration. To reduce the operation count, we use similarity transformations to convert

A to an upper Hessenberg matrix.
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Figure 2.8: Seidel’s algorithm for polygon triangulation

A matrix H is in upper Hessenberg form if its elements h;; = 0 for all j <1 — 2,

i.e.,
0 = * ok
H =
0 O * *
0O ... 0 * ok

Computing a QR decomposition of an upper Hessenberg matrix (using Given’s ro-
tations) requires only O(n?) operation [SB93]. The QR decomposition of an upper Hessen-
berg matrix yields an orthogonal component Q which is also upper Hessenberg. Therefore,

the basic QR algorithm preserves upper Hessenberg form.

2.6 Seidel’s algorithm for polygon triangulation

Seidel’s algorithm [Sei91] is an incremental randomized algorithm to compute the
trapezoidal decomposition induced by a set of n lines segments in 2D. The expected time
complexity of this algorithm in O(nlog®n). This algorithm can be used for fast polygon
triangulation and, as a by-product, produces a query structure which can be used to answer

point-location queries in O(logn) time.
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The algorithm proceeds in three steps as described below (shown in fig. 2.8).

e Trapezoidation of the polygon: Let S be a set of non-horizontal, non-intersecting
line segments of the polygon . A randomized algorithm is used to create the trape-
zoidal decomposition of the X —Y plane arising due the segments of set S. This is done
by taking a random ordering sq,..., S, of the segments in S and adding one segment
at a time to incrementally construct the trapezoids. This divides the polygon into
trapezoids (which can degenerate into a triangle if any of the horizontal segments of
the trapezoid is of zero length). The restriction that the segments be non-horizontal is
necessary to limit the number of neighbors of any trapezoid. However, no generality is
lost due to this assumption as it can be simulated using lexicographic ordering. That
is, if two points have the same Y-coordinate then the one with larger X-coordinate
is considered higher. The number of trapezoids is linear in the number of segments.
Seidel proves that if each permutation of sq,...,s, is equally likely then trapezoid

formation takes O(nlog® n) expected time.

e Decomposition of the trapezoids into monotone polygons: A monotone
polygon is a polygon whose boundary consists of two Y-monotone chains. These
polygons are computed from the trapezoidal decomposition by checking whether two
vertices of the original polygon lie on the same side of the horizontal line. This is a

linear time operation.

e Triangulation of monotone polygons: A monotone polygon can be triangulated
in linear time by using a simple greedy algorithm which repeatedly cuts off the convex
corners of the polygon [FM84]. Hence, all the monotone polygons can be triangulated

in O(n) time.

In our algorithm for boundary evaluation, we represent the trimming boundary of
a surface patch as a simple polygon. During ray shooting and trimmed surface intersection
operations, we have to perform point location queries in the trimmed domain. We use a

fast implementation [NM95] of Seidel’s algorithm for this purpose.
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Chapter 3

Curve Surface Intersection

The problems of computing the intersection of curves and surfaces are fundamen-
tal in computer graphics and geometric modeling. Common applications include surface-
surface intersection, ray-tracing, hidden-curve removal and visibility algorithms [Hof89,
EC90, NSK90, SP86]. Our surface-surface intersection algorithm (chapter 4) needs start-
ing points on each component of the intersection curve. We use curve-surface intersection
to evaluate these starting points. Our algorithm for boundary evaluation relies on a ray-
shooting approach for the classification of certain solid features. Ray-shooting can be re-
duced to a series of ray-surface intersection tests. In this chapter, we provide an efficient,
accurate and general algorithm to solve curve-surface intersection problems. We assume
that problems like curve-curve intersection, curve-surface intersection and ray-surface inter-
section result only in a zero dimensional intersection set. Chapter 4 deals with intersection

problems that result in algebraic curves.

3.1 Intersection Problems and Algebraic Formulation

We only consider the intersections of rational parametric and algebraic curves and
surfaces. These include Bézier curves and surfaces, NURBS, quadric patches etc. A rational

Bézier plane curve is represented as:
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PO Ql QZ

Figure 3.1: Intersection of Bézier curves

where P; = (w; X;, w;Y;) are the coordinates of a control point, w; is the weight of the control
point and B!(t) corresponds to the Bernstein polynomial. Other rational formulations
like B-splines can be converted into a series of rational Bézier curves by knot insertion
algorithms. Algebraic plane curves (of degree n) are generally expressed in standard power
basis:
F(x,y) = Sipj<ncija'y’ = 0.

They can also be represented in Bernstein basis. The problem of intersection corresponds
to computing the common points on such curves in a particular domain.

The parametric surfaces may correspond to tensor product Bézier patches or
NURBS patches. Their representations were discussed in chapter 2.

The problem of intersection can always be reduced to solving a system of algebraic
equations. For example, given the homogeneous representation of two rational Bézier curves,
P(s) = (X(s),Y(s),W(s))) and Q(t) = (X(t),Y(t),W(t))), the problem of intersection

corresponds to computing all the common solutions of

X(s)W(t) - X(OW(s) = 0 (3.1)

Y(s)WH) - Y(OW(s) = 0
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in the domain (s,t) € [0,1] x [0, 1].
Given a Bézier surface F(s,t) = (X (s,t),Y(s,t), Z(s,t), W(s,t)), its intersections

with a ray represented as the intersection of two planes
Q1X+b1Y+Clz+d1 =0

and

QQX+b2Y+CQZ+dQIO

can be reduced to the solutions of

a1 X (s,t) +01Y (s, t) + 1 Z(s,t) + diW (s, t) = 0 (3.2)

as X (s,t) + b2Y (s,t) + c2Z(s,t) + deW (s, t) = 0

in the domain (s,t) € [0,1] x [0, 1].
Given a Bézier space curve, P(u) = (X(u),Y (u), Z(u), W(u)), its intersections

with the Bézier surface F(s,t) can be formulated as all solutions of

X(s,t)W(u) = X(u)W(s,t) = 0

Y (s, t)W(u) =Y (u)W(s,t) = 0 (3.3)

in the domain (s,t,u) € [0,1] x [0, 1] x [0, 1].

Accuracy: It is clear that in all these formulations, we are trying to solve a system of
equations. Consider the system of equations described by equation (3.3). Let the three
equations be denoted by fi(s,t,u), fao(s,t,u) and fs5(s,f,u). Another way of looking at

these equations is a vector field F : R® — R? such that

F:(s,t,u) = (fi(s,t,u), fa(s, t,u), fa(s, t,u))

The ideal (and accurate) solutions are those domain points which map to the zero vector
under F. Since we are working in finite precision arithmetic, it is not possible to recover
these values exactly. Instead, we settle for domain points that map under F to a vector

whose norm is smaller than a user-specified value. In all the algorithms presented in this
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Figure 3.2: Intersection of a Bézier curve and surface

dissertation, we use the Euclidean norm for this purpose. A consequence of this condition
is that while it includes all the roots of the system, it may also include spurious intersection
points which satisfy the criterion. Unfortunately, as long as we are using finite-precision
arithmetic we will never be able to tell the difference. By using exact rational arithmetic
and algebraic methods like Sturm sequences (see chapter 2), we may be able to eliminate
them.

For the rest of this dissertation, we will use this definition of accuracy for all our

algorithms.

3.1.1 Reduction to Eigenvalue Formulation

Given a system of equations, we eliminate variables using resultants. In inter-
section problems, we obtain systems consisting of two or three algebraic equations. For
two equations corresponding to curve-curve intersection and ray-tracing we use Sylvester
resultant [Sal85], and for curve-surface intersections we use Dixon’s formulation [Dix08]. In
either case the resultant can be expressed as a matrix determinant and the entries of the

matrix are univariate polynomials. Such matrices are called matriz polynomials. Instead
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of symbolically expanding the determinant, we reduce the problem to an eigenvalue for-
mulation [Man92]. In particular, the resultant corresponds to a matrix polynomial of the

form:
M(s) = M,,5" +M,,_15" (1 — s) + M, 25" (1 — 5)? + ...+ Mo(l — s)",

where M; is an m X m matrix with numeric entries. m and n are function of the degree

of the curves and surfaces. Dividing the matrix polynomial by (1 — s)” and substituting

s
1—s

u = (substitution to change from Bernstein basis to power basis - see section 2.2.2)

yields a matrix polynomial
L(u) = M,u" + M, _;u" "' 4+ ...+ M. (3.4)

The intersection algorithm computes the roots of Determinant(L(u)) = 0 by solving an

eigenvalue problem in the following manner [Man92]:

Theorem 4 Given the matriz polynomial, L(u) the roots of the polynomial corresponding

to its determinant are the eigenvalues of the generalized system Ciu + Co, where

(I, 0 0 ... 0 | o -1, o .. o |
0 I, O 0 o o -I, 0
C = Cy = : : e : ;o (35)
0 0 I, O 0 o 0 -1,
0 0 ... 0 M, My, M; M, ... M,_;

where 0 and 1,,, are mxXm null and identity matrices, respectively. If M, is well-conditioned,

the matriz equation can be reduced to the eigenvalues of the following associated companion

matriz. i i
0 I, 0 0
¢ = (3.6)
0 0 0 I,
| -M, -M; -M; ~M,_; |

where M; = M;lMi.
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Based on the problem formulation and properties of resultants, it follows that the
eigenvalues of Chu 4+ Cy correspond to one of the unknowns in (3.1), (3.2) or (3.3). The
other variables can be recovered from the corresponding eigenvectors. For most intersection
applications, we are interested in computing the eigenvalues in a finite interval of the real
domain. For example, for Bézier curves and surfaces, the domain is s € [0, 1]. However,
the variable w in L(u) takes values in the interval [0, 00]. To avoid this problem, we back-

substitute u = lis and transform the matrix pencil Cyu + C; to (C; — C3)s + Cy. For

the rest of the chapter, we assume that this transformation has been performed and shall

concentrate in computing all the eigenvalues of a matrix pencil in a finite interval.

3.2 Algebraic Pruning

The intersection problem is now reduced to finding eigenvalues of the matrix pencil,
C154+C;. The QR algorithm for the standard eigenvalue problem and QZ algorithm for the
generalized eigenvalue problem [GL89] compute all eigenvalues and it is difficult to restrict
them to eigenvalues in the given domain. But in our applications we are only interested
in finding intersections that lie inside the given domain. In this section, we describe a new
algorithm called algebraic pruning to compute intersections restricted to a domain.

Initially, we use linear programming [Sei90b] to check if the control polytopes of
the pairs of curves (or a curve and a surface) have a separating line (or plane) between
them. If they do, then the given pair does not intersect. Otherwise, there is probably an
eigenvalue of the pencil Cys 4+ C; close to the domain [0,1]. This also includes complex
eigenvalues.

The main idea behind our algorithm is to use inverse iteration to find some eigen-
values in the domain, and at the same time prune out portions of the domain not containing
any solution. In particular, we start with a guess s ~ 0.5, which is the midpoint of the
domain. Using inverse iteration, we find an eigenvalue closest to s". Let that eigenvalue be
t. If t is a complex number we compute a complex conjugate pair of eigenvalues. Assuming
that we chose random start vectors, qo and ug (as used in section on power iterations in

section 2.5.1), t is an eigenvalue of Cys + Cy which is closest to s. Asa result, there are
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Imaginary(s)

= Real(s)

Figure 3.3: Domain Pruning based on Inverse Iteration

no other eigenvalues of the pencil in the circle centered at s = s* with radius R = |t — S/|
[Wil65] (as shown in Figure 3.3).

We draw the following conclusions:

e If t € [0,1], t corresponds to an intersection point. The rest of the unknowns are

computed from the corresponding eigenvector.
e There are no other intersections in the real domain, (S/ - R, s + R).

e The technique is recursively applied to find all the intersections in the following do-

mains:
*[0,s — R],if (s —R) > 0.
* [s' + R, 1],if (s + R) < 1.
Therefore, we are able to compute an intersection and prune the domain with inverse
iteration. The algorithm is applied recursively to each domain after pruning. Our test

examples contain only a few intersections in the domain. In those cases, the algorithm

converges to the intersection fast and we need to apply this technique only a few times.
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3.2.1 Computation of Multiple Solutions

In the previous section, we described the technique of algebraic pruning based on
inverse iteration. Often the inverse iteration does not converge to a real solution ¢ or the
convergence can be slow because the closest eigenvalue corresponds to a pair of complex
conjugate eigenvalues. The latter is due to the fact that there are two or more real eigen-
values which have roughly the same distance from s'. In this section, we modify the inverse
iteration to compute more than one intersection point at the same time. This includes
complex conjugate pairs as well. We describe the technique to compute two solutions at
the same time and it can be easily extended to find more than two solutions.

Given the approximation, s = 8/7 let the two closest eigenvalues of the matrix
(C1s + C2) be t; and t;. Let the corresponding eigenvectors be x; and x3 and A =
(Cys' 4+ C3)~'. Then e and

we start with a random unit vector ug and solve for p and ¢ such that

are the largest eigenvalues of A in magnitude. If

lim (A% — pA™ — gAYy =0,

1—>00
then % and % are the solutions to the equation z? — pz — ¢ = 0. Whether the solutions are

real or complex depends on the sign of (p? + 4¢q). We compute these multiple eigenvalues

in the following manner. Let ug be a random start vector.

for k=1,2,...
Solve (Cys 4+ Cq)vi = Crug_y
sk = Vi [l
up = Vi/sk
Solve for py and qi from

llgllk—1 u{_l Up—1 llg_lllk—z PESE—1
SkSk—1 - = T T
u; _,ug U, U1 Up_oUp_2 qk
if | P — pr—1 |l2< € and || g — gr—1 [|2< ¢, quit

end

After pp and gp converge, we compute the closest eigenvalues in the following
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manner. Let D = p? +4q. If D > 0.0 the two closest eigenvalues are
ti=s —2.0/(p+ VD),
ty=s —2.0/(p— VD).

Furthermore, the radius R for pruning corresponds to the minimum of |t; —s'| and |t — 5 |.

In case the closest pair of eigenvalues is a complex conjugate pair, it is computed

as:
' 2p

Real(t) = s — ——

eal(t) = s D

24/—=D

1 t) = .

mag(t) = 27

and the radius E for pruning is

R = /(Real(t) - &')? + Imag(1)?).

3.2.2 Use of Matrix Structure

In inverse iteration, the two main operations are the LU decomposition of the
matrix Cys + C5 and solution of the resulting upper triangular systems. The matrix pencil
defined in Theorem 4 has order N = mx*n. In particular, it has a block companion structure
being linearized from a m X m matrix polynomial of degree n. The LU decomposition is
computed using Gaussian elimination [GL89] which takes about %N3 operations (without
pivoting). Solving each triangular system costs about %NQ operations. As a result, inverse
iteration requires %N?’ + kN? operations, where k is the number of iterations.

The structure of the matrices can be used to reduce the number of operations for
LU decomposition as well as solve the triangular systems. Given 8/7 let A = Cys + C,.

Using the structure of C; and Cg, it can be shown that A is a matrix of the form:

arl, o3l 0 - 0
0 al, a9, ... 0
A=
0 0 aly  asly,
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. / . . .
where o and ay are functions of s . P;’s are m X m matrices, which are functions of M;’s

and s'. A LU decomposition of A can be written as

o1, 0 0 e 0 I, 3—?Im 0 e 0
0 oL, O e 0 0 I, 3—?Im e 0
A= ,
0 0 oL, O 0 0 I, 3—?Im
R, Ry R,., L, 0 0 0 U,
where
R, =P,

R, =P,- 2R,

R, =P;- 2R,
Rn—l = Pn—l - %Rn—Q
R, =P, - %?Rn—l

Moreover, L,, and U,, correspond to the LU decomposition of Ry.
This formulation is constructive and based on it, LU decomposition of A requires
%m3 + (n — 1)m? operations. Furthermore, given the LU decomposition, solving the lower

triangular system takes (n— %)m2 operations and solving the upper triangular system takes

%mQ + (n — 1)m operations. As a result, the total number of operations for solving the

linear system is nm? + (n — 1)m.

Sometimes numerical difficulties can arise with the LU decomposition of A when
it is ill-conditioned. Even though pivoting can be used to improve numerical reliability, it
destroys the structure of the matrix. In such cases, we use LQ factorization (similar to
QR decomposition in eigenvalue computation), where L is a lower triangular matrix and
() is an orthogonal matrix. This factorization can be performed either using Householder
matrices or Given’s rotation. We have used Householder transformations to carry out the

factorization.
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3.2.3 Algorithm for Intersection

The algorithm for intersection computation combines algebraic pruning with prop-
erties of curves and surfaces. We assume that each curve and surface is associated with a
corresponding control polytope. For Bézier curves and surfaces such control polytopes are
formed by their control points. Similar geometric representations are known for algebraic
curves and surfaces as well [Sed89]. The simplest algorithm for intersection is based on the
version of algebraic pruning from Section 3.2. We start with the middle point of the domain,
find a closest eigenvalue using inverse iteration and prune the domain. The algorithm can
be recursively applied to each domain obtained after pruning.

Although this algorithm works well, its performance can be improved tremendously
using properties of curves and surfaces and behavior of inverse iteration. The convergence
of inverse iteration is a function of the distance of eigenvalues from the guess s'. If there
are a number of intersections in the domain, the ratio |s" — A{|/|s" — A3| may not be small
and the overall convergence may therefore be slow. However, the convergence is faster if
there are very few intersections in the domain. In the applications involving curve and
surface intersections, we make use of the geometric properties of the control polytopes in

the following manner:

e Compute the number of intersections between the control polytopes of the curves or
curve-surface pair. This number is used as a good guess to the actual number of

intersections.

e Subdivide the curves and surfaces such that each pair obtained after subdivision

consists of at most one or two intersections between the control polytopes.

In case the actual number of intersections between the original pair of control
polytopes is high, we use the QR algorithm [MD94]. The technique of algebraic pruning
works best when there are relatively few intersections. Let & be the number of intersections
between the control polytopes. We use the algorithm based on algebraic pruning if k£ <
2v/N, where N refers to the order of matrix pencil in Theorem 4. This is a heuristic derived

based on our experience. Eventually, we apply algebraic pruning to find eigenvalues in each
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domain, such that the associated control polytopes have only one or two intersections.
Although we subdivide the curve and obtain new control points, the implicit representation
and the matrix pencil Cys + C; remain the same and we associate each subdivided curve
with a different domain. It is still possible that after subdivision the algorithm does not
converge to a solution fast enough. In that case, it could be because multiple eigenvalues
are close to the chosen approximation (S/).

Inverse iteration terminates once successive values of s; differ by less than a toler-
ance, TOL. In applications involving computation of multiple solutions, we terminate the
iteration once py and gy differ between successive iterations by at most TOL. The accuracy
and performance of the overall method is a function of TOL. Depending on the number of
iterations it takes to converge, we use the following values of TOL and use a one-pass or
two-pass approach. Let [a, b] be the interval in which all eigenvalues need to be computed.
uy, refers to the eigenvector computed at each iteration. The eigenvector is used to extract

the other variable in the system of equations.

e Use inverse iteration to compute a closest eigenvalue of A = Cis + Cs. Initially use

TOL =0.01/(b— a). After three iterations if
|83 — 82| < /‘TOL7 |113[1]/113[0] — 112[1]/112[0” <TOL
we continue using inverse iteration and modify TOL = (1.0e¢)/(b — a).

e — In case inverse iteration does not converge to two digits of accuracy in the first
three iterations, TOL remains the same and we compute p; and g using the
algorithm for multiple solutions. Let the inverse iteration converge to a real
solution sp or a pair of real solutions, #1; and #3;. Each of them is accurate up

to two digits.

