
Investigating the Effects of Active Queue Management on
the Performance of TCP Applications

by
Nguyen Tuong Long Le

A dissertation submitted to the faculty of the University of North Carolina at Chapel
Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy
in the Department of Computer Science.

Chapel Hill
2005

Approved by:

Kevin Jeffay, Advisor

F. Donelson Smith, Reader

Ketan Mayer-Patel, Reader

Jasleen Kaur, Reader

Vishal Misra, Reader

ii

iii

c© 2005
Nguyen Tuong Long Le

ALL RIGHTS RESERVED

iv

v

ABSTRACT
NGUYEN TUONG LONG LE: Investigating the Effects of Active Queue

Management on the Performance of TCP Applications.
(Under the direction of Kevin Jeffay.)

Congestion occurs in the Internet when queues at routers fill to capacity and arriving
packets are dropped (“lost”). Today, congestion is controlled by an adaptive mechanism
built into TCP that regulates the transmission rate of a TCP connection. This mechanism
dictates that each connection should detect instances of packet loss, interpret such instances
as an indication of congestion, and respond to loss by reducing its transmission rate. Af-
ter the rate has been reduced, the connection probes for additional bandwidth by slowly
increasing its transmission rate.

This adaptive behavior, applied independently on each end system, has been one of the
keys to the operational success of the Internet. Nevertheless, as the Internet has grown,
networking researchers and the Internet Engineering Task Force (IETF) have expressed con-
cern about the scalability of pure end systems’ congestion control. For example, pure end
systems’ congestion control mechanism only detects and reacts to a congestion event after
a router queue has overflowed. In response to these concerns, active queue management
(AQM) has been proposed as a router-based mechanism for early detection of congestion
inside the network. AQM algorithms execute on network routers and detect incipient con-
gestion by monitoring some function of the instantaneous or average queue size in the router.
When an AQM algorithm detects congestion on a link, the router signals end systems and
provide an “early warning” of congestion. This signaling is performed either explicitly, by
setting a specific bit in the header of a packet, or implicitly by dropping some number of
arriving packets.

Many AQM algorithms have been proposed in recent years but none of them have
been thoroughly investigated under comparable (or realistic) conditions in a real network.
Moreover, existing performance studies have concentrated on network-centric measures of
performance and have not considered application-centric performance measures such as
response time. In this dissertation, I investigated the effects of a large collection of existing
AQM algorithms on the performance of TCP applications under realistic conditions in a
real network. At a high-level, the primary results are that many existing AQM algorithms
do not perform as well as expected when they are used with packet dropping. Moreover,
a detailed investigation of the classical random early detection, or RED algorithm, has
uncovered a number of design flaws in the algorithm. I have proposed and investigated a
number of modifications to RED and other algorithms and have shown that my variants

vi

significantly outperform existing algorithms.
Overall, this dissertation shows promising results for AQM. When combined with packet

marking, AQM algorithms significantly improve network and application performance over
conventional drop-tail queues. Moreover, AQM enables network operators to run their net-
works near saturation levels with only modest increases in average response times. If packet
marking is not possible, the dissertation also shows how a form of differential treatment of
flows that I invented can achieve a similar positive performance improvement. Further, I
also developed a new AQM algorithm that can balance between loss rate and queuing delay
to improve the overall system performance.

vii

ACKNOWLEDGMENTS

First, I thank my advisor Kevin Jeffay and my co-advisor Don Smith for their support
and for teaching me how to do research. Doing a dissertation is a challenging and formidable
task but being able to work with Kevin and Don has made it a rewarding experience for
me. I also thank Ketan Mayer-Patel, Jasleen Kaur, and Vishal Misra for taking time from
their busy schedules to serve on my dissertation committee.

I would like to thank my former advisors and mentors from Germany: Adam Wolisz,
Michael Smirnov, Georg Carle, and Henning Sanneck. They got me interested in systems
and networking research and gave me opportunities to work in this area in the first place.

I appreciate all of the advice, support, and friendship of former and current students in
the networking and systems group in the Department of Computer Science at the Univer-
sity of North Carolina at Chapel Hill. My thanks also go to the faculty and staff in the
Department of Computer Science at the University of North Carolina at Chapel Hill for
making Sitterson Hall a friendly and great place to work. I would like to acknowledge the
help and friendship of many friends that I met in Germany and in the U.S. It has been an
amazing ride for me in the last twelve years.

Finally and most importantly, I thank my family for their love and support. My parents
give me love and everything that I could ever ask for. My brother has been my role model
and sets high academic standards for me to achieve. My uncles, aunts, and cousins in
Germany and in the U.S. welcomed me to their families with open arms. I would not have
made it through my journey without their help. My wife Vân Anh gives me love, hope,
support, and encouragement. Ich hab’ Dich lieb und wir sind cool!

viii

ix

TABLE OF CONTENTS

LIST OF TABLES xv

LIST OF FIGURES xvii

LIST OF ABBREVIATIONS xxxiii

1 Introduction 1

1.1 Introduction to Computer Networks . 2

1.2 TCP Loss Recovery . 3

1.3 TCP Congestion Control . 5

1.3.1 TCP Slow Start . 6

1.3.2 TCP Congestion Avoidance . 7

1.3.3 Round-trip Time Estimation . 8

1.4 Active Queue Management . 8

1.5 Evaluation of AQM Algorithms . 10

1.6 Thesis Statement . 12

1.7 Summary of Results and Contributions . 12

1.8 Organization of Dissertation . 13

2 Background and Related Work. 14

2.1 Stabilizing Router Queues . 15

x

2.1.1 Random Early Detection (RED) . 16

2.1.2 Random Early Detection with “Gentle Mode” 17

2.1.3 Adaptive Random Early Detection (ARED) 19

2.1.4 Proportional Integral (PI) controller 21

2.1.5 Random Exponential Marking (REM) 24

2.1.6 Adaptive Virtual Queue (AVQ) . 25

2.1.7 Stabilized Random Early Drop (SRED) 26

2.1.8 BLUE . 28

2.2 Approximating Fairness among Flows . 29

2.2.1 Flow Random Early Drop (FRED) 30

2.2.2 Stochastic Fair BLUE (SFB) . 32

2.2.3 CHOKe . 34

2.2.4 Approximate Fairness through Differential Dropping (AFD) 34

2.3 Controlling Unresponsive High-Bandwidth Flows 36

2.3.1 Stabilized Random Early Drop (SRED) 36

2.3.2 RED with Preferential Dropping (RED-PD) 37

2.4 Improving Performance for Short Connections 38

2.4.1 RIO-PS . 40

2.5 Explicit Congestion Notification . 41

2.6 Evaluation of AQM and ECN . 42

2.6.1 Evaluation of AQM . 42

2.6.2 Evaluation of ECN . 44

2.7 Summary . 44

xi

3 Experimental Methodology 46

3.1 Network Setup . 47

3.2 Synthetic Traffic Generation . 49

3.2.1 Web Traffic Generation . 49

3.2.2 General TCP Traffic Generation . 53

3.2.3 Modeling Propagation Delays . 55

3.3 Experiment Calibrations . 55

3.3.1 Calibrations for Web traffic . 55

3.3.2 Calibrations for General TCP Traffic 57

3.4 Experimental Procedures . 58

3.5 Summary . 59

4 Results with Web Traffic and Uniform RTT Distributions 60

4.1 Results for Drop-Tail . 62

4.2 Results for ARED, PI, and REM with Packet Drops 65

4.3 Results for BLUE and AVQ with Packet Drops 76

4.3.1 Results for BLUE . 77

4.3.2 Results for AVQ . 79

4.4 The Effects of Balancing Queuing Delay and Loss Rates 80

4.5 The Effects of Explicit Congestion Notification 83

4.5.1 Results for PI/ECN . 83

4.5.2 Results for REM/ECN . 88

4.5.3 Results for ARED/ECN . 88

4.5.4 Results for BLUE/ECN . 97

4.5.5 Results for AVQ/ECN . 101

xii

4.5.6 Results for LQD/ECN . 106

4.6 The Effects of Byte Mode . 111

4.7 The Effects of Dropping Packets in ECN Mode 116

4.8 The Effects of Differential Treatment of Flows 121

4.8.1 Results for AFD . 121

4.8.2 Results for RIO-PS . 126

4.8.3 Results for DCN . 126

4.9 Comparison of All Results . 142

4.10 Summary . 142

5 Results with Web Traffic and General RTT Distributions 153

5.1 Results for Drop-Tail . 154

5.2 Results for PI, REM, LQD, DCN, and ARED 154

5.2.1 Results for PI . 157

5.2.2 Results for REM . 159

5.2.3 Results for ARED . 159

5.2.4 Results for LQD . 166

5.2.5 Results for DCN . 166

5.3 Results for PI, REM, LQD, DCN, and ARED with ECN 169

5.3.1 Results for PI/ECN . 169

5.3.2 Results for REM/ECN . 171

5.3.3 Results for ARED/ECN . 174

5.3.4 Results for LQD/ECN . 176

5.3.5 Results for DCN/ECN . 181

5.4 Comparison of All Results . 185

xiii

5.5 Summary . 186

6 Results with General TCP Traffic 194

6.1 Results for Drop-Tail . 198

6.2 Results for ARED, PI, LQD, and REM . 198

6.2.1 Results for PI . 202

6.2.2 Results for REM . 202

6.2.3 Results for ARED . 206

6.2.4 Results for LQD . 213

6.2.5 Results for DCN . 216

6.3 Results for ARED, PI, LQD, and REM with ECN 220

6.3.1 Results for PI/ECN . 223

6.3.2 Results for REM/ECN . 224

6.3.3 Results for ARED/ECN . 227

6.3.4 Results for LQD/ECN . 235

6.3.5 Results for DCN/ECN . 238

6.4 Comparison of All Results . 242

6.5 Summary . 245

7 Investigating the Effects of Link-Level Buffering 256

7.1 Results for Drop-Tail . 258

7.2 Results for ARED, PI, LQD, and REM . 259

7.2.1 Results for PI . 263

7.2.2 Results for REM . 263

7.2.3 Results for ARED . 267

xiv

7.2.4 Results for LQD . 274

7.2.5 Results for DCN . 277

7.3 Results for ARED, PI, LQD, and REM with ECN 281

7.3.1 Results for PI/ECN . 281

7.3.2 Results for REM/ECN . 285

7.3.3 Results for ARED/ECN . 291

7.3.4 Results for LQD/ECN . 299

7.3.5 Results for DCN/ECN . 302

7.4 Comparison of All Results . 306

7.5 Summary . 306

8 Conclusions and Future Work 317

BIBLIOGRAPHY 321

xv

LIST OF TABLES

2.1 RED Parameters . 17

2.2 ARED parameters . 22

2.3 PI Parameters . 23

2.4 REM Parameters . 25

2.5 AVQ Parameters . 26

2.6 BLUE Parameters . 29

2.7 FRED Parameters . 30

2.8 SFB Parameters . 32

2.9 AFD Parameters . 36

2.10 RED-PD Parameters . 39

2.11 RIO-PS Parameters . 41

2.12 Evaluation of AQM algorithms . 43

3.1 Elements of the HTTP traffic model . 50

4.1 Loss rate, completed requests, and link utilization 144

4.2 Percentiles of response times . 148

5.1 Loss rate, completed requests, and link utilization 189

5.2 Percentiles of response times . 191

6.1 Loss rate, completed requests, and link utilization 250

6.2 Percentiles of response times . 253

7.1 Loss rate, completed requests, and link utilization 311

7.2 Percentiles of response times . 314

xvi

xvii

LIST OF FIGURES

1.1 Basic router architecture. 3

2.1 Pseudo code for RED . 17

2.2 Operational regions of RED . 18

2.3 Pseudo code for GRED . 19

2.4 Drop probability function of RED and Gentle RED 20

2.5 Pseudo code for updating maxp by Feng et al. 21

2.6 Pseudo code for updating maxp by Floyd et al. 21

2.7 Sampling operation of PI . 23

2.8 Pseudo code for AVQ . 26

2.9 Pseudo code for the BLUE algorithm . 28

2.10 Pseudo code for the FRED algorithm . 31

2.11 Pseudo code for the SFB algorithm . 33

2.12 Pseudo code for the CHOKe algorithm . 35

2.13 RED-PD’s pseudo code for reducing drop probability for a flow 38

2.14 RED-PD’s pseudo code for increasing drop probability for a flow 39

3.1 Network setup. 48

3.2 CDF of request sizes . 51

3.3 CCDF of request sizes . 52

3.4 CDF of response sizes . 52

3.5 CCDF of response sizes . 53

3.6 CDF of the general RTT distribution . 56

3.7 CCDF of the general RTT distribution . 56

xviii

3.8 Link throughput as a function of emulated browsing users. 58

4.1 Drop-tail performance at 80% load . 66

4.2 Drop-tail performance at 90% load . 66

4.3 Drop-tail performance at 98% load . 67

4.4 Drop-tail performance at 105% load . 67

4.5 Drop-tail performance at 80% load (CCDF) 68

4.6 Drop-tail performance at 90% load (CCDF) 68

4.7 Drop-tail performance at 98% load (CCDF) 69

4.8 Drop-tail performance at 105% load (CCDF) 69

4.9 PI performance at 80%, 90%, 98%, and 105% load 70

4.10 PI performance at 80%, 90%, 98%, and 105% load (CCDF) 71

4.11 REM performance at 80%, 90%, 98%, and 105% load 71

4.12 REM performance at 80%, 90%, 98%, and 105% load (CCDF) 72

4.13 ARED performance at 80%, 90%, 98%, and 105% load 72

4.14 ARED performance at 80%, 90%, 98%, and 105% load (CCDF) 73

4.15 BLUE performance at 80%, 90%, 98%, and 105% load 77

4.16 BLUE performance at 80%, 90%, 98%, and 105% load (CCDF) 78

4.17 AVQ performance at 80%, 90%, 98%, and 105% load 78

4.18 AVQ performance at 80%, 90%, 98%, and 105% load (CCDF) 79

4.19 LQD performance at 80%, 90%, 98%, and 105% load 82

4.20 LQD performance at 80%, 90%, 98%, and 105% load (CCDF) 82

4.21 PI/ECN performance at 80% load . 84

4.22 PI/ECN performance at 90% load . 84

4.23 PI/ECN performance at 98% load . 85

xix

4.24 PI/ECN performance at 105% load . 85

4.25 PI/ECN performance at 80% load (CCDF) 86

4.26 PI/ECN performance at 90% load (CCDF) 86

4.27 PI/ECN performance at 98% load (CCDF) 87

4.28 PI/ECN performance at 105% load (CCDF) 87

4.29 REM/ECN performance at 80% load . 89

4.30 REM/ECN performance at 90% load . 89

4.31 REM/ECN performance at 98% load . 90

4.32 REM/ECN performance at 105% load . 90

4.33 REM/ECN performance at 80% load (CCDF) 91

4.34 REM/ECN performance at 90% load (CCDF) 91

4.35 REM/ECN performance at 98% load (CCDF) 92

4.36 REM/ECN performance at 105% load (CCDF) 92

4.37 ARED/ECN performance at 80% load . 93

4.38 ARED/ECN performance at 90% load . 93

4.39 ARED/ECN performance at 98% load . 94

4.40 ARED/ECN performance at 105% load . 94

4.41 ARED/ECN performance at 80% load (CCDF) 95

4.42 ARED/ECN performance at 90% load (CCDF) 95

4.43 ARED/ECN performance at 98% load (CCDF) 96

4.44 ARED/ECN performance at 105% load (CCDF) 96

4.45 BLUE/ECN performance at 80% load . 97

4.46 BLUE/ECN performance at 90% load . 98

4.47 BLUE/ECN performance at 98% load . 98

xx

4.48 BLUE/ECN performance at 105% load . 99

4.49 BLUE/ECN performance at 80% load (CCDF) 99

4.50 BLUE/ECN performance at 90% load (CCDF) 100

4.51 BLUE/ECN performance at 98% load (CCDF) 100

4.52 BLUE/ECN performance at 105% load (CCDF) 101

4.53 AVQ/ECN performance at 80% load . 102

4.54 AVQ/ECN performance at 90% load . 102

4.55 AVQ/ECN performance at 98% load . 103

4.56 AVQ/ECN performance at 105% load . 103

4.57 AVQ/ECN performance at 80% load (CCDF) 104

4.58 AVQ/ECN performance at 90% load (CCDF) 104

4.59 AVQ/ECN performance at 98% load (CCDF) 105

4.60 AVQ/ECN performance at 105% load (CCDF) 105

4.61 LQD/ECN performance at 80% load . 106

4.62 LQD/ECN performance at 90% load . 107

4.63 LQD/ECN performance at 98% load . 107

4.64 LQD/ECN performance at 105% load . 108

4.65 LQD/ECN performance at 80% load (CCDF) 108

4.66 LQD/ECN performance at 90% load (CCDF) 109

4.67 LQD/ECN performance at 98% load (CCDF) 109

4.68 LQD/ECN performance at 105% load (CCDF) 110

4.69 Performance of ARED byte mode at 80% load 111

4.70 Performance of ARED byte mode at 90% load 112

4.71 Performance of ARED byte mode at 98% load 112

xxi

4.72 Performance of ARED byte mode at 105% load 113

4.73 Performance of ARED byte mode at 80% load (CCDF) 113

4.74 Performance of ARED byte mode at 90% load (CCDF) 114

4.75 Performance of ARED byte mode at 98% load (CCDF) 114

4.76 Performance of ARED byte mode at 105% load (CCDF) 115

4.77 Performance of ARED/ECN new gentle mode at 80% load 116

4.78 Performance of ARED/ECN new gentle mode at 90% load 117

4.79 Performance of ARED/ECN new gentle mode at 98% load 117

4.80 Performance of ARED/ECN new gentle mode at 105% load 118

4.81 Performance of ARED/ECN new gentle mode at 80% load (CCDF) 118

4.82 Performance of ARED/ECN new gentle mode at 90% load (CCDF) 119

4.83 Performance of ARED/ECN new gentle mode at 98% load (CCDF) 119

4.84 Performance of ARED/ECN new gentle mode at 105% load (CCDF) 120

4.85 Performance of AFD with and without ECN at 80% load 122

4.86 Performance of AFD with and without ECN at 90% load 122

4.87 Performance of AFD with and without ECN at 98% load 123

4.88 Performance of AFD with and without ECN at 105% load 123

4.89 Performance of AFD with and without ECN at 80% load (CCDF) 124

4.90 Performance of AFD with and without ECN at 90% load (CCDF) 124

4.91 Performance of AFD with and without ECN at 98% load (CCDF) 125

4.92 Performance of AFD with and without ECN at 105% load (CCDF) 125

4.93 Performance of RIO-PS with and without ECN at 80% load 127

4.94 Performance of RIO-PS with and without ECN at 90% load 127

4.95 Performance of RIO-PS with and without ECN at 98% load 128

xxii

4.96 Performance of RIO-PS with and without ECN at 105% load 128

4.97 Performance of RIO-PS with and without ECN at 80% load (CCDF) 129

4.98 Performance of RIO-PS with and without ECN at 90% load (CCDF) 129

4.99 Performance of RIO-PS with and without ECN at 98% load (CCDF) 130

4.100Performance of RIO-PS with and without ECN at 105% load (CCDF) . . . 130

4.101High-level flow chart of DCN . 132

4.102Performance of DCN with and without ECN at 80% load 133

4.103Performance of DCN with and without ECN at 90% load 134

4.104Performance of DCN with and without ECN at 98% load 134

4.105Performance of DCN with and without ECN at 105% load 135

4.106Performance of DCN with and without ECN at 80% load (CCDF) 135

4.107Performance of DCN with and without ECN at 90% load (CCDF) 136

4.108Performance of DCN with and without ECN at 98% load (CCDF) 136

4.109Performance of DCN with and without ECN at 105% load (CCDF) 137

4.110Comparison of all AQM algorithms at 80% load 138

4.111Comparison of all AQM algorithms at 90% load 138

4.112Comparison of all AQM algorithms at 98% load 139

4.113Comparison of all AQM algorithms at 105% load 139

4.114Comparison of all AQM algorithms at 80% load (CCDF) 140

4.115Comparison of all AQM algorithms at 90% load (CCDF) 140

4.116Comparison of all AQM algorithms at 98% load (CCDF) 141

4.117Comparison of all AQM algorithms at 105% load (CCDF) 141

5.1 Drop-tail performance at 90% load . 155

5.2 Drop-tail performance at 98% load . 155

xxiii

5.3 Drop-tail performance at 90% load (CCDF) 156

5.4 Drop-tail performance at 98% load (CCDF) 156

5.5 PI performance at 90% load . 157

5.6 PI performance at 98% load . 158

5.7 PI performance at 90% load (CCDF) . 158

5.8 PI performance at 98% load (CCDF) . 159

5.9 REM performance at 90% load . 160

5.10 REM performance at 98% load . 160

5.11 REM performance at 90% load (CCDF) . 161

5.12 REM performance at 98% load (CCDF) . 161

5.13 ARED packet mode performance at 90% load 162

5.14 ARED packet mode performance at 98% load 163

5.15 ARED byte mode performance at 90% load 163

5.16 ARED byte mode performance at 98% load 164

5.17 ARED packet mode performance at 90% load (CCDF) 164

5.18 ARED packet mode performance at 98% load (CCDF) 165

5.19 ARED byte mode performance at 90% load (CCDF) 165

5.20 ARED byte mode performance at 98% load (CCDF) 166

5.21 LQD performance at 90% load . 167

5.22 LQD performance at 98% load . 167

5.23 LQD performance at 90% load (CCDF) . 168

5.24 LQD performance at 98% load (CCDF) . 168

5.25 DCN performance at 90% load . 169

5.26 DCN performance at 98% load . 170

xxiv

5.27 DCN performance at 90% load (CCDF) . 170

5.28 DCN performance at 98% load (CCDF) . 171

5.29 PI/ECN performance at 90% load . 172

5.30 PI/ECN performance at 98% load . 172

5.31 PI/ECN performance at 90% load (CCDF) 173

5.32 PI/ECN performance at 98% load (CCDF) 173

5.33 REM/ECN performance at 90% load . 174

5.34 REM/ECN performance at 98% load . 175

5.35 REM/ECN performance at 90% load (CCDF) 175

5.36 REM/ECN performance at 98% load (CCDF) 176

5.37 ARED/ECN performance at 90% load . 177

5.38 ARED/ECN performance at 98% load . 177

5.39 ARED/ECN new gentle performance at 90% load 178

5.40 ARED/ECN new gentle performance at 98% load 178

5.41 ARED/ECN performance at 90% load (CCDF) 179

5.42 ARED/ECN performance at 98% load (CCDF) 179

5.43 ARED/ECN new gentle performance at 90% load (CCDF) 180

5.44 ARED/ECN new gentle performance at 98% load (CCDF) 180

5.45 LQD/ECN performance at 90% load . 181

5.46 LQD/ECN performance at 98% load . 182

5.47 LQD/ECN performance at 90% load (CCDF) 182

5.48 LQD/ECN performance at 98% load (CCDF) 183

5.49 DCN/ECN performance at 90% load . 183

5.50 DCN/ECN performance at 98% load . 184

xxv

5.51 DCN/ECN performance at 90% load (CCDF) 184

5.52 DCN/ECN performance at 98% load (CCDF) 185

5.53 Comparison of all AQM algorithms at 90% load 186

5.54 Comparison of all AQM algorithms at 98% load 187

5.55 Comparison of all AQM algorithms at 90% load (CCDF) 187

5.56 Comparison of all AQM algorithms at 98% load (CCDF) 188

6.1 Distribution of ADU sizes of general TCP traffic 196

6.2 Distribution of RTT distribution of general TCP traffic 196

6.3 Drop-tail performance at 80% load . 199

6.4 Drop-tail performance at 90% load . 199

6.5 Drop-tail performance at 95% load . 200

6.6 Drop-tail performance at 80% load (CCDF) 200

6.7 Drop-tail performance at 90% load (CCDF) 201

6.8 Drop-tail performance at 95% load (CCDF) 201

6.9 PI performance at 80% load . 203

6.10 PI performance at 90% load . 203

6.11 PI performance at 95% load . 204

6.12 PI performance at 80% load (CCDF) . 204

6.13 PI performance at 90% load (CCDF) . 205

6.14 PI performance at 95% load (CCDF) . 205

6.15 REM performance at 80% load . 206

6.16 REM performance at 90% load . 207

6.17 REM performance at 95% load . 207

6.18 REM performance at 80% load (CCDF) . 208

xxvi

6.19 REM performance at 90% load (CCDF) . 208

6.20 REM performance at 95% load (CCDF) . 209

6.21 ARED performance at 80% load . 210

6.22 ARED performance at 90% load . 210

6.23 ARED performance at 95% load . 211

6.24 ARED performance at 80% load (CCDF) 211

6.25 ARED performance at 90% load (CCDF) 212

6.26 ARED performance at 95% load (CCDF) 212

6.27 ARED byte mode performance at 80% load 213

6.28 ARED byte mode performance at 90% load 214

6.29 ARED byte mode performance at 95% load 214

6.30 ARED byte mode performance at 80% load (CCDF) 215

6.31 ARED byte mode performance at 90% load (CCDF) 215

6.32 ARED byte mode performance at 95% load (CCDF) 216

6.33 LQD performance at 80% load . 217

6.34 LQD performance at 90% load . 217

6.35 LQD performance at 95% load . 218

6.36 LQD performance at 80% load (CCDF) . 218

6.37 LQD performance at 90% load (CCDF) . 219

6.38 LQD performance at 95% load (CCDF) . 219

6.39 DCN performance at 80% load . 220

6.40 DCN performance at 90% load . 221

6.41 DCN performance at 95% load . 221

6.42 DCN performance at 80% load (CCDF) . 222

xxvii

6.43 DCN performance at 90% load (CCDF) . 222

6.44 DCN performance at 95% load (CCDF) . 223

6.45 PI/ECN performance at 80% load . 224

6.46 PI/ECN performance at 90% load . 225

6.47 PI/ECN performance at 95% load . 225

6.48 PI/ECN performance at 80% load (CCDF) 226

6.49 PI/ECN performance at 90% load (CCDF) 226

6.50 PI/ECN performance at 95% load (CCDF) 227

6.51 REM/ECN performance at 80% load . 228

6.52 REM/ECN performance at 90% load . 228

6.53 REM/ECN performance at 95% load . 229

6.54 REM/ECN performance at 80% load (CCDF) 229

6.55 REM/ECN performance at 90% load (CCDF) 230

6.56 REM/ECN performance at 95% load (CCDF) 230

6.57 ARED/ECN performance at 80% load . 232

6.58 ARED/ECN performance at 90% load . 232

6.59 ARED/ECN performance at 95% load . 233

6.60 ARED/ECN performance at 80% load (CCDF) 233

6.61 ARED/ECN performance at 90% load (CCDF) 234

6.62 ARED/ECN performance at 95% load (CCDF) 234

6.63 ARED/ECN new gentle performance at 80% load 235

6.64 ARED/ECN new gentle performance at 90% load 236

6.65 ARED/ECN new gentle performance at 95% load 236

6.66 ARED/ECN new gentle performance at 80% load (CCDF) 237

xxviii

6.67 ARED/ECN new gentle performance at 90% load (CCDF) 237

6.68 ARED/ECN new gentle performance at 95% load (CCDF) 238

6.69 LQD/ECN performance at 80% load . 239

6.70 LQD/ECN performance at 90% load . 239

6.71 LQD/ECN performance at 95% load . 240

6.72 LQD/ECN performance at 80% load (CCDF) 240

6.73 LQD/ECN performance at 90% load (CCDF) 241

6.74 LQD/ECN performance at 95% load (CCDF) 241

6.75 DCN/ECN performance at 80% load . 242

6.76 DCN/ECN performance at 90% load . 243

6.77 DCN/ECN performance at 95% load . 243

6.78 DCN/ECN performance at 80% load (CCDF) 244

6.79 DCN/ECN performance at 90% load (CCDF) 244

6.80 DCN/ECN performance at 95% load (CCDF) 245

6.81 Comparison of all AQM algorithms at 80% load 246

6.82 Comparison of all AQM algorithms at 90% load 246

6.83 Comparison of all AQM algorithms at 95% load 247

6.84 Comparison of all AQM algorithms at 80% load (CCDF) 247

6.85 Comparison of all AQM algorithms at 90% load (CCDF) 248

6.86 Comparison of all AQM algorithms at 95% load (CCDF) 248

7.1 ALTQ principal architecture . 259

7.2 Drop-tail performance at 80% load . 260

7.3 Drop-tail performance at 90% load . 260

7.4 Drop-tail performance at 95% load . 261

xxix

7.5 Drop-tail performance at 80% load (CCDF) 261

7.6 Drop-tail performance at 90% load (CCDF) 262

7.7 Drop-tail performance at 95% load (CCDF) 262

7.8 PI performance at 80% load . 264

7.9 PI performance at 90% load . 264

7.10 PI performance at 95% load . 265

7.11 PI performance at 80% load (CCDF) . 265

7.12 PI performance at 90% load (CCDF) . 266

7.13 PI performance at 95% load (CCDF) . 266

7.14 REM performance at 80% load . 267

7.15 REM performance at 90% load . 268

7.16 REM performance at 95% load . 268

7.17 REM performance at 80% load (CCDF) . 269

7.18 REM performance at 90% load (CCDF) . 269

7.19 REM performance at 95% load (CCDF) . 270

7.20 ARED performance at 80% load . 271

7.21 ARED performance at 90% load . 271

7.22 ARED performance at 95% load . 272

7.23 ARED performance at 80% load (CCDF) 272

7.24 ARED performance at 90% load (CCDF) 273

7.25 ARED performance at 95% load (CCDF) 273

7.26 ARED byte mode performance at 80% load 274

7.27 ARED byte mode performance at 90% load 275

7.28 ARED byte mode performance at 95% load 275

xxx

7.29 ARED byte mode performance at 80% load (CCDF) 276

7.30 ARED byte mode performance at 90% load (CCDF) 276

7.31 ARED byte mode performance at 95% load (CCDF) 277

7.32 LQD performance at 80% load . 278

7.33 LQD performance at 90% load . 278

7.34 LQD performance at 95% load . 279

7.35 LQD performance at 80% load (CCDF) . 279

7.36 LQD performance at 90% load (CCDF) . 280

7.37 LQD performance at 95% load (CCDF) . 280

7.38 DCN performance at 80% load . 281

7.39 DCN performance at 90% load . 282

7.40 DCN performance at 95% load . 282

7.41 DCN performance at 80% load (CCDF) . 283

7.42 DCN performance at 90% load (CCDF) . 283

7.43 DCN performance at 95% load (CCDF) . 284

7.44 PI/ECN performance at 80% load . 285

7.45 PI/ECN performance at 90% load . 286

7.46 PI/ECN performance at 95% load . 286

7.47 PI/ECN performance at 80% load (CCDF) 287

7.48 PI/ECN performance at 90% load (CCDF) 287

7.49 PI/ECN performance at 95% load (CCDF) 288

7.50 REM/ECN performance at 80% load . 288

7.51 REM/ECN performance at 90% load . 289

7.52 REM/ECN performance at 95% load . 289

xxxi

7.53 REM/ECN performance at 80% load (CCDF) 290

7.54 REM/ECN performance at 90% load (CCDF) 290

7.55 REM/ECN performance at 95% load (CCDF) 291

7.56 ARED/ECN performance at 80% load . 292

7.57 ARED/ECN performance at 90% load . 292

7.58 ARED/ECN performance at 95% load . 293

7.59 ARED/ECN performance at 80% load (CCDF) 293

7.60 ARED/ECN performance at 90% load (CCDF) 294

7.61 ARED/ECN performance at 95% load (CCDF) 294

7.62 ARED/ECN new gentle performance at 80% load 295

7.63 ARED/ECN new gentle performance at 90% load 296

7.64 ARED/ECN new gentle performance at 95% load 296

7.65 ARED/ECN new gentle performance at 80% load (CCDF) 297

7.66 ARED/ECN new gentle performance at 90% load (CCDF) 297

7.67 ARED/ECN new gentle performance at 95% load (CCDF) 298

7.68 LQD/ECN performance at 80% load . 299

7.69 LQD/ECN performance at 90% load . 300

7.70 LQD/ECN performance at 95% load . 300

7.71 LQD/ECN performance at 80% load (CCDF) 301

7.72 LQD/ECN performance at 90% load (CCDF) 301

7.73 LQD/ECN performance at 95% load (CCDF) 302

7.74 DCN/ECN performance at 80% load . 303

7.75 DCN/ECN performance at 90% load . 303

7.76 DCN/ECN performance at 95% load . 304

xxxii

7.77 DCN/ECN performance at 80% load (CCDF) 304

7.78 DCN/ECN performance at 90% load (CCDF) 305

7.79 DCN/ECN performance at 95% load (CCDF) 305

7.80 Comparison of all AQM algorithms at 80% load 307

7.81 Comparison of all AQM algorithms at 90% load 307

7.82 Comparison of all AQM algorithms at 95% load 308

7.83 Comparison of all AQM algorithms at 80% load (CCDF) 308

7.84 Comparison of all AQM algorithms at 90% load (CCDF) 309

7.85 Comparison of all AQM algorithms at 95% load (CCDF) 309

xxxiii

LIST OF ABBREVIATIONS

ACK acknowledgment
AIMD additive-increase / multiplicative-decrease
ALTQ Alternate Queueing
AQM Active Queue Management
ARED Adaptive RED
AVQ Adaptive Virtual Queue
BDP bandwidth-delay product
CDF cumulative distribution function
CCDF complementary cumulative distribution function
cwnd congestion window
ECN Explicit Congestion Notification
FIFO first-in, first-out
QoS quality of service
PI Proportional Integral
RED Random Early Detection
REM Random Exponential Marking
RIO RED with In and Out
RIO-PS RED with In and Out with Preferential Treatment to Short Flows
RTO retransmission timeout
RTT round-trip time
SACK selective acknowledgment
TCP Transmission Control Protocol
ssthresh slow start threshold

xxxiv

Chapter 1

Introduction

Computers and their applications are now an integral part of daily life. Their widespread
usage ranges from entertainment, to processing and storage of data, to control of critical
infrastructures such as power grids and industrial plants. In many cases, computer appli-
cations need to communicate and share data with each other to realize their objectives.
Examples of such applications are web browsing, electronic mail, text messaging, file shar-
ing, audio streaming, video streaming, and electronic commerce.

One of the key enabling technologies for today’s computer technology is the Internet
that is used by millions of computers to communicate and share data with each other. At
a high level, the Internet is composed of many specialized computers called routers that
forward data between end systems. The routers are connected to each other by various
communication links. End systems are typically the ultimate sources and sinks of data, i.e.,
end system typically do not forward data that they do not transmit or receive.

Since a computer network is a shared infrastructure, several end systems can be using
the network at the same time. Overload or network congestion occurs when end systems
simultaneously transmit more data than routers can forward. End systems can ameliorate
network congestion by employing congestion control algorithms that detect and react to
congestion in the network. End systems’ congestion control allows computers to use a
shared network infrastructure and enjoy good performance. It significantly contributed to
the growth and success of the Internet in the nineteen eighties and nineties. However, as
the Internet has grown and the number of end systems has increased, concerns have been
raised about the scalability and effectiveness of the pure congestion control implemented
solely on end systems.

Active queue management (AQM) in routers has been proposed as a measure to preserve
and improve Internet performance [BCC+98, Flo00a]. AQM algorithms detect incipient con-
gestion by typically monitoring a router’s queue size. In its simplest form, when impending
congestion is detected, AQM algorithms notify the end systems to reduce their transmission
rates by proactively dropping packets before congestion actually occurs. In this manner,

2

AQM algorithms can help end systems’ congestion control mechanisms detect and react to
congestion faster and more effectively.

A large number of AQM algorithms have been proposed in research literature. However,
many of them have been evaluated only by simulations under rather simple and unrealistic
traffic conditions. Moreover, evaluations are often incomparable as they use different traffic
models, network topologies, etc. Thus, there is currently a lack of understanding of the
performance of AQM algorithms in complex and realistic network environments. This dis-
sertation is concerned with evaluation of AQM algorithms in a real and complex laboratory
network under realistic conditions.

In the rest of this Chapter, I will give a short introduction to computer networks, end
systems’ loss recovery and congestion control, and AQM algorithms. The loss recovery
and congestion control algorithms described in this Chapter are used by the Transmission
Control Protocol (TCP), a protocol that is currently implemented and used widely by the
end systems in the Internet. Finally, I will conclude this Chapter with motivation for my
dissertation, my thesis statement, and a summary of major results and contributions.

1.1 Introduction to Computer Networks

When an end system has data to send, it fragments data into units called packets. The
end system also packages some control information into a packet header and places it at
the beginning of each packet. In an IP network, the packet header contains the source IP
address to specify the sender of the packet. The packet header also contains the destination
IP address that tells whom the packet is destined for. The destination address is used by the
routers to locate the receiver of the packet and to subsequently forward the packet toward
the receiver.

In many cases, the sender and the receiver are not directly connected. In these cases,
the sender sends the packet to a router that it is directly connected to. When the packet
arrives at a router, the router uses the packet’s destination address as a search key and
searches its routing information database for a forwarding decision. If the router and the
receiver are directly connected, the router forwards the packet to the receiver. If not directly
connected, the router forwards the packet to another router that is closer to the receiver.
This forwarding process is repeated until the packet finally reaches a router that is directly
connected to the receiver. That router can then send the packet directly to the receiver.

Figure 1.1 shows the basic architecture of a router. A router usually has multiple
network interfaces attached to different links that connect the router to other routers or
subnetworks. A subnetwork is usually composed of one or multiple end systems. When
a packet arrives at a router, the router uses the destination address and its local routing
information database to determine the output link for that packet. In most cases, the output

3

Backplane switch

Packet queue

Communication
links

Packet queue

Communication
links

Packet queue Communication
links

Packet queue Communication
links

Figure 1.1: Basic router architecture.

link is not the input link (the link on which the packet arrives at the router) and packet has
to be transferred from the input link to the output link via an internal switch. If multiple
packets that are destined for the same output link arrive at the router via different input
links simultaneously, only one packet can be forwarded onto the link and other packets are
stored temporarily in a queue at the output link.

When packets arrive at a router for a given destination link at a rate faster than the
link’s transmission rate, the packets are buffered in a queue at the destination link. This
queue is usually maintained in a “first-in, first-out” (FIFO) manner. With FIFO queue,
arriving packets are enqueued at the end of the queue. When the router is done with the
transmission of a packet, it dequeues the packet at the head of the queue and transmits that
packet onto the link. The transmission time for a packet on a link is equal to the product
of the packet size and the link’s transmission rate. If the router’s forwarding rate is greater
than the packets’ arrival rate (the average transmission time is smaller than the interarrival
time of packets), the queue will shrink over a time interval until it becomes empty. On the
other hand, if the router’s forwarding rate is less than the packets’ arrival rate (the average
transmission time is greater than the interarrival time of packets), the queue will grow over
a time interval until the queue becomes full. When a packet arrives at a full queue, i.e.,
the router has exhausted its storage resources and cannot enqueue another packet, that
packet is dropped. When this occurs, we say that the router’s queue overflows. Further,
the default behavior of routers that only drop arriving packets when the queue is full is
called drop-tail queuing. Drop-tail queuing is also called drop-tail FIFO because packets
are forwarded in a FIFO (first-in first-out) manner.

1.2 TCP Loss Recovery

Since packets can be lost in transit between the sender and the receiver due to queue
overflows in a computer network, a network service for reliable data exchange between
applications requires end systems to implement a mechanism to detect the loss of packets
and retransmit the lost packets. TCP detects the loss of packets by associating each data
byte with a uniquely identified sequence number.

4

The receiver acknowledges the receipt of a data packet by sending the sender an acknowl-
edgment packet (ACK packet). The ACK packet carries a sequence number indicating the
sequence number of the next in-order byte expected by the receiver (i.e., the sequence num-
ber of the last byte in the last in-order data packet received at the receiver plus one). Thus,
an ACK packet acknowledges to the sender that all data bytes that have a sequence num-
ber smaller than that of the ACK packet have been received by the receiver. For each data
packet that arrives at the receiver out of order, the receiver retransmits an ACK packet
that contains the sequence number of the last data byte that has been received in order.
The ACK packets triggered by the arrival of out-of-order data packets are called duplicate
ACKs because they carry the same sequence number of the last in-order data byte received
by the receiver.

In the case that the sender can send multiple packets in a sequence, a fast way to detect
loss of data packets is via a direct use of duplicate ACKs. As mentioned above, the receiver
sends duplicate ACKs to inform the sender that data packets arrived at the receiver out of
order. Duplicate ACKs can be caused by different network problems. First, as discussed
above, duplicate ACKs can be caused by the loss of some data packets. In this case, the
receiver generates a duplicate ACK for each data packet arriving at the receiver after the
lost packets. Second, duplicate ACKs can be caused by replication of data or ACK packets
in the network. Third, duplicate ACKs can be triggered by re-ordering of data packets in
the network [Pax99] because each data packet arriving at the receiver out of order causes
the receiver to generate a duplicate ACK. Of these three causes, loss is by far the most
common.

From the sender’s perspective, the last two network problems that cause duplicate ACKs
are undesirable but they are rather “harmless” because they do not cause loss of data.
However, loss of data packets that causes duplicate ACKs requires the sender to retransmit
the lost data packets. Since packet replication and packet re-ordering are rare events, when
the TCP sender receives three duplicate ACKs in a row, it assumes that the data packet
with the sequence number carried by the duplicate ACKs has been lost and retransmits
that packet.

Duplicate ACKs help sender detect and retransmit lost data packets. However, duplicate
ACKs are only triggered when a lost data packet is followed by other data packets that arrive
at the receiver. If the sender transmits a sequence of data packets and the last data packet
in the sequence is lost, the receiver cannot detect the loss of the data packet. In this case,
the receiver does not generate duplicate ACKs to inform the sender about the loss of the
data packet. Furthermore, duplicate ACKs transmitted by the receiver can also be lost
on their way back to the sender. Because of these problems, the sender also needs to rely
on other local mechanisms to detect the loss of its data packets. The sender initializes a
timer for each data packet that it transmits (more details about the timer’s interval will be

5

provided in section 1.3.3). When a timer for a data packet expires and the acknowledgment
for that data packet has not been received, the sender assumes that the data packet has
been lost and retransmits it.

1.3 TCP Congestion Control

Congestion at a router causes the router’s queue to build up. Since packets in a queue
are usually processed in a “first in, first out” manner, a packet arriving at a router must
wait in the queue until all packets that had previously entered the queue have been trans-
mitted. Queuing delay increases end-to-end latency and has adverse effects on interactive
applications such as web browsing or real-time conferencing. Under severe congestion, the
router’s queue can grow to its maximum length and the router cannot enqueue any arriving
packets. In this case, arriving packets cannot enter the queue and are dropped.

As discussed above, queuing delay increases end-to-end latency and has ill effects on
the performance of interactive applications. On the other hand, packet losses can also
degrade application performance significantly. For example, a sender needs at least one or
multiple round-trip times to detect and retransmit a lost packet via duplicate ACKs. In
the worse case, a retransmission is triggered by a timeout which can take one or multiple
seconds. Further, a sender’s throughput is dramatically reduced during the recovery of lost
packets. For this reason, congestion (the root of queuing delay and packet loss) should be
prevented from happening. TCP congestion control algorithm, implemented in end systems,
uses packet loss as an indication of network congestion. TCP reacts to the indication of
congestion by reducing its transmission rate. (Besides packet losses, other congestion control
algorithms such as TCP Vegas [BOP94], FAST [JWL04], and Sync-TCP [Wei03] also use
packet delay or variations in packet delay as an indication of congestion in the network.)
While many congestion control algorithms exist in the research literature, I will only provide
a short introduction to the basic congestion control algorithms that are currently used by
the standard TCP protocol (known as TCP Reno) in this Chapter.

The TCP congestion control algorithms follow the principle of “packet conservation”
which states that packets should not enter the network at a rate faster than they leave
the network in an equilibrium state [JK88]. The basic mechanisms of TCP congestion
control algorithms limit the number of packets of an end system that are inside the network
at any point in time. Since it is hard for a sender to know at any point in time which
packets are inside the network and which packets already left the network, TCP congestion
control algorithms makes a conservative assumption that all unacknowledged packets are
still inside the network. (Obviously all packets that are acknowledged by the receiver have
already arrived at the receiver and left the network.)

Using the conservative assumption above, TCP congestion control algorithms limit the

6

maximum number of unacknowledged packets that a sender is allowed to have. This maxi-
mum number of unacknowledged packets varies over time and depends on the state of the
network. This maximum number of packets is also referred to as the TCP congestion win-
dow (cwnd). TCP congestion control is divided into two main parts. The first part controls
the size of cwnd while an end system is trying to find an equilibrium state of the network.
This part is called slow start. The second part controls the size of cwnd after an end system
has reached an equilibrium state of the network. This part helps an end system stay in an
equilibrium state of the network and is called congestion avoidance.

