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ABSTRACT
Sang-Uok Kum: Encoding of Multiple Depth Streams.

(Under the direction of Ketan Mayer-Patel.)

With advances in hardware, interests in systems for capturing, representing, and trans-

mitting dynamic real world scenes have been growing. Examples of such systems include

3D immersive systems, tele-immersion video conferencing systems, 3D TV, and medical con-

sultation and surgical training.

These systems use multiple cameras for dynamic scene acquisition. One approach for scene

acquisition is to use multiple video streams captured from varying viewpoints in order to form

a dynamic light field and then to use image based rendering (IBR) techniques for generating

virtual views of the scene. Another approach is to use the imagery from the multiple cameras

to derive a 3D representation of the environment that is then transmitted with color.

The dynamic light field approach handles complex scenes where 3D reconstruction would

be difficult. Additionally, the captured video streams can be transmitted with little further

processing, while deriving 3D information requires extensive processing before transmission.

However, more cameras are needed for dynamic light fields since light fields need to be acquired

more densely to be as effective.

One common 3D representation for the dynamic environments is multiple depth streams –

streams of images with color and depth per pixel. A large number of depth streams are needed

to properly represent a dynamic scene. Without compression, multiple depth streams, even

sparsely sampled, requires significant storage and transmission bandwidth. Fortunately, the

strong spatial coherence between streams and temporal coherence between frames allows for an

effective encoding of multiple depth streams. In this dissertation, I present an effective encoding

algorithm for multiple depth streams that uses approximate per pixel depth information to

predict color for each pixel.
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Chapter 1

Introduction

With recent advances in hardware, the interest in real-time interaction with real world en-

vironments has increased. Using multiple cameras and computers, a dynamic real world scene

can be captured, encoded, transmitted, and rendered in real-time. These advances has moti-

vated development of real-time interactive systems for 3D immersion [Gross et al. 2003], tele-

immersion video conferencing [Kauff and Schreer 2002, Towles et al. 2002, Baker et al. 2002],

3D TV [Fehn et al. 2002, Matusik and Pfister 2004], and medical consultation and surgical

training [Welch et al. 2005].

These real-time interactive 3D systems all have three main components in common – ac-

quisition, scene encoding and transmission, and rendering. The acquisition system consists of

multiple cameras and controllers. The controllers ensures that the multiple cameras are syn-

chronized and capture the environment simultaneously. After capturing the real world scene,

the images must be encoded for transmission. The encoding should retain the 3D information

of the scene to enable correct rendering of the environment from different views. Additionally,

the encoding should be efficient enough for transmission of the data to the remote site in

real-time. The transmitted data is then rendered at interactive rates by the rendering system.

The rendering system also tracks the user to interactively generate the correct view of the

environment from the user’s viewpoint.

The data representation of the 3D environment influences the design of the real-time inter-

active 3D systems since it affects encoding and rendering. One method to represent the 3D en-

vironment is to reconstruct the geometry of objects in the scene using the images from multiple



views. One such model is the image-based visual hull (IBVH) [Matusik et al. 2000] used in

the Coliseum [Baker et al. 2002]. IBVH projects the object silhouettes from different camera

views and computes the intersection to generate a 3D model. Another model that has been

used is the video fragments [Würmlin et al. 2004] for the blue-c system [Gross et al. 2003].

Video fragments are a point based representation which exploits spatio-temporal coherence

by identifying differential fragments from multiple views in 2D image space. The 3D point

representation of the scene is updated with these differential fragments.

Another approach is to use multiple video streams to form a dynamic light field and

use image based rendering (IBR) techniques to generate virtual views of the environment

[Matusik and Pfister 2004]. A light field represents a static 3D scene by modeling the light

rays with a set of 2D images [Levoy and Hanrahan 1996]. Virtual views can be generated using

light fields by sampling light rays of the scene from the desired view. A dynamic light field is a

stream of light fields. Dynamic light fields have the advantage of being able to handle complex

scenes where 3D reconstruction of objects would be difficult. Additionally, the captured videos

can be transmitted with little further processing. However, one of the drawbacks is that the

environment needs to be acquired more densely, i.e. more views are needed, than the geometry

model to be effective [Chai et al. 2000].

Depth streams combine the above two approaches. A depth stream is a stream of frames

with color and depth value per pixel. Since depth streams contain 3D geometry information

directly for each pixel, these streams do not need to be acquired as densely as light fields.

Also, depths streams can be used to acquire complex scenes just as light fields are used. Depth

streams have been used in a number of real-time interactive 3D systems [Kauff and Schreer 2002,

Towles et al. 2002, Fehn et al. 2002].

In this dissertation, I examine the encoding aspects of multiple depth streams. Specifically,

I propose an algorithm for effectively encoding multiple depth streams using spatial coherence

between streams and temporal coherence between frames.

2



(a) Color (b) Depth

Figure 1.1: Depth Image

1.1 Multiple Depth Streams

A depth image represents a static 3D scene as an image with color and depth information

per pixel [McMillan and Bishop 1995]. Depth images can be used to render a scene from dif-

ferent views by 3D warping: An image from a desired view can be generated by projecting the

pixels from the depth image into the actual 3D locations in the real world, and then reproject-

ing them onto the desired view. An example depth image from [Zitnick et al. 2004] is shown

in Figure 1.1. A depth image can be generated in real-time using computer vision algorithms

[Kanade et al. 1996, Schreer et al. 2001, Mulligan et al. 2002, Yang and Pollefeys 2003]. There

are also efforts to develop hardware that can acquire depth images directly [Canesta, ZCam].

One major drawback with using a single depth image is the presence of disocclusion arti-

facts. Disocclusion artifacts are caused when a portion of the scene not visible in the original

depth image is visible from the desired view. Using multiple depth images from multiple views

can reduce these disocclusion artifacts. Layered depth images (LDI) merge multiple depth

images into a single depth image by 3D warping the multiple depth images into a single view

and keeping multiple depth values per pixel [Shade et al. 1998]. However, the fixed resolution

of an LDI imposes limits on the sampling of the multiple depth images, and may not provide

adequate sampling rates for every depth image. An LDI tree, an octree with a single LDI

in each node, was proposed to overcome this limitation [Chang et al. 1999]. The LDI tree

preserves the sampling rates of the reference images by using a hierarchical data structure.

A depth stream is a stream of depth images which can be used to represent a dynamic

3D environment. Generally, multiple depth streams are used to represent a dynamic 3D scene
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to minimize disocclusion artifacts. Multiple depth streams exhibit strong spatial coherence

between streams since they capture the same environment from different views. Additionally,

they exhibit temporal coherence between frames since motion in the scene between frames

are usually small. These two characteristics can be used to effectively encode multiple depth

streams.

The initial step in encoding multiple depth streams is to select reference streams. The ref-

erence streams serve as the basis streams for spatial prediction by the non-reference streams.

Therefore, the reference streams must be encoded independently of other streams, and only

utilize the temporal coherence between frames. Once reference streams have been selected

and encoded, non-reference streams can be encoded using reference streams for spatial pre-

diction. The depth value associated with each pixel in the non-reference stream can be used

to project that pixel into the corresponding frame of the reference stream. If the color of the

corresponding pixel in the reference stream is similar to the color of the projected pixel of

the non-reference stream, the color information for that pixel of the non-reference stream no

longer needs to be encoded. Instead, simply encoding the depth and indicating that the color

can be derived from the reference stream is sufficient.

In this dissertation, I examine different approaches for selecting reference streams for multi-

ple depth stream encoding. I also investigate methods for extending traditional video encoding

techniques to encode reference streams. Specifically, I examine how to apply motion compen-

sation, a video encoding technique for utilizing temporal coherence between frames, to encode

depth streams – frames with color and depth. Finally, I propose an algorithm to encode

non-reference streams utilizing reference streams to spatially predict reference colors per pixel

using depth.

1.2 Thesis Statement

The thesis of my dissertation is the following:

Multiple depth streams can be effectively encoded using approximate per pixel depth to

predict a color at each pixel without the use of motion compensation. This encoding is compa-

rable to encoding these same streams using traditional video encoding techniques that employ
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motion compensation.

1.3 Contributions

The contributions of this dissertation include:

• Identifying different approaches for selecting reference streams,

• Developing evaluation methods for reference stream selection, and employing them to

evaluate the reference stream selection algorithms,

• Investigating methods for encoding reference streams by extending traditional video en-

coding techniques to encode depth streams,

• Introducing a new methodology for evaluating motion compensation, and applying it to

evaluate reference stream encoding,

• Examining methods for encoding depth values of depth streams, independent of color,

• Describing a novel algorithm for encoding color values of non-reference streams using

spatial and temporal prediction per pixel without motion compensation,

• Evaluating the non-reference stream encoding algorithm with traditional video algo-

rithms.

1.4 Organization

The rest of the dissertation is organized as follows. Chapter 2 reviews related works for

multiple depth stream encoding – image encoding of JPEG and JPEG2000, video encoding, and

multi-view coding. Chapter 3 describes how to extend traditional video encoding techniques to

encode a depth stream. Chapter 4 details an algorithm to encode depth streams using spatial

coherence between streams and temporal coherence between frames. Chapter 5 examines how

to select reference streams to use as a basis stream for spatial prediction when encoding multiple

depth streams. Chapter 6 describes multiple depth stream encoding. Finally, in Chapter 7, I
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conclude the dissertation with a summary of the research and present possible areas for future

work.
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Chapter 2

Related Works

In this chapter, an overview of related work for multiple depth stream encoding is presented;

image encoding, video encoding, and multi-view coding. First, in Section 2.1 an overview of

JPEG and JPEG2000 image encoding techniques are described. Then video encoding, which

extends image encoding by incorporating temporal coherence between frames, is presented

in Section 2.2. Finally, Section 2.3 describes multi-view coding of static and dynamic scenes

which utilize spatial coherence between views and temporal coherence between frames.

2.1 Image Encoding

In this section, the image compression algorithms relevant to the dissertation – JPEG and

JPEG2000 – are summarized.

2.1.1 JPEG

JPEG [JPEG 1994] is the image encoding standard from ISO/IEC Joint Photographic

Experts Group (JPEG). In this section, a subset of the JPEG standard called baseline JPEG

is described. Baseline JPEG uses the discrete cosine transform (DCT) and Huffman encoding

with 8-bit precision per image component.

A color image is generally represented as an array of pixels. Pixel color is defined using the

three primary colors – red, green, and blue (RGB). However, when encoding a color image, the

RGB components are usually transformed into a different color space that better represents

the human visual system – luminance (Y) and two chrominance (Cb and Cr) components.



Due to the densities of color and brightness sensitive receptors in the human eye, humans

can see considerably more fine detail in the brightness of an image (Y) than in the color

of an image (Cb and Cr). Therefore, when encoding an image represented in YCbCr color

space, the chrominance components are generally subsampled in half resolution vertically and

horizontally for higher compression with little effect on perceived quality of the image.

The basic unit of JPEG encoding is a block – 8×8 array of pixels. Each component is

divided into 8×8 blocks, and each block is encoded individually by the following steps:

1. 2D DCT,

2. Quantization,

3. Entropy encoding.

The DCT converts each block into the spatial frequency domain to better represent the

spatial coherence of neighboring pixels. The 2D DCT takes an 8×8 image block, and generates

an 8×8 array of DCT coefficients. The first coefficient is referred to as the DC coefficient since

it is the coefficient for zero frequency, while all other coefficients are referred to as the AC

coefficients. The DC coefficient represents the average value of the pixels in the block, and is

generally significantly larger than the AC coefficients. In the spatial frequency domain, for a

typical real world image, most of the large coefficients have a tendency to be low frequency

coefficients, and very few are high frequency coefficients. Additionally, the human visual system

is more sensitive to low frequency information than high frequency information. Therefore,

high frequency coefficients can be compressed more aggressively with little effect on the human

perception of image quality.

After the DCT, the coefficients are quantized. Each coefficient is divided by the corre-

sponding quantizer value in the quantizer matrix and rounded to the nearest integer. The

larger the corresponding quantizer value, the smaller the range of the resulting quantized co-

efficients – i.e. requiring fewer bits for encoding. The quantizer matrix is also based on human

perception, so high frequency coefficients are generally associated with larger quantizer values.

This often sets many of the high frequency coefficients to 0. Also, a separate quantizer matrix

is used for the luminance component and the chrominance components due to their different
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Figure 2.1: Zigzag Scanning

characteristics. The compression ratio of an image is controlled by the quantization factor:

Higher quantizers result in higher compression but lower image quality.

Once quantization is finished, the DC coefficient and the AC coefficients are encoded sep-

arately. The DC coefficient is differentially encoded from the DC coefficient of the previous

block since it is generally significantly larger than the AC coefficients and correlated from block

to block. The 15 AC coefficients are ordered linearly by zigzag scanning (Figure 2.1). The

linearly ordered coefficients are then encoded using run-length encoding (RLE): It is coded as

a pair of run-length and level, where run-length defines the number of zero coefficients before a

non-zero coefficient (level). The generated run-length pattern is then encoded using Huffman

coding.

2.1.2 JPEG2000

JPEG2000 [JPEG 2000, Skodras et al. 2001, Taubman and Marcellin 2002] is a newer im-

age encoding standard from the JPEG committee to succeed JPEG. JPEG2000 was created

to address limitations of JPEG and is optimized for efficiency, scalability, and interoperability.

In JPEG2000, the original image is partitioned into non-overlapping blocks of equal size

called tiles (only tiles at the image boundaries may be of different size). A tile is the basic

encoding unit in JPEG2000 and each tile is encoded independently as if it was a separate

image. The size of a tile can be arbitrary, and can be the same size as the image – i.e. one tile

for the whole image. Each tile is encoded by the following steps:

1. DC level shifting,
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2. Color component transformation,

3. 2D discrete wavelet transform (DWT),

4. Quantization,

5. Precinct and code block partition,

6. Entropy encoding,

7. Packet, layer, and code stream creation.

For each tile the first encoding step is DC level shifting. JPEG2000 supports both signed

and unsigned images, but DC level shifting is only done for unsigned images. Every pixel in

the unsigned image is subtracted by 2b−1 where b is the number of bits for the component. So

for an 8 bit unsigned image, 27 is subtracted from every pixel.

The next step is the color component transformation. The color component transformation

is applied only if the underlying image is a primary color image (i.e. an RGB image). As with

JPEG, the objective of the transformation is to better represent the human visual system for

more efficient encoding. Since, JPEG2000 supports both lossy and lossless encoding, there are

two types of color component transformations. One is an irreversible component transforma-

tion (ICT) which can only be used for lossy encoding, and the other is a reversible component

transformation (RCT) which can be used for both lossy and lossless encoding. ICT is very

similar to the color transformation in JPEG and represents color using luminance (Y) and

chrominance (Cb and Cr) components. However, the inverse ICT transformation does not

result in the same RGB values since floating point arithmetic is used. Therefore, for lossless

encoding, only RCT transform can be used. The RCT transform approximates the YCbCr

transform using integer arithmetic to ensure the exact inverse transformation. Another dif-

ference from JPEG is that the chrominance components (Cb and Cr) is not subsampled to

increased encoding efficiency. Instead, JPEG2000 uses the multi-resolution characteristics of

the DWT by only using the LL subband to achieve the same effect.

After color component transformation, 2D DWT is used to decompose the tile into 4 sub-

bands: LL, HL, LH, and HH. Each subband is a down-sampled lower resolution of the original,
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Figure 2.2: Discrete Wavelet Transform Decomposition

represented by coefficients. The LL subband is recursively decomposed until its size reaches

a single pixel. An example of the first 3 levels of the DWT decomposition is shown in Fig-

ure 2.2. As with color component transformation, there are two types of DWT, irreversible

and reversible. Any reversible DWT can be used for lossless encoding, and the default spec-

ified in JPEG2000 is the Le Gall 5-tap/3-tap filter [JPEG 2000]. Similarly, any irreversible

DWT can be used for lossy encoding, and the default specified in JPEG2000 is the Daubechies

9-tap/7-tap filter [JPEG 2000]. Additionally, the irreversible DWT must be used if the ICT

was used for color component transform, and the reversible DWT must be used for the RCT.

Once the tiles have been decomposed, all coefficients are quantized. Each subband is

allowed only one quantizer, but the quantizer can be different between subbands. Since quan-

tization reduces precision, it is a lossy transformation. Therefore, for lossless encoding, the

quantizer must be 1 for all subbands.

111076
9854

32
10

Code Block

Precinct

Figure 2.3: Tile Partitioned into Code Blocks and Precincts
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Figure 2.4: Code Block Bit Plane Scanning

Following quantization, each subband is divided into non-overlapping blocks. Correspond-

ing blocks from each subband at each resolution level are grouped to create a precinct. Each

precinct is further divided into non-overlapping blocks referred to as code blocks. The encoding

order of the code blocks in a precinct is the raster scan order within the subband. Also, each

code block is encoded independent of other code blocks. Figure 2.3 demonstrates an example

tile divided into code blocks. One precinct is shaded, with the number indicating the scan

order of the code blocks.

The code blocks are encoded on a bit plane basis, starting with the most significant bit.

Each bit plane is scanned starting from top left, in units of 4 bit columns, in raster scan

order (Figure 2.4). The scanned bits are encoded using a context-based adaptive binary

arithmetic coder. Therefore, a code block is encoded into multiple bit streams.

Bit streams from each code block in a precinct is used to construct a packet. A packet

contains information about a spatial location at a single resolution level. A layer is created

from collection of packets, one from each precinct at each resolution level. Since a layer is a

collection of packets, it contains information about the entire tile. Therefore, layers are used

to progressively enhance image resolution, quality, spatial location, or components. The first

layer is assembled to achieve the initial target, and subsequent layers are assembled to achieve

successively higher targets. The sequentially ordered layers generate the final bit stream which

is referred to as the code stream.

JPEG2000 offers the following features:

• Superior low bit-rate performance than JPEG.
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• Multiple resolution encoding using multiple layers. The first layer is encoded to the initial

spatial resolution. The subsequent layers successively increase the spatial resolution, and

the final layer encodes the full spatial resolution of the image. Different spatial resolution

image can be obtained by decoding up to the needed layers from a single code stream.

• Quality scalability. Each layer is encoded at full spatial resolution, but at a different

quality. The first layer is encoded at the lowest target image quality, and successive

layers are encoded at higher image quality with the final layer at highest target image

quality. Only the layers that is required to achieve the desired image quality are selected

from the code stream for decoding.

• Multiple target bit rate encoding. A code stream is generated by encoding each layer

to achieve specified target bit rates at full spatial resolution. When a certain target bit

rate is desired, only layers up to the specified target is required to be decoded.

• Improved error resilience. Each code block is independently encoded to minimize the

impact of bit errors to a given code block. Also, after every coding pass, the arithmetic

coder can be terminated and contexts reset.

• Region of interest (ROI) encoding. JPEG2000 allows a portion of the image to be

encoded with better quality and less distortion than the rest of the image.

• Support of multiple color components, multiple bit depth (1-16 bits), and both signed

and unsigned pixel values.

2.2 Video Encoding

Video is a stream of color images which are referred to as frames. Therefore, color image

encoding techniques can be used to encode each frame. However, video has an additional

characteristic not present in color images that can improve encoding – temporal coherence

between frames. Generally, for a given sequence of frames, changes between consecutive frames

are small. By encoding only the changes from frame to frame, video can be encoded more

efficiently than encoding each frame individually.
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Figure 2.5: Video Sequence

There are many video encoding standards that have been developed. Some of the stan-

dards that are in wide use today are MPEG-2 [MPEG 1992], H.263 [ITU-T 1995], MPEG-

4 [MPEG 2004], and AVC [MPEG 2005] (also referred to as H.264 or MPEG-4 Part 10).

However, all video encoding standards are based on common general principles. Therefore,

in this section, the general principles of video encoding are discussed instead of a particular

standard. For more details on a specific standard refer to [MPEG 1992, Haskell et al. 1996,

ITU-T 1995, MPEG 2004, MPEG 2005, Richardson 2003].

When encoding video, each frame is encoded either as an intra-frame or an inter-frame. An

intra-frame, also referred to as an I-Frame, are encoded independently of other frames in order

to allow decoding without requiring information from other frames. Therefore, the encoding

of an intra-frame is very similar to JPEG encoding of color images.

An inter-frame, on the other hand, is dependent on one or more reference frames. For

inter-frames, pixel values are predicted from these reference frames. The predicted values are

then subtracted from the actual values to calculate the residuals which are encoded instead of

the actual values. There are two type of inter-frames. One is the P-Frame which only uses a

previous frame as a reference frame. The other is the B-Frame which use both previous and

future frames as reference frames. Another difference between the P-Frame and the B-Frame

is that a P-Frame can be used as a reference frame while a B-Frame cannot. Figure 2.5 shows

an example of a video sequence with intra-frames and inter-frames. The arrows indicate the

reference frames for the given frame.

All frames, intra-frames and inter-frames, start with converting the color into luminance (Y)
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and chrominance (Cb and Cr) components. As with JPEG, the conversion is done to better

match the human visual system. Additionally, the chrominance channels are usually subsam-

pled to half resolution vertically and horizontally for better compression.

After the color space conversion, each component is partitioned into blocks (most video

standards use a size of 8×8 pixels). Each block is encoded either as an intra-block or an

inter-block. An intra-block is encoded independent of other frames, and encoded very similar

to JPEG blocks. It is encoded by first doing a discrete cosine transform (DCT), and then

the coefficients are quantized using a quantization matrix. Finally, the DC coefficient is dif-

ferentially encoded among the intra-blocks of the frame, while the AC coefficients are variable

length encoded using run length encoding and Huffman encoding. Some standards also allow

the use of arthimetic coding instead of Huffman coding. Since intra-frames must be decoded

independent of other frames, all intra-frame blocks are encoded as intra-blocks.

An inter-block is encoded with a motion vector and residuals. The motion vector specifies

a block of equal size in the reference frame, which is used for prediction. The residuals are

calculated by subtracting the predicted values from the actual values of the inter-block. This

is referred to as motion compensation. For motion compensation to be effective, the predicted

values should closely match the inter-block such that the calculated residuals are small. Also,

to minimize the overhead of searching for motion vectors, motion compensation is applied on a

macroblock basis. A macroblock corresponds to a block size of 16×16 pixels; usually it consists

of four Y blocks, one Cb block, and one Cr block. When motion compensation is effective, i.e.

the residuals are small, the overhead of encoding the motion vector with the residuals is less

than encoding the block as an intra-block.

The motion vector is differentially encoded from prior motion vectors, and the difference is

encoded using variable length codes. Additionally, the residuals are encoded in similar steps

as the intra-blocks – DCT, quantization, and variable length encoding. The main difference

being the quantization matrix. In intra-blocks, each element in the quantization matrix has

a different value based on the characteristics of human perception. For inter-blocks, since

the values are residuals, the default quantization matrix has the same value for all elements.

Inter-frames are encoded using inter-blocks as well as intra-blocks. Intra-blocks are used when

a suitable prediction cannot be found in the reference frame and encoding the block as an
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inter-block becomes more expensive.

Intra-frames are encoded at higher quality than inter-frames because they are used as ref-

erence frames. Additionally, since intra-frames can be decoded independently of other frames,

frames are encoded as intra-frames at certain intervals in the video to allow random access

and faciliate seeking. For inter-frames, P-Frames are encoded at higher quality than B-Frames

since P-Frames can subsequently be used as reference frames. Finally, the bitrate of a video is

controlled by dynamically changing the quantizer values. As with image compression, larger

quantizers yield greater compression and lower video quality.