— For each eigenvalue ¢ computed with two digits of accuracy, we set s =t and

perform some inverse iteration on A = Cyt + C; using TOL = (1.0¢7%) /(b — a).

The tolerances are user driven and the number of iterations used to switch the
tolerance can be varied by the user as well. The entries ug[1] and ug[0] of the eigenvector

are used to compute the other variable in the curve-curve intersection problem.



57

3.2.4 Illustration

In this section, we demonstrate our algorithm on two examples:

e intersection of two planar Bézier curves each of degree four, and

e intersection of a cubic Bézier curve with a bicubic tensor-product Bézier patch.

Intersection of two planar curves
The control points of the curves in homogeneous coordinates are defined as:
P(s) = ((-2.5,0.3,1.0), (4.0,6.1,1.0), (—1.0,-3.3,1.0), (5.0, 1.4, 1.0), (7.2,3.3,1.0))
and

Q(t) = ((—2.0,2.3,1.0), (3.0,2.1,1.0), (—4.0, 2.3, 1.0), (2.0, 1.3, 1.0), (3.0, 3.3, 1.0)).

The curves are shown in Figure 3.4. We implicitize the first curve and obtain its implicit
representation as a 4 X 4 matrix M:

23.2x — 26.0y + 65.8w —21.6z — 9.0y — 51.3w 4.4z — 30.0y 4+ 20.0w 3.0z — 9.7y + 1041w
—21.6z — 9.0y — 51.3w  —221.2x 4+ 90.0y 4 190.4z —72.20 — 25.7y 4 408.81z —11.2x — 12.8y 4 122.83w
4.4z — 30.0y + 20.0w —72.22 — 25.7y 4+ 408.81w 101.6x — 156.8y — 239.52w  39.6z — 49.2y — 122.76w
3.0z — 9.7y + 1041w —11.22 — 12.8y 4+ 122.88w 39.6z — 49.2y — 122.76w 7.6z — 8.8y — 25.68w

We substitute the second parameterization and obtain a matrix polynomial. Using
Theorem 2.1 it can be reduced to finding eigenvalues of the matrix pencil Cyt + Cg, where
C; and C; are listed in Appendix A.

We apply the pruning algorithm on this example. The performance of the algo-
rithm is shown in Table 3.1. In the table, ¢ refers to the eigenvalue computed by inverse
iteration and s = u[1]/u[0] is the corresponding point on the other curve, P(s), based on
the eigenvector. At each instance, we first compare the control polytopes of the curves for
intersection. The simplest algorithm involves use of bounding box tests followed by testing
the convex hulls of their control polytopes for overlap. The convex hull test is reduced to a
linear programming problem, whose complexity is linear in the number of constraints. In
this case, each control points contributes one constraint. Good randomized algorithms for
linear programming are described in [Sei90b] and they work very well in practice. We use

an implementation of Seidel’s algorithm [Sei90b] given to us by Mike Hohmeyer [Hoh91].
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Figure 3.4: Intersection of Fourth Order Bézier Curves

Curve-Surface Intersection

The control points of the curve in homogeneous coordinates are given by

P(s) = ((85.0,0.0,—150.0, 1.6), (104.0, —50.0, —50.0, 1.6), (90.0, 50.0, 50.0, 1.4),
(120.0,0.0,150.0,1.3)).

The control points of the surface are given by the matrix:

(160.0,—10.0,—140.0,1.8) (140.0,—45.0,—-70.0,1.4)  (135.0,64.0,40.0,1.7)  (148.0,10.0,120.0,1.2)

(104.0,20.0, —120.0,1.3) (95.0,55.0,—40.0,1.2)  (109.0,—54.0,80.0,1.1)  (110.0,6.0,180.0,1.9)
Q(u,v) =
(42.0,—159.0,—120.0,1.0)  (65.0,45.0,—60.0,1.8) (50.0,—28.0,70.0,1.7)  (55.0,160.0,130.0,1.5)

(—3.0,154.0,—110.0,1.3)  (10.0,—35.0,-50.0,1.4)  (—9.0,40.0,55.0,1.6)  (9.0,—139.0,170.0,1.6)

The implicit representation of the surface Q(u,v) is an 18 X 18 matrix and is
denoted by M(z,y, z). M(z,y, z) is shown in Appendix B. After substituting the parame-
terization of P(s) ( a cubic curve), we obtain a matrix pencil of order 54. The results of the
pruning method are shown in Table. 3.2. s refers to the converged eigenvalue and % and v
are obtained from the corresponding eigenvector. Q(u,v) thus obtained is the intersection

point on the patch.
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H Interval ‘ t ‘ t ‘ s = u[1]/u[0] ‘ No. of Iterations H
0.0,1.0] | 04 [0.1207] 0.1070 7
[0.0,05] | 02 |01298| 0.1074 4
[.27,0.5] 0.362 | 0.1298 0.1066 5
[0.0,0.1298] | 0.0528 | 0.1298 0.1073 3
[0.5,1.0] 0.7 0.7954 0.354 3
[0.7954,1.0] | 0.8784 | 0.7951 0.351 3
[0.5,0.604] | 0.541 | 0.7951 0.353 3

Table 3.1: Algebraic pruning on curves shown in Figure 3.4

59

7

H Interval ‘ s ‘ s ‘ uw = u[l]/u[0] ‘ v = u[3]/u[0] ‘ Iterations H

[0.0,1.0] 0.5 0.5976 0.3367 0.5738 9
[0.0,0.3923] 0.1961 0.2021 -0.7150 0.4619 5
[0.0,0.1802] 0.0901 0.1210 2.3133 0.4864 7
[0.1310,0.1802] | 0.1556 0.1663 0.4871 0.1582 3
[0.2121,0.3923] | 0.3022 0.2900 0.1880 -1.0303 4
[0.2121,0.2800] | 0.2461 0.2394 -0.5077 -0.3593 3
[0.6076,1.0] 0.8038 0.7973 0.2332 0.8176 4
[0.8204,1.0] 0.9102 | 0.9177 £+ :0.0317 — — 5

Table 3.2: Algebraic pruning on the curve and surface shown in Figure 3.5

3.3 Performance and Comparison

We have implemented the algorithm using LAPACK routines [ABB192]. The

overall algorithm has been applied to many cases of parametric curve intersection, alge-

braic curve intersection, intersection of a ray with a parametric surface and curve-surface

intersections. In each case, the problem is reduced to an eigenvalue problem and we com-

pute the eigenvalues in a domain. We have performed comparisons with the QR algorithm

in [MD94] and an implementation of implicitization based algorithm described in [SP86]

and Bézier clipping described in [SN90].

Bézier Clipping: Bézier Clipping is an iterative method which takes advantage

of the convex hull property of Bézier curves, and iteratively clips away regions of the curve

that does not intersect with the surface. Bézier clipping converges more robustly with the
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Figure 3.5: Intersection of a cubic Bézier Curve and a bicubic patch

polynomial’s solution than does Newton’s method. This method was first developed for ray-
tracing Bézier patches [NSK90]. The main advantages of this method include applicability
to high-degree polynomials, robustness and faster convergence. It does not require initial
guesses unlike Newton’s method and can provide all solutions within a specified range.

Implicitization algorithm: It uses the fact that any rational curve can be ex-
pressed as an implicit equation, f(z,y,w) = 0 [Sed83]. The problem of computing the
intersection of two parametric curves is solved by implicitizing one of the curves. The
parameterization of the second rational curve is substituted into the implicit form to ob-
tain an equation of the form f(z(s),y(s),w(s)) = 0. The roots of this equation in the
range s € [0, 1] is solved using standard numerical polynomial root finding methods like the
Jenkins-Traub method [SB93].

The actual timings obtained from our implementation can be greatly improved by
careful programming and using the structure of the problem. For example, the technique
applied to intersection of parametric curves results in a matrix polynomial with symmetric
matrices. This structure can be exploited in solving linear equations arising in inverse

iteration and giving us almost a speed up of two over the implementation not making
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use of symmetric structure of the matrices. As a result, if we implement algorithms as
part of a generic package or specialize to particular cases (like intersection of cubic Bézier
curves), we can see a considerable difference in their running time. A similar analysis holds
for the implementation of implicitization based algorithm described in [SP86]. Thus, it is
rather difficult to perform an exact comparison between two algorithms and in this section
we analyze them in terms of convergence per iteration and the total number of iterations
required on various examples.

One of the main advantages of using inverse iteration is that whenever it converges
the closest eigenvalue is obtained. This is the basis of algebraic pruning. However, it
is possible that inverse iteration may stagnate at a spurious eigenvalue. But these can
be detected by resubstitution into the original curve and surface equations and retried
with a different starting vector. It is also possible that inverse iteration does not converge
for particular choices of initial eigenvalue and eigenvector. As discussed earlier, this can
occur when the initial guess is close to multiple eigenvalues. Another possibility for non-
convergence is the initial choice of the eigenvector ug. Let A; be a closest eigenvalue to s with
corresponding eigenvector x;. If ug has a very small component of x; then rounding errors
may prevent these components from being enriched and the algorithm may not converge.
However, according to [Wil65], this possibility is extremely rare if ug is chosen at random.

If a given pair of curves or a curve and a surface have very few intersections,
the technique based on algebraic pruning gives almost an order of magnitude improvement
over the algorithm presented in [MD94]. This is mainly due to the fact that we are only
computing the relevant solutions in the domain of interest as opposed to computing all the
solutions. For example, on a DEC 5000/25, it takes about 8.5 milliseconds to compute all
the intersections of the example in Section 3.2.4 using algebraic pruning. On the other hand,
application of QR algorithm takes about 78.2 milliseconds on the same matrix to compute
all the eigenvalues and the eigenvectors corresponding to eigenvalues in the domain. In the
case of a cubic curve and bicubic surface intersections, we obtain a 54 X 54 matrix. For cases,
involving two or three intersections the algebraic pruning performed better by more than
an order of magnitude (almost 20-fold speedup) as compared to the QR algorithm. The

QR algorithm has a comparable performance if the number of intersections in the domain
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is at least equal to 2v/N.

Compared to the implicitization based approach in [SP86], algebraic pruning al-
most shows the same kind of performance (on low degree curves of degree three or four).
The implicitization based approach involves expansion of the symbolic determinant and
computing all the roots in the domain of interest of the resulting polynomial. The latter
can be computed efficiently using the Bernstein representation of the resulting polynomial.
On the other hand algebraic pruning reduces it to an eigenvalue problem and does not
involve symbolic expansion. For most applications on degree three and degree four curves,
both algorithms take about 5 to 7 milliseconds on the DEC 5000/25. However, on degree
five curves consisting of at most two or three intersections, algebraic pruning performed
better by a couple of milliseconds. We would again like to emphasize the fact that these are
the performance figures corresponding to our implementation and an earlier implementation
of implicitization based intersection algorithm [SP86]. Other implementations may result
in a different set of timings.

Finally, we compared our algorithm to Bézier clipping [SN90]. This comparison
has been performed only for curve intersections. The actual performance of the algorithm
is actually a function of the geometry of the curves and the number of intersections in the
given domain. On low degree curves of degree less than five or six, both algorithms take
about 8 to 16 milliseconds on the DEC 5000/25. The algebraic pruning is typically faster
in cases consisting of one or two intersections, whereas Bézier clipping is faster by a few
milliseconds in the other cases. This is consistent with the fact that the convergence of
algebraic pruning is a function of the proximity to other intersections. At a conceptual
level, it appears that the convergence of algebraic pruning is slightly better than that of
Bézier clipping for cases consisting of a few intersections. On the other hand, the number
of operations at each iteration of Bézier clipping is less than that of algebraic pruning.
Subdividing a Bézier curve takes O(n?) operations whereas each each iteration of algebraic
pruning takes O(nm?) operations. However, in our examples we are dealing with low values
of m and n and one needs to take care of the constants in front of these asymptotic bounds.

We used an implementation of Bézier clipping by John Keyser at UNC-Chapel

Hill for performance comparisons. In this implementation, we found that when the toler-
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Timing (in milli sec.)
Curve | Patch No. of Bezier QR Algebraic
Degree | Degree || intersections | Clipping | method | Pruning
1 1X1 0 3.133 0.998 0.355
1 1X1 1 5.140 1.102 0.561
2 1X1 1 4.556 1.254 0.779
1 2X2 1 13.67 10.50 3.91
1 2X2 2 34.59 10.09 6.11
2 2X2 1 10.34 28.80 11.65
2 2X2 2 18.83 26.98 17.22
3 2X2 1 15.53 70.73 13.28
1 3X3 1 9.92 65.38 11.23
2 3X3 1 10.40 67.96 9.21
2 3X3 2 18.64 91.80 22.17
3 3X3 2 25.01 99.55 31.67
3 3X3 3 52.94 650.13 89.12

Table 3.3: Comparison between three curve-surface intersection algorithms

ances were very small, the Bézier clipping algorithm may suffer from robustness problems
due to sign evaluation. We performed comparisons between the QR algorithm, algebraic
pruning and Bézier clipping. Table 3.3 shows the comparison among the various methods
on randomly generated curves and surfaces of varying degrees. When the number of inter-
sections is small, algebraic pruning performs best of all. But as the degrees and number of
intersections rise, Bézier clipping performs best.

In applications like ray-tracing, algebraic pruning can be very well combined with
ray to ray coherence. For example, the intersection of the previous ray with the surface
can be used as a starting guess for the next ray-surface intersection. Given a good starting
guess, inverse iteration converges in a very few iterations. As a result, inverse iteration

combines very well with spatial and temporal coherence.

3.4 Robustness of Algebraic Pruning

Our method of algebraic pruning relies heavily on the performance and robustness

of inverse power iterations. In this section, we shall discuss some of the issues concerning
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inverse iterations.
The i*" step of inverse iterations of a matrix A with shift p and initial vector ug

proceeds as follows:

v;
(A — pI) viy1 = u,, Uip = A (3.7)
| Vit1 [loo

Let the initial vector ug be written as a linear combination of the eigenvectors x; of the
matrix A. That is,

U = o) X1 + axXy + ...+ oy X,

We make a few assumptions while making this claim. Firstly, we assume that the set of
eigenvectors of A span the entire space. This is true only if the matrix is diagonalizable,
i.e., if the Jordan canonical form [SB93] is a diagonal matrix, or it has distinct eigenvalues.
Secondly, the assumption that a random initial vector has a non-zero component along each
eigenvector may not be true. However, this seems very unlikely for purely random initial
choices. In our experience, if pis very close to Ay then initial vectors which are deficient in
the x; component usually have a substantial component after one iteration.

Given these assumptions, choice of ug, and the fact that A x; = Ap xy, after ¢

steps of the inverse iteration [J192]
u, = 2?2104]‘ (/\]‘ — p)_Z X;

It is easy to see that as 1 — 0o the term that dominates corresponds to an eigenvalue that
is closest to the point p in the complex plane (if there is such a unique eigenvalue).

As seen in equation (3.7), a linear system has to be solved at each step of the
iterative algorithm. If p is very close to the eigenvalue Ay, the matrix (A — p I) is close
to singular. Thus the linear system may be ill-conditioned. However, we will show that
inverse iteration gives good results even when p is very close to Ay unless the corresponding
eigenvector Xy, is ill-conditioned. Since our algorithm runs in finite precision, let us assume
that v;41 is the exact solution of a perturbed matrix (A + A), || A |loo = §. Let

p = Ap + €. Thus,

(A — pI 4+ A) vy = w
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_ _ Vit1l _ u;
(A A 1 el + A) [[Vitilloo 7 [IVit1lleo
(A = A I) uigy = (el = A)uyy + ||wff||oo =

where || p |loo < |€] + & + [J192].

1
[IVitilleo
This shows that if || vit1 || is large and € and 6 are small, u;41 gives a small

residue. To derive the lower bound for || vi41 ||oo, let us assume that
. P n . . . P n . .
u; = E]‘:104] Xj Vitl = E]‘:1ﬁ] X

and let || x; ||oo= 1. For each x;, let y; be a unit vector such that for [ # j, y]T x; =0
and y]T X; = cosf;, where 0; is the angle between x; and y;. From this, it is obvious that

yg u; = cosfy ay, yg Viy1 = cosby B, and yg (A — X I) w41 = 0. Earlier, we had

(A — pI 4+ A) vy = w
Premultiplying both sides by yg and simplifying, we get
—€ cosby B + yg A vy = cosb oy

Hence,

|evg| < Uel +8) [IVigalloo

= | cos 8|
giving

[
I vigr [l > ool

The above analysis shows that inverse iteration has small backward error. Un-
fortunately, however, a small backward error does not imply a small forward error [Ips97].
Their relationship also depends on the distribution of eigenvalues. In the absence of this

information, we have to resort to backward analysis.
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Chapter 4

Surface Intersection Algorithm

4.1 Overview

The problem of surface intersection corresponds to computing an accurate repre-
sentation of the intersection curve. The difficulty of the problem lies both in the algebraic
and the geometric complexity of the intersection curve. The degree of the curve resulting
from the intersection of rational parametric surfaces can be very high, and computing an
accurate representation is nontrivial. For example, the degree of the intersection curve of
two tensor-product bicubic Bézier surfaces can be as high as 324. In terms of geometric
complexities, the curve may have multiple components, small loops, singularities, and mul-
tiple branches at the singularities. Qur approach is based on an accurate representation of
the intersection curve. It is a well known result in algebraic geometry that the intersection
space curve has a one-to-one correspondence with an algebraic plane curve after suitable
linear transformations(except for a finite number of points). The plane curves with one-
to-one correspondence with the intersection curve in space are shown in Figure 4.1. We
represent the plane curve as an unevaluated determinant [MC91].

Given two Bézier surfaces,

F(s,t) = (X(s,1),Y(s,t), Z(s,t),W(s,1))
77 1

G (u,v)= (X (u,v), Y (u,v), Z(u,v), W(u,v))

in homogeneous coordinates, implicitize F(s,t) to the form f(z,y, z, w) = 0 [Sed83, Hof89]
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Figure 4.1: Intersection curve and its planar preimages [MC91]

and substitute the parametrization of G(u,v) into f to get an algebraic plane curve of the

form
F(X (u,v), Y (u,v), Z(u,v), W(u,v)) = 0. (4.1)

This corresponds to an algebraic plane curve birationally equivalent to the original
intersection curve. However, its degree is rather high and leads to efficiency and accuracy
problems [Hof89]. Instead of explicitly computing the plane curve, we use numerically
stable algorithms like eigenvalues and Singular Value Decomposition (SVD) on a matrix

representation.

4.1.1 Matrix formulation of intersection curve

The first step in generating the algebraic plane curve is to compute the implicit
form of one of the parametric surfaces. To perform this computation, we use an algorithm

by [Sed83]. Let us assume that the surface we are implicitizing is denoted by F(s,t) with
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coordinate functions as above.
The implicit representation of F(s, ) is obtained by eliminating s and ¢ from the

following set of equations.
tWi(s,t) — X(s,t) = 0
yWi(s,t) — Y(s,t) = 0 (4.2)

2W(s,t) — Z(s,t) = 0

Here z, y and 2 are the individual components of R® and are treated as constants
here. The implicit form of F(s, ) is basically an expression in terms of z, y, z and other nu-
meric coefficients of the patch equations that simultaneously satisfy (4.2). Dixon’s resultant
[Dix08] provides an elegant way to compute this expression.