1.3.1 TCP Slow Start

The TCP slow start algorithm is used by an end system to seek and enter an equilibrium
state of the network. TCP slow start allows a sender to increase its transmission rate rather
fast by growing its cwnd exponentially as follows. The cwnd is initialized to a small number
of packets (typically one or two) by the sender after a connection has been established. TCP
also reinitializes cwnd to this value and reenters TCP slow start after a long idle period
between the sender and the receiver or after the sender has experienced severe losses such
that it has to seek for a new equilibrium state of the network. While in slow start phase, the
sender increases its congestion window by one packet for each ACK packet that it receives.
If the receiver acknowledges each data packet with an ACK packet, the sender can double
its congestion window within a round-trip time (RTT). Thus, when there is no packet loss,
the sender can grow its congestion window at an exponential rate. Obviously, slow start is
not slow at all despite its name.

Since the sequence number in ACK packets are cumulative, a receiver can increase
efficiency in network usage and reduce the number of ACK packets by acknowledging every
other data packet that it receives with an ACK packet. In this case, the sender’s congestion
window grows more slowly than in the previous case but the growth rate is still exponential.

Slow start allows a TCP sender to probe for available bandwidth very fast because
the sender can grow its congestion window exponentially in this phase. As the sender
approaches the limit of capacity in the network, it exits slow start and enters congestion
avoidance. The TCP sender infers that it has reached the limit of the network’s capacity
after it experiences the first packet loss. When this happens, TCP exits its slow start phase
and enters the congestion avoidance phase. Alternatively, a TCP sender also exits the slow
start phase and enters the congestion avoidance phase after its congestion window becomes
larger than a variable called slow start threshold or ssthresh. This variable is a conservative
estimate of available bandwidth in the network and is dynamically updated as explain in
section 1.3.2.

7

1.3.2 TCP Congestion Avoidance

Unlike in the slow start phase, a TCP sender increases its cwnd more moderately in
the congestion avoidance phase. The rationale for this is that the TCP sender has already
reached the equilibrium state of the network and should avoid any drastic change in its
transmission rate that may destroy the equilibrium state. In the congestion avoidance
phase, the TCP sender increases its cwnd by 1/cwnd for each ACK packet that it receives.
This means that the TCP sender can increase its cwnd by 1 packet after successfully sending
cwnd packets. Since the TCP sender can have at most cwnd outstanding packets, i.e., at
most cwnd packets that have not been acknowledged by the receiver, and it takes a round-
trip time for an ACK of a data packet to arrive at the sender, the sender can increase its
cwnd by 1 packet per round-trip time. This gives the TCP sender an additive increase of its
cwnd in the congestion avoidance phase because cwnd grows linearly as a function of time
(as opposed to cwnd growing exponentially in the slow start phase).

When a TCP sender detects loss of packets, it infers that packets are lost due to conges-
tion in the network. More specifically, a TCP sender assumes that loss is an indication that
the current transmission rates of the end systems have exceeded the available capacity of the
link. In this case, the TCP sender, together with other TCP senders sharing a bottleneck
link, is sending packets at a faster rate than this link can forward the packets. Depending
on how packet loss is detected, the TCP sender can take one of the two following alternate
approaches.

If packet loss is detected via triple duplicate ACKs, the sender knows that at least some
of the packets arrived at the receiver. In this case, the sender remains in the congestion
avoidance phase but reduces its cwnd by half. The rationale for this is that the TCP sender
was previously able to transmit packets without loss at that transmission rate and hence
it is safe to start probing for available bandwidth again from that transmission rate. This
gives the TCP sender a multiplicative decrease of its cwnd.

If packet loss is detected via a timer’s expiration, the sender infers that a large fraction
of its packets were lost (because the sender has not received any ACKs) and that there
is severe congestion in the network. In this case, the TCP sender reduces its cwnd to
one packet and switches to the slow start phase to rediscover the equilibrium state of the
network.

After a loss event, a TCP sender infers that the available share of bandwidth is less
than its current cwnd. Hence, the TCP sender sets its ssthresh to half of its current cwnd
to prevent cwnd from overshooting the available bandwidth when it enters the slow start
phase next time.

8

1.3.3 Round-trip Time Estimation

Estimation of round-trip time (RTT) plays an important role in the TCP recovery
algorithm. Round-trip times experienced by a connection usually consists of a propagation
delay and queuing delay. While propagation delays usually are constant, queuing delays
can vary because queues at routers along the path of a connection can grow or shrink over
time.

Due to the variable queuing delays, it is not easy for the end systems to estimate the
round-trip time accurately. However, an accurate estimation of round-trip times allows
TCP to set its timers efficiently. An underestimation of round-trip times can lead to timer
intervals that are too short. Since timers are used to detect loss of data packets at the
sender upon their expiration, short timers will cause unnecessary retransmissions of data
packets and waste of bandwidth. On the other hand, an overestimation of round-trip times
can cause the sender to wait too long to detect a packet loss and increase experienced delay
for applications running on top of TCP. Since the RTT of a connection can change over
time, TCP needs to dynamically adjust its RTT estimate. TCP adjusts its RTT estimate
to the trend of RTT measurements but uses a low pass filter to smooth out fluctuations in
RTT measurements. For a RTT measurement mi at time i, the RTT estimate ai at time i

is updated as follows:

ai = (1− g)ai−1 + gmi (1.1)

where g is a constant (0 < g < 1). TCP also estimates and updates the variation vi of
round-trip times for measurement at time i as follows:

vi = vi−1 + g(|mi − ai|) (1.2)

The retransmission timeout (RTO) has to be on the order of the round-trip time of a
connection to allow for data packets to arrive at the receiver and for their corresponding
ACK packets to come back to the sender. Van Jacobson proposed that the retransmission
timeout has to be computed from both the mean and variance of RTT measurements to
reflect wide fluctuations in RTTs [JK88]. The retransmission timeout RTOi at time i is
computed as follows:

RTOi = ai + 4vi (1.3)

1.4 Active Queue Management

Although its service is critical to the performance of many applications, the Internet
has mainly relied on the end systems’ cooperative behavior to deal with congestion when it

9

occurs. Specifically, the end systems’ TCP transport protocol is the sole agent responsible
for reducing the end systems’ sending rate when congestion is present in the Internet. When
the TCP congestion control algorithm detects packet losses, it assumes that these losses
are caused by queue overflows in routers due to congestion. The TCP congestion control
algorithm helps relieve congestion in the Internet by reducing the end systems’ sending
rate until the end systems experience no further packet losses. This cooperative behavior,
performed independently by all active end systems simultaneously, and TCP’s conservative
probing algorithm for available bandwidth have been the key to the operational success of
the Internet.

Nevertheless, as the Internet grew, networking researchers and the Internet Engineering
Task Force (IETF) were concerned about the scalability of the pure end systems’ congestion
control. For example, end systems’ congestion control algorithms only detect and react to
a congestion event after a router’s queue overflows. Furthermore, since each individual
connection’s view of the network is limited, and each connection usually has a only small
proportion of the bandwidth on a high-speed link, inferring congestion at the end systems
is difficult and imprecise. Thus, congestion control implemented solely at the end systems
is inefficient.

Beyond efficacy, networking researchers were also concerned about other disadvantages
of drop-tail FIFO. First, drop-tail FIFO only limits the aggregate transmission rate of all
flows at a bottleneck link by dropping arriving packets when this aggregate rate exceeds the
link capacity and the queue is full. However, drop-tail FIFO does not control and limit the
transmission rate of each flow. Because of this, drop-tail FIFO tolerates unfairness among
flows and potentially allows high-bandwidth flows to dominate low-bandwidth flows. In
extreme situations when one or a few high-bandwidth flows do not react to packet drops as
an indication of network congestion, these few flows can consume the entire bandwidth of
a link while all other flows reacting to congestion indications reduce their cwnd to 0. Flows
that react to congestion indications are called responsive flows. On the other hand, flows
that ignore congestion indications are called unresponsive flows.

Second, drop-tail FIFO can cause synchronization among flows because when the queue
is full, all arriving packets from different flows are dropped at the same time. Flow ex-
periencing packet drops reduce their transmission rates at the same time and then start
increasing their transmission rates at the same time after congestion has abated. Eventu-
ally, these flows reach the full queue and reduce their transmission rates at the same time
again. As this process perpetuates, these flows effectively synchronize their transmission
rates. Synchronizations among flows can cause unnecessarily bursty traffic which leads to
undesired effects such as high packet loss rates and low link utilizations.

Because of the problems discussed above, researchers and the IETF proposed active
queue management (AQM) as a mechanism for detecting congestion inside the network.

10

Further, they have strongly recommended the deployment of AQM in routers as a measure
to preserve and improve Internet performance [BCC+98, Flo00a]. AQM algorithms run on
routers and detect incipient congestion by typically monitoring the instantaneous or average
queue size. When the average queue size exceeds a certain threshold but is still less than
the capacity of the queue, AQM algorithms infer congestion on the link and notify the
end systems to back off by proactively dropping some of the packets arriving at a router.
Alternately, instead of dropping a packet, AQM algorithms can also set a specific bit in
the header of that packet and forward that packet toward the receiver after congestion has
been inferred. Upon receiving that packet, the receiver in turns sets another bit in its next
ACK. When the sender receives this ACK, it reduces it transmission rate as if its packet
were lost. The process of setting a specific bit in the packet header by AQM algorithms
and forwarding the packet is also called marking. A packet that has this specific bit turned
on is called a marked packet.

End systems that experience the marked or dropped packets reduce their transmission
rates to relieve congestion and prevent the queue from overflowing. Some AQM algorithms
also attempt to detect and control unresponsive flows. With AQM, congestion is prevented
before it actually occurs. Thus, the deployment of AQM could lead to a high throughput,
low loss, and low queuing delay network. This would particularly improve performance of
interactive applications such as Web browsing and real-time conferencing [BCC+98].

Most AQM algorithms avoid global synchronization among flows by introducing random-
ness in the decision of marking or dropping arriving packets. When congestion is suspected
on a link, most AQM algorithms do not mark or drop arriving packets deterministically but
randomly. The marking or dropping probability for an arriving packet usually depends on
the estimated degree of congestion on the link.

1.5 Evaluation of AQM Algorithms

Although many AQM algorithms have been proposed in recent years, none of them
have actually been widely deployed. While popular AQM algorithms such as Random
Early Detection (RED) [FJ93] or its variants are implemented by most router vendors and
shipped in virtually every router, AQM is rarely turned on. The reason is that AQM
algorithms are usually complex and their effects on network and application performance
are not well understood. For example, AQM algorithms are typically characterized by
several parameters and little is known about how to set these parameters to achieve good
performance for TCP applications.

Although guidelines and recommended parameter settings are provided for most AQM
algorithms (e.g., [Flo00b]), most of these guidelines and recommended parameter settings
have been shown to be suboptimal in practice or even harmful in some cases [MBDL99,

11

CJOS01, LAJS03]. For example, in one study, good parameter settings for the prominent
AQM algorithm RED that improved network and application performance were only found
by exhaustive search [CJOS01]. Furthermore, these good parameter settings were signifi-
cantly different from the parameter settings recommended by the algorithm designers. It
is believed that network operators do not have confidence in AQM and the recommended
parameter settings for AQM algorithms because none of the proposed AQM algorithms
have been thoroughly evaluated under realistic conditions in real networks.

A reason for the lack of understanding of the effects of AQM algorithms is that most
existing evaluations were done only by simulation and only demonstrated how AQM al-
gorithms work in simplistic environments with a small number of flows. Further, traffic
models used in existing evaluation studies usually do not capture complex characteristics
of real Internet traffic. Thus, it is unclear whether and how AQM algorithms work under
realistic conditions such as high-speed links and in the presence of a large aggregation of
flows. Furthermore, there has been no systematic or comparison study of AQM algorithms
in a complex and realistic environment. Thus, although many researchers agree that the
deployment of AQM is necessary for stability and performance of the Internet, there have
been many debates about which AQM algorithm is the right one for deployment.

Since none of AQM algorithms have been evaluated in real networks, there is currently
still a lack of fundamental understanding of the interactions between AQM and end systems
in a complex and realistic environment. For example, the models for traffic and propagation
delays used in this dissertation were carefully derived from large-scale measurements studies.
These models contain characteristics of real Internet traffic and allow a realistic evaluation
of network protocols and mechanisms in a laboratory network. Further, while many studies
have focused on whether AQM algorithms can control and stabilize router queues, the
effects of AQM algorithms on the performance of TCP applications such as response times
or connection durations have been largely ignored. Nonetheless, these effects of AQM
algorithms on TCP applications can be more important to Internet users than stabilization
of router queues.

In this dissertation, I thoroughly investigate the effects of a large collection of promi-
nent AQM algorithms on the performance of TCP applications in a complex and realistic
environment with a rich traffic mix. The AQM algorithms that I investigate are:

• Approximate Fairness through Differential Dropping (AFD) [PBPS03],

• Adaptive Random Early Detection (ARED) [FGS01],

• Adaptive Virtual Queue (AVQ) [KS01],

• BLUE [FKSS02],

• Proportional Integral controller [HMTG01],

12

• Random Exponential Marking (REM) [ALLY01],

• and RED with In and Out with Preferential treatment to Short flows (RIO-PS)
[GM01].

The outcome of my study sheds light on the effects of these algorithms on network
and application performance. For example, I investigate in this dissertation why ARED,
a contemporary redesign of the prominent RED algorithm, consistently gave poor perfor-
mance. Based on the findings in my investigation, I propose a number of modifications for
ARED that achieve significant performance improvement. Further, I design two new AQM
algorithms and demonstrate that they outperform all existing AQM algorithms.

1.6 Thesis Statement

Active queue management has been proposed by networking researchers and the Inter-
net Engineering Task Force as a mechanism to preserve and improve the performance for
Internet applications. Many AQM algorithms have been proposed in recent years but none
of them have been thoroughly investigated under realistic conditions in a real network. For
this reason, there is currently a lack of understanding of the effects of AQM algorithms on
network and application performance.

In this dissertation, I carry out a performance analysis for a large collection of AQM
algorithms and thoroughly investigate the effects of these algorithms on the performance of
TCP applications under realistic conditions in a real network. I show that existing AQM
algorithms only obtain significant performance improvement for TCP applications when
they are used in combination with the ECN signaling protocol. Without ECN, existing
AQM algorithms only give a small performance improvement over conventional drop-tail
queues. I then show that a new approach in AQM designs is necessary to deliver good
performance without relying on ECN and demonstrate how that is done.

1.7 Summary of Results and Contributions

Experimental results in this dissertation supports the following findings. These findings
are based on the premise that response times and connection durations are the primary
performance metric for TCP applications and that other performance metrics such as loss
rates and link utilization are secondary.

• At 80% load or below, drop-tail obtained performance that was competitive to that of
all AQM algorithms. Further, since drop-tail closely approximated the performance of
the uncongested network at 80% load, there appears to be no need for AQM algorithms
at 80% load or lower.

13

• At 90% load or higher, PI gave a small performance improvement over drop-tail and
other AQM algorithms. However, when PI and REM were operated in the mark-
ing mode, they gained significant performance improvement and significantly outper-
formed drop-tail.

• ARED, the arguably most prominent AQM algorithm, obtained very poor perfor-
mance and consistently gave poorer performance than drop-tail at all loads.

• Two modification of the ARED algorithms proposed in this dissertation, ARED “byte
mode” and ARED/ECN “new gentle”, outperformed drop-tail and gave significant
performance improvement over the original ARED algorithm.

• Differential treatment of flows improved performance for a majority of flows signifi-
cantly. For example, the Differential Congestion Notification (DCN) algorithm pro-
posed in this dissertation approximated the performance of the uncongested network
even at very high loads. On contrary to most existing AQM algorithms, DCN did not
rely on marking packets in order to deliver good performance for TCP applications.

1.8 Organization of Dissertation

The rest of this dissertation is organized as follows. Chapter 2 provides a survey of
AQM algorithms and reviews relevant related work. Chapter 3 explains the experimental
methodology that was used to investigate the effects of AQM algorithms on the performance
of TCP applications. Chapter 4 and 5 show the effects of AQM algorithms on the perfor-
mance of Web application, a specific TCP application but arguably the most important
one. Chapter 6 demonstrates the effects of AQM algorithms on the performance of TCP
applications. Chapter 7 investigates the interaction between AQM algorithms and link-level
buffering. Chapter 8 summarizes and concludes the dissertation.

14

Chapter 2

Background and Related Work.

AQM has been a very active research area in the last decade and a large number of
AQM algorithms have been proposed for different purposes. At a high level, existing AQM
algorithms were designed for the following purposes: stabilizing router queues, approximat-
ing fairness among flows, controlling unresponsive high-bandwidth flows, and improving
performance for short connections. In this Chapter I will review the most prominent AQM
algorithms in these categories1. As briefly discussed in section 1.4, AQM algorithms can
notify the end systems of impeding congestion by dropping arriving packets as an implicit
congestion indication or by setting a specific bit in the packet headers as an explicit con-
gestion indication. This explicit mechanism for delivering congestion indications to end
systems will be reviewed in section 2.5. I also review existing evaluation studies for AQM
algorithms in section 2.6.

2.1 Stabilizing Router Queues

The primary goal of AQM is to replace drop-tail and prevent queue overflows (as dis-
cussed in section 1.4, drop-tail allows queue overflows to occur and can cause negative effects
on network and application performance). But beyond this goal, many AQM algorithms
also attempt to stabilize router queues to limit queuing delay for packets. The incentives of
stabilizing router queues is the ability to provide quality of service (QoS) [BCS94, BBC+98].
A challenge for AQM algorithms is that stabilization of router queues should not be achieved
at the expenses of decreased link throughput or increased packet loss rates. In this section,
I will review how prominent AQM algorithms in research literature attempt to accomplish
this challenge.

1Note that the categorization presented here is rather simplistic and some AQM algorithms can have
components that fall into different categories. In these cases, I will review the components of these AQM
algorithms in different categories.

16

2.1.1 Random Early Detection (RED)

The Random Early Detection (RED) algorithm was introduced in 1993 and was the
first AQM algorithm. Its purpose was to provide congestion avoidance and maintain the
network in a region of high throughput and low delay [FJ93]. RED is designed to work with
end systems’ congestion control algorithms such as TCP and uses packet marking or drop-
ping as a mechanism to provide feedback of congestion to the end systems. Furthermore,
RED attempts to keep the average queue size low but absorbs bursty traffic and transient
congestion by allowing some fluctuations in the actual queue size. RED also attempts to
avoid global synchronization by marking or dropping packets randomly. As explained in
section 1.4, global synchronization can occur when a queue overflows and all TCP con-
nections sharing a common link experience packet losses simultaneously. In this event, all
TCP connections reduce their window to one, go through slow start at the same time, and
stimulate global synchronization.

RED uses a weighted average queue size to detect congestion in the network. This
weighted average queue size is computed by running the instantaneous queue size through
a low-pass filter. The motivation for using the weighted average queue size rather than the
instantaneous queue size is to detect persistent congestion at a router but tolerate transient
congestion by allowing the instantaneous queue size to grow temporarily. With this design
guideline, RED avoids bias against bursty traffic (unlike drop-tail FIFO). When a packet
arrives at the router and the instantaneous queue size is not empty, the average queue size
is updated as follows:

avg ← (1− wq)avg + wqq (2.1)

where q, avg, and wq are the instantaneous queue size, the average queue size and the
coefficient for the low-pass filter.

If the instantaneous queue size is empty (the link has been idle for a period), the average
queue size is updated as follows:

avg ← (1− wq)mavg (2.2)

where m is the number of packets of average size that could have arrived to an empty
queue during the idle period.

Initially, the recommended value for the coefficient of the low-pass filter was 0.002.
However, revised guidelines for setting RED parameters recommend a value for the coef-
ficient of the low-pass filter such that the weighted average queue size reaches 63% of the
instantaneous queue size within ten round-trip times [FGS01].

After computing the average queue size by using either equation 2.1 or 2.2, the RED
algorithm executes the pseudo code shown in figure 2.1 to determine the dropping or marking

17

if q < minth then
p← 0

else if minth ≤ q ≤ maxth then
p← maxp(q −minth)/(maxth −minth)

else
p← 1

end if

Figure 2.1: Pseudo code for RED

Parameters Description
wq Coefficient of a low-pass filter for computing the average

queue size
maxp Maximum mark or drop probability when average queue

size varies between minth and maxth

minth Low queue threshold for computing drop or mark probability
for arriving packets

maxth High queue threshold for computing drop or mark probability
for arriving packets

Table 2.1: RED Parameters

probability for arriving packets. The parameters for RED are summarized in table 2.1.

When the weighted average queue size is smaller than a minimum threshold (minth),
RED infers that there is no congestion in the network. In this case, no arriving packets
are marked or dropped. When the weighted average queue size is between the minimum
threshold (minth) and the maximum threshold (maxth), RED infers an incipient congestion
in the network and marks or drops arriving packets randomly. The probability of marking
or dropping packets is proportional to the weighted average queue size and varies linearly
between 0 and a maximum drop probability (maxp, typically 0.10). If the weighted average
queue size exceeds maxth, RED infers a severe congestion in the network and drops all ar-
riving packets. Figure 2.2 demonstrates different operational regions of the RED algorithm
when the average queue length is smaller than minth, between minth and maxth, and larger
than maxth. Obviously, the actual size of the queue must be greater than maxth to absorb
transient bursts of packet arrivals.

2.1.2 Random Early Detection with “Gentle Mode”

Firoiu and Borden used the TCP throughput equation developed by Padhye et al. to
estimate the average queue size of a router carrying n TCP flows as a function of the loss
rate p: q = G(p) [FB00]. The throughput of a TCP flow is expressed as a function of
round-trip time R and packet loss rate p [PFTK98].

18

 200

 300

 400

 500

 2100 2101 2102 2103 2104 2105

R
ou

te
r’s

 q
ue

ue
 le

ng
th

 (
pa

ck
et

s)

Time (Seconds)

minth

maxth

No
drop

Early
drop

Forced
drop

Instantaneous queue length
Average queue length

Figure 2.2: Operational regions of RED

T (p, R) = M

1−p
p + W (p)

2 + Q(p, W (p))

R(b
2W (p) + 1) + Q(p,W (p))F (p)T0

1−p

if W (p) < Wmax (2.3)

T (p, R) = M

1−p
p + Wmax

2 + Q(p, Wmax)

R(b
8Wmax + 1−p

pWmax
+ 2) + Q(p,Wmax)F (p)T0

1−p

otherwise (2.4)

where M is the average packet size, T0 is the initial TCP time-out, b is the number of
packets acknowledged by an ACK (usually 2), and Wmax is the maximum window of a TCP
receiver. W , Q, and F also have the following expressions.

W (p) =
2 + b

3b
+

√
8(1− p)

3bp
+ (

2 + b

3b
)2 (2.5)

Q(p, w) = min

(
1,

(1− (1− p)3)(1 + (1− p)3)(1− (1− p)(w−3))
1− (1− p)w

)
(2.6)

F (p) = 1 + p + 2p2 + 4p3 + 8p4 + 16p5 + 32p6 (2.7)

Further, Firoiu and Borden modeled the loss rate p of a router running the RED algo-

19

if q < minth then
p← 0

else if minth ≤ q ≤ maxth then
p← maxp(q −minth)/(maxth −minth)

else if maxth ≤ q ≤ 2maxth then
p← maxp + (1−maxp)(q −maxth)/maxth

else
p← 1

end if

Figure 2.3: Pseudo code for GRED

rithm as a function of the average queue size q: p = H(q). They pointed out that a system
consisting of n TCP flows and a router running the RED algorithm eventually converges to
an equilibrium point (ps, qs) that satisfies the two equations qs = G(ps) and ps = H(qs) (ps

and qs are the packet loss rate and average queue size at the equilibrium point).

However, if ps > maxp, the equilibrium point of a system cannot be reached due to
the discontinuity in the drop probability of the RED algorithm (increasing from maxp to
1.0 immediately when maxth is reached). In this case, the router queue oscillates between
being empty and being full and can cause undesirable or harmful effects [FB00].

To fix this problem, Floyd proposed a modification to the original RED algorithm that
introduced a “gentle mode” in which the mark or drop probability increases linearly between
maxp and 1.0 as the average queue length varies between maxth and 2maxth [Flo00b]. The
new algorithm is expressed in pseudo code in figure 2.3.

The new RED algorithm with the “gentle mode” is called “Gentle RED” or GRED.
Figure 2.4 shows the drop probability function of RED and GRED. As can be seen in figure
2.4, the GRED algorithm does not have any discontinuity in its drop probability function.
This can potentially fix the queue instability problem that was pointed out by Firoiu and
Borden.

2.1.3 Adaptive Random Early Detection (ARED)

Feng et al. argued that a weakness of RED is that it does not take into consideration
the number of flows sharing a bottleneck link [FKSS99]. As discussed in Chapter 1, a TCP
flow in congestion avoidance reduces its transmission rate by half when it experiences a
packet mark or drop. If the bandwidth of a bottleneck link is shared equally by n flows
(each flow receives 1/n bandwidth of the link), a single packet mark or drop causes one
flow to reduce its transmission rate to 0.5n−1 and reduces the offered load by a factor of
(1 − 0.5n−1). It is obvious that as n increases, the effect of a packet mark or drop on
reducing the aggregate transmission rates of n TCP flows decreases. Thus, when n is large,
RED either has to incur a high packet loss rate or is not effective in reducing load on a

20

 0

 1

 0

D
ro

p
pr

ob
ab

ili
ty

Average queue length (packets)

maxp

minth maxth 2*maxth

RED
Gentle RED

Figure 2.4: Drop probability function of RED and Gentle RED

congested link and in controlling the queue length. On the other hand, when n is small,
RED can be too aggressive, i.e., it drops too many packets, and can cause underutilization
of an Internet link.

Feng et al. concluded that RED needs to be dynamically tuned as the of the traffic on
a link changes, i.e., the number of flows on an Internet link is not known a priori [FKSS99].
They proposed a self-configuring algorithm for RED by adjusting maxp in 1999. In their
algorithm, maxp is adjusted every time the average queue length falls out of the target range
between minth and maxth [FKSS99]. When the average queue length is smaller than minth,
maxp is decreased multiplicatively to reduce RED’s aggressiveness in marking or dropping
packets; when the queue length is larger than maxth, maxp is increased multiplicatively.
This algorithm is expressed in pseudo code in figure 2.5. α and β in the pseudo code are
constants that have to be chosen by network operators.

Floyd et al. improved upon Feng’s original adaptive RED algorithm by replacing the
MIMD (multiplicative increase multiplicative decrease) approach with an AIMD (additive
increase multiplicative decrease) approach for adapting maxp slowly in 2001 [FGS01]. The
pseudo code for updating maxp proposed by Floyd et al. is shown in figure 2.6. They also
provided guidelines for choosing minth, maxth, and the coefficient of the low-pass filter for
computing the weighted average queue size. The Adaptive RED version proposed by Floyd

21

On every update for queue average q:
if minth < q < maxth then

status← Between
maxp ← 0

end if
if q < minth && status! = Below then

status← Below
maxp ← maxp/α

end if
if q > maxth && status! = Above then

status← Above
maxp ← maxpβ

end if

Figure 2.5: Pseudo code for updating maxp by Feng et al.

On every update interval (0.5 seconds) for maxp:
if q > minth + 0.6(maxth −minth) && maxp ≤ 0.5 then

maxp ← maxp + min(0.01,maxp/4)
else if q < minth + 0.4(maxth −minth) && maxp ≥ 0.01 then

maxp ← maxp/β
end if

Figure 2.6: Pseudo code for updating maxp by Floyd et al.

et al. (referred to herein as “ARED”) also includes the “gentle mode” that was discussed in
2.1.2. The parameters for the ARED algorithm proposed by Floyd et al. are summarized
in table 2.2.

According to Floyd et al., one of the original RED algorithm’s main weaknesses is
that it cannot control the router’s average queue size effectively and predictably. When
maxp is high or congestion on the link is light, RED keeps the average queue size near
minth. On the other hand, when maxp is low or the link is heavily congested, RED’s
average queue size grows to maxth. Floyd et al. claimed that ARED does not have this
problem since it dynamically adjusts maxp. They also demonstrated via simulations that
ARED can achieve good and predictable performance without requiring hand-tuning its
parameter settings. Further, they claimed that unlike RED, ARED is relatively insensitive
to parameter settings [FGS01].

2.1.4 Proportional Integral (PI) controller

Hollot et al. applied control theory to design a Proportional Integral (PI) controller that
attempts to avoid queue overflows or an empty queue in 2001. They argued that a queue
overflow or an empty queue are undesirable because a queue overflow causes packet losses

22

Parameters Description
wq Coefficient of a low-pass filter for computing the average

queue size
β Decrease factor for adapting maxp

minth Low queue threshold for computing drop or mark probability
for arriving packets

maxth High queue threshold for computing drop or mark probability
for arriving packets

Table 2.2: ARED parameters

and an empty queue results in underutilization of the link. The PI algorithm regulates the
queue length around a target value called the “queue reference” (qref) [HMTG01]. Further,
PI also attempts to keep the queue and its variation small to reduce the queuing delay. PI
uses instantaneous samples of the queue length taken at a constant sampling frequency as
its input. Figure 2.7 demonstrates how PI samples the router’s instantaneous queue length
at constant intervals.

The mark or drop probability is computed as

p(kT) = α(q(kT)− qref)− β(q((k − 1)T)− qref) + p((k − 1)T) (2.8)

where p(kT) is the mark or drop probability at the kth sampling interval, q(kT) is the
instantaneous sample of the queue length and T is reciprocal of the sampling frequency. The
final mark or drop probability for a packet is scaled the size of that packet to approximate
the theoretical fluid model.

parriving packet = p(kT)× pktsizearriving packet

pktsizeaverage
(2.9)

A close examination of equation 2.8 shows that the drop probability increases in sampling
intervals when the queue length is higher than its target value (when q(kT) > qref , q(kT)−
qref > 0 and causes p(kT) to increase). Furthermore, the drop probability also increases
if the queue has grown since the last sample (reflecting an increase in network traffic).
Conversely, the drop probability in a PI controller is reduced when the queue length is
lower than its target value or the queue length has decreased since its last sample. The
parameters for PI are summarized in table 2.3. The parameters α, β, and T depend on the
link capacity, the maximum round-trip time, and the expected number of active flows using
the link.

Hollot et al. demonstrated via a number of simulations that PI can stabilize the router
queue around a given queue reference. On the other hand, when the same simulations
were repeated with RED, RED either showed oscillatory behavior or sluggish behavior (the
router queue took a long time to converge to an equilibrium state). In particular, while PI

23

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 2100 2101 2102 2103 2104 2105

R
ou

te
r’s

 q
ue

ue
 le

ng
th

 (
by

te
s)

Time (Seconds)

Figure 2.7: Sampling operation of PI

Parameters Description
qref Target queue reference for the instantaneous queue
α and β Coefficients for PI equation
T Sampling interval for the instantaneous queue

Table 2.3: PI Parameters

24

managed to avoid queue overflows, RED was not effective in controlling the router queue
and allowed queue overflows to occur frequently in the simulations. This unstable behavior
of RED could be observed when the network load suddenly changed. Eventually, RED was
able to control the router queue and avoid queue overflows but RED needed a long period
to respond to changes in network load. Further, RED also showed oscillatory behavior in
some cases even when the network load was constant. Hollot et al. attributed these poor
behaviors of RED to its low-pass filter that is used for computing the weighted average
queue size.

2.1.5 Random Exponential Marking (REM)

Athuraliya et al. proposed the Random Exponential Marking (REM) algorithm in 2001
[ALLY01]. REM attempts to obtain high utilization, low loss, and low queuing delay. The
key insight is that REM uses a congestion measure called “price” that is decoupled from
performance measures such as packet loss or queue length. REM periodically samples the
router queue and updates the congestion measure to reflect any mismatch between packet
arrival and departure rates at the link (i.e., the difference between the demand and the
service rate), and any queue size mismatch (i.e., the difference between the actual queue
length and its target value).

Given the kth samples of the router queue and the mismatch between packet arrival and
departure rates, the congestion measure p(kT) at time kT is computed by:

p(kT) = max(0, p((k − 1)T) + γ(α(q(kT)− qref) + x(kT)− c)) (2.10)

where c is the link capacity (in packet departures per unit time), q(kT) is the queue
length, and x(kT) is the packet arrival rate, all determined at time kT . As with ARED and
PI, the control target is only expressed by the queue size. The mark or drop probability in
REM is defined as

prob(kT) = 1− φ−p(kT) (2.11)

where φ > 1 is a constant. The parameters for REM are summarized in table 2.4.

In overload situations, the packet arrival rate exceeds the link capacity and the router
queue grows. Because of this, the congestion price increases and more packets are dropped
or marked to signal TCP senders to reduce their transmission rate. Conversely, when
congestion abates, the packet arrival rate will eventually become smaller than the link
capacity and the router queue shrinks. In this case, the congestion price is reduced and
REM drops or marks fewer packets. This allows the senders to potentially increase their
transmission rates.

When there is a positive rate mismatch, i.e., the packet arrival rate is higher than the

25

Parameters Description
qref Target queue reference for the instantaneous queue
α and γ Constants for computing the “congestion price”
φ Constant for computing the mark or drop probability
T Sampling interval for the instantaneous queue

Table 2.4: REM Parameters

link capacity, over a time interval, more packets are backlogged at the router and cause the
router queue to increase. Conversely, a negative rate mismatch over a time interval will
drain the queue. Thus, REM is similar to PI because the rate mismatch can be detected by
comparing the instantaneous queue length with its previous sampled value. Furthermore,
when drop or mark probability is small, the exponential function can be approximated by
a linear function [Ath02].

2.1.6 Adaptive Virtual Queue (AVQ)

Kunniyur and Srikant proposed a rate-based AQM scheme called Adaptive Virtual
Queue (AVQ) in 2001 [KS01]. They argued that since PI detects congestion and adapts
the mark or drop probability by monitoring the router queue, PI performs poorly when the
router queue size is small. In other words, PI delivers poor performance when it attempts
to control the router queue around a small target queue threshold. Kunniyur and Srikant
proposed the AVQ algorithm that attempts to achieve the same performance goals as PI
but can operate with small router buffers.

AVQ attempts to control a router queue by matching the input rate and the link capacity.
AVQ decouples its mark or drop probability from the physical router queue by maintaining
a virtual queue that is serviced by a virtual link capacity. Because of this feature, Kunniyur
and Srikant argued that AVQ can control a router queue even with a small router buffer.
The virtual link capacity that services the virtual queue is adjusted based on the packet
arrival rate, i.e., the input rate. The virtual capacity is reduced when the input rate is higher
than the actual link capacity. When the input rate is lower than the actual link capacity,
the virtual link capacity is increased. A packet is marked or dropped when it arrives at a
full virtual queue. When congestion occurs, more packets are marked or dropped because
the input rate is higher than the actual link capacity causing the virtual link capacity to
decrease. This in turn causes the end systems’ TCP to back off to relieve congestion at the
router.

Let α be a positive constant and let λ, C, and γ be the packet arrival rate, the physical
link capacity, and the desired utilization on the link. Further, let C̃ and ˙̃C be the virtual
queue capacity and its derivative. The virtual capacity C̃ is updated by AVQ on each packet
arrival as follows.

26

Define:
B = buffer size
s = arrival time of previous packet
t = current time
b = number of bytes in current packet
V Q = number of bytes currently in the virtual queue

On every packet arrival:
V Q← max(V Q− C̃(t− s), 0)
if V Q + b > B then

Mark or drop the arriving packet in the physical router queue
else

Queue the arriving packet in the physical queue
Update the virtual queue: V Q← V Q + b

end if
C̃ ← max(min(C̃ + α× γ × C(t− s), C)− α× b, 0)
s← t

Figure 2.8: Pseudo code for AVQ

Parameters Description
γ The desired utilization at a link
α Coefficient for computing the virtual queue capacity

Table 2.5: AVQ Parameters

˙̃C = α(γC − λ) (2.12)

The pseudo code for equation 2.12 and the parameters for AVQ are shown in figure 2.8
and 2.5.

Kunniyur and Srikant performed simulations in the network simulator ns-2 to compare
AVQ against PI, REM, and RED. Their simulation results showed that AVQ responded
faster to network suddenly changed than PI, REM, and RED while achieving similar loss
rates and link utilization as the other AQM algorithms. Further, when the network load
changed gradually, AVQ obtained the lowest packet losses and maintained the smallest
router queue while achieving similar link utilization as the other AQM algorithms.

2.1.7 Stabilized Random Early Drop (SRED)

As in the case of RED, the Stabilized Random Early Drop (SRED) algorithm proposed
by Ott et al. in 1999 attempts to realize the goals for AQM set forth in IETF’s RFC 2309
such as high throughput and low queuing delay by stabilizing the queue length around a
queue threshold [OLW99]. SRED stabilizes the router queue by dropping arriving packets

27

with a drop probability dependent on the network load. When the network load is heavy
and more packets arrive than the router can forward, SRED increases the drop probability
to stabilize the router queue. On the other hand, SRED reduces the drop probability when
the network load is light. SRED measures the network load by monitoring the instantaneous
router queue and estimating the number of active connections on a link.

In order to estimate the number of active flows, the SRED algorithm keeps the headers
of recent packet arrivals in a cache table called a “zombie list”. When a packet arrives, it
is compared with a randomly chosen packet from the zombie list. If the two packets are of
the same flow, a “hit” is declared. On the tth packet arrival, Hit(t) is 1 if there is a hit
and Hit(t) is 0 otherwise. Further, if Hit(t) is 0, the packet header in the zombie list is
probabilistically replaced by the header of the new packet.

Let α be a constant (0 < α < 1), the hit frequency P (t) at time t is computed as

P (t) = (1− α)P (t− 1) + αHit(t) (2.13)

Ott et al. observed that a large number of active connections results in a low hit
frequency and vice versa. Thus, they estimated the number of active connections as the
reciprocal of the hit frequency:

N =
1

P (t)
(2.14)

Ott et al. also assumed that TCP connections fairly share the buffer at the router.
Given a target router buffer Q0 and the average congestion window of a TCP connection
cwnd, they had:

cwnd =
Q0

N
(2.15)

Further, they derived from their previous results [OKM96] that cwnd is inversely pro-
portional to the square root of the packet loss rate p.

cwnd ∼ 1
√

p
(2.16)

Combining 2.14, 2.15, and 2.16, Ott et al. arrived at the following equation used for
determining the drop probability for arriving packets:

pzap(q) =

pmax ×min
(
1, 1

(256×P (t))2

)
if 1

3B ≤ q < B

1
4pmax ×min

(
1, 1

(256×P (t))2

)
if 1

6B ≤ q < 1
3B

0 if 0 ≤ q < 1
6B

(2.17)

where q is the instantaneous router queue, B is the maximum queue size, and pmax is a
constant (0 < pmax < 1).

28

Upon packet loss (or if the router queue exceeds certain threshold) event:
if now − last update > freeze time then

pm ← pm + δ1

last update← now
end if
Upon link idle event
if now − last update > freeze time then

pm ← pm + δ2

last update← now
end if

Figure 2.9: Pseudo code for the BLUE algorithm

Although SRED stands in contrast to the original RED algorithm that does not adjust
its drop probability for arriving packets based on the estimated number of active flows,
SRED has the same spirit as the ARED algorithms proposed by Feng et al. and by Floyd
et al. However, unlike the ARED algorithms, SRED attempts to estimate the number of
active flows and uses this estimate to adjust the drop probability for arriving packets.

Ott et al. performed simulations to compare SRED with RED. They observed that as
the number of connections varied between 10 and 300 connections, the router queue was
independent of the number of connections with SRED. Even when the number of connections
reached 1000, the router queue was only slightly increased with SRED. On the other hand,
the router queue increased with the number of connections for RED. Further, RED allowed
the router queue to overflow or become empty frequently while SRED managed to avoid
these undesired behaviors.

2.1.8 BLUE

As in the case of the RED algorithm, the BLUE algorithm invented by Feng et al. in
2001 attempts to achieve low packet loss rates, low queuing delay, and high link utiliza-
tion [FKSS01a, FKSS02]. BLUE achieves these performance goals by adapting its marking
or dropping rate based directly on packet loss and link utilization rather than on the in-
stantaneous or average queue lengths. Thus, BLUE is different from other AQM algorithms
which use some information about queue length to control their marking or dropping rate.
BLUE uses a single probability pm for marking or dropping arriving packets. BLUE at-
tempts to adapt pm to provide appropriate feedback to the end systems. If the queue
continually overflows, BLUE increases pm to mark or drop packets more aggressively. If
the queue becomes empty, BLUE decreases pm. The pseudo code for BLUE is shown in
figure 2.9. The main parameters for BLUE are shown in table 2.6. δ1 and δ2 are constants
(0 < δ1, δ2 < 1 and δ1 � δ2).

Feng et al. performed simulations in ns-2 to compare BLUE and RED. Their simulation

29

Parameters Description
δ1 Incremental adjustment for pm

δ2 Decremental adjustment for pm

free time Minimum interval between two successive updates of pm

Table 2.6: BLUE Parameters

results showed that BLUE stabilized the router queue and achieved a high link utilization
and a low packet loss rate. On the other hand, RED was not effective in controlling the
router queue and allowed overflows to occur frequently. Because of this, RED gave a high
packet loss rate. Further, RED also gave lower link utilization than BLUE because periods
of packet loss were often followed by periods of underutilization as TCP flows reduced their
transmission rates.

Feng et al. also performed experiments with long-lived TCP flows on a congested 100-
Mbps link in a small testbed consisting of 6 computers. They obtained experimental results
that were similar to their simulation results and concluded that BLUE outperformed RED.

2.2 Approximating Fairness among Flows

Enforcing fairness among flows and providing quality of services (QoS) have been a
challenging goal in networking research in the last 20 years. Early approaches to achieving
this goal such as Weighted Fair Queuing (WFQ) [DKS89] or Generalized Processor Sharing
(GPS) [PG93] used separate packet queues and state for each flow and serviced these queues
in a round-robin manner2. When a queue is serviced, packets from that queue are dequeued
and scheduled for transmission. Because of this, these algorithms are called scheduling
algorithms.

An obstable for the deployment of scheduling algorithms is their implementation over-
head. As links peed and the number of flows continue to grow, it becomes impractical
to maintain separate packet queues and state for each flow. Newer scheduling algorithms
such as Deficit Round Robin (DRR) [SV95], Core-Stateless Fair Queueing (CSFQ) [SSZ98],
and Core-Stateless Guaranteed Throughput (CSGT) [KV03] achieved lower complexity by
approximating the fair allocation of bandwidth for flows but still required a certain amount
of implementation overhead. For this reason, a number of AQM algorithms have been pro-
posed to approximate fairness among flows with a small overhead. In this section, I will
review the prominent AQM algorithms in this category and discuss their trade-offs between
complexity and accuracy.

2It is also possible to service queues in a weighted round-robin manner to provide certain flows with a
larger allocation of bandwidth than the fair share.

30

Parameters Description
wq Coefficient of a low-pass filter for computing the average

queue size
maxp Maximum mark or drop probability when average queue

size varies between minth and maxth

minth Low queue threshold for computing drop or mark probability
for arriving packets

maxth High queue threshold for computing drop or mark probability
for arriving packets

minq Minimum number of packets each flow is allowed to have in the
router queue

Table 2.7: FRED Parameters

2.2.1 Flow Random Early Drop (FRED)

Lin and Morris evaluated the effects of RED on different traffic types such as unrespon-
sive, fragile (responsive and short-lived) and robust (responsive and long-lived) flows [LM97].
They pointed out that RED allows unfair allocation of bandwidth because it imposes the
same loss rate on all flows regardless of their bandwidths and their responses to losses. They
proposed the Flow Random Early Drop (FRED) [LM97] algorithm, a modified version of
RED, in 1997 that provides better protection than RED for responsive (fragile and robust)
flows. Further, FRED was also able to isolate and control unresponsive greedy flows better
than RED.

FRED operates like RED in that it calculates the drop probability as a function of the
weighted average queue. However, FRED has the following additions. The algorithm has
two additional parameters minq and maxq. These parameters specify the minimum and
maximum number of packets that each flow is allowed to have in the router queue. Like
RED, FRED uses a low-pass filter to calculate a weighted average queue avg. Further,
FRED maintains a variable avgcq as an estimate of average per-flow packets in the router
queue (flows with fewer packets than avgcq in the router queue are favored over flows
with more). The algorithm also maintains per-flow packet counts qleni for each flow that
currently has packets in the router queue. Finally, FRED maintains a variable strikei for
each flow to count the number of times a flow has failed to respond to congestion notification.
The pseudo code and parameters for FRED are shown in figure 2.10 and table 2.7.