2.3 Multi-view Coding

With advances made to digital cameras, it has become easier to capture a scene using

multiple cameras from various view points. Generating images from multiple views allows

better greater user interaction with the scene, since it can be rendered from various view

points. In Section 2.3.1, multi-view coding of static scenes are discussed, while multi-view

coding of dynamic scenes are presented in Section 2.3.2.

2.3.1 Static Scenes

Multi-view coding of static scenes have been widely researched in the field of computer

graphics as image based rendering (IBR). Unlike traditional computer graphics, IBR uses

images rather than geometry to render novel views. Light field rendering, one of the IBR

techniques, represents a static 3D scene by modeling its light rays with a set of 2D im-

ages ([Levoy and Hanrahan 1996]). In [Levoy and Hanrahan 1996], the light field images were

compressed using vector quantization (VQ). Improvements over VQ encoding was made using

methods based on image compression; discrete cosine transform (DCT) in [Miller et al. 1998],

and discrete wavelet transform (DWT) in [Lalonde and Fournier 1999, Peter and Straßer 2001].

The improvements were due to utilization of local spatial coherence in the images by trans-

forming the images into the spatial frequency domain.

The light field acquires the static scene from multiple view points. Therefore, the light field

images exhibit very high spatial coherence among different views. In [Magnor and Girod 2000],
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Figure 2.6: Light Fields with Disparity Compensation

disparity compensation was used to incorporate the spatial coherence between the images and

improved encoding of the light field images. The light field images were first divided into

I-Images and P-Images. The I-Images were encoded just like a normal color image with

disparities. Using the disparities, P-Images predicted reference colors from I-Images and the

difference between the reference colors and the actual colors were encoded using DCT. The

reference structure of the frames are shown in Figure 2.6 where the arrows indicate the reference

frame for the given frame.

2.3.2 Dynamic Scenes

Similar to static scenes, multi-view coding of dynamic scenes exhibit spatial coherence

between views. However, they also have temporal coherence just like regular video. In

[Matusik and Pfister 2004], multiple cameras were used to generate video streams of a dy-

namic scene from different viewpoints. Each video was encoded and streamed separately, i.e.

only temporal coherence between frames was used for encoding. The spatial coherence between

video streams were not used because of the complexity and the delay involved.

Multiple depth streams used for tele-immersion [Towles et al. 2002] were compressed by re-

moving points redundant in the reference depth streams from the non-reference depth streams

[Kum et al. 2003]. While this approach is scalable in the number of depth streams, the per-

formance on real world data sets is not practical due to imperfect depth values

[Kum and Mayer-Patel 2005]. Also, this technique only takes advantage of spatial coherence

between different streams but not the temporal coherence between frames of the same stream.
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Figure 2.7: Sparse Dynamic Light Fields

Multiple video streams were compressed using both temporal and spatial coherence in

Sparse Dynamic Light Fields (SDLF) [Chan et al. 2003]. Multiple video streams were catego-

rized either as a main video stream or a secondary video stream. The main video stream was

encoded in same manner as normal video. The secondary video stream used the correspond

frame from the main video captured at the same time, as a reference frame in addition to the

temporal reference frames. Figure 2.7 shows the reference frame structure for the SDLF where

the arrows indicate the reference frames for the given frame.

Spatial and temporal coherence were used to compress multiple depth streams for 3D video

in [Zitnick et al. 2004]. Temporal prediction was used to encode the reference streams, and

spatial prediction was used to encode the non-reference streams. However, no frame used both

temporal and spatial prediction.

3D video fragments were used in the blue-c system to encode multiple video streams

[Würmlin et al. 2004]. 3D video fragments are a point based representations for dynamic

scenes. It exploits spatio-temporal coherence by identifying differential fragments in 2D image

space and differentially updating the 3D point representation of the scene.

Finally, the Moving Picture Experts Group (MPEG) set up an Ad-hoc Group on 3D

Audio and Video (3DAV) [Smolic and Kauff 2005] due to rising interest in multi-view coding.

The group has developed a draft for multi-view coding standard which uses both temporal

and spatial reference frames for encoding [Vetro et al. 2006]. Figure 2.8 shows the proposed
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Figure 2.8: MPEG Multi-view Coding Standard

reference structure for multi-view coding, with the arrows indicating the reference frames for

the given frame. The proposal allows a B-Frame (e.g. first frame of Cam 2 in Figure 2.8) to

predict from a spatial reference frame taken at the same time – an I-Frame and a P-Frame.

However, the P-Frame (first frame of Cam 3 in Figure 2.8) can also spatially predict from an

I-Frame taken at the same time (first frame of Cam 1 in Figure 2.8). This increases delay

when decoding, since total of three frames from the same point in time needs to be decoded.
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Chapter 3

Intra-Stream

The initial step in compressing multiple depth streams – the encoding of intra-streams – is

examined in this chapter. Multiple depth streams exhibit spatial coherence between streams as

well as temporal coherence between frames within a stream. For effective encoding of multiple

depth streams, these characteristics should be exploited. However, in order to utilize spatial

coherence between streams, a reference stream – a stream which other streams refer to for

spatial prediction – must be encoded such that it can be decoded independently of any other

stream. Therefore, the reference stream can only use temporal coherence between its frames

for encoding. Streams encoded only using temporal coherence, such as a reference stream, are

referred to as I-Streams. An I-Stream is encoded by extending existing single stream video

encoding techniques which make use of motion compensation. Depth is added as a fourth plane

of information to the existing three plane representation for color. This chapter examines how

well such a scheme works and investigates several ways of extending motion compensation to

the new depth plane.

3.1 Encoding

A depth stream is very similar to a video stream in that both streams have three channels of

color to encode. They both also have temporal coherence between frames. Therefore, existing

video stream encoding techniques should be well suited for adoption in I-Stream encoding. The

three color channels of I-Stream are encoded in a manner similar to standard video encoding,

and depth is encoded as an 8 bit grayscale image.



(a) Breakdancers Color (b) Breakdancers Depth

(c) Ballet Color (d) Ballet Depth

Figure 3.1: Frame from Breakdancers and Ballet

3.1.1 Frame Encoding

Each frame of a depth stream consists of color and depth (Figure 3.1). The three compo-

nents of color are encoded in YCbCr color-space – luminance and two chrominance components.

Furthermore, the two chrominance components are subsampled by a factor of two both hor-

izontally and vertically. Depth is encoded as an inverse value since the inverse of depth is

linear in perspective space. However, using the inverse requires knowing the minimum and the

maximum depth values which in turn affects the resolution of the depth values (Equation 3.1).

Depth(x,y) =
1

Depth Inverse(x,y)

255 × ( 1
min −

1
max) + 1

max

(3.1)

In the scheme I have developed, each frame is encoded either as an I-Frame, or a P-Frame.

An I-Frame is encoded without reference to other frames and can be decoded independently.

The P-Frame uses temporal prediction from some prior reference frame. Unlike video encoding,

no B-Frames are used because B-Frames depend on frames in the future which increases latency.
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Each frame is encoded on a per block basis where the block size is 8×8 pixels and specified

separately for each component.

3.1.2 Block Encoding

All blocks are encoded either as an intra-block or a inter-block. An intra-block is encoded

by transforming the values with a 2D discrete cosine transform (DCT) and quantizing the

DCT coefficients by a scale factor. After quantization, the DC term coefficient is differentially

encoded from the previous block’s DC term. The AC term coefficients are run length encoded

with a pair of numbers – run and value. The run indicates the number of zeros before the value.

Finally, the run length pairs are encoded using the intra block Huffman table used for MPEG-

4 [MPEG 2004]. For depth, the intra block Huffman table specified for the Y component is

used. All blocks of an I-Frame are encoded as intra-blocks since an I-Frame must be decoded

independently of other frames.

A inter-block incorporates temporal coherence between frames for encoding by predicting

the block from the reference frame. Each inter-block is associated with a motion vector. The

motion vector specifies the predicted values for the block to be encoded from the reference

frame. The reference values can start from any location and do not have to be at a block

boundary within the reference image. The residual is the difference between the values of

the block to be encoded and the predicted values and is then encoded along with the motion

vector. As with the intra-block, the residual values are transformed with a 2D DCT and the

DCT coefficients are quantized by a scale factor (i.e. the quantizer). However, unlike the

intra-block, the DC term is encoded in the same manner as the AC terms. The coefficients

are zero run length encoded using the MPEG-4 inter block Huffman table.

The compression efficiency of a inter-block depends on the residual that needs to be en-

coded. Therefore, the closer the predicted block matches the block to be encoded, the higher

the compression ratio. P-Frame blocks are encoded using inter-blocks except for the following

two cases. One is when the block does not have high frequency content and encodes substan-

tially better as an intra-block. The other is when no adequate motion vector can be found, in

which case the block is encoded as an intra-block.
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(a) Color Original (b) Quantizer 5 (c) Quantizer 25

(d) Depth Original (e) Quantizer 5 (f) Quantizer 25

Figure 3.2: Closeup of a Frame from Ballet

3.1.3 Encoding Parameters

Quantizer

Quantization of DCT coefficients during encoding affects image quality and compression

ratio. Increasing the quantization step size reduces the range of coefficients that need to be

represented and eliminates small coefficients by reducing them to zero. In effect, the larger

the quantizer, the higher the compression ratio. However, larger quantizers lead to greater

distortion in the encoded images. The images becomes increasingly blurry since high frequency

content is filtered out. Image quality, the amount of distortion introduced relative to the

original image, is measured using peak signal-to-noise ratio (PSNR). PSNR in decibels (dB)

is calculated using Equation 3.2.

PSNR = 20 log10

255√
Mean Squared Error

(3.2)

For traditional video streams, the three color components are encoded with the same

quantizer. However, for I-Streams, depth and color should not share the same quantizer since

they have different characteristics. Figure 3.2, a closeup of the Ballet frame in Figure 3.1,

shows the effect of quantization on color and depth. With a low quantizer (Figure 3.2b and

3.2e), distortion from the original (Figure 3.2a and 3.2d) is not noticeable. However, with
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Figure 3.3: Effect of Quantizer on Image Quality

a high quantizer, the difference between color and depth is apparent. Generally, the effect

of large quantizers is greater in color than in depth. Figure 3.2c shows Figure 3.2a encoded

with quantizer of 25. The features of the face – eyes, eyebrows, nose, and lips – are barely

distinguishable. Also block artifacts due to the block based encoding are evident. Figure 3.2f is

Figure 3.2c encoded with quantizer of 25. There are noticeable artifacts around the boundary

of the head but overall the images are similar. This is because depth values are usually

smooth over a local region and only show high frequency content at object borders. So a

higher quantizer can be used for depth than color to achieve the same PSNR.

Figure 3.3 shows the effect of quantization on image quality averaged over 100 frames for

eight different streams. Color and depth is given for two separate data sets – Ballet and

Breakdancers.

Motion Vectors

Inter-blocks must use extra bits to encode motion vectors compared to intra-blocks. How-

ever, the residuals for the inter-blocks will be very small if the predicted values match very

well; for blocks that match very closely, there maybe little or no residual left to encode. This

results in inter-blocks being encoded more efficiently than intra-blocks. Therefore finding a

good motion vector is critical for effective encoding of inter-blocks. Video codecs generally

use a motion vector based on the luminance (Y) plane for encoding all three color planes with

good results. In other words, it is generally the case that plane-specific motion vectors for lu-

minance and chrominance channels are not effective enough to justify the additional bits that
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would be required to encode separate motion vectors for each plane. An important question

for this work is whether the same is true for depth information. In the following discussion,

we will refer to a motion vector derived from the Y plane as MVY and a motion vector derived

from the depth plane as MVD. Thus, for encoding inter-blocks of I-Streams, the following

combinations are possible:

• Only use MVD for encoding depth and color,

• Only use MVY for encoding depth and color, and

• Use MVD to encode depth, and MVY to encode color.

Using only MVD gives the optimal encoding for the depth values, at the expense of color

value encoding. For example, there will be very few motion vectors that will be a good match

for a block that contains the left eye in Figure 3.2a if the motion vector search is done in the

Y plane. However that same block will result in a number of motion vectors that are a good

match in depth (Figure 3.2d). Therefore, if MVD is used to encode this block, the depth block

will probably have very small residuals to encode, while the color blocks will most likely have

to encode very large residuals.

Using a single motion vector based on the Y plane optimizes encoding of color values. The

encoding efficiency for depth would depend on how well the motion vector reflects the real

physical world. When searching for a good reference block, the actual real physical world

motion of the block from the reference frame is not considered. Instead, only the closeness of

the pixel color values of a block is considered. This sometimes results in motion vectors that

do not reflect coherent motion in the real physical world, which in turn may result in a poor

reference block for depth. An example would be a person with his arm in front of him in a

long-sleeved shirt. The arm and the chest will have similar color but depth will be different.

To encode a block where only the chest is present, MVY may select a reference block where the

arm and the chest is both present if the color information is still a good match. However, this

results in poor encoding for depth since it would have to encode the high frequency information

resulting from the depth discontinuity between the arm and chest.

When using a single motion vector for encoding, whether its the MVD or the MVY , the
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total efficiency of I-Stream encoding depends on how well the specified motion vector can

predict the other component. Using both MVD and MVY for encoding will result in the best

encoding for both color and depth values. However, this incurs the overhead of searching for

and encoding an additional motion vector. Searching for a good motion vector is not a trivial

task; a significant part of video encoding is spent on searching for motion vectors. Therefore

the overhead of searching for an extra motion vector cannot be ignored.

3.2 Results

Two data sets from [Zitnick et al. 2004], Ballet and Breakdancers (Figure 3.1), were used to

test I-Stream encoding. The I-Streams were encoded using a modified version of a well known

video codec XviD [XviD]. XviD is an open source ISO MPEG-4 [MPEG 2004] compliant

video codec. XviD was selected mostly because of source code availability, which can be

modified without any restrictions. The modified XviD codec is able to encode frames with

four components – RGB and depth – and the option to specify the motion vector used for

encoding inter-blocks.

All frames were encoded as P-Frames with the previous frame always encoded as an I-

Frame. This was done to eliminate error propagation when a P-Frame is encoded using a

P-Frame as a reference. Also the quantizer for all blocks in a frame was kept constant for

same components. This ensures that the encoding is affected similarly across blocks within

the same frame, and a fair comparison can be made for luminance (Y) and depth.

3.2.1 Motion Vector

When encoding inter-blocks, as previously mentioned, two motion vectors can be consid-

ered. One is the Y motion vector (MVY ) which is based on the luminance plane. The other

is the depth motion vector (MVD) based on the depth plane. If only one motion vector is

used for encoding, the encoding efficiency will depend on how close the selected motion vector

matches the non-selected one.

The delta motion vector (∆MV ), defined as |MVY − MVD|, estimates how similar the

two motion vectors match between corresponding blocks. If both motion vectors are a perfect
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match, the size of the delta motion vector will be zero. As the vectors deviate, ∆MV will

increase.

Figure 3.4 and Figure 3.5 shows the accumulative histogram of ∆MV for the Breakdancers

data averaged over 8 streams of 99 frames each. For each figure, the X-axis represents ∆MV in

pixels, and the Y-axis shows the percentage of inter-blocks that is less than or equal to the cor-

responding ∆MV . Figure 3.4 compares the ∆MV accumulative histograms at various depth

quantizers – 5 (dq05), 10 (dq10), 15 (dq15, 30 (dq30) – for a given color quantizer; Figure 3.4a

at color quantizer 5, Figure 3.4b at color quantizer 15, and Figure 3.4c at color quantizer 30.

Figure 3.5 shows the accumulative histogram of ∆MV at different color quantizers – 5 (cq05),

10 (cq10), 15 (cq15), 30 (cq30) – for a given depth quantizer; Figure 3.5a at depth quantizer 5,

Figure 3.5b at depth quantizer 15, and Figure 3.5c at depth quantizer 30. Similarly, Figure 3.6

and 3.7 is the ∆MV accumulative histogram of the Ballet data averaged over 8 streams of

99 frames each. Since there are no motion vectors defined for intra-blocks, all intra-blocks

are ignored. This appears in the figure by the accumulative values not reaching 100% but

plateauing at a lower point. The figures show that Breakdancers data has more intra-blocks

than the Ballet data. This is primarily due to the fact that the Breakdancers sequence has

faster motion between frames which results in less coherence between frames. It also shows

that quantizer has little effect on the number of intra-blocks per frame.

As the quantizers are increased, the number of blocks with similar MVY and MVD (i.e.

smaller ∆MV ) increase. When both the color and depth quantizer is at 30, most of the blocks

have zero ∆MV ; MVY and MVD of the block are equal. This is because as the quantizer

increases the high frequency content is reduced (Figure 3.2), resulting in a blurry image.

Subsequently, as the image becomes more blurry, the feature differences in depth and color

decrease, resulting in more similar motion vectors. In other words, as the quantizer becomes

larger, the finer texture details in color are lost to the blurring effect, while coarser color

discontinuities at the object boundaries remain. Since these boundaries are more likely to

match the depth boundaries, the selected motion vectors are also more likely to match.

As the quantizer of color varies, ∆MV does not change significantly (Figure 3.5 and 3.7).

However, altering the depth quantizer notably effects ∆MV (Figure 3.4 and 3.6). This is the

result of the fact that the high-frequency content in a depth image is concentrated at object
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(c) MVY at Quantizer 30

Figure 3.4: Motion Vector Difference Be-
tween MVY and MVD for Breakdancers
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Figure 3.5: Motion Vector Difference Be-
tween MVD and MVY for Breakdancers
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Figure 3.6: Motion Vector Difference Be-
tween MVY and MVD for Ballet
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Figure 3.7: Motion Vector Difference Be-
tween MVD and MVY for Ballet
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(a) Current Image (b) Predicted Image

(c) Closeup of current Image (d) Closeup of predicted Image

Figure 3.8: Luminance Predicted Image of Ballet

boundaries. Consequently, for many blocks of depth which are wholly within an object, there

are multiple reference blocks which are good choices. However, for color, due to the high

frequency information spread throughout the image, there are fewer suitable reference blocks.

3.2.2 Predicted Image

In order to compare the three possible methods for motion compensation in P-Frames, the

predicted image is generated for each frame to be compared. For inter-blocks, the pixel value

of the predicted image is simply the predicted pixel values derived from motion compensation.

For intra-blocks where no motion vector is present, there are no predicted values to use. There

are two reasons for blocks being encoded as intra-blocks in P-Frames. One is that the block

does not have high frequency content and encodes significantly better as an intra-block. The

other is where no good motion vector can be found and encoding the block as an intra-block is
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(a) Original Image (b) Uniform Residual of 3 (c) Residual of 30 for 10×10

Figure 3.9: Predicted Images with Identical PSNR

more efficient. Ignoring intra-blocks, when generating a predicted image, would not adequately

penalize the blocks where no good motion vector can be found. However, penalizing all intra-

blocks equally, would not be reasonable for blocks where encoding it as an intra-block is

inherently more efficient – when no high frequency content exists. Therefore, for intra-blocks,

the predicted image for the block is set to the intra-block’s DC value. For blocks with no

high frequency content, using the DC component as the reference is a good estimation of the

block; the residual between the block and the DC component is small. For blocks with no

good motion vectors, the DC component, which represent the average intensity of the block,

is a good representation of the block for the purposes of calculating the residual information

that remains to be coded as non-DC coefficients.

Figure 3.8 shows an example of a luminance predicted image with its original frame. Fig-

ure 3.8a is the current image to be encoded, and Figure 3.8b is the predicted image generated

from the reference image. Figures 3.8c and 3.8d is a closeup of Figures 3.8a and 3.8b. The

intra-blocks, where DC value of the block has been used for the predicted image, can be seen

in parts of the face and the arm in the predicted image (Figure 3.8d).

One metric used to compare the predicted images generated by the different motion com-

pensation options is PSNR (Equation 3.2). PSNR measures the residual of the pixels in the

current image (Figure 3.8a) from the predicted image (Figure 3.8b). The residual of a pixel is

the difference between the current pixel value and the value of the pixel in the predicted image

at the same location. Since PSNR measures the overall residual, it does not always accurately

indicate how suitable the predicted image is for encoding the current image. An example is

shown in Figure 3.9 where the image resolution of the original image (Figure 3.9a) is 100×100

31



pixels. Figure 3.9b is a predicted image which result in a uniform residual of 3 for all pixels.

Figure 3.9c result in a uniform residual of 0 for all pixels except for a block of 10×10 pixels

(near the right eye of the ballerina) which result in residual of 30 for each pixel. The PSNR

for both of the predicted images will be the same since the mean squared residual is the same

– (32 × 100 × 100)/1002 = 9 for Figure 3.9b, and (302 × 10 × 10)/1002 = 9 for Figure 3.9c.

However, Figure 3.9b is a better predicted image for encoding since all pixels have a residual

of 3, while the Figure 3.9c results in 100 pixels with the residual of 30.

Therefore another metric – accumulative residual histogram – is also used to compare the

predicted images generated by the different motion compensation options. An accumulative

residual histogram shows the percent of pixels in the image that have equal or less than the given

residual. Using the accumulative residual histogram, a predicted image which has more pixels

with smaller residuals is considered better. So for the previous example of the two predicted

images, the first predicted image would be considered better than the second predicted images

because 100% of the pixels in the first predicted image has residual of 1, while in the second

predicted image, 75% of pixels has a residual 0 but to reach 100% the residual becomes 10.

Accumulative Residual Histogram

Figure 3.10 and 3.11 shows the average accumulative residual histogram for Breakdancers

data averaged over 8 streams of 99 frames each. For each figure, the X-axis shows the residual,

and the Y-axis indicates the percentage of pixels where the residual is less than or equal to

the corresponding value. Figure 3.10 shows the luminance (Y) average accumulative residual

histogram for luminance quantizers 5 (a), 15 (b), and 30 (c). The predicted images for each

figure were created using MVY at specified quantizer, and MVD at quantizers 5 (MVDq05),

15 (MVDq15), and 30 (MVDq35). Figure 3.11 shows the average accumulative residual his-

togram of depth at depth quantizers of 5(a), 15(b), and 30(c). The predicted images at each

figure were generated using MVD at specified quantizer, and MVY at quantizers 5 (MVY q05),

15 (MVY q15), and 30 (MVY q30). Similarly, Figure 3.12 shows the average accumulative residual

histogram of luminance (Y) for Ballet data at Y quantizers of 5 (MVY q05), 15 (MVY q15), and

30 (MVY q30), and Figure 3.13 shows the average accumulative residual histogram of depth

for Ballet data at depth quantizers of 5 (MVDq05), 15 (MVDq15), and 30 (MVDq30). Both
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Figure 3.10: Accumulative Residual His-
togram of Breakdancers for Luminance
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Figure 3.11: Accumulative Residual His-
togram of Breakdancers for Depth
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Figure 3.12: Accumulative Residual His-
togram of Ballet for Luminance

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  4  8  12  16  20

P
ix

el
s 

(%
)

Residual

MVD q05
MVY q05
MVY q15
MVY q30

(a) Depth Quantizer 5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  4  8  12  16  20

P
ix

el
s 

(%
)

Residual

MVD q15
MVY q05
MVY q15
MVY q30

(b) Depth Quantizer 15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  4  8  12  16  20

P
ix

el
s 

(%
)

Residual

MVD q30
MVY q05
MVY q15
MVY q30

(c) Depth Quantizer 30

Figure 3.13: Accumulative Residual His-
togram of Ballet for Depth
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Figure 3.14: PSNR

Figure 3.12 and 3.13 is averaged over Ballet data of 8 streams of with 99 frames each.