Dixon’s resultant: Let us denote the three equations in (4.2) as pi(s,t), p2(s,?)
and pa(s,t). If there exists an (8,{) which simultaneously satisfies the three equations, the

following determinant will vanish for that value of s and ¢ regardless of the values of o and

3.

Det(s,t,a,3) = pr(a,t)  pa(e,t)  ps(e,t)
pi(e, B) pa(e, B)  ps(a, B)
The determinant vanishes for any (3, ) which satisfy p; = p; = p3 = 0 because
the top row vanishes. The determinant also vanishes if either s = « or t = [ because two

rows would then be identical. Hence, (s — ) and (¢t — ) are factors of the determinant.
Define

Det(s,t, o, 3)
(s —a)(t = p)

&8 vanishes for arbitrary values of o and 3 if and only if s = § and ¢t = £. If the parametric

d(s,t, o0, B) =

surface is of degree m x n, then the maximum degree monomial of § is s~ 12 ~1g2m-1gn=1

Considering § as a polynomial in o and 3 whose coeflicients are polynomials in s and ¢, we

can write

8(sst v, B) = SETISIT) fii (s, t) e B



69

This polynomial has 2mn terms. Because é must vanish for any value of o and §if s = §
and t = t, all of fii (3, t) must also vanish. Therefore, 2mn polynomials have been generated
each with 2mn terms in s and t. The determinant of these coefficients will serve as the

resultant. Let C; ; z; denote the coefficient of sPth in fii(s,t).

0 30

a’ B Co,0,0,0 Co,0,k,1 Co,0,m—1,2n—1 s
3 ) ) ) kil —

Ozlﬁj C,7J7070 Oz,],k,l Oz,],m—1,2n—1 s”t =0

a2m—lﬁn—1 Sm—1t2n—1

Com—tma100 - Com—imetki - Com—tn—tm—1zn_1
It turns out that for the set of equations in (4.2) each of the C; ;1 is a linear expression
of the form a;;2 4 b;;y + ¢i;2 + dijw. Let us denote this matrix as M(z,y, z, w). Further,
the kernel of M(z,y, z, w), represented by the rightmost vector in the left hand side of the
above expression, have entries that are simple functions of s and ¢. So for a given value of
z, y and z that lie on the surface, the corresponding parameters s and ¢ can be obtained
from the kernel vector. A vector x lies in the kernel of a matrix A if Ax = 0.

We substitute the parametrization of G(u,v) into this matrix and obtain a repre-
sentation of the form M(u, v), where each entry is a polynomial in u and v. This substitution
is very simple because every entry of the matrix is just a linear term. The degree of each

polynomial in M(u, v) corresponds to the degree of the patch G(u,v).

4.1.2 Parameterizations with base points

The base points of a parameterization are the common solutions of the equations

X(s,t)=0, Y(s,t)=0,

Z(s,t) =0, W(s,t) =0 (4.3)

The base points also include common solutions at infinity. In general, any faithful param-
eterization of a rational surface whose algebraic degree is not a perfect square has base

points. Consider a base point p = (8/, t/). By definition,

! ! ! ! !

X(s,t) = Y(s,t) = Z(s,t) = W(s,t) =0
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It is therefore obvious that (8/, t/) is a non-trivial solution to (4.2). Further, this is a solution
irrespective of the values of x,y or z. Therefore, the resultant of this set of equations is
identically zero.

Checking for base points: The most obvious way to identify whether the given param-
eterization contains base points is to compute all the common solutions of (4.3). The basic
idea is to find all the solutions to two of the equations (say, X (s,t) = Y (s,t) = 0). Each
element of the solution set (assuming a finite set) is tested for satisfiability by substituting
in the other two equations to recover the base points. However, this method cannot detect
parameterizations which are very close to having base points (we call it the near base point
case). The implicit form of the surface is highly error-prone if the parameterization contains
near base points. Further, recovering the implicit form of the surface is not possible from
this method.

It was mentioned earlier that in the presence of base points, the resultant of (4.2) is
identically zero (independent of the values of ,y or z). Therefore, the matrix M(x,y, z, w)
(whose determinant gives the resultant) is always singular (rank deficient). SVD is a popular
method to find the rank of a matrix. We substitute random values for z,y and z (making
sure they do not lie on the original surface) in the matrix and perform SVD. If it contains
zero singular values, it implies that the given parameterization contains base points. This
method can also identify parameterizations with near base points. In such cases, some
singular values of the matrix M(z, y, 2, w) are very close to zero. We treat near base point
cases as if they contain base points (by zeroing the corresponding singular values).
Computing the implicit form: The resultant (determinant of M(z,y, z,w)) provides
the implicit representation of the surface if its parameterization does not contain base points.
However, in their presence, the resultant method will not work. It was shown in [Man92]
that the maximum rank submatrix (largest non-vanishing minor) contains the implicit form
as a factor in such cases. In order to obtain the implicit representation of the surface, we
have to find the maximum rank submatrix. This can be achieved by performing Gaussian
elimination on the original matrix. Substitution of the parameterization of G(u, v) into this
minor gives us the planar projection of the intersection curve. It must be observed that the

rank submatrix could contain extraneous factors (other than the implicit form) which must
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be eliminated by testing the solutions obtained with the original set of surface equations.

4.1.3 Computing partial derivatives of intersection curve

Let us denote the determinant of the matrix M(u,v) as D(u,v). D"(u,v) and
D¥(u,v) represent the first order partial derivatives with respect to u and v. To be able to
trace through the intersection curve we need to evaluate D(uq,v1), D" (u1, v1) and DY (uq, vy)
(used for tangent computation - see Chapter 2) for a given point (u1,v1) accurately and
efficiently. To compute the first and higher order partials, we use a simple variation of Gaus-
sian elimination [MC91]. The basic idea is to compute the partial derivative of each matrix
entry at the beginning of computation and update the derivative information with each step
of Gaussian elimination. In this case, we modify the matrix structure such that each entry
consists of a tuple Gyj(ui,v1) = (gi;(ur, v1), g5 (ur, v1), g5 (ur, v1)), where g (uy,v1) and
gi;(u1,v1) represent the partial derivatives of g;;(u,v) with respect to u and v respectively

at (u1,v1). The resulting matrix is of the form

Gii(ug,v1) ... Gupl(ug,vr)
M*(ul,vl) =

Gnl(uhvl) Gnn(ulvvl)

To compute D(uy,v1), D*(uy,v1) and DY(uq,v1), we perform Gaussian elimina-
tion. We consider the matrix formed by first entry of each tuple (equal to M (u1,v1)) and
proceed to compute its determinant using Gaussian elimination. As a side effect we change
the entry in the other tuples. Assume we are operating on the ¢th and kth rows of the

matrix. A typical step of Gaussian elimination is of the form

T — gn — GEig..
Gkj = Gkj — 5, Y

ki = Gk

where gj; represents the element in the kth row and jth column of the matrix. In the new

formulation this step is replaced by

T gy Gk
gkj = gk; — g_“.lgmv
w9590 +9kig7)96i— (gKigif) g
9i; = 95 (90)2 )
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(97:9i5tarig?})gii—(gregis)as;

G; = 9y — (902 )
ks = Gk
g%j = %7
Ikj = Gk

We make a choice for the pivot element based on the first tuple (i.e. ¢;; entry). After

Gaussian elimination is complete, we compute D(uy, v1), D*(uy,v1) and DV(uy, vq) as

D(ur,v1) = [Iit1 9ii
Dv (ul, Ul)I D(ul, Ul) Zn Jur

=1 g;;

D“(ul, Ul)I D(ul, Ul) Zn Jui

=1 gy

This procedure can be easily extended to compute the higher order partial derivatives
as well. Furthermore, the analysis of (Gaussian elimination may be used to analyze the

numerical accuracy of partial derivatives computation.

4.2 Intersection Computation

The intersection curve in the domain of G(u, v) is defined as the singular set of the
matrix polynomial M(u,v). In other words, it consists of all points (uy,vy) € [0, 1] x [0, 1]
such that M(uq,v1) is singular. Corresponding to each point (uq,v1) there exists a point
(s1,t1) € [0,1] x [0,1] in the domain of F(s,¢). Given a point (uy,v1) in the domain of
G(u,v), (s1,t1) can be computed from a vector in the kernel of M(uq,v1) [Dix08]. The
main advantages of this matrix representation are its efficiency and accuracy. Although the
singular set is defined in terms of a determinant, we use algorithms based on eigenvalues
and singular values for numerical stability. Efficient and accurate algorithms for computing
the eigendecomposition and SVD (Singular Value Decomposition) are well known [GL89],
and good implementations are available as part of numerical libraries like EISPACK and

LAPACK.
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4.2.1 Start Points

Given the matrix representation of the intersection curve, we use numerical march-
ing methods to evaluate points on the intersection curve. Figure 1.4 shows a wireframe of
a planar surface intersecting a bicubic patch. As shown in the figure, quite a few curve
components are generated as a result of this intersection. The marching algorithm needs at
least one start point on each such component. These components can be classified into open
and closed components. Open components have an intersection with one of the boundary
curves of the surface as shown in Figure 1.4. These are points on the plane curve where one
of the parameter values is 0 or 1. The other components are closed loops. The start points
on the open components are computed using curve-surface intersections (using algorithms
from previous chapter). In particular, we substitute u = 0,u = 1,v = 0 and v = 1 into the
representation of the intersection curve, M(u, v), and compute the intersection points.

The algorithms for computing start points on the open components of the inter-
section curve are based on Bézier curve-surface intersections. Our curve-surface intersection
algorithm based on eigenvalue computation and inverse power iterations was described in
chapter 3.

The difficulty in identifying start points on closed components lies in the fact that
loops have no simple characterization such as the one for open components. However, we
show that we can use a simple algebraic property which will guide us to some point on every
loop. The loop detection algorithm is elaborated in chapter 5. We will now assume that
we have obtained at least one starting point on every component of the intersection curve,

and proceed to describe the tracing algorithm.

4.3 Tracing

Given the start points, we evaluate the curve using our tracing algorithm. There
are a number of algorithms proposed for tracing [BHHL88, BK90, Che’89, KPW90]. Given
a point on the curve, an approximate value of the next point is obtained by taking a small
step size in a direction determined by the local geometry of the curve. A single tracing

step is shown in Figure 4.2. Given the approximate value, these algorithms use iterative
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Figure 4.2: A single tracing step

methods like Newton’s method to trace back on to the curve.

The three main problems with tracing algorithms are [FF92, Sny92]
1. Converging back on to the curve.
2. Component jumping.
3. Inability to handle singularities and multiple branches.

The convergence problems arising from the behavior of Newton’s method are described in
[FF92]. Tt is rather difficult to predict the convergence of Newton’s method on high degree
equations corresponding to the intersection (for bicubic patches). Component jumping can
occur when two components of the curve are close to each other as shown in Figure 4.3. In
this case, the tracing algorithm can jump from point A on component Cl to point B on
component C2. Most implementations circumvent this problem by choosing very small and
conservative step sizes. But this still cannot guarantee correctness and, moreover, slows
down the algorithm. No efficient algorithms are known for handling singularities on the
intersection curve of high degree surfaces (such as bicubic patches).

We present an efficient tracing algorithm that can resolve all these issues most of

the time. In particular, we introduce a technique called domain decomposition and tracing
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Figure 4.3: Component jumping

based on inverse power iterations. Singularities are also handled efficiently under well-placed

assumptions.

4.3.1 Domain Decomposition

After performing curve-surface intersection and loop detection, a sequence of points
is obtained on the curve ((u,v) € [0, 1] x [0, 1]) which either corresponds to starting points
on open components or some points on loops. Using these points, the intersection curve is
traced completely without missing any important curve features. The idea behind domain
decomposition is that if there are only two boundary points inside a domain with no loops,
these points belong to the same component of the intersection curve. Further, there exists
exactly one component of the intersection curve inside this domain. We are guaranteed
that each subdomain does not have any new loops because the loop detection algorithm
has already been applied. Therefore, the purpose of the algorithm is to subdivide the
original domain into smaller subdomains such that each subdomain contains exactly one
curve component.

We now describe the working of domain decomposition. The input into the domain
decomposition routine is a rectangular domain, specified as [L,, H,] x [L,, H,], and a set of

points, .S, on the intersection curve inside this domain. S covers all the components of the
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Figure 4.4: (a) First level domain decomposition (b) Second level decomposition

intersection curve inside the domain. If the cardinality of .S is two, then we are assured of
a single curve component inside the domain and the decomposition terminates.

If the cardinality of .S is greater than two the algorithm subdivides the domain
along isoparametric lines determined by the parametric values of points of .S. The isopara-
metric lines chosen at every point (u1, v1) could either be a u-isoline (u = uy) or a v-isoline
(v =v1). The algorithm arbitrarily chooses the v-isoline to subdivide the domain. If subdi-
vision is not possible (all the points in .S have v coordinates as L, or H,), then u-isoline is
chosen for subdivision. In the process, new points corresponding to the intersections of the
isoparametric lines with the intersection curve are generated and inserted into the appro-
priate subdomains. Domain decomposition is then applied recursively to each subdomain.

In most cases of surface-surface intersection, this process quickly separates out the
various curve components. But in the presence of singularities, no amount of subdivision
helps. In such cases, subdivision of domains is not carried out indefinitely. If the dimen-
sions of a domain become smaller than a specified tolerance', the subdivision is stopped
and checked for singularities. Informally, singularities are points on the intersection curve
where the curve self-intersects. A more formal treatment of singularities is given in the next

section. In the presence of singularities (except for cusps), no level of decomposition can

1 —5 . . .
we use 107 in our implementation
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Figure 4.5: Application of domain decomposition

produce subdomains with one simple curve component unless the singular point is deter-
mined accurately. If domain decomposition is unable to isolate single curves in a domain

after repeated levels of subdivision, then one of two cases can occur.
e Curve has a singularity, or
e Two components of the intersection curve are very close.

At this point, minimization of an energy function F(u,v, s, t) distinguishes the two cases.

E(u,v,s,t) = (D(u,v,s,t)* + N(u,v,s,t)? (4.4)
where,
D(u,v,s,t)=| F(s,t) — G(u,v) | (4.5)
and,
N(u,v,s,t) =| (Fs(s,t) X Fe(s,1)) X (Gu(u,v) X Gy(u,v)) | (4.6)

| . | refers to the length operator and X, the cross product of two vectors. The minimization
is applied with the midpoint of the region given as the initial point. A minimum value
of zero corresponds to a singularity. A non-zero minimum value means that the curve
has two very close components. If there is a singularity, then subdivision is done at the

singular point and domain decomposition is performed in each subdomain. Singularities
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Figure 4.6: (a) Intersection curve components lying close to each other (b) Two patches
intersecting in a singularity

are unstable points and are very sensitive to small input perturbations and floating point
errors. Therefore, the algorithm reports a singularity if the minimum value obtained is
smaller than a user-specified value?.

The pseudocode for the domain decomposition algorithm is described below.
¢ DomainDecomposition(domain, Xsection_points, tolerance)

1. If (there are only two Xsection_points) trace the curve inside the region and

return.
2. If (region size is smaller than tolerance)
— Apply singularity criterion.
— If there is a singularity
* Subdivide the domain at the singular point along both axes.
* Find all intersection points along the subdivided curves.

* for each subregion, do DomainDecomposition(subregion, new_points, tol-

erance).

* Return.

3. If (domain convergence is slow)

2107 in our system
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— Divide the domain at midpoint of one of the parameters.

— Compute the intersections of the curve with the dividing line.

— For each of the two subregions, do DomainDecomposition(subregion, new_points,
tolerance).

— Return.
else

— Divide the domain along isoparametric lines from every Xsection_points. For
the point (L, v1), the corresponding line is v = vy.

— Compute the intersection of the curve with each such line.

— for each subregion, do DomainDecomposition(subregion, new_points, toler-

ance).

— Return.

FEach time a subdivision of the domain is performed, we also maintain the con-
nectivity of the curves between various cells. At the end of the DomainDecomposition
algorithm, a set of curves traced out inside each region is obtained. Some of these are parts
of the same curve component. By using the cell connectivity structure and matching their
endpoints, they are connected appropriately to obtain the original intersection curve in the

[0, 1] x [0, 1] domain. This algorithm guarantees

e No component jumping - tracing is performed only inside a region that is guaranteed

to contain just one curve.

e Singularity detection - During all stages of the algorithm, singular points are always
bracketed. It is possible to miss some singular points, however, if they are not well-

separated.

The decomposition algorithm is illustrated on tensor product surfaces in Fig-
ures 4.4(a), 4.4(b) and 4.5. In our test examples, the algorithm uses one or two levels
of decomposition. However, the number of levels may be more in the presence of singulari-

ties or close components. In that case, the geometry of the curve is not simple and increases
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the complexity of any robust algorithm. The decomposition step is similar in nature to that
of subdivision or interval arithmetic based algorithms. However, subdivision in our case is
done only for separating the components and not for evaluating them to a certain accuracy.
For almost all cases we have tested, domain decomposition performs fewer decompositions.
The number of decompositions in subdivision and interval arithmetic based algorithms de-
pends on an accuracy parameter. The algorithm has been implemented and tested on a
wide variety of intersections and it is an order of magnitude faster than previously known
robust algorithms (like interval arithmetic).

Figures 4.5 and 4.6 show the power of domain decomposition. It can take care
of arbitrary intersections. Figure 4.6(a) shows the intersection of two patches where the
intersection curves come very close to each other. Figure 4.6(b) shows the same two patches
intersecting in a singularity. Domain decomposition was able to detect the presence of
singularity in the second case, and traced all the branches correctly.

The algorithm given above is used to partition the domain of the curve into regions
with a single curve component. Its complexity is a function of the number of components
and the separation of the components into various regions. For most practical cases, there
are a few well-separated components in the real domain and the algorithm performs well
for such cases. In many ways the underlying philosophy is rather similar to cylindrical
algebraic decomposition [Col75] based algorithms for partitioning the domain into regions.
Our algorithm uses an efficient and accurate zero-dimensional solver (described in chapter
3) and works well using finite precision arithmetic. On the other hand, the algorithms based
on algebraic decomposition [Arn83] compute all the extremal point and turning points using
purely symbolic methods and exact arithmetic. Even though this method guarantees that
the solution is always topologically reliable, they are impractical because of their large

memory requirements and poor efficiency.

Analysis of domain decomposition

Figure 4.7 provides a comparison between ordinary bisection and domain decom-
position. It can be seen that in the case depicted by the figure, our method performs much

better than bisection. In fact, on an average, domain decomposition achieves the desired
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level of subdivision much faster than bisection. This is because our method is a form of
guided subdivision as opposed to blind partitioning adopted by bisection.

However, there are instances when the algorithm does not reduce the region size
appreciably. This usually happens when the intersections are very close to the corners of
the region. One such example is described in Figure 4.8. These cases can be detected
easily because the area of one subdomain is almost as large as that of the domain before
subdivision. When such instances are encountered, bisection is performed once on the
domain to break the symmetry (of points in set S). Domain decomposition is then performed
on each half. The step size of tracing is determined by the size of each region.