Lin and Morris performed simulations to compare FRED with RED. The first simulation
was conducted with 5 TCP flows and RED on a 45 Mbps bottleneck link in a heterogeneous
environment. Results of this simulation showed that long RTT flows received less than their
fair shares of bandwidth under RED. Another simulation was performed with a TCP flow
and a 8-Mbps constant bit rate UDP flow on a 10-Mbps congested link. Under RED, the
TCP flow was not able to obtain its fair share of bandwidth (5 Mbps in this case). When

31

For each arriving packet P:
Calculate average queue length
Obtain connection ID of the arriving packet: flowi ← connectionID(P)
if flowi has no state table then

qleni ← 0
strikei ← 0

end if
Compute the drop probability like RED: p← maxp

maxth−avg
maxth−minth

maxq ← minth

if (avg ≥ maxth) then
maxq ← 2

end if
if (qleni ≥ maxq||(avg ≥ maxth&&qleni > 2 ∗ avgcq)||(qleni ≥ avgcq&&strikei > 1))
then

strikei ← strikei + 1
Drop arriving packet and return

end if
if (minth ≤ avg < maxth) then

if (qleni ≥ max(minq, avgcq)) then
Drop packet P with a probability p like RED

end if
else if (avg < minth) then

return
else

Drop packet P
return

end if
if (qleni == 0) then

Nactive← Nactive + 1
end if
Enqueue packet P

For each departing packet P:
Calculate average queue length
if (qleni == 0) then

Nactive← Nactive− 1
Delete state table for flow i

end if
if (Nactive) then

avgcq ← avg/Nactive
else

avgcq ← avg
end if

Figure 2.10: Pseudo code for the FRED algorithm

32

Parameters Description
L Number of bin levels
N Number of accounting bins per level
∆ Incremental or decremental adjustment for pm

free time Minimum interval between two successive updates of pm

Table 2.8: SFB Parameters

FRED was used, the problems found in the two aforementioned simulations were corrected
and approximate fair shares of bandwidths were allocated to all flows at a bottleneck link.

2.2.2 Stochastic Fair BLUE (SFB)

Feng et al. proposed in 2001 the Stochastic Fair BLUE (SFB) algorithm that achieves an
approximation of fairness among flows [FKSS01b, FKSS02]. SFB achieves this by detecting
and rate-limiting unresponsive flows that use a large proportion of the bandwidth. SFB
maintains L×N counters called accounting bins that count the number of packets of different
groups of flows that arrived at the router recently.

The accounting bins are organized in L levels, each level has N bins. SFB maintains L

independent hash functions, each hash function is associated with one level of the accounting
bins. The L hash functions use the addresses and port numbers of the source and destination
of a packet to compute the bin index for that packet within each of the L levels. When a
packet arrives, packet counters of the bins indexed by the L hash functions are incremented.
Similarly, when a packet departs, packet counters of the bins indexed by the L hash functions
are decremented.

For each bin, a marking or dropping probability pm as in BLUE is maintained and
updated based on the queue occupancy of that bin. If the number of packets in a bin
exceeds a certain threshold, pm for that bin is increased. If the queue occupancy of a bin
becomes zero, pm is decreased.

High-bandwidth flows are identified when the marking or dropping probability pm of
their bins become 1. These high-bandwidth flows are then rate-limited. SFB works well
when the number of high-bandwidth flows is small. As pointed out by the algorithm de-
signers, when the number of high-bandwidth flows increases, a large number of bins become
occupied and low bandwidth flows that hash to these bins are incorrectly identified as high-
bandwidth and penalized [FKSS01b, FKSS02]. The pseudo code and parameters for SFB
are shown in figure 2.11 and table 2.8.

Feng et al. performed simulations with 400 TCP flows and one unresponsive UDP flow
on a 45-Mbps congested link in ns-2 to compare SFB with RED and Stochastic Fair Queuing
(SFQ) [McK90]. The transmission rate of the UDP flow was varied between 2 Mbps and
45 Mbps. Feng et al.’s results showed that SFB was able to identify and control the UDP

33

On every packet arrival:
Calculate hashes h0, h1, . . . , hL−1

Update bins at each level
for i = 0 to L− 1 do

if (B[i][hi].qlen > bin size) then
B[i][hi].pm ← B[i][hi].pm + ∆
Drop packet

else if (B[i][hi].qlen == 0) then
B[i][hi].pm ← B[i][hi].pm −∆

end if
end for
pmin ← min(B[0][h0].pm, B[1][h1].pm, . . . , B[L− 1][hL−1].pm)
if (pmin == 1) then

ratelimit()
else

Mark or drop packet with probability pmin

end if
On every packet departure:
Calculate hashes h0, h1, . . . , hL−1

Update bins at each level
for i = 0 to L− 1 do

if (B[i][hi].qlen == 0) then
B[i][hi].pm ← B[i][hi].pm −∆

end if
end for

Figure 2.11: Pseudo code for the SFB algorithm

34

flow and allocated approximated fair shares of bandwidth to all flows.

2.2.3 CHOKe

The CHOKe algorithm was proposed by Pan et al. in 2000 to provide each of the active
flows at a router with a fair allocation of bandwidth [PPP00]. CHOKe attempts to achieve
this goal by detecting and discriminating against flows that use more than their fair share.
Further, CHOKe accomplishes this goal without maintaining state and thus has a simple
implementation with minimal overhead.

CHOKe computes the weighted average queue avg by using a low-pass filter just as RED
and its variants do. The algorithm also has two thresholds minth and maxth like RED. If
the average queue is below minth, arriving packets are allowed to entered the queue. If the
average queue is above maxth, CHOKe (just like RED and its variants) drops all arriving
packets. When the average queue is between minth and maxth, CHOKe compares the
header of an arriving packet with the header of a randomly chosen packet in the queue.
If both packets belong to the same flow, both are dropped. Otherwise, the new packet is
dropped with a probability p that is computed exactly as in RED.

p = maxp ×
maxth − avg

maxth −minth
(2.18)

Figure 2.12 shows the pseudo code for CHOKe. Further, CHOKe has the same main
parameters as RED shown in table 2.1.

Pan et al. ran ns-2 simulations on a 1-Mbps link with 32 TCP flows and 1 UDP
flow. They varied the transmission rate of the UDP flow to allow different scenarios where
unfairness between flows could arise. Their simulation results demonstrated the RED and
drop-tail were not able to discriminate against the unresponsive flows. However, CHOKe
was able to drop a large portion of UDP packets and increase throughputs of the TCP flows.
Pan et al. showed that this conclusion also holds for simulations with multiple congested
links.

2.2.4 Approximate Fairness through Differential Dropping (AFD)

The Approximate Fairness through Differential Dropping (AFD) algorithm was pro-
posed by Pan et al. in 2003 to approximate fair bandwidth allocations over longer time
scales by using a history of recent packet arrivals to estimate flows’ sending rates [PBPS03].
The design of AFD allows a relatively simple implementation of the forwarding path but
requires an additional amount of memory for the recent history of arriving packets.

Packets of a flow are marked or dropped with a probability that is a function of the
flow’s estimated sending rate. The algorithm uses a cache table called “shadow buffer” to
store recent packet headers and uses these to estimate a flow’s rate. The estimated rate

35

On every packet arrival:
if avg ≤ minth then

Enqueue packet
else

Draw a random packet from the router queue
if Both packets from the same flow then

Drop both packets
else if avg ≤ maxth then

Enqueue packet with a probability p
else

Drop packet
end if

end if

Figure 2.12: Pseudo code for the CHOKe algorithm

of a flow is proportional to the number of that flow’s headers in the shadow buffer. When
a packet arrives, its header is copied to the shadow buffer with probability 1/s, where s

is the sampling interval, and another header is removed randomly from the shadow buffer.
While sampling reduces implementation overhead, it also reduces the accuracy in estimating
flows’ sending rate. This problem can be severe when most flows only send a few packets
per round-trip time.

AFD uses a control theoretic algorithm borrowed from PI [HMTG01] to estimate the
“fair share” of bandwidth that a flow is allowed to use. Like PI, AFD periodically samples
the router queue and updates the “fair share” of bandwidth. Let T be the sampling pe-
riod and q(kT) be the router queue at time kT , the fair share of bandwidth rfair(kT) is
determined by AFD using the following equation:

rfair(kT) = rfair((k − 1)T) + α(q((k − 1)T)− qref)− β(q(kT)− qref) (2.19)

where qref is the target queue reference, α and β are coefficients of the PI equation
discussed in section 2.1.4.

rfair(kT) is then used to compute the drop probability for arriving packets. If flow i has
mi packet headers in the shadow buffer, the drop probability for an arriving packet belongs
to flow i is computed as follows:

pi = max(0, (1− rfair × b

R×mi
)) (2.20)

where b is the size of the shadow buffer and R is the aggregate arrival rate of all flows.
The main parameters for AFD are described in table 2.9.

Pan et al. used ns-2 to perform simulations and compare AFD with RED and FRED.

36

Parameters Description
qref Target queue reference for the instantaneous queue
α and β Coefficients for “fair share” of a flow
T Sampling interval for the instantaneous queue
b Shadow buffer size

Table 2.9: AFD Parameters

First, simulations were run with 35 responsive flows on a 10-Mbps congested link. Next
simulations were performed with 350 responsive flows on a 100-Mbps congested link. The
35 and 350 responsive flows comprise of TCP flows with different AIMD coefficients and
binomial coefficients [BB01]. Finally, simulations were performed with a mix of responsive
and unresponsive flows. Simulation results of Pan et al. showed that AFD obtained a fairer
degree of fairness than FRED which is turn was fairer than RED to all flows. Further, AFD
was more effective than FRED and RED in identifying and controlling unresponsive flows.

2.3 Controlling Unresponsive High-Bandwidth Flows

AQM algorithms discussed in section 2.1 operates on the premise that end systems are
well-behaved and respond to congestion notifications (in form of packet drops or packet
mark as described in section 2.5) by reducing their transmission rates. However, selfish or
malicious users may choose to ignore the congestion notifications and continue to transmit
data at a high rate. This can lead to situations called congestion collapse where a single
unresponsive flow completely dominate a bottleneck link while all responsive flows such as
TCP continuously reduce their transmission rates upon packet losses and are eventually
starved [FF99]. In this section, I will review AQM algorithms that were proposed to control
unresponsive high-bandwidth flows and prevent congestion collapse.

2.3.1 Stabilized Random Early Drop (SRED)

As discussed previously in section 2.1.7, the SRED algorithm computes a “hit” for a
flow that an arriving packet belongs. Hits were used to estimate the number of active flows
on a bottleneck link and calculate the drop probability for arriving packets as described in
equation 2.17.

Since high-bandwidth flows are likely to have a large number of packet headers in the
“zombie list” (as described in section 2.1.7) and hence experience more hits, Ott et al.
pointed out in 1999 that hits can also be used to identify high-bandwidth flows [OLW99].
They proposed that the drop probability for an arriving packet should depend on the hits
of the flow that the packet belongs to. The previous equation 2.17 of SRED for computing
drop probability for an arriving packet is modified as follows.

37

pzap(q) =

pmax ×min
(
1, 1

(256×P (t))2

)
×
(
1 + Hit(t)

P (t)

)
if 1

3B ≤ q < B

1
4pmax ×min

(
1, 1

(256×P (t))2

)
×
(
1 + Hit(t)

P (t)

)
if 1

6B ≤ q < 1
3B

0 if 0 ≤ q < 1
6B

(2.21)

Ott et al. conducted simulations with 100 TCP flows and one high-bandwidth UDP flow
on a 45-Mbps link. Their simulation results showed that the UDP flow had a significantly
higher hit probability and experienced higher packet loss rate. The results also showed that
SRED was able to limit the amount of bandwidth that the UDP flow consumed.

2.3.2 RED with Preferential Dropping (RED-PD)

Mahajan et al. proposed the RED with Preferential Dropping (RED-PD) algorithm in
2001 to provide protection for responsive flows [MFW01]. RED-PD keeps state for just high-
bandwidth flows and preferentially drops packets of these flows. By preferentially dropping
packets from the high-bandwidth flows, RED-PD limits the amount of bandwidth that they
consume and improves the performance of responsive flows. Mahajan et al. argued that
this approach is effective because the majority of bytes on Internet links comes from a small
number of high-bandwidth flows. Hence, RED-PD only has to maintain a small amount of
state.

RED-PD is based on the assumption that high-bandwidth flows also have a high number
of packet drops in the RED drop history (i.e., packets that are dropped by the regular
RED algorithm). The algorithm uses a history of recent packet drops to identify high-
bandwidth flows and then monitors them. The history of recent packet drops is divided
into M consecutive intervals called lists. A flow is identified as high-bandwidth if it has
packet drops in at least K from the M lists. The length of a list is also called an epoch and
is calculated as

epoch length =
r√
1.5p

(2.22)

where p is the current drop rate and r is a target RTT of flows traversing the link. This
calculation is based on the assumption that a TCP flow experiences one packet loss out of
1/p packets [MFW01].

After being identified as high-bandwidth a flow is monitored until it does not experience
any packet drop in a certain time period. Packets of a high-bandwidth flow are dropped
with a higher probability than packets from other flows. Further, packets from a monitored
flow are dropped with a probability dependent on the sending rate of that flow. The absence
of packet drops of a high-bandwidth flow in the drop history indicates that that flow has
likely reduced its sending rate. In this case, that flow is released from the list of monitored

38

for each flow f (monitored flows that don’t appear in any of the M drop lists) do
P ← drop probability of f
if (P > 2×max decrease) then

P ← P −max decrease
else

P ← P/2
end if
if P ≥ PminThresh then

drop probability of f ← P
else

release f from the list of monitored flows
end if

end for

Figure 2.13: RED-PD’s pseudo code for reducing drop probability for a flow

flows. Figures 2.13 and 2.14 show RED-PD’s pseudo code that is used to adjust the drop
probability for packets from monitored flows. The parameters of RED-PD are summarized
in table 2.10.

Mahajan et al. conducted simulations in ns-2 to show that RED-PD was effective in
identifying high-bandwidth TCP and UDP flows. Further, RED-PD needed less than 0.5
seconds to identify high-bandwidth flows. Mahajan et al. also performed simulations with
a mix of TCP and UDP flows that have different round-trip times. They showed that
RED-PD was able to approximate fair shares of bandwidth to all flows. On the other hand,
RED was not able to allocate fair shares of bandwidth to all flows because RED does not
differentiate flows based on their sending rates.

2.4 Improving Performance for Short Connections

Guo and Matta pointed out a number of issues of TCP that adversely affect the per-
formance of short connections [GM01]. First, when a connection is being established, the
loss of SYN and SYN-ACK can only be recovered through a long period of TCP timeouts.
Further, after a connection is established, TCP has a conservative initial congestion window
and has to resort to the RTO mechanism discussed in Chapter 1 to detect and recover loss
of data packets (although the TCP congestion window is increased exponentially in the slow
start phase, most short connections only have a few data packets to exchange and these con-
nections are completed before duplicate ACKs, a more efficient mechanism than RTO, can
be used to detect and recover loss of data packets). Because of these reasons, short TCP con-
nections suffer significant performance degradation when experiencing packet loss. Guo and
Matta pointed out that this is an important problem because the distributions of flow sizes
of Internet traffic are heavy-tailed according to measurement studies [SCJO01, ZBPS02].

39

avg drop count: average number of drops for flows identified
p: current ambient drop rate
p← maxp

maxth−avg
maxth−minth

for each flow f (flows that appear in at least K of M drop lists) do
if (f is monitored) then

Pf ← drop probability of f
else

Pf ← 0
end if
dropf ← number of drops f
Pdelta ← (dropf/avg drop count)× p
if (Pdelta > Pf + p) then

Pdelta ← Pf + p
end if
Increase the drop probability of flow f by Pdelta

end for

Figure 2.14: RED-PD’s pseudo code for increasing drop probability for a flow

Parameters Description
wq Coefficient of a low-pass filter for computing the average

queue size
maxp Maximum mark or drop probability when average queue

size varies between minth and maxth

minth Low queue threshold for computing drop or mark probability
for arriving packets

maxth High queue threshold for computing drop or mark probability
for arriving packets

M Number of drop list
K Number of drop list above which a flow is classifed as

high-bandwidth
PminThresh Threshold for drop probability below which a

monitored flow is released
max decrease Maximum adjustment of drop probability for a

monitored flow

Table 2.10: RED-PD Parameters

40

2.4.1 RIO-PS

Guo and Matta designed an algorithm called RED with In and Out with Preferential
treatment to Short flows (RIO-PS) in 2001 that gives preferential treatment to short flows at
bottleneck links [GM01]. With preferential treatment, short flows experience a lower packet
loss rate than long flows. This allows short flows to reduce the probability of experiencing
timeouts and thus obtain performance improvement.

In RIO-PS, routers at the edge of a network (edge routers) maintain a table of per-flow
packet counters for flows entering the network. The flow table is periodically updated. If a
flow does not send any packets after an update interval Tu,, its packet counter is removed
from the flow table. Edge routers use a packet threshold Lt to determine whether a flow
is short or long. Packets belong to short flows are classifed as “Short” or “In”. Packets
from long flows are labeled as “Long” or “Out”. With this method, the first Lt packets of
a long flow are classified as “Short” packets. The value of Lt can be dynamically adjusted
so that the ratio between short and long flows (Short-to-Long-Ratio or SLR) achieves a
certain target value.

Routers inside the network (core routers) use the standard Red with In and Out (RIO)
algorithm [CF98]. RIO has two sets of RED parameters (min in,max in, Pmax in) and
(min out, max out, Pmax out) for In and Out packets. Further, the router maintains a
variable avg in for the average queue for the In packets and a variable avg total for the
total average queue for both In and Out packets. The drop probability for an In packet
depends on avg in whereas the drop probability for an Out packet depends on avg total.
The two sets of RED parameters for RIO are chosen such that Out packets are dropped
more aggressively than In packets. For example, this can be achieved by having min out <

min in, Pmax out > Pmax in, and max out < max in. Because of this, core routers drop
Long or Out packets with a higher probability than Short or In packets.

Guo and Matta conducted simulations in the network simulator ns-2 to compare RIO-PS
with RED and drop-tail. Simulations were run on a 100-Mbps congested link using a Web
traffic model developed by Feldmann et al. for the HTTP 1.0 protocol [FHGW99]. The
number of simulated Web browsing users was chosen so that the traffic they generated came
close to the capacity of the bottleneck link. Simulation results showed that RED obtained
better performance than drop-tail (i.e., the average response times were shorter under RED
than drop-tail). When compared to RED, RIO-PS improved the average response times
by 25% to 30% for small and medium object sizes (which constituted the majority of web
objects).

41

Parameters Description
wq Coefficient of a low-pass filter for computing the average

queue size
Pmax in Maximum mark or drop probability when avg in

varies between min in and max in

min in Low queue threshold for computing drop or mark probability
for arriving “In” packets

max∈ High queue threshold for computing drop or mark probability
for arriving “In” packets

Pmax out Maximum mark or drop probability when avg total
varies between min out and max out

min out Low queue threshold for computing drop or mark probability
for arriving “Out” packets

max out High queue threshold for computing drop or mark probability
for arriving “Out” packets

SLR Ratio of short to long flows

Table 2.11: RIO-PS Parameters

2.5 Explicit Congestion Notification

AQM algorithms traditionally notify end systems of incipient congestion by dropping
arriving packets at a router. Transport protocols at the end systems such as TCP infer the
presence of congestion when they detect packet losses and react to these losses by reduc-
ing their sending rates. With reliable data delivery semantics (such as provided by TCP),
the lost data packets have to be retransmitted. This results in decreased throughput and
increased latency for applications. The IETF proposed a protocol for an explicit signaling
mechanism called Explicit Congestion Notification (ECN) by using bits in TCP and IP
headers [RFB01]. With ECN routers can mark a packet by setting a bit in the header (in-
stead of dropping the packet) to deliver the congestion signal explicitly to the end systems.
This approach avoids packet losses and the potential impact of packet losses on applications.

Senders indicate their ECN capability by setting the ECN-Capable Transport (ECT)
codepoint in the IP header. When congestion is detected, routers mark packets that have
the ECT codepoint set to convey an explicit congestion signal to the end systems. ECN
marking is done by setting the Congestion Experienced (CE) codepoint in the IP header.
When the receiver receives a data packet with the CE codepoint set, it sets the ECN-Echo
flag in the TCP header of its next ACK packet to notify the sender of congestion in the
network. Upon receiving an ACK packet with the ECN-Echo flag set, the sender reduces
its congestion window as if it had lost a packet. The sender also sets the CWR flag in the
TCP header of its next packet to confirm the receipt of the receiver’s ECN-Echo flag.

Since an uncooperative or malicious user can set the ECT codepoint and ignores the
routers’ congestion signal, the standard specification for ECN recommends that routers only

42

mark packets when their average queue size is low. When the average queue size exceeds a
certain threshold, the standard specification for ECN recommends routers to drop packets
rather than set the CE codepoint in the IP header. The ARED algorithm described in
section 2.1.3 follows this recommendation and drops all arriving packets when its average
queue size grows larger than maxth.

2.6 Evaluation of AQM and ECN

Most evaluation studies on AQM and ECN have been thus far based on simulations
[HMTG01, ALLY01, FGS01, PPP00, GM01, KS01, PBPS03] (details of these simulations
are shown in table 2.12). While simulation is a useful tool for research to gain insights
into new network protocols and mechanisms that have not been implemented or deployed
yet, simulation results do not necessarily obtain realistic results. This is because when
simulators are built, numerous abstractions and simplifications from real implementations
have to be made. For example, many researchers pointed out in recent discussions that
the TCP implementation in the widely used network simulator does not include the TCP
handshake [ei05]. Since most Internet flows are short [SCJO01, ZBPS02], TCP handshake
arguably has as important an impact on the performance of these flows as the actual phase of
data transfer. Further, many researchers also agreed that the widely used network simulator
ns-2 has numerous implementation bugs and questioned the validity of simulation results
obtained from ns-2 [ei05]. Thus, simulation results could lead to inaccurate conclusions.

For the reason mentioned above, evaluation studies with a real implementation of AQM
and ECN in a real network and under controlled and realistic conditions are very important.
This is because results from these evaluation studies are more credible than simulations
results. Hence, conclusions drawn from results obtained under realistic conditions are more
convincing than those obtained from simulation results. Despite their important role, there
have been only a few evaluation studies of AQM and ECN in real networks. In this section,
I will review existing evaluation studies in real networks and discuss their limitations.

2.6.1 Evaluation of AQM

May et al. performed experiments to compare RED and drop-tail on a real 10-Mbps
congested link. They used Chariot [Inc98], a network load generator, to generate traffic
that approximated real network traffic. The synthetic traffic generated by Chariot includes
FTP, HTTP, real-time audio and video traffic and was transmitted over real TCP/IP and
UDP/IP implementations of Microsoft Windows NT 4.0.

May et al. concluded from their experimental results that when a small buffer size (40
packets) is used, RED does not provide any advantage over drop-tail. When a large buffer
size (200 packets) is used, RED does indeed improve systems performance. In this case,

43

AQM algorithm Evaluations
AFD ns-2 simulations with 35 responsive flows on a 10-Mbps

link and with 350 responsive flows on a 100-Mbps link
ARED ns-2 simulations with 5 to 100 long-lived TCP flows on a

15-Mbps link
AVQ ns-2 simulations with 40 to 210 long-lived TCP flows and short-

lived TCP flows arriving at a rate of 10 to 50 flows per second
BLUE ns-2 simulations with 1000 and 4000 Pareto on/off TCP on a

45-Mbps link
Experiments with 1000 and 4000 long-lived TCP flows and
6 computers in a local area network

CHOKe ns-2 simulations with 25 to 32 long-lived TCP flows
and 1 to 5 UDP flows on 1-Mbps and 10-Mbps links

PI ns-2 simulations with 16 to 400 long-lived TCP flows and
180 to 360 HTTP sessions on a 15-Mbps link

REM ns-2 simulations with 20 to 160 long-lived TCP flows
on a 64-Mbps link

RIO-PS ns-2 simulations with Web (HTTP 1.0) sessions [FHGW99]
on a 100-Mbps link

Table 2.12: Evaluation of AQM algorithms

RED can reduce packet loss rate while slighly increasing link utilization. However, May et
al. pointed out that choosing good parameter settings for RED is not straightforward.

The study of May et al. has a number of limitations. First, they only investigated the
performance of RED on a one-way congested link. Thus, the effects of reverse traffic such
as ACK compression [ZSC91] were not considered. Further, May et al. did not emulate
propagation delays and did not consider the effects of wide-area networks [NRSA01]. They
also only evaluated RED. However, many (supposedly) more advanced AQM algorithms
have been proposed recently but have not been evaluated yet.

Christiansen et al. performed experiments on a real 10-Mbps congested link to compare
RED and drop-tail. In their experiments, web traffic was generated by emulating the
behavior of browsing users from an empirical model [Mah97] and was used to drive offered
loads on the congested link. The offered loads on the congested link were varied by changing
the number of emulated browsing users. Further, dummynet [Riz97] was used to emulate
propagation delays between the end systems. The delays were derived from measurement
data and ranged between 7 and 137 milliseconds to represent a sample of Internet round-trip
times between a given pair of machines within the continental U.S.

RED and its effects were evaluated on web performance across a range of parameter
settings and offered loads. When response times for web request and response exchanges
are the primary performance mesure, Christiansen et al. draw the following conclusions from
their experimental results: (1) up to 90% offered loads, RED provides minimal performance

44

advantage over drop-tail, (2) response times for offered loads at or below 90% are not
substantially affected by choosing parameter settings for RED, (3) between 90% and 100%
offered loads, RED can be carefully tuned to obtain somewhat better performance than
drop-tail, however, the best parameter settings for RED were not obvious and only found
through exhaustive search, (4) at these high loads, there is a trade-off between improving
response times and achieving high link utilization. Christiansen et al. concluded that RED
provides no clear advantage over drop-tail for web response times.

The study of Christiansen et al. has a number of limitations. Like May et al., Chris-
tiansen et al. only considered RED and one-way traffic in their study. Their results were
limited only to web traffic and they examined only the HTTP 1.0 protocol. Thus, the effects
of the HTTP 1.1 protocol such as pipelining [NGBS+97] and general TCP traffic were not
analyzed. Further, Christiansen et al. used only a uniform distribution to emulate propa-
gation delays and did not consider the effects of general distribution of RTTs [AKSJ03] in
their experiments.

2.6.2 Evaluation of ECN

Salim and Ahmed evaluated the performance of ECN using a Linux implementation of
ECN at the router and the end systems [SA00]. The router also runs an implementation
of RED in combination with ECN. For bulk transfers, as network load increases, ECN,
when combined with finely tuned RED parameters, can help TCP connections avoid time-
outs and improve the end-user throughput. For transactional transfers (emulating HTTP
request/response exchanges), as network load increases, ECN increases the number of com-
pleted transactions per second.

While Salim and Ahmed’s results are encouraging and demonstrate the positive effects
of ECN, they are nevertheless limited because experiments were performed with a small
number of flows (5-10 flows) and all flows had the same round-trip times. Further, those
results were obtained with finely tuned RED parameters and the link was congested in only
one direction. Another limitation is that Salim and Ahmed only reported results for RED
and RED/ECN (they did not compare evaluate performance of drop-tail and other AQM
algorithms). These limitations as well as the limitations of May et al. and Christiansen et
al. will be addressed in the subsequent Chapters of my dissertation.

2.7 Summary

AQM has been proposed to replace drop-tail in order to achieve more effective con-
gestion control. While all AQM algorithms attempt to achieve this common goal, many
AQM algorithms have been invented for slightly different purposes such as stabilizing router
queues, approximating fairness among flows, controlling unresponsive high-bandwidth flows,

45

and improving performance for short flows. In this Chapter, I reviewed the most prominent
AQM algorithms in the aforementioned categories and discussed how these AQM algorithms
were evaluated. I also reviewed the limitations of existing evaluation for AQM algorithms
such as unrealistic simulations, one-way traffic and lack of synthetic general TCP traffic.
These limitations will be addressed in subsequent Chapters of my dissertation.

46

Chapter 3

Experimental Methodology

Experimental methodology plays an important role in evaluating network mechanisms
and protocols. If experimental workloads do not capture the characteristics of traffic in
real networks, obtained results may not be representative for real networks and can lead
to incorrect conclusions for the network mechanisms and protocols under evaluation. This
Chapter describes the experimental methodology that is used to evaluate various AQM
algorithms. The Chapter is structured as follows. Section 3.1 describes the setup of a
laboratory network that is used to carry out the experiments. Sections 3.2 and 3.3 explain
how synthetic traffic is generated and calibrated in the laboratory network. Section 3.4
describes the experimental procedure and how experimental results are collected.

3.1 Network Setup

In order to study the effects of AQM algorithms on network and application performance,
I performed experiments in a laboratory network. The network setup is shown in Figure
3.1. The network emulates a peering point between two ISPs where traffic flows on the
links connecting the two routers. Although the network has a simple dumbbell topology,
an extended version of dummynet for per-flow delays (as discussed below) and different
distributions of round-trip times are used to emulate the effects of wide-area networks.
Furthermore, congestion on both links between the routers creates realistic network effects
such as loss of ACKs and ACK compression that may not be captured in simulations. These
effects allow to obtain realistic experimental results as if the experiments were performed in
the Internet. For example, ACK compression can cause a TCP sender to release multiple
data packets in a short interval and generates bursty traffic behavior that puts stress on
the routers.

The traffic that drives experiments for evaluating various AQM algorithms is either
Web or general TCP traffic. The traffic is generated by 22 end systems on each side of the
network (44 machines total) The details for generation of Web and general TCP traffic are

48

ISP 1
Router

1
Gbps100

Mbps

Ethernet
Switches

ISP 1
Browsers/Servers

100/1,000
Mbps

ISP 2
Browsers/Servers

... 1
Gbps

ISP 2
Router Ethernet

Switches

100
Mbps

Network Monitor

Network
Monitor

...

Figure 3.1: Network setup.

given in sections 3.2.1 and 3.2.2.

All systems shown in Figure 3.1 are Intel-based machines that run FreeBSD 4.5. The
end systems have 100 Mbps Ethernet interfaces and are attached to 100 Mbps ports on
a set of Ethernet switches. These ports are grouped to VLANs which are connected to
the routers via 1 Gbps links. The routers are PCs with a 1 GHz Pentium III and over 1
GB of memory. The AQM algorithms are implemented in the FreeBSD kernel of the router
machines using the framework and utilities provided by ALTQ [Cho98]. ALTQ is a software
package that allows to implement queuing disciplines and algorithms for traffic management
in the FreeBSD kernel.

The routers are connected to each other via 1 Gbps and 100 Mbps links. When routers
are connected at 1 Gbps, static routes are configured so that traffic flows on the full-
duplex gigabit Ethernet links and there is no bottleneck in the network. When routers
are connected at 100 Mbps, static routes are reconfigured so that traffic in each direction
uses separate 100 Mbps links and emulates the full-duplex behavior of typical wide-area
network links. In this case, the 100 Mbps links form a bottleneck in the network. The
100 Mbps links are used for congested experiments to evaluate different AQM algorithms
while the 1 Gbps are used for uncongested experiments. The uncongested experiments are
performed to establish the baselines for comparisons with the results obtained from the
congested experiments with various AQM algorithms. The uncongested experiments are
also performed to calibrate the nominal loads on the links between the router machines.
During all experiments, utilization of the links between the routers is measured by running
a modified version of tcpdump program on the monitoring machines connected to these links
as shown in Figure 3.1.

An extended version of dummynet [Riz97] developed at UNC is used to emulate different
minimum round-trip times for each TCP connection. This is done by delaying packets for
a certain amount of time in the TCP/IP stack of the end systems. All packets of a flow

49

experience the same amount of minimum delay that is randomly and uniformly chosen
from a distribution that is an input parameter to the experiments. The round-trip times
experienced by a connection is the sum of the delay induced by dummynet and additional
queuing delays incurred at the router machines. End systems are so configured that they
are not the bottleneck in all experiments and only cause minimal delays (approximately 1
millisecond).

The two monitoring programs were used to collect network statistics during experiments.
One program monitors the router interfaces and collects the statistics of the number of
forwarded and dropped packets at each router interface. Another program runs on link-
monitoring machines that are connected to the links between the routers (through hubs
on the 100 Mbps segments or fiber splitters on the Gigabit link). This program uses a
locally-modified version of the tcpdump utility and monitors the utilization on the links
between the routers by capturing the TCP/IP headers in each frame traversing the links
and processing them in real-time. The program produces a log of throughput of traffic
traversing the links between the routers over chosen intervals (typically 100 milliseconds).

The rest of this Chapter is organized as follows. Section 3.2 discusses how synthetic
traffic is generated in the testbed network. Section 3.4 describes the procedures for running
experiments.

3.2 Synthetic Traffic Generation

Two types of synthetic traffic are used in this study: web traffic and general TCP
traffic. Since Web is an interactive application where end-user response times are a key
performance measure, Web traffic is used to test the whether existing AQM algorithms can
realize the goals of AQM stated in IETF’s RFC 2309 [BCC+98]. The general TCP traffic
models the source-level characteristics of the mix of TCP connections commonly found on
Internet links including HTTP, FTP, SMTP, NNTP, text messaging, and peer-to-peer file-
sharing traffic. Since most current Internet applications run on top of TCP, the general
TCP traffic goes beyond traffic generated by web application and accounts for traffic of
most Internet applications. Both models are derived from measurements of actual Internet
links and hence represent the characteristics of Web and general TCP traffic as seen by
routers in real networks. For this reason I believe that these models, combined with the
setup of the testbed network, allows a realistic environment for controlled experiments in
evaluating AQM algorithms.

3.2.1 Web Traffic Generation

The Web traffic that drives the experiments is based on a model derived from a large-
scale analysis of web traffic [SCJO01]. The model is an application-level description of

50

Element Description
Request size HTTP request length in bytes
Response size HTTP response length in bytes (top-level & embedded)
Page size Number of embedded objects per page
Think time Time between retrieval of two successive pages
Persistent connection use Number of requests per persistent connection
Servers per page Number of unique servers used for all objects in a page
Consecutive page retrievals Number of consecutive pages requested from a given server

Table 3.1: Elements of the HTTP traffic model

the behavior of web browsing users and consists of a collection of empirical distributions
necessary for generating realistic web traffic. The model is instantiated on the end systems
and used to generate traffic in the testbed network by emulating the behavior of a large
collection of web browsing users. The web model has two main parts: a client that generates
requests and a server that responds with web objects to the requests. The models dictates
how the requests and responses are generated as well as the interarrivals of the requests.

Among other elements, the model characterizes the use of persistent HTTP connections
as currently implemented by many browsers and servers. Persistent HTTP connections can
be used to exchange multiple requests and responses between a client and a server (unlike
persistent HTTP connections, non-persistent connections can be used to exchange a single
pair of request and response). The web model also distinguishes between “top-level” objects
(typically an HTML file) and embedded objects (e.g., an image file). The most important
elements of the model are summarized in Table 3.1. Most of these elements are implemented
in the client-side request-generating program (the “browser” program).

14 machines on each side of the network are used as client machines and run the client-
side program of the model (the browser). Each machine running the client-side program is
called a client and emulates the aggregate behavior of a specified number of browsing users.
The network load on the links between the routers is a function of both the total number of
browsing users spread across all client machines and the distributions of round-trip times
emulated by dummynet. The total number of simulated users and the distributions of
round-trip times are input parameters of the controlled experiments. However, the number
of browsing users is the main parameter that is used to control the offered load on the router
links.

During experiments, the browsers generate requests and fetch web objects from server
programs running on 8 server machines on the other side of the network. Each instance of
a browsing user is modeled as a simple on/off process and implemented as a simple state
machine switching between two states: “thinking” (idle) and requesting. When a browser
is in the requesting state, a request is created for the primary object of a web page (i.e.,
the index of a web page) and sent to a server on the other side of the network. After the

51

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Request size (bytes)

Figure 3.2: CDF of request sizes

primary object is received, the browser sends requests for embedded objects to a number
of servers.

The number of servers that a browser contacts per web page and the number of embedded
objects per web page are randomly chosen from their appropriate empirical distributions.
The browsers use both persistent and non-persistent connections to connect to the servers.
The number of web objects exchanged via a persistent connection is also randomly selected
from an appropriate distribution. Approximately 15% of all connections are effectively
persistent (i.e., they are used to request more than one object) but over 50% of all objects
(40% of bytes) were transferred over these connections.

For each request, the browser creates a request of random size (sampled from the dis-
tribution of request sizes) and sends it to a server on the other side of the network. The
request contains the size of the web object (sampled from the distribution of response sizes)
to be returned to the client by the server. The distributions of of request and response sizes
are shown in 3.2 and 3.4.

A primary measure of performance in evaluating the effects of various AQM algorithms
on application performance is the distribution of response times for the exchanges of requests
and responses as observed by a client. The response time for a request-response exchange
is defined as the elapsed time between the time the request is sent and the time the entire

52

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Request size (bytes)

Figure 3.3: CCDF of request sizes

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Response size (bytes)

Figure 3.4: CDF of response sizes

53

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Response size (bytes)

Figure 3.5: CCDF of response sizes

response is received by the client. For the first request-response exchange of a connection,
the response time also includes the elapsed time for the TCP connection establishment, i.e.,
the response time is defined as the time interval between the client’s socket call connect()
to connect to a server and the client’s socket call read() to retrieve the response from the
server. For request-response exchanges after the first exchange has been completed via
persistent connections, response times are defined as the time interval between the client’s
socket call write() to send a request to server and the client’s socket call read() to retrieve
the response from the server.

3.2.2 General TCP Traffic Generation

The model discussed in section 3.2.1 is used to generate an application-specific workload
(HTTP in this case). Construction of such a model requires detailed knowledge of the HTTP
protocol and its usage by contemporary implementation of the protocol (browsers and
servers). Even then, the construction requires a significant amount of work. Since Internet
links can carry traffic of many different applications, some of them using closed protocols, it
is not feasible to generate realistic general TCP traffic by constructing application-specific
models for every application model. A novel approach to generating general TCP traffic is
based on an abstract model of communication patterns within a TCP connection. General

54

TCP traffic is modeled by an aggregation of TCP connections with application-specific
communication patterns that are derived from actual Internet packet traces.

They key idea is to generate traffic by emulating the behavior of applications at the
socket layer and running the traffic generators layered over real TCP implementations. This
closed-loop form of traffic generation is necessary for evaluating the effects of AQM on TCP
congestion control mechanisms and the performance of TCP applications (which cannot be
done with a simple open-loop packet-level trace replay). The synthetic traffic is generated
in such a way that it is statistically similar to the traffic on the measured links (e.g., the
distributions of packet sizes, object sizes, active connections per second, throughput per
second, etc. observed on the real network can be reproduced in the laboratory network).
The technique for reproducing the mix of application traffic seen on real networks is called
Source-Level Trace Replay [CJS04].

The data source used for deriving realistic TCP workloads and evaluating the effects
of various AQM algorithms on application performance was a packet trace acquired from
the NLANR repository. This packet trace was chosen to represent real network traffic and
its characteristics on the Internet. The packet trace was filtered for all TCP connections
including HTTP, FTP, SMTP, NNTP, text messaging, and peer-to-peer file-sharing traffic.
This technology is capable of deriving and generating realistic TCP workloads from packet
header traces captured on Internet links. The synthetic traffic mix generated in the network
testbed represents the characteristics of existing Internet traffic as seen by routers in real
networks and allows the most realistic method for network protocols and mechanisms in a
laboratory network.

The key idea of source-level trace replay is to characterize and reproduce the application-
level communication patterns based on the two endpoints of a TCP connection exchanging
data in units defined by their specific application-level protocol. These communication
patterns are specific to the applications and are derived from the packet traces by a set of
analysis tools [CJS04, SCJO01]. The derived patterns characterize the number of exchanges
of application data units (ADUs) between two end points of a connection and the sizes of the
ADUs. The patterns also allow for possible idle times between two consecutive exchanges
of application data units within a connection. The idle times are, for example, think times
in the case of web applications when a user spends time reading a web page that he/she
is visiting. The idle times, sizes of ADUs, and the number of exchanges of ADUs are
network-independent and represent the characteristics of applications that generate the
traffic captured in the packet traces. Further, the analysis tools also extract the minimum
delays for each TCP connection from the packet header traces. These minimum delays are
used as parameters by the dummynet mechanism, as described above, to emulate per-flow
propagation delays in the laboratory network.

After the above characteristics for connections are derived from actual packet traces,

55

they can be applied to generate workloads of general TCP traffic for evaluating the AQM
algorithms. During the replay, each TCP connection is reproduced as a sequence of socket
calls for the data unit exchanges and sleep intervals for the think times. The connections
are initiated at the same instant and the same order as they appear in the original trace.

3.2.3 Modeling Propagation Delays

In order to obtain experimental results as if the experiments would have been performed
on a real wide-area network, I used the dummynet software described in section 3.1 to emu-
late propagation delays between end systems in the laboratory network. Two distributions
of round-trip times were used for the experiments in the laboratory network to study the
role of round-trip times (in combination with various AQM algorithms) on Web traffic.

The first distribution of round-trip times is uniform and is used to generate uniformly
random delays between 10 and 150 milliseconds. This range of delays is is used to approx-
imate typical Internet round-trip times in the continental U.S. and is selected to compare
the results obtained in this study with those reported in [CJOS01].)

The second distribution of round-trip times was obtained from a measurement study
[AKSJ03]. This distribution of RTTs was used as an input by the dummynet software to
model a more general and diverse RTTs between the end systems in the laboratory network.

The two distributions of round-trip times are shown in Figures 3.6 and 3.7. While the
uniform distribution could approximate the body of the general distribution up to 60%, it
cannot capture the characteristics in the tail of the general distribution of round-trip times.
Thus, the two distributions of round-trip times allowed to study the sensitivity of AQM
performance to round-trip times and the effects of of diversity in distributions of round-trip
times. Results for AQM algorithms with the two distributions of round-trip times are given
in Chapters 4 and 5.

3.3 Experiment Calibrations

3.3.1 Calibrations for Web traffic

A primary simulation parameter of experiments with the web traffic is the number
of emulated browsing users. This parameter allows to change the nominal load on the
links between the routers. Before actual experiments with various AQM algorithms are
performed, this parameter needs to be calibrated to establish a relationship between the
number of emulated browsing users and the throughput of traffic that these users generate
on the links between the routers.

Calibration is performed by removing the bottleneck links between the routers and
running uncongested experiments on the 1-Gbps links. After calibration is done, the offered

56

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000

C
um

ul
at

iv
e

P
ro

ba
bi

lit
y

(%
)

Time (msec)

Uniform RTT distribution
General RTT distribution

Figure 3.6: CDF of the general RTT distribution

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
P

ro
ba

bi
lit

y

Time (msec)

Uniform RTT distribution
General RTT distribution

Figure 3.7: CCDF of the general RTT distribution

57

load on the bottleneck links can be predictably controlled by setting the size of the emulated
browsing user population. Calibration experiments also ensure that there is no bottleneck
on the end-to-end path in the network other than the links between the two routers when
they are configured at 100 Mbps, e.g., end systems are not the bottleneck of the experiments.

For the calibration experiments, the router links are configured to run at 1 Gbps to avoid
congestion in the network. The routers are configured to run with large drop-tail queues
to sure that there are no packet drops in the network. The total number of emulated
browsers is fixed in each calibration experiment. Since throughput is a function of round-
trip time [PFTK98], calibration needs to be performed for both the uniform and general
distribution of round-trip times. Figure 3.8 shows the long-term average throughput in one
direction of the 1 Gbps link between the routers when the total number of browsers is varied
between 7,000 and 35,000 over several experiments. The average throughput measured in
the opposite direction was essentially the same and was not shown in the figure.

Since the link throughput can be approximated very well by a linear function and can
easily exceed the capacity of a 100 Mbps link, there are no resource limitations in the
network and the end systems. The linear relationship between the link throughput and the
number of emulated browsing users is also used in subsequent congested experiments to
determine the number of browsers to be emulated for a desired offered load. For example,
in order to generate an offered load of 98 Mbps (98% of a 100 Mbps link) with the uniform
distribution of RTTs, Figure 3.8 shows that approximately 9,520 browsing users need to be
emulated on each side of the network.

3.3.2 Calibrations for General TCP Traffic

The degree of congestion induced in a network via source-level trace replay is a function
of the load on the original traced network and the capacity of the target network. Two
methods can be used to scale the offered loads of general TCP traffic. One method is to
expand or compress the idle times of connections in the packet traces to reduce or increase
offered loads. A second method is to scale offered loads via a connection subsampling or
superimposing process that decreases or increases the nominal load from the original trace
while preserving the mix and statistical characteristics of the TCP connections [CJS04].

The above scaling processes were used to achieve offered loads of 80, 90, and 95 Mbps on
an uncongested 1-Gbps network. These loads are termed 80%, 90%, and 95% because they
represent the throughputs that could be possibly achieved on a 100-Mbps link. However,
note that as the offered loads approach the saturation of a 100-Mbps link, the actual link
utilization will be less than the intended offered load. This is because as the network
becomes congested, TCP dynamics will regulate the transmission rates of the end systems.