As expected, for luminance prediction using MVY yields the best result, and for depth

prediction using MVD is the best. Furthermore, depth has many more pixels with very small

residuals than color since depth does not have as much high frequency content to encode

as luminance. It is also noticeable that the Ballet data have better prediction overall than

the Breakdancers data, which reflects the fact that Breakdancers have faster motion between

frames.

Finally, the color quantizers for computing MVY has little effect on generating the predicted

image for depth (Figures 3.11 and 3.13). This is consistent with Figures 3.5 and 3.7, where

MVY are similar at various quantizers when compared against MVD.
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PSNR

Figures 3.14a and c show the PSNR of the color predicted images against the original

images averaged over 8 streams with 99 frames each for both datasets. For both figures, the

X-axis shows the color quantizer, and the Y-axis shows the PSNR for the corresponding color

quantizer. Each figure compares the PSNR for MVY and MVD at quantizers 5 (MVDq05),

15 (MVDq15), and 30 (MVDq30). As expected, the PSNR decreases as the color quantizer

increases. Also when compared to MVD at different quantizers, the color predicted image

generated using the MVY is always better which agrees with the previous results of the accu-

mulative residual histogram for color (Figure 3.10 and 3.12).

Figures 3.14b and d shows the average PSNR of the depth predicted images for the Break-

dancers data (b) and the Ballet data (d) over 8 streams of 99 frames each. For both figures,

the X-axis shows the depth quantizer, and the Y-axis shows the PSNR for the corresponding

depth quantizer. Each figure compares the PSNR for MVD and MVY at quantizers 5 (MVY q05),

15 (MVY q15), and 30 (MVY q30). As with color, PSNR decrease as the quantizer increase. Also

similar to color, the depth predicted image generated using the MVD is always better than

the one generated using MVY at different quantizers. This is also consistent with previous

accumulative residual histogram for depth (Figure 3.11 and 3.13).

As observed with the accumulative residual histogram, there are little differences between

the depth predicted images using MVY at various quantizers. However, generating the color

predicted images using MVD is affected by the depth quantizers.

3.2.3 Compression Ratio

Using two motion vectors incurs the extra overhead of specifying an extra motion vector

for each block. Therefore, it will only outperform the single motion vector algorithms if the

extra motion vector predictions result in residuals that encode more efficiently (i.e. require

fewer bits) to make the cost of the additional motion vector worthwhile.

Figures 3.15a and c show the color compression ratio for Breakdancers data and Ballet

data averaged over 8 streams of 99 frames each. For both figures, the X-axis shows the color

quantizer, and the Y-axis shows the compression ratio for the corresponding color quantizer.
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Figure 3.15: Compression Ratio

Each figure compares the compression ratio using the Y motion vector (MVY ) and the depth

motion vector at quantizer 5 (MVDq05), 15 (MVDq15), and 30 (MVDq30). For encoding color

with MYY , the number of bits used for encoding headers, motion vectors, and color residual

is calculated. For encoding color with MVD, since the motion vector is encoded with depth,

only the number of bits used for encoding the color residual and headers is calculated. Even

with the extra bits needed to encode the MVY , using MVY to encode color generally yields

a better compression ratio. One exception is for the Ballet data at color quantizers 9 - 25

where increasing the quantizer does not increase the compression ratio very much due to the

characteristics of the data. Also, notice that when using MVD to predict color images, larger

depth quantizers lead to better compression. This is because larger depth quantizers for MVD

results in a smaller ∆MV (Figures 3.5 and 3.7), resulting in a predicted image (Figures 3.14)

that is closer to the predicted image just using MVY .

Figures 3.15b and d show the depth compression ratio for Breakdancers data (b) and Ballet
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data (d) averaged over 8 streams of 99 frames each. For both figures, the X-axis shows the depth

quantizer, and the Y-axis shows the compression ratio for the corresponding depth quantizer.

Each figure compares the compression ratio using the depth motion vector (MVD) and the Y

motion vector at quantizer 5 (MVY q05), 15 (MVY q15), and 30 (MVY q03). For encoding depth

with MYD, the number of bits used for encoding headers, motion vectors, and depth residual

is calculated. For encoding depth with MVY , since the motion vector is encoded with the

color, only the number of bits used for encoding the depth residual and headers is calculated.

It is interesting that there is no significant difference between using MVY and MVD at small

quantizers, but as the quantizers increase using MVD does worse than MVY . However, from

Figure 3.11, 3.13, and 3.14, it is clear that using MVD does a better job of predicting the

depth values. This is because, at low quantizers, the bit savings for encoding the residual due

to better prediction is larger than the number of bits needed to encode MVD. However, as the

depth quantizers increase, due to the decrease in high frequency information, MVY predicts

depth better, resulting in more bits needed for MVD than the bits saved by its prediction.

The bit allocations for encoding the header, Y motion vector (MVY ), depth motion vec-

tor (MVD), color residuals, and depth residuals are shown in Figure 3.16 for Breakdancers

data and Figure 3.18 for Ballet data. For each figure, the X-axis indicates the color quantizers

for each group – 5, 15, and 30 – and each group has 3 bar graphs; one for encoding with only

MVY , one for encoding with only MVD, and one for encoding using both MVY and MVD.

The Y-axis indicates the number of bits used to represent a single pixel for the given data.

The results at depth quantizer 5, 15, and 30 are shown, where the results were averaged over

8 stream of 99 frames each. Using both MVY and MVD result in the best bitrate for the

residuals but an extra motion vector needs to be encoded. Also the increase in bits needed to

encode depth residuals using MVY compared to using MVD is larger as the quantizer increases.

This also is true for color.

Figure 3.17 (Breakdancers data) and Figure 3.19 (Ballet data) compare the compression

ratio of color and depth encoding using MVY , MVD, and MVY for color and MVD for depth

at depth quantizer 5, 15, and 30. For each figure, the X-axis shows the color quantizer and

the Y-axis shows the compression ratio for the corresponding color quantizer.

At small depth quantizers, using MVD and MVY yields the best compression. However,
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Figure 3.16: Bitrate of Breakdancers
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Figure 3.18: Bitrate of Ballet
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at high depth quantizers, using MVY results in the best compression. Also if only one motion

vector can be used, due to limits on computational resources, it is generally better to use

MVY . But if the required color quality is low and depth quality is high, using MVD results

in a better encoding for two reasons. One is that the high frequency information from color

has been sufficiently removed by quantization that MVD is a decent motion vector to use for

color prediction. The other is that more portion of the total bits are used to encode depth, so

it is more efficient to improve depth encoding by using MVD.

3.3 Conclusion

In this chapter, an encoding algorithm for depth streams as intra-streams has been pre-

sented. The algorithm extends the motion compensation used for traditional video encoding to

also encode depth. Furthermore, different methods of using motion compensation for encoding

color and depth were evaluated.

For encoding intra-streams, the experiments show the following:

• For encoding depth at high quality (small quantizer), it is more efficient to use the Y

motion vector (MVY ) to encode color and the depth motion vector (MVD) to encode

depth. The overhead of an extra motion vector per block is smaller than the increase in

residual encoding when one motion vector is used.

• For encoding depth with a high quantizer, it is better to use only the color motion

vector (MVY ) because at high depth quantizers, MVY is similar enough to MVD that

the depth residuals to be encoded using MVY closely match the depth residuals from

MVD. Therefore, encoding an extra motion vector becomes more expensive.

• For encoding with only one motion vector due to limits on computational resources,

the motion vector for color (MVY ) is usually the better choice than the motion vector

for depth (MVD). The exception is for encoding high quality depth and low quality

color such that the number of bits required for encoding depth is significantly higher.

Accordingly, improving encoding of depth over color results in a more efficient encoding.
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Chapter 4

Inter-Stream Encoding

After encoding reference streams as intra-streams, as described in Chapter 3, the next step

in compressing multiple depth streams is to encode inter-streams. Inter-Streams, also referred

to as P-Streams, are non-reference streams that exploit the fact that multiple depth streams

exhibit strong spatial coherence as they capture the same environment from different angles.

Therefore, inter-streams are encoded using the spatial coherence between streams as well as

the temporal coherence between frames.

The depth value associated with a pixel in an inter-stream (non-reference stream) can be

used to project that pixel into the frame of a reference stream. If the color of the corresponding

pixel in the reference stream is similar to the color of the pixel in the inter-stream, encoding of

the color information for that pixel in the inter-stream is no longer required. Simply encoding

the depth and indicating that the color can be derived from the reference stream is all that is

necessary.

This chapter examines how to encode inter-streams using spatial coherence between streams

and temporal coherence between frames with in the same stream. Section 4.1 examines how

to encode the depth of inter-streams. Then in Section 4.2, the encoding of inter-stream color

is presented. The results are presented in Section 4.3 and conclusions in Section 4.4.

4.1 Depth Encoding

Since depth is used for spatial prediction of color in P-Stream encoding, depth values

must be encoded independently of color. Therefore, the information that can be used to aid



in encoding of P-Stream depth values are the depth values from the frames of the reference

streams (spatial reference frames) and the temporal reference frames with in the same stream.

Given these reference frames, there are three different approaches for selecting reference frames

to use for encoding: only use temporal reference frames (Temporal Reference Encoding), only

use spatial reference frames (Spatial Reference Encoding), and use both the temporal reference

frames and the spatial reference frames (Spatial and Temporal Reference Encoding). In this

section, these different approaches for encoding depth are explored.

4.1.1 Temporal Reference Encoding

When using only temporal reference frames, P-Stream depth can be encoded much like

traditional video encoding using motion compensation. As described in Chapter 2.2, motion

compensation utilizes the temporal coherence between frames of the same stream by predicting

the current frame from the temporal reference frame using motion vectors. Motion vectors are

used to specify a predicted value from the reference frame, and the residual – the difference

between the predicted value and the actual value to be encoded – is encoded along with the

motion vector.

The major difference between depth and color is that depth has only a single channel of

information, while traditional video – i.e. color – has three channels. Therefore when encoding

depth, only one residual per pixel needs to be encoded instead of three.

Another characteristic of depth values is that high frequency content generally appears on

object borders; it is mostly smooth over local regions. Therefore, for depth values of P-Streams,

where it does not need to be as accurate as I-Streams since it is not used as a reference stream,

subsampling depth values to half resolution before encoding and resampling to full resolution

after decoding, just like color chrominance channels, is a viable option.

4.1.2 Spatial Reference Encoding

Another option is to use only spatial reference frames to encode P-Stream depth. The

spatial reference frames are frames from reference streams at the same point in time, while

temporal reference frames are frames from the same stream from a different point in time.
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Spatial reference frames can be used to encode P-Stream depth by projecting the reference

frame pixels to the corresponding pixel in the P-Stream frame to be encoded. Then the

corresponding pixel of the P-Stream frame, can use the projected depth value as its predicted

value for encoding, and only encode the residual. However, when using this approach, the

following possibilities need to be considered:

• No corresponding reference pixels exist for a given pixel.

• Multiple reference pixels with different values correspond to a given pixel.

• Only one reference pixel corresponds to a given pixel but the value does not provide an

accurate prediction.

There can be no corresponding reference value for a pixel in the P-Stream frame when the

given pixel is not visible from the point of view of the spatial reference frames. This occurs

when the pixel is occluded from view in the spatial reference frames or the pixel corresponds

to a pixel outside the view of the spatial reference frames. Since these pixels do not have any

reference values to predict from, there are two options. One is to encoded the actual depth

value, and the other is to generate a predicted value by using the neighboring pixels.

Extra information to distinguish whether the encoded value is the actual depth or the post-

prediction residual for a given pixel, needs to be incorporated. Also mixing residual values for

some pixles and actual depth values for others within the same block tends to lead to high

frequency content in the transform domain, resulting in inefficient encoding.

Using neighboring pixels to generate a predicted value for pixels without any spatial ref-

erence values encounters difficulties when the neighboring pixels are part of different objects.

Interpolating depth between different objects will generate incorrect depth values, again lead-

ing to large residuals and inefficient encoding.

For pixels which have multiple spatial reference pixels with different depth values, the

spatial reference depth value itself can be used to select the among possible value predictions.

Namely, the smallest reference depth value should be selected as the predicted value. This is

because the pixel with the smallest depth value will occlude any other spatial reference pixel

with larger depth values that correspond to the same pixel of the frame to be encoded.
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For pixels with only one corresponding spatial reference pixel, there is no simple method to

accurately detect if the spatial reference pixel is a poor candidate to use as a predicted value.

These pixels could result in high residuals which lead to inefficient encoding.

4.1.3 Spatial and Temporal Reference Encoding

As described in the previous section, using only spatial reference frames will most likely

result in inefficient encoding. Another approach to improve encoding is to use both spatial

and temporal reference frames. Using temporal reference frames additional to spatial reference

frames will not help detect poorly predicted values from spatial reference frames, but it will

help in cases where no corresponding values exist.

For pixels without predicted depth values from spatial reference frames, the temporal

reference frame can be used to provide predicted values. In particular, the depth value of

the corresponding pixel in the temporal reference frame can be used as the predicted value

to calculate the residual. This will generate a predicted value for each pixel without having

to conduct a motion vector search or interpolation of neighboring values. However, a poorly

predicted value can be generated when if the object described by the pixel from the temporal

reference frame has moved.

4.1.4 Results

In this section, the different results for various P-Stream depth encoding algorithms are

presented. The two data sets, Ballet and Breakdancers from [Zitnick et al. 2004], are used

for presenting the results of P-Stream encoding throughout this chapter. Each data set has

eight streams which are 100 frames long which were captured at 15 fps. The resolution of each

frame is 1024×768, and depth is represented in 8 bits. Depth values were computed using the

algorithm described in [Zitnick et al. 2004]. Figure 4.1 shows a frame of color and depth from

each data set.

Temporal Reference Encoding

Three different encodings of P-Stream depth using only temporal reference frames are

compared in this section. They are:
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(c) Ballet Color (d) Ballet Depth

Figure 4.1: Frames from Breakdancers and Ballet Data

• Depth encoded at full resolution of the frame, i.e. 1024×768.

• Depth encoded at half resolution of the frame, i.e. 512×384, by subsampling. To decode

depth vales to full resolution, half resolution depth frames were resampled using the

nearest neighbor value.

• Depth encoded at half resolution of the frame, i.e. 512×384, by subsampling. To decode

depth vales to full resolution, half resolution depth frames were resampled using bilinear

interpolation.

A modified version of the XviD codec was used to encode depth using only temporal refer-

ence frames. XviD [XviD] is a well known open source ISO MPEG-4 [MPEG 2004] compliant

video codec. XviD was selected mostly because of source code availability, which can be mod-

ified without any restrictions. The modified XviD codec is able to encode frames with only

one component instead of three.

46



 35

 37

 39

 41

 43

 45

 47

 49

 51

 53

 55

 50  100  150  200  250  300  350  400  450  500

P
S

N
R

Compression Ratio

Full Resolution
Subsample Bilinear
Subsample Nearest

 34

 35

 36

 37

 38

 39

 40

 41

 0  100  200  300  400  500  600  700  800  900  1000

P
S

N
R

Compression Ratio

Bilinear
Nearest

(a) Breakdancers (b) Breakdancers at Half Resolution

 31

 33

 35

 37

 39

 41

 43

 45

 47

 49

 51

 53

 55

 50  100  150  200  250  300  350  400  450  500

P
S

N
R

Compression Ratio

Full Resolution
Subsample Bilinear
Subsample Nearest

 30.5

 31

 31.5

 32

 32.5

 33

 33.5

 34

 0  250  500  750  1000  1250  1500

P
S

N
R

Compression Ratio

Bilinear
Nearest

(c) Ballet (d) Ballet at Half Resolution

Figure 4.2: P-Stream Depth Temporal Reference Encoding

For all results, all frames were encoded as P-Frames. The previous frame of the encoded

frame was selected as the temporal reference frame. All reference frames, spatial and temporal,

were encoded as I-Frames. This was done to remove error propagation that happens when a P-

Frame is used as a reference frame. Finally, the same quantizer was used for both the I-Frame

and the P-Frame.

The results are shown in Figure 4.2. For each figure, the X-axis represents the compression

ratio, while the Y-axis represents the PSNR of the decoded depth values. Figure 4.2a compares

the results of the Breakdancers data for encoding depth at full resolution (Full Resolution),

encoding depth at half resolution and then resampled to full resolution using bilinear inter-

polation (Subsample Bilinear), and encoding depth at half resolution and then resampled to

full resolution using the nearest neighbor value (Subsample Nearest). Figure 4.2b shows the

full results for Subsample Bilinear and Subsample Nearest of the Breakdancers data. It shows

that encoding at full resolution, instead of encoding at half resolution is better majority of the
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Figure 4.3: Stream Positions

time. However, encoding at half resolution enables a much higher compression ratio at the

cost of quality (PSNR). Also, as expected, using bilinear interpolation for resampling to full

resolution yields better results than using the nearest neighbor.

Figure 4.2c shows the results of the Ballet data for encoding depth at full resolution (Full

Resolution), encoding depth at half resolution and then resampled to full resolution using

bilinear interpolation (Subsample Bilinear), and encoding depth at half resolution and then

resampled to full resolution using the nearest neighbor value (Subsample Nearest). Figure 4.2d

shows the full results for Subsample Bilinear and Subsample Nearest of the Ballet data. Similar

to the Breakdancers data, encoding at full resolution show better results than encoding at half

resolution. A difference in Ballet data from Breakdancers data is that it can be encoded at

much higher compression ratio than Breakdancers data. This is primarily due to the fact that

Ballet data has slower motion than the Breakdancers data, which leads to better temporal

coherence between frames.

Spatial and Temporal Reference Encoding

In this section, the results for encoding P-Streams using spatial and temporal reference

frames are presented. To utilize spatial reference frames, reference streams need to be specified.

Figure 4.3 show the eight stream positions for the Breakdancers and Ballet data set. For all
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results in this section, two streams – one on each side of a given stream – were selected as

spatial reference streams. For the temporal reference frame, the previous frame in the same

stream was selected. Also, all reference frames – spatial and temporal – were encoded using

the same modified XviD codec used in the previous section; in addition, all reference frames

were encoded as I-Frames with the same quantizer as the encoding frame.

Using the depth value of the spatial reference frames, the spatial reference pixels were

projected into the encoding frame. For pixels of the encoding frame with multiple spatial

reference depth values, the smaller one was selected as the predicted value. For pixels in the

encoding frame with no projected depth value, the depth value of the corresponding pixel

from the temporal reference frame was selected as the predicted value. Once all pixels in

the encoding frame have been assigned predicted values, the difference between the predicted

value and the actual value – i.e. residual – was encoded. Two different methods were evaluated

for encoding the residuals. One is based on the discrete wavelet transform (DWT) and the

other is based on the discrete cosine transform (DCT). The DWT based codec used was the

JPEG2000 [JPEG 2000] encoding, while the DCT based codec used the XviD P-Frame residual

encoding.

Figure 4.4 shows the results of each encoding for the Breakdancers and Ballet data sets.

In each figure, the X-axis represents the compression ratio, while the Y-axis represents the

PSNR of the decoded depth values.

For each encoding, three different configurations of spatial reference streams were com-

pared. The first configuration selected the nearest streams on each side as spatial refer-

ence streams (Ref 1): From Figure 4.3, stream 1 selected streams 0 and 2, stream 2 selected

streams 1 and 3, stream 3 selected streams 2 and 4, stream 4 selected streams 3 and 5, stream 5

selected streams 4 and 6, and stream 6 selected streams 5 and 7 as spatial reference streams.

The second configuration selected the second nearest streams on each side as spatial refer-

ence streams (Ref 2): From Figure 4.3, stream 2 selected streams 0 and 4, stream 3 selected

streams 1 and 5, stream 4 selected streams 2 and 6, and stream 5 selected streams 3 and 7 as

spatial reference streams. The final configuration selected the third nearest streams on each

side as spatial reference streams (Ref 3): From Figure 4.3, stream 3 selected streams 0 and 6,

and stream 4 selected streams 1 and 7 as spatial reference streams.
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Figure 4.4: P-Stream Depth Spatial and Temporal Reference Encoding

As seen from Figure 4.4, using the nearest streams as spatial reference streams (Ref 1)

always resulted in the best encoding. Also, using the DWT based codec had better results

than using the DCT based codec.

4.1.5 Conclusion

The results of various P-Stream depth encodings from Section 4.1.4 are shown in Figure 4.5.

For each figure, the X-axis represents the compression ratio, while the Y-axis represents the

PSNR of the decoded depth values. The different encodings compared are; depth encoded at

full resolution using only temporal reference frames (Full Resolution from Figure 4.2) shown

as Temporal, depth encoded using spatial and temporal reference frames with the residuals

encoded using a DWT based codec (Projected DWT), and depth encoded using spatial and

temporal reference frames with the residuals encoded using a DCT based codec (Projected

DCT). For both Projected DWT and Projected DCT, the nearest streams were used as spatial
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Figure 4.5: P-Stream Depth Encoding

reference streams (Ref 1 from Figure 4.4).

For the Breakdancers data set, the Projected DWT encoding is comparable to Temporal

encoding (Figure 4.5a), while for the Ballet data set, Temporal encoding results are bet-

ter (Figure 4.5b). This is primarily due to the fact that Breakdancers data set has faster

motion between frames than the Ballet data set. Therefore, the previous frame of the Ballet

data set can better predict the current frame than the Breakdancers data set. Also, even

though Projected DWT encoding is comparable to Temporal encoding for the Breakdancers

data set, this is when the nearest streams are selected as the spatial reference streams. Since

all streams need to be encoded, the selected spatial reference streams will not always be the

nearest streams for all P-Streams.

Additionally, to use the spatial reference frames to predict depth, the spatial depth values

must be accurate. If the depth values are inaccurate, the pixel projection will be incorrect,

which will lead to poor corresponding pixels and erroneous reference values.

Because the accuracy of depth values is affected by noise in the original data and lossy

encoding of depth, and temporal encoding show better results (Figure 4.5), encoding P-Stream

depth using only the temporal reference frames seems to the logical choice. If better compres-

sion is needed, P-Stream depth can be encoded using an adaptive approach where depth is

encoded in full resolution for high bit rates and half resolution for low bit rates (Figure 4.2).
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4.2 Color Encoding

For encoding P-Stream color, the spatial reference frames of the reference streams and

the temporal reference frame for the encoding stream is used to predict the color value of the

encoding frame. In this section, an algorithm for encoding P-Stream color using multiple refer-

ence frames is presented and evaluated. The algorithm does not use any motion compensation

for color prediction, and forms predictions on a per pixel basis instead of on a per block basis.

When encoding P-Stream color, the following information is available to better predict the

color of a pixel:

• The depth values from the current frame to encode.

• The depth values from the temporal reference frame.

• The depth values from the spatial reference frames.

• The color values from the temporal reference frame.

• The color values from the spatial reference frames.

For each pixel color of the encoding frame, the above information is used to predict the

pixel color values. Then for each pixel, the residual – difference between the predicted color

and the actual color – is encoded. Since smaller residuals generally result in more efficient

encoding, closer the predicted colors are to the actual color, the more efficient the encoding of

the frame.