In the worst case, for n components of the intersection curve, domain decompo-
sition can perform O(n?) subdivisions. This is asymptotically as bad as bisection based
algorithms. Computational geometry literature provides a number of techniques like binary
space partitioning trees and horizontal cell decomposition for separating line segments and
curves of bounded degrees where the number of cuts performed is O(n). But all these
algorithms have the restriction that the boundary of individual cells contain portions of al-
gebraic curves themselves. Essentially, portions of curves share boundaries of two adjacent

cells. They do not accomplish the separability condition that we require. Other techniques
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Figure 4.8: Case of slow convergence of domain decomposition

to perform cuts non-orthogonally (oblique line cuts) or low degree curves also reduce the
number of subdivisions. However, the resulting domains are much more complex, and the al-
gorithms and data structures required to perform and maintain such subdivisions are quite
difficult. In our experience, for most practical cases, the complexity of these algorithms

clearly outweigh their advantages.

4.3.2 Tracing in lower dimension

After domain decomposition, the entire domain ([0, 1] x [0, 1]) is subdivided into
smaller regions each with at most one curve segment. Further, domain decomposition
returns the two endpoints of the curve inside the region. Starting from one of the endpoints,
the tracing algorithm computes successive curve points using the local geometry of the curve
until the other endpoint is reached. Let the component be C. Given a point Q; = (uy,v1)

the skeleton of the tracing algorithm is given below.

e Compute D%(uy,vy) and DY(uq,v1), the partial derivatives of the curve with respect
to u and v, respectively. These are the components of the vector normal to the plane

curve. Methods to compute the partial derivatives were described earlier.
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Figure 4.9: Step size computation

e Given the normal vector, find the unit vector corresponding to the tangent. Let this

vector be (ty,t,).

e Iind an approximate point Qz = (ug, vg), where ug = uy +t,5, vo = v1 + ¢,5, and S

is the step size.

e Using (ug,v2), converge back to the curve at Qs = (ug,vs), if | t, |>| £, |, or to

Qs = (us,v2), if | £, |>] ty | using inverse power iterations.

A single tracing step is shown in Figure 4.2. The two main components of the tracing
algorithm are the choosing the step size and tracing back to the curve component using
inverse power iterations. We explain each of them in detail. For the rest of the analysis we
will assume that Qs = (ug, v3).

In the tracing algorithm, we compute the eigenvalue of M(ug,v) which is closest
to vz. As a result, we compute the companion matrix C from M(ugz,v) (see eq. (3.6) in
chapter 3) and set s = v,. In our application, we need to compute a smallest (in magnitude)
eigenvalue of the matrix C — sI, which is equal to a largest eigenvalue of (C — sI)~1.
Instead of computing the inverse explicitly (which is numerically unstable), we use inverse
power iterations. Inverse iteration was described in detail in the context of curve-surface

intersection in the previous chapter. Our use of the companion matrix structure to perform
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LU decomposition was also discussed.

The inverse iteration terminates when an eigenvalue and its corresponding eigen-
vector satisfy the convergence criterion. We refine the solution obtained from inverse power
iterations by minimizing the distance function D(u,v,s,t) defined in eq. (4.5). Inverse
power iterations followed by a few minimization steps give very good accuracy in practice.

Step Size Computation: The step size S is chosen to prevent component
jumping. To avoid component jumping the following constraints are imposed on Q. Let
the closest distance of Q2 to the domain boundary be A as shown in Figure 4.9. As a
result, any point on any other component of the curve is at least A away. Furthermore, the
distance § from Qg to C is at most S. (This statement is not true in regions of very high
curvature or cusps. These cases are handled separately.) If § < A, inverse iteration produces
a point on C. Therefore, an upper bound on the choice of stepsize is given by the condition
§ < S < A. We initially choose a value of S and check whether S < A. If this constraint
is not satisfied we refine the value of S using a binary search over the range [0,5]. Thus
making use of domain decomposition and inverse power iterations, we ensure that there is
no component jumping during tracing. It is possible to compute less conservative step sizes
by using higher order derivatives of the intersection curve [Dok85, DSY89]. However, we
feel that the complexity of computing higher order derivatives is much more than tracing

with a smaller step size.

4.4 Singularities

In this section, we describe algorithms to detect singular points. Different types of
singularities that can occur in intersection curves are shown Figure 4.10. Algebraically the
singularities are classified by the number of branches or places the curve has at that point
[Abh90]. The main difference between cusps and nodes (also tacnodes) is that the former
has only one branch while nodes have more than one branch.

The tracing algorithm evaluates an algebraic plane curve (D(u,v) = 0). Sin-
gularities on the plane curve D(u,v) = 0 are characterized by the common solutions of

D(u,v) = D*(u,v) = D(u,v) = 0. Singularities on the intersection curve correspond to
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Figure 4.10: Types of singularity (a) Noop (b) Cusp (c)Tacnode

points where the tangent vector is undefined. The tangent to the intersection curve is ob-
tained by taking the cross-product of the surface normals at that point. As a result, the

preimages of singular points on the intersection curve I are the common solutions of

F(s,t) = G(u,v)

(F(s,t) x Fl(s,8)) x (G*(u,v) x G'(u,v)) = (0 0 0)7 (4.7)

The curve I may have more than one branch at the singularity. The nodes on the intersection

curve and the plane curve are related by the following lemma.

Lemma 1 If the surface has no self-intersections, a node on the plane curve D(u,v) =0

corresponds to a node on the intersection curve 1.

Proof: A patch is said to be faithfully parametrized if the mapping from parametric space
to the surface is bijective. In other words, there are no self-intersections on the surface.
Let Q be a singular point of the curve in the domain and P be its image on 1.
Corresponding to each branch of P, there is a sequence of points on the curve D(u,v) =0
converging to Q. The images of these points on the intersection curve converge onto P.
The one-to-one mapping would imply that there are different branches in the neighborhood

of P as well. Therefore, P corresponds to a node.
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Figure 4.11: Teapot handles intersecting at a tacnode

However, there is no direct relationship between cusps on the plane curve and
those on the intersection curve. In particular, D(u,v) = 0 may have cusps but I need not
have cusps and vice-versa. Since we are evaluating the plane curve, we compute all the
singularities and the branches.

In general the problem of computing the singularities in the intersection curve
of high degree surfaces in floating point arithmetic can be numerically unstable [FR87].
Algorithms based on exact arithmetic and birational transformations have been proposed
in [AB88a]. However they are computationally very slow. Our algorithms are based on the
local geometry of the curve and the properties of the representation M(w, v). The algorithm
proposed here assumes that all the singular points on the curve are geometrically isolated
and well apart. In a design process, the designer often tends to use operations that result
in singular intersections. Our algorithm can handle these situations well as long as the

designer generates singular points that are at least separated by a specified tolerance.
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4.4.1 Detection of Cusps

The previous section described a method of detecting nodal singularities during
domain decomposition. Domain decomposition made use of the fact that any region with
just two boundary intersections consists of a single curve component. However this curve
could contain cusps which might introduce problems during tracing. Cusps on the plane

curve are computed based on the following lemma.

Lemma 2 Given a singular point (uy,v1) on the curve, one of the following must be true,
e M(uy,v1) has more than one zero singular value, or

o the entries g (u1,v1) and g, (u1,v1) obtained after performing Gaussian elimination

of M(uy,v1) are both zero.

Proof: In section 4.1.3 it was shown that using a slight variant of Gaussian elimination,
D(uy,v1) = I_ggi; and D*(uyg,v1) = D(ug,v1) Y ieg g—i It is a well known fact that if
complete pivoting is used during Gaussian elimination then for ¢ < j, ¢i;; > g;;.

Since (ug,v1) is a point on the curve, D(uy,v;) = 0. Therefore, at least g, (u1,v1) =

0. In addition, since (uy,v;) is also a singular point, D*(uy,vy) = D¥(u1,v1) = 0. Thus,

n
U1 U1
n _ 2 ? _
Hizogii(ulvvl) = Iz ogn U17U1 E = 0.
i=0 9ii uhvl)

This implies one of two cases -
e at least another g;;(u1,v1) = 0,7 # n, or
® gunl(t1,01) = g5, (ur, 01) = 0.

The latter case satisfies the second part of the lemma. If the former is true, then M(uy, vq)
must be rank deficient by at least two. This is equivalent to two or more singular values

being zero.
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The tracing algorithm computes the partial derivatives at each stage and checks
for the conditions in Lemma 2. If one of them is approzimately (if a second singular value
is less than 107°, or the partial derivatives are each less than 1072) satisfied, we conjecture
that we are near a cusp. Tracing is then abandoned on this path and started from the other
endpoint. If the curve has a cusp in this region, the paths from the two endpoints meet at
this cusp. Once the two paths come close (as demanded by the application) to each other
the tracing stepsize is progressively reduced. Once the two paths are close enough (smaller
than specified tolerance), the cusp point is obtained by minimizing an energy function. The
energy function is determined by the condition satisfied in Lemma 2. For example, if the

second condition is satisfied, the energy function is E(u,v) = (g%, (u,v))*+ (g%, (u,v))>.

4.5 Robustness and Efficiency

The two most important considerations in the design of any surface intersection
algorithm are robustness and efficiency. There is a clear trade-off between these two, since
the more care we take to improve the robustness of our algorithm the slower the execution
time of the algorithm. While it is almost impossible to provide an algorithm that can satisfy
both completely together, one must at least try to design an algorithm that can provide a
good fraction of both in most cases and can be fine-tuned according to the requirements of
the application.

Our algorithm has been tested on a number of models, and we have obtained en-
couraging results. There are no benchmarks available to test its efficiency, but our algorithm
compares favorably to many of the published timings. For example, it performs an order
of magnitude faster than techniques like interval arithmetic. [Sny92] reports that a differ-
ence operation (Boolean operation) between a bumpy sphere and a cylinder using trimmed
parametric surfaces takes order of a few minutes on a HP workstation. We can perform
such operations on similar solids (like generalized prisms, cylinders, spheres etc.) in a few
seconds on the same machine. By performing extra work like tracing all complex paths
during loop detection (see chapter 5) and perform domain decomposition to much smaller

domain extents before isolating singularities, we can increase the robustness guarantees of
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our algorithm.

In order to achieve robustness, a general intersection algorithm must be able to
determine the conditioning of the problem. The conditioning becomes more significant
because of errors introduced by numerical computations. If the input data changes by ¢,
the output results will change by a function 6(€). For very small values of €, there may
exist a constant s such that 0(€) &~ re [Hof89]. If x is small the problem is said to be well-
conditioned. A large value of x signifies an ill-conditioned problem. The value & is called the
condition number. However, it is nontrivial to calculate x for surface intersection problems.
Because of such difficulties, we restrict ourselves to robustness issues for well-conditioned
problems only.

We identify four main areas in our algorithm where robustness enhancing modifi-

cations can be made. They are

e tracing - We perform tracing after domain decomposition. We had shown that when
using inverse power iterations, convergence back to the curve is guaranteed except in
places of very high curvature (or cusps). In such situations, we reduce the step size by
half and repeat the process. Robustness can be enhanced by reducing the minimum

step size.

e component jumping - Domain decomposition is adopted to prevent component
jumping. Robustness is determined by the extent to which subdivision is carried out.

It is possible to control this effectively based on the requirement of the application.

e singularities - The accurate detection of all the singular points is contingent on the
assumption that the singular points are separated and well apart. This assumption
is not unreasonable for most of the practical applications, but a pathological case

violating this condition can be created.

e loop identification - We identify loops by performing curve-surface intersection and
complex tracing. The number of paths to be traced grows as a cubic function of the
degree of a patch. In most practical examples it is enough to trace a small fraction of
the paths, but to ensure absolute robustness, all the paths have to be traced. More

details are given in the next chapter.



Figure 4.12: (a) Intersecting Goblets (b) Intersecting Scissors

4.6 Models Composed of Piecewise Surfaces

The algorithms in the previous sections compute the intersection of a pair of
Bézier or algebraic surfaces only. Most models consist of tens or hundreds of such surface
patches. To compute the intersections of these models we compute the intersection of each
overlapping pair.

Typically only a small percentage of the O(N?) possible surface pairs intersect.
Our algorithm prunes out most of non-intersecting combinations using spatial techniques

based on bounding boxes and linear programming,.

o Initially the axis-aligned rectangular bounding boxes are computed for each Bézier
surface for both models. Each bounding box is then projected on each of the three
axes to obtain three sets of intervals. We denote them by z-lists, y-lists and z-lists.
The z-lists is sorted first and all the non-intersecting pairs are discarded. The y-lists
of the remaining pairs are again sorted to check for overlaps. This is repeated for the
z-lists as well. The pairs that remain at the end of this operation have intersecting

bounding boxes.

e The Bézier patches are contained in the convex hull of their control points. Given all

the pairs of surfaces obtained after bounding box tests, a test for separating plane
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Timing (in sec.)
Model || No. of No. of Curve-Surf. | Tracing | Total

patches | intersections | intersection

Teapot 32 8 0.4 2.6 3.5
Goblet 72 57 2.4 4.9 7.8
Scissor 505 82 3.1 7.8 11.6

Table 4.1: Performance Statistics of Intersection Algorithm

between their control polytopes is performed using linear programming. The existence

of a separating plane implies that the surface pairs have no intersection.

After execution of these two steps, the intersection algorithm is applied to each
existing pair. The intersection of each patch pair results in a (possibly empty) set of open
components and loops. The open components could be part of a larger curve in the model.
Two open components are spliced together if an endpoint of one is coincident with an
endpoint of the other (actually the test is made over a small disk of influence). Finally,
a piecewise representation of each component of the intersection curve is obtained for the
original models. The results of the intersection algorithm on large models like goblets and

scissors are shown in Figure 4.12.

4.7 Implementation and Performance

The algorithm has been implemented and its performance was measured on a
number of models. The algorithm uses existing EISPACK and LAPACK routines for the
matrix computations. The algorithm was implemented on a high-end SGI Onyx workstation
with an R4400 CPU and a clock frequency of 250MHz. In Table 4.1, we illustrate the
algorithm’s performance on different models. The second column represents the number
of patches in each model, and the third column represents to the number of patch pair
intersections after linear programming. We have not shown the time taken to perform
bounding-box tests and linear programming. We believe that a number of optimization
techniques can be incorporated in our implementation to give better results. Unfortunately,

there are no existing benchmarks available to test our algorithm and there are very few
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published performance results on surface intersection algorithms. Our algorithm performs

almost 10-15 times faster than algorithms based on interval arithmetic [Sny92].
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Chapter 5

Loop Detection Algorithm

In our discussion of the surface intersection problem in chapter 2, the intersection
curve was formulated as an algebraic curve in higher dimensions (R*, to be precise). Further,
these algebraic curves typically are of high degree with multiple components (as shown in
Figure 1.4). In most cases we are interested in evaluating all the components in the subset
of the real domain. Components that intersect with the boundaries of the real domain
are called open components. Loops are components where the curve folds back into itself
and is completely contained inside the domain of interest. In this chapter, we describe two
techniques for efficient and accurate evaluation of loops using a combination of symbolic
and numeric methods. The first method is applicable to arbitrary algebraic curves, while
the second is suited only for planar sections of surfaces. The loop detection and evaluation
algorithms are used in our surface-surface intersection algorithm to compute the intersection
curve.

Evaluation of high degree algebraic curves is fundamental in a number of areas of
scientific computing. Algebraic sets are widely used for representing objects and constraints
in computer graphics, geometric modeling, robotics, computer vision and molecular model-
ing. Many problems like surface-surface intersection, offsets of curves and surfaces, slicing
operations on surface models, Voronoi sets generated by curves and surfaces in geometric
modeling [Hof89], kinematic analysis of a redundant robot [Cra89], robot motion planning

[Can88], object recognition in computer vision [PK92] and conformation space of molecular
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Figure 5.1: Algebraic curve continuous in complex projective plane

chains [CH88] correspond to evaluating algebraic curves.

5.1 Loop Detection I: Algebraic Curves

We apply our loop detection algorithm to find all the loops of an algebraic plane
curve. We use a matrix determinant representation (like the one described in chapter 4)
to deal with high degree curves, but any general form (like power or Bernstein basis) is
sufficient for our algorithm. In this section, we shall describe our loop detection algorithm
assuming that we have a matrix representation of the plane curve (denoted by M(u,v)).

The curve we are evaluating is an algebraic plane curve in the complex projective
plane defined by u and v. We are, however, interested only in finding the part that lies in
the portion of the real plane defined by (u,v) € [0,1] x [0,1]. If we relax this restriction
so that one of the variables, say v, can take complex values, this curve is defined as a
continuous set consisting of real and complex components (see Figure 5.1). Before we give

our algorithm, we introduce some definitions.

Definition 6 Turning points are points on the curve where the tangent vector, as projected
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Figure 5.2: Characterization of loops based on complex tracing

in the (u,v) space, is parallel to the u or v parameter azes. In other words, one of the

partial derivatives (with respect to u or v) of the intersection curve is 0.

A turning point where the tangent is parallel to v-axis is called a u-turning point.
We classify u-turning points into left u-turning points and right u-turning points. A point
(ui,v1) is a left u-turning point if the curve goes into the complex domain in the left
neighborhood of u; (u = u; — §, where ¢ is a small positive value). A point (uz,v1) is a
right u-turning point if the curve goes into the complex domain in the right neighborhood

of uy (u=wuy +9).

Definition 7 Isoparametric curves are curves lying on a parametric patch (surface) where

one of the parameters of the patch (u or v) remains constant.

The main idea behind our loop detection algorithm is based on the following

lemma.

Lemma 3 If the curve in the real domain [0, 1] x [0, 1] consists of a closed component, then
two arbitrary complex conjugate paths meet at one of the real points (corresponding to a

turning point) on the loop.
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Figure 5.3: Two surfaces intersecting in a loop

Proof: The proofis based on Bezoul’s theorem which states that if f and g are two algebraic
curves of degree m and n respectively, then f and g intersect in evactly mn points in the
complex domain counted properly, or they have a common component. We use Bezout’s
theorem and the fact that the curve forms a continuous set in the complex domain to prove
the result.

Let us consider an algebraic curve that forms a loop in the real domain, like the
one shown in Figure 5.3. All isoparametric curves of one variable on a surface have the
same degree, namely the degree of the other parameter defining the surface. Therefore,
the number of intersections of the algebraic curve with any isoparametric curve equals the
Bezout bound in complex space. Figure 5.2 (left) illustrates the argument. The line L1
intersects the curve at two different real points. As we move the line continuously from
L1 to L2, the two intersection points come closer, and at line L2, both of them coincide
to form a double root maintaining the intersection count constant. This double root also
corresponds to a u-turning point. As L2 approaches L3, all the real intersections vanish.
Since the algebraic curve is continuous in complex domain, the double root bifurcates into

complex values and occur in conjugate pairs (because all curve coefficients are real).
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Now if the sweep is started from L3 towards L2, the complex conjugate components
come closer together, and at line L2, their imaginary part vanishes to yield a double root.
This argument shows that the complex conjugate pairs meet the real plane at some turning
point of every component. Observing that every loop component must have at least two

turning points completes the proof.

a

The domain of the intersection curve in the complex space is shown in Figure 5.2
(right). The third axis corresponds to the imaginary components of v. It represents a
continuous component of the intersection curve. The white curve is the intersection curve
in the complex space and the dark curve is the part of the curve that lies in the real plane.

We need only one start point on each loop to trace it completely. So we restrict
ourselves to u-turning points. Henceforth, we shall use turning points to denote u-turning
points. Our domain has changed from the real plane to a three dimensional space formed
by u, v, and v;, where v, and v; are the real and imaginary values of v. To compute the
turning points on the curve, we combine boundary computations with complex tracing.