An interesting aspect of using actual packet traces to drive controlled experiments in
a laboratory network is that Internet traffic is usually asymmetrical between forward and

58

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 2000 4000 6000 8000 10000 12000 14000 16000 18000

Li
nk

 th
ro

ug
hp

ut
 (

M
bp

s)

Number of browsers

Measured data for uniform RTT distribution
y = 0.010458 * x + 0.423996

Measured data for general RTT distribution
y = 0.009916 * x - 4.840688

Figure 3.8: Link throughput as a function of emulated browsing users.

reverse path. For example, the 95% offered loads derived from the packet trace acquired
from the NLANR repository were approximately 95.73 Mbps (forward path) and 90.70
Mbps (reverse path).

3.4 Experimental Procedures

The procedure for running experiments is as follows. First the routers and end systems
are initialized and configured with their parameters. In case of web traffic, the server
programs are started followed by the browser programs. Each browser program runs an
equal number of browser instance, as described previously, to collectively generate a specified
offered load on the network based on the calibration perform in section 3.3. The offered
load for the experiments with web traffic is defined as the long-term average throughput
of network traffic on an uncongested network. The offered load is controlled by using the
web traffic generators to emulate a fixed number of browsing users in each experiment. The
offered loads in the experiments are chosen to be 80%, 90%, 98%, and 105% of the capacity
of the 100 Mbps links between the routers (i.e., the long-term average throughput of the
generated traffic would be 80, 90, 98, and 105 Mbps on the uncongested 1 Gbps links). Each
experiment is run for 120 minutes but data is collected only for 90 minutes to eliminate the
startup effects at the beginning and the termination synchronization anomalies at the end.

59

In case of general TCP traffic, traffic generation programs are started after the routers
and end systems are initialized and configured. The programs reproduce application-level
communication patterns extracted from packet traces as described in 3.2.2. The offered
loads of general TCP traffic is controlled as described in 3.3.2.

The key performance metrics of the experimental results is the end-to-end response
times for the request/response exchanges reported as plots of cumulative distributions up
to 2 seconds. Other performance measures such as link utilization, packet loss rate, and the
number of completed request/response exchanges are also reported.

3.5 Summary

Creating a realistic network environment plays a crucial role in evaluating network pro-
tocols and mechanisms. Experimental results obtained under unrealistic conditions could
lead to inaccurate conclusions about the network protocols and maechanisms under evalua-
tion. This Chapter describes the experimental methodology that is used in my dissertation
research. In particular, network setup, synthetic traffic generation, modeling of round-trip
times, calibration of experiments, and experimental procedure were discussed in details.

60

Chapter 4

Results with Web Traffic and Uniform

RTT Distributions

This Chapter presents experimental results for different AQM algorithms with Web traf-
fic. The motivations for performing experiments with Web traffic are twofold. First, Web
is arguably the currently most important Internet application for both business and private
users. Hence, the effects of AQM algorithms on Web applications should be investigated
before AQM algorithms are deployed. In particular, an overlooked aspect of network per-
formance is response times for exchanges of requests and responses. Thus, studying AQM
in the context of the Web gives us a useful and important basis for assessing the impact
of AQM on user-centric measures of performance. Second, as discussed in Chapter 3, the
model that is used to generate web traffic shows heavy-tailed distributions for both think
times (OFF times) and response sizes (ON times). Thus, the aggregate traffic generated
by a large collections of emulated browsing users should have the behavior of long-range
dependence (LRD) processes [WTSW97] and can be considered as “stress tests” for the
AQM algorithms (Indeed, the LRD behavior was verified by performing. experiments on
an uncongested network, collecting the TCP/IP packet headers, and deriving a time series
of the number of packets and bytes arriving at the routers in 1 millisecond intervals. The
estimated Hurst parameter of the time series lies between 0.8 and 0.9 and indicates the
LRD behavior of the synthetic web traffic.) I will first focus on studying the effects of AQM
on the Web in this Chapter and in Chapter 5. Chapters 6 and 7 will give results for similar
experiments using a more general traffic model.

In addition to studying the impact of AQM on Web traffic, I also seek to understand
the role of round-trip times on AQM performance. In this chapter, I consider the effects of
a uniform distribution of round-trip times between 10 and 150 milliseconds. (This range of
random delays approximates typical Internet round-trip times in the continental U.S. and
was selected to compare the results obtained in this study with those reported in [CJOS01].)
Results for a more general distribution of round-trip times will be given in Chapter 5.

62

As discussed in section 3.2.1, the key performance measure that is used to evaluate the
effects of various AQM algorithms on web performance is the distribution of response times
for the exchanges of requests and responses as observed by a client. The distribution of
response times is presented in plots of cumulative distribution function (CDF). These plots
are combined with other performance measures such as link utilization, packet loss rates,
and the number of completed exchanges of requests and responses within an experiment
reported in table 4.1, to form the basis in evaluating the effects of AQM algorithms on
Web performance. Further, the 50th, 75th, and 90th percentiles of response times from all
experiments are given in table 4.2 to allow a quantitative discussion of experimental results.

Experimental results for various AQM algorithms presented in this Chapter were ob-
tained by using the recommended parameter settings by their inventors. For PI, REM, and
ARED, experiments were performed with target queue lengths of 24 and 240 packets. The
target queue length of 24 packets is chosen to yield a small queuing delay. On the other
hand, the target queue length of 240 packets can potentially provide good packet buffering
and achieve high link utilization. For all AQM algorithms, the maximum queue size is
sufficiently large so that tail drops do not occur.

The rest of this Chapter is structured as follows. Section 4.1 presents the results for drop-
tail queues that are used as base results in comparison with experimental results obtained
with various AQM algorithms. The results are used in all subsequent chapters as a baseline
for comparison with AQM performance. Comparisons against results of drop-tail form the
basis for conclusions about absolute viability of AQM. If AQM is to be of any use, it must
consistently (or ideally significantly) improve upon performance obtained with drop-tail.
Sections 4.2 and 4.3 show the results for ARED, PI, REM, BLUE, and AVQ when they are
used with packet drops. Section 4.4 demonstrates the effects of balancing queuing delay
and packet loss rates using an algorithm that I developed call LQD [LJS06]. Section 4.5
presents experimental results for the effects of the Explicit Congestion Notification signaling
protocol. Section 4.6 demonstrates the effects of measuring router queues in bytes rather
than packets in AQM algorithms in a case study for the ARED algorithm. Section 4.7
presents another case study for the ARED algorithm that studies the effects of dropping
packets in ECN mode. Section 4.8 demonstrates the effects of differential treatment of
flows using another algorithm that I developed called DCN. Sections 4.9 and 4.10 present
a comparison of all results and a summary of the Chapter.

4.1 Results for Drop-Tail

In order to assess the effects of various AQM algorithms on web performance, some base
results need to be established first. These base results are obtained with drop-tail FIFO
queues and are used as a baseline to demonstrate the advantages (or disadvantages) of AQM

63

algorithms.

The sizes for drop-tail queues for the experiments were chosen by following guidelines
discussed on the IRTF end2end-interest mailing list. Discussions on this list concerning
queue sizes roughly converged around the heuristics of maintaining a queue capable of
buffering 100 milliseconds worth of packets at the link capacity. Since the capacity of the
bottleneck link in experiments performed in this dissertation is 100 Mbps and the average
packet size is about 500 bytes, the drop-tail queue should have about 2,400 elements for
100 milliseconds of buffering. To further explore the parameter space, experiments were
also performed with a drop-tail queue of 24 and 240 packets. The shorter drop-tail queues
of 24 and 240 packets were chosen to study the effects of a (potentially) underprovisioned
queue (1% and 10% of the recommended queue). For comparison purposes, experiments
were also performed on an uncongested network. The results obtained on an uncongested
network represented the best possible results that AQM algorithms could have.

Figures 4.1, 4.2, 4.3, and 4.4 show the distributions of response times of experiments
with drop-tail queues of 24, 240, and 2,400 packets at 80%, 90%, 98%, and 105% load.
Futher, Figures 4.5, 4.6, 4.7, and 4.8 show the tails of these distributions for completeness.

At 80% load, all drop-tail queues obtain good response time performance as they come
very close to achieving the performance of the uncongested network. In addition, queue
length does not have any obvious impact on response times at this load. The drop-tail
queues of 24, 240, and 2,400 packets achieved the same 50th, 75th, and 90th percentiles
(0.137, 0.237, and 0.362 seconds respectively). Further, these values only deviate slightly
from the values obtained on the uncongested network (0.137, 0.237, and 0.312 seconds at
the 50th, 75th, and 90th percentile of response times). As the queue length was increased
from 24 to 240 and to 2400 packets, the packet loss rate was reduced from 0.2% to 0.0%. A
packet loss rate of 0.0% is an indication that the queue never overflowed in the experiment.
This result implies that a queue of 2,400 packets is overprovisioned for 80% offered load.

At 90% load, there is a considerable degradation of performance in terms of response
times. For example, the 50th percentile of response times for a drop-tail queue of 240 packets
increased from 0.137 to 0.187 seconds as the offered load rose from 80% to 90%. Further, it
can be observed in Figure 4.2 that over 80% of flows experience better response times with a
queue size of 24 or 240 packets than with a queue size of 2,400 packets and complete in less
than 500 milliseconds. However, a drop-tail queue with 2,400 packets gives better response
times for flows that need more than 500 milliseconds to complete (approximately 20% of all
flows). A drop-tail queue of 24 packets delivers approximately the same performance as a
drop-tail queue of 240 packets for about 80% of flows but is slightly inferior to a drop-tail
queue of 240 packets for the rest 20% of flows.

These results show the trade-off between small queues (24 and 240 packets) and large
queues (2,400 packets). A small drop-tail queue obtains small queuing delay but incurs a

64

high packet loss rate (for example, the packet loss rate was 1.8% for a queue of 240 packets
but only 0.1% for a queue of 2,400 packets at 90% offered load). Because of this, flows
that do not experience any packet loss enjoy good response times with a small drop-tail
queue, especially those that are small. On the other hand, a large drop-tail queue can
reduce the packet loss rate but subjects flows to more queuing delay. Hence, for large flows
that dominate the links (in terms of number of packets) and are likely to experience some
packet losses (assuming that packets are dropped randomly and uniformly), the impact of
increased queuing delay is outweighted by the effects of reduced packet losses. Thus, large
flows receive better performance under a large drop-tail queue. Results shown in table 4.2
demonstrate this phenomenon quantitatively. For example, the 75th percentile of response
times was 0.312 seconds for a queue of 240 packets and 0.412 seconds for a queue of 2,400
packets. However, the 90th percentile of response times was 1.037 seconds for a queue of
240 packets and 0.612 seconds for a queue of 2,400 packets.

While the distinction between small and large flows are subjective and are often blurred,
this trade-off between achieving good performance for small and large flows always exists
due to the fundamental trade-off between achieving low queuing delay and low packet loss
rates. Thus, there is no single queue size that can obtain best performance for all flows.

It is also interesting to note that a queue of 2,400 packets can significantly reduce the
packet loss rate (from 2.7% for a queue of 24 packets and 1.8% for a queue of 240 packets
to merely 0.1%) but did not increase the link throughput at 90% offered load (all queues
obtained approximately a link throughput of 90 Mbps at this load). This result implies
that an offered load of 90% represents severe congestion for the network where increasing
queue length does not result in improved link throughput.

At 98% and 105% loads, the performance degradation is even more significant for all
queue sizes. For example, the 75th percentile of response times for a queue size of 240
packets increased from 0.312 seconds at 90% offered load to 1.137 seconds and to 1.363
seconds at 98% and 105% offered loads. Loss rates also increased sharply. The loss rate for
a queue size of 2,400 packets increased from 0.1% at 90% offered load to 3.6% and 7.9%
at 98% and 105% offered loads. Although a drop-tail queue of 240 packets gives better
response times than the other drop-tail queues for most of the flows, it is worth noting that
the performance degradation for all queue sizes at 98% and 105% loads is very significant in
terms of response times and packet loss rates. Thus, it appears that there is little incentive
to operate a network at these high loads using drop-tail queues.

It is also interesting to note that the CDF lines for all drop-tail queues in Figures 4.3
and 4.4 were flat between 500 and 1,000 milliseconds at 98% and 105% offer loads. This
means that at these high offered loads, most flows either completed within 500 milliseconds
or needed more than 1 second to complete. The reason for these flat lines can be explained
as follows. It can be observed from Figures 3.2 and 3.3 that 99% of HTTP requests are

65

smaller than 1,500 bytes and can fit in a single packet. Further, it can be observed from
Figures 3.4 and 3.5 that approximately 90% of HTTP responses are smaller than 10,500
bytes and can be transmitted in 7 packets. Assuming that a TCP sender (the server in
this case) starts out with a congestion window of one packet and increases the congestion
window by one packet for each ACK that it receives, it would take the sender 3 round-trip
times to transmit 7 packets. As discussed previously, the maximum “emulated” propagation
delay in these experiments is 150 milliseconds. Further, as will be discussed in Chapter 7,
these experiments ran with a link-level buffer of about 250 packets that corresponded to
an approximate queuing delay of 10 milliseconds (given that the average packet size is 500
bytes). Hence, three round-trip times for 90% of responses (those that fit in 7 packets) take
at most 480 milliseconds, close to the observed value of 500 milliseconds.

Further, since the initial retransmission timeout in FreeBSD is 1 second and most flows
were small (as discussed above, 90% of flows only needed about three round-trip times or
approximately 500 milliseconds to complete), it can be inferred that flows completing within
500 milliseconds did not experience any packet loss and their response times were mostly
a function of object sizes, propagation and queuing delay. Flows that needed more than 1
second to complete likely experienced at least one packet loss and their response times were
dominated by time-out intervals. This phenomenon is more pronounced at 98% and 105%
offered loads than at 90% offered load because the loss rate at 98% and 105% offered load
is significantly higher than at 90% load (for example, the loss rate for a drop-tail queue of
240 packets increased from 1.8% at 90% load to 6.0% at 98% load and to 8.8% at 105%
load). The high packet loss rate at these high offered loads caused a larger portion of flows
to experience packet losses and go into time-out. As will be seen in subsequent sections,
this phenomenon can also be observed with other AQM algorithms as well.

In summary, experimental results presented in this section show the fundamental trade-
off between queuing delay and loss rate in choosing a queue size for drop-tail and that there
is no single queue size that can improve performance for all flows. Overall, the drop-tail
queue with 240 packets is chosen as a baseline for comparison with AQM algorithms because
it appears to achieve a good trade-off for drop-tail queues between improving response times
for a large number of small objects and a small number of large objects.

4.2 Results for ARED, PI, and REM with Packet Drops

This section presents experimental results for ARED, PI, and REM. These AQM algo-
rithms were chosen to be evaluated in a previous study because they were the most most
prominent AQM algorithms in research literature [LAJS03]. Another reason for choosing
these three AQM algorithms was that ARED was developed based on intuitions while PI
was designed within a control theoreotic framework and REM was derived from an opti-

66

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=24

drop-tail - qlen=240
drop-tail - qlen=2400

Figure 4.1: Drop-tail performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=24

drop-tail - qlen=240
drop-tail - qlen=2400

Figure 4.2: Drop-tail performance at 90% load

67

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=24

drop-tail - qlen=240
drop-tail - qlen=2400

Figure 4.3: Drop-tail performance at 98% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=24

drop-tail - qlen=240
drop-tail - qlen=2400

Figure 4.4: Drop-tail performance at 105% load

68

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=24
drop-tail - qlen=240
drop-tail - qlen=2400

Figure 4.5: Drop-tail performance at 80% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=24
drop-tail - qlen=240
drop-tail - qlen=2400

Figure 4.6: Drop-tail performance at 90% load (CCDF)

69

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=24
drop-tail - qlen=240
drop-tail - qlen=2400

Figure 4.7: Drop-tail performance at 98% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=24
drop-tail - qlen=240
drop-tail - qlen=2400

Figure 4.8: Drop-tail performance at 105% load (CCDF)

70

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
PI 80% load - qref=24

PI 80% load - qref=240
PI 90% load - qref=24

PI 90% load - qref=240
PI 98% load - qref=24

PI 98% load - qref=240
PI 105% load - qref=24

PI 105% load - qref=240

Figure 4.9: PI performance at 80%, 90%, 98%, and 105% load

mization framework. Hence, it was interesting to see how these three AQM algorithms
derived from different approahces compare to each other.

Experimental results were obtained for the ARED, PI, and REM algorithms when they
were used with packet drops. The results presented for PI and REM in this section were
obtained when a queue reference of 24 or 240 packets was used. While the ARED algorithm
does not have an explicit target queue reference, this algorithm operates in such a way that
the average queue size is approximately midway between thmin and thmax. Thus, a queue
reference of 24 packets is achieved for ARED by setting thmin to 12 packets and thmax to
36 packets. Similarly, a queue reference of 240 packets is achieved for ARED by setting
thmin to 120 packets and thmax to 360 packets.

Figure 4.9 shows the distributions for response times for PI with a queue reference of
24 and 240 packets at 80%, 90%, 98%, and 105% loads. Futher, Figure 4.10 shows the tails
of these distributions for completeness.

At 80% load, PI achieves similar results for both queue reference values. Furthermore,
PI’s response-time performance with both queue reference values closely approximated the
performance of the uncongested network. The uncongested network and PI with both queue
reference values gave the same 50th and 75th percentiles of response times (0.137 and 0.312
seconds) at 80% offered load. Further, the 90th percentile of response times for PI was

71

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
PI 80% load - qref=24
PI 80% load - qref=240
PI 90% load - qref=24
PI 90% load - qref=240
PI 98% load - qref=24
PI 98% load - qref=240
PI 105% load - qref=24
PI 105% load - qref=240

Figure 4.10: PI performance at 80%, 90%, 98%, and 105% load (CCDF)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
REM 80% load - qref=24

REM 80% load - qref=240
REM 90% load - qref=24

REM 90% load - qref=240
REM 98% load - qref=24

REM 98% load - qref=240
REM 105% load - qref=24

REM 105% load - qref=240

Figure 4.11: REM performance at 80%, 90%, 98%, and 105% load

72

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
REM 80% load - qref=24
REM 80% load - qref=240
REM 90% load - qref=24
REM 90% load - qref=240
REM 98% load - qref=24
REM 98% load - qref=240
REM 105% load - qref=24
REM 105% load - qref=240

Figure 4.12: REM performance at 80%, 90%, 98%, and 105% load (CCDF)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
ARED 80% load - thmin=12 thmax=36

ARED 80% load - thmin=120 thmax=360
ARED 90% load - thmin=12 thmax=36

ARED 90% load - thmin=120 thmax=360
ARED 98% load - thmin=12 thmax=36

ARED 98% load - thmin=120 thmax=360
ARED 105% load - thmin=12 thmax=36

ARED 105% load - thmin=120 thmax=360

Figure 4.13: ARED performance at 80%, 90%, 98%, and 105% load

73

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
ARED 80% load - thmin=12 thmax=36
ARED 80% load - thmin=120 thmax=360
ARED 90% load - thmin=12 thmax=36
ARED 90% load - thmin=120 thmax=360
ARED 98% load - thmin=12 thmax=36
ARED 98% load - thmin=120 thmax=360
ARED 105% load - thmin=12 thmax=36
ARED 105% load - thmin=120 thmax=360

Figure 4.14: ARED performance at 80%, 90%, 98%, and 105% load (CCDF)

only slightly higher than that of the uncongested network (0.362 seconds compared to 0.312
seconds). This good result for PI can be explained by the low packet loss rate of PI at this
load (0.0% for both queue reference values). The small difference in response times at 90th
percentile can be attributed to queuing delay at the bottleneck link.

As the network load increases to 90%, the performance for PI with both queue reference
values degrades considerably. For example, the 90th percentile of response times increased
from 0.362 to 0.587 seconds for a queue reference value of 24 packets and from 0.362 seconds
to 0.462 seconds for a queue reference value of 240 packets. At the 90% offered load, a
queue reference value of 24 packets obtains slightly better results for approximately 80%
of flows (those that finish within 500 milliseconds) than a queue reference of 240 packets.
For the other 20% of flows (those that need more than 500 milliseconds to complete), a
queue reference of 240 packets give slightly better performance. The trade-off in optimizing
response times for short and long flows can be explained by the effects of a queue reference
value for PI on the resulting packet loss rate and queuing delay. A queue reference value of
240 packets gave a lower packet loss rate for PI than a queue reference value of 24 packets
(0.1% compared to 1.3%) but also incurred higher queuing delays for packets.

At 98% and 105% loads, the performance for PI with both queue reference values de-
graded significantly. For example, the 75th percentile of response times for PI with a queue

74

reference value of 24 packets increased from 0.287 seconds at 90% load to 0.637 seconds
at 98% load and to 1.262 seconds at 105% load. Further, although link throughput only
increased slightly (for example, 87.9 Mbps at 90% load compared to 89.3 Mbps at 98% load
and 89.9 Mbps at 105% load for PI with a queue reference value of 24 packets), the loss
rate increased significantly (for example, 1.3% at 90% compared to 3.9% at 98% load and
6.5% at 105% load for PI with a queue reference value of 24 packets).

Like at 90% load, there is a trade-off for PI in choosing a small queue reference that
reduces queuing delay and a large queue reference that can potentially allows the queue to
grow and reduces the packet loss rate at 98% load. This trade-off is reflected in the fact
that PI obtained better response times for short flows but gave worse response times for
long flows with a queue reference value of 24 packets. For example, the 50th percentile
of response times was lower with a queue reference value of 24 packets than with a queue
reference value of 240 packets for PI at 98% load (0.212 seconds compared to 0.262 seconds).
However, the 75th percentile of response times was higher with a queue reference value of 24
packets than with a queue reference value of 240 packets for PI at this load (0.637 seconds
compared to 0.562 seconds).

When the offered load increases to 105%, PI obtained better performance with a queue
reference of 24 packets than with a queue reference of 240 packets. This result indicates
that the potential negative effects of increasing the queuing delay by using a higher queue
reference outweighs the benefits of reducing loss rates for PI at this high offered load.

Figure 4.11 gives the distributions of response times for REM with a queue reference
of 24 and 240 packets at 80%, 90%, 98%, and 105% loads. Further, Figure 4.12 shows the
tails of these distributions for completeness.

Like PI, REM obtained similarly good results for both queue reference values at 80%
load and these results closely approximate the result obtained on an uncongested network.
This good result for REM can be explained by the very low packet loss rate that REM gave
at this load (0.01% for a queue reference value of 24 packets and 0.0% for a queue reference
value of 240 packets).

At 90% offered load, REM’s performance degraded significantly for both queue reference
values. The 75th percentiles of response times increased from 0.237 to 0.312 seconds for a
queue reference value of 24 packets and from 0.237 to 0.512 seconds for a queue reference
value of 240 packets. Overall, REM achieves better response-time performance with a queue
reference of 24 packets than with a queue reference of 240 packets at this load. This result
is also in agreement with the lower loss rate that REM obtained with a queue reference
value of 24 packets (1.8% for a queue reference value of 24 packets compared to 3.3% for a
queue reference value of 240 packets). Further, REM also obtained a higher link utilization
with a queue reference value of 24 packets than with a queue reference value of 240 packets
(86.4 Mbps compared to 83.3 Mbps). A queue reference of 24 packets is clearly better for

75

REM at this load.

As the offered load increased to 98% and 105%, a queue reference of 24 packets is still
superior to a queue reference of 240 packets for REM in terms of response times, loss rates
and link utilization. However, the performance gap between both queue reference values at
these loads is not as drastic as at 90% load. For example, the 50th and 75th percentiles
of response times were 0.212 and 1.162 seconds for REM with a queue reference value
of 24 packets and 0.262 and 1.237 seconds for REM with a queue reference value of 240
packets at 98% load. Like PI and drop-tail, the performance for REM degraded even more
significantly at these high loads. For example, the 75th percentile of response times for
REM with a queue reference value of 24 packets increased from 0.312 seconds at 90% load
to 1.162 seconds at 98% load and the packet loss rate for REM with a queue reference value
of 24 packets increased from 1.8% at 90% load to 5.0% at 98% load. Overall, REM obtained
better performance with a queue reference value of 24 packets although the performance
for REM with both queue reference values was rather poor (in terms of response times and
packet loss rates) at 98% and 105% offered loads.

Figure 4.13 presents the results for ARED with a target queue reference of 24 and 240
packets at 80%, 90%, 98%, and 105% loads (as discussed above, the target queue reference
for ARED is implicitly specified by choosing the queue thresholds thmin and thmax). Futher,
Figure 4.14 shows the tails of the distributions of response times for completeness.

In contrast to PI and REM, the performance of ARED degraded considerably at 80%
load when compared to that of the uncongested network. While ARED with both param-
eter settings gave the same 50th percentile of response times as the uncongested network
(0.137 seconds), ARED obtained higher values for the 75th and 90th percentile of response
times than the uncongested network at 80% load (0.262 and 0.637 seconds for ARED with
(thmin = 12 packets, thmax = 36 packets) and 0.287 and 0.862 seconds for ARED with
(thmin = 120 packets, thmax = 360 packets), compared to 0.237 and 0.312 seconds for the
uncongested network). From these results, it can be observed that ARED achieved slightly
better performance with (thmin = 12 packets, thmax = 36 packets) than with (thmin = 120
packets, thmax = 360 packets) at this load. However, the performance gap between the two
queue reference values was negligible.

At 90% load, the performance of ARED degraded even more significantly. For example,
the 75th percentile of response times increased for ARED with (thmin = 12 packets, thmax =
36 packets) from 0.262 at 80% load to 1.112 seconds at 90% load and for ARED with
(thmin = 120 packets, thmax = 360 packets) from 0.287 at 80% load to 0.837 seconds at
90% load. Overall, ARED gave slightly better response times with (thmin = 120 packets,
thmax = 360 packets) than with (thmin = 12 packets, thmax = 36 packets) at this load.
Further, ARED also achieved slightly lower packet loss rate with (thmin = 120 packets,
thmax = 360 packets) than with (thmin = 12 packets, thmax = 36 packets) at 90% offered

76

load (1.4% compared to 1.5%).

At 98% offered load, ARED gave a loss rate of 4.1% and 4.8% and a link throughput
of 87.4 and 87.9 Mbps for the parameter settings (thmin = 12 packets, thmax = 36 packets)
and (thmin = 120 packets, thmax = 360 packets). While a drop-tail queue of 240 packets
gave a packet loss rate of 6.0% at 98% load, slightly higher than ARED, it is worth noting
that a drop-tail queue of 240 packets also obtained a link throughput of 92 Mbps, higher
than ARED. In terms of response times, the 50th and 90th percentiles of response times
were 0.137 and 0.312 seconds for the uncongested network, and 0.262 and 2.862 seconds
for a drop-tail queue of 240 packets. These values were 0.262 and 3.287 seconds for ARED
with the parameter settings (thmin = 12 packets, thmax = 36 packets), and 0.287 and 3.287
seconds for ARED with the paremeter settings (thmin = 120 packets, thmax = 360 packets).
Thus, at 98% load, ARED’s performance was poorer than the performance of drop-tail
and deviates significantly from the performance of the uncongested network. This trend
continue to hold for ARED with both parameter settings at 105% offered load.

4.3 Results for BLUE and AVQ with Packet Drops

This section presents the experimental results for BLUE and AVQ when they are used
with packet drops. Unlike the AQM algorithms evaluated in section 4.2 (PI, REM, and
ARED), BLUE and AVQ do not control a router’s queue around a target queue reference
but adapt the packet loss rate such that the router’s queue does not overflow. For their
operations, BLUE and AVQ need a parameter that specifies the router’s queue size. When
the router’s queue reaches the specified queue size, a queue overflow occurs and arriving
packets are dropped. (However, note that the BLUE algorithm bases its operations directly
on the physical packet queue whereas the AVQ algorithm operates on a virtual queue as
explained in Chapter 2.)

Because of the aforementioned reason, experiments for BLUE and AVQ were performed
with a router’s queue size of 240 and 500 packets. (In case of AVQ, this queue size only
applies to the virtual queue. The size of the physical router’s queue is set to a sufficiently
large number such that tail drops do not occur as long as the algorithm still allows arriving
packets to enter the router’s queue). The queue sizes for BLUE and AVQ were chosen to be
a few times larger than the queue reference values for PI, REM, and ARED. The rationale
for this is that while PI, REM, and ARED can allow the router’s queue to temporarily grow
above the specified target queue reference values, BLUE and AVQ do not let the router’s
queue increase above the specified queue sizes.

Because BLUE and AVQ also drop arriving packets when the router’s queue overflows
like FIFO, another motivation for choosing a queue size of 240 packets for these algorithms
was to enable a direct comparison between them and drop-tail (as discussed in section 4.1,

77

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
BLUE 80% load - qlen = 240
BLUE 80% load - qlen = 500
BLUE 90% load - qlen = 240
BLUE 90% load - qlen = 500
BLUE 98% load - qlen = 240
BLUE 98% load - qlen = 500

BLUE 105% load - qlen = 240
BLUE 105% load - qlen = 500

Figure 4.15: BLUE performance at 80%, 90%, 98%, and 105% load

240 was the empirically-determined optimal queue size for drop-tail).

4.3.1 Results for BLUE

Figure 4.15 shows the experimental results for BLUE with a queue length of 240 and
500 packets at 80%, 90%, 98%, and 105% loads. Futher, Figure 4.16 presents the tails of
the distributions of response times for BLUE at these loads for completeness.

At 80% offered load, BLUE achieved equally good performance with both queue sizes
and closely approximated the performance of the uncongested network.

As the offered load increased to 90%, BLUE experienced a noticeable performance degra-
dation for both queue sizes. BLUE achieved better response times for all flows with a queue
length of 240 packets than with a queue length of 500 packets at this load.

At 98% offered load, the performance for BLUE with both queue sizes degraded even
further. BLUE obtained slightly better performance with a queue length of 500 packets
than with a queue length of 240 packets at this load.

At 105% offered load, BLUE experienced even more performance degradation for both
queue sizes. BLUE obtained equally poor performance with both queue lengths at this
extreme load.

78

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
BLUE 80% load - qlen=240
BLUE 80% load - qlen=500
BLUE 90% load - qlen=240
BLUE 90% load - qlen=500
BLUE 98% load - qlen=240
BLUE 98% load - qlen=500
BLUE 105% load - qlen=240
BLUE 105% load - qlen=500

Figure 4.16: BLUE performance at 80%, 90%, 98%, and 105% load (CCDF)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
AVQ 80% load - virtual qlen = 240
AVQ 80% load - virtual qlen = 500
AVQ 90% load - virtual qlen = 240
AVQ 90% load - virtual qlen = 500
AVQ 98% load - virtual qlen = 240
AVQ 98% load - virtual qlen = 500

AVQ 105% load - virtual qlen = 240
AVQ 105% load - virtual qlen = 500

Figure 4.17: AVQ performance at 80%, 90%, 98%, and 105% load

79

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
AVQ 80% load - qlen=240
AVQ 80% load - qlen=500
AVQ 90% load - qlen=240
AVQ 90% load - qlen=500
AVQ 98% load - qlen=240
AVQ 98% load - qlen=500
AVQ 105% load - qlen=240
AVQ 105% load - qlen=500

Figure 4.18: AVQ performance at 80%, 90%, 98%, and 105% load (CCDF)

4.3.2 Results for AVQ

Figure 4.17 presents the experimental results for AVQ with a virtual queue length of
240 and 500 packets at 80%, 90%, 98%, and 105% loads. For completeness, the tails of the
distributions of response times for AVQ at these loads are also shown in Figure 4.18.

At 80% offered load, the performance of AVQ degraded noticeably for both virtual
queue lengths of 240 and 500 packets when compared to that of the uncongested network.
AVQ obtained approximately the same performance with both virtual queue lengths at this
offered load.

As the offered load increased to 90%, the performance of AVQ degraded further for both
virtual queue lengths of 240 and 500 packets. AVQ obtained slightly better response times
for all flows with a virtual queue length of 500 packets than with a virtual queue length of
240 packets at this load.

At 98% and 105% loads, the performance of AVQ degraded even more for both virtual
queue lengths of 240 and 500 packets. AVQ achieved similarly poor performance with both
virtual queue lengths at these loads.

80

4.4 The Effects of Balancing Queuing Delay and Loss Rates

AQM algorithms evaluated in previous sections explicitly try to control router queues
by probabilistically dropping packets. Although the ultimate goal of AQM is to ensure
that queues never overflow (i.e., ensure that true congestion does not occur), existing AQM
algorithms typically achieve this goal by dropping packets aggressively when a router’s
queue grows larger than a certain threshold. However, I believe that while controlling
router queues is important, this control needs to be tempered by a consideration of the
overall loss rate at the router. Solely attempting to control queue length can induce loss
rates that have as negative an effect on application and network performance as the large
queues that existing AQM algorithms were trying to avoid. Thus, controlling queue length
without regard to loss rate can be counterproductive.

This section demonstrates the positive effects of balancing between queuing delay and
loss rates by using a case study of a new AQM algorithm that attempts to simultaneously
optimize queue length and loss rate. The new algorithm, called loss and queuing delay
control (LQD), explicitly treats loss rate as a control parameter (in addition to a target
queue length parameter) and dynamically balances loss rate and queuing delay at a router
to improve network and application performance [LJS06].

Controlling the length of a router’s queue is an important and difficult task. A large
queue subjects arriving packets to a long queuing delay and can also cause instability in
the TCP control feedback loop [LPW+02]. A short queue can be achieved by dropping
packets aggressively, however, a short target queue length runs the risk that the queue
can drain quickly and become empty before new packets arrive. In this case, the link
is underutilized and the router has unnecessarily dropped packets that could have been
enqueued and forwarded without ill effect. As argued above, while controlling router’s
queues is an important goal, it should not be achieved by simply dropping arriving packets.
This issue is particularly important because of the bursty characteristics of Internet traffic
that can cause temporary congestion at routers [FGW98, PF95]. (AQM algorithms such as
RED, ARED, and their derivatives attempt to deal with bursty arrivals by using a low-pass
filter to smooth the measure of average queue length, however, as shown in 4.2 and also in
following Chapters, this control is ineffective.)

In contrast to existing AQM algorithms, LQD provides a framework for balancing loss
rate and queuing delay. LQD is flexible enough to absorb transient bursts where the input
rate temporarily exceeds the link capacity. On the other hand, LQD can control and stabilize
router’s queue when persistent congestion occurs. This design distinguishes LQD from
existing AQM algorithms that simply try to control router’s queue at any cost (independent
of its effect on the environment).

Like most AQM algorithms, on each packet arrival LQD computes a drop probability
p(t) which is used to decide whether the arriving packet is to be dropped or forwarded. Let

81

T be the sampling interval and l(t) be the estimated packet loss rate (i.e., the ratio of the
number of dropped packets to the number of arriving packets). The drop probability at
time kT is computed as

p(kT) = p((k − 1)T) + a(q(kT)− qref)− b(l(kT)− pref) (4.1)

where a and b are coefficients of the LQD controller, and pref = 0, and qref > 0 are the
target loss rate and target queue length respectively. Observe that the drop probability is
increased when the queue length is larger than the queue target and is decreased otherwise.
However, when the loss rate grows larger than its threshold, the drop probability is adjusted
downward and the queue is allowed to grow temporarily.

The coefficients a and b allow a router to balance between queuing delay and packet loss
rate. The coefficient a specifies how large the queue can grow and the coefficient b allows
the router to adjust the loss rate and absorb transient congestion. In general, a should be
significantly smaller than b since the range of values for queue length (tens to hundreds)
is significantly larger than the range of values for packet loss rate (hundredths to tenths).
Experimental data suggests that the difference between the actual queue length and the
queue reference is on the order of tens in dynamic environments and the packet loss rate is
on the order of hundredths. Based on these results of empirical analysis, a and b were set
to 0.0001 and 0.1 for LQD to balance the relative contributions to the drop probability of
the queue length mismatch and the loss rate miss match in all experiments.

Figure 4.19 shows the experimental results for LQD with a queue reference of 24 and
240 packets at 80%, 90%, 98%, and 105% loads.

At 80% offered load, LQD delivered equally good performance with both queue refer-
ence values of 24 and 240 packets and the performance for LQD came very close to the
performance of the congested network.

At 90% offered load, the performance for LQD degraded slightly with both queue ref-
erence values of 24 and 240 packets. LQD achieved slightly better performance with a
queue reference of 240 packets at this load. In contrast to AQM algorithms evaluated in
section 4.2, LQD still gave quite good performance at this high load and demonstrated the
positive effects of balancing between queuing delay and loss rates.

As the offered load increased to 98%, the performance for LQD degraded considerably
with both queue reference values of 24 and 240 packets. LQD achieved very similar per-
formance with both queue reference values at this load although a queue reference of 24
packets delivered slightly better performance.

At 105% load, the performance for LQD with both queue reference values degraded
even further. LQD delivered better response times for approximately 70% of all flows with
a queue reference of 24 packets than with a queue reference of 240 packets. For the rest 30%
of flows (those that needed more than 500 milliseconds to complete), LQD obtained better

82

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
LQD 80% load - qref=24

LQD 80% load - qref=240
LQD 90% load - qref=24

LQD 90% load - qref=240
LQD 98% load - qref=24

LQD 98% load - qref=240
LQD 105% load - qref=24

LQD 105% load - qref=240

Figure 4.19: LQD performance at 80%, 90%, 98%, and 105% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
LQD 80% load - qref=24
LQD 80% load - qref=240
LQD 90% load - qref=24
LQD 90% load - qref=240
LQD 98% load - qref=24
LQD 98% load - qref=240
LQD 105% load - qref=24
LQD 105% load - qref=240

Figure 4.20: LQD performance at 80%, 90%, 98%, and 105% load (CCDF)

83

performance with a queue reference of 240 packets. This result shows again the trade-off
between optimizing response times for short and long flows that was discussed in section 4.2.

4.5 The Effects of Explicit Congestion Notification

Results presented in previous sections demonstrated the effects of AQM algorithms
on network and application performance when dropping packets is used as an implicit
mechanism for congestion notification. When AQM algorithms are used in combination
with the Explicit Congestion Notification protocol, they can set a bit in the header of IP
packets to explicitly inform end systems when congestion is about to occur. To assess the
effects of explicit congestion notification, experiments were performed with ECN enabled
at the routers and end systems.

4.5.1 Results for PI/ECN

Figures 4.21, 4.22, 4.23, and 4.24 show the performance of PI with and without ECN
and compare it with the performance of drop-tail at 80%, 90%, 98%, and 105% loads. As
in section 4.2, experiments for PI were performed with a target queue reference of 24 and
240 packets.

At 80% offered load, the addition of ECN did not improve the performance for PI. This
is because PI already obtained very good performance without ECN at this load and there
was virtually no room for improvement.

At 90% offered load, the performance of PI when combined with ECN was improved
significantly and came close to that of the uncongested network. Without ECN, PI only
provided a small performance improvement over drop-tail. However, when PI was combined
with ECN, it obtained considerable better performance than drop-tail.

The performance improvement for PI with ECN was even more impressive at 98% and
105% offered loads. PI when combined with ECN outperformed drop-tail significantly and
clearly demonstrated the advantage of AQM.

It is also interesting to note that when PI was used without ECN at 90% and 98%
offered loads, there was a crossover between the two queue reference values that occurred at
approximately 500 milliseconds (flows completing in less than 500 milliseconds experienced
better response times with a queue reference of 24 packets, but flows needing more than 500
milliseconds to complete fared better with a queue reference of 240 packets). As discussed
in sections 4.2 and 4.4, this crossover presents the trade-off between queuing delay and loss
rates. However, when PI was used with ECN, this crossover no longer existed because ECN
helped PI avoided dropping packets and significantly reduce the packet loss rates. When
used with ECN, PI performed better with a queue reference of 24 packets than with a queue
reference of 240 packets.

84

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

PI/ECN - qref=24
PI/ECN - qref=240

Figure 4.21: PI/ECN performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

PI/ECN - qref=24
PI/ECN - qref=240

Figure 4.22: PI/ECN performance at 90% load

85

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

PI/ECN - qref=24
PI/ECN - qref=240

Figure 4.23: PI/ECN performance at 98% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

PI/ECN - qref=24
PI/ECN - qref=240

Figure 4.24: PI/ECN performance at 105% load

86

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240
PI/ECN - qref=24
PI/ECN - qref=240

Figure 4.25: PI/ECN performance at 80% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240
PI/ECN - qref=24
PI/ECN - qref=240

Figure 4.26: PI/ECN performance at 90% load (CCDF)

87

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240
PI/ECN - qref=24
PI/ECN - qref=240

Figure 4.27: PI/ECN performance at 98% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240
PI/ECN - qref=24
PI/ECN - qref=240

Figure 4.28: PI/ECN performance at 105% load (CCDF)

88

4.5.2 Results for REM/ECN

Figures 4.29, 4.30, 4.31, and 4.32 show the performance of REM with and without ECN
and compare it with the performance of drop-tail at 80%, 90%, 98%, and 105% loads.
Experimental results for REM with and without ECN were obtained with a queue reference
of 24 and 240 packets.

At 80% offered load, the addition of ECN did not help improve performance for REM
because REM already obtained very good performance without ECN at this load. Surpris-
ingly, ECN slightly degraded the performance for REM when REM was used with a queue
reference of 24 packets.

As in the case with PI, the performance of REM was improved significantly when com-
bined with ECN at 90% offered load. When REM was used without ECN at this load, REM
obtained slightly worse performance than drop-tail with a queue reference of 24 packets.
Further, REM delivered significantly worse performance than drop-tail with a queue refer-
ence of 240 packets. However, when REM was used with ECN, REM obtained significant
performance improvement and outperformed drop-tail with both queue reference values. At
90% load, the performance of REM with ECN was almost comparable with the performance
of the uncongested network.

As the offered load increased to 98% and 105%, REM without ECN and with a queue
reference of 24 packets obtained slightly better performance than drop-tail. However, this
small performance improvement for REM over drop-tail could not offset the significant
performance degradation that REM and drop-tail experienced at these extreme loads. Fur-
ther, REM without ECN and with a queue reference of 240 packets delivered slightly worse
performance than drop-tail.

When REM was used with ECN at 98% and 105% loads, it obtained dramatic perfor-
mance improvement for both queue reference values and significantly outperformed drop-tail
at these high loads.

4.5.3 Results for ARED/ECN

Figures 4.37, 4.38, 4.39, and 4.40 show the performance of ARED with and without ECN
and compare it with the performance of drop-tail at 80%, 90%, 98%, and 105% loads. The
performance for ARED was obtained with a target queue threshold of 24 and 240 packets
by choosing appropriate values for thmin and thmax as discussed in section 4.2.

Contrary to PI and REM, ARED did not benefit from the addition of ECN and the
performance of ARED with ECN was essentially the same as without ECN. Furthermore,
ARED consistently performed poorer than drop-tail. These observations hold for ARED
at all loads. The reason for the poor performance of ARED without and with ECN are
explored in sections 4.6 and 4.7.

89

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

REM/ECN - qref=24
REM/ECN - qref=240

Figure 4.29: REM/ECN performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

REM/ECN - qref=24
REM/ECN - qref=240

Figure 4.30: REM/ECN performance at 90% load

90

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

REM/ECN - qref=24
REM/ECN - qref=240

Figure 4.31: REM/ECN performance at 98% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

REM/ECN - qref=24
REM/ECN - qref=240

Figure 4.32: REM/ECN performance at 105% load

91

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240
REM/ECN - qref=24
REM/ECN - qref=240

Figure 4.33: REM/ECN performance at 80% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240
REM/ECN - qref=24
REM/ECN - qref=240

Figure 4.34: REM/ECN performance at 90% load (CCDF)

92

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240
REM/ECN - qref=24
REM/ECN - qref=240

Figure 4.35: REM/ECN performance at 98% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240
REM/ECN - qref=24
REM/ECN - qref=240

Figure 4.36: REM/ECN performance at 105% load (CCDF)

93

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - min=12 max=36
ARED - min=120 max=360

ARED/ECN - min=12 max=36
ARED/ECN - min=120 max=360

Figure 4.37: ARED/ECN performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - min=12 max=36
ARED - min=120 max=360

ARED/ECN - min=12 max=36
ARED/ECN - min=120 max=360

Figure 4.38: ARED/ECN performance at 90% load

94

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - min=12 max=36
ARED - min=120 max=360

ARED/ECN - min=12 max=36
ARED/ECN - min=120 max=360

Figure 4.39: ARED/ECN performance at 98% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - min=12 max=36
ARED - min=120 max=360

ARED/ECN - min=12 max=36
ARED/ECN - min=120 max=360

Figure 4.40: ARED/ECN performance at 105% load

95

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - min=12 max=36
ARED - min=120 max=360
ARED/ECN - min=12 max=36
ARED/ECN - min=120 max=360

Figure 4.41: ARED/ECN performance at 80% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - min=12 max=36
ARED - min=120 max=360
ARED/ECN - min=12 max=36
ARED/ECN - min=120 max=360

Figure 4.42: ARED/ECN performance at 90% load (CCDF)

96

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - min=12 max=36
ARED - min=120 max=360
ARED/ECN - min=12 max=36
ARED/ECN - min=120 max=360

Figure 4.43: ARED/ECN performance at 98% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - min=12 max=36
ARED - min=120 max=360
ARED/ECN - min=12 max=36
ARED/ECN - min=120 max=360

Figure 4.44: ARED/ECN performance at 105% load (CCDF)

97

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

BLUE - qlen=240
BLUE - qlen=500

BLUE/ECN - qlen=240
BLUE/ECN - qlen=500

Figure 4.45: BLUE/ECN performance at 80% load

4.5.4 Results for BLUE/ECN

Figures 4.45, 4.46, 4.47, and 4.48 show the performance of BLUE with and without ECN
and compare it with the performance of drop-tail at 80%, 90%, 98%, and 105% loads. The
performance for BLUE was obtained with a router’s queue size of 240 and 500 packets.