To predict the color of the current frame to encode at time t (Color(t)) from the spatial

reference frame of reference stream s, depth of the current frame at time t (Depth(t)), depth of

the spatial reference frame at time t (Depths(t)), and the color of the spatial reference frame

at time t (Colors(t)) is utilized. For each pixel (i, j) in the current frame at time t, the cur-

rent depth value of the pixel (i, j) (Depth(t, i, j)) can be used to project the pixel (i, j) into

reference stream s to find the corresponding pixel (is, js) in Depths(t). If the current corre-

sponding depth value in the spatial reference frame (Depths(t, is, js)) is close to Depth(t, i, j),

the color value of the pixel (is, js) in Colors(t) (Colors(t, is, js)) can be used as the predicted

color value for pixel (i, j). If Depth(t, i, j) is not close to Depths(t, is, js), the pixel (i, j) is
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(a) Original Frame (b) Temporal Reference Frame

(c) Stream 2 Spatial Reference Frame (d) Projected Stream 2 Reference Frame

(e) Stream 5 Spatial Reference Frame (f) Projected Stream 5 Reference Frame

Figure 4.6: P-Stream Reference Frames

assumed to be occluded in reference stream s, and Colors(t, is, js) is not used as a predicted

color for pixel (i, j) (Color(t, i, j)). Also, if pixel (i, j) projects outside of reference stream s

and no corresponding pixel exists, the Color(t, i, j) does not have a predicted color value from

spatial reference stream s.

For predicting the color at pixel (i, j) of the current frame to encode at time t (Color(t, i, j))

from the temporal reference frame at time t − 1, the corresponding pixel Color(t− 1, i, j) is

used.
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(a) Predicted Image (b) Reference Mask

(c) Closeup of Predicted Image (d) Original Frame

Figure 4.7: P-Stream Predicted Image

An example is shown in Figure 4.6. Figure 4.6a shows the encoding frame (frame 10)

of stream 3 in the Ballet data set, with stream 2 and 5 selected as the spatial reference

streams (Figure 4.3b). Figure 4.6b is the temporal reference frame – the previous frame,

frame 9, of stream 3. Figure 4.6c is the tenth frame of stream 2, the spatial reference frame

for frame 10 of stream 3. Figure 4.6d is the predicted color values for frame 10 of stream 3

from Figure 4.6c, which was created using the depth values Depth3(10) to project the pixels

into stream 2 to find the corresponding pixels. Pixels marked with green represent pixels that

did not have any corresponding pixels, because the depth values were not close enough or the

pixels projected outside of stream 2. Figure 4.6e is the tenth frame of stream 5, the other

spatial reference frame for frame 10 of stream 3. Figure 4.6f is the predicted color values from

Figure 4.6e for frame 10 of stream 3, which was created just like Figure 4.6d.

Figure 4.7a is the resulting predicted image for frame 10 of stream 3 from the spatial

reference frames of stream 2 and 5 (Figure 4.6d and f), and the temporal reference frame (Fig-

ure 4.6b). A predicted image is an image of predicted color values for every pixel, created from
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its reference frames to use for encoding. The predicted image (Figure 4.7a) was created by

selecting the best predicted color, the predicted color which result in the smallest residual,

from the spatial reference frames (Figure 4.6d and f) and the temporal reference frame (Fig-

ure 4.6b). Even though the predicted image have sections that does not predict the original

frame (Figure 4.7d) well, such as the artificial arm between the two actual arms (Figure 4.7c),

it is very similar to the original frame that the residuals calculated using this predicted image

is mostly small.

Figure 4.7b is the reference mask of the predicted image (Figure 4.7a) for the original

frame (Figure 4.7d). A reference mask indicates which reference frame was selected as the

predicted color value for the given pixel. The white pixels in the reference mask (Figure 4.7b)

indicate that the best predicted color for the corresponding pixels is from spatial reference

frame of stream 5 (Figure 4.6f). The light grey pixels imply that the best predicted color

values are from spatial reference frame of stream 2 (Figure 4.6d), and the dark grey pixels

show that the best predicted values are from the temporal reference frame (Figure 4.6b).

Given a reference mask, a predicted image can be easily created. Therefore, an algorithm

for effectively encoding the reference mask can also effectively encode the predicted image. In

Section 4.2.1, an algorithm for effectively encoding the reference mask is presented, and the

encoding of the residuals are described in Section 4.2.2.

4.2.1 Reference Mask

An uncompressed reference mask, for a frame resolution of 1024×768 which has two spatial

reference streams, requires 1536 Kbits (2 × 1024 × 768) to encode which is not very efficient.

However if the reference mask can be encoded efficiently, the predicted image can be encoded

efficiently, which result in smaller residuals for effective encoding of the frame. As previously

mentioned, the following information is available to be utilized for effective encoding of the

reference mask for a P-Stream frame at time t:

• Depth values of the encoding frame at time t (Depth(t)).

• Depth values of temporal reference frame at time t− 1 (Depth(t− 1)).

• Depth values of spatial reference frames for stream s at time t (Depths(t)).
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• Color of temporal reference frame at time t− 1 (Color(t− 1)).

• Color of spatial reference frames for stream s at time t (Colors(t− 1)).

In this section, new primitives used to encode the reference mask using the above infor-

mation is introduced. Then the reference mask encoding algorithm using these primitives is

presented.

Primitives

Four primitives are used to encode the reference mask. They are consensus filter, delta

depth threshold, list of boxes, and list of pixels. Since there are four primitives, only 2 bits

are needed to distinguish between the primitives for encoding. Each primitive is described in

detail.

Consensus Filter The consensus filter selects the consensus of all the spatial reference colors

as the predicted color. As shown in Figure 4.6d and f, not all pixels have a corresponding pixel

in the spatial reference frames. Therefore, when using the consensus filter, the predicted color

for each pixel is selected by the number of existing spatial reference colors available for the

given pixel. The consensus filter selects the predicted color for each pixel by the following:

• No spatial reference color exists: Use the temporal reference color as its predicted color

for the pixel since it is the only one available.

• Only one spatial reference color exists: If the 1 spatial reference color is similar to

the temporal reference color, use the average of the two colors as the predicted color.

However, if they are not similar, the predicted color for the pixel cannot be determined

using the consensus filter primitive.

• More than one spatial reference color exists: If a consensus can be formed, i.e. majority of

the spatial reference colors are similar, the average color of the majority spatial reference

colors is used as the predicted color for the pixel. If a consensus cannot be formed, the

predicted color for the pixel is unknown.
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Figure 4.8: Consensus Filter

Figure 4.8 shows an example of the consensus filter for a frame of 3×2 with two spatial

reference streams. Figure 4.8a and b shows the color of the corresponding pixels from the two

spatial reference frames. Pixels marked X are pixels where no reference color is available for

the given pixel. Figure 4.8c shows the temporal reference frame, and Figure 4.8d shows the

resulting predicted image using the consensus filter. Pixels marked ? in the predicted image

are pixels where a color cannot be predicted with the consensus filter.

Pixel (0, 0), the pixel at the top-left corner, does not have any spatial reference colors,

so the temporal reference color is used as the predicted color for the pixel. Pixel (0, 1), the

top-middle pixel, only has one spatial reference color – spatial reference 1 (Figure 4.8a), –

which is similar to the temporal reference color. Therefore the predicted color for pixel (0, 1)

is the average of the spatial reference color (spatial reference 1) and the temporal reference

color. Pixel (0, 2), the top-right pixel, also only has one spatial reference color (Figure 4.8a).

But compared to pixel (0, 1) the spatial reference color and the temporal reference color is

different. Therefore the predicted color for pixel (0, 2) is unknown (?).

All three pixels of the bottom row have more than one spatial reference color. So a

consensus needs to be formed for a color to be predicted for a given pixel using the consensus

filter. Both spatial reference colors for pixel (1, 0), the bottom-left pixel, are similar and form

a consensus. Therefore the average of the two spatial reference colors is used as the predicted

color for the pixel (1, 0). Pixel (1, 1), the bottom-middle pixel, also has similar spatial

reference colors, but the temporal reference color is different. However, just like pixel (1, 0),

the spatial reference colors form a consensus. Therefore the average of the spatial reference
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Figure 4.9: Delta Depth Threshold

colors is used as the predicted color. The last pixel (1, 2), the bottom-right pixel, does not

have a consensus among the spatial reference colors since the two spatial reference colors are

different. Therefore the predicted color for the pixel is unknown (?), even though the temporal

reference color is similar to one of the reference colors.

Encoding the consensus filter only requires 2 bits since it only needs to identify the primi-

tive.

Delta Depth Threshold Delta depth threshold specifies a reference frame and a threshold

value. For each pixel, the color is predicted from the specified reference frame only if the differ-

ence between the depth value of the encoding pixel and the depth value of the corresponding

pixel in the reference frame is less than the given threshold.

An example for a frame of 3×1 with the delta depth threshold of 2 is given in Figure 4.9.

Figure 4.9a shows the depth values for the current frame to encode (Depth(t)). Figure 4.9b

shows the depth and color values of the corresponding pixels in the spatial reference frame

for the given pixel. The pixel marked with X specify that there is no corresponding spatial

reference pixel for the given pixel. Figure 4.9c shows the resulting predicted image. Pixels

marked with ? specifies that no predicted color can be determined for the pixel using the delta

depth threshold primitive.

The first pixel in the frame (Figure 4.9a) has the depth value of 4. However, the first pixel of

spatial reference frame (Figure 4.9b) indicates that there is no corresponding spatial reference

pixel. Therefore the color for the first pixel of the predicted image (Figure 4.9c) is unknown (?).

For the second pixel, the depth value of the current frame is 2 and the depth value of the spatial

reference frame is 1. Since the difference of these two depth values (2− 1 = 1) is smaller than

the given threshold (2), the predicted color of the second pixel is same as the color of the spatial

reference frame. Finally, the last pixel has the depth value of 5 while the corresponding spatial

reference pixel’s depth value is 2. The difference of the depth values (5− 2 = 3) is bigger than
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the threshold (2). Therefore the predicted color of the third pixel is also unknown (?).

Delta depth threshold requires d8 + log2(s + 1)e bits to encode when there are s number of

reference streams – 2 bits to identify the primitive, dlog2(s + 1)e bits to specify the reference

frame (1 temporal reference frame and s reference streams), and 6 bits for the threshold.

Even though the full range of the threshold requires 8 bits, it can be encoded in 6 bits using

differential encoding for each reference. For example, if the previous depth threshold for a

given reference was 3 and the current threshold to encode is 10, the actual encoded value

would be 7 (10 − 3). Therefore, for encodings where there are two spatial reference streams

10 bits (d8 + log2(2 + 1)e = 10) would be needed to encode the delta depth threshold.

List of Boxes List of boxes specifies a reference frame and a list of bounding boxes. The

pixels inside the bounding boxes uses the color of the corresponding pixels from the specified

reference frame as its predicted color. For spatial reference frames, if there are pixels inside the

bounding box that does not have corresponding pixels, the predicted values for these pixels

are unknown.

The bits required to encode the list of boxes are:

• 2 bits to identify the primitive.

• dlog2(s + 1)e bits to specify the reference frame when there are s reference streams. So

if there are 2 reference streams, 2 bits (dlog2(2 + 1)e) are needed.

• 4 bits to specify the total number of boxes for a maximum of 17 per primitive; there has

to be at least 1 box. If more than 17 boxes need to be specified, multiple list of boxes

primitive can be used.

• 2 × (dlog2 Xe + dlog2 Y e) bits per bounding box when the frame size is X×Y . This is

because a bounding box can be specified using the pixel coordinates of the top-left corner

and the bottom-right corner. So for a frame size of 1024×768, 40 bits (2× (dlog2 1024e+

dlog2 768e)) is needed per bounding box.

So for a frame size of 1024×768 which has two spatial reference streams, a list of 3 boxes

would require 128 bits (2 + 2 + 4 + 3× 40).
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List of Pixels List of pixels specifies a reference frame and a list of pixels. The specified

pixels in the list uses the color of the corresponding pixel from the specified reference frame

for its predicted color.

The bits required to encode the list of pixels are:

• 2 bits to identify the primitive.

• dlog2(s + 1)e bits to specify the reference frame when there are s reference streams. So

if there are 2 reference streams, 2 bits (dlog2(2 + 1)e) are needed.

• 4 bits to specify the total number of pixels for a maximum of 17 per primitive; there has

to be at least 1 pixel. If more than 17 pixels need to be specified, multiple list of pixels

primitive can be used.

• dlog2 Xe + dlog2 Y e bits per pixel when the frame size is X×Y . So for a frame size of

1024×768, 20 bits (dlog2 1024e+ dlog2 768e) is needed per pixel.

So for a frame size of 1024×768 which has two spatial reference streams, a list of 5 pixels

would require 108 bits (2 + 2 + 4 + 5× 20).

Encoding

The reference mask is encoded as a list of four primitives: consensus filter, delta depth

threshold, list of boxes, and list of pixels. The list of primitives are processed in order to

assign predicted colors for each pixel. Once a predicted color has been assigned for a pixel,

following primitives in the list do not change the predicted color for the pixel: Following

primitives only assign predicted colors for pixels that is unknown.

An example for a 5×5 frame with two spatial reference streams is demonstrated in Fig-

ure 4.10. Pixel (0, 0) is the upper-left corner of the image, and pixel (4, 4) is the lower-right

corner. The number for each pixel, if specified, is the depth difference between the specified

reference frame and the encoding frame. For each pixel, if the predicted color is from the

temporal reference color it is indicated using solid green, red with horizontal stripes if the first

spatial reference color is selected, and blue with vertical stripes if the second spatial reference

color is selected.
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Figure 4.10: Reference Mask Encoding
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The reference mask for Figure 4.10 is encoded using six primitives. The primitives in order

are:

1. List of pixels using temporal reference frame with 4 pixels (1, 1), (1, 4), (3, 0), and

(4, 4).

2. Delta depth threshold using spatial reference frame 1 with depth threshold of 2.

3. Delta depth threshold using temporal reference frame with depth threshold of 2.

4. List of boxes using spatial reference frame 2 with 2 boxes [ (0, 0), (2, 1) ] and [ (3, 3), (4, 4) ],

where a box is expressed as [ (top-leftx, top-lefty), (bottom-rightx, bottom-righty) ].

5. Delta depth threshold using spatial reference frame 1 with depth threshold of 5.

6. Delta depth threshold using temporal reference frame with depth threshold of 255.

The result of processing the first primitive – list of pixels using temporal reference frame

at (1, 1), (1, 4), (3, 0), and (4, 4) – is shown in Figure 4.10a. The four pixels use the color

from the corresponding pixels in the temporal reference frame as its predicted color, and all

other pixel’s predicted color is unknown.

Processing the second primitive, delta depth threshold using spatial reference frame 1 with

threshold of 2, results in Figure 4.10b. The numbers for each pixel is the depth difference of

the pixel from the corresponding pixel in the spatial reference frame 1. Pixels without the

numbers – (1, 1), (1, 4), (3, 0), and (4, 4) – already have predicted colors selected from

the first primitive, so there is no need to apply the second primitive for these pixels. Of the

unknown pixels, pixels with depth difference of less than 2 – (0, 4), (1, 2), (1, 3), (2, 1), (2, 2),

(2, 3), and (3, 2) – use the color of the corresponding pixel from spatial reference frame 1 as

its predicted color.

Processing the third primitive, delta depth threshold using the temporal reference frame

with threshold of 2, results in Figure 4.10c. As with Figure 4.10b, the numbers for each pixel

are the depth difference of the pixel from the corresponding pixel in the temporal reference

frame. Pixels with depth difference of less than 2 – (3, 1) and (4, 1) – selects the color of the

corresponding pixel in the temporal reference frame as its predicted color.
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Processing the fourth primitive – list of boxes using spatial reference frame 2 with boxes

[ (0, 0), (2, 1) ] and [ (3, 3), (4, 4) ] – results in Figure 4.10d. Every pixel in the two bounding

boxes that does not have a predicted color – pixels (0, 0), (0, 1), (0, 2), (1, 0), (3, 3), (3, 4),

and (4, 3) – uses the color from the corresponding pixel in the spatial reference frame 2 as its

predicted color.

Processing the fifth primitive, delta depth threshold using the spatial reference frame 1

with threshold of 5, results in Figure 4.10e. Pixels with depth difference of less than 5 that

does not have a predicted color – (0, 3), (2, 0), and (4, 2) – use the color of the corresponding

pixel from spatial reference frame 1 as its predicted color.

Processing the final primitive, delta depth threshold using the temporal reference frame

with threshold of 255, results in Figure 4.10f. This primitive will assign a predicted color to all

pixels that does not have one since the maximum possible depth difference is 254; since depth

is represented with 8 bits where the minimum is 1 and maximum is 255. All pixels without

predicted colors – (2, 4) and (4, 0) – use the color of the corresponding pixel in the temporal

reference frame as its predicted color.

The number of primitives used to encode the reference mask will determine the quality of

the encoding. It is even possible to encode the exact reference mask at the cost of encoding

efficiency. Also, since the encoding is dependent on the number of primitives and not the

resolution of the frame, it is independent of increase in frame resolution.

The reference mask is encoded in two steps: initialization and error correction. The ini-

tialization step predicts the color of each pixel by selecting the best primitive possible while

minimizing error. The initialization step is done in the following order:

1. Use the consensus filter.

2. Create a list of boxes where temporal reference color should be used as the predicted

color.

3. For the remaining pixels, delta depth threshold primitives are used. Delta depth thresh-

old primitives which minimizes error is repeatedly selected until all pixels have a predicted

color. Selecting a delta depth threshold of 255 with the temporal reference frame will

guarantee all pixels have a predicted color.
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The next step, error correction, identifies the pixels with largest error introduced in the

initialization step and modify them to reduce error. In this step, pixels with the largest error

are identified and either a list of pixels or a list of boxes is created to correct the error. The

created primitives are inserted into the list of primitives from the initialization step such that

the identified error is corrected.

One way, would be to identify the primitive that introduced the error (error causing prim-

itive) for the given pixel, and insert an error correcting primitive in the list of primitives before

the error causing primitive. This would prevent the error causing primitive from selecting the

poor reference color as the predicted color for the pixel, since the predicted color for the pixel

would have already been selected by the error correcting primitive.

The error correction can be done until all error pixels are corrected – i.e. lossless encoding of

the reference mask. However this will lead to a very ineffective encoding of the reference mask

due to the number of primitives needed. An effective encoding should balance the encoding

size with the accuracy of the encoding.

Figure 4.11 shows the progression of the predicted image for the original frame (Fig-

ure 4.11e), as each primitive is applied. The green pixels are pixels where the predicted colors

are unknown after applying the given primitive. Figure 4.11a shows the predicted image after

the first primitive, consensus filter, is applied. Figure 4.11b shows the predicted image after

the second primitive, list of 16 boxes using temporal reference, is applied. Figure 4.11c shows

the predicted image after all the delta depth threshold primitives, total of 23, are applied.

Since Figure 4.11c is the predicted image after the initialization step, all pixels should have

a predicted color. The last delta depth threshold was the temporal reference frame with the

threshold of 255 which will predict a color for any pixel without one. Figure 4.11d is the

predicted image after error correction. Three primitives, all list of boxes containing one box,

was used in the error correction step. This predicted image would be the final predicted image

that would be used for encoding.

Figure 4.11e is the original frame of the P-Stream that needs to be encoded. Figure 4.11f is

the predicted image which minimizes the residual for every pixel (best predicted image). This

image is identical to Figure 4.7a, and can be represented by the reference mask Figure 4.7b.

The best predicted image (Figure 4.11f) can be encoded in 1536 Kbits using a reference
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Figure 4.11: Predicted Images

mask (Figure 4.7b). The predicted image in Figure 4.11d does not select the best predicted

color – i.e. the predicted color that minimizes the residual – for every pixel, however it only

requires 1024 bits to encode: 2 bits for the consensus filter, 648 bits for list of 16 boxes using

temporal reference (2+2+4+16×40), 230 bits for 23 delta depth thresholds (23×(2+2+6)),

and 144 bits for the 3 list of boxes with a box each, used for error correction (3×(2+2+4+40)).

This is an improvement of the encoding efficiency by a factor of 1536, with a tradeoff being

the higher residuals that needs to be encoded.
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4.2.2 Residual

Once a predicted color for each pixel is selected, the residual – difference between the

predicted color and the actual color – for each pixel is encoded. The residuals can be considered

correcting the errors introduced by the predicted color. Therefore, if the encoding of the

residual is lossless, the decoded image should be exactly the same image as the original image

regardless of the predicted image. However, lossless encoding of residuals is very expensive and

therefore unpractical. For lossy encoding of residuals, the predicted image effects the encoding

efficiency of residuals – better the predicted image, less bits needed to efficiently encode the

residuals.

Color is represented in YCbCr color space, one luminance (Y) and two chrominance (Cb,

Cr) channels, and the residual for each channel is encoded separately. Similar to other color

encoding techniques, the bit allocation for luminance and two chrominance channel is 4 to

1 – for every 4 bits used to encode luminance, each chrominance channel uses 1 bit. Also,

the residual is a 9 bit signed integer since it is the difference of each color channel, which is

represented as an 8 bit unsigned integer.

Using the encoded reference mask, the residuals are calculated and then encoded using

a discrete wavelet transform based codec JPEG2000 [JPEG 2000]. JPEG2000 encoding was

selected because of the following:

• Support for encoding of 9 bit signed images.

• Quality scalability with target bit rate encoding. JPEG2000 can generate the best dis-

tortion rate for a given target encoding length.

• Error resilience. JPEG2000 encoding can be decoded even if it is truncated at arbitrary

point in the encoded stream, which is helpful for bit rate control.

Figure 4.12 shows an example of the residual encoding. Figure 4.12c is the original frame

to be encoded. Figure 4.12a is the predicted image used to encode Figure 4.12c. Figure 4.12a

was created using the algorithm given in Section 4.2.1. Figure 4.12b is the residual for the

luminance (Y) channel – difference between the predicted image (Figure 4.12a) and the original

frame (Figure 4.12c) – that needs to be encoded. Figure 4.12b does not show the sign of

66



(a) Predicted Image (b) Y Residual (2X)

(c) Original Frame (d) Cb Residual (4X)

(e) Decoded Frame (f) Cr Residual (4X)

Figure 4.12: Residual Encoding

the residual but only the magnitude of which is doubled; both residual value of -100 and

100 are shown as intensity value of 200, to better indicate regions where residuals are high.

Areas with high residuals are the artificial arm that is shown between the actual arms of

the ballerina, artificial right foot, and object boundaries. Figure 4.12d and f is the residuals

for the two chrominance channels Cb and Cr. Similar to the luminance residual, only the

magnitude is represented but at quadruple its original value – residual of -50 and 50 are shown

as 200. Figure 4.12e is the decoded frame of Figure 4.12c from the encoding of the predicted
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image (Figure 4.12a) and the residuals (Figure 4.12b, d, and f). It is apparent that the residuals

for Cb and Cr channel (Figure 4.12d and f), even at quadruple the original residual, is smaller

than the residuals for Y (Figure 4.12b).

4.3 Results

The different results for P-Stream color encoding is presented in this section. Analogous to

results presented in this chapter for P-Stream depth encoding (Section 4.1.4), the two data sets,

Ballet and Breakdancers from [Zitnick et al. 2004], are used. Each data set has eight streams

which are 100 frames long captured at 15 fps. The resolution of each frame is 1024×768, and

depth is represented in 8 bits. Depth values were computed using the algorithm described

in [Zitnick et al. 2004]. An example frame of color and depth is shown in Figure 4.1.

To encode P-Stream color, spatial reference streams are required. The spatial reference

streams used for P-Stream encoding were encoded as I-Streams presented in Chapter 3: The

spatial reference streams were encoded using the modified XviD codec presented in Section 3.2

with separate motion vectors for depth and color. All spatial reference frames were encoded

as P-Frames with its previous frame as the temporal reference frame which were encoded as

I-Frames. This was done to eliminate error propagation when a P-Frame is encoded using

another P-Frame as a reference frame.