Boundary intersections: Boundary intersections refer to the portions of the
curve that lie along the boundary of the surface (in our case, when v = 0, u = 1, v = 0
or v = 1). This corresponds to a curve-surface intersection computation which we reduced
to an eigenvalue problem in chapter 3. However, in this case, we have to evaluate all
the complex eigenvalues. Since algebraic pruning converges to only few of the complex
eigenvalues in the domain, we do not use this approach. We compute all the eigenvalues
using the QR algorithm.

Tracing: Given the complex start points on the boundary of the surface, we use
tracing in the complex domain to reach the turning points on every loop. The general
tracing step proceeds as follows. Given a point on the curve, an approximate value of the
next point is obtained by taking a small step size in a direction determined by the local
geometry of the curve (tangent or curvature information). This approximate value is then
refined using iterative techniques. We use inverse power iterations to trace the curve in

complex space. This method was described in detail in chapters 2 and 3.
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Figure 5.4: A pair of intersecting surfaces

The basic technique of obtaining all the turning points is to evaluate the starting
complex points on one of the boundaries and follow all these paths until they either leave
the domain or meet the real plane. Unfortunately, these are not the only complex paths
that could lead to a turning point. There could be complex paths starting from right
turning points of some other component of the intersection curve. This can be illustrated
by considering the intersection between a bicubic patch and a plane (see Figure5.4). The
curve M(0,v) = 0 is a cubic curve with all real solutions. This implies that there cannot
be any complex solution to this equation. Therefore, the left turning point on the loop is
connected in complex space to the right turning point of another component. So we use the
following strategy to complete a sweep of the complex paths from u =0 to u = 1.

Since complex solutions occur in conjugate pairs for real algebraic equations, we
restrict ourselves to complex paths whose imaginary parts are strictly positive. When a
complex path touches the real plane the imaginary part (of v) must reach some small
constant value € > 0 before reducing to zero. These are precisely the common points of the
curve with the plane v; = ¢. In other words, we are trying to find all the real solutions to

the equation det M(u, v, +t€) = 0 (i = /—1). Expanding out the expression and collecting
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the real and imaginary terms we can write
det(My(u, v,) + iMj(u,v,)) =0 (5.1)

Lemma 4 The solutions (u,v,) € R? satisfying equation (5.1) also satisfy the solution of
det(P(u,v,)) = 0, where

o Mi(u,v) —Mi(u, vy
Pl = M (u,v,)  Mg(u,v,) >

Proof: If (5.1) is satisfied, the matrix My (u, v,) +iM;j(u, v,) is singular. This implies that
there is at least one non-trivial vector in its kernel of the form a + ib. Therefore,
(M (u, v.) + iMj(u,v,.))(a+1ib) =0

Equating the real and imaginary components to zero separately, we get

M, (u,v.)a — Mj(u,v,)b = 0

M;(u, v )a + My(u,v,)b = 0
These two equations can be combined in a matrix form as

M, (u,v,) —M;(u,v,)
Mi(u,v,)  My(u,v,) b

a
Therefore, is a non-zero vector in the kernel of P(u,v,). Hence the proof.

a

As before, the solutions to (5.2) can be posed as the singular set of matrix P (u, v,).
The singular set of P(u, v,) is a discrete point set. The order of the matrix P(u, v, ) is twice
that of M(u,v). Therefore, there are twice as many paths to trace in general. For an
intersection curve, if the patches are of degree m x n and p X ¢, then at most 2mn min(p, ¢)
paths have to be traced.

Initially we form the companion matrix of P(u,v,), C), similar to the one in

Eq.(3.6). We compute all the eigenvalues of C), at u = 0 (we expect all of them to be
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Figure 5.5: Two tori intersecting in a small loop

complex). We use them as starting points and trace all the paths in increasing u direction
until it either crosses the v = 1 plane or become real. All the real values of v, are points
lying very close to the turning points of the intersection curve. The corresponding point
on the real plane is (u,,v,). This is used as an initial guess to approach the actual turning

point using inverse power iterations.

5.2 Implementation, Performance and Applications

The loop detection algorithm has been implemented and its performance was mea-
sured on a number of models. The algorithm uses existing EISPACK [GBDM77] and LA-
PACK [ABB*192] routines for some of the matrix computations. We report the results of our
implementation on an SGI Onyx workstation with 128MB of main memory and a speckF'P
rating of 98.1.

Tracing in the complex space is a guided form of search for all the turning points
of the loops. In a purely algebraic form, all the turning points of a curve f(u,v) = 0 can
be posed as the common solutions of f(u,v) = f,(u,v) = 0. Using the Bezout bound, the

number of possible turning points is quadratic in the degree of the curve. However, the



101

maximum number of complex paths that need to be traced in our loop detection algorithm
is linearly related to the degree of the curve. The performance of the tracing algorithm is
directly dependent on the efficiency of linear system solvers. While methods like LU and
L@ decomposition take O(n?®) operations, our use of the special structure of the matrix has
almost quadratic complexity. Our implementation of the algorithm consists of two major
modules - the boundary computation part and the complex tracing part. The boundary
computation module computes starting points on all the complex paths using eigensolvers.
For our implementation, we used an € (see previous section) value of 0.01. The complex
tracing step is done using inverse power iterations. The total time to trace a path across

the domain is about 20-50 milliseconds.

5.2.1 Application to surface intersection

Our loop detection algorithm is part of the surface intersection algorithm, which
was described in chapter 4. This, in turn, has been applied to a number of intersecting
surfaces and has worked well consistently. Our algorithm evaluated the intersection curve
of the surfaces in Figure 5.3 in about 4 seconds. A total of 54 complex paths were traced
which consumed about 70% of the time.

For efficiency considerations, it may not be necessary to trace all the complex
paths. In our test examples, very few complex paths meet the real plane inside the domain
of the patch. It is very difficult to give exact algorithms to prune out paths that cannot touch
the real plane because of the high degree nature of the curve. However, through repeated
application of our algorithm we found that paths that start very high in the complex axis
rarely hit the real plane. This observation could be used to speed up the tracing step
depending on the robustness requirements of the application.

In order to compare our algebraic method with the Gauss map based approaches
to loop detection, we implemented Hohmeyer’s algorithm (in the context of surface inter-
section) using pseudo-normal patches [Hoh91]. Hohmeyer’s algorithm performed slightly
slower than our algorithm on the example in Figure 5.3. Eight levels of subdivision were
performed, and most of the time was consumed in the repeated computation of the Gauss

map and application of linear programming. We observed that his algorithm works very well
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when the patches are relatively flat and do not intersect in loops. However, these methods
perform a number of subdivisions (to achieve the no loop criterion) when the patches have
high curvature and intersect in small loops or singularities.

Hybrid approach: We suggest the following hybrid approach when dealing with
intersection curves. Initially, we test for the possible absence of loops using the Gauss map
approach. We perform subdivisions based on this approach for about 2-3 levels. In the event
that Gauss maps are still not separated, we apply our algorithm to identify turning points
on loops in the smaller domains. This method has been applied to compute intersections of
high degree surfaces. On an average, our algorithm takes less than one second to compute
one patch-pair intersection. For the intersecting surfaces in Figure 5.3 and Figure 5.5,
our method performs better than Hohmeyer’s algorithm. His method, however, performed

better when applied to the surfaces in Figure 5.4.

5.2.2 Silhouette Computation

To show the generality of our algorithm, we have also applied it to compute the
silhouettes of parametric surfaces. The property of the silhouette curve is that it subdivides
the surface into front and back facing regions. We shall restrict our discussion to surfaces
whose silhouette (from a given viewpoint) is a curve on the surface. We now describe our
formulation of the silhouette curve on a parametric (represented as a tensor product Bézier
[Far93]) patch from a given viewpoint.

We assume for the sake of simplicity that the viewpoint is located at (0,0, —o0).
It is easy to see that even if this is not the case, one can always achieve it by applying an
appropriate perspective transformation to the parametric surface F(u,v). We also require
that all the surfaces are at least C'! everywhere. We formulate the silhouette curve as an
algebraic plane curve in the domain of F(u, v). Figure 5.6 shows a patch that has a loop as
part of its silhouette.

Let F(u,v) denote the parametric (differentiable) surface and let ¢1(u, v), ¢pa(u,v)

and ¢s(u,v) denote the mappings from the parametric space to (z,y, z) space.

F(u,v) = (X (u,v),Y(u,v), Z(u,v), W(u,v))



103

Figure 5.6: Loop as part of a silhouette curve

X (u,v) Y (u,v)
W(u,v)’ W(u,v)’

In the rest of this section, we shall drop the (u,v) suffixes from all the functions for more

Z(u,v)

9a(u,v) = W (u,v)

1 (u, U) = P2 (u, U) =

concise notation. The z—component of the normal at an arbitrary point on the surface is

given by the determinant

N = b1, P14 (5.3)

$2, P2,

where ¢;, and ¢;, denote the partial derivatives of the appropriate function ¢; with respect
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to u and v.

(WX, — W, X) (WX, — W,X)
o, = b, =

(WY, — W,Y) (WY, — W,Y)
T T

On the silhouette curve, N, = 0. Since W (u,v) # 0, we can express the plane curve repre-

senting the silhouette as the determinant

(WX, - W, X) (WX, - W, X)
N, = =0 (5.4)
(WY, —W,Y) (WY, - W,Y)

Expanding the determinant and rearranging the terms, we can express it as the singular set

of the matrix M(u, v)

X(u,v) Y(u,v) Wiu,v)
M(u,v) = Xu(u,v) Yy(u,v) Wy(u,v) | =0 (5.5)
Xo(u,v) Yy(u,v) Wy(u,v)

For curves like silhouettes, the Gauss map approach is not very practical. In order
to apply their loop detection criteria on a bicubic patch (like that in Figure 5.6(b)), one
would have to perform repeated subdivisions on rational patches of degree 27 x 27. This
makes the algorithm very slow because each subdivision step takes O(n>) operations (in
terms of the degree). We were able to determine all the components of the silhouette for the
same surface using our algorithm in about 2 seconds. Performing boundary computations
to determine all the starting points roughly takes 40% of this time. The rest of the time is
spent in curve tracing. For this particular example, a total of two complex paths and five
real components were traced along the entire domain. The real components of the silhouette

curve in the domain are shown in Figure 5.6(d).

5.3 Loop Detection II: Surface Sectioning

In this section, we describe an algorithm to perform loop detection on intersection
curves obtained by taking planar sections of surface models. This operation is widely used

in rapid prototyping to obtain cross-sectional information of such models. A major concern
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Figure 5.7: Intersection of a plane with a biquadric surface

in such applications is the correctness of the resulting curve i.e., its topological type and
detection of all components.

Figure 5.7 shows a simple example of a biquadratic surface intersected by a plane.
In this case, the intersection curve has a single loop component. We shall now formulate the
loop detection problem as critical points of a plane vector field. The vector field is obtained

as the gradient of a distance function introduced by [Che89].

5.3.1 Intersection formulation using distance function

The intersection set between a pair of parametric surfaces can be formulated as a
minimization problem in which the distance between two variable points on the two surfaces
becomes zero. Basically, the intersection set can be expressed as the sequence of points in
the two surfaces with zero distance between them.

The oriented distance function ¢ between a surface Q(s,t) and a point moving on
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R(u,v)

f

a(R(u,v))

Figure 5.8: Distance function between two surfaces

another surface R(u, v) is defined on the (u,v) parameter space as

¢(u,v) = a[q(R(u,v))] o (R(u,v) — q(R(u,v))) (5.6)

where q(R(u,v)) is a point on the surface Q(s,t) which is nearest to the point

R(u,v), and 1 is the unit normal vector on Q(s, ) at the point q(R(u,v)) (see Figure 5.8).

e is the dot product operator for vectors. In our case, however, one of the surfaces is a

plane, and the normal is constant at all points (say fi). Therefore the distance function
becomes

¢(u,v) =1 o [R(u,v) - q(R(u,0))] (5.7)

Assuming that ¢ is a well-defined distance function, the intersection set is the

zero set of ¢. There are cases when ¢ is not well-defined (when there are more than one

closest point to R(u,v), or when the line joining the two points R(u,v) and q(R(u,v)) is

not collinear to i because of patch boundaries). However, these special cases do not occur

while looking for loops in the intersection curve. As we will see in the next section, inside

every loop of the intersection curve, there are critical points of ¢. But points where ¢ is

not well-defined (boundary points of surfaces) cannot be enclosed by a loop. Therefore, we

can assume for the purposes of this paper that ¢ is well-defined.
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5.3.2 Collinear normal points and Distance function

Sederberg [SM88, THS89] was the first to recognize the importance of collinear
normals in detecting existence of closed loops in intersection problems. It is easy to see that
collinear normal points between two surfaces are critical points of the distance function ¢.
This is because collinear normal points are extremal distance point pairs and the gradient
vector of the distance function is zero. Therefore, if we have a method to find the number of
collinear normal points within a particular domain of interest, we can use a simple subdivi-
sion scheme to compute these points to arbitrary precision. Most existing methods use the
idea of rotational index of the vector field inside a closed curve [KPP90, KPW90]. However,
this test is inconclusive because if a particular region contains two critical points of opposite
rotational index, then we obtain net rotational index of zero. Recently [ML95] extended
this to a three-dimensional vector field such that rotational index of this field decides con-
clusively the number of critical points (provided they are non-degenerate). However, their
method is susceptible to failure if the sampling grid in the domain contains contours of
zero Jacobians completely inside them. Further, the use of local minimization methods and
Newton type marching methods to locate all the critical points are error-prone.

The following theorem formulates the gradient of the distance function. The criti-
cal points of this vector field provides the set of collinear normal points. We denote partial

derivatives with respect to u (v) by subscripted u (v, respectively).
Theorem 5 Given the oriented distance function ¢ as in eq. (5.7), the gradient is given by
du(u,v)=10n e Ry(u,v)
du(u,v) =10 o Ry(u,v) (5.8)
Proof: The distance function ¢(u,v) is given by
¢(u,v) =10 o [R(u,v) — q(R(u,v))]
Taking partial derivative with respect to u, we get

Gul,0) = 1 o Ru(t,0) — au(R(w,0)] + iy o [R(w,0) — a(R(u,0))]
e Ry(u,v)

[l
:>
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This is because 1y, is zero because normal does not change for a planar patch, and
sois i ® qu(R(u,v)) since qy lies in the tangent plane of Q(s,?) and 11 is the normal to it.

The result for partial w.r.t v can be proved similarly.

5.4 Loop Detection Algorithm

In this section, we describe our loop detection algorithm based on finding all
the critical points of a two-dimensional vector field. Sturm sequences were introduced by
Hermite (1853) in order to count the number of real roots of a univariate polynomial inside
a given interval. Sturm sequences are generated by performing g.c.d. (greatest common
divisor) computation using Euclid’s algorithm on the given polynomial and its negative
derivative. An introduction to univariate Sturm sequences was given in chapter 2. The
number of real roots is computed by counting the number of sign changes of this sequence
at the endpoints of the interval. Extending this idea to multivariate polynomial systems
(that yield zero-dimensional solution sets) has been the focus of research for quite some time.
Milne [Mil92] introduced the volume function which essentially achieved the extension to

multivariate polynomial systems.

5.4.1 Multivariate Sturm sequences

Here, we describe briefly the algorithm proposed by Milne [Mil92] to compute the
number of common real solutions of n polynomials in n variables inside an n-dimensional
rectangle. This algorithm is an extension of the univariate case which constructs a polyno-
mial sequence, and measures sign variations of this sequence at the endpoints of the interval.
We restrict ourselves to the case when n = 2.

Given two polynomials, fi(s,t) and fa(s,t), we construct the volume function,

Viu,s,t), as
Resg, (Resq, (fi(a1,as), f3), Resq, (f2(a1,az), f3))

Viu,s,t) = 459U (5,01 deg(2(3,0]) !

where f5(u, s,t,a1,az) = u+(s—ay)(t—az), Res, refers to the resultant of two polynomials

after eliminating z, and deg refers to the degree of the polynomial. a; and ay are two new
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symbolic variables. Because of the special bilinear form of fs3, the two resultants involving
elimination of variable a1 inside the expression for volume function is easily performed by
hand. We use the Sylvester resultant [Sal85] (see chapter 2) to eliminate variable as.

We use an algorithm based on multivariate interpolation [MC93] to compute the
resultant of a set of polynomials efficiently. The main bottleneck in most resultant algo-
rithms is the symbolic expansion of determinants. Most of the computer algebra systems use
symbolic algorithms like polynomial manipulations for resultants, which are very expensive.
Further, the magnitude of intermediate expressions grows quickly, and the memory require-
ments are high. The algorithm in [MC93] performs all computations over finite fields (all
numbers are computed modulo some prime number), and uses a probabilistic incremental
algorithm based on the Chinese Remainder Theorem to recover actual coefficients.

A practical implementation of the Sylvester resultant introduces extraneous factors
in the resultant that must be removed. For the special form of f3, the extraneous factor
introduced by Sylvester resultant is uP4, where p and ¢ are the maximum degrees of s in f;
and fy respectively, and we factor it out immediately.

Given a square-free polynomial p(z) we can construct a Sturm sequence of polyno-
mials S; = —remainder(S;_y(x), Si_i(2)), where Sy (z) = p(x) and Sy(z) = p' (). Treating
the volume function V as a univariate polynomial in u, we construct its Sturm sequence
Si(u,s,t). The Sturm sequence is specialized at u = 0 to give a sequence of bivariate

polynomials M (s, ).

Definition 8 Given a sequence of polynomials M(s,t) of length n, the V operator at
(a1, az2) (V(M (a1, az))) gives the number of sign changes between consecutive terms of the
sequence evaluated at (ay, az). Correspondingly, the P operator is defined as P(M (a1, az2)) =
n—1-=V(M(ay,az)).

Given the bivariate sequence M(s,t) and a rational axis aligned rectangle I' =

[a1, b1] X [ag, bz], the number of real roots of f; and f; inside I is given by

P(M (b1, b2)) + P(M (a1, az)) — P(M(by, az)) — P(M(a1, b))
2
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(a1,b2) (a2,b2)
—o| |
(]
(a,(b1+b2)/2)
[J
(al,bl) (al+a2)/2,b) (a2,b1)

Figure 5.9: Linear convergence of roots

The justification for various steps and extension to arbitrary dimensions can be

found in [Mil92].

5.4.2 Converging to the critical points

In order to find all the collinear normal points between the two surfaces, we have to
converge to each critical point within a given tolerance. Once that is done, subdividing the
domain of the surface at these points ensures that there are no loops within each subdomain.
We could then use any marching method to trace the intersection curves.

The algorithm to converge to each critical point within a tolerance is fairly simple.
Given an initial domain, we compute the number of common roots within it. If it is zero,
we stop. Otherwise, the domain is divided into four parts (by simple bisection), and the
computation for number of solutions is performed again. It should be noted that the most
expensive step of computing the Sturm sequence is performed only once. Substitution at
the various endpoints of the interval is done at each step of the recursion. Once the interval
size is within the tolerance, we stop and declare that as a root. It is easy to see that the

convergence of this method is linear. Figure 5.9 shows the sequence of subdivisions for a
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particular case with three real roots.

5.5 Implementation and Demonstration on Examples

In this section, we show some important steps of our algorithm on a few examples.
The implementation of our algorithm was carried out in exact rational arithmetic using
LiDIA [BBP95] (a rational number library). By using exact arithmetic, we can assure
that the algorithm gives accurate results, however, for the sake of efficiency it is better to

implement the algorithm in finite precision.

Example 1: The first example is that of a biquadratic (degree 2 x 2) Bézier
patch sectioned by a plane parallel to the zy-plane (see Figure 5.7). The parametric form
of the biquadratic patch is given below.