At 80% load, BLUE obtained comparable performance with drop-tail and closely ap-
proximated the performance of the uncongested network. The addition of ECN did not
improve the performance for BLUE at this load.

At 90% offered load, BLUE without ECN and with a queue length of 240 packets
performed slightly better than drop-tail. However, BLUE without ECN and with a queue
length of 500 packets delivered slightly worse performance than drop-tail. When BLUE was
used with ECN, it obtained a small performance improvement with both queue lengths and
gave better performance than drop-tail.

As the offered load increased to 98% and 105%, BLUE without ECN and with a queue
length of 240 and 500 packets gave poorer performance than drop-tail. However, when
BLUE was used with ECN, it obtained significant performance improvement with both
queue lengths and outperformed drop-tail.

98

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

BLUE - qlen=240
BLUE - qlen=500

BLUE/ECN - qlen=240
BLUE/ECN - qlen=500

Figure 4.46: BLUE/ECN performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

BLUE - qlen=240
BLUE - qlen=500

BLUE/ECN - qlen=240
BLUE/ECN - qlen=500

Figure 4.47: BLUE/ECN performance at 98% load

99

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

BLUE - qlen=240
BLUE - qlen=500

BLUE/ECN - qlen=240
BLUE/ECN - qlen=500

Figure 4.48: BLUE/ECN performance at 105% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
BLUE - qlen=240
BLUE - qlen=500
BLUE/ECN - qlen=240
BLUE/ECN - qlen=500

Figure 4.49: BLUE/ECN performance at 80% load (CCDF)

100

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
BLUE - qlen=240
BLUE - qlen=500
BLUE/ECN - qlen=240
BLUE/ECN - qlen=500

Figure 4.50: BLUE/ECN performance at 90% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
BLUE - qlen=240
BLUE - qlen=500
BLUE/ECN - qlen=240
BLUE/ECN - qlen=500

Figure 4.51: BLUE/ECN performance at 98% load (CCDF)

101

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
BLUE - qlen=240
BLUE - qlen=500
BLUE/ECN - qlen=240
BLUE/ECN - qlen=500

Figure 4.52: BLUE/ECN performance at 105% load (CCDF)

4.5.5 Results for AVQ/ECN

Figures 4.53, 4.54, 4.55, and 4.56 present the performance of AVQ with and without
ECN and compare it with the performance of drop-tail at 80%, 90%, 98%, and 105% loads.
The performance for AVQ was obtained with a virtual queue length of 240 and 500 packets.

At 80% load, AVQ without ECN and with a virtual queue length of 240 and 500 packets
gave slightly worse performance than drop-tail. However, when AVQ was used with ECN,
it obtained considerable performance improvement and delivered comparable performance
with both virtual queue lengths as drop-tail.

At 90% load, AVQ without ECN gave comparable performance with both virtual queue
lengths. Without ECN, AVQ delivered the same performance as drop-tail for approximately
75% of flows but gave poorer performance than drop-tail for the rest 25% of flows. When
AVQ was used with ECN, it obtained dramatic performance improvement with both virtual
queue lengths and significantly outperformed drop-tail at this load.

At 98% load, AVQ without ECN again obtained comparable performance with both
virtual queue lengths. Without ECN, AVQ gave better performance than drop-tail for ap-
proximately 70% of flows and obtained comparable performance as drop-tail for the rest
30% of flows. Interestingly, when AVQ was used with ECN, it suffered significant perfor-

102

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

AVQ - virtual qlen=240
AVQ - virtual qlen=500

AVQ/ECN - virtual qlen=240
AVQ/ECN - virtual qlen=500

Figure 4.53: AVQ/ECN performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

AVQ - virtual qlen=240
AVQ - virtual qlen=500

AVQ/ECN - virtual qlen=240
AVQ/ECN - virtual qlen=500

Figure 4.54: AVQ/ECN performance at 90% load

103

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

AVQ - virtual qlen=240
AVQ - virtual qlen=500

AVQ/ECN - virtual qlen=240
AVQ/ECN - virtual qlen=500

Figure 4.55: AVQ/ECN performance at 98% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

AVQ - virtual qlen=240
AVQ - virtual qlen=500

AVQ/ECN - virtual qlen=240
AVQ/ECN - virtual qlen=500

Figure 4.56: AVQ/ECN performance at 105% load

104

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
AVQ - virtual qlen=24
AVQ - virtual qlen=500
AVQ/ECN - virtual qlen=240
AVQ/ECN - virtual qlen=500

Figure 4.57: AVQ/ECN performance at 80% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
AVQ - virtual qlen=24
AVQ - virtual qlen=500
AVQ/ECN - virtual qlen=240
AVQ/ECN - virtual qlen=500

Figure 4.58: AVQ/ECN performance at 90% load (CCDF)

105

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
AVQ - virtual qlen=24
AVQ - virtual qlen=500
AVQ/ECN - virtual qlen=240
AVQ/ECN - virtual qlen=500

Figure 4.59: AVQ/ECN performance at 98% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
AVQ - virtual qlen=24
AVQ - virtual qlen=500
AVQ/ECN - virtual qlen=240
AVQ/ECN - virtual qlen=500

Figure 4.60: AVQ/ECN performance at 105% load (CCDF)

106

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 4.61: LQD/ECN performance at 80% load

mance degradation for 70% of flows but obtained considerable performance improvement
for the rest 30% of flows.

At 105% offered load, AVQ without ECN gave comparable performance with both vir-
tual queue lengths. Without ECN, AVQ obtained better performance than drop-tail at this
extreme load. However, the addition of ECN significantly degraded the performance for
AVQ at this load. When AVQ was used with ECN, it gave significantly worse performance
than drop-tail at 105% load.

It is interesting to note that AVQ with ECN exhibited similar behavior as a drop-tail
queue with 2,400 packets at 98% and 105% loads in Figures 4.3 and 4.4. Thus, it can be
inferred that AVQ with ECN behaved like a large drop-tail queue at these loads and did not
mark or drop packets aggressively enough. This behavior caused excessive queuing delay
and significantly increased response times for exchanges of requests and responses.

4.5.6 Results for LQD/ECN

Figures 4.61, 4.62, 4.63, and 4.64 show results for LQD with and without ECN when
experiments were performed with Web traffic and a uniform RTT distribution between 10
and 150 milliseconds. These results were obtained for LQD with a queue reference of 24
and 240 packets.

107

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 4.62: LQD/ECN performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 4.63: LQD/ECN performance at 98% load

108

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 4.64: LQD/ECN performance at 105% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240
LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 4.65: LQD/ECN performance at 80% load (CCDF)

109

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240
LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 4.66: LQD/ECN performance at 90% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240
LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 4.67: LQD/ECN performance at 98% load (CCDF)

110

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240
LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 4.68: LQD/ECN performance at 105% load (CCDF)

At 80% offered load, LQD obtained the same performance when it was used with and
without ECN. With or without ECN, LQD gave similar performance with both queue
reference of 24 and 240 packets. The performance of LQD at this load was undistinguishable
from that of the uncongested network and of drop-tail with a queue length of 240 packets.

At 90% offered load, LQD obtained a small performance improvement with ECN over
packet dropping when LQD was operated with a queue reference of 24 packets. When LQD
was used with a queue reference of 240 packets, it delivered essentially the same performance
with and without ECN. With or without ECN, the performance for LQD at this load was
clearly better than that of drop-tail and came relatively close to the performance of the
uncongested network.

As the offered load increased to 98% and 105%, ECN help LQD obtain significant
performance improvement over packet dropping. While LQD without ECN outperformed
drop-tail at these loads, LQD gave performance that was significantly lower than that of
the uncongested network. However, when LQD was used with ECN, the performance for
LQD came reasonbly close to that of the uncongested network at these extreme loads.

111

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
ARED byte - min=12 max=36

ARED byte - min=120 max=360
ARED - min=12 max=36

ARED - min=120 max=360
drop-tail - qlen=240

Figure 4.69: Performance of ARED byte mode at 80% load

4.6 The Effects of Byte Mode

Details of the ARED algorithm suggest that a possible reason for the consistent poor
performance of ARED shown in section 4.2 is the “packet mode” that ARED uses to measure
the router’s queue. In contrast to ARED, PI and REM use the “byte mode” and measure
the router’s queue in bytes. The “byte mode” enables fine grain in measurements of the
router’s queue. Furthermore, the side effect of the “byte mode” is that the drop probability
for an arriving packet is scaled by the size of that packet.

The side effect of the “byte mode” results in a lower drop probability for control packets
such as SYNs and pure ACKs because of their small packet sizes and effectively gives a
mechanism for protecting these packets. Since these control packets potentially have an
important impact on application performance, “byte mode” could give significant improve-
ment for application performance. While ARED also has a “byte mode”, this mode was
not recommended by the inventors of ARED.

Experimental results were obtained for ARED in “byte mode” and compared with results
for ARED in “packet mode” to explore the potential effects of “byte mode”.

Figures 4.69, 4.70, 4.71, and 4.72 show the performance of ARED in “packet mode” and
“byte mode” at 80%, 90%, 98%, and 105% loads. The performance of ARED in both modes
were obtained with a target queue reference of 24 and 240 packets by setting thmin and thmax

112

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
ARED byte - min=12 max=36

ARED byte - min=120 max=360
ARED - min=12 max=36

ARED - min=120 max=360
drop-tail - qlen=240

Figure 4.70: Performance of ARED byte mode at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
ARED byte - min=12 max=36

ARED byte - min=120 max=360
ARED - min=12 max=36

ARED - min=120 max=360
drop-tail - qlen=240

Figure 4.71: Performance of ARED byte mode at 98% load

113

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
ARED byte - min=12 max=36

ARED byte - min=120 max=360
ARED - min=12 max=36

ARED - min=120 max=360
drop-tail - qlen=240

Figure 4.72: Performance of ARED byte mode at 105% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - min=12 max=36
ARED - min=120 max=360
ARED byte - min=12 max=36
ARED byte - min=120 max=360

Figure 4.73: Performance of ARED byte mode at 80% load (CCDF)

114

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - min=12 max=36
ARED - min=120 max=360
ARED byte - min=12 max=36
ARED byte - min=120 max=360

Figure 4.74: Performance of ARED byte mode at 90% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - min=12 max=36
ARED - min=120 max=360
ARED byte - min=12 max=36
ARED byte - min=120 max=360

Figure 4.75: Performance of ARED byte mode at 98% load (CCDF)

115

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - min=12 max=36
ARED - min=120 max=360
ARED byte - min=12 max=36
ARED byte - min=120 max=360

Figure 4.76: Performance of ARED byte mode at 105% load (CCDF)

to appropriate values. Figures 4.69, 4.70, 4.71, and 4.72 also compare the performance of
ARED in both modes with the performance of drop-tail.

At 80% load, ARED in “packet mode” gave poorer performance than drop-tail. How-
ever, ARED in “byte mode” significantly outperformed ARED in “packet mode”, gave
comparable performance with drop-tail and came close to the performance of uncongested
network.

At 90% load, ARED in “packet mode” continued to deliver poorer performance than
drop-tail. However, the “byte mode” helped ARED obtain significant performance im-
provement and outperform drop-tail. When used in “byte mode”, ARED with (thmin = 12
packets, thmax = 36 packets) gave slightly better performance than with (thmin = 120
packets, thmax = 360 packets) for about 90% of flows. For the rest 10% of flows, ARED in
“byte mode” delivered the same performance with both parameter settings.

At 98% and 105% offered loads, ARED performance was also improved significantly with
“byte mode”. While the performance of ARED in “packet mode” was poorer than that of
drop-tail, ARED in “byte mode” outperformed drop-tail at these loads. When ARED was
used in “byte mode”, it delivered slightly better performance with (thmin = 12 packets,
thmax = 36 packets) than with (thmin = 120 packets, thmax = 360 packets) at 98% and
105% loads.

116

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
ARED/ECN new gentle - min=12 max=36

ARED/ECN new gentle - min=120 max=360
ARED/ECN - min=12 max=36

ARED/ECN - min=120 max=360
drop-tail - qlen=240

Figure 4.77: Performance of ARED/ECN new gentle mode at 80% load

4.7 The Effects of Dropping Packets in ECN Mode

As shown in section 4.5, the addition of ECN did not help ARED improve its per-
formance at all. Details of the ARED algorithm in ECN mode suggest that a possible
reason for the unimproved performance of ARED with ECN is a recommendation in the
IETF’s RFC 3168 that ARED chooses to follow. This recommendation states that an ECN-
capable router should drop packets when its average queue size exceeds a certain threshold
[RFB01]. Following this recommendation, ARED drops packets probabilistically when the
average queue is between the thresholds maxth and 2maxth even when ARED operates in
ECN mode and the dropped packets could have been marked.

I proposed a modification for ARED call “new gentle” that marks ECN-capable packets
(instead of dropping them as in the original ARED algorithm) when the average queue size
is between the thresholds maxth and 2maxth. The name “new gentle” stems from the fact
that the operational region for ARED between maxth and 2maxth is called the gentle mode.

Experimental results were obtained with ARED “new gentle” (henceforth called ARED/ECN
“new gentle”) and compared with the results of the original ARED in ECN (henceforth
called ARED/ECN) mode to explore the effects of dropping packets in ECN mode.

Figures 4.77, 4.78, 4.79, and 4.80 show the results of ARED the original and new “gentle
mode” when ECN is enabled at the routers and end systems. Experimental results for

117

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
ARED/ECN new gentle - min=12 max=36

ARED/ECN new gentle - min=120 max=360
ARED/ECN - min=12 max=36

ARED/ECN - min=120 max=360
drop-tail - qlen=240

Figure 4.78: Performance of ARED/ECN new gentle mode at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
ARED/ECN new gentle - min=12 max=36

ARED/ECN new gentle - min=120 max=360
ARED/ECN - min=12 max=36

ARED/ECN - min=120 max=360
drop-tail - qlen=240

Figure 4.79: Performance of ARED/ECN new gentle mode at 98% load

118

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
ARED/ECN new gentle - min=12 max=36

ARED/ECN new gentle - min=120 max=360
ARED/ECN - min=12 max=36

ARED/ECN - min=120 max=360
drop-tail - qlen=240

Figure 4.80: Performance of ARED/ECN new gentle mode at 105% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED/ECN - min=12 max=36
ARED/ECN - min=120 max=360
ARED/ECN new gentle - min=12 max=36
ARED/ECN new gentle - min=120 max=360

Figure 4.81: Performance of ARED/ECN new gentle mode at 80% load (CCDF)

119

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED/ECN - min=12 max=36
ARED/ECN - min=120 max=360
ARED/ECN new gentle - min=12 max=36
ARED/ECN new gentle - min=120 max=360

Figure 4.82: Performance of ARED/ECN new gentle mode at 90% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED/ECN - min=12 max=36
ARED/ECN - min=120 max=360
ARED/ECN new gentle - min=12 max=36
ARED/ECN new gentle - min=120 max=360

Figure 4.83: Performance of ARED/ECN new gentle mode at 98% load (CCDF)

120

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED/ECN - min=12 max=36
ARED/ECN - min=120 max=360
ARED/ECN new gentle - min=12 max=36
ARED/ECN new gentle - min=120 max=360

Figure 4.84: Performance of ARED/ECN new gentle mode at 105% load (CCDF)

ARED and ARED “new gentle” were obtained with a target queue reference of 24 and 240
packets.

At 80% load, the original ARED algorithm in ECN mode provided poorer performance
than drop-tail. However, ARED “new gentle” obtained significant performance improve-
ment over the original ARED algorithm and gave better performance than drop-tail.

At 90% load, the original ARED algorithm in ECN mode again delivered poorer per-
formance than drop-tail for all flows. The ARED “new gentle” algorithm benefited from
the addition of ECN and significantly outperformed the original ARED algorithm. When
used with (thmin = 12 packets, thmax = 36 packets), ARED “new gentle” delivered compa-
rable response times as drop-tail for 90% of flows but provided slightly poorer performance
than drop-tail for the rest 10% of flows. However, ARED “new gentle” with (thmin = 120
packets, thmax = 360 packets) gave better response times than drop-tail for all flows.

At 98% and 105% loads, the original ARED algorithm in ECN mode continued to
gave poor performance that was not competitive with drop-tail. ARED “new gentle” with
(thmin = 12 packets, thmax = 36 packets) obtained better performance for approximately
70% of flows but worse performance for the rest 30% of flows than ARED “new gentle”
with (thmin = 120 packets, thmax = 360 packets). Further, ARED “new gentle” with
both parameter settings obtained performance that was better than that of drop-tail for

121

approximately 80% of flows. However, the rest 20% of flows experienced better response
times under drop-tail.

4.8 The Effects of Differential Treatment of Flows

Experimental results in previous sections demonstrated the potential benefits of AQM
in improving both network and application performance. However, this positive result was
dampened by the fact that AQM algorithms evaluated in previous sections required the
signaling protocol ECN to deliver good performance at high loads. This presents a serious
hindrance for AQM because ECN is not currently deployed or enabled by most end systems.

In a study of TCP behavior in 2001, Padhye and Floyd found that less than 10% of
the 24,030 web servers tested had ECN enabled, of which less than 1% had a compliant
implementation or configuration of ECN [PF01]. More recent ECN testing in 2004 showed
that only 2.1% of web servers on the Internet had correctly deployed ECN [MAF05]. This
clearly points to obvious difficulties in deploying and properly using ECN on the end-
systems.

Because of the lack of ECN deployment, some AQM algorithms proposed in recent
years attempted to improve network and application performance without ECN by taking
advantage of traffic characteristics [GM01, FKSS01b, PBPS03, LAJS04]. These AQM algo-
rithms distinguish between flows when they decide whether or not to mark or drop arriving
packets (in contrast to AQM algorithms evaluated in previous sections that treat all flows
identically).

This section presents experimental results that were obtained to evaluate the effects
of differential treatment of flows by AQM algorithms. Experiments were performed for
three algorithms: Approximate Fairness through Differential Dropping (AFD) [PBPS03],
RED with In and Out with Preferential treatment to Short flows (RIO-PS) [GM01], and
Differential Congestion Notification (DCN) [LAJS04]. Attempts to perform experiments
for the Stochastic Fair BLUE algorithm [FKSS01b] failed because of this algorithm’s high
demand for CPU resources on the routers in the laboratory network.

4.8.1 Results for AFD

Figure 4.85, 4.86, 4.87, and 4.88 present the experimental results for AFD with and
without ECN at 80%, 90%, 98%, and 105% offered loads. These results were obtained with
a queue reference of 24 and 240 packets.

At 80% load, AFD without ECN and with a queue reference of 24 packets obtained
slightly worse performance than drop-tail. However, AFD without ECN and with a queue
reference of 240 packets delivered good response times that were comparable with the per-
formance of drop-tail. Further, when AFD was used with ECN, AFD with both queue

122

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

AFD - qref=24
AFD - qref=240

AFD/ECN - qref=24
AFD/ECN - qref=240

Figure 4.85: Performance of AFD with and without ECN at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

AFD - qref=24
AFD - qref=240

AFD/ECN - qref=24
AFD/ECN - qref=240

Figure 4.86: Performance of AFD with and without ECN at 90% load

123

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

AFD - qref=24
AFD - qref=240

AFD/ECN - qref=24
AFD/ECN - qref=240

Figure 4.87: Performance of AFD with and without ECN at 98% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

AFD - qref=24
AFD - qref=240

AFD/ECN - qref=24
AFD/ECN - qref=240

Figure 4.88: Performance of AFD with and without ECN at 105% load

124

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
AFD - qref=24
AFD - qref=240
AFD/ECN - qref=24
AFD/ECN - qref=240

Figure 4.89: Performance of AFD with and without ECN at 80% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
AFD - qref=24
AFD - qref=240
AFD/ECN - qref=24
AFD/ECN - qref=240

Figure 4.90: Performance of AFD with and without ECN at 90% load (CCDF)

125

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
AFD - qref=24
AFD - qref=240
AFD/ECN - qref=24
AFD/ECN - qref=240

Figure 4.91: Performance of AFD with and without ECN at 98% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
AFD - qref=24
AFD - qref=240
AFD/ECN - qref=24
AFD/ECN - qref=240

Figure 4.92: Performance of AFD with and without ECN at 105% load (CCDF)

126

reference of 24 and 240 packets also achieved as good performance as drop-tail and com-
petitive to that of uncongested network.

When AFD operated with a queue reference of 24 packets at 90% offered load, AFD
with and without ECN delivered poor performance that was worse than the performance of
drop-tail However, when AFD operated with a queue reference of 240 packets, AFD with
and without ECN gave good response times and outperformed drop-tail at this load.

At 98% load, AFD with a queue reference of 24 packets (with and without ECN) gave
comparable performance with drop-tail for 70% of flows but delivered poorer performance
than drop-tail for the rest 30% of flows. However, AFD with a queue reference of 240
packets (with and without ECN) achieved better performance than drop-tail.

At 105% load, AFD with a queue reference of 24 packets (with and without ECN)
outperformed drop-tail for 70% of flows but gave worse performance than drop-tail for the
rest 30% of flows. AFD with a queue reference of 240 packets (with and without ECN)
continued to outperform drop-tail.

4.8.2 Results for RIO-PS

Figure 4.93, 4.94, 4.95, and 4.96 show the experimental results for RIO-PS at 80%, 90%,
98%, and 105% loads. These results were obtained with the default parameters for RIO-PS
thmin = 80 packets, thmax = 840 packets, maxp = 1/20 for short-lived flows and thmin = 80
packets, thmax = 1200 packets, maxp = 1/10 for long-lived flows. These parameters were
recommended so that packets from short-lived flows are marked or dropped with a lower
probability than packets from long-lived flows.

At 80% offered load, RIO-PS with and without ECN obtained similar performance
for all flows. RIO-PS gave comparable performance as drop-tail and approximated the
performance of the uncongested network at this load.

At 90% offered load, RIO-PS delivered good performance both with and without ECN
and outperformed drop-tail. Since RIO-PS already obtained good performance without
ECN at this load, the addition of ECN only improved the performance for RIO-PS marginally.

As the offered load increased to 98% and 105%, RIO-PS continued to obtain acceptable
performance even without ECN and outperformed drop-tail. The addition of ECN only
improved the performance for RIO-PS slightly at these loads. However, the performance
for RIO-PS both with and without ECN degraded noticeably at these high loads.

4.8.3 Results for DCN

Sections 4.8.1 and 4.8.2 demonstrated the difficult trade-off between performance and al-
gorithm complexity in designing AQM algorithms for differential treatment of flows. While
the RIO-PS algorithm could achieve good performance even without ECN, it maintained
per-flow statistics for all flows and put a high demand for CPU and memory resources.

127

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

RIO-PS
RIO-PS/ECN

Figure 4.93: Performance of RIO-PS with and without ECN at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

RIO-PS
RIO-PS/ECN

Figure 4.94: Performance of RIO-PS with and without ECN at 90% load

128

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

RIO-PS
RIO-PS/ECN

Figure 4.95: Performance of RIO-PS with and without ECN at 98% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

RIO-PS
RIO-PS/ECN

Figure 4.96: Performance of RIO-PS with and without ECN at 105% load

129

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
RIO-PS
RIO-PS/ECN

Figure 4.97: Performance of RIO-PS with and without ECN at 80% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
RIO-PS
RIO-PS/ECN

Figure 4.98: Performance of RIO-PS with and without ECN at 90% load (CCDF)

130

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
RIO-PS
RIO-PS/ECN

Figure 4.99: Performance of RIO-PS with and without ECN at 98% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
RIO-PS
RIO-PS/ECN

Figure 4.100: Performance of RIO-PS with and without ECN at 105% load (CCDF)

131

On the other hand, the AFD algorithm used a constant-size hash table and required less
CPU and memory resources, but this algorithm did not obtain impressive performance im-
provement over drop-tail. This section investigates the Differential Congestion Notification
(DCN) algorithm that attempts to achieve good performance with a relatively low algorithm
complexity.

The DCN algorithm is based on identifying large (i.e., long-lived) and fast (i.e., high-
bandwidth) flows and delivering congestion notification to these flows. The premise of DCN
is the fact that while most flows on Internet links are small, a large fraction of bandwidth on
an Internet link is consumed by a handful of large and high-bandwidth flows. For example,
Zhang et al. found that small flows (100 KB or less) accounted for at least 84% of all flows,
but carried less than 15% of all bytes [ZBPS02]. They also found that large flows accounted
for a small fraction of the number of flows, but carried most of the bytes. Further, the flows
that are large and fast (i.e., high-bandwidth, greater than 10 KB/sec) account for less than
10% of all flows, while carrying more than 80% of all the bytes.

After identifying large and high-bandwidth flows, DCN delivers congestion notification
to these flows by either marking or dropping their packets. While marking is clearly pre-
ferred over dropping, experimental results demonstrated that DCN can obtain good per-
formance at high offered loads without ECN (as will be shown later in this section and
subsequent Chapters).

While the idea of DCN is simple, the challenge, however, is to design an algorithm that
uses a small amount of state to identify the few large and high-bandwidth flows from a
large aggregate of flows and provide them with a congestion signal when appropriate. An
important dimension of this problem is that of all the flows carrying large responses, it is
most effective to signal flows that are also transmitting at a high rate. These are the flows
that are consuming the most bandwidth and hence will produce the greatest effect when
they reduce their rate. DCN has two main components: identification of high-bandwidth
flows and a decision procedure for determining when early congestion notification is in order.

Identifying High-Bandwidth Flows

DCN’s approach to identifying large and high-bandwidth flows is based on the idea
that packets of high-bandwidth flows are closely paced (i.e., their interarrival times are
short) [EV02]. DCN tracks the number of packets that have been recently seen from each
flow. If this count exceeds a threshold, the flow is considered to be a long-lived and high-
bandwidth flow and the flow’s rate is monitored and its packets are eligible for dropping or
ECN-marking. As long as a flow remains classified as high-bandwidth, it remains eligible
for dropping/marking. If a flow reduces its transmission rate, it is removed from the list of
monitored flows and is no longer eligible for dropping/marking.

DCN uses two hash tables for classifying flows: HB (high bandwidth) and SB (score-

132

Is Flow ID
in HB?

Mark or drop
probabilistically

yes

Enqueue

no

Is Flow ID
in SB?

Increment pktcount

Overwrite existing
flow entry

Last update w/in
threshold1?

Reset pktcount

pktcount ≥ 4? Copy flow
entry to HB

threshold2 time
elapsed since
last decrease?

Decrease
pktcount by pref

yes

yes

yes

yes no

no

no

(Enqueue if
not dropped)

Packet
arrival

Figure 4.101: High-level flow chart of DCN

board). The HB table tracks flows that are considered high-bandwidth and stores each
flow’s flow ID (IP addressing 5-tuple) and forwarded packet count. The SB table tracks a
fixed number of flows that are potential high-bandwidth flows. SB stores the flow ID and
recent forwarded packet count of these potential high-bandwidth flows.

When a packet arrives at a router, HB is checked to see if this packet belongs to a
high-bandwidth flow. If the packet’s flow is found in HB, then it is handled as described
below. If the packet’s flow ID is not HB, then the packet is enqueued and its flow is tested
to see if it should be entered into HB. This test is performed by looking for the flow’s ID
in SB. If the flow ID is not present, it is added to SB. If the flow ID is present in SB, its
packet count is incremented.

A flow is classified as long-lived and high-bandwidth if the number of packets from the
flow arriving within a clearing interval, exceeds a threshold. Once the flow’s packet count
in SB has been incremented, if the count exceeds the threshold, the flow’s entry in SB is
added to HB. If no packets have been received for the flow within a clearing interval, its
packet count is reset to 0.

A high-level flow chart of the DCN algorithm is given in Figure 4.101. All operations
on SB are performed in O(1) time. Further, since the number of flows identified as high-
bandwidth is small, hash collisions in HB are rare for a table size of a few thousand entries.
Thus, operations on HB are also usually executed in O(1) time.

Decision Procedure for Dropping/Marking Packets

Packets from a high-bandwidth flow are marked or dropped with a probability (1 −
pref/pktcount), where pktcount is the number of packets from that flow that have arrived
at the router within a period of Tdec, and pref is the current fair share of a flow on a
congested link. When congestion is suspected in the router, DCN targets high-bandwidth
flows for dropping in proportion to their deviation from their fair share (pref packets within

133

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 4.102: Performance of DCN with and without ECN at 80% load

an interval Tdec) [SSZ98, PBPS03].

DCN uses a simple control theoretic algorithm based on the well-known PI controller to
compute pref . The instantaneous length of the queue in the router is periodically sampled
with period T . A flow’s fair share of the queue at the kth sampling period is given by

pref (kT) = a(q(kT)− qref)− b(q((k − 1)T)− qref) + pref ((k − 1)T) (4.2)

where a and b, a < b, are control coefficients (constants), q(kT) is the length of the queue
at a given time kT and qref is a target queue length value for the controller. Since a < b,
pref decreases when the queue length is larger than qref (an indication of congestion). Thus,
packets from high-bandwidth flows are marked or dropped with a high probability. When
congestion abates and the queue length drops below qref , pref increases and the probability
of marking or dropping becomes low. Pan et al. and Misra et al. use the same equation in
the design of AFD and PI respectively [PBPS03, HMTG01].

The flow ID of a high-bandwidth flow is kept in HB as long as its counter pktcount is
positive. After each interval Tdec, the counter pktcount is decreased by pref . If the counter
pktcount of a high-bandwidth flow is smaller than 0, the flow is released from HB.

Figure 4.102, 4.103, 4.104, and 4.105 show the experimental results for DCN with and
without ECN at 80%, 90%, 98%, and 105% loads. These results for DCN were obtained

134

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 4.103: Performance of DCN with and without ECN at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 4.104: Performance of DCN with and without ECN at 98% load

135

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 4.105: Performance of DCN with and without ECN at 105% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240
DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 4.106: Performance of DCN with and without ECN at 80% load (CCDF)

136

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240
DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 4.107: Performance of DCN with and without ECN at 90% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240
DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 4.108: Performance of DCN with and without ECN at 98% load (CCDF)

137

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240
DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 4.109: Performance of DCN with and without ECN at 105% load (CCDF)

with a queue reference of 24 and 240 packets.

At 80% load, DCN obtained good performance with both queue reference values of 24
and 240 packets. DCN with and without ECN obtained equally good performance at this
load. The performance for DCN at this load was comparable with that of drop-tail and
came close to the performance of the uncongested network.

At 90% load, DCN also delivered good performance with both queue reference values and
significantly outperformed drop-tail. DCN obtained with both queue reference values good
performance even without ECN and the addition of ECN did not improve the performance
for DCN at this load.

As the offered load increased to 98% and 105%, DCN obtained good performance with
both queue reference values at these loads but it gave slightly better performance with
a queue reference of 24 packets. At these high loads, DCN continued to obtain good
performance even without ECN and significantly outperformed drop-tail. This positive
result demonstrated the benefits of differential treatment of flows.

138

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI/ECN - qref=24
REM/ECN - qref=24

BLUE/ECN - qref=500
DCN - qref=24

ARED/ECN new gentle - min=120 max=360

Figure 4.110: Comparison of all AQM algorithms at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI/ECN - qref=24
REM/ECN - qref=24

BLUE/ECN - qref=500
DCN - qref=24

ARED/ECN new gentle - min=120 max=360

Figure 4.111: Comparison of all AQM algorithms at 90% load

139

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI/ECN - qref=24
REM/ECN - qref=24

BLUE/ECN - qref=500
DCN - qref=24

ARED/ECN new gentle - min=120 max=360

Figure 4.112: Comparison of all AQM algorithms at 98% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI/ECN - qref=24
REM/ECN - qref=24

BLUE/ECN - qref=500
DCN - qref=24

ARED/ECN new gentle - min=120 max=360

Figure 4.113: Comparison of all AQM algorithms at 105% load

140

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=24
REM/ECN - qref=24
BLUE/ECN - qlen=500
DCN - qref=24
ARED/ECN new gentle - min=120 max=360

Figure 4.114: Comparison of all AQM algorithms at 80% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=24
REM/ECN - qref=24
BLUE/ECN - qlen=500
DCN - qref=24
ARED/ECN new gentle - min=120 max=360

Figure 4.115: Comparison of all AQM algorithms at 90% load (CCDF)

141

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=24
REM/ECN - qref=24
BLUE/ECN - qlen=500
DCN - qref=24
ARED/ECN new gentle - min=120 max=360

Figure 4.116: Comparison of all AQM algorithms at 98% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=24
REM/ECN - qref=24
BLUE/ECN - qlen=500
DCN - qref=24
ARED/ECN new gentle - min=120 max=360

Figure 4.117: Comparison of all AQM algorithms at 105% load (CCDF)

142

4.9 Comparison of All Results

Figure 4.110, 4.111, 4.112, and 4.113 show a comparison of drop-tail, PI, REM, ARED,
BLUE, and DCN at 80%, 90%, 98%, and 105% loads. Experimental results shown in these
figures were obtained with the best parameter settings for each of the algorithms. PI,
REM, and ARED were chosen to represent AQM algorithms that operate around a target
queue threshold 4.2. The BLUE algorithm was chosen to represent AQM algorithms that
avoid queue overflows by adjusting the probability for marking or dropping arriving packets
(BLUE and AVQ in section 4.3. The DCN algorithm represented AQM algorithms that use
differential treatment of flows 4.8.

At 80% offered load, all AQM algorithms delivered good performance that was compara-
ble with the performance of drop-tail and approximated the performance of the uncongested
network.

At 90% load, all AQM algorithms continued to deliver good performance and outper-
formed drop-tail. This positive result demonstrated the benefit of AQM at high loads.
Among the AQM algorithms, DCN obtained the best performance even without ECN and
BLUE with ECN and a queue length of 500 packets gave the worst performance.

As the offered load increased to 98% and 105%, all AQM algorithms continued to out-
perform drop-tail. The DCN algorithm continue to give the best performance even without
ECN and demonstrated the benefits of differential treatment of flows. The PI and REM
algorithms closely approximated the performance of DCN but these algorithms needed the
addition of the ECN signaling protocol. The BLUE and ARED algorithms obtained bet-
ter performance than drop-tail but their performance improvement over drop-tail was not
significant.

4.10 Summary

In this Chapter, experimental results with Web traffic and a uniform RTT distribution
were presented for a number of AQM algorithms that have been proposed recently in re-
search literature. When response times are used as the primary performance measure, the
experimental results in this Chapter lead to the following conclusions.

• At offered loads of 80% or lower, drop-tail with a queue length of 240 packets obtained
performance that was competitive to that of all AQM algorithms. Further, since drop-
tail closely approximated the performance of the uncongested network at this load,
there appears to be no need for AQM at 80% offered load or lower.

• As the offered load increased to 90% or higher and when AQM algorithms were used
with packet drops, ARED “byte mode”, LQD and PI were the best performing al-
gorithm among AQM algorithms that do not apply differential treatment of flows.

143

However, the performance improvement for PI and LQD could not offset the perfor-
mance degradation that all non-differential AQM algorithms suffered at these high
loads. LQD obtained slightly better performance than PI by balancing between queu-
ing delay and loss rates.

• When AQM algorithms were used with ECN, they gained significant performance
improvement and significantly outperformed drop-tail at 90% load or higher.

• The original ARED algorithm obtained very poor performance and consistently gave
poorer performance than drop-tail at all loads. Further, the performance for the
original ARED algorithm was not improved by the addition of the ECN signaling
protocol.

• Two modification of the ARED algorithms, ARED “byte mode” and ARED/ECN
“new gentle”, gave significant performance improvement over the original ARED al-
gorithm.

• Differential treatment of flows could obtain performance improvement for a major-
ity of flows significantly. For example, the DCN algorithm could approximate the
performance of the uncongested network without ECN at very high loads. Further,
even when DCN was operated with packet drops, it still outperformed other AQM
algorithms that were used with ECN.

144

Table 4.1: Loss rate, completed requests, and link utilization

Offered Loss rate (%) Completed requests Link throughput
load (millions) (Mbps)

No ECN ECN No ECN ECN No ECN ECN

Uncongested 80% 0.0 13.2 80.6
1 Gbps 90% 0.0 15.0 91.3
network 98% 0.0 16.2 98.2

(drop-tail) 105% 0.0 17.3 105.9

Drop-tail 80% 0.2 13.2 80.3
queue size = 90% 2.7 14.4 88.4

24 98% 6.5 14.9 91.1
105% 9.1 15.0 91.8

Drop-tail 80% 0.0 13.2 80.6
queue size = 90% 1.8 14.6 89.9

240 98% 6.0 15.1 92.0
105% 8.8 15.0 92.4

Drop-tail 80% 0.0 13.1 80.4
queue size = 90% 0.1 14.7 88.6

2400 98% 3.6 15.1 91.3
105% 7.9 15.0 91.1

PI 80% 0.0 0.0 13.3 13.2 80.2 79.3
qref = 24 90% 1.3 0.3 14.4 14.6 87.9 88.6

98% 3.9 1.8 15.1 14.9 89.3 89.4
105% 6.5 2.5 15.1 15.0 89.9 89.5

PI 80% 0.0 0.0 13.1 13.1 80.1 80.1
qref = 240 90% 0.1 0.1 14.7 14.7 87.2 88.2

98% 3.7 1.7 14.9 15.1 90.0 89.6
105% 6.9 2.3 15.0 15.2 90.5 90.8

REM 80% 0.01 0.0 13.2 13.1 79.8 80.1
qref = 24 90% 1.8 0.1 14.4 14.6 86.4 88.2

98% 5.0 1.7 14.5 14.9 87.6 89.6
105% 7.7 2.4 14.6 14.9 87.5 89.3

Continued on next page

145

Offered Loss rate (%) Completed requests Link throughput
load (millions) (Mbps)

No ECN ECN No ECN ECN No ECN ECN

REM 80% 0.0 0.0 13.2 13.2 79.3 80.3
qref = 240 90% 3.3 0.2 14.0 14.7 83.3 88.6

98% 5.4 1.6 14.4 15.1 86.2 90.4
105% 7.3 2.3 14.6 15.1 87.7 90.4

ARED 80% 0.02 0.03 13.0 12.9 79.4 78.8
thmin = 12 90% 1.5 1.3 13.8 13.8 85.5 85.5
thmax = 36 98% 4.1 4.1 14.0 13.9 87.4 88.0

105% 5.1 5.1 14.1 14.1 87.3 87.7

ARED 80% 0.02 0.02 13.0 13.1 80.2 80.5
thmin = 120 90% 1.4 1.2 14.0 14.1 85.5 86.2
thmax = 360 98% 4.8 4.7 14.2 14.1 87.9 88.2

105% 6.8 6.3 13.9 13.9 85.2 85.8

ARED 80% 0.0 13.2 79.2
“byte mode” 90% 0.8 14.6 88.0
thmax = 12 98% 3.6 14.8 89.4
thmin = 36 105% 6.0 14.8 88.5

ARED 80% 0.0 13.2 80.2
“byte mode” 90% 0.9 14.6 87.6
thmax = 120 98% 4.2 14.6 87.8
thmin = 360 105% 6.7 14.7 87.9

ARED/ECN 80% 0.0 13.2 79.5
“new gentle” 90% 1.0 14.2 87.5
thmax = 12 98% 2.4 14.6 88.1
thmin = 36 105% 3.5 14.5 88.5

ARED/ECN 80% 0.0 13.2 79.8
“new gentle” 90% 0.9 14.6 88.4
thmax = 120 98% 2.3 14.6 88.7
thmin = 360 105% 3.2 14.6 89.0

BLUE 80% 0.1 0.1 13.2 13.0 78.9 79.4
queue size = 90% 1.4 2.3 14.6 14.4 87.5 87.6

240 98% 5.9 7.6 14.9 14.5 90.8 88.0
105% 8.5 10.4 15.0 14.1 91.4 86.9

Continued on next page

146

Offered Loss rate (%) Completed requests Link throughput
load (millions) (Mbps)

No ECN ECN No ECN ECN No ECN ECN

BLUE 80% 0.1 0.1 13.1 13.1 79.8 80.0
queue size = 90% 1.8 2.0 14.5 14.6 88.6 88.4

500 98% 5.4 6.8 15.0 14.6 90.8 88.9
105% 8.2 9.7 15.0 14.5 91.4 89.6

AVQ 80% 0.6 0.0 13.0 13.2 78.4 80.2
queue size = 90% 4.2 0.0 13.8 14.7 83.8 88.4

240 98% 7.0 0.7 14.1 15.1 84.0 90.5
105% 9.1 2.1 14.1 15.2 84.0 90.8

AVQ 80% 0.6 0.0 13.2 13.1 80.2 79.1
queue size = 90% 3.9 0.0 13.9 14.7 83.8 88.6

500 98% 6.9 0.0 14.0 15.2 83.9 90.6
105% 9.2 2.2 14.1 15.3 84.0 90.8

LQD 80% 0.0 0.0 13.3 13.3 80.0 80.1
qref = 90% 0.4 0.2 14.7 14.7 88.5 88.7

24 98% 2.7 1.4 15.3 15.4 91.6 91.7
105% 4.9 2.3 15.6 15.6 91.9 91.9

LQD 80% 0.0 0.0 13.3 13.3 80.1 80.2
qref = 90% 0.2 0.1 14.7 14.8 88.3 88.6
240 98% 2.6 1.2 15.3 15.4 91.9 92.1

105% 5.1 2.0 15.7 15.7 92.1 92.2

AFD 80% 0.2 0.2 13.1 13.2 78.7 79.8
qref = 90% 5.0 7.8 13.7 13.1 83.2 79.8

24 98% 8.9 11.0 13.6 12.9 81.9 79.6
105% 10.9 12.8 13.4 12.9 81.3 79.8

AFD 80% 0.0 0.0 13.2 13.1 79.2 80.0
qref = 90% 0.5 0.5 14.7 14.6 88.3 88.3
240 98% 6.1 6.2 14.5 14.5 87.6 87.9

105% 8.9 9.2 14.6 14.4 87.8 87.9

RIO-PS 80% 0.1 0.1 13.3 13.2 79.5 80.0
90% 2.1 1.3 14.6 14.6 88.8 87.9
98% 5.3 4.7 15.0 15.2 91.2 91.0
105% 8.2 7.9 15.3 15.3 91.9 91.9

Continued on next page

147

Offered Loss rate (%) Completed requests Link throughput
load (millions) (Mbps)

No ECN ECN No ECN ECN No ECN ECN

DCN 80% 0.0 0.0 13.1 13.2 79.3 78.5
qref = 90% 1.0 0.0 14.5 14.6 86.1 86.9

24 98% 2.3 1.4 14.9 15.1 88.6 89.2
105% 3.0 2.2 15.3 15.5 90.5 90.8

DCN 80% 0.0 0.0 13.2 13.3 80.8 79.6
qref = 90% 0.6 0.4 14.6 14.7 88.4 88.1
240 98% 2.6 2.3 15.1 15.2 89.5 89.5

105% 3.3 3.1 15.5 15.5 91.3 91.4

148

Table 4.2: Percentiles of response times

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

Uncongested 80% 0.137 0.237 0.312
1 Gbps 90% 0.137 0.237 0.312
network 98% 0.137 0.237 0.312