The previous frame in the encoding stream was selected as the temporal reference frame.

The depth of the encoded P-Stream was encoded at full resolution with the modified XviD

codec used in Section 4.1.4 since Temporal Reference Encoding showed the best results for

encoding P-Stream depth (Figure 4.5). Similar to spatial reference stream encoding, the depth

values of the encoding frame were encoded as a P-Frame with the previous frame used as the

temporal reference frame which were encoded as an I-Frame. Also the quantizer for spatial

reference frame depth, temporal reference frame depth, and the depth of the encoding frame

was set to the same value to keep the encoding conditions consistent.

The stream positions of the two data sets, Ballet and Breakdancers, are shown in Figure 4.3.

The results for the two middle streams, streams 3 and 4, are presented in this section. They

were chosen because different configurations of spatial reference streams can be selected. The
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results for reference mask encoding is first shown in Section 4.3.1, followed by results for

P-Stream color encoding in Section 4.3.2.

4.3.1 Reference Mask

Reference mask encoding results for streams 3 and 4 is presented in this section. For

each stream, three different configurations of spatial reference streams were selected. The first

used the nearest streams on each side as spatial reference streams (Ref 1): From Figure 4.3,

stream 3 used streams 2 and 4, and stream 4 used streams 3 and 5 as spatial reference streams.

The second used the next nearest streams on each side as spatial reference streams (Ref 2):

From Figure 4.3, stream 3 used streams 1 and 5, and stream 4 used streams 2 and 6, as

spatial reference streams. The final configuration used the third nearest streams on each side

as spatial reference streams (Ref 3): From Figure 4.3, stream 3 used streams 0 and 6, and

stream 4 used streams 1 and 7 as spatial reference streams.

First, the reference mask encoding is compared using the PSNR of the predicted image

created from the reference mask. Then the results of reference mask encoding compression

ratio are presented.

PSNR

The quality of the reference mask encoding can be determined by the quality of the pre-

dicted image that is represented by the reference mask. Therefore, the PSNR of the predicted

image is compared with the PSNR of the best predicted image to measure how well it predicts

the original encoding frame.

Figure 4.13 compares the PSNR of the predicted images for stream 3 of the Breakdancers

data set. For all figures, the X-axis shows the color quantizer for the spatial reference frames,

and the Y-axis shows the PSNR of the predicted images. Ref 1 shows the PSNR of the predicted

image using the nearest streams on each side as spatial reference streams (streams 2 and 4),

and Ref 1 Best shows the PSNR of the best predicted image using the nearest streams on

each side as spatial reference streams. Ref 2 shows the PSNR of the predicted image using

the second nearest streams on each side as spatial reference streams (streams 1 and 5), while

Ref 2 Best shows the PSNR of the best predicted image using the second nearest streams on
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Figure 4.13: Breakdancers Stream 3 Pre-
dicted Image PSNR
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Figure 4.14: Breakdancers Stream 4 Pre-
dicted Image PSNR

70



each side as spatial reference streams. Similarly, Ref 3 shows the PSNR of the predicted image

using the third nearest streams on each side as spatial reference streams (streams 0 and 6),

while Ref 3 Best shows the PSNR of the best predicted image using the third nearest streams

on each side as spatial reference streams. Figure 4.13a shows the results for when the depth

quantizer for all frames – spatial reference frames, temporal reference frame, and the encoding

frame – were set to 5. Figure 4.13b is the results for when the depth quantizer for all frames

were set to 15, and Figure 4.13c is the results for when the depth quantizer for all frames were

set to 25.

Figure 4.14 compares the PSNR of the predicted images for stream 4 of the Breakdancers

data set. For all results in figures Figure 4.14, the X-axis shows the color quantizer for the

spatial reference frames, and the Y-axis shows the PSNR of the predicted images. Ref 1

shows the PSNR of the predicted image using the nearest streams on each side as spatial

reference streams (streams 3 and 5), and Ref 1 Best shows the PSNR of the best predicted

image using the nearest streams on each side as spatial reference streams. Ref 2 shows the

PSNR of the predicted image using the second nearest streams on each side as spatial reference

streams (streams 2 and 6), while Ref 2 Best shows the PSNR of the best predicted image using

the second nearest streams on each side as spatial reference streams. Similarly, Ref 3 shows the

PSNR of the predicted image using the third nearest streams on each side as spatial reference

streams (streams 1 and 7), while Ref 3 Best shows the PSNR of the best predicted image

using the third nearest streams on each side as spatial reference streams. Figure 4.14a shows

the results for when the depth quantizer for all frames – spatial reference frames, temporal

reference frame, and the encoding frame – were set to 5. Figure 4.14b is the results for when

the depth quantizer for all frames were set to 15, and Figure 4.14c is the results for when the

depth quantizer for all frames were set to 25.

Results for both stream 3 (Figure 4.13) and stream 4 (Figure 4.14) show that, generally,

as the color quantizer and the depth quantizer increase the quality of the predicted image

decrease. Also, closer the spatial reference streams, higher the PSNR of predicted images.

Similar to Figure 4.13 which compares the PSNR of the predicted images for stream 3

of the Breakdancers data set, Figure 4.15 compares the PSNR of the predicted images for

stream 3 of the Ballet data set. Ref 1 shows the results for the PSNR of the predicted image
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Figure 4.15: Ballet Stream 3 Predicted Im-
age PSNR
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Figure 4.16: Ballet Stream 4 Predicted Im-
age PSNR
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when the nearest spatial reference streams were selected, Ref 1 Best shows the results for the

PSNR of the best predicted image when the nearest spatial reference streams were selected,

Ref 2 shows the results for the PSNR of the predicted image when the second nearest spatial

reference streams were selected, Ref 2 Best shows the results for the PSNR of the best predicted

image when the second nearest spatial reference streams were selected, Ref 3 shows the results

for the PSNR of the predicted image when the third nearest spatial reference streams were

selected, and Ref 3 Best shows the results for the PSNR of the best predicted image when

the third nearest spatial reference streams were selected. Also, the X-axis shows the color

quantizer for the spatial reference frames, and the Y-axis shows the PSNR of the predicted

images. Each figure in Figure 4.15 shows the results for different depth quantizer for all frames

– spatial reference frames, temporal reference frame, and the encoding frame: Figure 4.15a is

the results for when the depth quantizer for all frames were set to 5, Figure 4.15b is the results

for when the depth quantizer for all frames were set to 15, and Figure 4.15c is the results for

when the depth quantizer for all frames were set to 25.

Figure 4.16 compares the PSNR of the predicted images for stream 4 of the Ballet data

set. For all results, the X-axis shows the color quantizer for the spatial reference frames, and

the Y-axis shows the PSNR of the predicted images for all figures. Ref 1 shows the results

for the PSNR of the predicted image when the nearest spatial reference streams were selected,

and Ref 1 Best shows the results for the PSNR of the best predicted image when the nearest

spatial reference streams were selected. Ref 2 shows the results for the PSNR of the predicted

image when the second nearest spatial reference streams were selected, while Ref 2 Best shows

the results for the PSNR of the best predicted image when the second nearest spatial reference

streams were selected. Ref 3 shows the results for the PSNR of the predicted image when

the third nearest spatial reference streams were selected, and Ref 3 Best shows the results for

the PSNR of the best predicted image when the third nearest spatial reference streams were

selected. Figure 4.16a is the results for when the depth quantizer for all frames were set to

5. Figure 4.16b is the results for when the depth quantizer for all frames were set to 15, and

Figure 4.16c is the results for when the depth quantizer for all frames were set to 25.

As with the Breakdancers data set, as the color quantizer and the depth quantizer increase

the quality of the predicted image decrease. Also, closer the spatial reference streams, higher
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the PSNR of the predicted images. However, compared to the Breakdancers data set, for

stream 3, the results of Ref 1 and Ref 2, and the results of Ref 1 Best and Ref 2 Best are very

similar at same depth and color quantizers. Also, for stream 4, the results of Ref 2 and Ref 3,

and the results of Ref 1 Best, Ref 2 Best, and Ref 3 Best are very similar.

Compression Ratio

In this section, the compression ratio of the reference mask is compared. Figure 4.17 shows

the compression ratio of reference mask encoding for stream 3 of the Breakdancers data set. For

all figures, the X-axis shows the color quantizer for the spatial reference frames, and the Y-axis

shows the compression ratio of the reference masks. Ref 1 shows the compression ratio for when

the nearest streams on each side were selected as spatial reference streams (streams 2 and 4).

Ref 2 shows the compression ratio for using the second nearest streams on each side as spatial

reference streams (streams 1 and 5). Similarly, Ref 3 shows the compression ratio for using

the third nearest streams on each side as spatial reference streams (streams 0 and 6). The

different figures in Figure 4.17 shows the different results for when the depth quantizer for all

frames – spatial reference frames, temporal reference frame, and the encoding frame – differ:

Figure 4.17a shows the results for when the depth quantizer were set to 5, Figure 4.17b is the

results for when the depth quantizer were set to 15, and Figure 4.17c is the results for when

the depth quantizer were set to 25.

Figure 4.18 shows the compression ratio of reference mask encoding for stream 4 of the

Breakdancers data set. For all figures,the X-axis shows the color quantizer for the spatial

reference frames, and the Y-axis shows the compression ratio of the reference masks. Ref 1

shows the compression ratio for when the nearest streams on each side were selected as spatial

reference streams (streams 3 and 5). Ref 2 shows the compression ratio for using the second

nearest streams on each side as spatial reference streams (streams 2 and 6). Ref 3 shows

the compression ratio for using the third nearest streams on each side as spatial reference

streams (streams 1 and 7). Figure 4.18a shows the results for when the depth quantizer for all

frames were set to 5, Figure 4.18b is the results for when the depth quantizer for all frames

were set to 15, and Figure 4.18c is the results for when the depth quantizer for all frames were

set to 25.
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Figure 4.17: Breakdancers Stream 3 Ref-
erence Mask Compression Ratio
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Figure 4.18: Breakdancers Stream 4 Ref-
erence Mask Compression Ratio
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From both Figure 4.17 and Figure 4.18, as depth quantizers increase or the spatial reference

streams are located further, the compression ratio decreases. However, the color quantizers

does not seem to influence the compression ratio very much. This indicates that the reference

mask is very similar for different quality of the reference color as long as the depth quality is

similar. Even though the reference mask is similar, the PSNR of the predicted images differ

as the reference color quality changes (Figures 4.13 and 4.14). This is due to the fact that the

quality of the reference color used to construct the predicted images differ.

Figure 4.19 shows the compression ratio of reference mask encoding for stream 3 of the

Ballet data set. For all figures, the X-axis shows the color quantizer for the spatial reference

frames, and the Y-axis shows the compression ratio of the reference masks. Ref 1 shows the

compression ratio for when the nearest streams on each side were selected as spatial reference

streams, Ref 2 shows the compression ratio for using the second nearest streams on each side

as spatial reference streams, and Ref 3 shows the compression ratio for using the third nearest

streams on each side as spatial reference streams. The different figures in Figure 4.19 shows the

different results for when the depth quantizer for all frames vary: Figure 4.19a is the results

for when the depth quantizer were set to 5, Figure 4.19b is the results for when the depth

quantizer were set to 15, and Figure 4.19c is the results for when the depth quantizer were set

to 25.

Figure 4.20 shows the compression ratio of reference mask encoding for stream 4 of the

Ballet data set. For all figures, the X-axis shows the color quantizer for the spatial reference

frames, and the Y-axis shows the compression ratio of the reference masks. Ref 1 shows the

compression ratio for when the nearest streams on each side were selected as spatial reference

streams, Ref 2 shows the compression ratio for using the second nearest streams on each side

as spatial reference streams, and Ref 3 shows the compression ratio for using the third nearest

streams on each side as spatial reference streams. Figure 4.20a is the results for when the

depth quantizer for all frames were set to 5, Figure 4.20b is the results for when the depth

quantizer for all frames were set to 15, and Figure 4.20c is the results for when the depth

quantizer for all frames were set to 25.

The Ballet data results show higher compression ratios than the Breakdancers data. But

similar to the Breakdancers results, the Ballet results demonstrate that the compression ratio
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Figure 4.19: Ballet Stream 3 Reference
Mask Compression Ratio
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Figure 4.20: Ballet Stream 4 Reference
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increases as the depth quantizers decrease or closer spatial reference streams are selected.

4.3.2 Color Encoding

In this section, the P-Stream color encoding of stream 3 and 4 is compared with XviD

encoding. For XviD encoding, to keep it consistent with P-Stream color encoding and to

eliminate error propagation when a P-Frame is encoded using a P-Frame as a reference, all

frames were encoded as P-Frames with the previous frame always encoded as an I-Frame and

used as the temporal reference frame.

For spatial reference streams, three different configuration were selected. The first used the

nearest streams on each side as spatial reference streams (Ref 1): From Figure 4.3, stream 3

used streams 2 and 4, and stream 4 used streams 3 and 5 as spatial reference streams. The

second used the next nearest streams on each side as spatial reference streams (Ref 2): From

Figure 4.3, stream 3 used streams 1 and 5, and stream 4 used streams 2 and 6, as spatial

reference streams. The final configuration used the third nearest streams on each side as spatial

reference streams (Ref 3): From Figure 4.3, stream 3 used streams 0 and 6, and stream 4 used

streams 1 and 7 as spatial reference streams.

Figure 4.21, Figure 4.23, and Figure 4.25 shows the different encoding results for stream 3

of the Breakdancers data set. Figure 4.21 shows the results for when the color quantizer of

the reference color set to 5. Figure 4.23 shows the results for when the color quantizer of the

reference color was set to 15, and Figure 4.25 for when it was set to 25. The encoding results

for the depth quantizers for all frames – spatial reference frames, temporal reference frame,

and the encoding frame – set to 5 (Figure 4.21a, Figure 4.23a, Figure 4.25a), 15 (Figure 4.21b,

Figure 4.23b, Figure 4.25b), and 25 (Figure 4.21c, Figure 4.23c, Figure 4.25c) are given in

each figure. For all figures, the X-axis shows the compression ratio, and the Y-axis shows the

PSNR of the decoded frame. Also, Ref 1 shows the result for when the nearest streams on

each side were selected as spatial reference streams, Ref 2 shows the result for using the second

nearest streams on each side as spatial reference streams, Ref 3 shows the result for using the

third nearest streams on each side as spatial reference streams, and XviD shows the result for

encoding the stream using the XviD codec.

Figure 4.22, Figure 4.24, and Figure 4.26 shows the different encoding results for stream 4
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Figure 4.21: Breakdancers Stream 3 Color
Quantizer 5
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Figure 4.22: Breakdancers Stream 4 Color
Quantizer 5
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Figure 4.23: Breakdancers Stream 3 Color
Quantizer 15
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Figure 4.24: Breakdancers Stream 4 Color
Quantizer 15
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Figure 4.25: Breakdancers Stream 3 Color
Quantizer 25
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Figure 4.26: Breakdancers Stream 4 Color
Quantizer 25
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of the Breakdancers data set. Figure 4.22 shows the results for when the color quantizer of the

reference color was set to 5. Figure 4.24 shows the results for when the color quantizer of the

reference color was set to 15. Figure 4.26 for when the color quantizer of the reference color was

set to 25. The encoding results for the depth quantizers for all frames set to 5 (Figure 4.22a,

Figure 4.24a, Figure 4.26a), 15 (Figure 4.22b, Figure 4.24b, Figure 4.26b), and 25 (Figure 4.22c,

Figure 4.24c, Figure 4.26c) are given in each figure. For all figures, the X-axis shows the

compression ratio, and the Y-axis shows the PSNR of the decoded frame. Also, Ref 1 shows

the result for when the nearest streams on each side were selected as spatial reference streams,

Ref 2 shows the result for using the second nearest streams on each side as spatial reference

streams, Ref 3 shows the result for using the third nearest streams on each side as spatial

reference streams, and XviD shows the result for encoding the stream using the XviD codec.

All XviD results in Figure 4.21, Figure 4.23, and Figure 4.25 are the same since the XviD

encoding is independent of reference color quality, depth quality, or spatial reference streams.

This applies to the XviD results in Figure 4.22, Figure 4.24, and Figure 4.26 as well.

At low compression ratios (below 500), the P-Stream encoding is slighter better than the

XviD encoding when using high quality reference colors (color quantizer 5) for different depth

qualities (Figure 4.21, Figure 4.22). For medium quality reference colors (color quantizer 15),

only the Ref 1 is comparable to XviD; other P-Stream encodings have lower PSNR (Fig-

ure 4.23, Figure 4.24b). At high color quantizer of 25 for reference colors, XviD encoding has

higher PSNR than all P-Stream encodings. However at high compression ratios, the P-Stream

encoding achieves much higher compression ratios for the same PSNR of the XviD encoding.

Figure 4.27, Figure 4.28, Figure 4.29, Figure 4.30, Figure 4.31, and Figure 4.32 shows the

different encoding results for the Ballet data set: Figure 4.27, Figure 4.29, and Figure 4.31

for stream 3, and Figure 4.28, Figure 4.30, and Figure 4.32 for stream 4. Figure 4.27 and

Figure 4.28 shows the results for when the color quantizer of the reference color was set

to 5. Figure 4.29 and Figure 4.30 shows the results for when the color quantizer of the

reference color was set to 15, and Figure 4.31 and Figure 4.32 for when it was set to 25.

Figure 4.27a, Figure 4.28a, Figure 4.29a, Figure 4.30a, Figure 4.31a, and Figure 4.32a show

the encoding results for different depth quantizers for all frames – spatial reference frames,

temporal reference frame, and the encoding frame – set to 5. Figure 4.27b, Figure 4.28b,
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Figure 4.27: Ballet Stream 3 Color Quan-
tizer 5
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Figure 4.28: Ballet Stream 4 Color Quan-
tizer 5
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Figure 4.29: Ballet Stream 3 Color Quan-
tizer 15
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Figure 4.30: Ballet Stream 4 Color Quan-
tizer 15
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Figure 4.31: Ballet Stream 3 Color Quan-
tizer 25
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Figure 4.32: Ballet Stream 4 Color Quan-
tizer 25
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Figure 4.29b, Figure 4.30b, Figure 4.31b, and Figure 4.32b show the encoding results for

different depth quantizers for all frames set to 15. Figure 4.27c, Figure 4.28c, Figure 4.29c,

Figure 4.30c, Figure 4.31c, and Figure 4.32c show the encoding results for different depth

quantizers for all frames set to 25. For all figures, the X-axis shows the compression ratio, and

the Y-axis shows the PSNR of the decoded frame. Also, Ref 1 shows the result for when the

nearest streams on each side were selected as spatial reference streams, Ref 2 shows the result

for using the second nearest streams on each side as spatial reference streams, Ref 3 shows the

result for using the third nearest streams on each side as spatial reference streams, and XviD

shows the result for encoding the stream using the XviD codec. As with the Breakdancers

results, all XviD encoding results in Figure 4.27, Figure 4.29, and Figure 4.31, and all XviD

encoding results in Figure 4.28, Figure 4.30, and Figure 4.32 are the same since the XviD

encoding is independent of reference color quality, depth quality, or spatial reference streams.

In the Ballet data, the P-Stream encoding does not perform well compared to the XviD en-

coding. Even at high quality reference color (color quantizer 5) and high quality depth (depth

quantizer 5), the P-Stream encodings are only comparable, and at high compression ratios

P-Stream encoding is not significantly better than the XviD encoding (Figure 4.27a, Fig-

ure 4.28a). Also, XviD encoding even has higher PSNR at high compression ratio when the

depth quality is low (Figure 4.31, Figure 4.32). This is due to the fact that Breakdancers data

has faster motion than Ballet data, which leads to better temporal prediction in the Ballet

data. This also results in significantly higher XviD encoding compression ratio for the Ballet

data than the Breakdancers data.

4.4 Conclusion

For encoding multiple depth streams, the spatial coherence between streams can be uti-

lized to efficiently encode the streams. In this chapter, algorithms for encoding P-Streams

incorporating the spatial coherence between stream have been introduced and evaluated. In

particular, the following have been presented:

• Three different algorithms – Temporal Reference Encoding, Spatial Reference Encoding,

and Spatial and Temporal Reference Encoding – have been examined and evaluated for
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encoding P-Stream depth. The results show that Temporal Reference Encoding is the

reasonable choice.

• Evaluation of discrete cosine transform (DCT) based codec and discrete wavelet trans-

form (DWT) based codec for encoding residuals. The results showed that the DWT

based codec to be more desirable.

• An algorithm to effectively encode P-Stream color using spatial coherence between streams

as well as the temporal coherence between frames. By utilizing the available depth in-

formation, the algorithm predicts a reference color on a pixel basis without using any

motion compensation. It is also resilient enough to handle approximate depth values due

to noise in the original data and lossy encoding.

• The reference mask was introduced to represent the source of color prediction per pixel,

and four primitives to effectively encode the reference mask were described. The four

primitives are the consensus filter, the delta depth threshold, a list of boxes, and a list

of pixels.

• A comparison of the new P-Stream encoding algorithm with an MPEG based codec,

which showed that the new algorithm performs well for scenes with fast motion. It also

showed that the new algorithm can achieve higher compression ratios than the traditional

codecs based on motion compensation.
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Chapter 5

Reference Stream Selection

To encode multiple depth streams using spatial coherence between streams, reference

streams must be selected. A reference stream serves as the basis stream for spatial predic-

tion when encoding inter-streams. In Chapter 4, it was shown that the selection of reference

streams affects encoding efficiency of inter-streams. However, most current research on multiple

stream compression focuses on encoding individual streams – i.e. intra-stream and inter-stream

encoding – only once a set of reference streams has been selected, rather than the problem of

selecting reference streams from a set of streams in the first place. Often a user is required

to pre-select reasonable streams as reference streams. This may be plausible when only a few

streams exist, but as the number of streams increase the task becomes more challenging and an

automatic approach is called for. The reference stream selection algorithm that I present in this

chapter is an extension of an algorithm I originally presented in [Kum and Mayer-Patel 2005].

I am unaware of any other related research on the problem of reference stream selection.

In this chapter, algorithms for selecting reference streams are examined. First, in Sec-

tion 5.1, the issues encountered when encoding reference streams are discussed. Then in

Section 5.2, two different algorithms for reference stream selection are presented. The two

algorithms presented in Section 5.2 are evaluated in Section 5.3, and conclusions are presented

in Section 5.4.



5.1 Reference Stream Encoding

As presented in previous chapters, for multiple depth stream encoding using spatial coher-

ence, a stream can be encoded as one of two different types. One type is the intra-stream (I-

Stream). An I-Stream is encoded without referring to any other streams, so it can be decoded

independently. The other type is the inter-stream (P-Stream) that uses spatial coherence in-

formation from other streams (reference streams) to improve encoding efficiency. Therefore,

P-Streams cannot be decoded without initially decoding associated reference streams. This is

very similar to encoding frames as I-Frames and P-Frames using motion compensation. Since

all reference frames are from the past and have already been decoded, P-Frames can use I-

Frames or P-Frames as reference frames without incurring any decoding latency. However,

for stream encoding, since the spatial reference frames from reference streams for decoding

P-Streams are from the same instance in time, there is a latency penalty associated with de-

coding P-Streams. This penalty arises because the current frame of the reference stream –

i.e. spatial reference frame – must be decoded before the current frame of the P-Stream can

be decoded. Furthermore, if the reference stream itself had been encoded as a P-Stream, the

latency is further increased as two spatial reference frames need to be decoded – the reference

stream and the reference stream of the reference stream. As the chain of dependent reference

streams encoded as P-Streams grows, the decoding latency increases. Therefore, for multiple

depth stream encoding algorithm presented in this thesis, reference streams are always encoded

as I-Streams, and non-reference streams as P-Streams. This limits the latency penalty to a

maximum of decoding one frame.