X(s,t)=—2 4+ 4s + 2t —4st — 28 + 45t
Y{s,t) = =2 + 25 — 25> + 41 — 4st + 457 ¢
Z(s,t)=3 — 25 4+ 28> — 4t — 16st + 167 ¢ + 41 + 14 s> — 145 7

Using the above patch equations and computing their partial derivatives, we obtain

the following planar vector field.

fils,t) = =2 4+ 45 — 16t + 328t + 14¢* — 28 s ¢°
fo(s,t) = —4 — 165 + 165 + 8t + 28 st — 28s° ¢

After adding the third polynomial, fs(s,t) =st + v — t 1 — s x3 + @1 3 into
the given system of equations and computing successive Sylvester resultants, we obtain the

volume function for this bivariate case.

V(u, 21, 22) = —104 — 3702 u + 28244 u® + 80362 u® — 333592 u* — 236670 u® — 528 1 + 184 u @1 —
30728 u? x1 + 530012 u® 21 + 667184 u* 1 + 920 27 + 36202 u &7 — 77280 u® zT—
530012 u® x7 4+ 3680 3 — 72772 w 27 + 51520 u? 27 — 6440 21 + 36386 u zi+
2576 x7 — 1469 x5 — 21374 u x5 — 130525 u? xp + 358064 u® x2 + 591675 u* 22—
7458 1) o — 28704 u 1 T2 — 533968 u? T @y — 2668736 u” x1 w2 — 1183350 u? xy rot
12995 2% x5 + 131744 u 27 x2 + 2385054 u’® 22 o + 2668736 u® 22 xo + 51980 27 xo—
206080 u 27 x2 — 1590036 u? ) x2 — 90965 x5 x2 + 103040 u x] x2 + 36386 27 xo—
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2080 z3 + 84920 u z3 + 166152 u? x3 — 338100 u® z2 — 10560 x1 x3 — 218546 u x1 v3+
1669248 u® ©1 %3 + 2366700 v’ ©1 x5 + 18400 22 x3 — 1371490 u 2% 23 — 6004656 u® 2% x3—
2366700 u® 27 x3 + 73600 z7 x5 + 3180072 u x5 3 + 4003104 u? =3 x5 — 128800 =} z3—
1590036 uw z1 22 + 51520 27 22 + 21398 25 — 113134 u 3 — 84525 u® z5+

108636 x1 x5 + 404432 u x1 3 — 1014300 u? 1 x5 — 189290 #7 =3 + 2264304 u =7 x5+
3550050 u? 27 x5 — 757160 x5 x5 — 5337472 w % &3 — 2366700 u® 7 x5 + 1325030 «§ #3+
2668736 u x§ x5 — 530012 &5 3 — 26936 x4 + 48510 u x% — 136752 x; z4—

169050 uw z1 4 + 238280 27 23 — 1014300 u #7 x5 + 953120 7 x5 + 2366700 u 27 xi—
1667960 x} x4 — 1183350 u «¥ 2% + 667184 &5 2 + 9555 x5 + 48510 =, 5 —

84525 x7 x5 — 338100 #3 z3 + 591675 = 25 — 236670 &) 5

We computed the Sturm sequence of this volume function, and isolated the roots

L

05+ There was

of the original equation in the interval [0, 1] X [0, 1] to within a precision of

a single root as expected. The domain value of the collinear normal was

( t)—<[39038 7894] [8326 42278])
T\ [781257 15625] 7 [ 156257 78125

If we subdivide the original patch at this point, we are guaranteed to have no loop

in the resulting intersection.
Example 2: This is a slightly complicated example with multiple collinear nor-
mals (see Figure 5.10). Here a bicubic (degree 3 X 3) parametric surface is cut by a plane

parallel to the xy-plane. The coordinate equations of the surface are

X(s,t)=—-2 4+ 3s + s

Ys,t) = =2 + 3¢t + ¢

Z(s,t) =2 +3s — 68 + 3% — 728t + 18957t — 1175° ¢t + 171 s¢* —
486 s2 2 4+ 315 s t2 — 99 s t7 4+ 294 % 7 — 195 7 ¢

Corresponding to these equations, the vector field is

fils,t) =1—48+3s%—24¢t+126st— 117 s> t+57¢* —324 s> +315 s t* =33t +196 s t* — 195 s* ¢*
fo(s,t) = =8 8421 s> —13 5% +38 st —108s* t +70 s t —33 5 £ + 98 s° +* — 65 s° 12

The volume function for this vector field corresponds to a polynomial which is of
degree 13 in u, 21 and 23 (the number of terms in this polynomial is too large to list it
here). Computation the Sturm sequence and isolation within 11ﬁ of precision yielded four

roots. They are
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Figure 5.10: Planar section of a bicubic surface

(S’ t) = ({125469295’ 3512285} ? Hé?;g’ %gggg}) ? ({135168275’ 3616235} ? {125465235’ 125564275}) ?

(15795 15035 - (79195 1805 )) - (525 5735+ Liseos Tooos)

Even though there are only two loops in the cross section, it is clear that there are
other points where the normals of the two surfaces actually match.

Once the critical points have been computed, we subdivide the surfaces along these
points and compute the intersection between each of the subdivided surfaces. This is simple
because we know that the subdivided surface pairs cannot intersect in a loop. Putting the
individual curves together gives us the complete intersection curve.

The algorithms presented in this chapter provide an effective way to detect loops
in algebraic curves. The surface intersection algorithm described in the previous chapter
employs these techniques with encouraging results. We now proceed to describe the main

problem of computing B-reps of Boolean combinations of solids.
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Chapter 6

Boundary Computation of

Sculptured CSG Solids

In this chapter, we present an efficient algorithm for representation and computa-
tion of surface boundaries of CSG solids. Every CSG object is built from a set of primitive
objects which are of a simpler structure. The set of primitives include polyhedra, quadrics,
generalized prisms and pyramids, tori, surfaces of revolution and sculptured solids (whose
boundaries can be represented as NURBS surfaces). The techniques presented can also be
generalized to all algebraic surfaces. An example of a CSG tree is shown in Figure 1.3.
Boolean combinations of such solids are used in most CAD and modeling systems. For ex-
ample, the Bradley fighting vehicle (shown in Figure 6.1) has been modeled using boolean
operations. The model consists of more than 8500 solids, each designed using 5 to 8 boolean

operations.

6.1 Representation of Solids

In this section, we describe our representation for a solid. Our algorithms assume
that all B-rep solids are specified in this format. Every solid is represented as a set of
trimmed parametric surface (tensor-product Bézier) patches (for definition, see chapter 2)

which define the solid boundary.
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Figure 6.1: Exterior of a Bradley fighting vehicle

Topological information of the solid is maintained in terms of an adjacency graph.
It is similar to the winged-edge data structure [Hof89, MT83]. To start with, we assume that
each of the input objects has manifold boundaries, and the Boolean operation is regularized
[Man88]. While it is possible to generate non-manifold objects from regularized Booleans on
manifold solids, we assume for the sake of simplicity that such cases do not occur. Given this
assumption, it has been shown that an unambiguous topological representation is possible
for a solid [Hof89].

A trimmed patch consists of a sequence of curves defined in the domain of the
patch such that they form a closed curve (ci’s in Figure 6.2). In the figure, the ¢; refer
to the algebraic curve segments forming the trimming boundary. The portion of the patch
that lies in the interior of this closed curve is retained (the trimming rule is described in
chapter 2). Most of these trimming curves correspond to intersection curves between two
surfaces. Therefore, these curves are typically algebraic curves that do not admit a rational
parametrization [AB88a]. We represent these curve segments (¢;) by their algebraic equation

(for accuracy), and a piecewise linear approximation (for efficient computation) and the two
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Vertices formed as intersection
of algebraic curves

Algebraic curves as
trimming curves

Figure 6.2: Representation of a trimmed patch as algebraic curve segments

endpoints (pi and pit1).

This representation of a solid lends itself to a description in terms of faces, edges,
and vertices analogous to the polyhedral case. Each face is a trimmed patch. Each of the
trimming curves form an edge, and are formed as an intersection of two surfaces (faces).
Finally, endpoints of edges form the wvertices. They can be represented as an intersection
of three surfaces. Figure 6.3 shows an example solid and the face connectivity structure
that we maintain. We also maintain the two faces that are adjacent to each edge, and an

anticlockwise order of faces around each vertex.

6.2 Set Operations between Solids

In this section, we shall describe the algorithm to compute the solid which is the

result of some set operation between two given solids, solid; and solids. We shall denote



117

10 11

Figure 6.3: A cylinder and its face connectivity structure

the resulting solid as solid;». Let the number of patches in solid; be m and those in solid,
be n and let the maximum degree of each patch be dy X d; (maximal degree monomial is of
the form s%t%, where s and ¢ are the parameters defining the surface).

The first step in computing solid;s is to find the curve of intersection between the
two solids. Since each solid is composed of a set of trimmed patches, we have to compute the
component of the curve inside each patch. However, not all the mn pairs would intersect
typically. We prune out most of the non-intersecting pairs based on a two-step process.
Initially, we compute a 3D axis-aligned bounding box for each patch. Since tensor-product
Bézier patches have the convex hull property [Far93], the bounding box and convex hull of
the control points encloses the entire surface. Therefore, if a pair of bounding boxes do
not intersect, the corresponding patches are also non-intersecting. Further, determining
the bounding box of the surface just requires computation of the minimum and maximum
extents of all the control points along the three coordinate axes. This step can be done in
time O(d; d;). Since each of the surface patches comprising the solids are trimmed, we also
compute the tightest fitting axis-aligned rectangle in the domain that encloses the trimming
region. This ensures a tighter bounding box for the actual surface.

Bounding box tests: Two bounding boxes overlap if and only if their interval
extents projected along each of the coordinate axes overlap. This condition gives us a naive
method to perform bounding box overlap tests. For each of the O(mn) pairs performing

the above mentioned test gives us the answer. While this algorithm is time optimal if
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there are O(mn) overlapping bounding boxes, this algorithm is quite inefficient if there
are very few actually intersecting boxes. Obtaining an output sensitive algorithm that
performs asymptotically better on average has been a well studied problem in computational
geometry. Edelsbrunner [Ede83] obtained an O(nlogn + k) for the three dimensional
rectangle intersection problem. We, however, use an algorithm which runs in O(n log? n 4 k)
time using nested segment trees.

Initially, we sort the Z-extents of all the bounding boxes for a plane sweep algo-
rithm. The data structures we maintain at each step of the plane sweep are two nested
segment trees (one for each solid) - the first level is a segment tree where the X-intervals
are stored. At each node of this tree, we maintain the Y-intervals of all the bounding boxes
active in the form of a secondary segment tree. Every insertion, deletion and search step
requires O(log2 n) time. Each step of the algorithm corresponds to the start or end of a
bounding box belonging to one of the patches in solid; or solids. If it is a starting case,
we simply augment the appropriate data structure by inserting the corresponding X and
Y intervals. However, if the sweeping plane is at the end of a Z-interval from a patch in
solidy (solidy), we delete the corresponding X and Y intervals from the segment tree of the
first (second) solid. In addition, we report all the bounding boxes intersecting this box by
performing a query operation on the segment tree of the second (first) solid. The query
operation takes O(log2 n) time because the Y-interval overlap query in the secondary struc-
tures can be performed from as many as O(logn) nodes. At the end of the plane sweep,
all the bounding box overlaps are reported (there may be repetitions). This algorithm is
space inefficient (takes O(n?log®n) space). We chose this algorithm, however, for ease of
implementation and the nature of our application.

Convex hull tests: The next stage of pruning uses convex hulls of the control
polytope to eliminate non-intersecting patches. This test is performed only for those pairs of
patches whose bounding boxes overlap. The test can be formulated as a linear programming
problem as follows. Two patches do not intersect if there exists a separating plane between
them. Therefore, if there exists a separating plane between the two sets of control points,
then the patches are non-intersecting.

The problem is set up as follows. Let the control points for the first patch be
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(X1, Y14, Z1i, Whi) and those for the second patch be (X, Yai, Zai, W) fori = 1,2,. .., (ds+
1)(d¢+1). The equation of a plane in projective coordinates is az + by + ¢z + dw = 0.
If this plane is a separating plane for the two sets of control points, then the substitution

of the control points into the plane equation gives different signs for each patch. Thus,

aXyy + WY + cZy + dWip < 0

aXiz + bYio + cZip + dWip < 0

aXor + bYoy + cZy1 + dWy > 0

aXoy + WYy + cZy + dWy > 0

We are looking for at least one feasible set of solutions for a, b, ¢ and d that makes these
constraints true. The dimension of this problem is four. The number of control points for
each patch is (ds+1)(d¢+1). Therefore, the number of constraints in the linear programming
problem is 2(ds+1)(d;+1). Seidel’s algorithm for linear programming runs in time linearly
proportional to the number of constraints for fixed dimensions. The running time for the
entire process, thus, is O(k ds d;). Typically, ds; and d; are much smaller than k& (number of
pairs with overlapping bounding boxes). Therefore, the running time is O(k). By applying
these two methods on the two solids, we are left with few pairs of patches that are most

likely to intersect. We use Mike Hohmeyer’s implementation of the linear programming

algorithm developed by Seidel [Sei90b].

6.2.1 Intersection Curve between Trimmed Patches

In order to compute the intersection curve between the two solids, we compute a
series of intersections between pairs of trimmed patches. Since a trimmed patch is a strict
subset of the original patch, then so is any intersection curve that lies inside this patch. We
use the algorithm described in chapter 4 to compute the complete intersection curve of the

two patches (ignoring the trimming curves). The intersection curve so obtained from the
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Figure 6.4: (a) Intersection of trimmed surfaces (b) Computing curve intersections with trim-
ming boundary

algorithm is represented as a piecewise linear chain in parameter space. We also maintain an
accurate representation of the intersection curve in the domain of each patch as a bivariate
matrix polynomial Figure 6.4(a) shows the surface B intersecting with a trimmed patch A.
A planar surface is trimmed so that only the portion inside the circular region (not shown
completely) belongs to A. The actual intersection curve is highlighted in Figure 6.4(a).
However, the curve from p to ¢ is the intersection curve of B with the complete planar
patch.

Given the complete intersection curve pg (represented as a different polygonal
chain in each of the two patches), we have to compute the intersection curve of the trimmed
patches. This curve is determined by finding portions of pg that lie inside the trimmed
region of both the patches. This problem can be solved by accurately finding the intersection
points between the intersection curve and the trimming boundary. The trimmed region is
represented as a simple polygon in parameter space as mentioned earlier. This reduces
the problem to finding the portions of a polygonal chain (represented differently in the
other surface domain, but corresponds to the same space curve) that lies inside two simple
polygons simultaneously. If the length of the chain is m, and the sizes of the two polygons
are ny and ngy, then this problem can be solved in time O(m(logn; + lognz)) using point

location queries each of which take O(logn) time [Sei91]. The intersection points obtained
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by this process is only an approximation to the true intersection point. Figure 6.4(b)
illustrates this point on a sample surface S; whose trimming boundary is the result of a
previous intersection computation with surface S3. The intersection curve is generated with
surface S3. The intersection point computed using the piecewise linear curves is r, while the
actual intersection point between the intersection curve and trimming boundary is s. The
image of point s in R? is the point of intersection between the three surfaces S;, Sy and Ss.
In order to refine r, we use the patch equations of the three surfaces involved. r is a point
in the domain of S;. Since the piecewise linear curves have corresponding representations
in the domains of Sy and S5 and r lies on both the curves, it is easy to find the preimage of
r in the domains of S5 and S3. Let us call them 7 and ¥ respectively. Using these points as

the initial guess, we perform few iterative steps of local minimization on an energy function

E(r,r,7) that is defined as
E(r,i7) =[] Si(r) = Sa(i) [ + || Sa(r) — Ss() ||

The number of iterations taken by the minimization routine is directly dependent
on the accuracy of the piecewise linear curves. We use Powell’s method [PFTV90] as our
local minimization algorithm. In our experience, the minimization step converges within
3-5 iterations for a tolerance of 1075,

By applying this algorithm on all pairs of patches, we obtain a set of curves in
the domain of every patch. Since each solid is closed (and compact), the intersection curve
between two such solids must form a collection of closed curves in space. This implies that
locally in every patch, the set of curves must partition the domain of the patch. Therefore,
we merge two curves that share an endpoint in the interior of the patch. Since we are
working in double-precision arithmetic, the endpoints of each curve has to be compared with
a tolerance. Determining a consistent tolerance is extremely difficult because propagation
of numerical errors in such complicated algorithms is not clearly understood. However, we
avoid floating point comparisons if we observe that two curves can be merged only if the

two surfaces that generated these curves are adjacent in the other solid.
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6.2.2 Partitioning Trimming Boundaries

Once all the intersection curves are merged within each patch, they will partition
the trimmed domain (if the assumptions that the individual solid boundaries are closed
and compact are maintained). Figure 6.6(a) shows intersection curves inside a trimmed
domain. ¢;’s (with endpoints p; and piq1) form the trimmed boundary of the patch. ig,
iy, and i are the intersection curves computed with various patches of the other solid.
to is a turning point on the curve is. qjs are points on the intersection curve where the
curve intersects the trimmed boundary. Given this information, Figure 6.6(b) shows the
actual partitions (Rjs). To compute the explicit B-rep of the resulting solid, each of these
partitions are generated. We now present an algorithm that computes these partitions
provided the intersection curves have no singularity in the trimmed domain.

The main idea in this algorithm is the fact that since the intersection curve seg-

ments (Ip and [ in Figure 6.6(c)) do not cross each other, each resulting partition starts at
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one endpoint of a curve segment, and ends at the other endpoint of the same curve segment.
We shall assume that the trimming curves and the intersection curves are given in a specific
order. We number the endpoints of the intersection curve segments such that qz;j and q2j41

belong to Ij. The algorithm works in three steps.

e Each endpoint of a curve segment (for example, qg of Ip) lies on a unique curve (except
when it coincides with one of the curve endpoints of the boundary) of the trimming
boundary. In fact, points like q¢ are determined as the intersection of Iy with cg.
Each boundary curve c¢; is then partitioned into multiple segments depending on the

number qjs lying on it.

e This is followed by a traversal of the trimming boundary in a consistent order by
maintaining a stack. Two types of elements are pushed in the stack - curve segments,
and curve endpoints. Initially, we keep pushing in the boundary curve segments until
we reach a vertex like qg. Let the vertex number be k. If the topmost curve endpoint
type of the stack (say, 1) has a number (kK + 1) or (k — 1), then a partition has to
be read out. Otherwise, vertex k is pushed into the stack followed by all the curves
that comprise [|;/). If a decision to read out a region has been reached, all the
curve segments until vertex 1 are popped. Curves comprising /| /5| are pushed again

because they are required by the next region too. The order in which these curve
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segments are pushed into the stack has to be monitored carefully so that a region

which is read out is oriented consistently.

e Till now, we have considered only intersection curve segments whose endpoints lie
on the trimming boundary. However, there may be loops that lie completely inside
the boundary. Any loop is present (if at all) inside one of the obtained partitions.
Each of the loops (starting from the innermost if the loops are nested) themselves
form a partition. The remaining part of the region (it has boundaries with multiple
components) is broken into simple regions by introducing a simple cut from the loop

to the boundary of the partition or the next loop.