(drop-tail) 105% 0.137 0.237 0.312

Drop-tail 80% 0.137 0.237 0.362
queue size = 90% 0.162 0.312 1.187

24 98% 0.237 1.162 3.112
105% 0.287 1.387 3.337

Drop-tail 80% 0.137 0.237 0.362
queue size = 90% 0.187 0.312 1.037

240 98% 0.262 1.137 2.862
105% 0.312 1.362 3.337

Drop-tail 80% 0.137 0.237 0.362
queue size = 90% 0.262 0.412 0.612

2400 98% 0.487 0.862 1.887
105% 0.637 1.662 3.662

PI 80% 0.137 0.237 0.362
qref = 24 90% 0.162 0.287 0.587

98% 0.212 0.637 1.662
105% 0.237 1.262 3.162

PI/ECN 80% 0.137 0.237 0.362
qref = 24 90% 0.162 0.287 0.487

98% 0.187 0.312 0.712
105% 0.187 0.312 0.787

PI 80% 0.137 0.237 0.362
qref = 240 90% 0.187 0.312 0.462

98% 0.262 0.562 1.737
105% 0.337 1.362 3.212

PI/ECN 80% 0.137 0.237 0.362
qref = 240 90% 0.187 0.337 0.537

98% 0.237 0.362 0.837
105% 0.237 0.387 0.937

Continued on next page

149

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

REM 80% 0.137 0.237 0.362
qref = 24 90% 0.162 0.312 1.137

98% 0.212 1.162 2.437
105% 0.237 1.287 3.337

REM/ECN 80% 0.137 0.262 0.387
qref = 24 90% 0.162 0.287 0.487

98% 0.187 0.337 0.787
105% 0.192 0.371 0.801

REM 80% 0.137 0.237 0.362
qref = 240 90% 0.237 0.512 1.612

98% 0.262 1.237 2.737
105% 0.287 1.337 3.362

REM/ECN 80% 0.137 0.237 0.362
qref = 240 90% 0.187 0.337 0.537

98% 0.237 0.362 0.837
105% 0.237 0.387 0.937

ARED 80% 0.137 0.262 0.637
thmin = 12 90% 0.212 1.112 3.037
thmax = 36 98% 0.262 1.287 3.287

105% 0.312 1.487 4.087

ARED/ECN 80% 0.137 0.287 0.862
thmin = 12 90% 0.212 1.087 2.787
thmax = 36 98% 0.262 1.262 3.262

105% 0.312 1.462 3.887

ARED 80% 0.137 0.287 0.737
thmin = 120 90% 0.212 0.837 2.062
thmax = 360 98% 0.287 1.312 3.287

105% 0.387 1.712 4.312

ARED/ECN 80% 0.137 0.287 0.662
thmin = 120 90% 0.212 0.812 2.062
thmax = 360 98% 0.287 1.287 3.287

105% 0.387 1.762 4.337

Continued on next page

150

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

ARED 80% 0.137 0.245 0.355
“byte mode” 90% 0.155 0.285 0.565
thmin = 12 98% 0.205 0.635 2.005
thmax = 36 105% 0.245 1.265 3.315

ARED 80% 0.145 0.245 0.375
“byte mode” 90% 0.185 0.315 0.615
thmin = 120 98% 0.265 0.995 2.415
thmax = 360 105% 0.315 1.375 3.385

ARED/ECN 80% 0.137 0.255 0.395
“new gentle” 90% 0.165 0.305 0.935
thmin = 12 98% 0.215 0.735 3.245
thmax = 36 105% 0.245 1.255 3.535

ARED/ECN 80% 0.137 0.245 0.365
“new gentle” 90% 0.185 0.325 0.575
thmin = 120 98% 0.265 0.585 3.295
thmax = 360 105% 0.295 1.175 3.705

BLUE 80% 0.137 0.245 0.365
queue size = 90% 0.155 0.295 0.925

240 98% 0.235 1.185 3.065
105% 0.305 1.385 3.315

BLUE 80% 0.137 0.245 0.365
queue size = 90% 0.165 0.305 1.145

500 98% 0.235 1.155 2.615
105% 0.305 1.375 3.305

AVQ 80% 0.137 0.245 0.415
queue size = 90% 0.155 0.335 1.515

240 98% 0.185 1.145 2.995
105% 0.205 1.255 3.615

AVQ 80% 0.137 0.255 0.415
queue size = 90% 0.155 0.305 1.445

500 98% 0.185 1.145 2.875
105% 0.205 1.265 3.685

Continued on next page

151

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

LQD 80% 0.137 0.237 0.362
qref = 24 90% 0.155 0.285 0.465

98% 0.225 0.385 1.425
105% 0.235 1.135 2.005

LQD/ECN 80% 0.137 0.237 0.337
qref = 24 90% 0.137 0.262 0.412

98% 0.137 0.262 0.462
105% 0.162 0.262 0.487

LQD 80% 0.137 0.237 0.362
qref = 240 90% 0.165 0.285 0.445

98% 0.245 0.425 1.465
105% 0.295 0.725 1.715

LQD/ECN 80% 0.137 0.237 0.337
qref = 240 90% 0.162 0.287 0.437

98% 0.162 0.287 0.537
105% 0.187 0.312 0.537

AFD 80% 0.137 0.237 0.387
qref = 90% 0.162 0.337 1.487

24 98% 0.212 1.137 3.462
105% 0.245 1.405 5.315

AFD/ECN 80% 0.137 0.245 0.365
qref = 90% 0.187 0.437 3.262

24 98% 0.212 1.387 4.562
105% 0.235 3.095 6.205

AFD 80% 0.137 0.237 0.362
qref = 90% 0.187 0.312 0.462
240 98% 0.237 0.512 2.787

105% 0.262 1.212 3.687

AFD/ECN 80% 0.137 0.237 0.362
qref = 90% 0.187 0.312 0.487
240 98% 0.212 0.412 3.212

105% 0.237 0.612 3.462

Continued on next page

152

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

RIO-PS 80% 0.137 0.245 0.355
90% 0.165 0.285 0.495
98% 0.195 0.325 1.035
105% 0.265 0.485 3.225

RIO-PS/ECN 80% 0.137 0.245 0.365
90% 0.155 0.275 0.465
98% 0.185 0.315 0.725
105% 0.245 0.425 3.165

DCN 80% 0.137 0.237 0.362
qref = 24 90% 0.162 0.262 0.437

98% 0.162 0.287 0.512
105% 0.187 0.312 0.662

DCN/ECN 80% 0.137 0.237 0.362
qref = 24 90% 0.162 0.262 0.437

98% 0.162 0.287 0.487
105% 0.187 0.312 0.587

DCN 80% 0.137 0.237 0.362
qref = 240 90% 0.162 0.287 0.462

98% 0.212 0.337 0.662
105% 0.237 0.387 0.762

DCN/ECN 80% 0.137 0.237 0.362
qref = 240 90% 0.162 0.287 0.462

98% 0.212 0.362 0.662
105% 0.262 0.387 0.762

Chapter 5

Results with Web Traffic and General

RTT Distributions

The results presented in Chapter 4 were very encouraging and demonstrated the po-
tential benefits of AQM algorithms, especially when they were used in combination with
ECN or when they applied appropriate differential treatment of flows. Nevertheless, these
results were limited to only Web traffic and wide-area networks inside the continental U.S.
where propagation delays between an arbitrary pair of end systems could be approximated
by a uniform distribution. In this Chapter, the assumption about the uniform distribution
of RTTs is relaxed and the sensitivity of results presented in Chapter 4 to distributions of
round-trip times is investigated by performing experiments with Web traffic using a more
general distribution of RTTs obtained from a measurement study [AKSJ03]. This general
distribution of RTTs (shown in Figures 3.6 and 3.7) was used as an input by the dummynet
software to model the minimum RTTs between the end systems in the laboratory network.

Using the general distribution of RTTs, experiments were performed with PI, REM,
ARED, LQD, and DCN. These AQM algorithms were chosen to obtain a range or “enve-
lope” of results that an AQM algorithm could possibly achieve. The DCN algorithm was
chosen to represent differential AQM algorithms. LQD and PI were the best performing
non-differential algorithms when AQM was used with packet drops. REM was chosen to
demonstrate the potential benefits of ECN (as shown in Chapter 4, the performance of REM
was improved significantly by the addition of ECN). The ARED algorithm was chosen be-
cause its original design gave the poorest performance among all AQM algorithms but the
performance for ARED was significantly improved by two modification ARED “byte mode”
and ARED “new gentle” with ECN. For comparison purposes, experimental results were
also obtained with drop-tail and with the uncongested network.

Experimental results with the general RTT distribution were obtained aforementioned
AQM algorithms at 90% and 98%. This was because AQM algorithms showed no benefits
at 80% load or below (as demonstrated in Chapter 4) and the performance degradation for

154

most AQM algorithms at 105% offered load was so significant that there would be little
incentive to operate a network at that load. With the new RTT distribution, the procedure
for experiment calibration in section 3.3 was repeated and the numbers of emulated web
users were adjusted to achieve the offered loads of 90% and 98%.

The rest of this Chapter is organized as follows. Section 5.1 show experimental results
for drop-tail that are used as base results in comparison with results for AQM algorithms.
Section 5.2 and 5.3 present experimental results for AQM algorithms when they were used
with packet drops and ECN. Section 5.4 and 5.5 give a comparison of results for all AQM
algorithms and a summary of the Chapter.

5.1 Results for Drop-Tail

Figures 5.1 and 5.2 show experimental results for drop-tail that were obtained with a
queue length of 24 and 240 packets at 90% and 98% loads. These results are used as base
results to compare with experimental results for AQM algorithms in subsequent sections.

At 90% load, drop-tail gave similar response times for approximately 60% of flows with
queue lengths of 24 and 240 packets. The other 40% of flows experienced better response
times with a queue length of 240 packets. Drop-tail experienced some performance degrada-
tion when compared to the performance of the uncongested network at 90% load. However,
drop-tail still obtained relatively good performance with both queue lengths at this load.

As the offered load increased to 98%, drop-tail suffered noticeable performance degrada-
tion with both queue lengths of 24 and 240 packets. At this load, drop-tail again obtained
similar performance with both queue lengths for 60% of flows. For the rest 40% of flows,
drop-tail obtained better performance with a queue length of 240 packets.

5.2 Results for PI, REM, LQD, DCN, and ARED

Experimental results were obtained for PI, REM, LQD, and DCN with a queue reference
of 24 and 240 packets at 90% and 98% loads. Since ARED does not have an explicit
parameter to set a queue reference, experiments were performed for ARED “packet mode”
and “byte mode” with (thmin = 12 packets, thmax = 36 packets) and (thmin = 120 packets,
thmax = 360 packets) to achieve a target queue reference of 24 and 240 packets respectively.
Experimental results of AQM algorithms were compared with the results of drop-tail and
of the uncongested network to investigate the effects of AQM algorithms in an environment
of diverse RTTs.

155

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=24

drop-tail - qlen=240

Figure 5.1: Drop-tail performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=24

drop-tail - qlen=240

Figure 5.2: Drop-tail performance at 98% load

156

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=24
drop-tail - qlen=240

Figure 5.3: Drop-tail performance at 90% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=24
drop-tail - qlen=240

Figure 5.4: Drop-tail performance at 98% load (CCDF)

157

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

Figure 5.5: PI performance at 90% load

5.2.1 Results for PI

Figures 5.5 and 5.6 show experimental results for PI with a queue reference of 24 and
240 packets at 90% and 98% loads when PI operated with packet drops.

At 90% load, PI with a queue reference of 24 packets obtained similar performance as
drop-tail. However, PI with a queue reference of 240 packets gave slightly worse performance
than drop-tail for approximately 80% of flows and equal performance to drop-tail for the
rest 20% of flows. PI with both queue references of 24 and 240 packets suffered a small
performance degradation when compared to the performance of the uncongested network
at this load.

At 98% load, the performance for PI with both queue references of 24 and 240 packets
degraded considerably. PI with a queue reference of 24 packets gave similar performance as
drop-tail. However, PI with a queue reference of 240 packets delivered worse performance
than drop-tail for approximately 70% of flows. For the rest 30% of flows, PI with a queue
reference of 240 packets obtained similar performance as drop-tail and PI with a queue
reference of 24 packets.

158

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

Figure 5.6: PI performance at 98% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240

Figure 5.7: PI performance at 90% load (CCDF)

159

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240

Figure 5.8: PI performance at 98% load (CCDF)

5.2.2 Results for REM

Figures 5.9 and 5.10 show experimental results for REM with a queue reference of 24
and 240 packets at 90% and 98% loads when REM was used with packet drops.

At 90% offered load, REM delivered the same performance with both queue reference
of 24 and 240 packets. The performance for REM with both queue references at this load
was similar to the performance of drop-tail and closely approximated the performance of
the uncongested network.

As the offered load increased to 98% load, the performance for REM with both queue
references decreased considerably. The performance for REM with both queue references
was slightly worse than that of drop-tail at 98% offered load. Between the two queue
references, REM obtained slightly better performance with a queue reference of 24 packets
at this load.

5.2.3 Results for ARED

Figures 5.13, 5.14, 5.15, and 5.16 give experimental results for ARED “packet mode” and
“byte mode” at 90% and 98% loads. These results were obtained by performing experiments
for ARED “packet mode” and “byte mode” with the parameter settings (thmin = 12 packets,

160

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

Figure 5.9: REM performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

Figure 5.10: REM performance at 98% load

161

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240

Figure 5.11: REM performance at 90% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240

Figure 5.12: REM performance at 98% load (CCDF)

162

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 5.13: ARED packet mode performance at 90% load

thmax = 36 packets) and (thmin = 120 packets, thmax = 360 packets) to achieve a target
queue reference of 24 and 240 packets respectively.

At 90% offered load, ARED “packet mode”, the original ARED algorithm, delivered
equally poor performance with both parameter settings (thmin = 12 packets, thmax = 36
packets) and (thmin = 120 packets, thmax = 360 packets). The performance for ARED
“packet mode” was significantly lower than that of drop-tail at this load. However, ARED
“byte mode” gave good performance with both parameter settings at this load. The per-
formance for ARED “byte mode” was the same as the performance of drop-tail and came
close to that of the uncongested network.

At 98% load, ARED “packet mode” suffered even more performance degradation and
gave similarly poor performance with both parameter settings (thmin = 12 packets, thmax =
36 packets) and (thmin = 120 packets, thmax = 360 packets). Although the performance
for ARED “byte mode” also decreased considerably, it significantly outperformed ARED
“packet mode” and delivered similar performance as drop-tail at this load. ARED “byte
mode” obtained the same performance with both parameter settings (thmin = 12 packets,
thmax = 36 packets) and (thmin = 120 packets, thmax = 360 packets) at this load.

163

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 5.14: ARED packet mode performance at 98% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED byte - thmin=12 thmax=36
ARED byte - thmin=120 thmax=360

Figure 5.15: ARED byte mode performance at 90% load

164

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED byte - thmin=12 thmax=36
ARED byte - thmin=120 thmax=360

Figure 5.16: ARED byte mode performance at 98% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 5.17: ARED packet mode performance at 90% load (CCDF)

165

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 5.18: ARED packet mode performance at 98% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED byte - thmin=12 thmax=36
ARED byte - thmin=120 thmax=360

Figure 5.19: ARED byte mode performance at 90% load (CCDF)

166

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED byte - thmin=12 thmax=36
ARED byte - thmin=120 thmax=360

Figure 5.20: ARED byte mode performance at 98% load (CCDF)

5.2.4 Results for LQD

Figures 5.21 and 5.22 show experimental results for LQD at 90% and 98% loads when
LQD operated with packet drops. These results were obtained with a queue reference of 24
and 240 packets at these loads.

At 90% load, LQD obtained good performance with both queue references of 24 and
240 packets. The performance of LQD was identical to the performance of drop-tail at this
load and closely approximated that of the uncongested network.

As the offered load increased to 98%, the performance for LQD decreased considerably.
LQD achieved similar performance with both queue references of 24 and 240 packets and
gave about the same performance as drop-tail as this load.

5.2.5 Results for DCN

Figures 5.25 and 5.26 depict experimental results for DCN with a queue reference of 24
and 240 packets at 90% and 98% offered loads when DCN was used with packet drops.

At 90% offered load, DCN obtained similar performance with both queue references of
24 and 240 packets. The performance for DCN was about the same as that of drop-tail and
came close to the performance of the uncongested network at this load.

167

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

Figure 5.21: LQD performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

Figure 5.22: LQD performance at 98% load

168

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240

Figure 5.23: LQD performance at 90% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240

Figure 5.24: LQD performance at 98% load (CCDF)

169

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

Figure 5.25: DCN performance at 90% load

As the offered load increased to 98%, DCN still delivered good performance with both
queue references and outperformed drop-tail. Further, DCN closely approximated the per-
formance of the uncongested network at this high load. This positive result demonstrated
the benefits of differential treatment of flows in achieving good application and network
performance.

5.3 Results for PI, REM, LQD, DCN, and ARED with ECN

Experimental results for AQM algorithms presented in section 5.2 were obtained when
AQM algorithms operated with packet drops. Experiments for AQM algorithms were also
performed when ECN was turned on at both routers and end systems to quantify the effects
of the ECN signaling protocol.

5.3.1 Results for PI/ECN

Figures 5.29 and 4.23 show experimental results for PI with ECN and without ECN at
90% and 98% loads. These results were obtained when PI operated with a queue reference
of 24 and 240 packets.

At 90% offered load, the addition of ECN did not improve the performance of PI since PI

170

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

Figure 5.26: DCN performance at 98% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240

Figure 5.27: DCN performance at 90% load (CCDF)

171

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240

Figure 5.28: DCN performance at 98% load (CCDF)

already obtained very good performance without ECN at this load. With or without ECN,
PI with a queue reference of 24 packets gave about the same performance as drop-tail while
PI with a queue reference of 240 packets gave slightly worse performance than drop-tail.

At 98% load, PI with a queue reference of 24 packets obtained better performance than
with a queue reference of 240 packets when PI operated in ECN mode. Further, PI in ECN
mode and with a queue reference of 24 packets outperformed PI with packet drops and
drop-tail. The performance for PI in ECN mode and with a queue reference of 24 packets
came reasonably close to that of the uncongested network. ECN also increased performance
for PI slightly when PI was used with a queue reference of 240 packets.

5.3.2 Results for REM/ECN

Figures 5.33 and 5.34 show the experimental results for REM with and without ECN
at 90% and 98% loads. These results were obtained with a queue reference of 24 and 240
packets for REM.

At 90% load, REM did not gain performance improvement when it was used with ECN
because REM already obtained very good performance without ECN at this load. With or
without ECN, REM obtained about the same performance with both queue references of
24 and 240 packets. The performance for REM was similar to that of drop-tail and came

172

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

PI/ECN - qref=24
PI/ECN - qref=240

Figure 5.29: PI/ECN performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

PI/ECN - qref=24
PI/ECN - qref=240

Figure 5.30: PI/ECN performance at 98% load

173

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240
PI/ECN - qref=24
PI/ECN - qref=240

Figure 5.31: PI/ECN performance at 90% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240
PI/ECN - qref=24
PI/ECN - qref=240

Figure 5.32: PI/ECN performance at 98% load (CCDF)

174

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

REM/ECN - qref=24
REM/ECN - qref=240

Figure 5.33: REM/ECN performance at 90% load

close to the performance of the uncongested network at this load.

At 98% offered load, the performance for REM with both queue references was increased
considerably when REM was used with ECN. When operated in ECN mode, REM with
both queue references outperformed drop-tail and closely approximated the performance of
the uncongested network. With ECN, REM gave slightly better performance with a queue
reference of 24 packets than with a queue reference of 240 packets.

5.3.3 Results for ARED/ECN

Figures 5.37, 5.38, 5.39, and 5.40 show experimental results for ARED with and without
ECN at 80%, 90%, 98%, and 105% loads. Experiments were performed for ARED with
parameter settings (thmin = 12 packets, thmax = 36 packets) and (thmin = 120 packets,
thmax = 360 packets) to achieve a target queue reference of 24 and 240 packets. Further,
results for ARED with ECN were obtained with the original ARED algorithm and the
modified algorithm ARED “new gentle”.

Figures 5.37 and 5.38 show that when the original ARED algorithm was used, the ECN
signaling protocol did not improve the poor performance for ARED with both parameter
settings at all. Even with ECN, the original ARED algorithm with both parameter settings
(thmin = 12 packets, thmax = 36 packets) and (thmin = 120 packets, thmax = 360 packets)

175

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

REM/ECN - qref=24
REM/ECN - qref=240

Figure 5.34: REM/ECN performance at 98% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240
REM/ECN - qref=24
REM/ECN - qref=240

Figure 5.35: REM/ECN performance at 90% load (CCDF)

176

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240
REM/ECN - qref=24
REM/ECN - qref=240

Figure 5.36: REM/ECN performance at 98% load (CCDF)

underperformed drop-tail considerably at 90% and 98% loads.
Figures 5.39and 5.40 show that when ECN was used with the ARED “new gentle” algo-

rithm, the performance for ARED with both parameter settings was improved considerably
at 90% and 98% loads. The ARED “new gentle” algorithm obtained similar performance
with both parameter settings and delivered about the same performance as drop-tail at
90% and 98% loads. Further, ARED “new gentle” significantly outperformed the original
ARED algorithm with ECN at these loads. The performance for ARED “new gentle” also
came relatively close to that of the uncongested network, especially at 90% offered load.

5.3.4 Results for LQD/ECN

Figures 5.45 and 5.46 show experimental results for LQD with ECN and without at
90% and 98% loads. These results were obtained LQD with a queue reference of 24 and
240 packets.

At 90% offered load, LQD delivered identical performance for both queue references
of 24 and 240 packets when it was operated in ECN mode. Figure 5.45 shows that the
performance for LQD with and without ECN is indistinguishable from that of drop-tail and
came close to the performance of the uncongested network.

As the offered load increased to 98%, LQD obtained equally good performance with

177

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 5.37: ARED/ECN performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 5.38: ARED/ECN performance at 98% load

178

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 5.39: ARED/ECN new gentle performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 5.40: ARED/ECN new gentle performance at 98% load

179

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 5.41: ARED/ECN performance at 90% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 5.42: ARED/ECN performance at 98% load (CCDF)

180

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360
ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 5.43: ARED/ECN new gentle performance at 90% load (CCDF)

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360
ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 5.44: ARED/ECN new gentle performance at 98% load (CCDF)

181

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 5.45: LQD/ECN performance at 90% load

both queue references when it was used with ECN. LQD obtained significant performance
improvement with ECN and outperformed drop-tail at this load. Further, LQD with ECN
closely approximated the performance of the uncongested network at this high load.

5.3.5 Results for DCN/ECN

Figures 5.49 and 5.50 show experimental results for DCN with and without ECN at
90% and 98% offered loads. The results were obtained for DCN with a queue reference of
24 and 240 packets.

At 90% load, DCN did not benefit from the addition of ECN. This was because DCN
already provided very good performance with both queue references when it was used with-
out ECN and there was virtually no room for improvement at this load. With and without
ECN, DCN delivered performance that was almost comparable with the performance of the
uncongested network. Of note is the fact that drop-tail also gave very good performance
that was indistinguishable from the performance of DCN at this load.

As the offered load increased to 98%, DCN outperformed drop-tail and still gave identical
performance when it was used with and without ECN. This result demonstrated the benefits
of differential treatment of flows and provided a proof of concept that AQM algorithms do
not need ECN to deliver good performance.

182

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 5.46: LQD/ECN performance at 98% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240
LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 5.47: LQD/ECN performance at 90% load (CCDF)

183

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240
LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 5.48: LQD/ECN performance at 98% load (CCDF)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 5.49: DCN/ECN performance at 90% load

184

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 5.50: DCN/ECN performance at 98% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240
DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 5.51: DCN/ECN performance at 90% load (CCDF)

185

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240
DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 5.52: DCN/ECN performance at 98% load (CCDF)

5.4 Comparison of All Results

Figures 5.53 and 5.54 provide a comparison of PI, REM, ARED, and DCN at 90%
and 98% loads. Experimental results for these AQM algorithms were obtained with the
best parameter settings for each of them. Results for DCN was shown when DCN was not
used with ECN to demonstrate the potential benefits of differential treatment of flows. For
comparison purpose, Figures 5.53 and 5.54 also show the performance of drop-tail and of
the uncongested network.

At 90% load, drop-tail and all AQM algorithms gave very similar performance that was
almost competitive to the performance of the uncongested network. Thus, it appears that
for network environments with a general RTT distribution as shown in Figures 3.6 and 3.7,
Internet Service Providers could operate their network at an offered load as high as 90%
without risking noticeable performance degradation and customer’s dissatisfaction.

At 98% offered load, drop-tail and all AQM algorithms suffered considerable perfor-
mance degradation but PI/ECN, REM/ECN, and DCN still delivered good performance.
Further, they outperformed drop-tail at this load. DCN again demonstrated the benefits
of differential treatment of flows since it gave good performance at this high load without
relying on the ECN signaling protocol. The ARED “new gentle” algorithm in ECN mode

186

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI/ECN - qref=24
REM/ECN - qref=24

DCN - qref=24
ARED/ECN new gentle - thmin=120 thmax=360

Figure 5.53: Comparison of all AQM algorithms at 90% load

gave comparable performance as drop-tail but underperformed other AQM algorithms.

5.5 Summary

This Chapter presents experimental results for a number of AQM algorithms that were
obtained with Web traffic and a general distribution of RTTs. The results presented in
this Chapter lead to the following conclusions. The conclusions were drawn under the
assumption that response times are the primary performance measure, and that loss rates
and link utilization, although important, are secondary.

• Overall, experimental results for Web applications with general RTT distribution
showed that flows took longer to complete than in the case of uniform RTT distri-
bution. This is because the minimum amount of delays that emulated propagation
delays were larger in the case of general RTT distribution. However, the performance
degradation for drop-tail and AQM algorithms with general RTT distribution at high
loads was less significant than with uniform RTT distribution in Chapter 4.

• At 90% load or lower, drop-tail with a queue length of 240 packets obtained perfor-
mance that was competitive to the performance of all AQM algorithms. This result

187

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240

PI/ECN - qref=24
REM/ECN - qref=24

DCN - qref=24
ARED/ECN new gentle - thmin=120 thmax=360

Figure 5.54: Comparison of all AQM algorithms at 98% load

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=24
REM/ECN - qref=24
DCN - qref=24
ARED/ECN new gentle - qref=240

Figure 5.55: Comparison of all AQM algorithms at 90% load (CCDF)

188

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Response time (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=24
REM/ECN - qref=24
DCN - qref=24
ARED/ECN new gentle - qref=240

Figure 5.56: Comparison of all AQM algorithms at 98% load (CCDF)

was unchanged by the addition of the ECN protocol. Thus, AQM algorithms appear
to have no advantage over drop-tail at 90% load or below.

• Since the performance degradation for drop-tail at 90% load was small, it appears
that Internet Service Providers could operate their links at this high load without
risking customer’s dissatisfaction.

• Even at 98% load, AQM algorithms gave no performance improvement over drop-tail.
However, when AQM algorithms were used with ECN, they obtained considerable
performance improvement and outperformed drop-tail.

• The DCN algorithm again demonstrated the potential benefits of differential treat-
ment of flows. In contrast to non-differential AQM algorithms PI and REM, DCN
gave good performance at 98% load without requiring the ECN signaling protocol.

• The original ARED algorithm continued to give poor performance and underper-
formed drop-tail. This result did not change even when ECN was used. The two
modifications for ARED proposed in Chapter 4 obtained considerable performance
improvement over the original ARED algorithm.

189

Table 5.1: Loss rate, completed requests, and link utilization

Offered Loss Completed requests Link throughput
load rate (%) (millions) (Mbps)

No ECN ECN No ECN ECN No ECN ECN

Uncongested 90% 0.0 14.7 89.7
1 Gbps network 98% 0.0 16.0 97.8

Drop-tail 90% 0.8 14.4 86.2
queue size = 24 98% 2.2 14.8 88.5

Drop-tail 90% 0.3 14.4 86.9
queue size = 240 98% 1.5 15.0 89.9

PI 90% 0.1 0.0 14.5 14.6 87.3 87.4
qref = 24 98% 1.0 0.2 15.0 15.1 88.6 88.8

PI 90% 0.0 0.0 14.5 14.5 87.5 87.1
qref = 240 98% 0.5 0.1 15.2 15.2 90.5 90.4

REM 90% 0.2 0.0 14.5 14.6 87.1 87.4
qref = 24 98% 1.4 0.2 14.7 15.1 87.1 89.1

REM 90% 0.0 0.0 14.6 14.5 87.4 87.4
qref = 240 98% 1.2 0.1 14.6 15.2 86.7 89.7

ARED 90% 0.3 0.2 13.4 13.3 80.8 80.8
thmin = 12
thmax = 36 98% 2.2 1.4 13.7 13.6 82.3 82.3

ARED 90% 0.2 0.1 13.5 14.4 84.4 86.5
thmin = 120
thmax = 360 98% 2.1 1.3 13.7 15.0 85.9 89.7

ARED 90% 0.2 14.5 86.7
“byte mode”
thmin = 12 98% 1.0 14.9 89.0
thmax = 36

ARED 90% 0.1 14.5 87.4
“byte mode”
thmin = 120 98% 0.7 15.0 89.6
thmax = 360

Continued on next page

190

Offered Loss rate (%) Completed requests Link throughput
load (millions) (Mbps)

No ECN ECN No ECN ECN No ECN ECN

ARED/ECN 90% 0.2 14.4 86.6
“new gentle”
thmin = 12 98% 1.1 14.9 88.5
thmax = 36

ARED/ECN 90% 0.1 14.4 86.5
“new gentle”
thmin = 120 98% 1.0 15.0 89.7
thmax = 360

LQD 90% 0.2 0.0 14.5 14.5 87.2 88.2
qref = 24 98% 1.0 0.1 15.0 15.1 89.5 89.8

LQD 90% 0.1 0.0 14.6 14.6 87.7 88.5
qref = 240 98% 1.0 0.1 15.0 15.1 90.2 90.8

DCN 80% 0.2 0.1 14.6 14.6 87.5 88.4
qref = 24 90% 0.7 0.2 15.0 15.1 89.3 90.6

DCN 80% 0.1 0.1 14.6 14.5 87.8 88.5
qref = 240 90% 0.5 0.2 15.0 15.2 89.5 90.7

191

Table 5.2: Percentiles of response times

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

Uncongested 90% 0.195 0.605 2.745
1 Gbps network 98% 0.195 0.605 2.745

Drop-tail 90% 0.235 0.835 3.435
queue size = 24 98% 0.275 1.295 4.465

Drop-tail 90% 0.235 0.745 3.225
queue size = 240 98% 0.285 1.125 4.085

PI 90% 0.235 0.715 3.045
qref = 24 98% 0.275 1.095 3.955

PI/ECN 90% 0.235 0.705 2.995
qref = 24 98% 0.245 0.775 3.275

PI 90% 0.275 0.765 3.085
qref = 240 98% 0.335 1.015 3.755

PI/ECN 90% 0.265 0.735 3.045
qref = 240 98% 0.315 0.885 3.375

REM 90% 0.235 0.725 3.075
qref = 24 98% 0.285 1.235 4.325

REM/ECN 90% 0.235 0.705 3.025
qref = 24 98% 0.265 0.795 3.295

REM 90% 0.245 0.715 3.015
qref = 240 98% 0.325 1.255 4.395

REM/ECN 90% 0.245 0.705 3.005
qref = 240 98% 0.295 0.855 3.375

ARED 90% 0.285 1.505 4.945
thmin = 12
thmax = 36 98% 0.365 2.215 6.325

ARED/ECN 90% 0.285 1.475 4.955
thmin = 12
thmax = 36 98% 0.375 2.335 6.545

Continued on next page

192

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

ARED 90% 0.285 1.455 4.815
thmin = 120
thmax = 360 98% 0.365 2.225 6.335

ARED/ECN 90% 0.285 1.455 4.885
thmin = 120
thmax = 360 98% 0.375 2.215 6.375

ARED 90% 0.235 0.735 3.145
“byte mode”
thmin = 12 98% 0.265 1.085 4.005
thmax = 36

ARED 90% 0.235 0.715 3.045
“byte mode”
thmin = 120 98% 0.285 0.995 3.755
thmax = 360

ARED/ECN 90% 0.235 0.765 3.295
“new gentle”
thmin = 12 98% 0.285 1.235 4.355
thmax = 36

ARED/ECN 90% 0.245 0.755 3.245
“new gentle”
thmin = 120 98% 0.305 1.035 3.925
thmax = 360

LQD 90% 0.225 0.735 3.145
qref = 24 98% 0.265 1.125 4.135

LQD/ECN 90% 0.225 0.695 3.005
qref = 24 98% 0.255 0.775 3.275

LQD 90% 0.235 0.705 3.015
qref = 240 98% 0.285 1.045 3.935

LQD/ECN 90% 0.225 0.685 2.965
qref = 240 98% 0.255 0.785 3.245

DCN 90% 0.225 0.725 3.225
qref = 24 98% 0.245 0.835 3.505

Continued on next page

193

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

DCN/ECN 90% 0.225 0.695 3.045
qref = 24 98% 0.245 0.795 3.345

DCN 90% 0.225 0.745 3.255
qref = 240 98% 0.275 0.875 3.535

DCN/ECN 90% 0.235 0.715 3.075
qref = 240 98% 0.285 0.845 3.345

194

Chapter 6

Results with General TCP Traffic

Experimental results presented in Chapter 5 relaxed the assumption about the approx-
imated uniform distribution of RTTs within the U.S. continental that was previously made
for results in Chapter 4. Nevertheless, results presented in both Chapters 4 and 5 were
limited to only Web traffic. In order to draw more general conclusions about the effects
of AQM algorithms on network and application performance, experiments were performed
with synthetic traffic that was derived from the full mix of TCP connections captured on
Internet links.

A 2-hour packet trace taken on an Abilene (Internet 2) link between Cleveland and
Indianapolis was used to drive experiments with general TCP traffic. The data to drive
these experiments was acquired from the trace repository of the National Laboratory for
Applied Network Research (NLANR) [NLA05]. The distributions of RTTs and the sizes of
application data units (ADUs) derived from the packet trace are depicted in Figures 6.1
and 6.2. The packet trace was filtered for all TCP connections including HTTP, FTP,
SMTP, NNTP, and peer-to-peer file-sharing traffic. The synthetic TCP traffic mix used
to obtained experimental results in this Chapter represents the characteristics of existing
Internet backbone traffic as seen by routers in real network and provides the most realistic
method for evaluating AQM algorithms in a laboratory network. The application used to
generate synthetic TCP traffic from raw packet traces is called tmix and was described in
Chapter 3.

Nominal offered loads on the link between the routers in the laboratory network was
obtained by a process of sub-sampling or superimposing connections from the original packet
trace. The sub-sampling or superimposing process decreases or increases the nominal load
from the original packet trace while preserving the mix and statistical characteristics of the
TCP connections [CJS04].

The aforementioned scaling process was used to achieve offered loads of 80, 90, and
95 Mbps on an uncongested 1-Gbps network. These loads were termed 80%, 90%, and
95% because their corresponding throughputs represented 80%, 90%, and 95% utilization

196

 0

 20

 40

 60

 80

 100

 1 10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09 1e+10

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

ADU sizes (Bytes)

Figure 6.1: Distribution of ADU sizes of general TCP traffic

 0

 20

 40

 60

 80

 100

 0.001 0.01 0.1 1 10 100 1000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Round-trip times (Seconds)

Figure 6.2: Distribution of RTT distribution of general TCP traffic

197

of a congested 100-Mbps link. Although these were the throughputs that could be possibly
achieved on a 100-Mbps link, as the offered load approaches the saturation of a 100-Mbps
link, the actual link utilization will be less than the intended offered load. This is because as
the network becomes congested, TCP dynamics will regulate the transmission rates of the
end systems. An interesting aspect of using Abilene traffic for experiments is that Abilene
traffic is asymmetrical between forward and reverse paths. For example, the offered loads
of 95% derived from the Abilene trace were approximately 95.73 Mbps (forward path) and
90.70 Mbps (reverse path).

The offered loads for general TCP traffic were slightly lower than those for Web traffic
used in Chapter 4 and 5 because synthetic TCP traffic is generated in a different way than
Web traffic. For Web traffic, a nominal offered load is obtained by using a fixed number of
browsing users. In turn, each browsing user has a small number of parallel connections that
can be used to fetch multiple web objects simultaneously. As the offered load approaches
the saturation of the link between the two routers, connections need longer to complete.
However, the number of active connections during an experiment stayed at a relatively
constant level for Web traffic since a simulated user only starts a new connection when it
completes one of its current connections.

In contrast to Web traffic, the start times for TCP connections in an experiment with
general TCP traffic were scheduled ahead of time, i.e., before the experiment started. Since
connections need longer to complete at a high load and more connections arrive as the
experiment progresses, the number of active connections increase with time in the case of
general TCP traffic. If the nominal offered load is too high, the number of active connections
could exhaust resources of an end system (mbufs, physical memory, or sockets) and scheduled
connections would fail to start. For this reason, the maximum offered load chosen for general
TCP traffic (95%) is lower than that of Web traffic (105%). In particular, offered loads for
general TCP traffic cannot be greater than 100%.

In Chapter 4 and 5, response times for exchanges of requests and responses were used
as the primary yardstick in performance evaluation for AQM algorithms. However, since
response times are rather specific for Web application, a new performance measure is needed
for evaluation of AQM algorithms with general TCP applications.

The key indicator of performance used in reporting experimental results for general
TCP applications is the end-to-end connection durations. This performance measure is
defined as the elapsed time necessary to establish a connection between two end systems and
perform a sequence of exchanges of application data units via that connection. Connection
durations can be viewed as a generalization of response times that were used as the primary
performance metric in Chapter 4 and 5. For Web applications, connection durations can
be interpreted as the latency necessary to establish a persistent connection from a client
to a web server and fetch multiple objects from the server. The end-to-end connection

198

durations are reported as plots of the cumulative distributions of times up to 5 seconds.
Other performance metrics such as link utilization and loss rates are also reported.

As in Chapter 5, experiments were performed for PI, REM, ARED, LQD, and DCN
to obtain a range or “envelope” of results that an AQM algorithm could possibly achieve.
For comparison purposes, experimental results were also obtained for drop-tail and the
uncongested network.

6.1 Results for Drop-Tail

Figures 6.3, 6.4, and 6.5 show experimental results for drop-tail with general TCP traffic
at 80%, 90%, and 95% loads. These results were obtained for drop-tail with a queue length
of 24 and 240 packets.

At 80% offered load, drop-tail with both queue lengths of 24 and 240 packets delivered
indistinguishable performance from that of the uncongested network. It is interesting to
note that only approximately 75% of connections complete within 5 seconds even on the
uncongested network.

At 90% load, drop-tail suffered a small performance degradation with both queue
lengths. At this load, both queue lengths for drop-tail obtained identical performance.
Further, the performance degradation for drop-tail at this load is negligible.

As the offered load increased to 95%, the performance for drop-tail with both queue
lengths degraded noticeably. However, drop-tail still gave reasonably good performance at
this high load. Figure 6.5 shows a small trade-off between short and long queue lengths (24
packets vs. 240 packets) for drop-tail in obtaining good connection durations for short and
long connections. Similar trade-offs in obtaining good response times for short and long
connections were observed and discussed in sections 4.1 and 4.2.

6.2 Results for ARED, PI, LQD, and REM

Experiments were performed with general TCP traffic for PI, REM, LQD, and DCN
with a queue reference of 24 and 240 packets at 80%, 90%, and 95% loads. Since ARED does
not allow to set a queue reference explicitly, experiments were performed for ARED “packet
mode” and “byte mode” with (thmin = 12 packets, thmax = 36 packets) and (thmin = 120
packets, thmax = 360 packets). These parameter settings yielded a target queue reference
of 24 and 240 packets for ARED respectively. Experimental results of AQM algorithms
were compared with the results of drop-tail and of the uncongested network to evaluate the
effects of AQM algorithms on general TCP applications.

199

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=24

drop-tail - qlen=240

Figure 6.3: Drop-tail performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=24

drop-tail - qlen=240

Figure 6.4: Drop-tail performance at 90% load

200

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=24

drop-tail - qlen=240

Figure 6.5: Drop-tail performance at 95% load

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=24
drop-tail - qlen=240

Figure 6.6: Drop-tail performance at 80% load (CCDF)

201

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=24
drop-tail - qlen=240

Figure 6.7: Drop-tail performance at 90% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=24
drop-tail - qlen=240

Figure 6.8: Drop-tail performance at 95% load (CCDF)

202

6.2.1 Results for PI

Figures 6.9, 6.10, and 6.11 show experimental results for PI with general TCP applica-
tions at 80%, 90%, and 95% loads. These results were obtained with a queue reference of
24 and 240 packets for PI.

At 80% load, PI gave equally good performance with both queue references of 24 and
240 packets. The performance of PI at this load was indistinguishable from that of drop-tail
and of the uncongested network.

At 90% load, PI with a queue reference of 24 packets gave the same performance as drop-
tail. However, PI with a queue reference of 240 packets delivered slightly worse performance
than drop-tail for approximately 65% of flows. These were flows that completed within
2 seconds. The other 35% of flows, those that needed more than 2 seconds to finish,
experienced the same performance with drop-tail and with both queue references for PI.
Overall, drop-tail and PI with a queue reference of 24 packets closely approximated the
performance of the uncongested network at this load.

As the offered load increased to 95%, the PI with both queue references experienced
further performance degradation. However, PI with both queue references showed a small
advantage over drop-tail at this load. PI with a queue references of 24 packets delivered
slightly better performance than drop-tail for the shortest 70% of flows and identical per-
formance as drop-tail for the rest 30% of flows. PI with a queue reference of 240 packets
gave the same performance as drop-tail for 50% of flows that completed within 1 second
and slightly better performance than drop-tail for the other 50% of flows. Between the
two queue references of 24 and 240 packets, PI obtained better performance with a queue
reference of 24 packets at this load.

6.2.2 Results for REM

Figures 6.15, 6.16, and 6.17 show experimental results for REM with general TCP
applications at 80%, 90%, and 95% when REM was used with packet drops. These results
were obtained for REM with a queue reference of 24 and 240 packets.

At 80% offered load, REM delivered similar performance for general TCP applications
with both queue references of 24 and 240 packets. The performance for REM was identical
to that of drop-tail and of the uncongested network at this load.

At 90% load, REM suffered a small performance degradation with both queue references.
The performance for REM with both queue references at this load was equal to that of drop-
tail and came close to the performance of the uncongested network.

At 95% offered load, REM obtained slightly better performance with a queue reference
of 24 packets than with a queue reference of 240 packets. At this load, REM with a
queue reference of 24 packets also gave better performance than drop-tail for approximately

203

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

Figure 6.9: PI performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

Figure 6.10: PI performance at 90% load

204

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

Figure 6.11: PI performance at 95% load

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240

Figure 6.12: PI performance at 80% load (CCDF)

205

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240

Figure 6.13: PI performance at 90% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240

Figure 6.14: PI performance at 95% load (CCDF)

206

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

Figure 6.15: REM performance at 80% load

70% of flows that finished within 4 seconds. The longest 30% of flows experienced the
same performance when experiments were performed for drop-tail and REM with a queue
reference of 24 packets. REM with a queue reference of 240 packets delivered similar
performance as drop-tail overall. However, REM with a queue reference of 240 packets gave
slightly better performance than drop-tail for approximately 35% of flows that needed more
than 500 milliseconds but less than 4 seconds to complete.

6.2.3 Results for ARED

Figures 6.21, 6.22, 6.23, 6.27, 6.28, and 6.29 show experimental results for ARED “packet
mode” and “byte mode” with general TCP applications. These results were obtained with
parameter settings (thmin = 12 packets, thmax = 36 packets) and (thmin = 120 packets,
thmax = 360 packets). These parameter settings for ARED resulted in an implicit target
queue reference of 24 and 240n packets respectively.

At 80% offered load, the original ARED algorithm in “packet mode” gave identi-
cal performance as drop-tail and the uncongested network with both parameter settings
(thmin = 12 packets, thmax = 36 packets) and (thmin = 120 packets, thmax = 360 packets).

As the offered load increased to 90%, ARED “packet mode” with parameter settings
(thmin = 120 packets, thmax = 360 packets) delivered the same performance as drop-tail

207

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

Figure 6.16: REM performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

Figure 6.17: REM performance at 95% load

208

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240

Figure 6.18: REM performance at 80% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240

Figure 6.19: REM performance at 90% load (CCDF)

209

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240

Figure 6.20: REM performance at 95% load (CCDF)

and suffered a small performance degradation when compared to the uncongested network.
On the other hand, ARED “packet mode” with parameter settings (thmin = 12 packets,
thmax = 36 packets) suffered noticeable performance degradation and underperformed drop-
tail considerably.

At 95% load, ARED “packet mode” with parameter settings (thmin = 120 packets,
thmax = 360 packets) suffered further performance degradation but it continued to identical
performance as drop-tail. ARED “packet mode” with parameter settings (thmin = 12
packets, thmax = 36 packets) experienced even more performance degradation and gave
poorer performance than drop-tail again.

At 80% load, ARED “byte mode” with both parameter settings (thmin = 12 packets,
thmax = 36 packets) and (thmin = 120 packets, thmax = 360 packets) obtained the same
performance as drop-tail, ARED “packet mode” and the uncongested network.