Another restriction for encoding multiple streams using multiple reference streams is net-

work bandwidth. The data acquisition system for systems that employ multiple streams gener-

ally use multiple cameras connected to multiple computers. Therefore, reference streams must

be distributed over the local network to any computing hosts responsible for encoding the

P-Streams. Multicast can be employed to make this distribution efficient. However, though

the local network bandwidth is large, it is not infinite. This imposes a limit on the number of

streams that can be designated as reference streams.

When encoding multiple depth streams, spatial coherence between streams is exploited by
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projecting pixels from the current stream into the reference stream. Using depth values, each

pixel of a P-Stream can be projected into the reference stream to find the corresponding pixel.

The color of the corresponding pixel is then used as the reference color for the encoding pixel

and only the residual – difference between the reference color and the color of the encoding

pixel – need to be encoded.

One of the following three situations will arise when projecting pixels:

• The projection produces a similar reference color – the optimal situation since the residual

will be very small.

• The pixel will project outside the reference stream (referred to as a peripheral pixel).

Peripheral pixels occur because the current stream and the reference stream do not

acquire the environment from the same viewpoint. This results in sections of the current

stream that are not visible in the reference stream. Therefore a peripheral pixel does not

have a spatial reference color to use as a basis for prediction.

• The projection could generate an inaccurate reference color. This results in large resid-

uals which reduces the efficiency of the encoding.

Inaccurate spatial reference colors can occur when the depth value used to project a pixel

is inaccurate, resulting in an incorrect corresponding pixel and reference color. An inaccurate

depth value usually occurs around object borders where multiple objects are visible in a pixel.

Thus, the depth value for the border pixel is an average of the depth values of the objects.

An inaccurate reference color can also occur due to different sampling rates of the reference

stream and the current stream. As the reference stream and the current stream are not acquired

from the same view, objects do not occupy the same area in the frame for both views. A good

example is a poster acquired from the front in the current stream (i.e., the target stream to

be encoded as an an I-Stream) and from an acute angle in the reference stream at the same

distance. In this example, a pixel of the poster in the reference stream represents a larger area

than a pixel of the poster in the current stream. So for a pixel in the reference stream that

corresponds to high frequency content areas on the poster, the high frequency content will be

filtered. When a pixel in this area is projected into the reference stream, the reference color
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will not be correct.

A third cause of inaccurate reference color can be due to occlusion. A surface may be

occluded from view in the reference stream but not in the current stream. If a pixel from

this surface in the current stream (referred to as an occluded pixel) is projected into the

reference stream, the corresponding pixel color will be from a different surface. While it is

difficult to detect the previous two causes of inaccurate reference colors, detecting occluded

pixels is possible using depth. If the projected pixel depth does not match the depth of the

corresponding pixel in the reference stream, the pixel can be identified as an occluded pixel.

Like peripheral pixels, occluded pixels will not have any spatial reference color to use as a

basis for prediction.

When multiple reference streams are used for encoding, a pixel may have multiple reference

colors. In such instances, depth can be used to select one reference color by using the reference

color from the reference pixel with the smallest difference in depth to the projected target pixel.

Furthermore, a pixel may have no spatial reference colors – pixels that are either peripheral

pixels or occluded pixels in all reference streams. These pixels can use temporal prediction for

its reference color – the color from the previous frame at the same pixel location.

5.2 Reference Stream Selection

There are two main approaches to selecting reference streams. One approach is to select

reference streams which represent the most volume of the scene (RefStrc). The other is to

select reference streams such that the volume overlap between the reference streams and the

non-reference streams is the maximum (RefStro).

Selecting reference streams to maximize volume coverage (RefStrc) emphasizes reducing

peripheral pixels. Therefore, for a linear configuration of the streams, the streams at both ends

are first selected as reference streams. Then for selecting n reference streams, the space between

the initial reference streams is divided equally into n − 1 sections. Streams that are closest

to the section borders are then selected as reference streams. Figure 5.1a shows an example

of selecting three reference streams from a total of thirteen streams that maximizes volume

coverage. For more complex stream configurations, selecting reference streams to maximize
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(b) Maximum Overlap Between Reference Streams and Non-Reference Streams (RefStro)

Figure 5.1: Example of Reference Stream Selection (Reference Streams Circled)

volume coverage is not trivial.

Selecting reference streams to maximize overlap between reference streams and non-reference

streams (RefStro) emphasizes on reducing occluded pixels. However, compared to RefStrc,

the number of peripheral pixels increases due to decrease in total volume coverage. Except

for some trivial stream configurations, it is difficult to select reference streams to maximize

volume overlap between reference streams and non-reference streams. Therefore, the problem

is simplified to selecting reference streams that maximize the overlap between non-reference

streams and its closest reference stream. This simplification is made under the observation

that the effect of the closest spatial reference stream is significantly larger than the subsequent

spatial reference streams.

The volume overlap between two streams is expensive to calculate, therefore, the angle

between the view directions of two streams is used to approximate volume overlap. Empirically,

the view directions of two streams are a good estimate for how much the two stream volumes

overlap – smaller the angle, bigger the overlap. Figure 5.1b shows an example of selecting three

reference streams from a total of thirteen streams that maximizes volume overlap of reference

streams with non-reference streams.

The group based approach presented in [Kum et al. 2003] for finding reference streams in
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groups can be used for selecting reference streams to maximize volume overlap. However, some

modifications are required due to characteristic differences. In [Kum et al. 2003], the reference

streams change dynamically each frame. Furthermore, the reference streams are used to remove

redundant points – i.e. reference streams are needed for only encoding a stream but not for

decoding. Therefore, reference streams can be encoded as P-Streams without introducing

any decoding latencies; only one reference stream is encoded as an I-Stream while all other

streams, reference and non-reference streams are encoded as P-Streams. Consequently, the

volume overlap between reference streams affects encoding efficiency. However, for encoding

multiple depth streams, all reference streams are encoded as I-Streams to reduce decoding

latency. Therefore, only the overlap between reference streams and non-reference streams

affects encoding efficiency.

In the following sections, an algorithm for reference stream selection to maximize volume

overlap between reference streams and non-reference streams (RefStro) is presented. In Sec-

tion 5.2.1, the effective criteria for partitioning n streams into k groups and for selecting the

reference stream in each group is introduced. These metrics are utilized to partition streams

and to select reference streams in Section 5.2.2. In Section 5.2.3, the metrics are used to de-

velop an efficient approximate algorithm for stream partitioning and reference stream selection

when n is too large for an exhaustive approach.

5.2.1 Metrics

As previously mentioned, exact calculation of the volume overlap between two streams

is expensive. Therefore, the angle between the view directions of two streams is used to

approximate stream volume overlap. Using the angle between stream views, the streams are

divided into groups and the stream that best represents each group is selected as the reference

stream. Hence the metrics used to divide streams into groups and selecting the reference

streams are based on the angle between stream views. The three metrics used for reference

stream selection are local squared angle sum, group squared angle sum, and total squared angle

sum.

The local squared angle sum (LSAS) is defined for stream Si as the sum of the squared

angle between stream Si and all other streams in its group. If stream Si and Sj is in group k,
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and nk is the number of streams in group k, LSAS for stream Si (LSASi) can be calculated

using Equation 5.1. This criterion is used for selecting the reference stream of a group. The

stream with the lowest LSAS in the group is chosen as the reference stream of the group.

LSASi =
nk∑
j=1

[angle(Si, Sj)]2 (5.1)

The group squared angle sum (GSAS), defined for a given group, is the sum of the squared

angle between the group’s reference stream and every other stream in the group. If Rj is

the reference stream in group j, Sji is a non-reference stream in group j, and nj is the

number of non-reference streams in group j, GSAS for group j (GSASj) can be formulated as

Equation 5.2. This criterion is used to evaluate partitions of n streams into k groups. Note

that GSASj is same as the LSAS of stream Rj .

GSASj =
nj∑
i=1

[angle(Rj , Sji)]2 (5.2)

The sum of all GSAS for a particular stream partition is defined as the total squared angle

sum (TSAS). TSAS is calculated using Equation 5.3, where k is the number of groups. The

partition with the minimum TSAS is selected as the optimal solution.

TSAS =
k∑

i=1

GSASi (5.3)

5.2.2 Exhaustive Selection

One way to select k reference streams from n streams is to do an exhaustive search – i.e.

examine all possible combinations, a total of nCk.

The steps for the exhaustive reference stream selection algorithm are the following:

1. Select k streams from n streams as reference streams. Assign each selected reference

stream as the reference stream of a group.

2. Assign all other streams to a group. The streams are assigned to the group where the

absolute angle of the stream and the group’s reference stream is the smallest.

3. Calculate TSAS for this selection.
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4. Repeat steps 1 - 3 for all possible combinations of stream selection (nCk).

5. Choose the stream selection with the smallest TSAS as the reference streams.

Unless n is small, this method is not practical.

5.2.3 Approximate Selection

The k-means framework ([Jain et al. 1999]), originally developed as a clustering algorithm,

can be used to select reference streams for an approximate solution. The k-means framework

is used to partition n data points into k disjoint subsets such that a criterion is optimized.

The k-means framework is a robust and fast iterative method that finds the locally optimal

solutions for the given criteria. The k-means algorithm involves the following three steps:

1. Initialization: Initial centers for the k partitions are chosen.

2. Assignment: All data points are placed in the partition with the center that best satisfies

the given criteria. Usually the criteria are given as a relationship between a data point

and the center.

3. Centering: For each partition the cluster centers are reassigned to optimize the criteria.

The assignment and centering steps are repeated until the cluster centers do not change or

an error threshold is reached.

Iterative Solution for Approximate Selection

The steps for the iterative solution for approximate reference stream selection are as follows:

1. Generate initial reference streams.

2. Designate the initial reference streams as the reference stream of each group.

3. Assign all other streams to a group. The streams are assigned to the group where the

absolute angle of the stream and the reference stream is the smallest.

4. Compute a new reference stream for each group. The stream with the smallest LSAS in

the group is designated as the new reference stream of the group.
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5. Repeat steps 3 - 4 until the reference streams converge and do not change between

iterations.

Reference Stream Initialization

The performance of this approximate approach heavily depends on the initial starting con-

ditions – initial reference streams and stream order ([Peña et al. 1999]). Therefore in practice,

to obtain a near optimal solution, multiple trials are attempted with several different instances

of initial reference streams. The TSAS of the resulting solution is calculated and the solution

with the smallest TSAS is selected.

The full search space for the iterative method could be investigated when all possible

starting conditions – total of nCk – are explored. A starting condition is given as a set of k

initial reference streams. As seen in Table 5.1, such an exhaustive method will find all possible

ending conditions. For example, if n = 10 and k = 5, there would be a total of 10C5 = 252

possible starting conditions, which for the example of Table 5.1a leads to one of 46 distinct

ending conditions. An ending condition is one in which the reference streams do not change

from one iteration to the next.

However, for numbers of n and k where this becomes impractical, only a small sample

of all possible starting conditions can be examined. The chances of finding the same optimal

solution as the exhaustive method will increase by intelligently selecting the starting conditions

to examine.

Theoretically, the best way to initialize the starting reference streams is to have the initial

reference streams be as close to the optimal answer as possible. This means that in general

the initial reference streams should be dispersed throughout the data space – i.e. the angles

between the initial reference streams should be as large as possible. In this section, a method

for finding initial reference streams that are well dispersed in the data space is presented. Once

good starting conditions have been identified, it is straightforward to apply the approximate

reference stream selection algorithm and examine TSAS of all corresponding ending conditions

to find a near-optimal solution.

The basic approach to identifying good starting conditions is the following:
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1. Sort the given streams (Stream Sorting).

2. Group the streams in all possible reasonable ways (Initial Group Partitions).

3. Find all possible reasonable candidate reference streams (Reference Stream Candidates).

4. Generate all possible combinations of the candidate reference streams for each possible

grouping as a starting condition with all duplicates removed (Set of Initial Reference

Streams).

Stream Sorting Although the streams cannot be strictly ordered due to the three-dimensional

nature of the viewpoint locations, an approximate sorting using the global squared angle sum

should be sufficient. Global squared angle sum (GlSAS) for stream Si is the sum of the squared

angle between steam Si and all other given streams. Equation 5.4 shows how to calculated

GlSAS for stream Si (GlSASi), where Si and Sj are streams, and n is the total number of

streams.

GlSASi =
n∑

j=1

[angle(Si, Sj)]2 (5.4)

Given n streams, the pivot stream is chosen as the stream with the lowest GlSAS. Next

all other streams are divided into three groups – streams with a negative angle with the pivot

stream, streams with a positive angle with the pivot stream, and streams with zero angle with

the pivot stream.

Any stream that has zero angle with the pivot stream, either covers the pivot stream

or is covered by the pivot stream. All such streams can be represented by one stream, the

dominant stream. A dominant stream is a stream that overlaps all other streams. Objects

present in the non-dominant streams should be present in the dominant stream. Therefore, for

stream partitioning, the dominant stream can be used to represent the non-dominant streams.

The non-dominant streams are removed from the stream list and added back as non-reference

streams after the reference streams has been selected. Figure 5.2 illustrates the notion of

a dominant stream. Streams S1, S2, and S3 all have zero angle with each other. Stream

S1 overlaps stream S2 and S3 since any object present in S2 and S3 is also present in S1.
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S1 S2 S3

Figure 5.2: Dominant Stream S1

Therefore, S1 is the dominant stream. The arrow indicates the stream view direction.

The positive angle and negative angle groups are each sorted using the GlSAS. The negative

angle streams are sorted in descending order and the positive angle streams are sorted in

ascending order. Placing the sorted negative angle streams on the left and the sorted positive

angle streams on the right of the pivot stream creates the final sorted list.

Initial Group Partitions After the n streams are sorted, they are partitioned into k ini-

tial groups. To ensure that all possible good starting conditions are included, all reasonable

groupings are considered.

The k initial groups are created by the following reasonableness criteria:

1. If stream Si is in group Gk, then all streams right of stream Si in the sorted stream list

are in group Gk.

2. If stream Si is in group Gj , stream Si+1 is either in group Gj or Gj+1 where 1 ≤ i < n,

1 ≤ j < k, and stream Si is left of stream Si+1 in the sorted stream list.

3. If n is not an exact multiple of k, every group is assigned either bnk c or dnk e streams and

every stream is assigned to a group. If n is an exact multiple of k one group is assigned

n
k − 1 streams, another is assigned n

k + 1 streams, and every other group is assigned n
k

streams.

Streams are grouped into every possible combination that meets the above reasonableness

criteria. Examples are shown in Figure 5.3. Each number represents a stream and the stream

numbers indicated the sorted order. Also, the streams in the same column belong to the same

group, while each row is a particular stream grouping partition for the given number of streams

and groups. Figure 5.3a shows different methods of creating three groups (n = 3) from ten

sorted streams (k = 10). Since there are ten streams to be partitioned into three groups, a
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Group 1 Group 2 Group 3

1, 2, 3 4, 5, 6 7, 8, 9, 10

1, 2, 3 4, 5, 6, 7 8, 9, 10

1, 2, 3, 4 5, 6, 7 8, 9, 10

(a) All possible initial group parti-
tions for 10 streams into 3 groups
(k = 10, n = 3)

Group 1 Group 2 Group 3

1, 2, 3 4, 5, 6 7, 8, 9

(b) Only one grouping is possible for
9 streams and 3 groups for normal
conditions (k = 9, n = 3)

Group 1 Group 2 Group 3

1, 2 3, 4, 6 6, 7, 8, 9

1, 2 3, 4, 5, 6 7, 8, 9

1, 2, 3 4, 5 6, 7, 8, 9

1, 2, 3 4, 5, 6, 7 8, 9

1, 2, 3, 4 5, 6, 7 8, 9

1, 2, 3, 4 5, 6, 7, 8, 9

(c) All possible initial group parti-
tions for 9 streams into 3 groups
(k = 9, n = 3)

Figure 5.3: Initial Group Partitions

group must have either three streams (b10
3 c) or four streams (d10

3 e) – criteria 3. Therefore,

one group must have four streams and two groups must have three streams. Additionally,

each group must also maintain the sorted order (criteria 1 and 2), so only three initial group

partitions are possible.

The special case when n is an exact multiple of k is treated differently because the nor-

mal conditions will only allow one possible partition – all groups with n
k number of streams.

Figure 5.3b shows the only possible groupings of nine sorted streams (k = 9) into three

groups (n = 3) without the special case exception. Initial starting conditions are critical for a

good solution to the approximate stream partition, so generating multiple starting conditions

is desirable. To generate multiple partitions for the special case, one group is assigned n
k − 1

streams, another is assigned n
k + 1 streams, and every other group is assigned n

k streams. For

the example of grouping nine streams into three groups, one group has two streams (9
3 − 1),

another group has four streams (9
3 + 1), and all other groups have three streams (9

3). For such

a partition, while maintaining sorted order, six different combinations of stream partitioning

is possible (Figure 5.3c).
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Group 1 Group 2 Group 3

1, 2, 3 4, 5, 6 7, 8, 9, 10

Figure 5.4: Reference Stream Candidates Underlined for 10 Streams Partitioned into
3 Groups

Reference Stream Candidates Again to ensure all possible good starting conditions are

included, multiple reference stream candidates are chosen for each group. If the group has

even number of streams, the two streams in the middle are selected as candidates. If it has

odd number of streams, the middle stream and its two neighboring streams are chosen as

candidates. Figure 5.4 shows one of the group partitions from Figure 5.3a with the candidate

reference streams underlined. Streams 1, 2, and 3 are candidate references streams for Group 1;

Stream 4, 5, and 6 are candidate references streams for Group 2; and Stream 8 and 9 are

candidate references streams for Group 3.

Set of Initial Reference Streams Finally, a set of k reference streams are selected, one

from each group, to construct a starting condition – the initial reference streams. All possible

combinations for the candidate reference streams are generated as good starting conditions.

Figure 5.5 is a list of all possible starting conditions – i.e. initial reference streams – that can

be generated from reference stream candidates in Figure 5.4. Note that there can be duplicate

starting conditions created, for which all but one are removed. The distinct starting conditions

generated will be the good starting conditions (initial reference streams) explored.

If the number of starting conditions is still too large, the desired number of initial sets

can be stochastically sampled from all identified good starting conditions. To provide starting

conditions with duplicates a better chance of being chosen, the duplicates are not removed

when stochastically sampling to generate initial reference streams.

{1, 4, 8}, {1, 4, 9}, {1, 5, 8}, {1, 5, 9}, {1, 6, 8}, {1, 6, 9},

{2, 4, 8}, {2, 4, 9}, {2, 5, 8}, {2, 5, 9}, {2, 6, 8}, {2, 6, 9},

{3, 4, 8}, {3, 4, 9}, {3, 5, 8}, {3, 5, 9}, {3, 6, 8}, {3, 6, 9}

Figure 5.5: Set of Initial Reference Stream Candidates from Figure 5.4
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(a) Breakdancers Color (b) Breakdancers Depth

(c) Ballet Color (d) Ballet Depth

Figure 5.6: Frame from Breakdancers and Ballet

5.3 Results

In this section, the reference stream selection stream algorithm is evaluated. First, in Sec-

tion 5.3.1, the effectiveness of approximate reference stream selection algorithm is compared

to the exhaustive method. Then the two different reference stream selection methods – max-

imizing volume overlap between reference streams and non-reference streams (RefStro), and

maximizing volume coverage of reference streams (RefStrc) – are compared using the Ballet

and Breakdancers, the two data sets from [Zitnick et al. 2004]. Both data sets have eight

depth streams which are 100 frames long at 1024×768 resolution and was captured at 15 fps.

Each frame has 24 bit color (RGB) and 8 bit depth information for each pixel. The depth was

computed using the technique described in [Zitnick et al. 2004]. Example frames from both

data sets are shown in Figure 5.6.
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5.3.1 Reference Stream Selection

Since the Ballet and Breakdancers data set had only one stream configuration for each

data set with only 8 streams, different stream setups were randomly generated to compare

the approximate reference stream selection algorithm with the exhaustive method. For each

generated stream setup, all streams were placed randomly with the only constraint that the

largest possible angle between two stream views was 120 degrees.

Table 5.1 shows the result of running the reference stream selection algorithm on several

different examples. In row Total number of streams & reference streams, n is the total number

of streams and k is the number of reference streams. Row Number of possible initial reference

stream sets shows the total number of possible initial reference stream sets for the given example

– nCk. Row Number of created initial reference stream sets is the total number of possible

initial reference stream sets created using the algorithm given in Section 5.2.3. Row Total

number of resulting reference stream sets is the total number of possible reference stream sets

resulting from running the approximate reference stream selection algorithm (Section 5.2.3) on

the created initial reference stream sets. Row Optimal reference streams shows the reference

streams selected from all possible results generated by an exhaustive search – reference streams

with the smallest total squared angle sum (TSAS). Row TSAS of the optimal reference streams

is the TSAS of the reference streams in row Optimal reference streams. Row Resulting reference

streams shows the reference streams selected by the approximate reference streams selection

algorithm from the created initial reference stream sets – i.e. from all of the resulting reference

stream sets from the exhaustive method, the reference stream set with the smallest TSAS.

Row TSAS of resulting reference streams is the TSAS value of the reference streams in row

Resulting reference streams. Row Number of reference stream sets with less TSAS is the number

of reference stream sets from row Total number of resulting reference stream sets that has less

TSAS than the reference streams in row Resulting reference streams.

Table 5.1a (n = 10, k = 5) indicate that for a relatively small n and k an exhaustive

search is plausible. Table 5.1c (n = 25, k = 5) is an example of where n is an exact multiple

of k. Table 5.1d (n = 60, k = 5) confirms doing an exhaustive search is not practical for

large number of streams – total of 5461512 (60C5) possible reference streams selection must
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Reference Streams TSAS Initial Reference Stream Sets

Breakdancers
2, 6 145.840 28

0, 7 332.880 N/A

1, 5 187.655 11

Ballet 2, 5 181.250 17

0, 7 416.502 N/A

Table 5.2: Reference Stream Selection for Breakdancers and Ballet

be examined. However, using the approximate reference streams selection algorithm, only 352

initial number of reference streams were examined – i.e. approximately 0.006% of all possible

reference streams. The selected reference streams ({22, 34, 36, 47, 54}) were in the top 0.4% of

all possible reference stream sets. Table 5.1 demonstrates the approximate reference streams

selection algorithm works well for different number of streams. For all examples, the reference

streams selected with the approximate reference streams selection algorithm is either the same

or very close to the optimal solution. All reference streams selected with the approximate

method were in the top 0.4% of the all possible reference stream sets. This was achieved with

exploring less than 1% of the total possible initial reference stream sets when the number of

streams was larger than 22.

For Breakdancers and Ballet, two reference streams were selected because there were to-

tal of eight streams. Furthermore, since there were only eight streams, all 28 (8C2) possi-

ble combinations were tried as initial reference streams. Table 5.2 shows the results from

reference streams selected for maximizing volume overlap between reference streams and non-

reference streams (RefStro), and reference streams for maximizing volume coverage (RefStrc)

– streams 0 and 7. The column Reference Streams shows the two selected reference streams.