This completes the algorithm to compute the partitions introduced by intersection
curves. A feature of this algorithm is that the adjacency structure between the various
partitions (which is necessary to avoid redundant, expensive ray-shooting queries during

component classification) are obtained by the order in which they are read out.

6.2.3 Updating Topological Information

It is clear that intersection computation introduces new vertices, edges, and faces
in the solid. This change needs to be incorporated in our topological structure. Further,
information about the adjacency between the various faces significantly reduces the com-
ponent classification time. At this time, we just concentrate on the face adjacency. Vertex
and edge adjacency are updated during final solid generation.

The new graph is a refinement of the original adjacency graph. Since a vertex
of the graph corresponds to a face of the solid, each vertex in the original graph is split
into a few vertices depending on the partitions obtained due to the intersection curves. We
have to determine the adjacency relationship between the newly created vertices. Consider,
for example, that vertices u and v were adjacent in the original graph. We create a new
graph to extract adjacencies between various orientation invariant components. Due to the
intersection curves, let the vertex u be split into uy, ug, ..., Uy, and let the vertex v be
split into vy, va, ..., vp. The adjacency between the various u;’s (similarly vi’s) has already

been determined (during partitioning). These adjacencies (let the corresponding set of edges
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be denoted by S) are purposely left out in the new graph. Let e be the edge along which
u and v were adjacent in the original graph, and let it be divided into k portions during
partitioning. Then all the adjacencies between uj’s and vj’s can be obtained in O(k) time.
The number of connected components in this graph gives the number of solid components
introduced by the intersection curves. Let the solid components be named C'Cy, C'Ch, .. ..
Note that each C'C’; has a collection of faces. We observe that each of the C'C';s satisfies
the orientation invariance property that all the patches corresponding to them lie either
completely inside or completely outside the other solid (because there is no intersection

curve passing through the interior of these components).

To obtain the connectivity between the various C'Cis (in a graph I'), we introduce
some notation. Let R be a mapping which takes a vertex in the new graph to the corre-
sponding vertex in the original graph. For example, if u was split into uy, ug, ..., Uy, then

R(uj) = u. Two components C'C; and C'C; are connected in the graph I' if

{Fu; € CC;,Fuz € CCj|R(u1) = R(uz) and (ug,uz) € S}

Using this, we obtain the various components and their connectivity structure.
Next we resolve each of these components (inside/outside) with respect to the other solid.
Figure 6.5 shows two solids and their connectivity graphs that enter into a set
operation (difference). The cylinder is represented by four Bézier patches along the side
and two planar trimmed surfaces for the top and bottom. Given these two solids, their

connectivity graphs and all the intersection curves, we obtain the topological information

of the final solid.

6.2.4 Component Classification

Component classification involves determining whether a given component (ob-
tained by the graph algorithm) of one solid lies inside or outside the other solid. In most
polyhedral modelers, component classification is carried out locally [Hof89] by looking at
the relative orientation (left/right) of the intersection curve. When dealing with sculptured

surfaces, though, the same technique cannot be used, primarily due to the complexity of
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the intersection curve topology. The most general method used instead is based on ray-
shooting. Ray-shooting is done by firing a semi-infinite ray in an arbitrary direction from a
representative point of the component and checking for intersections with the other solid.
For closed solids, if the number of intersections is even, the point (and hence, the entire
component) lies outside the solid; if it is odd, it lies inside.

There are two steps involved in our algorithm to perform component classification.
The first step involves getting a point that is part of the component. This is accomplished
by 2D ray-shooting. We initially choose some point p = (s,¢) on the trimming boundary
such that ¢ lies between the lower and upper extents of the trimming boundary (any appro-
priate vertex of the polygon would suffice). A horizontal ray through p (in both directions)
is intersected with the boundary. Computing all the intersections is very easy because
only those segments whose endpoints (a,b) and (c,d) satisfy (¢t — b) (d — ¢) > 0 will
intersect the ray. Further, the intersections must be even in number and are of the form
(s1,t), (s2,t),...,(S2n,t). Choosing the midpoint of sg;_1 and sg; for ¢ = 1,2,...,n gives
one point inside the trimming boundary. Let this point be called q. Another method is

to maintain the triangulation of the trimming polygon and choosing the centroid of one
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of the triangles. When points have to be repeatedly generated, it is beneficial to preserve
the triangulation. We perform triangulation using an implementation of Seidel’s algorithm
[Sei90b].

The second step involves actual ray-shooting in 3-space. The algebraic pruning al-
gorithm described in chapter 3 gives the number of intersections of a ray with an untrimmed
patch. Since each solid is made up of trimmed patches, it is necessary to test if the inter-
sected point lies inside the trimmed region or not. This step is called 2D classification.
Essentially 2D classification can be done by shooting a ray from the intersected point in the
plane of the trimming polygon. However, we use trapezoidation of the trimming polygon
(using Seidel’s algorithm) to perform logarithmic time point location queries.

The accuracy of this result depends on the magnitude of errors introduced by
approximating the high degree trimming curve. For example, consider the point p near the
boundary of the trimming polygon in Figure 6.8. It is unclear if the result of the point
location query for a point very close to the boundary of the polygon is, in fact, correct. We
improve the accuracy of the classification test by using the analytic representation of the
trimming curve (bivariate matrix polynomial). Since the algebraic curve is a zero set of a
polynomial, there is a sign change on either side of the curve in the local neighborhood of
the boundary. The sign of the polynomial with the point p substituted for the variables
gives the classification of the point. Since the curve is represented as the determinant of a
matrix polynomial, we have to evaluate the sign of this determinant. We use singular value
decomposition (SVD) to accomplish this task.

Given a numerical square matrix A, SVD decomposes it into the form
A=UxVT

where U and VT are orthonormal matrices, and ¥ is a diagonal matrix whose entries are
all positive. This implies that the sign of the determinant of A is the same as the product of
the signs of the two orthonormal matrices (determinant is +1 or -1). We can safely perform
Gaussian elimination to determine the sign of these determinants. SVD is a very stable
numerical algorithm, and hence its results are usually reliable.

From the connectivity information among various components and the classifica-
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tion of one of them, we can classify all the other components. This is because two adjacent
components must have opposite classifications. Ray shooting is a fairly expensive operation,
and its complexity depends on the degree of the surface patch and the trimming curve. The
method described above requires only two (one for each solid) ray shooting operations per

CSG operation.

6.2.5 Final B-rep Generation

The trimmed patches that make up the final solid are determined by the Boolean
operation performed. Given two solids soltd; and solid,, we decide on the final B-rep

depending on the Boolean operation.
e [nion: All components of solid; that lie outside solidsy, and vice-versa are retained.

e Intersection: All components of solid; that lie inside solidsy, and vice-versa are re-

tained.

e Difference: All components of solid; that lie outside solids, and all components of

solid, that lie inside solid; are retained.

We also update the topology information. FEach connected component that is
retained in the final solid has some graph vertices (faces of the solid) whose complete
adjacency is not determined. These missing adjacencies correspond to edges which are
formed by intersection curves. This edge connects two vertices from different solids. Since
an intersection curve is determined by a unique pair of surfaces, the two endpoints of this
edge is also unique. For every intersection curve in a solid, we maintain the corresponding
patch number of the other solid, and use it to complete the adjacency information. From

this graph, the entire topological information is easily computable.

6.3 Degeneracies

A number of degenerate cases can arise when dealing with curved surfaces. Some
of these degeneracies are of the same general type as is found in a polyhedral modeler, while

some others arise only with curved surface modelers. These include
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e Two surfaces meeting at a point: This case is particular only to curved surfaces.
Since the surfaces meet at a point which lies in the interior of their respective domains,
their normals are coincident. This corresponds to a singularity. We determine this
by minimizing the energy function (equation (4.4) in chapter 4) used to determine

singularities.

e Two surfaces tangentially intersecting at a curve: This is a degenerate case
when the surfaces are tangent to each other along that curve. This case also occurs
only with curved surfaces. We will be able to detect this when we generate the
adjacency graph by finding that two adjacent components actually have the same
orientation with respect to the other solid. Another scenario when this case occurs is

if the intersection curves do not form a closed loop in space.

e Two surfaces overlapping: This corresponds to a face-face overlap in the polyhe-
dral domain. If two surfaces are overlapping, their intersection set is two-dimensional.
Essentially, our bivariate matrix polynomial representing the intersection curve is sin-
gular for all values in the domain. We perform this test by sampling the domain and

determining the ranks of the resulting numeric matrices using SVD.

e A surface just touching an edge: This is an edge-face contact in the polyhedral

domain, and can happen when three surfaces meet in a curve. In our representation,
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this will appear as an intersection curve which is tangent to a trimming curve (see
Fig. 6.9(a)). Such a case can be automatically eliminated if we check each component
of the intersection curve to see whether it is in the trimmed region. This does not
allow us to use the speed-up of propagating the information about one component of

the intersection curve to all other components of that curve.

e Four surfaces meeting at a point: This, is the foundation for several types of

degeneracies and will be discussed next.

Examples of four surfaces meeting at a point include when a vertex of one solid lies
on the surface of another solid, or when the edges of two solids meet. Obviously, the vertex
can be thought of as the intersection of three surfaces, and the edges can be thought of as
the intersection of two surfaces, thus the cases mentioned would involve the intersection of
four surfaces.

Even more degenerate cases, such as two vertices meeting, or a vertex lying on an
edge, are possible, but these can be viewed as 5 or 6 surfaces meeting at a point - i.e. at
least four surfaces are still meeting at a point.

These cases will manifest themselves in our modeler as three (or more) curves
meeting at a common point in the domain of some patch (see Fig. 6.9(b)). Assume these
three curves are f1, f2, and f3. We can find out whether this case has occurred by checking
equality of the intersection of f1 and f2 with the intersection of f1 and f3 (or f2 and f3).

Degeneracies in the polyhedral case can generally be classified into the category
of four planes meeting at a point. It has been shown [For95] that a simple perturbation
scheme applied to a single basic geometric predicate can eliminate these degeneracies. No
obvious extension of this method exists in the curved surface domain, though there is hope
that some perturbation method can be developed using exact rational arithmetic which

would work similarly.
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Chapter 7

Implementation and Performance

One of the main contributions of this dissertation includes a complete implemen-
tation of all the algorithms presented. The implementation of algebraic pruning, loop
detection, surface-surface intersection and boundary evaluation algorithms are parts of the
BOOLE solid modeling system. Given a CSG tree whose leaves are chosen from a pre-
defined set of primitive solids, BOOLE generates the surface representation of the bound-
ary of the final solid as a collection of trimmed Bézier patches as well as the topological
information in a graph structure. The various modules in our system and their dependency
relations are shown in Figure 7.1.

We have implemented our system on single processor architectures like SGI Maxi-
mum Impact (with one 250MHz R4400 CPU) and Sun-Solaris, as well as a parallel version
of the algorithms on shared memory multiprocessor architectures like SGI Onyx (with up
to 6 194MHz R10000 CPUs, 1MByte main memory). Our current sequential implementa-
tion can perform one Boolean operation on solids like conicoids (spheres, ellipsoids, tori,
cylinders and cones) in about 3-4 seconds, while the parallel version can do the same in one
second or less.

Given a CSG tree, our system generates the boundary representation of all the
primitives involved in the form of trimmed Bézier patches along with their topology infor-
mation. For each Boolean operation, the B-reps of the two solids are passed to the solid

intersection module. This module is responsible for generating the intersection curve be-
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Figure 7.1: Functional modules in the BOOLE system

tween the two solids. The curves are generated in the domain of each patch as well as
in 3-space. We maintain the curve in 3-space (space curve) so that we can verify if the
intersection curves form a closed loop. This is a checkpointing operation, and if the curve
is not closed, we declare an error and try to recompute the curve. The space curve is
also used during model visualization. The solid intersection module relies on the surface-
surface and curve-surface intersection algorithms to generate the curves. These algorithms
are implemented in C and makes use of a number of matrix operations like SVD, matrix
eigendecomposition and inverse iterations. These routines are available in public domain
in the form of Fortran libraries like EISPACK [GBDM77] and LAPACK [ABB*92]. The
main advantage of using these libraries is that they are carefully and efficiently implemented
by numerical analysts and well tested on a number of benchmarks. Further, most of the
matrix routines also return the condition number of the problem. We use this informa-
tion to predict the conditioning of our original problem or to detect inaccuracies in our
computation.

The intersection curves are fed into the component generation/classification mod-
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Figure 7.2: B-rep of Pivot from Submarine model (4100 Bézier patches) [Courtesy: Electric
Boat]

ule. Initially, we partition the domain of each patch as determined by the intersection
curve. The partitioning algorithm described in section 6.2.2 also generates the connectiv-
ity structure within each patch. Using this information and the original topology of the
two solids, we create the graph whose connected components generate orientation invariant
surface partitions. Construction of the graph I' (connectivity information between various
orientation invariant surface partitions) was described in section 6.2.3. Classification is
done by ray-shooting. The ray-shooting test can be reduced to a collection of ray-surface
intersections. In our implementation, we use algebraic pruning (chapter 3) to perform this
operation.

The algorithm for component classification proceeds by computing all the inter-
sections of a randomly directed ray with all the trimmed patches of the other solid. The
parity (odd/even) of number of intersections decides the orientation (inside/outside) of the
component. Guaranteeing the correctness of this operation is very crucial for the correct-

ness of the final B-rep. In our system, we perform a number of redundant computations
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to ensure this. The ray-surface intersection algorithm generates intersection points in the
domain of each surface. If the chosen ray passes through the boundary of two adjacent
patches, this point may be counted twice (once for intersection with each patch). To avoid
this, we compare the corresponding intersections in 3-space and eliminate duplications. We
also shoot multiple random rays to ensure correct parity. The result of the classification of
one component is propagated throughout the adjacency graph I' to resolve the other com-
ponents. The propagation prevents us from having to do ray-shooting for each component,
which is quite expensive.

The B-rep of the resulting solid and its topological structure are generated based
on the Boolean operation begin performed. This data is fed back to the solid intersection

module if the new solid enters into another Boolean operation.

7.1 Architecture of the BOOLE system

Figure 7.3 shows the basic architecture of the BOOLE system. The bottommost
layer (Layer 1) is composed of five major modules - the set of numeric libraries, symbolic
module, geometric module, routines to manipulate parametric curves and surfaces, and

graph algorithms. Here is a brief description about each.

e Numeric libraries: We make use of the public domain Fortran libraries EISPACK
[GBDM77] and LAPACK [ABBT92]. These libraries provide most of the routines
required by our algorithms like QR decomposition for computing eigenvalues and
eigenvectors, LU decomposition for solution of linear systems and Singular Value
Decomposition. Various parts of our surface-surface intersection algorithm use these
numerical algorithms. We have also implemented the algorithm for local minimization
given in Press et. al [PF'TV90]. The minimization routine is used in conjunction with

the tracing algorithm to improve the accuracy of the intersection curve.

e Symbolic module: This module comprises basically of routines for computing vari-
ous resultants. We require only two kinds of resultant routines - Sylvester (eliminating

one variable from system of two equations) and Dixon (eliminating two variables from
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system of three equations). We use Sylvester resultant during curve-curve intersec-
tion as part of the algebraic pruning algorithm (chapter 3) and in the loop detection
algorithm for planar sections of surfaces (chapter 5). Dixon’s resultant is mainly used
to compute implicit forms of surfaces (see chapter 4). These routines are implemented

both in double precision arithmetic and in exact rational arithmetic.

Geometric module: The geometric module contains algorithms for triangulation
of simple polygons, point location in planar arrangements, linear programming and
bounding box overlap tests. We use a very fast implementation of Seidel’s triangu-
lation algorithm [Sei91] provided by Atul Narkhede et al [NM95]. The point loca-
tion algorithm based on the triangulation algorithm was also implemented by Atul
Narkhede. We use Mike Hohmeyer’s [Hoh91] implementation of Seidel’s randomized
linear programming algorithm [Sei90b]. We implemented the segment tree version of

the bounding box intersection test described in chapter 6.

Curve/Surface manipulation module: This module primarily handles all the low-
level routines for manipulating parametric curves and surfaces. Typical algorithms
are curve and surface subdivision (at certain parameter values), point evaluation on
surfaces, pseudo-Gauss map evaluation and curve fitting. Curve fitting is a part of
the BOOLE system that fits a parametric curve to an ordered set of points obtained
after curve tracing. This routine is not used by the BOOLE system directly for B-rep
computation. Rather, it is used as a means of data compaction by a display system
(developed at UNC) that renders large NURBS models. Details of the curve fitting
method can be found in [KKMNO95].

Graph Algorithms: This final module is used in maintaining topology information
for each solid in our system. Apart from the simple tools to manipulate graph struc-
tures, it contains an algorithm to generate connected components in graphs. The
algorithm uses repeated calls to a depth-first traversal routine in graphs. The running

time of this algorithm is linearly proportional to the number of edges in the graph.
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Layer II of our system contains routines that are directly called by our algorithms
for curve-surface intersection, loop and singularity detection, curve tracing etc. These
routines are listed in Figure 7.3. Given a point on a curve or surface, the problem of
point inversion deals with the determination of parameter values which results in that
point. Mathematically speaking, given a rational parameterization of a surface, F(s,t) =
(X (s,1),Y(s,t), Z(s,t), W (s,t)) and a point (z,y, z) € R?, find the parameters (sq,¢1) such
that

X(Shtl) = $W(817t1)
Y(Shtl) = yW(Shtl)

Z(Sl7 tl) = ZVV(Sl7 tl)

This operation is performed very often during curve tracing. Algebraic pruning is our
method of solving zero-dimensional systems based on inverse power iterations. This algo-
rithm relies heavily on the numeric libraries. We use algebraic pruning for curve-surface
intersection queries and ray-shooting. The role of surface implicitization and domain de-
composition in the surface-surface intersection algorithm were highlighted in chapter 4.
Geometric overlap tests are performed to quickly prune out non-intersecting curves and
surfaces. We use the implementation of linear programming and bounding box overlaps
from layer I for this purpose.

The modules in Layer 111 include curve/surface intersection, loop and singular-
ity detection, curve tracing, trimmed intersection curve determination, ray-shooting and
orientation-invariant component generation. Fach of these modules call a number of rou-
tines from layers I and II. The dependency structure of the various modules is shown in
the figure. The modules in Layer III are in turn called by the topmost layer which includes

solid-solid intersection and topology maintenance modules.
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Figure 7.4: Inaccurate point inversion for curve merging

7.2 Robustness and Accuracy

One of the main problems in B-rep generation is robustness. An algorithm is said
to be robust if for every valid input instance of the problem, it generates the corresponding
valid output member. Consider the algorithm as a function F from the input set 7 to the

output set O.
F:7Z =0

In this definition, it is important for the algorithm to identify the type of input
instance 7 € 7 because the sequence of steps executed by the algorithm depends directly on
7.

Most geometric algorithms are developed assuming that the input data are in
general position, and that exact arithmetic provides reliable geometric primitives. However,
for reasons of efficiency and feasibility, most implementations use floating point instead of
exact arithmetic. Thus, the correctness of the mathematical algorithm does not extend
directly to the implementation, and the system fails for seemingly innocuous input data

(failure to classify the input instance correctly). This is the problem of “robustness” in
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geometric computing.

However, if a particular instance is degenerate, the value of the corresponding
expression is smaller than the errors accumulated due to fixed precision. There are two ways
of dealing with this problem - tolerances and error estimates [For95]. Estimating tolerances
when evaluating a complex sequence of predicates is non trivial, and error estimates are too
pessimistic to be useful.