At 90% offered load, ARED “byte mode” obtained indistinguishable performance with
both parameter settings (thmin = 12 packets, thmax = 36 packets) and (thmin = 120 pack-
ets, thmax = 360 packets). The performance for ARED “byte mode” at this load was
identical to that of drop-tail and closely approximated the performance of the uncongested
network. When used with parameter settings (thmin = 12 packets, thmax = 36 packets),
ARED “byte mode” outperformed ARED “packet mode”. However, when used with pa-

210

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 6.21: ARED performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 6.22: ARED performance at 90% load

211

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 6.23: ARED performance at 95% load

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 6.24: ARED performance at 80% load (CCDF)

212

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 6.25: ARED performance at 90% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 6.26: ARED performance at 95% load (CCDF)

213

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED byte - thmin=12 thmax=36
ARED byte- thmin=120 thmax=360

Figure 6.27: ARED byte mode performance at 80% load

rameter settings (thmin = 120 packets, thmax = 360 packets), the performance for ARED
“packet mode” and “byte mode” was essentially the same.

At 95% load, ARED “byte mode” delivered slightly better performance with parameter
settings (thmin = 12 packets, thmax = 36 packets) than with (thmin = 120 packets, thmax =
360 packets) for approximately 50% of flows that completed within 1 second or less. For the
other 50% of flows, ARED “byte mode” gave slightly better performance with parameter
settings (thmin = 120 packets, thmax = 360 packets) than with (thmin = 12 packets,
thmax = 36 packets). Overall, ARED “packet mode” with parameter settings (thmin = 12
packets, thmax = 36 packets) significantly underperformed ARED “byte mode” with both
parameter settings. However, drop-tail and ARED “packet mode” with parameter settings
(thmin = 120 packets, thmax = 360 packets) only gave slightly worse performance than
ARED “byte mode” with both parameter settings.

6.2.4 Results for LQD

Figures 6.33, 6.34, and 6.35 show experimental results for LQD with general TCP traffic
when it was used with packet drops. These results were obtained with a queue reference of
24 and 240 packets.

At 80% offered load, LQD gave identical performance with both queue references of 24

214

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED byte - thmin=12 thmax=36
ARED byte- thmin=120 thmax=360

Figure 6.28: ARED byte mode performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED byte - thmin=12 thmax=36
ARED byte- thmin=120 thmax=360

Figure 6.29: ARED byte mode performance at 95% load

215

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED byte - thmin=12 thmax=36
ARED byte - thmin=120 thmax=360

Figure 6.30: ARED byte mode performance at 80% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED byte - thmin=12 thmax=36
ARED byte - thmin=120 thmax=360

Figure 6.31: ARED byte mode performance at 90% load (CCDF)

216

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED byte - thmin=12 thmax=36
ARED byte - thmin=120 thmax=360

Figure 6.32: ARED byte mode performance at 95% load (CCDF)

and 240 packets. The performance for LQD at this load was essentially the same as that of
drop-tail and the uncongested network.

As the offered load increased to 90%, LQD with a queue reference of 240 packets obtained
identical performance as drop-tail. However, LQD with a queue reference of 24 packets gave
slightly better performance than drop-tail and closely approximated the performance of the
uncongested network.

At 95% offered load, LQD obtained slightly better performance for approximately 60%
of flows with a queue reference of 24 packets than with a queue reference of 240 packets.
LQD gave approximately the same performance for the other 40% of flows with both queue
references. With both parameter settings, LQD outperformed drop-tail at this load and
once again came close to the performance of the uncongested network.

6.2.5 Results for DCN

Figures depict experimental results for DCN with general TCP traffic when DCN was
used with packet drops. These experimental results were obtained for DCN with a queue
reference of 24 and 240 packets.

At 80% offered load, DCN gave similarly good performance with both queue references
of 24 and 240 packets. The performance for DCN was identical to that of drop-tail and of

217

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

Figure 6.33: LQD performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

Figure 6.34: LQD performance at 90% load

218

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

Figure 6.35: LQD performance at 95% load

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240

Figure 6.36: LQD performance at 80% load (CCDF)

219

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240

Figure 6.37: LQD performance at 90% load (CCDF)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240

Figure 6.38: LQD performance at 95% load (CCDF)

220

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

Figure 6.39: DCN performance at 80% load

the uncongested network at this load.

As the offered load increased to 90%, DCN obtained identical performance with both
queue references. Further, DCN outperformed drop-tail and gave performance that was
indistinguishable from that of the uncongested network.

At 95% offered load, DCN again obtained essentially the same performance with both
queue references. DCN provided considerable performance improvement over drop-tail and
gave identical performance as the uncongested network at this load. These results again
demonstrated the benefits of differential treatment of flows in AQM algorithms.

6.3 Results for ARED, PI, LQD, and REM with ECN

Experimental results for AQM algorithms with general TCP applications presented in
section 6.2 were obtained when AQM algorithms were used with packet drops. In order to
evaluate the effects of the ECN signaling protocol on general TCP applications, experiments
for AQM algorithms were also performed when ECN was turned on at both routers and
end systems.

221

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

Figure 6.40: DCN performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

Figure 6.41: DCN performance at 95% load

222

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240

Figure 6.42: DCN performance at 80% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240

Figure 6.43: DCN performance at 90% load (CCDF)

223

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240

Figure 6.44: DCN performance at 95% load (CCDF)

6.3.1 Results for PI/ECN

Figures 6.45, 6.46, and 6.47 show experimental results for PI with general TCP traffic
when PI was used with and without ECN. These results were obtained when PI operated
with a queue reference of 24 and 240 packets.

At 80% offered load, ECN did not deliver any performance improvement for PI with
both queue references of 24 and 240 packets at all. This is because PI already gave indis-
tinguishable performance from the uncongested network at this load.

At 90% load, PI did not obtain any performance improvement with ECN when PI was
used with a queue reference of 24 packets. With and without ECN, PI with a queue reference
of 24 packets delivered approximately the same performance as drop-tail and came close
to that of the uncongested network. However, ECN improved the performance for PI with
a queue reference of 240 packets slightly. Without ECN, PI with a queue reference of 240
packets underperformed drop-tail slightly. When used with ECN, PI with a queue reference
of 240 packets gave identical performance as drop-tail.

At 95% offered load, ECN gave a slight performance improvement for PI with a queue
reference of 24 packets. However, the performance for PI with a queue reference of 240 pack-
ets was not improve by the addition of ECN at all. With or without ECN, PI gave slightly

224

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

PI/ECN - qref=24
PI/ECN - qref=240

Figure 6.45: PI/ECN performance at 80% load

better performance than drop-tail with both queue references and closely approximated the
performance of the uncongested network.

6.3.2 Results for REM/ECN

Figures 6.51, 6.52, and 6.53 depict experimental results for REM with general TCP
applications when REM was used with or without ECN at 80%, 90%, and 95% loads.
These results were obtained with a queue reference of 24 and 240 packets.

At 80% load, REM with ECN did not gain any performance improvement over packet
drops when it was used with a queue reference of 24 and 240 packets. With or without
ECN, the performance for REM was equal to that of drop-tail and uncongested network at
this load.

At 90% load, REM also did not benefit from the ECN signaling protocol. This is because
the performance for REM without ECN for both queue references was already very good
and closely approximated the performance of the uncongested network at this load. The
performance for REM (with or without ECN) was about the same as that of drop-tail.

At 95% offered load, REM obtained a small performance improvement over packet drops
with both queue references. With both queue references, REM without ECN only showed a
small advantage over drop-tail. However, when REM was used in combination with ECN,

225

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

PI/ECN - qref=24
PI/ECN - qref=240

Figure 6.46: PI/ECN performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

PI/ECN - qref=24
PI/ECN - qref=240

Figure 6.47: PI/ECN performance at 95% load

226

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240
PI/ECN - qref=24
PI/ECN - qref=240

Figure 6.48: PI/ECN performance at 80% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240
PI/ECN - qref=24
PI/ECN - qref=240

Figure 6.49: PI/ECN performance at 90% load (CCDF)

227

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240
PI/ECN - qref=24
PI/ECN - qref=240

Figure 6.50: PI/ECN performance at 95% load (CCDF)

REM with both queue references clearly outperformed drop-tail and came close to the
performance of the uncongested network. This result once again demonstrated the benefits
of the ECN marking protocol. This is because ECN helps AQM algorithms avoid packet
drops and thus improves network and application performance.

6.3.3 Results for ARED/ECN

Figures 6.57, 6.58, and 6.59 show results for ARED with and without ECN. These results
were obtained with general TCP applications and with parameter settings (thmin = 12
packets, thmax = 36 packets) and (thmin = 120 packets, thmax = 360 packets) for ARED.
These parameters were chosen to achieve an implicit target queue reference of 24 and 240
packets respectively. Further, figures 6.63, 6.64, and 6.65 show results for ARED when
it operated using the “new gentle” mode. The results for ARED “new gentle” algorithm
demonstrate the effects of dropping packets in ECN mode.

At 80% offered load, ARED with both parameter settings (thmin = 12 packets, thmax =
36 packets) and (thmin = 120 packets, thmax = 360 packets) did not benefit from the ECN
marking protocol. This is because ARED with both parameter settings already delivered
performance identical with that of the uncongested network at this load. With or without
ECN, ARED with both parameter settings gave performance that was indistinguishable

228

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

REM/ECN - qref=24
REM/ECN - qref=240

Figure 6.51: REM/ECN performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

REM/ECN - qref=24
REM/ECN - qref=240

Figure 6.52: REM/ECN performance at 90% load

229

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

REM/ECN - qref=24
REM/ECN - qref=240

Figure 6.53: REM/ECN performance at 95% load

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240
REM/ECN - qref=24
REM/ECN - qref=240

Figure 6.54: REM/ECN performance at 80% load (CCDF)

230

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240
REM/ECN - qref=24
REM/ECN - qref=240

Figure 6.55: REM/ECN performance at 90% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240
REM/ECN - qref=24
REM/ECN - qref=240

Figure 6.56: REM/ECN performance at 95% load (CCDF)

231

from that of drop-tail and of the uncongested network.

At 90% offered load, ARED with both parameter settings (thmin = 12 packets, thmax =
36 packets) and (thmin = 120 packets, thmax = 360 packets) also did not obtain any perfor-
mance improvement over packet drops when it was used with ECN. With or without ECN,
ARED with the parameter settings (thmin = 120 packets, thmax = 360 packets) delivered
the same performance as drop-tail and came close to the performance of the uncongested
network. However, when ARED was used with the parameter settings (thmin = 12 packets,
thmax = 36 packets), it delivered equally poor performance both with and without ECN.
ARED with the parameter settings (thmin = 12 packets, thmax = 36 packets) suffered
considerable performance degradation from the uncongested network and underperformed
drop-tail noticeably.

As the offered load increased to 95%, ARED with both parameter settings (thmin = 12
packets, thmax = 36 packets) and (thmin = 120 packets, thmax = 360 packets) once again
did not gain any performance improvement from the addition of ECN. When ARED was
used with the parameter settings (thmin = 120 packets, thmax = 360 packets), it delivered
about the same performance as drop-tail both with and without ECN and showed noticeable
performance degradation from the uncongested network. When used with the parameter
settings (thmin = 12 packets, thmax = 36 packets), ARED with ECN surprisingly gave
slightly poorer performance for about 55% of flows. These were flows that needed more
than 1 second to complete. With or without ECN, ARED with the parameter settings
(thmin = 12 packets, thmax = 36 packets) underperformed drop-tail considerably.

Figure 6.63 shows a comparison of the original ARED algorithm and the ARED “new
gentle” algorithm at 80% load when they were used with ECN. At this load, the ARED
“new gentle” algorithm did not show any improvement over the original ARED algorithm.
When used in combination with ECN, both the original ARED algorithm and the ARED
“new gentle” algorithm delivered essentially the same performance as drop-tail and the un-
congested network with both parameter settings (thmin = 12 packets, thmax = 36 packets)
and (thmin = 120 packets, thmax = 360 packets).

At 90% offered load, both ARED/ECN and ARED/ECN “new gentle” gave identical
performance as drop-tail with the parameter settings (thmin = 120 packets, thmax = 360
packets) and closely approximated the performance of the uncongested network. How-
ever, when used with the parameter settings (thmin = 12 packets, thmax = 36 packets),
ARED/ECN “new gentle” obtained considerable performance improvement over ARED/ECN.
Nevertheless, ARED/ECN “new gentle” with the parameter settings (thmin = 12 packets,
thmax = 36 packets) delivered slightly worse performance than drop-tail for approximately
40% of flows that needed more than 1.5 seconds to complete.

At 95% offered load, both ARED/ECN and ARED/ECN “new gentle” again obtained
essentially the same performance as drop-tail with the parameter settings (thmin = 120

232

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 6.57: ARED/ECN performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 6.58: ARED/ECN performance at 90% load

233

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 6.59: ARED/ECN performance at 95% load

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 6.60: ARED/ECN performance at 80% load (CCDF)

234

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 6.61: ARED/ECN performance at 90% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 6.62: ARED/ECN performance at 95% load (CCDF)

235

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 6.63: ARED/ECN new gentle performance at 80% load

packets, thmax = 360 packets). However, the performance for ARED/ECN and ARED/ECN
“new gentle” with the parameter settings (thmin = 120 packets, thmax = 360 packets) de-
graded considerably at this load. When used with the parameter settings (thmin = 12
packets, thmax = 36 packets), ARED/ECN “new gentle” gave considerable better perfor-
mance than ARED/ECN. However, ARED/ECN “new gentle” with the parameter settings
(thmin = 12 packets, thmax = 36 packets) slightly underperformed drop-tail.

6.3.4 Results for LQD/ECN

Figures 6.69, 6.70, and 6.71 show experimental results for LQD with general TCP traffic
when LQD was used with and without ECN at 80%, 90%, and 95% loads. These results
were obtained with a queue reference of 24 and 240 packets.

At 80% offered load, LQD did not benefit from the addition of the ECN marking proto-
col. This is because LQD with both queue references of 24 and 240 packets already obtained
identical performance as the uncongested network when LQD was used with packet drops.

At 90% offered load, LQD once again did not obtain any performance improvement from
ECN. With or without ECN, LQD with both queue references delivered performance that
was slightly better than that of drop-tail and almost indistinguishable from the performance
of the uncongested network.

236

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 6.64: ARED/ECN new gentle performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 6.65: ARED/ECN new gentle performance at 95% load

237

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360
ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 6.66: ARED/ECN new gentle performance at 80% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360
ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 6.67: ARED/ECN new gentle performance at 90% load (CCDF)

238

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360
ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 6.68: ARED/ECN new gentle performance at 95% load (CCDF)

At 95% offered load, ECN also did not improve the performance for LQD with both
queue references of 24 and 240 packets. When used with either queue reference, the perfor-
mance for LQD with or without ECN was slightly better than that of drop-tail and came
very close to the performance of the uncongested network.

6.3.5 Results for DCN/ECN

Figures 6.75, 6.76, and 6.77 show experimental results for DCN with general TCP
applications when DCN operated with and without ECN at 80%, 90%, and 95% loads.
These results were achieved with a queue reference of 24 and 240 packets for DCN.

At 80% offered load, DCN obtained the same performance for both queue references of
24 and 240 packets when it was used with and without ECN. The performance for DCN
was identical to drop-tail and the uncongested network at this load.

At 90% offered load, DCN also delivered the same performance for both queue references
with and without ECN. The performance for DCN was slightly better than drop-tail and
indistinguishable from that of the uncongested network.

As the offered load increased to 95%, DCN still did not suffer any performance degrada-
tion. With or without ECN, DCN with both queue references outperformed drop-tail and
gave essentially the same performance as the uncongested network. This result once again

239

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 6.69: LQD/ECN performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 6.70: LQD/ECN performance at 90% load

240

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 6.71: LQD/ECN performance at 95% load

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240
LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 6.72: LQD/ECN performance at 80% load (CCDF)

241

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240
LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 6.73: LQD/ECN performance at 90% load (CCDF)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240
LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 6.74: LQD/ECN performance at 95% load (CCDF)

242

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 6.75: DCN/ECN performance at 80% load

demonstrates the benefits of differential treatment of flows in AQM algorithms.

6.4 Comparison of All Results

Figures 6.81, 6.82, and 6.83 show a comparison of results for all AQM algorithms with
general TCP applications. These results were obtained with the best parameter settings
for each of the AQM algorithms. Experimental results for DCN were shown when DCN
operated without ECN to demonstrate the benefits of differential treatment of flows (recall
from section 6.3.5 that DCN obtained the same performance with and without ECN).

At 80% offered load, drop-tail with a queue length of 240 packets achieved performance
that was comparable with that of all AQM algorithms and with the performance of the
uncongested network. Thus, it appears that Internet Service Providers can operate their
networks for general TCP traffic at 80% without risking performance degradation for their
customers’ applications. Further, AQM seems to have no advantage over drop-tail for
general TCP applications at 80% offered load or lower.

At 90% load, DCN delivered the best performance among all AQM algorithms even
when DCN was used without ECN. The performance for DCN was equal to that of the
uncongested network at this load. When used in combination with ECN, PI and REM

243

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 6.76: DCN/ECN performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 6.77: DCN/ECN performance at 95% load

244

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240
DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 6.78: DCN/ECN performance at 80% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240
DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 6.79: DCN/ECN performance at 90% load (CCDF)

245

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240
DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 6.80: DCN/ECN performance at 95% load (CCDF)

obtained similar performance and slightly underperformed DCN. ARED/ECN “new gentle”
gave about the same performance as drop-tail and slightly worse than PI and REM with
ECN.

As the offered load increased to 95%, DCN outperformed all AQM algorithms even
when it was used with packet drops. The performance for DCN was identical to that of
the uncongested network. PI and REM with ECN gave about the same performance and
slightly worse than drop-tail and DCN. ARED/ECN “new gentle” obtained slightly worse
performance than drop-tail which in turn underperformed PI and REM with ECN.

6.5 Summary

This Chapter presents experimental results for PI, REM, ARED, LQD, and DCN with
general TCP traffic. The traffic was synthetically generated in the laboratory network
based on characteristics that were derived from packet traces of general TCP applications.
Assuming that connection durations are the most important performance metric (and other
performance metrics such as loss rate and link utilization are secondary) in evaluating AQM
algorithms, following conclusions can be drawn from the results presented in this Chapter.

• At 90% offered load or lower, the performance for drop-tail with a queue length of

246

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI/ECN - qref=24
REM/ECN - qref=24

DCN - qref=24
ARED/ECN new gentle - thmin=120 thmax=360

Figure 6.81: Comparison of all AQM algorithms at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI/ECN - qref=24
REM/ECN - qref=24

DCN - qref=24
ARED/ECN new gentle - thmin=120 thmax=360

Figure 6.82: Comparison of all AQM algorithms at 90% load

247

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI/ECN - qref=24
REM/ECN - qref=24

DCN - qref=24
ARED/ECN new gentle - thmin=120 thmax=360

Figure 6.83: Comparison of all AQM algorithms at 95% load

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=24
REM/ECN - qref=24
DCN - qref=24
ARED/ECN new gentle - thmin=120 thmax=360

Figure 6.84: Comparison of all AQM algorithms at 80% load (CCDF)

248

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=24
REM/ECN - qref=24
DCN - qref=24
ARED/ECN new gentle - thmin=120 thmax=360

Figure 6.85: Comparison of all AQM algorithms at 90% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=24
REM/ECN - qref=24
DCN - qref=24
ARED/ECN new gentle - thmin=120 thmax=360

Figure 6.86: Comparison of all AQM algorithms at 95% load (CCDF)

249

240 packets was very close to that of all AQM algorithms and the performance of the
uncongested network. Thus, it appears that Internet Service Providers could operate
their network near saturation without causing noticeable performance degradation
for their customers’ applications. Further, AQM seems to have no advantage over
drop-tail for general TCP applications at 90% offered load or below.

• In contrast to results with Web traffic presented in Chapters 4 and 5, ECN only im-
proved the performance for AQM algorithms at 95% loads. Further, the performance
improvement of ECN for AQM algorithms was significantly less impressive with gen-
eral TCP applications than with Web applications.

• ARED was once again the worst performing AQM algorithm but the performance for
ARED was improved considerably with the two modifications ARED “byte mode”
and “new gentle” with ECN.

• The DCN algorithm demonstrated the power of differential treatment of flows. Even
without the ECN marking protocol, DCN obtained performance that was indistin-
guishable from the performance of the uncongested network at 95% offered load.

250

Table 6.1: Loss rate, completed requests, and link utilization

Offered Forward Reverse Completed Forward Reverse
load path path connec- path path

loss loss tions through- through-
rate (%) rate (%) (millions) put put

(Mbps) (Mbps)

Uncongested 80% 0.0 0.0 0.75 80.8 76.9
1 Gbps 90% 0.0 0.0 0.81 91.4 85.5
network 95% 0.0 0.0 0.83 98.7 90.7

Drop-tail 80% 0.1 0.0 0.75 80.0 76.2
queue 90% 0.7 0.3 0.81 87.5 82.7

size = 24 95% 1.7 0.9 0.83 88.4 87.0

Drop-tail 80% 0.0 0.0 0.75 80.0 76.3
queue 90% 0.4 0.1 0.81 87.5 82.9

size = 240 95% 0.9 0.4 0.83 89.4 87.3

PI 80% 0.1 0.0 0.75 75.7 72.8
qref = 24 90% 0.7 0.1 0.81 85.3 82.6

95% 1.3 0.7 0.83 86.1 84.9

PI/ECN 80% 0.0 0.0 0.75 75.7 72.8
qref = 24 90% 0.0 0.0 0.81 86.1 82.8

95% 0.1 0.0 0.83 86.7 86.0

PI 80% 0.0 0.0 0.75 75.7 72.8
qref = 240 90% 0.3 0.0 0.81 87.5 80.7

95% 0.7 0.2 0.83 87.2 87.0

PI/ECN 80% 0.0 0.0 0.75 75.7 72.8
qref = 240 90% 0.0 0.0 0.81 86.9 83.1

95% 0.0 0.0 0.83 87.7 87.0

REM 80% 0.1 0.0 0.75 75.7 72.8
qref = 24 90% 0.6 0.2 0.81 85.6 82.2

95% 1.2 0.6 0.83 85.5 84.8

REM/ECN 80% 0.0 0.0 0.75 75.7 72.8
qref = 24 90% 0.0 0.0 0.81 86.8 82.7

95% 0.1 0.0 0.83 86.9 86.9

Continued on next page

251

Offered Forward Reverse Completed Forward Reverse
load path path connec- path path

loss loss tions through- through-
rate (%) rate (%) (millions) put put

(Mbps) (Mbps)

REM 80% 0.1 0.0 0.75 75.6 71.0
qref = 240 90% 0.2 0.1 0.81 86.7 82.5

95% 0.7 0.4 0.83 86.1 84.6

REM/ECN 80% 0.0 0.0 0.75 75.7 72.8
qref = 240 90% 0.0 0.0 0.81 86.8 82.7

95% 0.1 0.0 0.83 86.9 86.9

ARED 80% 0.2 0.1 0.75 75.5 72.8
thmin = 12 90% 2.3 0.8 0.81 80.7 80.1
thmin = 36 95% 3.6 2.5 0.83 81.1 79.5

ARED/ECN 80% 0.1 0.0 0.75 75.6 72.7
thmin = 12 90% 2.2 0.7 0.81 80.5 80.2
thmin = 36 95% 3.3 2.2 0.83 81.3 79.5

ARED 80% 0.1 0.0 0.75 75.7 72.8
thmin = 120 90% 0.3 0.1 0.81 86.3 82.6
thmin = 360 95% 1.1 0.4 0.83 86.8 86.1

ARED/ECN 80% 0.0 0.0 0.75 75.7 72.8
thmin = 120 90% 0.3 0.0 0.81 86.6 82.8
thmin = 360 95% 1.1 0.4 0.83 86.4 84.8

ARED “byte 80% 0.2 0.0 0.75 75.5 72.4
mode” thmin = 12 90% 1.6 0.8 0.81 80.8 79.2

thmax = 36 95% 2.2 1.6 0.83 81.5 80.5

ARED “byte 80% 0.0 0.0 0.75 75.7 72.8
mode” thmin = 120 90% 0.4 0.1 0.81 86.1 82.1

thmax = 360 95% 1.4 0.9 0.83 86.8 82.4

ARED/ECN “new 80% 0.0 0.0 0.75 75.7 72.8
gentle” thmin = 12 90% 0.7 0.2 0.81 87.0 82.6

thmax = 36 95% 1.8 0.7 0.83 87.2 86.2

ARED/ECN “new 80% 0.0 0.0 0.75 75.7 72.8
gentle” thmin = 120 90% 0.1 0.0 0.81 87.5 82.5

thmax = 360 95% 0.3 0.1 0.83 89.8 86.6

Continued on next page

252

Offered Forward Reverse Completed Forward Reverse
load path path connec- path path

loss loss tions through- through-
rate (%) rate (%) (millions) put put

(Mbps) (Mbps)

LQD 80% 0.0 0.0 0.75 75.8 72.8
qref = 24 90% 0.0 0.0 0.81 87.6 80.7

95% 0.0 0.0 0.83 89.9 83.4

LQD/ECN 80% 0.0 0.0 0.75 75.9 72.9
qref = 24 90% 0.0 0.0 0.81 87.9 83.5

95% 0.0 0.0 0.83 90.1 86.7

LQD 80% 0.0 0.0 0.75 75.9 73.1
qref = 240 90% 0.0 0.0 0.81 87.6 81.3

95% 0.0 0.0 0.83 89.9 83.5

LQD/ECN 80% 0.0 0.0 0.75 76.1 73.1
qref = 240 90% 0.0 0.0 0.81 87.9 81.4

95% 0.0 0.0 0.83 90.3 83.6

DCN 80% 0.1 0.0 0.75 75.7 72.8
qref = 24 90% 0.2 0.0 0.81 87.1 83.0

95% 0.5 0.1 0.83 87.3 87.2

DCN/ECN 80% 0.0 0.0 0.75 75.7 72.8
qref = 24 90% 0.0 0.0 0.81 87.3 83.0

95% 0.0 0.0 0.83 87.9 87.2

DCN 80% 0.1 0.0 0.75 76.4 73.1
qref = 240 90% 0.2 0.0 0.81 87.6 83.2

95% 0.3 0.0 0.83 88.2 88.0

DCN/ECN 80% 0.0 0.0 0.75 76.6 73.3
qref = 240 90% 0.0 0.0 0.81 87.9 83.3

95% 0.0 0.0 0.83 88.4 88.1

253

Table 6.2: Percentiles of response times

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

Uncongested 80% 0.730 5.897 19.365
1 Gbps 90% 0.730 6.152 19.505
network 95% 0.730 6.166 19.513

Drop-tail 80% 0.757 6.004 19.498
queue size = 90% 0.810 6.589 20.074

24 95% 0.913 7.084 20.649

Drop-tail 80% 0.759 6.083 19.563
queue size = 90% 0.820 6.525 19.988

240 95% 0.916 7.016 20.584

PI 80% 0.749 5.985 19.451
qref = 24 90% 0.796 6.702 20.213

95% 0.830 7.012 20.652

PI/ECN 80% 0.749 5.978 19.448
qref = 24 90% 0.773 6.473 19.941

95% 0.794 6.823 20.365

PI 80% 0.750 5.985 19.453
qref = 240 90% 0.901 6.698 20.193

95% 0.906 6.946 20.553

PI/ECN 80% 0.750 5.984 19.453
qref = 240 90% 0.813 6.479 19.943

95% 0.888 6.828 20.399

REM 80% 0.744 5.973 19.448
qref = 24 90% 0.794 6.675 20.204

95% 0.825 6.979 20.620

REM/ECN 80% 0.744 5.968 19.437
qref = 24 90% 0.769 6.444 19.900

95% 0.788 6.688 20.206

REM 80% 0.758 6.079 19.561
qref = 240 90% 0.804 6.474 19.947

95% 0.883 6.946 20.542

REM/ECN 80% 0.748 5.980 19.445
qref = 240 90% 0.799 6.435 19.879

95% 0.859 6.747 20.264

Continued on next page

254

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

ARED 80% 0.762 6.118 19.635
thmin = 12 90% 0.950 7.339 20.990
thmax = 36 95% 1.261 8.240 22.160

ARED/ECN 80% 0.747 5.992 19.476
thmin = 12 90% 0.921 7.282 20.881
thmax = 36 95% 1.293 8.501 22.372

ARED 80% 0.747 5.979 19.444
thmin = 120 90% 0.817 6.629 20.084
thmax = 360 95% 0.920 7.039 20.627

ARED/ECN 80% 0.748 5.979 19.445
thmin = 120 90% 0.809 6.502 19.977
thmax = 360 95% 0.930 7.114 20.719

ARED “byte 80% 0.756 6.085 19.602
mode” thmin = 12 90% 0.807 6.827 20.359

thmax = 36 95% 0.879 7.267 20.964

ARED “byte 80% 0.750 5.982 19.449
mode” thmin = 120 90% 0.818 6.499 19.976

thmax = 360 95% 0.910 6.934 20.533

ARED “new 80% 0.745 5.972 19.442
gentle” thmin = 12 90% 0.799 6.611 20.081

thmax = 36 95% 0.911 7.263 20.723

ARED “new 80% 0.750 5.985 19.450
gentle” thmin = 120 90% 0.835 6.531 19.997

thmax = 360 95% 0.953 6.936 20.511

LQD 80% 0.739 5.939 19.408
qref = 24 90% 0.767 6.426 19.871

95% 0.777 6.599 20.095

LQD/ECN 80% 0.739 5.938 19.408
qref = 24 90% 0.752 6.313 19.726

95% 0.765 6.503 19.935

LQD 80% 0.740 5.939 19.408
qref = 240 90% 0.811 6.426 19.854

95% 0.814 6.564 20.041

Continued on next page

255

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

LQD/ECN 80% 0.740 5.941 19.408
qref = 240 90% 0.770 6.316 19.725

95% 0.806 6.504 19.958

DCN 80% 0.733 5.948 19.3815
qref = 24 90% 0.735 6.174 19.509

95% 0.736 6.183 19.514

DCN/ECN 80% 0.734 5.940 19.396
qref = 24 90% 0.745 6.255 19.619

95% 0.747 6.266 19.629

DCN 80% 0.739 5.967 19.435
qref = 240 90% 0.746 6.233 19.609

95% 0.750 6.253 19.622

DCN/ECN 80% 0.741 5.960 19.436
qref = 240 90% 0.756 6.250 19.642

95% 0.765 6.292 19.682

256

Chapter 7

Investigating the Effects of Link-Level

Buffering

Experimental results in Chapters 4, 5, and 6 showed the effects of AQM algorithms
on the performance of Web and general TCP applications. These results were obtained
by performing experiments in a laboratory network and having two PC routers running
implementations of AQM algorithms. The AQM algorithms were implemented in FreeBSD
kernel of the PC routers by using the ALTQ framework [Cho98]. This framework extends the
structure of the IP output queue in the TCP/IP stack and allows a modular implementation
of traffic management algorithms such as AQM or packet scheduling in the IP stack of a
PC router.

Figure 7.1 depicts the principal architecture of ALTQ where packets leaving the IP
output queue can be redirected to the implementation of different AQM algorithms. Packets
that are forwarded, i.e., not dropped, by these AQM algorithms are passed to if start (a
macro in FreeBSD that is used to link to various software drivers for network adapters)
and then to the software drivers of various network adapters (before ALTQ was introduced,
packets flew directly from the IP output queue to if start). Control software running in
user-space specifies at run time which implementation of AQM algorithms should be active
and is to handle packets leaving the IP output queue.

The ALTQ framework provides AQM implementors with an abstract environment and
frees them from having to deal directly with idiosyncratic implementation details of network
adapters. Because of this abstraction, however, AQM algorithms only control the IP output
queue and are not aware of additional buffering that takes place within device drivers and
hardware interfaces. This “link-level” buffer inside the device drivers can cause two potential
problems. First, the “link-level” buffer increases end-to-end latency and can destroy one of
the main purposes of AQM algorithms (which is to reduce queuing delay and improve the
performance of interactive applications). Second, because AQM algorithms is not aware of
the link-level buffer, this buffer can cause inaccuracy in the operations of AQM algorithms.

258

For example, an empty IP output queue is interpreted as an abatement (or absence) of
congestion by most AQM algorithms. However, this interpretation is incorrect if packets
are buffered in software drivers at the link layer.

In order to investigate the effects of the link-level buffering, implementations for PI,
REM, ARED, LQD, and DCN were modified to control both the IP output queue and the
link-level buffer. Experiments with general TCP traffic under the same conditions as in 6
were repeated with the modified implementations of AQM algorithms. The modification of
the implementation for AQM algorithms partially circumvented the purpose of the ALTQ
framework (which was to provide an abstract environment for implementation of traffic
management algorithms). However, it was necessary to achieve accurate control of packet
queue(s) for drop-tail and AQM algorithms. For example, experimental results presented
in Chapters 4, 5, and 6 were obtained when drop-tail and AQM algorithms ran on top
of another packet queue inside the software driver for 3Com network adapters but were
unaware of this queue. Further, this packet queue can store a maximum of 254 packets, a
considerable amount of packet buffering.

In the new implementations of ALTQ and AQM algorithms, the packet queue inside the
software driver for 3Com network adapters was limited to a maximum of 4 packets. Further,
this packet queue and the IP output queue were taken into account (and controlled) by
drop-tail and AQM algorithms.

As in Chapters 5 and 6, experimental results were obtained for PI, REM, ARED, LQD,
and DCN. For comparison purposes, experiments were also performed for drop-tail and the
uncongested network. The rest of the Chapter is organized as follows. Section 7.1 shows
experimental results for drop-tail that serve as base results in evaluating AQM algorithms.
Sections 7.2 and 7.3 present results for PI, REM, ARED, LQD, and DCN when they were
used with and without ECN. Section 7.4 compares results of all AQM algorithms and
section 7.5 concludes the Chapter.

7.1 Results for Drop-Tail

Figures 7.2, 7.3, and 7.4 show experimental results for drop-tail with general TCP traffic
at 80%, 90%, and 95% offered loads. These results were obtained with a drop-tail queue of
24 and 240 packets.

At 80% load, drop-tail with a queue length of 240 packets delivered performance that was
identical to the performance of the uncongested network. However, drop-tail with a queue
length of 24 packets gave significantly worse performance. This result demonstrate the
fact that application performance can be deteriorated significantly by an underprovisioned
buffer. This result stands in stark contrast with result in Chapter 6 where, under identical
conditions, a drop-tail queue of 24 packets and a link-level buffer of 254 packets gave very

259

IP output

if_start

drop-tail PI REM ARED

Driver for network
adapter

Driver for network
adapter

Driver for network
adapter

Figure 7.1: ALTQ principal architecture

good results. These good results were achieved because the link-level buffer masked the
underprovisioned drop-tail queue.

At 90%, drop-tail with a queue length of 240 packets suffered a small performance
degradation. However, drop-tail with a queue length of 240 packets still delivered good
performance and closely approximated the performance of the uncongested network at this
load. Drop-tail with a queue length of 24 packets continued to be an underprovisioned
buffer. It gave poor performance and significantly underperformed drop-tail with a queue
length of 240 packets.

As the offered load increased to 95%, the performance for drop-tail with a queue length
of 240 packets degraded noticeably. However, drop-tail with a queue length of 240 packets
still gave reasonably good performance at this load. Drop-tail with a queue length of 24
packets once again was underprovisioned and gave significantly worse performance than
drop-tail with a queue length of 240 packets.

7.2 Results for ARED, PI, LQD, and REM

Experiments from 6 were repeated with the new implementation of ALTQ and AQM
algorithms for PI, REM, ARED, LQD, and DCN at 80%, 90%, and 95% loads. Experiments
for PI, REM, LQD, and DCN were performed with a queue reference of 24 and 240 packets.

260

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=24

drop-tail - qlen=240

Figure 7.2: Drop-tail performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=24

drop-tail - qlen=240

Figure 7.3: Drop-tail performance at 90% load

261

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=24

drop-tail - qlen=240

Figure 7.4: Drop-tail performance at 95% load

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=24
drop-tail - qlen=240

Figure 7.5: Drop-tail performance at 80% load (CCDF)

262

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=24
drop-tail - qlen=240

Figure 7.6: Drop-tail performance at 90% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=24
drop-tail - qlen=240

Figure 7.7: Drop-tail performance at 95% load (CCDF)

263

Experiments for ARED were run in both “packet mode” and “byte mode” with parameter
settings (thmin = 12 packets, thmax = 36 packets) and (thmin = 120 packets, thmax = 360
packets). These parameter settings for ARED achieved a target queue reference of 24 and
240 packets respectively. The results of AQM algorithms were compared with the results
of drop-tail and of the uncongested network to investigate the effects of AQM algorithms
on general TCP applications when link-level buffering is limited (contrary to results in
Chapter 6 where results were obtained with a considerable amount of link-level buffering).

7.2.1 Results for PI

Figures 7.8, 7.9, and 7.10 show experimental results for PI with general TCP applications
at 80%, 90%, and 95% loads. These results were obtained without link-level buffering and
with a queue reference of 24 and 240 packets for PI.

At 80% offered load, PI obtained equally good performance with both queue references
of 24 and 240 packets. The performance for PI was identical to the performance of the
uncongested network and that of drop-tail with a queue length of 240 packets at this load.

At 90% offered load, PI delivered similar performance with both queue references of 24
and 240 packets. The performance for PI was comparable to that of drop-tail with a queue
length of 240 packets and came close to the performance of the uncongested network.

As the offered load increased to 95%, the performance for PI with both queue references
degraded slightly. PI with a queue reference of 24 packets gave slightly better performance
than with a queue reference of 240 packets for 60% of flows. These were flows that com-
pleted within 1,500 milliseconds or less. For the other 40% of flows, PI delivered similar
performance with both queue references. Further, PI obtained slightly better performance
than drop-tail with both queue references at this load.

7.2.2 Results for REM

Figures 6.15, 6.16, and 6.17 show experimental results for REM with general TCP
applications at 80%, 90%, and 95% when REM was used with packet drops and without
link-level buffering. These results were obtained for REM with a queue reference of 24 and
240 packets.

At 80% offered load, REM gave identical performance with queue references of 24 and
240 packets. Further, the performance for REM was indistinguishable from that of the
uncongested network and of drop-tail with a queue length of 240 packets at this load.

At 90% offered load, REM delivered very similar performance with queue references of
24 and 240 packets. The performance for REM was slightly better than that of drop-tail
with a queue length of 240 packets and came close to the performance of the uncongested
network.

264

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

Figure 7.8: PI performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

Figure 7.9: PI performance at 90% load

265

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

Figure 7.10: PI performance at 95% load

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240

Figure 7.11: PI performance at 80% load (CCDF)

266

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240

Figure 7.12: PI performance at 90% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240

Figure 7.13: PI performance at 95% load (CCDF)

267

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

Figure 7.14: REM performance at 80% load

As the offered load increased to 95%, the performance for REM with both queue ref-
erences degraded slightly. REM obtained slightly performance with a queue reference of
24 packets than with a queue reference of 240 packets for approximately 55% of flows that
completed within 1 second or less. Overall, REM gave better performance than drop-tail
with both queue references at this load.

7.2.3 Results for ARED

Figures 7.20, 7.21, and 7.22 show experimental results for ARED “packet mode” and
“byte mode” when experiments were performed with packet drops and without link-level
buffering. ARED “packet mode” and “byte mode” were operated with parameter settings
(thmin = 12 packets, thmax = 36 packets) and (thmin = 120 packets, thmax = 360 packets).
These parameter settings gave an implicit target queue reference of 24 and 240 packets for
ARED.

At 80% load, ARED “packet mode” obtained identical performance with both parameter
settings. The performance for ARED “packet mode” at this load was undistinguishable from
that of drop-tail and of the uncongested network.

At 90% offered load, the performance for ARED “packet mode” with parameter settings
(thmin = 120 packets, thmax = 360 packets) degraded slightly and was comparable to

268

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

Figure 7.15: REM performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

Figure 7.16: REM performance at 95% load

269

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240

Figure 7.17: REM performance at 80% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240

Figure 7.18: REM performance at 90% load (CCDF)

270

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240

Figure 7.19: REM performance at 95% load (CCDF)

the performance of drop-tail with a queue length of 240 packets. ARED “packet mode”
with parameter settings (thmin = 12 packets, thmax = 36 packets) suffered considerable
performance degradation and uderperformed drop-tail at this load.

As the offered increased to 95%, ARED “packet mode” with parameter settings (thmin =
120 packets, thmax = 360 packets) suffered noticeable performance degradation but obtained
about the same performance as drop-tail with a queue length of 240 packets. The perfor-
mance for ARED “packet mode” with parameter settings (thmin = 12 packets, thmax = 36
packets) degraded even more and was considerably lower than the performance of drop-tail
at this load.

When compared with ARED “packet mode”, ARED “byte mode” did not give any
performance improvement at 80% offered load. With both parameter settings (thmin = 12
packets, thmax = 36 packets) and (thmin = 120 packets, thmax = 360 packets), ARED
“packet mode” and “byte mode” gave identical performance as drop-tail and the uncon-
gested network.

At 90% offered load, ARED “byte mode” performed slightly better with parameter
settings (thmin = 120 packets, thmax = 360 packets) than with (thmin = 12 packets,
thmax = 36 packets). With parameter settings (thmin = 120 packets, thmax = 360 packets),
ARED “packet mode” and “byte mode” delivered essentially the same performance that was

271

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 7.20: ARED performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 7.21: ARED performance at 90% load

272

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 7.22: ARED performance at 95% load

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 7.23: ARED performance at 80% load (CCDF)

273

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 7.24: ARED performance at 90% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

Figure 7.25: ARED performance at 95% load (CCDF)

274

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED byte - thmin=12 thmax=36
ARED byte- thmin=120 thmax=360

Figure 7.26: ARED byte mode performance at 80% load

also comparable with drop-tail. When used with parameter settings (thmin = 12 packets,
thmax = 36 packets), ARED “byte mode” slightly underperformed drop-tail but obtained
slightly better performance than ARED “packet mode”.

As the offered load increased to 95%, ARED “byte mode” obtained similar performance
with both parameter settings (thmin = 12 packets, thmax = 36 packets) and (thmin = 120
packets, thmax = 360 packets). Further, the performance for ARED “byte mode” delivered
approximately the same performance as drop-tail and ARED “packet mode” with (thmin =
120 packets, thmax = 360 packets). ARED “packet mode” with (thmin = 12 packets,
thmax = 36 packets) gave considerably worse performance at this load.

7.2.4 Results for LQD

Figures 7.32, 7.33, and 7.34 show experimental results for LQD without link-level buffer-
ing and with general TCP applications. These resutls were obtained when LQD operated
with packet drops and with a queue reference of 24 and 240 packets.

At 80% offered load, LQD obtained the same performance with both queue references.
The performance for LQD at this load was indistinguishable from that of drop-tail and of
the uncongested network.

At 90% offered load, LQD delivered very similar performance with both queue references.

275

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED byte - thmin=12 thmax=36
ARED byte- thmin=120 thmax=360

Figure 7.27: ARED byte mode performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED byte - thmin=12 thmax=36
ARED byte- thmin=120 thmax=360

Figure 7.28: ARED byte mode performance at 95% load

276

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED byte - thmin=12 thmax=36
ARED byte - thmin=120 thmax=360

Figure 7.29: ARED byte mode performance at 80% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED byte - thmin=12 thmax=36
ARED byte - thmin=120 thmax=360

Figure 7.30: ARED byte mode performance at 90% load (CCDF)

277

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED byte - thmin=12 thmax=36
ARED byte - thmin=120 thmax=360

Figure 7.31: ARED byte mode performance at 95% load (CCDF)

The performance for LQD at this load was slightly better than that of drop-tail and closely
approximated the performance of the uncongested network.

As the offered load increased to 95%, LQD gave slightly better performance with a
queue reference of 24 packets than with a queue reference of 240 packets for approximately
55% of flows. The other 45% of flows experienced the same performance with both queue
references for LQD. LQD outperformed drop-tail and came close to the performance of the
uncongested network at this load.

7.2.5 Results for DCN

Figures 7.38, 7.39, and 7.40 show experimental results for DCN with general TCP
applications and without link-level buffering. These results were obtained when DCN was
used with packet drops and with a queue reference of 24 and 240 packets.

At 80% offered load, DCN obtained the same performance with both queue references of
24 and 240 packets. The performance of DCN at this load was identical to that of drop-tail
and of the uncongested network.

At 90% offered load, DCN delivered the same performance with both queue references.
The performance for DCN at this load was undistinguishable from that of the uncongested
network and slightly better than the performance of drop-tail with a queue length of 240

278

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

Figure 7.32: LQD performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

Figure 7.33: LQD performance at 90% load

279

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

Figure 7.34: LQD performance at 95% load

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240

Figure 7.35: LQD performance at 80% load (CCDF)

280

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240

Figure 7.36: LQD performance at 90% load (CCDF)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240

Figure 7.37: LQD performance at 95% load (CCDF)

281

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

Figure 7.38: DCN performance at 80% load

packets.