The column TSAS shows the TSAS value for the corresponding reference streams. The column

Initial Reference Stream Sets shows the number initial reference stream sets that resulted in

the specified reference streams from the reference streams selection algorithm.

For Breakdancers data, all 28 possible starting reference stream sets resulted in one possible

reference stream selection – streams 2 and 6. For Ballet data, two possible reference stream

selections were generated from 28 initial reference stream sets selection and the one with

the smaller TSAS was selected – streams 2 and 5. This also had more initial starting points.
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Figure 5.7: Streams of Breakdancers and Ballet with Reference Streams Circled

Figure 5.7 shows the stream configuration for both data with the two reference streams selected

for maximizing volume overlap between reference streams and non-reference streams (RefStro)

circled.

5.3.2 Predicted Image

The two different reference stream selection methods – maximizing volume overlap between

reference streams and non-reference streams (RefStro), and maximizing volume coverage of

reference streams (RefStrc) – are evaluated using two different metrics. One is the quality of

the predicted image generated from the reference frames. The other is the compression ratio

of the residuals. In this section, results for the predicted images are presented.

The predicted image is generated by projecting each pixel of the current frame into the

spatial reference frames to find the corresponding value. When corresponding values exist in

multiple reference streams, the closest one (smallest depth difference) is selected. However,

there are pixels that do not have any correspondences – i.e. occluded and peripheral pixels.

The colors for these occluded and peripheral pixels are temporally predicted – color of the

pixel at the same location in the previous frame.

Figure 5.8 shows the predicted image for a Ballet frame from stream 3 at depth and color

quantizer of 5. The reference streams selected were stream 2 and 5, and the spatial reference

105



(a) Reference Frame from Stream 2 (b) Reference Frame from Stream 5

(c) Predicted Image from Stream 2 (d) Predicted Image from Stream 5

(e) Spatially Predicted Image (f) Temporal Reference Frame

(g) Original Frame (h) Predicted Image

Figure 5.8: Ballet Predicted Image for Stream 3 at Color and Depth Quantizer 5
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(a) Spatial Prediction (b) After Temporal Prediction

Figure 5.9: Example of Inaccurate Temporal Prediction

frames from these reference streams are Figures 5.8a and b. Figure 5.8c is the projected

spatial reference frame of Figure 5.8a. The occluded and peripheral pixels are shown in green.

Similarly, Figure 5.8d is the projected spatial reference frame for Figure 5.8b. Figure 5.8e is

the combined spatial reference image of Figures 5.8c and d. For pixels that have reference

colors in both frames, the closer one was chosen. Figure 5.8f is the previous frame from stream

3. Figure 5.8g is the current frame to be encoded. Figure 5.8h is final predicted image where

occluded and peripheral pixels in Figure 5.8e used temporal prediction (Figure 5.8f) for its

color.

The predicted image (Figure 5.8h) is a good approximate of the current frame (Figure 5.8g).

An exception is the wall behind the ballerina’s head. There seems to be a third arm between

her two arms where the wall is in the original frame. This is an example of inaccurate temporal

prediction. Figure 5.9a is a closeup of Figure 5.8e. The occluded and peripheral pixels, in green,

near the head are mostly due to occlusion – the portion of the wall is occluded in stream 2 by

her left arm, and in stream 5 by her right arm. Since no spatial predicted values are available,

temporal prediction was used for the occluded pixels. Figure 5.9b is a closeup of Figure 5.8h

which shows the occluded pixels with temporal prediction. Part of the occluded area of the

wall is also not visible in the previous frame (Figure 5.9f) – the left arm is occluding the wall

in the previous frame – resulting in inaccurate predicted values.

When using predicted images to evaluate the effectiveness of reference streams, careful

consideration must be given. First, the object of the predicted image is to evaluate the reference

streams for spatial prediction. Therefore, spatially predicted values should be selected when
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possible, even if a better temporal reference value exists. Additionally, using temporal reference

values for pixels that do not have spatial reference values may distort results. Consider a

frame with significant number of peripheral pixels, but excellent temporal predictions for

these peripheral pixels. If every pixel was considered in evaluating this predicted image, the

image would be identified as excellent since most of the pixels have excellent reference values.

However, since a significant number of the pixels were peripheral pixels that would indicate that

the reference streams were not optimal. Conversely, if only the pixels with spatial references

were considered, the predicted image with many occluded and peripheral pixels would not be

penalized. Therefore, results for predicted images with occluded and peripheral pixels (labeled

as All Pixels) and without occluded and peripheral pixels (labeled as Spatial Reference Pixels)

are both examined.

All frames in this experiment were encoded as P-Frames with the previous frame encoded

as an I-Frame. Furthermore, all frames of the reference streams and depth were encoded as

I-Frames. This eliminates error propagation when a P-Frame is encoded using a P-Frame

as reference. Additionally, the quantizer for all blocks in a frame was kept constant for the

same components. This insures that the encoding is affected similarly across blocks within the

same frame. Finally, the color quantizer for all streams were kept same, as well as the depth

quantizer for all streams.

Occluded and Peripheral Pixels

The number of occluded and peripheral pixels in the predicted image should indicate how

good the selected reference streams are for spatial prediction. The fewer occluded and periph-

eral pixels in the predicted image, the better the selected reference streams.

Figure 5.10 shows the portion of pixels in the predicted image that are either peripheral

pixels or occluded pixels averaged over 99 frames for six non-reference streams. The X-axis

represents the depth quantizer, while the Y-axis represent the percentage of occluded and

peripheral pixels in the predicted image. The four plots in the figure are for Breakdancers

with RefStro (reference streams 2 and 5), Breakdancers with RefStrc (reference streams 0

and 7), Ballet with RefStro (reference streams 2 and 6), and Ballet with RefStrc (reference

streams 0 and 7).
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Figure 5.10: Occluded and Peripheral Pixels

It is apparent that the quality of depth affects the number of occluded and peripheral

pixels – as the depth quality decreases the number of occluded and peripheral pixels increase.

This is because depth quality affects the accuracy of depth, which influences projection of the

pixel. Additionally, RefStrc results in more occluded and peripheral pixels than RefStro

which suggests RefStro yields better reference streams.

Accumulative Residual Histogram

The accumulative residual histogram, which shows the number of pixels with residual equal

to or less than a given value, is used to compare the effectiveness of the predicted images.

The residual is defined as the difference between the current image and the predicted image.

Predicted images that contain more pixels with smaller residuals are considered more effective

since they generally require less bits to encode.

Figure 5.11 shows the average accumulative residual histogram of Breakdancers for All

Pixels – predicted images with occluded and peripheral pixels. Figure 5.11a shows the accu-

mulative residual histogram for color quantizer 5. The X-axis represents the residual between

the predicted image and the current frame. The Y-axis shows the percentage of pixels that

have residuals equal or smaller than the corresponding value. The figure has six different plots:

RefStro (streams 2 and 6) with depth quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31); and

RefStrc (streams 0 and 7) with depth quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31). Similarly,

Figure 5.11b is the accumulative residual histogram for color quantizer 15 and Figure 5.11c

is the accumulative residual histogram for color quantizer 31. Figure 5.11d shows accumula-
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tive residual histogram for depth quantizer 5 – the plots are for RefStro (streams 2 and 6)

with color quantizer 5 (cq 05), 15 (cq 15), and 31 (cq 31); and RefStrc (streams 0 and 7)

with color quantizer 5 (cq 05), 15 (cq 15), and 31 (cq 31). Similarly, Figure 5.11e is the

accumulative residual histogram for depth quantizer 15 and Figure 5.11f is the accumulative

residual histogram for depth quantizer 31. Depth quantizer seems to have little effect on the

residuals (Figures 5.11a-c), while color quantizer does affect the residuals (Figures 5.11e-f).

Furthermore, RefStro is always significantly better than RefStrc.

Figure 5.12 shows the average accumulative residual histogram of Breakdancers for Spatial

Reference Pixels – predicted images without occluded and peripheral pixels. Figures 5.12a-c

shows the accumulative residual histogram for color quantizer 5, 15, and 31. Each figure has

six different plots: RefStro (streams 2 and 6) with depth quantizer 5 (dq 05), 15 (dq 15), and

31 (dq 31); and RefStrc (streams 0 and 7) with depth quantizer 5 (dq 05), 15 (dq 15), and

31 (dq 31). Figure 5.12d-f shows accumulative residual histogram for depth quantizer 5, 15, and

31 with six plots each : RefStro (streams 2 and 6) with color quantizer 5 (cq 05), 15 (cq 15),

and 31 (cq 31); and RefStrc (streams 0 and 7) with color quantizer 5 (cq 05), 15 (cq 15),

and 31 (cq 31). Compared to Figure 5.11, the total number of pixels does not reach 100% due

to occluded and peripheral pixels. Furthermore, as depth quantizers increase, the number of

occluded and peripheral pixels increase (Figures 5.12a-c). This is because as depth accuracy

decreases, pixel projection error increases. As with All Pixels, comparing Spatial Reference

Pixels for Breakdancers, RefStro has more pixels with smaller residuals than RefStrc.

Figure 5.13 shows the average accumulative residual histogram of Ballet for All Pixels.

Figures 5.13a-c shows the accumulative residual histogram for color quantizer 5, 15, and 31.

Each figure has six different plots: RefStro (streams 2 and 5) with depth quantizer 5 (dq 05),

15 (dq 15), and 31 (dq 31); and RefStrc (streams 0 and 7) with depth quantizer 5 (dq 05),

15 (dq 15), and 31 (dq 31). Figure 5.13d-f shows accumulative residual histogram for depth

quantizer 5, 15, and 31 with six plots each : RefStro (streams 2 and 5) with color quantizer

5 (cq 05), 15 (cq 15), and 31 (cq 31); and RefStrc (streams 0 and 7) with color quantizer

5 (cq 05), 15 (cq 15), and 31 (cq 31). Compared to Breakdancers (Figure 5.11), the difference

between RefStro and RefStrc is significantly less but RefStro still has more pixels with

smaller residuals.
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Figure 5.11: Breakdancers Accumulative Residual Histogram for All Pixels

111



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12

P
ix

el
s 

(%
)

Residual

RefStro dq 05
RefStro dq 15
RefStro dq 31
RefStrc dq 05
RefStrc dq 15
RefStrc dq 31

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12

P
ix

el
s 

(%
)

Residual

RefStro cq 05
RefStro cq 15
RefStro cq 31
RefStrc cq 05
RefStrc cq 15
RefStrc cq 31

(a) Color Quantizer 5 (d) Depth Quantizer 5

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12

P
ix

el
s 

(%
)

Residual

RefStro dq 05
RefStro dq 15
RefStro dq 31
RefStrc dq 05
RefStrc dq 15
RefStrc dq 31

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12

P
ix

el
s 

(%
)

Residual

RefStro cq 05
RefStro cq 15
RefStro cq 31
RefStrc cq 05
RefStrc cq 15
RefStrc cq 31

(b) Color Quantizer 15 (e) Depth Quantizer 15

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12

P
ix

el
s 

(%
)

Residual

RefStro dq 05
RefStro dq 15
RefStro dq 31
RefStrc dq 05
RefStrc dq 15
RefStrc dq 31

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12

P
ix

el
s 

(%
)

Residual

RefStro cq 05
RefStro cq 15
RefStro cq 31
RefStrc cq 05
RefStrc cq 15
RefStrc cq 31

(c) Color Quantizer 31 (f) Depth Quantizer 31

Figure 5.12: Breakdancers Accumulative Residual Histogram for Spatial Reference Pixels
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Figure 5.13: Ballet Accumulative Residual Histogram for All Pixels
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Figure 5.14: Ballet Accumulative Residual Histogram for Spatial Reference Pixels
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Figure 5.14 shows the average accumulative residual histogram of Ballet for Spatial Ref-

erence Pixels. Figures 5.14a-c shows the accumulative residual histogram for color quantizer

5, 15, and 31. Each figure has six different plots: RefStro (streams 2 and 5) with depth

quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31); and RefStrc (streams 0 and 7) with depth

quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31). Figure 5.14d-f shows accumulative residual

histogram for depth quantizer 5, 15, and 31 with six plots each : RefStro (streams 2 and 5)

with color quantizer 5 (cq 05), 15 (cq 15), and 31 (cq 31); and RefStrc (streams 0 and 7)

with color quantizer 5 (cq 05), 15 (cq 15), and 31 (cq 31). As with all previous instances,

RefStro performs better than RefStrc. However, compared to Breakdancers (Figure 5.12),

the difference between RefStro and RefStrc is larger for Spatial Reference Pixels, but for All

Pixels, the difference between RefStro and RefStrc is smaller. This is the result of Ballet

having better temporally predicted values for occluded and peripheral pixels since it has slower

motion than Breakdancers.

Residual Average and Standard Deviation

Figure 5.15 shows the average and standard deviation of the residuals for Breakdancers.

The color quantizer is shown in the X-axis, and the residuals on the Y-axis. Each figure has six

plots – RefStro (streams 2 and 6) with depth quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31);

and RefStrc (streams 0 and 7) with depth quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31).

Figure 5.15a is the average for All Pixels, and Figure 5.15b the average for Spatial Reference

Pixels. Figure 5.15c is the standard deviation for All Pixels, and Figure 5.15d is the standard

deviation for Spatial Reference Pixels. Similarly, Figure 5.16 shows the average and standard

deviation of the residuals for Ballet with six plots each: RefStro (streams 2 and 5) with depth

quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31); and RefStrc (streams 0 and 7) with depth

quantizer 5 (dq 05),

Since temporal prediction for occluded and peripheral pixels is not always effective (Fig-

ure 5.9), for both data, the predicted images without occluded and peripheral pixels (Spatial

Reference Pixels) have smaller residual average and standard deviation than the predicted

images with occluded and peripheral pixels (All Pixels).

As with accumulative residual histograms, the predicted image from RefStro has a smaller
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Figure 5.15: Residual Average and Standard Deviation for Breakdancers

residual average and standard deviation than the predicted image from RefStrc. This holds

true for predicted images with and without occluded and peripheral pixels.

PSNR

The image quality of the predicted image is assessed using PSNR with the original frame

as the base image. Figure 5.17a shows the PSNR for Breakdancers predicted image with

occluded and peripheral pixels (All Pixels). The X-axis represents the color quantizer and

the Y-axis represents PSNR. A plot is shown for RefStro (streams 2 and 6) with depth

quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31); and RefStrc (streams 0 and 7) with depth

quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31). Figure 5.17b shows the same plots for

PSNR of the Breakdancers predicted image without occluded and peripheral pixels (Spatial

Reference Pixels). Figure 5.17c shows the PSNR for Ballet predicted image with occluded
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Figure 5.16: Residual Average and Standard Deviation for Ballet

and peripheral pixels (All Pixels). A plot is shown for RefStro (streams 2 and 5) with depth

quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31); and RefStrc (streams 0 and 7) with depth

quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31). Figure 5.17d shows the same plots for PSNR of

the Ballet predicted image without occluded and peripheral pixels (Spatial Reference Pixels).

Comparable to residual average and standard deviation results, evaluating the predicted

image without occluded and peripheral pixels result in a better PSNR than the predicted image

with occluded and peripheral pixels, demonstrating that temporal prediction for occluded and

peripheral pixels is not always effective (Figure 5.9). Furthermore, the predicted images from

RefStro have a better PSNR than predicted images from RefStrc for both with and without

occluded and peripheral pixels.

Comparing different metrics for predicted images – number of occluded and peripheral

pixels, residual accumulative histogram, residual average and standard deviation, and PSNR
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Figure 5.17: Predicted Image PSNR

– shows that RefStro performs better than RefStrc. This is true for both Breakdancers and

Ballet data, as well as for predicted images with and without occluded and peripheral pixels.

5.3.3 Residual Compression Ratio

In this section, the compression ratio of the resulting residuals is compared. The predicted

image used for computing the residuals is generated from the two spatial reference frames

and the temporal reference frame (Figure 5.8). The residuals are encoded using XviD. XviD

is an open source ISO MPEG-4 [MPEG 2004] compliant video codec. XviD was selected

mostly because of source code availability, which can be modified without any restrictions.

The residuals are encoded with XviD as if the residuals had been computed using motion

compensation. The resulting bitstream only contains the encoding for the residuals and no

encoding for motion vectors.
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Figure 5.18: Residual Compression Ratio

Figure 5.18 shows the average compression ratio for encoding residuals of the six non-

reference streams. Figure 5.18a shows the compression ratio for the Breakdancers, with the

X-axis representing the color quantizers and the Y-axis representing compression ratio. Six

plots are shown in the figure – RefStro (streams 2 and 6) with depth quantizer 5 (dq 05),

15 (dq 15), and 31 (dq 31); and RefStrc (streams 0 and 7) with depth quantizer 5 (dq 05),

15 (dq 15), and 31 (dq 31). Figure 5.18b is a closeup version of Figure 5.18a. Figure 5.18c shows

the compression ratio for the Ballet. Six plots are shown in the figure – RefStro (streams 2

and 5) with depth quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31); and RefStrc (streams 0

and 7) with depth quantizer 5 (dq 05), 15 (dq 15), and 31 (dq 31). Figure 5.18d is a closeup

of Figure 5.18c.

Figure 5.18 demonstrates RefStro has a higher compression ratio than RefStrc. Further-

more, it demonstrates that the depth accuracy affects compression ratio – the more accurate

the depth, the higher the compression ratio. This is to be expected, as the pixel depth be-
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comes more accurate, the projection error of the pixel to the spatial reference frames becomes

smaller.

5.4 Conclusion

The spatial coherence between streams greatly aids in effective encoding of multiple streams.

In order to leverage this spatial coherence between streams, reference streams must be selected.

Previously, reasonable streams were pre-selected by the user to be used as reference streams.

However, as the number of streams increase, the task becomes non-trivial. In this chapter,

an algorithm for reference streams selection was introduced and evaluated. Particularly, the

following have been presented:

• Classification of the two approaches used for reference stream selection. Specifically, 1)

select reference streams to maximize volume coverage, and 2) select reference streams to

maximize volume overlap between reference streams and non-reference streams.

• Analysis of bad spatial prediction when using depth. Depth can be used to determine

the accuracy of the spatial prediction and to identify occluded pixels. However, this is

affected by the accuracy of depth values.

• Algorithm for selecting k reference streams from n streams that can handle stream con-

figurations of large n.

• Methodology for evaluating reference streams using the predicted image and residual

compression ratio.

• Evaluation of the two reference stream selection approaches using the proposed methodol-

ogy. The experiments show that selecting reference streams to maximize volume overlap

between reference streams and non-reference streams is superior to selecting reference

streams to maximize volume coverage.
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Chapter 6

Multiple Depth Stream Encoding

Multiple depth streams exhibit strong spatial coherence between streams since they cap-

ture the same environment from different angles. Also, just like video, multiple depth streams

have strong temporal coherence between frames within each stream. In this chapter, encoding

multiple depth streams using these spatial and temporal coherence are examined. To encode

multiple depth streams, first, reference streams are selected using the algorithm from Chap-

ter 5. Reference streams are streams that serve as the basis streams for spatial prediction

when encoding non-reference streams. Then the selected reference streams are encoded as

intra-streams (I-Streams) with the algorithm presented in Chapter 3. Finally, non-reference

streams are encoded as inter-streams (P-Streams) using the algorithm from Chapter 4.

The data sets used for multiple depth stream encoding in this chapter are the Ballet and

Breakdancers data set from [Zitnick et al. 2004]. Both data sets have 8 depth streams which

are 100 frames long at 1024×768 resolution. The streams were captured at 15 frames/sec (fps),

and each frame has 24 bit color (RGB) and 8 bit depth information for each pixel. The depth

was computed using the technique described in [Zitnick et al. 2004]. Example frames from

both data sets are shown in Figure 6.1.

In Section 6.1, reference stream selection for multiple depth stream encoding is examined.

Reference stream encoding is presented in Section 6.2, and non-reference stream encoding in

Section 6.3. In the last Section 6.4, the results of multiple depth stream are presented.



(a) Breakdancers Color (b) Breakdancers Depth

(c) Ballet Color (d) Ballet Depth

Figure 6.1: Frame from Breakdancers and Ballet

6.1 Reference Stream Selection

When encoding multiple depth streams, to leverage the spatial coherence between streams,

the first step is to select the reference streams. The selected reference streams serve as the basis

streams for spatial prediction. Once the reference streams have been selected and encoded,

non-reference streams can be encoded efficiently by spatially predicting from the reference

streams.

In Chapter 5, two approaches for selecting reference streams were presented. One was to

select streams to maximize volume coverage of the scene. The other was to select streams

to maximize volume overlap between the reference streams and the non-reference streams.

Selecting reference streams to maximize volume coverage emphasizes reducing peripheral pix-

els – non-reference stream pixels that project outside the reference stream. While selecting

reference streams to maximize overlap between reference streams and non-reference streams

emphasizes on reducing occluded pixels – non-reference stream pixels that is occluded in the

reference stream and is not visible. The results from Chapter 5 indicates that selecting refer-
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ence streams to maximize volume overlap between reference streams and non-reference streams

is superior to selecting reference streams to maximize volume coverage.

The steps for selecting reference streams to maximize volume overlap are:

1. Generate sets of initial reference streams.

(a) Sort the given streams.

(b) Group the streams in all possible reasonable ways.

(c) Find all possible reasonable candidate reference streams.

(d) Generate all possible combinations of the candidate reference streams as sets of

initial reference streams.

2. For each set of initial reference streams:

(a) Designate the initial reference streams as the reference stream of each group.

(b) Assign all other streams to a group. The streams are assigned to the group where

the absolute angle of the stream and the reference stream is the smallest.

(c) Compute a new reference stream for each group. The stream with the smallest local

squared angle sum (LSAS) in the group is designated as the new reference stream

of the group. An LSAS of a stream is the sum of the squared angle between the

stream and all other streams in its group.

(d) Repeat steps 2b - 2c until the reference streams converge and do not change between

iterations. The resulting reference streams are designated as one of the candidates.

3. The final reference streams are selected by comparing the total squared angle sum (TSAS)

of all candidates, and choosing the reference streams with the smallest TSAS. The TSAS

is sum of the squared angle between the non-reference stream and it’s reference stream

for all non-reference streams.

A more detailed description for generating a set of initial reference streams can be found

in Section 5.2.3. It discusses about stream sorting, initial group partitions, selecting reference
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Reference Streams TSAS Initial Reference Stream Sets

Breakdancers 2, 6 145.840 28

Ballet
1, 5 187.655 11

2, 5 181.250 17

Table 6.1: Reference Stream Selection for Breakdancers and Ballet

stream candidates, and generating a set of initial reference streams. Equations for calculating

LSAS and TSAS, and a more detailed explanation for the metrics are presented in Section 5.2.1.

The results of reference stream selection for Breakdancers and Ballet data are shown in

Table 6.1. The column Reference Streams shows the two selected reference streams. The

column TSAS shows the TSAS value for the corresponding reference streams. The column

Initial Reference Stream Sets shows the number initial reference stream sets that resulted in

the specified reference streams from the reference streams selection algorithm. Two reference

streams were selected because there were total of eight streams, and all 28 (8C2) possible

combinations were used as set of initial reference streams.

For Breakdancers data, all 28 possible initial reference stream sets resulted in one reference

stream selection – streams 2 and 6. Figure 6.2a shows the placement of the streams for

Breakdancers data with the selected reference streams shown in red and circled. For Ballet

data, two possible reference stream selections were generated from 28 initial reference stream

sets and the one with the smaller TSAS was selected – streams 2 and 5. This also had more

initial starting points. Figure 6.2b shows the stream placement for the Ballet data with the

reference streams in red and circled.