We shall now identify two areas where our algorithm is susceptible to failure when
using floating point arithmetic. Most of these errors finally boil down to either point
orientation tests or comparison between two floating point numbers.

Inaccurate point inversion for curve merging: It is a well-known fact that
the intersection curve of two parametric surfaces is not rationally parametrizable in general.
As a result, these curves are approximated as piecewise linear curves or splines to within
a fixed tolerance (which is either too conservative or arbitrarily chosen). Since most of
the surface patches we are dealing with are trimmed, we need to compute portions of the
intersection curve that lie inside the trimmed boundaries of both the patches. Figure 7.4
shows one such example. The curve I shown in dotted lines is the intersection curve in
both the domains. Iy and I; are the intersection curves on the left patch obtained from
other surfaces. To compute the actual intersection curve for trimmed patches, we need to
compute the intersection points of the curve with the trimming boundary. pg, p1, p2 and
ps are four such points on the right patch. If the boundary curves or the intersection curve
are not accurate, neither are the pi’s. They may not even lie on the actual intersection
curve. Corresponding to the pi’s, we need to compute q;’s on the other patch to determine
which portions of the intersection curve to retain. This process is point inversion which
was described earlier in section 7.1. Two problems can arise in inversion: (a) there may
not be any corresponding point on the other patch (because p;’s do not lie exactly on the
intersection curve), or (b) the gi’s could be positioned such that the curve segments qoqi
and q2qs do not match up with Iy and Iy for curve merging.

Using our representation of the intersection curve as the singular set of a bivariate
matrix polynomial, we ensure accurate computation of p;’s (see section 5.1). Further, using

our intersection curve formulation, the inverted point in the other domain can be obtained
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Figure 7.5: Inaccurate point classification

from the kernel of the singular matrix (chapter 4).

Inaccurate point classification: Another area where floating point errors result
in failure of the algorithm is during component classification. As described earlier, we use
ray shooting for this purpose. The entire computation boils down to classifying whether
a point lies inside or outside the trimming region. Figure 7.5 shows an example. In most
cases, classifying points like q7 is not a problem. One ray-shooting query will determine
it. However, consider a point like qg which lies very close to the boundary. Approximate
representations of the trimming boundary makes classifying qg a major problem. Depending
on the choice of ray directions and the tolerances used we may get different classifications.
This error could result in topologically inconsistent answers. As described in section 5.4,
we use singular value decomposition to resolve this problem.

We also perform a number of checkpointing operations in our implementation
that control the accumulation of floating point error. We also handle degenerate cases like
face-face and edge-edge overlaps while performing regularized Boolean operations. These
are handled as special cases in our system. In practice we have observed that our system

generates accurate B-reps on most input cases. Since the implementation was done using
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Figure 7.6: B-reps of some solids from the submarine storage and handling room

floating point arithmetic, we also use tolerances to compare such values. Finding a tolerance
that works for all models is very difficult. In some cases, we had to change tolerances to
make our system work. Currently, we are incorporating B-rep computation using exact
rational arithmetic [KKM97] to prevent most robustness and accuracy problems. The use
of exact arithmetic can slow down the computation time, however exploiting parallelism
helps significantly in the overall speed.

The accuracy of the B-rep generated is determined by the accuracy of the inter-
section curves between solids. In our system, the accuracy of these curves can be controlled
by the user. Depending on the application, our system can generate very accurate B-reps

at the expense of computation time.

7.3 Parallel Implementation

The various stages of our algorithm is explained using an example in Figure 7.7
and Figure 7.8. Since we are dealing with sculptured solids with trimmed Bézier patches, as

opposed to polyhedral solids, the complexity of the whole system is increased significantly.
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The time taken for the surface-surface intersection algorithm described in chapter 4 is a
cubic function of the degree of the patch in the worst case. Further, the complexity of
ray-patch intersection evaluation is again dependent on the degree of the patch. These
parts are computationally most intensive and form the main bottleneck in terms of system
performance. To improve the computation time, we have implemented a parallel version
of the algorithm on existing shared memory multiprocessor architectures like SGI-Onyx.
One of the main issues that arise while parallelizing an algorithm over many processors is
to ensure that each processor performs roughly equal amount of work. This issue of load

balancing is discussed next.

7.3.1 Load Balancing Algorithm

The problem of load balancing arises when an algorithm has to be parallelized
among a number of processors. The running time of the parallel algorithm is directly
related to the maximum execution time of the task at a single processor. It is clear that the
most effective parallel algorithm is one where the tasks are equally distributed among all
the processors. The problem of load balancing has received considerable attention for a long
time due to the fact that a single scheme is not applicable for parallelizing all algorithms
[Lam87, YA93, Whi94, Gea95, HL95]. The effectiveness of different techniques varies with
the nature of the problem it is used for. Hence there arises a need for newer problem specific
analysis methods which help in choosing the most effective load balancing technique. We
shall now describe three such techniques that we use to shared memory multiprocessor

architectures for boundary computation.

e Static load balancing: Static load balancing is done by dividing the given problem
consisting of n tasks into p (number of processors) parts and submitting each part to
a single processor. The size of each problem piece is precomputed and is not changed
during execution. This technique works best when the processing time of each of the
tasks is known, and the number of tasks does not change during execution. Extracting
parallelism in our B-rep converter starts from computing the bounding boxes for all

the patches (Stage 1 in Figure 7.7). As the bounding box computation for each
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Figure 7.9: B-rep of Shipping line from Submarine model (3400 Bézier patches) [Courtesy:
Electric Boat]

patch is independent of the other, this can be easily parallelized. Further as the
amount of work that is to be done for the bounding box computation for each patch
is approximately the same, load balancing is achieved statically. Once the bounding
boxes for all the patches have been computed, the overlap tests is also performed in

parallel.

e Global queue: In many algorithms, it is not possible to estimate the execution
time of each task. For example, execution time for computing the intersection curve
between two surfaces can vary depending on the number of curve components, and
length (in terms of number of points traced) of each component. In this technique,
when one processor is accessing the task queue, the queue should be locked to ensure
exclusive access (mutual exclusion). This technique achieves the best load balancing,
though the extra work done for balancing the load in the form of locks might offset its
advantage. In our system, using global queues with locks to perform load balancing
was not as efficient as dynamic load balancing (described below). We believe it is

because of the reasons cited above.

e Dynamic load balancing: In this technique, a local job queue is maintained for

each processor. Initially, tasks are assigned to every processor similar to the static load
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Figure 7.10: B-rep of Torpedo tube from Submarine model (1200 Bézier patches) [Courtesy:
Electric Boat]

balancing scheme. However, due to suboptimal task division, some processors might
complete their tasks before others. In this scenario, the idle processors share the load
with the busy processors, thereby balancing the load dynamically. If we can ensure
that each busy processor is accessed by only one idle processor at any time, then a
lock-free implementation of this scheme is possible. We can also ensure that each task
is processed only once, and no task is left out. In our application, load balancing
is efficiently achieved by minimal use of locks. Therefore, we use this approach for
our most computationally intensive tasks like surface-surface intersection (Stage 3 in

Figure 7.7) and ray-shooting computation (Stage 6 in Figure 7.8).

If we ensure that only one idle processor will access a particular busy processor,
then a lock free implementation of dynamic load balancing is possible. We enforce a unique
one to one correspondence between an idle and busy processor using the following algo-
rithm. A shared global variable WhichldleProc stores the id of the idle processor, which
now has the chance to choose its busy processor. This serializes the operation of finding an
idle-busy processor pair. In our implementation, we choose a single lock to guard this crit-
ical section because the computation time for surface-surface intersection and ray-shooting
dominates one locking operation. With each busy processor, we associate a shared variable

Myldle Proc, which stores the idle processor id that has been paired up with that particular
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Figure 7.11: Track from the Bradley model showing placement of drivewheel model (15000
Bézier patches) [Courtesy: Army Research Labs]

busy processor. These variables are initialized to NIL, referring to none of the processors.
Each processor also maintains its processor number in a local variable myid. Whenever a

processor becomes idle, it executes the following code.

{
If (Whichldle Proc == NIL) then {

GetLock( GetMeAccess);
if(GetMeAccess == NIL) {
GetMeAccess = myid;

Whichldle Proc = myid;

}
Releaselock(GetMeAccess);

}

/* Waiting for my chance */
while ( WhichldleProc # myid);

/* All tasks completed */
If (NoMoreBusyProc()) then exit;

/* All Busy processors are being load

balanced by some idle processor */
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while (GetBusyProc() == NIL);

/* Got a Busy Processor to pair up with */
MyBusyProc = GetBusyProc();

/* Make sure no one else captures this busy processor */

MyldleProc[ MyBusyProc] = myid;

/* Give chance to next idle proc to find its partner */

If (NextldleProc()) then WhichldleProc = NextldleProc();

/* No one to grab the chance */
else {
GetLock(GetMeAccess);
Whichldle Proc = NIL;
GetMeAccess = NIL;
Releaselock(GetMeAccess);

}

/* Balancing the load with the partner */
LoadBalance( MyBusyProc);

/* Finished load sharing; Freeing my partner */
Myldle Proc[ MyBusyProc] = NIL;

/* Register myself as busy */
If (IHaveLoad()) BUSY[myid] = TRUE;

/* Work on new list of tasks */
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{a) Link maodel ib) Dnvewheel model ic) ldlerwheel model

Figure 7.12: B-reps of some solids from the Bradley fighting vehicle

PerformSurfacelntersection(); or PerformRayShooting();

/* Register myself as idle */
BUSY[myid] = FALSE:
}

Initially, the variable WhichldleProc has to be set by the idle processor to gain
access to the list of busy processors. Race condition occurs only when the variable Whichl-
dle Proc is NIL and more than one idle processor try to access it. By making Whichldle Proc
a critical resource, we can ensure mutual exclusion while setting this variable. This can be
achieved by using locks. The number of locking operations can be reduced by allowing
free access to WhichldleProc and introducing a new shared variable GetMeAccess, which
is locked only when a race condition occurs. Locks can be totally avoided by maintaining
a random permutation of the busy processor list locally in every processor. This does not
guarantee that a single idle processor captures a busy processor, however, the probability

of a race condition is very small.

7.4 Performance

In this section, we highlight the performance of both the sequential and parallel

algorithm on some real-world models. We obtained a model of a submarine storage and
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# of CSG Running time (in secs.) # of patches

Model opns. BB & LP test | SSI | Ray-shooting | Total | (in B-Rep)

Fig. (a) 20 17 113 13.6 770 137

Fig. (b) 5 0.3 9.7 3.6 16.3 89

Fig. (¢) 5 0.8 11.6 5.4 18.5 116

Fig. (d) 27 2.3 58.9 17.8 98.7 169

Fig. (o) 10 1.8 285 6.7 11 69

Fig. (f) 21 2.0 35.1 13.8 64.2 146

Table 7.1: Performance of our system on parts of the submarine model
# of CSG Running time (in secs.) # of patches

Model opns. BB & LP test | SSI | Ray-shooting | Total | (in B-Rep)

Link 16 1.3 26.3 9.6 47.81 76
Drivewheel 44 5.8 54.3 27.1 97.23 289
Idlerwheel 48 5.1 59.8 28.9 106.93 235

Table 7.2: Performance of our sequential algorithm on parts of the Bradley model

handling room through the courtesy of Electric Boat Inc., a division of General Dynamics.
This model consists of about 2000 solids. Many of the primitives are composed of polyhedra
and conicoids like spheres or cylinders. Additional primitives include generalized prisms and
surfaces of revolution of degrees 6 or more. A few of the primitives are composed of Bézier
surfaces of degree as high as 12. Most of the CSG trees have heights ranging between 6 and
12 and some of them are as high as 30. Table 7.1 shows the performance of the sequential
algorithm on some solids from this model (see Figure 7.6). The column with running
time is broken into four parts: the bounding box and linear programming, surface-surface
intersection, ray-shooting and total. The final column indicates the number of trimmed
patches that the final model has.

The model of the Bradley fighting vehicle was obtained from Army Research Lab-
oratories. It is composed of more than 8500 solids each consisting of about 5-8 Boolean
operations. The primitives in the Bradley are solids like conicoids (spheres, cylinders, ellip-
soids etc.) and tori whose B-reps can be represented by biquadric (degree 2 times 2) Bézier

patches. We present the performance of our sequential and parallel algorithms on three of
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Figure 7.13: Performance of our parallel algorithm as a function of processor count

Total running time (in secs.)
Model 1 proc. | 2 proc. | 3 proc. | 4 proc. | 5 proc.
Link 51.95 30.88 26.93 20.55 23.44
Drivewheel || 102.32 | 77.39 53.39 49.02 35.67
Idlerwheel || 112.40 | 74.51 58.96 46.10 44.23

Table 7.3: Performance of our parallel algorithm on parts of the Bradley model

the solids in the Bradley fighting vehicle.

e Link model: It consists of 16 Boolean operations and the B-rep contains 76 trimmed

Bézier patches. Figure 7.12(a) shows the model. The graph in Figure 7.13 shows the

performance of our system on varying number of processors. It can be seen that the

performance becomes worse when we go from four to five processors. Since this is not

a very complex model, the setup costs of using five processors outweigh the benefit of

parallelism.

e Drivewheel model: This model is constructed using 44 Boolean operations. The

B-rep is shown in Figure 7.12(b) and consists of 289 trimmed Bézier patches.
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e Idlerwheel model: The B-rep of the idlerwheel (composed of 235 trimmed Bézier
patches) is shown in Figure 7.12(c) and took 48 Boolean operations to generate. Again
increasing the processor count reduces the running time because of complexity of the

model.

Table 7.2 and Table 7.3 shows the performance of our sequential and parallel

algorithm on the parts of the Bradley model shown in Figure 7.12 respectively.
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Chapter 8

Conclusion and Future Work

Evaluating Boolean set operations of sculptured solid objects is one of the most
powerful facilities available in a solid modeler. In modelers based on boundary representa-
tions, the Boolean set operation algorithm is also technically one of the most demanding
component. A significant portion of the complexity is due to the computation and repre-
sentation of intersection curves between free-form surfaces. Apart from the algebraic and
geometric difficulties, a convenient representation of the intersection curve is essential to
effectively compute the boundary. Another important issue in this context is that of ro-
bustness on models of large scale. Our experience with the Bradley fighting vehicle and
submarine model shows that extremely large CAD models are designed using Boolean set
operations for physical analysis and model verification. Individual solids are generated us-
ing a large number of successive Boolean operations. In such cases, systematically dealing
with the growth of errors due to finite precision arithmetic is very difficult and impractical,
especially for solids with curved primitives. The best way to deal with such problems is
to combine numerically stable algorithms with the use of easy-to-implement heuristics that
control the growth of error. In this dissertation, we have explored each of these issues and

proved the thesis,

The lower dimensional surface intersection formulation provides an
effective representation to perform Boolean operations on sculptured

models.
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This dissertation presents a number of techniques to effectively compute boundary repre-
sentations of Boolean combinations of sculptured primitives and perform associated surface
interrogations like surface-surface and curve-surface intersections. It employs a combina-
tion of symbolic and numeric methods to compute the B-reps accurately and efficiently.
The input to our algorithm is a CSG tree that describes the solid as a Boolean expression
of primitive solids. The choice of the set of primitive solids is arbitrary as long as they
can be represented as a piecewise collection of parametric surface patches. Our portable
implementation of the algorithms presented in this dissertation, BOOLE, has been suc-
cessfully applied to generate the boundary representations of industrial models composed
of thousands of Boolean set operations. BOOLE is currently available for download at
http://www.cs.unc.edu/~geom/CSG /boole.html.

One of the main contributions of this dissertation is a new algebraic representation
for the intersection curve of two parametric surfaces. The intersection curve is evaluated by
adopting numerical curve tracing methods on this representation. The performance of this
algorithm is output sensitive (in terms of separability of curve components), and typically
performs an order of magnitude faster than previously known robust algorithms. This
method is an advancement over existing finite-precision surface intersection algorithms, in
that it guarantees the correct topology of the intersection curve. It does not suffer from
robustness problems like loop and singularity detection, and component jumping present in
numerical approaches, or the efficiency problems of purely algebraic methods. Further, the
accurate representation of the intersection curve in the parametric space of each surface is
appropriate for use in boundary evaluation algorithms.

The boundary evaluation algorithm generates B-reps in the form of trimmed para-
metric surfaces. The trimming curves on each patch are the result of intersections with
surfaces of other solids. The accurate representation of the intersection curves guarantee
accurate B-reps as well. Furthermore, the algorithm is implemented on general purpose
processors, and has been parallelized on existing shared memory architectures. In our par-
allel implementation on an SGI-Onyx with four R10000 processors, we are able to perform
Boolean operations on sculptured solids at interactive rates.

The research work conducted in this dissertation shows that it is possible to gen-
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erate accurate B-reps of sculptured solid objects in an efficient manner. However, this work
is merely a first step towards obtaining a B-rep modeler that provides accurate results at

all times. There are still quite a few important questions that are yet to be addressed.

8.1 Ongoing and Future Work

In this section, we discuss a few of the many extensions that are possible from this

work.

¢ Robustness: Our current work (in collaboration John Keyser at UNC) is focused
on issues of robustness, which arise in solids model designs with curved surfaces. By
robustness in this context, we mean that the boundary evaluation algorithm must be
able to handle all geometric situations (including degeneracies) and produce correct
results. The use of exact arithmetic coupled with perturbation schemes has been
shown to be successful in polyhedral modeling [For95]. We are trying to extend this
work to curved geometries. One class of robustness problems is degeneracies like the
ones listed in section 6.3. The other class of robustness problems involves cases in
which the use of fixed precision (double-precision floating-point arithmetic) is not
accurate enough to determine B-reps correctly. Previous work on robustness issues
has dealt primarily with linear (polyhedral) cases. Robustness problems in curved
surface cases are both more numerous and more difficult to handle. Experience with
the BOOLE system has shown us that these problems can arise in a significant number

of real-world cases.

We are currently exploring approaches to address the robustness issue by making use
of exact arithmetic and exact representations [KKM97]. This eliminates the problems
related to numerical precision. In addition, the use of exact arithmetic allows us
to use perturbations methods to eliminate degeneracies. Perturbation methods have
proven to be useful at eliminating degeneracies in the linear case and may be similarly
useful in the curved-surface domain. The use of exact arithmetic can lead to highly
inefficient implementations. In order to increase the efficiency of our approach, we have

isolated a few key kernel routines which govern the efficiency of the overall program.
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We use improved symbolic techniques and a combination of exact and floating-point

arithmetic to speed up our kernel functions, and thus the entire algorithm.

Nonmanifold solids: This dissertation does not discuss set operations on nonman-
ifold geometries. The number of cases of classification tests to be performed is signif-

icantly higher, and thus makes it much more complicated.

Use of implicit surfaces: Our algorithms generate boundary representations in
terms of parametric surfaces. The ability to generate boundaries of solids using im-
plicit surfaces greatly enhances the power of the solid modeling system because of the
greater representation power of these surfaces. However, some of the questions we
have to answer deal with the representation of trimmed implicit surfaces and numer-

ical stability of algorithms.

Extension to other problem domains: The surface-surface intersection algorithm
discussed in this dissertation is applicable in a wider range of problems. It can be
applied to solve any algebraic system that has a one-dimensional solution set. For
example, we have use the algorithm to find the silhouette of a parametric surface from
a given viewpoint. Another application in the field of geometric modeling pertains
to the generation of offsets and blends of surfaces. Applications to vision and path

planning related problems seem possible.
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