As the offered load increased to 95%, DCN continued to give the same performance
as the uncongested network with both queue references. The performance of DCN was
considerable better than that of drop-tail at this load. The performance for DCN once
again demonstrated the advantage of differential treatment of flows in improving application
performance.

7.3 Results for ARED, PI, LQD, and REM with ECN

Experimental results for various AQM algorithms presented in section 7.2 were obtained
when they were used with packet drops. In order to quantify the effects of the ECN signaling
protocol, experiments from section 7.2 were repeated but the ECN protocol was now used
and routers were allowed to mark instead of dropping packets.

7.3.1 Results for PI/ECN

Figures 7.44, 7.45, and 7.46 show experimental results for PI with and without ECN at
80%, 90%, and 95% offered loads. These results were obtained with general TCP applica-
tions when PI was used without link-level buffering and with a queue reference of 24 and

282

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

Figure 7.39: DCN performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

Figure 7.40: DCN performance at 95% load

283

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240

Figure 7.41: DCN performance at 80% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240

Figure 7.42: DCN performance at 90% load (CCDF)

284

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240

Figure 7.43: DCN performance at 95% load (CCDF)

240 packets.

At 80% load, PI did not gain any performance improvement with ECN over packet drops.
With or without ECN, PI with both queue references obtained the same performance the
uncongested network and drop-tail with a queue reference of 240 packets.

At 90% offered load, ECN did not affect the performance for PI when PI was used with
a queue reference of 240 packets. With or without ECN, PI delivered the same performance
when it was used with a queue reference of 240 packets. The performance for PI with a
queue reference of 240 packets (with or without ECN) was comparable to that of drop-tail
and closely approximated the performance of the uncongested network. When PI was used
with a queue reference of 24 packets, the addition of ECN sightly decreased the performance
of PI for approximately 60% flows that completed within 1,500 milliseconds.

As the offered load increased to 95%, ECN improved the performance for PI slightly
when PI was used with a queue referece of 24 packets. With or without ECN, PI with a
queue reference of 24 packets gave slightly better performance than drop-tail with a queue
length of 240 packets. It is interesting that PI/ECN with a queue reference of 24 packets was
the worst performing combination for PI at 90% load but gave the best performance for PI at
95% load. When PI was used with a queue reference of 240 packets, ECN neither increased
or decreased the performance for PI. With or without ECN, PI with a queue reference of

285

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

PI/ECN - qref=24
PI/ECN - qref=240

Figure 7.44: PI/ECN performance at 80% load

240 packets underperformed drop-tail for approximately 50% of flows that completed within
1 second but gave better performance than drop-tail for the other 50% of flows.

7.3.2 Results for REM/ECN

Figures 7.50, 7.51, and 7.52 show experimental results for REM with and without ECN
at 80%, 90%, and 95% loads. These results were obtained with general TCP applications
and without link-level buffering.

At 80% offered load, REM delivered the same performance with both queue references
when it was used with and without ECN. The performance for REM at this load was
identical to that of drop-tail and of the uncongested network.

At 90% offered load, the addition of ECN did not change the performance for REM
with both queue references. With or without ECN, REM with both queue references gave
about the same performance as drop-tail with a queue reference of 24 packets and closely
approximated the performance of the uncongested network.

As the offered load increased to 95%, the addition of ECN marking protocol improved
the performance for REM with both queue references slightly. With or without ECN, the
performance for REM came relatively close to that of the uncongested network.

286

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

PI/ECN - qref=24
PI/ECN - qref=240

Figure 7.45: PI/ECN performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

PI - qref=24
PI - qref=240

PI/ECN - qref=24
PI/ECN - qref=240

Figure 7.46: PI/ECN performance at 95% load

287

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240
PI/ECN - qref=24
PI/ECN - qref=240

Figure 7.47: PI/ECN performance at 80% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240
PI/ECN - qref=24
PI/ECN - qref=240

Figure 7.48: PI/ECN performance at 90% load (CCDF)

288

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI - qref=24
PI - qref=240
PI/ECN - qref=24
PI/ECN - qref=240

Figure 7.49: PI/ECN performance at 95% load (CCDF)

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

REM/ECN - qref=24
REM/ECN - qref=240

Figure 7.50: REM/ECN performance at 80% load

289

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

REM/ECN - qref=24
REM/ECN - qref=240

Figure 7.51: REM/ECN performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

REM - qref=24
REM - qref=240

REM/ECN - qref=24
REM/ECN - qref=240

Figure 7.52: REM/ECN performance at 95% load

290

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240
REM/ECN - qref=24
REM/ECN - qref=240

Figure 7.53: REM/ECN performance at 80% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240
REM/ECN - qref=24
REM/ECN - qref=240

Figure 7.54: REM/ECN performance at 90% load (CCDF)

291

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
REM - qref=24
REM - qref=240
REM/ECN - qref=24
REM/ECN - qref=240

Figure 7.55: REM/ECN performance at 95% load (CCDF)

7.3.3 Results for ARED/ECN

Figures 7.56, 7.57, and 7.58 show experimental results for ARED with general TCP
applications when link-level buffering was eliminated. These results were obtained with
and without ECN when ARED operated with parameter settings (thmin = 12 packets,
thmax = 36 packets) and (thmin = 120 packets, thmax = 360 packets). Further, figures 7.62,
7.63, and 7.64 show experimental results for ARED when it was used with ECN in the “new
gentle” mode (ARED/ECN “new gentle”) to demonstrate the effects of dropping packets
in ECN mode of ARED on general TCP applications.

At 80% offered load, the addition of ECN did not improve the performance for ARED.
This was because ARED without ECN already gave performance that was undistinguish-
able from the performance of the uncongested network. With or without ECN, ARED
approximated the performance of the uncongested network with both parameter settings
(thmin = 12 packets, thmax = 36 packets) and (thmin = 120 packets, thmax = 360 packets).

At 90% offered load, ARED also did not benefit from the addition of the ECN signaling
protocol. When used with parameter settings (thmin = 12 packets, thmax = 36 packets),
ARED obtained the same performance with and without ECN. Further, the performance for
ARED with parameter settings (thmin = 12 packets, thmax = 36 packets) was considerably

292

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 7.56: ARED/ECN performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 7.57: ARED/ECN performance at 90% load

293

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 7.58: ARED/ECN performance at 95% load

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 7.59: ARED/ECN performance at 80% load (CCDF)

294

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 7.60: ARED/ECN performance at 90% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED - thmin=12 thmax=36
ARED - thmin=120 thmax=360
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

Figure 7.61: ARED/ECN performance at 95% load (CCDF)

295

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 7.62: ARED/ECN new gentle performance at 80% load

lower than that of drop-tail and of the uncongested network. When ARED was used with
parameter settings (thmin = 120 packets, thmax = 360 packets), it delivered comparable
performance with drop-tail and came close to the performance of the uncongested network.
With or without ECN, ARED gave the same performance with parameter settings (thmin =
120 packets, thmax = 360 packets).

At 95% offered load, the addition of ECN slightly degraded the performance for ARED
with parameter settings (thmin = 12 packets, thmax = 36 packets). With or without ECN,
ARED with parameter settings (thmin = 12 packets, thmax = 36 packets) underperformed
drop-tail at this load. When ARED was used with parameter settings (thmin = 120 packets,
thmax = 360 packets), it obtained the same performance with and without ECN. The
performance for ARED with parameter settings (thmin = 120 packets, thmax = 360 packets)
was comparable to that of drop-tail but considerably lower than the performance of the
uncongested network.

When ARED was used with ECN in “new gentle” mode, it delivered the same perfor-
mance as the original ARED/ECN algorihtm with both parameter settings (thmin = 12
packets, thmax = 36 packets) and (thmin = 120 packets, thmax = 360 packets) at 80%
offered load. The performance for ARED/ECN and ARED/ECN “new gentle” was undis-
tinguishable from that of drop-tail and of the uncongested network at this load.

296

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 7.63: ARED/ECN new gentle performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360

ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 7.64: ARED/ECN new gentle performance at 95% load

297

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360
ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 7.65: ARED/ECN new gentle performance at 80% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360
ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 7.66: ARED/ECN new gentle performance at 90% load (CCDF)

298

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
ARED/ECN - thmin=12 thmax=36
ARED/ECN - thmin=120 thmax=360
ARED/ECN new gentle - thmin=12 thmax=36
ARED/ECN new gentle - thmin=120 thmax=360

Figure 7.67: ARED/ECN new gentle performance at 95% load (CCDF)

At 90% offered load, ARED/ECN “new gentle” gave a small performance improve-
ment over ARED/ECN when they were used with parameter settings (thmin = 12 packets,
thmax = 36 packets). However, the performance for ARED/ECN “new gentle” with the
parameter settings (thmin = 12 packets, thmax = 36 packets) was still lower than the perfor-
mance of drop-tail with a queue length of 240 packets. When ARED was used with param-
eter settings (thmin = 120 packets, thmax = 360 packets), ARED/ECN and ARED/ECN
“new gentle” gave essentially the same performance. The performance for ARED/ECN
and ARED/ECN “new gentle” with parameter settings (thmin = 120 packets, thmax = 360
packets) was comparable with that of drop-tail and came close to the performance of the
uncongested network.

At 95% offered load, ARED/ECN “new gentle” delivered considerable performance im-
provement over ARED/ECN when they were used with parameter settings (thmin = 12
packets, thmax = 36 packets). Nevertheless, ARED/ECN “new gentle” underperformed
drop-tail for approximately 60% of flows that needed more than 600 milliseconds to com-
plete. When ARED was used with parameter settings (thmin = 120 packets, thmax = 360
packets), both ARED/ECN and ARED/ECN “new gentle” obtained the same performance
as drop-tail with a queue length of 240 packets.

299

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 7.68: LQD/ECN performance at 80% load

7.3.4 Results for LQD/ECN

Figures 7.68, 7.69, and 7.70 show experimental results for LQD with general TCP ap-
plications when LQD was used without link-level buffering. These results were obtained
for LQD with and without ECN when LQD operated with a queue reference of 24 and 240
packets.

At 80% offered load, LQD with both queue references of 24 and 240 packets delivered
the same performance when it was used with and without ECN. The performance for LQD
was undistinguishable from that of drop-tail and of the uncongested network at this load.

At 90% offered load, LQD did not benefit from the ECN signaling protocol because it
already obtained performance very close to that of the uncongested network. With both
queue references of 24 and 240 packets, LQD gave the same performance when it operated
with and without ECN. The performance for LQD at this load was slightly better than
drop-tail.

At 95% offered load, LQD did not gain any performance improvement with ECN when it
was used with both queue references. With or without ECN, the performance for LQD was
very close to that of the uncongested network and considerably better than the performance
of drop-tail with a queue length of 240 packets at this load.

300

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 7.69: LQD/ECN performance at 90% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

LQD - qref=24
LQD - qref=240

LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 7.70: LQD/ECN performance at 95% load

301

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240
LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 7.71: LQD/ECN performance at 80% load (CCDF)

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240
LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 7.72: LQD/ECN performance at 90% load (CCDF)

302

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
LQD - qref=24
LQD - qref=240
LQD/ECN - qref=24
LQD/ECN - qref=240

Figure 7.73: LQD/ECN performance at 95% load (CCDF)

7.3.5 Results for DCN/ECN

Figures 7.74, 7.75, and 7.76 show experimental results for DCN with general TCP
applications and without link-level buffering when DCN was used with a queue reference of
24 and 240 packets. These results were obtained for DCN with and without ECN.

At 80% offered load, DCN with both queue references of 24 and 240 packets delivered
the same performance with and without ECN. The performance for DCN at this load was
identical to that of drop-tail and of the uncongested network.

At 90% offered load, DCN obtained the same performance with both queue references
when it was used with and without ECN. Further, the performance for DCN at this load was
undistinguishable from that of the uncongested network and better than the performance
of drop-tail.

As the offered load increased to 95%, DCN still did not suffer any performance degra-
dation. With or without ECN, DCN with both queue references gave performance that was
identical to that of the uncongested network and considerably better than the performance
of drop-tail with a queue length of 240 packets.

303

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 7.74: DCN/ECN performance at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 7.75: DCN/ECN performance at 90% load

304

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240

DCN - qref=24
DCN - qref=240

DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 7.76: DCN/ECN performance at 95% load

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240
DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 7.77: DCN/ECN performance at 80% load (CCDF)

305

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240
DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 7.78: DCN/ECN performance at 90% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
DCN - qref=24
DCN - qref=240
DCN/ECN - qref=24
DCN/ECN - qref=240

Figure 7.79: DCN/ECN performance at 95% load (CCDF)

306

7.4 Comparison of All Results

Figures 7.80, 7.81, and 7.82 show experimental results for PI, REM, ARED, LQD, and
DCN when they were used with general TCP applications and without link-level buffering
at 80%, 90%, and 95% offered loads. These results were obtained with the best parameter
settings for each of the AQM algorithms. Experimental results for DCN were shown when
DCN operated without ECN to demonstrate the benefits of differential treatment of flows
(recall from section 7.3.5 that DCN obtained the same performance with and without ECN).
Of note is the fact that PI/ECN obtained its overall best performance with a queue reference
of 240 (in contrast to experiments reported in Chapters 4, 5, and 6 where PI/ECN obtained
its best performance with a queue reference of 24 packets).

At 80% offered load, drop-tail with a queue length of 240 packets gave performance that
was undistinguishable from that of the uncongested network and of various AQM algorithms.
Thus, AQM appears to have no advantage over drop-tail for general TCP applications at
80% offered load.

At 90% offered load, all AQM algorithms and drop-tail obtained similar performance
and came close to the performance of the uncongested network. However, DCN delivered
slightly better performance than other AQM algorithms even when DCN was used without
ECN. Drop-tail gave about the same performance as ARED/ECN “new gentle” but slightly
underperformed other AQM algorithms.

At 95% offered load, DCN still delivered performance that was competitive with that
of the uncongested network even when DCN was used without ECN. Further, DCN out-
performed drop-tail and other AQM algorithms at this load. REM with ECN gave slightly
worse performance than DCN but better than drop-tail and other AQM algorithms. Drop-
tail and ARED/ECN “new gentle” obtained the same performance and underperformed
other AQM algorithms at this load.

7.5 Summary

This Chapter presents experimental results for PI, REM, ARED, LQD, and DCN with
general TCP traffic when link-level buffering was eliminated. Under the assumption that
connection durations are the most important performance metric (and other performance
metrics such as loss rate and link utilization are secondary) in evaluating AQM algorithms,
following conclusions can be drawn from the results presented in this Chapter.

• Overall, link-level buffering appears to have little effects on the performance of TCP
application. Experimental results for AQM algorithms that were obtained without
link-level buffering were comparable to results for AQM algorithms in Chapter 6 when
a link-level buffer of 254 packets was used.

307

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=240

REM/ECN - qref=24
DCN - qref=24

ARED/ECN new gentle - thmin=120 thmax=360

Figure 7.80: Comparison of all AQM algorithms at 80% load

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=240

REM/ECN - qref=24
DCN - qref=24

ARED/ECN new gentle - thmin=120 thmax=360

Figure 7.81: Comparison of all AQM algorithms at 90% load

308

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty
 (

%
)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=240

REM/ECN - qref=24
DCN - qref=24

ARED/ECN new gentle - thmin=120 thmax=360

Figure 7.82: Comparison of all AQM algorithms at 95% load

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=24
REM/ECN - qref=24
DCN - qref=24
ARED/ECN new gentle - thmin=120 thmax=360

Figure 7.83: Comparison of all AQM algorithms at 80% load (CCDF)

309

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=24
REM/ECN - qref=24
DCN - qref=24
ARED/ECN new gentle - thmin=120 thmax=360

Figure 7.84: Comparison of all AQM algorithms at 90% load (CCDF)

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 10 100 1000 10000 100000 1e+06 1e+07

C
om

pl
em

en
ta

ry
 c

um
ul

at
iv

e
pr

ob
ab

ili
ty

 (
%

)

Connection durations (milliseconds)

Uncongested network
drop-tail - qlen=240
PI/ECN - qref=24
REM/ECN - qref=24
DCN - qref=24
ARED/ECN new gentle - thmin=120 thmax=360

Figure 7.85: Comparison of all AQM algorithms at 95% load (CCDF)

310

• Contrary to results obtained in Chapter 6, drop-tail with a queue length of 24 packets
was underprovisioned when used without link-level buffering. However, a drop-tail of
240 packets delivered performance that was competitive to that of AQM algorithms
and the uncongested network at 80% load even when link-level buffering was elim-
inated. Thus, it appears that network operators could run their networks at 80%
offered load without performance degradation for general TCP applications.

• At 90% of higher offered loads, AQM algorithms gave a small performance improve-
ment for general TCP applications over drop-tail. Even with the addition of the ECN
signaling protocol, the performance gain of AQM algorithms over drop-tail remained
marginal.

• The DCN algorithm demonstrated the benefits of differential treatment of flows. Even
without the ECN signaling protocol, DCN obtained performance that was undistin-
guishable from that of the uncongested network at 95% offered load.

311

Table 7.1: Loss rate, completed requests, and link utilization

Offered Forward Reverse Completed Forward Reverse
load path path connec- path path

loss loss tions through- through-
rate (%) rate (%) (millions) put put

(Mbps) (Mbps)

Uncongested 80% 0.0 0.0 0.75 80.8 76.9
1 Gbps 90% 0.0 0.0 0.81 91.4 85.5
network 95% 0.0 0.0 0.83 98.7 90.7

Drop-tail 80% 4.3 3.9 0.75 71.8 71.4
queue 90% 5.5 4.7 0.81 75.1 73.6

size = 24 95% 6.2 5.6 0.83 76.6 76.1

Drop-tail 80% 0.1 0.0 0.75 79.9 76.0
queue 90% 0.8 0.3 0.81 87.3 82.4

size = 240 95% 1.9 1.0 0.83 88.2 86.9

PI 80% 0.1 0.0 0.75 79.6 76.3
qref = 24 90% 0.8 0.1 0.81 85.2 82.6

95% 1.4 0.7 0.83 86.1 84.7

PI/ECN 80% 0.0 0.0 0.75 79.7 76.8
qref = 24 90% 0.0 0.0 0.81 87.5 80.8

95% 0.1 0.0 0.83 87.8 86.0

PI 80% 0.1 0.0 0.75 75.7 72.8
qref = 240 90% 0.2 0.0 0.81 86.8 83.0

95% 0.7 0.1 0.83 87.5 86.7

PI/ECN 80% 0.0 0.0 0.75 75.7 72.8
qref = 240 90% 0.0 0.0 0.81 86.4 82.9

95% 0.1 0.0 0.83 87.8 86.7

REM 80% 0.0 0.0 0.75 75.7 72.8
qref = 24 90% 0.6 0.2 0.81 85.5 82.3

95% 1.3 0.6 0.83 85.5 84.6

REM/ECN 80% 0.0 0.0 0.75 75.7 72.8
qref = 24 90% 0.0 0.0 0.81 86.7 82.8

95% 0.1 0.0 0.83 86.9 86.9

Continued on next page

312

Offered Forward Reverse Completed Forward Reverse
load path path connec- path path

loss loss tions through- through-
rate (%) rate (%) (millions) put put

(Mbps) (Mbps)

REM 80% 0.0 0.0 0.75 75.7 72.8
qref = 240 90% 0.2 0.0 0.81 86.7 82.6

95% 0.7 0.4 0.83 86.9 84.4

REM/ECN 80% 0.0 0.0 0.75 75.7 72.8
qref = 240 90% 0.0 0.0 0.81 87.2 82.9

95% 0.0 0.0 0.83 88.2 86.6

ARED 80% 0.2 0.1 0.75 75.5 72.6
thmin = 12 90% 2.6 0.8 0.81 80.2 79.8
thmax = 36 95% 4.1 2.8 0.83 80.3 79.9

ARED/ECN 80% 0.1 0.0 0.75 75.6 72.7
thmin = 12 90% 2.4 0.7 0.81 79.3 78.7
thmax = 36 95% 3.7 2.6 0.83 79.7 79.0

ARED 80% 0.0 0.0 0.75 75.7 72.8
thmin = 120 90% 0.4 0.1 0.81 86.8 82.8
thmax = 360 95% 1.1 0.4 0.83 86.9 86.2

ARED/ECN 80% 0.0 0.0 0.75 75.8 73.0
thmin = 120 90% 0.3 0.0 0.81 86.6 82.9
thmax = 360 95% 1.0 0.3 0.83 86.8 84.8

ARED “byte 80% 0.2 0.0 0.75 75.5 72.4
mode” thmin = 12 90% 1.6 0.8 0.81 80.8 79.2

thmax = 36 95% 2.2 1.6 0.83 81.5 80.5

ARED “byte 80% 0.0 0.0 0.75 75.7 72.8
mode” thmin = 120 90% 0.4 0.1 0.81 86.1 82.1

thmax = 360 95% 1.4 0.9 0.83 86.8 82.4

ARED/ECN “new 80% 0.1 0.0 0.75 74.5 72.4
gentle” thmin = 12 90% 1.6 0.7 0.81 80.8 79.2

thmax = 36 95% 2.2 1.6 0.83 81.4 80.5

ARED/ECN “new 80% 0.0 0.0 0.75 75.7 72.8
gentle” thmin = 120 90% 0.2 0.0 0.81 86.1 82.1

thmax = 360 95% 0.9 0.2 0.83 86.4 82.3

Continued on next page

313

Offered Forward Reverse Completed Forward Reverse
load path path connec- path path

loss loss tions through- through-
rate (%) rate (%) (millions) put put

(Mbps) (Mbps)

LQD 80% 0.0 0.0 0.75 79.8 76.9
qref = 24 90% 0.2 0.0 0.81 89.1 83.4

95% 0.5 0.0 0.83 91.1 86.0

LQD/ECN 80% 0.0 0.0 0.75 79.9 77.0
qref = 24 90% 0.0 0.0 0.81 89.2 83.4

95% 0.0 0.0 0.83 91.2 86.2

LQD 80% 0.0 0.0 0.75 79.9 77.1
qref = 240 90% 0.1 0.0 0.81 89.4 83.4

95% 0.3 0.0 0.83 91.2 86.2

LQD/ECN 80% 0.0 0.0 0.75 79.9 77.2
qref = 240 90% 0.0 0.0 0.81 89.5 83.6

95% 0.0 0.0 0.83 91.3 86.4

DCN 80% 0.1 0.0 0.75 79.8 76.6
qref = 24 90% 0.4 0.1 0.81 89.2 82.9

95% 0.8 0.4 0.83 90.1 85.7

DCN/ECN 80% 0.0 0.0 0.75 79.9 76.8
qref = 24 90% 0.2 0.0 0.81 89.4 83.2

95% 0.4 0.2 0.83 90.3 85.6

DCN 80% 0.0 0.0 0.75 79.9 76.7
qref = 240 90% 0.3 0.1 0.81 90.1 83.1

95% 0.6 0.3 0.83 90.2 85.7

DCN/ECN 80% 0.0 0.0 0.75 79.9 76.7
qref = 240 90% 0.1 0.0 0.81 90.2 83.2

95% 0.3 0.1 0.83 90.4 85.8

314

Table 7.2: Percentiles of response times

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

Uncongested 80% 0.730 5.897 19.365
1 Gbps 90% 0.730 6.152 19.505
network 95% 0.730 6.166 19.513

Drop-tail 80% 0.757 6.004 19.498
queue size = 90% 0.810 6.589 20.074

24 95% 0.913 7.084 20.649

Drop-tail 80% 0.759 6.083 19.563
queue size = 90% 0.820 6.525 19.988

240 95% 0.916 7.016 20.584

PI 80% 0.749 5.981 19.452
qref = 24 90% 0.790 6.633 20.159

95% 0.830 7.016 20.673

PI/ECN 80% 0.749 5.977 19.449
qref = 24 90% 0.900 6.692 20.187

95% 0.788 6.738 20.262

PI 80% 0.750 5.985 19.456
qref = 240 90% 0.818 6.502 19.984

95% 0.909 7.021 20.644

PI/ECN 80% 0.750 5.984 19.453
qref = 240 90% 0.820 6.585 20.036

95% 0.895 6.928 20.512

REM 80% 0.745 5.975 19.447
qref = 24 90% 0.787 6.596 20.104

95% 0.825 7.010 20.659

REM/ECN 80% 0.743 5.970 19.440
qref = 24 90% 0.770 6.437 19.891

95% 0.788 6.689 20.206

REM 80% 0.749 5.979 19.447
qref = 240 90% 0.804 6.478 19.950

95% 0.885 6.965 20.573

REM/ECN 80% 0.748 5.980 19.445
qref = 240 90% 0.799 6.428 19.886

95% 0.858 6.747 20.252

Continued on next page

315

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

ARED 80% 0.750 6.010 19.509
thmin = 12 90% 0.958 7.346 21.004
thmax = 36 95% 1.272 8.296 22.189

ARED/ECN 80% 0.748 5.995 19.488
thmin = 12 90% 0.931 7.331 20.952
thmax = 36 95% 1.329 8.591 22.517

ARED 80% 0.748 5.978 19.446
thmin = 120 90% 0.810 6.523 19.995
thmax = 360 95% 0.916 7.027 20.615

ARED/ECN 80% 0.760 6.094 19.566
thmin = 120 90% 0.808 6.498 19.962
thmax = 360 95% 0.923 7.105 20.691

ARED “byte 80% 0.767 6.173 19.690
mode” thmin = 12 90% 0.845 7.134 20.756

thmax = 36 95% 0.928 7.658 21.489

ARED “byte 80% 0.747 5.976 19.443
mode” thmin = 120 90% 0.801 6.526 20.008

thmax = 360 95% 0.913 7.335 21.073

ARED “new 80% 0.745 5.982 19.467
gentle” thmin = 12 90% 0.862 7.076 20.495

thmax = 36 95% 1.037 7.771 21.258

ARED “new 80% 0.747 5.977 19.442
gentle” thmin = 120 90% 0.806 6.490 19.935

thmax = 360 95% 0.901 6.997 20.489

LQD 80% 0.740 5.940 19.408
qref = 24 90% 0.762 6.389 19.838

95% 0.777 6.603 20.105

LQD/ECN 80% 0.740 5.938 19.407
qref = 24 90% 0.810 6.424 19.853

95% 0.760 6.453 19.880

LQD 80% 0.740 5.941 19.411
qref = 240 90% 0.771 6.330 19.747

95% 0.816 6.599 20.088

Continued on next page

316

Offered 50th percentile 75th percentile 90th percentile
loads (seconds) (seconds) (seconds)

LQD/ECN 80% 0.740 5.941 19.409
qref = 240 90% 0.772 6.369 19.780

95% 0.809 6.552 20.010

DCN 80% 0.733 5.941 19.382
qref = 24 90% 0.735 6.176 19.513

95% 0.736 6.183 19.516

DCN/ECN 80% 0.735 5.943 19.399
qref = 24 90% 0.736 6.177 19.526

95% 0.738 6.192 19.540

DCN 80% 0.738 5.963 19.429
qref = 240 90% 0.746 6.235 19.614

95% 0.750 6.254 19.623

DCN/ECN 80% 0.752 6.074 19.554
qref = 240 90% 0.756 6.252 19.639

95% 0.765 6.290 19.676

Chapter 8

Conclusions and Future Work

AQM has been proposed by networking researchers and the Internet Engineering Task
Force as a mechanism to preserve and improve the performance of Internet applications.
AQM algorithms operate on network routers and detect congestion by typically monitoring
the instantaneous or average router queue. When AQM algorithms anticipate that conges-
tion is about to occur, they provide end systems with a congestion signal by marking or
dropping arriving packets. This proactive approach is in contrast to the reactive approach
of pure end systems’ congestion control that only reacts to congestion after router queues
already overflowed.

Many AQM algorithms have been proposed in recent years but none of them have been
thoroughly investigated under comparable (or realistic) conditions in a real network. More-
over, existing performance studies have concentrated on network-centric measures of per-
formance and have not considered application-level performance measures such as response
time. In this dissertation, I investigated the effects of a large collection of AQM algorithms
on the performance of Web and general TCP applications under realistic conditions in a
real network.

Experimental results for AQM algorithms with Web applications, arguably the currently
most important Internet application, lead to the following conclusions. These conclusions
were drawn under the assumption that response times are the most important performance
metrics for Web applications (and network-centric performance metrics such as loss rate and
link utilization are secondary) in evaluating the effects of AQM algorithms on applicaiton
performance.

• At offered load of 80%, conventional drop-tail queues delivered performance that was
competitive to the performance of all AQM algorithms under evaluation. Thus, AQM
algorithms appear to have no advantage over drop-tail at offered load of 80% or lower.

• Further, since drop-tail closely approximated the performance of the uncongested
network at 80% load, it seems that network operators can run their networks at offered

318

loads up to 80% with a minimum performance degradation for Web applications.

• When the offered load increased to 90% or higher, AQM algorithms only provided
marginal performance improvement over drop-tail when they were used with packet
drops. Further, in most cases, the small performance improvement provided by AQM
cannot offset the significant performance degradation that all AQM algorithms suffer
at these extreme loads.

• However, when AQM algorithms were used with the ECN signaling protocol at 90%
load or higher, they provided significant performance improvement over drop-tail.
Thus, it appears that when ECN is used, network operators can run their networks
near saturation levels with only a small performance degradation for Web applications.

• The ARED algorithm, a contemporary redesign of the classical RED algorithm, gave
the poorest performance among all AQM algorithms. Oftentimes, the performance
of ARED was worse than that of conventional drop-tail queues. These results were
unchanged by the addition of the ECN signaling protocol.

• Further investigations in the poor performance for ARED revealed a number of its
design flaws. Two modified algorithms, ARED “byte mode” and ARED “new gentle”,
were proposed in this dissertation to fix the design flaws for ARED. These new ARED
algorithms improved the performance for ARED significantly.

• Thanks to the heavy distribution in flow sizes of Web traffic, differential treatment of
flows can improve the performance for Web applications significantly. For example,
the DCN algorithm proposed in this thesis outperformed all existing AQM algorithms
even when it was used without the ECN signaling protocol.

• When the minimum RTTs used to emulate propagation delays in experiments changed
from a uniform to a more general (and more heavy-tailed) distribution, the perfor-
mance improvement of AQM algorithms over drop-tail becomes less significant. This
is because when RTTs increase, they become a more important factor and dominate
the effects of packet loss on the performance of Web applications.

When experiments were performed for AQM algorithms with general TCP applications,
the following conclusions were drawn from the experimental results. These conclusions
were made when assuming that connection durations, a generalized performance metric
of response times for Web applications, are the most important performance metrics for
general TCP applications.

• At 90% offered load or lower, the performance for drop-tail with a queue length of
240 packets was very close to that of all AQM algorithms and the performance of the

319

uncongested network. Thus, it appears that Internet Service Providers could operate
their network near saturation levels without causing noticeable performance degra-
dation for their customers’ applications. Further, AQM seems to have no advantage
over drop-tail for general TCP applications at 90% offered load or below.

• As the offered load increased to 95%, AQM algorithms gave very small performance
improvement over drop-tail when they were used with packet drops. Further, when
AQM algorithms were used with ECN, their performance improvement over drop-tail
for general TCP applicaitons remained marginal.

• ARED was once again the worst performing AQM algorithm but the performance for
ARED was improved considerably with the two modifications ARED “byte mode”
and “new gentle” with ECN.

• The DCN algorithm demonstrated the power of differential treatment of flows. Even
without the ECN marking protocol, DCN obtained performance that was indistin-
guishable from the performance of the uncongested network at 95% offered load.

• When operated without link-level buffering, a short drop-tail queue gave very poor
performance that was significantly lower than that of AQM algorithms and of the
uncongested network.

Overall, existing AQM algorithms show promising results. When operated in combina-
tion with the ECN signaling protocol, existing AQM algorithms reduce loss rates, increase
link utilization, and provide significant performance improvement for response times. If
packet marking is not possible, the dissertation also shows how a form of different treat-
ment of flows can achieve a similar positive performance improvement.

In future work, it would be interesting to evaluate AQM algorithms under different
conditions such as multihop networks, wireless networks, or gigabit networks. Further, it
would be very interesting to perform these experiments either with standard TCP protocol
or with recently proposed congestion control protocols such as XCP [KHR02], HighSpeed
TCP [Flo03], BIC-TCP [XHR04], and FAST [JWL04].

320

321

BIBLIOGRAPHY

[AKSJ03] Jay Aikat, Jasleen Kaur, F. Donelson Smith, and Kevin Jeffay. Variability in
TCP round-trip times. In Proceedings of Internet Measurement Conference, 2003.

[ALLY01] Sanjeewa Athuraliya, Victor H. Li, Steven H. Low, and Qinghe Yin. REM:
Active queue management. IEEE Network, 15(3):48–53, May 2001.

[Ath02] Sanjeewa Athurliya. A note on parameter values of REM with Reno-like
algorithms. Available at http://netlab.caltech.edu, March 2002.

[BB01] Deepak Bansal and Hari Balakrishnan. Binomial congestion control algorithms. In
Proceedings of IEEE INFOCOM, April 2001.

[BBC+98] Steven Blake, David L. Black, Mark A. Carlson, Elwyn Davies, Zheng Wang,
and Walter Weiss. An architecture for differentiated services. RFC 2475, December
1998.

[BCC+98] Bob Braden, David D. Clark, Jon Crowcroft, Bruce Davie, Steve Deering,
Deborah Estrin, Sally Floyd, Van Jacobson, Greg Minshall, Craig Partridge, Larry
Peterson, K. K. Ramakrishnan, Scott Shenker, John Wroclawski, and Lixia Zhang.
Recommendations on queue management and congestion avoidance in the Internet.
RFC 2309, April 1998.

[BCS94] Bob Braden, David D. Clark, and Scott Shenker. Integrated services in the
Internet architecture: An overview. RFC 1633, June 1994.

[BOP94] Lawrence Brakmo, Sean O’Malley, and Larry Peterson. TCP Vegas: New
techniques for congestion detection and avoidance. In Proceedings of ACM
SIGCOMM, pages 24–35, October 1994.

[CF98] David D. Clark and Wenjia Fang. Explicit allocation of best-effort packet delivery
service. IEEE/ACM Transactions on Networking, 6(4):362–373, August 1998.

[Cho98] Kenjiro Cho. A framework for alternate queueing: Towards traffic management
by PC-UNIX based routers. In USENIX, June 1998.

[CJOS01] Mikkel Christiansen, Kevin Jeffay, David Ott, and F. Donelson Smith. Tuning
RED for web traffic. IEEE/ACM Transactions on Networking, 9(3):249–264, June
2001.

[CJS04] Felix Hernandez Campos, Kevin Jeffay, and F. Donelson Smith. Generating
realistic TCP workloads. In The Computer Measurement Group’s 2004
International Conference, 2004.

[DKS89] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and simulation of
a fair queueing algorithm. In Proceedings of ACM SIGCOMM, September 1989.

322

[ei05] end2end interest. Is sanity in ns2? Email to end2end-interest mailing list,
September 2005.

[EV02] Christian Estan and George Varghese. New directions in traffic measurement and
accounting control algorithms. In Proceedings of ACM SIGCOMM, August 2002.

[FB00] Victor Firoiu and Marty Borden. A study of active queue management for
congestion control. In Proceedings of IEEE INFOCOM, March 2000.

[FF99] Sally Floyd and Kevin Fall. Promoting the use of end-to-end congestion control in
the Internet. IEEE/ACM Transactions on Networking, 7(4), August 1999.

[FGS01] Sally Floyd, Ramakrishna Gummadi, and Scott Shenker. Adaptive RED: An
algorithm for increasing the robustness of RED’s active queue management. under
submission, August 2001.

[FGW98] Anja Feldmann, Anna Gilbert, and Walter Willinger. Data networks as
cascades: Explaining the multifractal nature of Internet WAN traffic. In Proceedings
of ACM SIGCOMM, September 1998.

[FHGW99] Anja Feldmann, Polly Huang, Anna C. Gilbert, and Walter Willinger.
Dynamics of IP traffic: A study of the role of variability and the impact of control.
In Proceedings of ACM SIGCOMM, August 1999.

[FJ93] Sally Floyd and Van Jacobson. Random early detection gateways for congestion
avoidance. IEEE/ACM Transactions on Networking, 1(4):397–413, August 1993.

[FKSS99] Wu-Chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G. Shin. A
self-configuring RED gateway. In Proceedings of IEEE INFOCOM, March 1999.

[FKSS01a] Wu-Chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G. Shin. Blue:
An alternative approach to active queue management. In Proceedings of Network
and Operating System Support for Digital Audio and Video, June 2001.

[FKSS01b] Wu-Chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G. Shin.
Stochastic Fair Blue: A queue management algorithm for enforcing fairness. In
Proceedings of IEEE INFOCOM, April 2001.

[FKSS02] Wu-Chang Feng, Dilip D. Kandlur, Debanjan Saha, and Kang G. Shin. The
Blue active queue management algorithms. IEEE/ACM Transactions on
Networking, 10(4), August 2002.

[Flo00a] Sally Floyd. Congestion control principles. RFC 2914, September 2000.

[Flo00b] Sally Floyd. Recommendation on using the “gentle ” variant of RED.
http://www.icir.org/floyd/red/gentle.html, March 2000.

[Flo03] Sally Floyd. Highspeed TCP for large congestion windows. RFC 3649, December
2003.

[GM01] Liang Guo and Ibrahim Matta. The war between mice and elephants. In
Proceedings of the IEEE International Conference on Network Protocols (ICNP),
2001.

323

[HMTG01] C. V. Hollot, Vishal Misra, Don Towsley, and Wei-Bo Gong. On designing
improved controllers for AQM routers supporting TCP flows. In Proceedings of
IEEE INFOCOM, April 2001.

[Inc98] Ganymede Software Inc. Chariot 2.2, 1998.
http://www.ganymedesoftware.com/html/chariot.htm (link is now broken).

[JK88] Van Jacobson and Michael Karels. Congestion avoidance and control. In
Proceedings of ACM SIGCOMM, pages 314–329, 1988.

[JWL04] Cheng Jin, David X. Wei, and Steven H. Low. FAST TCP: motivation,
architecture, algorithms, performance. In Proceedings of IEEE INFOCOM, March
2004.

[KHR02] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion control for high
bandwidth-delay product networks. In Proceedings of ACM SIGCOMM, August
2002.

[KS01] Srisankar Kunniyur and R. Srikant. Analysis and design of an adaptive virtual
queue (AVQ) algorithm for active queue management. In Proceedings of ACM
SIGCOMM, August 2001.

[KV03] Jasleen Kaur and Harrick Vin. Core-stateless guaranteed throughput networks. In
Proceedings of IEEE INFOCOM, April 2003.

[LAJS03] Long Le, Jay Aikat, Kevin Jeffay, and F. Donelson Smith. The effects of active
queue management on web performance. In Proceedings of ACM SIGCOMM,
August 2003.

[LAJS04] Long Le, Jay Aikat, Kevin Jeffay, and F. Donelson Smith. Differential
congestion notification: Taming the elephants. In Proceedings of the IEEE
International Conference on Network Protocols (ICNP), October 2004.

[LJS06] Long Le, Kevin Jeffay, and F. Donelson Smith. A loss and queuing delay
controller for buffer management. In Proceedings of the IEEE International
Conference on Distributed Computing Systems (ICDCS), July 2006.

[LM97] Dong Lin and Robert Morris. Dynamics of random early detection. In Proceedings
of ACM SIGCOMM, August 1997.

[LPW+02] Steven H. Low, Fernando Paganini, Jiantao Wang, Sachin Adlakha, and
John C. Doyle. Dynamics of TCP/RED and a scalable control. In Proceedings of
IEEE INFOCOM, June 2002.

[MAF05] Alberto Medina, Mark Allman, and Sally Floyd. Measuring the evolution of
transport protocols in the Internet. ACM Computer Communication Review, 35(2),
April 2005.

[Mah97] Bruce A. Mah. An empirical model of HTTP network traffic. In Proceedings of
IEEE INFOCOM, pages 592–600, 1997.

324

[MBDL99] Martin May, Jean Bolot, Christophe Diot, and Bryan Lyles. Reasons not to
deploy RED. In IWQoS, 1999.

[McK90] Paul McKenney. Stochastic fairness queuing. In Proceedings of IEEE
INFOCOM, June 1990.

[MFW01] Ratul Mahajan, Sally Floyd, and David Wetherall. Controlling high-bandwidth
flows at the congested routers. In Proceedings of the IEEE International Conference
on Network Protocols (ICNP), August 2001.

[NGBS+97] Henrik Frystyk Nielsen, James Gettys, Anselm Baird-Smith, Eric
Prud’hommeaux, Hakon Wium Lie, and Chris Lilley. Network performance effects of
HTTP/1.1, CSS1, and PNG. In Proceedings of ACM SIGCOMM, September 1997.

[NLA05] NLANR. http://www.nlanr.net, August 2005.

[NRSA01] Erich M. Nahum, Marcel Rosu, Srinivasan Seshan, and Jussara Almeida. The
effects of wide-area conditions on WWW server performance. In Proceedings of
ACM SIGMETRICS, June 2001.

[OKM96] Teunis J. Ott, J.H.B. Kemperman, and Matt Mathis. The stationary behavior
of idealized TCP congestion behavior. Available at
http://web.njit.edu/~ott/Papers/, 1996.

[OLW99] Teunis J. Ott, T. V. Lakshman, and Larry H. Wong. SRED: Stabilized RED. In
Proceedings of IEEE INFOCOM, March 1999.

[Pax99] Vern Paxson. End-to-end Internet packet dynamics. IEEE/ACM Transactions on
Networking, 7(3):277–292, June 1999.

[PBPS03] Rong Pan, Lee Breslau, Balaji Prabhakar, and Scott Shenker. Approximate
fairness through differential dropping. ACM Computer Communication Review,
33(2):23–39, April 2003.

[PF95] Vern Paxson and Sally Floyd. Wide-area traffic: The failure of Poisson modeling.
IEEE/ACM Transactions on Networking, 3(3):226–244, June 1995.

[PF01] Jitendra Padhye and Sally Floyd. On inferring TCP behavior. In Proceedings of
ACM SIGCOMM, pages 287–298, September 2001.

[PFTK98] Jitendra Padhye, Victor Firoiu, Don Towsley, and Jim Kurose. Modeling TCP
throughput: A simple model and its empirical validation. In Proceedings of ACM
SIGCOMM, September 1998.

[PG93] Abhay K. Parekh and Robert G. Gallager. A generalized processor sharing
approach to flow control in integrated services networks: the single-node case.
IEEE/ACM Transactions on Networking, 1(3), June 1993.

[PPP00] Rong Pan, Balaji Prabhakar, and Konstantinos Psounis. CHOKe, a stateless
active queue management scheme for approximating fair bandwidth allocation. In
Proceedings of IEEE INFOCOM, March 2000.

325

[RFB01] K. K. Ramakrishnan, Sally Floyd, and David L. Black. The addition of explicit
congestion notification (ECN) to IP. RFC 3168, September 2001.

[Riz97] Luigi Rizzo. Dummynet: a simple approach to the evaluation of network
protocols. ACM Computer Communication Review, January 1997.

[SA00] Jamal Hadi Salim and Uvaiz Ahmed. Performance evaluation of explicit
congestion notification (ECN) in IP networks. RFC 2884, July 2000.

[SCJO01] F. Donelson Smith, Felix Hernandez Campos, Kevin Jeffay, and David Ott.
What TCP/IP protocol headers can tell us about the web. In Proceedings of ACM
SIGMETRICS, pages 245–256, June 2001.

[SSZ98] Ion Stoica, Scott Shenker, and Hui Zhang. Core-stateless fair queueing: A
scalable architecture to approximate fair bandwidth allocations in high speed
networks. In Proceedings of ACM SIGCOMM, September 1998.

[SV95] M. Shreedhar and G. Varghese. Efficient fair queueing using deficit round robin.
In Proceedings of ACM SIGCOMM, September 1995.

[Wei03] Michele Clark Weigle. Investigating the Use of Synchronized Clocks in TCP
Congestion Control. PhD thesis, University of North Carolina at Chapel Hill,
August 2003.

[WTSW97] Walter Willinger, Murad S. Taqqu, Robert Sherman, and Daniel V. Wilson.
Self-similarity through high variability: statistical analysis of ethernet LAN traffic at
the source level. IEEE/ACM Transactions on Networking, 5(1):71–86, February
1997.

[XHR04] Lisong Xu, Khaled Harfoush, and Injong Rhee. Binary increase congestion
control for fast, long distance networks. In Proceedings of IEEE INFOCOM, March
2004.

[ZBPS02] Yin Zhang, Lee Breslau, Vern Paxson, and Scott Shenker. On the
characteristics and origins of Internet flow rates. In Proceedings of ACM
SIGCOMM, August 2002.

[ZSC91] Lixia Zhang, Scott Shenker, and David Clark. Observations on the dynamics of a
congestion control algorithm: The effects of two-way traffic. In Proceedings of ACM
SIGCOMM, 1991.