6.2 Reference Stream Encoding

Once the reference streams are selected, they need to be encoded. Since reference streams

are referenced by non-reference streams for spatial prediction, reference streams need to be

encoded such that it can be decoded independently of any other streams. Therefore refer-

ence streams are encoded as intra-streams (I-Streams). An intra-stream is encoded using the

temporal coherence between frames within the same stream, but not the spatial coherence

between streams. This enables intra-streams to be encoded and decoded individually from
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Figure 6.2: Streams of Breakdancers and Ballet with Reference Streams Circled

other streams.

Existing video encoding techniques utilize temporal coherence between frames by using

motion compensation. Motion compensation incorporates temporal coherence between frames

by predicting values from reference frames. Motion vectors are used to specify the predicted

values from a reference frame. The difference between the actual value and the predicted value

– residual – is encoded along with the motion vector. Superior motion vector result in smaller

residuals, which increases encoding efficiency.

Motion compensation can be extended to encode a depth stream since it is very similar

to traditional video – both streams have three channels of color to encode. The difference

is that a depth stream has an extra channel – depth. In Chapter 3, three different schemes

for extending the motion compensation for single stream video to encode intra-streams were

investigated. They were:

• Use the motion vector based on color for encoding both depth and color,

• Use the motion vector based on depth for encoding both depth and color,

• Use separate motion vectors for encoding depth and color.

Results from Chapter 3 indicate that using separate motion vectors for encoding depth

and color is generally superior to using a single motion vector. Figure 6.3 shows the results of
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Figure 6.3: Reference Stream Encoding for Breakdancers and Ballet

encoding reference streams as I-Streams for Breakdancers and Ballet data – Streams 2 and 6

for Breakdancers, and Streams 2 and 5 for Ballet. The reference streams were encoded using

separate motion vectors for color and depth. The reference streams were encoded using a

modified version of a well known video codec XviD [XviD]. XviD is an open source ISO

MPEG-4 [MPEG 2004] compliant video codec. The modified XviD codec is able to encode

frames with four components – RGB and depth – using two motion vectors, one for RGB

and one for depth. Only the first frame was encoded as an I-Frame. All other frames were

encoded as P-Frames. For each figure, the X-axis represents the compression ratio, and the

Y-axis shows the PSNR of the decoded image against the original image. Figure 6.3a shows the

results for encoding of Breakdancers reference stream depth, Figure 6.3b for Ballet reference

stream depth, Figure 6.3c for Breakdancers reference stream color, and Figure 6.3d for Ballet

reference stream color. The Ballet data can be encoded at higher compression ratio than the

Breakdancers to achieve the same quality. This is due to the fact that Breakdancers have
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Figure 6.4: Non-Reference Stream Depth Encoding for Breakdancers and Ballet

faster motion in the scene, and less temporal coherence between frames.

6.3 Non-Reference Stream Encoding

After encoding reference streams, the next step in encoding multiple depth streams is

to encode the non-reference streams. As discussed in Chapter 4, non-reference streams are

encoded as inter-streams (P-Streams). The fact that multiple depth streams capture the same

environment from different angles and exhibit spatial coherence between streams is utilized

in encoding inter-streams: The non-reference streams (inter-streams) predict reference values

from reference streams, and encode the difference – residual.

When encoding a non-reference stream, the depth values associated with each pixel is used

to project it to the frame of the reference stream. If the color of the corresponding pixels in the

reference stream is similar to the color of the pixel in the non-reference stream, the residual

and the depth is used to encode the pixel color of the non-reference stream. Therefore, for

non-reference streams, depth is first encoded independently of color.

From Section 4.1, for inter-stream depth encoding, the results indicated that only using

temporal coherence information was preferable than using only spatial coherence information,

or using both temporal and spatial coherence information. Figure 6.4 shows the results for

depth encoding of non-reference streams only using temporal coherence for Breakdancers and

Ballet data. The Breakdancers non-reference streams – Streams 0, 1, 3, 4, 5, and 7 – is

shown in Figure 6.4a, and the Ballet non-reference streams – Streams 0, 1, 3, 4, 6, and 7 –
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in Figure 6.4b. The X-axis represents the compression ratio, and the Y-axis shows the PSNR

of the decoded depth against the original depth. Depth was encoded using a modified XviD

codec, identical to the one used in Section 4.1. The modified XviD codec is able to encode

frames with only one component instead of three. Similar to reference streams in the previous

section, only the first frame was encoded as an I-Frame, and all other frames were encoded as

P-Frames.

Once non-reference stream depth has been encoded, color of non-reference stream is en-

coded by predicting a color for each pixel and encoding the residual between the predicted

color and the actual color. The predicted color is derived by utilizing the following information:

• Depth values from the current frame to encode,

• Depth values from the temporal reference frame,

• Depth values from the spatial reference frames,

• Color values from the temporal reference frame,

• Color values from the spatial reference frames.

These information is used to create a reference mask for each frame of the non-reference

stream. A reference mask indicates which reference frame, either spatial or temporal, should

be used to predict the color value for the given pixel. A reference mask is encoded as a list of

the following four primitives:

• Consensus filter,

• Delta depth threshold,

• List of boxes,

• List of pixels.

For a detailed explanation of the primitives, refer to Section 4.2.1. The list of primitives

are processed in order to assign predicted colors for each pixel. Once a predicted color has
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been assigned for a pixel, following primitives in the list do not change the predicted color for

the pixel: Following primitives only assign predicted colors for pixels that is unknown.

The list of primitives for the reference mask is generated by the following algorithm.

1. Initialization.

(a) Use the consensus filter.

(b) Create a list of boxes where temporal reference color should be used as the predicted

color.

(c) For the remaining pixels, delta depth threshold primitives are used. Delta depth

threshold primitives which minimizes error is repeatedly selected until all pixels

have a predicted color. Selecting a delta depth threshold of 255 with the temporal

reference frame will guarantee all pixels have a predicted color.

2. Error Correction.

(a) Identifies pixels with largest error introduced in the initialization.

(b) Create primitives – list of pixels or list of boxes – to correct the pixels with the

largest error. Then insert these primitives in the list before the primitive that

caused the error.

After encoding the reference mask, the residual – difference between the predicted value

generated from the encoded reference mask and the actual value – is encoded. The color

residuals are represented in YCbCr color space, one luminance and two chrominance channels,

and the residual for each channel is encoded separately. The bit allocation for luminance and

two chrominance channel is 4 to 1 since the human eye is more sensitive to luminance than

chrominance. The residuals are encoded using JPEG2000 [JPEG 2000], a discrete wavelet

transform based codec.

Figure 6.5, Figure 6.7, and Figure 6.9 show the results for color encoding of the Break-

dancers non-reference streams – Streams 0, 1, 3, 4, 5, and 7. Figure 6.5 compares the Break-

dancers non-reference stream color encoding with reference stream color quantizer set to 5

and depth quantizer for reference streams and non-reference streams set to various values –
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Figure 6.5: Breakdancers Reference
Stream Color Quantizer 5
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Figure 6.6: Ballet Reference Stream Color
Quantizer 5
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Figure 6.7: Breakdancers Reference
Stream Color Quantizer 15
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Figure 6.8: Ballet Reference Stream Color
Quantizer 15
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Figure 6.9: Breakdancers Reference
Stream Color Quantizer 25
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Figure 6.10: Ballet Reference Stream
Color Quantizer 25
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Figure 6.5a at 5, Figure 6.5b at 15, and Figure 6.5c at 25. Similarly, Figure 6.7 compares the

Breakdancers non-reference stream color encoding with reference stream color quantizer set to

15 and depth quantizer for reference streams and non-reference streams set to different values

– Figure 6.7a at 5, Figure 6.7b at 15, and Figure 6.7c at 25, – and Figure 6.9 compares the

Breakdancers non-reference stream color encoding with reference stream color quantizer set to

25 and depth quantizer for reference streams and non-reference streams set to various values

– Figure 6.9a at 5, Figure 6.9b at 15, and Figure 6.9c at 25.

The results for color encoding of the Ballet non-reference streams – Streams 0, 1, 3, 4, 6,

and 7 – are shown in Figure 6.6, Figure 6.8, and Figure 6.10. Figure 6.6 compares the Ballet

non-reference stream color encoding with reference stream color quantizer set to 5 and depth

quantizer for reference streams and non-reference streams set to various values – Figure 6.6a

at 5, Figure 6.6b at 15, and Figure 6.6c at 25. Figure 6.8 compares the Ballet non-reference

stream color encoding with reference stream color quantizer set to 15 and depth quantizer

for reference streams and non-reference streams set to different values – Figure 6.8a at 5,

Figure 6.8b at 15, and Figure 6.8c at 25, – and Figure 6.10 compares the Ballet non-reference

stream color encoding with reference stream color quantizer set to 25 and depth quantizer

for reference streams and non-reference streams set to various values – Figure 6.10a at 5,

Figure 6.10b at 15, and Figure 6.10c at 25.

For all figures in Figure 6.5, Figure 6.6, Figure 6.7, Figure 6.8, Figure 6.9, and Figure 6.10,

the X-axis represents the compression ratio, and the Y-axis shows the PSNR of the decoded

color frames against the original color

For Breakdancers, stream 0 results were inferior to other non-reference streams since it was

the furthest from the reference streams. Streams 1 and 3 were closest to reference stream 2,

streams 5 and 7 were closest to reference stream 6, and stream 4 was between reference

streams 2 and 6. For Ballet, streams 3 and 4 had superior results than other non-reference

streams since it was the closest to the reference streams – streams 2 and 5. Streams 1 and 6

generally resulted in higher quality encoding for same compression ratio since both were closer

to the reference streams than streams 0 and 7, but as the depth and color quality of the

reference streams decreased the difference also decreased.
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Figure 6.11: Non-Reference Stream Color Encoding

6.4 Results

In this section, the results of encoding multiple depth stream are presented. First, the

results of encoding multiple depth stream using temporal and spatial encoding is compared to

encoding multiple depth stream using only temporal coherence. Then the results of encoding

multiple depth stream at different compression ratios are given.

Since reference streams and non-reference stream depth are encoded only using temporal

coherence, only the non-reference stream color encoding is compared between using temporal

coherence, and using spatial and temporal coherence. For using temporal coherence, the XviD

codec was used to encode the non-reference stream color. Figure 6.11 compares the results for

encoding non-reference stream color using XviD and using inter-stream encoding algorithm.

Inter-Streams were encoded at various compression ratios with different qualities of reference

streams: reference stream color quantizer 2 and depth quantizer 2 for reference streams and

non-reference streams (cq 2 dq 2), color quantizer 5 and depth quantizer 5 (cq 5 dq 5), color

quantizer 15 and depth quantizer 15 (cq 15 dq 15), and color quantizer 25 and depth quantizer

25 (cq 25 dq 25).

For both Breakdancers and Ballet data, non-reference streams (Figure 6.11) were en-

coded as P-Streams using two reference streams – streams 2 and 6 for Breakdancers, and

streams 2 and 5 for Ballet. The reference streams were encoded as I-Streams using the same

modified XviD codec presented in Section 6.2, and only the first frame was encoded as an I-

Frame while all other frames were encoded as P-Frames. Depth for the non-reference streams
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were encoded with the modified XviD used in Section 6.3. As with I-Stream encoding, only

the first frame was encoded as an I-Frame and all other frames were encoded as P-Frames.

For each figure, the X-axis represents the compression ratio, and the Y-axis shows the PSNR

of the decoded image against the original image.

For Breakdancers (Figure 6.11a), only when the reference streams and depth are encoded

with high quantizers (cq 15 dq 15 and cq 25 dq 25) and P-Stream is encoded at low compression

ratio, does XviD encoding have a higher PSNR than P-Stream encoding. This case would be

highly unlikely to occur, since it means that the P-Streams would be encoded at a higher

quality than the reference streams. So for Breakdancers, P-Stream encoding is superior to

XviD. However for Ballet, using XviD encoding significantly outperforms P-Stream encoding.

This is the effect of Breakdancers having more and faster motion changes in the scene than

Ballet. In fact, when encoding Ballet with XviD, more than 90% of the blocks were encoded

using motion compensation while for Breakdancers, less than 80% were encoded using motion

compensation [Kum and Mayer-Patel 2006]. So for Ballet, there was not much more to be

gained from spatial prediction.

Table 6.2 shows the results of multiple depth stream encoding for Breakdancers and Ballet

at different compression ratios. Reference Stream column shows the average frame length in

bytes/fr (Fr. Length), compression ratio (Comp. Ratio), the PSNR for color (Color PSNR),

and PSNR for depth (Depth PSNR). Non-Reference Stream Depth column shows the average

frame length in bytes/fr (Fr. Length), compression ratio (Comp. Ratio), and PSNR. The

Non-Reference Stream Color column shows the average frame length in bytes/fr (Fr. Length),

the average reference mask length in bits/fr (Mask), compression ratio (Comp. Ratio), and

PSNR. The last column Total Comp. Ratio shows the compression ratio for encoding for all

eight depth streams.
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Chapter 7

Conclusions

In this dissertation, I have examined and presented work on encoding multiple depth

streams using spatial coherence between streams and temporal coherence between frames

within a stream. A depth stream is a stream of frames which has color and depth information

per pixel that is used for representing dynamic environments. I conclude the dissertation by

presenting a summary of the research and a discussion of future works in this chapter.

7.1 Summary

When using multiple depth streams to represent dynamic environments, uncompressed mul-

tiple depth streams require significant storage space and transmission bandwidth – 8 depth

streams with 1024×768 resolution and 32 bits per pixel (1 byte each for RGB and depth) at

15 frames per second requires a bandwidth of 2.8 Gb/sec. Therefore, multiple depth streams

need to be compressed to reduce the required disk storage and network bandwidth for stream-

ing. Since multiple depth streams capture a dynamic environment from different angles, they

exhibit spatial and temporal coherence that can be utilized for effective encoding.

The first step in utilizing spatial coherence between streams for encoding multiple depth

streams is to select reference streams. Reference streams are basis streams used for spatial

prediction by non-reference streams.

In Chapter 5, I have classified two approaches for selecting reference streams: One is to

maximize reference stream volume coverage of the environment, and the other is to maximize

volume overlap between reference streams and non-reference streams. I have also introduced



methodology using the predicted image (image of predicted reference values used for encoding)

and residual compression ratio for evaluating the selected reference streams. Using these

methodologies, I have evaluated the two different approaches for selecting reference streams

which show that selecting reference streams to maximize volume overlap between reference

streams and non-reference streams is superior to maximizing volume coverage of reference

streams. In addition, I have presented an algorithm for selecting k reference streams from

n streams to maximize volume overlap between reference streams and non-reference streams.

Since the exact solution is very expensive when n is large, the presented algorithm generates

an approximate solution efficiently, even for large n.

Once reference streams are selected, the next step in encoding multiple depth streams is

to encode the reference streams. Since reference streams serve as the basis for non-reference

streams, the reference streams are encode independently: They are encoded as intra-streams (I-

Streams). I-Streams are encoded using only the temporal coherence between frames within the

stream so they can be encoded and decoded independent of other streams. Additionally, depth

streams are very similar to traditional videos in that both contain streams of color frames.

Therefore, I-Streams can be encoded by extending traditional video encoding techniques to

also encode additional depth information.

In Chapter 3, I have investigated methods for extending traditional video encoding tech-

niques to encode I-Streams. Specifically, I have examined three different methods to extend

motion compensation used for video encoding to encode I-Streams. One is to only use the

motion vector based on color to encode color and depth. Another is to only use the motion

vector based on depth to encode color and depth. The last is to use separate motion vectors

to encode color and depth. I have also introduced a methodology to evaluate the three dif-

ferent methods – the accumulative residual histogram. Residual is the difference between the

predicted value from motion compensation and the actual value, and an accumulative residual

histogram shows the percent of pixels in the image that have equal or less than the given

residual. From the evaluation of the three different approaches, encoding I-Streams using sep-

arate motion vectors for color and depth generally yielded superior results than the other two

methods. Even though extra bits were needed to encode an extra motion vector, using sepa-

rate motion vectors generated more suitable reference values which reduced the bits needed to
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encode the residual.

The final step in encoding multiple depth streams is to encode the non-reference streams.

Since non-reference streams can utilize reference streams for spatial prediction, they are en-

coded as inter-streams (P-Streams). P-Streams are encoded using the spatial reference frames

from the reference streams as well as the temporal reference frame within the stream. Since

depth streams have depth values per pixel, the depth is used to predict a reference value on an

individual pixel basis instead of using motion compensation which predicts on a block basis.

Using depth, a pixel can be projected into the spatial reference frame to find the corresponding

pixel which can be used to predict a reference value. Therefore, P-Stream depth values should

be encoded independent of color as they are essential for color prediction.

In Chapter 4, I have investigated methods for encoding P-Stream depth values independent

of color. The investigation showed that, for encoding P-Stream depth, only using temporal

coherence between frames was preferable to only using spatial coherence between streams or

using both spatial and temporal coherence. I have also introduced the reference mask (mask

that indicates, per pixel, which reference frame to use for prediction) to effectively encode

P-Stream color using spatial and temporal prediction. Utilizing the color and depth values

from spatial reference frames and temporal reference frame, as well as the depth value for the

encoding frame, the reference mask can be encoded effectively using four primitives that I have

proposed – consensus filter, delta depth threshold, list of boxes, and list of pixels. Finally, I have

evaluated the P-Stream color encoding against traditional video encoding. It showed that for

environment with relatively fast motion, P-Stream encoding is preferable. But for environment

with relatively slow motion, encoding the streams using traditional video encoding performed

much better than P-Stream encoding. The overhead of spatial prediction was significant

compared to the benefits.

7.2 Future Work

This dissertation presents the initial step in encoding multiple depth streams for real-

time encoding and streaming of dynamic environments. In this section, I present additional

improvements that can be made to the encoding algorithm along with potential areas for future
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work.

7.2.1 Encoding Improvements

In this section, I discuss potential methods for improving multiple depth stream encoding.

Global Background

Incorporating additional reference frames to the proposed multiple depth stream encoding

is trivial. The additional cost of encoding would be the increase in reference mask bits to

specify the reference frame. One additional reference frame that would be interesting to add

would be the global background.

If the cameras acquiring the scene is stationary, just like Breakdancers and Ballet data from

[Zitnick et al. 2004], adding a global background to use as a reference frame should improve

the encoding efficiency. Also generating a global background should not be too difficult since

most systems can initially acquire a background scene before starting to acquire the actual

dynamic environment. It would be interesting to compare the encoding overhead of the global

background frame against the gains in using a global background frame for encoding.

Depth

When encoding depth, either for I-Streams or P-Streams, the color quantizer matrix used

for color was also used for depth. Ordinarily, the color quantizer matrix is based on human

perception [MPEG 2004]. However, depth values do not have the same perceptual character-

istics as color. Experiments to define an optimal quantizer matrix for depth should improve

encoding efficiency.

Furthermore, when encoding P-Stream depth, instead of utilizing only temporal coherence,

a hybrid approach can be used. Since P-Stream depth is encoded on a block basis, and has

spatial and temporal reference frames, each block can be encoded independently. Each block

can be encoded either with temporal prediction or encoded with spatial prediction. Using this

hybrid approach, an overhead to specify the block type will be needed but it should improve

encoding due to better predicted reference values.
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(a) Encoding Frame (b) Predicted Image

Figure 7.1: Encoding Frame and Predicted Image

I-Stream

When encoding I-Streams, it was shown in Section 3.2 that using separate motion vectors

for color and depth did not always yield superior results than using a single motion vector.

Therefore, it should be more efficient to indicate if one or two motion vectors are present on a

block basis. The overhead of specifying the number of motion vectors per block should easily

be overcome if enough blocks can be encoded with just one motion vector.

P-Stream Motion Compensation

Using temporal prediction without motion compensation and spatial prediction to encode

P-Streams do not always generate suitable reference values – e.g. the artificial arm of the

ballerina between the actual arms in Figure 7.1b. Investigating methods to incorporate more

advanced temporal prediction techniques, such as motion compensation, should improve en-

coding.

One method is to introduce a new primitive – motion compensated box – for encoding

reference masks. A motion compensated box is a box with a motion vector to indicate the

location of the predicted values in the reference frame. If motion compensated boxes are only

used for error correction step in the reference mask encoding and only for regions with large

residuals, it should minimize the number of motion vector searches performed.

Another interesting method to consider is to use the predicted image (Figure 7.1b) gen-

erated from the reference mask as the reference frame for motion compensation. Since the

predicted image is from the same view and point in time as the encoding frame (Figure 7.1a),
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the two should be very similar. Therefore, most blocks should be able to use motion vector of

zero and only blocks that are significantly different in the predicted image will actually need

to do a motion vector search and encode the motion vector.

P-Stream Reference Mask

Majority of the bits used for encoding reference masks are for primitives list of boxes and

list of pixels. A very simple improvement can be made by using a differential encoding scheme

for these two primitives. Using a differential encoding scheme for specifying the boxes and

pixels, like the threshold values used for the primitive delta depth threshold, should improve

encoding of reference masks.

Also, in addition to the motion compensated box mentioned in the previous section, another

primitive that would be very interesting to examine is a box with delta depth threshold. A

box with delta depth threshold specifies a reference frame, a threshold value, and a box.

For all pixels inside the box, the color is predicted from the specified reference frame only

if the difference between the depth value of the encoding pixel and the depth value of the

corresponding pixel in the reference frame is less than the given threshold. Using this primitive,

regions of reference images can be specified to decrease errors introduced in the initialization

step of reference mask encoding.

7.2.2 Encoding Analysis

Another area of future work would be to analyze the various decisions on quality and their

effects on multiple depth stream encoding. First is the quality of reference stream encoding

and its effects on non-reference stream encoding. Since non-reference streams uses reference

streams as basis streams for spatial prediction, reference streams should generally be encoded

at higher quality. Determining the relationship between quality of reference stream encoding

and non-reference stream encoding should help establish a criterion for encoding multiple depth

streams.

Another is the quality of depth encoding and its effect on P-Stream color encoding. As

shown in Section 4.3, as the quality of depth improves, P-Stream color encoding size decreases

due to superior spatially predicted reference colors. This is because depth is used to spatially
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predict color reference values. However, increasing depth quality also increases the depth

encoding size. Identifying the relationship between depth and P-Stream color should help in

designing an overall guideline for encoding multiple depth streams.

Lastly is to analyze the quality of reference mask encoding on color encoding for P-Streams.

The quality of reference mask encoding determines the predicted reference values used for

encoding. Generally, a higher quality reference mask predict superior reference values which

reduces residual for encoding. This should in turn improve encoding efficiency. However,

the error correction step in reference mask encoding is relatively expensive, and the benefits

diminish as the number of error corrected pixels decrease. Establishing a general principle for

terminating error correction would be beneficial.

7.2.3 Further Evaluation

Finally, as with all evaluations, further assessment of the encoding algorithm on wider

set of data would be very useful. All evaluation of the multiple depth stream encoding algo-

rithm presented in this dissertation was done on two data sets – Breakdancers and Ballet from

[Zitnick et al. 2004]. Even though the two data sets represents a fast motion scene (Break-

dancers) and a slow motion scene (Ballet), the spatial range of motion for both data sets was

relatively limited – considerable regions of the frame showed the background scene throughout

the sequence. Evaluating the multiple depth stream encoding algorithm on a scene with more

moving objects would be an interesting future work.
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